Zhou, Guiyin; Liu, Chengbin; Chu, Lin; Tang, Yanhong; Luo, Shenglian
2016-11-01
In this study, a new type of double-network hydrogel sorbent was developed to remove heavy metals in wastewater. The amino-functionalized Starch/PAA hydrogel (NH2-Starch/PAA) could be conducted in a wide pH and the adsorption process could rapidly achieve the equilibrium. The adsorption capacity got to 256.4mg/g for Cd(II). Resultantly, even though Cd(II) concentration was as high as 180mg/L, the Cd(II) could be entirely removed using 1g/L sorbent. Furthermore, the desirable mechanical durability of the adsorbent allowed easy separation and reusability. In the fixed-bed column experiments, the treatment volume of the effluent with a high Cd(II) concentration of 200mg/L reached 2400BV (27.1L) after eight times cycle. The NH2-Starch/PAA overcame the deficiency of conventional sorbents that could not effectively treat the wastewater with relatively high metal concentrations. This work provides a new insight into omnidirectional enhancement of sorbents for removing high-concentration heavy metals in wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sudibyo, Hermida, L.; Suwardi
2017-11-01
Tapioca waste water is very difficult to treat; hence many tapioca factories could not treat it well. One of method which able to overcome this problem is electrodeposition. This process has high performance when it conducted using batch recycle process and use aluminum bipolar electrode. However, the optimum operation conditions are having a significant effect in the tapioca wastewater treatment using bath recycle process. In this research, The Taguchi method was successfully applied to know the optimum condition and the interaction between parameters in electrocoagulation process. The results show that current density, conductivity, electrode distance, and pH have a significant effect on the turbidity removal of cassava starch waste water.
Ndao, Adama; Sellamuthu, Balasubramanian; Gnepe, Jean R; Tyagi, Rajeshwar D; Valero, Jose R
2017-09-02
Pilot-scale Bacillus thuringiensis based biopesticide production (2000 L bioreactor) was conducted using starch industry wastewater (SIW) as a raw material using optimized operational parameters obtained in 15 L and 150 L fermenters. In pilot scale fermentation process the oxygen transfer rate is a major limiting factor for high product yield. Thus, the volumetric mass transfer coefficient (K L a) remains a tool to determine the oxygen transfer capacity [oxygen utilization rate (OUR) and oxygen transfer rate (OTR)] to obtain better bacterial growth rate and entomotoxicity in new bioreactor process optimization and scale-up. This study results demonstrated that the oxygen transfer rate in 2000 L bioreactor was better than 15 L and 150 L fermenters. The better oxygen transfer in 2000 L bioreactor augmented the bacterial growth [total cell (TC) and viable spore count (SC)] and delta-endotoxin yield. Prepared a stable biopesticide formulation for field use and its entomotoxicity was also evaluated. This study result corroborates the feasibility of industrial scale operation of biopesticide production using starch industry wastewater as raw material.
Liu, Meng; Zhang, Xu; Tan, Tianwei
2016-10-01
In this paper, the components of amino acids in mixed starch wastewater (corn steep water/corn gluten water=1/3, v/v) were analyzed by GC-MS. Effects of amino acids on lipid production by Rhodotorula glutinis and COD removal were studied. The results showed that mixed starch wastewater contained 9 kinds of amino acids and these amino acids significantly improved the biomass (13.63g/L), lipid yield (2.48g/L) and COD removal compared to the basic medium (6.23g/L and 1.56g/L). In a 5L fermentor containing mixed starch wastewater as substrate to culture R. glutinis, the maximum biomass, lipid content and lipid yield reached 26.38g/L, 28.90% and 7.62g/L, with the associated removal rates of COD, TN and TP reaching 77.41%, 69.12% and 73.85%, respectively. The results revealed a promising approach for lipid production with using amino acids present in starch wastewater as an alternative nitrogen source. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ren, Hong-Yu; Liu, Bing-Feng; Kong, Fanying; Zhao, Lei; Ren, Nanqi
2015-11-15
Anaerobic sludge (AS) and microalgae were co-cultured to enhance the energy conversion and nutrients removal from starch wastewater. Mixed ratio, starch concentration and initial pH played critical roles on the hydrogen and lipid production of the co-culture system. The maximum hydrogen production of 1508.3 mL L(-1) and total lipid concentration of 0.36 g L(-1) were obtained under the optimized mixed ratio (algae:AS) of 30:1, starch concentration of 6 g L(-1) and initial pH of 8. The main soluble metabolites in dark fermentation were acetate and butyrate, most of which can be consumed in co-cultivation. When sweet potato starch wastewater was used as the substrate, the highest COD, TN and TP removal and energy conversion efficiencies reached 80.5%, 88.7%, 80.1% and 34.2%, which were 176%, 178%, 200% and 119% higher than that of the control group (dark fermentation), respectively. This research provided a novel approach and achieved efficient simultaneous energy recovery and nutrients removal from starch wastewater by the co-culture system. Copyright © 2015 Elsevier Ltd. All rights reserved.
Białas, Wojciech; Szymanowska, Daria; Grajek, Włodzimierz
2010-05-01
A major problem with fermentative ethanol production is the formation of large amounts of numerous organic pollutants. In an industrial distillery, stillage, fermenter and condenser cooling water are the main sources of wastewater. However, the selection of a proper technology makes it possible to almost completely avoid emissions of such kind of wastewater to the environment. This study examines the effect of stillage recirculation on fuel ethanol production. It is based on the use of Saccharomyces cerevisiae and a granular starch hydrolyzing enzyme in a simultaneous saccharification and fermentation process using a native starch obtained from corn flour. It was shown that the yield of the ethanol production was not influenced by the recycled stillage, a mean yield being 83.38% of the theoretical value. No significant trend for change in the ethanol concentration or in the residual starch was observed during any particular run, even after the 75% of fresh water was replaced with stillage. Thus, by applying this new clean technology it is possible to significantly reduce the rate of water consumption and in this way the production of by-products such as stillage. Copyright 2009 Elsevier Ltd. All rights reserved.
Yan, S; Tyagi, R D; Surampalli, R Y
2006-01-01
Activated sludge from different full-scale wastewater treatment plants (municipal, pulp and paper industry, starch manufacturing and cheese manufacturing wastewaters) was used as a source of microorganisms to produce biodegradable plastics in shake flask experiments. Acetate, glucose and different wastewaters were used as carbon sources. Pulp and paper wastewater sludge was found to accumulate maximum concentration (43% of dry weight of suspended solids) of polyhydroxy alkanoates (PHA) with acetate as carbon source. Among the different wastewaters tested as a source of carbon, pulp and paper industry and starch industry wastewaters were found to be the best source of carbon while employing pulp and paper activated sludge for maximum accumulation of PHA. High concentration of volatile fatty acids in these wastewaters was the probable reason.
Effect of magnetic starch on the clarification of hematite tailings wastewater
NASA Astrophysics Data System (ADS)
Yue, Tao; Wu, Xiqing
2018-02-01
The magnetic starch solution, synthesized by mixing the caustic starch, the Fe2+ solution (in some cases containing the Zn2+, Cu2+, Mn2+ or Mg2+ ions) and H2O2 solution, was used as the flocculant to investigate its clarification effect on hematite tailings wastewater. Based on the clarification tests and adsorption analysis it was demonstrated that the magnetic starch produced better clarification effect than the caustic starch, and the adsorption of magnetic starch onto hematite tailings particles was also stronger than the caustic starch. AFM found that the magnetic interaction between magnetic seeds and hematite is characteristic of long range force and greatly strengthens the adsorption of magnetic seeds onto fine hematite for agglomeration. FTIR indicates the starch adsorbed onto the surfaces of hematite and magnetic seeds, thus acting as the bridging between hematite particles and magnetic seeds, resulting in an intensified coverage of the starch onto hematite and positive action in the clarification.
NASA Astrophysics Data System (ADS)
Aji, Wijayanto Setyo; Purwanto; Suherman, S.
2018-02-01
Cassava starch industry is one of the leading small-medium enterprises (SMEs) in Pati Regency. Cassava starch industry released waste that reduces the quantity of final product and potentially contamined the environment. This study was conducted to observe the feasibility of good housekeeping implementation to reduce waste and at the same time improve efficiency of production process. Good housekeeping opportunities are consideration by three aspect, technical, economy and environmental. Good housekeeping opportunities involved water conservation and waste reduction. These included reuse of water in washing process, improving workers awareness in drying section and packaging section. Implementation of these opportunities can reduce water consumption, reduce wastewater and solid waste generation also increased quantity of final product.
NASA Astrophysics Data System (ADS)
Isana S. Y., L.; Yuanita, Dewi; Sulistyani, Al, Heru Pratomo
2017-08-01
Hydrogen production in a safe, enviromentally friendly, and inexpensive is an attempt to realize energy needs commercially, one of them is electrolysis. Many attempts which relate with water electrolysis had been conducted to produce hydrogen, for example by using wastewater as water substitution. The research is to study the effect of dahlia pinnata tuber starch to stainless steel/Fe-Co-Ni electrode activity on water electrolysis in base condition. Stainless steel/Fe-Co-Ni electrode activity for breaking the water molecules eventually is better than stainless steel electrode, either there is existance of dahlia pinnata tuber starch or not. The presence of dahlia pinnata tuber starch apparently makes the covering on surface of the electrode so the catalytic activity of the electrode is reduced. Covering is mostly affected by dahlia pinnata tuber starch concentration. Wastewater which contains starch, especially dahlia pinnata tuber starch, obviously is not good enough because hydrogen production rate becomes obstructed.
Antwi, Philip; Li, Jianzheng; Meng, Jia; Deng, Kaiwen; Koblah Quashie, Frank; Li, Jiuling; Opoku Boadi, Portia
2018-06-01
In this a, three-layered feedforward-backpropagation artificial neural network (BPANN) model was developed and employed to evaluate COD removal an upflow anaerobic sludge blanket (UASB) reactor treating industrial starch processing wastewater. At the end of UASB operation, microbial community characterization revealed satisfactory composition of microbes whereas morphology depicted rod-shaped archaea. pH, COD, NH 4 + , VFA, OLR and biogas yield were selected by principal component analysis and used as input variables. Whilst tangent sigmoid function (tansig) and linear function (purelin) were assigned as activation functions at the hidden-layer and output-layer, respectively, optimum BPANN architecture was achieved with Levenberg-Marquardt algorithm (trainlm) after eleven training algorithms had been tested. Based on performance indicators such the mean squared errors, fractional variance, index of agreement and coefficient of determination (R 2 ), the BPANN model demonstrated significant performance with R 2 reaching 87%. The study revealed that, control and optimization of an anaerobic digestion process with BPANN model was feasible. Copyright © 2018 Elsevier Ltd. All rights reserved.
Antwi, Philip; Li, Jianzheng; Boadi, Portia Opoku; Meng, Jia; Shi, En; Deng, Kaiwen; Bondinuba, Francis Kwesi
2017-03-01
Three-layered feedforward backpropagation (BP) artificial neural networks (ANN) and multiple nonlinear regression (MnLR) models were developed to estimate biogas and methane yield in an upflow anaerobic sludge blanket (UASB) reactor treating potato starch processing wastewater (PSPW). Anaerobic process parameters were optimized to identify their importance on methanation. pH, total chemical oxygen demand, ammonium, alkalinity, total Kjeldahl nitrogen, total phosphorus, volatile fatty acids and hydraulic retention time selected based on principal component analysis were used as input variables, whiles biogas and methane yield were employed as target variables. Quasi-Newton method and conjugate gradient backpropagation algorithms were best among eleven training algorithms. Coefficient of determination (R 2 ) of the BP-ANN reached 98.72% and 97.93% whiles MnLR model attained 93.9% and 91.08% for biogas and methane yield, respectively. Compared with the MnLR model, BP-ANN model demonstrated significant performance, suggesting possible control of the anaerobic digestion process with the BP-ANN model. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yi, Xuenong; Wang, Yulin
2017-06-01
A combined process of micro-electrolysis, two-phase anaerobic, aerobic and electrolysis was investigated for the treatment of oxidized modified starch wastewater (OMSW). Optimum ranges for important operating variables were experimentally determined and the treated water was tested for reuse in the production process of corn starch. The optimum hydraulic retention time (HRT) of micro-electrolysis, methanation reactor, aerobic process and electrolysis process were 5, 24, 12 and 3 h, respectively. The addition of iron-carbon fillers to the acidification reactor was 200 mg/L while the best current density of electrolysis was 300 A/m2. The biodegradability was improved from 0.12 to 0.34 by micro-electrolysis. The whole treatment was found to be effective with removal of 96 % of the chemical oxygen demand (COD), 0.71 L/day of methane energy recovery. In addition, active chlorine production (15,720 mg/L) was obtained by electrolysis. The advantage of this hybrid process is that, through appropriate control of reaction conditions, effect from high concentration of salt on the treatment was avoided. Moreover, the process also produced the material needed in the production of oxidized starch while remaining emission-free and solved the problem of high process cost.
Clay-starch combination for micropollutants removal from wastewater treatment plant effluent.
Mohd Amin, M F; Heijman, S G J; Rietveld, L C
2016-01-01
In this study, a new, more effective and cost-effective treatment alternative is investigated for the removal of pharmaceuticals from wastewater treatment plant effluent (WWTP-eff). The potential of combining clay with biodegradable polymeric flocculants is further highlighted. Flocculation is viewed as the best method to get the optimum outcome from clay. In addition, flocculation with cationic starch increases the biodegradability and cost of the treatment. Clay is naturally abundantly available and relatively inexpensive compared to conventional adsorbents. Experimental studies were carried out with existing naturally occurring pharmaceutical concentrations found and measured in WWTP-eff with atrazine spiking for comparison between the demineralised water and WWTP-eff matrix. Around 70% of the total measured pharmaceutical compounds were removable by the clay-starch combination. The effect of clay with and without starch addition was also highlighted.
Optimization of the nitrification process of wastewater resulting from cassava starch production.
Fleck, Leandro; Ferreira Tavares, Maria Hermínia; Eyng, Eduardo; Orssatto, Fabio
2018-05-14
The present study has the objective of optimizing operational conditions of an aerated reactor applied to the removal of ammoniacal nitrogen from wastewater resulting from the production of cassava starch. An aerated reactor with a usable volume of 4 L and aeration control by rotameter was used. The airflow and cycle time parameters were controlled and their effects on the removal of ammoniacal nitrogen and the conversion to nitrate were evaluated. The highest ammoniacal nitrogen removal, of 96.62%, occurred under conditions of 24 h and 0.15 L min -1 L reactor -1 . The highest nitrate conversion, of 24.81%, occurred under conditions of 40.92 h and 0.15 L min -1 L reactor -1 . The remaining value of ammoniacal nitrogen was converted primarily into nitrite, energy, hydrogen and water. The optimal operational values of the aerated reactor are 29.25 h and 0.22 L min -1 L reactor -1 . The mathematical models representative of the process satisfactorily describe ammoniacal nitrogen removal efficiency and nitrate conversion, presenting errors of 2.87% and 3.70%, respectively.
LaPara, Timothy M; Klatt, Christian G; Chen, Ruoyu
2006-02-10
Membrane-coupled bioreactors (MBRs) offer substantial benefits compared to conventional reactor designs for biological wastewater treatment. MBR treatment efficiency, however, has not been optimized because the effects of the MBR on process microbiology are poorly understood. In this study, the structure and function of the microbial communities growing in MBRs fed simple synthetic wastewater were investigated. In four starch-fed MBRs, the bacterial community substantially increased its alpha-glucosidase affinity (>1000-fold), while the leucine aminopeptidase and heptanoate esterase affinities increased slightly (<40-fold) or remained relatively constant. Concomitant to these physiological adaptations, shifts in the bacterial community structure in two of the starch-fed MBRs were detected by PCR-DGGE. Four of the bacterial populations detected by PCR-DGGE were isolated and exhibited specific growth rates in batch culture ranging from 0.009 to 0.22 h(-1). Our results suggest that bacterial communities growing under increasingly stringent nutrient limitation adapt their enzyme activities primarily for the nutrients provided, but that there is also a more subtle response not linked to the substrates included in the feed medium. Our research also demonstrates that MBRs can support relatively complex bacterial communities even on simple feed media.
Li, Qing-Rong; Luo, Jia-Ling; Zhou, Zhong-Hua; Wang, Guang-Ying; Chen, Rui; Cheng, Shi; Wu, Min; Li, Hui; Ni, He; Li, Hai-Hang
2018-04-15
The industry discards generous organic wastewater in sweet potato starch factory and scrap tea in tea production. A simplified procedure to recover all biochemicals from the wastewater of sweet potato starch factory and use them to make health black tea and theaflavins from scrap green tea was developed. The sweet potato wastewater was sequentially treated by isoelectric precipitation, ultrafiltration and nanofiltration to recover polyphenol oxidase (PPO), β-amylase, and small molecular fractions, respectively. The PPO fraction can effectively transform green tea extracts into black tea with high content of theaflavins through the optimized fed-batch feeding fermentation. The PPO transformed black tea with sporamins can be used to make health black tea, or make theaflavins by fractionation with ethyl acetate. This work provides a resource- and environment-friendly approach for economically utilizing the sweet potato wastewater and the scrap tea, and making biochemical, nutrient and health products. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rajasimman, M; Karthikeyan, C
2007-05-08
A solid-liquid-gas, multiphase, fluidized bed bioreactor with low density particles was used in this study to treat the high organic content starch industry wastewater. The characteristics of starch wastewater were studied. It shows high organic content and acidic nature. The performance of a three phase fluidized bed bioreactor with low density biomass support was studied under various average initial substrate concentrations, by varying COD values (2250, 4475, 6730 and 8910 mg/L) and for various hydraulic retention times (8, 16, 24, 32 and 40 h) based on COD removal efficiency. The optimum bed height for the maximum COD reduction was found to be 80 cm. Experiments were carried out in the bioreactor at an optimized bed height, after the formation of biofilm on the surface of low-density particles (density=870 kg/m(3)). Mixed culture obtained from the sludge, taken from starch industry effluent treatment plant, was used as the source for microorganisms. From the results it was observed that increase in initial substrate concentration leads to decrease in COD reduction and COD reduction increases with increase in hydraulic retention time. The optimum COD removal of 93.8% occurs at an initial substrate concentration of 2250 mg/L and for the hydraulic retention time of 24h.
Assessing and simulation of membrane technology for modifying starchy wastewater treatment
NASA Astrophysics Data System (ADS)
Hedayati Moghaddam, Amin; Hazrati, Hossein; Sargolzaei, Javad; Shayegan, Jalal
2017-10-01
In this study, a hydrophilic polyethersulfone membrane was used to modify the expensive and low efficient conventional treatment method of wheat starch production that would result in a cleaner starch production process. To achieve a cleaner production, the efficiency of starch production was enhanced and the organic loading rate of wastewater that was discharged into treatment system was decreased, simultaneously. To investigate the membrane performance, the dependency of rejection factor and permeate flux on operative parameters such as temperature, flow rate, concentration, and pH of feed were studied. Response surface methodology (RSM) has been applied to arrange the experimental layout which reduced the number of experiments and also the interactions between the parameters were considered. The maximum achieved rejection factor and permeate flux were 97.5% and 2.42 L min-1 m-2, respectively. Furthermore, a fuzzy inference system was selected to model the non-linear relations between input and output variable which cannot easily explained by physical models. The best agreement between the experimental and predicted data for permeate flux was denoted by correlation coefficient index ( R 2) of 0.9752 and mean square error (MSE) of 0.0072 where defuzzification operator was center of rotation (centroid). Similarly, the maximum R 2 for rejection factor was 0.9711 where the defuzzification operator was mean of maxima (mom).
NASA Astrophysics Data System (ADS)
Tien, Hai Minh; Le, Kien Anh; Le, Phung Thi Kim
2017-09-01
Bio hydrogen is a sustainable energy resource due to its potentially higher efficiency of conversion to usable power, high energy efficiency and non-polluting nature resource. In this work, the experiments have been carried out to indicate the possibility of generating bio hydrogen as well as identifying effective factors and the optimum conditions from cassava starch. Experimental design was used to investigate the effect of operating temperature (37-43 °C), pH (6-7), and inoculums ratio (6-10 %) to the yield hydrogen production, the COD reduction and the ratio of volume of hydrogen production to COD reduction. The statistical analysis of the experiment indicated that the significant effects for the fermentation yield were the main effect of temperature, pH and inoculums ratio. The interaction effects between them seem not significant. The central composite design showed that the polynomial regression models were in good agreement with the experimental results. This result will be applied to enhance the process of cassava starch processing wastewater treatment.
Influence of starch on microalgal biomass recovery, settleability and biogas production.
Gutiérrez, Raquel; Ferrer, Ivet; García, Joan; Uggetti, Enrica
2015-06-01
In the context of wastewater treatment with microalgae cultures, coagulation-flocculation followed by sedimentation is one of the suitable options for microalgae harvesting. This process is enabled by the addition of chemicals (e.g. iron). However, in a biorefinery perspective, it is important to avoid possible contamination of downstream products caused by chemicals addition. The aim of this study was to evaluate the effect of potato starch as flocculant for microalgal biomass coagulation-flocculation and sedimentation. The optimal flocculant dose (25mg/L) was determined with jar tests. Such a concentration led to more than 95% biomass recovery (turbidity<9NTU). The settleability of flocs was studied using an elutriation apparatus measuring the settling velocities distribution. This test underlined the positive effect of starch on the biomass settling velocity, increasing to >70% the percentage of particles with settling velocities >6.5m/h. Finally, biochemical methane potential tests showed that starch biodegradation increased the biogas production from harvested biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.
Li, Ruo-Hong; Li, Xiao-Yan
2017-12-01
A sequencing batch reactor-based system was developed for enhanced phosphorus (P) removal and recovery from municipal wastewater. The system consists of an iron-dosing SBR for P precipitation and a side-stream anaerobic reactor for sludge co-fermentation with food waste. During co-fermentation, sludge and food waste undergo acidogenesis, releasing phosphates under acidic conditions and producing volatile fatty acids (VFAs) into the supernatant. A few types of typical food waste were investigated for their effectiveness in acidogenesis and related enzymatic activities. The results show that approximately 96.4% of total P in wastewater was retained in activated sludge. Food waste with a high starch content favoured acidogenic fermentation. Around 55.7% of P from wastewater was recovered as vivianite, and around 66% of food waste loading was converted into VFAs. The new integration formed an effective system for wastewater treatment, food waste processing and simultaneous recovery of P and VFAs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wu, Hu; Liu, Zhouzhou; Li, Aimin; Yang, Hu
2017-05-01
China is a major textile manufacturer in the world; as a result, large quantities of dyeing effluents are generated every year in the country. In this study, the performances of two cationic starch-based flocculants with different chain architectures, i.e., starch-graft-poly[(2-methacryloyloxyethyl) trimethyl ammonium chloride] (STC-g-PDMC) and starch-3-chloro-2-hydroxypropyl trimethyl ammonium chloride (STC-CTA), in flocculating dissolved organic matter (DOM) in dyeing secondary effluents were investigated and compared with that of polyaluminum chloride (PAC). In the exploration of the flocculation mechanisms, humic acid (HA) and bovine serum albumin (BSA) were selected as main representatives of DOM in textile dyeing secondary effluents, which were humic/fulvic acid-like and protein-like extracellular matters according to the studied wastewater's characteristics based on its three-dimensional excitation-emission matrix spectrum. According to experimental results of the flocculation of both the real and synthetic wastewaters, STC-g-PDMC with cationic branches had remarkable advantages over STC-CTA and PAC because of the more efficient charge neutralization and bridging flocculation effects of STC-g-PDMC. Another interesting finding in this study was the reaggregation phenomenon after restabilization at an overdose during the flocculation of BSA effluents by STC-g-PDMC at a very narrow pH range under a nearly neutral condition. This phenomenon might be ascribed to the formation of STC-g-PDMC/BSA complexes induced by some local charge interactions between starch-based flocculant and the amino acid fragments of protein due to charge patch effects. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xu, Shengjun; Bai, Zhihui; Jin, Bo; Xiao, Runlin; Zhuang, Guoqiang
2014-02-28
Wastewater from the sweet potato starch industry is a large source of nutrient-rich substrates. We assessed whether this wastewater could be used to produce Paenibacillus polymyxa biofertilizer for foliar application to tea trees. Using the central composite design methods we experientially determined that the optimal culture conditions for P. polymyxa were pH, 6.5; temperature, 29.0 °C; and incubation time, 16 h. Under these conditions, a maximum biomass of 9.7 × 10(9) cfu/mL was achieved. We then conducted a yearlong field investigation to determine the effect of P. polymyxa biofertilizer on the growth of tea plants (Camellia sinensis). Tea yield, quantity of water extract, and tea polyphenol levels were significantly higher after foliar application of the biofertilizer compared to that in the controls by an average of 16.7%, 6.3%, and 10.4%, respectively. This approach appears to be technically feasible for organic tea production, and is an environmentally friendly way to utilize wastewater.
Xu, Shengjun; Bai, Zhihui; Jin, Bo; Xiao, Runlin; Zhuang, Guoqiang
2014-01-01
Wastewater from the sweet potato starch industry is a large source of nutrient-rich substrates. We assessed whether this wastewater could be used to produce Paenibacillus polymyxa biofertilizer for foliar application to tea trees. Using the central composite design methods we experientially determined that the optimal culture conditions for P. polymyxa were pH, 6.5; temperature, 29.0°C; and incubation time, 16 h. Under these conditions, a maximum biomass of 9.7 × 109 cfu/mL was achieved. We then conducted a yearlong field investigation to determine the effect of P. polymyxa biofertilizer on the growth of tea plants (Camellia sinensis). Tea yield, quantity of water extract, and tea polyphenol levels were significantly higher after foliar application of the biofertilizer compared to that in the controls by an average of 16.7%, 6.3%, and 10.4%, respectively. This approach appears to be technically feasible for organic tea production, and is an environmentally friendly way to utilize wastewater. PMID:24576979
Xie, Xuehui; Liu, Na; Ping, Jing; Zhang, Qingyun; Zheng, Xiulin; Liu, Jianshe
2018-06-01
In present study, a hydrolysis acidification (HA) reactor was used for simulated dyeing wastewater treatment. Co-substrates included starch, glucose, sucrose, yeast extract (YE) and peptone were fed sequentially into the HA reactor to enhance the HA process effects. The performance of the HA reactor and the microbial community structure in HA process were investigated under different co-substrates conditions. Results showed that different co-substrates had different influences on the performance of HA reactor. The highest decolorization (50.64%) and COD removal rate (60.73%) of the HA reactor were obtained when sucrose was as the co-substrate. And it found that carbon co-substrates starch, glucose and sucrose exhibited better decolorization and higher COD removal efficiency of the HA reactor than the nitrogen co-substrates YE and peptone. Microbial community structure in the HA process was analyzed by Illumina MiSeq sequencing. Results revealed different co-substrates had different influences on the community structure and microbial diversity in HA process. It was considered that sucrose could enrich the species such as Raoultella, Desulfovibrio, Tolumonas, Clostridium, which might be capable of degrading the dyes. Sucrose was considered to be the best co-substrate of enhancing the HA reactor's performance in this study. This work would provide deep insight into the influence of many different co-substrates on HA reactor performance and microbial communities in HA process. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ceretta, María Belén; Durruty, Ignacio; Orozco, Ana Micaela Ferro; González, Jorge Froilán; Wolski, Erika Alejandra
2018-05-01
This work reports on the biodegradation of textile wastewater by three alternative microbial treatments. A bacterial consortium, isolated from a dyeing factory, showed significant efficacy in decolourizing wastewater (77.6 ± 3.0%); the decolourization rate was 5.80 ± 0.31 mg of azo dye·L -1 ·h -1 , without the addition of an ancillary carbon source (W). The degradation was 52% (measured as COD removal) and the products of the treatment showed low biodegradability (COD/BOD 5 = 4.2). When glucose was added to the wastewater, (W + G): the decolourization efficiency increased to 87.24 ± 2.5% and the decolourization rate significantly improved (25.67 ± 3.62 mg·L -1 ·h -1 ), although the COD removal efficiency was only 44%. Finally, the addition of starch (W + S) showed both a similar decolourization rate and efficiency to the W treatment, but a higher COD removal efficiency (72%). In addition, the biodegradability of the treated wastewater was considerably improved (COD/BOD 5 = 1.2) when starch was present. The toxicity of the degradation products was tested on Lactuca sativa seeds. In all treatments, toxicity was reduced with respect to the untreated wastewater. The W + S treatment gave the best performance.
Iatrou, Evangelia I; Kora, Elianta; Stasinakis, Athanasios S
2018-03-09
The use of duckweed-based wastewater treatment systems for producing biomass with high crude protein and starch content was investigated in the current study. For this reason, three lab-scale systems were used; System 1 was planted with Lemna minor, System 2 with Lemna gibba and System 3 with the combination of the two duckweeds. The studied duckweeds were cultivated using secondary treated wastewater as substrate (Phase A), in the presence of excess NH 4 -N (Phase B) and using water with no nutrients (Phase C). All systems achieved average NH 4 -N removal higher that 90%. The specific duckweeds growth rates and the specific duckweeds growth rates normalized to the area ranged between 0.14 d -1 and 8.9 g m -2 d -1 (System 1) to 0.19 d -1 and 14.9 g m -2 d -1 (System 3). The addition of NH 4 -N resulted in a significant increase of biomass protein content, reaching 44.4% in System 3, 41.9% in System 2 and 39.4% in System 1. The transfer of biomass in water containing no nutrients resulted in the gradual increment of the starch content up to the end of the experiment. The highest starch content was achieved for the combination of the two duckweeds (46.1%), followed by L. gibba (44.9%) and L. minor (43.9%).
Growing Lemna minor in agricultural wastewater and converting the duckweed biomass to ethanol.
Ge, Xumeng; Zhang, Ningning; Phillips, Gregory C; Xu, Jianfeng
2012-11-01
Duckweed (Lemna minor) was grown in swine lagoon wastewater and Schenk & Hildebrandt medium with a growth rate of 3.5 and 14.1 g m(-2)day(-1) (dry basis), respectively detected. The rapid accumulation of starch in duckweed biomass (10-36%, w/w) was triggered by nutrient starvation or growing in dark with addition of glucose. The harvested duckweed biomass (from culture in wastewater) contained 20.3% (w/w) total glucan, 32.3% (w/w) proteins, trace hemicellulose and undetectable lignin. Without prior thermal-chemical pretreatment, up to 96.2% (w/w) of glucose could be enzymatically released from both the cellulose and starch fractions of duckweed biomass. The enzymatic hydrolysates could be efficiently fermented by two yeast strains (self-flocculating yeast SPSC01 and conventional yeast ATCC 24859) with a high ethanol yield of 0.485 g g(-1) (glucose). Copyright © 2012 Elsevier Ltd. All rights reserved.
Zhao, Zhao; Shi, Huijuan; Liu, Yang; Zhao, Hai; Su, Haifeng; Wang, Maolin; Zhao, Yun
2014-09-01
The effect of temperature, light intensity, nitrogen and phosphorus concentrations on the biomass and starch content of duckweed (Landoltia punctata OT, Lemna minor OT) in monoculture and mixture were assessed. Low light intensity promoted more starch accumulation in mixture than in monoculture. The duckweed in mixture had higher biomass and nutrient removal efficiency than those in monoculture in swine wastewater. Moreover, the ability of L. punctata C3, L. minor C2, Spirodela polyrhiza C1 and their mixtures to recovery nutrients and their biomass were analyzed. Results showed that L. minor C2 had the highest N and P content, while L. punctata C3 had the highest starch content, and the mixture of L. punctata C3 and L. minor C2 had the greatest nutrient removal rate and the highest biomass. Compared with L. punctata C3 and L. minor C2 in monoculture, their biomass in mixture increased by 17.0% and 39.8%, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lactic acid production with undefined mixed culture fermentation of potato peel waste.
Liang, Shaobo; McDonald, Armando G; Coats, Erik R
2014-11-01
Potato peel waste (PPW) as zero value byproduct generated from food processing plant contains a large quantity of starch, non-starch polysaccharide, lignin, protein, and lipid. PPW as one promising carbon source can be managed and utilized to value added bioproducts through a simple fermentation process using undefined mixed cultures inoculated from wastewater treatment plant sludge. A series of non-pH controlled batch fermentations under different conditions such as pretreatment process, enzymatic hydrolysis, temperature, and solids loading were studied. Lactic acid (LA) was the major product, followed by acetic acid (AA) and ethanol under fermentation conditions without the presence of added hydrolytic enzymes. The maximum yields of LA, AA, and ethanol were respectively, 0.22 g g(-1), 0.06 g g(-1), and 0.05 g g(-1). The highest LA concentration of 14.7 g L(-1) was obtained from a bioreactor with initial solids loading of 60 g L(-1) at 35°C. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhou, Kuangxin; Stüber, Johan; Schubert, Rabea-Luisa; Kabbe, Christian; Barjenbruch, Matthias
2018-01-01
Agricultural reuse of dewatered sludge is a valid route for sludge valorization for small and mid-size wastewater treatment plants (WWTPs) due to the direct utilization of nutrients. A more stringent of German fertilizer ordinance requires the degradation of 20% of the synthetic additives like polymeric substance within two years, which came into force on 1 January 2017. This study assessed the use of starch-based polymers for full-scale dewatering of municipal sewage sludge. The laboratory-scale and pilot-scale trials paved the way for full-scale trials at three WWTPs in Germany. The general feasibility of applying starch-based 'green' polymers in full-scale centrifugation was demonstrated. Depending on the sludge type and the process used, the substitution potential was up to 70%. Substitution of 20-30% of the polyacrylamide (PAM)-based polymer was shown to achieve similar total solids (TS) of the dewatered sludge. Optimization of operational parameters as well as machinery set up in WWTPs is recommended in order to improve the shear stability force of sludge flocs and to achieve higher substitution potential. This study suggests that starch-based biodegradable polymers have great potential as alternatives to synthetic polymers in sludge dewatering.
Eyiuche, Nweze Julius; Asakawa, Shiho; Yamashita, Takahiro; Ikeguchi, Atsuo; Kitamura, Yutaka; Yokoyama, Hiroshi
2017-06-29
The flame-oxidized stainless steel anode (FO-SSA) is a newly developed electrode that enhances microbial fuel cell (MFC) power generation; however, substrate preference and community structure of the biofilm developed on FO-SSA have not been well characterized. Herein, we investigated the community on FO-SSA using high-throughput sequencing of the 16S rRNA gene fragment in acetate-, starch-, glucose-, and livestock wastewater-fed MFCs. Furthermore, to analyze the effect of the anode material, the acetate-fed community formed on a common carbon-based electrode-carbon-cloth anode (CCA)-was examined for comparison. Substrate type influenced the power output of MFCs using FO-SSA; the highest electricity was generated using acetate as a substrate, followed by peptone, starch and glucose, and wastewater. Intensity of power generation using FO-SSA was related to the abundance of exoelectrogenic genera, namely Geobacter and Desulfuromonas, of the phylum Proteobacteria, which were detected at a higher frequency in acetate-fed communities than in communities fed with other substrates. Lactic acid bacteria (LAB)-Enterococcus and Carnobacterium-were predominant in starch- and glucose-fed communities, respectively. In the wastewater-fed community, members of phylum Planctomycetes were frequently detected (36.2%). Exoelectrogenic genera Geobacter and Desulfuromonas were also detected in glucose-, starch-, and wastewater-fed communities on FO-SSA, but with low frequency (0-3.2%); the lactate produced by Carnobacterium and Enterococcus in glucose- and starch-fed communities might affect exoelectrogenic bacterial growth, resulting in low power output by MFCs fed with these substrates. Furthermore, in the acetate-fed community on FO-SSA, Desulfuromonas was abundant (15.4%) and Geobacter had a minor proportion (0.7%), while in that on CCA, both Geobacter and Desulfuromonas were observed at similar frequencies (6.0-9.8%), indicating that anode material affects exoelectrogenic genus enrichment in anodic biofilm. Anodic community structure was dependent on both substrate and anode material. Although Desulfuromonas spp. are marine microorganisms, they were abundant in the acetate-fed community on FO-SSA, implying the presence of novel non-halophilic and exoelectrogenic species in this genus. Power generation using FO-SSA was positively related to the frequency of exoelectrogenic genera in the anodic community. Predominant LAB in saccharide-fed anodic biofilm caused low abundance of exoelectrogenic genera and consequent low power generation.
Removal of both cationic and anionic contaminants by amphoteric starch.
Peng, Huanlong; Zhong, Songxiong; Lin, Qintie; Yao, Xiaosheng; Liang, Zhuoying; Yang, Muqun; Yin, Guangcai; Liu, Qianjun; He, Hongfei
2016-03-15
A novel amphoteric starch incorporating quaternary ammonium and phosphate groups was applied to investigate the efficiency and mechanism of cationic and anionic contaminant treatment. Its flocculation abilities for kaolin suspension and copper-containing wastewater were evaluated by turbidity reduction and copper removal efficiency, respectively. And the kinetics of formation, breakage and subsequent re-formation of aggregates were monitored using a Photometric Dispersion Analyzer (PDA) and characterized by flocculation index (FI). The results showed that amphoteric starch possessed the advantages of being lower-dosages-consuming and being stronger in shear resistance than cationic starch, and exhibited a good flocculation efficiency over a wide pH range from 3.0 to 11.0. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhao, Y; Fang, Y; Jin, Y; Huang, J; Bao, S; Fu, T; He, Z; Wang, F; Wang, M; Zhao, H
2015-01-01
The application potential of four duckweed strains from four genera, Wolffia globosa 0222, Lemna japonica 0223, Landoltia punctata 0224 and Spirodela polyrhiza 0225, were compared in four parallel pilot-scale wastewater treatment systems for more than 1 year. The results indicated that each duckweed strain had unique potential advantages. Unlike L. japonica 0223 and La. punctata 0224, which grow throughout the year, S. polyrhiza 0225 and W. globosa 0222 do not survive cold weather. For year round performance, L. japonica 0223 was best not only in dry biomass production (6.10 g·m(-2) ·day(-1) ), but also in crude protein (35.50%), total amino acid (26.83%) and phosphorus (1.38%) content, plus recovery rates of total nitrogen (TN), total phosphorus (TP) and CO2 (0.31, 0.085 and 7.76 g·m(-2) ·day(-1) , respectively) and removal rates of TN and TP (0.66 and 0.089 g·m(-2) ·day(-1) , respectively). This strongly demonstrates that L. japonica 0223 performed best in wastewater treatment and protein biomass production. Under nutrient starvation conditions, La. punctata 0224 had the highest starch content (45.84%), dry biomass production (4.81 g·m(-2) ·day(-1) ) and starch accumulation (2.9 g·m(-2) ·day(-1) ), making it best for starch biomass production. W. globosa 0222 and S. polyrhiza 0225 showed increased flavonoid biomass production, with higher total flavonoid content (5.85% and 4.22%, respectively) and high dominant flavonoids (>60%). This study provides useful information for selecting the appropriate local duckweed strains for further application in wastewater treatment and valuable biomass production. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
Cassava starch fermentation wastewater: characterization and preliminary toxicological studies.
Avancini, S R P; Faccin, G L; Vieira, M A; Rovaris, A A; Podestá, R; Tramonte, R; de Souza, N M A; Amante, E R
2007-11-01
Cassava starch fermentation wastewater is an industrial residue composed mainly of lactic acid bacteria with predominance of the genera Lactobacillus, and organic acids. To evaluate the safety of this residue for possible production of probiotic beverages, acute in mice and sub-chronic (28-day repeated dose) toxicity studies in rats were carried. The administration of a single dose of 5 g/kg/body weight did not produce mortality in mice. Rats treated with water containing 0 (control), 25%, 50%, and 100% of the residue for 28 days, did not present alterations in behaviour or in food and water consumption. There were no treatment-related changes of toxicological significance in the relative weight of the organs neither in the haematological nor in the biochemical parameters. Histopathologic alterations observed in the small intestine did not seem to be associated with the treatment.
Biological treatment and toxicity of low concentrations of oily wastewater (bilgewater).
Stamper, David M; Montgomery, Michael T
2008-08-01
The biodegradability and toxicity of low concentrations of oily wastewater (bilgewater) were tested under simulated sanitary wastewater treatment conditions. This was done to establish the feasibility of a combined shipboard oily and nonoily wastewater treatment system. The biodegradability of oily wastewater was determined by proxy; 14C-labeled dodecane, toluene, and phenanthrene (representing alkane, aromatic, and polyaromatic compounds, respectively) were mineralized in petroleum fuels and lubricants. We found that low concentrations of oily wastewater components were mineralized, even in the presence of more abundant substrates (such as synthetic graywater, containing vegetable oil, detergent, gelatin, and starch). The toxic effects of diesel fuel and several other components of oily wastewater (such as surfactants and a synthetic lubricant) on a naïve wastewater assemblage was also tested. In concentrations much higher than would be expected under normal shipboard conditions, we found no evidence of toxic effects of the bilgewater compounds tested. Thus, a combined shipboard bilgewater and sanitary wastewater system might be feasible.
Huang, Mengjun; Fang, Yang; Liu, Yang; Jin, Yanling; Sun, Jiaolong; Tao, Xiang; Ma, Xinrong; He, Kaize; Zhao, Hai
2015-09-15
Duckweed (Landoltia punctata) has the potential to remediate wastewater and accumulate enormous amounts of starch for bioethanol production. Using systematical screening, we determined that the highest biomass and starch percentage of duckweed was obtained after uniconazole application. Uniconazole contributes to starch accumulation of duckweed, but the molecular mechanism is still unclear. To elucidate the mechanisms of high starch accumulation, in the study, the responses of L. punctata to uniconazole were investigated using a quantitative proteomic approach combined with physiological and biochemical analysis. A total of 3327 proteins were identified. Among these identified proteins, a large number of enzymes involved in endogenous hormone synthetic and starch metabolic pathways were affected. Notably, most of the enzymes involved in abscisic acid (ABA) biosynthesis showed up-regulated expression, which was consistent with the content variation. The increased endogenous ABA may up-regulate expression of ADP-glucose pyrophosphorylase to promote starch biosynthesis. Importantly, the expression levels of several key enzymes in the starch biosynthetic pathway were up-regulated, which supported the enzymatic assay results and may explain why there is increased starch accumulation. These generated data linked uniconazole with changes in expression of enzymes involved in hormone biosynthesis and starch metabolic pathways and elucidated the effect of hormones on starch accumulation. Thus, this study not only provided insights into the molecular mechanisms of uniconazole-induced hormone variation and starch accumulation but also highlighted the potential for duckweed to be feedstock for biofuel as well as for sewage treatment.
Fu, Bo; Zhang, Jingjing; Fan, Jinfeng; Wang, Jin; Liu, He
2012-01-01
Increasing textile wastewaters and their biotreatment byproduct-waste activated sludge are serious pollution problems. Butyric acid production from textile wastewater sludge by anaerobic digestion at different C/N ratios was investigated. Adding starch to textile wastewater sludge with a C/N ratio of 30 increased the butyric acid concentration and percentage accounting for total volatile fatty acids (TVFAs) to 21.42 g/L and 81.5%, respectively, as compared with 21.42 g/L and 10.6% of textile wastewater sludge alone. The maximum butyric acid yield (0.45 g/g VS), conversion rate (0.74 g/g VS(digest)) and production rate (2.25 g/L d) was achieved at a C/N ratio of 30. The biological toxicity of textile wastewater sludge also significantly decreased after the anaerobic digestion. The study indicated that the anaerobic co-digestion of textile wastewater sludge and carbohydrate-rich waste with appropriate C/N ratio is possible for butyric acid production.
Use of cheese whey for biomass production and spray drying of probiotic lactobacilli.
Lavari, Luisina; Páez, Roxana; Cuatrin, Alejandra; Reinheimer, Jorge; Vinderola, Gabriel
2014-08-01
The double use of cheese whey (culture medium and thermoprotectant for spray drying of lactobacilli) was explored in this study for adding value to this wastewater. In-house formulated broth (similar to MRS) and dairy media (cheese and ricotta whey and whey permeate) were assessed for their capacity to produce biomass of Lactobacillus paracasei JP1, Lb. rhamnosus 64 and Lb. gasseri 37. Simultaneously, spray drying of cheese whey-starch solution (without lactobacilli cells) was optimised using surface response methodology. Cell suspensions of the lactobacilli, produced in in house-formulated broth, were spray-dried in cheese whey-starch solution and viability monitored throughout the storage of powders for 2 months. Lb. rhamnosus 64 was able to grow satisfactorily in at least two of the in-house formulated culture media and in the dairy media assessed. It also performed well in spray drying. The performance of the other strains was less satisfactory. The growth capacity, the resistance to spray drying in cheese whey-starch solution and the negligible lost in viability during the storage (2 months), makes Lb. rhamnosus 64 a promising candidate for further technological studies for developing a probiotic dehydrated culture for foods, utilising wastewaters of the dairy industry (as growth substrate and protectant) and spray drying (a low-cost widely-available technology).
NASA Astrophysics Data System (ADS)
Xu, Wei; Wang, Peng; Chi, Guoda; Huang, Chenyong
2010-11-01
Activated carbon fibers (ACF) as the carrier of Lactobacillus was introduced into fermenting system, and a method of modifying the surface of ACF by HNO3-Fe (III) was established. Factors that affect ACF carrier's effect on immobilization of Lactobacillus were studied. HCl, H2SO4, HNO3 and FeCl3 solutions were respectively used to modify the surface properties of ACF. The amount of Fe (III) carried on ACF surface was 0.1563 mol/kg after ACF surface was modified by HNO3 for 5 h and then by 0.1 mol/L FeCl3 for 4 h, when the thickness of Lactobacillus on a single silk of carrier reached 40 μm. When ACF modified by HNO3-Fe (III) was applied in the fermentation of lactic acid in starch industry wastewater, the fermentation period reduced by 8 h and the output of L-lactic acid was 65.5 g/L, which was 3.3% more than that fermented without the carrier.
Tang, Yue-Qin; Shigematsu, Toru; Morimura, Shigeru; Kida, Kenji
2015-04-01
Methane fermentation is an attractive technology for the treatment of organic wastes and wastewaters. However, the process is difficult to control, and treatment rates and digestion efficiency require further optimization. Understanding the microbiology mechanisms of methane fermentation is of fundamental importance to improving this process. In this review, we summarize the dynamics of microbial communities in methane fermentation chemostats that are operated using completely stirred tank reactors (CSTRs). Each chemostat was supplied with one substrate as the sole carbon source. The substrates include acetate, propionate, butyrate, long-chain fatty acids, glycerol, protein, glucose, and starch. These carbon sources are general substrates and intermediates of methane fermentation. The factors that affect the structure of the microbial community are discussed. The carbon source, the final product, and the operation conditions appear to be the main factors that affect methane fermentation and determine the structure of the microbial community. Understanding the structure of the microbial community during methane fermentation will guide the design and operation of practical wastewater treatments. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Bhattacharyya, Amartya; Banerjee, Bhaskar; Ghorai, Soumitra; Rana, Dipak; Roy, Indranil; Sarkar, Gunjan; Saha, Nayan Ranjan; De, Sriparna; Ghosh, Tapas Kumar; Sadhukhan, Sourav; Chattopadhyay, Dipankar
2018-05-15
In this work, we report the development of a cross-linked bio-composite consisting of graphene oxide, potato starch, cross-linker glutaraldehyde and its application to adsorption of the industrial dye, methylene blue, from aqueous solution. The inexpensiveness, non-hazardous nature and easy bio-degradability are the major reasons for the selection of starch material as one of the components of the bio-composite. The bio-composite has been characterized by FTIR, SEM, XRD, particle size and zeta potential analysis. The FTIR analysis reveals the nature of the binding sites and surface morphology of the bio-composite can be understood through SEM. The auto-phase separability of the adsorbent i.e., the precipitation of the adsorbent without any mechanical means is another factor which makes this particular material very attractive as an adsorbent. Parameters like adsorbent dosage, pH, temperature, rotation speed and salt concentration have been varied to find out the suitable dye adsorption conditions. Furthermore, the time dependence of adsorption process has been analyzed using pseudo-first and pseudo-second order kinetics. The adsorption isotherms have been constructed to suggest convincing mechanistic pathway for this adsorption process. Finally, desorption studies have been successfully performed in 3 cycles, establishing the reusability of the material, which should allow the adsorbent to be economically promising for practical application in wastewater treatment. Copyright © 2018 Elsevier B.V. All rights reserved.
Leifeld, Vanessa; Dos Santos, Tâmisa Pires Machado; Zelinski, Danielle Wisniewski; Igarashi-Mafra, Luciana
2018-09-15
Cassava is the most important tuberous root in tropical and subtropical regions of the world, being the third largest source of carbohydrates. The root processing is related to the production of starch, an important industrial input, which releases a highly toxic liquid wastewater due to its complex composition, which inhibits high performances of conventional effluent treatments. This study aims to evaluate Fenton-like and photo-Fenton-like reactions for treatment of cassava wastewater, reusing ferrous ions from the preliminary coagulation stage. Pre-treated cassava wastewater was submitted to oxidation in three variations of hydrogen peroxide concentrations, with more relevant analytical responses verified in color, turbidity, COD (Chemical Oxygen Demand), and acute toxicity in Artemia salina, besides the action of radicals during Fenton-like reactions. At higher peroxide concentrations, a decrease of 68% in turbidity and 70% in COD on the photo-Fenton-like system was observed, even at slow reaction rates (fastest rate constant k = 2 × 10 -4 min -1 ). Inclusion of UV increases the viability of the Fenton-like reactions by supplementing the reaction medium with hydroxyl radicals, verified by the tert-butanol tests. The oxidation process leads to high EC 50 values in 24 h of incubation in Fenton-like reactions and 48 h in photo-Fenton-like reactions. Final COD and turbidity suggests that the reuse of iron, which remains in the preliminary treatment step shows a great potential as a catalyst for Fenton-like advanced oxidation processes. Tertiary treatment can be less expensive and harmful to the environment, reducing production of residual sludge and metal content in the final effluent, which reduces polluting potential of the effluent regarding solid waste. Copyright © 2018 Elsevier Ltd. All rights reserved.
Brar, Satinder K; Verma, M; Tyagi, R D; Valéro, J R; Surampalli, R Y
2006-08-01
Screening of different adjuvants, namely, suspending agents, phagostimulants, stickers, antimicrobial agents, and UV screens to develop aqueous biopesticidal suspensions of Bacillus thuringiensis (Bt) variety kurstaki HD-1 fermented broths, specifically, nonhydrolyzed sludge, hydrolyzed sludge, starch industry wastewater, and soya (commercial medium), were investigated. The selected suspending agents [20% (wt:vol)] included sorbitol, sodium monophosphate, and sodium metabisulfite with corresponding suspendibility of 74-92, 69-85, and 71-82%, respectively. Molasses [0.2% (wt:vol)] increased adherence by 84-90% for all fermented broths. The optimal phagostimulants [0.5% (wt:vol)], namely, soya and molasses, caused entomotoxicity increase of 3-13 and 7-13%, respectively. Sorbic and propionic acids showed high antimicrobial action [0.5% (wt:vol)], irrespective of fermentation medium. Sodium lignosulfonate, molasses, and Congo red, when used as UV screens [0.2% (wt:vol)], showed percent corresponding entomotoxicity losses of 3-5, 0.5-5 and 2-16, respectively. The Bt formulations, when exposed to UV radiation, showed higher half-lives (with and without UV screens) than the fermented broths or semisynthetic soya medium and commercial Bt formulation. UV screen-amended nonhydrolyzed, hydrolyzed, and starch industry wastewater formulations showed 1.3-1.5-fold higher half-lives than commercial Bt formulation. Thus, the recommended formulation comprises sorbitol, sodium monophosphate, sodium metabisulfite (suspending agents); molasses, soya flour (phagostimulants); molasses and skimmed milk powder (rainfasteners); sorbic and propionic acids (antimicrobial agents) and sodium lignosulfate; and molasses and Congo red (UV screens). These waste-based Bt formulations offer better UV resistance in comparison with commercial formulation.
Xie, Li; Liu, Hui; Chen, Yin-Guang; Zhou, Qi
2014-01-01
Volatile fatty acid (VFA) production from three types of high-strength organic wastewater (cassava thin stillage, starch wastewater and yellow-wine processing wastewater) were compared. The results showed that cassava thin stillage was the most suitable substrate, based on its high specific VFA production (0.68 g chemical oxygen demand (COD)/g initial soluble chemical oxygen demand (SCOD)) and yield (0.72 g COD/g SCOD) as well as low nutrient content in the substrate and fermented liquid. The acid fermented cassava thin stillage was evaluated and compared with sodium acetate in a sequencing batch reactor system. Total nitrogen removal efficiency was higher with fermented cassava thin stillage than with the sodium acetate. The effects of pH and a pH-adjustment strategy on VFA production and composition were determined using cassava thin stillage. At an initial pH range of 7-11, a relatively high VFA concentration of about 9 g COD/L was obtained. The specific VFA production (g COD/g initial SCOD) increased from 0.27 to 0.47 to 0.67 at pH 8 and from 0.26 to 0.68 to 0.81 at pH 9 (initial pH, interval pH, and constant pH adjustment, respectively). The dominant VFA species changed significantly with the increasing frequency of the pH adjustment. Further studies will examine the metabolic pathways responsible for VFA composition.
Tao, Xiang; Fang, Yang; Xiao, Yao; Jin, Yan-Ling; Ma, Xin-Rong; Zhao, Yun; He, Kai-Ze; Zhao, Hai; Wang, Hai-Yan
2013-05-08
Duckweed can thrive on anthropogenic wastewater and produce tremendous biomass production. Due to its relatively high starch and low lignin percentage, duckweed is a good candidate for bioethanol fermentation. Previous studies have observed that water devoid of nutrients is good for starch accumulation, but its molecular mechanism remains unrevealed. This study globally analyzed the response to nutrient starvation in order to investigate the starch accumulation in duckweed (Landoltia punctata). L. punctata was transferred from nutrient-rich solution to distilled water and sampled at different time points. Physiological measurements demonstrated that the activity of ADP-glucose pyrophosphorylase, the key enzyme of starch synthesis, as well as the starch percentage in duckweed, increased continuously under nutrient starvation. Samples collected at 0 h, 2 h and 24 h time points respectively were used for comparative gene expression analysis using RNA-Seq. A comprehensive transcriptome, comprising of 74,797 contigs, was constructed by a de novo assembly of the RNA-Seq reads. Gene expression profiling results showed that the expression of some transcripts encoding key enzymes involved in starch biosynthesis was up-regulated, while the expression of transcripts encoding enzymes involved in starch consumption were down-regulated, the expression of some photosynthesis-related transcripts were down-regulated during the first 24 h, and the expression of some transporter transcripts were up-regulated within the first 2 h. Very interestingly, most transcripts encoding key enzymes involved in flavonoid biosynthesis were highly expressed regardless of starvation, while transcripts encoding laccase, the last rate-limiting enzyme of lignifications, exhibited very low expression abundance in all three samples. Our study provides a comprehensive expression profiling of L. punctata under nutrient starvation, which indicates that nutrient starvation down-regulated the global metabolic status, redirects metabolic flux of fixed CO2 into starch synthesis branch resulting in starch accumulation in L. punctata.
2013-01-01
Background Duckweed can thrive on anthropogenic wastewater and produce tremendous biomass production. Due to its relatively high starch and low lignin percentage, duckweed is a good candidate for bioethanol fermentation. Previous studies have observed that water devoid of nutrients is good for starch accumulation, but its molecular mechanism remains unrevealed. Results This study globally analyzed the response to nutrient starvation in order to investigate the starch accumulation in duckweed (Landoltia punctata). L. punctata was transferred from nutrient-rich solution to distilled water and sampled at different time points. Physiological measurements demonstrated that the activity of ADP-glucose pyrophosphorylase, the key enzyme of starch synthesis, as well as the starch percentage in duckweed, increased continuously under nutrient starvation. Samples collected at 0 h, 2 h and 24 h time points respectively were used for comparative gene expression analysis using RNA-Seq. A comprehensive transcriptome, comprising of 74,797 contigs, was constructed by a de novo assembly of the RNA-Seq reads. Gene expression profiling results showed that the expression of some transcripts encoding key enzymes involved in starch biosynthesis was up-regulated, while the expression of transcripts encoding enzymes involved in starch consumption were down-regulated, the expression of some photosynthesis-related transcripts were down-regulated during the first 24 h, and the expression of some transporter transcripts were up-regulated within the first 2 h. Very interestingly, most transcripts encoding key enzymes involved in flavonoid biosynthesis were highly expressed regardless of starvation, while transcripts encoding laccase, the last rate-limiting enzyme of lignifications, exhibited very low expression abundance in all three samples. Conclusion Our study provides a comprehensive expression profiling of L. punctata under nutrient starvation, which indicates that nutrient starvation down-regulated the global metabolic status, redirects metabolic flux of fixed CO2 into starch synthesis branch resulting in starch accumulation in L. punctata. PMID:23651472
Franca, R D G; Ortigueira, J; Pinheiro, H M; Lourenço, N D
2017-09-01
Treatment of the highly polluting and variable textile industry wastewater using aerobic granular sludge (AGS) sequencing batch reactors (SBRs) has been recently suggested. Aiming to develop this technology application, two feeding strategies were compared regarding the capacity of anaerobic-aerobic SBRs to deal with disturbances in the composition of the simulated textile wastewater feed. Both a statically fed, anaerobic-aerobic SBR and an anaerobic plug-flow fed, anaerobic-aerobic SBR could cope with shocks of high azo dye concentration and organic load, the overall chemical oxygen demand and color removal yields being rapidly restored to 80%. Yet, subsequent azo dye metabolite bioconversion was not observed, along the 315-day run. Moreover, switching from a starch-based substrate to acetate in the feed composition deteriorated AGS stability. Overall, the plug-flow fed SBR recovered more rapidly from the imposed disturbances. Further research is needed towards guaranteeing long-term AGS stability during the treatment of textile wastewater.
Quantification of effective exoelectrogens by most probable number (MPN) in a microbial fuel cell.
Heidrich, Elizabeth S; Curtis, Thomas P; Woodcock, Stephen; Dolfing, Jan
2016-10-01
The objective of this work was to quantify the number of exoelectrogens in wastewater capable of producing current in a microbial fuel cell by adapting the classical most probable number (MPN) methodology using current production as end point. Inoculating a series of microbial fuel cells with various dilutions of domestic wastewater and with acetate as test substrate yielded an apparent number of exoelectrogens of 17perml. Using current as a proxy for activity the apparent exoelectrogen growth rate was 0.03h(-1). With starch or wastewater as more complex test substrates similar apparent growth rates were obtained, but the apparent MPN based numbers of exoelectrogens in wastewater were significantly lower, probably because in contrast to acetate, complex substrates require complex food chains to deliver the electrons to the electrodes. Consequently, the apparent MPN is a function of the combined probabilities of members of the food chain being present. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Wang, Shujun; Sun, Yue; Wang, Jinrong; Wang, Shuo; Copeland, Les
2016-02-01
The molecular disassembly of starch during thermal processing is a major determinant for the susceptibility of starch to enzymatic digestion. In the present study, the effects of thermal processing on the disassembly of the granular structure and the in vitro enzymatic digestibility of rice and lotus starches were investigated. After heating at 50 °C, rice and lotus starches did not show significant changes in granular morphology, long-range crystallinity and short-range molecular order. As the temperature increased to 60 °C, rice starch underwent a partial gelatinization followed by an incomplete disruption of granular morphology, crystallites and molecular order. In contrast, lotus starch was almost completely gelatinized at 60 °C. At 70 °C or higher, both starches were fully gelatinized with complete disruption of the micro and macro structures. Our results show that gelatinization greatly increased the in vitro enzymatic digestibility of both starches, but that the degree of disassembly of the starch structure during thermal processing was not a major determinant of the digestibility of gelatinized starch.
Hiew, Tze Ning; Huang, Rongying; Popov, Ivan; Feldman, Yuri; Heng, Paul Wan Sia
2017-12-01
This study explored the potential of combining the use of moisture sorption isotherms and dielectric relaxation profiles of starch and sodium starch glycolate (SSG) to probe the location of moisture in dried and hydrated samples. Starch and SSG samples, dried and hydrated, were prepared. For hydrated samples, their moisture contents were determined. The samples were probed by dielectric spectroscopy using a frequency band of 0.1 Hz to 1 MHz to investigate their moisture-related relaxation profiles. The moisture sorption and desorption isotherms of starch and SSG were generated using a vapor sorption analyzer, and modeled using the Guggenheim-Anderson-de Boer equation. A clear high frequency relaxation process was detected in both dried and hydrated starches, while for dried starch, an additional slower low frequency process was also detected. The high frequency relaxation processes in hydrated and dried starches were assigned to the coupled starch-hydrated water relaxation. The low frequency relaxation in dried starch was attributed to the local chain motions of the starch backbone. No relaxation process associated with water was detected in both hydrated and dried SSG within the frequency and temperature range used in this study. The moisture sorption isotherms of SSG suggest the presence of high energy free water, which could have masked the relaxation process of the bound water during dielectric measurements. The combined study of moisture sorption isotherms and dielectric spectroscopy was shown to be beneficial and complementary in probing the effects of moisture on the relaxation processes of starch and SSG.
Eeuwema, Wieger; Sarian, Fean D.; van der Kaaij, Rachel M.
2015-01-01
The bacterium Microbacterium aurum strain B8.A, originally isolated from a potato plant wastewater facility, is able to degrade different types of starch granules. Here we report the characterization of an unusually large, multidomain M. aurum B8.A α-amylase enzyme (MaAmyA). MaAmyA is a 1,417-amino-acid (aa) protein with a predicted molecular mass of 148 kDa. Sequence analysis of MaAmyA showed that its catalytic core is a family GH13_32 α-amylase with the typical ABC domain structure, followed by a fibronectin (FNIII) domain, two carbohydrate binding modules (CBM25), and another three FNIII domains. Recombinant expression and purification yielded an enzyme with the ability to degrade wheat and potato starch granules by introducing pores. Characterization of various truncated mutants of MaAmyA revealed a direct relationship between the presence of CBM25 domains and the ability of MaAmyA to form pores in starch granules, while the FNIII domains most likely function as stable linkers. At the C terminus, MaAmyA carries a 300-aa domain which is uniquely associated with large multidomain amylases; its function remains to be elucidated. We concluded that M. aurum B8.A employs a multidomain enzyme system to initiate degradation of starch granules via pore formation. PMID:26187958
New starch methodology to measure both soluble and insoluble starch
USDA-ARS?s Scientific Manuscript database
Starch is a natural sugarcane juice impurity that greatly influences raw sugar quality and affects factory and refinery processing. Since the advent of the USDA Starch Research method, the mechanisms in which starch concentration and physical form affects sugar crop processing, conversion, and end-g...
Thang, Vu Hong; Kobayashi, Genta
2014-02-01
In this work, a new approach for acetone-butanol-ethanol (ABE) production has been proposed. Direct fermentation of native starches (uncooked process) was investigated by using granular starch hydrolyzing enzyme (GSHE) and Clostridium saccharoperbutylacetonicum N1-4. Even the process was carried out under suboptimal condition for activity of GSHE, the production of ABE was similar with that observed in conventional process or cooked process in terms of final solvent concentration (21.3 ± 0.4 to 22.4 ± 0.4 g/L), butanol concentration (17.5 ± 0.4 to 17.8 ± 0.3 g/L) and butanol yield (0.33 to 0.37 g/g). The production of solvents was significantly dependent on the source of starches. Among investigated starches, corn starch was more susceptible to GSHE while cassava starch was the most resistant to this enzyme. Fermentation using native corn starch resulted in the solvent productivity of 0.47 g/L h, which was about 15 % higher than that achieved in cooked process. On the contrary, uncooked process using cassava and wheat starch resulted in the solvent productivity of 0.30 and 0.37 g/L h, which were respectively about 30 % lower than those obtained in cooked process. No contamination was observed during all trials even fermentation media were prepared without sterilization. During the fermentation using native starches, no formation of foam is observed. This uncooked process does not require cooking starchy material; therefore, the thermal energy consumption for solvent production would remarkably be reduced in comparison with cooked process.
Wang, Wenhang; Wang, Kun; Xiao, Jingdong; Liu, Yaowei; Zhao, Yana; Liu, Anjun
2017-01-01
In order to study the impact of starch in film performance, high amylose corn starch was composited in gelatin films under different gelatinization conditions and, in high and low concentrations (10 and 50wt.%). It was found that hot water gelatinized starch (Gel-Shw) increased film mechanical strength and was dependent upon the starch concentration. The addition of an alkali component to the starch significantly enhanced the swelling of the starch granules and expedited the gelatinization process. Incorporation of starch, especially the alkalized starch (Sha), into the gelatin films decreased film solubility which improved its water resistance and water vapor permeability (WVP). Multiple techniques (DSC, TGA, FT-IR, and XRD) were used to characterize the process and results, including the crosslinking of the dissolved starch molecules and the particles formed from gelatinized starch during retrogradation process, which played an important role in improving the thermal stability of the composited gelatin films. Overall, the starch-gelatin composition provides a potential approach to improve gelatin film performance and benefit its applications in the food industry. Copyright © 2016 Elsevier B.V. All rights reserved.
Valk, Vincent; Eeuwema, Wieger; Sarian, Fean D; van der Kaaij, Rachel M; Dijkhuizen, Lubbert
2015-10-01
The bacterium Microbacterium aurum strain B8.A, originally isolated from a potato plant wastewater facility, is able to degrade different types of starch granules. Here we report the characterization of an unusually large, multidomain M. aurum B8.A α-amylase enzyme (MaAmyA). MaAmyA is a 1,417-amino-acid (aa) protein with a predicted molecular mass of 148 kDa. Sequence analysis of MaAmyA showed that its catalytic core is a family GH13_32 α-amylase with the typical ABC domain structure, followed by a fibronectin (FNIII) domain, two carbohydrate binding modules (CBM25), and another three FNIII domains. Recombinant expression and purification yielded an enzyme with the ability to degrade wheat and potato starch granules by introducing pores. Characterization of various truncated mutants of MaAmyA revealed a direct relationship between the presence of CBM25 domains and the ability of MaAmyA to form pores in starch granules, while the FNIII domains most likely function as stable linkers. At the C terminus, MaAmyA carries a 300-aa domain which is uniquely associated with large multidomain amylases; its function remains to be elucidated. We concluded that M. aurum B8.A employs a multidomain enzyme system to initiate degradation of starch granules via pore formation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Unban, Kridsada; Kanpiengjai, Apinun; Takata, Goro; Uechi, Keiko; Lee, Wen-Chien; Khanongnuch, Chartchai
2017-09-01
An amylolytic lactic acid bacterium isolate K-1 was isolated from the wastewater of a cassava starch manufacturing factory and identified as Entercoccus faecium based on 16S rRNA gene sequence analysis. An extracellular α-amylase was purified to homogeneity and the molecular weight of the purified enzyme was approximately 112 kDa with optimal pH value and temperature measured of 7.0 and 40 °C, respectively. It was stable at a pH range of 6.0-7.0, but was markedly sensitive to high temperatures and low pH conditions, even at a pH value of 5. Ba 2+ , Al 3+ , and Co 2+ activated enzyme activity. This bacterium was capable of producing 99.2% high optically pure L-lactic acid of 4.3 and 8.2 g/L under uncontrolled and controlled pH at 6.5 conditions, respectively, in the MRS broth containing 10 g/L cassava starch as the sole carbon source when cultivated at 37 °C for 48 h. A control pH condition of 6.5 improved and stabilized the yield of L-lactic acid production directly from starch even at a high concentration of starch at up to 150 g/L. This paper is the first report describing the properties of purified α-amylase from E. faecium. Additionally, pullulanase and cyclodextrinase activities were also firstly recorded from E. faecium K-1.
Full-time response of starch subjected to microwave heating.
Fan, Daming; Wang, Liyun; Zhang, Nana; Xiong, Lei; Huang, Luelue; Zhao, Jianxin; Wang, Mingfu; Zhang, Hao
2017-06-21
The effect of non-ionizing microwave radiation on starch is due to a gelatinization temperature range that changes starch structure and properties. However, the changes in starch upon microwave heating are observable throughout the heating process. We compared the effects on starch heating by microwaves to the effects by rapid and regular conventional heating. Our results show that microwave heating promotes the rapid rearrangement of starch molecules at low temperatures; starch showed a stable dielectric response and a high dielectric constant. Microwave heating changed the Cole-Cole curve and the polarization of starch suspension at low temperatures. A marked transition at 2.45 GHz resulted in a double-polarization phenomenon. At temperatures below gelatinization, microwave-induced dielectric rearrangement and changes in the polarization characteristics of starch suspensions reduced the absorption properties; at temperatures above gelatinization, these characteristics became consistent with conventional heating. Throughout the heating process, microwaves change the electrical response and polarization characteristics of the starch at low temperatures, but on the macro level, there is no enhancement of the material's microwave absorption properties. In contrast, with the warming process, the starch exhibited a "blocking effect", and the absorption properties of the starch quickly returned to the level observed in conductive heating after gelatinization.
Study on the preparation process of cross-linked porous cassava starch
NASA Astrophysics Data System (ADS)
Yin, Xiulian; You, Qinghong; Wan, Miaomiao; Zhang, Xuejuan; Dai, Chunhua
2017-04-01
Using cassava starch as raw material, preparation process of porous cross-linked cassava starch was studied. Using TSTP as cross-linking agents, Orthogonal design was applied for the optimization of cross-linked porous starch preparation process. The results showed that the opitmal conditions of cross-linked porous cassava starch were as follows: reaction temperature 45°C, reaction time 20 h, 1% of the amount of the enzyme, the enzyme ratio of 1:5, pH 5.50, substrate concentration of 40%.
Utilization of brewery wastewater for culturing yeast cells for use in river water remediation.
Chang, Su-Yun; Sun, Jing-Mei; Song, Shu-Qiang; Sun, Bao-Sheng
2012-01-01
Successful in situ bio-augmentation of contaminated river water involves reducing the cost of the bio-agent. In this study, brewery wastewater was used to culture yeast cells for degrading the COD(Cr) from a contaminated river. The results showed that 15 g/L of yeast cells could be achieved after being cultured in the autoclaved brewery wastewater with 5 mL/L of saccharified starch and 9 g/L of corn steep liquor. The COD(Cr) removal efficiency was increased from 22% to 33% when the cells were cultured using the mentioned method. Based on the market price of materials used in this method, the cost of the medium for remediating 1 m3 of river water was 0.0076 US dollars. If the additional cost of field implementation is included, the total cost is less than 0.016 US dollars for treating 1 m3 of river water. The final cost was dependent on the size of remediation: the larger the scale, the lower the cost. By this method, the nutrient in the brewery wastewater was reused, the cost of brewery wastewater treatment was saved and the cost of the remediation using bio-augmentation was reduced. Hence, it is suggested that using brewery wastewater to culture a bio-agent for bio-augmentation is a cost-effective method.
Process development of starch hydrolysis using mixing characteristics of Taylor vortices.
Masuda, Hayato; Horie, Takafumi; Hubacz, Robert; Ohmura, Naoto; Shimoyamada, Makoto
2017-04-01
In food industries, enzymatic starch hydrolysis is an important process that consists of two steps: gelatinization and saccharification. One of the major difficulties in designing the starch hydrolysis process is the sharp change in its rheological properties. In this study, Taylor-Couette flow reactor was applied to continuous starch hydrolysis process. The concentration of reducing sugar produced via enzymatic hydrolysis was evaluated by varying operational variables: rotational speed of the inner cylinder, axial velocity (reaction time), amount of enzyme, and initial starch content in the slurry. When Taylor vortices were formed in the annular space, efficient hydrolysis occurred because Taylor vortices improved the mixing of gelatinized starch with enzyme. Furthermore, a modified inner cylinder was proposed, and its mixing performance was numerically investigated. The modified inner cylinder showed higher potential for enhanced mixing of gelatinized starch and the enzyme than the conventional cylinder.
Reddy, Chagam Koteswara; Haripriya, Sundaramoorthy; Noor Mohamed, A; Suriya, M
2014-07-15
The purpose of this study was to assess the properties of resistant starch (RS) III prepared from elephant foot yam starch using pullulanase enzyme. Native and gelatinized starches were subjected to enzymatic hydrolysis (pullulanase, 40 U/g per 10h), autoclaved (121°C/30 min), stored under refrigeration (4°C/24h) and then lyophilized. After preparation of resistant starch III, the morphological, physical, chemical and functional properties were assessed. The enzymatic and retrogradation process increased the yield of resistant starch III from starch with a concomitant increase increase in its water absorption capacity and water solubility index. A decrease in swelling power was observed due to the hydrolysis and thermal process. Te reduced pasting properties and hardness of resistant starch III were associated with the disintegration of starch granules due to the thermal process. The viscosity was found to be inversely proportional to the RS content in the sample. The thermal properties of RS increased due to retrogradation and recrystallization (P<0.05). Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yusuf, M. A.; Romli, M.; Suprihatin; Wiloso, E. I.
2018-05-01
Industrial activities use material, energy and water resources and generate greenhouse gas (GHG). Currently, various regulations require industry to measure and quantify the emissions generated from its process activity. LCA is a method that can be used to analyze and report the environmental impact of an activity that uses resources and generates waste by an industrial activity. In this work, LCA is used to determine the environmental impact of a semi-mechanical extraction process of sago industry. The data was collected through the sago industry in Cimahpar, Bogor. The extraction of sago starch consists of stem cutting, rasping, mixing, filtration, starch sedimentation, washing, and drying. The scope of LCA study covers the harvesting of sago stem, transportation to extraction site, and the starch extraction process. With the assumption that the average transportation distance of sago stem to extraction site is 200 km, the GHG emission is estimated to be 325 kg CO2 eq / ton of sundried sago starch. This figure is lower than that reported for maize starch (1120 kg CO2 eq), potato starch (2232 kg CO2 eq) and cassava starch (4310 kg CO2 eq). This is most likely due to the uncounted impact from the use of electrical energy on the extraction process, which is currently being conducted. A follow-up study is also underway to formulate several process improvement scenarios to derive the design of sago starch processing that generates the minimum emissions.
Strategies for dephenolization of raw olive mill wastewater by means of Pleurotus ostreatus.
Olivieri, Giuseppe; Russo, Maria Elena; Giardina, Paola; Marzocchella, Antonio; Sannia, Giovanni; Salatino, Piero
2012-05-01
The reduction of polyphenols content in olive mill wastewater (OMW) is a major issue in olive oil manufacturing. Although researchers have pointed out the potential of white-rot fungus in dephenolizing OMW, the results available in the literature mainly concern pretreated (sterilized) OMW. This paper deals with the reduction of polyphenols content in untreated OMW by means of a white-rot fungus, Pleurotus ostreatus. Dephenolization was performed both in an airlift bioreactor and in aerated flasks. The process was carried out under controlled non-sterile conditions, with different operating configurations (batch, continuous, biomass recycling) representative of potential industrial operations. Total organic carbon, polyphenols concentration, phenol oxidase activity, dissolved oxygen concentration, oxygen consumption rate, and pH were measured during every run. Tests were carried out with or without added nutrients (potato starch and potato dextrose) and laccases inducers (i.e., CuSO₄). OMW endogenous microorganisms were competing with P. ostreatus for oxygen during simultaneous fermentation. Dephenolization of raw OMW by P. ostreatus under single batch was as large as 70%. Dephenolization was still extensive even when biomass was recycled up to six times. OMW pre-aeration had to be provided under continuous operation to avoid oxygen consumption by endogenous microorganisms that might spoil the process. The role of laccases in the dephenolization process has been discussed. Dephenolization under batch conditions with biomass recycling and added nutrients proved to be the most effective configuration for OMW polyphenols reduction in industrial plants (42-68% for five cycles).
NASA Astrophysics Data System (ADS)
Hargono, Kumoro, Andri Cahyo; Jos, Bakti
2015-12-01
Inconventional ethanol production process, starch is converted into dextrins via liquefaction using α-amylase enzyme at high temperature (90-120°C). Then, dextrins are saccharified by glucoamylase to obtain to monomeric sugars (glucose). Recently, a granular starch hydrolyzing enzymes (GSHE), Stargen 002, was developed to convert starch into dextrins at low temperature (< 32°C) and hydrolyzes dextrins into glucose. The subject of this research was to compare ethanol production using a granular starch hydrolyzing enzymes and conventional enzymatic liquefaction and saccharification in cassava starch processing. Starch slurry concentrations were 20% w/v, and dosage of enzymes 0.50, 1.0 and 2%, respectively, were studied. After 48 hr process the final ethanol concentration for the respective enzyme concentration for conventional process were 34.90, 36.16 and 42.10 g/L, whereas for the non-thermal treatment, final ethanol concentration were 46.4, 57.62 and 59.65 g/L, respectively. By implementation of this non thermal process, the use of energy can be saved by carrying out saccharification step at lower temperature (30°C) could be realized.
Santacruz, Stalin
2014-06-15
The properties of a paper sheet depend on the absorption together with the physico-chemical properties of additives used in the paper processing. The effect of ionic strength and degree of substitution of cationic potato starch on the elution pattern of asymmetrical flow field-flow fractionation was analysed. The effect of starch derivatisation, in either dry or wet phase, was also investigated. Average molar mass showed no difference between the starches obtained from the two derivatisation processes. Apparent densities showed that dry cationic starch had higher density than wet cationic starch for a hydrodynamic radius between 50 and 100 nm. Elution times of native and three cationic starches increased when the ionic strength increased from 50 to 100mM. No differences in the molar mass among cationic starches with different degree of substitution suggested no degradation due to a derivatisation process. Large sample loads can be used at 100mM without overloading. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Other Double Helix--The Fascinating Chemistry of Starch
NASA Astrophysics Data System (ADS)
Hancock, Robert D.; Tarbet, Bryon J.
2000-08-01
Current textbooks deal only briefly with the chemistry of starch. A short review with 21 references is presented, describing the structure of starch and indicating the double helix structure of A-type and B-type starch. The structure of the starch granule is examined, pointing out the existence of growth rings of alternating crystalline and noncrystalline starch, with growing amylopectin molecules extending from the hilum (point of origin) to the surface of the starch granule. The swelling of starch granules in water, above the gelatinization temperature of about 60 °C, is discussed. The process of gelatinization involves unraveling of the starch helix and a manyfold increase in volume of the starch granule as water is imbibed and bound to the unraveled starch polymer by hydrogen bonding. Baking bread or pastries causes unraveling of the starch helix, and the process by which these products become stale corresponds primarily to the re-forming of the starch helix. The importance of this phenomenon in food science is discussed. The absorption of nonpolar linear molecules such as I2, or linear nonpolar portions of molecules such as n-butanol or fats and phospholipids, by the C-type helix of starch is examined. The way in which starch is structurally modified to retard staling is discussed in relation to food technology.
NASA Astrophysics Data System (ADS)
Salaheldin, Hosam I.
2018-06-01
In this study, silver nanoparticles (SNPs) were synthesised in an aqueous solution of corn starch. To fabricate the SNPs, reaction conditions, such as varying silver nitrate () concentration, time, temperature and solution pH of the reaction, were optimized. Since, the optimum reaction conditions were found 1 mmo l‑1, 15 min and , respectively. Then, to study the role of pH on SNP synthesis, varying pH values of the solution (3, 5, 7, 9 and 11) were investigated. Subsequently, the obtained silver/starch nanocomposites were characterised using different techniques. The x-ray diffraction (XRD) results revealed that the particles were face-centred cubic (FCC), and had an average particle size of 7.5 nm. This was confirmed by high-resolution transmission electron microscopy (HR-TEM) images. Moreover, the synthesised SNPs, at different pH values, were used as nanocatalyst for the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. Under optimum reaction conditions, the higher catalytic activity was obtained with SNPs synthesised at pH 11 compared to lower pH of 7 or 9. Therefore, the rapid, reproducible, cost-effective silver/starch nanocomposite can be widely used for various applications such as drug manufacturing (e.g. analgesics and antipyretics) and the removal of pollutants from wastewater.
NASA Astrophysics Data System (ADS)
Titi, C. S.; Fachrudin, R.; Ruriani, E.; Yuliasih, I.
2018-05-01
Sodium carboxymethyl starch (Sodium CMS) is a modified starch prepared by two successive processes, alkalization and etherification. Alkalization will change the activated hydroxyl group of starch to more reactive alkoxide (St-O-), and then carboxymethyl group will substitute the hydroxyl group into sodium CMS. This research investigated the effect of agitation (1000 rpm of stirring and 4000 rpm of homogenization) in alkalization process to the modification of native starch into sodium CMS. Cassava and sago starches were mixed with sodium hydroxide (1.8 and 1.9 moles per mole anhydrous glucose units). The combination of NaOH and homogenizing gave the highest degrees of substitution for cassava (DS 0.73) and sago (DS 0.55) starches. The sodium CMS characteristics (paste clarity, water and oil absorption capacities, solubility, swelling power) were a function of mixing method but not on the amount of NaOH used.
Ishii, Yoshikazu; Miyahara, Morio; Watanabe, Kazuya
2017-01-01
Microbial fuel cells (MFCs) are devices that exploit microbes for generating electricity from organic substrates, including waste biomass and wastewater pollutants. MFCs have the potential to treat wastewater and simultaneously generate electricity. The present study examined how anode macrostructure influences wastewater treatment, electricity generation and microbial communities in MFCs. Cassette-electrode MFCs were equipped with graphite-felt anodes with three different macrostructures, flat-plate (FP), vertical-fin (VF), and horizontal-fin (HF) structures (these were composed of a same amount of graphite felt), and were continuously supplied with artificial wastewater containing starch as the major organic constituent. Polarization analyses revealed that MFCs equipped with VF and HF anodes generated 33% and 21% higher volumetric power densities, respectively, than that of MFCs equipped with FP anodes. Organics were also more efficiently removed from wastewater in MFCs with VF and HF anodes compared to reactors containing FP anodes. In addition, pyrosequencing of PCR-amplified 16S rRNA gene fragments from microbial samples collected from the anodes showed that the presence of fins also affected the bacterial compositions in anode biofilms. Taken together, the findings presented here suggest that the modification of anodes with fins improves organics removal and electricity generation in MFCs. The optimization of anode macrostructure therefore appears to be a promising strategy for improving MFC performance without additional material costs. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Imidazole-based deep eutectic solvents for starch dissolution and plasticization.
Zdanowicz, Magdalena; Spychaj, Tadeusz; Mąka, Honorata
2016-04-20
Potato starch and high-amylose starch were treated with imidazole-based deep eutectic solvents (DESs) as dissolution and plasticization media. Beside imidazole (IM) for two-component DESs preparation choline chloride (CC), glycerol (G) or carboxylic acids (citric or malic) were used. An influence of water content in starch (as well as an extra water in the starch/DES system) on polymer dissolution and plasticization processes was investigated. Dissolution and gelatinization of starch in DESs were followed via DSC and laser scanning microscopy. A rheometric characteristics revealed an influence of starch/DES system storage time on the plasticization process. The tendency to recrystallization of compression-molded-starch films was evaluated using XRD technique. High dissolution and plasticization effectiveness of CC/IM and G/IM and a low tendency to film retrogradation of thermoplasticized starch were noted. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yang, Zhi; Swedlund, Peter; Gu, Qinfen; Hemar, Yacine; Chaieb, Sahraoui
2016-01-01
High hydrostatic pressure (HHP) has been employed to gelatinize or physically modify starch dispersions. In this study, waxy maize starch, normal maize starch, and two high amylose content starch were processed by a HHP of the order of 600 MPa, at 25°C for 15min. The effect of HHP processing on the crystallization of maize starches with various amylose content during storage at 4°C was investigated. Crystallization kinetics of HHP treated starch gels were investigated using rheology and FTIR. The effect of crystallization on the mechanical properties of starch gel network were evaluated in terms of dynamic complex modulus (G*). The crystallization induced increase of short-range helices structures were investigated using FTIR. The pressure releasing rate does not affect the starch retrogradation behaviour. The rate and extent of retrogradation depends on the amylose content of amylose starch. The least retrogradation was observed in HHP treated waxy maize starch. The rate of retrogradation is higher for HHP treated high amylose maize starch than that of normal maize starch. A linear relationship between the extent of retrogradation (phase distribution) measured by FTIR and G* is proposed.
Yang, Zhi; Swedlund, Peter; Gu, Qinfen; Hemar, Yacine; Chaieb, Sahraoui
2016-01-01
High hydrostatic pressure (HHP) has been employed to gelatinize or physically modify starch dispersions. In this study, waxy maize starch, normal maize starch, and two high amylose content starch were processed by a HHP of the order of 600 MPa, at 25°C for 15min. The effect of HHP processing on the crystallization of maize starches with various amylose content during storage at 4°C was investigated. Crystallization kinetics of HHP treated starch gels were investigated using rheology and FTIR. The effect of crystallization on the mechanical properties of starch gel network were evaluated in terms of dynamic complex modulus (G*). The crystallization induced increase of short-range helices structures were investigated using FTIR. The pressure releasing rate does not affect the starch retrogradation behaviour. The rate and extent of retrogradation depends on the amylose content of amylose starch. The least retrogradation was observed in HHP treated waxy maize starch. The rate of retrogradation is higher for HHP treated high amylose maize starch than that of normal maize starch. A linear relationship between the extent of retrogradation (phase distribution) measured by FTIR and G* is proposed. PMID:27219066
Microscopic Analysis of Corn Fiber Using Corn Starch- and Cellulose-Specific Molecular Probes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, S. E.; Donohoe, B. S.; Beery, K. E.
Ethanol is the primary liquid transportation fuel produced from renewable feedstocks in the United States today. The majority of corn grain, the primary feedstock for ethanol production, has been historically processed in wet mills yielding products such as gluten feed, gluten meal, starch, and germ. Starch extracted from the grain is used to produce ethanol in saccharification and fermentation steps; however the extraction of starch is not 100% efficient. To better understand starch extraction during the wet milling process, we have developed fluorescent probes that can be used to visually localize starch and cellulose in samples using confocal microscopy. Thesemore » probes are based on the binding specificities of two types of carbohydrate binding modules (CBMs), which are small substrate-specific protein domains derived from carbohydrate degrading enzymes. CBMs were fused, using molecular cloning techniques, to a green fluorescent protein (GFP) or to the red fluorescent protein DsRed (RFP). Using these engineered probes, we found that the binding of the starch-specific probe correlates with starch content in corn fiber samples. We also demonstrate that there is starch internally localized in the endosperm that may contribute to the high starch content in corn fiber. We also surprisingly found that the cellulose-specific probe did not bind to most corn fiber samples, but only to corn fiber that had been hydrolyzed using a thermochemical process that removes the residual starch and much of the hemicellulose. Our findings should be of interest to those working to increase the efficiency of the corn grain to ethanol process.« less
Gao, Jinfeng; Kreft, Ivan; Chao, Guimei; Wang, Ying; Liu, Xiaojin; Wang, Li; Wang, Pengke; Gao, Xiaoli; Feng, Baili
2016-01-01
A starch rich fraction is a side product in Tartary buckwheat processing. This study investigated the fractions that are of technological and nutritional interest. Tartary buckwheat starch granules had a diameter of 3-14 μm, and presented a typical type "A" X-ray diffraction pattern. They contained nearly 39.0% amylose. The solubility of Tartary buckwheat starch was much lower at 70-90 °C (ranging within 9.9-10.4% at 90 °C) than that in maize (up to 49.3%) and potato (up to 85.0%) starch. The starch of one variety of Tartary buckwheat had significantly lower solubility at 70 °C and 80 °C than that of common buckwheat. The starch peak viscosity and breakdown were higher and pasting time was shorter in Tartary buckwheat than in that of the starch of common buckwheat. Tartary buckwheat starch had unique pasting and physicochemical properties, and is thereby capable of being exploited as a suitable raw material of retrograded starch in food processing. Copyright © 2015 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The effect of condensed tannins (CT) on in vitro starch digestibility in cooked, wholegrain sorghum flours and on corn starch was investigated. CT extracts were also tested for their inhibitory effect on alpha-amylases. Rapidly digestible starch, slowly digestible starch, and resistant starch were n...
Application of ultra high pressure (UHP) in starch chemistry.
Kim, Hyun-Seok; Kim, Byung-Yong; Baik, Moo-Yeol
2012-01-01
Ultra high pressure (UHP) processing is an attractive non-thermal technique for food treatment and preservation at room temperature, with the potential to achieve interesting functional effects. The majority of UHP process applications in food systems have focused on shelf-life extension associated with non-thermal sterilization and a reduction or increase in enzymatic activity. Only a few studies have investigated modifications of structural characteristics and/or protein functionalities. Despite the rapid expansion of UHP applications in food systems, limited information is available on the effects of UHP on the structural and physicochemical properties of starch and/or its chemical derivatives included in most processed foods as major ingredients or minor additives. Starch and its chemical derivatives are responsible for textural and physical properties of food systems, impacting their end-use quality and/or shelf-life. This article reviews UHP processes for native (unmodified) starch granules and their effects on the physicochemical properties of UHP-treated starch. Furthermore, functional roles of UHP in acid-hydrolysis, hydroxypropylation, acetylation, and cross-linking reactions of starch granules, as well as the physicochemical properties of UHP-assisted starch chemical derivatives, are discussed.
Kaur, Maninder; Sandhu, Kawaljit Singh; Ahlawat, RavinderPal; Sharma, Somesh
2015-03-01
Mung bean was subjected to different processing conditions (soaking, germination, cooking and autoclaving) and their textural, pasting and in vitro starch digestibility characteristics were studied. A significant reduction in textural properties (hardness, cohesiveness, gumminess and chewiness) after cooking and autoclaving treatment of mung bean was observed. Flours made from differently processed mung bean showed significant differences (P < 0.05) in their pastin g characteristics. Peak and final viscosity were the highest for flour from germinated mung bean whereas those made from autoclaved mung bean showed the lowest value. in vitro starch digestibility of mung bean flours was assessed enzymatically using modified Englyst method and the parameters studied were readily digestible starch (RDS), slowly digestible starch (SDS), resistant starch (RS) and total starch (TS) content. Various processing treatments increased the RDS contents of mung bean, while the SDS content was found to be the highest for soaked and the lowest for the autoclaved sample. Germinated sample showed higher amount of digestible starch (RDS + SDS) as compared to raw and soaked samples. Flours from raw and soaked samples showed significantly low starch hydrolysis rate at all the temperatures with total hydrolysis of 29.9 and 31.2 %, respectively at 180 min whereas cooked and autoclaved samples showed high hydrolysis rates with 50.2 and 53.8 % of these hydrolyzing within 30 min of hydrolysis.
Removal of slowly biodegradable COD in combined thermophilic UASB and MBBR systems.
Ji, M; Yu, J; Chen, H; Yue, P L
2001-09-01
Starch, cellulose and polyvinyl alcohol (PVA) are common substrates of the slowly biodegradable COD (SBCOD) in industrial wastewaters. Removal of the individual and mixed SbCOD substrates was investigated in a combined system of thermophilic upflow anaerobic sludge blanket (TUASB) reactor (55 degrees C) and aerobic moving bed biofilm reactor (MBBR). The removal mechanisms of the three SBCOD substrates were quite different. Starch-COD was almost equally utilized and removed in the two reactors. Cellulose-COD was completely (97-98%) removed from water in the TUASB reactor by microbial entrapment and sedimentation of the cellulose fibers. PVA alone was hardly biodegraded and removed by the combined reactors. However, PVA-COD could be removed to some extent in a binary solution of starch (77%) plus PVA (23%). The PVA macromolecules in the binary solution actually affected the microbial activity in the TUASB reactor resulting accumulation of volatile fatty acids, which shifted the overall COD removal from the TUASB to the MBBR reactor where SBCOD including PVA-COD was removed. Since the three SBCOD substrates were removed by different mechanisms, the combined reactors showed a better and more stable performance than individual reactors.
Zhou, Ping-Ping; Meng, Jiao; Bao, Jie
2017-01-01
The aim of this work is to study the citric acid fermentation by a robust strain Aspergillus niger SIIM M288 using corn stover feedstock after dry dilute sulfuric acid pretreatment and biodetoxification. Citric acid at 100.04g/L with the yield of 94.11% was obtained, which are comparable to the starch or sucrose based citric acid fermentation. No free wastewater was generated in the overall process from the pretreatment to citric acid fermentation. Abundant divalent metal ions as well as high titer of potassium, phosphate, and nitrogen were found in corn stover hydrolysate. Further addition of extra nutrients showed no impact on increasing citric acid formation except minimum nitrogen source was required. Various fermentation parameters were tested and only minimum regulation was required during the fermentation. This study provided a biorefining process for citric acid fermentation from lignocellulose feedstock with the maximum citric acid titer and yield. Copyright © 2016 Elsevier Ltd. All rights reserved.
Szwengiel, Artur; Lewandowicz, Grażyna; Górecki, Adrian R; Błaszczak, Wioletta
2018-02-01
The effect of high hydrostatic pressure processing (650MPa/9min) on molecular mass distribution, and hydrodynamic and structural parameters of amylose (maize, sorghum, Hylon VII) and amylopectin (waxy maize, amaranth) starches was studied. The starches were characterized by high-performance size-exclusion chromatography (HPSEC) equipped with static light scattering and refractive index detectors and by Fourier Transform Infrared (FTIR) spectroscopy. Significant changes were observed in molecular mass distribution of pressurized waxy maize starch. Changes in branches/branch frequency, intrinsic viscosity, and radius of gyration were observed for all treated starches. The combination of SEC and FTIR data showed that α-1,6-glycosidic bonds are more frequently split in pressurized amaranth, Hylon VII, and waxy maize starch, while in sorghum and maize starches, the α-1,4 bonds are most commonly split. Our results show that the structural changes found for pressurized starches were more strongly determined by the starch origin than by the processing applied. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rheological Properties and Electrospinnability of High-Amylose Starch in Formic Acid.
Lancuški, Anica; Vasilyev, Gleb; Putaux, Jean-Luc; Zussman, Eyal
2015-08-10
Starch derivatives, such as starch-esters, are commonly used as alternatives to pure starch due to their enhanced mechanical properties. However, simple and efficient processing routes are still being sought out. In the present article, we report on a straightforward method for electrospinning high-amylose starch-formate nanofibers from 17 wt % aqueous formic acid (FA) dispersions. The diameter of the electrospun starch-formate fibers ranged from 80 to 300 nm. The electrospinnability window between starch gelatinization and phase separation was determined using optical microscopy and rheological studies. This window was shown to strongly depend on the water content in the FA dispersions. While pure FA rapidly gelatinized starch, yielding solutions suitable for electrospinning within a few hours at room temperature, the presence of water (80 and 90 vol % FA) significantly delayed gelatinization and dissolution, which deteriorated fiber quality. A complete destabilization of the electrospinning process was observed in 70 vol % FA dispersions. Optical micrographs showed that FA induced a disruption of starch granule with a loss of crystallinity confirmed by X-ray diffraction. As a result, starch fiber mats exhibited a higher elongation at break when compared to brittle starch films.
Carbon/Attapulgite Composites as Recycled Palm Oil-Decoloring and Dye Adsorbents
Tian, Guangyan; Zhu, Yongfeng; Zong, Li; Kang, Yuru; Wang, Aiqin
2018-01-01
Activated clay minerals have been widely used in the edible oil refining industry for decolorization of crude oil by adsorption, and so far many methods have been used to improve their decolorization efficiency. Herein, we successfully prepared a series of carbon/attapulgite (C/APT) composite adsorbents by a one-step in-situ carbonization process with natural starch (St) as the carbon source. It has been revealed that the adsorbent had better decolorization efficiency for crude palm oil than acid-activated APT. However, more than a million tons of decolorized waste is produced every year in the oil-refining industry, which was often treated as solid waste and has not yet been reutilized effectively. In order to explore a viable method to recycle and reuse the decolorant, the waste decolorant was further prepared into new C/APT adsorbents for the removal of dyes from wastewater, and then the dyes adsorbed on the adsorbent were used as the carbon sources to produce new C/APT adsorbents by a cyclic carbonization process. The results showed that the adsorbents prepared from the decolorized waste could remove more than 99.5% of the methylene blue (MB), methyl violet (MV), and malachite green (MG) dyes from the simulated wastewater with the dye concentration of 200 mg/L, and the C/APT–Re adsorbent consecutively regenerated five times using the adsorbed dyes as a carbon source still exhibit good adsorption efficiency for dyes. As a whole, this process opens a new avenue to develop efficient decolorants of palm oil and achieves recyclable utilization of decolored waste. PMID:29316634
Sit, Nandan; Agrawal, U S; Deka, Sankar C
2014-05-01
Enzymatic treatment process for starch extraction from potato was investigated using cellulase enzyme and compared with conventional process. The effects of three parameters, cellulase enzyme concentration, incubation time and addition of water were evaluated for increase in starch yield as compared to the conventional process i.e., without using enzyme. A two-level full factorial design was used to study the process. The results indicated that all the main parameters and their interactions are statistically significant. Enzyme concentration and incubation time had a positive effect on the increase in starch yield while addition of water had a negative effect. The increase in starch yield ranged from 1.9% at low enzyme concentration and incubation time and high addition of water to a maximum of 70% increase from conventional process in starch yield was achieved when enzyme concentration and incubation time were high and addition of water was low suggesting water present in the ground potato meal is sufficient for access to the enzyme with in the slurry ensuring adequate contact with the substrate.
Zhao, Yonggui; Fang, Yang; Jin, Yanling; Huang, Jun; Bao, Shu; Fu, Tian; He, Zhiming; Wang, Feng; Zhao, Hai
2014-07-01
The application potential of duckweed (Lemna japonica 0234) and water hyacinth (Eichhornia crassipes) were compared in two pilot-scale wastewater treatment systems for more than one year. The results indicated duckweed had the same total nitrogen (TN) recovery rate as water hyacinth (0.4 g/m(2)/d) and a slightly lower total phosphorus (TP) recovery rate (approximately 0.1g/m(2)/d) even though its biomass production was half that of water hyacinth. The higher content of crude protein (33.34%), amino acids (25.80%), starch (40.19%), phosphorus (1.24%), flavonoids (2.91%) and lower fiber content provided duckweed with more advantages in resource utilization. Additionally, microbial community discovered by 454 pyrosequencing indicated that less nitrifying bacteria and more nitrogen-fixing bacteria in rhizosphere of duckweed provided it with higher nitrogen recovery efficiency (60%) than water hyacinth (47%). Under the presented condition, duckweed has more application advantages than water hyacinth because it more effectively converted the wastewater nutrients into valuable biomass. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mößeler, Anne; Vagt, Sandra; Beyerbach, Martin; Kamphues, Josef
2015-01-01
Although steatorrhea is the most obvious symptom of pancreatic exocrine insufficiency (PEI), enzymatic digestion of protein and starch is also impaired. Low praecaecal digestibility of starch causes a forced microbial fermentation accounting for energy losses and meteorism. To optimise dietetic measures, knowledge of praecaecal digestibility of starch is needed but such information from PEI patients is rare. Minipigs fitted with an ileocaecal fistula with (n = 3) or without (n = 3) pancreatic duct ligation (PL) were used to estimate the rate of praecaecal disappearance (pcD) of starch. Different botanical sources of starch (rice, amaranth, potato, and pea) were fed either raw or cooked. In the controls (C), there was an almost complete pcD (>92%) except for potato starch (61.5%) which was significantly lower. In PL pcD of raw starch was significantly lower for all sources of starch except for amaranth (87.9%). Thermal processing increased pcD in PL, reaching values of C for starch from rice, potato, and pea. This study clearly underlines the need for precise specification of starch used for patients with specific dietetic needs like PEI. Data should be generated in suitable animal models or patients as tests in healthy individuals would not have given similar conclusions.
Wang, Xingchi; Wen, Fanting; Zhang, Shurong; Shen, Ruru; Jiang, Wei; Liu, Jun
2017-03-01
Effect of acid hydrolysis on the morphology, structure and digestion property of starch from Cynanchum auriculatum Royle ex Wight was investigated in this study. The hydrolysis degree of C. auriculatum starch rapidly increased to 63.69% after 4days and reached 78.67% at the end of 9days. Morphology observation showed that the starch granules remained intact during the first 4days of hydrolysis. However, serious erosion phenomenon was observed after 5days and starch granules completely fell into pieces after 7days. During acid hydrolysis process, the crystal type of hydrolyzed starch changed from original C B -type to final A-type. Small-angle X-ray scattering patterns showed the semi-crystalline growth rings started to be hydrolyzed after 4days. The proportions of single helix and amorphous components as well as amylose content in starch gradually decreased, whereas the proportion of double helix components continuously increased during acid hydrolysis. However, the contents of rapidly digestible starch, slowly digestible starch and resistant starch were almost constant during acid hydrolysis process, indicating the in vitro digestion property of C. auriculatum starch was not affected by acid hydrolysis. Our results provided novel information on the inner structure of C. auriculatum starch granules. Copyright © 2017 Elsevier B.V. All rights reserved.
Starch--value addition by modification.
Tharanathan, Rudrapatnam N
2005-01-01
Starch is one of the most important but flexible food ingredients possessing value added attributes for innumerable industrial applications. Its various chemically modified derivatives offer a great scope of high technological value in both food and non-food industries. Modified starches are designed to overcome one or more of the shortcomings, such as loss of viscosity and thickening power upon cooking and storage, particularly at low pH, retrogradation characteristics, syneresis, etc., of native starches. Oxidation, esterification, hydroxyalkylation, dextrinization, and cross-linking are some of the modifications commonly employed to prepare starch derivatives. In a way, starch modification provides desirable functional attributes as well as offering economic alternative to other hydrocolloid ingredients, such as gums and mucilages, which are unreliable in quality and availability. Resistant starch, a highly retrograded starch fractionformed upon food processing, is another useful starch derivative. It exhibits the beneficial physiological effects of therapeutic and nutritional values akin to dietary fiber. There awaits considerable opportunity for future developments, especially for tailor-made starch derivatives with multiple modifications and with the desired functional and nutritional properties, although the problem of obtaining legislative approval for the use of novel starch derivatives in processed food formulations is still under debate. Nevertheless, it can be predicted that new ventures in starch modifications and their diverse applications will continue to be of great interest in applied research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohutskyi, Pavlo; Kucek, Leo A.; Hill, Eric
Metabolic flexibility and robustness of phototroph- heterotroph co-cultures provide a flexible binary engineering platform for a variety of biotechnological and environmental applications. Here, we metabolically coupled a heterotrophic bacterium Bacillus subtilis with astaxanthin producing alga Haematococcus pluvialis and successfully applied this binary co-culture for conversion of the starch-rich waste stream into valuable astaxanthin-rich biomass. Importantly, the implemented system required less mass transfer of CO2 and O2 due to in-situ exchange between heterotroph and phototroph, which can contribute to reduction in energy consumption for wastewater treatment. In addition, the maximum reduction in chemical oxygen demand, total nitrogen and phosphorus reached 65%,more » 55% and 30%, respectively. The preliminary economic analysis indicated that realization of produced biomass with 0.8% astaxanthin content may generate annual revenues of $3.2M (baseline scenario) from treatment of wastewater (1,090 m3/day) from a potato processing plant. Moreover, the revenues may be increased up to $18.2M for optimized scenario with astaxanthin content in algae of 2%. This work demonstrates a successful proof-of-principle for conversion of waste carbon and nutrients into targeted value-added products through metabolic connection of heterotrophic and phototrophic organisms. Utilization of heterotrophic-algal binary cultures opens new perspectives for designing highly-efficient production processes for feedstock biomass production as well as allows utilization of variety of organic agricultural, chemical, or municipal wastes.« less
Ovary starch reserves and pistil development in avocado (Persea americana).
Alcaraz, M Librada; Hormaza, J Ignacio; Rodrigo, Javier
2010-12-01
In avocado, only a very small fraction of the flowers are able to set fruit. Previous work in other woody perennial plant species has shown the importance of carbohydrates accumulated in the flower in the reproductive process. Thus, in order to explore the implications of the nutritive status of the flower in the reproductive process in avocado, the starch content in the pistil has been examined in individual pollinated and non-pollinated flowers at anthesis and during the days following anthesis. Starch content in different pistilar tissues in each flower was quantified with the help of an image analysis system attached to a microscope. Flowers at anthesis were rich in highly compartmentalized starch. Although no external morphological differences could be observed among flowers, the starch content varied widely at flower opening. Starch content in the ovary is largely independent of flower size because these differences were not correlated with ovary size. Differences in the progress of starch accumulation within the ovule integuments between pollinated and non-pollinated flowers occurred concomitantly with the triggering of the progamic phase. The results suggest that starch reserves in the ovary could play a significant role in the reproductive process in avocado. Copyright © Physiologia Plantarum 2010.
Bernardino-Nicanor, Aurea; Acosta-García, Gerardo; Güemes-Vera, Norma; Montañez-Soto, José Luis; de Los Ángeles Vivar-Vera, María; González-Cruz, Leopoldo
2017-03-01
Starches isolated from four ayocote bean varieties were modified by thermal treatment to determinate the effect of the treatment on the structural changes of ayocote bean starch. Scanning electron microscopy indicates that the starch granules have oval and round shapes, with heterogeneous sizes and fractures when the extraction method is used. The presence of new bands at 2850 and 1560 cm -1 in the FT-IR spectra showed that the thermal treatment of ayocote beans induced an interaction between the protein or lipid and the amylose or amylopectin, while the sharpest band at 3400 cm -1 indicated a dehydration process in the starch granule in addition to the presence of the band at 1260 cm -1 , indicating the product of the retrogradation process. The thermal treatment reduced the crystallinity as well as short-range order. Raman spectroscopy revealed that acute changes occurred in the polysaccharide bonds after thermal treatment. This study showed that the thermal treatment affected the structural properties of ayocote bean starches, the interactions of the lipids and proteins with starch molecules and the retrogradation process of starch.
Analytical evaluation of current starch methods used in the international sugar industry: Part I.
Cole, Marsha; Eggleston, Gillian; Triplett, Alexa
2017-08-01
Several analytical starch methods exist in the international sugar industry to mitigate starch-related processing challenges and assess the quality of traded end-products. These methods use iodometric chemistry, mostly potato starch standards, and utilize similar solubilization strategies, but had not been comprehensively compared. In this study, industrial starch methods were compared to the USDA Starch Research method using simulated raw sugars. Type of starch standard, solubilization approach, iodometric reagents, and wavelength detection affected total starch determination in simulated raw sugars. Simulated sugars containing potato starch were more accurately detected by the industrial methods, whereas those containing corn starch, a better model for sugarcane starch, were only accurately measured by the USDA Starch Research method. Use of a potato starch standard curve over-estimated starch concentrations. Among the variables studied, starch standard, solubilization approach, and wavelength detection affected the sensitivity, accuracy/precision, and limited the detection/quantification of the current industry starch methods the most. Published by Elsevier Ltd.
[Yield of starch extraction from plantain (Musa paradisiaca). Pilot plant study].
Flores-Gorosquera, Emigdia; García-Suárez, Francisco J; Flores-Huicochea, Emmanuel; Núñez-Santiago, María C; González-Soto, Rosalia A; Bello-Pérez, Luis A
2004-01-01
In México, the banana (Musa paradisiaca) is cooked (boiling or deep frying) before being eaten, but the consumption is not very popular and a big quantity of the product is lost after harvesting. The unripe plantain has a high level of starch and due to this the use of banana can be diversified as raw material for starch isolation. The objective of this work was to study the starch yield at pilot plant scale. Experiments at laboratory scale were carried out using the pulp with citric acid to 0,3 % (antioxidant), in order to evaluate the different unitary operations of the process. The starch yield, based on starch presence in the pulp that can be isolated, were between 76 and 86 %, and the values at pilot plant scale were between 63 and 71 %, in different lots of banana fruit. Starch yield values were similar among the diverse lots, showing that the process is reproducible. The lower values of starch recovery at pilot plant scale are due to the loss during sieving operations; however, the amount of starch recovery is good.
Tao, Han; Wang, Pei; Zhang, Bao; Wu, Fengfeng; Jin, Zhengyu; Xu, Xueming
2016-06-05
The effect of freezing on functionality of native and sodium dodecyl sulfate (SDS)-treated wheat starches was investigated, with the aim of understanding the role of water absorption during freezing process. SDS is one of most efficient detergents to remove non-starch components (such as proteins and lipids) for starches but does not cause any apparent damage on granular structure. Slow swelling could be converted to rapid swelling by SDS washing, indicating higher water absorption. Freezing process induced slight roughness on starch granules but the non-starch components content was little affected. Combined SDS+freezing treatment significantly decreased both amylose and proteins non-starch components contents, which was accompanied with high gelatinization temperatures, melting enthalpy, and pasting viscosities. A smaller bread specific volume was obtained from SDS+freezing-treated starches while the crumb firmness significantly increased (p<0.05). SDS mainly extracted the surface components from starch granules, leading to high water absorption and making granules sensitive to the freezing treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Görgens, Johann F; Bressler, David C; van Rensburg, Eugéne
2015-01-01
The production of raw starch-degrading amylases by recombinant Saccharomyces cerevisiae provides opportunities for the direct hydrolysis and fermentation of raw starch to ethanol without cooking or exogenous enzyme addition. Such a consolidated bioprocess (CBP) for raw starch fermentation will substantially reduce costs associated with energy usage and commercial granular starch hydrolyzing (GSH) enzymes. The core purpose of this review is to provide comprehensive insight into the physiological impact of recombinant amylase production on the ethanol-producing yeast. Key production parameters, based on outcomes from modifications to the yeast genome and levels of amylase production, were compared to key benchmark data. In turn, these outcomes are of significance from a process point of view to highlight shortcomings in the current state of the art of raw starch fermentation yeast compared to a set of industrial standards. Therefore, this study provides an integrated critical assessment of physiology, genetics and process aspects of recombinant raw starch fermenting yeast in relation to presently used technology. Various approaches to strain development were compared on a common basis of quantitative performance measures, including the extent of hydrolysis, fermentation-hydrolysis yield and productivity. Key findings showed that levels of α-amylase required for raw starch hydrolysis far exceeded enzyme levels for soluble starch hydrolysis, pointing to a pre-requisite for excess α-amylase compared to glucoamylase for efficient raw starch hydrolysis. However, the physiological limitations of amylase production by yeast, requiring high biomass concentrations and long cultivation periods for sufficient enzyme accumulation under anaerobic conditions, remained a substantial challenge. Accordingly, the fermentation performance of the recombinant S. cerevisiae strains reviewed in this study could not match the performance of conventional starch fermentation processes, based either on starch cooking and/or exogenous amylase enzyme addition. As an alternative strategy, the addition of exogenous GSH enzymes during early stages of raw starch fermentation may prove to be a viable approach for industrial application of recombinant S. cerevisiae, with the process still benefitting from amylase production by CBP yeast during later stages of cultivation.
Starch-based Foam Composite Materials: processing and bioproducts
USDA-ARS?s Scientific Manuscript database
Starch is an abundant, biodegradable, renewable and low-cost commodity that has been explored as a replacement for petroleum-based plastics. By itself, starch is a poor replacement for plastics because of its moisture sensitivity and brittle properties. Efforts to improve starch properties and funct...
Recent processing methods for preparing starch-based bioproducts
USDA-ARS?s Scientific Manuscript database
There is currently an intense interest in starch-based materials because of the low cost of starch, the replacement of dwindling petroleum-based resources with annually-renewable feedstocks, the biodegradability of starch-based products, and the creation of new markets for farm commodities. Non-trad...
Castaño, J; Rodríguez-Llamazares, S; Contreras, K; Carrasco, C; Pozo, C; Bouza, R; Franco, C M L; Giraldo, D
2014-11-04
Starch isolated from non-edible Aesculus hippocastanum seeds was characterized and used for preparing starch-based materials. The apparent amylose content of the isolated starch was 33.1%. The size of starch granules ranged from 0.7 to 35 μm, and correlated with the shape of granules (spherical, oval and irregular). The chain length distribution profile of amylopectin showed two peaks, at polymerization degree (DP) of 12 and 41-43. Around 53% of branch unit chains had DP in the range of 11-20. A. hippocastanum starch displayed a typical C-type pattern and the maximum decomposition temperature was 317 °C. Thermoplastic starch (TPS) prepared from A. hippocastanum with glycerol and processed by melt blending exhibited adequate mechanical and thermal properties. In contrast, plasticized TPS with glycerol:malic acid (1:1) showed lower thermal stability and a pasty and sticky behavior, indicating that malic acid accelerates degradation of starch during processing. Copyright © 2014 Elsevier Ltd. All rights reserved.
In Vitro Starch Digestibility of Commercial Gluten-Free Pasta: The Role of Ingredients and Origin.
Marti, Alessandra; Abbasi Parizad, Parisa; Marengo, Mauro; Erba, Daniela; Pagani, Maria Ambrogina; Casiraghi, Maria Cristina
2017-04-01
Gluten replacement in gluten-free (GF) products presents major challenges for the food industry in terms of sensorial, technological and nutritional characteristics. The absence of gluten reportedly affects starch digestibility, thus increasing the postprandial glycaemic response. However, the role of ingredients and processing conditions has been addressed only seldom. We investigated the in vitro starch digestibility of 9 commercial GF products (5 Italian pasta and 4 Oriental noodles) differing in formulation and processing conditions. Content of rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant starch (RS) were assessed and combined with information on starch pasting properties and on the overall protein organization. Oriental noodles presented higher relative levels of RS and RDS than Western-style pasta, that often had SDS levels compatible with low rates of starch digestion. As regard formulation, presence of multiple ingredients seems to likely increase the RDS level, as did the different protein organization in the various samples. © 2017 Institute of Food Technologists®.
Hydration-induced crystalline transformation of starch polymer under ambient conditions.
Qiao, Dongling; Zhang, Binjia; Huang, Jing; Xie, Fengwei; Wang, David K; Jiang, Fatang; Zhao, Siming; Zhu, Jie
2017-10-01
With synchrotron small/wide-angle X-ray scattering (SAXS/WAXS), we revealed that post-harvest hydration at ambient conditions can further alter the starch crystalline structure. The hydration process induced the alignment of starch helices into crystalline lamellae, irrespective of the starch type (A- or B-). In this process, non-crystalline helices were probably packed with water molecules to form new crystal units, thereby enhancing the overall concentration of starch crystallinity. In particular, a fraction of the monoclinic crystal units of the A-type starches encapsulated water molecules during hydration, leading to the outward movement of starch helices. Such movement resulted in the transformation of monoclinic units into hexagonal units, which was associated with the B-type crystallites. Hence, the hydration under ambient conditions could enhance the B-polymorphic features for both A-type and B-type starches. The new knowledge obtained here may guide the design of biopolymer-based liquid crystal materials with controlled lattice regularity and demanded features. Copyright © 2017 Elsevier B.V. All rights reserved.
Schmitt, H; Guidez, A; Prashantha, K; Soulestin, J; Lacrampe, M F; Krawczak, P
2015-01-22
Starch was combined with plasticizers such as glycerol, sorbitol, glycerol/sorbitol and urea/ethanolamine blends by means of high shear extrusion process to prepare thermoplastic starch (TPS). Effect of storage time and plasticizers on the structural stability of melt processed TPS was investigated. Morphological observation, X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy reveal that melt extrusion process is efficient in transforming granular starch into a plasticized starch for all plasticizer compositions. XRD analysis highlights major changes in the microstructure of plasticized starch, and dependence of crystalline type and degree of crystallinity mainly on the plasticizer composition and storage time. Dynamical mechanical analysis (DMA) yields a decrease of the peak intensity of loss factor with aging time. The effect of ageing on tensile strength also appears to be highly dependent on the plasticizer composition. Thus, through different plasticizer combinations and ageing, starch-based materials with significant differences in tensile properties can be obtained, which may be tuned to meet the requirements of a wide range of applications. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lee, Seul; Lee, Ju Hun; Chung, Hyun-Jung
2017-08-01
The objective of this study was to determine the molecular and crystalline structures of starches from diverse rice cultivars for three major food processing in Korea (cooked rice, brewing and rice cake). Rice starches were isolated from 10 different rice varieties grown in Korea. Apparent amylose contents of rice starches from cooked rice, brewing and rice cake varieties were 21.1-22.4%, 22.9-24.6%, and 20.1-22.0%, respectively. Rice starches from rice cake varieties showed higher peak viscosity but lower pasting temperature than those from cooked rice and brewing varieties. Swelling factor at 80°C of rice starches from cooked rice, brewing and rice cake varieties was 16.6-19.0, 17.8-19.3, and 17.8-19.2, respectively. Based on structure and physicochemical properties of rice starches extracted from different rice varieties, principal component analysis (PCA) results showed that these rice varieties could be clearly classified according to processing adaptability for cooked rice and rice cake. Copyright © 2017 Elsevier Ltd. All rights reserved.
Water sorption behavior and swelling characteristics of starches subjected to dielectric heating.
Szepes, Anikó; Szabó-Révész, Piroska; Mohnicke, Mandy
2007-01-01
The aim of this study was to investigate the effects of microwave irradiation and storage on the moisture content, adsorption behavior and swelling properties of potato (B-type) and maize starches (A-type). Volumetric heating resulted in reversible moisture loss from both types of samples. The crystallinity of potato starch was decreased, whereas its water retention capacity and swelling power were increased irreversibly, and its swelling capacity was increased reversibly by the thermal process applied. The corresponding parameters of maize starch were not influenced significantly by dielectric heating; this may be related to its special structure resulting in the thermal resistance of this polymer. Our results allow the conclusion that microwave irradiation offers an appropriate and selective alternative for the physicochemical modification of potato starch. In consequence of its low susceptibility to thermal processes, maize starch may be used for the microwave drying of pharmaceutical formulations containing starch.
Shrestha, Ashok K; Blazek, Jaroslav; Flanagan, Bernadine M; Dhital, Sushil; Larroque, Oscar; Morell, Matthew K; Gilbert, Elliot P; Gidley, Michael J
2015-03-15
Extrusion processing of cereal starch granules with high (>50%) amylose content is a promising approach to create nutritionally desirable resistant starch, i.e. starch that escapes digestion in the small intestine. Whilst high amylose content seems to be required, the structural features responsible for the slow digestion of extrudates are not fully understood. We report the effects of partial enzyme digestion of extruded maize starches on amylopectin branch length profiles, double and single helix contents, crystallinity and lamellar periodicity. Comparing results for three extruded maize starches (27, 57, and 84% apparent amylose) that differ in amylase-sensitivity allows conclusions to be drawn concerning the rate-determining features operating under the digestion conditions used. Enzyme resistance is shown to originate from a combination of molecular and mesoscopic factors, including both recrystallization and an increase in very short branches during the digestion process. This is in contrast to the behaviour of the same starches in the granular form (Shrestha et al., 2012) where molecular and mesoscopic factors are secondary to microscopic structures in determining enzyme susceptibility. Based on the structure of residual material after long-time digestion (>8h), a model for resistant starch from processed high amylose maize starches is proposed based on a fringed micelle structure with lateral aggregation and enzyme susceptibility both limited by attached clusters of branch points. Copyright © 2014 Elsevier Ltd. All rights reserved.
A structured approach to target starch solubilization and hydrolysis for the sugarcane industry
USDA-ARS?s Scientific Manuscript database
In sugarcane processing, starch is considered an impurity that negatively affects processing and reduces the quality of the sugar end-product. In the last decade, there has been a general world-wide increase in starch concentrations in sugarcane. Industrial a-amylases have been used for many years ...
USDA-ARS?s Scientific Manuscript database
High starch concentrates are often added to equine diets to meet digestible energy requirements of some horses, such as broodmares. Starch source has been shown to affect fecal bacterial communities of horses when fed cereal grains with little to no processing. Others suggest that grain processing, ...
Cappa, Carola; Lucisano, Mara; Barbosa-Cánovas, Gustavo V; Mariotti, Manuela
2016-07-01
The impact of high pressure (HP) processing on corn starch, rice flour and waxy rice flour was investigated as a function of pressure level (400MPa; 600MPa), pressure holding time (5min; 10min), and temperature (20°C; 40°C). Samples were pre-conditioned (final moisture level: 40g/100g) before HP treatments. Both the HP treated and the untreated raw materials were evaluated for pasting properties and solvent retention capacity, and investigated by differential scanning calorimetry, X-ray diffractometry and environmental scanning electron microscopy. Different pasting behaviors and solvent retention capacities were evidenced according to the applied pressure. Corn starch presented a slower gelatinization trend when treated at 600MPa. Corn starch and rice flour treated at 600MPa showed a higher retention capacity of carbonate and lactic acid solvents, respectively. Differential scanning calorimetry and environmental scanning electron microscopy investigations highlighted that HP affected the starch structure of rice flour and corn starch. Few variations were evidenced in waxy rice flour. These results can assist in advancing the HP processing knowledge, as the possibility to successfully process raw samples in a very high sample-to-water concentration level was evidenced. This work investigates the effect of high pressure as a potential technique to modify the processing characteristics of starchy materials without using high temperature. In this case the starches were processed in the powder form - and not as a slurry as in previously reported studies - showing the flexibility of the HP treatment. The relevance for industrial application is the possibility to change the structure of flour starches, and thus modifying the processability of the mentioned products. Copyright © 2016 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Starch negatively affects the quantity and quality of raw sugar produced. Starch reduces crystallization and centrifugation rates, occludes into sucrose crystals, and impedes refinery decolorization processes. The problem of starch in sugarcane juice has been exacerbated by the widespread adoption...
Structure of Porous Starch Microcellular Foam Particles
USDA-ARS?s Scientific Manuscript database
A relatively new starch product with various novel applications is a porous microcellular foam. The foam product is made by dehydrating a starch hydrogel in a solvent such as ethanol and then removing the solvent to form a foam product. The process involves heating an aqueous slurry of starch (8% w/...
Analytical evaluation of current starch methods used in the international sugar industry: Part I
USDA-ARS?s Scientific Manuscript database
Several analytical starch methods currently exist in the international sugar industry that are used to prevent or mitigate starch-related processing challenges as well as assess the quality of traded end-products. These methods use simple iodometric chemistry, mostly potato starch standards, and uti...
Alcoholic fermentation of raw cassava starch by Rhizopus koji without cooking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuijo, Y.; Suyanadona, P.; Attasampunna, P.
Using only wheat bran koji from the Rhizopus strain, raw cassava starch and cassava pellets converted reasonably well to alcohol (ethanol) without cooking at 35 degrees C and pH 4.5-5.0. When the initial broth contained 30 g raw cassava starch, 10 g Rhizopus species koji, and 100 mL tap water, 12.1 g of alcohol was recovered by final distillation from fermented broth. In this case, 12.1 g alcohol corresponds to an 85.5% conversion rate based on the theoretical value of the starch content. When the initial broth contained 40 g cassava starch, 14.1 g of alcohol was recovered, where 14.1more » g corresponds to a 74.5% conversion rate. The alcoholic fermentation process described in the present work is considered more effective and reasonable than the process using raw starch without cooking reported until now, since the new process makes it unnecessary to add yeast cells and glucoamylase preparation. (Refs. 15).« less
Alcoholic fermentation of raw cassava starch by Rhizopus koji without cooking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujio, Y.; Suyanadona, P.; Attasampunna, P.
Using only wheat bran koji from the Rhizopus strain, raw cassava starch and casava pellets converted reasonably well to alcohol (ethanol) without cooking at 35/sup 0/C and pH 4.5-5.0. When the initial broth contained 30 g raw cassava starch, 10 g Rhizopus sp. koji, and 100 mL tap water, 12.1 g of alcohol was recovered by final distillation from fermented broth. In this case, 12.1 g alcohol corresponds to an 85.5% conversion rate based on the theoretical value of the starch content. When the initial broth contained 40 g cassava starch, 14.1 g of alcohol was recovered, where 14.1 gmore » corresponds to a 74.5% conversion rate. The alcoholic fermentation process described in the present work is considered more effective and reasonable than the process using raw starch without cooking reported until now, since the new process makes it unnecessary to add yeast cells and glucoamylase preparation.« less
Alternative utilization of wheat starch, Grafton, North Dakota
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-02-01
In 1978, North Dakota State University (NDSU), in cooperation with the Economic Development Administration, completed a study of the feasibility of a vital wheat gluten starch processing plant in North Dakota. The overall objective of this study is to determine the most feasible alternatives for utilizing the by-product starch slurry from a vital wheat gluten processing plant.
Montpart, Nuria; Rago, Laura; Baeza, Juan A; Guisasola, Albert
2015-01-01
The use of synthetic wastewater containing carbon sources of different complexity (glycerol, milk and starch) was evaluated in single chamber microbial electrolysis cell (MEC) for hydrogen production. The growth of an anodic syntrophic consortium between fermentative and anode respiring bacteria was operationally enhanced and increased the opportunities of these complex substrates to be treated with this technology. During inoculation, current intensities achieved in single chamber microbial fuel cells were 50, 62.5, and 9 A m⁻³ for glycerol, milk and starch respectively. Both current intensities and coulombic efficiencies were higher than other values reported in previous works. The simultaneous degradation of the three complex substrates favored power production and COD removal. After three months in MEC operation, hydrogen production was only sustained with milk as a single substrate and with the simultaneous degradation of the three substrates. The later had the best results in terms of current intensity (150 A m⁻³), hydrogen production (0.94 m³ m⁻³ d⁻¹) and cathodic gas recovery (91%) at an applied voltage of 0.8 V. Glycerol and starch as substrates in MEC could not avoid the complete proliferation of hydrogen scavengers, even under low hydrogen retention time conditions induced by continuous nitrogen sparging.
Andrae, J G; Hunt, C W; Pritchard, G T; Kennington, L R; Harrison, J H; Kezar, W; Mahanna, W
2001-09-01
A study involving a 2 x 2 x 2 factorial arrangement of treatments was conducted to evaluate effects of hybrid (Pioneer 3335 and 3489), maturity (half milkline and blacklayer), and mechanical processing (field chopper with and without on-board rollers engaged) on intake and digestibility of corn silage. Forty Angus steers (322 +/- 5.2 kg BW) were assigned to the eight silage treatments (five steers per treatment) and individually fed using electronic gates. Diets consisted of 60% corn silage and 40% chopped alfalfa hay (DM basis). Following a 5-d adaptation period, intake was measured for 7 d and subsequently fecal samples were collected for 5 d. Chromic oxide (5 g/d) was fed beginning 7 d before fecal sample collection and digestibility was determined by the ratio of Cr in the feed and feces. Steers were reallocated to treatments and these procedures were repeated, providing 10 observations per treatment. In addition, all silages were ruminally incubated in six mature cows for 0, 8, 16, 24, 48, and 96 h to determine extent and rate of DM, starch, NDF, and ADF disappearance. Processing increased DMI of hybrid 3489 but did not affect DMI of hybrid 3335 (hybrid x processing; P < 0.06). Total tract digestibility of DM, starch, NDF, and ADF decreased (P < 0.01) as plant maturity increased. Maturity tended to decrease starch digestibility more for hybrid 3489 than for hybrid 3335 (hybrid x maturity; P < 0.10). Processing increased (P < 0.01) starch digestibility but decreased (P < 0.01) NDF and ADF digestibility, resulting in no processing effect on DM digestibility. There was a numerical trend for processing to increase starch digestibility more for latethan for early-maturity corn silage (maturity x processing; P = 0.11). Processing increased in situ rates of DM and starch disappearance and maturity decreased in situ disappearance rates of starch and fiber. These data indicate that hybrid, maturity, and processing all affect corn silage digestibility. Mechanical processing of corn silage increased starch digestibility, which may have been associated with the observed decreased fiber digestibility.
NASA Astrophysics Data System (ADS)
Kruger, Kevin C.
Nutrient management methods are needed to provide sustainable operation to livestock production that balance the costs of operation and maintenance. Cultivating duckweed on dairy wastes is considered an effective way of nutrient uptake and cycling. Duckweed cultivation has been implemented on nutrient management systems, such as constructed wetlands and waste stabilization ponds that use both domestic and swine wastewater. The objectives of this study were to (1) identify a nutrient concentration and duckweed strain that rapidly produces biomass, (2) removes nutrient content from anaerobically digested dairy manure, and (3) produces starch from nutrient starvation. To complete these objectives, this study targeted estimating growth and nutrient rate constants as well as starch yield of duckweed under different cultivation conditions. The strains of duckweed, Landoltia punctata 0128, Lemna gibba 7589, and Lemna minuta 9517 were identified as the promising candidates for their high levels of nutrient uptake, starch accumulation, and biomass production. The growth rate of the duckweed strain was assessed based on the effects of temperature, pH, dissolved oxygen, light intensity, nutrient concentration, and biomass accumulation. The nutrient uptake through duckweed cultivation on the anaerobically digested (AD) dairy manure, characterized by the changes of total nitrogen (TN), total Kjeldahl nitrogen (TKN), total phosphorus (TP), and ortho-phosphate-phosphorus (o-PO 4-P), was assessed in four nutrient dilution ratios 1:5, 1:13, 1:18, and 1:27 v/v at two light intensities of 10,000 and 3,000 lux to model seasonal variation. The duckweed strain that exhibited the best biomass production, nutrient removal and starch accumulation was Landoltia punctata 0128 at a dilution ratio of 1:27 at a light intensity of 10,000 lux. The growth rate constant established from zero order kinetics for Landoltia punctata 0128 was 13.3 gm-2d-1. The rate constants for nutrient recovery were 0.122 d-1 of TN, 0.136 d -1 of TKN, 0.145 d-1 of TP, and 0.173d-1 of o-PO4-P. The batch efficiency of cultivation for Landoltia punctata 0128 on dilution ratio 1:27, in terms of nutrient uptake was 38% m/m in relation to the total nitrogen removed. The starch yield was measured at 30% w/w for Landoltia punctata 0128 after the nutrient starvation process. Due to its ability to reduce nutrients from AD dairy manure, accumulate biomass at a rapid growth rate, and accumulate a high yield of starch, Landoltia punctata 0128 has great potential to become a preferred choice for nutrient recovery and biomass and bioethanol production.
Yoshizawa, Tomoya; Miyahara, Morio; Kouzuma, Atsushi; Watanabe, Kazuya
2014-11-01
Wastewater can be treated in microbial fuel cells (MFCs) with the aid of microbes that oxidize organic compounds using anodes as electron acceptors. Previous studies have suggested the utility of cassette-electrode (CE) MFCs for wastewater treatment, in which rice paddy-field soil was used as the inoculum. The present study attempted to convert an activated-sludge (AS) reactor to CE-MFC and use aerobic sludge in the tank as the source of microbes. We used laboratory-scale (1 L in capacity) reactors that were initially operated in an AS mode to treat synthetic wastewater, containing starch, yeast extract, peptone, plant oil, and detergents. After the organics removal became stable, the aeration was terminated, and CEs were inserted to initiate an MFC-mode operation. It was demonstrated that the MFC-mode operation treated the wastewater at similar efficiencies to those observed in the AS-mode operation with COD-removal efficiencies of 75-80%, maximum power densities of 150-200 mW m(-2) and Coulombic efficiencies of 20-30%. These values were similar to those of CE-MFC inoculated with the soil. Anode microbial communities were analyzed by pyrotag sequencing of 16S rRNA gene PCR amplicons. Comparative analyses revealed that anode communities enriched from the aerobic sludge were largely different from those from the soil, suggesting that similar reactor performances can be supported by different community structures. The study demonstrates that it is possible to construct wastewater-treatment MFCs by inserting CEs into water-treatment tanks. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Iur'ev, V P; Gapparov, M M; Vasserman, L A; Genkina, N K
2006-01-01
This paper is a review of the recent literature data related to structure, composition and physico-chemical properties of starches as well as the special methods of processing of the starch containing raw sources producing the food products with increasing content of resistant starches. The prognosis is made about usefulness of such resistant starches for control of some metabolic disorder in human organism and for prophylactic aims.
Lewis, L L; Stark, C R; Fahrenholz, A C; Bergstrom, J R; Jones, C K
2015-02-01
Two key feed processing parameters, conditioning temperature and time, were altered to determine their effects on concentration of gelatinized starch and vitamin retention in a pelleted finishing swine diet. Diet formulation (corn–soybean meal based with 30% distillers dried grains with solubles) was held constant. Treatments were arranged in a 2 × 3 factorial design plus a control with 2 conditioning temperatures (77 vs. 88°C) and 3 conditioner retention times (15, 30, and 60 s). In addition, a mash diet not subjected to conditioning served as a control for a total of 7 treatments. Samples were collected after conditioning but before pelleting (hot mash), after pelleting but before cooling (hot pellet), and after pelleting and cooling (cold pellet) and analyzed for percentage total starch, percentage gelatinized starch, and riboflavin, niacin, and vitamin D3 concentrations. Total percentage starch was increased by greater conditioning temperature (P = 0.041) but not time (P > 0.10), whereas higher temperature and longer time both increased (P < 0.05) percentage gelatinized starch, with increasing time resulting in a linear increase in percentage starch gelatinization (P = 0.013). The interaction between conditioning temperature and time increased percentage gelatinized starch (P = 0.003) but not percentage total starch (P > 0.10). Sample location also affected both percentage total starch and gelatinized starch (P < 0.05), with the greatest increase in percentage gelatinized starch occurring between hot mash and hot pellet samples. As expected, the pelleting process increased percentage gelatinized starch (P = 0.035; 7.3 vs. 11.7% gelatinized starch for hot mash vs. hot pellet samples, respectively), but there was no difference in total starch concentrations (P > 0.10). Finally, neither conditioning temperature nor time affected riboflavin, niacin, or vitamin D3 concentrations (P > 0.10). In summary, both increasing conditioningtemperature and time effect percentage gelatinized starch, but not to the extent of forcing the diet through a pelleting die.
Effect of high pressure on rheological and thermal properties of quinoa and maize starches.
Li, Guantian; Zhu, Fan
2018-02-15
Quinoa starch has small granules with relatively low gelatinization temperatures and amylose content. High hydrostatic pressure (HHP) is a non-thermal technique for food processing. In this study, effects of HHP up to 600MPa on physical properties of quinoa starch were studied and compared with those of a normal maize starch. Both starches gelatinized at 500 and 600MPa. The pressure of 600MPa completely gelatinized quinoa starch as revealed by thermal analysis. Dynamic rheological analysis showed that HHP improved the gel stability of both starches during cooling. HHP had little effects on amylopectin recrystallization and gel textural properties of starch. Overall, quinoa starch was more susceptible to HHP than maize starch. The effects of HHP on some rheological properties such as frequency dependence were different between these two types of starches. The differences could be attributed to the different composition, granular and chemical structures of starch, and the presence of granule remnants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Madruga, Marta Suely; de Albuquerque, Fabíola Samara Medeiros; Silva, Izis Rafaela Alves; do Amaral, Deborah Silva; Magnani, Marciane; Queiroga Neto, Vicente
2014-01-15
Starches used in food industry are extracted from roots, tubers and cereals. Seeds of jackfruit are abundant and contain high amounts of starch. They are discarded during the fruit processing or consumption and can be an alternative source of starch. The starch was extract from the jackfruit seeds and characterised to chemical, morphological and functional properties. Soft and hard jackfruit seeds showed starch content of 92.8% and 94.5%, respectively. Starch granules showed round and bell shape and some irregular cuts on their surface with type-A crystallinity pattern, similar to cereals starches. The swelling power and solubility of jackfruit starch increased with increasing temperature, showing opaque pastes. The soft seeds starch showed initial and final gelatinisation temperature of 36°C and 56°C, respectively; while hard seeds starch presented initial gelatinisation at 40°C and final at 61°C. These results suggest that the Brazilian jackfruit seeds starches could be used in food products. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chinedum, E; Sanni, S; Theressa, N; Ebere, A
2018-01-01
The effect of processing on starch digestibility, predicted glycemic indices (pGI), polyphenol contents and alpha amylase inhibitory properties of beans (Phaseolis vulgaris) and breadfruit (Treculia africana) was studied. Total starch ranged from 4.3 to 68.3g/100g, digestible starch ranged from 4.3 to 59.2 to 65.7g/100g for the raw and processed legumes; Resistance starch was not detected in most of the legumes except in fried breadfruit and the starches in both the raw and processed breadfruit were more rapidly digested than those from raw and cooked beans. Raw and processed breadfruit had higher hydrolysis curves than raw and processed beans with the amylolysis level in raw breadfruit close to that of white bread. Raw beans had a low glycemic index (GI); boiled beans and breadfruit had intermediate glycemic indices respectively while raw and fried breadfruit had high glycemic indices. Aqueous extracts of the food samples had weak α-amylase inhibition compared to acarbose. The raw and processed legumes contained considerable amounts of dietary phenols and flavonoids. The significant correlation (r=0.626) between α-amylase inhibitory actions of the legumes versus their total phenolic contents suggests the contribution of the phenolic compounds in these legumes to their α-amylase inhibitory properties. Copyright © 2017 Elsevier B.V. All rights reserved.
Resistant starch derived from processed legumes: in vitro and in vivo fermentation characteristics.
Mahadevamma, S; Shamala, T R; Tharanathan, R N
2004-08-01
The effect of processing of legumes on resistant starch formation, its rate of fermentation and the production of short chain fatty acids under in vitro and in vivo systems was assessed. The content of resistant starch in pressure-cooked Bengal gram, black gram and red gram was 3.59%, 1.58% and 3.34%, respectively. Fermentation in vitro of resistant starch derived from processed red gram showed higher amount of short chain fatty acids (2.38 mmol), especially butyric acid (2.22 mmol). Under in vivo conditions (in albino rats) all processed legumes showed a higher faecal bulking, and more short chain fatty acids, with a significant increase in the anaerobic bacterial counts. Compared with a processed legume diet, the caecum of animals fed a raw diet showed a preponderance of propionic acid.
Effects of corn fiber gum (CFG) on the pasting and thermal behaviors of maize starch
USDA-ARS?s Scientific Manuscript database
Corn fiber gum (CFG) is a novel arabinoxylan hydrocolloid. Recent research showed its considerable potential in food processing. In this study, the interactions of maize starch and CFG were studied. Maize starch/CFG blend gels were prepared from maize starch suspension mixed with 0.1%, 0.25%, 0.5%, ...
Sumargo, Franklin; Gulati, Paridhi; Weier, Steven A; Clarke, Jennifer; Rose, Devin J
2016-11-15
The influence of pinto bean flour and processing moisture on the physical properties and in vitro digestibility of rice-bean extrudates has been investigated. Brown rice: pinto bean flour (0%, 15%, 30%, and 45% bean flour) were extruded under 5 moisture conditions (17.2%, 18.1%, 18.3%, 19.5%, and 20.1%). Physical properties [bulk density, unit density, radial expansion, axial expansion, overall expansion, specific volume, hardness, color, water solubility index, and water absorption index] and in vitro starch and protein digestibilities were determined. Increasing bean flour and processing moisture increased density and hardness while decreasing expansion. Rapidly digestible starch decreased and resistant starch increased as bean substitution and processing moisture increased. In vitro protein digestibility increased with increasing bean flour or with decreasing processing moisture. Incorporating bean flour into extruded snacks can negatively affect physical attributes (hardness, density, and expansion) while positively affecting in vitro starch (decrease) and protein (increase) digestibilities. Copyright © 2016 Elsevier Ltd. All rights reserved.
40 CFR 63.11970 - What are my initial compliance requirements for process wastewater?
Code of Federal Regulations, 2014 CFR
2014-07-01
... requirements for process wastewater? 63.11970 Section 63.11970 Protection of Environment ENVIRONMENTAL... What are my initial compliance requirements for process wastewater? (a) Demonstration of initial compliance for process wastewater streams that must be treated. For each process wastewater stream that must...
40 CFR 63.11970 - What are my initial compliance requirements for process wastewater?
Code of Federal Regulations, 2013 CFR
2013-07-01
... requirements for process wastewater? 63.11970 Section 63.11970 Protection of Environment ENVIRONMENTAL... What are my initial compliance requirements for process wastewater? (a) Demonstration of initial compliance for process wastewater streams that must be treated. For each process wastewater stream that must...
40 CFR 63.11975 - What are my continuous compliance requirements for process wastewater?
Code of Federal Regulations, 2014 CFR
2014-07-01
... requirements for process wastewater? 63.11975 Section 63.11975 Protection of Environment ENVIRONMENTAL... What are my continuous compliance requirements for process wastewater? (a) For each process wastewater... in paragraph (b) of this section. For each process wastewater stream for which you initially...
40 CFR 63.11970 - What are my initial compliance requirements for process wastewater?
Code of Federal Regulations, 2012 CFR
2012-07-01
... requirements for process wastewater? 63.11970 Section 63.11970 Protection of Environment ENVIRONMENTAL... What are my initial compliance requirements for process wastewater? (a) Demonstration of initial compliance for process wastewater streams that must be treated. For each process wastewater stream that must...
40 CFR 63.11975 - What are my continuous compliance requirements for process wastewater?
Code of Federal Regulations, 2012 CFR
2012-07-01
... requirements for process wastewater? 63.11975 Section 63.11975 Protection of Environment ENVIRONMENTAL... What are my continuous compliance requirements for process wastewater? (a) For each process wastewater... in paragraph (b) of this section. For each process wastewater stream for which you initially...
40 CFR 63.11975 - What are my continuous compliance requirements for process wastewater?
Code of Federal Regulations, 2013 CFR
2013-07-01
... requirements for process wastewater? 63.11975 Section 63.11975 Protection of Environment ENVIRONMENTAL... What are my continuous compliance requirements for process wastewater? (a) For each process wastewater... in paragraph (b) of this section. For each process wastewater stream for which you initially...
Toyama, Tadashi; Hanaoka, Tsubasa; Tanaka, Yasuhiro; Morikawa, Masaaki; Mori, Kazuhiro
2018-02-01
To assess the potential of duckweeds as agents for nitrogen removal and biofuel feedstocks, Spirodela polyrhiza, Lemna minor, Lemna gibba, and Landoltia punctata were cultured in effluents of municipal wastewater, swine wastewater, or anaerobic digestion for 4 days. Total dissolved inorganic nitrogen (T-DIN) of 20-50 mg/L in effluents was effectively removed by inoculating with 0.3-1.0 g/L duckweeds. S. polyrhiza showed the highest nitrogen removal (2.0-10.8 mg T-DIN/L/day) and biomass production (52.6-70.3 mg d.w./L/day) rates in all the three effluents. Ethanol and methane were produced from duckweed biomass grown in each effluent. S. polyrhiza and L. punctata biomass showed higher ethanol (0.168-0.191, 0.166-0.172 and 0.174-0.191 g-ethanol/g-biomass, respectively) and methane (340-413 and 343-408 NL CH 4 /kg VS, respectively) production potentials than the others, which is related to their higher carbon and starch contents and calorific values. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Schreiber, Lena; Nader-Nieto, Anna Camila; Schönhals, Elske Maria; Walkemeier, Birgit; Gebhardt, Christiane
2014-07-31
Starch accumulation and breakdown are vital processes in plant storage organs such as seeds, roots, and tubers. In tubers of potato (Solanum tuberosum L.) a small fraction of starch is converted into the reducing sugars glucose and fructose. Reducing sugars accumulate in response to cold temperatures. Even small quantities of reducing sugars affect negatively the quality of processed products such as chips and French fries. Tuber starch and sugar content are inversely correlated complex traits that are controlled by multiple genetic and environmental factors. Based on in silico annotation of the potato genome sequence, 123 loci are involved in starch-sugar interconversion, approximately half of which have been previously cloned and characterized. By means of candidate gene association mapping, we identified single-nucleotide polymorphisms (SNPs) in eight genes known to have key functions in starch-sugar interconversion, which were diagnostic for increased tuber starch and/or decreased sugar content and vice versa. Most positive or negative effects of SNPs on tuber-reducing sugar content were reproducible in two different collections of potato cultivars. The diagnostic SNP markers are useful for breeding applications. An allele of the plastidic starch phosphorylase PHO1a associated with increased tuber starch content was cloned as full-length cDNA and characterized. The PHO1a-HA allele has several amino acid changes, one of which is unique among all known starch/glycogen phosphorylases. This mutation might cause reduced enzyme activity due to impaired formation of the active dimers, thereby limiting starch breakdown. Copyright © 2014 Schreiber et al.
Schreiber, Lena; Nader-Nieto, Anna Camila; Schönhals, Elske Maria; Walkemeier, Birgit; Gebhardt, Christiane
2014-01-01
Starch accumulation and breakdown are vital processes in plant storage organs such as seeds, roots, and tubers. In tubers of potato (Solanum tuberosum L.) a small fraction of starch is converted into the reducing sugars glucose and fructose. Reducing sugars accumulate in response to cold temperatures. Even small quantities of reducing sugars affect negatively the quality of processed products such as chips and French fries. Tuber starch and sugar content are inversely correlated complex traits that are controlled by multiple genetic and environmental factors. Based on in silico annotation of the potato genome sequence, 123 loci are involved in starch-sugar interconversion, approximately half of which have been previously cloned and characterized. By means of candidate gene association mapping, we identified single-nucleotide polymorphisms (SNPs) in eight genes known to have key functions in starch-sugar interconversion, which were diagnostic for increased tuber starch and/or decreased sugar content and vice versa. Most positive or negative effects of SNPs on tuber-reducing sugar content were reproducible in two different collections of potato cultivars. The diagnostic SNP markers are useful for breeding applications. An allele of the plastidic starch phosphorylase PHO1a associated with increased tuber starch content was cloned as full-length cDNA and characterized. The PHO1a-HA allele has several amino acid changes, one of which is unique among all known starch/glycogen phosphorylases. This mutation might cause reduced enzyme activity due to impaired formation of the active dimers, thereby limiting starch breakdown. PMID:25081979
Kieliszek, Marek; Jermacz, Karolina; Błażejak, Stanisław
2017-01-01
The search for efficient oleaginous microorganisms, which can be an alternative to fossil fuels and biofuels obtained from oilseed crops, has been going on for many years. The suitability of microorganisms in this regard is determined by their ability to biosynthesize lipids with preferred fatty acid profile along with the concurrent utilization of energy-rich industrial waste. In this study, we isolated, characterized, and identified kefir yeast strains using molecular biology techniques. The yeast isolates identified were Candida inconspicua, Debaryomyces hansenii, Kluyveromyces marxianus, Kazachstania unispora, and Zygotorulaspora florentina. We showed that deproteinated potato wastewater, a starch processing industry waste, supplemented with various carbon sources, including lactose and glycerol, is a suitable medium for the growth of yeast, which allows an accumulation of over 20% of lipid substances in its cells. Fatty acid composition primarily depended on the yeast strain and the carbon source used, and, based on our results, most of the strains met the criteria required for the production of biodiesel. In particular, this concerns a significant share of saturated fatty acids, such as C16:0 and C18:0, and unsaturated fatty acids, such as C18:1 and C18:2. The highest efficiency in lipid biosynthesis exceeded 6.3 g L−1. Kazachstania unispora was able to accumulate the high amount of palmitoleic acid. PMID:29098157
Gientka, Iwona; Kieliszek, Marek; Jermacz, Karolina; Błażejak, Stanisław
2017-01-01
The search for efficient oleaginous microorganisms, which can be an alternative to fossil fuels and biofuels obtained from oilseed crops, has been going on for many years. The suitability of microorganisms in this regard is determined by their ability to biosynthesize lipids with preferred fatty acid profile along with the concurrent utilization of energy-rich industrial waste. In this study, we isolated, characterized, and identified kefir yeast strains using molecular biology techniques. The yeast isolates identified were Candida inconspicua , Debaryomyces hansenii , Kluyveromyces marxianus , Kazachstania unispora , and Zygotorulaspora florentina . We showed that deproteinated potato wastewater, a starch processing industry waste, supplemented with various carbon sources, including lactose and glycerol, is a suitable medium for the growth of yeast, which allows an accumulation of over 20% of lipid substances in its cells. Fatty acid composition primarily depended on the yeast strain and the carbon source used, and, based on our results, most of the strains met the criteria required for the production of biodiesel. In particular, this concerns a significant share of saturated fatty acids, such as C16:0 and C18:0, and unsaturated fatty acids, such as C18:1 and C18:2. The highest efficiency in lipid biosynthesis exceeded 6.3 g L -1 . Kazachstania unispora was able to accumulate the high amount of palmitoleic acid.
Buddrick, Oliver; Jones, Oliver A H; Hughes, Jeff G; Kong, Ing; Small, Darryl M
2015-08-01
Resistant starch has potential health benefits but the factors affecting its formation in bread and baked products are not well studied. Here, the formation of resistant starch in wholemeal bread products was evaluated in relation to the processing conditions including fermentation time, temperature and the inclusion of palm oil as a vitamin source. The effects of each the factor were assessed using a full factorial design. The impact on final starch content of traditional sourdough fermentation of wholemeal rye bread, as well as the bulk fermentation process of wheat and wheat/oat blends of wholemeal bread, was also assessed by enzyme assay. Palm oil content was found to have a significant effect on the formation of resistant starch in all of the breads while fermentation time and temperature had no significant impact. Sourdough fermentation of rye bread was found to have a greater impact on resistant starch formation than bulk fermentation of wheat and wheat blend breads, most likely due the increased organic acid content of the sourdough process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of heat moisture treatment (HMT) on product quality of sorghum starch
NASA Astrophysics Data System (ADS)
Haryani, Kristinah; Hadiyanto, Handayani, Noera; Nugraheni, Dwi; Suryanto
2015-12-01
Sorghum is a cereal plant that rich of nutrition contents. The high content of carbohydrate in sorghum make this plant can be processed into one of the processed food i.e vermicelli. To give better quality, it is necessary to use flour substitution from sorghum starch. The aim of this study was to evaluate the treatment of natural sorghum starch substitution, the addition of CMC, and a comparison of the natural starch with starch sorghum forage sorghum against solid losses value, rehydration weight and texture profiles. The variable used in this study: amount of natural sorghum starch subtituion (10%, 20%, 30%, 40%, 50%), the addition of CMC (0.1%; 0.2%; 0.3%; 0.4%; 0.5%) and substituting sorghum starch Natural: HMT sorghum starch (1: 1; 1: 2; 1: 3; 1: 4; 1: 5) and the quality parameters were evaluated. The result indicated that to substitute sorghum starch naturally at a rate of 50% had the best results with a value of solid losses 5.1% (white sorghum) 5.83% (red sorghum) and weighing rehydration 301.82% (white sorghums) 293.16% (red sorghum), the addition of CMC with 0.5% concentration of 3.96% solid losses value (red sorghum) 4:21% (white sorghums) and weight rehydration 252.71% (white sorghums) 244.45% (red sorghums).
Ezeji, T C; Qureshi, N; Blaschek, H P
2005-01-26
Use of starch solution as feed for butanol bioconversion processes employing Clostridium beijerinckii BA101 may have added economic advantage over the use of glucose. Acetone butanol ethanol (ABE) was produced from 30 gL(-1) starch solution using a continuous process. The bioreactor was fed at a dilution rate of 0.02 h(-1) and starch solution/feed volume (3 L) was replaced every 72 h. The continuous reactor fed with cornstarch solution (feed temperature 19 degrees C) produced approximately 6.0 gL(-1) total ABE. Increasing the feed storage temperature to 37 degrees C improved ABE production to 7.2 gL(-1) suggesting that retrogradation was occurring more rapidly at 19 degrees C. In both these cases the fermentation drifted toward acid production after approximately 260 h, consistent with the retrogradation of starch overtime. The use of soluble starch, which is less prone to retrogradation, resulted in the production of 9.9 gL(-1) ABE at 37 degrees C feed storage temperature, as compared to 7.2 gL(-1) ABE when cornstarch was used. It should be noted that gelatinized starch retrogradation takes place after sterilization and prior to use of the feed medium, and does not occur during long-term storage of the raw corn material in the months leading up to processing. The degree of hydrolysis of gelatinized starch decreased from 68.8 to 56.2% in 3 days when stored at 37 degrees C. Soluble starch which does not retrograde demonstrated no change in the degree of hydrolysis.
NASA Astrophysics Data System (ADS)
Wang, Shujun; Zhang, Xiu; Wang, Shuo; Copeland, Les
2016-06-01
A thorough understanding of starch gelatinization is extremely important for precise control of starch functional properties for food processing and human nutrition. Here we reveal the molecular mechanism of starch gelatinization by differential scanning calorimetry (DSC) in conjunction with a protocol using the rapid viscosity analyzer (RVA) to generate material for analysis under conditions that simulated the DSC heating profiles. The results from DSC, FTIR, Raman, X-ray diffraction and small angle X-ray scattering (SAXS) analyses all showed that residual structural order remained in starch that was heated to the DSC endotherm end temperature in starch:water mixtures of 0.5 to 4:1 (v/w). We conclude from this study that the DSC endotherm of starch at a water:starch ratio of 2 to 4 (v/w) does not represent complete starch gelatinization. The DSC endotherm of starch involves not only the water uptake and swelling of amorphous regions, but also the melting of starch crystallites.
Effects of grain development on formation of resistant starch in rice.
Shu, Xiaoli; Sun, Jian; Wu, Dianxing
2014-12-01
Three rice mutants with different contents of resistant starch (RS) were selected to investigate the effects of grain filling process on the formation of resistant starch. During grain development, the content of RS was increased with grain maturation and showed negative correlations with the grain weight and the starch molecular weight (Mn, Mw) and a positive correlation with the distribution of molecular mass (polydispersity, Pd). The morphologies of starch granules in high-RS rice were almost uniform in single starch granules and exhibited different proliferation modes from common rice. The lower activities of ADP-glucose pyrophosphorylase and starch branching enzyme and the higher activity of starch synthase and starch de-branching enzyme observed in high-RS rice might be responsible for the formation of small irregular starch granules with large spaces between them. In addition, the lower molecular weight and the broad distribution of molecular weights lead to differences in the physiochemical properties of starch. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wang, Shujun; Zhang, Xiu; Wang, Shuo; Copeland, Les
2016-01-01
A thorough understanding of starch gelatinization is extremely important for precise control of starch functional properties for food processing and human nutrition. Here we reveal the molecular mechanism of starch gelatinization by differential scanning calorimetry (DSC) in conjunction with a protocol using the rapid viscosity analyzer (RVA) to generate material for analysis under conditions that simulated the DSC heating profiles. The results from DSC, FTIR, Raman, X-ray diffraction and small angle X-ray scattering (SAXS) analyses all showed that residual structural order remained in starch that was heated to the DSC endotherm end temperature in starch:water mixtures of 0.5 to 4:1 (v/w). We conclude from this study that the DSC endotherm of starch at a water:starch ratio of 2 to 4 (v/w) does not represent complete starch gelatinization. The DSC endotherm of starch involves not only the water uptake and swelling of amorphous regions, but also the melting of starch crystallites. PMID:27319782
Mechanisms of starch digestion by α-amylase-Structural basis for kinetic properties.
Dhital, Sushil; Warren, Frederick J; Butterworth, Peter J; Ellis, Peter R; Gidley, Michael J
2017-03-24
Recent studies of the mechanisms determining the rate and extent of starch digestion by α-amylase are reviewed in the light of current widely-used classifications for (a) the proportions of rapidly-digestible (RDS), slowly-digestible (SDS), and resistant starch (RS) based on in vitro digestibility, and (b) the types of resistant starch (RS 1,2,3,4…) based on physical and/or chemical form. Based on methodological advances and new mechanistic insights, it is proposed that both classification systems should be modified. Kinetic analysis of digestion profiles provides a robust set of parameters that should replace the classification of starch as a combination of RDS, SDS, and RS from a single enzyme digestion experiment. This should involve determination of the minimum number of kinetic processes needed to describe the full digestion profile, together with the proportion of starch involved in each process, and the kinetic properties of each process. The current classification of resistant starch types as RS1,2,3,4 should be replaced by one which recognizes the essential kinetic nature of RS (enzyme digestion rate vs. small intestinal passage rate), and that there are two fundamental origins for resistance based on (i) rate-determining access/binding of enzyme to substrate and (ii) rate-determining conversion of substrate to product once bound.
Białas, Wojciech; Czerniak, Adrian; Szymanowska-Powałowska, Daria
2014-01-01
Fuel ethanol production, using a simultaneous saccharification and fermentation process (SSF) of native starch from corn flour, has been performed using Saccharomyces cerevisiae and a granular starch hydrolyzing enzyme. The quantitative effects of mash concentration, enzyme dose and pH were investigated with the use of a Box-Wilson central composite design protocol. Proceeding from results obtained in optimal fermentation conditions, a kinetics model relating the utilization rates of starch and glucose as well as the production rates of ethanol and biomass was tested. Moreover, scanning electron microscopy (SEM) was applied to investigate corn starch granule surface after the SFF process. A maximum ethanol concentration of 110.36 g/l was obtained for native corn starch using a mash concentration of 25%, which resulted in ethanol yield of 85.71%. The optimal conditions for the above yield were found with an enzyme dose of 2.05 ml/kg and pH of 5.0. These results indicate that by using a central composite design, it is possible to determine optimal values of the fermentation parameters for maximum ethanol production. The investigated kinetics model can be used to describe SSF process conducted with granular starch hydrolyzing enzymes. The SEM micrographs reveal randomly distributed holes on the surface of granules.
40 CFR 63.147 - Process wastewater provisions-recordkeeping.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Process wastewater provisions... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.147 Process wastewater provisions—recordkeeping. (a) The owner or operator transferring a Group 1 wastewater stream or...
40 CFR 63.147 - Process wastewater provisions-recordkeeping.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Process wastewater provisions... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.147 Process wastewater provisions—recordkeeping. (a) The owner or operator transferring a Group 1 wastewater stream or...
40 CFR 63.147 - Process wastewater provisions-recordkeeping.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Process wastewater provisions... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.147 Process wastewater provisions—recordkeeping. (a) The owner or operator transferring a Group 1 wastewater stream or...
40 CFR 63.147 - Process wastewater provisions-recordkeeping.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Process wastewater provisions... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.147 Process wastewater provisions—recordkeeping. (a) The owner or operator transferring a Group 1 wastewater stream or...
Study of changes induced in thermal properties of starch by incorporating Ag nanoparticles
NASA Astrophysics Data System (ADS)
Meena, Sharma, Annu
2018-05-01
This report presents the study of thermal properties of starch and Ag-starch nanocomposite films fabricated via chemical reduction method followed by solution casting. Thermo gravimetric analysis was utilized to investigate the effect of varying concentration of Ag nanoparticles on thermal stability and activation energy of starch. Activation energy that is the energy required for initialization of degradation process of starch comes out to be 238.9 kJ/mol which decreases to a value of 174.6 kJ/mol for Ag-starch nanocomposite film containing 0.50 wt% of Ag nanoparticles. Moreover the thermal stability of starch increases with the increasing concentration of Ag nanoparticles.
Streb, Sebastian; Eicke, Simona; Zeeman, Samuel C.
2012-01-01
In this study, we investigated which enzymes are involved in debranching amylopectin during transient starch degradation. Previous studies identified two debranching enzymes, isoamylase 3 (ISA3) and limit dextrinase (LDA), involved in this process. However, plants lacking both enzymes still degrade substantial amounts of starch. Thus, other enzymes/mechanisms must contribute to starch breakdown. We show that the chloroplastic α-amylase 3 (AMY3) also participates in starch degradation and provide evidence that all three enzymes can act directly at the starch granule surface. The isa3 mutant has a starch excess phenotype, reflecting impaired starch breakdown. In contrast, removal of AMY3, LDA, or both enzymes together has no impact on starch degradation. However, removal of AMY3 or LDA in addition to ISA3 enhances the starch excess phenotype. In plants lacking all three enzymes, starch breakdown is effectively blocked, and starch accumulates to the highest levels observed so far. This provides indirect evidence that the heteromultimeric debranching enzyme ISA1-ISA2 is not involved in starch breakdown. However, we illustrate that ISA1-ISA2 can hydrolyze small soluble branched glucans that accumulate when ISA3 and LDA are missing, albeit at a slow rate. Starch accumulation in the mutants correlates inversely with plant growth. PMID:23019330
Antibiotics with anaerobic ammonium oxidation in urban wastewater treatment
NASA Astrophysics Data System (ADS)
Zhou, Ruipeng; Yang, Yuanming
2017-05-01
Biofilter process is based on biological oxidation process on the introduction of fast water filter design ideas generated by an integrated filtration, adsorption and biological role of aerobic wastewater treatment process various purification processes. By engineering example, we show that the process is an ideal sewage and industrial wastewater treatment process of low concentration. Anaerobic ammonia oxidation process because of its advantage of the high efficiency and low consumption, wastewater biological denitrification field has broad application prospects. The process in practical wastewater treatment at home and abroad has become a hot spot. In this paper, anammox bacteria habitats and species diversity, and anaerobic ammonium oxidation process in the form of diversity, and one and split the process operating conditions are compared, focusing on a review of the anammox process technology various types of wastewater laboratory research and engineering applications, including general water quality and pressure filtrate sludge digestion, landfill leachate, aquaculture wastewater, monosodium glutamate wastewater, wastewater, sewage, fecal sewage, waste water salinity wastewater characteristics, research progress and application of the obstacles. Finally, we summarize the anaerobic ammonium oxidation process potential problems during the processing of the actual waste water, and proposed future research focus on in-depth study of water quality anammox obstacle factor and its regulatory policy, and vigorously develop on this basis, and combined process optimization.
Chavan, Abhijit R; Raghunathan, Anuradha; Venkatesh, K V
2009-04-01
Simultaneous saccharification and fermentation (SSF) is a combined process of saccharification of a renewable bioresource and fermentation process to produce products, such as lactic acid and ethanol. Recently, SSF has been extensively used to convert various sources of cellulose and starch into fermentative products. Here, we present a study on production of buttery flavors, namely diacetyl and acetoin, by growing Lactobacillus rhamnosus on a starch medium containing the enzyme glucoamylase. We further develop a structured kinetics for the SSF process, which includes enzyme and growth kinetics. The model was used to simulate the effect of pH and temperature on the SSF process so as to obtain optimum operating conditions. The model was experimentally verified by conducting SSF using an initial starch concentration of 100 g/L. The study demonstrated that the developed kinetic was able to suggest strategies for improved productivities. The developed model was able to accurately predict the enhanced productivity of flavors in a three stage process with intermittent addition of starch. Experimental and simulations demonstrated that citrate addition can also lead to enhanced productivity of flavors. The developed optimal model for SSF was able to capture the dynamics of SSF in batch mode as well as in a three stage process. The structured kinetics was also able to quantify the effect of multiple substrates present in the medium. The study demonstrated that structured kinetic models can be used in the future for design and optimization of SSF as a batch or a fed-batch process.
Slade, Louise; Levine, Harry
2018-04-13
This article reviews the application of the "Food Polymer Science" approach to the practice of industrial R&D, leading to patent estates based on fundamental starch science and technology. The areas of patents and patented technologies reviewed here include: (a) soft-from-the-freezer ice creams and freezer-storage-stable frozen bread dough products, based on "cryostabilization technology" of frozen foods, utilizing commercial starch hydrolysis products (SHPs); (b) glassy-matrix encapsulation technology for flavors and other volatiles, based on structure-function relationships for commercial SHPs; (c) production of stabilized whole-grain wheat flours for biscuit products, based on the application of "solvent retention capacity" technology to develop flours with reduced damaged starch; (d) production of improved-quality, low-moisture cookies and crackers, based on pentosanase enzyme technology; (e) production of "baked-not-fried," chip-like, starch-based snack products, based on the use of commercial modified-starch ingredients with selected functionality; (f) accelerated staling of a starch-based food product from baked bread crumb, based on the kinetics of starch retrogradation, treated as a crystallization process for a partially crystalline glassy polymer system; and (g) a process for producing an enzyme-resistant starch, for use as a reduced-calorie flour replacer in a wide range of grain-based food products, including cookies, extruded expanded snacks, and breakfast cereals.
40 CFR 63.133 - Process wastewater provisions-wastewater tanks.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Process wastewater provisions-wastewater tanks. 63.133 Section 63.133 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater...
40 CFR 63.133 - Process wastewater provisions-wastewater tanks.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Process wastewater provisions-wastewater tanks. 63.133 Section 63.133 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater...
40 CFR 63.133 - Process wastewater provisions-wastewater tanks.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Process wastewater provisions-wastewater tanks. 63.133 Section 63.133 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater...
40 CFR 63.133 - Process wastewater provisions-wastewater tanks.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Process wastewater provisions-wastewater tanks. 63.133 Section 63.133 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater...
Niu, Meng; Zhang, Binjia; Jia, Caihua; Zhao, Siming
2017-11-01
The multi-scale structures and pasting properties of starch in WWF were investigated after superfine grinding. Five particle size distributions of WWF and their corresponding starch were obtained. The grinding process reduced the particle size of WWF and starch. However, a slight increase of fragments from starch granules was observed with enhanced grinding strength because of the small decrease in starch particle size and the existence of other WWF components that undertook some of shearing force and friction during grinding. A prominent reduction in starch crystallinity was resulted due to the destruction of crystalline structure by grinding. Small-angle X-ray scattering analyses indicated the disordering in starch semi-crystalline lamellae with thinner lamellae thickness. Additionally, the 13 C Nuclear Magnetic Resonance spectra demonstrated the alterations in starch chain conformation by varying peak areas of starch carbons (C1 and C4). Along with these structural changes, Starch pasting characteristics showed substantial variations, indicating decreased viscosities and higher pasting stability. The results suggest that the grinding treatments influenced the structures and pasting properties of starch even at a non-separated state, the changes in starch structures were related to the variations in starch gelatinization characteristics. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Wenhao; Tian, Xiaoling; Wang, Peng; Saleh, Ahmed S M; Luo, Qingui; Zheng, Jianmei; Ouyang, Shaohui; Zhang, Guoquan
2016-02-01
High hydrostatic pressure (HHP) can lead to starch gelatinization at room temperature, while the retrogradation mechanism of HHP gelatinized starch is not well known. HHP gelatinized normal and waxy corn starches were stored at room temperature for 192 h in order to investigate the retrogradation characteristics. The scanning electron microscopy (SEM), polarised light microscopy and differential scanning calorimetric (DSC) analysis showed that the pressurization of normal and waxy corn starch suspensions with concentration of 30% (w/v) at 600 MPa for 15 min resulted in a complete gelatinization. In addition, the pressure-gelatinized normal and waxy corn starch gels were stored and subjected to X-ray diffraction (XRD) analysis, resistant starch content determination, swelling power and pasting behavior. The retrograded normal maize and waxy maize starch showed a substantial loss of A-type crystallinity. Both pressure-gelatinized normal and waxy corn starches showed an increase in resistant starch content and relative crystallinity degree with the increase of storage time. In addition, restricted starch swelling power and lower pasting viscosities were observed for these two retrograded starches. The amylose molecule within starch granules has been regarded as the main factor to affect the structural and physicochemical properties during the retrogradation process of HHP-gelatinized starch granules. Copyright © 2015 Elsevier B.V. All rights reserved.
Characterisation of a starch-hydrolysing enzyme of Aspergillus niger.
Suresh, C; Dubey, A K; Srikanta, S; Kumar, S U; Karanth, N G
1999-05-01
A UV-induced mutant strain of Aspergillus niger (CFTRI-1105-U9) overproduced a starch-hydrolysing enzyme with properties characteristically different from the known amylases of the fungus. The purified enzyme of 4.0 pI had an apparent molecular mass of 125 kDa and it dextrinised starch and then saccharified the dextrins. Patterns of the enzyme activity on starch, resulting in glucose at 60 degrees C and glucose, maltose and maltodextrins at 70 degrees C as primary products, suggested significant applications for the enzyme in starch-processing industries.
Starch Metabolism in Arabidopsis
Streb, Sebastian; Zeeman, Samuel C.
2012-01-01
Starch is the major non-structural carbohydrate in plants. It serves as an important store of carbon that fuels plant metabolism and growth when they are unable to photosynthesise. This storage can be in leaves and other green tissues, where it is degraded during the night, or in heterotrophic tissues such as roots, seeds and tubers, where it is stored over longer time periods. Arabidopsis accumulates starch in many of its tissues, but mostly in its leaves during the day. It has proven to be a powerful genetic system for discovering how starch is synthesised and degraded, and new proteins and processes have been discovered. Such work has major significance for our starch crops, whose yield and quality could be improved by the application of this knowledge. Research into Arabidopsis starch metabolism has begun to reveal how its daily turnover is integrated into the rest of metabolism and adapted to the environmental conditions. Furthermore, Arabidopsis mutant lines deficient in starch metabolism have been employed as tools to study other biological processes ranging from sugar sensing to gravitropism and flowering time control. This review gives a detailed account of the use of Arabidopsis to study starch metabolism. It describes the major discoveries made and presents an overview of our understanding today, together with some as-yet unresolved questions. PMID:23393426
High-conversion hydrolysates and corn sweetener production in dry-grind corn process.
USDA-ARS?s Scientific Manuscript database
Most corn is processed to fuel ethanol and distillers’ grain animal feed using the dry grind process. However, wet milling is needed to refine corn starch. Corn starch is in turn processed to numerous products, including glucose and syrup. However, wet milling is a capital, labor, and energy intensi...
Effect of processing paddy on digestibility of rice starch by in vitro studies.
Chitra, M; Singh, Vasudeva; Ali, S Z
2010-08-01
Paddy (Oryza sativa L) (variety 'IR - 64'), was parboiled, puffed by sand roasting and flaked by edge runner and roller flaker and variations in physical and physicochemical properties were studied. Moisture contents were lower (5.8-10.8%) in processed rice products compared to raw materials (11.8%). Ratio of rice to sand in the case of puffed rice preparation was optimized. The equilibrium moisture content was 27.4% in raw rice while it was much higher (38.9-81.0%) in processed rice. Sedimentation volume was lowest (6.2 ml) in raw rice and highest (18.8 ml) in popped rice. Starch content was 84.8 and 76.5-83% in raw and processed rice, respectively. In vitro starch digestibility was highest in roller flaker flakes and lowest in raw milled rice. Among the ready to eat products, popped rice showed least starch digestibility (∼30%).
Ectopic expression of bacterial amylopullulanase enhances bioethanol production from maize grain.
Nahampun, Hartinio N; Lee, Chang Joo; Jane, Jay-Lin; Wang, Kan
2013-09-01
Heterologous expression of amylopullulanase in maize seeds leads to partial starch degradation into fermentable sugars, which enhances direct bioethanol production from maize grain. Utilization of maize in bioethanol industry in the United States reached ±13.3 billion gallons in 2012, most of which was derived from maize grain. Starch hydrolysis for bioethanol industry requires the addition of thermostable alpha amylase and amyloglucosidase (AMG) enzymes to break down the α-1,4 and α-1,6 glucosidic bonds of starch that limits the cost effectiveness of the process on an industrial scale due to its high cost. Transgenic plants expressing a thermostable starch-degrading enzyme can overcome this problem by omitting the addition of exogenous enzymes during the starch hydrolysis process. In this study, we generated transgenic maize plants expressing an amylopullulanase (APU) enzyme from the bacterium Thermoanaerobacter thermohydrosulfuricus. A truncated version of the dual functional APU (TrAPU) that possesses both alpha amylase and pullulanase activities was produced in maize endosperm tissue using a seed-specific promoter of 27-kD gamma zein. A number of analyses were performed at 85 °C, a temperature typically used for starch processing. Firstly, enzymatic assay and thin layer chromatography analysis showed direct starch hydrolysis into glucose. In addition, scanning electron microscopy illustrated porous and broken granules, suggesting starch autohydrolysis. Finally, bioethanol assay demonstrated that a 40.2 ± 2.63 % (14.7 ± 0.90 g ethanol per 100 g seed) maize starch to ethanol conversion was achieved from the TrAPU seeds. Conversion efficiency was improved to reach 90.5 % (33.1 ± 0.66 g ethanol per 100 g seed) when commercial amyloglucosidase was added after direct hydrolysis of TrAPU maize seeds. Our results provide evidence that enzymes for starch hydrolysis can be produced in maize seeds to enhance bioethanol production.
Barley callus: a model system for bioengineering of starch in cereals.
Carciofi, Massimiliano; Blennow, Andreas; Nielsen, Morten M; Holm, Preben B; Hebelstrup, Kim H
2012-09-07
Starch is the most important source of calories for human nutrition and the majority of it is produced by cereal farming. Starch is also used as a renewable raw material in a range of industrial sectors. It can be chemically modified to introduce new physicochemical properties. In this way starch is adapted to a variety of specific end-uses. Recombinant DNA technologies offers an alternative to starch industrial processing. The plant biosynthetic pathway can be manipulated to design starches with novel structure and improved technological properties. In the future this may reduce or eliminate the economical and environmental costs of industrial modification. Recently, many advances have been achieved to clarify the genetic mechanism that controls starch biosynthesis. Several genes involved in the synthesis and modification of complex carbohydrates in many organisms have been identified and cloned. This knowledge suggests a number of strategies and a series of candidate genes for genetic transformation of crops to generate new types of starch-based polymers. However transformation of cereals is a slow process and there is no easy model system available to test the efficiency of candidate genes in planta. We explored the possibility to use transgenic barley callus generated from immature embryo for a fast test of transgenic modification strategies of starch biosynthesis. We found that this callus contains 4% (w/w dw) starch granules, which we could modify by generating fully transgenic calli by Agrobacterium-transformation. A Green Fluorescent Protein reporter protein tag was used to identify and propagate only fully transgenic callus explants. Around 1 - 1.5 g dry weight of fully transgenic callus could be produced in 9 weeks. Callus starch granules were smaller than endosperm starch granules and contained less amylose. Similarly the expression profile of starch biosynthesis genes were slightly different in callus compared with developing endosperm. In this study we have developed an easy and rapid in planta model system for starch bioengineering in cereals. We suggest that this method can be used as a time-efficient model system for fast screening of candidate genes for the generation of modified starch or new types of carbohydrate polymers.
Barley callus: a model system for bioengineering of starch in cereals
2012-01-01
Background Starch is the most important source of calories for human nutrition and the majority of it is produced by cereal farming. Starch is also used as a renewable raw material in a range of industrial sectors. It can be chemically modified to introduce new physicochemical properties. In this way starch is adapted to a variety of specific end-uses. Recombinant DNA technologies offers an alternative to starch industrial processing. The plant biosynthetic pathway can be manipulated to design starches with novel structure and improved technological properties. In the future this may reduce or eliminate the economical and environmental costs of industrial modification. Recently, many advances have been achieved to clarify the genetic mechanism that controls starch biosynthesis. Several genes involved in the synthesis and modification of complex carbohydrates in many organisms have been identified and cloned. This knowledge suggests a number of strategies and a series of candidate genes for genetic transformation of crops to generate new types of starch-based polymers. However transformation of cereals is a slow process and there is no easy model system available to test the efficiency of candidate genes in planta. Results We explored the possibility to use transgenic barley callus generated from immature embryo for a fast test of transgenic modification strategies of starch biosynthesis. We found that this callus contains 4% (w/w dw) starch granules, which we could modify by generating fully transgenic calli by Agrobacterium-transformation. A Green Fluorescent Protein reporter protein tag was used to identify and propagate only fully transgenic callus explants. Around 1 – 1.5 g dry weight of fully transgenic callus could be produced in 9 weeks. Callus starch granules were smaller than endosperm starch granules and contained less amylose. Similarly the expression profile of starch biosynthesis genes were slightly different in callus compared with developing endosperm. Conclusions In this study we have developed an easy and rapid in planta model system for starch bioengineering in cereals. We suggest that this method can be used as a time-efficient model system for fast screening of candidate genes for the generation of modified starch or new types of carbohydrate polymers. PMID:22958600
New approach to elaborate exfoliated starch-based nanobiocomposites.
Chivrac, Frédéric; Pollet, Eric; Schmutz, Marc; Avérous, Luc
2008-03-01
The present paper reports the successful elaboration of exfoliated plasticized starch-based nanobiocomposites. This was made possible by using cationic starch as a new clay organomodifier to better match the polarity of the matrix and thus to facilitate the clay exfoliation process. To demonstrate the efficiency of this new approach, either natural (MMT-Na) or organomodified (OMMT-CS) montmorillonite were incorporated into the starch nanobiocomposites by a melt blending process. The morphological analyses (SAXD and TEM) showed that MMT-Na leads to the formation of intercalated nanobiocomposites. On the contrary, OMMT-CS allowed the elaboration of well-exfoliated nanobiocomposites. Tensile tests performed on the obtained nanobiocomposites showed that exfoliated nanobiocomposites display enhanced mechanical properties compared to those of the intercalated nanobiocomposites and neat matrix. These results clearly highlight the great interest in using OMMT-CS to obtain starch-based nanobiocomposites with improved properties.
Hong, Lee-Fen; Cheng, Lai-Hoong; Lee, Chong Yew
2015-01-01
Summary A series of propionylated starches with different degrees of substitution (DS) was synthesised and their physicochemical properties and application as a stabiliser were investigated. Starch propionates with moderate DS were prepared by esterification of native corn starch with propionic anhydride. By varying the reaction times of the esterification process, twelve starch propionates with DS of 0.47 to 0.94 were prepared. FTIR and NMR confirmed the introduction of propionyl groups to the starch. X-ray diffraction pattern showed reduced crystallinity in the starch propionates. The contact angle was found to increase proportionately with the increase in DS. Swelling power results showed that starch propionates were able to swell more than native corn starch at low temperature (40 °C). Oil-in- -water (O/W) emulsions prepared using starch propionates (DS of 0.64 to 0.86) showed exceptional stability when challenged by centrifugation stress test. These stable O/W emulsions had viscosities in the range of 1236.7–3330.0 mPa·s. In conclusion, moderately substituted short-chain (propionylated) starches could be a promising cold swelling starch, thickener and O/W emulsion stabiliser in food, pharmaceutical and cosmetic industries. PMID:27904359
Thermal dissolution of maize starches in aqueous medium
USDA-ARS?s Scientific Manuscript database
Starches are not soluble in neutral water at room temperature. However, if they are heated in a closed container beyond the boiling point of water, they eventually dissolve. The dissolution temperature depends on the type of starch. The dissolution process was monitored in real time by measuring ...
Potential applications for amylose inclusion complexes produced by steam jet cooking
USDA-ARS?s Scientific Manuscript database
Steam jet cooking is a commercially scalable method of thermomechanically processing starch for many applications. Previous studies at NCAUR have revealed the specific effects of heat and shear on various starch types cooked under different steam flow, pressure, and slurry flow conditions. Starch-...
A rapid method to determine starch damage in sorghum
USDA-ARS?s Scientific Manuscript database
As a major component of cereal grains including sorghum, starch plays an important role not only in grain development but also post-maturation processing and end-product quality. Because milling can result in the inadvertent disruption of starch granules, in turn negatively affecting dough rheology...
Smerilli, Marina; Neureiter, Markus; Wurz, Stefan; Haas, Cornelia; Frühauf, Sabine; Fuchs, Werner
2015-04-01
Lactic acid is an important biorefinery platform chemical. The use of thermophilic amylolytic microorganisms to produce lactic acid by fermentation constitutes an efficient strategy to reduce operating costs, including raw materials and sterilization costs. A process for the thermophilic production of lactic acid by Geobacillus stearothermophilus directly from potato starch was characterized and optimized. Geobacillus stearothermophilus DSM 494 was selected out of 12 strains screened for amylolytic activity and the ability to form lactic acid as the major product of the anaerobic metabolism. In total more than 30 batches at 3-l scale were run at 60 °C under non-sterile conditions. The process developed produced 37 g L -1 optically pure (98%) L-lactic acid in 20 h from 50 g L -1 raw potato starch. As co-metabolites smaller amounts (<7% w/v) of acetate, formate and ethanol were formed. Yields of lactic acid increased from 66% to 81% when potato residues from food processing were used as a starchy substrate in place of raw potato starch. Potato starch and residues were successfully converted to lactic acid by G. stearothermophilus . The process described in this study provides major benefits in industrial applications and for the valorization of starch-rich waste streams. © 2015 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Sun, Yujiao; Zuo, Jiane; Cui, Longtao; Deng, Qian; Dang, Yan
2010-02-01
Single-chamber microbial fuel cells (MFCs), inoculated with anaerobic sludge and continuously run with two kinds of organic wastewater influents, were systemically investigated. The diversity of microbes, determined by 16S rDNA analysis, was analyzed on three anodes under different conditions. One anode was in a closed circuit in synthetic wastewater containing glucose. The other two anodes, in open or closed circuits, were fed effluent from an anaerobic reactor treating starch wastewater. The chemical oxygen demand (COD) removal efficiency was about 70%, and the exported voltages were about 450 mV. The 16S rDNA molecular clones of microbes on anode surfaces showed significant changes in Eubacterial structure under different conditions. gamma-Proteobacteria and the high G+C gram-positive groups were predominant in the synthetic wastewater, while epsilon-Proteobacteria predominated in the anaerobic reactor effluent. Known exoelectrogenic bacterial species composition also changed greatly depending on substrate. On the artificial substrate, 28% of the bacterial sequences were affiliated with Aeromonas, Pseudomonas, Geobacter, and Desulfobulbus. On the anaerobic effluent, only 6% were affiliated with Geobacter or Clostridium. Because only a few exoelectrogenic bacteria from MFCs have been directly isolated and studied, we compared the community structures of two bacterial anodes, in open and closed circuits, under the same substrate of anaerobic effluent in order to identify additional exoelectrogenic bacterial strains. Alcaligenes monasteriensis, Comamonas denitrificans, and Dechloromonas sp. were found to be potential exoelectrogenic bacteria worthy of further research.
Hot-melt extrusion of sugar-starch-pellets.
Yeung, Chi-Wah; Rein, Hubert
2015-09-30
Sugar-starch-pellets (syn. sugar spheres) are usually manufactured through fluidized bed granulation or wet extrusion techniques. This paper introduces hot-melt extrusion (HME) as an alternative method to manufacture sugar-starch-pellets. A twin-screw extruder coupled with a Leistritz Micro Pelletizer (LMP) cutting machine was utilized for the extrusion of different types (normal-, waxy-, and high-amlyose) of corn starch, blended with varying amounts of sucrose. Pellets were characterized for their physicochemical properties including crystallinity, particle size distribution, tensile strength, and swelling expansion. Furthermore, the influence of sugar content and humidity on the product was investigated. Both sucrose and water lowered the Tg of the starch system allowing a convenient extrusion process. Mechanical strength and swelling behavior could be associated with varying amylose and amylopectin. X-ray powder diffractometric (XRPD) peaks of increasing sucrose contents appeared above 30%. This signified the oversaturation of the extruded starch matrix system with sucrose. Otherwise, had the dissolved sucrose been embedded into the molten starch matrix, no crystalline peak could have been recognized. The replacement of starch with sucrose reduced the starch pellets' swelling effect, which resulted in less sectional expansion (SEI) and changed the surface appearance. Further, a nearly equal tensile strength could be detected for sugar spheres with more than 40% sucrose. This observation stands in good relation with the analyzed values of the commercial pellets. Both techniques (fluidized bed and HME) allowed a high yield of spherical pellets (less friability) for further layering processes. Thermal influence on the sugar-starch system is still an obstacle to be controlled. Copyright © 2015 Elsevier B.V. All rights reserved.
D'Hulst, Christophe; Mérida, Angel
2010-10-01
Starch is the main polymer in which carbon and energy are stored in land plants, algae and some cyanobacteria. It plays a crucial role in the physiology of these organisms and also represents an important polymer for humans, in terms of both diet and nonfood industry uses. Recent efforts have elucidated most of the steps involved in the synthesis of starch. However, the process that initiates the synthesis of the starch granule remains unclear. Here, we outline the similarities between the synthesis of starch and the synthesis of glycogen, the other widespread and abundant glucose-based polymer in living cells. We place special emphasis on the mechanisms of initiation of the glycogen granule and current knowledge concerning the initiation of the starch granule. We also discuss recent discoveries regarding the function of starch synthases in the priming of the starch granule and possible interactions with other elements of the starch synthesis machinery.
Chegeni, Mohammad; Amiri, Mahdi; Nichols, Buford L; Naim, Hassan Y; Hamaker, Bruce R
2018-02-20
Dietary starch is finally converted to glucose for absorption by the small intestine mucosal α-glucosidases (sucrase-isomaltase [SI] and maltase-glucoamylase), and control of this process has health implications. Here, the molecular mechanisms were analyzed associated with starch-triggered maturation and transport of SI. Biosynthetic pulse-chase in Caco-2 cells revealed that the high MW SI species (265 kDa) induced by maltose (an α-amylase starch digestion product) had a higher rate of early trafficking and maturation compared with a glucose-induced SI (245 kDa). The maltose-induced SI was found to have higher affinity to lipid rafts, which are associated with enhanced targeting to the apical membrane and higher activity. Accordingly, in situ maltose-hydrolyzing action was enhanced in the maltose-treated cells. Thus, starch digestion products at the luminal surface of small intestinal enterocytes are sensed and accelerate the intracellular processing of SI to enhance starch digestion capacity in the intestinal lumen.-Chegeni, M., Amiri, M., Nichols, B. L., Naim, H. Y., Hamaker, B. R. Dietary starch breakdown product sensing mobilizes and apically activates α-glucosidases in small intestinal enterocytes.
Towards a more versatile alpha-glucan biosynthesis in plants.
Kok-Jacon, Géraldine A; Ji, Qin; Vincken, Jean-Paul; Visser, Richard G F
2003-07-01
Starch is an important storage polysaccharide in many plants. It is composed of densely packed alpha-glucans, consisting of 1,4- and 1,4,6-linked glucose residues. The starch polymers are used in many industrial applications. The biosynthetic machinery for assembling the granule has been manipulated in many different ways to gain insight into the process of starch biosynthesis and to engineer starches with improved functionalities. With respect to the latter, two generic technologies with great potential have been developed: (i) introduction of new linkage types in starch polymers (1,3- and 1,6-linkages), and (ii) engineering granule-boundness. The toolbox to engineer this new generation of starch polymers is discussed.
Physicochemical properties of maca starch.
Zhang, Ling; Li, Guantian; Wang, Sunan; Yao, Weirong; Zhu, Fan
2017-03-01
Maca (Lepidium meyenii Walpers) is gaining research attention due to its unique bioactive properties. Starch is a major component of maca roots, thus representing a novel starch source. In this study, the properties of three maca starches (yellow, purple and black) were compared with commercially maize, cassava, and potato starches. The starch granule sizes ranged from 9.0 to 9.6μm, and the granules were irregularly oval. All the maca starches presented B-type X-ray diffraction patterns, with the relative degree of crystallinity ranging from 22.2 to 24.3%. The apparent amylose contents ranged from 21.0 to 21.3%. The onset gelatinization temperatures ranged from 47.1 to 47.5°C as indicated by differential scanning calorimetry. Significant differences were observed in the pasting properties and textural parameters among all of the studied starches. These characteristics suggest the utility of native maca starch in products subjected to low temperatures during food processing and other industrial applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Autophagy Contributes to Leaf Starch Degradation[C][W
Wang, Yan; Yu, Bingjie; Zhao, Jinping; Guo, Jiangbo; Li, Ying; Han, Shaojie; Huang, Lei; Du, Yumei; Hong, Yiguo; Tang, Dingzhong; Liu, Yule
2013-01-01
Transitory starch, a major photosynthetic product in the leaves of land plants, accumulates in chloroplasts during the day and is hydrolyzed to maltose and Glc at night to support respiration and metabolism. Previous studies in Arabidopsis thaliana indicated that the degradation of transitory starch only occurs in the chloroplasts. Here, we report that autophagy, a nonplastidial process, participates in leaf starch degradation. Excessive starch accumulation was observed in Nicotiana benthamiana seedlings treated with an autophagy inhibitor and in autophagy-related (ATG) gene-silenced N. benthamiana and in Arabidopsis atg mutants. Autophagic activity in the leaves responded to the dynamic starch contents during the night. Microscopy showed that a type of small starch granule-like structure (SSGL) was localized outside the chloroplast and was sequestered by autophagic bodies. Moreover, an increased number of SSGLs was observed during starch depletion, and disruption of autophagy reduced the number of vacuole-localized SSGLs. These data suggest that autophagy contributes to transitory starch degradation by sequestering SSGLs to the vacuole for their subsequent breakdown. PMID:23564204
Mechanical and thermal properties of promising polymer composites for food packaging applications
NASA Astrophysics Data System (ADS)
Abdellah Ali, S. F.
2016-07-01
Blending starches with biodegradable polycaprolactone (PCL) was used as a route to make processable thermoplastics. When developing biodegradable polymer composites it is important to use high concentrations of starch for legislative and cost reasons. The addition of starch has a significant effect on all physical properties including toughness, elongation at break and the rheological behaviour of the melt. To enhance the physical properties, we used cellulose acetate propionate (CAP) as a cellulose derivative with high amylase starch and PCL blends. It is suggested that the PCL/starch/CAP blends are partially miscible. It was found that the yield tensile strengths of most PCL/Starch/CAP blends were higher than that of pure PCL itself. There was a big difference between glass transition temperature values of PCL/Starch/CAP blends and the pure PCL glass transition temperature which indicates that no phase separation occurs. Addition of CAP to starch and PCL blends improved the mechanical and thermal properties even at high content of starch.
Preparation and characterization of sorghum flour with increased resistant starch content
USDA-ARS?s Scientific Manuscript database
The primary objective of this research was to develop an effective process to increase the resistant starch content of sorghum flour. A secondary objective was to investigate the role of the sorghum proteins on starch digestibility. Samples of white sorghum flour (28.9% amylose content) with differe...
Liu, Jun; Wang, Xingchi; Wen, Fanting; Zhang, Shurong; Shen, Ruru; Jiang, Wei; Kan, Juan; Jin, Changhai
2016-12-01
The root of Cynanchum auriculatum Royle ex Wight is a traditional Chinese herbal medicine and healthy food. Although C. auriculatum has already been processed into starch for human consumption in China, the structural characterizations of C. auriculatum starch is still unknown. Therefore, the morphology, structural and physicochemical properties of C. auriculatum starch were investigated in this study. C. auriculatum starch exhibited both spherical and polygonal shapes with granule size ranging from 2 to 12μm. Some void cavities and serpentine channels were observed in the inner of starch granules. X-ray powder diffraction pattern revealed that C. auriculatum starch was a C B -type with relative crystallinity of 25.19%. Small-angle X-ray scattering spectrum indicated C. auriculatum starch had a lamellar repeat distance of 9.21nm. The proportions of single helix, double helix and amorphous components in C. auriculatum starch were 3.42%, 27.11% and 69.47%, respectively. The amylose content of C. auriculatum starch was 28.0% with the gelatinization temperature ranging from 59.3 to 70.1°C. The maximum weight loss rate of C. auriculatum starch appeared at 309°C. In addition, C. auriculatum starch showed higher swelling power than other starches tested. Our results suggest C. auriculatum starch will have wide applications in food industry. Copyright © 2016 Elsevier B.V. All rights reserved.
Long, Jie; Zhang, Bao; Li, Xingfei; Zhan, Xiaobei; Xu, Xueming; Xie, Zhengjun; Jin, Zhengyu
2018-01-15
In this study, pullulanase was firstly immobilized by covalent bonding onto chitosan/Fe 3 O 4 nanoparticles or encapsulation in sol-gel after bonding onto chitosan/Fe 3 O 4 nanoparticles, and then the immobilized pullulanase was used for the effective production of resistant starch (RS). The highest RS content (35.1%) was obtained under the optimized condition of pH 4.4, enzyme concentration of 10ASPU/g and hydrolysis time of 12h when debranched by free pullulsanase, indicating that RS content was significantly (p<0.05) increased when compared to native starch (4.3%) and autoclaved starch (12.5%). Under these conditions, the immobilized pullulanase (10ASPU/g dry starch) yielded higher RS content compared to free enzyme (10ASPU/g dry starch), especially, the pullulanse immobilized by sol-gel encapsulation yielded the highest RS content (43.4%). Moreover, compared to starches hydrolyzed by free pullulanase, starches hydrolyzed by immobilized pullulanase showed a different saccharide profile of starch hydrolysate, including a stronger peak C (MW=5.0×10 3 ), as well as exhibited an additional absorption peak around 140°C. Reusability results demonstrated that pullulanase immobilized by sol-gel encapsulation had the advantages of producing higher RS content as well as better operational stability compared to pullulanase immobilized by cross-linking. The resulting enhanced RS content generated by the process described in this work could be used as an adjunct in food processing industries. Copyright © 2017 Elsevier Ltd. All rights reserved.
Impacts of Cellulose Fiber Particle Size and Starch Type on Expansion During Extrusion Processing.
Kallu, Sravya; Kowalski, Ryan J; Ganjyal, Girish M
2017-07-01
Objective of this study was to understand the impacts of cellulose fiber with different particle size distributions, and starches with different molecular weights, on the expansion of direct expanded products. Fiber with 3 different particle size distributions (<125, 150 to 250, 300 to 425 μm) and 4 types of starches representing different amylose contents (0%, 23%, 50%, and 70%) were investigated. Feed moisture content (18 ± 0.5 % w.b) and extruder temperature (140 °C) were kept constant and only the extruder screw speed was varied (100, 175, and 250 rpm) to achieve different specific mechanical energy inputs. Fiber particle size and starch type significantly influenced the various product parameters. In general, the smaller fiber particle size resulted in extrudate with higher expansion ratio. Starch with an amylose: amylopectin ratio of 23:77 resulted in highest expansion compared to the other starches, when no fiber was added. Interestingly, starch with 50:50, amylose: amylopectin ratio in combination with smaller fiber particles resulted in product with significantly greater expansion than the control starch extrudates. Aggregation of fiber and shrinkage of surface was observed in the Scanning Electron Microscope images at 10% fiber level. The results suggest the presence of active interactions between the cellulose fiber particles and corn starch molecules during the expansion process. A better understanding of these interactions can help in the development of high fiber extruded products with better expansion. © 2017 Institute of Food Technologists®.
Zhou, Yun; Winkworth-Smith, Charles G; Wang, Yu; Liang, Jianfen; Foster, Tim J; Cheng, Yongqiang
2014-12-19
The effects of konjac glucomannan (KGM) on thermal behavior of wheat starch have been studied in the presence of low concentrations of Na2CO3 (0.1-0.2 wt% of starch). Confocal laser scanning microscopy (CLSM) allows the visualization of the starch gelatinization process and granule remnants in starch pastes. Heating the starch dispersion in KGM-Na2CO3 solution significantly delays granule swelling and inhibits amylose leaching, whereas Na2CO3 alone, at the same concentration, has little effect. Na2CO3 assists KGM in producing the extremely high viscosity of starch paste, attributing to a less remarkable breakdown of viscosity in subsequent heating, and protecting starch granules against crystallite melting. The distinct partially networked film around the surface of starch granules is evident in the CLSM images. We propose that Na2CO3 could trigger the formation of complexes between KGM and starch polymers, which exerts a protective effect on granular structure and modifying gelatinization characteristics of the mixtures. Copyright © 2014 Elsevier Ltd. All rights reserved.
40 CFR 63.145 - Process wastewater provisions-test methods and procedures to determine compliance.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Process wastewater provisions-test... Operations, and Wastewater § 63.145 Process wastewater provisions—test methods and procedures to determine... analytical method for wastewater which has that compound as a target analyte. (7) Treatment using a series of...
40 CFR 63.145 - Process wastewater provisions-test methods and procedures to determine compliance.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Process wastewater provisions-test... Operations, and Wastewater § 63.145 Process wastewater provisions—test methods and procedures to determine... analytical method for wastewater which has that compound as a target analyte. (7) Treatment using a series of...
40 CFR 63.132 - Process wastewater provisions-general.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Process wastewater provisions-general... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.132 Process wastewater provisions—general. (a) Existing sources. This paragraph specifies the requirements applicable to...
40 CFR 63.132 - Process wastewater provisions-general.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Process wastewater provisions-general... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.132 Process wastewater provisions—general. (a) Existing sources. This paragraph specifies the requirements applicable to...
40 CFR 63.132 - Process wastewater provisions-general.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Process wastewater provisions-general... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.132 Process wastewater provisions—general. (a) Existing sources. This paragraph specifies the requirements applicable to...
40 CFR 63.132 - Process wastewater provisions-general.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Process wastewater provisions-general... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.132 Process wastewater provisions—general. (a) Existing sources. This paragraph specifies the requirements applicable to...
40 CFR 63.134 - Process wastewater provisions-surface impoundments.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Process wastewater provisions-surface... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.134 Process wastewater provisions—surface impoundments. (a) For each surface impoundment that receives, manages, or...
40 CFR 63.132 - Process wastewater provisions-general.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Process wastewater provisions-general... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.132 Process wastewater provisions—general. (a) Existing sources. This paragraph specifies the requirements applicable to...
Azam, Hossain M; Finneran, Kevin T
2013-01-01
Onsite wastewater systems, or septic tanks, serve approximately 25% of the United States population; they are therefore a critical component of the total carbon balance for natural water bodies. Septic tanks operate under strictly anaerobic conditions, and fermentation is the dominant process driving carbon transformation. Nitrate, Fe(III), and sulfate reduction may be operating to a limited extent in any given septic tank. Electron acceptor amendments will increase carbon oxidation, but nitrate is toxic and sulfate generates corrosive sulfides, which may damage septic system infrastructure. Fe(III) reducing microorganisms transform all major classes of organic carbon that are dominant in septic wastewater: low molecular weight organic acids, carbohydrate monomers and polymers, and lipids. Fe(III) is not toxic, and the reduction product Fe(II) is minimally disruptive if the starting Fe(III) is added at 50-150 mg L(-1). We used (14)C radiolabeled acetate, lactate, propionate, butyrate, glucose, starch, and oleic acid to demonstrate that short and long-term carbon oxidation is increased when different forms of Fe(III) are amended to septic wastewater. The rates of carbon mineralization to (14)CO(2) increased 2-5 times (relative to unamended systems) in the presence of Fe(III). The extent of mineralization reached 90% for some carbon compounds when Fe(III) was present, compared to levels of 50-60% in the absence of Fe(III). (14)CH(4) was not generated when Fe(III) was added, demonstrating that this strategy can limit methane emissions from septic systems. Amplified 16S rDNA restriction analysis indicated that unique Fe(III)-reducing microbial communities increased significantly in Fe(III)-amended incubations, with Fe(III)-reducers becoming the dominant microbial community in several incubations. The form of Fe(III) added had a significant impact on the rate and extent of mineralization; ferrihydrite and lepidocrocite were favored as solid phase Fe(III) and chelated Fe(III) (with nitrilotriacetic acid or EDTA) as soluble Fe(III) forms. Copyright © 2012 Elsevier Ltd. All rights reserved.
Crumpton-Taylor, Matilda; Pike, Marilyn; Lu, Kuan-Jen; Hylton, Christopher M; Feil, Regina; Eicke, Simona; Lunn, John E; Zeeman, Samuel C; Smith, Alison M
2013-01-01
Arabidopsis thaliana mutants lacking the SS4 isoform of starch synthase have strongly reduced numbers of starch granules per chloroplast, suggesting that SS4 is necessary for the normal generation of starch granules. To establish whether it plays a direct role in this process, we investigated the circumstances in which granules are formed in ss4 mutants. Starch granule numbers and distribution and the accumulation of starch synthase substrates and products were investigated during ss4 leaf development, and in ss4 mutants carrying mutations or transgenes that affect starch turnover or chloroplast volume. We found that immature ss4 leaves have no starch granules, but accumulate high concentrations of the starch synthase substrate ADPglucose. Granule numbers are partially restored by elevating the capacity for glucan synthesis (via expression of bacterial glycogen synthase) or by increasing the volumes of individual chloroplasts (via introduction of arc mutations). However, these granules are abnormal in distribution, size and shape. SS4 is an essential component of a mechanism that coordinates granule formation with chloroplast division during leaf expansion and determines the abundance and the flattened, discoid shape of leaf starch granules. PMID:23952675
Physical and mechanical properties of LDPE incorporated with different starch sources
NASA Astrophysics Data System (ADS)
Kormin, Shaharuddin; Kormin, Faridah; Dalour Hossen Beg, Mohammad; Bijarimi Mat Piah, Mohd
2017-08-01
In this study it was investigated the incorporation of different starches, such as sago starch, corn starch, potato starch, tapioca starch and wheat starch, in low-density polyethylene matrix (LDPE) to enhanced mechanical properties and to obtain partially biodegradable product with the aim to reduce the plastics wastes in the environment. For comparison, virgin LDPE, LDPE with different sources of starch blends were prepared and characterized under the same conditions. The starches were mixed to the LDPE using a twin screw extruder to guarantee the homogeneity of the formulations. The compound were shaping processed by injection moulding. The characterization of those compounds was done by physical (density, MFI), mechanical (Universal tensile machine). The addition of starch to LDPE reduced the MFI values, the tensile strength, elongation at break and impact strength, whereas the elastic modulus, flexural modulus and flexural strength increased. LDPE/SS show the good mechanical behavior compared to other formulation. The physical and mechanical properties were evident when 5 and 30 wt% were added. Water uptake increased with increased starch content and immersion time. The time taken for the composites to equilibrate was about one month even when they were immersed completely in water.
Engineering Escherichia coli K12 MG1655 to use starch
2014-01-01
Background To attain a sustainable bioeconomy, fuel, or valuable product, production must use biomass as substrate. Starch is one of the most abundant biomass resources and is present as waste or as a food and agroindustry by-product. Unfortunately, Escherichia coli, one of the most widely used microorganisms in biotechnological processes, cannot use starch as a carbon source. Results We engineered an E. coli strain capable of using starch as a substrate. The genetic design employed the native capability of the bacterium to use maltodextrins as a carbon source plus expression and secretion of its endogenous α-amylase, AmyA, in an adapted background. Biomass production improved using 35% dissolved oxygen and pH 7.2 in a controlled bioreactor. Conclusion The engineered E. coli strain can use starch from the milieu and open the possibility of optimize the process to use agroindustrial wastes to produce biofuels and other valuable chemicals. PMID:24886307
Isosorbide, a green plasticizer for thermoplastic starch that does not retrogradate.
Battegazzore, Daniele; Bocchini, Sergio; Nicola, Gabriele; Martini, Eligio; Frache, Alberto
2015-03-30
Isosorbide is a non-toxic biodegradable diol derived from bio-based feedstock. It can be used for preparing thermoplastic starch through a semi-industrial process of extrusion. Isosorbide allows some technological advantages with respect to classical plasticizers: namely, direct mixing with starch, energy savings for the low processing temperature required and lower water uptake. Indeed, maize starch was directly mixed with the solid plasticizer and direct fed in the main hopper of a co-rotating twin screw extruder. Starch plasticization was assessed by X-ray diffraction (XRD) and dynamic-mechanical analysis (DMTA). Oxygen permeability, water uptake and mechanical properties were measured at different relative humidity (R.H.) values. These three properties turned out to be highly depending on the R.H. No retrogradation and changing of the material properties were occurred from XRD and DMTA after 9 months. Copyright © 2014 Elsevier Ltd. All rights reserved.
Structures, properties, modifications, and uses of oat starch.
Zhu, Fan
2017-08-15
There has been increasing interest to utilise oats and their components to formulate healthy food products. Starch is the major component of oat kernels and may account up to 60% of the dry weight. Starch properties may greatly determine the product quality. As a by-product of oat processing and fractionation, the starch may also be utilised for food and non-food applications. This mini-review updates the recent advances in the isolation, chemical and granular structures, physicochemical properties, chemical and physical modifications, and food and non-food uses of oat starch. Copyright © 2017 Elsevier Ltd. All rights reserved.
40 CFR 420.08 - Non-process wastewater and storm water.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Non-process wastewater and storm water...-process wastewater and storm water. Permit and pretreatment control authorities may provide for increased loadings for non-process wastewaters defined at § 420.02 and for storm water from the immediate process...
40 CFR 420.08 - Non-process wastewater and storm water.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Non-process wastewater and storm water...-process wastewater and storm water. Permit and pretreatment control authorities may provide for increased loadings for non-process wastewaters defined at § 420.02 and for storm water from the immediate process...
40 CFR 420.08 - Non-process wastewater and storm water.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Non-process wastewater and storm water...-process wastewater and storm water. Permit and pretreatment control authorities may provide for increased loadings for non-process wastewaters defined at § 420.02 and for storm water from the immediate process...
40 CFR 420.08 - Non-process wastewater and storm water.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Non-process wastewater and storm water...-process wastewater and storm water. Permit and pretreatment control authorities may provide for increased loadings for non-process wastewaters defined at § 420.02 and for storm water from the immediate process...
40 CFR 420.08 - Non-process wastewater and storm water.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Non-process wastewater and storm water...-process wastewater and storm water. Permit and pretreatment control authorities may provide for increased loadings for non-process wastewaters defined at § 420.02 and for storm water from the immediate process...
A comprehensive review on utilization of wastewater from coffee processing.
Rattan, Supriya; Parande, A K; Nagaraju, V D; Ghiwari, Girish K
2015-05-01
The coffee processing industry is one of the major agro-based industries contributing significantly in international and national growth. Coffee fruits are processed by two methods, wet and dry process. In wet processing, coffee fruits generate enormous quantities of high strength wastewater requiring systematic treatment prior to disposal. Different method approach is used to treat the wastewater. Many researchers have attempted to assess the efficiency of batch aeration as posttreatment of coffee processing wastewater from an upflow anaerobic hybrid reactor (UAHR)-continuous and intermittent aeration system. However, wet coffee processing requires a high degree of processing know-how and produces large amounts of effluents which have the potential to damage the environment. Characteristics of wastewater from coffee processing has a biological oxygen demand (BOD) of up to 20,000 mg/l and a chemical oxygen demand (COD) of up to 50,000 mg/l as well as the acidity of pH below 4. In this review paper, various methods are discussed to treat coffee processing wastewaters; the constitution of wastewater is presented and the technical solutions for wastewater treatment are discussed.
Enzymatic corn wet milling: engineering process and cost model
Ramírez, Edna C; Johnston, David B; McAloon, Andrew J; Singh, Vijay
2009-01-01
Background Enzymatic corn wet milling (E-milling) is a process derived from conventional wet milling for the recovery and purification of starch and co-products using proteases to eliminate the need for sulfites and decrease the steeping time. In 2006, the total starch production in USA by conventional wet milling equaled 23 billion kilograms, including modified starches and starches used for sweeteners and ethanol production [1]. Process engineering and cost models for an E-milling process have been developed for a processing plant with a capacity of 2.54 million kg of corn per day (100,000 bu/day). These models are based on the previously published models for a traditional wet milling plant with the same capacity. The E-milling process includes grain cleaning, pretreatment, enzymatic treatment, germ separation and recovery, fiber separation and recovery, gluten separation and recovery and starch separation. Information for the development of the conventional models was obtained from a variety of technical sources including commercial wet milling companies, industry experts and equipment suppliers. Additional information for the present models was obtained from our own experience with the development of the E-milling process and trials in the laboratory and at the pilot plant scale. The models were developed using process and cost simulation software (SuperPro Designer®) and include processing information such as composition and flow rates of the various process streams, descriptions of the various unit operations and detailed breakdowns of the operating and capital cost of the facility. Results Based on the information from the model, we can estimate the cost of production per kilogram of starch using the input prices for corn, enzyme and other wet milling co-products. The work presented here describes the E-milling process and compares the process, the operation and costs with the conventional process. Conclusion The E-milling process was found to be cost competitive with the conventional process during periods of high corn feedstock costs since the enzymatic process enhances the yields of the products in a corn wet milling process. This model is available upon request from the authors for educational, research and non-commercial uses. PMID:19154623
Yu, Dawei; Liu, Jibao; Sui, Qianwen; Wei, Yuansong
2016-03-01
Control of organic loading rate (OLR) is essential for anaerobic digestion treating high COD wastewater, which would cause operation failure by overload or less efficiency by underload. A novel biogas-pH automation control strategy using the combined gas-liquor phase monitoring was developed for an anaerobic membrane bioreactor (AnMBR) treating high COD (27.53 g·L(-1)) starch wastewater. The biogas-pH strategy was proceeded with threshold between biogas production rate >98 Nml·h(-1) preventing overload and pH>7.4 preventing underload, which were determined by methane production kinetics and pH titration of methanogenesis slurry, respectively. The OLR and the effluent COD were doubled as 11.81 kgCOD·kgVSS(-1)·d(-1) and halved as 253.4 mg·L(-1), respectively, comparing with a constant OLR control strategy. Meanwhile COD removal rate, biogas yield and methane concentration were synchronously improved to 99.1%, 312 Nml·gCODin(-1) and 74%, respectively. Using the biogas-pH strategy, AnMBR formed a "pH self-regulation ternary buffer system" which seizes carbon dioxide and hence provides sufficient buffering capacity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Carpenter, Margaret A.; Joyce, Nigel I.; Genet, Russell A.; Cooper, Rebecca D.; Murray, Sarah R.; Noble, Alasdair D.; Butler, Ruth C.; Timmerman-Vaughan, Gail M.
2015-01-01
Starch phosphorylation is an important aspect of plant metabolism due to its role in starch degradation. Moreover, the degree of phosphorylation of starch determines its physicochemical properties and is therefore relevant for industrial uses of starch. Currently, starch is chemically phosphorylated to increase viscosity and paste stability. Potato cultivars with elevated starch phosphorylation would make this process unnecessary, thereby bestowing economic and environmental benefits. Starch phosphorylation is a complex trait which has been previously shown by antisense gene repression to be influenced by a number of genes including those involved in starch synthesis and degradation. We have used an association mapping approach to discover genetic markers associated with the degree of starch phosphorylation. A diverse collection of 193 potato lines was grown in replicated field trials, and the levels of starch phosphorylation at the C6 and C3 positions of the glucosyl residues were determined by mass spectrometry of hydrolyzed starch from tubers. In addition, the potato lines were genotyped by amplicon sequencing and microsatellite analysis, focusing on candidate genes known to be involved in starch synthesis. As potato is an autotetraploid, genotyping included determination of allele dosage. Significant associations (p < 0.001) were found with SNPs in the glucan water dikinase (GWD), starch branching enzyme I (SBEI) and the starch synthase III (SSIII) genes, and with a SSR allele in the SBEII gene. SNPs in the GWD gene were associated with C6 phosphorylation, whereas polymorphisms in the SBEI and SBEII genes were associated with both C6 and C3 phosphorylation and the SNP in the SSIII gene was associated with C3 phosphorylation. These allelic variants have potential as genetic markers for starch phosphorylation in potato. PMID:25806042
Mikulski, D; Kłosowski, G; Rolbiecka, A
2014-10-01
Phytic acid present in raw materials used in distilling industry can form complexes with starch and divalent cations and thus limit their biological availability. The influence of the enzymatic hydrolysis of phytate complexes on starch availability during the alcoholic fermentation process using high gravity (HG) maize mashes was analyzed. Indicators of the alcoholic fermentation as well as the fermentation activity of Saccharomyces cerevisiae D-2 strain were statistically evaluated. Phytate hydrolysis improved the course of the alcoholic fermentation of HG maize mashes. The final ethanol concentration in the media supplemented with phytase applied either before or after the starch hydrolysis increased by 1.0 and 0.6 % v/v, respectively, as compared to the control experiments. This increase was correlated with an elevated fermentation yield that was higher by 5.5 and 2.0 L EtOH/100 kg of starch, respectively. Phytate hydrolysis resulted also in a statistically significant increase in the initial concentration of fermenting sugars by 14.9 mg/mL of mash, on average, which was a consequence of a better availability of starch for enzymatic hydrolysis. The application of phytase increased the attenuation of HG media fermentation thus improving the economical aspect of the ethanol fermentation process.
Zhu, Bo; Liu, Jianli; Gao, Weidong
2017-09-01
This paper reports on the process optimization of ultrasonic assisted alcoholic-alkaline treatment to prepare granular cold water swelling (GCWS) starches. In this work, three statistical approaches such as Plackett-Burman, steepest ascent path analysis and Box-Behnken design were successfully combined to investigate the effects of major treatment process variables including starch concentration, ethanol volume fraction, sodium hydroxide dosage, ultrasonic power and treatment time, and drying operation, that is, vacuum degree and drying time on cold-water solubility. Results revealed that ethanol volume fraction, sodium hydroxide dosage, applied power and ultrasonic treatment time were significant factors that affected the cold-water solubility of GCWS starches. The maximum cold-water solubility was obtained when treated at 400W of applied power for 27.38min. Optimum volume fraction of ethanol and sodium hydroxide dosage were 66.85% and 53.76mL, respectively. The theoretical values (93.87%) and the observed values (93.87%) were in reasonably good agreement and the deviation was less than 1%. Verification and repeated trial results indicated that the ultrasound-assisted alcoholic-alkaline treatment could be successfully used for the preparation of granular cold water swelling starches at room temperatures and had excellent improvement on the cold-water solubility of GCWS starches. Copyright © 2016. Published by Elsevier B.V.
Water dynamics and retrogradation of ultrahigh pressurized wheat starch.
Doona, Christopher J; Feeherry, Florence E; Baik, Moo-Yeol
2006-09-06
The water dynamics and retrogradation kinetics behavior of gelatinized wheat starch by either ultrahigh pressure (UHP) processing or heat are investigated. Wheat starch completely gelatinized in the condition of 90, 000 psi at 25 degrees C for 30 min (pressurized gel) or 100 degrees C for 30 min (heated gel). The physical properties of the wheat starches were characterized in terms of proton relaxation times (T2 times) measured using time-domain nuclear magnetic resonance spectroscopy and evaluated using commercially available continuous distribution modeling software. Different T2 distributions in both micro- and millisecond ranges between pressurized and heated wheat starch gels suggest distinctively different water dynamics between pressurized and heated wheat starch gels. Smaller water self-diffusion coefficients were observed for pressurized wheat starch gels and are indicative of more restricted translational proton mobility than is observed with heated wheat starch gels. The physical characteristics associated with changes taking place during retrogradation were evaluated using melting curves obtained with differential scanning calorimetry. Less retrogradation was observed in pressurized wheat starch, and it may be related to a smaller quantity of freezable water in pressurized wheat starch. Starches comprise a major constituent of many foods proposed for commercial potential using UHP, and the present results furnish insight into the effect of UHP on starch gelatinization and the mechanism of retrogradation during storage.
NASA Astrophysics Data System (ADS)
Herawati, ERN; Ariani, D.; Miftakhussolikhah; Yosieto, E.; Angwar, M.; Pranoto, Y.
2017-12-01
Ganyong (Canna edulis Kerr) is a local tuber which highest amount of starch content, but has not been fully utilized well at present. One way to improve the usefulness of canna is to process it into noodle, but it needs arenga starch which has high amylose content. The aim of this research was to study the sensory and textural properties of noodle made from canna flour and arenga starch. Research methodologies consist of: (i) characterization of canna flour and arenga starch, (ii) noodle production, and (iii) characterization sensory and textural properties of the noodle. Noodle was made with five ratio variations of canna flour and arenga starch, i.e. 100:0; 75:25; 50:50; 25:75; and 0:100. Sensory analysis was done by hedonic scoring method with attributes : color, stickiness, elasticity, firmness, surface smoothness and overall liking. Textural properties analyses consist of tensile strength, elongation, and stickiness measurements. The results showed that canna flour and arenga starch can be used in noodle making process. Noodle with 25% of canna flour was the most favored product and has the best textural properties. Factors which affect textural properties of product are the amylose and amylopectin amount in each starch. Tensile strength, elongation, and stickiness measurements of noodle with 25% of canna flour were 0,13 N; 41,61%; and 0,0115N respectively.
Mazurek-Wadołkowska, Edyta; Winnicka, Katarzyna; Czyzewska, Urszula; Miltyk, Wojciech
2016-07-01
High profitability and simplicity of direct compression, encourages pharmaceutical industry to create universal excipients to improve technology process. Prosolv® SMCC - silicified microcrystalline cellulose and Starch 1500® - pregelatinized starch, are the example of multifunctional excipients. The aim of the present study was to evaluate the stability of theophylline (API) in the mixtures with excipients with various physico-chemical properties (Prosolv® SMCC 90, Prosolv® SMCC HD 90, Prosolv* SMCC 50®, Starch 1500® and magnesium stearate). The study presents results of thermal analysis of the mixtures with theophylline before and after 6 months storage of the tablets at various temperatures and relative humidity conditions (25 ± 2°C/40 ± 5% RH, 40 ± 2°C/75 ± 5% RH). It was shown that high concentration of Starch 1500® (49%) affects the stability of the theophylline tablets with Prosolv® SMCC. Prosolv® SMCC had no effect on API stability as confirmed by the differential scanning calorimetry (DSC). Changes in peak placements were observed just after tabletting process, which might indicate that compression accelerated the incompatibilities between theophylline and Starch 1500. TGA analysis showed loss in tablets mass equal to water content in starch. GC-MS study established no chemical decomposition of theophylline. We demonstrated that high content of Starch 1500® (49%) in the tablet mass, affects stability on tablets containing theophylline and Prosolv® SMCC.
Controlling Properties of Agglomerates for Chemical Processes
NASA Astrophysics Data System (ADS)
Halt, Joseph A.
Iron ore pellets are hard spheres made from powdered ore and binders. Pellets are used to make iron, mainly in blast furnaces. Around the time that the pelletizing process was developed, starch was proposed as a binder because it's viscous, adheres well to iron oxides, does not contaminate pellets and is relatively cheap. In practice, however, starch leads to weak pellets with rough surfaces - these increase the amount of dust generated within process equipment and during pellet shipping and handling. Thus, even though the usual binder (bentonite clay) contaminates pellets, pelletizers prefer it to starch or other organics. This dissertation describes three ways to make good starch-based binders for pellets. Importantly, they solve the usual problems of weak rough pellets and lots of dust. The three approaches are: (1) Addition of clay to starch. This is not a novel idea. In fact, it is the standard method used for their improvement. However, it has not been tested extensively with starch. This approach was expected to be - and indeed was - successful. (2) Addition of a clay-rich layer to green ball surfaces. This approach is a novel idea. The coating's purpose was to mimic the good surface properties of standard bentonite-clay bonded pellets; as a benefit, clay consumption was significantly reduced. This approach was successful. (3) Addition of dispersants to starch. This approach was a novel idea. The intent of the dispersants was to enable pelletization to occur at lower moisture contents, thus leading to denser particle packing and lower porosity. The dispersants resulted in significantly stronger, smoother pellets without contaminating them with silica. Using approaches 1 and 3, starch can be used directly in traditional pelletizing operations, and importantly, in new pelletizing processes for new iron making operations. For approach 2, new application methods must be developed. Future engineering work is suggested as follows: design better dispersants for magnetic magnetite ores; incorporate the dispersing agent and starch into bead form for easy use; design a simple way to add coatings in existing drum-based pelletizing circuits; and optimize the coating composition to decrease both abrasion losses and pellet clustering (for new Direct Reduction pellets).
40 CFR 63.140 - Process wastewater provisions-delay of repair.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Process wastewater provisions-delay of... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.140 Process wastewater provisions—delay of repair. (a) Delay of repair of equipment for which a control equipment failure...
40 CFR 63.140 - Process wastewater provisions-delay of repair.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Process wastewater provisions-delay of... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.140 Process wastewater provisions—delay of repair. (a) Delay of repair of equipment for which a control equipment failure...
40 CFR 63.140 - Process wastewater provisions-delay of repair.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Process wastewater provisions-delay of... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.140 Process wastewater provisions—delay of repair. (a) Delay of repair of equipment for which a control equipment failure...
40 CFR 63.11980 - What are the test methods and calculation procedures for process wastewater?
Code of Federal Regulations, 2013 CFR
2013-07-01
... calculation procedures for process wastewater? 63.11980 Section 63.11980 Protection of Environment... § 63.11980 What are the test methods and calculation procedures for process wastewater? (a) Performance... performance tests during worst-case operating conditions for the PVCPU when the process wastewater treatment...
40 CFR 63.140 - Process wastewater provisions-delay of repair.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Process wastewater provisions-delay of... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.140 Process wastewater provisions—delay of repair. (a) Delay of repair of equipment for which a control equipment failure...
40 CFR 63.11980 - What are the test methods and calculation procedures for process wastewater?
Code of Federal Regulations, 2012 CFR
2012-07-01
... calculation procedures for process wastewater? 63.11980 Section 63.11980 Protection of Environment... § 63.11980 What are the test methods and calculation procedures for process wastewater? (a) Performance... performance tests during worst-case operating conditions for the PVCPU when the process wastewater treatment...
40 CFR 63.11980 - What are the test methods and calculation procedures for process wastewater?
Code of Federal Regulations, 2014 CFR
2014-07-01
... calculation procedures for process wastewater? 63.11980 Section 63.11980 Protection of Environment... § 63.11980 What are the test methods and calculation procedures for process wastewater? (a) Performance... performance tests during worst-case operating conditions for the PVCPU when the process wastewater treatment...
NASA Astrophysics Data System (ADS)
Sumardiono, Siswo; Pudjihastuti, Isti; Budiyono, Hartanto, Hansen; Sophiana, Intan Clarissa
2017-05-01
Indonesia is one of the world's largest wheat importer, some research are conducted to find other carbohydrate sources which can replace wheat. Cassava is very easy to find and grown in tropical climates especially Indonesia. The research is focused on cassava starch modification as a substitute for wheat flour in order to reduce consumption of wheat flour. The aim of this research is to assess the effect of temperature, pH, and the concentration of H2O2 in modifying cassava starch which. The combination methods are lactic acid hydroxylation and hydrogen peroxide oxidation to improve baking expansion. The carboxyl group, carbonyl group, swelling power, starch solubility, and baking expansion of starch are analized and calculated. Results showed that the modified cassava starch can substitute wheat flour with optimum conditions process at a concentration of H2O2 is 1.5% w/w, oxidation temperature is 50°C, and pH is 3 by the value of swelling power is 6.82%, solubility is 0.02%, and baking expansion is 7.2 cm3/gram.
Ethanol fermentation of cassava starch pretreated with alkali
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Y.C.; Lee, S.Y.; Choe, Y.K.
1986-04-01
In view of the current industrial process for the conventional ethanol fermentation, in which raw starch materials are heated at 120 degrees C for 2 h, conditions for an alternative process were set: an overall time from saccharification to ethanol fermentation of within 3-4 days, an operation temperature of below 60 degrees C, an ethanol yield of over 93%, and a ratio of raw material to fermentation volume of within 1:4. To meet these conditions, previously a steeping method of starch materials in 0.5N HCl solution at 60 degrees C for 12 h were used, followed by combined actions ofmore » ..cap alpha..-amylase and glucoamylase. The ethanol yield from uncooked cassava starch treated under the conditions described was 95% after fermentation for 3 days with Saccharomyces cerevisiae. However, the use of a relatively higher concentration of acid for steeping is still a problem and gelatinization of starch materials is insufficient. This communication, therefore, describes effects of alkali steeping and structural change of starch granules on the ethanol fermentation. 8 references.« less
Rashid, Iyad; Al-Remawi, Mayyas; Leharne, Stephen A; Chowdhry, Babur Z; Badwan, Adnan
2011-06-15
A directly compressible excipient has been developed by co-processing starch with magnesium silicate. The foregoing was achieved either by co-precipitation of magnesium silicate onto different types of starch or by dry granulation of maize starch with magnesium silicate. A variety of techniques (permeability, water retention/swelling, compression analysis, scanning electron microscopy, tensile strength and disintegration/dissolution studies) were used to characterize these systems. The permeability of the formulations produced using the two methods was evaluated experimentally using Darcy's permeability law. Magnesium silicate, as an anti-adhering agent, increases the permeability of both maize and partially pregelatinized starch, resulting in compacts of high mechanical strength, short disintegration time and low lubricant sensitivity. Such advantages are evident when the properties of the physical mixture of maize starch with magnesium silicate are compared with the co-precipitation and dry granulation techniques. Formulation with this novel excipient system, using paracetamol as a model drug, indicated its suitability as a single multifunctional excipient. Copyright © 2011 Elsevier B.V. All rights reserved.
Extrusion and characterization of thermoplastic starch sheets from "macho" banana.
Alanís-López, P; Pérez-González, J; Rendón-Villalobos, R; Jiménez-Pérez, A; Solorza-Feria, J
2011-08-01
Starch isolated from macho banana was oxidized by using 2.5% and 3.5% (w/w) of sodium hypochlorite. Native and oxidized starches with glycerol were processed using a conical twin screw extruder to obtain thermoplastic laminates or sheets, which were partially characterized. Oxidized banana starches presented higher moisture and total starch but lower ash, protein, lipids, and apparent amylose content than the native starch. Micrographs of sheets from oxidized starches showed wrinkles and cavities presumably caused by the plasticizer, but with less free glycerol and unplasticized starch granules than those from native starch. Sheets from oxidized starch showed a notorious increase in all thermal parameters (To, Tp, and ΔH), mechanical properties (tensile strength, elongation at break, and elasticity), and solubility. Banana starch X-ray diffraction patterns corresponded to a mixture of the A- and B-type polymorphs, with apparently slightly higher crystallinity in oxidized specimens than in native starch. A similar trend was observed in the corresponding sheets. Due to the pollution problem caused by the conventional plastics, there has been a renewed interest in biodegradable sheets, because they may have the potential to replace conventional packaging materials. Banana starch might be an interesting raw material to be used as edible sheet, coating or in food packaging, and preservation, because it is biodegradable, cheap, innocuous, and abundant. © 2011 Institute of Food Technologists®
Ma, Lin; Xue, Na; Fu, Xiaoyu; Zhang, Haisen; Li, Gang
2017-03-01
In living organisms, daily light/dark cycles profoundly affect cellular processes. In plants, optimal growth and development, and adaptation to daily light-dark cycles, require starch synthesis and turnover. However, the underlying molecular mechanisms coordinating daily starch metabolism remain poorly understood. To explore the roles of Arabidopsis thaliana light signal transduction proteins FAR-RED ELONGATED HYPOCOTYLS3 (FHY3) and FAR-RED-IMPAIRED RESPONSE1 (FAR1) in starch metabolism, the contents of starch and water-soluble polysaccharides, and the structure of starch granules were investigated in fhy3, far1 and fhy3 far1 mutant plants. Disruption of FHY3 or FAR1 reduced starch accumulation and altered starch granule structure in the fhy3-4, far1-2, and fhy3-4 far1-2 mutant plants. Furthermore, molecular and genetic evidence revealed that the gene encoding the starch-debranching enzyme ISOAMYLASE2 (ISA2) is a direct target of FHY3 and FAR1, and functions in light-induced starch synthesis. Our data establish the first molecular link between light signal transduction and starch synthesis, suggesting that the light-signaling proteins FHY3 and FAR1 influence starch synthesis and starch granule formation through transcriptional activation of ISA2. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Step-reduced synthesis of starch-silver nanoparticles.
Raghavendra, Gownolla Malegowd; Jung, Jeyoung; Kim, Dowan; Seo, Jongchul
2016-05-01
In the present process, silver nanoparticles were directly synthesized in a single step by microwave irradiation of a mixture of starch, silver nitrate, and deionized water. This is different from the commonly adopted procedure for starch-silver nanoparticle synthesis in which silver nanoparticles are synthesized by preparing a starch solution as a reaction medium first. Thus, the additional step associated with the preparation of the starch solution was eliminated. In addition, no additional reducing agent was utilized. The adopted method was facile and straight forward, affording spherical silver nanoparticles with diameter below 10nm that exhibited good antibacterial activity. Further, influence of starch on the size of the silver nanoparticles was noticed. Copyright © 2016 Elsevier B.V. All rights reserved.
Taybi, Tahar; Cushman, John C; Borland, Anne M
2017-11-01
Nocturnal degradation of transitory starch is a limiting factor for the optimal function of crassulacean acid metabolism and must be coordinated with phosphoenolypyruvate carboxylase (PEPC)-mediated CO 2 uptake to optimise carbon gain over the diel cycle. The aim of this study was to test the hypothesis that nocturnal carboxylation is coordinated with starch degradation in CAM via a mechanism whereby the products of these pathways regulate diel transcript abundance and enzyme activities for both processes. To test this hypothesis, a starch and CAM-deficient mutant of Mesembryanthemum crystallinum was compared with wild type plants under well-watered and saline (CAM-inducing) conditions. Exposure to salinity increased the transcript abundance of genes required for nocturnal carboxylation, starch and sucrose degradation in both wild type and mutant, but the transcript abundance of several of these genes was not sustained over the dark period in the low-carbohydrate, CAM-deficient mutant. The diel pattern of transcript abundance for PEPC mirrored that of PEPC protein, as did the transcripts, protein, and activity of chloroplastic starch phosphorylase in both wild type and mutant, suggesting robust diel coordination of these metabolic processes. Activities of several amylase isoforms were low or lacking in the mutant, whilst the activity of a cytosolic isoform of starch phosphorylase was significantly elevated, indicating contrasting modes of metabolic regulation for the hydrolytic and phosphorylytic routes of starch degradation. Externally supplied sucrose resulted in an increase in nocturnal transcript abundance of genes required for nocturnal carboxylation and starch degradation. These results demonstrate that carbohydrates impact on transcriptional and post-transcriptional regulation of nocturnal carboxylation and starch degradation in CAM. Copyright © 2017 Elsevier GmbH. All rights reserved.
Smerilli, Marina; Neureiter, Markus; Wurz, Stefan; Haas, Cornelia; Frühauf, Sabine; Fuchs, Werner
2015-01-01
BACKGROUND Lactic acid is an important biorefinery platform chemical. The use of thermophilic amylolytic microorganisms to produce lactic acid by fermentation constitutes an efficient strategy to reduce operating costs, including raw materials and sterilization costs. RESULTS A process for the thermophilic production of lactic acid by Geobacillus stearothermophilus directly from potato starch was characterized and optimized. Geobacillus stearothermophilus DSM 494 was selected out of 12 strains screened for amylolytic activity and the ability to form lactic acid as the major product of the anaerobic metabolism. In total more than 30 batches at 3–l scale were run at 60 °C under non-sterile conditions. The process developed produced 37 g L−1 optically pure (98%) L-lactic acid in 20 h from 50 g L−1 raw potato starch. As co-metabolites smaller amounts (<7% w/v) of acetate, formate and ethanol were formed. Yields of lactic acid increased from 66% to 81% when potato residues from food processing were used as a starchy substrate in place of raw potato starch. CONCLUSIONS Potato starch and residues were successfully converted to lactic acid by G. stearothermophilus. The process described in this study provides major benefits in industrial applications and for the valorization of starch-rich waste streams. © 2015 The Authors.Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:25937690
ICUMSA general subject 7 cane sugar processing report
USDA-ARS?s Scientific Manuscript database
In recent years there has been a world-wide increase in starch concentrations mostly because of one or a combination of the following: (i) increased mechanical processing of green sugarcane; (ii) varying environmental conditions; and (iii) newer sugarcane varieties with higher starch content. Many i...
Zhanga, Hao; Xi, Shixia; Wang, Shuwei; Liu, Jingsheng; Yoon, Keun-Byoung; Lee, Dong-Ho; Zhang, Hexin; Zhang, Xuequan
2017-01-01
In the present article, a novel spherical starch-supported vanadium (V)-based Ziegler-Natta catalyst was synthesized. The active centers of the obtained catalyst well dispersed in the starch through the SEM-EDX analysis. The effects of reaction conditions on ethylene polymerization were studied. The synthesized catalyst exhibited high activity toward ethylene polymerization in the presence of ethylaluminium sesquichloride (EASC) cocatalyst. Interestingly, the fiber shape PE was obtained directly during the polymerization process.
Carpenter, Margaret A; Shaw, Martin; Cooper, Rebecca D; Frew, Tonya J; Butler, Ruth C; Murray, Sarah R; Moya, Leire; Coyne, Clarice J; Timmerman-Vaughan, Gail M
2017-08-01
Although starch consists of large macromolecules composed of glucose units linked by α-1,4-glycosidic linkages with α-1,6-glycosidic branchpoints, variation in starch structural and functional properties is found both within and between species. Interest in starch genetics is based on the importance of starch in food and industrial processes, with the potential of genetics to provide novel starches. The starch metabolic pathway is complex but has been characterized in diverse plant species, including pea. To understand how allelic variation in the pea starch metabolic pathway affects starch structure and percent amylose, partial sequences of 25 candidate genes were characterized for polymorphisms using a panel of 92 diverse pea lines. Variation in the percent amylose composition of extracted seed starch and (amylopectin) chain length distribution, one measure of starch structure, were characterized for these lines. Association mapping was undertaken to identify polymorphisms associated with the variation in starch chain length distribution and percent amylose, using a mixed linear model that incorporated population structure and kinship. Associations were found for polymorphisms in seven candidate genes plus Mendel's r locus (which conditions the round versus wrinkled seed phenotype). The genes with associated polymorphisms are involved in the substrate supply, chain elongation and branching stages of the pea carbohydrate and starch metabolic pathways. The association of polymorphisms in carbohydrate and starch metabolic genes with variation in amylopectin chain length distribution and percent amylose may help to guide manipulation of pea seed starch structural and functional properties through plant breeding.
McCleary, Barry V; McNally, Marian; Rossiter, Patricia
2002-01-01
Interlaboratory performance statistics was determined for a method developed to measure the resistant starch (RS) content of selected plant food products and a range of commercial starch samples. Food materials examined contained RS (cooked kidney beans, green banana, and corn flakes) and commercial starches, most of which naturally contain, or were processed to yield, elevated RS levels. The method evaluated was optimized to yield RS values in agreement with those reported for in vivo studies. Thirty-seven laboratories tested 8 pairs of blind duplicate starch or plant material samples with RS values between 0.6 (regular maize starch) and 64% (fresh weight basis). For matrixes excluding regular maize starch, repeatability relative standard deviation (RSDr) values ranged from 1.97 to 4.2%, and reproducibility relative standard deviation (RSDR) values ranged from 4.58 to 10.9%. The range of applicability of the test is 2-64% RS. The method is not suitable for products with <1% RS (e.g., regular maize starch; 0.6% RS). For such products, RSDr and RSDR values are unacceptably high.
Swelling and tensile properties of starch glycerol system with various crosslinking agents
NASA Astrophysics Data System (ADS)
Mohamed, R.; Mohd, N.; Nurazzi, N.; Siti Aisyah, M. I.; Fauzi, F. Mohd
2017-07-01
Brittle properties of starch had been overcome by the modification process. In this work, sago starch is being modified with variable amount of plasticiser, namely glycerol at 20 and 40% and crosslinking agent had been added to the system. The film of the modification and characterizations of the starch glycerol system with various crosslinking systems were produced by casting method. The film properties of the starch glycerol system were then characterized by tensile strength (mechanical properties) and swelling (physical properties). The modification of the starch glycerol had improved that system by increasing the tensile strength, modulus however lowering its elongation. The increasing in percentage of the water absorption and also swelling are due to the intrinsic hydroxyl groups presence from the starch and glycerol itself that can attract more water to the system. Upon crosslinking, films casted with chemicals namely, glyoxal, malonic acid, borax, PEG were characterised. It was found that, all the film of sago starch crosslinked and undergoing easy film formation. From this modification, borax and malonic acid crosslinking agent had been determined as the best crosslinking agent to the starch glycerol system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
E Hernandez-Hernandez; C Avila-Orta; B Hsiao
Lipids have an important effect on starch physicochemical properties. There exist few reports about the effect of exogenous lipids on native corn starch structural properties. In this work, a study of the morphological, structural and thermal properties of native corn starch with L-alpha-lysophosphatidylcholine (LPC, the main phospholipid in corn) was performed under an excess of water. Synchrotron radiation, in the form of real-time small and wide-angle X-ray scattering (SAXS/WAXS), was used in order to track structural changes in corn starch, in the presence of LPC during a heating process from 30 to 85 C. When adding LCP, water absorption decreasedmore » within starch granule amorphous regions during gelatinization. This is explained by crystallization of the amylose-LPC inclusion complex during gelatinization, which promotes starch granule thermal stability at up to 95 C. Finally, a conceptual model is proposed for explaining the formation mechanism of the starch-LPC complex.« less
Rheological properties in relation to molecular structure of quinoa starch.
Li, Guantian; Zhu, Fan
2018-07-15
Quinoa starch granules are small (~0.5 - 3μm) with potentials for some food and other applications. To better exploit it as a new starch resource, this study investigates the steady shear and dynamic oscillatory properties of 9 quinoa starches varying in composition and structure. Steady shear analysis shows that the flow curves could be well described by 4 selected mathematic models. Temperature sweep analysis reveals that the quinoa starch encounters a 4-stage process including 2 phase transitions. Structure-function relationship analysis showed that composition as well as unit and internal chain length distribution of amylopectin have significant impact on the rheological properties (e.g., G' at 90°C) of quinoa starch. The roles of some individual unit chains and super-long unit chains of amylopectin in determining the rheological properties of quinoa starch were revealed. This study may stimulate further interest in understanding the structural basis of starch rheology. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhu, Hua; Teng, Jianbei; Cai, Yi; Liang, Jie; Zhu, Yilin; Wei, Tao
2011-12-01
To find out the relativity among starch quantity, polysaccharides content and total alkaloid content of Dendrobium loddigesii. Microscopy-counting process was applied to starch quantity statistics, sulfuric acid-anthrone colorimetry was used to assay polysaccharides content and bromocresol green colorimetry was used to assay alkaloid content. Pearson product moment correlation analysis, Kendall's rank correlation analysis and Spearman's concordance coefficient analysis were applied to study their relativity. Extremely significant positive correlation was found between starch quantity and polysaccharides content, and significant negative correlation between alkaloid content and starch quantity was discovered, as well was between alkaloid content and polysaccharides content.
Xie, Ming; Shon, Ho Kyong; Gray, Stephen R; Elimelech, Menachem
2016-02-01
Wastewater nutrient recovery holds promise for more sustainable water and agricultural industries. We critically review three emerging membrane processes - forward osmosis (FO), membrane distillation (MD) and electrodialysis (ED) - that can advance wastewater nutrient recovery. Challenges associated with wastewater nutrient recovery were identified. The advantages and challenges of applying FO, MD, and ED technologies to wastewater nutrient recovery are discussed, and directions for future research and development are identified. Emphasis is given to exploration of the unique mass transfer properties of these membrane processes in the context of wastewater nutrient recovery. We highlight that hybridising these membrane processes with existing nutrient precipitation process will lead to better management of and more diverse pathways for near complete nutrient recovery in wastewater treatment facilities. Copyright © 2015 Elsevier Ltd. All rights reserved.
Plasma modification of starch.
Zhu, Fan
2017-10-01
Plasma is a medium of unbound negative and positive particles with the overall electrical charge being roughly zero. Non-thermal plasma processing is an emerging green technology with great potential to improve the quality and microbial safety of various food materials. Starch is a major component of many food products and is an important ingredient for food and other industries. There has been increasing interest in utilizing plasma to modify the functionalities of starch through interactions with reactive species. This mini-review summarises the impact of plasma on composition, chemical and granular structures, physicochemical properties, and uses of starch. Structure-function relationships of starch components as affected by plasma modifications are discussed. Effect of plasma on the properties of wheat flour, which is a typical example of starch based complex food systems, is also reviewed. Future research directions on how to better utilise plasma to improve the functionalities of starch are suggested. Copyright © 2017 Elsevier Ltd. All rights reserved.
Starch granule initiation is controlled by a heteromultimeric isoamylase in potato tubers
Bustos, Regla; Fahy, Brendan; Hylton, Christopher M.; Seale, Robert; Nebane, N. Miranda; Edwards, Anne; Martin, Cathie; Smith, Alison M.
2004-01-01
Starch granule initiation is not understood, but recent evidence implicates a starch debranching enzyme, isoamylase, in the control of this process. Potato tubers contain isoamylase activity attributable to a heteromultimeric protein containing Stisa1 and Stisa2, the products of two of the three isoamylase genes of potato. To discover whether this enzyme is involved in starch granule initiation, activity was reduced by expression of antisense RNA for Stisa1 or Stisa2. Transgenic tubers accumulated a small amount of a soluble glucan, similar in structure to the phytoglycogen of cereal, Arabidopsis, and Chlamydomonas mutants lacking isoamylase. The major effect, however, was on the number of starch granules. Transgenic tubers accumulated large numbers of tiny granules not seen in normal tubers. These data indicate that the heteromultimeric isoamylase functions during starch synthesis to suppress the initiation of glucan molecules in the plastid stroma that would otherwise crystallize to nucleate new starch granules. PMID:14766984
Effect of Coconut, Sisal and Jute Fibers on the Properties of Starch/Gluten/Glycerol Matrix
USDA-ARS?s Scientific Manuscript database
Coconut, sisal and jute fibers were added as reinforcement materials in a biodegradable polymer matrix comprised of starch/gluten/glycerol. The content of fibers used in the composites varied from 5% to 30% by weight of the total polymers (starch and gluten). Materials were processed in a Haake torq...
Diaz-Gomez, Luis; Concheiro, Angel; Alvarez-Lorenzo, Carmen; García-González, Carlos A
2016-05-20
Synthetic polymeric scaffolds to be used as surrogates of autologous bone grafts should not only have suitable physicochemical and mechanical properties, but also contain bioactive agents such as growth factors (GFs) to facilitate the tissue growth. For this purpose, cost-effective and autologous GFs sources are preferred to avoid some post-surgery complications after implantation, like immunogenicity or disease transmission, and the scaffolds should be processed using methods able to preserve GFs activity. In this work, poly(ɛ-caprolactone) (PCL) scaffolds incorporating GFs were processed using a green foaming process based on supercritical fluid technology. Preparation rich in growth factors (PRGF), a natural and highly available cocktail of GFs obtained from platelet rich plasma (PRP), was used as GF source. PCL:starch:PRGF (85:10:5 weight ratio) porous solid scaffolds were obtained by a supercritical CO2-assisted foaming process at 100 bar and 37 °C with no need of post-processing steps. Bioactivity of GFs after processing and scaffold cytocompatibility were confirmed using mesenchymal stem cells. The performance of starch as GF control release component was shown to be dependent on starch pre-gelification conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
A mechanistic model of small intestinal starch digestion and glucose uptake in the cow.
Mills, J A N; France, J; Ellis, J L; Crompton, L A; Bannink, A; Hanigan, M D; Dijkstra, J
2017-06-01
The high contribution of postruminal starch digestion (up to 50%) to total-tract starch digestion on energy-dense, starch-rich diets demands that limitations to small intestinal starch digestion be identified. A mechanistic model of the small intestine was described and evaluated with regard to its ability to simulate observations from abomasal carbohydrate infusions in the dairy cow. The 7 state variables represent starch, oligosaccharide, glucose, and pancreatic amylase in the intestinal lumen, oligosaccharide and glucose in the unstirred water layer at the intestinal wall, and intracellular glucose of the enterocyte. Enzymatic hydrolysis of starch was modeled as a 2-stage process involving the activity of pancreatic amylase in the lumen and of oligosaccharidase at the brush border of the enterocyte confined within the unstirred water layer. The Na + -dependent glucose transport into the enterocyte was represented along with a facilitative glucose transporter 2 transport system on the basolateral membrane. The small intestine is subdivided into 3 main sections, representing the duodenum, jejunum, and ileum for parameterization. Further subsections are defined between which continual digesta flow is represented. The model predicted nonstructural carbohydrate disappearance in the small intestine for cattle unadapted to duodenal infusion with a coefficient of determination of 0.92 and a root mean square prediction error of 25.4%. Simulation of glucose disappearance for mature Holstein heifers adapted to various levels of duodenal glucose infusion yielded a coefficient of determination of 0.81 and a root mean square prediction error of 38.6%. Analysis of model behavior identified limitations to the efficiency of small intestinal starch digestion with high levels of duodenal starch flow. Limitations to individual processes, particularly starch digestion in the proximal section of the intestine, can create asynchrony between starch hydrolysis and glucose uptake capacity. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Shrestha, Ashok K; Blazek, Jaroslav; Flanagan, Bernadine M; Dhital, Sushil; Larroque, Oscar; Morell, Matthew K; Gilbert, Elliot P; Gidley, Michael J
2012-09-01
Cereal starch granules with high (>50%) amylose content are a promising source of nutritionally desirable resistant starch, i.e. starch that escapes digestion in the small intestine, but the structural features responsible are not fully understood. We report the effects of partial enzyme digestion of maize starch granules on amylopectin branch length profiles, double and single helix contents, gelatinisation properties, crystallinity and lamellar periodicity. Comparing results for three maize starches (27, 57, and 84% amylose) that differ in both structural features and amylase-sensitivity allows conclusions to be drawn concerning the rate-determining features operating under the digestion conditions used. All starches are found to be digested by a side-by-side mechanism in which there is no major preference during enzyme attack for amylopectin branch lengths, helix form, crystallinity or lamellar organisation. We conclude that the major factor controlling enzyme susceptibility is granule architecture, with shorter length scales not playing a major role as inferred from the largely invariant nature of numerous structural measures during the digestion process (XRD, NMR, SAXS, DSC, FACE). Results are consistent with digestion rates being controlled by restricted diffusion of enzymes within densely packed granular structures, with an effective surface area for enzyme attack determined by external dimensions (57 or 84% amylose - relatively slow) or internal channels and pores (27% amylose - relatively fast). Although the process of granule digestion is to a first approximation non-discriminatory with respect to structure at molecular and mesoscopic length scales, secondary effects noted include (i) partial crystallisation of V-type helices during digestion of 27% amylose starch, (ii) preferential hydrolysis of long amylopectin branches during the early stage hydrolysis of 27% and 57% but not 84% amylose starches, linked with disruption of lamellar repeating structure and (iii) partial B-type recrystallisation after prolonged enzyme incubation for 57% and 84% amylose starches but not 27% amylose starch. Copyright © 2012 Elsevier Ltd. All rights reserved.
Enzyme-modified starch as an oil delivery system for bake-only chicken nuggets.
Purcell, Sarah; Wang, Ya-Jane; Seo, Han-Seok
2014-05-01
This study investigated the effects of enzyme modification on starch as an effective oil delivery system for bake-only chicken nuggets. Various native starches were hydrolyzed by amyloglucosidase to a hydrolysis degree of 20% to 25% and plated with 50% (w/w, starch dry basis) with canola oil to create a starch-oil matrix. This matrix was then blended into a dry ingredient blend for batter and breader components. Nuggets were prepared by coated with predust, hydrated batter, and breader, and the coated nuggets were steam-baked until fully cooked and then frozen until texture and sensory analyses. The enzyme-modified starches showed a significant decrease in pasting viscosities for all starch types. For textural properties of nuggets, no clear relationship was found between peak force and starch source or amylose content. Sensory attributes related to fried foods (for example, crispness and mouth-coating) did not significantly differ between bake-only nuggets formulated using the enzyme-modified starches and the partially fried and baked ones. The present findings suggest that enzyme-modified starches can deliver sufficient quantity of oil to create sensory attributes similar to those of partially fried chicken nuggets. Further study is needed to optimize the coating formulation of bake-only chicken nugget to become close to the fried one in sensory aspects. The food industry has become increasingly focused on healthier items. Frying imparts several critical and desirable product functionalities, such as developing texture and color, and providing mouth-feel and flavor. The food industry has yet to duplicate all of the unique characteristics of fried chicken nuggets with a baking process. This study investigated the application of enzyme-modified starch as an oil delivery system in bake-only chicken nugget formulation in attempts to provide characteristics of fried items. This information is useful to improve the nutritional value of fried food by eliminating the frying process while preserving the desired characteristics of fried products. © 2014 Institute of Food Technologists®
Nixtamalization Process Affects Resistant Starch Formation and Glycemic Index of Tamales.
Mariscal-Moreno, Rosa María; de Dios Figueroa Cárdenas, Juan; Santiago-Ramos, David; Rayas-Duarte, Patricia; Veles-Medina, José Juan; Martínez-Flores, Héctor Eduardo
2017-05-01
Tamales were prepared with 3 nixtamalization processes (traditional, ecological, and classic) and evaluated for chemical composition, starch properties, and glycemic index. Resistant starch (RS) in tamales increased 1.6 to 3.7 times compared to raw maize. This increment was due to the starch retrogradation (RS3) and amylose-lipid complexes (RS5) formation. Tamales elaborated with classic and ecological nixtamalization processes exhibited the highest total, soluble and insoluble dietary fiber content, and the highest RS content and lower in vivo glycemic index compared to tamales elaborated with traditional nixtamalization process. Thermal properties of tamales showed 3 endotherms: amylopectin retrogradation (42.7 to 66.6 °C), melting of amylose lipid complex type I (78.8 to 105.4), and melting of amylose-lipid complex type II (110.7 to 129.7). Raw maize exhibited X-ray diffraction pattern type A, after nixtamalization and cooking of tamales it changed to V-type polymorph structure, due to amylose-lipid complexes formation. Tamales from ecological nixtamalization processes could represent potential health benefits associated with the reduction on blood glucose response after consumption. © 2017 Institute of Food Technologists®.
Chemical composition and functional properties of native chestnut starch (Castanea sativa Mill).
Cruz, Bruno R; Abraão, Ana S; Lemos, André M; Nunes, Fernando M
2013-04-15
Starch isolation methods can change their physico-chemical and functional characteristics hindering the establishment of a starch-food functionality relation. A simple high yield and soft isolation method was applied for chestnut (Castanea sativa Mill) starch consisting in steeping and fruit disintegration in a 25 mM sodium bisulfite solution and purification by sedimentation. Starch integrity, physico-chemical composition, morphology and functional properties were determined, being observed significant differences from previous described methods for chestnut starch isolation. The X-ray pattern was of B-type, with a degree of crystallinity ranging from 51% to 9%, dependent on the starch moisture content. The onset, peak, and conclusion gelatinization temperatures were 57.1°C, 61.9°C and 67.9°C, respectively. Total amylose content was 26.6%, and there was not found any evidence for lipid complexed amylose. Swelling power at 90°C was 19 g/g starch, and the amount of leached amylose was 78% of the total amylose content. Native chestnut starch presents a type B pasting profile similar to corn starch but with a lower gelatinization (56.1°C) and peak viscosity (79.5°C) temperatures, making native chestnut starch a potential technological alternative to corn starch, especially in application where lower processing temperatures are needed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Stripped Resin and Process Wastewater 9 Table 9 to Subpart HHHHHHH of Part 63 Protection of Environment... Wastewater For demonstrating . . . For the following emission points and types of processes . . . Collect.... Each process wastewater stream 3. Initial compliance N/A 1 grab sample 1 grab sample. 4. Continuous...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Stripped Resin and Process Wastewater 9 Table 9 to Subpart HHHHHHH of Part 63 Protection of Environment... Wastewater For demonstrating . . . For the following emission points and types of processes . . . Collect.... Each process wastewater stream 3. Initial compliance N/A 1 grab sample 1 grab sample. 4. Continuous...
Superresolution Imaging Captures Carbohydrate Utilization Dynamics in Human Gut Symbionts
Karunatilaka, Krishanthi S.; Cameron, Elizabeth A.; Martens, Eric C.; Koropatkin, Nicole M.
2014-01-01
ABSTRACT Gut microbes play a key role in human health and nutrition by catabolizing a wide variety of glycans via enzymatic activities that are not encoded in the human genome. The ability to recognize and process carbohydrates strongly influences the structure of the gut microbial community. While the effects of diet on the microbiota are well documented, little is known about the molecular processes driving metabolism. To provide mechanistic insight into carbohydrate catabolism in gut symbionts, we studied starch processing in real time in the model Bacteroides thetaiotaomicron starch utilization system (Sus) by single-molecule fluorescence. Although previous studies have explored Sus protein structure and function, the transient interactions, assembly, and collaboration of these outer membrane proteins have not yet been elucidated in live cells. Our live-cell superresolution imaging reveals that the polymeric starch substrate dynamically recruits Sus proteins, serving as an external scaffold for bacterial membrane assembly of the Sus complex, which may promote efficient capturing and degradation of starch. Furthermore, by simultaneously localizing multiple Sus outer membrane proteins on the B. thetaiotaomicron cell surface, we have characterized the dynamics and stoichiometry of starch-induced Sus complex assembly on the molecular scale. Finally, based on Sus protein knockout strains, we have discerned the mechanism of starch-induced Sus complex assembly in live anaerobic cells with nanometer-scale resolution. Our insights into the starch-induced outer membrane protein assembly central to this conserved nutrient uptake mechanism pave the way for the development of dietary or pharmaceutical therapies to control Bacteroidetes in the intestinal tract to enhance human health and treat disease. PMID:25389179
Calderón-Castro, Abraham; Vega-García, Misael Odín; de Jesús Zazueta-Morales, José; Fitch-Vargas, Perla Rosa; Carrillo-López, Armando; Gutiérrez-Dorado, Roberto; Limón-Valenzuela, Víctor; Aguilar-Palazuelos, Ernesto
2018-03-01
Starch is an attractive raw material as ingredient for edible film manufacture because of its low cost, abundant availability, renewability, and biodegradability. Nevertheless, starch based films exhibit several disadvantages such as brittleness and poor mechanical and barrier properties, which restrict its application for food packaging. The use of the extrusion technology as a pretreatment of the casting technique to change the starch structure in order to obtain edible films, may constitute an alternative to generate coatings with good functional properties and maintain longer the postharvest quality and shelf life of fruits. For this reason, the objective of this study was to optimize the conditions of an extrusion process to obtain a formulation of modified starch to elaborate edible films with good functional properties using the casting technique and assess the effect during the storage when applied on a model fruit. The best conditions of the extrusion process and concentration of plasticizers were obtained using response surface methodology. From optimization study, it was found that appropriate conditions to obtain starch edible films with the best mechanical and barrier properties were an extrusion temperature of 100 °C and a screw speed of 120 rpm, while the glycerol content was 16.73%. Also, once applied in fruit, the loss of quality attributes was diminished.
40 CFR 63.146 - Process wastewater provisions-reporting.
Code of Federal Regulations, 2014 CFR
2014-07-01
... wastewater provisions—reporting. (a) For each waste management unit, treatment process, or control device... for Group 2 wastewater streams. This paragraph does not apply to Group 2 wastewater streams that are used to comply with § 63.138(g). For Group 2 wastewater streams, the owner or operator shall include...
40 CFR 63.146 - Process wastewater provisions-reporting.
Code of Federal Regulations, 2012 CFR
2012-07-01
... wastewater provisions—reporting. (a) For each waste management unit, treatment process, or control device... for Group 2 wastewater streams. This paragraph does not apply to Group 2 wastewater streams that are used to comply with § 63.138(g). For Group 2 wastewater streams, the owner or operator shall include...
40 CFR 63.146 - Process wastewater provisions-reporting.
Code of Federal Regulations, 2011 CFR
2011-07-01
... wastewater provisions—reporting. (a) For each waste management unit, treatment process, or control device... for Group 2 wastewater streams. This paragraph does not apply to Group 2 wastewater streams that are used to comply with § 63.138(g). For Group 2 wastewater streams, the owner or operator shall include...
40 CFR 63.146 - Process wastewater provisions-reporting.
Code of Federal Regulations, 2013 CFR
2013-07-01
... wastewater provisions—reporting. (a) For each waste management unit, treatment process, or control device... for Group 2 wastewater streams. This paragraph does not apply to Group 2 wastewater streams that are used to comply with § 63.138(g). For Group 2 wastewater streams, the owner or operator shall include...
NASA Astrophysics Data System (ADS)
Deeyai, P.; Suphantharika, M.; Wongsagonsup, R.; Dangtip, S.
2013-01-01
Tapioca is economical crop grown in Thailand and continues to be one of the major sources of starch. Nowadays, tapioca starch has been widely used in industrial applications, however the native form of starch has limited the applications. Thus scientists try to modify the properties of starch for increasing the stability of the granules, pastes to low pH, heat, and shear during the food process. We modify the tapioca starch by plasma treatment under an argon atmosphere. The degree of modification is determined by following water content in the starch granules. The tablet samples of native starch are also prepared and compared with the plasma treated starch. Before plasma treatment, the starch tablets are stored under three different relative humilities (RH) including 11%, 68%, and 78%RH, respectively. The samples are characterized using FTIR spectroscopy associated with the degree of cross-linking. The results show that the water molecules are engulfed into the starch structure in two ways, a tight bond and a weak absorption of water molecules which is represented at two wave number of 1630 cm-1 and 3272 cm-1, respectively. The degree of cross-linking can be identified from the relative intensity of these two peaks with the C—O—H peak at 993 cm-1. The results show that the degree of cross-linking increase in the plasma treated starch. The degree of cross-linking of the treated starch with high relative humidity is less than that of the treated starch with low relative humidity.
Wet processing barley grains into concentrates with protein, beta-glucan, and starch
USDA-ARS?s Scientific Manuscript database
An improved wet method was developed to process barley into fractions concentrated in protein, (1-3)(1-4)-b-D-glucan (BG), starch, or other carbohydrates (CHO). Alkaline concentration, solvent to barley flour ratio (SFR), and extraction temperature were evaluated for their effects on concentration a...
Tirpanalan, Özge; Reisinger, Michael; Huber, Florian; Kneifel, Wolfgang; Novalin, Senad
2014-07-01
Wheat bran, a side product of the milling industry, can be considered as a feedstock for biorefineries. Unlike other lignocellulosic feedstock, wheat bran contains a reasonable amount of starch, which is not of recalcitrant nature. Therefore, it can be extracted without a costly pretreatment process. The present work evaluates the extraction of starch derived glucose in relation to a wheat bran biorefinery. The purity of free glucose extracted quantitatively was 44%. The extract was concentrated by threefold via nanofiltration, thereby reaching a glucose concentration of 49 g/L. Hydrothermal treatment (180°C - 20 min) of the starch-free bran did not induce the formation of hydroxymethylfurfural and levulinic acid. Interestingly, the furfural level increased compared to the process, in which bran was treated hydrothermally without a preceding starch extraction. By separation of water-extractables prior to enzymatic hydrolysis, the free glucose purity was increased to 58%, however the yield of glucose decreased to 61%. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kinetic model of water vapour adsorption by gluten-free starch
NASA Astrophysics Data System (ADS)
Ocieczek, Aneta; Kostek, Robert; Ruszkowska, Millena
2015-01-01
This study evaluated the kinetics of water vapour adsorption on the surface of starch molecules derived from wheat. The aim of the study was to determine an equation that would allow estimation of water content in tested material in any timepoint of the adsorption process aimed at settling a balance with the environment. An adsorption isotherm of water vapour on starch granules was drawn. The parameters of the Guggenheim, Anderson, and De Boer equation were determined by characterizing the tested product and adsorption process. The equation of kinetics of water vapour adsorption on the surface of starch was determined based on the Guggenheim, Anderson, and De Boer model describing the state of equilibrium and on the model of a first-order linear inert element describing the changes in water content over time.
Brewing Science in the Chemistry Laboratory: A "Mashing" Investigation of Starch and Carbohydrates
ERIC Educational Resources Information Center
Pelter, Michael W.; McQuade, Jennifer
2005-01-01
The experiments that mimic the actual brewing process to explain the science to the nonscience majors is performed using malted barley as the source for both the starch and the amylase enzyme. The experiment introduces the concept of monitoring the progress of chemical reaction and was able to show the chemical breakdown of the starch to simple…
USDA-ARS?s Scientific Manuscript database
Corn fiber gum (CFG) is a novel arabinoxylan hydrocolloid. Recent research has shown that it has a considerable potential in food processing. In our previous study, we reported that CFG could be used to modify the gelling and rheological properties of starch-based food. In this study, starch and CFG...
Digestibility of gluten proteins is reduced by baking and enhanced by starch digestion
Pan, Xiaoyan; Bellido, Vincent; Toole, Geraldine A.; Gates, Fred K.; Wickham, Martin S. J.; Shewry, Peter R.; Bakalis, Serafim; Padfield, Philip; Mills, E. N. Clare
2015-01-01
Scope Resistance of proteins to gastrointestinal digestion may play a role in determining immune‐mediated adverse reactions to foods. However, digestion studies have largely been restricted to purified proteins and the impact of food processing and food matrices on protein digestibility is poorly understood. Methods and results Digestibility of a total gliadin fraction (TGF), flour (cv Hereward), and bread was assessed using in vitro batch digestion with simulated oral, gastric, and duodenal phases. Protein digestion was monitored by SDS‐PAGE and immunoblotting using monoclonal antibodies specific for celiac‐toxic sequences (QQSF, QPFP) and starch digestion by measuring undigested starch. Whereas the TGF was rapidly digested during the gastric phase the gluten proteins in bread were virtually undigested and digested rapidly during the duodenal phase only if amylase was included. Duodenal starch digestion was also slower in the absence of duodenal proteases. Conclusion The baking process reduces the digestibility of wheat gluten proteins, including those containing sequences active in celiac disease. Starch digestion affects the extent of protein digestion, probably because of gluten‐starch complex formation during baking. Digestion studies using purified protein fractions alone are therefore not predictive of digestion in complex food matrices. PMID:26202208
Li, Yadi; Li, Caiming; Gu, Zhengbiao; Hong, Yan; Cheng, Li; Li, Zhaofeng
2017-10-01
Steady and dynamic shear measurements were used to investigate the rheological properties of cassava starches modified using the 1,4-α-glucan branching enzyme (GBE) from Geobacillus thermoglucosidans STB02. GBE treatment lowered the hysteresis loop areas, the activation energy (E a ) values and the parameters in rheological models of cassava starch pastes. Moreover, GBE treatment increased its storage (G') and loss (G″) moduli, and decreased their tan δ (ratio of G″/G') values and frequency-dependencies. Scanning electron microscopic studies showed the selective and particular attack of GBE on starch granules, and X-ray diffraction analyses showed that GBE treatment produces significant structural changes in amylose and amylopectin. These changes demonstrate that GBE modification produces cassava starch with a more structured network and improved stability towards mechanical processing. Differential scanning calorimetric analysis and temperature sweeps indicated greater resistance to granule rupture, higher gel rigidity, and a large decrease in the rate of initial conformational ordering with increasing GBE treatment time. Pronounced changes in rheological parameters revealed that GBE modification enhances the stability of cassava starch and its applicability in the food processing industry. Copyright © 2017 Elsevier B.V. All rights reserved.
Physicochemical properties and in vitro digestibility of starch from naturally air-dried chestnut.
Zhao, Jinkai; Zhang, Yuyang; Wu, Yanwen; Liu, Lingling; Ouyang, Jie
2018-06-08
Naturally air-dried chestnut is a type of traditionally processed chestnut in North China which has a pleasant flavor. After air drying at room temperature and low-air humidity for two wk, the moisture, total starch content and starch relative crystallinity decreased, while the content of water-soluble sugar and amylose increased because of the dehydration and the hydrolysis of endogenous amylase. The Fourier transform infrared (FTIR) spectroscopy ratio of 1047/1022 cm -1 and the relative area of the Raman spectrum peak at 480/865 cm -1 of air-dried chestnut starch decreased in the first two wk and then increased, while the full width at half-maximum height (FWHH) of the Raman spectrum peak at 480 cm -1 showed the opposite tendency. Crystallinity had a positive correlation with the springiness and chewiness, and was negatively correlated with the estimated glycemic index (eGI). The eGI of air-dried starch was lower than those of roasted or boiled starch, which indicated that naturally air-dried chestnut with low digestibility is a good alternative to thermally processed chestnut. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Laga, A.; Syarifuddin, A.; Dirpan, A.
2018-05-01
Maltodextrins are produced by starch modification in a partial hydrolysis thus altered physical sago properties. Sago as one of starch resources has characteristic with high amylopectin that influences high viscosity during cooking. Partial hydrolysis or liquefaction will influences starch hydrolysis and the size of maltodextrin produced. The aim of this study was to analyze the degree of sago starch hydrolysis during the enzymatic process using single α-amylase and combination with pullulanase The starting solids content was 20% (w/v), with adjusted pH to 6.5, and calcium (Ca2+ ions) addition as high as 50 ppm. The majority of starches used in the study contain 0.2 % (w/v), to combination of 0.2 % (w/w) and 0, 3 gram per kg of sago. The sago suspension temperatures were started from 105 °C lowered to 60 °C for 30 minutes, respectively. Optimum liquefied starch yields, which accounted for virtually all of the starch present, were obtained at temperatures of 80°C and above, for 120 minutes, with each sampling every 20 minutes. Observed parameters were levels of reducing sugars, degree of hydrolysis, and refined sago starch. The result showed that there was a significant increase in reducing sugars, degree of hydrolysis during 120 minutes until liquefaction process for both enzymatic treatments. The amount of reducing sugars was 95.76 g/L at 120 min for the single α-amylase and 98.84 g/L combination with pullulanase. The degree of hydrolysis was 37.93 % at 120 minutes for the single α-amylase and 37.32 % combination with pullulanase, whereas 0.035 % and 0.038 % for refined sago starch value respectively.
Code of Federal Regulations, 2012 CFR
2012-07-01
... each treatment process. (b) Control options: Group 1 wastewater streams for Table 9 compounds. The... section. (c) Control options: Group 1 wastewater streams for Table 8 compounds. The owner or operator...) Residuals. For each residual removed from a Group 1 wastewater stream, the owner or operator shall control...
Code of Federal Regulations, 2013 CFR
2013-07-01
... each treatment process. (b) Control options: Group 1 wastewater streams for Table 9 compounds. The... section. (c) Control options: Group 1 wastewater streams for Table 8 compounds. The owner or operator...) Residuals. For each residual removed from a Group 1 wastewater stream, the owner or operator shall control...
Code of Federal Regulations, 2011 CFR
2011-07-01
... each treatment process. (b) Control options: Group 1 wastewater streams for Table 9 compounds. The... section. (c) Control options: Group 1 wastewater streams for Table 8 compounds. The owner or operator...) Residuals. For each residual removed from a Group 1 wastewater stream, the owner or operator shall control...
Process wastewater treatability study for Westinghouse fluidized-bed coal gasification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winton, S.L.; Buvinger, B.J.; Evans, J.M.
1983-11-01
In the development of a synthetic fuels facility, water usage and wastewater treatment are major areas of concern. Coal gasification processes generally produce relatively large volumes of gas condensates. These wastewaters are typically composed of a variety of suspended and dissolved organic and inorganic solids and dissolved gaseous contaminants. Fluidized-bed coal gasification (FBG) processes are no exception to this rule. The Department of Energy's Morgantown Energy Technology Center (METC), the Gas Research Institute (GRI), and the Environmental Protection Agency (EPA/IERLRTP) recognized the need for a FBG treatment program to provide process design data for FBG wastewaters during the environmental, health,more » and safety characterization of the Westinghouse Process Development Unit (PDU). In response to this need, METC developed conceptual designs and a program plan to obtain process design and performance data for treating wastewater from commercial-scale Westinghouse-based synfuels plants. As a result of this plan, METC, GRI, and EPA entered into a joint program to develop performance data, design parameters, conceptual designs, and cost estimates for treating wastewaters from a FBG plant. Wastewater from the Westinghouse PDU consists of process quench and gas cooling condensates which are similar to those produced by other FBG processes such as U-Gas, and entrained-bed gasification processes such as Texaco. Therefore, wastewater from this facility was selected as the basis for this study. This paper outlines the current program for developing process design and cost data for the treatment of these wastewaters.« less
Kovács, Petra Veszelovszki; Lemmer, Balázs; Keszthelyi-Szabó, Gábor; Hodúr, Cecilia; Beszédes, Sándor
2018-05-01
It has been numerously verified that microwave radiation could be advantageous as a pre-treatment for enhanced disintegration of sludge. Very few data related to the dielectric parameters of wastewater of different origins are available; therefore, the objective of our work was to measure the dielectric constant of municipal and meat industrial wastewater during a continuous flow operating microwave process. Determination of the dielectric constant and its change during wastewater and sludge processing make it possible to decide on the applicability of dielectric measurements for detecting the organic matter removal efficiency of wastewater purification process or disintegration degree of sludge. With the measurement of dielectric constant as a function of temperature, total solids (TS) content and microwave specific process parameters regression models were developed. Our results verified that in the case of municipal wastewater sludge, the TS content has a significant effect on the dielectric constant and disintegration degree (DD), as does the temperature. The dielectric constant has a decreasing tendency with increasing temperature for wastewater sludge of low TS content, but an adverse effect was found for samples with high TS and organic matter contents. DD of meat processing wastewater sludge was influenced significantly by the volumetric flow rate and power level, as process parameters of continuously flow microwave pre-treatments. It can be concluded that the disintegration process of food industry sludge can be detected by dielectric constant measurements. From technical purposes the applicability of dielectric measurements was tested in the purification process of municipal wastewater, as well. Determination of dielectric behaviour was a sensitive method to detect the purification degree of municipal wastewater.
Humidity-activated shape memory effect on plasticized starch-based biomaterials.
Sessini, Valentina; Arrieta, Marina P; Fernández-Torres, Alberto; Peponi, Laura
2018-01-01
Humidity-activated shape memory behavior of plasticized starch-based films reinforced with the innovative combination of starch nanocrystals (SNCs) and catechin as antioxidant were studied. In a previous work, we reported the processing of gelatinized starch-based films filled with SNCs and catechin as antioxidant agent, and we observed that this novel combination leads to starch-based film with enhanced thermal and mechanical performance. In this work, the humidity-activated shape memory behavior of the previous developed starch-based films was characterized. The moisture loss as well as the moisture absorption were studied since they are essential parameters in humidity-activated shape memory polymers to fix the temporary shape and to recover the original shape, respectively. Therefore, the effect of the incorporation of SNCs and catechin on the humidity-activated shape memory properties of plasticized starch was also studied. Moreover, the effectiveness of catechin to increase the polymer stability under oxidative atmosphere and the thermo-mechanical relaxation of all the starch-based materials were studied. The combination of plasticized starch matrix loaded with both, SNCs and catechin, leads to a multifunctional starch-based films with increased hydrophilicity and with excellent humidity-activated shape memory behavior with interest for potential biomedical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Milling of rice grains: effects of starch/flour structures on gelatinization and pasting properties.
Hasjim, Jovin; Li, Enpeng; Dhital, Sushil
2013-01-30
Starch gelatinization and flour pasting properties were determined and correlated with four different levels of starch structures in rice flour, i.e. flour particle size, degree of damaged starch granules, whole molecular size, and molecular branching structure. Onset starch-gelatinization temperatures were not significantly different among all flour samples, but peak and conclusion starch-gelatinization temperatures were significantly different and were strongly correlated with the flour particle size, indicating that rice flour with larger particle size has a greater barrier for heat transfer. There were slight differences in the enthalpy of starch gelatinization, which are likely associated with the disruption of crystalline structure in starch granules by the milling processes. Flours with volume-median diameter ≥56 μm did not show a defined peak viscosity in the RVA viscogram, possibly due to the presence of native protein and/or cell-wall structure stabilizing the swollen starch granules against the rupture caused by shear during heating. Furthermore, RVA final viscosity of flour was strongly correlated with the degree of damage to starch granules, suggesting the contribution of granular structure, possibly in swollen form. The results from this study allow the improvement in the manufacture and the selection criteria of rice flour with desirable gelatinization and pasting properties. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ellouzi, Soumaya Zouari; Driss, Dorra; Maktouf, Sameh; Neifar, Mohamed; Kobbi, Ameni; Kamoun, Hounaida; Chaabouni, Semia Ellouze; Ghorbel, Raoudha Ellouze
2015-09-01
In this paper, starch was extracted from fresh pasta by-product (PS) and its chemical composition and physical and microscopic characteristics were determined. Commercial wheat starch (CS) was used as reference. In general, purity was similar between starches studied. However, others compounds such as protein, lipid and ash were significantly different. PS starch granules had large lenticular-shape (25-33 μm) and small spherical-shape (5-8 μm). The pH and color of PS starch were similar to those reported for CS starch. On the other hand, PS had higher water absorption capacity, viscosity and cooking stability than CS. The gelatinization temperature of PS was similar to that of CS (60 and 61 °C). At high temperature (90 °C) both starches had similar rheological behavior. The results achieved suggest that PS starch has potential for application in food systems requiring high processing temperatures such the manufacture of sugar snap cookie. The effects of PS starch addition on the dough making stage and the final cookie quality were analyzed. Improvements in dough cohesiveness (24 %) and springiness (10 %) were significant relative to those of CS dough. Texture profile analysis confirmed the rheological changes.
Some physicochemical and rheological properties of starch isolated from avocado seeds.
Chel-Guerrero, Luis; Barbosa-Martín, Enrique; Martínez-Antonio, Agustino; González-Mondragón, Edith; Betancur-Ancona, David
2016-05-01
Seeds from avocado (Persea americana Miller) fruit are a waste byproduct of fruit processing. Starch from avocado seed is a potential alternative starch source. Two different extraction solvents were used to isolate starch from avocado seeds, functional and rheological characteristics measured for these starches, and comparisons made to maize starch. Avocado seed powder was suspended in a solution containing 2 mM Tris, 7.5 mM NaCl and 80 mM NaHSO3 (solvent A) or sodium bisulphite solution (1500 ppm SO2, solvent B). Solvent type had no influence (p>0.05) on starch properties. Amylose content was 15-16%. Gelatinization temperature range was 56-74 °C, peak temperature was 65.7 °C, and transition enthalpy was 11.4-11.6J/g. At 90 °C, solubility was 19-20%, swelling power 28-30 g water/g starch, and water absorption capacity was 22-24 g water/g starch. Pasting properties were initial temperature 72 °C; maximum viscosity 380-390 BU; breakdown -2 BU; consistency 200 BU; and setback 198 BU. Avocado seed starch dispersions (5% w/v) were characterized as viscoelastic systems, with G'>G″. Avocado seed starch has potential applications as a thickening and gelling agent in food systems, as a vehicle in pharmaceutical systems and an ingredient in biodegradable polymers for food packaging. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Sumardiono, Siswo; Pudjihastuti, Isti; Jos, Bakti; Taufani, Muhammad; Yahya, Faad
2017-05-01
Modified cassava starch is very prospective products in the food industry. The main consideration of this study is the increasing volume of imported wheat and the demand for modified cassava starch industry. The purpose of this study is the assessing of lactic acid hydrolysis and microwave heating impact to the physicochemical and rheological properties of modified cassava starch, and test applications of modified cassava starch to coated peanut expansion quality. Experimental variables include the concentration of lactic acid (0.5% w/w, 1% w/w; 2% w/w), a time of hydrolysis (15, 30, 45 minutes), a time of microwave heating (1, 2, 3 hours). The research step is by dissolving lactic acid using aquadest in the stirred tank reactor, then added cassava starch. Hydrolysed cassava starch was then heated by microwave. Physicochemical properties and rheology of the modified cassava starch is determined by the solubility, swelling power, and test congestion. The optimum obtained results indicate that solubility, swelling power, congestion test, respectively for 19.75%; 24.25% and 826.10% in the hydrolysis treatment for 15 minutes, 1% w lactic acid and microwave heating 3 hours. The physicochemical and rheological properties of modified cassava starch have changed significantly when compared to the native cassava starch. Furthermore, these modified cassava starch are expected to be used for the substitution of food products.
Regulatory principles and experimental approaches to the circadian control of starch turnover
Seaton, Daniel D.; Ebenhöh, Oliver; Millar, Andrew J.; Pokhilko, Alexandra
2014-01-01
In many plants, starch is synthesized during the day and degraded during the night to avoid carbohydrate starvation in darkness. The circadian clock participates in a dynamic adjustment of starch turnover to changing environmental condition through unknown mechanisms. We used mathematical modelling to explore the possible scenarios for the control of starch turnover by the molecular components of the plant circadian clock. Several classes of plausible models were capable of describing the starch dynamics observed in a range of clock mutant plants and light conditions, including discriminating circadian protocols. Three example models of these classes are studied in detail, differing in several important ways. First, the clock components directly responsible for regulating starch degradation are different in each model. Second, the intermediate species in the pathway may play either an activating or inhibiting role on starch degradation. Third, the system may include a light-dependent interaction between the clock and downstream processes. Finally, the clock may be involved in the regulation of starch synthesis. We discuss the differences among the models’ predictions for diel starch profiles and the properties of the circadian regulators. These suggest additional experiments to elucidate the pathway structure, avoid confounding results and identify the molecular components involved. PMID:24335560
[Ecological security of wastewater treatment processes: a review].
Yang, Sai; Hua, Tao
2013-05-01
Though the regular indicators of wastewater after treatment can meet the discharge requirements and reuse standards, it doesn't mean the effluent is harmless. From the sustainable point of view, to ensure the ecological and human security, comprehensive toxicity should be considered when discharge standards are set up. In order to improve the ecological security of wastewater treatment processes, toxicity reduction should be considered when selecting and optimizing the treatment processes. This paper reviewed the researches on the ecological security of wastewater treatment processes, with the focus on the purposes of various treatment processes, including the processes for special wastewater treatment, wastewater reuse, and for the safety of receiving waters. Conventional biological treatment combined with advanced oxidation technologies can enhance the toxicity reduction on the base of pollutants removal, which is worthy of further study. For the process aimed at wastewater reuse, the integration of different process units can complement the advantages of both conventional pollutants removal and toxicity reduction. For the process aimed at ecological security of receiving waters, the emphasis should be put on the toxicity reduction optimization of process parameters and process unit selection. Some suggestions for the problems in the current research and future research directions were put forward.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. N. Thompson; S. L. Fox; G. A. Bala
2000-05-07
Pretreatment of low-solids (LS) potato process effluent was tested for potential to increase surfactin yield. Pretreatments included heat, removal of starch particulates, and acid hydrolysis. Elimination of contaminating vegetative cells was necessary for surfactin production. After autoclaving, 0.40 g/L of surfactin was produced from the effluent in 72 h, versus 0.24 g/L in the purified potato starch control. However, surfactin yields per carbon consumed were 76% lower from process effluent. Removal of starch particulates had little effect on the culture. Acid hydrolysis decreased growth and surfactant production, except 0.5 wt% acid, which increased the yield by 25% over untreated effluent.
Structure and physicochemical properties of starches in lotus (Nelumbo nucifera Gaertn.) rhizome
Yu, Huaguang; Cheng, Libao; Yin, Jingjing; Yan, Shunjun; Liu, Kejun; Zhang, Fengmin; Xu, Bin; Li, Liangjun
2013-01-01
The type and content of starch are believed to be the most critical factors in determining the storage and processing quality of lotus rhizome species, and the intention of this study is to survey the structure and properties of starches isolated from rhizomes of two lotus cultivars using X-ray powder diffraction, solid-state nuclear magnetic resonance spectroscopy, attenuated total reflectance-Fourier transform infrared spectroscopy, scanning electron microscope, differential scanning calorimetry, and rapid viscosity analyzer (RVA). Starch in rhizome of cultivar Meirenhong exhibited C-type X-ray diffraction pattern, while starch in rhizome of cultivar Wawalian showed A-type pattern. 13C cross-polarization magic-angle spinning nuclear magnetic resonance (13C CP-MAS NMR) also confirmed the polymorphs. The relative crystallinity of two starches was quantitatively estimated from two methods and compared. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) results indicated that the external regions of the starch granules had a great level of ordered structure. Starch granules in Meirenhong showed oval-shaped granules, while starch granules in Wawalian were elongated and oval in shape with relatively large size. Gelatinization temperatures of starch in Meirenhong and Wawalian were 330.5 and 342.4 K, respectively, and the gelatinization temperature range of Meirenhong was significantly wider than that of Wawalian. Starch in rhizome of cultivar Meirenhong showed lower pasting temperature, lower hot and cool viscosities, lower setback, and higher peak viscosity and breakdown than those of Wawalian in RVA pasting profiles at 6% starch concentration. PMID:24804031
IMPROVING INDUSTRIAL WASTEWATER TREATMENT PROCESS RELIABILITY TO ENHANCE SUSTAINABLE DEVELOPMENT
Sustainable development includes the recovery of resources from industrial manufacturing processes. One valuable resource that can often be purified and reused is process wastewater. Typically, pollutants are removed from process wastewater using physical, chemical, and biologica...
Two- and multi-step annealing of cereal starches in relation to gelatinization.
Shi, Yong-Cheng
2008-02-13
Two- and multi-step annealing experiments were designed to determine how much gelatinization temperature of waxy rice, waxy barley, and wheat starches could be increased without causing a decrease in gelatinization enthalpy or a decline in X-ray crystallinity. A mixture of starch and excess water was heated in a differential scanning calorimeter (DSC) pan to a specific temperature and maintained there for 0.5-48 h. The experimental approach was first to anneal a starch at a low temperature so that the gelatinization temperature of the starch was increased without causing a decrease in gelatinization enthalpy. The annealing temperature was then raised, but still was kept below the onset gelatinization temperature of the previously annealed starch. When a second- or third-step annealing temperature was high enough, it caused a decrease in crystallinity, even though the holding temperature remained below the onset gelatinization temperature of the previously annealed starch. These results support that gelatinization is a nonequilibrium process and that dissociation of double helices is driven by the swelling of amorphous regions. Small-scale starch slurry annealing was also performed and confirmed the annealing results conducted in DSC pans. A three-phase model of a starch granule, a mobile amorphous phase, a rigid amorphous phase, and a crystalline phase, was used to interpret the annealing results. Annealing seems to be an interplay between a more efficient packing of crystallites in starch granules and swelling of plasticized amorphous regions. There is always a temperature ceiling that can be used to anneal a starch without causing a decrease in crystallinity. That temperature ceiling is starch-specific, dependent on the structure of a starch, and is lower than the original onset gelatinization of a starch.
USDA-ARS?s Scientific Manuscript database
The new knowledge that there is markedly more insoluble starch than previously considered in products across both the sugarcane factory and refinery has processing implications. Processing parameters such as viscosity and filtration are implicated, as well as the application of '-amylases in the fa...
Mohd Nasir, Norlirubayah; Teo Ming, Ting; Ahmadun, Fakhru'l-Razi; Sobri, Shafreeza
2010-01-01
The research conducted a study on decomposition and biodegradability enhancement of textile wastewater using a combination of electron beam irradiation and activated sludge process. The purposes of this research are to remove pollutant through decomposition and to enhance the biodegradability of textile wastewater. The wastewater is treated using electron beam irradiation as a pre-treatment before undergo an activated sludge process. As a result, for non-irradiated wastewater, the COD removal was achieved to be between 70% and 79% after activated sludge process. The improvement of COD removal efficiency increased to 94% after irradiation of treated effluent at the dose of 50 kGy. Meanwhile, the BOD(5) removal efficiencies of non-irradiated and irradiated textile wastewater were reported to be between 80 and 87%, and 82 and 99.2%, respectively. The maximum BOD(5) removal efficiency was achieved at day 1 (HRT 5 days) of the process of an irradiated textile wastewater which is 99.2%. The biodegradability ratio of non-irradiated wastewater was reported to be between 0.34 and 0.61, while the value of biodegradability ratio of an irradiated wastewater increased to be between 0.87 and 0.96. The biodegradability enhancement of textile wastewater is increased with increasing the doses. Therefore, an electron beam radiation holds a greatest application of removing pollutants and also on enhancing the biodegradability of textile wastewater.
In vitro dynamic model simulating the digestive tract of 6-month-old infants.
Passannanti, Francesca; Nigro, Federica; Gallo, Marianna; Tornatore, Fabio; Frasso, Annalisa; Saccone, Giulia; Budelli, Andrea; Barone, Maria V; Nigro, Roberto
2017-01-01
In vivo assays cannot always be conducted because of ethical reasons, technical constraints or costs, but a better understanding of the digestive process, especially in infants, could be of great help in preventing food-related pathologies and in developing new formulas with health benefits. In this context, in vitro dynamic systems to simulate human digestion and, in particular, infant digestion could become increasingly valuable. To simulate the digestive process through the use of a dynamic model of the infant gastroenteric apparatus to study the digestibility of starch-based infant foods. Using M.I.D.A (Model of an Infant Digestive Apparatus), the oral, gastric and intestinal digestibility of two starch-based products were measured: 1) rice starch mixed with distilled water and treated using two different sterilization methods (the classical method with a holding temperature of 121°C for 37 min and the HTST method with a holding temperature of 137°C for 70 sec) and 2) a rice cream with (premium product) or without (basic product) an aliquot of rice flour fermented by Lactobacillus paracasei CBA L74. After the digestion the foods were analyzed for the starch concentration, the amount of D-glucose released and the percentage of hydrolyzed starch. An in vitro dynamic system, which was referred to as M.I.D.A., was obtained. Using this system, the starch digestion occurred only during the oral and intestinal phase, as expected. The D-glucose released during the intestinal phase was different between the classical and HTST methods (0.795 grams for the HTST versus 0.512 for the classical product). The same analysis was performed for the basic and premium products. In this case, the premium product had a significant difference in terms of the starch hydrolysis percentage during the entire process. The M.I.D.A. system was able to digest simple starches and a more complex food in the correct compartments. In this study, better digestibility of the premium product was revealed.
ERIC Educational Resources Information Center
Charles County Community Coll., La Plata, MD.
This guide describes standard operating job procedures for the primary sedimentation process of wastewater treatment plants. The primary sedimentation process involves removing settleable and suspended solids, in part, from wastewater by gravitational forces, and scum and other floatable solids from wastewater by mechanical means. Step-by-step…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, David Neal; Fox, Sandra Lynn; Bala, Greg Alan
Pretreatment of low-solids (LS) potato process effluent was tested for potential to increase surfactin yield. Pretreatments included heat, removal of starch particulates, and acid hydrolysis. Elimination of contaminating vegetative cells was necessary for surfactin production. After autoclaving, 0.40 g/L of surfactin was produced from the effluent in 72 h, versus 0.24 g/L in the purified potato starch control. However, surfactin yields per carbon consumed were 76% lower from process effluent. Removal of starch particulates had little effect on the culture. Acid hydrolysis decreased growth and surfactant production, except 0.5 wt% acid, which increased the yield by 25% over untreated effluent.
Mkandawire, Nyambe L; Kaufman, Rhett C; Bean, Scott R; Weller, Curtis L; Jackson, David S; Rose, Devin J
2013-05-08
The purpose of this study was to investigate the effects of tannins on starch digestion in tannin-containing sorghum extracts and wholegrain flours from 12 sorghum varieties. Extracts reduced amylase activity in a tannin concentration-dependent manner when the extract was mixed with the enzyme before substrate (amylopectin) addition, with higher molecular weight tannins showing greater reduction. Conversely, when the extract and substrate were combined before enzyme addition an enhancement in amylase activity was experienced. In uncooked, cooked, and cooked and stored wholegrain sorghum flours, rapidly digestible, slowly digestible, and resistant starches were not correlated with tannin content or molecular weight distribution. Resistant starch increased from 6.5% to 22-26% when tannins were added to starch up to 50% (starch weight). Tannin extracts both reduced and enhanced amylase activity depending on conditions, and, while these trends were clear in extracts, the effects on starch digestion in wholegrain flours was more complex.
Slavutsky, Aníbal M; Bertuzzi, María A
2014-09-22
Water transport in edible films based on hydrophilic materials such as starch, is a complex phenomenon due to the strong interaction of sorbed water molecules with the polymeric structure. Cellulose nanocrystals (CNC) were obtained from sugarcane bagasse. Starch and starch/CNC films were formulated and their water barrier properties were studied. The measured film solubility, contact angle, and water sorption isotherm indicated that reinforced starch/CNC films have a lower affinity to water molecules than starch films. The effects that the driving force and the water activity (aw) values at each side of the film have on permeability were analyzed. Permeability, diffusivity, and solubility coefficients indicated that the permeation process depends mostly on the tortuous pathway formed by the incorporation of CNC and therefore were mainly controlled by water diffusion. The interaction between CNC and starch chain is favoured by the chemical similarities of both molecules. Copyright © 2014 Elsevier Ltd. All rights reserved.
Li, XueYan; Wang, ChunXia; Cheng, JinYun; Zhang, Jing; da Silva, Jaime A Teixeira; Liu, XiaoYu; Duan, Xin; Li, TianLai; Sun, HongMei
2014-12-19
The formation and development of bulblets are crucial to the Lilium genus since these processes are closely related to carbohydrate metabolism, especially to starch and sucrose metabolism. However, little is known about the transcriptional regulation of both processes. To gain insight into carbohydrate-related genes involved in bulblet formation and development, we conducted comparative transcriptome profiling of Lilium davidii var. unicolor bulblets at 0 d, 15 d (bulblets emerged) and 35 d (bulblets formed a basic shape with three or four scales) after scale propagation. Analysis of the transcriptome revealed that a total of 52,901 unigenes with an average sequence size of 630 bp were generated. Based on Clusters of Orthologous Groups (COG) analysis, 8% of the sequences were attributed to carbohydrate transport and metabolism. The results of KEGG pathway enrichment analysis showed that starch and sucrose metabolism constituted the predominant pathway among the three library pairs. The starch content in mother scales and bulblets decreased and increased, respectively, with almost the same trend as sucrose content. Gene expression analysis of the key enzymes in starch and sucrose metabolism suggested that sucrose synthase (SuSy) and invertase (INV), mainly hydrolyzing sucrose, presented higher gene expression in mother scales and bulblets at stages of bulblet appearance and enlargement, while sucrose phosphate synthase (SPS) showed higher expression in bulblets at morphogenesis. The enzymes involved in the starch synthetic direction such as ADPG pyrophosphorylase (AGPase), soluble starch synthase (SSS), starch branching enzyme (SBE) and granule-bound starch synthase (GBSS) showed a decreasing trend in mother scales and higher gene expression in bulblets at bulblet appearance and enlargement stages while the enzyme in the cleavage direction, starch de-branching enzyme (SDBE), showed higher gene expression in mother scales than in bulblets. An extensive transcriptome analysis of three bulblet development stages contributes considerable novel information to our understanding of carbohydrate metabolism-related genes in Lilium at the transcriptional level, and demonstrates the fundamentality of carbohydrate metabolism in bulblet emergence and development at the molecular level. This could facilitate further investigation into the molecular mechanisms underlying these processes in lily and other related species.
Rico, M; Rodríguez-Llamazares, S; Barral, L; Bouza, R; Montero, B
2016-09-20
Biocomposites suitable for short-life applications such as food packaging were prepared by melt processing and investigated. Biocomposites studied are wheat starch plasticized with two different molecular weight polyols (glycerol and sorbitol) and reinforced with various amounts of microcrystalline cellulose. The effect of the plasticizer type and the filler amount on the processing properties, the crystallization behavior and morphology developed for the materials, and the influence on thermal stability, dynamic mechanical properties and water absorption behavior were investigated. Addition of microcrystalline cellulose led to composites with good filler-matrix adhesion where the stiffness and resistance to humidity absorption were improved. The use of sorbitol as a plasticizer of starch also improved the stiffness and water uptake behavior of the material as well as its thermal stability. Biodegradable starch-based materials with a wide variety of properties can be tailored by varying the polyol plasticizer type and/or by adding microcrystalline cellulose filler. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chen, Xuetao; Li, Xia; Mao, Xinhui; Huang, Hanhan; Wang, Tingting; Qu, Zhuo; Miao, Jing; Gao, Wenyuan
2017-06-01
The effects of five different drying processes, air drying (AD), sulphur fumigation drying (SFD), hot air drying (HAD), freeze drying (FD) and microwave drying (MWD) for yams in terms of starch-related properties and antioxidant activity were studied. From the results of scanning electron microscopy (SEM), polarized optical microscopy (POM), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR), the MWD sample was found to contain gelatinized starch granules. The FD yam had more slow digestible (SDS) and resistant starches (RS) compared with those processed with other modern drying methods. The bioactive components and the reducing power of the dried yams, were lower than those of fresh yam. When five dried samples were compared by principal component analysis, the HAD and SFD samples were observed to have the highest comprehensive principal component values. Based on our results, HAD would be a better method for yam drying than the more traditional SFD. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lou, Jie-Chung; Lin, Yung-Chang
2008-02-01
Wastewater reuse can significantly reduce environmental pollution and save the water sources. The study selected Cheng-Ching Lake water treatment plant in southern Taiwan to discuss the feasibility of wastewater recycling and treatment efficiency of wastewater treatment units. The treatment units of this plant include wastewater basin, sedimentation basin, sludge thickener and sludge dewatering facility. In this study, the treatment efficiency of SS and turbidity were 48.35-99.68% and 24.15-99.36%, respectively, showing the significant removal efficiency of the wastewater process. However, the removal efficiencies of NH(3)-N, total organic carbon (TOC) and chemical oxygen demand (COD) are limited by wastewater treatment processes. Because NH(3)-N, TOC and COD of the mixing supernatant and raw water are regulated raw water quality standards, supernatant reuse is feasible and workable during wastewater processes at this plant. Overall, analytical results indicated that supernatant reuse is feasible.
Azevedo, Helena S; Reis, Rui L
2009-10-01
This paper reports the effect of alpha-amylase encapsulation on the degradation rate of a starch-based biomaterial. The encapsulation method consisted in mixing a thermostable alpha-amylase with a blend of corn starch and polycaprolactone (SPCL), which were processed by compression moulding to produce circular disks. The presence of water was avoided to keep the water activity low and consequently to minimize the enzyme activity during the encapsulation process. No degradation of the starch matrix occurred during processing and storage (the encapsulated enzyme remained inactive due to the absence of water), since no significant amount of reducing sugars was detected in solution. After the encapsulation process, the released enzyme activity from the SPCL disks after 28days was found to be 40% comparatively to the free enzyme (unprocessed). Degradation studies on SPCL disks, with alpha-amylase encapsulated or free in solution, showed no significant differences on the degradation behaviour between both conditions. This indicates that alpha-amylase enzyme was successfully encapsulated with almost full retention of its enzymatic activity and the encapsulation of alpha-amylase clearly accelerates the degradation rate of the SPCL disks, when compared with the enzyme-free disks. The results obtained in this work show that degradation kinetics of the starch polymer can be controlled by the amount of encapsulated alpha-amylase into the matrix.
H-Kittikun, Aran; Bourneow, Chaiwut; Benjakul, Soottawat
2012-12-01
Surimi wastewater (SWW) is an industrial wastewater, released during the washing step of surimi preparation from minced fish, that causes environmental problem. In this study, SWW produced from ornate threadfin bream (Nemipterus hexodon) was hydrolysed and used to cultivate Enterobacter sp. C2361 and Providencia sp. C1112 for the production of microbial transglutaminase (MTGase, EC 2.3.2.13). The SWW was repeatedly used to wash the fish mince that gained a final protein content of 3.20% (w/v). The commercial protease, Delvolase was the most appropriate protease used to produce fish protein hydrolysate (FPH) from SWW. The FPH at 40% degree of hydrolysis was used instead of a peptone portion in the SPY medium (3.0% starch, 2.0% peptone, 0.2% yeast extract, 0.2% MgSO(4), 0.2% K(2)HPO(4) and 0.2% KH(2)HPO(4), pH 7.0) to cultivate the tested strains at 37°C, shaking speed at 150rpm. Providencia sp. C1112 produced higher MTGase activity (1.78±0.05U/ml) than Streptoverticillium mobaraense (1.61±0.02U/ml) at 18h of cultivation in FPH medium. On the other hand, the Enterobacter sp. C2361 produced lower MTGase activity (1.18±0.03U/ml). Copyright © 2012 Elsevier Ltd. All rights reserved.
Initial sustainability assessment of tapioca starch production system in Lake Toba area
NASA Astrophysics Data System (ADS)
Situmorang, Asido; Manik, Yosef
2018-04-01
This study aims to explore to what extent the principles of sustainability have been applied in a tapioca industry located in Lake Toba area and to explore the aspects that open the opportunities for system improvement. In conducting such assessment, we adopted the life-cycle approach using Mass Flow Analysis methods that covers all cassava starch production processes from fresh cassava root till dry cassava starch. The inventory data were collected from the company, in the form of both production record and interviews. From data analysis the authors were able to present a linked flow that describes the production process of tapioca starch that quantifies into the functional unit of one pack marketable tapioca starch weighs 50 kg. In order to produce 50 kg of tapioca, 200 kg cassava root and 800 kg of water are required. This production efficiency translates to 25% yield. This system generates 40 kg of cassava peel, 60 kg of pulp and 850 kg of waste water. For starch drying 208.8 MJ of thermal energy is required in the form of heating fuel. The material flow analysis is employed for impact assessment. Several options in improving the operation are proposed includes utilization of pulp into more valuable co-products, integration of waste treatment plant to enable the use of water recycled from the extraction operation for the washing process, and to application of a waste water treatment system that produces biogas as a renewable energy, which reduces the consumption of fuel in dryer unit.
Physicochemical treatments of anionic surfactants wastewater: Effect on aerobic biodegradability.
Aloui, Fathi; Kchaou, Sonia; Sayadi, Sami
2009-05-15
The effect of different physicochemical treatments on the aerobic biodegradability of an industrial wastewater resulting from a cosmetic industry has been investigated. This industrial wastewater contains 11423 and 3148mgL(-1) of chemical oxygen demand (COD) and anionic surfactants, respectively. The concentration of COD and anionic surfactants were followed throughout the diverse physicochemical treatments and biodegradation experiments. Different pretreatments of this industrial wastewater using chemical flocculation process with lime and aluminium sulphate (alum), and also advanced oxidation process (electro-coagulation (Fe and Al) and electro-Fenton) led to important COD and anionic surfactants removals. The best results were obtained using electro-Fenton process, exceeding 98 and 80% of anionic surfactants and COD removals, respectively. The biological treatment by an isolated strain Citrobacter braakii of the surfactant wastewater, as well as the pretreated wastewater by the various physicochemical processes used in this study showed that the best results were obtained with electro-Fenton pretreated wastewater. The characterization of the treated surfactant wastewater by the integrated process (electro-coagulation or electro-Fenton)-biological showed that it respects Tunisian discharge standards.
Optimization of maltodextrin production from avocado seed starch by response surface methodology
NASA Astrophysics Data System (ADS)
Nguyen, Thanh Viet; Ma, Tuyen-Hoang Nguyen; Nguyen, Tha Thi; Ho, Vinh-Nghi Kim; Vo, Hau Tan
2018-04-01
A process for maltodextrin production from avocado seed starch was reported in this study. Response surface methodology was used to investigate the effects of three independent variables for hydrolysis of the starch using a commercial food-grade α-amylase, Termamyl SC. These variables included enzyme concentration (0.05 - 0.15% starch), pH (5.0 - 6.0) and hydrolysis time (1.0 - 3.0 h), while the temperature fixed at 95°C. The result showed that the optimum conditions were using enzyme concentration at 0.12%, pH at 5.5 and 2.75 h of the incubation time. Under the optimum conditions, the recovered starch yield was 79.8% and the maltodextrin powder had 15.8 of dextrose equivalent.
NASA Astrophysics Data System (ADS)
The liquefaction of pre-gelatinized starch was studied with various analytical techniques to determine the effects of starch molecular weight, granule structure, granule size, and mechanical depolymerization. Also, improvements were made in the chromatographic system used to characterize starch hydrolysates. Progress is reported on protein removal. The effects of pH, temperature, and ionic strength were examined for the removal of protein from a syrup stream by adsorption on a phenolic resin. Buffered systems, which maintain more stable pH values, were also examined. Mathematical modeling of the results is in progress. The pilot plant facility is complete and in operation. Starch streams containing 1% protein are being produced by the protein extraction process.
Mishra, Ankita; Singh, Anuradha; Sharma, Monica; Kumar, Pankaj; Roy, Joy
2016-10-06
Starch is a major part of cereal grain. It comprises two glucose polymer fractions, amylose (AM) and amylopectin (AP), that make up about 25 and 75 % of total starch, respectively. The ratio of the two affects processing quality and digestibility of starch-based food products. Digestibility determines nutritional quality, as high amylose starch is considered a resistant or healthy starch (RS type 2) and is highly preferred for preventive measures against obesity and related health conditions. The topic of nutrition security is currently receiving much attention and consumer demand for food products with improved nutritional qualities has increased. In bread wheat (Triticum aestivum L.), variation in amylose content is narrow, hence its limited improvement. Therefore, it is necessary to produce wheat lines or populations showing wide variation in amylose/resistant starch content. In this study, a set of EMS-induced M4 mutant lines showing dynamic variation in amylose/resistant starch content were produced. Furthermore, two diverse mutant lines for amylose content were used to study quantitative expression patterns of 20 starch metabolic pathway genes and to identify candidate genes for amylose biosynthesis. A population comprising 101 EMS-induced mutation lines (M4 generation) was produced in a bread wheat (Triticum aestivum) variety. Two methods of amylose measurement in grain starch showed variation in amylose content ranging from ~3 to 76 % in the population. The method of in vitro digestion showed variation in resistant starch content from 1 to 41 %. One-way ANOVA analysis showed significant variation (p < 0.05) in amylose and resistant starch content within the population. A multiple comparison test (Dunnett's test) showed that significant variation in amylose and resistant starch content, with respect to the parent, was observed in about 89 and 38 % of the mutant lines, respectively. Expression pattern analysis of 20 starch metabolic pathway genes in two diverse mutant lines (low and high amylose mutants) showed higher expression of key genes of amylose biosynthesis (GBSSI and their isoforms) in the high amylose mutant line, in comparison to the parent. Higher expression of amylopectin biosynthesis (SBE) was observed in the low amylose mutant lines. An additional six candidate genes showed over-expression (BMY, SPA) and reduced-expression (SSIII, SBEI, SBEIII, ISA3) in the high amylose mutant line, indicating that other starch metabolic genes may also contribute to amylose biosynthesis. In this study a set of 101 EMS-induced mutant lines (M4 generation) showing variation in amylose and resistant starch content in seed were produced. This population serves as useful germplasm or pre-breeding material for genome-wide study and improvement of starch-based processing and nutrition quality in wheat. It is also useful for the study of the genetic and molecular basis of amylose/resistant starch variation in wheat. Furthermore, gene expression analysis of 20 starch metabolic genes in the two diverse mutant lines (low and high amylose mutants) indicates that in addition to key genes, several other genes (such as phosphorylases, isoamylases, and pullulanases) may also be involved in contributing to amylose/amylopectin biosynthesis.
Preparation of porous (Ba,Sr)TiO3 by adding corn-starch
NASA Astrophysics Data System (ADS)
Kim, J.-G.; Sim, J.-H.; Cho, W.-S.
2002-11-01
A new method of preparing porous (Ba,Sr)TiO3 ceramics has been introduced, using an ordinary ceramics processing technique. The effect of corn-starch on the positive temperature coefficient of resistivity characteristics and microstructure of the porous (Ba,Sr)TiO3 ceramics has been investigated. When the corn-starch addition was 1-20 wt%, the PTCR jump was over 106 and 1-2 orders higher than that of samples without corn-starch. Also, it was found that the (Ba,Sr)TiO3 ceramics had porous microstructure by the addition of corn-starch. The porosity of the ceramics with 20 wt% corn-starch was 44%. The electrical properties of the (Ba,Sr)TiO3 ceramics have been discussed, based on the microstructure, resistivity of grain boundaries, donor concentration of grains and the electrical potential barrier of grain boundaries.
Starch Structure Influences Its Digestibility: A Review.
Magallanes-Cruz, Perla A; Flores-Silva, Pamela C; Bello-Perez, Luis A
2017-09-01
Twenty-five years ago, it was found that a significant fraction of the starch present in foods is not digested in the small intestine and continues to the large intestine, where it is fermented by the microbiota; this fraction was named resistant starch (RS). It was also reported that there is a fraction of starch that is slowly digested, sustaining a release of glucose in the small intestine. Later, health benefits were found to be associated with the consumption of this fraction, called slowly digestible starch (SDS). The authors declare both fractions to be "nutraceutical starch." An overview of the structure of both fractions (RS and SDS), as well as their nutraceutical characteristics, is presented with the objective of suggesting methods and processes that will increase both fractions in starchy foods and prevent diseases that are associated with the consumption of glycemic carbohydrates. © 2017 Institute of Food Technologists®.
40 CFR 63.143 - Process wastewater provisions-inspections and monitoring of operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-inspections and monitoring of operations. 63.143 Section 63.143 Protection of Environment ENVIRONMENTAL..., and Wastewater § 63.143 Process wastewater provisions—inspections and monitoring of operations. (a) For each wastewater tank, surface impoundment, container, individual drain system, and oil-water...
40 CFR 63.143 - Process wastewater provisions-inspections and monitoring of operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-inspections and monitoring of operations. 63.143 Section 63.143 Protection of Environment ENVIRONMENTAL..., and Wastewater § 63.143 Process wastewater provisions—inspections and monitoring of operations. (a) For each wastewater tank, surface impoundment, container, individual drain system, and oil-water...
40 CFR 63.143 - Process wastewater provisions-inspections and monitoring of operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
...-inspections and monitoring of operations. 63.143 Section 63.143 Protection of Environment ENVIRONMENTAL..., and Wastewater § 63.143 Process wastewater provisions—inspections and monitoring of operations. (a) For each wastewater tank, surface impoundment, container, individual drain system, and oil-water...
40 CFR 63.143 - Process wastewater provisions-inspections and monitoring of operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-inspections and monitoring of operations. 63.143 Section 63.143 Protection of Environment ENVIRONMENTAL..., and Wastewater § 63.143 Process wastewater provisions—inspections and monitoring of operations. (a) For each wastewater tank, surface impoundment, container, individual drain system, and oil-water...
Starch-Branching Enzyme IIa Is Required for Proper Diurnal Cycling of Starch in Leaves of Maize1[OA
Yandeau-Nelson, Marna D.; Laurens, Lieve; Shi, Zi; Xia, Huan; Smith, Alison M.; Guiltinan, Mark J.
2011-01-01
Starch-branching enzyme (SBE), a glucosyl transferase, is required for the highly regular pattern of α-1,6 bonds in the amylopectin component of starch. In the absence of SBEIIa, as shown previously in the sbe2a mutant of maize (Zea mays), leaf starch has drastically reduced branching and the leaves exhibit a severe senescence-like phenotype. Detailed characterization of the maize sbe2a mutant revealed that SBEIIa is the primary active branching enzyme in the leaf and that in its absence plant growth is affected. Both seedling and mature sbe2a mutant leaves do not properly degrade starch during the night, resulting in hyperaccumulation. In mature sbe2a leaves, starch hyperaccumulation is greatest in visibly senescing regions but also observed in green tissue and is correlated to a drastic reduction in photosynthesis within the leaf. Starch granules from sbe2a leaves observed via scanning electron microscopy and transmission electron microscopy analyses are larger, irregular, and amorphous as compared with the highly regular, discoid starch granules observed in wild-type leaves. This appears to trigger premature senescence, as shown by an increased expression of genes encoding proteins known to be involved in senescence and programmed cell death processes. Together, these results indicate that SBEIIa is required for the proper diurnal cycling of transitory starch within the leaf and suggest that SBEIIa is necessary in producing an amylopectin structure amenable to degradation by starch metabolism enzymes. PMID:21508184
Engineering starch accumulation by manipulation of phosphate metabolism of starch.
Weise, Sean E; Aung, Kimberly; Jarou, Zach J; Mehrshahi, Payam; Li, Ziru; Hardy, Anna C; Carr, David J; Sharkey, Thomas D
2012-06-01
A new understanding of leaf starch degradation has emerged in the last 10 years. It has been shown that starch phosphorylation and dephosphorylation are critical components of this process. Glucan, water dikinase (GWD) (and phosphoglucan, water dikinase) adds phosphate to starch, and phosphoglucan phosphatase (SEX4) removes these phosphates. To explore the use of this metabolism to manipulate starch accumulation, Arabidopsis (Arabidopsis thaliana) plants were engineered by introducing RNAi constructs designed to reduce expression of AtGWD and AtSEX4. The timing of starch build-up was altered with ethanol-inducible and senescence-induced gene promoters. Ethanol induction of RNAi lines reduced transcript for AtGWD and AtSEX4 by 50%. The transgenic lines had seven times more starch than wild type at the end of the dark period but similar growth rates and total biomass. Elevated leaf starch content in maize leaves was engineered by making an RNAi construct against a gene in maize that appeared to be homologous to AtGWD. The RNAi construct was expressed using the constitutive ubiquitin promoter. Leaf starch content at the end of a night period in engineered maize plants was 20-fold higher than in untransformed plants with no impact on total plant biomass. We conclude that plants can be engineered to accumulate starch in the leaves with little impact on vegetative biomass. © 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.
Assessment of the mobile bag method for estimation of in vivo starch digestibility.
Ghoorchi, T; Lund, P; Larsen, M; Hvelplund, T; Hansen-Møller, J; Weisbjerg, M R
2013-02-01
The objective was to assess the ability of the in situ mobile nylon bag method for predicting small intestinal and total tract starch digestibility. Starch disappearance was measured for 18 samples of different cereals and legumes subjected to different physical and chemical processing methods and compared with coherent in vivo digestibility. Starch disappearance was measured both with and without initial ruminal pre-incubation during 4 h. Bags were retrieved from either the ileal cannula or faeces. Two dry Danish Holstein cows fitted with rumen cannulas were used for rumen pre-incubations and two lactating Danish Holstein cows fitted with duodenal and ileal cannulas were used for intestinal incubations. Rumen pre-incubation had no significant effect on disappearance from bags recovered in faeces. The disappearance of legume starch was lower, both in the rumen and small intestine, compared with starch from barley, wheat, oats, ear maize and maize. Transit times of the mobile bags from duodenum to ileum were not significantly different between feeds. A weak positive correlation was found between in vivo small intestinal and total tract digestibility of starch and disappearance obtained using the mobile bag technique across a broad range of starch sources. Omitting two less conventional starch sources (NaOH wheat and xylose-treated barley) resulted in a high (0.87) correlation between total tract in vivo digestibility and mobile bag disappearance. The use of the mobile bag method for estimation of in vivo starch digestibility will therefore depend on the starch type.
13C-Labeled-Starch Breath Test in Congenital Sucrase-isomaltase Deficiency.
Robayo-Torres, Claudia C; Diaz-Sotomayor, Marisela; Hamaker, Bruce R; Baker, Susan S; Chumpitazi, Bruno P; Opekun, Antone R; Nichols, Buford L
2018-06-01
Human starch digestion is a multienzyme process involving 6 different enzymes: salivary and pancreatic α-amylase; sucrase and isomaltase (from sucrose-isomaltase [SI]), and maltase and glucoamylase (from maltase-glucoamylase [MGAM]). Together these enzymes cleave starch to smaller molecules ultimately resulting in the absorbable monosaccharide glucose. Approximately 80% of all mucosal maltase activity is accounted for by SI and the reminder by MGAM. Clinical studies suggest that starch may be poorly digested in those with congenital sucrase-isomaltase deficiency (CSID). Poor starch digestion occurs in individuals with CSID and can be documented using a noninvasive C-breath test (BT). C-Labled starch was used as a test BT substrate in children with CSID. Sucrase deficiency was previously documented in study subjects by both duodenal biopsy enzyme assays and C-sucrose BT. Breath CO2 was quantitated at intervals before and after serial C-substrate loads (glucose followed 75 minutes later by starch). Variations in metabolism were normalized against C-glucose BT (coefficient of glucose absorption). Control subjects consisted of healthy family members and a group of children with functional abdominal pain with biopsy-proven sucrase sufficiency. Children with CSID had a significant reduction of C-starch digestion mirroring that of their duodenal sucrase and maltase activity and C-sucrase BT. In children with CSID, starch digestion may be impaired. In children with CSID, starch digestion correlates well with measures of sucrase activity.
Biodegradability of tannin-containing wastewater from leather industry.
He, Qiang; Yao, Kai; Sun, Danhong; Shi, Bi
2007-08-01
Tannins occur commonly in the wastewaters from forestry, plant medicine, paper and leather industries. The treatment of this kind of wastewaters, including settling and biodegradation, is usually difficult because tannins are highly soluble in water and would inhibit the growth of microorganisms in activated sludge. The objective of this study is to investigate biodegradability of tannin-containing wastewaters, so as to characterize the pollution properties of such wastewaters and provide a reference for their biological treatment in wastewater treatment plants. The research was typified by using the wastewater collected from vegetable tanning process in leather industry. A model was developed to describe the activated sludge process, and the biodegradation kinetics of vegetable tanning wastewater (VET wastewater) was studied. It was found that the biodegradability of tannin-containing wastewater varies heavily with the content of tannins in wastewater. The biodegradation of VET wastewater with tannin content around 4,900 mg/l occurred inefficiently due to the inhibition of tannins to the activated sludge process, and only 34.7% of biodegradation extent was reached in 14 days of incubation. The optimal biodegradability of VET wastewater was observed when its tannin content was diluted to 490 mg/l, where the COD and tannin removals reached 51.3% and 45.1% respectively in 6 days. Hence, it is suggested that a proper control of tannin content is necessary to achieve an effective biodegradation of tannin-containing wastewaters in wastewater treatment plants.
1986-02-01
glumate Salt Tomatoes, whole Tomato paste, 26% solids Starch* Flour Dehydrated onion pieces, rehydrated Sugar , white Cinnamon Stock...Margarine Hydrolyzed vegetable protein, Nestles 4BE Starch* Vinegar, cider, 40 grain Salt Monosodium glutamate Sugar , white Celery seed, ground...peppers Tomato paste, 26% solids Brown sugar Starch* Dehydrated onion pieces, rehydrated Cider vinegar, 40 grain Salt Monosodium glutamate Liquid
[Effect of extrusion on protein and starch bioavailability in corn and lima bean flour blends].
Pérez-Navarrete, Cecilia; Betancur-Ancona, David; Casotto, Meris; Carmona, Andrés; Tovar, Juscelino
2007-09-01
Extrusion is used to produce crunchy expanded foods, such as snacks. The nutritional impact of this process has not been studied sufficiently. In this study, in vitro and in vivo protein and starch bioavailability was evaluated in both raw and extruded corn (Zea mays)(C) and lima bean (Phaseolus lunatus)(B) flour blends, prepared in 75C/25B and 50C/ 50B (p/p) proportions. These were processed with a Brabender extruder at 160 degrees C, 100 rpm and 15.5% moisture content. Proximate composition showed that in the extruded products protein and ash contents increased whereas the fat level decreased. In vitro protein digestibility was higher in the extrudates (82%) than in the raw flours (77%). Potentially available starch and resistant starch contents decreased with extrusion. The in vitro assays indicated that extrusion improved protein and starch availability in the studied blends. In vivo bioavailability was evaluated using the rice weevil (Sithophilus oryzae) as a biological model. The most descriptive biomarkers of the changes suggested by the in vivo tests were body protein content (increased by extrusion) and intestinal a-amylase activity (decreased by processing). Overall, results suggest that extrusion notably increases the nutritional quality of corn and lima bean flour blends.
A debranching enzyme IsoM of Corallococcus sp. strain EGB with potential in starch processing.
Li, Zhoukun; Ji, Kai; Zhou, Jie; Ye, Xianfeng; Wang, Ting; Luo, Xue; Huang, Yan; Cao, Hui; Cui, Zhongli; Kong, Yi
2017-12-01
Interest in use of resistant starch and maltooligosaccharides as functional foods and biopreservatives has grown in recent years. In this research, a novel debranching enzyme IsoM from Corallococcus sp. strain EGB was identified and expressed in P. pastoris GS115. Sequence alignments showed that IsoM was typical isoamylase with the specific activity up to 70,600U/mg, which belongs to glycoside hydrolase family 13 (GH 13). Enzymatic reaction pattern demonstrated that IsoM has high debranching efficiency against α-1,6-glycosidic bond of branched starch, and exhibited no activity towards α-1,4-glycosidic bond. The potential application of IsoM in starch processing was determined. IsoM was a potential candidate for the production of RS (70.9%) from raw starch, which was comparable with the commercial pullulanase (Promozyme ® D2). IsoM also improved the maltohexaose yield in combination with maltohexaose-producing α-amylase AmyM (KM114206), the maltohexaose yield was improved by 63.3% compared with 21.9% improvement of Promozyme ® D2. The results of RS production and combination with other amylases suggesting that IsoM is a potential candidate for the efficient conversion of starch. Copyright © 2017. Published by Elsevier B.V.
Digestibility of gluten proteins is reduced by baking and enhanced by starch digestion.
Smith, Frances; Pan, Xiaoyan; Bellido, Vincent; Toole, Geraldine A; Gates, Fred K; Wickham, Martin S J; Shewry, Peter R; Bakalis, Serafim; Padfield, Philip; Mills, E N Clare
2015-10-01
Resistance of proteins to gastrointestinal digestion may play a role in determining immune-mediated adverse reactions to foods. However, digestion studies have largely been restricted to purified proteins and the impact of food processing and food matrices on protein digestibility is poorly understood. Digestibility of a total gliadin fraction (TGF), flour (cv Hereward), and bread was assessed using in vitro batch digestion with simulated oral, gastric, and duodenal phases. Protein digestion was monitored by SDS-PAGE and immunoblotting using monoclonal antibodies specific for celiac-toxic sequences (QQSF, QPFP) and starch digestion by measuring undigested starch. Whereas the TGF was rapidly digested during the gastric phase the gluten proteins in bread were virtually undigested and digested rapidly during the duodenal phase only if amylase was included. Duodenal starch digestion was also slower in the absence of duodenal proteases. The baking process reduces the digestibility of wheat gluten proteins, including those containing sequences active in celiac disease. Starch digestion affects the extent of protein digestion, probably because of gluten-starch complex formation during baking. Digestion studies using purified protein fractions alone are therefore not predictive of digestion in complex food matrices. © 2015 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Encapsulating fatty acid esters of bioactive compounds in starch
NASA Astrophysics Data System (ADS)
Lay Ma, Ursula Vanesa
Interest in the use of many bioactive compounds in foods is growing in large part because of the apparent health benefits of these molecules. However, many of these compounds can be easily degraded during processing, storage, or their passage through the gastrointestinal tract before reaching the target site. In addition, they can be bitter, acrid, or astringent, which may negatively affect the sensory properties of the product. Encapsulation of these molecules may increase their stability during processing, storage, and in the gastrointestinal tract, while providing controlled release properties. The ability of amylose to form inclusion complexes and spherulites while entrapping certain compounds has been suggested as a potential method for encapsulation of certain molecules. However, complex formation and spherulitic crystallization are greatly affected by the type of inclusion molecules, type of starch, and processing conditions. The objectives of the present investigation were to: (a) study the effect of amylose, amylopectin, and intermediate material on spherulite formation and its microstructure; (b) investigate the formation of amylose and high amylose starch inclusion complexes with ascorbyl palmitate, retinyl palmitate, and phytosterol esters; (c) evaluate the ability of spherulites to form in the presence of fatty acid esters and to entrap ascorbyl palmitate, retinyl palmitate, and phytosterol esters; and (d) evaluate the effect of processing conditions on spherulite formation and fatty acid ester entrapment. Higher ratios of linear to branched molecules resulted in the formation of more and rounder spherulites with higher heat stability. In addition to the presence of branches, it appears that spherulitic crystallization is also affected by other factors, such as degree of branching, chain length, and chain length distribution. Amylose and Hylon VII starch formed inclusion complexes with fatty acid esters of ascorbic acid, retinol, or phytosterols. However, only retinyl palmitate formed a complex with amylopectin. In general, ascorbyl palmitate resulted in the highest complexation, followed by retinyl palmitate and phytosterol ester. The presence of native lipids in Hylon VII starch did not inhibit complex formation. On the contrary, native lipids appear to increase the complexation yield and thermal stability of the starch-fatty acid ester inclusion complexes, possibly due to the formation of ternary complexes. From the three fatty acid esters studied, only ascorbyl palmitate was entrapped in starch spherulites. Various structures including round spherulites, various sizes of torus-shape spherulites, non-spherulitic birefringent and non-birefringent particles, "balloon" morphologies, and gel-like material were formed depending on processing conditions. However, only the torus-shape spherulites, and some non-spherulitic birefringent and non-birefringent particles showed ascorbyl palmitate entrapment. The % yield of the precipitate increased with higher % of added Hylon VII, and decreased with higher heating temperature and faster cooling rates. The amount of entrapped ascorbyl palmitate in the starch precipitate seems to be governed by the amount of this compound added during processing. This study showed that starch can form inclusion complexes with fatty acid esters which may be used for the delivery of certain bioactive molecules. In addition, encapsulation of fatty acid esters in starch spherulites may be a good potential delivery system for water soluble bioactive molecules. However, further research is necessary to gain a better understanding of the type of molecules that can be entrapped in starch spherulites, and the factors affecting spherulitic crystallization and bioactive compound entrapment.
Zhu, Shuangyue; Zheng, Maosheng; Li, Can; Gui, Mengyao; Chen, Qian; Ni, Jinren
2015-06-01
Much effort has been made for reducing nitrous oxide (N2O) emission in wastewater treatment processes. This paper presents an interesting way to minimize N2O in aerobic denitrification by strain Pseudomonas stutzeri PCN-1 with help of corn flour as cheaper additional carbon source. Experimental results showed that maximal N2O accumulation by strain PCN-1 was only 0.02% of removed nitrogen if corn flour was used as sole carbon source, which was significantly reduced by 52.07-99.81% comparing with others such as succinate, glucose, acetate and citrate. Sustained release of reducing sugar from starch and continuous expression of nosZ coding for N2O reductase contributed to the special role of corn flour as the ideal carbon source for strain PCN-1. Further experiments in sequencing batch reactors (SBRs) demonstrated similarly efficient nitrogen removal with much less N2O emission due to synergy of the novel strain and activated sludge, which was then confirmed by quantitative PCR analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Seung, David; Soyk, Sebastian; Coiro, Mario; Maier, Benjamin A.; Eicke, Simona; Zeeman, Samuel C.
2015-01-01
The domestication of starch crops underpinned the development of human civilisation, yet we still do not fully understand how plants make starch. Starch is composed of glucose polymers that are branched (amylopectin) or linear (amylose). The amount of amylose strongly influences the physico-chemical behaviour of starchy foods during cooking and of starch mixtures in non-food manufacturing processes. The GRANULE-BOUND STARCH SYNTHASE (GBSS) is the glucosyltransferase specifically responsible for elongating amylose polymers and was the only protein known to be required for its biosynthesis. Here, we demonstrate that PROTEIN TARGETING TO STARCH (PTST) is also specifically required for amylose synthesis in Arabidopsis. PTST is a plastidial protein possessing an N-terminal coiled coil domain and a C-terminal carbohydrate binding module (CBM). We discovered that Arabidopsis ptst mutants synthesise amylose-free starch and are phenotypically similar to mutants lacking GBSS. Analysis of granule-bound proteins showed a dramatic reduction of GBSS protein in ptst mutant starch granules. Pull-down assays with recombinant proteins in vitro, as well as immunoprecipitation assays in planta, revealed that GBSS physically interacts with PTST via a coiled coil. Furthermore, we show that the CBM domain of PTST, which mediates its interaction with starch granules, is also required for correct GBSS localisation. Fluorescently tagged Arabidopsis GBSS, expressed either in tobacco or Arabidopsis leaves, required the presence of Arabidopsis PTST to localise to starch granules. Mutation of the CBM of PTST caused GBSS to remain in the plastid stroma. PTST fulfils a previously unknown function in targeting GBSS to starch. This sheds new light on the importance of targeting biosynthetic enzymes to sub-cellular sites where their action is required. Importantly, PTST represents a promising new gene target for the biotechnological modification of starch composition, as it is exclusively involved in amylose synthesis. PMID:25710501
Botticella, Ermelinda; Sestili, Francesco; Sparla, Francesca; Moscatello, Stefano; Marri, Lucia; Cuesta-Seijo, Jose A; Falini, Giuseppe; Battistelli, Alberto; Trost, Paolo; Lafiandra, Domenico
2018-03-02
Modifications to the composition of starch, the major component of wheat flour, can have a profound effect on the nutritional and technological characteristics of the flour's end products. The starch synthesized in the grain of conventional wheats (Triticum aestivum) is a 3:1 mixture of the two polysaccharides amylopectin and amylose. Altering the activity of certain key starch synthesis enzymes (GBSSI, SSIIa and SBEIIa) has succeeded in generating starches containing a different polysaccharide ratio. Here, mutagenesis, followed by a conventional marker-assisted breeding exercise, has been used to generate three mutant lines that produce starch with an amylose contents of 0%, 46% and 79%. The direct and pleiotropic effects of the multiple mutation lines were identified at both the biochemical and molecular levels. Both the structure and composition of the starch were materially altered, changes which affected the functionality of the starch. An analysis of sugar and nonstarch polysaccharide content in the endosperm suggested an impact of the mutations on the carbon allocation process, suggesting the existence of cross-talk between the starch and carbohydrate synthesis pathways. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Influence of genotype and ensiling of corn grain on in situ degradation of starch in the rumen.
Philippeau, C; Michalet-Doreau, B
1998-08-01
This trial was conducted to determine the influence of genotype and ensiling of corn grain on the rate and extent of ruminal starch degradation. Two cultivars of corn that differed in texture of the endosperm, dent (Zea mays ssp. indentata) or flint (Zea mays ssp. indentura) were harvested at 30% whole-plant dry matter (DM). After separation from stover and cob, the kernels were coarsely chopped and ensiled or not ensiled. Grains were oven-dried at 40 degrees C and either ground through a 3-mm sieve or left unground. Ruminal DM and starch degradabilities were determined using the in situ technique. The proportion of starch lost through the pores of the bag without degradation was also determined. Mean ruminal DM and starch degradabilities were higher for ground grains than for chopped grains, which could be related to the proportion of DM and starch lost through the pores of the bag. For unensiled, chopped grain, ruminal starch degradability was higher for dent corn than for flint corn (72.3% vs. 61.6%). The ensiling process increased ruminal starch degradability, averaging 5.8 percentage units. The difference in ruminal starch degradability between dent corn and flint corn remained constant whether the corn was unensiled or ensiled (10.7 vs. 11.6 percentage units).
Philippeau, C; Varloud, M; Julliand, V
2014-05-01
To determine prececal starch digestibili-ty and estimate glucose uptake from the digestion of 4 forms of barley in the small intestine, 4 mature cecally fistulated geldings (449 ± 41 kg BW) fed a 62:38 (wt/wt) meadow hay:concentrate diet at 1.7 kg DM/100 kg BW were included in a 4 × 4 Latin square design experiment. During each period, horses received 80% DM of their concentrate as 1 of the 4 forms of a same batch of barley, whole grain, 2.5 mm ground, steam flaked, and pelleted. Hay was offered in 2 equal meals and concentrate in 2 unequal meals. The starch supply in the morning meal amounted 2.7 g starch/kg BW. At each period, mobile bag DM and starch disappearance was determined. Except for ground barley, each form of barley was 4 mm ground before being introduced in the bag. Nylon bags containing each substrate were intubated in the horse receiving the pelleted barley. Bags were collected in the cecum for 10 h postintubation. At each period, postprandial glycemia was measured on blood samples collected on the 4 horses via an indwelling jugular catheter just before the concentrate morning meal and for 8 h. No hay in the morning meal was given the day of the measurements. Whole blood glucose was analyzed with a portable blood glucose meter. Mobile bag prececal DM disappearance and starch disappearance depended (P < 0.01) on barley form. Prececal starch disappearance of whole barley was the lowest but no difference (P > 0.05) was detected among the 3 processed grains. No significant effect of barley form was found whatever the glycemic parameters. No significant correlation was reported between glycemic parameters and the amount of prececal mobile bag disappeared starch calculated as the starch intake in the morning meal by the mobile bag starch disappearance. To conclude, the whole form of barley exhibited the lowest prececal mobile bag starch disappearance whereas, in relationship with large individual variations, no significant variation has been shown in glycemic parameters. Further investigations should be performed to improve methods for estimating prececal starch digestion of processed cereals in the different digestive segments of horses.
Zhang, Bo; Yu, Quanwei; Yan, Guoqi; Zhu, Hubo; Xu, Xiang Yang; Zhu, Liang
2018-03-15
To understand the seasonal variation of the activated sludge (AS) bacterial community and identify core microbes in different wastewater processing systems, seasonal AS samples were taken from every biological treatment unit within 4 full-scale wastewater treatment plants. These plants adopted A2/O, A/O and oxidation ditch processes and were active in the treatment of different types and sources of wastewater, some domestic and others industrial. The bacterial community composition was analyzed using high-throughput sequencing technology. The correlations among microbial community structure, dominant microbes and process performance were investigated. Seasonal variation had a stronger impact on the AS bacterial community than any variation within different wastewater treatment system. Facing seasonal variation, the bacterial community within the oxidation ditch process remained more stable those in either the A2/O or A/O processes. The core genera in domestic wastewater treatment systems were Nitrospira, Caldilineaceae, Pseudomonas and Lactococcus. The core genera in the textile dyeing and fine chemical industrial wastewater treatment systems were Nitrospira, Thauera and Thiobacillus.
Chahal, C; van den Akker, B; Young, F; Franco, C; Blackbeard, J; Monis, P
2016-01-01
Disinfection guidelines exist for pathogen inactivation in potable water and recycled water, but wastewater with high numbers of particles can be more difficult to disinfect, making compliance with the guidelines problematic. Disinfection guidelines specify that drinking water with turbidity ≥1 Nephelometric Turbidity Units (NTU) is not suitable for disinfection and therefore not fit for purpose. Treated wastewater typically has higher concentrations of particles (1-10NTU for secondary treated effluent). Two processes widely used for disinfecting wastewater are chlorination and ultraviolet radiation. In both cases, particles in wastewater can interfere with disinfection and can significantly increase treatment costs by increasing operational expenditure (chemical demand, power consumption) or infrastructure costs by requiring additional treatment processes to achieve the required levels of pathogen inactivation. Many microorganisms (viruses, bacteria, protozoans) associate with particles, which can allow them to survive disinfection processes and cause a health hazard. Improved understanding of this association will enable development of cost-effective treatment, which will become increasingly important as indirect and direct potable reuse of wastewater becomes more widespread in both developed and developing countries. This review provides an overview of wastewater and associated treatment processes, the pathogens in wastewater, the nature of particles in wastewater and how they interact with pathogens, and how particles can impact disinfection processes. Copyright © 2016 Elsevier Inc. All rights reserved.
Szymońska, Joanna; Molenda, Marcin; Wieczorek, Jerzy
2015-12-10
Interactions of potato and corn starch granules with ions in diluted solutions of silver, lead, copper or iron salts were investigated. It was shown experimentally that granules accumulated the cations in amounts depending on the granule structure and water content as well as a type of both metal and counter-ions present in solution. Potato starch retained almost three times more cations compared to corn starch what was proportional to the total phosphorous content in these starches. Quantity of milligrams of cations bound by 1g of starch was inversely correlated with the cation hydration. Ag(+), Pb(2+) and Cu(2+) were connected in stoichiometric amounts of moles to semicrystalline and amorphous parts of the granules. Fe(3+) ions were accumulated in higher than stoichiometric quantities mainly in granule amorphous regions. Metal ions penetrated into granules together with anions except nitrates which remained on surface of potato starch granules. Cations facilitated the starch thermal decomposition in accordance with values of their standard redox potentials. Nitrates supported this process only in the presence of base metal cations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Singh, Vineet; Pandey, Bhawna; Suthar, Surindra
2018-06-01
The increasing availability of antibiotics in wastewater has created a serious threat to non-target organisms in the environment. The aim of this study was to evaluate the potential toxicity of amoxicillin on duckweed Spirodela polyrhiza during a short-term exposure (7 d). The duckweed was exposed to a range of environmentally relevant (0.0001-0.01 mg L -1 ) and high (0.1 and 1 mg L -1 ) concentrations of amoxicillin. Subsequently, biomarkers of toxicity such as growth, pigments (Chl a, Chl b and carotenoids), antioxidative enzyme activity (catalase, CAT; superoxide dismutase, SOD; and ascorbate peroxidases, APX), and biochemical content (protein, lipid and starch) were analysed in their fronds. The high dose (1 mg L -1 ) of amoxicillin caused a significant (p < 0.05) decrease in photopigments, protein, starch and lipid content and an increase in carotenoids/total Chl and Chl a/Chl b ratios in fronds of Spirodela polyrhiza. The results showed a shift in biomarkers: a decrease in frond growth and relative growth rate (RGR) (16.2-53.8%) and an increase in the activities (mmol mg protein -1 ) of CAT (0.021-0.041), APX (0.84-2.49) and SOD (0.12-0.23) in fronds. The significantly (p < 0.05) greater reduction in amoxicillin content in duckweed setups (84.6-100%) than in the control (62.1-73%) suggested that phytodegradation is an important mechanism in removing antibiotics from water, apart from hydrolysis and photodegradation, which occur in control setups. Overall, the results suggested a toxic effect of amoxicillin on Spirodela polyrhiza, even at low concentrations, and nonetheless, the duckweed contributed directly to the degradation of antibiotics in the water and throughout the phytoremediation process. Copyright © 2018 Elsevier Ltd. All rights reserved.
40 CFR 415.381 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... process wastewater means any water which, during manufacturing or processing, comes into direct contact... wastewater. (d) The term contaminated nonprocess wastewater shall mean any water which, during manufacturing...) accidental leaks caused by the failure of process equipment, which are repaired within the shortest...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coţa, C.; Cioica, N., E-mail: cioica@inma.ro; Nagy, E. M.
The effect of the nature and the content of the plasticizers (water, glycerol) on the corn starch based biodegradable packages properties (crystalline-amorphous) and also on their degradation process after absorption of distilled water were investigated by {sup 1}H NMR relaxation and {sup 13}C CP/MAS NMR spectroscopies. For this goal, a set of 14 samples with various starch/glycerol/water (mass %) ratios were prepared and investigated after extrusion process in order to establish their crystalline or amorphous character. The composition having starch/glycerol/water 68/17/15 mass % ratio was found to have a dominant amorphous character and very similar features with a commercial specimenmore » (USA) used for the package. It was also found that this best package is extremely degraded after just one day under water absorption. The most resistant package was that with a large content of starch (78/19.5/2.5)« less
NASA Astrophysics Data System (ADS)
Coťa, C.; Cioica, N.; Filip, C.; Fechete, R.; Todica, M.; Nagy, E. M.; Cozar, O.
2015-12-01
The effect of the nature and the content of the plasticizers (water, glycerol) on the corn starch based biodegradable packages properties (crystalline-amorphous) and also on their degradation process after absorption of distilled water were investigated by 1H NMR relaxation and 13C CP/MAS NMR spectroscopies. For this goal, a set of 14 samples with various starch/glycerol/water (mass %) ratios were prepared and investigated after extrusion process in order to establish their crystalline or amorphous character. The composition having starch/glycerol/water 68/17/15 mass % ratio was found to have a dominant amorphous character and very similar features with a commercial specimen (USA) used for the package. It was also found that this best package is extremely degraded after just one day under water absorption. The most resistant package was that with a large content of starch (78/19.5/2.5).
Gahlawat, P; Sehgal, S
1998-01-01
A technique for development of potato flour was standardized. Five products viz. cake, biscuit, weaning food, panjiri and ladoo were prepared incorporating potato flour, defatted soy flour and corn flour. Baking and roasting were the major processing techniques employed for the development of these products. Protein, ash and fat contents of potato flour were almost similar to those of raw potatoes. Significant differences in protein, ash and fat contents of all the products were observed. Protein and starch digestibility of potato flour was significantly higher than that of raw potatoes. Protein digestibility increased by 12 to 17 percent on baking or roasting of products. Processed products had significantly higher starch digestibility and mineral availability compared to raw products. Thus, it can be concluded that roasting and baking are effective means of improving starch and protein digestibility and mineral availability of products.
Analysis of Wastewater Treatment Efficiency in a Soft Drinks Industry
NASA Astrophysics Data System (ADS)
Boguniewicz-Zabłocka, Joanna; Capodaglio, Andrea G.; Vogel, Daniel
2017-10-01
During manufacturing processes, most industrial plants generate wastewater which could become harmful to the environment. Discharge of untreated or improperly treated industrial wastewaters into surface water could, in fact, lead to deterioration of the receiving water body's quality. This paper concerns wastewater treatment solutions used in the soft drink production industry: wastewater treatment plant effectiveness analysis was determined in terms of basic pollution indicators, such as BOD, COD, TSS and variable pH. Initially, the performance of mechanic-biological systems for the treatment of wastewater from a specific beverages production process was studied in different periods, due to wastewater flow fluctuation. The study then showed the positive effects on treatment of wastewater augmentation by methanol, nitrogen and phosphorus salts dosed into it during the treatment process. Results confirm that after implemented modification (methanol, nitrogen and phosphorus additions) pollution removal occurs mostly with higher efficiency.
New trends in removing heavy metals from wastewater.
Zhao, Meihua; Xu, Ying; Zhang, Chaosheng; Rong, Hongwei; Zeng, Guangming
2016-08-01
With the development of researches, the treatments of wastewater have reached a certain level. Whereas, heavy metals in wastewater cause special concern in recent times due to their recalcitrance and persistence in the environment. Therefore, it is important to get rid of the heavy metals in wastewater. The previous studies have provided many alternative processes in removing heavy metals from wastewater. This paper reviews the recent developments and various methods for the removal of heavy metals from wastewater. It also evaluates the advantages and limitations in application of these techniques. A particular focus is given to innovative removal processes including adsorption on abiological adsorbents, biosorption, and photocatalysis. Because these processes have leaded the new trends and attracted more and more researches in removing heavy metals from wastewater due to their high efficency, pluripotency and availability in a copious amount. In general, the applicability, characteristic of wastewater, cost-effectiveness, and plant simplicity are the key factors in selecting the most suitable method for the contaminated wastewater.
Paint removal using wheat starch blast media
NASA Astrophysics Data System (ADS)
Foster, Terry; Oestreich, John
1993-03-01
A review of the Wheat Starch Blasting technology is presented. Laboratory evaluations covering Almen Arc testing on bare 2024-T3 aluminum and magnesium, as well as crack detection on 7075-T6 bare aluminum, are discussed. Comparisons with Type V plastic media show lower residual stresses are achieved on aluminum and magnesium with wheat starch media. Dry blasting effects on the detection of cracks confirms better crack visibility with wheat starch media versus Type V or Type II plastic media. Testing of wheat starch media in several composite test programs, including fiberglass, Kevlar, and graphite-epoxy composites, showed no fiber damage. Process developments and production experience at the first U.S. aircraft stripping facility are also reviewed. Corporate and regional aircraft are being stripped in this three nozzle dry blast hanger.
Low frequency ultrasonic-assisted hydrolysis of starch in the presence of α-amylase.
Gaquere-Parker, Anne; Taylor, Tamera; Hutson, Raihannah; Rizzo, Ashley; Folds, Aubrey; Crittenden, Shastina; Zahoor, Neelam; Hussein, Bilal; Arruda, Aaron
2018-03-01
Hydrolysis of starch is an important process in the food industry and in the production of bioethanol or smaller carbohydrate molecules that can be used as starting blocks for chemical synthesis. Such hydrolysis can be enhanced by lowering the pH, heating the reaction mixture or catalyzing the reaction with enzymes. This study reports the effect of sonication on the reaction rate of starch hydrolysis at different temperatures, in the presence or absence of alpha-amylase. Starch Azure, a commercially available potato starch covalently linked with Remazol Brilliant Blue, has been chosen since its hydrolysis releases a blue dye, which concentration can be monitored by UV Vis spectroscopy. Ultrasounds, regardless of experimental conditions, provide the highest reaction rate for such hydrolysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Wastewater Provisions for Process Units at New Sources 8 Table 8 to Subpart G of Part 63 Protection of... Vessels, Transfer Operations, and Wastewater Pt. 63, Subpt. G, Table 8 Table 8 to Subpart G of Part 63—Organic HAP's Subject to the Wastewater Provisions for Process Units at New Sources Chemical name CAS No...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Wastewater Provisions for Process Units at New Sources 8 Table 8 to Subpart G of Part 63 Protection of... Vessels, Transfer Operations, and Wastewater Pt. 63, Subpt. G, Table 8 Table 8 to Subpart G of Part 63—Organic HAP's Subject to the Wastewater Provisions for Process Units at New Sources Chemical name CAS No...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Wastewater Provisions for Process Units at New Sources 8 Table 8 to Subpart G of Part 63 Protection of... Vessels, Transfer Operations, and Wastewater Pt. 63, Subpt. G, Table 8 Table 8 to Subpart G of Part 63—Organic HAP's Subject to the Wastewater Provisions for Process Units at New Sources Chemical name CAS No...
Lee, Han-Seung; Shockley, Keith R.; Schut, Gerrit J.; Conners, Shannon B.; Montero, Clemente I.; Johnson, Matthew R.; Chou, Chung-Jung; Bridger, Stephanie L.; Wigner, Nathan; Brehm, Scott D.; Jenney, Francis E.; Comfort, Donald A.; Kelly, Robert M.; Adams, Michael W. W.
2006-01-01
Pyrococcus furiosus utilizes starch and its degradation products, such as maltose, as primary carbon sources, but the pathways by which these α-glucans are processed have yet to be defined. For example, its genome contains genes proposed to encode five amylolytic enzymes (including a cyclodextrin glucanotransferase [CGTase] and amylopullulanase), as well as two transporters for maltose and maltodextrins (Mal-I and Mal-II), and a range of intracellular enzymes have been purified that reportedly metabolize maltodextrins and maltose. However, precisely which of these enzymes are involved in starch processing is not clear. In this study, starch metabolism in P. furiosus was examined by biochemical analyses in conjunction with global transcriptional response data for cells grown on a variety of glucans. In addition, DNA sequencing led to the correction of two key errors in the genome sequence, and these change the predicted properties of amylopullulanase (now designated PF1935*) and CGTase (PF0478*). Based on all of these data, a pathway is proposed that is specific for starch utilization that involves one transporter (Mal-II [PF1933 to PF1939]) and only three enzymes, amylopullulanase (PF1935*), 4-α-glucanotransferase (PF0272), and maltodextrin phosphorylase (PF1535). Their expression is upregulated on starch, and together they generate glucose and glucose-1-phosphate, which then feed into the novel glycolytic pathway of this organism. In addition, the results indicate that several hypothetical proteins encoded by three gene clusters are also involved in the transport and processing of α-glucan substrates by P. furiosus. PMID:16513741
NASA Astrophysics Data System (ADS)
Sierra, Carlos; Resa, Pablo; Buckin, Vitaly; Elvira, Luis
2012-05-01
The online monitoring of enzymatic starch hydrolysis is an important issue for several industrial sectors, mainly in the alimentary industry. Ultrasonic non-invasive methods based on the detection of wave velocity and amplitude changes can be used to study this enzymatic reaction. These wave propagating changes are result of physicalchemical modifications produced in the media by the starch hydrolysis. In this work the starch hydrolysis induced by the enzyme α-amylase from Aspergillus oryzae is studied. This biochemical reaction has been monitored using a high-resolution ultrasonic spectroscopy (HR-US) which is non-invasive and nondestructive. The measured time profiles o of ultrasonic velocity are explained in terms of the starch hydrolysis and the subsequent production of oligosaccharides as a consequence of the enzymatic action. The obtained results have been compared to a conventional off-line technique used in biochemistry, the iodine-starch reaction, a spectrophotometric method to quantify the amount of starch remaining in the medium. The combination of these two types of measurement provides more complete information about the biochemical processes occurred during hydrolysis.
Microstructural and techno-functional properties of cassava starch modified by ultrasound.
Monroy, Yuliana; Rivero, Sandra; García, María A
2018-04-01
This work was focused on the correlation between the structural and techno-functional properties of ultrasound treated cassava starch for the preparation of tailor-made starch-based ingredients and derivatives. Furthermore, the effect of treatment time, sample conditioning and ultrasound amplitude was studied. Ultrasonic treatment of cassava starch induced structural disorganization and microstructural changes evidenced mainly in the morphological characteristics of the granules and in their degrees of crystallinity. These structural modifications were supported by ATR-FTIR and SEM and CSLM studies as well as DRX and thermal analysis. The selection of the processing conditions is critical due to the complete gelatinization of the starch was produced with the maximum amplitude tested and without temperature control. Rheological dynamical analysis indicated changes at the molecular level in starch granules due to the ultrasound treated, revealing the paste stability under refrigeration condition. PCA allow to establish the interrelationships between microstructural and techno-functional properties. In summary, different starch derivatives could be obtained by adjusting the ultrasound treatment conditions depending on their potential applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Akoh, Casimir C; Chang, Shu-Wei; Lee, Guan-Chiun; Shaw, Jei-Fu
2008-11-26
Many industrial products and functional foods can be obtained from cheap and renewable raw agricultural materials. For example, starch can be converted to bioethanol as biofuel to reduce the current demand for petroleum or fossil fuel energy. On the other hand, starch can also be converted to useful functional ingredients, such as high fructose and high maltose syrups, wine, glucose, and trehalose. The conversion process involves fermentation by microorganisms and use of biocatalysts such as hydrolases of the amylase superfamily. Amylases catalyze the process of liquefaction and saccharification of starch. It is possible to perform complete hydrolysis of starch by using the fusion product of both linear and debranching thermostable enzymes. This will result in saving energy otherwise needed for cooling before the next enzyme can act on the substrate, if a sequential process is utilized. Recombinant enzyme technology, protein engineering, and enzyme immobilization are powerful tools available to enhance the activity of enzymes, lower the cost of enzyme through large scale production in a heterologous host, increase their thermostability, improve pH stability, enhance their productivity, and hence making it competitive with the chemical processes involved in starch hydrolysis and conversions. This review emphasizes the potential of using biocatalysis for the production of useful industrial products and functional foods from cheap agricultural produce and transgenic plants. Rice was selected as a typical example to illustrate many applications of biocatalysis in converting low-value agricultural produce to high-value commercial food and industrial products. The greatest advantages of using enzymes for food processing and for industrial production of biobased products are their environmental friendliness and consumer acceptance as being a natural process.
Sankhon, Abdoulaye; Amadou, Issoufou; Yao, Wei-Rong; Wang, Heya; Qian, He; Sangare, Moustapha
2014-01-01
African locust bean tree is an important food tree for both human and livestock such as husks and pods. It plays a very vital role in the rural areas. The aim of this study was to evaluate some physicochemical, mineral characteristics and functional properties of flour and starch extract produced from Parkia biglobosa seeds, using different methods. Three different methods were used for starch extraction in other to get the Starch yield (%),composition analysis for; moisture, protein, fat, ash and fiber contents of flour and starch extracts from Parkia biglobosa were determined on dry basis (db), by AACC method, color and PH value measurements was carried out using color flex spectrocolorimeter, and the official method of AOAC respectively. Pasting properties was determined and X-ray powder starch diffraction was used to examine the crystalline property of flour and starch extract. Gelatinization characteristics and in vitro starch digestibility were also determined, test results were processed using one-way analysis of variance (ANOVA). Flour showed higher (P < 0.05), moisture content, fat, carbohydrate, amylopectine, and protein content than starch, while amylose content of this starch was higher (P<0.05). Phosphorus, sodium, magnesium, and potassium minerals content were higher in flour than starch. Pasting properties, gelatinisation, color, pH values, water and oil absorption capacity content of the flour were found to be higher than that of starch. The pasting characteristics showed a decrease of viscosity, final viscosity, set back value, breakdown, and pasting temperature of flour when compared to that of starch. From our results, we speculate that flour from native Parkia biglobosa grown in Guinea under controlled environmental conditions could be considered as an ideal RS material, whereas the extract Parkia starch could be an ideal SDS material. Therefore, these may offer an interesting alternative for food developers, depending on their characteristics and functional properties.
Ferreira, Stephanus J.; Senning, Melanie; Fischer-Stettler, Michaela; Streb, Sebastian; Ast, Michelle; Neuhaus, H. Ekkehard; Zeeman, Samuel C.; Sonnewald, Sophia
2017-01-01
Isoamylases hydrolyse (1–6)-alpha-D-glucosidic linkages in starch and are involved in both starch granule formation and starch degradation. In plants, three isoamylase isoforms with distinct functions in starch synthesis (ISA1 and ISA2) and degradation (ISA3) have been described. Here, we created transgenic potato plants with simultaneously decreased expression of all three isoamylases using a chimeric RNAi construct targeting all three isoforms. Constitutive expression of the hairpin RNA using the 35S CaMV promoter resulted in efficient silencing of all three isoforms in leaves, growing tubers, and sprouting tubers. Neither plant growth nor tuber yield was effected in isoamylase-deficient potato lines. Interestingly, starch metabolism was found to be impaired in a tissue-specific manner. While leaf starch content was unaffected, tuber starch was significantly reduced. The reduction in tuber starch content in the transgenic plants was accompanied by a decrease in starch granules size, an increased sucrose content and decreased hexose levels. Despite the effects on granule size, only little changes in chain length composition of soluble and insoluble glucose polymers were detected. The transgenic tubers displayed an early sprouting phenotype that was accompanied by an increased level of sucrose in parenchyma cells below the outgrowing bud. Since high sucrose levels promote sprouting, we propose that the increased number of small starch granules may cause an accelerated turnover of glucan chains and hence a more rapid synthesis of sucrose. This observation links alterations in starch structure/degradation with developmental processes like meristem activation and sprout outgrowth in potato tubers. PMID:28708852
Farno, Ehsan; Baudez, Jean Christophe; Parthasarathy, Rajarathinam; Eshtiaghi, Nicky
2017-04-16
In a wastewater treatment process, energy is mainly used in sludge handling and heating, while energy is recovered by biogas production in anaerobic digestion process. Thermal pre-treatment of sludge can change the energy balance in a wastewater treatment process since it reduces the viscosity and yield stress of sludge and increases the biogas production. In this study, a calculation based on a hypothetical wastewater treatment plant is provided to show the possibility of creating a net positive energy wastewater treatment plant as a result of implementing thermal pre-treatment process before the anaerobic digester. The calculations showed a great energy saving in pumping and mixing of the sludge by thermal pre-treatment of sludge before anaerobic digestion process.
Ashrafi, Omid; Yerushalmi, Laleh; Haghighat, Fariborz
2015-08-01
Pulp-and-paper mills produce various types of contaminants and a significant amount of wastewater depending on the type of processes used in the plant. Since the generated wastewaters can be potentially polluting and very dangerous, they should be treated in wastewater treatment plants before being released to the environment. This paper reviews different wastewater treatment processes used in the pulp-and-paper industry and compares them with respect to their contaminant removal efficiencies and the extent of greenhouse gas (GHG) emission. It also evaluates the impact of operating parameters on the performance of different treatment processes. Two mathematical models were used to estimate GHG emission in common biological treatment processes used in the pulp-and-paper industry. Nutrient removal processes and sludge treatment are discussed and their associated GHG emissions are calculated. Although both aerobic and anaerobic biological processes are appropriate for wastewater treatment, their combination known as hybrid processes showed a better contaminant removal capacity at higher efficiencies under optimized operating conditions with reduced GHG emission and energy costs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ravi-Kumar, K; Venkatesh, K S; Umesh-Kumar, S
2007-04-01
The 53-kDa amylase secreted by Aspergillus niger due to proteolytic processing of the precursor starch-hydrolyzing enzyme was resistant to acarbose, a potent alpha-glucosidase inhibitor. The enzyme production was induced when A. niger was grown in starch medium containing the inhibitor. Antibodies against the precursor enzyme cross-reacted with the 54-kDa Taka-amylase protein of A. oryzae. It resembled Taka-amylase in most of its properties and also hydrolyzed starch to maltose of alpha-anomeric configuration. However, it did not degrade maltotriose formed during the reaction and was not inhibited by zinc ions.
Gumienna, Małgorzata; Lasik, Małgorzata; Szambelan, Katarzyna; Czarnecki, Zbigniew
2011-01-01
The distillery stillage is a major and arduous byproduct generated during ethanol production in distilleries. The aim of this study was to evaluate the possibility of the stillage recirculation in the mashing process of triticale for non-byproducts production and reducing the fresh water consumption. The number of recirculation cycles which can be applied without disturbances in the ethanol fermentation process was investigated. Winter triticale BOGO and "Ethanol Red" Saccharomyces cerevisiae yeast were used in the experiments. The method of non-pressure cooking was used for gelatinizingthe triticale, commercial α-amylase SPEZYME ETHYL and glucoamylase FERMENZYME L-400 were applied for starch liquefaction and saccharification. The process was conducted at 30°C for 72 h, next after distillation the stillage was centrifuged and the liquid fraction was used instead of 75% of process water. Ethanol yield from triticale fermentations during 40 cycles ranged between 82% and 95% of theoretical yield preserving yeast vitality and quantity on the same level. The obtained distillates were characterized with enhanced volatile compounds (fusel oil, esters, aldehydes, methanol) as well as protein and potassium concentrations. The liquid part of stillage was proved that can be reused instead of water in bioethanol production from triticale, without disturbing the fermentation process. This investigated solution of distillery byproducts utilization (liquid phase of stillage) constitutes the way which could significantly decrease the bioethanol production costs by reducing the water consumption, as well as wastewater production.
Zhou, Jun; Sun, Qianyu; Chen, Dan; Wang, Hongyu; Yang, Kai
2017-10-01
In this study, the hydrogenotrophic denitrifying bacterium Ochrobactrum anthropi was added in to the process of nitrate removal by starch-stabilized nanoscale zero valent iron (nZVI) to minimize undesirable ammonium. The ammonium control performance and cooperative mechanism of this combined process were investigated, and batch experiments were conducted to discuss the effects of starch-stabilized nZVI dose, biomass, and pH on nitrate reduction and ammonium control of this system. The combined system achieved satisfactory performance because the anaerobic iron corrosion process generates H 2 , which is used as an electron donor for the autohydrogenotrophic bacterium Ochrobactrum anthropi to achieve the autohydrogenotrophic denitrification process converting nitrate to N 2 . When starch-stabilized nZVI dose was increased from 0.5 to 2.0 g/L, nitrate reduction rate gradually increased, and ammonium yield also increased from 9.40 to 60.51 mg/L. Nitrate removal rate gradually decreased and ammonium yield decreased from 14.93 to 2.61 mg/L with initial OD 600 increasing from 0.015 to 0.080. The abiotic Fe 0 reduction process played a key role in nitrate removal in an acidic environment and generated large amounts of ammonium. Meanwhile, the nitrate removal rate decreased and ammonium yield also reduced in an alkaline environment.
Development of thermoplastic starch blown film by incorporating plasticized chitosan.
Dang, Khanh Minh; Yoksan, Rangrong
2015-01-22
The objective of the present work was to improve blown film extrusion processability and properties of thermoplastic starch (TPS) film by incorporating plasticized chitosan, with a content of 0.37-1.45%. The effects of chitosan on extrusion processability and melt flow ability of TPS, as well as that on appearance, optical properties, thermal properties, viscoelastic properties and tensile properties of the films were investigated. The possible interactions between chitosan and starch molecules were evaluated by FTIR and XRD techniques. Chitosan and starch molecules could interact via hydrogen bonds, as confirmed from the blue shift of OH bands and the reduction of V-type crystal formation. Although the incorporation of chitosan caused decreased extensibility and melt flow ability, as well as increased yellowness and opacity, the films possessed better extrusion processability, increased tensile strength, rigidity, thermal stability and UV absorption, as well as reduced water absorption and surface stickiness. The obtained TPS/chitosan-based films offer real potential application in the food industry, e.g. as edible films. Copyright © 2014 Elsevier Ltd. All rights reserved.
Han, Xue; Zuo, Yu-Ting; Hu, Yu; Zhang, Jie; Zhou, Meng-Xuan; Chen, Mo; Tang, Fei; Lu, Wen-Qing; Liu, Ai-Lin
2018-02-01
This study investigated the treatment performance of three types of modified activated sludge processes, i.e., anoxic/oxic (A/O), anaerobic/anoxic/oxic (A2/O) and oxidation ditch process, in treating municipal wastewater by measuring physicochemical and spectroscopic parameters, and the toxicity of the influents and effluents collected from 8 full-scale municipal wastewater treatment plants (MWTPs). The relationships between spectroscopic and physicochemical parameters of the wastewater samples and the applicability of the nematode Caenorhabditis elegans (C. elegans) bioassays for the assessment of the toxic properties of municipal wastewater were also evaluated. The results indicated that the investigated MWTPs employing any of A/O, A2/O and oxidation ditch processes could effectively control the discharge of major wastewater pollutants including biochemical oxygen demand (BOD), chemical oxygen demand, nitrogen and phosphorus. The oxidation ditch process appeared to have the advantage of removing tyrosine-like substances and presented slightly better removal efficiency of tryptophan-like fluorescent (peak T) substances than the A/O and A2/O processes. Both ultraviolet absorbance at 254nm and peak T may be used to characterize the organic load of municipal wastewater, and peak T can be adopted as a gauge of the BOD removal efficacy of municipal wastewater treatment. Using C. elegans-based oxygen consumption rate assay for monitoring municipal wastewater toxicity deserves further investigations. Copyright © 2017 Elsevier Inc. All rights reserved.
In vitro dynamic model simulating the digestive tract of 6-month-old infants
Gallo, Marianna; Tornatore, Fabio; Frasso, Annalisa; Saccone, Giulia; Budelli, Andrea; Barone, Maria V.
2017-01-01
Background In vivo assays cannot always be conducted because of ethical reasons, technical constraints or costs, but a better understanding of the digestive process, especially in infants, could be of great help in preventing food-related pathologies and in developing new formulas with health benefits. In this context, in vitro dynamic systems to simulate human digestion and, in particular, infant digestion could become increasingly valuable. Objective To simulate the digestive process through the use of a dynamic model of the infant gastroenteric apparatus to study the digestibility of starch-based infant foods. Design Using M.I.D.A (Model of an Infant Digestive Apparatus), the oral, gastric and intestinal digestibility of two starch-based products were measured: 1) rice starch mixed with distilled water and treated using two different sterilization methods (the classical method with a holding temperature of 121°C for 37 min and the HTST method with a holding temperature of 137°C for 70 sec) and 2) a rice cream with (premium product) or without (basic product) an aliquot of rice flour fermented by Lactobacillus paracasei CBA L74. After the digestion the foods were analyzed for the starch concentration, the amount of D-glucose released and the percentage of hydrolyzed starch. Results An in vitro dynamic system, which was referred to as M.I.D.A., was obtained. Using this system, the starch digestion occurred only during the oral and intestinal phase, as expected. The D-glucose released during the intestinal phase was different between the classical and HTST methods (0.795 grams for the HTST versus 0.512 for the classical product). The same analysis was performed for the basic and premium products. In this case, the premium product had a significant difference in terms of the starch hydrolysis percentage during the entire process. Conclusions The M.I.D.A. system was able to digest simple starches and a more complex food in the correct compartments. In this study, better digestibility of the premium product was revealed. PMID:29261742
Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation.
MacNeill, Gregory J; Mehrpouyan, Sahar; Minow, Mark A A; Patterson, Jenelle A; Tetlow, Ian J; Emes, Michael J
2017-07-20
Starch commands a central role in the carbon budget of the majority of plants on earth, and its biological role changes during development and in response to the environment. Throughout the life of a plant, starch plays a dual role in carbon allocation, acting as both a source, releasing carbon reserves in leaves for growth and development, and as a sink, either as a dedicated starch store in its own right (in seeds and tubers), or as a temporary reserve of carbon contributing to sink strength, in organs such as flowers, fruits, and developing non-starchy seeds. The presence of starch in tissues and organs thus has a profound impact on the physiology of the growing plant as its synthesis and degradation governs the availability of free sugars, which in turn control various growth and developmental processes. This review attempts to summarize the large body of information currently available on starch metabolism and its relationship to wider aspects of carbon metabolism and plant nutrition. It highlights gaps in our knowledge and points to research areas that show promise for bioengineering and manipulation of starch metabolism in order to achieve more desirable phenotypes such as increased yield or plant biomass. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
40 CFR 412.46 - New source performance standards (NSPS).
Code of Federal Regulations, 2010 CFR
2010-07-01
... production areas. There must be no discharge of manure, litter, or process wastewater pollutants into waters... practice effluent limitations designed to ensure no discharge of manure, litter, or process wastewater... such effluent limitations, “no discharge of manure, litter, or process wastewater pollutants,” as used...
Abiri, Fardin; Fallah, Narges; Bonakdarpour, Babak
2017-03-01
In the present study the feasibility of the use of a bacterial batch sequential anaerobic-aerobic process, in which activated sludge was used in both parts of the process, for pretreatment of wastewater generated by a textile dyeing factory has been considered. Activated sludge used in the process was obtained from a municipal wastewater treatment plant and adapted to real dyeing wastewater using either an anaerobic-only or an anaerobic-aerobic process over a period of 90 days. The use of activated sludge adapted using the anaerobic-aerobic process resulted in a higher overall decolorization efficiency compared to that achieved with activated sludge adapted using the anaerobic-only cycles. Anaerobic and aerobic periods of around 34 and 22 hours respectively resulted in an effluent with chemical oxygen demand (COD) and color content which met the standards for discharge into the centralized wastewater treatment plant of the industrial estate in which the dyeing factory was situated. Neutralization of the real dyeing wastewater and addition of carbon source to it, both of which results in significant increase in the cost of the bacterial treatment process, was not found to be necessary to achieve the required discharge standards.
Starch: chemistry, microstructure, processing and enzymatic degradation
USDA-ARS?s Scientific Manuscript database
Starch is recognized as one of the most abundant and important commodities containing value added attributes for a vast number of industrial applications. Its chemistry, structure, property and susceptibility to various chemical, physical and enzymatic modifications offer a high technological value ...
Mutlu, Selime; Kahraman, Kevser; Öztürk, Serpil
2017-02-01
The effects of microwave irradiation on resistant starch (RS) formation and functional properties in high-amylose corn starch, Hylon VII, by applying microwave-storing cycles and drying processes were investigated. The Response Surface Methodology (RSM) was used to optimize the reaction conditions, microwave time (2-4min) and power (20-100%), for RS formation. The starch:water (1:10) mixtures were cooked and autoclaved and then different microwave-storing cycles and drying (oven or freeze drying) processes were applied. The RS contents of the samples increased with increasing microwave-storing cycle. The highest RS (43.4%) was obtained by oven drying after 3 cycles of microwave treatment at 20% power for 2min. The F, p (<0.05) and R 2 values indicated that the selected models were consistent. Linear equations were obtained for oven-dried samples applied by 1 and 3 cycles of microwave with regression coefficients of 0.65 and 0.62, respectively. Quadratic equation was obtained for freeze-dried samples applied by 3 cycles of microwave with a regression coefficient of 0.83. The solubility, water binding capacity (WBC) and RVA viscosity values of the microwave applied samples were higher than those of native Hylon VII. The WBC and viscosity values of the freeze-dried samples were higher than those of the oven-dried ones. Copyright © 2016 Elsevier B.V. All rights reserved.
Calvo-López, Amira Daniela; Martínez-Bustos, Fernando
2017-09-01
Resistant starch type IV (RSIV) can be produced by chemical modifications (etherized or esterified) such as conversion, substitution, or cross-linking, which can prevent its digestion by blocking enzyme access and forming atypical linkages. In this research, the effects of barrel temperature (145.86-174.14 °C), the screw speed (42.93-57.07 Hz) and derivatization (esterification) in the formation of RSIV content of directly expanded snacks (second generation snacks) were studied. Potato starch was chemically modified by phosphorylation and succinylation, and expanded by using the extrusion cooking process. Snacks with phosphorylated starch showed expansion index from 2.57 to 3.23, bulk density from 306.19 to 479.00 kg/m 3 and RSIV from 43.27 to 55.81%. Snacks with succinylated starch had expansion index from 3.52 to 3.82, bulk density from 99.85 to 134.51 kg/m 3 and RSIV from 23.17 to 35.01%. The results found in this work showed that it is possible to manufacture extruded directly expanded snacks (second-generation snacks) such as a ready-to-eat (RTE) with good physicochemical properties and without substantial loss of extrusion functionality, which could bring a healthy benefit due to the presence of RSIV.
Middle Stone Age starch acquisition in the Niassa Rift, Mozambique
NASA Astrophysics Data System (ADS)
Mercader, Julio; Bennett, Tim; Raja, Mussa
2008-09-01
The quest for direct lines of evidence for Paleolithic plant consumption during the African Middle Stone Age has led scientists to study residues and use-wear on flaked stone tools. Past work has established lithic function through multiple lines of evidence and the spatial breakdown of use-wear and microscopic traces on tool surfaces. This paper focuses on the quantitative analysis of starch assemblages and the botanical identification of grains from flake and core tools to learn about human ecology of carbohydrate use around the Niassa woodlands, in the Mozambican Rift. The processing of starchy plant parts is deduced from the occurrence of starch assemblages that presumably got attached to stone tool surfaces by actions associated with extractive or culinary activities. Specifically, we investigate starch grains from stone tools recently excavated in northern Mozambique at the site of Mikuyu; which presumably spans the middle to late Pleistocene and represents similar sites found along the Malawi/Niassa corridor that links East, Southern, and Central Africa. Starch was extracted and processed with a diverse tool kit consisting of scrapers, cores, points, flakes, and other kinds of tools. The microbotanical data suggests consumption of seeds, legumes, caryopses, piths, underground storage organs, nuts, and mesocarps from more than a dozen families. Our data suggest a great antiquity for starch use in Africa as well as an expanded diet and intensification.
Characterization of a starch based desiccant wheel dehumidifier
NASA Astrophysics Data System (ADS)
Beery, Kyle Edward
Starch, cellulose, and hemicellulose have an affinity for water, and adsorb water vapor from air. Materials made from combinations of these biobased sugar polymers also have been found to possess adsorptive properties. An interesting possible application of these starch-based adsorbents is the desiccant wheel dehumidifier. The desiccant wheel dehumidifier is used in conjunction with a standard air conditioning system. In this process, ambient air is passed through a stationary section while a wheel packed with desiccant rotates through that section. The desiccant adsorbs humidity (latent load) from the air, and the air conditioning system then cools the air (sensible load). Several starch based adsorbents were developed and tested for adsorptive capacity in a new high throughput screening system. The best formulations from the high throughput screening system, also taking into account economic considerations and structural integrity, were considered for use in the desiccant wheel dehumidifier. A suitable adsorbent was chosen and formulated into a matrix structure for the desiccant wheel system. A prototype desiccant wheel system was constructed and the performance was investigated under varying regeneration temperatures and rotation speeds. The results from the experiments showed that the starch based desiccant wheel dehumidification system does transfer moisture from the inlet process stream to the outlet regeneration stream. The DESSIM model was modified for the starch based adsorbent and compared to the experimental results. Also, the results when the wheel parameters were varied were compared to the predicted results from the model. The results given by the starch based desiccant wheel system show the desired proof of concept.
Díaz, Andrea; Dini, Cecilia; Viña, Sonia Z; García, María A
2016-11-05
The objective of this work was to fit together the starch extraction from Pachyrhizus ahipa roots and the recovery of the proteins present in these storage organs, making an improved use of this novel raw material. The replacement of water by buffer PO4(-3)/NaCl as solvent in the first extraction steps improved protein extraction without lowering the starch yield. The starches obtained from the traditional and the proposed methods exhibited some differences in appearance and technological and thermal properties, which were endorsed to the adjustment in the methodology of extraction rather than to the use of buffer as solvent. Thus, P. ahipa starch obtaining procedure could be coupled to protein extraction with a minimum change in the methodology. This innovation did not significantly shift the characteristics of the starch obtained and allowed to obtain a protein yield of 135.7mg BSA equivalent protein/100g of fresh roots. Copyright © 2016 Elsevier Ltd. All rights reserved.
Growing duckweed for biofuel production: a review.
Cui, W; Cheng, J J
2015-01-01
Duckweed can be utilised to produce ethanol, butanol and biogas, which are promising alternative energy sources to minimise dependence on limited crude oil and natural gas. The advantages of this aquatic plant include high rate of nutrient (nitrogen and phosphorus) uptake, high biomass yield and great potential as an alternative feedstock for the production of fuel ethanol, butanol and biogas. The objective of this article is to review the published research on growing duckweed for the production of the biofuels, especially starch enrichment in duckweed plants. There are mainly two processes affecting the accumulation of starch in duckweed biomass: photosynthesis for starch generation and metabolism-related starch consumption. The cost of stimulating photosynthesis is relatively high based on current technologies. Considerable research efforts have been made to inhibit starch degradation. Future research need in this area includes duckweed selection, optimisation of duckweed biomass production, enhancement of starch accumulation in duckweeds and use of duckweeds for production of various biofuels. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
Evaluation of emerging factors blocking filtration of high-adjunct-ratio wort.
Ma, Ting; Zhu, Linjiang; Zheng, Feiyun; Li, Yongxian; Li, Qi
2014-08-20
Corn starch has become a common adjunct for beer brewing in Chinese breweries. However, with increasing ratio of corn starch, problems like poor wort filtration performance arise, which will decrease production capacity of breweries. To solve this problem, factors affecting wort filtration were evaluated, such as the size of corn starch particle, special yellow floats formed during liquefaction of corn starch, and residual substance after liquefaction. The effects of different enzyme preparations including β-amylase and β-glucanase on filtration rate were also evaluated. The results indicate that the emerging yellow floats do not severely block filtration, while the fine and uniform-shape corn starch particle and its incompletely hydrolyzed residue after liquefaction are responsible for filtration blocking. Application of β-amylase preparation increased the filtration rate of liquefied corn starch. This study is useful for our insight into the filtration blocking problem arising in the process of high-adjunct-ratio beer brewing and also provides a feasible solution using enzyme preparations.
Liu, Hang; Fan, Huanhuan; Cao, Rong; Blanchard, Christopher; Wang, Min
2016-11-01
A nonthermal processing technology, high hydrostatic pressure (HHP) treatment, was investigated to assess its influence on the physicochemical properties and in vitro digestibility of sorghum starch (SS). There was no change in the 'A'-type crystalline pattern of SS after the pressure treatments at 120-480MPa. However, treatment at 600MPa produced a pattern similar to 'B'-type crystalline. HHP treatment also resulted in SS granules with rough surfaces. Measured amylose content, water absorption capacity, alkaline water retention, pasting temperature and thermostability increased with increasing pressure levels, while the oil absorption capacity, swelling power, relative crystallinity and viscosity decreased. Compared with native starch, HHP-modified SS samples had lower in vitro hydrolysis, reduced amount of rapidly digestible starch, as well as increased levels of slowly digestible starch and resistant starch. These results indicate that HHP treatment is an effective modification method for altering in vitro digestibility and physicochemical properties of SS. Copyright © 2016 Elsevier B.V. All rights reserved.
Bharath Kumar, S; Prabhasankar, P
2015-08-01
Starch profile reflects functional characteristics like digestibility and product quality. A study was aimed to incorporate rajma in noodle processing to improve product and nutritional quality and also to reduce starch digestibility. It is known that some of the pulses like Kidney beans have an isoforms of Starch-Branching-Enzyme (SBE) helps in converting amylose to amylopectin. Rajma flour was incorporated at 10%, 20% and 30% with Triticumdurum and subjected to rheological, physico-chemical and amylose/amylopectin determination using High-Performance-Size-Exclusion-Chromatography (HPSEC). Results revealed that rajma flour decreased peak-viscosity from 954 to 683 BU and increased water absorption. Protein and dietary fiber content increased significantly. Sensory profile showed higher overall quality (>8.5). In vitro starch digestibility reduced from 65% to 49%. Starch profile from HPSEC showed changes in amylose:amylopectin peak, this may be because of the presence of SBE, further studies may be required to support the hypothesis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wei, Benxi; Cai, Canxin; Xu, Baoguo; Jin, Zhengyu; Tian, Yaoqi
2018-02-01
The mechanism underlying the fragmentation of waxy maize starch (WMS) granules during high-pressure homogenization (HPH) was studied and the results were interpreted in terms of granular and molecular aspects. The diameter of disrupted starch granules decreased exponentially with increasing HPH pressure, but decreased linearly with increasing of HPH cycles. Scanning electron microscopy revealed a cone-like inside-out disruption pattern through the channels that resulted in separation of blocklets fragments or starch fragments. The M w of amylopectin was reduced by ∼half following treatment at 150MPa with two cycles, or at 100MPa for eight cycles, and the decrease was in accordance with the disruption of starch granules. This indicated that amylopectin was "protected" by blocklets, and the disruption of WMS granules mainly occurred close to the linkage among blocklets. Increasing the HPH pressure appeared to be more effective for breaking starch granules than increasing the number of HPH cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.
Preparation and characterization of polymeric nanoparticles from Gadong starch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sisika, Regina; Ahmad, Wan Yaacob Wan; Lazim, Azwan Mat
Dioscorea hispida (Gadong tuber) was seldom used and forgotten as a food source due to their toxicity. In contrast to that, the Gadong tuber can be a source of polysaccharides which can be manipulated as an alternative source for industrial applications. This research reported on how to synthesize starch nanoparticles from Gadong tuber by using a simple acid hydrolysis process. The yield of starch nanoparticles obtained from seven days of acid hydrolysis was reduced to 13%. The X-ray diffraction measurements showed that the native Gadong starch particle is of the C-crystalline type, and that the synthesized nanoparticles showed an increasemore » in crystallinity compared to the native particles. Transmission electron microscopy results demonstrated that the starch particle morphologies were either round or irregular shape, with diameters ranging from 96-110 nm.« less
Effect of Starch on Sintering Behavior for Fabricating Porous Cordierite Ceramic
NASA Astrophysics Data System (ADS)
Li, Ye; Cao, Wei; Gong, Lunlun; Zhang, Ruifang; Cheng, Xudong
2016-10-01
Porous cordierite ceramics were prepared with starch as pore-forming agent by solid-state method. The green bodies were sintered at 1,100-1,400 °C for 2 h. The characterization was focused on thermal analysis, phase evolution, sintering behavior, porosity and micro-structural changes. The results show that cordierite becomes the main crystallization phase at 1,200 °C. The shrinkage behavior shows the most obvious dependence on the sintering temperature and starch content, and it can be divided into three stages. Moreover, the open porosity increases with the increase of starch content, but the pore-forming effectivity decreases. Nevertheless, compared with the open porosity curves, the bulk density curves are more in line with the linear rule. The microphotographs show the densification process with the sintering temperature and the variation of pore connectivity with the starch content.
Läufer, Albrecht
2017-03-07
Nature uses enzymes to build and convert biomass; mankind uses the same enzymes and produces them on a large scale to make optimum use of biomass in biorefineries. Bacterial α-amylases and fungal glucoamylases have been the workhorses of starch biorefineries for many decades. Pullulanases were introduced in the 1980s. Proteases, cellulases, hemicellulases, and phytases have been on the market for a few years as process aids, improving yields, performance, and costs. Detailed studies of the complex chemical structures of biomass and of the physicochemical limitations of industrial biorefineries have led enzyme developers to produce novel tailor-made solutions for improving yield and profitability in the industry. This chapter reviews the development of enzyme applications in the major starch biorefining processes.
Fermentation Methods for Protein Enrichment of Cassava and Corn with Candida tropicalis
Azoulay, Edgard; Jouanneau, Françoise; Bertrand, Jean-Claude; Raphael, Alain; Janssens, Jacques; Lebeault, Jean Michel
1980-01-01
Candida tropicalis grows on soluble starch, corn, and cassava powders without requiring that these substrates be previously hydrolyzed. C. tropicalis possesses the enzyme needed to hydrolyze starch, namely, an α-amylase. That property has been used to develop a fermentation process whereby C. tropicalis can be grown directly on corn or cassava powders so that the resultant mixture of biomass and residual corn or cassava contains about 20% protein, which represents a balanced diet for either animal fodder or human food. The fact that no extra enzymes are required to hydrolyze starch results in a particularly efficient way of improving the nutritional value of amylaceous products, through a single-step fermentation process. PMID:16345495
Utilization of starch films plasticized with urea as fertilizer for improvement of plant growth.
Rychter, Piotr; Kot, Marta; Bajer, Krzysztof; Rogacz, Diana; Šišková, Alena; Kapuśniak, Janusz
2016-02-10
The utilization of starch films, obtained by extrusion of potato starch with urea as plasticizer, for the fertilization of plants has been undertaken. Release rate of urea from the starch films was conducted in water conditions. The molecular weight distribution, surface erosion and weight loss of the starch samples have been determined. The evaluation of efficiency of urea as a fertilizer in the process of release from the starch films was performed under laboratory conditions based on the plant growth test proposed by OECD 208 Guideline and the PN-ISO International Standard using oat and common radish. Although among extruded starch-based films, those that contain the highest amount of fertilizer hold the most promise for a delayed release system, the time of release of fertilizer from obtained films in undertaken study was not satisfactory. All the same, in the present study effort has been made to utilize extruded samples as a fertilizer for agriculture or horticulture purposes. Urea-plasticized starch was successfully used as a fertilizer. Plant growth assessment, including determination of such parameters as fresh and dry matter of plants and their visual evaluation, has proved the stimulating effect of using extruded films on the growth and development of cultivated plants. Copyright © 2015 Elsevier Ltd. All rights reserved.
Photoperiodic Control of Carbon Distribution during the Floral Transition in Arabidopsis[C][W][OPEN
Ortiz-Marchena, M. Isabel; Albi, Tomás; Lucas-Reina, Eva; Said, Fatima E.; Romero-Campero, Francisco J.; Cano, Beatriz; Ruiz, M. Teresa; Romero, José M.; Valverde, Federico
2014-01-01
Flowering is a crucial process that demands substantial resources. Carbon metabolism must be coordinated with development through a control mechanism that optimizes fitness for any physiological need and growth stage of the plant. However, how sugar allocation is controlled during the floral transition is unknown. Recently, the role of a CONSTANS (CO) ortholog (Cr-CO) in the control of the photoperiod response in the green alga Chlamydomonas reinhardtii and its influence on starch metabolism was demonstrated. In this work, we show that transitory starch accumulation and glycan composition during the floral transition in Arabidopsis thaliana are regulated by photoperiod. Employing a multidisciplinary approach, we demonstrate a role for CO in regulating the level and timing of expression of the GRANULE BOUND STARCH SYNTHASE (GBSS) gene. Furthermore, we provide a detailed characterization of a GBSS mutant involved in transitory starch synthesis and analyze its flowering time phenotype in relation to its altered capacity to synthesize amylose and to modify the plant free sugar content. Photoperiod modification of starch homeostasis by CO may be crucial for increasing the sugar mobilization demanded by the floral transition. This finding contributes to our understanding of the flowering process. PMID:24563199
Sánchez-Pardo, María Elena; Ortiz-Moreno, Alicia; Mora-Escobedo, Rosalva; Necoechea-Mondragón, Hugo
2007-09-01
The present study compares the effect of baking process (microwave vs conventional oven) on starch bioavailability in fresh pound cake crumbs and in crumbs from pound cake stored for 8 days. Proximal chemical analysis, resistant starch (RS), retrograded starch (RS3) and starch hydrolysis index (HI) were evaluated. The empirical formula suggested by Granfeldt was used to determine the predicted glycemic index (pGI). Pound cake, one of Mexico's major bread products, was selected for analysis because the quality defects often associated with microwave baking might be reduced with the use of high-fat, high-moisture, batted dough. Differences in product moisture, RS and RS3 were observed in fresh microwave-baked and conventionally baked pound cake. RS3 increased significantly in conventionally baked products stored for 8 days at room temperature, whereas no significantly changes in RS3 were observed in the microwaved product. HI values for freshly baked and stored microwaved product were 59 and 62%, respectively (P > 0.05), whereas the HI value for the conventionally baked product decreased significantly after 8 days of storage. A pound cake with the desired HI and GI characteristics might be obtained by adjusting the microwave baking process.
Grassi, Mariangela; Rizzo, Luigi; Farina, Anna
2013-06-01
In the last years, a lot of emerging contaminants, such as, endocrine disruptors compounds (EDCs), pharmaceuticals, and personal care products (PPCPs) have been detected in wastewater. Because of their toxicity and possible adverse effects on the environment and humans, their release from urban wastewater treatment plants (UWWTPs) effluents should be minimized, particularly when a wastewater reuse for crops irrigation is expected. Many processes have been investigated for advanced treatment of UWWTP effluents as well as for emerging contaminant degradation; among these, adsorption process was successfully used to remove EDCs and PPCPs from wastewater. This article shortly reviews EDCs and PPCPs removal from UWWTP effluents by adsorption process using conventional and non-conventional adsorbents. The fate of EDCs and PPCPs in UWWTPs and the implications for agricultural wastewater reuse has been addressed too. In spite of the adsorption process looking to be a valuable alternative to other advanced technologies for the removal of emerging contaminants from wastewater, some gaps still remain to evaluate the actual feasibility at full scale. However, according to a few studies available in scientific literature on the use of both powdered activated carbon and granular activated carbon at full scale, adsorption process by activated carbon is a promising, potentially effective, and economically feasible solution for producing safe wastewater for agricultural reuse.
Zayas Pérez, Teresa; Geissler, Gunther; Hernandez, Fernando
2007-01-01
The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculation and advanced oxidation processes (AOP) had been studied. The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H2O2, UV/O3 and UV/H2O2/O3 processes was determined under acidic conditions. For each of these processes, different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater. Coffee wastewater is characterized by a high chemical oxygen demand (COD) and low total suspended solids. The outcomes of coffee wastewater treatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD, color, and turbidity. It was found that a reduction in COD of 67% could be realized when the coffee wastewater was treated by chemical coagulation-flocculation with lime and coagulant T-1. When coffee wastewater was treated by coagulation-flocculation in combination with UV/H2O2, a COD reduction of 86% was achieved, although only after prolonged UV irradiation. Of the three advanced oxidation processes considered, UV/H2O2, UV/O3 and UV/H2O2/O3, we found that the treatment with UV/H2O2/O3 was the most effective, with an efficiency of color, turbidity and further COD removal of 87%, when applied to the flocculated coffee wastewater.
Nonoxidative removal of organics in the activated sludge process
Modin, Oskar; Persson, Frank; Wilén, Britt-Marie; Hermansson, Malte
2016-01-01
ABSTRACT The activated sludge process is commonly used to treat wastewater by aerobic oxidation of organic pollutants into carbon dioxide and water. However, several nonoxidative mechanisms can also contribute to removal of organics. Sorption onto activated sludge can remove a large fraction of the colloidal and particulate wastewater organics. Intracellular storage of, e.g., polyhydroxyalkanoates (PHA), triacylglycerides (TAG), or wax esters can convert wastewater organics into precursors for high-value products. Recently, several environmental, economic, and technological drivers have stimulated research on nonoxidative removal of organics for wastewater treatment. In this paper, we review these nonoxidative removal mechanisms as well as the existing and emerging process configurations that make use of them for wastewater treatment. Better utilization of nonoxidative processes in activated sludge could reduce the wasteful aerobic oxidation of organic compounds and lead to more resource-efficient wastewater treatment plants. PMID:27453679
Effects of Plastizers on the Structure and Properties of Starch-Clay Nanocomposites
USDA-ARS?s Scientific Manuscript database
Biodegradable nanocomposites were successfully fabricated from corn starch and montmorillonite (MMT) nanoclays by melt extrusion processing. The structure and morphology of the nanocomposites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), and film propertie...
Code of Federal Regulations, 2014 CFR
2014-01-01
... chile). (v) Seaweed, Pacific kombu. (w) Starches. (1) Cornstarch (native). (2) Rice starch, unmodified (CAS # 977000-08-0)—for use in organic handling until June 21, 2009. (3) Sweet potato starch—for bean...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., Pacific kombu. (w) Starches. (1) Cornstarch (native). (2) Rice starch, unmodified (CAS # 977000-08-0)—for use in organic handling until June 21, 2009. (3) Sweet potato starch—for bean thread production only...
Code of Federal Regulations, 2012 CFR
2012-01-01
... (high-methoxy). (t) Peppers (Chipotle chile). (u) Starches. (1) Cornstarch (native). (2) Rice starch, unmodified (CAS # 977000-08-0)—for use in organic handling until June 21, 2009. (3) Sweet potato starch—for...
In-plant control applications and their effect on treatability of a textile mill wastewater.
Dulkadiroglu, H; Eremektar, G; Dogruel, S; Uner, H; Germirli-Babuna, F; Orhon, D
2002-01-01
Water minimization and exploration of the potential for wastewater recovery and reuse are priority issues of industrial wastewater management. They are extremely significant for the textile industry commonly characterized with a high water demand. The study presents a detailed in-plant control survey for a wool finishing plant. A comprehensive process profile and wastewater characterization indicate that process water consumption can be reduced by 34%, and 23% of the wastewater volume can be recovered for reuse. Treatability of reusable wastewater fraction and the effect of in-plant control applications on effluent treatability were also investigated.
Valk, Vincent; Lammerts van Bueren, Alicia; van der Kaaij, Rachel M; Dijkhuizen, Lubbert
2016-06-01
Microbacterium aurum B8.A is a bacterium that originates from a potato starch-processing plant and employs a GH13 α-amylase (MaAmyA) enzyme that forms pores in potato starch granules. MaAmyA is a large and multi-modular protein that contains a novel domain at its C terminus (Domain 2). Deletion of Domain 2 from MaAmyA did not affect its ability to degrade starch granules but resulted in a strong reduction in granular pore size. Here, we separately expressed and purified this Domain 2 in Escherichia coli and determined its likely function in starch pore formation. Domain 2 independently binds amylose, amylopectin, and granular starch but does not have any detectable catalytic (hydrolytic or oxidizing) activity on α-glucan substrates. Therefore, we propose that this novel starch-binding domain is a new carbohydrate-binding module (CBM), the first representative of family CBM74 that assists MaAmyA in efficient pore formation in starch granules. Protein sequence-based BLAST searches revealed that CBM74 occurs widespread, but in bacteria only, and is often associated with large and multi-domain α-amylases containing family CBM25 or CBM26 domains. CBM74 may specifically function in binding to granular starches to enhance the capability of α-amylase enzymes to degrade resistant starches (RSs). Interestingly, the majority of family CBM74 representatives are found in α-amylases originating from human gut-associated Bifidobacteria, where they may assist in resistant starch degradation. The CBM74 domain thus may have a strong impact on the efficiency of RS digestion in the mammalian gastrointestinal tract. © 2016 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
Aerobic biological treatment of synthetic municipal wastewater in membrane-coupled bioreactors.
Klatt, Christian G; LaPara, Timothy M
2003-05-05
Membrane-coupled bioreactors (MBRs) offer many benefits compared to conventional biological wastewater treatment systems; however, their performance characteristics are poorly understood. Laboratory-scale MBRs were used to study bacterial adaptations in physiology and community structure. MBRs were fed a mixture of starch, gelatin, and polyoxyethylene-sorbitan monooleate to simulate the polysaccharide, protein, and lipid components of municipal wastewater. Physiological adaptations were detected by measuring ectoenzyme activity while structural dynamics were studied by denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments. As cell biomass accumulated in the MBRs, pollutant removal efficiency initially improved and then stabilized with respect to effluent concentrations of chemical oxygen demand, protein, and carbohydrate. Comparison of the MBR effluent to filtered reactor fluid indicated that a portion of the observed pollutant removal was due to filtration by the membrane rather than microbial activity. The rates of ectoenzyme-mediated polysaccharide (alpha-glucosidase) and protein (leucine aminopeptidase) hydrolysis became relatively constant once pollutant removal efficiency stabilized. However, the maximum rate of lipid hydrolysis (heptanoate esterase) concomitantly increased more than 10-fold. Similarly, alpha-glucosidase and leucine aminopeptidase ectoenzyme affinities were relatively constant, while the heptanoate esterase affinity increased more than 30-fold. Community analysis revealed that a substantial community shift occurred within the first 7 days of operation. A Flavobacterium-like bacterial population dominated the community (>50% of total band intensity) and continued to do so for the remainder of the experiment. Copyright 2003 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Motwani, Tanuj
Starch-water interactions occurring during gelatinization are critical for developing a mechanistic understanding of the gelatinization process. The overall goal of this project was to investigate the state of water in starch-water systems in the gelatinization temperature range using dielectric relaxation spectroscopy. In the first part of the project, the dielectric response of native wheat starch-water slurries was measured at seven different starch concentrations between 5--60% starch (w/w) in the frequency range of 200 MHz--20 GHz at 25°C. The deconvolution of the dielectric spectra using the Debye model revealed presence of up to three relaxation processes. The relaxation time range of what were considered to be the high, intermediate and low frequency relaxations were 4--9 ps, 20--25 ps and 230--620 ps, respectively. The high frequency relaxation was observed at all starch concentrations, while the intermediate and low frequency relaxation were only observed at starch concentrations of 10% and above, and 30% and above, respectively. The high frequency relaxation was attributed to bulk water, while the intermediate and low frequency relaxations were attributed to rotationally restrained water molecules present in the starch-water system. To investigate the state of water in the gelatinization temperature range, the dielectric response, gelatinization enthalpy and water absorption by 10%, 30% or 50% starch slurries were measured after heating the slurries to different end temperatures between 40--90°C for 30 min. The high frequency relaxation time for 10% starch slurry dropped significantly (P<0.001) upon heating up to 60°C. For 30% and 50% starch slurries, high frequency relaxation times were not significantly influenced (P>0.159) by heating up to 80°C. The intermediate and low frequency relaxation times were not significantly influenced (P>0.712) by heating for all starch concentrations. Also, the amount of water associated with the three relaxations was not significantly influenced by heating (P >0.187). The water absorption results indicated that highest water uptake was achieved in the 10% starch slurry. The endothermic peak associated with gelatinization either vanished or was diminished after heating the slurries to 60°C and above, suggesting that native granular order was not necessary for the existence of the three separate states of water. In the second part of the project, the dielectric response of starch-water systems was investigated in the presence or absence of glucose or maltose. Dielectric response of 10% starch + 10% sugar, 10% starch + 20% sugar or 10% starch + 30% sugar slurries was measured in the frequency range of 200 MHz--20 GHz after heating the slurries to different end temperatures between 25--90°C for 30 min. The dielectric spectra of the slurries could be deconvoluted to obtain up to three Debye-type relaxations. The relaxation time range of high, intermediate and low frequency relaxations were 4--7 ps, 17--26 ps and 175--335 ps, respectively, at 25°C. The high frequency relaxation was the dominant relaxation in slurries containing 10% sugar, and the intermediate frequency relaxation was the dominant relaxation in slurries containing 30% sugar at 25°C. The high frequency relaxation time decreased upon heating up to 60°C but was not significantly influenced (P>0.102) by the concentration or the type of sugar. Intermediate and low frequency relaxation times were not significantly influenced (P>0.419) by heating or sugar type. The relative strengths of the intermediate frequency relaxation dropped while that of high frequency relaxation increased upon heating up to 50°C. The relative strength of low frequency relaxation (P>0.561) was not influenced by heating. The static dielectric constant decreased upon heating but was not influenced by the type of sugar or solids in the slurry. This indicated that the water molecules present in the system were the major contributors to the polarization observed. At the same concentration of solids, conductivity of the sugar containing slurries was lower than that of the non-sugar-containing starch slurries, which suggested that conductivity was mostly associated with starch. Glucose or maltose did not exert any differential effect on the swelling behavior or dielectric relaxation parameters of starch-water-sugar slurries. This project presents novel insights into the starch-water interactions occurring in the gelatinization temperature range. The results of this project can be used to develop a dielectric relaxation based technique to monitor water mobility during industrial processing of starch-based foods. Dielectric response was not unique to any of the solids used in the study suggesting that dielectric spectroscopy could be used for monitoring state of water in food systems containing different types of solids. Also, the dielectric relaxation parameters obtained in this study can be used to predict water mobility in simple food systems having water, sugar and starch as major components, and hence, can possibly be used to estimate shelf life of food products.
Eukaryotic starch degradation: integration of plastidial and cytosolic pathways.
Fettke, Joerg; Hejazi, Mahdi; Smirnova, Julia; Höchel, Erik; Stage, Marion; Steup, Martin
2009-01-01
Starch is an important plant product widely used as a nutrient, as a source of renewable energy, and for many technological applications. In plants, starch is the almost ubiquitous storage carbohydrate whereas most heterotrophic prokaryotes and eukaryotes rely on glycogen. Despite close similarities in basic chemical features, starch and glycogen differ in both structural and physicochemical properties. Glycogen is a hydrosoluble macromolecule with evenly distributed branching points. Starch exists as a water-insoluble particle having a defined (and evolutionary conserved) internal structure. The biochemistry of starch requires the co-operation of up to 40 distinct (iso)enzymes whilst approximately 10 (iso)enzymes permit glycogen metabolism. The biosynthesis and degradation of native starch include the transition of carbohydrates from the soluble to the solid phase and vice versa. In this review, two novel aspects of the eukaryotic plastidial starch degradation are discussed: Firstly, biochemical reactions that take place at the surface of particulate glucans and mediate the phase transition of carbohydrates. Secondly, processes that occur downstream of the export of starch-derived sugars into the cytosol. Degradation of transitory starch mainly results in the formation of neutral sugars, such as glucose and maltose, that are transported into the cytosol via the respective translocators. The cytosolic metabolism of the neutral sugars includes the action of a hexokinase, a phosphoglucomutase, and a transglucosidase that utilizes high molecular weight glycans as a transient glucosyl acceptor or donor. Data are included on the transglucosidase (disproportionating isozyme 2) in Cyanophora paradoxa that accumulates storage carbohydrates in the cytosol rather than in the plastid.
Can bread processing conditions alter glycaemic response?
Lau, Evelyn; Soong, Yean Yean; Zhou, Weibiao; Henry, Jeyakumar
2015-04-15
Bread is a staple food that is traditionally made from wheat flour. This study aimed to compare the starch digestibility of western baked bread and oriental steamed bread. Four types of bread were prepared: western baked bread (WBB) and oriental steamed bread (OSB), modified baked bread (MBB) made with the OSB recipe and WBB processing, and modified steamed bread (MSB) made with the WBB recipe and OSB processing. MBB showed the highest starch digestibility in vitro, followed by WBB, OSB and MSB. A similar trend was observed for glycaemic response in vivo. MBB, WBB, OSB and MSB had a glycaemic index of 75±4, 71±5, 68±5 and 65±4, respectively. Processing differences had a more pronounced effect on starch digestibility in bread, and steamed bread was healthier in terms of glycaemic response. The manipulation of processing conditions could be an innovative route to alter the glycaemic response of carbohydrate-rich foods. Copyright © 2014 Elsevier Ltd. All rights reserved.
2018-01-01
Starch is increasingly used as a functional group in many industrial applications and foods due to its ability to work as a thickener. The experimental values of extracting starch from yellow skin potato indicate the processing conditions at 3000 rpm and 15 min as optimum for the highest yield of extracted starch. The effect of adding different concentrations of extracted starch under the optimized conditions was studied to determine the acidity, pH, syneresis, microbial counts, and sensory evaluation in stored yogurt manufactured at 5 °C for 15 days. The results showed that adding sufficient concentrations of starch (0.75%, 1%) could provide better results in terms of the minimum change in the total acidity, decrease in pH, reduction in syneresis, and preferable results for all sensory parameters. The results revealed that the total bacteria count of all yogurt samples increased throughout the storage time. However, adding different concentrations of optimized extracted starch had a significant effect, decreasing the microbial content compared with the control sample (YC). In addition, the results indicated that coliform bacteria were not found during the storage time. PMID:29382115
Suwa, M; Suzuki, Y
2003-01-01
The outbreak of Cryptosporidiosis in 1996 in Japan is thought to have been enlarged by the proliferation of Cryptosporidium in the water cycle from wastewater to drinking water through the river system. From this experience, the wastewater system must have functions to remove Cryptosporidium oocysts effectively. Efficiencies of wastewater treatment processes to remove oocysts were investigated using pilot plants receiving municipal wastewater. An activated sludge process and a following sand filter showed removal efficiencies of 2 log and 0.5 log, respectively. Poly-aluminium chloride dosage improved the efficiencies by 3 log for the activated sludge process and by 2 log for the sand filter. Chemical precipitation of raw wastewater with poly-aluminium chloride could achieve 1 to 3 log removal according on the coagulant concentration.
Electrophoretic Process For Purifying Wastewater
NASA Technical Reports Server (NTRS)
Sammons, David W.; Twitty, Garland E.; Sharnez, Rizwan; Egen, Ned B.
1992-01-01
Microbes, poisonous substances, and colloidal particles removed by combination of electric fields. Electrophoretic process removes pathogenicorganisms, toxins, toxic metals, and cooloidal soil particles from wastewater. Used to render domestic, industrial, and agricultural wastewater streams potable. Process also useful in bioregenerative and other closed systems like in space stations and submarines, where water must be recycled.
MIUS wastewater technology evaluation
NASA Technical Reports Server (NTRS)
Poradek, J. C.
1976-01-01
A modular integrated utility system wastewater-treatment process is described. Research in the field of wastewater treatment is reviewed, treatment processes are specified and evaluated, and recommendations for system use are made. The treatment processes evaluated are in the broad categories of preparatory, primary, secondary, and tertiary treatment, physical-chemical processing, dissolved-solids removal, disinfection, sludge processing, and separate systems. Capital, operating, and maintenance costs are estimated, and extensive references are given.
The important role of salivary α-amylase in the gastric digestion of wheat bread starch.
Freitas, Daniela; Le Feunteun, Steven; Panouillé, Maud; Souchon, Isabelle
2018-01-24
The role of salivary α-amylase (HSA) in starch digestion is often overlooked in favour of that of pancreatic α-amylase due to the short duration of the oral phase. Although it is generally accepted that the amylase of salivary origin can continue to be active in the stomach, studies ascertaining its contribution are lacking. This study aimed to address this issue by coupling in vitro oral processing with an in vitro dynamic system that mimicked different postprandial gastric pH reduction kinetics observed in vivo following a snack- or lunch-type meal. The digestion of both starch and protein from wheat bread as well as the interplay between the two processes were studied. We have observed that the amylolytic activity of saliva plays a preponderant role hydrolysing up to 80% of bread starch in the first 30 min of gastric digestion. Amylolysis evolved exponentially and nearly superimposing curves were obtained regardless of the acidification profiles, revealing its high efficiency.
Kett, Anthony P.; Bruen, Christine M.; O'Halloran, Fiona; Chaurin, Valérie; Lawlor, Peadar G.; O'Mahony, James A.; Giblin, Linda; Fenelon, Mark A.
2012-01-01
Background Starch is a main source of glucose and energy in the human diet. The extent to which it is digested in the gastrointestinal tract plays a major role in variations in postprandial blood glucose levels. Interactions with other biopolymers, such as dairy proteins, during processing can influence both the duration and extent of this postprandial surge. Objective To evaluate the effect of the addition of bovine α- or β-casein to waxy maize starch on changes in postprandial blood glucose, insulin, and incretin hormones [glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1)] in 30 kg pigs used as an animal model for humans. Design Gelatinised starch, starch gelatinised with α-casein, and starch gelatinised with β-casein were orally administered to trained pigs (n = 8) at a level of 60 g of available carbohydrate. Pre- and postprandial glucose measurements were taken every 15 min for the first hour and every 30 min thereafter up to 180 min. Insulin, GIP, and GLP-1 levels were measured in plasma samples up to 90 min postprandial. Results Starch gelatinised with α-casein had a significantly (p < 0.05) lower peak viscosity on pasting and resulted in significantly lower glucose release at 15, 30, and 90 min postprandial compared to starch gelatinised with β-casein. During the first 45-min postprandial, the area under the glucose curve (AUC) for starch gelatinised with α-casein was significantly (p < 0.05) lower than that for starch gelatinised with β-casein. There was also a significant (p < 0.05) difference at T30 in GIP levels in response to the control compared to starch gelatinised with α- or β-casein. Significant (p < 0.05) increases in several free amino acid concentrations were observed on ingestion of either α- or β-casein gelatinised with starch at 30 and 90 min postprandial compared to starch alone. In addition, plasma levels of six individual amino acids were increased on ingestion of starch gelatinised with α-casein compared to ingestion of starch gelatinised with β-casein. Conclusion The presence of casein fractions (α- or β-casein) in gelatinised waxy maize starch affects swelling characteristics, viscosity, and subsequent in vivo digestion as determined by glucose levels in blood postprandial. PMID:22509144
Carbon footprint of aerobic biological treatment of winery wastewater.
Rosso, D; Bolzonella, D
2009-01-01
The carbon associated with wastewater and its treatment accounts for approximately 6% of the global carbon balance. Within the wastewater treatment industry, winery wastewater has a minor contribution, although it can have a major impact on wine-producing regions. Typically, winery wastewater is treated by biological processes, such as the activated sludge process. Biomass produced during treatment is usually disposed of directly, i.e. without digestion or other anaerobic processes. We applied our previously published model for carbon-footprint calculation to the areas worldwide producing yearly more than 10(6) m(3) of wine (i.e., France, Italy, Spain, California, Argentina, Australia, China, and South Africa). Datasets on wine production from the Food and Agriculture Organisation were processed and wastewater flow rates calculated with assumptions based on our previous experience. Results show that the wine production, hence the calculated wastewater flow, is reported as fairly constant in the period 2005-2007. Nevertheless, treatment process efficiency and energy-conservation may play a significant role on the overall carbon-footprint. We performed a sensitivity analysis on the efficiency of the aeration process (alphaSOTE per unit depth, or alphaSOTE/Z) in the biological treatment operations and showed significant margin for improvement. Our results show that the carbon-footprint reduction via aeration efficiency improvement is in the range of 8.1 to 12.3%.
Zhang, Lili; Yu, Yang; Li, Xinhua; Li, Xiaona; Zhang, Huajiang; Zhang, Zhen; Xu, Yunhe
2017-01-01
In the current study, we focused on the mechanism underlying starch flocculation by the sweet potato sour liquid. The traditional microbial techniques and 16S rDNA sequencing revealed that Lactobacillus was dominant flocculating microorganism in sour liquid. In total, 86 bacteria, 20 yeasts, and 10 molds were isolated from the sour liquid and only eight Lactobacillus species exhibited flocculating activity. Lactobacillus paracasei subsp. paracasei L1 strain with a high flocculating activity was isolated and identified, and the mechanism of starch flocculation was examined. L. paracasei subsp. paracasei L1 cells formed chain-like structures on starch granules. Consequently, these cells connected the starch granules to one another, leading to formation of large flocs. The results of various treatments of L1 cells indicated that bacterial surface proteins play a role in flocculation and L1 cells adhered to the surface of starch granules via specific surface proteins. These surface starch-binding proteins were extracted using the guanidine hydrochloride method; 10 proteins were identified by mass spectrometry: three of these proteins were glycolytic enzymes; two were identified as the translation elongation factor Tu; one was a cell wall hydrolase; one was a surface antigen; one was lyzozyme M1; one was a glycoside hydrolase; and one was an uncharacterized proteins. This study will paves the way for future industrial application of the L1 isolate in starch processing and food manufacturing. PMID:28791000
An experimental investigation of wastewater treatment using electron beam irradiation
NASA Astrophysics Data System (ADS)
Emami-Meibodi, M.; Parsaeian, M. R.; Amraei, R.; Banaei, M.; Anvari, F.; Tahami, S. M. R.; Vakhshoor, B.; Mehdizadeh, A.; Fallah Nejad, N.; Shirmardi, S. P.; Mostafavi, S. J.; Mousavi, S. M. J.
2016-08-01
Electron beam (EB) is used for disinfection and treatment of different types of sewage and industrial wastewater. However, high capital investment required and the abundant energy consumed by this process raise doubts about its cost-effectiveness. In this paper, different wastewaters, including two textile sewages and one municipal wastewater are experimentally studied under different irradiation strategies (i.e. batch, 60 l/min and 1000 m3/day) in order to establish the reliability and the optimum conditions for the treatment process. According to the results, EB improves the efficiency of traditional wastewater treatment methods, but, for textile samples, coagulation before EB irradiation is recommended. The cost estimation of EB treatment compared to conventional methods shows that EB has been more expensive than chlorination and less expensive than activated sludge. Therefore, EB irradiation is advisable if and only if conventional methods of textile wastewater treatment are insufficient or chlorination of municipal wastewater is not allowed for health reasons. Nevertheless, among the advanced oxidation processes (AOP), EB irradiation process may be the most suitable one in industrial scale operations.
NASA Astrophysics Data System (ADS)
Krishnan, S.; Rawindran, H.; Sinnathambi, C. M.; Lim, J. W.
2017-06-01
Due to the scarcity of water, it has become a necessity to improve the quality of wastewater that is discharged into the environment. Conventional wastewater treatment can be either a physical, chemical, and/or biological processes, or in some cases a combination of these operations. The main purpose of wastewater treatment is to eliminate nutrients, solids, and organic compounds from effluents. Current wastewater treatment technologies are deemed ineffective in the complete removal of pollutants, particularly organic matter. In many cases, these organic compounds are resistant to conventional treatment methods, thus creating the necessity for tertiary treatment. Advanced oxidation process (AOP), constitutes as a promising treatment technology for the management of wastewater. AOPs are characterised by a common chemical feature, where they utilize the highly reactive hydroxyl radicals for achieving complete mineralization of the organic pollutants into carbon dioxide and water. This paper delineates advanced oxidation processes currently used for the remediation of water and wastewater. It also provides the cost estimation of installing and running an AOP system. The costs are separated into three categories: capital, operational, and operating & maintenance.
Evaluation of acetylated moth bean starch as a carrier for controlled drug delivery
Singh, Akhilesh V.; Nath, Lila K.
2012-01-01
The present investigation concerns with the development of controlled release tablets of lamivudine using acetylated moth bean starch. The acetylated starch was synthesized with acetic anhydride in pyridine medium. The acetylated moth bean starch was tested for acute toxicity and drug–excipient compatibility study. The formulations were evaluated for physical characteristics like hardness, friability, % drug content and weight variations. The in vitro release study showed that the optimized formulation exhibited highest correlation (R) value in case of Higuchi kinetic model and the release mechanism study proved that the formulation showed a combination of diffusion and erosion process. There was a significant difference in the pharmacokinetic parameters (Tmax, Cmax, AUC, Vd, T1/2 and MDT) of the optimized formulation as compared to the marketed conventional tablet Lamivir®, which proved controlled release potential of acetylated moth bean starch. PMID:22210486
Penido, Fernanda Corrêa Leal; Piló, Fernanda Barbosa; Sandes, Sávio Henrique de Cicco; Nunes, Álvaro Cantini; Colen, Gecernir; Oliveira, Evelyn de Souza; Rosa, Carlos Augusto; Lacerda, Inayara Cristina Alves
2018-02-28
Sour cassava starch (Polvilho azedo) is obtained from a spontaneous fermentation conducted by microorganisms from raw materials and fermentation tanks. This product is traditionally used in the baking industry for the manufacture of biscuits and Brazilian cheese breads. However, the end of fermentation is evaluated empirically, and the process occurs without standardization, which results in products of inconsistent quality. Predominant microbiota from a cassava flour manufacturer was isolated in order to select starter cultures for the production of sour cassava starch in a pilot-scale fermentation process. Lactic acid bacteria and yeasts were isolated, enumerated and grouped by Restriction Fragment Length Polymorphism, and PCR fingerprinting, respectively. One isolate of each molecular profile was identified by sequencing of the rRNA gene. LAB were prevalent throughout the entire process. Lactobacillus brevis (21.5%), which produced the highest values of acidity, and Lactobacillus plantarum (13.9%) were among the most frequent species. Pichia scutulata (52.2%) was the prevalent yeast and showed amylolytic activity. The aforementioned species were tested as single and mixed starter cultures in a pilot-scale fermentation process for 28 days. L. plantarum exhibited better performance as a starter culture, which suggests its potential for the production of sour cassava starch. Copyright © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
The Role of α-Glucosidase in Germinating Barley Grains1[W][OA
Stanley, Duncan; Rejzek, Martin; Naested, Henrik; Smedley, Mark; Otero, Sofía; Fahy, Brendan; Thorpe, Frazer; Nash, Robert J.; Harwood, Wendy; Svensson, Birte; Denyer, Kay; Field, Robert A.; Smith, Alison M.
2011-01-01
The importance of α-glucosidase in the endosperm starch metabolism of barley (Hordeum vulgare) seedlings is poorly understood. The enzyme converts maltose to glucose (Glc), but in vitro studies indicate that it can also attack starch granules. To discover its role in vivo, we took complementary chemical-genetic and reverse-genetic approaches. We identified iminosugar inhibitors of a recombinant form of an α-glucosidase previously discovered in barley endosperm (ALPHA-GLUCOSIDASE97 [HvAGL97]), and applied four of them to germinating grains. All four decreased the Glc-to-maltose ratio in the endosperm 10 d after imbibition, implying inhibition of maltase activity. Three of the four inhibitors also reduced starch degradation and seedling growth, but the fourth did not affect these parameters. Inhibition of starch degradation was apparently not due to inhibition of amylases. Inhibition of seedling growth was primarily a direct effect of the inhibitors on roots and coleoptiles rather than an indirect effect of the inhibition of endosperm metabolism. It may reflect inhibition of glycoprotein-processing glucosidases in these organs. In transgenic seedlings carrying an RNA interference silencing cassette for HvAgl97, α-glucosidase activity was reduced by up to 50%. There was a large decrease in the Glc-to-maltose ratio in these lines but no effect on starch degradation or seedling growth. Our results suggest that the α-glucosidase HvAGL97 is the major endosperm enzyme catalyzing the conversion of maltose to Glc but is not required for starch degradation. However, the effects of three glucosidase inhibitors on starch degradation in the endosperm indicate the existence of unidentified glucosidase(s) required for this process. PMID:21098673
Xiao, Qianlin; Wang, Yayun; Du, Jia; Li, Hui; Wei, Bin; Wang, Yongbin; Li, Yangping; Yu, Guowu; Liu, Hanmei; Zhang, Junjie; Liu, Yinghong; Hu, Yufeng; Huang, Yubi
2017-09-01
The biosynthesis of starch is a complex process that depends on the regulatory mechanisms of different functional enzymes, and transcriptional regulation plays an important role in this process. Brittle 1, encoded by BT1, is a transporter of adenosine diphosphate-glucose, which plays an important role in the biosynthesis of starch in the endosperm of cereals. Here, we report that the promoter (pZmBT1) of the maize BT1 homolog, ZmBT1, contains an MBSI site (TAACTG), which is important for its activity. Moreover, high expression level of the gene for ZmMYB14 transcription factor was observed in the maize endosperm; its expression pattern was similar to those of the starch synthesis-related genes in maize seeds. ZmMYB14 is a typical 2R-MYB transcription factor localized in the nucleus and possessed transcriptional activation activity. ZmMYB14 could bind to the region of pZmBT1 from -280 to -151 bp and promote its activity through the TAACTG site. It was also observed to promote the activity of pZmSh2, pZmBt2, pZmGBSSI, pZmSSI, and pZmSBE1 in the maize endosperm in transient gene overexpression assays. Furthermore, ZmMYB14 was also shown to bind directly to the promoters of six starch-synthesizing genes, ZmGBSSI, ZmSSI, ZmSSIIa, ZmSBE1, ZmISA1, and ZmISA2 in yeast. These findings indicate that ZmMYB14 functions as a key regulator of ZmBT1 and is closely related to the biosynthesis of starch. Our results provide crucial information related to the regulation of starch biosynthesis in maize and would be helpful in devising strategies for modulating starch production in maize endosperm. © 2017 Federation of European Biochemical Societies.
Freire, Cristina; Podczeck, Fridrun; Veiga, Francisco; Sousa, João
2010-02-01
Colon-specific delivery of drugs can be achieved with dosage forms coated with biopolymers that are metabolized selectively by the colonic microflora and yet resistant to enzymatic digestion in the small intestine. The aim of this study was to study the influence of formulation factors on the performance of mixed films from high-amylose starches and Surelease((R)), applied using a spray-coating process, as potential colon-specific delivery devices. 5-Aminosalicylic acid-loaded pellets were prepared by an extrusion-spheronization process and film coated with mixtures of the starches and Surelease((R)). Optimization of the coating formulation, that is, starch-to-Surelease((R)) ratio, film-coating thickness, and type of starch, was undertaken first in enzyme-free media resembling the conditions in the stomach and small intestine. The effect of curing of the film coating on the drug release profile upon storage was also evaluated. Optimized coating formulations were further assessed for enzymatic digestibility using artificial gastric and intestinal juices containing commercially available pepsin and pancreatin or alpha-amylase from hog pancreas, respectively. Finally, drug release was assessed in fluid-simulating conditions in the colon (SCF) containing Bacillus licheniformis alpha-amylase. Film coatings comprising high-amylose starches and Surelease((R)) in a ratio of 1:2 (w/w) and film thickness of approximately 45 microm were able to withstand the chemical and enzymatic environment of the upper gastrointestinal tract, in particular, resisted degradation by the pancreatic alpha-amylases. Stability of the coatings during storage was achieved with additional curing. In SCF, these coatings were susceptible to enzymatic degradation. This study showed that high amylose starch-mixed films can be successfully used as colon-specific delivery devices. The preparation of the coating dispersions described is simple and rapid, without the need to extract the amylose component of starch.
Devadason, I Prince; Anjaneyulu, A S R; Babji, Y
2010-01-01
The functional properties of 4 binders, namely corn starch, wheat semolina, wheat flour, and tapioca starches, were evaluated to improve the quality of buffalo meat nuggets processed in retort pouches at F(0) 12.13. Incorporation of corn starch in buffalo meat nuggets produced more stable emulsion than other binders used. Product yield, drip loss, and pH did not vary significantly between the products with different binders. Shear force value was significantly higher for product with corn starch (0.42 +/- 0.0 Kg/cm(3)) followed by refined wheat flour (0.36 +/- 0.010 Kg/cm(3)), tapioca starch (0.32 +/- 0.010 Kg/cm(3)), and wheat semolina (0.32 +/- 0.010 Kg/cm(3)). Type of binder used had no significant effect on frying loss, moisture, and protein content of the product. However, fat content was higher in products with corn starch when compared to products with other binders. Texture profile indicated that products made with corn starch (22.17 +/- 2.55 N) and refined wheat flour (21.50 +/- 0.75 N) contributed firmer texture to the product. Corn starch contributed greater chewiness (83.8 +/- 12.51) to the products resulting in higher sensory scores for texture and overall acceptability. Products containing corn starch showed higher sensory scores for all attributes in comparison to products with other binders. Panelists preferred products containing different binders in the order of corn starch (7.23 +/- 0.09) > refined wheat flour (6.48 +/- 0.13) > tapioca starch (6.45 +/- 0.14) > wheat semolina (6.35 +/- 0.13) based on sensory scores. Histological studies indicated that products with corn starch showed dense protein matrix, uniform fat globules, and less number of vacuoles when compared to products made with other binders. The results indicated that corn flour is the better cereal binder for developing buffalo meat nuggets when compared to all other binders based on physico-chemical and sensory attributes.
NASA Astrophysics Data System (ADS)
Ratnasari, D.; Rustanti, N.; Arifan, F.; Afifah, DN
2018-02-01
Diabetes mellitus (DM) is the most common endocrine disease worldwide. Resistant starch is polysaccharide that is recommended for DM patient diets. One of the staple crops containing resistant starch is banana. It is the fourth most important staple crop in the world and critical for food security, best suited plant in warm, frost-free, and coastal climates area. Among banana varieties, Batu bananas (Musa balbisiana Colla) had the highest content of resistant starch (~39%), but its use as a food ingredient is limited. Inclusion of Batu banana flour into cookies manufacturing would both increase the economic value of Batu bananas and provide alternative snacks for DM patients. Here we sought to examine whether cookies made with modified Batu banana flour would be a suitable snack for DM patients. This study used a completely randomized design with two factors: substitution of Batu banana flour (25%, 50%,75%) for wheat-based flour and Batu banana flour treatment methods (no treatment, autoclaving-cooling, autoclaving-cooling-spontaneous fermentation). The resistant starch and in vitro starch digestibility levels were analyzed using two-way ANOVA and Tukey test, whereas the acceptance level was analyzed by Friedman and Wilcoxon tests. The content of resistant starch and in vitro starch digestibility of the different treatments ranged from 3.10 to 15.79% and 16.03 to 52.59%, respectively. Both factors differed significantly (p<0.05) with respect to Batu banana flour substitution, but not to processing method (p>0.05). Meanwhile, palatability in terms of color, aroma, texture, and flavor differed significantly among the different treatments and starch contents (p<0.05). Together these results show that Batu banana flour could be a promising ingredient for the production of snacks suitable for consumption by DM patients. Keywords: Batu banana, cookies, resistant starch, in vitro starch digestibility
ERIC Educational Resources Information Center
Stoltzfus, Lorna
Described is a one-hour overview of the unit processes which comprise a municipal wastewater treatment system. Topics covered in this instructor's guide include types of pollutants encountered, treatment methods, and procedures by which wastewater treatment processes are selected. A slide-tape program is available to supplement this component of…
Non-Starch Polysaccharides in Wheat Flour Wire-Cut Cookie Making
USDA-ARS?s Scientific Manuscript database
Non-starch polysaccharides in wheat flour have significant capacity to affect the processing quality of dough and the finished quality of wheat products. Most research has focused on the effects of arabinoxylans (AX) in bread making. We found that water-extractable arabinoxylan and arabinogalactan...
Digestion of starch in a dynamic small intestinal model.
Jaime-Fonseca, M R; Gouseti, O; Fryer, P J; Wickham, M S J; Bakalis, S
2016-12-01
The rate and extent of starch digestion have been linked with important health aspects, such as control of obesity and type-2 diabetes. In vitro techniques are often used to study digestion and simulated nutrient absorption; however, the effect of gut motility is often disregarded. The present work aims at studying fundamentals of starch digestion, e.g. the effect of viscosity on digestibility, taking into account both biochemical and engineering (gut motility) parameters. New small intestinal model (SIM) that realistically mimics gut motility (segmentation) was used to study digestibility and simulated oligosaccharide bio accessibility of (a) model starch solutions; (b) bread formulations. First, the model was compared with the rigorously mixed stirred tank reactor (STR). Then the effects of enzyme concentration/flow rate, starch concentration, and digesta viscosity (addition of guar gum) were evaluated. Compared to the STR, the SIM showed presence of lag phase when no digestive processes could be detected. The effects of enzyme concentration and flow rate appeared to be marginal in the region of mass transfer limited reactions. Addition of guar gum reduced simulated glucose absorption by up to 45 % in model starch solutions and by 35 % in bread formulations, indicating the importance of chyme rheology on nutrient bioaccessibility. Overall, the work highlights the significance of gut motility in digestive processes and offers a powerful tool in nutritional studies that, additionally to biochemical, considers engineering aspects of digestion. The potential to modulate food digestibility and nutrient bioaccessibility by altering food formulation is indicated.
40 CFR 415.411 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... wastewater means any water which, during manufacturing or processing, comes into direct contact with or... wastewater. (d) The term contaminated nonprocess wastewater shall mean any water which, during manufacturing...) accidental leaks caused by the failure of process equipment, which are repaired within the shortest...
40 CFR 415.401 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... wastewater means any water which, during manufacturing or processing, comes into direct contact with or... wastewater. (d) The term contaminated nonprocess wastewater shall mean any water which, during manufacturing... leaks caused by the failure of process equipment, which are repaired within the shortest reasonable time...
40 CFR 63.110 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.110 Applicability. (a) This subpart applies to all process vents, storage vessels, transfer racks, wastewater streams, and in-process..., subpart III, NNN, or RRR, as applicable. (e) Overlap with other regulations for wastewater. (1) After the...
40 CFR 63.110 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.110 Applicability. (a) This subpart applies to all process vents, storage vessels, transfer racks, wastewater streams, and in-process..., subpart III, NNN, or RRR, as applicable. (e) Overlap with other regulations for wastewater. (1) After the...
Bolzonella, D; Zanette, M; Battistoni, P; Cecchi, F
2007-01-01
A full-scale wastewater treatment plant where municipal and winery wastewaters were co-treated was studied for five years. The experimental results showed that suspended solids, COD, nitrogen and phosphorous were effectively removed both during the treatment of municipal wastewater and the cotreatment of municipal and winery wastewater. The sludge production increase from 4 tons to 5.5 tons per day during the harvesting and wine making period. In any case the specific sludge production was 0.2 kgMLVSS per kgCOD(removed) despite the organic loading increasing. About 70% of the COD was removed through respiration. Also the energy demand increased from 6,000 to 7,000 kWh per day. The estimated costs for the treatment of the winery wastewater was 0.2-0.3 Euros per m3 of treated wastewater. With reference to the process efficiency, the nitrogen removal was just 20%. The co-treatment of municipal and winery wastewater in conventional activated sludge processes can be a feasible solution for the treatment of these streams at relatively low costs.
NASA Astrophysics Data System (ADS)
Kon, Hisao; Watanabe, Masahiro
This study focuses on effluent COD concentration from wastewater treatment in regards to the reduction of pathogenic bacteria and trace substances in public waters. The main types of secondary wastewater treatment were conventional activated sludge processes. Recently, however, advance wastewater treatment processes have been developed aimed at the removal of nitrogen and phosphorus, and the effluent quality of these processes was analyzed in this study. Treatment processes for water reclamation that make effluent to meet the target water quality for reuse purposes were selected and also optimum design parameters for these processes were proposed. It was found that the treatment cost to water reclamation was greatly affected by the effluent COD of the secondary treatment. It is important to maintain low COD concentration in the secondary treated effluent. Therefore, it is considered that adequate cost benefits would be obtained by achieving target COD quality through shifting from a conventional activated sludge process to an advanced treatment process.
Chen, Jianlin; Tang, Liang; Shi, Peihua; Yang, Baohua; Sun, Ting; Cao, Weixing; Zhu, Yan
2017-03-01
High temperature causes negative effects on grain yield and quality of rice (Oryza sativa L.). In this study, the effects of short-term high temperature (SHT) on grain quality and starch granules were investigated in two rice cultivars Nanjing 41 (NJ41, heat-sensitive) and Wuxiangjing 14 (WJ14, heat-tolerant) at post-anthesis stage (anthesis and early grain-filling stage). The results of rice quality analysis showed that chalky rate and chalkiness increased while brown rice rate, milled rice rate, and head rice rate decreased in two rice cultivars with the increase of high temperature and prolonged duration. Moreover, SHT stress reduced the accumulation of amylose as well as starch accumulation. The starch accumulation and eating quality were more sensitive to SHT than the appearance and milling quality. The starch structure data observed by scanning electron microscope further showed that the starch granules are arranged loosely and more single starch granules appeared after SHT treatment. The extent of change in rice quality and starch traits of WJ14 under SHT was lower than that of NJ41. The effects of SHT at anthesis stage were greater than that at grain-filling stage. Taken together, the results could help further understand the physiological and biochemical processes governing rice quality under high-temperature conditions.
Starch/PCL composite nanofibers by co-axial electrospinning technique for biomedical applications.
Komur, B; Bayrak, F; Ekren, N; Eroglu, M S; Oktar, F N; Sinirlioglu, Z A; Yucel, S; Guler, O; Gunduz, O
2017-03-29
In this study, starch and polycaprolactone (PCL), composite nanofibers were fabricated by co-axial needle electrospinning technique. Processing parameters such as polymer concentration, flow rate and voltage had a marked influence on the composite fiber diameter. Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), mechanical and physical properties (such as density, viscosity and electrical conductivity) of the composite fibres were evaluated. Moreover, a cell culture test was performed in order to determine their cytotoxicity for wound dressing application. The effect of starch ratio in the solution on the properties and morphological structure of the fibers produced was presented. With lower starch concentration values, the fibers have greater ultimate tensile strength characteristic (mostly 4 and 5 wt%). According to SEM results, it can be figured out that the nanofibers fabricated have good spinnability and morphology. The mean diameter of the fibers is about 150 nm. According to results of cell culture study, the finding can be determined that the increase of starch in the fiber also increases the cell viability. Composite nanofibers of starch/PCL have been prepared using a co-axial needle electrospinning technique. PCL was successfully encapsulated within starch. Fiber formation was observed for different ratio of starch. With several test, analysis and measurement performed, some important parameters such as quality and effectuality of each fiber obtained for wound dressing applications were discussed in detail.
NASA Astrophysics Data System (ADS)
Purkan, P.; Baktir, A.; Puspaningsih, N. N. T.; Ni'mah, M.
2017-09-01
Saccharomyces cerevisiae is known for its high fermentative capacity, high ethanol yield and its high ethanol tolerance. The yeast is inability converting starch (relatively inexpensive substrate) into biofuel ethanol. Insertion of glucoamylase gene in yeast cell of Saccharomyces cerevisiae had been done to increase the yeast function in ethanol fermentation from starch. Transformation of yeast of S. cerevisiae with recombinant plasmid yEP-GLO1 carrying gene encoding glucoamylase (GLO1) produced the recombinant yeast which enable to degrade starch. Optimizing of bioconversion process of starch into ethanol by the yeast of recombinant Saccharomyces cerevisiae [yEP-GLO1] had been also done. Starch concentration which could be digested by recombinant yeast of S. cerevisiae [yEP-GLO1] was 10% (w/v). Bioconversion of starch having concentration 10% (b/v) using recombinant yeast of S. cerevisiae BY5207 [yEP-GLO1] could result ethanol as 20% (v/v) to alcoholmeter and 19,5% (v/v) to gas of chromatography. Otherwise, using recombinant yeast S. cerevisiae S. cerevisiae AS3324 [yEP-GLO1] resulted ethanol as 17% (v/v) to alcoholmeter and 17,5% (v/v) to gas of chromatography. The highest ethanol in starch bioconversion using both recombinant yeasts BY5207 and AS3324 could be resulted on 144 hours of fermentation time as well as in pH 5.
Mecha, Achisa C; Onyango, Maurice S; Ochieng, Aoyi; Momba, Maggy N B
2017-11-01
The present study evaluated the treatment of municipal wastewater containing phenol using solar and ultraviolet (UV) light photocatalytic ozonation processes to explore comparative performance. Important aspects such as catalyst reuse, mineralization of pollutants, energy requirements, and toxicity of treated wastewater which are crucial for practical implementation of the processes were explored. The activity of the photocatalysts did not change significantly even after three consecutive uses despite approximately 2% of the initial quantity of catalyst being lost in each run. Analysis of the change in average oxidation state (AOS) demonstrated the formation of more oxidized degradation products (ΔAOS values of 1.0-1.7) due to mineralization. The energy requirements were determined in terms of electrical energy per order (E EO ) and the collector area per order (A CO ). The E EO (kWh m -3 Order -1 ) values were 26.2 for ozonation, 38-47 for UV photocatalysis and 7-22 for UV photocatalytic ozonation processes. On the other hand, A CO (m 2 m -3 order -1 ) values were 31-69 for solar photocatalysis and 8-13 for solar photocatalytic ozonation. Thus photocatalytic ozonation processes required less energy input compared to the individual processes. The cytotoxicity of the wastewater was analysed using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay with Vero cells. The cell viability increased from 28.7% in untreated wastewater to 80% in treated wastewater; thus showing that the treated wastewater was less toxic. The effectiveness of photocatalytic ozonation, recovery and reusability of the photocatalysts, as well as detoxification of the wastewater make this low energy consumption process attractive for wastewater remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Xueming; Chen, Guohua
Electroflotation (EF) is the flotation using electrolytically generated bubbles of hydrogen and oxygen for separating suspended substances from aqueous phases. This process was first proposed by Elmore in 1905 for flotation of valuable minerals from ores. Compared with the conventional dissolved air flotation (DAF), EF has many advantages, including high flotation efficiency, compact units, easy operation, and less maintenance. Therefore, EF is an attractive alternative to DAF. This technique has been proven very effective in treating oily wastewater or oil-water emulsion, mining wastewater, groundwater, food processing wastewater, restaurant wastewater, industrial sewage, heavy metals containing effluent, and many other water and wastewaters.
NASA Astrophysics Data System (ADS)
Pratiwi, V. N.
2018-03-01
Rice is a staple food and regarded as a useful carbohydrate source. In general rice is high in glycaemic index (GI) and low colonic fermentation. People are aware of the alterations in blood glucose levels or glycaemic index after consuming rice. Resistant starch (RS) and amylose content play an important role in controlling GI. GI and RS content have been established as important indicators of starch digestibility. The aim of this study was to determine the precooked process with hydrothermal (boiling at 80°C, 10 minutes) and cooling process with low temperature (4°C, 1 h) to increase potential content of RS and decrease of glycaemic index of white rice. There were two stages of this research, 1) preparation of white rice with precooked process; 2) analysis of precooked white rice characteristics (resistant starch, amylose content, and estimated glycaemic index). The result of analysis on precooked white rice showed an increased RS content (1.11%) and white rice (0.99%), but the difference was not statistically significant. The amylose content increased significantly after precooked process in white rice (24.70%) compared with white rice (20.89%). Estimated glycaemic index (EGI) decreased after precooked proses (65.63%) but not significant as compared to white rice (66.47%). From the present study it was concluded that precooked process had no significant impact on increasing RS and decreasing EGI of white rice. This may be due to the relatively short cooling time (1hour) in 4°C.
Yang, C W; Wang, D; Tang, Q
2014-01-01
The Fenton, electro-Fenton and Fe(II)-activated peroxydisulfate (PDS) processes have been applied for the treatment of actual furfural industrial wastewater in this paper. Through the comparative study of the three processes, a suitable pretreatment technology for actual furfural wastewater treatment was obtained, and the mechanism and dynamics process of this technology is discussed. The experimental results show that Fenton technology has a good and stable effect without adjusting pH of furfural wastewater. At optimal conditions, which were 40 mmol/L H₂O₂ initial concentration and 10 mmol/L Fe²⁺ initial concentration, the chemical oxygen demand (COD) removal rate can reach 81.2% after 90 min reaction at 80 °C temperature. The PDS process also has a good performance. The COD removal rate could attain 80.3% when Na₂S₂O₈ initial concentration was 4.2 mmol/L, Fe²⁺ initial concentration was 0.1 mol/L, the temperature remained at 70 °C, and pH value remained at 2.0. The electro-Fenton process was not competent to deal with the high-temperature furfural industrial wastewater and only 10.2% COD was degraded at 80 °C temperature in the optimal conditions (2.25 mA/cm² current density, 4 mg/L Na₂SO₄, 0.3 m³/h aeration rate). For the Fenton, electro-Fenton and PDS processes in pretreatment of furfural wastewater, their kinetic processes follow the pseudo first order kinetics law. The pretreatment pathways of furfural wastewater degradation are also investigated in this study. The results show that furfural and furan formic acid in furfural wastewater were preferentially degraded by Fenton technology. Furfural can be degraded into low-toxicity or nontoxic compounds by Fenton pretreatment technology, which could make furfural wastewater harmless and even reusable.
Boufi, Sami; Bel Haaj, Sihem; Magnin, Albert; Pignon, Frédéric; Impéror-Clerc, Marianne; Mortha, Gérard
2018-03-01
In this paper, the disintegration of starch (waxy and standard starch) granules into nanosized particles under the sole effect of high power ultrasonication treatment in water/isopropanol is investigated, by using wide methods of analysis. The present work aims at a fully characterization of the starch nanoparticles produced by ultrasonication, in terms of size, morphology and structural properties, and the proposition of a possible mechanism explaining the top-down generation of starch nanoparticles (SNPs) via high intensity ultrasonication. Dynamic light scattering measurements have indicated a leveling of the particle size to about 40nm after 75min of ultrasonication. The WAXD, DSC and Raman have revealed the amorphous character of the SNPs. FE-SEM. AFM observations have confirmed the size measured by DLS and suggested that SNPs exhibited 2D morphology of platelet-like shapes. This morphology is further supported by SAXS. On the basis of data collected from the different characterization techniques, a possible mechanism explaining the disintegration process of starch granules into NPs is proposed. Copyright © 2017 Elsevier B.V. All rights reserved.
Resconi, Virginia C; Keenan, Derek F; García, Elisa; Allen, Paul; Kerry, Joe P; Hamill, Ruth M
2016-11-01
The effects of sodium tripolyphosphate (STPP), two sources of starch (potato starch: PS and rice starch: RS) and comminution degree (CD) on the technological, instrumental and sensory characteristics of reformed hams were studied using response surface methodology. Both starches reduced cook loss and decreased ham flavour intensity, but RS had stronger effects on instrumental measures of texture, while PS was associated with improved juiciness when low/no added STPP was included. Coarsely ground meat, processed 100% with the kidney plate was associated with slightly increased cook loss, reduced texture profile analysis parameters and a more intense ham flavour compared to the other treatment (80% ground with a kidney plate plus 20% with a 9mm plate). STPP was the sole factor affecting overall liking. If starch is included in the formulation, the standard level of STPP (0.3%) can be reduced by half with no increase in cook losses, but some decline in sensory quality cannot be avoided. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Genyi; Hamaker, Bruce R
2017-12-12
Purported health benefits of whole grain foods in lowering risk of obesity, type 2 diabetes, cardiovascular disease, and cancer are supported by epidemiological studies and scientific researches. Bioactive components including dietary fibers, phytochemicals, and various micronutrients present in the bran and germ are commonly considered as the basis for such benefits. Endosperm starch, as the major constituent of whole grains providing glucose to the body, has been less investigated regarding its nutritional property and contribution to the value of whole grain foods. Nutritional quality of starch is associated with its rate of digestion and glucose absorption. In whole grain foods, starch digestion and glucose delivery may vary depending on the form in which the food is delivered, some with starch being rapidly and others slowly digested. Furthermore, there are other inherent factors in whole grain products, such as phenolic compounds and dietary fibers, that may moderate glycemic profiles. A good understanding of the nutritional properties of whole grain starch is important to the development of food processing technologies to maximize their health benefits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Organic HAP's Subject to the Wastewater... Operations, and Wastewater Pt. 63, Subpt. G, Table 8 Table 8 to Subpart G of Part 63—Organic HAP's Subject to the Wastewater Provisions for Process Units at New Sources Chemical name CAS No. a Allyl chloride...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Organic HAP's Subject to the Wastewater... Operations, and Wastewater Pt. 63, Subpt. G, Table 8 Table 8 to Subpart G of Part 63—Organic HAP's Subject to the Wastewater Provisions for Process Units at New Sources Chemical name CAS No. a Allyl chloride...
Wastewater recycling technology for fermentation in polyunsaturated fatty acid production.
Song, Xiaojin; Ma, Zengxin; Tan, Yanzhen; Zhang, Huidan; Cui, Qiu
2017-07-01
To reduce fermentation-associated wastewater discharge and the cost of wastewater treatment, which further reduces the total cost of DHA and ARA production, this study first analyzed the composition of wastewater from Aurantiochytrium (DHA) and Mortierella alpina (ARA) fermentation, after which wastewater recycling technology for these fermentation processes was developed. No negative effects of DHA and ARA production were observed when the two fermentation wastewater methods were cross-recycled. DHA and ARA yields were significantly inhibited when the wastewater from the fermentation process was directly reused. In 5-L fed-batch fermentation experiments, using this cross-recycle technology, the DHA and ARA yields were 30.4 and 5.13gL -1 , respectively, with no significant changes (P>0.05) compared to the control group, and the water consumption was reduced by half compared to the traditional process. Therefore, this technology has great potential in industrial fermentation for polyunsaturated fatty acid production. Copyright © 2017 Elsevier Ltd. All rights reserved.
40 CFR 63.135 - Process wastewater provisions-containers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... wastewater provisions—containers. (a) For each container that receives, manages, or treats a Group 1 wastewater stream or a residual removed from a Group 1 wastewater stream, the owner or operator shall comply... operate and maintain a cover on each container used to handle, transfer, or store a Group 1 wastewater...
40 CFR 63.135 - Process wastewater provisions-containers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... wastewater provisions—containers. (a) For each container that receives, manages, or treats a Group 1 wastewater stream or a residual removed from a Group 1 wastewater stream, the owner or operator shall comply... operate and maintain a cover on each container used to handle, transfer, or store a Group 1 wastewater...
40 CFR 63.135 - Process wastewater provisions-containers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... wastewater provisions—containers. (a) For each container that receives, manages, or treats a Group 1 wastewater stream or a residual removed from a Group 1 wastewater stream, the owner or operator shall comply... operate and maintain a cover on each container used to handle, transfer, or store a Group 1 wastewater...
40 CFR 63.135 - Process wastewater provisions-containers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... wastewater provisions—containers. (a) For each container that receives, manages, or treats a Group 1 wastewater stream or a residual removed from a Group 1 wastewater stream, the owner or operator shall comply... operate and maintain a cover on each container used to handle, transfer, or store a Group 1 wastewater...
40 CFR 63.1433 - Wastewater provisions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 12 2013-07-01 2013-07-01 false Wastewater provisions. 63.1433 Section... Wastewater provisions. (a) Process wastewater. Except as specified in paragraph (c) of this section, the owner or operator of each affected source shall comply with the HON wastewater requirements in §§ 63.132...
Tomperi, Jani; Leiviskä, Kauko
2018-06-01
Traditionally the modelling in an activated sludge process has been based on solely the process measurements, but as the interest to optically monitor wastewater samples to characterize the floc morphology has increased, in the recent years the results of image analyses have been more frequently utilized to predict the characteristics of wastewater. This study shows that the traditional process measurements or the automated optical monitoring variables by themselves are not capable of developing the best predictive models for the treated wastewater quality in a full-scale wastewater treatment plant, but utilizing these variables together the optimal models, which show the level and changes in the treated wastewater quality, are achieved. By this early warning, process operation can be optimized to avoid environmental damages and economic losses. The study also shows that specific optical monitoring variables are important in modelling a certain quality parameter, regardless of the other input variables available.
Wastewater treatment of chemical laboratory using electro assisted-phytoremediation (EAPR)
NASA Astrophysics Data System (ADS)
Putra, Rudy Syah; Trahadinata, Gilang Ahmad; Latif, Arif; Solehudin, Mochamad
2017-03-01
The EAPR process using water hyacinth (Eichornia crassipes) on the wastewater treatment of chemical laboratory had been evaluated. The purpose of the EAPR process was to decrease the BOD, COD and heavy metal concentration in the wastewater. The effectiveness of the process on the wastewater treatment was evaluated using COD, BOD, and heavy metal (Pb, Cu) concentration, respectively. The result showed that the EAPR process decrease the COD, BOD, Pb and Cu in the 4 h of EAPR process. Those concentrations were met the water quality standard of class IV according to government regulation No. 82/2001 regarding the water quality management and water pollution control of the Republic of Indonesia.
Zhang, Binjia; Xie, Fengwei; Zhang, Tianlong; Chen, Ling; Li, Xiaoxi; Truss, Rowan W; Halley, Peter J; Shamshina, Julia L; McNally, Tony; Rogers, Robin D
2016-08-01
The focus of this study was on the effects of plasticisers (the ionic liquid 1-ethyl-3-methylimidazolium acetate, or [Emim][OAc]; and glycerol) on the changes of starch structure on multiple length scales, and the variation in properties of plasticised starch-based films, during ageing. The films were prepared by a simple melt compression moulding process, followed by storage at different relative humidity (RH) environments. Compared with glycerol, [Emim][OAc] could result in greater homogeneity in [Emim][OAc]-plasticised starch-based films (no gel-like aggregates and less molecular order (crystallites) on the nano-scale). Besides, much weaker starch-starch interactions but stronger starch-[Emim][OAc] interactions at the molecular level led to reduced strength and stiffness but increased flexibility of the films. More importantly, [Emim][OAc] (especially at high content) was revealed to more effectively maintain the plasticised state during ageing than glycerol: the densification (especially in the amorphous regions) was suppressed; and the structural characteristics especially on the nano-scale were stabilised (especially at a high RH), presumably due to the suppressed starch molecular interactions by [Emim][OAc] as confirmed by Raman spectroscopy. Such behaviour contributed to stabilised mechanical properties. Nonetheless, the crystallinity and thermal stability of starch-based films with both plasticisers were much less affected by ageing and moisture uptake during storage (42 days), but mostly depended on the plasticiser type and content. As starch is a typical semi-crystalline bio-polymer containing abundant hydroxyl groups and strong hydrogen bonding, the findings here could also be significant in creating materials from other similar biopolymers with tailored sensitivity and properties to the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Synthetic carbohydrate: An aid to nutrition in the future
NASA Technical Reports Server (NTRS)
Berman, G. A. (Editor); Murashige, K. H. (Editor)
1973-01-01
The synthetic production of carbohydrate on a large scale is discussed. Three possible nonagricultural methods of making starch are presented in detail and discussed. The simplest of these, the hydrolysis of cellulose wastes to glucose followed by polymerization to starch, appears a reasonable and economic supplement to agriculture at the present time. The conversion of fossil fuels to starch was found to be not competitive with agriculture at the present time, but tractable enough to allow a reasonable plant design to be made. A reconstruction of the photosynthetic process using isolated enzyme systems proved technically much more difficult than either of the other two processes. Particular difficulties relate to the replacement of expensive energy carrying compounds, separation of similar materials, and processing of large reactant volumes. Problem areas were pinpointed, and technological progress necessary to permit such a system to become practical is described.
Nakamura, N; Nakano, K; Sugiura, N; Matsumura, M
2003-12-01
A process using a floating carrier for immobilization of cyanobacteriolytic bacteria, B.cereus N-14, was proposed to realize an effective in situ control of natural floating cyanobacterial blooms. The critical concentrations of the cyanobacteriolytic substance and B.cereus N-14 cells required to exhibit cyanobacteriolytic activity were investigated. The results indicated the necessity of cell growth to produce sufficiently high amounts of the cyanobacteriolytic substance to exhibit its activity and also for conditions enabling good contact between high concentrations of the cyanobacteriolytic substance and cyanobacteria. Floating biodegradable plastics made of starch were applied as a carrier material to maintain close contact between the immobilized cyanobacteriolytic bacteria and floating cyanobacteria. The floating starch-carriers could eliminate 99% of floating cyanobacteria in 4 d. Since B.cereus N-14 could produce the cyanobacteriolytic substance under the presence of starch and some amino acids, the cyanobacteriolytic activity could be attributed to carbon source fed from starch carrier and amino acids eluted from lysed cyanobacteria. Therefore, the effect of using a floating starch-carrier was confirmed from both view points as a carrier for immobilization and a nutrient source to stimulate cyanobacteriolytic activity. The new concept to apply a floating carrier immobilizing useful microorganisms for intensive treatment of a nuisance floating target was demonstrated.
Deckardt, Kathrin; Khol-Parisini, Annabella; Zebeli, Qendrim
2013-01-01
High-producing ruminants are fed high amounts of cereal grains, at the expense of dietary fiber, to meet their high energy demands. Grains consist mainly of starch, which is easily degraded in the rumen by microbial glycosidases, providing energy for rapid growth of rumen microbes and short-chain fatty acids (SCFA) as the main energy source for the host. Yet, low dietary fiber contents and the rapid accumulation of SCFA lead to rumen disorders in cattle. The chemical processing of grains has become increasingly important to confer their starch resistances against rumen microbial glycosidases, hence generating ruminally resistant starch (RRS). In ruminants, unlike monogastric species, the strategy of enhancing resistant starch is useful, not only in lowering the amount of carbohydrate substrates available for digestion in the upper gut sections, but also in enhancing the net hepatic glucose supply, which can be utilized by the host more efficiently than the hepatic gluconeogenesis of SCFA. The use of chemical methods to enhance the RRS of grains and the feeding of RRS face challenges in the practice; therefore, the present article attempts to summarize the most important achievements in the chemical processing methods used to generate RRS, and review advantages and challenges of feeding RRS to ruminants. PMID:23736826
Application of microbial α-amylase in industry - A review.
de Souza, Paula Monteiro; de Oliveira Magalhães, Pérola
2010-10-01
Amylases are one of the main enzymes used in industry. Such enzymes hydrolyze the starch molecules into polymers composed of glucose units. Amylases have potential application in a wide number of industrial processes such as food, fermentation and pharmaceutical industries. α-Amylases can be obtained from plants, animals and microorganisms. However, enzymes from fungal and bacterial sources have dominated applications in industrial sectors. The production of α-amylase is essential for conversion of starches into oligosaccharides. Starch is an important constituent of the human diet and is a major storage product of many economically important crops such as wheat, rice, maize, tapioca, and potato. Starch-converting enzymes are used in the production of maltodextrin, modified starches, or glucose and fructose syrups. A large number of microbial α-amylases has applications in different industrial sectors such as food, textile, paper and detergent industries. The production of α-amylases has generally been carried out using submerged fermentation, but solid state fermentation systems appear as a promising technology. The properties of each α-amylase such as thermostability, pH profile, pH stability, and Ca-independency are important in the development of fermentation process. This review focuses on the production of bacterial and fungal α-amylases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications.
Fabrication of starch-based microparticles by an emulsification-crosslinking method
USDA-ARS?s Scientific Manuscript database
Starch-based microparticles (MPs) fabricated by a water-in-water (w/w) emulsification-crosslinking method could be used as a controlled-release delivery vehicle for food bioactives. Due to the processing route without the use of toxic organic solvents, it is expected that these microparticles can be...
Effect of cooling step on starch digestibility and other properties of parboiled rice.
USDA-ARS?s Scientific Manuscript database
Retrogradation and the formation of amylose-lipid complex have been reported to contribute to reduced digestibility of starch in parboiled rice. This study looked at the prospect of including a low-temperature holding step in the parboiling process to enhance retrogradation, and subsequently reduce ...
USDA-ARS?s Scientific Manuscript database
The detailed mechanistic aspects for the final starch digestion process leading to effective alpha-glucogenesis by the 2 mucosal alpha-glucosidases, human sucrase-isomaltase complex (SI) and human maltase-glucoamylase (MGAM), are poorly understood. This is due to the structural complexity and vast v...
USDA-ARS?s Scientific Manuscript database
Starch-stabilized silver nanoparticles were prepared from amylose-sodium palmitate complexes by first converting sodium palmitate to silver palmitate by reaction with silver nitrate and then reducing the silver ion to metallic silver. This process produced water solutions that could be dried and the...
Eom, In-Yong; Yu, Ju-Hyun; Jung, Chan-Duck; Hong, Kyung-Sik
2015-01-01
Oil palm trunk (OPT) is a valuable bioresource for the biorefinery industry producing biofuels and biochemicals. It has the distinct feature of containing a large amount of starch, which, unlike cellulose, can be easily solubilized by water when heated and hydrolyzed to glucose by amylolytic enzymes without pretreatment for breaking down the biomass recalcitrance. Therefore, it is suggested as beneficial to extract most of the starch from OPT through autoclaving and subsequent amylolytic hydrolysis prior to pretreatment. However, this treatment requires high capital and operational costs, and there could be a high probability of microbial contamination during starch processing. In terms of biochemical conversion of OPT, this study aimed to develop a simple and efficient ethanol conversion process without any chemical use such as acids and bases or detoxification. For comparison with the proposed efficient ethanol conversion process, OPT was subjected to hydrothermal treatment at 180 °C for 30 min. After enzymatic hydrolysis of PWS, 43.5 g of glucose per 100 g dry biomass was obtained, which corresponds to 81.3 % of the theoretical glucose yield. Through subsequent alcohol fermentation, 81.4 % ethanol yield of the theoretical ethanol yield was achieved. To conduct the proposed new process, starch in OPT was converted to ethanol through enzymatic hydrolysis and subsequent fermentation prior to hydrothermal treatment, and the resulting slurry was subjected to identical processes that were applied to control. Consequently, a high-glucose yield of 96.3 % was achieved, and the resulting ethanol yield was 93.5 %. The proposed new process was a simple method for minimizing the loss of starch during biochemical conversion and maximizing ethanol production as well as fermentable sugars from OPT. In addition, this methodology offers the advantage of reducing operational and capital costs due to minimizing the process for ethanol production by excluding expensive processes related to detoxification prior to enzymatic hydrolysis and fermentation such as washing/conditioning and solid-liquid separation of pretreated slurry. The potential future use of xylose-digestible microorganisms could further increase the ethanol yield from the proposed process, thereby increasing its effectiveness for the conversion of OPT into biofuels and biochemicals.
ERIC Educational Resources Information Center
Mason, George J.
This guide for developing standard operating job procedures for wastewater treatment facilities is devoted to the activated sludge aeration and sedimentation process. This process is for conversion of nonsettleable and nonfloatable materials in wastewater to settleable, floculated biological groups and separation of the settleable solids from the…
ERIC Educational Resources Information Center
Petrasek, Al, Jr.
This guide describes the standard operating job procedures for the tertiary multimedia filtration process of wastewater treatment plants. The major objective of the filtration process is the removal of suspended solids from the reclaimed wastewater. The guide gives step-by-step instructions for pre-start up, start-up, continuous operation, and…
ENVIRONMENTAL MONITORING OF A WASTEWATER TREATMENT PLANT
A wastewater aerosol monitoring program was conducted at an advanced wastewater treatment facility using the activated sludge process. This plant was recently constructed next to an elementary school in Tigard, Oregon. Wastewater aerosols containing pathogenic organisms are gener...
Domestic wastewater treatment as a net energy producer--can this be achieved?
McCarty, Perry L; Bae, Jaeho; Kim, Jeonghwan
2011-09-01
In seeking greater sustainability in water resources management, wastewater is now being considered more as a resource than as a waste-a resource for water, for plant nutrients, and for energy. Energy, the primary focus of this article, can be obtained from wastewater's organic as well as from its thermal content. Also, using wastewater's nitrogen and P nutrients for plant fertilization, rather than wasting them, helps offset the high energy cost of producing synthetic fertilizers. Microbial fuel cells offer potential for direct biological conversion of wastewater's organic materials into electricity, although significant improvements are needed for this process to be competitive with anaerobic biological conversion of wastewater organics into biogas, a renewable fuel used in electricity generation. Newer membrane processes coupled with complete anaerobic treatment of wastewater offer the potential for wastewater treatment to become a net generator of energy, rather than the large energy consumer that it is today.
NASA Astrophysics Data System (ADS)
Sumiyati, Sri; Purwanto; Sudarno
2018-02-01
Pollution of domestic wastewater becomes an urban problem. Domestic wastewater contains a variety of pollutants. One of the pollutant parameters in domestic wastewater is BOD. Domestic wastewater which BOD concentrations exceeding the quality standard will be harmful to the environment, particularly the receiving water body. Therefore, before being discharged into the environment, domestic wastewater needs to be processed first. One of the processing that has high efficiency, low cost and easy operation is biofilter technology. The purpose of this research was to analyze the efficiency of BOD concentration reduction in domestic wastewater with anaerobic reactor biofilter using volcanic gravel media. The type of reactor used is an anaerobic biofilter made of glass which volume of 30 liters while the biofilter media is volcanic gravel. In this research the established HRT were 24, 12, 6 and 3 hours. The results showed that the efficiency of BOD concentration reduction in artificial domestic wastewater reached 80%.
Purified terephthalic acid wastewater biodegradation and toxicity.
Zhang, Xu-xiang; Wan, Yu-qiu; Cheng, Shu-pei; Sun, Shi-lei; Zhu, Cheng-jun; Li, Wei-xin; Zhang, Xiao-chun; Wang, Gui-lin; Lu, Jian-hua; Luo, Xiang; Gu, Ji-dong
2005-01-01
The biodegradation and toxicity of the purified terephthalic acid (PTA) processing wastewater was researched at NJYZ pilot with the fusant strain Fhhh in the carrier activated sludge process (CASP). Sludge loading rate (SLR) for Fhhh to COD of the wastewater was 1.09 d(-1) and to PTA in the wastewater was 0.29 d(-1). The results of bioassay at the pilot and calculation with software Ebis3 showed that the 48h-LC50 (median lethal concentration) to Daphnia magna for the PTA concentration in the wastewater was only 1/10 of that for the chemical PTA. There were 5 kinds of benzoate pollutants and their toxicities existing in the wastewater at least. The toxicity parameter value of the pure chemical PTA cannot be used to predicate the PTA wastewater toxicity. The toxicity of the NJYZ PTA wastewater will be discussed in detail in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroad, P.A.; Wilke, C.R.
1976-12-01
Bioconversion of food processing wastes is receiving increased attention with the realization that waste components represent an available and utilizable resource for conversion to useful products. Liquid wastes are characterized as dilute streams containing sugars, starches, proteins, and fats. Solid wastes are generally cellulosic, but may contain other biopolymers. The greatest potential for economic bioconversion is represented by processes to convert cellulose to glucose, glucose to alcohol and protein, starch to invert sugar, and dilute waste streams to methane by anaerobic digestion. Microbial or enzymatic processes to accomplish these conversions are described.
Physicochemical and Gelatinization Properties of Starches Separated from Various Rice Cultivars.
Woo, Hee-Dong; We, Gyoung Jin; Kang, Tae-Young; Shon, Kee Hyuk; Chung, Hyung-Wook; Yoon, Mi-Ra; Lee, Jeom-Sig; Ko, Sanghoon
2015-10-01
Morphological, viscoelastic, hydration, pasting, and thermal properties of starches separated from 10 different rice cultivars were investigated. Upon gelatinization, the G' values of the rice starch pastes ranged from 37.4 to 2057 Pa at 25 °C, and remarkably, the magnitude depended on the starch varieties. The rheological behavior during gelatinization upon heating brought out differences in onset in G' and degree of steepness. The cultivar with high amylose content (Goami) showed the lowest critical strain (γ(c)), whereas the cultivars with low amylose content (Boseokchal and Shinseonchal) possessed the highest γ(c). The amylose content in rice starches affected their pasting properties; the sample possessing the highest amylose content showed the highest final viscosity and setback value, whereas waxy starch samples displayed low final viscosity and setback value. The onset gelatinization temperatures of the starches from 10 rice cultivars ranged between 57.9 and 64.4 °C. The amylose content was fairly correlated to hydration and pasting properties of rice starches but did not correlate well with viscoelastic and thermal characteristics. The combined analysis of hydration, pasting, viscoelastic, and thermal data of the rice starches is useful in fully understanding their behavior and in addressing the processability for food applications. Rice flour has potential applications in various food products. The physicochemical properties of rice flour are dependent on its variety, which affects the quality of the final products. In this study, the combined analysis including hydration, pasting, viscoelastic, and thermal properties of rice flour could afford information for preparing a particular product such as bread and noodle. © 2015 Institute of Food Technologists®
Preparation and characterization of jackfruit seed starch/poly (vinyl alcohol) (PVA) blend film
NASA Astrophysics Data System (ADS)
Sarifuddin, N.; Shahrim, N. A.; Rani, N. N. S. A.; Zaki, H. H. M.; Azhar, A. Z. A.
2018-01-01
From the environmental point of view, biodegradable materials have been rapidly developed in the past years. PVA is one of the biodegradable synthetic polymers commonly used, but its degradation rate is slow. As an alternative to reduce plastic waste and accelerate the degradation process, PVA frequently blended with other natural polymers to improve its biodegradability. The natural polymer such as starch has high potential in enhancing PVA biodegradability by blending both components. The usage of starch extracted from agriculture wastes such as jackfruit seed is quite promising. In this study, jackfruit seed starch (JFSS)/poly (vinyl alcohol) (PVA) blend films were prepared using the solution casting method. The effect of starch content on the mechanical (tensile strength and elongation to break %) and physical properties of the tested films were investigated. The optimum tensile strength was obtained at 10.45 MPa when 4 wt. % of starch added to the blend. But, decreasing trend of tensile strength was found upon increasing the amount of starch beyond 4 wt. % in starch/PVA blend films. Nevertheless, elongation at break decreases with the increase in starch content. The mechanical properties of the blend films are supported by the Field Emission Scanning Electron Microscopy (FESEM), in which the native JFSS granules are wetted by PVA continuous phase with good dispersion and less agglomeration. The incorporation of JFSS in PVA has also resulted in the appearance of hydrogen bond peak, which evidenced by Fourier Transform Infrared (FTIR). Additionally, the biodegradation rate of JFSS/PVA was evaluated through soil burial test.
Ahmed, Jasim; Thomas, Linu; Taher, Ayoub; Joseph, Antony
2016-11-05
Lentil starch (LS) dispersions (flour to water 1:4w/w) were subjected to high pressure (HP) treatment at 0.1, 400, 500 and 600MPa for 10min, followed by evaluation on the functional, particle size, rheological, pasting, and structural properties of post-process samples. Water holding capacity of pressurized starch increased with the pressure intensity due to increase in damaged starch. The amount of resistant starch increased from 5 to 6.8% after pressure treatment at 600MPa. An increase in starch granule particle size (196-207μm) was obvious after HP treatment. The lentil starch was completely gelatinized after pressure treatment at 600MPa for 10min as evidenced from differential scanning calorimetry, rheometry, X-ray diffraction (XRD) and scanning electron microscopy observation. The elastic modulus, G' of lentil starch gel was less frequency dependent, and higher in magnitude at high pressure (>500MPa) than at lower pressure range (≤400MPa). XRD analysis revealed the disappearance of two diffraction peak intensities at 14.86° and 22.82° at 600MPa for 10min, which confirms the transformation of crystalline to amorphous region of lentil starch. Pasting properties were significantly influenced by the pressure treatment especially at 600MPa, resulting in a considerable decrease in peak viscosity, breakdown and final viscosity, and an increase in peak time. It can be inferred that the functional properties of pressure-treated LS are mainly based on the structural destruction of granules. Copyright © 2016 Elsevier Ltd. All rights reserved.
Characterization of starch from tubers of yam bean (Pachyrhizus ahipa).
Forsyth, Jane L; Ring, Steve G; Noel, Timothy R; Parker, Roger; Cairns, Paul; Findlay, Kim; Shewry, Peter R
2002-01-16
Detailed studies of the starch present in tubers of six accessions of Pachyrhizus ahipa (ahipa) have been carried out using starches from tubers of P. erosus (Mexican yam bean) and seeds of ahipa and wheat for comparison. Starch accounted for 56-58% of the tuber dry weight with granules occurring in a range of geometric forms and in sizes from below 5 microm to about 35 microm (mean about 10 microm in all accessions except two). The amylose content ranged from 11.6 to 16.8% compared with 16.9% in P. erosus tubers and over 23% in the seed starches. X- ray diffraction analysis showed A-type or C(A)-type diffraction patterns. The chain-length distribution of the amylopectin after enzyme debranching showed a peak at DP11 similar to that of wheat starch, but had a less marked shoulder at DP 21-22 and contained a higher proportion of longer chains. Differential scanning calorimitry showed an endothermic peak corresponding to gelatinization with T(max) ranging from 59 to 63 degrees C, which was similar to the T(max) of wheat (about 64 degrees C). The composition of the ahipa starch may mean that it is suitable for food applications that require low amylose content and low retrogradation after processing.
Wang, Xuchu; Chang, Lili; Tong, Zheng; Wang, Dongyang; Yin, Qi; Wang, Dan; Jin, Xiang; Yang, Qian; Wang, Liming; Sun, Yong; Huang, Qixing; Guo, Anping; Peng, Ming
2016-01-21
Cassava is one of the most important root crops as a reliable source of food and carbohydrates. Carbohydrate metabolism and starch accumulation in cassava storage root is a cascade process that includes large amounts of proteins and cofactors. Here, comparative proteomics were conducted in cassava root at nine developmental stages. A total of 154 identified proteins were found to be differentially expressed during starch accumulation and root tuberization. Many enzymes involved in starch and sucrose metabolism were significantly up-regulated, and functional classification of the differentially expressed proteins demonstrated that the majority were binding-related enzymes. Many proteins were took part in carbohydrate metabolism to produce energy. Among them, three 14-3-3 isoforms were induced to be clearly phosphorylated during storage root enlargement. Overexpression of a cassava 14-3-3 gene in Arabidopsis thaliana confirmed that the older leaves of these transgenic plants contained higher sugar and starch contents than the wild-type leaves. The 14-3-3 proteins and their binding enzymes may play important roles in carbohydrate metabolism and starch accumulation during cassava root tuberization. These results not only deepened our understanding of the tuberous root proteome, but also uncovered new insights into carbohydrate metabolism and starch accumulation during cassava root enlargement.
Tian, Huafeng; Yan, Jiaan; Rajulu, A Varada; Xiang, Aimin; Luo, Xiaogang
2017-03-01
In this work, starch/polyvinyl alcohol (PVA) blend films with different compositions were prepared by melt processing. The effect of the composition and relative humidity (RH) on the structure and properties of the resulting blends were investigated. OH groups on starch and PVA formed hydrogen bonding interactions, which could improve the compatibility of the two components. With the increase of starch, the degree of crystallinity of PVA component decreased. The fracture surface of the blend films exhibited rough surface, suggesting the tough fracture. With the increase of starch, the water uptake at equilibrium decreased. With the increase of RH, the water uptake at equilibrium of the resulting blends increased. The tensile strength, elongation at break and Young's modulus decreased with increasing content of starch. However, at 50% starch content, the flexibility of the blend films was still high, with the elongation at break more than 1000% and tensile strength of 9MPa, which was superior to the commonly LDPE package films. The tensile strength and Young's modulus decreased with the increase of RH, while the elongation at break was enhanced dramatically, indicating the improved flexibility. Therefore, these kinds of blend films exhibited wide application potentials as packaging materials. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Xuchu; Chang, Lili; Tong, Zheng; Wang, Dongyang; Yin, Qi; Wang, Dan; Jin, Xiang; Yang, Qian; Wang, Liming; Sun, Yong; Huang, Qixing; Guo, Anping; Peng, Ming
2016-01-01
Cassava is one of the most important root crops as a reliable source of food and carbohydrates. Carbohydrate metabolism and starch accumulation in cassava storage root is a cascade process that includes large amounts of proteins and cofactors. Here, comparative proteomics were conducted in cassava root at nine developmental stages. A total of 154 identified proteins were found to be differentially expressed during starch accumulation and root tuberization. Many enzymes involved in starch and sucrose metabolism were significantly up-regulated, and functional classification of the differentially expressed proteins demonstrated that the majority were binding-related enzymes. Many proteins were took part in carbohydrate metabolism to produce energy. Among them, three 14-3-3 isoforms were induced to be clearly phosphorylated during storage root enlargement. Overexpression of a cassava 14-3-3 gene in Arabidopsis thaliana confirmed that the older leaves of these transgenic plants contained higher sugar and starch contents than the wild-type leaves. The 14-3-3 proteins and their binding enzymes may play important roles in carbohydrate metabolism and starch accumulation during cassava root tuberization. These results not only deepened our understanding of the tuberous root proteome, but also uncovered new insights into carbohydrate metabolism and starch accumulation during cassava root enlargement. PMID:26791570
Tracking antibiotic resistome during wastewater treatment using high throughput quantitative PCR.
An, Xin-Li; Su, Jian-Qiang; Li, Bing; Ouyang, Wei-Ying; Zhao, Yi; Chen, Qing-Lin; Cui, Li; Chen, Hong; Gillings, Michael R; Zhang, Tong; Zhu, Yong-Guan
2018-05-08
Wastewater treatment plants (WWTPs) contain diverse antibiotic resistance genes (ARGs), and thus are considered as a major pathway for the dissemination of these genes into the environments. However, comprehensive evaluations of ARGs dynamic during wastewater treatment process lack extensive investigations on a broad spectrum of ARGs. Here, we investigated the dynamics of ARGs and bacterial community structures in 114 samples from eleven Chinese WWTPs using high-throughput quantitative PCR and 16S rRNA-based Illumina sequencing analysis. Significant shift of ARGs profiles was observed and wastewater treatment process could significantly reduce the abundance and diversity of ARGs, with the removal of ARGs concentration by 1-2 orders of magnitude. Whereas, a considerable number of ARGs were detected and enriched in effluents compared with influents. In particular, seven ARGs mainly conferring resistance to beta-lactams and aminoglycosides and three mobile genetic elements persisted in all WWTPs samples after wastewater treatment. ARGs profiles varied with wastewater treatment processes, seasons and regions. This study tracked the footprint of ARGs during wastewater treatment process, which would support the assessment on the spread of ARGs from WWTPs and provide data for identifying management options to improve ARG mitigation in WWTPs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Güneş, Elçin; Çifçi, Deniz İzlen; Çelik, Suna Özden
2018-04-01
The present study aims to explore the characterization of industrial container and drum cleaning (ICDC) industry wastewater and treatment alternatives of this wastewater using Fenton and adsorption processes. Wastewater derived from ICDC industry is usually treated by chemical coagulation and biological treatment in Turkey and then discharged in a centralized wastewater treatment facility. It is required that the wastewater COD is below 1500 mg/L to treat in a centralized wastewater treatment facility. The wastewater samples were characterized for parameters of pH, conductivity, COD, BOD 5 , TSS, NH 3 -N, TN, TOC, TP, Cd, Cr, Cu, Fe, Ni, Pb, Zn, and Hg. Initial COD values were in the range of 11,300-14,200 mg/L. The optimum conditions for Fenton treatment were 35-40 g/L for H 2 O 2 , 2-5 g/L for Fe 2+ , and 13-36 for H 2 O 2 /Fe 2+ molar ratio. The optimum conditions of PAC doses and contact times in adsorption studies were 20-30 g/L and 5-12 h, respectively. Removal efficiencies of characterized parameters for the three samples were compared for both Fenton and adsorption processes under optimum conditions. The results suggest that these wastewaters are suitable for discharge to a centralized wastewater treatment plant.
Composition and process for making an insulating refractory material
Pearson, A.; Swansiger, T.G.
1998-04-28
A composition and process are disclosed for making an insulating refractory material. The composition includes calcined alumina powder, flash activated alumina powder, an organic polymeric binder and a liquid vehicle which is preferably water. Starch or modified starch may also be added. A preferred insulating refractory material made with the composition has a density of about 2.4--2.6 g/cm{sup 3} with reduced thermal conductivity, compared with tabular alumina. Of importance, the formulation has good abrasion resistance and crush strength during intermediate processing (commercial sintering) to attain full strength and refractoriness.
Liu, Hui; Chen, Yinguang; Wu, Jiang
2017-11-01
Carbon substrate is required by biological nutrient removal (BNR) microorganism, but it is usually insufficient in the influent of many municipal wastewater treatment plants. In this study the use of ethanol-enriched fermentation liquid, which was derived from dairy wastewater, as the preferred carbon substrate of BNR was reported. First, the application of dairy wastewater and food processing wastewater and their fermentation liquid as the carbon substrate of BNR was compared in the short-term tests. The fermented wastewater showed higher BNR performance than the unfermented one, and the fermentation liquid of dairy wastewater (FL-DW), which was obtained under pH 8 and fermentation time of 6 day, exhibited the highest phosphorus (95.5%) and total nitrogen (97.6%) removal efficiencies due to its high ethanol content (57.9%). Then, the long-term performance of FL-DW acting as the carbon substrate of BNR was compared with that of acetate and ethanol, and the FL-DW showed the greatest phosphorus and total nitrogen removal. Further investigation showed that the use of FL-DW caused the highest polyhydroxyalkanoates (PHAs) synthesis in BNR microbial cells, and more PHAs were used for phosphorus uptake and denitrification rather than glycogen synthesis and microbial growth. The FL-DW can be used as a preferred carbon substrate for BNR microbes. AB: aerobic end sludge active biomass; BNR: biological nutrient removal; DW: dairy wastewater; FL-DW: fermentation liquid of dairy wastewater; FPW: food processing wastewater; FL-FPW: fermentation liquid of food processing wastewater; PHAs: polyhydroxyalkanoates; PHB: poly-3-hydroxybutyrate; PHV: poly-3-hydroxyvalerate; PH2MV: poly-3-hydroxy-2- methylvalerate; PAOs: phosphorus accumulating organisms; SBR: sequencing batch reactor; SOP: soluble ortho-phosphorus; TN: total nitrogen; TSS: total suspended solids; VSS: volatile suspended solids; VFAs: volatile fatty acids; WWTPs: wastewater treatment plants.
ERIC Educational Resources Information Center
Erdogan, Ibrahim
2006-01-01
In this extended biology, ecology, and earth science activity, students construct hands-on models of natural wastewater treatment and wastewater treatment facilities to achieve an understanding of wastewater treatment process in nature and wastewater treatment facilities. During this simulation activity, students have opportunities to learn…
Growing Chlorella sp. on meat processing wastewater for nutrient removal and biomass production.
Lu, Qian; Zhou, Wenguang; Min, Min; Ma, Xiaochen; Chandra, Ceria; Doan, Yen T T; Ma, Yiwei; Zheng, Hongli; Cheng, Sibo; Griffith, Richard; Chen, Paul; Chen, Chi; Urriola, Pedro E; Shurson, Gerald C; Gislerød, Hans R; Ruan, Roger
2015-12-01
In this work, Chlorella sp. (UM6151) was selected to treat meat processing wastewater for nutrient removal and biomass production. To balance the nutrient profile and improve biomass yield at low cost, an innovative algae cultivation model based on wastewater mixing was developed. The result showed that biomass yield (0.675-1.538 g/L) of algae grown on mixed wastewater was much higher than that on individual wastewater and artificial medium. Wastewater mixing eased the bottleneck for algae growth and contributed to the improved biomass yield. Furthermore, in mixed wastewater with sufficient nitrogen, ammonia nitrogen removal efficiencies (68.75-90.38%) and total nitrogen removal efficiencies (30.06-50.94%) were improved. Wastewater mixing also promoted the synthesis of protein in algal cells. Protein content of algae growing on mixed wastewater reached 60.87-68.65%, which is much higher than that of traditional protein source. Algae cultivation model based on wastewater mixing is an efficient and economical way to improve biomass yield. Copyright © 2015 Elsevier Ltd. All rights reserved.
Orientation to Municipal Wastewater Treatment. Training Manual.
ERIC Educational Resources Information Center
Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.
Introductory-level material on municipal wastewater treatment facilities and processes is presented. Course topics include sources and characteristics of municipal wastewaters; objectives of wastewater treatment; design, operation, and maintenance factors; performance testing; plant staffing; and laboratory considerations. Chapter topics include…
Industrial wastewater as raw material for exopolysaccharide production by Rhizobium leguminosarum
Sellami, Mohamed; Oszako, Tomasz; Miled, Nabil; Ben Rebah, Faouzi
2015-01-01
The objective of this study was to evaluate the exopolysaccharide (EPS) production by Rhizobium leguminosarum cultivated in wastewater generated by oil companies (WWOC1 and WWOC2) and fish processing industry (WWFP). The results obtained in Erlenmeyer flasks indicated that the rhizobial strain grew well in industrial wastewater. Generally, wastewater composition affected the growth and the EPS production. WWFP allowed good bacterial growth similar to that obtained with the standard medium (YMB). During growth, various quantities of EPS were produced and yields varied depending on the media. Growing in YMB, EPS production did not exceed 9.7 g/L obtained after 72 h of growth. In wastewater, the maximum EPS value reached 11.1 g/L obtained with the fish processing wastewater, after 72 h of growth. The use of a mixture of the oil company wastewater (WWOC2) and the fish processing wastewater (WWFP) as culture medium affected not only the rhizobial strain growth, but also EPS production. The highest EPS (42.4 g/L, after 96 h of culture) was obtained using a ratio of WWFP and WWOC2 of 50:50 (v:v). Therefore, this work shows the ability of Rhizobium leguminosarum, growing in industrial wastewater as new economic medium, to produce EPS. This biopolymer could be applied in enormous biotechnological areas. PMID:26273255
Technology for recovery of phosphorus from animal wastewater through calcium phosphate precipitation
USDA-ARS?s Scientific Manuscript database
A wastewater treatment process was developed for removal of phosphorus from livestock wastewater. The phosphorus is recovered as calcium phosphate with addition of only small quantities of liquid lime. The process is based on the distinct chemical equilibrium between phosphorus and calcium ions when...
Hydrolytic pre-treatment methods for enhanced biobutanol production from agro-industrial wastes.
Maiti, Sampa; Gallastegui, Gorka; Suresh, Gayatri; Sarma, Saurabh Jyoti; Brar, Satinder Kaur; Drogui, Patrick; LeBihan, Yann; Buelna, Gerardo; Verma, Mausam; Soccol, Carlos Ricardo
2018-02-01
Brewery industry liquid waste (BLW), brewery spent grain (BSG), apple pomace solid wastes (APS), apple pomace ultrafiltration sludge (APUS) and starch industry wastewater (SIW) have been considered as substrates to produce biobutanol. Efficiency of hydrolysis techniques tested to produce fermentable sugars depended on nature of agro-industrial wastes and process conditions. Acid-catalysed hydrolysis of BLW and BSG gave a total reducing sugar yield of 0.433 g/g and 0.468 g/g respectively. Reducing sugar yield from microwave assisted hydrothermal method was 0.404 g/g from APS and 0.631 g/g from APUS, and, 0.359 g/g from microwave assisted acid-catalysed SIW dry mass. Parameter optimization (time, pH and substrate concentration) for acid-catalysed BLW hydrolysate utilization using central composite model technique produced 307.9 g/kg glucose with generation of inhibitors (5-hydroxymethyl furfural (20 g/kg), furfural (1.6 g/kg), levulinic acid (9.3 g/kg) and total phenolic compound (0.567 g/kg)). 10.62 g/L of acetone-butanol-ethanol was produced by subsequent clostridial fermentation of the substrate. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swain, Basudev, E-mail: swain@iae.re.kr; Mishra, Chinmayee; Hong, Hyun Seon
Sustainable valorization processes for selective recovery of pure copper nanopowder from Indium-Tin-Oxide (ITO) etching wastewater by various wet chemical reduction processes, their chemistry has been investigated and compared. After the indium recovery by solvent extraction from ITO etching wastewater, the same is also an environmental challenge, needs to be treated before disposal. After the indium recovery, ITO etching wastewater contains 6.11 kg/m{sup 3} of copper and 1.35 kg/m{sup 3} of aluminum, pH of the solution is very low converging to 0 and contain a significant amount of chlorine in the media. In this study, pure copper nanopowder was recovered usingmore » various reducing reagents by wet chemical reduction and characterized. Different reducing agents like a metallic, an inorganic acid and an organic acid were used to understand reduction behavior of copper in the presence of aluminum in a strong chloride medium of the ITO etching wastewater. The effect of a polymer surfactant Polyvinylpyrrolidone (PVP), which was included to prevent aggregation, to provide dispersion stability and control the size of copper nanopowder was investigated and compared. The developed copper nanopowder recovery techniques are techno-economical feasible processes for commercial production of copper nanopowder in the range of 100–500 nm size from the reported facilities through a one-pot synthesis. By all the process reported pure copper nanopowder can be recovered with>99% efficiency. After the copper recovery, copper concentration in the wastewater reduced to acceptable limit recommended by WHO for wastewater disposal. The process is not only beneficial for recycling of copper, but also helps to address environment challenged posed by ITO etching wastewater. From a complex wastewater, synthesis of pure copper nanopowder using various wet chemical reduction route and their comparison is the novelty of this recovery process. - Highlights: • From the Indium-Tin-Oxide etching wastewater, copper nanopowder was synthesized. • Solution chemistry of ITO etching wastewater is addressed. • A techno-economical feasible, environment friendly and occupational safe process. • Brings back the material to production stream and address the circular economy. • A cradle to cradle technology management lowers the futuristic carbon economy.« less
Mixed-mode resins: taking shortcut in downstream processing of raw-starch digesting α-amylases
Lončar, Nikola; Slavić, Marinela Šokarda; Vujčić, Zoran; Božić, Nataša
2015-01-01
Bacillus licheniformis 9945a α-amylase is known as a potent enzyme for raw starch hydrolysis. In this paper, a mixed mode Nuvia cPrime™ resin is examined with the aim to improve the downstream processing of raw starch digesting amylases and exploit the hydrophobic patches on their surface. This resin combines hydrophobic interactions with cation exchange groups and as such the presence of salt facilitates hydrophobic interactions while the ion-exchange groups enable proper selectivity. α-Amylase was produced using an optimized fed-batch approach in a defined media and significant overexpression of 1.2 g L−1 was achieved. This single step procedure enables simultaneous concentration, pigment removal as well as purification of amylase with yields of 96% directly from the fermentation broth. PMID:26492875
Duarte, Ana Rita C; Mano, João F; Reis, Rui L
2010-02-01
In this work, a starch-based polymer, namely a blend of starch-poly(epsilon-caprolactone) was processed by supercritical assisted phase inversion process. This processing technique has been proposed for the development of 3D structures with potential applications in tissue engineering applications, as scaffolds. The use of carbon dioxide as non-solvent in the phase inversion process leads to the formation of a porous and interconnected structure, dry and free of any residual solvent. Different processing conditions such as pressure (from 80 up to 150 bar) and temperature (45 and 55 degrees C) were studied and the effect on the morphological features of the scaffolds was evaluated by scanning electron microscopy and micro-computed tomography. The mechanical properties of the SPCL scaffolds prepared were also studied. Additionally, in this work, the in vitro biological performance of the scaffolds was studied. Cell adhesion and morphology, viability and proliferation was assessed and the results suggest that the materials prepared are allow cell attachment and promote cell proliferation having thus potential to be used in some for biomedical applications.
40 CFR 63.1106 - Wastewater provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Wastewater provisions. 63.1106 Section 63.1106 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Technology Standards § 63.1106 Wastewater provisions. (a) Process wastewater. Except as specified in...
Goudarzi, Vahid; Shahabi-Ghahfarrokhi, Iman
2018-01-01
In current study, starch/TiO 2 bionanocomposites were produced by photochemical reactions as a biodegradable food packaging material. Physical, mechanical, thermal and water-vapor permeability properties were investigated. Then, the photo-degradation properties of nanocomposite films were studied. This is the first report of the photo-producible and photo-degradable bionanocomposite as a food packaging material. Film-forming solutions were exposed to ultraviolet A (UV-A) for different times. Our results showed that UV-A irradiation increased the hydrophobicity of starch films. With increasing UV-A exposure time, tensile strength and Young's modulus of the specimens were decreased. On the other hand, elongation at break of the films was increased with increasing UV-A irradiation. The glass transition temperature and melting point of the films were increased by increasing UV-A exposure time. Nevertheless, the results showed that photo-degradation properties of photo-produced starch/TiO 2 nanocomposite were significantly higher than virgin starch and virgin starch/TiO 2 films. According to obtain results and bibliography a schema was developed to describe the mechanism of photo-production and photo-degradation of starch/TiO 2 by UV-A ray. It can be concluded, the modification of starch based biopolymer by UV-A and nano-TiO 2 , is an easy and accessible process to improve the packaging properties and photo-degradability of biopolymer based films. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Gearheart, Robert A.; And Others
This document is one in a series which outlines performance objectives and instructional modules for a course of study which explains the relationships and functions of the process units in a wastewater treatment plant. The modules are arranged in an order appropriate for teaching students with no experience. The modules can also be rearranged and…
One hundred years of commercial food carbohydrates in the United States.
BeMiller, James N
2009-09-23
Initiation and development of the industries producing specialty starches, modified food starches, high-fructose sweeteners, and food gums (hydrocolloids) over the past century provided major ingredients for the rapid and extensive growth of the processed food and beverage industries. Introduction of waxy maize starch and high-amylose corn starch occurred in the 1940s and 1950s, respectively. Development and growth of the modified food starch industry to provide ingredients with the functionalities required for the fast-growing processed food industry were rapid during the 1940s and 1950s. The various reagents used today for making cross-linked and stabilized starch products were introduced between 1942 and 1961. The initial report of enzyme-catalyzed isomerization of glucose to fructose was made in 1957. Explosive growth of high-fructose syrup manufacture and use occurred between 1966 and 1984. Maltodextrins were introduced between 1967 and 1973. Production of methylcelluloses and carboxymethylcelluloses began in the 1940s. The carrageenan industry began in the 1930s and grew rapidly in the 1940s and 1950s; the same is true of the development and production of alginate products. The guar gum industry developed in the 1940s and 1950s. The xanthan industry came into being during the 1950s and 1960s. Microcrystalline cellulose was introduced in the 1960s. Therefore, most carbohydrate food ingredients were introduced in about a 25 year period between 1940 and 1965. Exceptions are the introduction of maltodextrins and major developments in the high-fructose syrup industry, which occurred in the 1970s.
Resistant starch and dietary fibers from cereal by-products
USDA-ARS?s Scientific Manuscript database
Dried distillers grains (DDG) are a cereal byproduct from ethanol distillation process. On a dry weight basis, DDG is composed of 13% fat, 30% protein, 33% fiber, with the remainder various carbohydrates. Only 6-8% of starch in DDG is in resistant form (dietary fiber). Because only about 6% of DD...
USDA-ARS?s Scientific Manuscript database
Both sugarcane (Saccharum officinarum) and sweet sorghum (Sorghum bicolor) crops are members of the grass (Poaceae) family, and consist of stalks rich in soluble sugars. The extracted juice from both of these crops contains insoluble starch, with much greater quantities occurring in sweet sorghum. ...
USDA-ARS?s Scientific Manuscript database
Mixtures of high amylose corn starch and oleic acid were processed by steam jet-cooking, and the dispersions were rapidly cooled to yield amylose-oleic acid inclusion complexes as sub-micron spherulites and spherulite aggregates. Dispersions of these spherulite particles were then graft polymerized ...
USDA-ARS?s Scientific Manuscript database
In recent years, starch being delivered to and processed in U.S. factories has risen markedly because of the increased production of green (unburnt) and combine-harvested (billeted) sugarcane and the introduction of new sugarcane varieties with higher starch content. To prevent carry-over alpha-amy...
Sanz-Penella, Juan Mario; Laparra, José Moisés; Haros, Monika
2014-09-01
Nowadays, the use of enzymes has become a common practice in the bakery industry, as they can improve dough quality and texture of final product. However, the use of α-amylases could have a negative effect in the glycaemic load of product, due to the released sugars from the starch hydrolysis that are not used by yeasts during the fermentation process. This study evaluated the effect of the addition of α-amylase in bakery products with bran on in vitro kinetics of starch hydrolysis. The use of flour with a high degree of extraction or high bran amount could decrease the GI even with the inclusion of α-amylase in the formulation. It should be taken into account the amount of bran and α-amylase when formulating breads in order to obtain products with lower GI than white bread. However, the fact that kinetics of starch hydrolysis remained unaltered indicates that the use of α-amylase in bread-making processes could provide technological advantages improving quality of breads without markedly changes in their glycaemic index.
NASA Technical Reports Server (NTRS)
Francis, Somilez Asya
2014-01-01
The process of water purification has many different physical, chemical, and biological processes. One part of the biological process is the task of ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB). Both play critical roles in the treatment of wastewater by oxidizing toxic compounds. The broad term is nitrification, a naturally occurring process that is carried out by AOB and NOB by using oxidation to convert ammonia to nitrite and nitrite to nitrate. To monitor this biological activity, bacterial staining was performed on wastewater contained in inoculum tanks and biofilm samples from bioreactors. Using microscopy and qPCR, the purpose of this experiment was to determine if the population of AOB and NOB in wastewater and membrane bioreactors changed depending on temperature and hibernation conditions to determine the optimal parameters for AOB/NOB culture to effectively clean wastewater.
Fernandes, Bruno; Teixeira, José; Dragone, Giuliano; Vicente, António A; Kawano, Shigeyuki; Bišová, Kateřina; Přibyl, Pavel; Zachleder, Vilém; Vítová, Milada
2013-09-01
Photosynthetic carbon partitioning into starch and neutral lipids, as well as the influence of nutrient depletion and replenishment on growth, pigments and storage compounds, were studied in the microalga, Parachlorella kessleri. Starch was utilized as a primary carbon and energy storage compound, but nutrient depletion drove the microalgae to channel fixed carbon into lipids as secondary storage compounds. Nutrient depletion inhibited both cellular division and growth and caused degradation of chlorophyll. Starch content decreased from an initial value of 25, to around 10% of dry weight (DW), while storage lipids increased from almost 0 to about 29% of DW. After transfer of cells into replenished mineral medium, growth, reproductive processes and chlorophyll content recovered within 2 days, while the content of both starch and lipids decreased markedly to 3 or less % of DW; this suggested that they were being used as a source of energy and carbon. Copyright © 2013 Elsevier Ltd. All rights reserved.
Measurement of Thermal Properties of Triticale Starch Films Using Photothermal Techniques
NASA Astrophysics Data System (ADS)
Correa-Pacheco, Z. N.; Cruz-Orea, A.; Jiménez-Pérez, J. L.; Solorzano-Ojeda, S. C.; Tramón-Pregnan, C. L.
2015-06-01
Nowadays, several commercially biodegradable materials have been developed with mechanical properties similar to those of conventional petrochemical-based polymers. These materials are made from renewable sources such as starch, cellulose, corn, and molasses, being very attractive for numerous applications in the plastics, food, and paper industries, among others. Starches from maize, rice, wheat, and potato are used in the food industry. However, other types of starches are not used due to their low protein content, such as triticale. In this study, starch films, processed using a single screw extruder with different compositions, were thermally and structurally characterized. The thermal diffusivity, thermal effusivity, and thermal conductivity of the biodegradable films were determined using photothermal techniques. The thermal diffusivity was measured using the open photoacoustic cell technique, and the thermal effusivity was obtained by the photopyroelectric technique in an inverse configuration. The results showed differences in thermal properties for the films. Also, the films microstructures were observed by scanning electron microscopy, transmission electron microscopy, and the crystalline structure determined by X-ray diffraction.
NASA Astrophysics Data System (ADS)
Amin, A. M. Mohd; Sauid, S. Mohd; Hamid, K. H. Ku; Musa, M.
2018-05-01
The biodegradation study of thermoplastic starch (TPS) films derived from Tacca leontopetaloides starch; namely TPS/GLY, TPS/ACE and TPS/BCHR were investigated under controlled composting conditions. A manual set-up test rig in laboratory scale was built according to ISO 14855-1: 2012. The biodegradation percentage was determined by measuring the amount of CO2 evolved using titration method and validated by automatic system (Arduino UNO System) that detected the CO2 evolved. After 45 days under controlled composting condition, results indicated that TPS/GLY degraded the fastest, followed by TPS/BCHR and the TPS/ACE had the slowest degradation. The biodegradation process of TPS/GLY, TPS/ACE and TPS/BCHR also exhibited two stages with different degradation speeds. From these results, it indicated that chemical modification of the TPS films by adding acetic acid and rice husk bio-char to the thermoplastic starch can have a major impact on the biodegradation rate and final biodegradation percentage.
Oxidative stability of high-oleic sunflower oil in a porous starch carrier.
Belingheri, Claudia; Giussani, Barbara; Rodriguez-Estrada, Maria Teresa; Ferrillo, Antonio; Vittadini, Elena
2015-01-01
This study evaluates the oxidation level of high-oleic sunflower oil (HOSO) plated onto porous starch as an alternative to spray drying. Encapsulated oils were subjected to accelerated oxidation by heat and light exposure, and peroxide value (PV) and conjugated dienes (CD) were measured. Bulk oil was the control. PV increased in all samples with increased light exposure, with similar values being reached by oil carried on porous starch and spray dried oil. The encapsulation processes determined a reduced effect of light on the increase of CD in the oil, as compared to bulk oil. Spray dried oil presented the highest CD in the experimental domain considered. Since similar levels of PV and lower levels of CD were shown in the HOSO carried on porous starch compared to the spray dried HOSO, plating flavour oils on porous starch could be a suitable technological alternative to spray drying, for flavour encapsulation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chen, Bingyan; Zeng, Shaoxiao; Zeng, Hongliang; Guo, Zebin; Zhang, Yi; Zheng, Baodong
2017-07-01
Starch-lipid complexes were prepared using lotus seed starch (LS) and glycerin monostearate (GMS) via a high pressure homogenization (HPH) process, and the effect of HPH on the physicochemical properties of LS-GMS complexes was investigated. The results of Fourier transform infrared spectroscopy and complex index analysis showed that LS-GMS complexes were formed at 40MPa by HPH and the complex index increased with the increase of homogenization pressure. Scanning electron microscopy displayed LS-GMS complexes present more nest-shape structure with increasing homogenization pressure. X-ray diffraction and differential scanning calorimetry results revealed that V-type crystalline polymorph was formed between LS and GMS, with higher homogenization pressure producing an increasingly stable complex. LS-GMS complex inhibited starch granules swelling, solubility and pasting development, which further reduced peak and breakdown viscosity. During storage, LS-GMS complexes prepared by 70-100MPa had higher Avrami exponent values and lower recrystallization rates compared with native starch, which suggested a lower retrogradation trendency. Copyright © 2017 Elsevier Ltd. All rights reserved.
Barzegar, Hassan; Azizi, Mohammad Hossein; Barzegar, Mohsen; Hamidi-Esfahani, Zohreh
2014-09-22
Using fresh foods which undergo the least processing operations developed widely in recent years. Active packaging is a novel method for preserving these products. Active starch-clay nanocomposite films which contained potassium sorbate (PS) at a level of 0, 5, 7.5 and 10 g PS/100 g starch were produced and their physical, mechanical and antimicrobial properties were evaluated. In order to evaluate antimicrobial properties of films Aspergillus niger was used. The results showed that 5% of the PS did not produce antimicrobial property in the film, but by increasing the content of the additive in film formulation, antimicrobial effect increased. PS increased water permeability and elongation at break of the films, but decreased tensile strength. The rate of PS migration into the semi-solid medium in starch-nanocomposites was lower than starch films. This shows that nanocomposite films could retain their antimicrobial property for longer time. Copyright © 2014 Elsevier Ltd. All rights reserved.
Guo, M; Trzcinski, A P; Stuckey, D C; Murphy, R J
2011-12-01
The digestibility of a starch-polyvinyl alcohol (PVOH) biopolymer insulated cardboard coolbox was investigated under a defined anaerobic digestion (AD) system with key parameters characterized. Laboratory results were combined with industrial operational data to develop a site-specific life cycle assessment (LCA) model. Inoculated with active bacterial trophic groups, the anaerobic biodegradability of three starch-PVOH biopolymers achieved 58-62%. The LCA modeling showed that the environmental burdens of the starch-PVOH biopolymer packaging under AD conditions on acidification, eutrophication, global warming and photochemical oxidation potential were dominated by atmospheric emissions released from substrate degradation and fuel combustion, whereas energy consumption and infrastructure requirements were the causes of abiotic depletion, ozone depletion and toxic impacts. Nevertheless, for this bio-packaging, AD of the starch-PVOH biopolymer combined with recycling of the cardboard emerged as the environmentally superior option and optimization of the energy utilization system could bring further environmental benefits to the AD process. Copyright © 2011 Elsevier Ltd. All rights reserved.
Modification of porous starch for the adsorption of heavy metal ions from aqueous solution.
Ma, Xiaofei; Liu, Xueyuan; Anderson, Debbie P; Chang, Peter R
2015-08-15
Porous starch xanthate (PSX) and porous starch citrate (PSC) were prepared in anticipation of the attached xanthate and carboxylate groups respectively forming chelation and electrostatic interactions with heavy metal ions in the subsequent adsorption process. The lead(II) ion was selected as the model metal and its adsorption by PSX and PSC was characterized. The adsorption capacity was highly dependent on the carbon disulfide/starch and citric acid/starch mole ratios used during preparation. The adsorption behaviors of lead(II) ion on PSXs and PSCs fit both the pseudo-second-order kinetic model and the Langmuir isotherm model. The maximum adsorption capacity from the Langmuir isotherm equation reached 109.1 and 57.6 mg/g for PSX and PSC when preparation conditions were optimized, and the adsorption times were just 20 and 60 min, respectively. PSX and PSC may be used as effective adsorbents for removal of heavy metals from contaminated liquid. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Interphase vs confinement in starch-clay bionanocomposites.
Coativy, Gildas; Chevigny, Chloé; Rolland-Sabaté, Agnès; Leroy, Eric; Lourdin, Denis
2015-03-06
Starch-clay bionanocomposites containing 1-10% of natural montmorillonite were elaborated by melt processing in the presence of water. A complex macromolecular dynamics behavior was observed: depending on the clay content, an increase of the glass transition temperature and/or the presence of two overlapped α relaxation peaks were detected. Thanks to a model allowing the prediction of the average interparticle distance, and its comparison with the average size of starch macromolecules, it was possible to associate these phenomena to different populations of macromolecules. In particular, it seems that for high clay content (10%), the slowdown of segmental relaxation due to confinement of the starch macromolecules between the clay tactoïds is the predominant phenomenon. While for lower clay contents (3-5%), a significant modification of chain relaxation seems to occur, due to the formation of an interphase by the starch macromolecules in the vicinity of clay nanoparticles coexisting with the bulk polymer. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bioprocessing for elimination antibiotics and hormones from swine wastewater.
Cheng, D L; Ngo, H H; Guo, W S; Liu, Y W; Zhou, J L; Chang, S W; Nguyen, D D; Bui, X T; Zhang, X B
2018-04-15
Antibiotics and hormones in swine wastewater have become a critical concern worldwide due to the severe threats to human health and the eco-environment. Removal of most detectable antibiotics and hormones, such as sulfonamides (SAs), SMs, tetracyclines (TCs), macrolides, and estrogenic hormones from swine wastewater utilizing various biological processes were summarized and compared. In biological processes, biosorption and biodegradation are the two major removal mechanisms for antibiotics and hormones. The residuals in treated effluents and sludge of conventional activated sludge and anaerobic digestion processes can still pose risks to the surrounding environment, and the anaerobic processes' removal efficiencies were inferior to those of aerobic processes. In contrast, membrane bioreactors (MBRs), constructed wetlands (CWs) and modified processes performed better because of their higher biodegradation of toxicants. Process modification on activated sludge, anaerobic digestion and conventional MBRs could also enhance the performance (e.g. removing up to 98% SMs, 88.9% TCs, and 99.6% hormones from wastewater). The hybrid process combining MBRs with biological or physical technology also led to better removal efficiency. As such, modified conventional biological processes, advanced biological technologies and MBR hybrid systems are considered as a promising technology for removing toxicants from swine wastewater. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Teresa; Graeff-Honninger, Simone; French, William Todd
The production of biodiesel has notably increased over the past decade. Currently, plant oil is the main feedstock for biodiesel production, but, due to concerns related to the competition with food production, alternative oil feedstocks have to be found. Oleaginous yeasts are known to produce high amounts of lipids, but no integrated process from microbial fermentation to final biodiesel production has reached commercial realization yet due to economic constraints. Therefore, growth and lipid production of red yeast Rhodotorula glutinis was tested on low-cost substrates, namely, wastewaters from potato, fruit juice, and lettuce processing. Additionally, the production of carotenoids as high-valuemore » by-products was examined. All evaluated wastewaters met the general criteria for microbial lipid production. However, no significant increase in lipid content was observed, probably due to lack of available carbon in wastewaters from fruit juice and lettuce processing, and excess of available nitrogen in potato processing wastewater, respectively. During growth on wastewaters from fruit juice and lettuce processing the carotenoid content increased significantly in the first 48 hours. The relations between carbon content, nitrogen content, and carotenoid production need to be further assessed. For economic viability, lipid and carotenoid production needs to be increased significantly. Lastly, the screening of feedstocks should be extended to other wastewaters.« less
Moisture sorption characteristics of extrusion-cooked starch protective loose-fill cushioning foams
NASA Astrophysics Data System (ADS)
Combrzyński, Maciej; Mościcki, Leszek; Kwaśniewska, Anita; Oniszczuk, Tomasz; Wójtowicz, Agnieszka; Sołowiej, Bartosz; Gładyszewska, Bożena; Muszyński, Siemowit
2017-10-01
The aim of this work was to determine the water vapour sorption properties of thermoplastic starch filling foams processed by extrusion-cooking technique from various combinations of potato starch and two foaming agents: poly(vinyl) alcohol and Plastronfoam, in amount of 1, 2 and 3% each. Foams were processed with the single screw extruder-cooker at two different screw rotational speeds 100 and 130 r.p.m. The sorption isotherms of samples were determined and described using the Guggenheim-Anderson-de Boer model. Also, the kinetics of water vapour adsorption by foams, as a function of time, was measured and fitted with Peleg model. On the basis of the analysis the influence of the applied foaming agents, as well as the technological parameters of extrusion-cooking process in relation to water vapour adsorption by thermoplastic starch foams was demonstrated. There was no difference between the shapes of the isotherms for poly(vinyl) alcohol foams while for Plastronfoam foams a notable difference among foams extruded at 100 r.p.m. was observed in the regions of low and high humidity content. The analysis of the Guggenheim-Anderson-de Boer model parameters showed that the water molecules were less strongly bound with the foam surface when extruded at a lower screw speed.
Recent progress in sweetpotato breeding and cultivars for diverse applications in Japan
Katayama, Kenji; Kobayashi, Akira; Sakai, Tetsufumi; Kuranouchi, Toshikazu; Kai, Yumi
2017-01-01
Sweetpotato (Ipomoea batatas (L.) Lam.) is an outcrossing hexaploid that is cultivated in the tropics and warm-temperate regions of the world. Sweetpotato has played an important role as a famine-relief crop during its long history and has recently been reevaluated as a health-promoting food. In Japan, sweetpotato is used for a wide range of applications, such as table use, processed foods, and alcohol and starch production, and two groups at National Agriculture Research Organization (NARO) undertake the breeding of cultivars for these applications. Sweetpotato breeders utilize breeding processes such as grafting for flower induction and the identification of incompatibility groups before crossing to conquer problems peculiar to sweetpotato. For table use, new cultivars with high sugar content were released recently and have become popular among Japanese consumers. New cultivars with high anthocyanin or β-carotene content were released for processed foods and use as colorants. As raw materials, new cultivars with high alcohol yield were released for the production of shochu spirits. In addition, new cultivars with high starch yield and a cultivar containing starch with excellent cold-storage ability were released for starch production. This review deals with recent progress in sweetpotato breeding and cultivars for diverse applications in Japan. PMID:28465663
Rusanov, Krasimir; Garo, Eliane; Rusanova, Mila; Fertig, Orlando; Hamburger, Matthias; Atanassov, Ivan; Butterweck, Veronika
2014-11-01
The production of rose oil from rose flowers by water steam distillation leaves a water fraction of the distillate as main part of the waste. Therefore, the rose oil distillation wastewater represents a serious environmental problem due to the high content of polyphenols which are difficult to decompose and have to be considered as biopollutants when discarded into the drainage system and rivers. On the other hand, natural polyphenols are valuable compounds with useful properties as bioactive substances. Until now there is no established practice for processing of rose oil distillation wastewater and utilization of contained substances. Thus, it was the aim of this study to develop a strategy to separate this wastewater into a polyphenol depleted water fraction and a polyphenol enriched fraction which could be developed into innovative value-added products. In a first step, the phytochemical profile of rose oil distillation wastewater was determined. Its HPLC-PDA-MS analysis revealed the presence of flavan-3-ols, flavanones, flavonols and flavones. In a second step, the development of a stepwise concentration of rose oil distillation wastewater was performed. The concentration process includes a filtration process to eliminate suspended solids in the wastewater, followed by adsorption of the contained phenolic compounds onto adsorption resins (XAD and SP). Finally, desorption of the polyphenol fraction from the resin matrix was achieved using ethanol and/or aqueous ethanol. The result of the process was a wastewater low in soluble organic compounds and an enriched polyphenol fraction (RF20 SP-207). The profile of this fraction was similar to that of rose oil distillation wastewater and showed the presence of flavonols such as quercetin and kaempferol glycosides as major metabolites. These compounds were isolated from the enriched polyphenol fraction and their structures confirmed by NMR. In summary, a pilot medium scale system was developed using adsorption resins for the recovery of polyphenols from rose oil distillation wastewater suggesting an industrial scalability of the process. Georg Thieme Verlag KG Stuttgart · New York.
Schneider, Teresa; Graeff-Honninger, Simone; French, William Todd; ...
2012-01-01
The production of biodiesel has notably increased over the past decade. Currently, plant oil is the main feedstock for biodiesel production, but, due to concerns related to the competition with food production, alternative oil feedstocks have to be found. Oleaginous yeasts are known to produce high amounts of lipids, but no integrated process from microbial fermentation to final biodiesel production has reached commercial realization yet due to economic constraints. Therefore, growth and lipid production of red yeast Rhodotorula glutinis was tested on low-cost substrates, namely, wastewaters from potato, fruit juice, and lettuce processing. Additionally, the production of carotenoids as high-valuemore » by-products was examined. All evaluated wastewaters met the general criteria for microbial lipid production. However, no significant increase in lipid content was observed, probably due to lack of available carbon in wastewaters from fruit juice and lettuce processing, and excess of available nitrogen in potato processing wastewater, respectively. During growth on wastewaters from fruit juice and lettuce processing the carotenoid content increased significantly in the first 48 hours. The relations between carbon content, nitrogen content, and carotenoid production need to be further assessed. For economic viability, lipid and carotenoid production needs to be increased significantly. Lastly, the screening of feedstocks should be extended to other wastewaters.« less
Moisá, Sonia J.; Shike, Daniel W.; Faulkner, Dan B.; Meteer, William T.; Keisler, Duane; Loor, Juan J.
2014-01-01
Adipogenic/lipogenic transcriptional networks regulating intramuscular fat deposition (IMF) in response to weaning age and dietary starch level were studied. The longissimus muscle (LM) of beef steers on an early weaning (141 days age) plus high-starch diet (EWS) or a normal weaning (NW, 222 days age) plus starch creep-feed diet (CFS) was biopsied at 0 (EW), 25, 50, 96 (NW), 167, and 222 (pre-slaughter) days. Expression patterns of 35 target genes were studied. From NW through slaughter, all steers received the same high-starch diet. In EWS steers the expression of PPARG, other adipogenic (CEBPA, ZFP423) and lipogenic (THRSP, SREBF1, INSIG1) activators, and several enzymes (FASN, SCD, ELOVL6, PCK1, DGAT2) that participate in the process of IMF increased gradually to a peak between 96 and 167 days on treatment. Steers in NW did not achieve similar expression levels even by 222 days on treatment, suggesting a blunted response even when fed a high-starch diet after weaning. High-starch feeding at an early age (EWS) triggers precocious and sustained adipogenesis, resulting in greater marbling. PMID:24516329
Li, Youran; Xu, Jingjing; Zhang, Liang; Ding, Zhongyang; Gu, Zhenghua; Shi, Guiyang
2017-06-29
Debranching enzymes contribute to the enzymatic production of resistant starch (RS) by reducing substrate molecular weight and increasing amylose yield. In the present study, the action pattern of a thermostable isoamylase-type debranching enzyme on different types of starch was investigated. The molecular weight distribution, glycosidic bond composition and contents of oligosaccharides released were monitored by various liquid chromatography techniques and nuclear magnetic resonance spectroscopy (NMR). These analyses showed that the isoamylase could specifically and efficiently attack α-1,6-glucosidic linkages at branch points, leaving the amylose favored by other amylolytic enzymes. Its ability to attack side chains composed of 1-3 glucose residues differentiates it from other isoamylases, a property which is also ideal for the RS preparation process. The enzyme was used as an auxiliary enzyme in the hydrolytic stage. The highest RS yield (53.8%) was achieved under the optimized conditions of 70 °C and pH 5.0, using 7 U isoamylase per g starch and 2 NU amylase per g starch. These data also help us better understand the application of isoamylase for preparation of other products from highly branched starch materials. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lin, Hai-Juan; Xian, Liang; Zhang, Qiu-Jiang; Luo, Xue-Mei; Xu, Qiang-Sheng; Yang, Qi; Duan, Cheng-Jie; Liu, Jun-Liang; Tang, Ji-Liang; Feng, Jia-Xun
2011-06-01
A newly isolated strain Penicillium sp. GXU20 produced a raw starch-degrading enzyme which showed optimum activity towards raw cassava starch at pH 4.5 and 50 °C. Maximum raw cassava starch-degrading enzyme (RCSDE) activity of 20 U/ml was achieved when GXU20 was cultivated under optimized conditions using wheat bran (3.0% w/v) and soybean meal (2.5% w/v) as carbon and nitrogen sources at pH 5.0 and 28 °C. This represented about a sixfold increment as compared with the activity obtained under basal conditions. Starch hydrolysis degree of 95% of raw cassava flour (150 g/l) was achieved after 72 h of digestion by crude RCSDE (30 U/g flour). Ethanol yield reached 53.3 g/l with fermentation efficiency of 92% after 48 h of simultaneous saccharification and fermentation of raw cassava flour at 150 g/l using the RCSDE (30 U/g flour), carried out at pH 4.0 and 40 °C. This strain and its RCSDE have potential applications in processing of raw cassava starch to ethanol.
Moisá, Sonia J; Shike, Daniel W; Faulkner, Dan B; Meteer, William T; Keisler, Duane; Loor, Juan J
2014-01-01
Adipogenic/lipogenic transcriptional networks regulating intramuscular fat deposition (IMF) in response to weaning age and dietary starch level were studied. The longissimus muscle (LM) of beef steers on an early weaning (141 days age) plus high-starch diet (EWS) or a normal weaning (NW, 222 days age) plus starch creep-feed diet (CFS) was biopsied at 0 (EW), 25, 50, 96 (NW), 167, and 222 (pre-slaughter) days. Expression patterns of 35 target genes were studied. From NW through slaughter, all steers received the same high-starch diet. In EWS steers the expression of PPARG, other adipogenic (CEBPA, ZFP423) and lipogenic (THRSP, SREBF1, INSIG1) activators, and several enzymes (FASN, SCD, ELOVL6, PCK1, DGAT2) that participate in the process of IMF increased gradually to a peak between 96 and 167 days on treatment. Steers in NW did not achieve similar expression levels even by 222 days on treatment, suggesting a blunted response even when fed a high-starch diet after weaning. High-starch feeding at an early age (EWS) triggers precocious and sustained adipogenesis, resulting in greater marbling.
Sabetzadeh, Maryam; Bagheri, Rouhollah; Masoomi, Mahmood
2015-03-30
In this work, low-density polyethylene/linear low-density polyethylene/thermoplastic starch (LDPE/LLDPE/TPS) films are prepared with the aim of obtaining environmentally friendly materials containing high TPS content with required packaging properties. Blending of LDPE/LLDPE (70/30 wt/wt) with 5-20 wt% of TPS and 3 wt% of PE-grafted maleic anhydride (PE-g-MA) is performed in a twin-screw extruder, followed by the blowing process. Differential scanning calorimetric results indicate starch has more pronounced effect on crystallization of LLDPE than LDPE. Scanning electron micrograph shows a fairly good dispersion of TPS in PE matrices. Fourier transfer infrared spectra confirm compatibility between polymers using PE-g-MA as the compatibilizer. Storage modulus, loss modulus and complex viscosity increase with incorporation of starch. Tensile strength and elongation-at-break decrease from 18 to 10.5 MPa and 340 to 200%, respectively when TPS increases from 5 to 20%. However, the required mechanical properties for packaging applications are attained when 15 wt% starch is added, as specified in ASTM D4635. Finally 12% increase in water uptake is achieved with inclusion of 15 wt% starch. Copyright © 2014 Elsevier Ltd. All rights reserved.
Moliner-Marin, Manuel; Roman-Leshkov, Yuriy; Davis, Mark E; Nikolla, Eranda
2014-05-20
Disclosed are processes for isomerizing saccharides. Also disclosed are processes for converting saccharides to furan derivatives. Also disclosed are processes for converting starch to furan derivatives.
2014-01-01
Background Cassava starch is considered as a potential source for the commercial production of bioethanol because of its availability and low market price. It can be used as a basic source to support large-scale biological production of bioethanol using microbial amylases. With the progression and advancement in enzymology, starch liquefying and saccharifying enzymes are preferred for the conversion of complex starch polymer into various valuable metabolites. These hydrolytic enzymes can selectively cleave the internal linkages of starch molecule to produce free glucose which can be utilized to produce bioethanol by microbial fermentation. Results In the present study, several filamentous fungi were screened for production of amylases and among them Aspergillus fumigatus KIBGE-IB33 was selected based on maximum enzyme yield. Maximum α-amylase, amyloglucosidase and glucose formation was achieved after 03 days of fermentation using cassava starch. After salt precipitation, fold purification of α-amylase and amyloglucosidase increased up to 4.1 and 4.2 times with specific activity of 9.2 kUmg-1 and 393 kUmg-1, respectively. Concentrated amylolytic enzyme mixture was incorporated in cassava starch slurry to give maximum glucose formation (40.0 gL-1), which was further fermented using Saccharomyces cerevisiae into bioethanol with 84.0% yield. The distillate originated after recovery of bioethanol gave 53.0% yield. Conclusion An improved and effective dual enzymatic starch degradation method is designed for the production of bioethanol using cassava starch. The technique developed is more profitable due to its fast liquefaction and saccharification approach that was employed for the formation of glucose and ultimately resulted in higher yields of alcohol production. PMID:24885587
Variations in toxicity of semi-coking wastewater treatment processes and their toxicity prediction.
Ma, Xiaoyan; Wang, Xiaochang; Liu, Yongjun; Gao, Jian; Wang, Yongkun
2017-04-01
Chemical analyses and bioassays using Vibrio fischeri and Daphnia magna were conducted to evaluate comprehensively the variation of biotoxicity caused by contaminants in wastewater from a semi-coking wastewater treatment plant (WWTP). Pretreatment units (including an oil-water separator, a phenols extraction tower, an ammonia stripping tower, and a regulation tank) followed by treatment units (including anaerobic-oxic treatment units, coagulation-sedimentation treatment units, and an active carbon adsorption column) were employed in the semi-coking WWTP. Five benzenes, 11 phenols, and five polycyclic aromatic hydrocarbons (PAHs) were investigated as the dominant contaminants in semi-coking wastewater. Because of residual extractant, the phenols extraction process increased acute toxicity to V. fischeri and immobilization and lethal toxicity to D. magna. The acute toxicity of pretreated wastewater to V. fischeri was still higher than that of raw semi-coking wastewater, even though 90.0% of benzenes, 94.8% of phenols, and 81.0% of PAHs were removed. After wastewater pretreatment, phenols and PAHs were mainly removed by anaerobic-oxic and coagulation-sedimentation treatment processes respectively, and a subsequent active carbon adsorption process further reduced the concentrations of all target chemicals to below detection limits. An effective biotoxicity reduction was found during the coagulation-sedimentation and active carbon adsorption treatment processes. The concentration addition model can be applied for toxicity prediction of wastewater from the semi-coking WWTP. The deviation between the measured and predicted toxicity results may result from the effects of compounds not detectable by instrumental analyses, the synergistic effect of detected contaminants, or possible transformation products. Copyright © 2016. Published by Elsevier Inc.