Sample records for state ionic devices

  1. Thermoresponsive light scattering device utilizing surface behavior effects between polyimide and an ionic liquid-water mixture exhibiting lower critical solution temperature (LCST)-type phase separation

    NASA Astrophysics Data System (ADS)

    Goda, Kazuya; Takatoh, Kohki; Funasako, Yusuke; Inokuchi, Makoto

    2018-06-01

    We proposed a thermoresponsive light scattering device that utilizes the surface behavior between polyimide and an ionic liquid-water mixture exhibiting lower critical solution temperature (LCST)-type phase separation. The LCST behavior for an ionic liquid device utilizing the polyimide with and without alkyl side chains was investigated. In the here-reported ionic liquid device that utilized the polyimide with alkyl side chains, [nBu4P][CF3COO] droplets were generated by phase separation—they were predominantly formed at the alkyl surface by a surface pinning effect. A stable transmittance in the opaque state could be obtained with this device. In contrast, an ionic liquid device using polyimide without alkyl side chains deteriorated transmittance in the opaque state because there was no surface pinning effect. Additionally, the viewing angle, contrast ratio, and heat cycle testing of this ionic liquid device with polyimide with alkyl side chains were also investigated. The results indicated that no parallax was obtained and that the ionic liquid device has a stable transmittance (verified by heat cycle testing). This unique device is expected to find use in the smart window applications that are activated by temperature changes.

  2. Self-assembled oxide films with tailored nanoscale ionic and electronic channels for controlled resistive switching

    NASA Astrophysics Data System (ADS)

    Cho, Seungho; Yun, Chao; Tappertzhofen, Stefan; Kursumovic, Ahmed; Lee, Shinbuhm; Lu, Ping; Jia, Quanxi; Fan, Meng; Jian, Jie; Wang, Haiyan; Hofmann, Stephan; MacManus-Driscoll, Judith L.

    2016-08-01

    Resistive switches are non-volatile memory cells based on nano-ionic redox processes that offer energy efficient device architectures and open pathways to neuromorphics and cognitive computing. However, channel formation typically requires an irreversible, not well controlled electroforming process, giving difficulty to independently control ionic and electronic properties. The device performance is also limited by the incomplete understanding of the underlying mechanisms. Here, we report a novel memristive model material system based on self-assembled Sm-doped CeO2 and SrTiO3 films that allow the separate tailoring of nanoscale ionic and electronic channels at high density (~1012 inch-2). We systematically show that these devices allow precise engineering of the resistance states, thus enabling large on-off ratios and high reproducibility. The tunable structure presents an ideal platform to explore ionic and electronic mechanisms and we expect a wide potential impact also on other nascent technologies, ranging from ionic gating to micro-solid oxide fuel cells and neuromorphics.

  3. Atomistic Simulation of Interfaces in Materials of Solid State Ionics

    NASA Astrophysics Data System (ADS)

    Ivanov-Schitz, A. K.; Mazo, G. N.

    2018-01-01

    The possibilities of describing correctly interfaces of different types in solids within a computer experiment using molecular statics simulation, molecular dynamics simulation, and quantum chemical calculations are discussed. Heterophase boundaries of various types, including grain boundaries and solid electrolyte‒solid electrolyte and ionic conductor‒electrode material interfaces, are considered. Specific microstructural features and mechanisms of the ion transport in real heterophase structures (cationic conductor‒metal anode and anionic conductor‒cathode) existing in solid state ionics devices (such as solid-state batteries and fuel cells) are discussed.

  4. Self-assembled oxide films with tailored nanoscale ionic and electronic channels for controlled resistive switching

    DOE PAGES

    Cho, Seungho; Yun, Chao; Tappertzhofen, Stefan; ...

    2016-08-05

    Resistive switches are non-volatile memory cells based on nano-ionic redox processes that offer energy efficient device architectures and open pathways to neuromorphics and cognitive computing. However, channel formation typically requires an irreversible, not well controlled electroforming process, giving difficulty to independently control ionic and electronic properties. The device performance is also limited by the incomplete understanding of the underlying mechanisms. Here, we report a novel memristive model material system based on self-assembled Sm-doped CeO 2 and SrTiO 3 films that allow the separate tailoring of nanoscale ionic and electronic channels at high density (~10 12 inch –2). Here, we systematicallymore » show that these devices allow precise engineering of the resistance states, thus enabling large on–off ratios and high reproducibility. The tunable structure presents an ideal platform to explore ionic and electronic mechanisms and we expect a wide potential impact also on other nascent technologies, ranging from ionic gating to micro-solid oxide fuel cells and neuromorphics.« less

  5. A microdot multilayer oxide device: let us tune the strain-ionic transport interaction.

    PubMed

    Schweiger, Sebastian; Kubicek, Markus; Messerschmitt, Felix; Murer, Christoph; Rupp, Jennifer L M

    2014-05-27

    In this paper, we present a strategy to use interfacial strain in multilayer heterostructures to tune their resistive response and ionic transport as active component in an oxide-based multilayer microdot device on chip. For this, fabrication of strained multilayer microdot devices with sideways attached electrodes is reported with the material system Gd0.1Ce0.9O(2-δ)/Er2O3. The fast ionic conducting Gd0.1Ce0.9O(2-δ) single layers are altered in lattice strain by the electrically insulating erbia phases of a microdot. The strain activated volume of the Gd0.1Ce0.9O(2-δ) is investigated by changing the number of individual layers from 1 to 60 while keeping the microdot at a constant thickness; i.e., the proportion of strained volume was systematically varied. Electrical measurements showed that the activation energy of the devices could be altered by Δ0.31 eV by changing the compressive strain of a microdot ceria-based phase by more than 1.16%. The electrical conductivity data is analyzed and interpreted with a strain volume model and defect thermodynamics. Additionally, an equivalent circuit model is presented for sideways contacted multilayer microdots. We give a proof-of-concept for microdot contacting to capture real strain-ionic transport effects and reveal that for classic top-electrode contacting the effect is nil, highlighting the need for sideways electric contacting on a nanoscopic scale. The near order ionic transport interaction is supported by Raman spectroscopy measurements. These were conducted and analyzed together with fully relaxed single thin film samples. Strain states are described relative to the strain activated volumes of Gd0.1Ce0.9O(2-δ) in the microdot multilayer. These findings reveal that strain engineering in microfabricated devices allows altering the ionic conduction over a wide range beyond classic doping strategies for single films. The reported fabrication route and concept of strained multilayer microdots is a promising path for applying strained multilayer oxides as active new building blocks relevant for a broad range of microelectrochemical devices, e.g., resistive switching memory prototypes, resistive or electrochemical sensors, or as active catalytic solid state surface components for microfuel cells or all-solid-state batteries.

  6. Role of Electrical Double Layer Structure in Ionic Liquid Gated Devices.

    PubMed

    Black, Jennifer M; Come, Jeremy; Bi, Sheng; Zhu, Mengyang; Zhao, Wei; Wong, Anthony T; Noh, Joo Hyon; Pudasaini, Pushpa R; Zhang, Pengfei; Okatan, Mahmut Baris; Dai, Sheng; Kalinin, Sergei V; Rack, Philip D; Ward, Thomas Zac; Feng, Guang; Balke, Nina

    2017-11-22

    Ionic liquid gating of transition metal oxides has enabled new states (magnetic, electronic, metal-insulator), providing fundamental insights into the physics of strongly correlated oxides. However, despite much research activity, little is known about the correlation of the structure of the liquids in contact with the transition metal oxide surface, its evolution with the applied electric potential, and its correlation with the measured electronic properties of the oxide. Here, we investigate the structure of an ionic liquid at a semiconducting oxide interface during the operation of a thin film transistor where the electrical double layer gates the device using experiment and theory. We show that the transition between the ON and OFF states of the amorphous indium gallium zinc oxide transistor is accompanied by a densification and preferential spatial orientation of counterions at the oxide channel surface. This process occurs in three distinct steps, corresponding to ion orientations, and consequently, regimes of different electrical conductivity. The reason for this can be found in the surface charge densities on the oxide surface when different ion arrangements are present. Overall, the field-effect gating process is elucidated in terms of the interfacial ionic liquid structure, and this provides unprecedented insight into the working of a liquid gated transistor linking the nanoscopic structure to the functional properties. This knowledge will enable both new ionic liquid design as well as advanced device concepts.

  7. Role of Electrical Double Layer Structure in Ionic Liquid Gated Devices

    DOE PAGES

    Black, Jennifer M.; Come, Jeremy; Bi, Sheng; ...

    2017-10-24

    Ionic liquid gating of transition metal oxides has enabled new states (magnetic, electronic, metal–insulator), providing fundamental insights into the physics of strongly correlated oxides. However, despite much research activity, little is known about the correlation of the structure of the liquids in contact with the transition metal oxide surface, its evolution with the applied electric potential, and its correlation with the measured electronic properties of the oxide. Here, we investigate the structure of an ionic liquid at a semiconducting oxide interface during the operation of a thin film transistor where the electrical double layer gates the device using experiment andmore » theory. We show that the transition between the ON and OFF states of the amorphous indium gallium zinc oxide transistor is accompanied by a densification and preferential spatial orientation of counterions at the oxide channel surface. This process occurs in three distinct steps, corresponding to ion orientations, and consequently, regimes of different electrical conductivity. The reason for this can be found in the surface charge densities on the oxide surface when different ion arrangements are present. Overall, the field-effect gating process is elucidated in terms of the interfacial ionic liquid structure, and this provides unprecedented insight into the working of a liquid gated transistor linking the nanoscopic structure to the functional properties. This knowledge will enable both new ionic liquid design as well as advanced device concepts.« less

  8. Role of Electrical Double Layer Structure in Ionic Liquid Gated Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Jennifer M.; Come, Jeremy; Bi, Sheng

    Ionic liquid gating of transition metal oxides has enabled new states (magnetic, electronic, metal–insulator), providing fundamental insights into the physics of strongly correlated oxides. However, despite much research activity, little is known about the correlation of the structure of the liquids in contact with the transition metal oxide surface, its evolution with the applied electric potential, and its correlation with the measured electronic properties of the oxide. Here, we investigate the structure of an ionic liquid at a semiconducting oxide interface during the operation of a thin film transistor where the electrical double layer gates the device using experiment andmore » theory. We show that the transition between the ON and OFF states of the amorphous indium gallium zinc oxide transistor is accompanied by a densification and preferential spatial orientation of counterions at the oxide channel surface. This process occurs in three distinct steps, corresponding to ion orientations, and consequently, regimes of different electrical conductivity. The reason for this can be found in the surface charge densities on the oxide surface when different ion arrangements are present. Overall, the field-effect gating process is elucidated in terms of the interfacial ionic liquid structure, and this provides unprecedented insight into the working of a liquid gated transistor linking the nanoscopic structure to the functional properties. This knowledge will enable both new ionic liquid design as well as advanced device concepts.« less

  9. Ultraflexible and tailorable all-solid-state supercapacitors using polyacrylamide-based hydrogel electrolyte with high ionic conductivity.

    PubMed

    Li, Huili; Lv, Tian; Li, Ning; Yao, Yao; Liu, Kai; Chen, Tao

    2017-11-30

    Hydrogels with high ionic conductivity consisting of a cross-linked polymer network swollen in water are very promising to be used as an electrolyte for all-solid-state supercapacitors. However, there are rather few flexible supercapacitors using ionic conducting hydrogel electrolytes reported to date. In this work, highly flexible and ionic conducting polyacrylamide hydrogels were synthesized through a simple approach. On using the ionic hydrogels as the electrolyte, the resulting supercapacitors not only exhibited a high specific capacitance but also showed a long self-discharge time (over 10 hours to the half of original open-circuit voltage) and a low leakage current. These newly-developed all-solid-state supercapacitors can be bent, knot, and kneaded for 5000 cycles without performance decay, suggesting excellent flexibility and mechanical stability. These all-solid-state supercapacitors can also be easily tailored into strip-like supercapacitors without a short circuit, which provides an efficient approach to fabricate wearable energy storage devices.

  10. Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors.

    PubMed

    Mourad, Eléonore; Coustan, Laura; Lannelongue, Pierre; Zigah, Dodzi; Mehdi, Ahmad; Vioux, André; Freunberger, Stefan A; Favier, Frédéric; Fontaine, Olivier

    2017-04-01

    Kinetics of electrochemical reactions are several orders of magnitude slower in solids than in liquids as a result of the much lower ion diffusivity. Yet, the solid state maximizes the density of redox species, which is at least two orders of magnitude lower in liquids because of solubility limitations. With regard to electrochemical energy storage devices, this leads to high-energy batteries with limited power and high-power supercapacitors with a well-known energy deficiency. For such devices the ideal system should endow the liquid state with a density of redox species close to the solid state. Here we report an approach based on biredox ionic liquids to achieve bulk-like redox density at liquid-like fast kinetics. The cation and anion of these biredox ionic liquids bear moieties that undergo very fast reversible redox reactions. As a first demonstration of their potential for high-capacity/high-rate charge storage, we used them in redox supercapacitors. These ionic liquids are able to decouple charge storage from an ion-accessible electrode surface, by storing significant charge in the pores of the electrodes, to minimize self-discharge and leakage current as a result of retaining the redox species in the pores, and to raise working voltage due to their wide electrochemical window.

  11. The Use of Solid States Ionic Materials and Devices in Medical Applications

    NASA Astrophysics Data System (ADS)

    Linford, R. G.

    2006-06-01

    Electrolyte materials used in solid state polymer batteries can also be utilised in a special type of drug delivery system called an iontophoretic device. This review will describe the history, applications and limitations of iontophoretic and related systems and also the use of batteries and biofuel cells in medicine.

  12. Disorder from the Bulk Ionic Liquid in Electric Double Layer Transistors

    DOE PAGES

    Petach, Trevor A.; Reich, Konstantin V.; Zhang, Xiao; ...

    2017-07-28

    Ionic liquid gating has a number of advantages over solid-state gating, especially for flexible or transparent devices and for applications requiring high carrier densities. But, the large number of charged ions near the channel inevitably results in Coulomb scattering, which limits the carrier mobility in otherwise clean systems. We develop a model for this Coulomb scattering. We then validate our model experimentally using ionic liquid gating of graphene across varying thicknesses of hexagonal boron nitride, demonstrating that disorder in the bulk ionic liquid often dominates the scattering.

  13. Research Update: Fast and tunable nanoionics in vertically aligned nanostructured films

    NASA Astrophysics Data System (ADS)

    Lee, Shinbuhm; MacManus-Driscoll, Judith L.

    2017-04-01

    This review provides the design principles to develop new nanoionic applications using vertically aligned nanostructured (VAN) thin films, incorporating two phases which self-assemble in one film. Tunable nanoionics has attracted great attention for energy and device applications, such as ion batteries, solid oxide fuel cells, catalysts, memories, and neuromorphic devices. Among many proposed device architectures, VAN films have strong potential for nanoionic applications since they show enhanced ionic conductivity and tunability. Here, we will review the recent progress on state-of-the-art nanoionic applications, which have been realized by using VAN films. In many VAN systems made by the inclusion of an oxygen ionic insulator, it is found that ions flow through the vertical heterointerfaces. The observation is consistent with structural incompatibility at the vertical heteroepitaxial interfaces resulting in oxygen deficiency in one of the phases and hence to oxygen ion conducting pathways. In other VAN systems where one of the phases is an ionic conductor, ions flow much faster within the ionic conducting phase than within the corresponding plain film. The improved ionic conduction coincides with much improved crystallinity in the ionically conducting nanocolumnar phase, induced by use of the VAN structure. Furthermore, for both cases Joule heating effects induced by localized ionic current flow also play a role for enhanced ionic conductivity. Nanocolumn stoichiometry and strain are other important parameters for tuning ionic conductivity in VAN films. Finally, double-layered VAN film architectures are discussed from the perspective of stabilizing VAN structures which would be less stable and hence less perfect when grown on standard substrates.

  14. A high performance flexible all solid state supercapacitor based on the MnO2 sphere coated macro/mesoporous Ni/C electrode and ionic conducting electrolyte

    NASA Astrophysics Data System (ADS)

    Zhi, Jian; Reiser, Oliver; Wang, Youfu; Hu, Aiguo

    2016-06-01

    A high contact resistance between the active materials and the current collector, a low ionic conductivity of the gel electrolyte, and an impenetrable electrode structure are the three major barriers which greatly limit the capacitance of MnO2 in solid state supercapacitors. As a potential solution to these problems, in this work we report a novel electrode for solid state supercapacitors, based on a ternary system composed of hierarchical MnO2 spheres as the active material, macroporous Ni foam as gel penetrable skeletons and an ordered mesoporous carbon (OMC) membrane as the charge-transport accelerating layer. By employing butyl-3-methylimidazolium chloride (BMIMCl) modified gels as the ionic conducting electrolyte, the utilization efficiency of MnO2 on the specific capacitance was enhanced up to 88% of the theoretical value, delivering a volumetric capacitance of 81 F cm-3, which is the highest value among MnO2 based solid state supercapacitors. Moreover, such a flexible device exhibits exceptional volumetric energy and power density (6.6 Wh L-1 and 549 W L-1, based on the whole device volume) combined with a small capacity loss of 8.5% after 6000 cycles under twisting. These encouraging findings unambiguously overcome the energy bottleneck of MnO2 in solid state supercapacitors, and open up a new application of macro/mesoporous materials in flexible devices.A high contact resistance between the active materials and the current collector, a low ionic conductivity of the gel electrolyte, and an impenetrable electrode structure are the three major barriers which greatly limit the capacitance of MnO2 in solid state supercapacitors. As a potential solution to these problems, in this work we report a novel electrode for solid state supercapacitors, based on a ternary system composed of hierarchical MnO2 spheres as the active material, macroporous Ni foam as gel penetrable skeletons and an ordered mesoporous carbon (OMC) membrane as the charge-transport accelerating layer. By employing butyl-3-methylimidazolium chloride (BMIMCl) modified gels as the ionic conducting electrolyte, the utilization efficiency of MnO2 on the specific capacitance was enhanced up to 88% of the theoretical value, delivering a volumetric capacitance of 81 F cm-3, which is the highest value among MnO2 based solid state supercapacitors. Moreover, such a flexible device exhibits exceptional volumetric energy and power density (6.6 Wh L-1 and 549 W L-1, based on the whole device volume) combined with a small capacity loss of 8.5% after 6000 cycles under twisting. These encouraging findings unambiguously overcome the energy bottleneck of MnO2 in solid state supercapacitors, and open up a new application of macro/mesoporous materials in flexible devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02215d

  15. Aloe vera Derived Activated High-Surface-Area Carbon for Flexible and High-Energy Supercapacitors.

    PubMed

    Karnan, M; Subramani, K; Sudhan, N; Ilayaraja, N; Sathish, M

    2016-12-28

    Materials which possess high specific capacitance in device configuration with low cost are essential for viable application in supercapacitors. Herein, a flexible high-energy supercapacitor device was fabricated using porous activated high-surface-area carbon derived from aloe leaf (Aloe vera) as a precursor. The A. vera derived activated carbon showed mesoporous nature with high specific surface area of ∼1890 m 2 /g. A high specific capacitance of 410 and 306 F/g was achieved in three-electrode and symmetric two-electrode system configurations in aqueous electrolyte, respectively. The fabricated all-solid-state device showed a high specific capacitance of 244 F/g with an energy density of 8.6 Wh/kg. In an ionic liquid electrolyte, the fabricated device showed a high specific capacitance of 126 F/g and a wide potential window up to 3 V, which results in a high energy density of 40 Wh/kg. Furthermore, it was observed that the activation temperature has significant role in the electrochemical performance, as the activated sample at 700 °C showed best activity than the samples activated at 600 and 800 °C. The electron microscopic images (FE-SEM and HR-TEM) confirmed the formation of pores by the chemical activation. A fabricated supercapacitor device in ionic liquid with 3 V could power up a red LED for 30 min upon charging for 20s. Also, it is shown that the operation voltage and capacitance of flexible all-solid-state symmetric supercapacitors fabricated using aloe-derived activated carbon could be easily tuned by series and parallel combinations. The performance of fabricated supercapacitor devices using A. vera derived activated carbon in all-solid-state and ionic liquid indicates their viable applications in flexible devices and energy storage.

  16. Highly Efficient Plastic Crystal Ionic Conductors for Solid-state Dye-sensitized Solar Cells

    PubMed Central

    Hwang, Daesub; Kim, Dong Young; Jo, Seong Mu; Armel, Vanessa; MacFarlane, Douglas R.; Kim, Dongho; Jang, Sung-Yeon

    2013-01-01

    We have developed highly efficient, ambient temperature, solid-state ionic conductors (SSICs) for dye-sensitized solar cells (DSSCs) by doping a molecular plastic crystal, succinonitrile (SN), with trialkyl-substituted imidazolium iodide salts. High performance SSICs with enhanced ionic conductivity (2–4 mScm−1) were obtained. High performance solid-state DSSCs with power conversion efficiency of 7.8% were fabricated using our SSICs combined with unique hierarchically nanostructured TiO2 sphere (TiO2-SP) photoelectrodes; these electrodes have significant macroporosity, which assists penetration of the solid electrolyte into the electrode. The performance of our solid-state DSSCs is, to the best of our knowledge, the highest reported thus far for cells using plastic crystal-based SSICs, and is comparable to that of the state-of-the-art DSSCs which use ionic liquid type electrolytes. This report provides a logical strategy for the development of efficient plastic crystal-based SSICs for DSSCs and other electrochemical devices. PMID:24343425

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petach, Trevor A.; Reich, Konstantin V.; Zhang, Xiao

    Ionic liquid gating has a number of advantages over solid-state gating, especially for flexible or transparent devices and for applications requiring high carrier densities. But, the large number of charged ions near the channel inevitably results in Coulomb scattering, which limits the carrier mobility in otherwise clean systems. We develop a model for this Coulomb scattering. We then validate our model experimentally using ionic liquid gating of graphene across varying thicknesses of hexagonal boron nitride, demonstrating that disorder in the bulk ionic liquid often dominates the scattering.

  18. A high performance flexible all solid state supercapacitor based on the MnO2 sphere coated macro/mesoporous Ni/C electrode and ionic conducting electrolyte.

    PubMed

    Zhi, Jian; Reiser, Oliver; Wang, Youfu; Hu, Aiguo

    2016-06-09

    A high contact resistance between the active materials and the current collector, a low ionic conductivity of the gel electrolyte, and an impenetrable electrode structure are the three major barriers which greatly limit the capacitance of MnO2 in solid state supercapacitors. As a potential solution to these problems, in this work we report a novel electrode for solid state supercapacitors, based on a ternary system composed of hierarchical MnO2 spheres as the active material, macroporous Ni foam as gel penetrable skeletons and an ordered mesoporous carbon (OMC) membrane as the charge-transport accelerating layer. By employing butyl-3-methylimidazolium chloride (BMIMCl) modified gels as the ionic conducting electrolyte, the utilization efficiency of MnO2 on the specific capacitance was enhanced up to 88% of the theoretical value, delivering a volumetric capacitance of 81 F cm(-3), which is the highest value among MnO2 based solid state supercapacitors. Moreover, such a flexible device exhibits exceptional volumetric energy and power density (6.6 Wh L(-1) and 549 W L(-1), based on the whole device volume) combined with a small capacity loss of 8.5% after 6000 cycles under twisting. These encouraging findings unambiguously overcome the energy bottleneck of MnO2 in solid state supercapacitors, and open up a new application of macro/mesoporous materials in flexible devices.

  19. Ionic current devices-Recent progress in the merging of electronic, microfluidic, and biomimetic structures.

    PubMed

    Koo, Hyung-Jun; Velev, Orlin D

    2013-05-09

    We review the recent progress in the emerging area of devices and circuits operating on the basis of ionic currents. These devices operate at the intersection of electrochemistry, electronics, and microfluidics, and their potential applications are inspired by essential biological processes such as neural transmission. Ionic current rectification has been demonstrated in diode-like devices containing electrolyte solutions, hydrogel, or hydrated nanofilms. More complex functions have been realized in ionic current based transistors, solar cells, and switching memory devices. Microfluidic channels and networks-an intrinsic component of the ionic devices-could play the role of wires and circuits in conventional electronics.

  20. Harnessing Poly(ionic liquid)s for Sensing Applications.

    PubMed

    Guterman, Ryan; Ambrogi, Martina; Yuan, Jiayin

    2016-07-01

    The interest in poly(ionic liquid)s for sensing applications is derived from their strong interactions to a variety of analytes. By combining the desirable mechanical properties of polymers with the physical and chemical properties of ILs, new materials can be created. The tunable nature of both ionic liquids and polymers allows for incredible diversity, which is exemplified in their broad applicability. In this article we examine the new field of poly(ionic liquid) sensors by providing a detailed look at the current state-of-the-art sensing devices for solvents, gases, biomolecules, pH, and anions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Conjugated ionic state and its distribution in perylene bisimide doped film: A characterization of Z-scanning in confocal Raman spectroscopy.

    PubMed

    Zhou, Xuehong; Zhang, Wenqiang; Wang, Cong; Zhou, Jiadong; Liu, Linlin; Xie, Zengqi; Ma, Yuguang

    2018-04-27

    Ion-doped states are significant for improving the performance in organic semiconductor-based devices, which require clear characterization to understand their relationship with conductivity and charge transporting mechanisms. In this paper, Raman spectroscopy is used to track the evolution of a dianion-anion-neutral mixture in a perylene bisimide (PBI)-doped film under air, with z-scanning carried out in the confocal mode. The precise distribution for the different states along the film depth is realized within 3.5 μm. The whole film is clearly divided into three regions: the ion-poor state, transition region and ion-rich state. The ion ratio and distribution are strongly related to the film conductivity and the onset voltage shift. Changes in the distribution of the ionic species during oxidation and electrode catalysis are clearly recorded by z-scanning, which is beneficial for understanding the charge transfer properties as well as the mechanism underlying working devices. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Three-dimensional ionic conduction in the strained electrolytes of solid oxide fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yupei; Zou, Minda; Lv, Weiqiang

    2016-05-07

    Flexible power sources including fuel cells and batteries are the key to realizing flexible electronic devices with pronounced foldability. To understand the bending effects in these devices, theoretical analysis on three-dimensional (3-D) lattice bending is necessary. In this report, we derive a 3-D analytical model to analyze the effects of electrolyte crystal bending on ionic conductivity in flexible solid-state batteries/fuel cells. By employing solid oxide fuel cells as a materials' platform, the intrinsic parameters of bent electrolyte materials, including lattice constant, Young's modulus, and Poisson ratio, are evaluated. Our work facilitates the rational design of highly efficient flexible electrolytes formore » high-performance flexible device applications.« less

  3. Ionic electroactive polymer actuators as active microfluidic mixers

    DOE PAGES

    Meis, Catherine; Montazami, Reza; Hashemi, Nastaran

    2015-11-06

    On-chip sample processing is integral to the continued development of lab-on-a-chip devices for various applications. An active microfluidic mixer prototype is proposed using ionic electroactive polymer actuators (IEAPAs) as artificial cilia. A proof-of-concept experiment was performed in which the actuators were shown to produce localized flow pattern disruptions in the laminar flow regime. Suggestions for further engineering and optimization of a scaled-down, complete device are provided. Furthermore, the device in its current state of development necessitates further engineering, the use of IEAPAs addresses issues currently associated with the use of electromechanical actuators as active microfluidic mixers and may prove tomore » be a useful alternative to other similar materials.« less

  4. Nonvolatile Ionic Two-Terminal Memory Device

    NASA Technical Reports Server (NTRS)

    Williams, Roger M.

    1990-01-01

    Conceptual solid-state memory device nonvolatile and erasable and has only two terminals. Proposed device based on two effects: thermal phase transition and reversible intercalation of ions. Transfer of sodium ions between source of ions and electrical switching element increases or decreases electrical conductance of element, turning switch "on" or "off". Used in digital computers and neural-network computers. In neural networks, many small, densely packed switches function as erasable, nonvolatile synaptic elements.

  5. Fabrication of hydrogel-coated single conical nanochannels exhibiting controllable ion rectification characteristics.

    PubMed

    Wang, Linlin; Zhang, Huacheng; Yang, Zhe; Zhou, Jianjun; Wen, Liping; Li, Lin; Jiang, Lei

    2015-03-07

    Heterogeneous nanochannel materials that endow new functionalities different to the intrinsic properties of two original nanoporous materials have wide potential applications in nanofluidics, energy conversion, and biosensors. Herein, we report novel, interesting hydrogel-composited nanochannel devices with regulatable ion rectification characteristics. The heterogeneous nanochannel devices were constructed by selectively coating the tip side, base side, or both sides of a single conical nanochannel membrane with thin agar hydrogel layers. The tunable ion current rectification of the nanochannels in the three different coating states was systematically demonstrated by current-voltage (I-V) curves. The asymmetric ionic transport property of the conical nanochannel was further strengthened in the tip-coating state and weakened in the base-coating state, whereas the conical nanochannel showed nearly symmetric ionic transport in the dual-coating state. Repeated experiments presented insight into the good stability and reversibility of the three coating states of the hydrogel-nanochannel-integrated systems. This work, as an example, may provide a new strategy to further design and develop multifunctional gel-nanochannel heterogeneous smart porous nanomaterials.

  6. Optimization of PEDOT films in ionic liquid supercapacitors: demonstration as a power source for polymer electrochromic devices.

    PubMed

    Österholm, Anna M; Shen, D Eric; Dyer, Aubrey L; Reynolds, John R

    2013-12-26

    We report on the optimization of the capacitive behavior of poly(3,4-ethylenedioxythiophene) (PEDOT) films as polymeric electrodes in flexible, Type I electrochemical supercapacitors (ESCs) utilizing ionic liquid (IL) and organic gel electrolytes. The device performance was assessed based on figures of merit that are critical to evaluating the practical utility of electroactive polymer ESCs. PEDOT/IL devices were found to be highly stable over hundreds of thousands of cycles and could be reversibly charged/discharged at scan rates between 500 mV/s and 2 V/s depending on the polymer loading. Furthermore, these devices exhibit leakage currents and self-discharge rates that are comparable to state of the art electrochemical double-layer ESCs. Using an IL as device electrolyte allowed an extension of the voltage window of Type I ESCs by 60%, resulting in a 2.5-fold increase in the energy density obtained. The efficacies of tjese PEDOT ESCs were assessed by using them as a power source for a high-contrast and fast-switching electrochromic device, demonstrating their applicability in small organic electronic-based devices.

  7. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  8. Ionic Self-Assembled Monolayer (ISAM) Nonlinear Optical Thin Films and Devices

    DTIC Science & Technology

    1998-05-12

    SUBTITLE " Ionic Self-Assembled Monolayer (ISAM) Nonlinear Optical Thin Films and Devices" 6. AUTHORS Michael B. Miller 5. FUNDING NUMBERS F49620-97...ii. Lü. Ionic Self-Assembled Monolayer (ISAM) Nonlinear Optical Thin Films and Devices Final Technical Report Performance Period: 15 August 1997...Investigator F&S. Inc.N ̂ 1. INTRODUCTION .’ 2 2. PROGRAM TASK REVIEW 2 3. BACKGROUND 4 3.1 NONLINEAR OPTICAL THIN FILMS 4 3.2 IONIC SELF

  9. Bipolar stacked quasi-all-solid-state lithium secondary batteries with output cell potentials of over 6 V

    PubMed Central

    Matsuo, Takahiro; Gambe, Yoshiyuki; Sun, Yan; Honma, Itaru

    2014-01-01

    Designing a lithium ion battery (LIB) with a three-dimensional device structure is crucial for increasing the practical energy storage density by avoiding unnecessary supporting parts of the cell modules. Here, we describe the superior secondary battery performance of the bulk all-solid-state LIB cell and a multilayered stacked bipolar cell with doubled cell potential of 6.5 V, for the first time. The bipolar-type solid LIB cell runs its charge/discharge cycle over 200 times in a range of 0.1–1.0 C with negligible capacity decrease despite their doubled output cell potentials. This extremely high performance of the bipolar cell is a result of the superior battery performance of the single cell; the bulk all-solid-state cell has a charge/discharge cycle capability of over 1500 although metallic lithium and LiFePO4 are employed as anodes and cathodes, respectively. The use of a quasi-solid electrolyte consisting of ionic liquid and Al2O3 nanoparticles is considered to be responsible for the high ionic conductivity and electrochemical stability at the interface between the electrodes and the electrolyte. This paper presents the effective applications of SiO2, Al2O3, and CeO2 nanoparticles and various Li+ conducting ionic liquids for the quasi-solid electrolytes and reports the best ever known cycle performances. Moreover, the results of this study show that the bipolar stacked three-dimensional device structure would be a smart choice for future LIBs with higher cell energy density and output potential. In addition, our report presents the advantages of adopting a three-dimensional cell design based on the solid-state electrolytes, which is of particular interest in energy-device engineering for mobile applications. PMID:25124398

  10. New Polymer Electrolyte Cell Systems

    NASA Technical Reports Server (NTRS)

    Smyrl, William H.; Owens, Boone B.; Mann, Kent; Pappenfus, T.; Henderson, W.

    2004-01-01

    PAPERS PUBLISHED: 1. Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; Smyrl, William H. Complexes of Lithium Imide Salts with Tetraglyme and Their Polyelectrolyte Composite Materials. Journal of the Electrochemical Society (2004), 15 1 (2), A209-A2 15. 2. Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; Smyrl, William H. Ionic-liquidlpolymer electrolyte composite materials for electrochemical device applications. Polymeric Materials Science and Engineering (2003), 88 302. 3. Pappenfus, Ted R.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; and Smyrl, William H. Ionic Conductivity of a poly(vinylpyridinium)/Silver Iodide Solid Polymer Electrolyte System. Solid State Ionics (in press 2004). 4. Pappenfus Ted M.; Mann, Kent R; Smyrl, William H. Polyelectrolyte Composite Materials with LiPFs and Tetraglyme. Electrochemical and Solid State Letters, (2004), 7(8), A254.

  11. Establishing Dual Electrogenerated Chemiluminescence and Multi-Color Electrochromism in Functional Ionic Transition Metal Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puodziukynaite, Egle; Oberst, Justin L.; Dyer, Aubrey L.

    A combination of electrochromism and electroluminescence in functional materials could lead to single-layer dual electrochromic/electroluminescent (EC/EL) display devices, capable of simultaneous operation in emissive and reflective modes. Whereas such next generation displays could provide optimal visibility in any ambient lighting situation, materials available that exhibit such characteristics in the active layer are limited due to the required intrinsic multifunctionality (i.e., redox activity, electroluminescence, electrochromism, and ion conductivity) and to date can only be achieved via the rational design of ionic transition-metal complexes. Reported herein is the synthesis and characterization of a new family of acrylate-containing ruthenium (tris)bipyridine-based coordination complexes withmore » multifunctional characteristics. Potential use of the presented compounds in EC/EL devices is established, as they are applied as cross-linked electrochromic films and electrochemiluminescent layers in light-emitting electrochemical cell devices. Electrochromic switching of the polymeric networks between yellow, orange, green, brown and transmissive states is demonstrated, and electrochemiluminescent devices based on the complexes synthesized show red-orange to deep red emission with λ{sub max} ranging from 680 to 722 nm and luminance up to 135 cd/m{sup 2}. Additionally, a dual EC/EL device prototype is presented where light emission and multicolor electrochromism occur from the same pixel comprised of a single active layer, demonstrating a true combination of these properties in ionic transition-metal complexes.« less

  12. Establishing Dual Electrogenerated Chemiluminescence and Multicolor Electrochromism in Functional Ionic Transition-Metal Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puodziukynaite, Egle; Oberst, Justin L.; Dyer, Aubrey L.

    A combination of electrochromism and electroluminescence in functional materials could lead to single-layer dual electrochromic/electroluminescent (EC/EL) display devices, capable of simultaneous operation in emissive and reflective modes. Whereas such next generation displays could provide optimal visibility in any ambient lighting situation, materials available that exhibit such characteristics in the active layer are limited due to the required intrinsic multifunctionality (i.e., redox activity, electroluminescence, electrochromism, and ion conductivity) and to date can only be achieved via the rational design of ionic transition-metal complexes. Reported herein is the synthesis and characterization of a new family of acrylate-containing ruthenium (tris)bipyridine-based coordination complexes withmore » multifunctional characteristics. Potential use of the presented compounds in EC/EL devices is established, as they are applied as cross-linked electrochromic films and electrochemiluminescent layers in light-emitting electrochemical cell devices. Electrochromic switching of the polymeric networks between yellow, orange, green, brown and transmissive states is demonstrated, and electrochemiluminescent devices based on the complexes synthesized show red-orange to deep red emission with λmax ranging from 680 to 722 nm and luminance up to 135 cd/m². Additionally, a dual EC/EL device prototype is presented where light emission and multicolor electrochromism occur from the same pixel comprised of a single active layer, demonstrating a true combination of these properties in ionic transition-metal complexes.« less

  13. High H⁻ ionic conductivity in barium hydride.

    PubMed

    Verbraeken, Maarten C; Cheung, Chaksum; Suard, Emmanuelle; Irvine, John T S

    2015-01-01

    With hydrogen being seen as a key renewable energy vector, the search for materials exhibiting fast hydrogen transport becomes ever more important. Not only do hydrogen storage materials require high mobility of hydrogen in the solid state, but the efficiency of electrochemical devices is also largely determined by fast ionic transport. Although the heavy alkaline-earth hydrides are of limited interest for their hydrogen storage potential, owing to low gravimetric densities, their ionic nature may prove useful in new electrochemical applications, especially as an ionically conducting electrolyte material. Here we show that barium hydride shows fast pure ionic transport of hydride ions (H(-)) in the high-temperature, high-symmetry phase. Although some conductivity studies have been reported on related materials previously, the nature of the charge carriers has not been determined. BaH2 gives rise to hydride ion conductivity of 0.2 S cm(-1) at 630 °C. This is an order of magnitude larger than that of state-of-the-art proton-conducting perovskites or oxide ion conductors at this temperature. These results suggest that the alkaline-earth hydrides form an important new family of materials, with potential use in a number of applications, such as separation membranes, electrochemical reactors and so on.

  14. High Performance Variable Emittance Devices for Spacecraft Application Based on Conducting Polymers Coupled with Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Chandrasekhar, Prasanna; Zay, Brian J.; Barbolt, Scott; Werner, Robert; Birur, Gajanana C.; Paris, Anthony

    2009-03-01

    This contribution describes the fabrication, function and performance of thin-film variable emittance electrochromic skins fabricated using poly(aniline) as the conducting polymer (CP), a long-chain polymeric dopant, and an ionic liquid as electrolyte. The ionic electrolyte allows operation in space vacuum without any seals. A unique, space-durable coating applied to the external surface of the skins drastically lowers the solar absorptance of the skins, such that in their dark (highly emissive) electrochromic state, it is no more than 0.44, whilst in their light electrochromic state, it is ca. 0.3. Data presented show tailorable, variations from 0.19 to 0.90, ∀(s)<0.3, and nearly indefinite cyclability. Extended thermal vacuum, atomic-O, micrometeoroid, VUV and other studies show excellent space durability. Performance of a doughnut-shaped skin designed for a specific micro-spacecraft is also described.

  15. Biredox ionic liquids: new opportunities toward high performance supercapacitors.

    PubMed

    Bodin, C; Mourad, E; Zigah, D; Le Vot, S; Freunberger, S A; Favier, F; Fontaine, O

    2018-01-01

    Nowadays commercial supercapacitors are based on purely capacitive storage at the porous carbons that are used for the electrodes. However, the limits that capacitive storage imposes on energy density calls to investigate new materials to improve the capacitance of the device. This new type of electrodes (e.g., RuO 2 , MnO 2 …) involves pseudo-capacitive faradaic redox processes with the solid material. Ion exchange with solid materials is, however, much slower than the adsorption process in capacitive storage and inevitably leads to significant loss of power. Faradaic process in the liquid state, in contrast can be similarly fast as capacitive processes due to the fast ion transport. Designing new devices with liquid like dynamics and improved specific capacitance is challenging. We present a new approach to increase the specific capacitance using biredox ionic liquids, where redox moieties are tethered to the electrolyte ions, allowing high redox concentrations and significant pseudo-capacitive storage in the liquid state. Anions and cations are functionalized with anthraquinone (AQ) and 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO) moieties, respectively. Glassy carbon, carbon-onion, and commercial activated carbon electrodes that exhibit different double layer structures and thus different diffusion dynamics were used to simultaneously study the electrochemical response of biredox ionic liquids at the positive and negative electrode.

  16. Smart glass based on electrochromic polymers

    NASA Astrophysics Data System (ADS)

    Xu, Chunye; Kong, Xiangxing; Liu, Lu; Su, Fengyu; Kim, Sooyeun; Taya, Minoru

    2006-03-01

    Five-layer-structured electrochromic glass (window), containing a transparent conductive layer, an electrochromic layer, an ionic conductive layer, an ionic storage layer and a second conductive transparent layer, was fabricated. The electrochromic glass adopts the conjugated polymer, poly[3,3-dimethyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine] (PProDOT-Me2), as a blue electrochromic active layer, vanadium pentaoxide film as an ion storage layer and polymer gel electrolyte as the ionic transport layer. Dimension of smart glass up to 12 x 20 inch was developed. UV curable sealant was applied for the sealing devices. Color changing or switching speed of 12 x 20 inch smart glass from dark state to the transparent state (or vise versa) is less than 15 seconds under applied 1.5 voltages. Besides the long open circuit memory (the colored state or transparent state remains the same state after the power is off), the smart window can be adjusted easily into the intermediate state between the dark state and the transparent state by just simply turn the power on or off. No space consuming or dirt collecting shades, curtains or blinds are needed. The applications of the smart window, e.g. in the aircrafts, automobiles and architectures were discussed as well.

  17. Ionically self-assembled monolayers (ISAMs)

    NASA Astrophysics Data System (ADS)

    Janik, John

    2001-04-01

    Ionically self-assembled monolayers (ISAMs), fabricated by alternate adsorption of cationic and anionic components, yield exceptionally homogeneous thin films with sub-nanometer control of the thickness and relative special location of the component materials. Using organic electrochromic materials such as polyaniline, we report studies of electrochromic responses in ISAM films. Reversible changes in the absorption spectrum are observed with the application of voltages on the order of 1.0 V. Measurements are made using both liquid electrolytes and in all-solid state devices incorporating solid polyelectrolytes such as poly(2-acylamido 2-methyl propane sulfonic acid) (PAMPS).

  18. Command Surface of Self-Organizing Structures by Radical Polymers with Cooperative Redox Reactivity.

    PubMed

    Sato, Kan; Mizuma, Takahiro; Nishide, Hiroyuki; Oyaizu, Kenichi

    2017-10-04

    Robust radical-substituted polymers with ideal redox capability were used as "command surfaces" for liquid crystal orientation. The alignment of the smectic liquid crystal electrolytes with low-dimensional ion conduction pathways was reversible and readily switched in response to the redox states of the polymers. In one example, a charge storage device with a cooperative redox effect was fabricated. The bulk ionic conductivity of the cell was significantly decreased only after the electrode was fully charged, due to the anisotropic ionic conductivity of the electrolytes (ratio >10 3 ). The switching enabled both a rapid cell response and long charge retention. Such a cooperative command surface of self-assembled structures will give rise to new highly energy efficient supramolecular-based devices including batteries, charge carriers, and actuators.

  19. Voltage switching of a VO{sub 2} memory metasurface using ionic gel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldflam, M. D.; Liu, M. K.; Chapler, B. C.

    2014-07-28

    We demonstrate an electrolyte-based voltage tunable vanadium dioxide (VO{sub 2}) memory metasurface. Large spatial scale, low voltage, non-volatile switching of terahertz (THz) metasurface resonances is achieved through voltage application using an ionic gel to drive the insulator-to-metal transition in an underlying VO{sub 2} layer. Positive and negative voltage application can selectively tune the metasurface resonance into the “off” or “on” state by pushing the VO{sub 2} into a more conductive or insulating regime respectively. Compared to graphene based control devices, the relatively long saturation time of resonance modification in VO{sub 2} based devices suggests that this voltage-induced switching originates primarilymore » from electrochemical effects related to oxygen migration across the electrolyte–VO{sub 2} interface.« less

  20. Robust High-performance Dye-sensitized Solar Cells Based on Ionic Liquid-sulfolane Composite Electrolytes.

    PubMed

    Lau, Genevieve P S; Décoppet, Jean-David; Moehl, Thomas; Zakeeruddin, Shaik M; Grätzel, Michael; Dyson, Paul J

    2015-12-16

    Novel ionic liquid-sulfolane composite electrolytes based on the 1,2,3-triazolium family of ionic liquids were developed for dye-sensitized solar cells. The best performing device exhibited a short-circuit current density of 13.4 mA cm(-2), an open-circuit voltage of 713 mV and a fill factor of 0.65, corresponding to an overall power conversion efficiency (PCE) of 6.3%. In addition, these devices are highly stable, retaining more than 95% of the initial device PCE after 1000 hours of light- and heat-stress. These composite electrolytes show great promise for industrial application as they allow for a 14.5% improvement in PCE, compared to the solvent-free eutectic ionic liquid electrolyte system, without compromising device stability.

  1. Method for synthesis of titanium dioxide nanotubes using ionic liquids

    DOEpatents

    Qu, Jun; Luo, Huimin; Dai, Sheng

    2013-11-19

    The invention is directed to a method for producing titanium dioxide nanotubes, the method comprising anodizing titanium metal in contact with an electrolytic medium containing an ionic liquid. The invention is also directed to the resulting titanium dioxide nanotubes, as well as devices incorporating the nanotubes, such as photovoltaic devices, hydrogen generation devices, and hydrogen detection devices.

  2. Magneto-ionic effect in CoFeB thin films with in-plane and perpendicular-to-plane magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Baldrati, L.; Tan, A. J.; Mann, M.; Bertacco, R.; Beach, G. S. D.

    2017-01-01

    The magneto-ionic effect is a promising method to control the magnetic properties electrically. Charged mobile oxygen ions can easily be driven by an electric field to modify the magnetic anisotropy of a ferromagnetic layer in contact with an ionic conductor in a solid-state device. In this paper, we report on the room temperature magneto-ionic modulation of the magnetic anisotropy of ultrathin CoFeB films in contact with a GdOx layer, as probed by polar micro-Magneto Optical Kerr Effect during the application of a voltage across patterned capacitors. Both Pt/CoFeB/GdOx films with perpendicular magnetic anisotropy and Ta/CoFeB/GdOx films with uniaxial in-plane magnetic anisotropy in the as-grown state exhibit a sizable dependence of the magnetic anisotropy on the voltage (amplitude, polarity, and time) applied across the oxide. In Pt/CoFeB/GdOx multilayers, it is possible to reorient the magnetic anisotropy from perpendicular-to-plane to in-plane, with a variation of the magnetic anisotropy energy greater than 0.2 mJ m-2. As for Ta/CoFeB/GdOx multilayers, magneto-ionic effects still lead to a sizable variation of the in-plane magnetic anisotropy, but the anisotropy axis remains in-plane.

  3. Electrochemical energy storage device based on carbon dioxide as electroactive species

    DOEpatents

    Nemeth, Karoly; van Veenendaal, Michel Antonius; Srajer, George

    2013-03-05

    An electrochemical energy storage device comprising a primary positive electrode, a negative electrode, and one or more ionic conductors. The ionic conductors ionically connect the primary positive electrode with the negative electrode. The primary positive electrode comprises carbon dioxide (CO.sub.2) and a means for electrochemically reducing the CO.sub.2. This means for electrochemically reducing the CO.sub.2 comprises a conductive primary current collector, contacting the CO.sub.2, whereby the CO.sub.2 is reduced upon the primary current collector during discharge. The primary current collector comprises a material to which CO.sub.2 and the ionic conductors are essentially non-corrosive. The electrochemical energy storage device uses CO.sub.2 as an electroactive species in that the CO.sub.2 is electrochemically reduced during discharge to enable the release of electrical energy from the device.

  4. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.

    PubMed

    Guo, Wei; Tian, Ye; Jiang, Lei

    2013-12-17

    Both scientists and engineers are interested in the design and fabrication of synthetic nanofluidic architectures that mimic the gating functions of biological ion channels. The effort to build such structures requires interdisciplinary efforts at the intersection of chemistry, materials science, and nanotechnology. Biological ion channels and synthetic nanofluidic devices have some structural and chemical similarities, and therefore, they share some common features in regulating the traverse ionic flow. In the past decade, researchers have identified two asymmetric ion transport phenomena in synthetic nanofluidic structures, the rectified ionic current and the net diffusion current. The rectified ionic current is a diode-like current-voltage response that occurs when switching the voltage bias. This phenomenon indicates a preferential direction of transport in the nanofluidic system. The net diffusion current occurs as a direct product of charge selectivity and is generated from the asymmetric diffusion through charged nanofluidic channels. These new ion transport phenomena and the elaborate structures that occur in biology have inspired us to build functional nanofluidic devices for both fundamental research and practical applications. In this Account, we review our recent progress in the design and fabrication of biomimetic solid-state nanofluidic devices with asymmetric ion transport behavior. We demonstrate the origin of the rectified ionic current and the net diffusion current. We also identify several influential factors and discuss how to build these asymmetric features into nanofluidic systems by controlling (1) nanopore geometry, (2) surface charge distribution, (3) chemical composition, (4) channel wall wettability, (5) environmental pH, (6) electrolyte concentration gradient, and (7) ion mobility. In the case of the first four features, we build these asymmetric features directly into the nanofluidic structures. With the final three, we construct different environmental conditions in the electrolyte solutions on either side of the nanochannel. The novel and well-controlled nanofluidic phenomena have become the foundation for many promising applications, and we have highlighted several representative examples. Inspired by the electrogenic cell of the electric eel, we have demonstrated a proof-of-concept nanofluidic reverse electrodialysis system (NREDS) that converts salinity gradient energy into electricity by means of net diffusion current. We have also constructed chirality analysis systems into nanofluidic architectures and monitored these sensing events as the change in the degree of ionic current rectification. Moreover, we have developed a biohybrid nanosystem, in which we reconstituted the F0F1-ATPase on a liposome-coated, solid-state nanoporous membrane. By applying a transmembrane proton concentration gradient, the biohybrid nanodevice can synthesize ATP in vitro. These findings have improved our understanding of the asymmetric ion transport phenomena in synthetic nanofluidic systems and offer innovative insights into the design of functional nanofluidic devices.

  5. Impact of gate geometry on ionic liquid gated ionotronic systems

    DOE PAGES

    Wong, Anthony T.; Noh, Joo Hyon; Pudasaini, Pushpa Raj; ...

    2017-01-23

    Ionic liquid electrolytes are gaining widespread application as a gate dielectric used to control ion transport in functional materials. This letter systematically examines the important influence that device geometry in standard “side gate” 3-terminal geometries plays in device performance of a well-known oxygen ion conductor. We show that the most influential component of device design is the ratio between the area of the gate electrode and the active channel, while the spacing between these components and their individual shapes has a negligible contribution. Finally, these findings provide much needed guidance in device design intended for ionotronic gating with ionic liquids.

  6. Recent advances in electrohydrodynamic pumps operated by ionic winds: a review

    NASA Astrophysics Data System (ADS)

    Johnson, Michael J.; Go, David B.

    2017-10-01

    An ionic or electric wind is a bulk air movement induced by electrohydrodynamic (EHD) phenomena in a gas discharge. Because they are silent, low power, respond rapidly, and require no moving parts, ionic wind devices have been proposed for a wide range of applications, ranging from convection cooling and food drying to combustion management. The past several decades have seen the area grow tremendously leading to a number of new actuation strategies and devices that can be incorporated into various applications. In this review, we discuss the physics of ionic winds and recent developments of the past five years that have pushed the field forward, focusing on the development on bulk air-moving devices we term EHD pumps. We then highlight the ongoing challenges with transitioning ionic wind technologies to the market place, from issues that affect robustness to practical implementation, and point to areas where future research could have an impact on the field.

  7. Electrochromic Behavior of Ionically Self-Assembled Thin Films

    NASA Astrophysics Data System (ADS)

    Janik, J. A.; Heflin, J. R.; Marciu, D.; Miller, M. B.; Davis, R. M.

    2001-03-01

    Ionically self-assembled monolayers (ISAMs), fabricated by alternate adsorption of cationic and anionic components, yield exceptionally homogeneous thin films with sub-nanometer control of the thickness and relative special location of the component materials. Using organic electrochromic materials such as polyaniline, we report studies of electrochromic responses in ISAM films. Reversible changes in the absorption spectrum are observed with the application of voltages on the order of 1.0 V. Measurements are made using both liquid electrolytes and in all-solid state devices incorporating solid polyelectrolytes such as poly(2-acylamido 2-methyl propane sulfonic acid) (PAMPS).

  8. Novel polymeric LIT and divalent cation fast ion conducting materials

    NASA Astrophysics Data System (ADS)

    Angell, C. A.

    Solid state energy devices require a component which conducts electricity by ionic migration. The conductivity of this element of the system must be very high. Four types of materials show the promise to provide the necessary conductivity characteristics, while offering other desirable features such as the ability to distort in shape under mechanical stresses: (1) crystalline; (2) plastic crystal; (3) inorganic glassy; and (4) polymer salt solutions. This document reports on the following materials: lead halide-containing fast ion conducting glasses (LiF-PbF2-Al(PO3)3), mixed ionic electronic conduction (Na2O-V2O5-TeO2), alpha relaxation in ionic glasses, glass transition in P2O2, and conductivity transition between all-halide and all-oxide glasses.

  9. Thermoelectric Power in Bilayer Graphene Device with Ionic Liquid Gating.

    PubMed

    Chien, Yung-Yu; Yuan, Hongtao; Wang, Chang-Ran; Lee, Wei-Li

    2016-02-08

    The quest for materials showing large thermoelectric power has long been one of the important subjects in material science and technology. Such materials have great potential for thermoelectric cooling and also high figure of merit ZT thermoelectric applications. We have fabricated bilayer graphene devices with ionic-liquid gating in order to tune its band gap via application of a perpendicular electric field on a bilayer graphene. By keeping the Fermi level at charge neutral point during the cool-down, we found that the charge puddles effect can be greatly reduced and thus largely improve the transport properties at low T in graphene-based devices using ionic liquid gating. At (Vig, Vbg) = (-1 V, +23 V), a band gap of about 36.6 ± 3 meV forms, and a nearly 40% enhancement of thermoelectric power at T = 120 K is clearly observed. Our works demonstrate the feasibility of band gap tuning in a bilayer graphene using ionic liquid gating. We also remark on the significant influence of the charge puddles effect in ionic-liquid-based devices.

  10. Ionic liquid versus SiO 2 gated a-IGZO thin film transistors: A direct comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony T.

    Here, ionic liquid gated field effect transistors have been extensively studied due to their low operation voltage, ease of processing and the realization of high electric fields at low bias voltages. Here, we report ionic liquid (IL) gated thin film transistors (TFTs) based on amorphous Indium Gallium Zinc Oxide (a-IGZO) active layers and directly compare the characteristics with a standard SiO 2 gated device. The transport measurements of the top IL gated device revealed the n-channel property of the IGZO thin film with a current ON/OFF ratio ~10 5, a promising field effect mobility of 14.20 cm 2V –1s –1,more » and a threshold voltage of 0.5 V. Comparable measurements on the bottom SiO2 gate insulator revealed a current ON/OFF ratio >108, a field effect mobility of 13.89 cm 2V –1s –1 and a threshold voltage of 2.5 V. Furthermore, temperature-dependent measurements revealed that the ionic liquid electric double layer can be “frozen-in” by cooling below the glass transition temperature with an applied electrical bias. Positive and negative freezing bias locks-in the IGZO TFT “ON” and “OFF” state, respectively, which could lead to new switching and possibly non-volatile memory applications.« less

  11. Ionic liquid versus SiO 2 gated a-IGZO thin film transistors: A direct comparison

    DOE PAGES

    Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony T.; ...

    2015-08-12

    Here, ionic liquid gated field effect transistors have been extensively studied due to their low operation voltage, ease of processing and the realization of high electric fields at low bias voltages. Here, we report ionic liquid (IL) gated thin film transistors (TFTs) based on amorphous Indium Gallium Zinc Oxide (a-IGZO) active layers and directly compare the characteristics with a standard SiO 2 gated device. The transport measurements of the top IL gated device revealed the n-channel property of the IGZO thin film with a current ON/OFF ratio ~10 5, a promising field effect mobility of 14.20 cm 2V –1s –1,more » and a threshold voltage of 0.5 V. Comparable measurements on the bottom SiO2 gate insulator revealed a current ON/OFF ratio >108, a field effect mobility of 13.89 cm 2V –1s –1 and a threshold voltage of 2.5 V. Furthermore, temperature-dependent measurements revealed that the ionic liquid electric double layer can be “frozen-in” by cooling below the glass transition temperature with an applied electrical bias. Positive and negative freezing bias locks-in the IGZO TFT “ON” and “OFF” state, respectively, which could lead to new switching and possibly non-volatile memory applications.« less

  12. Magneto-ionic control of interfacial magnetism

    NASA Astrophysics Data System (ADS)

    Bauer, Uwe; Yao, Lide; Tan, Aik Jun; Agrawal, Parnika; Emori, Satoru; Tuller, Harry L.; van Dijken, Sebastiaan; Beach, Geoffrey S. D.

    2015-02-01

    In metal/oxide heterostructures, rich chemical, electronic, magnetic and mechanical properties can emerge from interfacial chemistry and structure. The possibility to dynamically control interface characteristics with an electric field paves the way towards voltage control of these properties in solid-state devices. Here, we show that electrical switching of the interfacial oxidation state allows for voltage control of magnetic properties to an extent never before achieved through conventional magneto-electric coupling mechanisms. We directly observe in situ voltage-driven O2- migration in a Co/metal-oxide bilayer, which we use to toggle the interfacial magnetic anisotropy energy by >0.75 erg cm-2 at just 2 V. We exploit the thermally activated nature of ion migration to markedly increase the switching efficiency and to demonstrate reversible patterning of magnetic properties through local activation of ionic migration. These results suggest a path towards voltage-programmable materials based on solid-state switching of interface oxygen chemistry.

  13. Ligand field splittings in core level transitions for transition metal (TM) oxides: Tanabe-Sugano diagrams and (TM) dangling bonds in vacated O-atom defects

    NASA Astrophysics Data System (ADS)

    Lucovsky, Gerry; Wu, Kun; Pappas, Brian; Whitten, Jerry

    2013-04-01

    Defect states in the forbidden band-gap below the conduction band edge are active as electron traps in nano-grain high-) transition metal (TM) oxides with thickness >0.3 nm, e.g., ZrO2 and HfO2. These oxides have received considerable attention as gate-dielectrics in complementary metal oxide semiconductor (CMOS) devices, and more recently are emerging as candidates for charge storage and memory devices. To provide a theoretical basis for device functionality, ab-initio many-electron theory is combined with X-ray absorption spectroscopy (XAS) to study O K edge and TM core level transitions. These studies identify ligand field splittings (ΔLF) for defect state features,. When compared with those obtained from O-atom and TM-atom core spectroscopic transitions, this provides direct information about defect state sun-nm bonding arrangements. comparisons are made for (i) elemental TiO2 and Ti2O3 with different formal ionic charges, Ti4+ and Ti3+ and for (ii) Magneli Phase alloys, TinO2n-1, n is an integer 9>=n>3, and (TiO2)x(HfO2)1-x alloys. The alloys display multi-valent behavior from (i) different ionic-charge states, (ii} local bond-strain, and (iii) metallic hopping transport. The intrinsic bonding defects in TM oxides are identified as pairs of singly occupied dangling bonds. For 6-fold coordinated Ti-oxides defect excited states in 2nd derivative O K pre-edge spectra are essentially the same as single Ti-atom d2 transitions in Tanabe-Sugano (T-S) diagrams. O-vacated site defects in 8-fold coordinated ZrO2 and HfO2 are described by d8 T-S diagrams. T-S defect state ordering and splittings are functions of the coordination and symmetry of vacated site bordering TM atoms. ΔLF values from the analysis of T-S diagrams indicate medium range order (MRO) extending to 3rd and 4th nearest-neighbor (NN) TM-atoms. Values are different for 6-fold Ti, and 8-fold ZrO2 and HfO2, and scale inversely with differences in respective formal ionic radii. O-vacated site bonding defects in TM nano-grain oxides are qualitatively similar to vacant-site defects in non-crystalline SiO2 and GeO2 for ulta-thin films, < 0.2 nm thick, and yield similar performance in MOSCAPs on Ge substrates heralding applications in aggressively-scale CMOS devices.

  14. Ion distributions in electrolyte confined by multiple dielectric interfaces

    NASA Astrophysics Data System (ADS)

    Jing, Yufei; Zwanikken, Jos W.; Jadhao, Vikram; de La Cruz, Monica

    2014-03-01

    The distribution of ions at dielectric interfaces between liquids characterized by different dielectric permittivities is crucial to nanoscale assembly processes in many biological and synthetic materials such as cell membranes, colloids and oil-water emulsions. The knowledge of ionic structure of these systems is also exploited in energy storage devices such as double-layer super-capacitors. The presence of multiple dielectric interfaces often complicates computing the desired ionic distributions via simulations or theory. Here, we use coarse-grained models to compute the ionic distributions in a system of electrolyte confined by two planar dielectric interfaces using Car-Parrinello molecular dynamics simulations and liquid state theory. We compute the density profiles for various electrolyte concentrations, stoichiometric ratios and dielectric contrasts. The explanations for the trends in these profiles and discuss their effects on the behavior of the confined charged fluid are also presented.

  15. Electrochemical Impedance Analysis of a PEDOT:PSS-Based Textile Energy Storage Device

    PubMed Central

    Gokceoren, Argun Talat; Odhiambo, Sheilla Atieno; De Mey, Gilbert; Hertleer, Carla; Van Langenhove, Lieva

    2017-01-01

    A textile-based energy storage device with electroactive PEDOT:PSS (poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate)) polymer functioning as a solid-state polyelectrolyte has been developed. The device was fabricated on textile fabric with two plies of stainless-steel electroconductive yarn as the electrodes. In this study, cyclic voltammetry and electrochemical impedance analysis were used to investigate ionic and electronic activities in the bulk of PEDOT:PSS and at its interfaces with stainless steel yarn electrodes. The complex behavior of ionic and electronic origins was observed in the interfacial region between the conductive polymer and the electrodes. The migration and diffusion of the ions involved were confirmed by the presence of the Warburg element with a phase shift of 45° (n = 0.5). Two different equivalent circuit models were found by simulating the model with the experimental results: (QR)(QR)(QR) for uncharged and (QR)(QR)(Q(RW)) for charged samples. The analyses also showed that the further the distance between electrodes, the lower the capacitance of the cell. The distribution of polymer on the cell surface also played important role to change the capacitance of the device. The results of this work may lead to a better understanding of the mechanism and how to improve the performance of the device. PMID:29283427

  16. Direct Observation of Ion Distributions near Electrodes in Ionic Polymer Actuators Containing Ionic Liquids

    PubMed Central

    Liu, Yang; Lu, Caiyan; Twigg, Stephen; Ghaffari, Mehdi; Lin, Junhong; Winograd, Nicholas; Zhang, Q. M.

    2013-01-01

    The recent boom of energy storage and conversion devices, exploiting ionic liquids (ILs) to enhance the performance, requires an in-depth understanding of this new class of electrolytes in device operation conditions. One central question critical to device performance is how the mobile ions accumulate near charged electrodes. Here, we present the excess ion depth profiles of ILs in ionomer membrane actuators (Aquivion/1-butyl-2,3-dimethylimidazolium chloride (BMMI-Cl), 27 μm thick), characterized directly by Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) at liquid nitrogen temperature. Experimental results reveal that for the IL studied, cations and anions are accumulated at both electrodes. The large difference in the total volume occupied by the excess ions between the two electrodes cause the observed large bending actuation of the actuator. Hence we demonstrate that ToF-SIMS experiment provides great insights on the physics nature of ionic devices. PMID:23512124

  17. XPS studies of Mg doped GDC (Ce0.8Gd0.2O2-δ) for IT-SOFC

    NASA Astrophysics Data System (ADS)

    Tyagi, Deepak; Rao, P. Koteswara; Wani, B. N.

    2018-04-01

    Fuel Cells have gained much attention as efficient and environment friendly device for both stationary as well as mobile applications. For intermediate temperature SOFC (IT-SOFC), ceria based electrolytes are the most promising one, due to their higher ionic conductivity at relatively lower temperatures. Gd doped ceria is reported to be having the highest ionic conductivity. In the present work, Mg is codoped along with Gd and the electronic structure of the constituents is studied by XPS. XPS confirm that the Cerium is present in +4 oxidation state only which indicates that electronic conduction can be completely avoided.

  18. Multiple switching modes and multiple level states in memristive devices

    NASA Astrophysics Data System (ADS)

    Miao, Feng; Yang, J. Joshua; Borghetti, Julien; Strachan, John Paul; Zhang, M.-X.; Goldfarb, Ilan; Medeiros-Ribeiro, Gilberto; Williams, R. Stanley

    2011-03-01

    As one of the most promising technologies for next generation non-volatile memory, metal oxide based memristive devices have demonstrated great advantages on scalability, operating speed and power consumption. Here we report the observation of multiple switching modes and multiple level states in different memristive systems. The multiple switching modes can be obtained by limiting the current during electroforming, and related transport behaviors, including ionic and electronic motions, are characterized. Such observation can be rationalized by a model of two effective switching layers adjacent to the bottom and top electrodes. Multiple level states, corresponding to different composition of the conducting channel, will also be discussed in the context of multiple-level storage for high density, non-volatile memory applications.

  19. Graphene nanopore devices for DNA sensing.

    PubMed

    Merchant, Chris A; Drndić, Marija

    2012-01-01

    We describe here a method for detecting the translocation of individual DNA molecules through nanopores created in graphene membranes. The devices consist of 1-5-nm thick graphene membranes with electron-beam sculpted nanopores from 5 to 10 nm in diameter. Due to the thin nature of the graphene membranes, and the reduced electrical resistance, we observe larger blocked currents than for traditional solid-state nanopores. We also show how ionic current noise levels can be reduced with the atomic-layer deposition of a few nanometers of titanium dioxide over the graphene surface. Unlike traditional solid-state nanopore materials that are insulating, graphene is an excellent electrical conductor, and its use opens the door to a new future class of nanopore devices in which electronic sensing and control is performed directly at the pore.

  20. DNA translocation through graphene nanopores.

    PubMed

    Merchant, Christopher A; Healy, Ken; Wanunu, Meni; Ray, Vishva; Peterman, Neil; Bartel, John; Fischbein, Michael D; Venta, Kimberly; Luo, Zhengtang; Johnson, A T Charlie; Drndić, Marija

    2010-08-11

    We report on DNA translocations through nanopores created in graphene membranes. Devices consist of 1-5 nm thick graphene membranes with electron-beam sculpted nanopores from 5 to 10 nm in diameter. Due to the thin nature of the graphene membranes, we observe larger blocked currents than for traditional solid-state nanopores. However, ionic current noise levels are several orders of magnitude larger than those for silicon nitride nanopores. These fluctuations are reduced with the atomic-layer deposition of 5 nm of titanium dioxide over the device. Unlike traditional solid-state nanopore materials that are insulating, graphene is an excellent electrical conductor. Use of graphene as a membrane material opens the door to a new class of nanopore devices in which electronic sensing and control are performed directly at the pore.

  1. Self-Assembled Polymeric Ionic Liquid-Functionalized Cellulose Nano-crystals: Constructing 3D Ion-conducting Channels Within Ionic Liquid-based Composite Polymer Electrolytes.

    PubMed

    Shi, Qing Xuan; Xia, Qing; Xiang, Xiao; Ye, Yun Sheng; Peng, Hai Yan; Xue, Zhi Gang; Xie, Xiao Lin; Mai, Yiu-Wing

    2017-09-04

    Composite polymeric and ionic liquid (IL) electrolytes are some of the most promising electrolyte systems for safer battery technology. Although much effort has been directed towards enhancing the transport properties of polymer electrolytes (PEs) through nanoscopic modification by incorporating nano-fillers, it is still difficult to construct ideal ion conducting networks. Here, a novel class of three-dimensional self-assembled polymeric ionic liquid (PIL)-functionalized cellulose nano-crystals (CNC) confining ILs in surface-grafted PIL polymer chains, able to form colloidal crystal polymer electrolytes (CCPE), is reported. The high-strength CNC nano-fibers, decorated with PIL polymer chains, can spontaneously form three-dimensional interpenetrating nano-network scaffolds capable of supporting electrolytes with continuously connected ion conducting networks with IL being concentrated in conducting domains. These new CCPE have exceptional ionic conductivities, low activation energies (close to bulk IL electrolyte with dissolved Li salt), high Li + transport numbers, low interface resistances and improved interface compatibilities. Furthermore, the CCPE displays good electrochemical properties and a good battery performance. This approach offers a route to leak-free, non-flammable and high ionic conductivity solid-state PE in energy conversion devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Ionic Liquids in Electro-active Devices (ILED)

    DTIC Science & Technology

    2013-12-12

    Polyesters: Structure-Property Relationships in Thermal Behavior, Ionic Conductivity , and Morphology , Advanced Functional Materials, (01 2010...and Ionic Conductivities , Macromolecular Chemistry and Physics, (10 2011): . doi: M. Green, C. Schreiner, T. Long. Thermal , Rheological, and Ion...block giving thermal stability and ionic conductivity . Table 1 shows the molecular weight analysis of the triblock copolymers with increasing

  3. Frontiers of More than Moore in Bioelectronics and the Required Metrology Needs

    NASA Astrophysics Data System (ADS)

    Guiseppi-Elie, Anthony; Kotanen, Christian; Wilson, A. Nolan

    2011-11-01

    Silicon's intersection with biology is a premise inherent in Moore's prediction. Distinct from biologically inspired molecular logic and storage devices (more Moore) are the integration of solid state electronic devices with the soft condensed state of the body (more than Moore). Developments in biomolecular recognition events per sq. cm parallel those of Moore's Law. However, challenges continue in the area of "More than Moore". Two grand challenge problems must be addressed—the biocompatibility of synthetic materials with the myriad of tissue types within the human body and the interfacing of solid state micro- and nano-electronic devices with the electronics of biological systems. Electroconductive hydrogels have been developed as soft, condensed, biomimetic but otherwise inherently electronically conductive materials to address the challenge of interfacing solid state devices with the electronics of the body, which is predominantly ionic. Nano-templated interfaces via the oriented immobilization of single walled carbon nanotubes (SWCNTs) onto metallic electrodes have engendered reagentless, direct electron transfer between biological redox enzymes and solid state electrodes. In addressing these challenges, metrology needs and opportunities are found in such widely diverse areas as single molecule counting and addressing, sustainable power requirements such as the development of implantable biofuel cells for the deployment of implantable biochips, and new manufacturing paradigms to address plura-biology needs on solid state devices.

  4. Performance of carbon-carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes

    NASA Astrophysics Data System (ADS)

    Lewandowski, Andrzej; Olejniczak, Angelika; Galinski, Maciej; Stepniak, Izabela

    Properties of capacitors working with the same carbon electrodes (activated carbon cloth) and three types of electrolytes: aqueous, organic and ionic liquids were compared. Capacitors filled with ionic liquids worked at a potential difference of 3.5 V, their solutions in AN and PC were charged up to the potential difference of 3 V, classical organic systems to 2.5 V and aqueous to 1 V. Cyclic voltammetry, galvanostatic charging/discharging and impedance spectroscopy were used to characterize these capacitors. The highest specific energy was recorded for the device working with ionic liquids, while the highest power is characteristic for the device filled with aqueous H 2SO 4 electrolyte. Aqueous electrolytes led to energy density an order of magnitude lower in comparison to that characteristic of ionic liquids.

  5. High ionic conductivity P(VDF-TrFE)/PEO blended polymer electrolytes for solid electrochromic devices.

    PubMed

    Nguyen, Chien A; Xiong, Shanxin; Ma, Jan; Lu, Xuehong; Lee, Pooi See

    2011-08-07

    Solid polymer electrolytes with excellent ionic conductivity (above 10(-4) S cm(-1)), which result in high optical modulation for solid electrochromic (EC) devices are presented. The combination of a polar host matrix poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE) and a solid plasticized of a low molecular weight poly(ethylene oxide) (PEO) (M(w)≤ 20,000) blended polymer electrolyte serves to enhance both the dissolution of lithium salt and the ionic transport. Calorimetric measurement shows a reduced crystallization due to a better intermixing of the polymers with small molecular weight PEO. Vibrational spectroscopy identifies the presence of free ions and ion pairs in the electrolytes with PEO of M(w)≤ 8000. The ionic dissolution is improved using PEO as a plasticizer when compared to liquid propylene carbonate, evidently shown in the transference number analysis. Ionic transport follows the Arrhenius equation with a low activation energy (0.16-0.2 eV), leading to high ionic conductivities. Solid electrochromic devices fabricated with the blended P(VDF-TrFE)/PEO electrolytes and polyaniline show good spectroelectrochemical performance in the visible (300-800 nm) and near-infrared (0.9-2.4 μm) regions with a modulation up to 60% and fast switching speed of below 20 seconds. The successful introduction of the solid polymer electrolytes with its best harnessed qualities helps to expedite the application of various electrochemical devices. This journal is © the Owner Societies 2011

  6. Effect of nitrogen-accommodation ability of electrodes in SiNx-based resistive switching devices

    NASA Astrophysics Data System (ADS)

    Yang, Mei; Wang, Hong; Ma, Xiaohua; Gao, Haixia; Wang, Bin

    2017-12-01

    Nitrides could create opportunities of tuning resistive-switching (RS) characteristics due to their different electrical properties and ionic chemistry with oxides. Here, we reported on the effect of nitrogen-accommodation ability of electrodes in SiNx-based RS devices. The Ti/SiNx/Pt devices show a self-compliance bipolar RS with excellent reliability. The W/SiNx/Pt devices provide an unstable RS and fall to an intermediate resistance state (IRS) after a set process. The low resistance states of the Ti/SiNx/Pt devices obey Ohmic conduction and Frenkel-Poole emission from a conductive channel. The IRS of the W/SiNx/Pt devices conforms to Schottky emission and Fowler-Nordheim tunneling from a conductive channel/insulator/electrode structure. A nitrogen-ion-based model is proposed to explain the experimental results. According to the model, the nitrogen-accommodation ability of the electrodes dominates the nitrogen-reservoir size and the nitrogen-ion migration at the metal/SiNx interface, modulating the RS characteristics of the SiNx memory devices.

  7. Visualization of TlBr ionic transport mechanism by the Accelerated Device Degradation technique

    NASA Astrophysics Data System (ADS)

    Datta, Amlan; Becla, Piotr; Motakef, Shariar

    2015-06-01

    Thallium Bromide (TlBr) is a promising gamma radiation semiconductor detector material. However, it is an ionic semiconductor and suffers from polarization. As a result, TlBr devices degrade rapidly at room temperature. Polarization is associated with the flow of ionic current in the crystal under electrical bias, leading to the accumulation of charged ions at the device's electrical contacts. We report a fast and reliable direct characterization technique to identify the effects of various growth and post-growth process modifications on the polarization process. The Accelerated Device Degradation (ADD) characterization technique allows direct observation of nucleation and propagation of ionic transport channels within the TlBr crystals under applied bias. These channels are observed to be initiated both directly under the electrode as well as away from it. The propagation direction is always towards the anode indicating that Br- is the mobile diffusing species within the defect channels. The effective migration energy of the Br- ions was calculated to be 0.33±0.03 eV, which is consistent with other theoretical and experimental results.

  8. Composite electrode/electrolyte structure

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2004-01-27

    Provided is an electrode fabricated from highly electronically conductive materials such as metals, metal alloys, or electronically conductive ceramics. The electronic conductivity of the electrode substrate is maximized. Onto this electrode in the green state, a green ionic (e.g., electrolyte) film is deposited and the assembly is co-fired at a temperature suitable to fully densify the film while the substrate retains porosity. Subsequently, a catalytic material is added to the electrode structure by infiltration of a metal salt and subsequent low temperature firing. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in ionic (electrochemical) devices such as fuel cells and electrolytic gas separation systems.

  9. Mixed Ionic Liquid Improves Electrolyte Dynamics in Supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osti, Naresh C.; Gallegos, Alejandro; Dyatkin, Boris

    Well-tailored mixtures of distinct ionic liquids can act as optimal electrolytes that extend the operating electrochemical window and improve charge storage density in supercapacitors. Here, we explore two room-temperature ionic liquids, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EmimTFSI) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EmimBF 4). We study their electric double-layer behavior in the neat state and as binary mixtures on the external surfaces of onion-like carbon electrodes using quasielastic neutron scattering (QENS) and classical density functional theory techniques. Computational results reveal that a mixture with 4:1 EmimTFSI/EmimBF 4 volume ratio displaces the larger [TFSI –] anions with smaller [BF 4 –] ions, leading to an excessmore » adsorption of [Emim +] cations near the electrode surface. These findings are corroborated by the manifestation of nonuniform ion diffusivity change, complementing the description of structural modifications with changing composition, from QENS measurements. In conclusion, molecular-level understanding of ion packing near electrodes provides insight for design of ionic liquid formulations that enhance the performance of electrochemical energy storage devices.« less

  10. Mixed Ionic Liquid Improves Electrolyte Dynamics in Supercapacitors

    DOE PAGES

    Osti, Naresh C.; Gallegos, Alejandro; Dyatkin, Boris; ...

    2018-04-19

    Well-tailored mixtures of distinct ionic liquids can act as optimal electrolytes that extend the operating electrochemical window and improve charge storage density in supercapacitors. Here, we explore two room-temperature ionic liquids, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EmimTFSI) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EmimBF 4). We study their electric double-layer behavior in the neat state and as binary mixtures on the external surfaces of onion-like carbon electrodes using quasielastic neutron scattering (QENS) and classical density functional theory techniques. Computational results reveal that a mixture with 4:1 EmimTFSI/EmimBF 4 volume ratio displaces the larger [TFSI –] anions with smaller [BF 4 –] ions, leading to an excessmore » adsorption of [Emim +] cations near the electrode surface. These findings are corroborated by the manifestation of nonuniform ion diffusivity change, complementing the description of structural modifications with changing composition, from QENS measurements. In conclusion, molecular-level understanding of ion packing near electrodes provides insight for design of ionic liquid formulations that enhance the performance of electrochemical energy storage devices.« less

  11. A Molecular Electronic Transducer based Low-Frequency Accelerometer with Electrolyte Droplet Sensing Body

    NASA Astrophysics Data System (ADS)

    Liang, Mengbing

    "Sensor Decade" has been labeled on the first decade of the 21st century. Similar to the revolution of micro-computer in 1980s, sensor R&D developed rapidly during the past 20 years. Hard workings were mainly made to minimize the size of devices with optimal the performance. Efforts to develop the small size devices are mainly concentrated around Micro-electro-mechanical-system (MEMS) technology. MEMS accelerometers are widely published and used in consumer electronics, such as smart phones, gaming consoles, anti-shake camera and vibration detectors. This study represents liquid-state low frequency micro-accelerometer based on molecular electronic transducer (MET), in which inertial mass is not the only but also the conversion of mechanical movement to electric current signal is the main utilization of the ionic liquid. With silicon-based planar micro-fabrication, the device uses a sub-micron liter electrolyte droplet sealed in oil as the sensing body and a MET electrode arrangement which is the anode-cathode-cathode-anode (ACCA) in parallel as the read-out sensing part. In order to sensing the movement of ionic liquid, an imposed electric potential was applied between the anode and the cathode. The electrode reaction, I3-- + 2e-- ↔ 3I --, occurs around the cathode which is reverse at the anodes. Obviously, the current magnitude varies with the concentration of ionic liquid, which will be effected by the movement of liquid droplet as the inertial mass. With such structure, the promising performance of the MET device design is to achieve 10.8 V/G (G=9.81 m/s2) sensitivity at 20 Hz with the bandwidth from 1 Hz to 50 Hz, and a low noise floor of 100 microg/sqrt(Hz) at 20 Hz.

  12. Graphene-ionic liquid composites

    DOEpatents

    Aksay, Ilhan A.; Korkut, Sibel; Pope, Michael; Punckt, Christian

    2016-11-01

    Method of making a graphene-ionic liquid composite. The composite can be used to make elec-trodes for energy storage devices, such as batteries and supercapacitors. Dis-closed and claimed herein is method of making a graphene-ionic liquid com-posite, comprising combining a graphene source with at least one ionic liquid and heating the combination at a temperature of at least about 130 .degree. C.

  13. Ionic Gel Modulation of RKKY Interactions in Synthetic Anti-Ferromagnetic Nanostructures for Low Power Wearable Spintronic Devices.

    PubMed

    Yang, Qu; Zhou, Ziyao; Wang, Liqian; Zhang, Hongjia; Cheng, Yuxin; Hu, Zhongqiang; Peng, Bin; Liu, Ming

    2018-05-01

    To meet the demand of developing compatible and energy-efficient flexible spintronics, voltage manipulation of magnetism on soft substrates is in demand. Here, a voltage tunable flexible field-effect transistor structure by ionic gel (IG) gating in perpendicular synthetic anti-ferromagnetic nanostructure is demonstrated. As a result, the interlayer Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction can be tuned electrically at room temperature. With a circuit gating voltage, anti-ferromagnetic (AFM) ordering is enhanced or converted into an AFM-ferromagnetic (FM) intermediate state, accompanying with the dynamic domain switching. This IG gating process can be repeated stably at different curvatures, confirming an excellent mechanical property. The IG-induced modification of interlayer exchange coupling is related to the change of Fermi level aroused by the disturbance of itinerant electrons. The voltage modulation of RKKY interaction with excellent flexibility proposes an application potential for wearable spintronic devices with energy efficiency and ultralow operation voltage. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Guoqiang; Wu, Feng; Zhan, Chun

    The development of safe, stable, and long-life Li-ion batteries is being intensively pursued to enable the electrification of transportation and intelligent grid applications. Here, we report a new solid-state Li-ion battery technology, using a solid nanocomposite electrolyte composed of porous silica matrices with in situ immobilizing Li+ conducting ionic liquid, anode material of MCMB, and cathode material of LiCoO 2, LiNi 1/3Co 1/3Mn 1/3O 2, or LiFePO 4. An injection printing method is used for the electrode/electrolyte preparation. Solid nanocomposite electrolytes exhibit superior performance to the conventional organic electrolytes with regard to safety and cycle-life. They also have a transparentmore » glassy structure with high ionic conductivity and good mechanical strength. Solid-state full cells tested with the various cathodes exhibited high specific capacities, long cycling stability, and excellent high temperature performance. This solid-state battery technology will provide new avenues for the rational engineering of advanced Li-ion batteries and other electrochemical devices.« less

  15. Signal and Noise in FET-Nanopore Devices.

    PubMed

    Parkin, William M; Drndić, Marija

    2018-02-23

    The combination of a nanopore with a local field-effect transistor (FET-nanopore), like a nanoribbon, nanotube, or nanowire, in order to sense single molecules translocating through the pore is promising for DNA sequencing at megahertz bandwidths. Previously, it was experimentally determined that the detection mechanism was due to local potential fluctuations that arise when an analyte enters a nanopore and constricts ion flow through it, rather than the theoretically proposed mechanism of direct charge coupling between the DNA and nanowire. However, there has been little discussion on the experimentally observed detection mechanism and its relation to the operation of real devices. We model the intrinsic signal and noise in such an FET-nanopore device and compare the results to the ionic current signal. The physical dimensions of DNA molecules limit the change in gate voltage on the FET to below 40 mV. We discuss the low-frequency flicker noise (<10 kHz), medium-frequency thermal noise (<100 kHz), and high-frequency capacitive noise (>100 kHz) in FET-nanopore devices. At bandwidths dominated by thermal noise, the signal-to-noise ratio in FET-nanopore devices is lower than in the ionic current signal. At high frequencies, where noise due to parasitic capacitances in the amplifier and chip is the dominant source of noise in ionic current measurements, high-transconductance FET-nanopore devices can outperform ionic current measurements.

  16. Design and synthesis of the superionic conductor Na10SnP2S12

    NASA Astrophysics Data System (ADS)

    Richards, William D.; Tsujimura, Tomoyuki; Miara, Lincoln J.; Wang, Yan; Kim, Jae Chul; Ong, Shyue Ping; Uechi, Ichiro; Suzuki, Naoki; Ceder, Gerbrand

    2016-03-01

    Sodium-ion batteries are emerging as candidates for large-scale energy storage due to their low cost and the wide variety of cathode materials available. As battery size and adoption in critical applications increases, safety concerns are resurfacing due to the inherent flammability of organic electrolytes currently in use in both lithium and sodium battery chemistries. Development of solid-state batteries with ionic electrolytes eliminates this concern, while also allowing novel device architectures and potentially improving cycle life. Here we report the computation-assisted discovery and synthesis of a high-performance solid-state electrolyte material: Na10SnP2S12, with room temperature ionic conductivity of 0.4 mS cm-1 rivalling the conductivity of the best sodium sulfide solid electrolytes to date. We also computationally investigate the variants of this compound where tin is substituted by germanium or silicon and find that the latter may achieve even higher conductivity.

  17. Ionically conducting PVA-LiClO4 gel electrolyte for high performance flexible solid state supercapacitors.

    PubMed

    Chodankar, Nilesh R; Dubal, Deepak P; Lokhande, Abhishek C; Lokhande, Chandrakant D

    2015-12-15

    The synthesis of polymer gel electrolyte having high ionic conductivity, excellent compatibility with active electrode material, mechanical tractability and long life is crucial to obtain majestic electrochemical performance for flexible solid state supercapacitors (FSS-SCs). Our present work describes effect of different polymers gel electrolytes on electrochemical properties of MnO2 based FSS-SCs device. It is revealed that, MnO2-FSS-SCs with polyvinyl alcohol (PVA)-Lithium perchlorate (LiClO4) gel electrolyte demonstrate excellent electrochemical features such as maximum operating potential window (1.2V), specific capacitance of 112Fg(-1) and energy density of 15Whkg(-1) with extended cycling stability up to 2500CV cycles. Moreover, the calendar life suggests negligible decrease in the electrochemical performance of MnO2-FSS-SCs after 20days. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Design and synthesis of the superionic conductor Na10SnP2S12.

    PubMed

    Richards, William D; Tsujimura, Tomoyuki; Miara, Lincoln J; Wang, Yan; Kim, Jae Chul; Ong, Shyue Ping; Uechi, Ichiro; Suzuki, Naoki; Ceder, Gerbrand

    2016-03-17

    Sodium-ion batteries are emerging as candidates for large-scale energy storage due to their low cost and the wide variety of cathode materials available. As battery size and adoption in critical applications increases, safety concerns are resurfacing due to the inherent flammability of organic electrolytes currently in use in both lithium and sodium battery chemistries. Development of solid-state batteries with ionic electrolytes eliminates this concern, while also allowing novel device architectures and potentially improving cycle life. Here we report the computation-assisted discovery and synthesis of a high-performance solid-state electrolyte material: Na10SnP2S12, with room temperature ionic conductivity of 0.4 mS cm(-1) rivalling the conductivity of the best sodium sulfide solid electrolytes to date. We also computationally investigate the variants of this compound where tin is substituted by germanium or silicon and find that the latter may achieve even higher conductivity.

  19. Conductance valve and pressure-to-conductance transducer method and apparatus

    DOEpatents

    Schoeniger, Joseph S.; Cummings, Eric B.; Brennan, James S.

    2005-01-18

    A device for interrupting or throttling undesired ionic transport through a fluid network is disclosed. The device acts as a fluid valve by reversibly generating a fixed "bubble" in the conducting solvent solution carried by the network. The device comprises a porous hydrophobic structure filling a portion of a connecting channel within the network and optionally incorporates flow restrictor elements at either end of the porous structure that function as pressure isolation barriers, and a fluid reservoir connected to the region of the channel containing the porous structure. Also included is a pressure pump connected to the fluid reservoir. The device operates by causing the pump to vary the hydraulic pressure to a quantity of solvent solution held within the reservoir and porous structure. At high pressures, most or all of the pores of the structure are filled with conducting liquid so the ionic conductance is high. At lower pressures, only a fraction of the pores are filled with liquid, so ionic conductivity is lower. Below a threshold pressure, the porous structure contains only vapor, so there is no liquid conduction path. The device therefore effectively throttles ionic transport through the porous structure and acts as a "conductance valve" or "pressure-to-conductance" transducer within the network.

  20. Field enhanced charge carrier reconfiguration in electronic and ionic coupled dynamic polymer resistive memory.

    PubMed

    Zhao, Jun Hui; Thomson, Douglas J; Pilapil, Matt; Pillai, Rajesh G; Rahman, G M Aminur; Freund, Michael S

    2010-04-02

    Dynamic resistive memory devices based on a conjugated polymer composite (PPy(0)DBS(-)Li(+) (PPy: polypyrrole; DBS(-): dodecylbenzenesulfonate)), with field-driven ion migration, have been demonstrated. In this work the dynamics of these systems has been investigated and it has been concluded that increasing the applied field can dramatically increase the rate at which information can be 'written' into these devices. A conductance model using space charge limited current coupled with an electric field induced ion reconfiguration has been successfully utilized to interpret the experimentally observed transient conducting behaviors. The memory devices use the rising and falling transient current states for the storage of digital states. The magnitude of these transient currents is controlled by the magnitude and width of the write/read pulse. For the 500 nm length devices used in this work an increase in 'write' potential from 2.5 to 5.5 V decreased the time required to create a transient conductance state that can be converted into the digital signal by 50 times. This work suggests that the scaling of these devices will be favorable and that 'write' times for the conjugated polymer composite memory devices will decrease rapidly as ion driving fields increase with decreasing device size.

  1. Ionic liquids comprising heteraromatic anions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, William F.; Brennecke, Joan F.; Maginn, Edward J.

    2018-04-24

    Some embodiments described herein relate to ionic liquids comprising an anion of a heteraromatic compound such as optionally substituted pyrrolide, optionally substituted pyrazolide, optionally substituted indolide, optionally substituted phospholide, or optionally substituted imidazolide. Methods and devices for gas separation or gas absorption related to these ionic liquids are also described herein.

  2. Forming-free resistive switching characteristics of Ag/CeO2/Pt devices with a large memory window

    NASA Astrophysics Data System (ADS)

    Zheng, Hong; Kim, Hyung Jun; Yang, Paul; Park, Jong-Sung; Kim, Dong Wook; Lee, Hyun Ho; Kang, Chi Jung; Yoon, Tae-Sik

    2017-05-01

    Ag/CeO2(∼45 nm)/Pt devices exhibited forming-free bipolar resistive switching with a large memory window (low-resistance-state (LRS)/high-resistance-state (HRS) ratio >106) at a low switching voltage (<±1 ∼ 2 V) in voltage sweep condition. Also, they retained a large memory window (>104) at a pulse operation (±5 V, 50 μs). The high oxygen ionic conductivity of the CeO2 layer as well as the migration of silver facilitated the formation of filament for the transition to LRS at a low voltage without a high voltage forming operation. Also, a certain amount of defects in the CeO2 layer was required for stable HRS with space-charge-limited-conduction, which was confirmed comparing the devices with non-annealed and annealed CeO2 layers.

  3. Electrochromic optical switching device

    DOEpatents

    Lampert, C.M.; Visco, S.J.

    1992-08-25

    An electrochromic cell is disclosed which comprises an electrochromic layer, a polymerizable organo-sulfur layer which comprises the counter electrode of the structure, and an ionically conductive electronically insulating material which comprises the separator between the electrodes. In a preferred embodiment, both the separator and the organo-sulfur electrode (in both its charged and uncharged states) are transparent either to visible light or to the entire solar spectrum. An electrochromic device is disclosed which comprises such electrodes and separator encased in glass plates on the inner surface of each of which is formed a transparent electrically conductive film in respective electrical contact with the electrodes which facilitates formation of an external electrical connection or contact to the electrodes of the device to permit electrical connection of the device to an external potential source. 3 figs.

  4. Electrochromic optical switching device

    DOEpatents

    Lampert, Carl M.; Visco, Steven J.

    1992-01-01

    An electrochromic cell is disclosed which comprises an electrochromic layer, a polymerizable organo-sulfur layer which comprises the counter electrode of the structure, and an ionically conductive electronically insulating material which comprises the separator between the electrodes. In a preferred embodiment, both the separator and the organo-sulfur electrode (in both its charged and uncharged states) are transparent either to visible light or to the entire solar spectrum. An electrochromic device is disclosed which comprises such electrodes and separator encased in glass plates on the inner surface of each of which is formed a transparent electrically conductive film in respective electrical contact with the electrodes which facilitates formation of an external electrical connection or contact to the electrodes of the device to permit electrical connection of the device to an external potential source.

  5. Electrochromic switching in ionically self-assembled nanostructures

    NASA Astrophysics Data System (ADS)

    Janik, Jerzy A.; Heflin, James R.; Marciu, Daniela; Miller, Michael B.; Wang, Hong; Gibson, Harry W.; Davis, Rick M.

    2001-11-01

    Ionically self-assembled monolayers (ISAMs), fabricated by alternate adsorption of cationic and anionic components, yield exceptionally homogeneous thin films with sub- nanometer control of the thickness and relative special location of the component materials. Using organic electrochromic materials such as polyaniline, we report studies of electrochromic responses in ISAM films. Reversible changes in the absorption spectrum are observed with the application of voltages on the order of 1.0 V. Measurements are made using both liquid electrolytes and in all-solid state devices incorporating solid polyelectrolytes such as poly(2-acylamido 2-methyl propane sulfonic acid) (PAMPS). Due to the precise nanometer scale control of thickness and composition of the electrochromic composite system, switching times faster than 50 ms have been demonstrated.

  6. The Synthesis and Characterization of Ionic Liquids for Alkali-Metal Batteries and a Novel Electrolyte for Non-Humidified Fuel Cells

    NASA Astrophysics Data System (ADS)

    Tucker, Telpriore G.

    This thesis focused on physicochemical and electrochemical projects directed towards two electrolyte types: 1) class of ionic liquids serving as electrolytes in the catholyte for alkali-metal ion conduction in batteries and 2) gel membrane for proton conduction in fuel cells; where overall aims were encouraged by the U.S. Department of Energy. Large-scale, sodium-ion batteries are seen as global solutions to providing undisrupted electricity from sustainable, but power-fluctuating, energy production in the near future. Foreseen ideal advantages are lower cost without sacrifice of desired high-energy densities relative to present lithium-ion and lead-acid battery systems. Na/NiCl2 (ZEBRA) and Na/S battery chemistries, suffer from high operation temperature (>300ºC) and safety concerns following major fires consequent of fuel mixing after cell-separator rupturing. Initial interest was utilizing low-melting organic ionic liquid, [EMI+][AlCl 4-], with well-known molten salt, NaAlCl4, to create a low-to-moderate operating temperature version of ZEBRA batteries; which have been subject of prior sodium battery research spanning decades. Isothermal conductivities of these electrolytes revealed a fundamental kinetic problem arisen from "alkali cation-trapping effect" yet relived by heat-ramping >140ºC. Battery testing based on [EMI+][FeCl4 -] with NaAlCl4 functioned exceptional (range 150-180ºC) at an impressive energy efficiency >96%. Newly prepared inorganic ionic liquid, [PBr4+][Al2Br7-]:NaAl2Br 7, melted at 94ºC. NaAl2Br7 exhibited super-ionic conductivity 10-1.75 Scm-1 at 62ºC ensued by solid-state rotator phase transition. Also improved thermal stability when tested to 265ºC and less expensive chemical synthesis. [PBr4 +][Al2Br7-] demonstrated remarkable, ionic decoupling in the liquid-state due to incomplete bromide-ion transfer depicted in NMR measurements. Fuel cells are electrochemical devices generating electrical energy reacting hydrogen/oxygen gases producing water vapor. Principle advantage is high-energy efficiency of up to 70% in contrast to an internal combustion engine <40%. Nafion-based fuel cells are prone to carbon monoxide catalytic poisoning and polymer membrane degradation unless heavily hydrated under cell-pressurization. This novel "SiPOH" solid-electrolytic gel (originally liquid-state) operated in the fuel cell at 121ºC yielding current and power densities high as 731mAcm-2 and 345mWcm-2, respectively. Enhanced proton conduction significantly increased H2 fuel efficiency to 89.7% utilizing only 3.1mlmin-1 under dry, unpressurized testing conditions. All these energy devices aforementioned evidently have future promise; therefore in early developmental stages.

  7. Computational, Experimental and Engineering Foundations of Ionic Channels as Miniaturized Sensors, Devices and Systems

    DTIC Science & Technology

    2003-10-01

    made in an ensemble of channels of unknown orientation and number, preventing quantitative analysis . • Currents have been compared among continuum PNP...microfluidic) analysis of ion channels to obtain fundamental insights into the selectivity, conductivity, and sensitivity of ion channels [19], [6...1.1 Develop fast and efficient simulators for steady-state analysis of continuum model for extraction of I-V curves. 1.2 Create

  8. Measuring the state of charge of the electrolyte solution in a vanadium redox flow battery using a four-pole cell device

    NASA Astrophysics Data System (ADS)

    Ngamsai, Kittima; Arpornwichanop, Amornchai

    2015-12-01

    The decrease in the efficiency and capacity of a vanadium redox flow battery (VRB) caused by an electrolyte imbalance is an important impediment to its long-term operation. Knowing the state of charge (SOC) of an electrolyte solution can quantify the level of the electrolyte imbalance in the VRB. In this study, a four-pole cell device is devised and employed to predict the SOC. The proposed method directly measures the ionic resistance of the electrolyte solution and is sufficiently precise to be applied in real-time mode. Experimental studies on the effects of the operating current on the four-pole cell and the concentrations of vanadium and sulfuric acid in the electrolyte solution are carried out. The results show that the four-pole cell method can be utilized to measure the electrolyte SOC. The concentrations of vanadium and sulfuric acid in the electrolyte solution affect the ionic resistance of the solution. Regarding the capacity and efficiency of the VRB system, the results indicate that the electrical charge is determined from the concentration of vanadium and that the cell voltage depends on the concentration of sulfuric acid in the electrolyte solution. The decreased vanadium concentration and increased sulfuric acid concentration improves the cell voltage efficiency.

  9. Valence change detection in memristive oxide based heterostructure cells by hard X-ray photoelectron emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Kindsmüller, A.; Schmitz, C.; Wiemann, C.; Skaja, K.; Wouters, D. J.; Waser, R.; Schneider, C. M.; Dittmann, R.

    2018-04-01

    The switching mechanism of valence change resistive memory devices is widely accepted to be an ionic movement of oxygen vacancies resulting in a valence change of the metal cations. However, direct experimental proofs of valence changes in memristive devices are scarce. In this work, we have employed hard X-ray photoelectron emission microscopy (PEEM) to probe local valence changes in Pt/ZrOx/Ta memristive devices. The use of hard X-ray radiation increases the information depth, thus providing chemical information from buried layers. By extracting X-ray photoelectron spectra from different locations in the PEEM images, we show that zirconia in the active device area is reduced compared to a neighbouring region, confirming the valence change in the ZrOx film during electroforming. Furthermore, we succeeded in measuring the Ta 4f spectrum for two different resistance states on the same device. In both states, as well as outside the device region, the Ta electrode is composed of different suboxides without any metallic contribution, hinting to the formation of TaOx during the deposition of the Ta thin film. We observed a reduction of the Ta oxidation state in the low resistance state with respect to the high resistive state. This observation is contradictory to the established model, as the internal redistribution of oxygen between ZrOx and the Ta electrode during switching would lead to an oxidation of the Ta layer in the low resistance state. Instead, we have to conclude that the Ta electrode takes an active part in the switching process in our devices and that oxygen is released and reincorporated in the ZrOx/TaOx bilayer during switching. This is confirmed by the degradation of the high resistance state during endurance measurements under vacuum.

  10. Electromechanically generating electricity with a gapped-graphene electric generator

    NASA Astrophysics Data System (ADS)

    Dressen, Donald; Golovchenko, Jene

    2015-03-01

    We demonstrate the fabrication and operation of a gapped-graphene electric generator (G-GEG) device. The G-GEG generates electricity from the mechanical oscillation of droplets of electrolytes and ionic liquids. The spontaneous adsorption of ionic species on graphene charges opposing electric double-layer capacitors (EDLCs) on each half of the device. Modulating the area of contact between the droplet and graphene leads to adsorption/desorption of ions, effectively charging/discharging each EDLC and generating a current. The flow of current supports a potential difference across the G-GEG due to the device's internal impedance. Both the magnitude and polarity of the induced current and voltage show a strong dependence on the type of ionic species used, suggesting that certain ions interact more strongly with graphene than others. We find that a simple model circuit consisting of an AC current source in series with a resistor and a time-varying capacitor accurately predicts the device's dynamic behavior. Additionally, we discuss the effect of graphene's intrinsic quantum capacitance on the G-GEG's performance and speculate on the utility of the device in the context of energy harvesting.

  11. A Silica-Aerogel-Reinforced Composite Polymer Electrolyte with High Ionic Conductivity and High Modulus.

    PubMed

    Lin, Dingchang; Yuen, Pak Yan; Liu, Yayuan; Liu, Wei; Liu, Nian; Dauskardt, Reinhold H; Cui, Yi

    2018-06-25

    High-energy all-solid-state lithium (Li) batteries have great potential as next-generation energy-storage devices. Among all choices of electrolytes, polymer-based systems have attracted widespread attention due to their low density, low cost, and excellent processability. However, they are generally mechanically too weak to effectively suppress Li dendrites and have lower ionic conductivity for reasonable kinetics at ambient temperature. Herein, an ultrastrong reinforced composite polymer electrolyte (CPE) is successfully designed and fabricated by introducing a stiff mesoporous SiO 2 aerogel as the backbone for a polymer-based electrolyte. The interconnected SiO 2 aerogel not only performs as a strong backbone strengthening the whole composite, but also offers large and continuous surfaces for strong anion adsorption, which produces a highly conductive pathway across the composite. As a consequence, a high modulus of ≈0.43 GPa and high ionic conductivity of ≈0.6 mS cm -1 at 30 °C are simultaneously achieved. Furthermore, LiFePO 4 -Li full cells with good cyclability and rate capability at ambient temperature are obtained. Full cells with cathode capacity up to 2.1 mAh cm -2 are also demonstrated. The aerogel-reinforced CPE represents a new design principle for solid-state electrolytes and offers opportunities for future all-solid-state Li batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Innovative polymer nanocomposite electrolytes: nanoscale manipulation of ion channels by functionalized graphenes.

    PubMed

    Choi, Bong Gill; Hong, Jinkee; Park, Young Chul; Jung, Doo Hwan; Hong, Won Hi; Hammond, Paula T; Park, Hoseok

    2011-06-28

    The chemistry and structure of ion channels within the polymer electrolytes are of prime importance for studying the transport properties of electrolytes as well as for developing high-performance electrochemical devices. Despite intensive efforts on the synthesis of polymer electrolytes, few studies have demonstrated enhanced target ion conduction while suppressing unfavorable ion or mass transport because the undesirable transport occurs through an identical pathway. Herein, we report an innovative, chemical strategy for the synthesis of polymer electrolytes whose ion-conducting channels are physically and chemically modulated by the ionic (not electronic) conductive, functionalized graphenes and for a fundamental understanding of ion and mass transport occurring in nanoscale ionic clusters. The functionalized graphenes controlled the state of water by means of nanoscale manipulation of the physical geometry and chemical functionality of ionic channels. Furthermore, the confinement of bound water within the reorganized nanochannels of composite membranes was confirmed by the enhanced proton conductivity at high temperature and the low activation energy for ionic conduction through a Grotthus-type mechanism. The selectively facilitated transport behavior of composite membranes such as high proton conductivity and low methanol crossover was attributed to the confined bound water, resulting in high-performance fuel cells.

  13. Ionic Liquids in Lithium-Ion Batteries.

    PubMed

    Balducci, Andrea

    2017-04-01

    Lithium-ion batteries are among the most widespread energy storage devices in our society. In order to introduce these devices in new key applications such as transportation, however, their safety and their operative temperature range need to be significantly improved. These improvements can be obtained only by developing new electrolytes. Ionic liquids are presently considered among the most attractive electrolytes for the development of advanced and safer lithium-ion batteries. In this manuscript, the use of various types of ionic liquids, e.g. aprotic and protic, in lithium-ion batteries is considered. The advantages and the limits associated to the use of these innovative electrolytes are critically analysed.

  14. Mixtures of glyme and aprotic-protic ionic liquids as electrolytes for energy storage devices

    NASA Astrophysics Data System (ADS)

    Stettner, T.; Huang, P.; Goktas, M.; Adelhelm, P.; Balducci, A.

    2018-05-01

    Ionic liquids (ILs) have been proven to be promising electrolytes for electrochemical energy storage devices such as supercapacitors and lithium ion batteries. In the last years, due to deficiency in storage of lithium on earth, innovative systems, such as sodium-based devices, attracted considerable attention. IL-based electrolytes have been proposed also as electrolytes for these devices. Nevertheless, in the case of these systems, the advantages and limits of IL-based electrolytes need to be further investigated. In this work we report an investigation about the chemical-physical properties of mixtures containing bis(2-methoxyethyl)ether diglyme (2G), which is presently considered as one of the most interesting solvents for sodium-based devices, and the ionic liquids 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI) and 1-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PyrH4TFSI). The conductivities, viscosities, and densities of several mixtures of 2G and these ILs have been investigated. Furthermore, their impact on the electrochemical behaviour of activated carbon composite electrodes has been considered. The results of this investigation indicate that these mixtures are promising electrolytes for the realization of advanced sodium-based devices.

  15. Direct mapping of ion diffusion times on LiCoO2 surfaces with nanometer resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Senli; Jesse, Stephen; Kalnaus, Sergiy

    2011-01-01

    The strong coupling between the molar volume and mobile ion concentration in ionically-conductive solids is used for spatially-resolved studies of ionic transport on the polycrystalline LiCoO2 surface by time-resolved spectroscopy. Strong variability between ionic transport at the grain boundaries and within the grains is observed, and the relationship between relaxation and hysteresis loop formation is established. The use of the strain measurements allows ionic transport be probed on the nanoscale, and suggests enormous potential for probing ionic materials and devices.

  16. 'Soft' amplifier circuits based on field-effect ionic transistors.

    PubMed

    Boon, Niels; Olvera de la Cruz, Monica

    2015-06-28

    Soft materials can be used as the building blocks for electronic devices with extraordinary properties. We introduce a theoretical model for a field-effect transistor in which ions are the gated species instead of electrons. Our model incorporates readily-available soft materials, such as conductive porous membranes and polymer-electrolytes to represent a device that regulates ion currents and can be integrated as a component in larger circuits. By means of Nernst-Planck numerical simulations as well as an analytical description of the steady-state current we find that the responses of the system to various input voltages can be categorized into ohmic, sub-threshold, and active modes. This is fully analogous to what is known for the electronic field-effect transistor (FET). Pivotal FET properties such as the threshold voltage and the transconductance crucially depend on the half-cell redox potentials of the source and drain electrodes as well as on the polyelectrolyte charge density and the gate material work function. We confirm the analogy with the electronic FETs through numerical simulations of elementary amplifier circuits in which we successfully substitute the electronic transistor by an ionic transistor.

  17. Ion transport and softening in a polymerized ionic liquid

    DOE PAGES

    Kumar, Rajeev; Bocharova, Vera; Strelcov, Evgheni; ...

    2014-11-13

    Polymerized ionic liquids (PolyILs) are promising materials for various solid state electronic applications such as dye-sensitized solar cells, lithium batteries, actuators, field-effect transistors, light emitting electrochemical cells, and electrochromic devices. However, fundamental understanding of interconnection between ionic transport and mechanical properties in PolyILs is far from complete. In this paper, local charge transport and structural changes in films of a PolyIL are studied using an integrated experiment-theory based approach. Experimental data for the kinetics of charging and steady state current–voltage relations can be explained by taking into account the dissociation of ions under an applied electric field (known as themore » Wien effect). Onsager's theory of the Wien effect coupled with the Poisson–Nernst–Planck formalism for the charge transport is found to be in excellent agreement with the experimental results. The agreement between the theory and experiments allows us to predict structural properties of the PolyIL films. We have observed significant softening of the PolyIL films beyond certain threshold voltages and formation of holes under a scanning probe microscopy (SPM) tip, through which an electric field was applied. Finally, the observed softening is explained by the theory of depression in glass transition temperature resulting from enhanced dissociation of ions with an increase in applied electric field.« less

  18. Electrochromic device based on electrospun WO{sub 3} nanofibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dulgerbaki, Cigdem; Maslakci, Neslihan Nohut; Komur, Ali Ihsan

    2015-12-15

    Highlights: • WO{sub 3} electrochromic nanofibers were prepared by electrospinning technique. • WO{sub 3} nanofibers switched reversibly from transparent to blue color. • Electrochromic device was assembled using ionic liquid based gel electrolyte. • Significant optical modulation and excellent cycling stability were achieved for ECD. - Abstract: The tungsten oxide (WO{sub 3}) nanofibers were grown directly onto an ITO-coated glass via an electrospinning method for electrochromic applications. The electrochromic properties of WO{sub 3} nanofibers were investigated in the presence of different electrolytes including a series of ionic liquids and classic LiClO{sub 4}-PC system. A significant optical modulation of 20.82% atmore » 760 nm, reversible coloration with efficiency of 64.58 cm{sup 2}/C and excellent cycling stability were achieved for the nanofiber electrochromic device (ECD) with ionic liquid based gel electrolyte.« less

  19. Performance of Liquid Phase Exfoliated Graphene As Electrochemical Double Layer Capacitors Electrodes

    NASA Astrophysics Data System (ADS)

    Huffstutler, Jacob; Wasala, Milinda; Richie, Julianna; Winchester, Andrew; Ghosh, Sujoy; Kar, Swastik; Talapatra, Saikat

    2014-03-01

    We will present the results of our investigations of electrochemical double layer capacitors (EDLCs) or supercapacitors (SC) fabricated using liquid-phase exfoliated graphene. Several electrolytes, such as aqueous potassium hydroxide KOH (6M), ionic 1-Butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6], and ionic 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate[BMP][FAP] were used. These EDLC's show good performance compared to other carbon nanomaterials based EDLC's devices. We found that the liquid phase exfoliated graphene based devices possess specific capacitance values as high as 262 F/g, when used with ionic liquid electrolyte[BMP][FAP], with power densities (~ 454 W/kg) and energy densities (~ 0.38Wh/kg). Further, these devices indicated rapid charge transfer response even without the use of any binders or specially prepared current collectors. A detailed electrochemical impedance spectroscopy analysis in order to understand the phenomenon of charge storage in these materials will be presented.

  20. Design and synthesis of the superionic conductor Na10SnP2S12

    PubMed Central

    Richards, William D.; Tsujimura, Tomoyuki; Miara, Lincoln J.; Wang, Yan; Kim, Jae Chul; Ong, Shyue Ping; Uechi, Ichiro; Suzuki, Naoki; Ceder, Gerbrand

    2016-01-01

    Sodium-ion batteries are emerging as candidates for large-scale energy storage due to their low cost and the wide variety of cathode materials available. As battery size and adoption in critical applications increases, safety concerns are resurfacing due to the inherent flammability of organic electrolytes currently in use in both lithium and sodium battery chemistries. Development of solid-state batteries with ionic electrolytes eliminates this concern, while also allowing novel device architectures and potentially improving cycle life. Here we report the computation-assisted discovery and synthesis of a high-performance solid-state electrolyte material: Na10SnP2S12, with room temperature ionic conductivity of 0.4 mS cm−1 rivalling the conductivity of the best sodium sulfide solid electrolytes to date. We also computationally investigate the variants of this compound where tin is substituted by germanium or silicon and find that the latter may achieve even higher conductivity. PMID:26984102

  1. Rational material design for ultrafast rechargeable lithium-ion batteries.

    PubMed

    Tang, Yuxin; Zhang, Yanyan; Li, Wenlong; Ma, Bing; Chen, Xiaodong

    2015-10-07

    Rechargeable lithium-ion batteries (LIBs) are important electrochemical energy storage devices for consumer electronics and emerging electrical/hybrid vehicles. However, one of the formidable challenges is to develop ultrafast charging LIBs with the rate capability at least one order of magnitude (>10 C) higher than that of the currently commercialized LIBs. This tutorial review presents the state-of-the-art developments in ultrafast charging LIBs by the rational design of materials. First of all, fundamental electrochemistry and related ionic/electronic conduction theories identify that the rate capability of LIBs is kinetically limited by the sluggish solid-state diffusion process in electrode materials. Then, several aspects of the intrinsic materials, materials engineering and processing, and electrode materials architecture design towards maximizing both ionic and electronic conductivity in the electrode with a short diffusion length are deliberated. Finally, the future trends and perspectives for the ultrafast rechargeable LIBs are discussed. Continuous rapid progress in this area is essential and urgent to endow LIBs with ultrafast charging capability to meet huge demands in the near future.

  2. Durable and water-floatable ionic polymer actuator with hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes.

    PubMed

    Kim, Jaehwan; Jeon, Jin-Han; Kim, Hyun-Jun; Lim, Hyuneui; Oh, Il-Kwon

    2014-03-25

    Ionic polymer actuators driven by electrical stimuli have been widely investigated for use in practical applications such as bioinspired robots, sensors, and biomedical devices. However, conventional ionic polymer-metal composite actuators have a serious drawback of poor durability under long-term actuation in open air, mainly because of the leakage of the inner electrolyte and hydrated cations through cracks in the metallic electrodes. Here, we developed a highly durable and water-floatable ionic polymer artificial muscle by employing hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes (HLrGOP). The highly conductive, flexible, and cost-effective HLrGOP electrodes have asymmetrically smooth hydrophobic outer and rough inner surfaces, resulting in liquid-impermeable and water-floatable functionalities and strong bonding between an ionic polymer and the electrodes. More interestingly, the HLrGOP electrode, which has a unique functionality to prevent the leakage of the vaporized or liquid electrolyte and mobile ions during electrical stimuli, greatly contributes to an exceptionally durable ionic polymer-graphene composite actuator that is a prerequisite for practical applications in active biomedical devices, biomimetic robots, touch-feedback haptic systems, and flexible soft electronics.

  3. Durable electrooptic devices comprising ionic liquids

    DOEpatents

    Agrawal, Anoop; Cronin, John P.; Tonazzi, Juan C. L.; Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.

    2005-11-01

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF3SO3-), bis(trifluoromethylsulfonyl)imide ((CF3SO2)2N-), bis(perfluoroethylsulfonyl)imide ((CF3CF2SO2)2N-) and tris(trifluoromethylsulfonyl)methide ((CF3SO2)3C-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes.

  4. Microfludic Device for Creating Ionic Strength Gradients over DNA Microarrays for Efficient DNA Melting Studies and Assay Development

    PubMed Central

    Petersen, Jesper; Poulsen, Lena; Birgens, Henrik; Dufva, Martin

    2009-01-01

    The development of DNA microarray assays is hampered by two important aspects: processing of the microarrays is done under a single stringency condition, and characteristics such as melting temperature are difficult to predict for immobilized probes. A technical solution to these limitations is to use a thermal gradient and information from melting curves, for instance to score genotypes. However, application of temperature gradients normally requires complicated equipment, and the size of the arrays that can be investigated is restricted due to heat dissipation. Here we present a simple microfluidic device that creates a gradient comprising zones of defined ionic strength over a glass slide, in which each zone corresponds to a subarray. Using this device, we demonstrated that ionic strength gradients function in a similar fashion as corresponding thermal gradients in assay development. More specifically, we noted that (i) the two stringency modulators generated melting curves that could be compared, (ii) both led to increased assay robustness, and (iii) both were associated with difficulties in genotyping the same mutation. These findings demonstrate that ionic strength stringency buffers can be used instead of thermal gradients. Given the flexibility of design of ionic gradients, these can be created over all types of arrays, and encompass an attractive alternative to temperature gradients, avoiding curtailment of the size or spacing of subarrays on slides associated with temperature gradients. PMID:19277213

  5. Microfludic device for creating ionic strength gradients over DNA microarrays for efficient DNA melting studies and assay development.

    PubMed

    Petersen, Jesper; Poulsen, Lena; Birgens, Henrik; Dufva, Martin

    2009-01-01

    The development of DNA microarray assays is hampered by two important aspects: processing of the microarrays is done under a single stringency condition, and characteristics such as melting temperature are difficult to predict for immobilized probes. A technical solution to these limitations is to use a thermal gradient and information from melting curves, for instance to score genotypes. However, application of temperature gradients normally requires complicated equipment, and the size of the arrays that can be investigated is restricted due to heat dissipation. Here we present a simple microfluidic device that creates a gradient comprising zones of defined ionic strength over a glass slide, in which each zone corresponds to a subarray. Using this device, we demonstrated that ionic strength gradients function in a similar fashion as corresponding thermal gradients in assay development. More specifically, we noted that (i) the two stringency modulators generated melting curves that could be compared, (ii) both led to increased assay robustness, and (iii) both were associated with difficulties in genotyping the same mutation. These findings demonstrate that ionic strength stringency buffers can be used instead of thermal gradients. Given the flexibility of design of ionic gradients, these can be created over all types of arrays, and encompass an attractive alternative to temperature gradients, avoiding curtailment of the size or spacing of subarrays on slides associated with temperature gradients.

  6. Symmetric supercapacitor: Sulphurized graphene and ionic liquid.

    PubMed

    Shaikh, Jasmin S; Shaikh, Navajsharif S; Kharade, Rohini; Beknalkar, Sonali A; Patil, Jyoti V; Suryawanshi, Mahesh P; Kanjanaboos, Pongsakorn; Hong, Chang Kook; Kim, Jin Hyeok; Patil, Pramod S

    2018-10-01

    Symmetric supercapacitor is advanced over simple supercapacitor device due to their stability over a large potential window and high energy density. Graphene is a desired candidate for supercapacitor application since it has a high surface area, good electronic conductivity and high electro chemical stability. There is a pragmatic use of ionic liquid electrolyte for supercapacitor due to its stability over a large potential window, good ionic conductivity and eco-friendly nature. For high performance supercapacitor, the interaction between ionic liquid electrolyte and graphene are crucial for better charge transportation. In respect of this, a three-dimensional (3D) nanoporous honeycomb shaped sulfur embedded graphene (S-graphene) has been synthesized by simple chemical method. Here, the fabrication of high performance symmetric supercapacitor is done by using S-graphene as an electrode and [BMIM-PF 6 ] as an electrolyte. The particular architecture of S-graphene benefited to reduce the ion diffusion resistance, providing the large surface area for charge transportation and efficient charge storage. The S-graphene and ionic liquid-based symmetric supercapacitor device showed the large potential window of 3.2 V with high energy density 124 Wh kg -1 at 0.2 A g -1 constant applied current density. Furthermore, this device shows good cycling performance (stability) with a capacitive retention of 95% over 20,000 cycles at a higher current density of 2 A g -1 . Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Microscopic properties of ionic liquid/organic semiconductor interfaces revealed by molecular dynamics simulations.

    PubMed

    Yokota, Yasuyuki; Miyamoto, Hiroo; Imanishi, Akihito; Takeya, Jun; Inagaki, Kouji; Morikawa, Yoshitada; Fukui, Ken-Ichi

    2018-05-09

    Electric double-layer transistors based on ionic liquid/organic semiconductor interfaces have been extensively studied during the past decade because of their high carrier densities at low operation voltages. Microscopic structures and the dynamics of ionic liquids likely determine the device performance; however, knowledge of these is limited by a lack of appropriate experimental tools. In this study, we investigated ionic liquid/organic semiconductor interfaces using molecular dynamics to reveal the microscopic properties of ionic liquids. The organic semiconductors include pentacene, rubrene, fullerene, and 7,7,8,8-tetracyanoquinodimethane (TCNQ). While ionic liquids close to the substrate always form the specific layered structures, the surface properties of organic semiconductors drastically alter the ionic dynamics. Ionic liquids at the fullerene interface behave as a two-dimensional ionic crystal because of the energy gain derived from the favorable electrostatic interaction on the corrugated periodic substrate.

  8. Recent Advances in Fast Ion Conducting Materials and Devices - Proceedings of the 2nd Asian Conference on Solid State Ionics

    NASA Astrophysics Data System (ADS)

    Chowdari, B. V. R.; Liu, Qingguo; Chen, Liquan

    The Table of Contents for the book is as follows: * Preface * Invited Papers * Recent Trends in Solid State Ionics * Theoretical Aspects of Fast Ion Conduction in Solids * Chemical Bonding and Intercalation Processes in Framework Structures * Extra-Large Near-Electrode Regions and Diffusion Length on the Solid Electrolyte-Electrode Interface as Studied by Photo-EMF Method * Frequency Response of Glasses * XPS Studies on Ion Conducting Glasses * Characterization of New Ambient Temperature Lithium Polymer-Electrolyte * Recent Development of Polymer Electrolytes: Solid State Voltammetry in Polymer Electrolytes * Secondary Solid State Batteries: From Material Properties to Commercial Development * Silver Vanadium Oxide Bronze and its Applications for Electrochemical Devices * Study on β''-Alumina Solid Electrolyte and β Battery in SIC * Materials for Solid Oxide Fuel Cells * Processing for Super Superionic Ceramics * Hydrogen Production Using Oxide Ionic or Protonic Conductor * Ionically Conductive Sulfide-Based Lithium Glasses * Relation of Conductivity to Structure and Structural Relaxation in Ion-Conducting Glasses * The Mechanism of Ionic Conductivity in Glass * The Role of Synthesis and Structure in Solid State Ionics - Electrodes to Superconductors * Electrochromism in Spin-Coated Thin Films from Peroxo-Poly tungstate Solutions * Electrochemical Studies on High Tc Superconductors * Multivalence Fast Ionic Conductors - Montmorillonites * Contributed Papers * Volt-Ampere Characteristics and Interface Charge Transport in Solid Electrolytes * Internal Friction of Silver Chalcogenides * Thermal Expansion of Ionic and Superionic Solids * Improvement of PEO-LiCF3SO3 Complex Electrolytes Using Additives * Ionic Conductivity of Modified Poly (Methoxy Polyethylene Glycol Methacrylate) s-Lithium Salt Complexes * Solid Polymer Electrolytes of Crosslinked Polyethylene Glycol and Lithium Salts * Single Ionic Conductors Prepared by in Situ Polymerization of Methacrylic Acid Alkali Metal Salts in Polyethylene Oxide * Redox Behavior of Alkyl Viologens in Ion Conductive Polymer Solid * Ionic Conductivity of Interpenetrating Polymer Networks Containing LiClO4 * Electrochemical Behaviors of Porphyrins Incorporated into Solid Polymer Electrolytes * Lithium Ion Conducting Polymer Electrolytes * Electrochemical Synthesis of Polyaniline Thin Film * Electrochemical Aspect of Polyaniline Electrode in Aqueous Electrolyte * Mixed Cation Effect in Epoxy Resin - PEO-IPN Containing Perchlorate Salts * Conductivity, Raman and IR Studies on the Doped PEO-PPG Polymer Blends * Proton Conducting Polymeric Electrolytes from Poly (Ethyleneoxide) System * Surface Structure of Polymer Solid Ionic Conductors Based on Segmented Polyether Polyurethaneureas * Study on Addition Products of LiI and Diethylene Glycol etc. * Solid State Rechargeable Battery Using Paper Form Copper Ion Conductive Solid Electrolyte * Characterization of Electrode/Electrolyte Interfaces in Battery Li/PVAC-Li-Mont./Li1+xV3O8 by AC Impedance Method * Investigation on Reversibility of Vanadium Oxide Cathode Materials in Solid-State Battery * Preparation and Characterization of Silver Boromolybdate Solid State Batteries * The Electric Properties of the Trinary Cathode Material and its Application in Magnisium Solid State Cell * Electrical Properties and Phase Relation of Na2Mo0.1S0.9O4 Doped with Rare Earth Sulfate * New Electrochemical Probe for Rapid Determination of Silicon Concentration in Hot Metals * A New Theoretical EMF Expression for SOx(x = 2, 3) Sensors Based on Na2SO4 Solid Electrolyte * Evaluation of the Electrochemical SOx(x = 2, 3) Sensor with a Tubular Nasicon Electrolyte * The Response Time of a Modified Oxygen Sensor Using Zirconia Electrolyte * Preparation, Characteristics and Sintering Behavior of MgO-PSZ Powder * Reaction between La0.9MnO3 and Yttria Doped Zirconia * Development of the Extended-Life Oxygen Sensor of Caβ''-Al2O3 * Caβ''-Al2O3 Ultra-Low Oxygen Sensor * Measurement of Sulfur Concentration with Zirconia-Based Electrolyte Cell in Molten Iron * Influence of SO2 on the Conductivity of Calcia Stabilized Zirconia * Reactions between YSZ and La1-xCaxMnO3 as a Cathode for SOFC * Preparation and Electrical Properties of Lithium β''-Alumina * Influence of Lithia Content on Properties of β''-Alumina Ceramics * Electrical Conductivity of Solid Solutions of Na2SO4 with Na2SeO4 * Effect of Antagonist XO42- = MoO42- and WO42- Ion Substitution on the Electrical Conductivity of Li2SO4 : Li2CO3 Eutectic System * Study on the Electrical Properties and Structure of Multicrystal Materials Li5+xGe1-xCrxV3O12 * Preliminary Study on Synthesis of Silver Zirconium Silicophosphates by Sol - Gel Process * Sodium Ion Conduction in Iron(III) Exchanged Y Zeolite * Electrical Properties of V5O9+x (x = 0, 1) and CuxV5O9.1 * Electrical Properties of the Tetragonal ZrO2 Stabilized with CeO2, CeO2 + Gd2O3 * Study of Preparation and Ionic Conduction of Doped Barium Cerate Perovskite * Preparing Fine Alumina Powder by Homogeneous Precipitation Method for Fabricating β''-Al2O3 * Amorphous Lithium Ion Conductors in Li2S-SiS2-LiBO2 System * Mixed Alkali Effect of Glass Super Ionic Conductors * Electrical Property and Phase Separation, Crystallization Behavior of A Cu+-Conducting Glass * Investigation of Phase Separation and Crystallization for 0.4CuI-0.3 Cu2O-0.3P2O5 Glass by SEM and XRD * Study on the Lithium Solid Electrolytes of Li3N-LiX(X = F, Cl, Br, I)-B2O3 Ternary Systems * Synthesis and Characterization of the Li2O : P2O5 : WO3 Glasses * The Electrochromic Properties of Electrodeposited Ni-O Films in Nonaqueous Electrolytes * All Solid-State WO3-MnO2 Based Electrochromic Window * Electrochromism in Nickel Oxide Films * E S R of X-Irradiated Melt Quenched Li2SO4 * Mixed-Alkali Effect in the Li2O-Na2O-TeO2 Glass System * Electrical and Thermal Studies on Silver Tellurite Glasses * Late Entries (Invited Papers) * Proton Conducting Polymers * Light Scattering Studies on Superionic Conductor YSZ * Development of Thin Film Surface Modified Solid State Electrochemical Gas Sensors * Author Index * List of Participants

  9. Electrochemistry of poly(3,4-ethylenedioxythiophene)-polyaniline/ Prussian blue electrochromic devices containing an ionic liquid based gel electrolyte film.

    PubMed

    Deepa, Melepurath; Awadhia, Arvind; Bhandari, Shweta

    2009-07-21

    Electrochromic devices based on poly(3,4-ethylenedioxythiophene) (PEDOT) as the cathodic coloring electrode and polyaniline (PANI) or Prussian blue (PB) as the counter electrode containing a highly conductive, self-supporting, distensible and transparent polymer-gel electrolyte film encapsulating an ionic liquid, 1-butyl-1-methylpyrrolidiniumbis-(trifluoromethylsulfonyl)imide, have been fabricated. Polarization, charge transfer and diffusion processes control the electrochemistry of the functional electrodes during coloration and bleaching and these phenomena differ when PEDOT and PANI/PB were employed alternately as working electrodes. While the electrochemical impedance response shows good similitude for PEDOT and PANI electrodes, the responses of PEDOT and PB were significantly different in the PEDOT-PB device, especially during reduction of PB, wherein the overall amplitude of the impedance response is enormous. Large values of the coloration efficiency maxima of 281 cm2 C(-1) (lambda = 583 nm) and 274 cm2 C(-1) (lambda = 602 nm), achieved at -1.0 and -1.5 V for the PEDOT PANI and PEDOT-PB devices have been correlated to the particularly low magnitude of charge transfer resistance and high polarization capacitance operative at the PEDOT ionic liquid based electrolyte interface at these dc potentials, thus allowing facile ion-transport and consequently resulting in enhanced absorption modulation. Moderately fast switching kinetics and the ability of these devices to sustain about 2500 cycles of clear-to-dark and dark-to-clear without incurring major losses in the optical contrast, along with the ease of construction of these cells in terms of high scalability and reproducibility of the synthetic procedure for fabrication of the electrochromic films and the ionic liquid based gel electrolyte film, are indicators of the promise these devices hold for practical applications like electrochromic windows and displays.

  10. Controlling Ionic Transport for Device Design in Synthetic Nanopores

    NASA Astrophysics Data System (ADS)

    Kalman, Eric Boyd

    Polymer nanopores present a number of behaviors not seen in microscale systems, such as ion current rectification, ionic selectivity, size exclusion and potential dependent ion concentrations in and near the pore. The existence of these effects stems from the small size of nanopores with respect to the characteristic length scales of surface interactions at the interface between the nanopore surface and the solution within it. The large surface-to-volume ratio due to the nanoscale geometry of a nanopore, as well as similarity in scale between geometry and interaction demands the solution interact with the nanopore walls. As surfaces in solution almost always carry residual charge, these surface forces are primarily the electrostatic interactions between the charge groups on the pore surface and the ions in solution. These interactions may be used by the experimentalist to control ionic transport through synthetic nanopores, and use them as a template for the construction of devices. In this research, we present our work on creating a number of ionic analogs to seminal electronic devices, specifically diodes, and transistors, by controlling ionic transport through the electrostatic interactions between a single synthetic nanopore and ions. Control is achieved by "doping" the effective charge carrier concentration in specific regions of the nanopore through manipulation of the pore's surface charge. This manipulation occurs through two mechanisms: chemical modification of the surface charge and electrostatic manipulation of the local internal nanopore potential using a gate electrode. Additionally, the innate selectivity of the charged nanopores walls allows for the separation of charges in solution. This well-known effect, which spawns measureable quantities, the streaming potential and current, has been used to create nanoscale water desalination membranes. We attempt to create a device using membranes with large nanopore densities for the desalination of water which should theoretically outperform currently available devices, as through our previous work we have developed techniques allowing for transport manipulation not current accessible in traditional membrane motifs.

  11. A Molecular Dynamics-Quantum Mechanics Theoretical Study of DNA-Mediated Charge Transport in Hydrated Ionic Liquids.

    PubMed

    Meng, Zhenyu; Kubar, Tomas; Mu, Yuguang; Shao, Fangwei

    2018-05-08

    Charge transport (CT) through biomolecules is of high significance in the research fields of biology, nanotechnology, and molecular devices. Inspired by our previous work that showed the binding of ionic liquid (IL) facilitated charge transport in duplex DNA, in silico simulation is a useful means to understand the microscopic mechanism of the facilitation phenomenon. Here molecular dynamics simulations (MD) of duplex DNA in water and hydrated ionic liquids were employed to explore the helical parameters. Principal component analysis was further applied to capture the subtle conformational changes of helical DNA upon different environmental impacts. Sequentially, CT rates were calculated by a QM/MM simulation of the flickering resonance model based upon MD trajectories. Herein, MD simulation illustrated that the binding of ionic liquids can restrain dynamic conformation and lower the on-site energy of the DNA base. Confined movement among the adjacent base pairs was highly related to the increase of electronic coupling among base pairs, which may lead DNA to a CT facilitated state. Sequentially combining MD and QM/MM analysis, the rational correlations among the binding modes, the conformational changes, and CT rates illustrated the facilitation effects from hydrated IL on DNA CT and supported a conformational-gating mechanism.

  12. Feasibility of a Supporting-Salt-Free Nonaqueous Redox Flow Battery Utilizing Ionic Active Materials.

    PubMed

    Milshtein, Jarrod D; Fisher, Sydney L; Breault, Tanya M; Thompson, Levi T; Brushett, Fikile R

    2017-05-09

    Nonaqueous redox flow batteries (NAqRFBs) are promising devices for grid-scale energy storage, but high projected prices could limit commercial prospects. One route to reduced prices is to minimize or eliminate the expensive supporting salts typically employed in NAqRFBs. Herein, the feasibility of a flow cell operating in the absence of supporting salt by utilizing ionic active species is demonstrated. These ionic species have high conductivities in acetonitrile (12-19 mS cm -1 ) and cycle at 20 mA cm -2 with energy efficiencies (>75 %) comparable to those of state-of-the-art NAqRFBs employing high concentrations of supporting salt. A chemistry-agnostic techno-economic analysis highlights the possible cost savings of minimizing salt content in a NAqRFB. This work offers the first demonstration of a NAqRFB operating without supporting salt. The associated design principles can guide the development of future active species and could make NAqRFBs competitive with their aqueous counterparts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Fluidic nanotubes and devices

    DOEpatents

    Yang, Peidong [Berkeley, CA; He, Rongrui [El Cerrito, CA; Goldberger, Joshua [Berkeley, CA; Fan, Rong [El Cerrito, CA; Wu, Yiying [Albany, CA; Li, Deyu [Albany, CA; Majumdar, Arun [Orinda, CA

    2008-04-08

    Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches. A variety of applications are described, such as: nanopores, nanocapillary devices, nanoelectrophoretic, DNA sequence detectors, immunosensors, thermoelectric devices, photonic devices, nanoscale fluidic bioseparators, imaging devices, and so forth.

  14. Fluidic nanotubes and devices

    DOEpatents

    Yang, Peidong; He, Rongrui; Goldberger, Joshua; Fan, Rong; Wu, Yiying; Li, Deyu; Majumdar, Arun

    2010-01-10

    Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches. A variety of applications are described, such as: nanopores, nanocapillary devices, nanoelectrophoretic, DNA sequence detectors, immunosensors, thermoelectric devices, photonic devices, nanoscale fluidic bioseparators, imaging devices, and so forth.

  15. Formation of p-n-p junction with ionic liquid gate in graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Xin; Tang, Ning, E-mail: ntang@pku.edu.cn, E-mail: geweikun@mail.tsinghua.edu.cn, E-mail: bshen@pku.edu.cn; Duan, Junxi

    2014-04-07

    Ionic liquid gating is a technique which is much more efficient than solid gating to tune carrier density. To observe the electronic properties of such a highly doped graphene device, a top gate made of ionic liquid has been used. By sweeping both the top and back gate voltage, a p-n-p junction has been created. The mechanism of forming the p-n-p junction has been discussed. Tuning the carrier density by ionic liquid gate can be an efficient method to be used in flexible electronics.

  16. Synthesis of ionic liquids

    DOEpatents

    Dai, Sheng [Knoxville, TN; Luo, Huimin [Knoxville, TN

    2008-09-09

    Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic liqand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

  17. Synthesis of ionic liquids

    DOEpatents

    Dai, Sheng [Knoxville, TN; Luo, Huimin [Knoxville, TN

    2011-11-01

    Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic ligand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

  18. Durable electrooptic devices comprising ionic liquids

    DOEpatents

    Burrell, Anthony K [Los Alamos, NM; Agrawal, Anoop [Tucson, AZ; Cronin,; John, P [Tucson, AZ; Tonazzi, Juan C. L. [Tucson, AZ; Warner, Benjamin P [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM

    2009-12-15

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes. Some of the electrolyte solutions color to red when devices employing the solutions are powered, leading to red or neutral electrooptic devices.

  19. Improving the light-emitting properties of single-layered polyfluorene light-emitting devices by simple ionic liquid blending

    NASA Astrophysics Data System (ADS)

    Horike, Shohei; Nagaki, Hiroto; Misaki, Masahiro; Koshiba, Yasuko; Morimoto, Masahiro; Fukushima, Tatsuya; Ishida, Kenji

    2018-03-01

    This paper describes an evaluation of ionic liquids (ILs) as potential electrolytes for single-layered light-emitting devices with good emission performance. As optoelectronic devices continue to grow in abundance, high-performance light-emitting devices with a single emission layer are becoming increasingly important for low-cost production. We show that a simple technique of osmosing IL into the polymer layer can result in high luminous efficiency and good response times of single-layered light-emitting polymers, even without the additional stacking of charge carrier injection and transport layers. The IL contributions to the light-emission of the polymer are discussed from the perspectives of energy diagrams and of the electric double layers on the electrodes. Our findings enable a faster, cheaper, and lower-in-waste production of light-emitting devices.

  20. Durable Electrooptic Devices Comprising Ionic Liquids

    DOEpatents

    Burrell, Anthony K.; Agrawal, Anoop; Cronin, John P.; Tonazzi, Juan C. L.; Warner, Benjamin P.; McCleskey, T. Mark

    2008-11-11

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes. Some of the electrolyte solutions color to red when devices employing the solutions are powered, leading to red or neutral electrooptic devices.

  1. Tuning the metal-insulator crossover and magnetism in SrRuO 3 by ionic gating

    DOE PAGES

    Yi, Hee Taek; Gao, Bin; Xie, Wei; ...

    2014-10-13

    Reversible control of charge transport and magnetic properties without degradation is a key for device applications of transition metal oxides. Chemical doping during the growth of transition metal oxides can result in large changes in physical properties, but in most of the cases irreversibility is an inevitable constraint. We report a reversible control of charge transport, metal-insulator crossover and magnetism in field-effect devices based on ionically gated archetypal oxide system - SrRuO 3. In these thin-film devices, the metal-insulator crossover temperature and the onset of magnetoresistance can be continuously and reversibly tuned in the range 90–250 K and 70–100 K,more » respectively, by application of a small gate voltage. We infer that a reversible diffusion of oxygen ions in the oxide lattice dominates the response of these materials to the gate electric field. These findings provide critical insights into both the understanding of ionically gated oxides and the development of novel applications.« less

  2. Temperature-Dependent Electric Field Poling Effects in CH3NH3PbI3 Optoelectronic Devices.

    PubMed

    Zhang, Chuang; Sun, Dali; Liu, Xiaojie; Sheng, Chuan-Xiang; Vardeny, Zeev Valy

    2017-04-06

    Organo-lead halide perovskites show excellent optoelectronic properties; however, the unexpected inconsistency in forward-backward I-V characteristics remains a problem for fabricating solar panels. Here we have investigated the reasons behind this "hysteresis" by following the changes in photocurrent and photoluminescence under electric field poling in transverse CH 3 NH 3 PbI 3 -based devices from 300 to 10 K. We found that the hysteresis disappears at cryogenic temperatures, indicating the "freeze-out" of the ionic diffusion contribution. When the same device is cooled under continuous poling, the built-in electric field from ion accumulation brings significant photovoltaic effect even at 10 K. From the change of photoluminescence upon polling, we found a second dipole-related mechanism which enhances radiative recombination upon the alignment of the organic cations. The ionic origin of hysteresis was also verified by applying a magnetic field to affect the ion diffusion. These findings reveal the coexistence of ionic and dipole-related mechanisms for the hysteresis in hybrid perovskites.

  3. Tuning the metal-insulator crossover and magnetism in SrRuO₃ by ionic gating.

    PubMed

    Yi, Hee Taek; Gao, Bin; Xie, Wei; Cheong, Sang-Wook; Podzorov, Vitaly

    2014-10-13

    Reversible control of charge transport and magnetic properties without degradation is a key for device applications of transition metal oxides. Chemical doping during the growth of transition metal oxides can result in large changes in physical properties, but in most of the cases irreversibility is an inevitable constraint. Here we report a reversible control of charge transport, metal-insulator crossover and magnetism in field-effect devices based on ionically gated archetypal oxide system - SrRuO₃. In these thin-film devices, the metal-insulator crossover temperature and the onset of magnetoresistance can be continuously and reversibly tuned in the range 90-250 K and 70-100 K, respectively, by application of a small gate voltage. We infer that a reversible diffusion of oxygen ions in the oxide lattice dominates the response of these materials to the gate electric field. These findings provide critical insights into both the understanding of ionically gated oxides and the development of novel applications.

  4. Biocompatible ionic liquid-biopolymer electrolyte-enabled thin and compact magnesium-air batteries.

    PubMed

    Jia, Xiaoteng; Yang, Yang; Wang, Caiyun; Zhao, Chen; Vijayaraghavan, R; MacFarlane, Douglas R; Forsyth, Maria; Wallace, Gordon G

    2014-12-10

    With the surge of interest in miniaturized implanted medical devices (IMDs), implantable power sources with small dimensions and biocompatibility are in high demand. Implanted battery/supercapacitor devices are commonly packaged within a case that occupies a large volume, making miniaturization difficult. In this study, we demonstrate a polymer electrolyte-enabled biocompatible magnesium-air battery device with a total thickness of approximately 300 μm. It consists of a biocompatible polypyrrole-para(toluene sulfonic acid) cathode and a bioresorbable magnesium alloy anode. The biocompatible electrolyte used is made of choline nitrate (ionic liquid) embedded in a biopolymer, chitosan. This polymer electrolyte is mechanically robust and offers a high ionic conductivity of 8.9 × 10(-3) S cm(-1). The assembled battery delivers a maximum volumetric power density of 3.9 W L(-1), which is sufficient to drive some types of IMDs, such as cardiac pacemakers or biomonitoring systems. This miniaturized, biocompatible magnesium-air battery may pave the way to a future generation of implantable power sources.

  5. Soft shape-adaptive gripping device made from artificial muscle

    NASA Astrophysics Data System (ADS)

    Hamburg, E.; Vunder, V.; Johanson, U.; Kaasik, F.; Aabloo, A.

    2016-04-01

    We report on a multifunctional four-finger gripper for soft robotics, suitable for performing delicate manipulation tasks. The gripping device is comprised of separately driven gripping and lifting mechanisms, both made from a separate single piece of smart material - ionic capacitive laminate (ICL) also known as artificial muscle. Compared to other similar devices the relatively high force output of the ICL material allows one to construct a device able to grab and lift objects exceeding multiple times its own weight. Due to flexible design of ICL grips, the device is able to adapt the complex shapes of different objects and allows grasping single or multiple objects simultaneously without damage. The performance of the gripper is evaluated in two different configurations: a) the ultimate grasping strength of the gripping hand; and b) the maximum lifting force of the lifting actuator. The ICL is composed of three main layers: a porous membrane consisting of non-ionic polymer poly(vinylidene fluoride-co-hexafluoropropene) (PVdF-HFP), ionic liquid 1-ethyl-3-methylimidazolium trifluoromethane-sulfonate (EMITFS), and a reinforcing layer of woven fiberglass cloth. Both sides of the membrane are coated with a carbonaceous electrode. The electrodes are additionally covered with thin gold layers, serving as current collectors. Device made of this material operates silently, requires low driving voltage (<3 V), and is suitable for performing tasks in open air environment.

  6. Vapor-fed microfluidic hydrogen generator.

    PubMed

    Modestino, M A; Dumortier, M; Hosseini Hashemi, S M; Haussener, S; Moser, C; Psaltis, D

    2015-05-21

    Water-splitting devices that operate with humid air feeds are an attractive alternative for hydrogen production as the required water input can be obtained directly from ambient air. This article presents a novel proof-of-concept microfluidic platform that makes use of polymeric ion conductor (Nafion®) thin films to absorb water from air and performs the electrochemical water-splitting process. Modelling and experimental tools are used to demonstrate that these microstructured devices can achieve the delicate balance between water, gas, and ionic transport processes required for vapor-fed devices to operate continuously and at steady state, at current densities above 3 mA cm(-2). The results presented here show that factors such as the thickness of the Nafion films covering the electrodes, convection of air streams, and water content of the ionomer can significantly affect the device performance. The insights presented in this work provide important guidelines for the material requirements and device designs that can be used to create practical electrochemical hydrogen generators that work directly under ambient air.

  7. Spontaneous Ionic Polarization in Ammonia-Based Ionic Liquid [Spontaneous Ionic Polarization in Ionic Liquid

    DOE PAGES

    Kim, Ki-jeong; Yuan, Hongtao; Jang, Hoyoung; ...

    2018-05-24

    Ionic liquids and gels have attracted attention for a variety of energy storage applications, as well as for high performance electrolytes for batteries and super-capacitors. Although the electronic structure of ionic electrolytes in these applications is of practical importance for device design and improved performance, the understanding of the electronic structure of ionic liquids and gels is still at an early stage. Here we report soft x-ray spectroscopic measurements of the surface electronic structure of a representative ammonia-based ionic gel (DEME-TFSI with PSPMMA- PS copolymer). We observe that near the outermost surface, the area of the anion peak (1s Nmore » - core level in TFSI) is relatively larger than that of the cation peak (N + in DEME). This spontaneous ionic polarization of the electrolyte surface, which is absent for the pure ionic liquid without copolymer, can be directly tuned by the copolymer content in the ionic gel, and further results in a modulation in work function. Finally, these results shed new light on the control of surface electronic properties of ionic electrolytes, as well as a difference between their implementation in ionic liquids and gels.« less

  8. Spontaneous Ionic Polarization in Ammonia-Based Ionic Liquid [Spontaneous Ionic Polarization in Ionic Liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ki-jeong; Yuan, Hongtao; Jang, Hoyoung

    Ionic liquids and gels have attracted attention for a variety of energy storage applications, as well as for high performance electrolytes for batteries and super-capacitors. Although the electronic structure of ionic electrolytes in these applications is of practical importance for device design and improved performance, the understanding of the electronic structure of ionic liquids and gels is still at an early stage. Here we report soft x-ray spectroscopic measurements of the surface electronic structure of a representative ammonia-based ionic gel (DEME-TFSI with PSPMMA- PS copolymer). We observe that near the outermost surface, the area of the anion peak (1s Nmore » - core level in TFSI) is relatively larger than that of the cation peak (N + in DEME). This spontaneous ionic polarization of the electrolyte surface, which is absent for the pure ionic liquid without copolymer, can be directly tuned by the copolymer content in the ionic gel, and further results in a modulation in work function. Finally, these results shed new light on the control of surface electronic properties of ionic electrolytes, as well as a difference between their implementation in ionic liquids and gels.« less

  9. Toward Switchable Photovoltaic Effect via Tailoring Mobile Oxygen Vacancies in Perovskite Oxide Films.

    PubMed

    Ge, Chen; Jin, Kui-Juan; Zhang, Qing-Hua; Du, Jian-Yu; Gu, Lin; Guo, Hai-Zhong; Yang, Jing-Ting; Gu, Jun-Xing; He, Meng; Xing, Jie; Wang, Can; Lu, Hui-Bin; Yang, Guo-Zhen

    2016-12-21

    The defect chemistry of perovskite oxides involves the cause to most of their abundant functional properties, including interface magnetism, charge transport, ionic exchange, and catalytic activity. The possibility to achieve dynamic control over oxygen anion vacancies offers a unique opportunity for the development of appealing switchable devices, which at present are commonly based on ferroelectric materials. Herein, we report the discovery of a switchable photovoltaic effect, that the sign of the open voltage and the short circuit current can be reversed by inverting the polarity of the applied field, upon electrically tailoring the distribution of oxygen vacancies in perovskite oxide films. This phenomenon is demonstrated in lateral photovoltaic devices based on both ferroelectric BiFeO 3 and paraelectric SrTiO 3 films, under a reversed applied field whose magnitude is much smaller than the coercivity value of BiFeO 3 . The migration of oxygen vacancies was directly observed by employing an advanced annular bright-field scanning transmission electron microscopy technique with in situ biasing equipment. We conclude that the band bending induced by the motion of oxygen vacancies is the driving force for the reversible switching between two photovoltaic states. The present work can provide an active path for the design of novel switchable photovoltaic devices with a wide range of transition metal oxides in terms of the ionic degrees of freedom.

  10. Controllable Spatial Configuration on Cathode Interface for Enhanced Photovoltaic Performance and Device Stability.

    PubMed

    Li, Jiangsheng; Duan, Chenghao; Wang, Ning; Zhao, Chengjie; Han, Wei; Jiang, Li; Wang, Jizheng; Zhao, Yingjie; Huang, Changshui; Jiu, Tonggang

    2018-05-08

    The molecular structure of cathode interface modification materials can affect the surface morphology of the active layer and key electron transfer processes occurring at the interface of polymer solar cells in inverted structures mostly due to the change of molecular configuration. To investigate the effects of spatial configuration of the cathode interfacial modification layer on polymer solar cells device performances, we introduced two novel organic ionic salts (linear NS2 and three-dimensional (3D) NS4) combined with the ZnO film to fabricate highly efficient inverted solar cells. Both organic ionic salts successfully decreased the surface traps of the ZnO film and made its work function more compatible. Especially NS4 in three-dimensional configuration increased the electron mobility and extraction efficiency of the interfacial film, leading to a significant improvement of device performance. Power conversion efficiency (PCE) of 10.09% based on NS4 was achieved. Moreover, 3D interfacial modification could retain about 92% of its initial PCE over 160 days. It is proposed that 3D interfacial modification retards the element penetration-induced degradation without impeding the electron transfer from the active layer to the ZnO film, which significantly improves device stability. This indicates that inserting three-dimensional organic ionic salt is an efficient strategy to enhance device performance.

  11. Biomimetic heterogeneous multiple ion channels: a honeycomb structure composite film generated by breath figures

    NASA Astrophysics Data System (ADS)

    Han, Keyu; Heng, Liping; Wen, Liping; Jiang, Lei

    2016-06-01

    We design a novel type of artificial multiple nanochannel system with remarkable ion rectification behavior via a facile breath figure (BF) method. Notably, even though the charge polarity in the channel wall reverses under different pH values, this nanofluidic device displays the same ionic rectification direction. Compared with traditional nanochannels, this composite multiple ion channel device can be more easily obtained and has directional ionic rectification advantages, which can be applied in many fields.We design a novel type of artificial multiple nanochannel system with remarkable ion rectification behavior via a facile breath figure (BF) method. Notably, even though the charge polarity in the channel wall reverses under different pH values, this nanofluidic device displays the same ionic rectification direction. Compared with traditional nanochannels, this composite multiple ion channel device can be more easily obtained and has directional ionic rectification advantages, which can be applied in many fields. Electronic supplementary information (ESI) available: Pore size distribution histograms of the AAO substrates; SEM images of the side view of pure AAO membranes and top view of the flat PI/AAO composite film; the current-time curves of the flat composite film; the current-voltage characteristics curves of pure AAO nanochannels with different mean pore diameters; CA of the two surfaces of the composite PI/AAO film, the structural formula of the polymer polyimide resin (PI), and solid surface zeta potential. See DOI: 10.1039/c6nr02506d

  12. Melanin: spin behaviour and implications for bioelectronic devices (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Meredith, Paul; Sheliakina, Margarita; Mostert, Bernard

    2015-10-01

    The melanins are a broad class of pigmentary macromolecules found through nature that perform a wide range of functions including photo-protection [1]. The most common melanin - the brown, black pigment eumelanin, has been much studied because of its role in melanoma and also for its functional material properties [2]. Synthetic eumelanin has been shown to be photoconductive in the solid state and also possess a water content dependent dark conductivity [3]. It is now well established that these electrical properties arise from hybrid ionic-electronic behaviour, leading to the proposition that melanins could be model biocompatible systems for ion-to-electron transduction in bioelectronics. In my talk, I will discuss the basic science behind these bioelectronics properties - electrical and optical. In this context I will also describe recent electron paramagnetic spin studies which isolate the role of the various chemical moieties responsible for the hybrid ionic-electronic behaviour. I will also highlight preliminary results on prototype melanin-based bioelectronics devices and discuss possible architectures to realise elements such as solid-state switches and transducers. [1] "The physical and chemical properties of eumelanin", P. Meredith and T. Sarna, Pigment Cell Research, 19(6), pp572-594 (2006). [2] "Electronic and optoelectronic materials and devices inspired by nature", P Meredith, C.J. Bettinger, M. Irimia-Vladu, A.B. Mostert and P.E. Schwenn, Reports on Progress in Physics, 76, 034501 (2013). [3] "Is melanin a semiconductor: humidity induced self doping and the electrical conductivity of a biopolymer", A.B. Mostert, B.J. Powell, F.L. Pratt, G.R. Hanson, T. Sarna, I.R. Gentle and P. Meredith, Proceedings of the National Academy of Sciences of the USA, 109(23), 8943-8947 (2012).

  13. Solid-State Ionic Diodes Demonstrated in Conical Nanopores

    DOE PAGES

    Plett, Timothy S.; Cai, Wenjia; Le Thai, Mya; ...

    2017-02-27

    Ionic transport at the nanoscale features phenomena that are not observed in larger systems. Nonlinear current–voltage curves characteristic of ionic diodes as well as ion selectivity are examples of effects observed at the nanoscale. Many man-made nanopore systems are inspired by biological channels in a cell membrane, thus measurements are often performed in aqueous solutions. Consequently, much less is known about ionic transport in nonaqueous systems, especially in solid-state electrolytes. Here we show ionic transport through single pores filled with gel electrolyte of poly(methyl methacrylate) (PMMA) doped with LiClO 4 in propylene carbonate. The system has no liquid interface andmore » the ionic transport occurs through the porous gel structure. We demonstrate that a conically shaped nanopore filled with the gel rectifies the current and works as a solid-state ionic diode.« less

  14. Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes.

    PubMed

    Hsia, Ben; Marschewski, Julian; Wang, Shuang; In, Jung Bin; Carraro, Carlo; Poulikakos, Dimos; Grigoropoulos, Costas P; Maboudian, Roya

    2014-02-07

    We report a highly flexible planar micro-supercapacitor with interdigitated finger electrodes of vertically aligned carbon nanotubes (VACNTs). The planar electrode structures are patterned on a thin polycarbonate substrate with a facile, maskless laser-assisted dry transfer method. Sputtered Ni is used to reduce the in-plane resistance of the VACNT electrodes. An ionogel, an ionic liquid in a semi-solid matrix, is used as an electrolyte to form a fully solid-state device. We measure a specific capacitance of 430 μF cm(-2) for a scan rate of 0.1 V s(-1) and achieve rectangular cyclic voltammograms at high scan rates of up to 100 V s(-1). Minimal change in capacitance is observed under bending. Mechanical fatigue tests with more than 1000 cycles confirm the high flexibility and durability of the novel material combination chosen for this device. Our results indicate that this scalable and facile fabrication technique shows promise for application in integrated energy storage for all solid-state flexible microdevices.

  15. 21 CFR 862.1540 - Osmolality test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862... measure ionic and nonionic solute concentration in body fluids, such as serum and urine. Osmolality...

  16. 21 CFR 862.1540 - Osmolality test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862... measure ionic and nonionic solute concentration in body fluids, such as serum and urine. Osmolality...

  17. 21 CFR 862.1540 - Osmolality test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862... measure ionic and nonionic solute concentration in body fluids, such as serum and urine. Osmolality...

  18. 21 CFR 862.1540 - Osmolality test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862... measure ionic and nonionic solute concentration in body fluids, such as serum and urine. Osmolality...

  19. Thermoelectric Generators Based on Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Laux, Edith; Uhl, Stefanie; Jeandupeux, Laure; López, Pilar Pérez; Sanglard, Pauline; Vanoli, Ennio; Marti, Roger; Keppner, Herbert

    2018-03-01

    Looking at energy harvesting using body or waste heat for portable electronic or on-board devices, Ionic liquids are interesting candidates as thermoactive materials in thermoelectric generators (TEGs) because of their outstanding properties. Two different kinds of ionic liquid, with alkylammonium and choline as cations, were studied, whereby different anions and redox couples were combined. This study focussed on the intention to find non-hazardous and environmentally friendly ionic liquids for TEGs to be selected among the thousands that can potentially be used. Seebeck coefficients (SEs) as high as - 15 mV/K were measured, in a particular case for an electrode temperature difference of 20 K. The bottleneck of our TEG device is still the abundance of negative SE liquids matching the internal resistance with the existing positive SE-liquids at series connections. In this paper, we show further progress in finding increased negative SE liquids. For current extraction from the TEG, the ionic liquid must be blended with a redox couple, allowing carrier exchange in a cyclic process under a voltage which is incuced by the asymmetry of the generator in terms of hot and cold electrodes. In our study, two types of redox pairs were tested. It was observed that a high SE of an ionic liquid/redox blend is not a sufficient condition for high power output. It appears that more complex effects between the ionic liquid and the electrode determine the magnitude of the final current/power output. The physico-chemical understanding of such a TEG cell is not yet available.

  20. Thermoelectric Generators Based on Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Laux, Edith; Uhl, Stefanie; Jeandupeux, Laure; López, Pilar Pérez; Sanglard, Pauline; Vanoli, Ennio; Marti, Roger; Keppner, Herbert

    2018-06-01

    Looking at energy harvesting using body or waste heat for portable electronic or on-board devices, Ionic liquids are interesting candidates as thermoactive materials in thermoelectric generators (TEGs) because of their outstanding properties. Two different kinds of ionic liquid, with alkylammonium and choline as cations, were studied, whereby different anions and redox couples were combined. This study focussed on the intention to find non-hazardous and environmentally friendly ionic liquids for TEGs to be selected among the thousands that can potentially be used. Seebeck coefficients (SEs) as high as - 15 mV/K were measured, in a particular case for an electrode temperature difference of 20 K. The bottleneck of our TEG device is still the abundance of negative SE liquids matching the internal resistance with the existing positive SE-liquids at series connections. In this paper, we show further progress in finding increased negative SE liquids. For current extraction from the TEG, the ionic liquid must be blended with a redox couple, allowing carrier exchange in a cyclic process under a voltage which is incuced by the asymmetry of the generator in terms of hot and cold electrodes. In our study, two types of redox pairs were tested. It was observed that a high SE of an ionic liquid/redox blend is not a sufficient condition for high power output. It appears that more complex effects between the ionic liquid and the electrode determine the magnitude of the final current/power output. The physico-chemical understanding of such a TEG cell is not yet available.

  1. Comparative activity of silver based antimicrobial composites for urinary catheters.

    PubMed

    Thokala, Nikhil; Kealey, Carmel; Kennedy, James; Brady, Damien B; Farrell, Joseph

    2018-04-04

    Biomedical polymers are an integral component in a wide range of medical device designs due to their range of desirable properties. However, extensive use of polymer materials in medical devices have also been associated with an increasing incidence of patient infections. Efforts to address this issue have included the incorporation of antimicrobial additives for developing novel antimicrobial polymeric materials. Silver with its high toxicity towards bacteria, oligodynamic effect and good thermal stability has been employed as an additive for polymeric medical devices. In the present study, commercially available elemental (Biogate) and ionic (Ultrafresh 16) silver additives were incorporated into a Polyamide 11 (PA 11) matrix using a compression press. These polymer composites were evaluated for their antimicrobial and ion release properties. Elemental silver composites were determined to retain their antimicrobial properties for extended periods and actively release silver ions for 84 days; whereas the ionic silver composites lost their ion release activity and therefore antibacterial activity after 56 days. Bacterial log reduction units of 3.87 for ionic silver and 2.41 for elemental silver was identified within 24 hr, when tested in accordance with ISO 22196 test standard; indicating that ionic silver is more efficient for short-term applications compared to elemental silver. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. ESM of ionic and electrochemical phenomena on the nanoscale

    DOE PAGES

    Kalinin, Sergei V.; Kumar, Amit; Balke, Nina; ...

    2011-01-01

    Operation of energy storage and conversion devices is ultimately controlled by series of intertwined ionic and electronic transport processes and electrochemical reactions at surfaces and interfaces, strongly mediated by strain and mechanical processes. In a typical fuel cell, these include chemical species transport in porous cathode and anode materials, gas-solid electrochemical reactions at grains and triple-phase boundaries (TPBs), ionic and electronic flows in multicomponent electrodes, and chemical and electronic potential drops at internal interfaces in electrodes and electrolytes. Furthermore, all these phenomena are sensitively affected by the microstructure of materials from device level to the atomic scales. Similar spectrum ofmore » length scales and phenomena underpin operation of other energy systems including primary and secondary batteries, as well as hybrid systems such flow and metal-air/water batteries.« less

  3. Synthesis of Ionic Liquid Based Electrolytes, Assembly of Li-ion Batteries, and Measurements of Performance at High Temperature.

    PubMed

    Lin, Xinrong; Chapman Varela, Jennifer; Grinstaff, Mark W

    2016-12-20

    The chemical instability of the traditional electrolyte remains a safety issue in widely used energy storage devices such as Li-ion batteries. Li-ion batteries for use in devices operating at elevated temperatures require thermally stable and non-flammable electrolytes. Ionic liquids (ILs), which are non-flammable, non-volatile, thermally stable molten salts, are an ideal replacement for flammable and low boiling point organic solvent electrolytes currently used today. We herein describe the procedures to: 1) synthesize mono- and di-phosphonium ionic liquids paired with chloride or bis(trifluoromethane)sulfonimide (TFSI) anions; 2) measure the thermal properties and stability of these ionic liquids by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA); 3) measure the electrochemical properties of the ionic liquids by cyclic voltammetry (CV); 4) prepare electrolytes containing lithium bis(trifluoromethane)sulfonamide; 5) measure the conductivity of the electrolytes as a function of temperature; 6) assemble a coin cell battery with two of the electrolytes along with a Li metal anode and LiCoO2 cathode; and 7) evaluate battery performance at 100 °C. We additionally describe the challenges in execution as well as the insights gained from performing these experiments.

  4. Influences of porous reservoir Laplace pressure on emissions from passively fed ionic liquid electrospray sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Courtney, Daniel G., E-mail: dcourtney@alum.mit.edu; Shea, Herbert

    2015-09-07

    Passively fed ionic liquid electrospray sources are capable of efficiently emitting a variety of ion beams with promising applications to spacecraft propulsion and as focused ion beams. Practical devices will require integrated or coupled ionic liquid reservoirs; the effects of which have not been explored in detail. Porous reservoirs are a simple, scalable solution. However, we have shown that their pore size can dramatically alter the beam composition. Emitting the ionic liquid 1-ethyl-3-methylimidazolium bis(triflouromethylsulfonyl)amide, the same device was shown to yield either an ion or droplet dominated beam when using reservoirs of small or large pore size, respectively; with themore » latter having a mass flow in excess of 15 times larger than the former at negative polarity. Another source, emitting nearly purely ionic beams of 1-ethyl-3-methylimidazolium tetrafluoroborate, was similarly shown to emit a significant droplet population when coupled to reservoirs of large (>100 μm) pores; constituting a reduction in propulsive efficiency from greater than 70% to less than 30%. Furthermore, we show that reservoir selection can alter the voltage required to obtain and sustain emission, increasing with smaller pore size.« less

  5. Electrochemical and structural characterization of polymer gel electrolytes based on a PEO copolymer and an imidazolium-based ionic liquid for dye-sensitized solar cells.

    PubMed

    Freitas, Flavio S; de Freitas, Jilian N; Ito, Bruno I; De Paoli, Marco-A; Nogueira, Ana F

    2009-12-01

    Polymer electrolytes based on mixtures of poly(ethylene oxide-co-propylene oxide) and 1-methyl-3-propyl-imidazolium iodide (MPII) were investigated, aiming at their application in dye-sensitized solar cells (DSSC). The interactions between the copolymer and the ionic liquid were analyzed by infrared spectroscopy and (1)H NMR. The results show interactions between the ether oxygen in the polymer and the hydrogen in the imidazolium cations. The ionic conductivities, electrochemical behaviors, and thermal properties of the electrolytes containing different concentrations of MPII were investigated. The electrolyte containing 70 wt % MPII presented the highest ionic conductivity (2.4 x 10(-3) S cm(-1)) and a diffusion coefficient of 1.9 x 10(-7) cm(2) s(-1). The influence of LiI addition to the electrolytes containing different concentrations of MPII was also investigated. The DSSC assembled with the electrolyte containing 70 wt % MPII showed an efficiency of 3.84% at 100 mW cm(-2). The stability of the devices for a period of 30 days was also evaluated using sealed cells. The devices assembled with the electrolyte containing less ionic liquid showed to be more stable.

  6. An experimental study on PEO polymer electrolyte based all-solid-state supercapacitor

    NASA Astrophysics Data System (ADS)

    Yijing, Yin

    Supercapacitors are one of the most important electrochemical energy storage and conversion devices, however low ionic conductivity of solid state polymer electrolytes and the poor accessibility of the ions to the active sites in the porous electrode will cause low performance for all-solid-state supercapacitors and will limit their application. The objective of the dissertation is to improve the performance of all-solid-state supercapactor by improving electrolyte conductivity and solving accessibility problem of the ions to the active sites. The low ionic conductivity (10-8 S/cm) of poly(ethylene oxide) (PEO) limits its application as an electrolyte. Since PEO is a semicrystal polymer and the ion conduction take place mainly in the amorphous regions of the PEO/Lithium salt complex, improvements in the percentage of amorphous phase in PEO or increasing the charge carrier concentration and mobility could increase the ionic conductivity of PEO electrolyte. Hot pressing along with the additions of different lithium salts, inorganic fillers and plasticizers were applied to improve the ionic conductivity of PEO polymer electrolytes. Four electrode methods were used to evaluate the conductivity of PEO based polymer electrolytes. Results show that adding certain lithium salts, inorganic fillers, and plasticizers could improve the ionic conductivity of PEO electrolytes up 10-4 S/cm. Further hot pressing treatment could improve the ionic conductivity of PEO electrolytes up to 10-3 S/cm. The conductivity improvement after hot pressing treatment is elucidated as that the spherulite crystal phase is convert into the fringed micelle crystal phase or the amorphous phase of PEO electrolytes. PEO electrolytes were added into active carbon as a binder and an ion conductor, so as to provide electrodes with not only ion conduction, but also the accessibility of ion to the active sites of electrodes. The NaI/I 2 mediator was added to improve the conductivity of PEO electrolyte and provide pseudocapacitance for all-solid-state supercapacitors. Impedance, cyclic voltammetry, and gavalnostatic charge/discharge measurements were conducted to evaluate the electrochemical performance of PEO polymer electrolytes based all-solid-state supercapacitors. Results demonstrate that the conductivity of PEO electrolyte could be improved to 0.1 S/cm with a mediator concentration of 50wt%. A high conductivity in the PEO electrolyte with mediator is an indication of a high electron exchange rate between the mediator and mediator. The high electron exchange rates at mediator carbon interface and between mediator and mediator are essential in order to obtain a high response rate and high power. This automatically solves the accessibility problem. With the addition of NaI/I2 mediator, the specific capacitance increased more than 30 folds, specific power increased almost 20 folds, and specific energy increased around 10 folds. Further addition of filler to the electrodes along with the mediator could double the specific capacitor and specific power of the all-solid-state supercapacitor. The stability of the corresponded supercapacitor is good within 2000 cycles.

  7. Phase stability and processing of strontium and magnesium doped lanthanum gallate

    NASA Astrophysics Data System (ADS)

    Zheng, Feng

    Fuel Cells are one of the most promising energy transformers with respect to ecological and environmental issues. Solid Oxide Fuel Cells (SOFC) are all solid-state devices. One of the challenges to improve a SOFC is to lower the operating temperature while maintaining or increasing its output voltage. Undoped LaGaO3 is an insulator, doping transforms it into an oxygen-ionic conductor. Sr and Mg doped LaGaO3 (LSGM) perovskite is a new oxygen-ionic conductor with higher conductivity than yttria-stabilized zirconia (YSZ). This material is a candidate for a wide variety of electrochemical devices. In order to realize this potential, the phase stability and processing of this material needs to be investigated in detail. In this study, a systematic investigation of the LSGM materials in terms of phase stability, phase transition, sintering, microstructure and electrical conductivity as functions of temperature, doping content and A/B cation ratio has been carried out. The generalized formula of the materials investigated is (La1--xSrx)A(Ga1--yMg y)BO3--delta. Optimized processing parameters have been obtained by investigating their impact on density change and microstructure. Consequently, a suitable compositional window of the LSGM perovskite has been identified for SOFC electrolyte applications. Based on detailed diffraction analysis, it is found that the undoped LaGaO3 takes on the orthorhombic (Pbnm) symmetry at room temperature. This structure changes to rhombohedral (R3c) at 147 +/- 2°C or changes to monoclinic (I2/a) when the doping level increases from 0.1 to 0.2 moles. We have optimized the compositional window to make the single perovskite phase with high oxygen ionic conductivity (x = 0.10 to 0.20 with A/B ratio between 0.98 to 1.02). The best processing condition, starting from glycine nitrate process (GNP) combustion synthesized ultra-fine LSGM powder, is sintering in air at 1500°C for 2 hours. The doped material has higher oxygen ionic conductivity than YSZ at all temperatures. In addition, based on the structure and phase relations, a high temperature phase diagram for this system has been proposed. Finally, a model has been proposed to account for the high ionic conductivity of this material and to explain the effect of the doping content and the stoichiometry on the ionic conductivity. (Abstract shortened by UMI.)

  8. Durable electrooptic devices comprising ionic liquids

    DOEpatents

    Warner, Benjamin P [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM; Burrell, Anthony K [Los Alamos, NM

    2006-10-10

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes.

  9. Topotactic Metal-Insulator Transition in Epitaxial SrFeO x Thin Films

    DOE PAGES

    Khare, Amit; Shin, Dongwon; Yoo, Tae Sup; ...

    2017-07-31

    Multivalent transition metal oxides provide fascinating and rich physics related to oxygen stoichiometry. In particular, the adoptability of various valence states of transition metals enables perovskite oxides to display mixed (oxygen) ionic and electronic conduction and catalytic activity useful in many practical applications, including solid-oxide fuel cells (SOFCs), rechargeable batteries, gas sensors, and memristive devices. For proper realization of the ionic conduction and catalytic activity, it is essential to understand the reversible oxidation and reduction process, which is governed by oxygen storage/release steps in oxides. Topotactic phase transformation facilitates the redox process in perovskites with specific oxygen vacancy ordering bymore » largely varying the oxygen concentration of a material without losing the lattice framework. The concentration and diffusion of oxide ions (O 2–), the valence state of the transition metal cations, and the thermodynamic structural integrity together provide fundamental understanding and ways to explicitly control the redox reaction.[6] In addition, it offers an attractive route for tuning the emergent physical properties of transition metal oxides, via strong coupling between the crystal lattice and electronic structure.« less

  10. Diffuse charge dynamics in ionic thermoelectrochemical systems.

    PubMed

    Stout, Robert F; Khair, Aditya S

    2017-08-01

    Thermoelectrics are increasingly being studied as promising electrical generators in the ongoing search for alternative energy sources. In particular, recent experimental work has examined thermoelectric materials containing ionic charge carriers; however, the majority of mathematical modeling has been focused on their steady-state behavior. Here, we determine the time scales over which the diffuse charge dynamics in ionic thermoelectrochemical systems occur by analyzing the simplest model thermoelectric cell: a binary electrolyte between two parallel, blocking electrodes. We consider the application of a temperature gradient across the device while the electrodes remain electrically isolated from each other. This results in a net voltage, called the thermovoltage, via the Seebeck effect. At the same time, the Soret effect results in migration of the ions toward the cold electrode. The charge dynamics are described mathematically by the Poisson-Nernst-Planck equations for dilute solutions, in which the ion flux is driven by electromigration, Brownian diffusion, and thermal diffusion under a temperature gradient. The temperature evolves according to the heat equation. This nonlinear set of equations is linearized in the (experimentally relevant) limit of a "weak" temperature gradient. From this, we show that the time scale on which the thermovoltage develops is the Debye time, 1/Dκ^{2}, where D is the Brownian diffusion coefficient of both ion species, and κ^{-1} is the Debye length. However, the concentration gradient due to the Soret effect develops on the bulk diffusion time, L^{2}/D, where L is the distance between the electrodes. For thin diffuse layers, which is the condition under which most real devices operate, the Debye time is orders of magnitude less than the diffusion time. Therefore, rather surprisingly, the majority of ion motion occurs after the steady thermovoltage has developed. Moreover, the dynamics are independent of the thermal diffusion coefficients, which simply set the magnitude of the steady-state thermovoltage.

  11. Diffuse charge dynamics in ionic thermoelectrochemical systems

    NASA Astrophysics Data System (ADS)

    Stout, Robert F.; Khair, Aditya S.

    2017-08-01

    Thermoelectrics are increasingly being studied as promising electrical generators in the ongoing search for alternative energy sources. In particular, recent experimental work has examined thermoelectric materials containing ionic charge carriers; however, the majority of mathematical modeling has been focused on their steady-state behavior. Here, we determine the time scales over which the diffuse charge dynamics in ionic thermoelectrochemical systems occur by analyzing the simplest model thermoelectric cell: a binary electrolyte between two parallel, blocking electrodes. We consider the application of a temperature gradient across the device while the electrodes remain electrically isolated from each other. This results in a net voltage, called the thermovoltage, via the Seebeck effect. At the same time, the Soret effect results in migration of the ions toward the cold electrode. The charge dynamics are described mathematically by the Poisson-Nernst-Planck equations for dilute solutions, in which the ion flux is driven by electromigration, Brownian diffusion, and thermal diffusion under a temperature gradient. The temperature evolves according to the heat equation. This nonlinear set of equations is linearized in the (experimentally relevant) limit of a "weak" temperature gradient. From this, we show that the time scale on which the thermovoltage develops is the Debye time, 1 /D κ2 , where D is the Brownian diffusion coefficient of both ion species, and κ-1 is the Debye length. However, the concentration gradient due to the Soret effect develops on the bulk diffusion time, L2/D , where L is the distance between the electrodes. For thin diffuse layers, which is the condition under which most real devices operate, the Debye time is orders of magnitude less than the diffusion time. Therefore, rather surprisingly, the majority of ion motion occurs after the steady thermovoltage has developed. Moreover, the dynamics are independent of the thermal diffusion coefficients, which simply set the magnitude of the steady-state thermovoltage.

  12. Hybrid Circuits with Nanofluidic Diodes and Load Capacitors

    NASA Astrophysics Data System (ADS)

    Ramirez, P.; Garcia-Morales, V.; Gomez, V.; Ali, M.; Nasir, S.; Ensinger, W.; Mafe, S.

    2017-06-01

    The chemical and physical input signals characteristic of micro- and nanofluidic devices operating in ionic solutions should eventually be translated into output electric currents and potentials that are monitored with solid-state components. This crucial step requires the design of hybrid circuits showing robust electrical coupling between ionic solutions and electronic elements. We study experimentally and theoretically the connectivity of the nanofluidic diodes in single-pore and multipore membranes with conventional capacitor systems for the cases of constant, periodic, and white-noise input potentials. The experiments demonstrate the reliable operation of these hybrid circuits over a wide range of membrane resistances, electrical capacitances, and solution p H values. The model simulations are based on empirical equations that have a solid physical basis and provide a convenient description of the electrical circuit operation. The results should contribute to advance signal transduction and processing using nanopore-based biosensors and bioelectronic interfaces.

  13. Modeling of charge transport in ion bipolar junction transistors.

    PubMed

    Volkov, Anton V; Tybrandt, Klas; Berggren, Magnus; Zozoulenko, Igor V

    2014-06-17

    Spatiotemporal control of the complex chemical microenvironment is of great importance to many fields within life science. One way to facilitate such control is to construct delivery circuits, comprising arrays of dispensing outlets, for ions and charged biomolecules based on ionic transistors. This allows for addressability of ionic signals, which opens up for spatiotemporally controlled delivery in a highly complex manner. One class of ionic transistors, the ion bipolar junction transistors (IBJTs), is especially attractive for these applications because these transistors are functional at physiological conditions and have been employed to modulate the delivery of neurotransmitters to regulate signaling in neuronal cells. Further, the first integrated complementary ionic circuits were recently developed on the basis of these ionic transistors. However, a detailed understanding of the device physics of these transistors is still lacking and hampers further development of components and circuits. Here, we report on the modeling of IBJTs using Poisson's and Nernst-Planck equations and the finite element method. A two-dimensional model of the device is employed that successfully reproduces the main characteristics of the measurement data. On the basis of the detailed concentration and potential profiles provided by the model, the different modes of operation of the transistor are analyzed as well as the transitions between the different modes. The model correctly predicts the measured threshold voltage, which is explained in terms of membrane potentials. All in all, the results provide the basis for a detailed understanding of IBJT operation. This new knowledge is employed to discuss potential improvements of ion bipolar junction transistors in terms of miniaturization and device parameters.

  14. Effect of AlN layer on the bipolar resistive switching behavior in TiN thin film based ReRAM device for non-volatile memory application

    NASA Astrophysics Data System (ADS)

    Prakash, Ravi; Kaur, Davinder

    2018-05-01

    The effect of an additional AlN layer in the Cu/TiN/AlN/Pt stack configuration deposited using sputtering has been investigated. The Cu/TiN/AlN/Pt device shows a tristate resistive switching. Multilevel switching is facilitated by ionic and metallic filament formation, and the nature of the filaments formed is confirmed by performing a resistance vs. temperature measurement. Ohmic behaviour and trap controlled space charge limited current (SCLC) conduction mechanisms are confirmed as dominant conduction mechanism at low resistance state (LRS) and high resistance state (HRS). High resistance ratio (102) corresponding to HRS and LRS, good write/erase endurance (105) and non-volatile long retention (105s) are also observed. Higher thermal conductivity of the AlN layer is the main reasons for the enhancement of resistive switching performance in Cu/TiN/AlN/Pt cell. The above result suggests the feasibility of Cu/TiN/AlN/Pt devices for multilevel nonvolatile ReRAM application.

  15. Are clinical findings of systemic titanium dispersion following implantation explained by available in vitro evidence? An evidence-based analysis.

    PubMed

    Curtin, Justin Paul; Wang, Minji

    2017-08-01

    Although the presence of titanium wear particles released into tissues is known to induce local inflammation following the therapeutic implantation of titanium devices into humans, the role that titanium ions play in adverse tissue responses has received little attention. Support that ongoing titanium ion release occurs is evidenced by the presence of ionic titanium bound to transferrin in blood, and ongoing excretion in the urine of patients with titanium devices. However, as reports documenting the presence of titanium within tissues do not distinguish between particulate and ionic forms due to technical challenges, the degree to which ionic titanium is released into tissues is unknown. To determine the potential for titanium ion release into tissues, this study evaluates available in vitro evidence relating to the release of ionic titanium under physiological conditions. This is a systematic literature review of studies reporting titanium ion release into solutions from titanium devices under conditions replicating the interstitial pH and constituents. Inclusion and exclusion criteria were defined. Of 452 articles identified, titanium ions were reported in nine media relevant to human biology in seventeen studies. Only one study, using human serum replicated both physiological pH and the concentration of constituents while reporting the presence of titanium ions. While there is insufficient information to explain the factors that contribute to the presence of titanium ions in serum of humans implanted with titanium devices, currently available information suggests that areas of future inquiry include the role of transferrin and organic acids.

  16. Dynamic mechanical control of local vacancies in NiO thin films

    NASA Astrophysics Data System (ADS)

    Seol, Daehee; Yang, Sang Mo; Jesse, Stephen; Choi, Minseok; Hwang, Inrok; Choi, Taekjib; Park, Bae Ho; Kalinin, Sergei V.; Kim, Yunseok

    2018-07-01

    The manipulation of local ionic behavior via external stimuli in oxide systems is of great interest because it can help in directly tuning material properties. Among external stimuli, mechanical force has attracted intriguing attention as novel stimulus for ionic modulation. Even though effectiveness of mechanical force on local ionic modulation has been validated in terms of static effect, its real-time i.e., dynamic, behavior under an application of the force is barely investigated in spite of its crucial impact on device performance such as force or pressure sensors. In this study, we explore dynamic ionic behavior modulated by mechanical force in NiO thin films using electrochemical strain microscopy (ESM). Ionically mediated ESM hysteresis loops were significantly varied under an application of mechanical force. Based on these results, we were able to investigate relative relationship between the force and voltage effects on ionic motion and, further, control effectively ionic behavior through combination of mechanical and electrical stimuli. Our results can provide comprehensive information on the effect of mechanical forces on ionic dynamics in ionic systems.

  17. Dynamic mechanical control of local vacancies in NiO thin films.

    PubMed

    Seol, Daehee; Yang, Sang Mo; Jesse, Stephen; Choi, Minseok; Hwang, Inrok; Choi, Taekjib; Park, Bae Ho; Kalinin, Sergei V; Kim, Yunseok

    2018-07-06

    The manipulation of local ionic behavior via external stimuli in oxide systems is of great interest because it can help in directly tuning material properties. Among external stimuli, mechanical force has attracted intriguing attention as novel stimulus for ionic modulation. Even though effectiveness of mechanical force on local ionic modulation has been validated in terms of static effect, its real-time i.e., dynamic, behavior under an application of the force is barely investigated in spite of its crucial impact on device performance such as force or pressure sensors. In this study, we explore dynamic ionic behavior modulated by mechanical force in NiO thin films using electrochemical strain microscopy (ESM). Ionically mediated ESM hysteresis loops were significantly varied under an application of mechanical force. Based on these results, we were able to investigate relative relationship between the force and voltage effects on ionic motion and, further, control effectively ionic behavior through combination of mechanical and electrical stimuli. Our results can provide comprehensive information on the effect of mechanical forces on ionic dynamics in ionic systems.

  18. Corrosion prevention of magnesium surfaces via surface conversion treatments using ionic liquids

    DOEpatents

    Qu, Jun; Luo, Huimin

    2016-09-06

    A method for conversion coating a magnesium-containing surface, the method comprising contacting the magnesium-containing surface with an ionic liquid compound under conditions that result in decomposition of the ionic liquid compound to produce a conversion coated magnesium-containing surface having a substantially improved corrosion resistance relative to the magnesium-containing surface before said conversion coating. Also described are the resulting conversion-coated magnesium-containing surface, as well as mechanical components and devices containing the conversion-coated magnesium-containing surface.

  19. Solid State Ionics: from Michael Faraday to green energy-the European dimension.

    PubMed

    Funke, Klaus

    2013-08-01

    Solid State Ionics has its roots essentially in Europe. First foundations were laid by Michael Faraday who discovered the solid electrolytes Ag 2 S and PbF 2 and coined terms such as cation and anion , electrode and electrolyte . In the 19th and early 20th centuries, the main lines of development toward Solid State Ionics, pursued in Europe, concerned the linear laws of transport, structural analysis, disorder and entropy and the electrochemical storage and conversion of energy. Fundamental contributions were then made by Walther Nernst, who derived the Nernst equation and detected ionic conduction in heterovalently doped zirconia, which he utilized in his Nernst lamp. Another big step forward was the discovery of the extraordinary properties of alpha silver iodide in 1914. In the late 1920s and early 1930s, the concept of point defects was established by Yakov Il'ich Frenkel, Walter Schottky and Carl Wagner, including the development of point-defect thermodynamics by Schottky and Wagner. In terms of point defects, ionic (and electronic) transport in ionic crystals became easy to visualize. In an 'evolving scheme of materials science', point disorder precedes structural disorder, as displayed by the AgI-type solid electrolytes (and other ionic crystals), by ion-conducting glasses, polymer electrolytes and nano-composites. During the last few decades, much progress has been made in finding and investigating novel solid electrolytes and in using them for the preservation of our environment, in particular in advanced solid state battery systems, fuel cells and sensors. Since 1972, international conferences have been held in the field of Solid State Ionics, and the International Society for Solid State Ionics was founded at one of them, held at Garmisch-Partenkirchen, Germany, in 1987.

  20. Solid State Ionics: from Michael Faraday to green energy—the European dimension

    PubMed Central

    Funke, Klaus

    2013-01-01

    Solid State Ionics has its roots essentially in Europe. First foundations were laid by Michael Faraday who discovered the solid electrolytes Ag2S and PbF2 and coined terms such as cation and anion, electrode and electrolyte. In the 19th and early 20th centuries, the main lines of development toward Solid State Ionics, pursued in Europe, concerned the linear laws of transport, structural analysis, disorder and entropy and the electrochemical storage and conversion of energy. Fundamental contributions were then made by Walther Nernst, who derived the Nernst equation and detected ionic conduction in heterovalently doped zirconia, which he utilized in his Nernst lamp. Another big step forward was the discovery of the extraordinary properties of alpha silver iodide in 1914. In the late 1920s and early 1930s, the concept of point defects was established by Yakov Il'ich Frenkel, Walter Schottky and Carl Wagner, including the development of point-defect thermodynamics by Schottky and Wagner. In terms of point defects, ionic (and electronic) transport in ionic crystals became easy to visualize. In an ‘evolving scheme of materials science’, point disorder precedes structural disorder, as displayed by the AgI-type solid electrolytes (and other ionic crystals), by ion-conducting glasses, polymer electrolytes and nano-composites. During the last few decades, much progress has been made in finding and investigating novel solid electrolytes and in using them for the preservation of our environment, in particular in advanced solid state battery systems, fuel cells and sensors. Since 1972, international conferences have been held in the field of Solid State Ionics, and the International Society for Solid State Ionics was founded at one of them, held at Garmisch-Partenkirchen, Germany, in 1987. PMID:27877585

  1. Investigation of bio polymer electrolyte based on cellulose acetate-ammonium nitrate for potential use in electrochemical devices.

    PubMed

    Monisha, S; Mathavan, T; Selvasekarapandian, S; Milton Franklin Benial, A; Aristatil, G; Mani, N; Premalatha, M; Vinoth Pandi, D

    2017-02-10

    Proton conducting materials create prime interest in electro chemical device development. Present work has been carried out to design environment friendly new biopolymer electrolytes (BPEs) using cellulose acetate (CA) complex with different concentrations of ammonium nitrate (NH 4 NO 3 ), which have been prepared as film and characterized. The 50mol% CA and 50mol% NH 4 NO 3 complex has highest ionic conductivity (1.02×10 -3 Scm -1 ). Differential scanning calorimetry shows the changes in glass transition temperature depends on salt concentration. Structural analysis indicates that the highest ionic conductivity complex exhibits more amorphous nature. Vibrational analysis confirms the complex formation, which has been validated theoretically by Gaussian 09 software. Conducting element in the BPEs has been predicted. Primary proton battery and proton exchange membrane fuel cell have been developed for highest ionic conductivity complex. Output voltage and power performance has been compared for single fuel cell application, which manifests the present BPE holds promise application in electrochemical devices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Ionic Liquid Activation of Amorphous Metal-Oxide Semiconductors for Flexible Transparent Electronic Devices

    DOE PAGES

    Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony T.; ...

    2016-02-09

    To begin this abstract, amorphous metal-oxide semiconductors offer the high carrier mobilities and excellent large-area uniformity required for high performance, transparent, flexible electronic devices; however, a critical bottleneck to their widespread implementation is the need to activate these materials at high temperatures which are not compatible with flexible polymer substrates. The highly controllable activation of amorphous indium gallium zinc oxide semiconductor channels using ionic liquid gating at room temperature is reported. Activation is controlled by electric field-induced oxygen migration across the ionic liquid-semiconductor interface. In addition to activation of unannealed devices, it is shown that threshold voltages of a transistormore » can be linearly tuned between the enhancement and depletion modes. Finally, the first ever example of transparent flexible thin film metal oxide transistor on a polyamide substrate created using this simple technique is demonstrated. Finally, this study demonstrates the potential of field-induced activation as a promising alternative to traditional postdeposition thermal annealing which opens the door to wide scale implementation into flexible electronic applications.« less

  3. Ultraflexible and robust graphene supercapacitors printed on textiles for wearable electronics applications

    NASA Astrophysics Data System (ADS)

    Abdelkader, Amr M.; Karim, Nazmul; Vallés, Cristina; Afroj, Shaila; Novoselov, Kostya S.; Yeates, Stephen G.

    2017-09-01

    Printed graphene supercapacitors have the potential to empower tomorrow’s wearable electronics. We report a solid-state flexible supercapacitor device printed on textiles using graphene oxide ink and a screen-printing technique. After printing, graphene oxide was reduced in situ via a rapid electrochemical method avoiding the use of any reducing reagents that may damage the textile substrates. The printed electrodes exhibited excellent mechanical stability due to the strong interaction between the ink and textile substrate. The unique hierarchical porous structure of the electrodes facilitated ionic diffusion and maximised the surface area available for the electrolyte/active material interface. The obtained device showed outstanding cyclic stability over 10 000 cycles and maintained excellent mechanical flexibility, which is necessary for wearable applications. The simple printing technique is readily scalable and avoids the problems associated with fabricating supercapacitor devices made of conductive yarn, as previously reported in the literature.

  4. Aligned Carbon Nanotubes for Highly Efficient Energy Generation and Storage Devices

    DTIC Science & Technology

    2012-01-24

    solution processing methods, including filtration, solution-casting, electrophoretic deposition, and Langmuir - Blodgett deposition. However, most...supercapacitors with environmentally friendly ionic liquid electrolytes. These new nanocomposite electrodes consist of the high-surface-area activated...carbons, carbon nanotubes, and ionic liquids as the integrated constituent components. The resultant composites show significantly improved charge

  5. Structural control of mixed ionic and electronic transport in conducting polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivnay, Jonathan; Inal, Sahika; Collins, Brian A.

    Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate), PEDOT:PSS, has been utilized for over two decades as a stable, solution-processable hole conductor. While its hole transport properties have been the subject of intense investigation, recent work has turned to PEDOT:PSS as a mixed ionic/electronic conductor in applications including bioelectronics, energy storage and management, and soft robotics. Conducting polymers can efficiently transport both holes and ions when sufficiently hydrated, however, little is known about the role of morphology on mixed conduction. Here, we show that bulk ionic and electronic mobilities are simultaneously affected by processing-induced changes in nano- and meso-scale structure in PEDOT:PSS films. Wemore » quantify domain composition, and find that domain purification on addition of dispersion co-solvents limits ion mobility, even while electronic conductivity improves. We show that an optimal morphology allows for the balanced ionic and electronic transport that is critical for prototypical mixed conductor devices. As a result, these findings may pave the way for the rational design of polymeric materials and processing routes to enhance devices reliant on mixed conduction.« less

  6. Ion Dynamics in a Mixed-Cation Alkoxy-Ammonium Ionic Liquid Electrolyte for Sodium Device Applications.

    PubMed

    Pope, Cameron R; Kar, Mega; MacFarlane, Douglas R; Armand, Michel; Forsyth, Maria; O'Dell, Luke A

    2016-10-18

    The ion dynamics in a novel sodium-containing room-temperature ionic liquid (IL) consisting of an ether-functionalised quaternary ammonium cation and bis(trifluoromethylsulfonyl)amide [NTf 2 ] anion with various concentrations of Na[NTf 2 ] have been characterised using differential scanning calorimetry, impedance spectroscopy, diffusometry and NMR relaxation measurements. The IL studied has been specifically designed to dissolve a relatively large concentration of Na[NTf 2 ] salt (over 2 mol kg -1 ) as this has been shown to improve ion transport and conductivity. Consistent with other studies, the measured ionic conductivity and diffusion coefficients show that the overall ionic mobility decreases with decreasing temperature and increasing salt content. NMR relaxation measurements provide evidence for correlated dynamics between the ether-functionalised ammonium and Na cations, possibly with the latter species acting as cross-links between multiple ammonium cations. Finally, preliminary cyclic voltammetry experiments show that this IL can undergo stable electrochemical cycling and could therefore be potentially useful as an electrolyte in a Na-based device. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Structural control of mixed ionic and electronic transport in conducting polymers

    DOE PAGES

    Rivnay, Jonathan; Inal, Sahika; Collins, Brian A.; ...

    2016-04-19

    Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate), PEDOT:PSS, has been utilized for over two decades as a stable, solution-processable hole conductor. While its hole transport properties have been the subject of intense investigation, recent work has turned to PEDOT:PSS as a mixed ionic/electronic conductor in applications including bioelectronics, energy storage and management, and soft robotics. Conducting polymers can efficiently transport both holes and ions when sufficiently hydrated, however, little is known about the role of morphology on mixed conduction. Here, we show that bulk ionic and electronic mobilities are simultaneously affected by processing-induced changes in nano- and meso-scale structure in PEDOT:PSS films. Wemore » quantify domain composition, and find that domain purification on addition of dispersion co-solvents limits ion mobility, even while electronic conductivity improves. We show that an optimal morphology allows for the balanced ionic and electronic transport that is critical for prototypical mixed conductor devices. As a result, these findings may pave the way for the rational design of polymeric materials and processing routes to enhance devices reliant on mixed conduction.« less

  8. Recent Developments of All-Solid-State Lithium Secondary Batteries with Sulfide Inorganic Electrolytes.

    PubMed

    Xu, Ruochen; Zhang, Shengzhao; Wang, Xiuli; Xia, Yan; Xia, Xinhui; Wu, Jianbo; Gu, Changdong; Tu, Jiangping

    2018-04-20

    Due to the increasing demand of security and energy density, all-solid-state lithium ion batteries have become the promising next-generation energy storage devices to replace the traditional liquid batteries with flammable organic electrolytes. In this Minireview, we focus on the recent developments of sulfide inorganic electrolytes for all-solid-state batteries. The challenges of assembling bulk-type all-solid-state batteries for industrialization are discussed, including low ionic conductivity of the present sulfide electrolytes, high interfacial resistance and poor compatibility between electrolytes and electrodes. Many efforts have been focused on the solutions for these issues. Although some progresses have been achieved, it is still far away from practical application. The perspectives for future research on all-solid-state lithium ion batteries are presented. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Fixed Junction Light Emitting Electrochemical Cells based on Polymerizable Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Brown, Erin; Limanek, Austin; Bauman, James; Leger, Janelle

    Organic photovoltaic (OPV) devices are of interest due to ease of fabrication, which increases their cost-effectiveness. OPV devices based on fixed-junction light emitting electrochemical cells (LECs) in particular have shown promising results. LECs are composed of a layer of polymer semiconductor blended with a salt sandwiched between two electrodes. As a forward bias is applied, the ions within the polymer separate, migrate to the electrodes, and enable electrochemical doping, thereby creating a p-n junction analog. In a fixed junction device, the ions are immobilized after the desired distribution has been established, allowing for operation under reverse bias conditions. Fixed junctions can be established using various techniques, including chemically by mixing polymerizable salts that will bond to the polymer under a forward bias. Previously we have demonstrated the use of the polymerizable ionic liquid allyltrioctylammonium allysulfonate (ATOAAS) as an effective means of creating a chemically fixed junction in an LEC. Here we present the application of this approach to the creation of photovoltaic devices. Devices demonstrate higher open circuit voltages, faster charging, and an overall improved device performance over previous chemically-fixed junction PV devices.

  10. Ionic liquids as novel solvents for ionic polymer transducers

    NASA Astrophysics Data System (ADS)

    Bennett, Matthew D.; Leo, Donald J.

    2004-07-01

    The use of ionic liquids as solvents for ionic polymer (specifically, Nafion) transducers is demonstrated. Ionic liquids are attractive for this application because of their high inherent stability. Ionic liquids are salts that exist as liquids at room temperature and have no measureable vapor pressure. Therefore, the use of ionic liquids as solvents for ionic polymer transducers can eliminate the traditional problem of water evaporation in these devices. Another benefit of the use of ionic liquids in this way is the reduction or elimination of the characteristic back-relaxation common in water-solvated ionic polymer actuators. The results demonstrate that the viscosity of the ionic liquid and the degree to which the ionic liquid swells the membrane are the important physical parameters to consider. Five ionic liquids were studied, based on substituted pyrrolidinium, phosphonium, or imidazolium cations and fluoroanions. Of these five ionic liquids, transduction is demonstrated in three of them and the best results are obtained with 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid. This substance has an electrochemical stability window of 4.1 V, a melting point of -10 °C, and a viscosity of 35-45 cP [19]. Results demonstrate that platinum-plated Nafion transducers solvated with this ionic liquid exhibit sensing and actuation responses and that these transducers are stable in air. Endurance testing of this sample reveals a decrease in the free strain of only 25 % after 250,000 actuation cycles in air.

  11. The molecular assembly of the ionic liquid/aliphatic carboxylic acid/aliphatic amine as effective and safety transdermal permeation enhancers.

    PubMed

    Kubota, Koji; Shibata, Akira; Yamaguchi, Toshikazu

    2016-04-30

    In spite of numerous advantages, transdermal drug delivery systems are unfeasible for most drugs because of the barrier effect of the stratum corneum. Ionic liquids were recently used to enhance transdermal drug delivery by improving drug solubility. In the present study, safe and effective ionic liquids for transdermal absorption were obtained as salts generated by a neutralization reaction between highly biocompatible aliphatic carboxylic acids (octanoic acid or isostearic acid) and aliphatic amines (diisopropanolamine or triisopropanolamine) (Medrx Co., Ltd., 2009). The mechanism of skin permeability enhancement by ionic liquids was investigated by hydrophilic phenol red and hydrophobic tulobuterol. Further, the skin permeation enhancing effect was remarkably superior in the acid excess state rather than the neutralization state. Infrared absorption spectrum analysis confirmed that ionic liquids/aliphatic carboxylic acid/aliphatic amine are coexisting at all mixing states. In the acid excess state, ionic liquids interact with aliphatic carboxylic acids via hydrogen bonds. Thus, the skin permeation enhancing effect is not caused by the ionic liquid alone. The "liquid salt mixture," referred to as a complex of ingredients coexisting with ionic liquids, forms a molecular assembly incorporating hydrophilic drug. This molecular assembly was considered an effective and safety enhancer of transdermal drug permeation. Copyright © 2016. Published by Elsevier B.V.

  12. Outlook and emerging semiconducting materials for ambipolar transistors.

    PubMed

    Bisri, Satria Zulkarnaen; Piliego, Claudia; Gao, Jia; Loi, Maria Antonietta

    2014-02-26

    Ambipolar or bipolar transistors are transistors in which both holes and electrons are mobile inside the conducting channel. This device allows switching among several states: the hole-dominated on-state, the off-state, and the electron-dominated on-state. In the past year, it has attracted great interest in exotic semiconductors, such as organic semiconductors, nanostructured materials, and carbon nanotubes. The ability to utilize both holes and electrons inside one device opens new possibilities for the development of more compact complementary metal-oxide semiconductor (CMOS) circuits, and new kinds of optoelectronic device, namely, ambipolar light-emitting transistors. This progress report highlights the recent progresses in the field of ambipolar transistors, both from the fundamental physics and application viewpoints. Attention is devoted to the challenges that should be faced for the realization of ambipolar transistors with different material systems, beginning with the understanding of the importance of interface modification, which heavily affects injections and trapping of both holes and electrons. The recent development of advanced gating applications, including ionic liquid gating, that open up more possibility to realize ambipolar transport in materials in which one type of charge carrier is highly dominant is highlighted. Between the possible applications of ambipolar field-effect transistors, we focus on ambipolar light-emitting transistors. We put this new device in the framework of its prospective for general lightings, embedded displays, current-driven laser, as well as for photonics-electronics interconnection. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Development of Advanced Li Rich xLi2MO3 (1-x)LiMO2 Composite Cathode for High Capacity Li Ion Batteries

    DTIC Science & Technology

    2016-12-22

    importance. Among advanced energy storage devices, lithium - ion batteries are remarkable systems due to their high energy density, high power density...and well cycled performance with considerable reliability. Lithium - ion batteries have been playing an important role in various application fields...Li0.24Mn0.55Co0.14Ni0.07]O2 cathode material for lithium ion batteries . Solid State Ionics, 2013. 233: p. 12-19. DISTRIBUTION A. Approved for public release

  14. Advancing Polymer-Supported Ionogel Electrolytes Formed via Radical Polymerization

    NASA Astrophysics Data System (ADS)

    Visentin, Adam F.

    Applications ranging from consumer electronics to the electric grid have placed demands on current energy storage technologies. There is a drive for devices that store more energy for rapid consumption in the case of electric cars and the power grid, and safer, versatile design options for consumer electronics. Electrochemical double-layer capacitors (EDLCs) are an option that has garnered attention as a means to address these varied energy storage demands. EDLCs utilize charge separation in electrolytes to store energy. This energy storage mechanism allows for greater power density (W kg -1) than batteries and higher energy density (Wh kg-1) than conventional capacitors - along with a robust lifetime in the range of thousands to millions of charge-discharge cycles. Safety and working voltage windows of EDLCs currently on the market are limited by the organic solvents utilized in the electrolyte. A potential solution lies in the replacement of the organic solvents with ionic liquids, or room-temperature molten salts. Ionic liquids possess many superior properties in comparison to conventional solvents: wide electrochemical window, low volatility, nonflammability, and favorable ionic conductivity. It has been an endeavor of this work to exploit these advantages while altering the liquid form factor into a gel. An ionic liquid/solid support scaffold composite electrolyte, or ionogel, adds additional benefits: flexible device design, lower encapsulation weight, and elimination of electrolyte leakage. This work has focused on investigations of a UV-polymerizable monomer, poly(ethylene glycol) diacrylate, as a precursor for forming ionogels in situ. The trade-off between gaining mechanical stability at the cost of ionic conductivity has been investigated for numerous ionogel systems. While gaining a greater understanding of the interactions between the gel scaffold and ionic liquid, an ionogel with the highest known ionic conductivity to date (13.1 mS cm-1) was fabricated. In addition to developing an understanding of UV-polymerized systems, a rapid 10 to 20 second, microwave-assisted polymerization method was developed as a novel means to create ionogels. These ionogels exhibited comparable mechanical response and ionic conductivity levels to those gels fabricated by the UV method. Lastly, an EDLC prototype was fabricated using a UV-polymerized ionogel formed in situ between two high-surface area carbon electrodes. The device performance metrics were comparable to commercial EDLCs, and functioned for several thousand cycles with limited loss in capacitance.

  15. Ionic liquids containing symmetric quaternary phosphonium cations and phosphorus-containing anions, and their use as lubricant additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Jun; Luo, Huimin

    An ionic liquid composition having the following generic structural formula: ##STR00001## wherein R 1, R 2, R 3, and R 4 are equivalent and selected from hydrocarbon groups containing at least three carbon atoms, and X - is a phosphorus-containing anion, particularly an organophosphate, organophosphonate, or organophosphinate anion, or a thio-substituted analog thereof containing hydrocarbon groups with at least three carbon atoms. Also described are lubricant compositions comprising the above ionic liquid and a base oil, wherein the ionic liquid is dissolved in the base oil. Further described are methods for applying the ionic liquid or lubricant composition onto amore » mechanical device for which lubrication is beneficial, with resulting improvement in friction reduction, wear rate, and/or corrosion inhibition.« less

  16. High-density carrier-accumulated and electrically stable oxide thin-film transistors from ion-gel gate dielectric

    PubMed Central

    Fujii, Mami N.; Ishikawa, Yasuaki; Miwa, Kazumoto; Okada, Hiromi; Uraoka, Yukiharu; Ono, Shimpei

    2015-01-01

    The use of indium–gallium–zinc oxide (IGZO) has paved the way for high-resolution uniform displays or integrated circuits with transparent and flexible devices. However, achieving highly reliable devices that use IGZO for low-temperature processes remains a technological challenge. We propose the use of IGZO thin-film transistors (TFTs) with an ionic-liquid gate dielectric in order to achieve high-density carrier-accumulated IGZO TFTs with high reliability, and we discuss a distinctive mechanism for the degradation of this organic–inorganic hybrid device under long-term electrical stress. Our results demonstrated that an ionic liquid or gel gate dielectric provides highly reliable and low-voltage operation with IGZO TFTs. Furthermore, high-density carrier accumulation helps improve the TFT characteristics and reliability, and it is highly relevant to the electronic phase control of oxide materials and the degradation mechanism for organic–inorganic hybrid devices. PMID:26677773

  17. High-density carrier-accumulated and electrically stable oxide thin-film transistors from ion-gel gate dielectric.

    PubMed

    Fujii, Mami N; Ishikawa, Yasuaki; Miwa, Kazumoto; Okada, Hiromi; Uraoka, Yukiharu; Ono, Shimpei

    2015-12-18

    The use of indium-gallium-zinc oxide (IGZO) has paved the way for high-resolution uniform displays or integrated circuits with transparent and flexible devices. However, achieving highly reliable devices that use IGZO for low-temperature processes remains a technological challenge. We propose the use of IGZO thin-film transistors (TFTs) with an ionic-liquid gate dielectric in order to achieve high-density carrier-accumulated IGZO TFTs with high reliability, and we discuss a distinctive mechanism for the degradation of this organic-inorganic hybrid device under long-term electrical stress. Our results demonstrated that an ionic liquid or gel gate dielectric provides highly reliable and low-voltage operation with IGZO TFTs. Furthermore, high-density carrier accumulation helps improve the TFT characteristics and reliability, and it is highly relevant to the electronic phase control of oxide materials and the degradation mechanism for organic-inorganic hybrid devices.

  18. Volatile chemical reagent detector

    DOEpatents

    Chen, Liaohai; McBranch, Duncan; Wang, Rong; Whitten, David

    2004-08-24

    A device for detecting volatile chemical reagents based on fluorescence quenching analysis that is capable of detecting neutral electron acceptor molecules. The device includes a fluorescent material, a contact region, a light source, and an optical detector. The fluorescent material includes at least one polymer-surfactant complex. The polymer-surfactant complex is formed by combining a fluorescent ionic conjugated polymer with an oppositely charged surfactant. The polymer-surfactant complex may be formed in a polar solvent and included in the fluorescent material as a solution. Alternatively, the complex may be included in the fluorescent material as a thin film. The use of a polymer-surfactant complex in the fluorescent material allows the device to detect both neutral and ionic acceptor molecules. The use of a polymer-surfactant complex film allows the device and the fluorescent material to be reusable after exposing the fluorescent material to a vacuum for limited time.

  19. Safe Direct Current Stimulator design for reduced power consumption and increased reliability.

    PubMed

    Fridman, Gene

    2017-07-01

    Current state of the art neural prosthetics, such as cochlear implants, spinal cord stimulators, and deep brain stimulators use implantable pulse generators (IPGs) to excite neural activity. Inhibition of neural firing is typically indirect and requires excitation of neurons that then have inhibitory projections downstream. Safe Direct Current Stimulator (SDCS) technology is designed to convert electronic pulses delivered to electrodes embedded within an implantable device to ionic direct current (iDC) at the output of the device. iDC from the device can then control neural extracellular potential with the intent of being able to not only excite, but also inhibit and sensitize neurons, thereby greatly expanding the possible applications of neuromodulation therapies and neural interface mechanisms. While the potential applications and proof of concept of this device have been the focus of previous work, the published descriptions of this technology leave significant room for power and reliability optimization. We describe and model a novel device construction designed to reduce power consumption by a factor of 12 and to improve its reliability by a factor of 8.

  20. Fabrication of ultrathin solid electrolyte membranes of β-Li 3PS 4 nanoflakes by evaporation-induced self-assembly for all-solid-state batteries

    DOE PAGES

    Wang, Hui; Hood, Zachary D.; Xia, Younan; ...

    2016-04-25

    All-solid-state lithium batteries are attractive candidates for next-generation energy storage devices because of their anticipated high energy density and intrinsic safety. Owing to their excellent ionic conductivity and stability with metallic lithium anodes, nanostructured lithium thiophosphate solid electrolytes such as β-Li 3PS 4 have found use in the fabrication of all-solid lithium batteries for large-scale energy storage systems. However, current methods for preparing air-sensitive solid electrolyte membranes of lithium thiophosphates can only generate thick membranes that compromise the battery's gravimetric/volumetric energy density and thus its rate performance. To overcome this limitation, the solid electrolyte's thickness needs to be effectively decreasedmore » to achieve ideal energy density and enhanced rate performance. In this paper, we show that the evaporation-induced self-assembly (EISA) technique produces ultrathin membranes of a lithium thiophosphate solid electrolyte with controllable thicknesses between 8 and 50 μm while maintaining the high ionic conductivity of β-Li 3PS 4 and stability with metallic lithium anodes up to 5 V. Finally, it is clearly demonstrated that this facile EISA approach allows for the preparation of ultrathin lithium thiophosphate solid electrolyte membranes for all-solid-state batteries.« less

  1. New frontiers in materials science opened by ionic liquids.

    PubMed

    Torimoto, Tsukasa; Tsuda, Tetsuya; Okazaki, Ken-ichi; Kuwabata, Susumu

    2010-03-19

    Ionic liquids (ILs) including ambient-temperature molten salts, which exist in the liquid state even at room temperature, have a long research history. However, their applications were once limited because ILs were considered as highly moisture-sensitive solvents that should be handled in a glove box. After the first synthesis of moisture-stable ILs in 1992, their unique physicochemical properties became known in all scientific fields. ILs are composed solely of ions and exhibit several specific liquid-like properties, e.g., some ILs enable dissolution of insoluble bio-related materials and the use as tailor-made lubricants in industrial applications under extreme physicochemical conditions. Hybridization of ILs and other materials provides quasi-solid materials, which can be used to fabricate highly functional devices. ILs are also used as reaction media for electrochemical and chemical synthesis of nanomaterials. In addition, the negligible vapor pressure of ILs allows the fabrication of electrochemical devices that are operated under ambient conditions, and many liquid-vacuum technologies, such as X-ray photoelectron spectroscopy (XPS) analysis of liquids, electron microscopy of liquids, and sputtering and physical vapor deposition onto liquids. In this article, we review recent studies on ILs that are employed as functional advanced materials, advanced mediums for materials production, and components for preparing highly functional materials.

  2. High performance ultracapacitors with carbon nanomaterials and ionic liquids

    DOEpatents

    Lu, Wen; Henry, Kent Douglas

    2012-10-09

    The present invention is directed to the use of carbon nanotubes and/or electrolyte structures in various electrochemical devices, such as ultracapacitors having an ionic liquid electrolyte. The carbon nanotubes are preferably aligned carbon nanotubes. Compared to randomly entangled carbon nanotubes, aligned carbon nanotubes can have better defined pore structures and higher specific surface areas.

  3. Current status of solid-state lithium batteries employing solid redox polymerization cathodes

    NASA Astrophysics Data System (ADS)

    Visco, S. J.; Doeff, M. M.; Dejonghe, L. C.

    1991-03-01

    The rapidly growing demand for secondary batteries having high specific energy and power has naturally led to increased efforts in lithium battery technology. Still, the increased safety risks associated with high energy density systems has tempered the enthusiasm of proponents of such systems for use in the consumer marketplace. The inherent advantages of all-solid-state batteries in regards to safety and reliability are strong factors in advocating their introduction to the marketplace. However, the low ionic conductivity of solid electrolytes relative to nonaqueous liquid electrolytes implies low power densities for solid state systems operating at ambient temperatures. Recent advances in polymer electrolytes have led to the introduction of solid electrolytes having conductivities in the range of 10(exp -4)/ohm cm at room temperature; this is still two orders of magnitude lower than liquid electrolytes. Although these improved ambient conductivities put solid state batteries in the realm of practical devices, it is clear that solid state batteries using such polymeric separators will be thin film devices. Fortunately, thin film fabrication techniques are well established in the plastics and paper industry, and present the possibility of continuous web-form manufacturing. This style of battery manufacture should make solid polymer batteries very cost-competitive with conventional secondary cells. In addition, the greater geometric flexibility of thin film solid state cells should provide benefits in terms of the end-use form factor in device design. This work discusses the status of solid redox polymerization cathodes.

  4. Hybrid nanowire ion-to-electron transducers for integrated bioelectronic circuitry (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Carrad, Damon J.; Mostert, Bernard; Meredith, Paul; Micolich, Adam P.

    2016-09-01

    A key task in bioelectronics is the transduction between ionic/protonic signals and electronic signals at high fidelity. This is a considerable challenge since the two carrier types exhibit intrinsically different physics. We present our work on a new class of organic-inorganic transducing interface utilising semiconducting InAs and GaAs nanowires directly gated with a proton transporting hygroscopic polymer consisting of undoped polyethylene oxide (PEO) patterned to nanoscale dimensions by a newly developed electron-beam lithography process [1]. Remarkably, we find our undoped PEO polymer electrolyte gate dielectric [2] gives equivalent electrical performance to the more traditionally used LiClO4-doped PEO [3], with an ionic conductivity three orders of magnitude higher than previously reported for undoped PEO [4]. The observed behaviour is consistent with proton conduction in PEO. We attribute our undoped PEO-based devices' performance to the small external surface and high surface-to-volume ratio of both the nanowire conducting channel and patterned PEO dielectric in our devices, as well as the enhanced hydration afforded by device processing and atmospheric conditions. In addition to studying the basic transducing mechanisms, we also demonstrate high-fidelity ionic to electronic conversion of a.c. signals at frequencies up to 50 Hz. Moreover, by combining complementary n- and p-type transducers we demonstrate functional hybrid ionic-electronic circuits can achieve logic (NOT operation), and with some further engineering of the nanowire contacts, potentially also amplification. Our device structures have significant potential to be scaled towards realising integrated bioelectronic circuitry. [1] D.J. Carrad et al., Nano Letters 14, 94 (2014). [2] D.J. Carrad et al., Manuscript in preparation (2016). [3] S.H. Kim et al., Advanced Materials 25, 1822 (2013). [4] S.K. Fullerton-Shirey et al., Macromolecules 42, 2142 (2009).

  5. Synthesis of POSS-based ionic conductors with low glass transition temperatures for efficient solid-state dye-sensitized solar cells.

    PubMed

    Zhang, Wei; Wang, Zhong-Sheng

    2014-07-09

    Replacing liquid-state electrolytes with solid-state electrolytes has been proven to be an effective way to improve the durability of dye-sensitized solar cells (DSSCs). We report herein the synthesis of amorphous ionic conductors based on polyhedral oligomeric silsesquioxane (POSS) with low glass transition temperatures for solid-state DSSCs. As the ionic conductor is amorphous and in the elastomeric state at the operating temperature of DSSCs, good pore filling in the TiO2 film and good interfacial contact between the solid-state electrolyte and the TiO2 film can be guaranteed. When the POSS-based ionic conductor containing an allyl group is doped with only iodine as the solid-state electrolyte without any other additives, power conversion efficiency of 6.29% has been achieved with good long-term stability under one-sun soaking for 1000 h.

  6. Microcontact Printing of Thiol-Functionalized Ionic Liquid Microarrays for "Membrane-less" and "Spill-less" Gas Sensors.

    PubMed

    Gondosiswanto, Richard; Gunawan, Christian A; Hibbert, David B; Harper, Jason B; Zhao, Chuan

    2016-11-16

    Lab-on-a-chip systems have gained significant interest for both chemical synthesis and assays at the micro-to-nanoscale with a unique set of benefits. However, solvent volatility represents one of the major hurdles to the reliability and reproducibility of the lab-on-a-chip devices for large-scale applications. Here we demonstrate a strategy of combining nonvolatile and functionalized ionic liquids with microcontact printing for fabrication of "wall-less" microreactors and microfluidics with high reproducibility and high throughput. A range of thiol-functionalized ionic liquids have been synthesized and used as inks for microcontact printing of ionic liquid microdroplet arrays onto gold chips. The covalent bonds formed between the thiol-functionalized ionic liquids and the gold substrate offer enhanced stability of the ionic liquid microdroplets, compared to conventional nonfunctionalized ionic liquids, and these microdroplets remain stable in a range of nonpolar and polar solvents, including water. We further demonstrate the use of these open ionic liquid microarrays for fabrication of "membrane-less" and "spill-less" gas sensors with enhanced reproducibility and robustness. Ionic-liquid-based microarray and microfluidics fabricated using the described microcontact printing may provide a versatile platform for a diverse number of applications at scale.

  7. Low-lying Photoexcited States of a One-Dimensional Ionic Extended Hubbard Model

    NASA Astrophysics Data System (ADS)

    Yokoi, Kota; Maeshima, Nobuya; Hino, Ken-ichi

    2017-10-01

    We investigate the properties of low-lying photoexcited states of a one-dimensional (1D) ionic extended Hubbard model at half-filling. Numerical analysis by using the full and Lanczos diagonalization methods shows that, in the ionic phase, there exist low-lying photoexcited states below the charge transfer gap. As a result of comparison with numerical data for the 1D antiferromagnetic (AF) Heisenberg model, it was found that, for a small alternating potential Δ, these low-lying photoexcited states are spin excitations, which is consistent with a previous analytical study [Katsura et al., Phys. Rev. Lett. 103, 177402 (2009)]. As Δ increases, the spectral intensity of the 1D ionic extended Hubbard model rapidly deviates from that of the 1D AF Heisenberg model and it is clarified that this deviation is due to the neutral-ionic domain wall, an elementary excitation near the neutral-ionic transition point.

  8. Ionic thermoelectric gating organic transistors

    PubMed Central

    Zhao, Dan; Fabiano, Simone; Berggren, Magnus; Crispin, Xavier

    2017-01-01

    Temperature is one of the most important environmental stimuli to record and amplify. While traditional thermoelectric materials are attractive for temperature/heat flow sensing applications, their sensitivity is limited by their low Seebeck coefficient (∼100 μV K−1). Here we take advantage of the large ionic thermoelectric Seebeck coefficient found in polymer electrolytes (∼10,000 μV K−1) to introduce the concept of ionic thermoelectric gating a low-voltage organic transistor. The temperature sensing amplification of such ionic thermoelectric-gated devices is thousands of times superior to that of a single thermoelectric leg in traditional thermopiles. This suggests that ionic thermoelectric sensors offer a way to go beyond the limitations of traditional thermopiles and pyroelectric detectors. These findings pave the way for new infrared-gated electronic circuits with potential applications in photonics, thermography and electronic-skins. PMID:28139738

  9. Memristive Ion Channel-Doped Biomembranes as Synaptic Mimics.

    PubMed

    Najem, Joseph S; Taylor, Graham J; Weiss, Ryan J; Hasan, Md Sakib; Rose, Garrett; Schuman, Catherine D; Belianinov, Alex; Collier, C Patrick; Sarles, Stephen A

    2018-05-22

    Solid-state neuromorphic systems based on transistors or memristors have yet to achieve the interconnectivity, performance, and energy efficiency of the brain due to excessive noise, undesirable material properties, and nonbiological switching mechanisms. Here we demonstrate that an alamethicin-doped, synthetic biomembrane exhibits memristive behavior, emulates key synaptic functions including paired-pulse facilitation and depression, and enables learning and computing. Unlike state-of-the-art devices, our two-terminal, biomolecular memristor features similar structure (biomembrane), switching mechanism (ion channels), and ionic transport modality as biological synapses while operating at considerably lower power. The reversible and volatile voltage-driven insertion of alamethicin peptides into an insulating lipid bilayer creates conductive pathways that exhibit pinched current-voltage hysteresis at potentials above their insertion threshold. Moreover, the synapse-like dynamic properties of the biomolecular memristor allow for simplified learning circuit implementations. Low-power memristive devices based on stimuli-responsive biomolecules represent a major advance toward implementation of full synaptic functionality in neuromorphic hardware.

  10. Creating Lithium-Ion Electrolytes with Biomimetic Ionic Channels in Metal-Organic Frameworks.

    PubMed

    Shen, Li; Wu, Hao Bin; Liu, Fang; Brosmer, Jonathan L; Shen, Gurong; Wang, Xiaofeng; Zink, Jeffrey I; Xiao, Qiangfeng; Cai, Mei; Wang, Ge; Lu, Yunfeng; Dunn, Bruce

    2018-06-01

    Solid-state electrolytes are the key to the development of lithium-based batteries with dramatically improved energy density and safety. Inspired by ionic channels in biological systems, a novel class of pseudo solid-state electrolytes with biomimetic ionic channels is reported herein. This is achieved by complexing the anions of an electrolyte to the open metal sites of metal-organic frameworks (MOFs), which transforms the MOF scaffolds into ionic-channel analogs with lithium-ion conduction and low activation energy. This work suggests the emergence of a new class of pseudo solid-state lithium-ion conducting electrolytes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. High performance photolithographically-patterned polymer thin-film transistors gated with an ionic liquid/poly(ionic liquid) blend ion gel

    NASA Astrophysics Data System (ADS)

    Thiburce, Q.; Porcarelli, L.; Mecerreyes, D.; Campbell, A. J.

    2017-06-01

    We demonstrate the fabrication of polymer thin-film transistors gated with an ion gel electrolyte made of the blend of an ionic liquid and a polymerised ionic liquid. The ion gel exhibits a high stability and ionic conductivity, combined with facile processing by simple drop-casting from solution. In order to avoid parasitic effects such as high hysteresis, high off-currents, and slow switching, a fluorinated photoresist is employed in order to enable high-resolution orthogonal patterning of the polymer semiconductor over an area that precisely defines the transistor channel. The resulting devices exhibit excellent characteristics, with an on/off ratio of 106, low hysteresis, and a very large transconductance of 3 mS. We show that this high transconductance value is mostly the result of ions penetrating the polymer film and doping the entire volume of the semiconductor, yielding an effective capacitance per unit area of about 200 μF cm-2, one order of magnitude higher than the double layer capacitance of the ion gel. This results in channel currents larger than 1 mA at an applied gate bias of only -1 V. We also investigate the dynamic performance of the devices and obtain a switching time of 20 ms, which is mostly limited by the overlap capacitance between the ion gel and the source and drain contacts.

  12. Ionic liquid based multifunctional double network gel

    NASA Astrophysics Data System (ADS)

    Ahmed, Kumkum; Higashihara, Tomoya; Arafune, Hiroyuki; Kamijo, Toshio; Morinaga, Takashi; Sato, Takaya; Furukawa, Hidemitsu

    2015-04-01

    Gels are a promising class of soft and wet materials with diverse application in tissue engineering and bio-medical purpose. In order to accelerate the development of gels, it is required to synthesize multi-functional gels of high mechanical strength, ultra low surface friction and suitable elastic modulus with a variety of methods and new materials. Among many types of gel ionic gel made from ionic liquids (ILs) could be used for diverse applications in electrochemical devices and in the field of tribology. IL, a promising materials for lubrication, is a salt with a melting point lower than 100 °C. As a lubricant, ILs are characterized by an extremely low vapor pressure, high thermal stability and high ion conductivity. In this work a novel approach of making double network DN ionic gel using IL has been made utilizing photo polymerization process. A hydrophobic monomer Methyl methacrylate (MMA) has been used as a first network and a hydrophobic IL monomer, N,N-diethyl-N-(2-mthacryloylethyl)-N-methylammonium bistrifluoromethylsulfonyl)imide (DEMM-TFSI) has been used as a second network using photo initiator benzophenon and crosslinker triethylene glycol dimethacrylate (TEGDMA). The resulting DN ionic gel shows transparency, flexibility, high thermal stability, good mechanical toughness and low friction coefficient value which can be a potential candidate as a gel slider in different mechanical devices and can open a new area in the field of gel tribology.

  13. Chemical and Physical Approaches to the Modulation of the Electronic Structure, Conductivities and Optical Properties of SWNT Thin Films

    NASA Astrophysics Data System (ADS)

    Moser, Matthew Lee

    Since their discovery two decades ago, single walled carbon nanotubes (SWNT) have created an expansion of scientific interest that continues to grow to this day. This is due to a good balance between presence of bandgap, chemical reactivity and electrical conductivity. By interconnection of the individual nanotubes or modulation of the SWNT's electronic states, electronic devices made with thin films can become candidates for next generation electronics in areas such as memory devices, spintronics, energy storage devices and optoelectronics. My thesis focuses on the modulation of the electronic structure, optical properties and transport characteristics of single walled carbon nanotube films and their application in electronic and optoelectronic devices. Individual SWNTs have exceptional electronic properties but are difficult to manipulate for use in electronic devices. Alternatively, devices utilize SWNTs in thin films. SWNT thin films, however, may lose some of the properties due to Schottky barriers and electron hoping between metal-nanotube junctions and individual nanotubes within the film, respectively. Until recently, there has been no known route to preserve both conjugation and electrical properties. Prior attempts using covalent chemical functionalization led to re-hybridization of sp2 carbon centers to sp3, which introduces defects into the material and results in a decrease of electron mobility. As was discovered in Haddon Research group, depositing Group VI transition metals via atomic vapor deposition into SWNT films results in formation of bis-hexahapto covalent bonds. This (eta6-SWNT) Metal (eta6-SWNT) type of bonding was found to interconnect the delocalized systems without inducing structural re-hybridization and results in a decrease of the thin films electrical resistance. Recently, with the assistance of electron beam deposition, we deposited atomic metal vapor of various lanthanide metals on the SWNT thin films with the idea that they would also form covalent interconnects between nanotube sidewalls. In the case of highly electropositive lanthanides, the possibility of hexahapto bonding combined with ionic character can be evaluated and theorized. We have reported the first use of lanthanides to enhance the conductivities of SWNT thin films and showed that these metals can not only form bis-hexahapto interconnects at the SWNT junctions but can also inject electrons into the conduction bands of the SWNTs, forming a new type of mixed covalent-ionic bonding in the SWNT network. By monitoring electrical resistance and taking spectroscopic measurements of the Near-Infrared region we are able to show the correlation between enhanced conductivity and suppression of the S 11 interband transition of semiconducting SWNTs. Potential applications of SWNT thin films as electrochromic windows require reversible modulation of the electronic structure. In order to fabricate SWNTs devices which allow for this behavior it is necessary to modulate the electronic structure by physical means such as the application of an electrical potential. We found that ionic solutions can assist with maintaining complete suppression of two Van Hove singularities in the Density of States of semiconducting SWNTs which results in optically transparent windows in the Near-Infrared region, similar to the effect seen with the incorporation of atomic lanthanide metals in thin films. We demonstrate this behavior to provide a route to nanotube based optoelectronic devices in which we use electric fields to reversibly dope the SWNT films and thereby achieve controllable modulation of optical properties of SWNT thin film.

  14. Noncovalent Pi-Pi Stacking at the Carbon-Electrolyte Interface: Controlling the Voltage Window of Electrochemical Supercapacitors.

    PubMed

    Li, Mengya; Westover, Andrew S; Carter, Rachel; Oakes, Landon; Muralidharan, Nitin; Boire, Timothy C; Sung, Hak-Joon; Pint, Cary L

    2016-08-03

    A key parameter in the operation of an electrochemical double-layer capacitor is the voltage window, which dictates the device energy density and power density. Here we demonstrate experimental evidence that π-π stacking at a carbon-ionic liquid interface can modify the operation voltage of a supercapacitor device by up to 30%, and this can be recovered by steric hindrance at the electrode-electrolyte interface introduced by poly(ethylene oxide) polymer electrolyte additives. This observation is supported by Raman spectroscopy, electrochemical impedance spectroscopy, and differential scanning calorimetry that each independently elucidates the signature of π-π stacking between imidazole groups in the ionic liquid and the carbon surface and the role this plays to lower the energy barrier for charge transfer at the electrode-electrolyte interface. This effect is further observed universally across two separate ionic liquid electrolyte systems and is validated by control experiments showing an invariant electrochemical window in the absence of a carbon-ionic liquid electrode-electrolyte interface. As interfacial or noncovalent interactions are usually neglected in the mechanistic picture of double-layer capacitors, this work highlights the importance of understanding chemical properties at supercapacitor interfaces to engineer voltage and energy capability.

  15. Fluid flow sensing with ionic polymer-metal composites

    NASA Astrophysics Data System (ADS)

    Stalbaum, Tyler; Trabia, Sarah; Shen, Qi; Kim, Kwang J.

    2016-04-01

    Ionic polymer-metal composite (IPMC) actuators and sensors have been developed and modeled over the last two decades for use as soft-robotic deformable actuators and sensors. IPMC devices have been suggested for application as underwater actuators, energy harvesting devices, and medical devices such as in guided catheter insertion. Another interesting application of IPMCs in flow sensing is presented in this study. IPMC interaction with fluid flow is of interest to investigate the use of IPMC actuators as flow control devices and IPMC sensors as flow sensing devices. An organized array of IPMCs acting as interchanging sensors and actuators could potentially be designed for both flow measurement and control, providing an unparalleled tool in maritime operations. The underlying physics for this system include the IPMC ion transport and charge fundamental framework along with fluid dynamics to describe the flow around IPMCs. An experimental setup for an individual rectangular IPMC sensor with an externally controlled fluid flow has been developed to investigate this phenomenon and provide further insight into the design and application of this type of device. The results from this portion of the study include recommendations for IPMC device designs in flow control.

  16. Enhancing grain boundary ionic conductivity in mixed ionic-electronic conductors.

    PubMed

    Lin, Ye; Fang, Shumin; Su, Dong; Brinkman, Kyle S; Chen, Fanglin

    2015-04-10

    Mixed ionic-electronic conductors are widely used in devices for energy conversion and storage. Grain boundaries in these materials have nanoscale spatial dimensions, which can generate substantial resistance to ionic transport due to dopant segregation. Here, we report the concept of targeted phase formation in a Ce0.8Gd0.2O2-δ-CoFe2O4 composite that serves to enhance the grain boundary ionic conductivity. Using transmission electron microscopy and spectroscopy approaches, we probe the grain boundary charge distribution and chemical environments altered by the phase reaction between the two constituents. The formation of an emergent phase successfully avoids segregation of the Gd dopant and depletion of oxygen vacancies at the Ce0.8Gd0.2O2-δ-Ce0.8Gd0.2O2-δ grain boundary. This results in superior grain boundary ionic conductivity as demonstrated by the enhanced oxygen permeation flux. This work illustrates the control of mesoscale level transport properties in mixed ionic-electronic conductor composites through processing induced modifications of the grain boundary defect distribution.

  17. Mapping Ionic Currents and Reactivity on the Nanoscale: Electrochemical Strain Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinin, S.V.

    2010-10-19

    Solid-state electrochemical processes in oxides underpin a broad spectrum of energy and information storage devices, ranging from Li-ion and Li-air batteries, to solid oxide fuel cells (SOFC) to electroresistive and memristive systems. These functionalities are controlled by the bias-driven diffusive and electromigration transport of mobile ionic species, as well as intricate a set of electrochemical and defect-controlled reactions at interfaces and in bulk. Despite the wealth of device-level and atomistic studies, little is known on the mesoscopic mechanisms of ion diffusion and electronic transport on the level of grain clusters, individual grains, and extended defects. The development of the capabilitymore » for probing ion transport on the nanometer scale is a key to deciphering complex interplay between structure, functionality, and performance in these systems. Here we introduce Electrochemical Strain Microscopy, a scanning probe microscopy technique based on strong strain-bias coupling in the systems in which local ion concentrations are changed by electrical fields. The imaging capability, as well as time- and voltage spectroscopies analogous to traditional current based electrochemical characterization methods are developed. The reversible intercalation of Li and mapping electrochemical activity in LiCoO2 is demonstrated, illustrating higher Li diffusivity at non-basal planes and grain boundaries. In Si-anode device structure, the direct mapping of Li diffusion at extended defects and evolution of Li-activity with charge state is explored. The electrical field-dependence of Li mobility is studied to determine the critical bias required for the onset of electrochemical transformation, allowing reaction and diffusion processes in the battery system to be separated at each location. Finally, the applicability of ESM for probing oxygen vacancy diffusion and oxygen reduction/evolution reactions is illustrated, and the high resolution ESM maps are correlated with aberration corrected scanning transmission electron microscopy imaging. The future potential for deciphering mechanisms of electrochemical transformations on an atomically-defined single-defect level is discussed.« less

  18. Theoretical and experimental studies on ionic currents in nanopore-based biosensors.

    PubMed

    Liu, Lei; Li, Chu; Ma, Jian; Wu, Yingdong; Ni, Zhonghua; Chen, Yunfei

    2014-12-01

    Novel generation of analytical technology based on nanopores has provided possibilities to fabricate nanofluidic devices for low-cost DNA sequencing or rapid biosensing. In this paper, a simplified model was suggested to describe DNA molecule's translocation through a nanopore, and the internal potential, ion concentration, ionic flowing speed and ionic current in nanopores with different sizes were theoretically calculated and discussed on the basis of Poisson-Boltzmann equation, Navier-Stokes equation and Nernst-Planck equation by considering several important parameters, such as the applied voltage, the thickness and the electric potential distributions in nanopores. In this way, the basic ionic currents, the modulated ionic currents and the current drops induced by translocation were obtained, and the size effects of the nanopores were carefully compared and discussed based on the calculated results and experimental data, which indicated that nanopores with a size of 10 nm or so are more advantageous to achieve high quality ionic current signals in DNA sensing.

  19. Correlating morphology to dc conductivity in polymerized ionic liquids

    NASA Astrophysics Data System (ADS)

    Iacob, Ciprian; Matusmoto, Atsushi; Inoue, Tadashi; Runt, James

    Polymerized ionic liquids (PILs) combine the attractive mechanical characteristics of polymers and unique physico-chemical properties of low molecular weight ionic liquids in the same material. PILs have shown remarkable advantages when employed in electrochemical devices such as dye-sensitized solar cells and lithium batteries, among others. Understanding their ionic transport mechanism is the key for designing highly conductive PILs. In the current study, the correlation between morphology and charge transport in two homologous series of PILs with systematic variation of the alkyl chain length and anions is investigated using broadband dielectric spectroscopy, rheology, differential scanning calorimetry and X-ray scattering. As the alkyl chain length increases, the backbone-to-backbone separation increases, and dc-conductivity consequently decreases. The cations dominate structural dynamics since they are attached to the polymer chains, while the anions are smaller and more mobile ionic species thereby controlling the ionic conductivity. Further interpretation of decoupling of dc conductivity from the segmental relaxation enabled the correlation between polymer morphology and dc conductivity. Supported by the National Science Foundation, Polymers Program.

  20. The Effect of Voltage Charging on the Transport Properties of Gold Nanotube Membranes.

    PubMed

    Experton, Juliette; Martin, Charles R

    2018-05-01

    Porous membranes are used in chemical separations and in many electrochemical processes and devices. Research on the transport properties of a unique class of porous membranes that contain monodisperse gold nanotubes traversing the entire membrane thickness is reviewed here. These gold nanotubes can act as conduits for ionic and molecular transports through the membrane. Because the tubes are electronically conductive, they can be electrochemically charged by applying a voltage to the membrane. How this "voltage charging" affects the transport properties of gold nanotube membranes is the subject of this Review. Experiments showing that voltage charging can be used to reversibly switch the membrane between ideally cation- and anion-transporting states are reviewed. Voltage charging can also be used to enhance the ionic conductivity of gold nanotube membranes. Finally, voltage charging to accomplish electroporation of living bacteria as they pass through gold nanotube membranes is reviewed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Anomalous piezoelectric properties of poly(vinylidene fluoride-trifluoroethylene)/ionic liquid gels

    NASA Astrophysics Data System (ADS)

    Fukagawa, Miki; Koshiba, Yasuko; Fukushima, Tatsuya; Morimoto, Masahiro; Ishida, Kenji

    2018-04-01

    Piezoelectric gels were prepared from low-volatile ionic liquid (IL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Emim][TFSI]) gels, and their structural, ferroelectric, and piezoelectric properties were investigated. Poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE)/IL gels were formed using thermally reversible physical gels. The structural characterization indicated that the P(VDF-TrFE) molecules in the gels predominantly formed a ferroelectric phase (Form I) of P(VDF-TrFE). Polarization switching peaks were clearly observed using a three-layer stacked device structure. The coercive field of the P(VDF-TrFE)/IL gels substantially decreased to 4-9 MV/m, and their remnant polarizations were maintained at 63-71 mC/m2, which is similar to that for typical solid-state P(VDF-TrFE). Finally, the P(VDF-TrFE)/IL gel films exhibited a piezoelectric response, and the highest piezoelectric coefficient was ˜300 pm/V at an applied voltage frequency of 4 kHz.

  2. Conjugated Polymers in Bioelectronics.

    PubMed

    Inal, Sahika; Rivnay, Jonathan; Suiu, Andreea-Otilia; Malliaras, George G; McCulloch, Iain

    2018-06-19

    The emerging field of organic bioelectronics bridges the electronic world of organic-semiconductor-based devices with the soft, predominantly ionic world of biology. This crosstalk can occur in both directions. For example, a biochemical reaction may change the doping state of an organic material, generating an electronic readout. Conversely, an electronic signal from a device may stimulate a biological event. Cutting-edge research in this field results in the development of a broad variety of meaningful applications, from biosensors and drug delivery systems to health monitoring devices and brain-machine interfaces. Conjugated polymers share similarities in chemical "nature" with biological molecules and can be engineered on various forms, including hydrogels that have Young's moduli similar to those of soft tissues and are ionically conducting. The structure of organic materials can be tuned through synthetic chemistry, and their biological properties can be controlled using a variety of functionalization strategies. Finally, organic electronic materials can be integrated with a variety of mechanical supports, giving rise to devices with form factors that enable integration with biological systems. While these developments are innovative and promising, it is important to note that the field is still in its infancy, with many unknowns and immense scope for exploration and highly collaborative research. The first part of this Account details the unique properties that render conjugated polymers excellent biointerfacing materials. We then offer an overview of the most common conjugated polymers that have been used as active layers in various organic bioelectronics devices, highlighting the importance of developing new materials. These materials are the most popular ethylenedioxythiophene derivatives as well as conjugated polyelectrolytes and ion-free organic semiconductors functionalized for the biological interface. We then discuss several applications and operation principles of state-of-the-art bioelectronics devices. These devices include electrodes applied to sense/trigger electrophysiological activity of cells as well as electrolyte-gated field-effect and electrochemical transistors used for sensing of biochemical markers. Another prime application example of conjugated polymers is cell actuators. External modulation of the redox state of the underlying conjugated polymer films controls the adhesion behavior and viability of cells. These smart surfaces can be also designed in the form of three-dimensional architectures because of the processability of conjugated polymers. As such, cell-loaded scaffolds based on electroactive polymers enable integrated sensing or stimulation within the engineered tissue itself. A last application example is organic neuromorphic devices, an alternative computing architecture that takes inspiration from biology and, in particular, from the way the brain works. Leveraging ion redistribution inside a conjugated polymer upon application of an electrical field and its coupling with electronic charges, conjugated polymers can be engineered to act as artificial neurons or synapses with complex, history-dependent behavior. We conclude this Account by highlighting main factors that need to be considered for the design of a conjugated polymer for applications in bioelectronics-although there can be various figures of merit given the broad range of applications, as emphasized in this Account.

  3. Robust and versatile ionic liquid microarrays achieved by microcontact printing

    NASA Astrophysics Data System (ADS)

    Gunawan, Christian A.; Ge, Mengchen; Zhao, Chuan

    2014-04-01

    Lab-on-a-chip and miniaturized systems have gained significant popularity motivated by marked differences in material performance at the micro-to-nano-scale realm. However, to fully exploit micro-to-nano-scale chemistry, solvent volatility and lack of reproducibility need to be overcome. Here, we combine the non-volatile and versatile nature of ionic liquids with microcontact printing in an attempt to establish a facile protocol for high throughput fabrication of open microreactors and microfluidics. The micropatterned ionic liquid droplets have been demonstrated as electrochemical cells and reactors for microfabrication of metals and charge transfer complexes, substrates for immobilization of proteins and as membrane-free high-performance amperometric gas sensor arrays. The results suggest that miniaturized ionic liquid systems can be used to solve the problems of solvent volatility and slow mass transport in viscous ionic liquids in lab-on-a-chip devices, thus providing a versatile platform for a diverse number of applications.

  4. Neuromimetic Circuits with Synaptic Devices Based on Strongly Correlated Electron Systems

    NASA Astrophysics Data System (ADS)

    Ha, Sieu D.; Shi, Jian; Meroz, Yasmine; Mahadevan, L.; Ramanathan, Shriram

    2014-12-01

    Strongly correlated electron systems such as the rare-earth nickelates (R NiO3 , R denotes a rare-earth element) can exhibit synapselike continuous long-term potentiation and depression when gated with ionic liquids; exploiting the extreme sensitivity of coupled charge, spin, orbital, and lattice degrees of freedom to stoichiometry. We present experimental real-time, device-level classical conditioning and unlearning using nickelate-based synaptic devices in an electronic circuit compatible with both excitatory and inhibitory neurons. We establish a physical model for the device behavior based on electric-field-driven coupled ionic-electronic diffusion that can be utilized for design of more complex systems. We use the model to simulate a variety of associate and nonassociative learning mechanisms, as well as a feedforward recurrent network for storing memory. Our circuit intuitively parallels biological neural architectures, and it can be readily generalized to other forms of cellular learning and extinction. The simulation of neural function with electronic device analogs may provide insight into biological processes such as decision making, learning, and adaptation, while facilitating advanced parallel information processing in hardware.

  5. Binder-free three-dimensional high energy density electrodes for ionic-liquid supercapacitors.

    PubMed

    Tran, Chau; Lawrence, Daniel; Richey, Francis W; Dillard, Caitlin; Elabd, Yossef A; Kalra, Vibha

    2015-09-18

    We demonstrate a facile methodology to fabricate binder-free porous carbon nanofiber electrodes for room temperature ionic-liquid supercapacitors. The device provides an energy density of 80 W h kg(-1) based on the mass of two electrodes while retaining the high rate capability of supercapacitors with near-ideal CV curves at a high scan rate of 200 mV s(-1).

  6. Equations of state and transport properties of mixtures in the warm dense regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Yong; Dai, Jiayu; Kang, Dongdong

    2015-02-15

    We have performed average-atom molecular dynamics to simulate the CH and LiH mixtures in the warm dense regime, and obtained equations of state and the ionic transport properties. The electronic structures are calculated by using the modified average-atom model, which have included the broadening of energy levels, and the ion-ion pair potentials of mixtures are constructed based on the temperature-dependent density functional theory. The ionic transport properties, such as ionic diffusion and shear viscosity, are obtained through the ionic velocity correlation functions. The equations of state and transport properties for carbon, hydrogen and lithium, hydrogen mixtures in a wide regionmore » of density and temperature are calculated. Through our computing the average ionization degree, average ion-sphere diameter and transition properties in the mixture, it is shown that transport properties depend not only on the ionic mass but also on the average ionization degree.« less

  7. Improved Performance of Ionic Liquid Supercapacitors by using Tetracyanoborate Anions.

    PubMed

    Martins, Vitor L; Rennie, Anthony J R; Sanchez-Ramirez, Nedher; Torresi, Roberto M; Hall, Peter J

    2018-02-01

    Supercapacitors are energy storage devices designed to operate at higher power densities than conventional batteries, but their energy density is still too low for many applications. Efforts are made to design new electrolytes with wider electrochemical windows than aqueous or conventional organic electrolytes in order to increase energy density. Ionic liquids (ILs) with wide electrochemical stability windows are excellent candidates to be employed as supercapacitor electrolytes. ILs containing tetracyanoborate anions [B(CN) 4 ] offer wider electrochemical stability than conventional electrolytes and maintain a high ionic conductivity (6.9 mS cm -1 ). Herein, we report the use of ILs containing the [B(CN) 4 ] anion for such an application. They presented a high maximum operating voltage of 3.7 V, and two-electrode devices demonstrate high specific capacitances even when operating at relatively high rates (ca. 20 F g -1 @ 15 A g -1 ). This supercapacitor stored more energy and operated at a higher power at all rates studied when compared with cells using a commonly studied ILs.

  8. Ion transferring in polyelectrolyte networks in electric fields

    NASA Astrophysics Data System (ADS)

    Li, Honghao; Erbas, Aykut; Zwanikken, Jos; Olvera de La Cruz, Monica

    Ion-conducting polyelectrolyte gels have drawn the attention of many researchers in the last few decades as they have wide applications not only in lithium batteries but also as stretchable, transparent ionic conductor or ionic cables devices. However, ion dynamics in polyelectrolyte gels has been much less studied analytically or computationally due to the complicated interplay of long-range electrostatic and short-range interactions. Here we propose a coarse-grained non-equilibrium molecular dynamics simulation to study the ion dynamics in polyelectrolyte gels under external electric fields. We found a nonlinear response region where the molar conductivity of polyelectrolyte gels increases with external fields. We propose counterion redistribution under electric fields as the driving mechanism. We also found the ionic conductivity to be modulated by changing polylelectrolyte network topology such as the chain length. Our discovery reveals the essential difference of ion dynamics between electrolytes and polyelectrolyte gels. These results will expand our understanding in charged polymeric systems and help in designing ion-conducting devices with higher conductivity.

  9. Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis

    PubMed Central

    Calado, Philip; Telford, Andrew M.; Bryant, Daniel; Li, Xiaoe; Nelson, Jenny; O'Regan, Brian C.; Barnes, Piers R.F.

    2016-01-01

    Ion migration has been proposed as a possible cause of photovoltaic current–voltage hysteresis in hybrid perovskite solar cells. A major objection to this hypothesis is that hysteresis can be reduced by changing the interfacial contact materials; however, this is unlikely to significantly influence the behaviour of mobile ionic charge within the perovskite phase. Here, we show that the primary effects of ion migration can be observed regardless of whether the contacts were changed to give devices with or without significant hysteresis. Transient optoelectronic measurements combined with device simulations indicate that electric-field screening, consistent with ion migration, is similar in both high and low hysteresis CH3NH3PbI3 cells. Simulation of the photovoltage and photocurrent transients shows that hysteresis requires the combination of both mobile ionic charge and recombination near the perovskite-contact interfaces. Passivating contact recombination results in higher photogenerated charge concentrations at forward bias which screen the ionic charge, reducing hysteresis. PMID:28004653

  10. Influence of the ionic liquid [C4mpy][Tf2N] on the structure of the miniprotein Trp-cage.

    PubMed

    Baker, Joseph L; Furbish, Jeffrey; Lindberg, Gerrick E

    2015-11-01

    We examine the effect of the ionic liquid [C4mpy][Tf2N] on the structure of the miniprotein Trp-cage and contrast these results with the behavior of Trp-cage in water. We find the ionic liquid has a dramatic effect on Trp-cage, though many similarities with aqueous Trp-cage are observed. We assess Trp-cage folding by monitoring root mean square deviation from the crystallographic structure, radius of gyration, proline cis/trans isomerization state, protein secondary structure, amino acid contact formation and distance, and native and non-native contact formation. Starting from an unfolded configuration, Trp-cage folds in water at 298 K in less than 500 ns of simulation, but has very little mobility in the ionic liquid at the same temperature, which can be ascribed to the higher ionic liquid viscosity. At 365 K, the mobility of the ionic liquid is increased and initial stages of Trp-cage folding are observed, however Trp-cage does not reach the native folded state in 2 μs of simulation in the ionic liquid. Therefore, in addition to conventional molecular dynamics, we also employ scaled molecular dynamics to expedite sampling, and we demonstrate that Trp-cage in the ionic liquid does closely approach the aqueous folded state. Interestingly, while the reduced mobility of the ionic liquid is found to restrict Trp-cage motion, the ionic liquid does facilitate proline cis/trans isomerization events that are not seen in our aqueous simulations. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Potentiostat for Characterizing Microstructures at Ionic Liquid/Electrode Interfaces

    DTIC Science & Technology

    2015-10-10

    processes and devices (e.g., supercapacitors ). The potentiostat has been synchronized with an infrared spectrometer 1. REPORT DATE (DD-MM-YYYY) 4. TITLE...progress of many important energy conversion processes and devices (e.g., supercapacitors ). The potentiostat has been synchronized with an infrared...devices (e.g., supercapacitors ). The potentiostat has been synchronized with an infrared spectrometer to perform surface enhanced infrared absorption

  12. Structural and electrical characterization of tamarind seed polysaccharide (TSP) doped with NH4HCO2

    NASA Astrophysics Data System (ADS)

    Premalatha, M.; Mathavan, T.; Selvasekarapandian, S.; Selvalakshmi, S.

    2018-04-01

    In the modern era, development of electrochemical energy devices such as batteries, fuel cells and supercapacitors gain attention due to the deficiency of renewable energy resources. More specifically, proton conducting materials create prime interest in the development of electrochemical devices. In this regards, a novel proton conducting biopolymer electrolyte based on Tamarind Seed Polysaccharide (TSP) was synthesized with different concentration of ammonium formate (NH4HCO2). The amorphous nature of the polymer electrolytes has been identified by XRD technique. The observed ionic conductivity values reveal that the biopolymer containing 1 g TSP: 0.4 g NH4HCO2 has highest ionic conductivity 1.23×10-3 S cm-1.

  13. Electromagnetic micropores: fabrication and operation.

    PubMed

    Basore, Joseph R; Lavrik, Nickolay V; Baker, Lane A

    2010-12-21

    We describe the fabrication and characterization of electromagnetic micropores. These devices consist of a micropore encompassed by a microelectromagnetic trap. Fabrication of the device involves multiple photolithographic steps, combined with deep reactive ion etching and subsequent insulation steps. When immersed in an electrolyte solution, application of a constant potential across the micropore results in an ionic current. Energizing the electromagnetic trap surrounding the micropore produces regions of high magnetic field gradients in the vicinity of the micropore that can direct motion of a ferrofluid onto or off of the micropore. This results in dynamic gating of the ion current through the micropore structure. In this report, we detail fabrication and characterize the electrical and ionic properties of the prepared electromagnetic micropores.

  14. Polystyrene-block-Poly(ionic liquid) Copolymers as Work Function Modifiers in Inverted Organic Photovoltaic Cells.

    PubMed

    Park, Jong Baek; Isik, Mehmet; Park, Hea Jung; Jung, In Hwan; Mecerreyes, David; Hwang, Do-Hoon

    2018-02-07

    Interfacial layers play a critical role in building up the Ohmic contact between electrodes and functional layers in organic photovoltaic (OPV) solar cells. These layers are based on either inorganic oxides (ZnO and TiO 2 ) or water-soluble organic polymers such as poly[(9,9-dioctyl-2,7-fluorene)-alt-(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)] and polyethylenimine ethoxylated (PEIE). In this work, we have developed a series of novel poly(ionic liquid) nonconjugated block copolymers for improving the performance of inverted OPV cells by using them as work function modifiers of the indium tin oxide (ITO) cathode. Four nonconjugated polyelectrolytes (n-CPEs) based on polystyrene and imidazolium poly(ionic liquid) (PSImCl) were synthesized by reversible addition-fragmentation chain transfer polymerization. The ratio of hydrophobic/hydrophilic block copolymers was varied depending on the ratio of polystyrene to the PSImCl block. The ionic density, which controls the work function of the electrode by forming an interfacial dipole between the electrode and the block copolymers, was easily tuned by simply changing the PSImCl molar ratio. The inverted OPV device with the ITO/PS 29 -b-PSImCl 60 cathode achieved the best power conversion efficiency (PCE) of 7.55% among the synthesized block copolymers, exhibiting an even higher PCE than that of the reference OPV device with PEIE (7.30%). Furthermore, the surface properties of the block copolymers films were investigated by contact angle measurements to explore the influence of the controlled hydrophobic/hydrophilic characters on the device performances.

  15. Thermally responsive polymer electrolytes for inherently safe electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Kelly, Jesse C.

    Electrochemical double layer capacitors (EDLCs), supercapacitors and Li-ion batteries have emerged as premier candidates to meet the rising demands in energy storage; however, such systems are limited by thermal hazards, thermal runaway, fires and explosions, all of which become increasingly more dangerous in large-format devices. To prevent such scenarios, thermally-responsive polymer electrolytes (RPEs) that alter properties in electrochemical energy storage devices were designed and tested. These RPEs will be used to limit or halt device operation when temperatures increase beyond a predetermined threshold, therefore limiting further heating. The development of these responsive systems will offer an inherent safety mechanism in electrochemical energy storage devices, while preserving the performance, lifetimes, and versatility that large-format systems require. Initial work focused on the development of a model system that demonstrated the concept of RPEs in an electrochemical device. Aqueous electrolyte solutions of polymers exhibiting properties that change in response to temperature were developed for applications in EDLCs and supercapacitors. These "smart materials" provide a means to control electrochemical systems where polymer phase separation at high temperatures affects electrolyte properties and inhibits device performance. Aqueous RPEs were synthesized using N-isopropylacrylamide, which governs the thermal properties, and fractions of acrylic acid or vinyl sulfonic acids, which provide ions to the solution. The molecular properties of these aqueous RPEs, specifically the ionic composition, were shown to influence the temperature-dependent electrolyte properties and the extent to which these electrolytes control the energy storage characteristics of a supercapacitor device. Materials with high ionic content provided the highest room temperature conductivity and electrochemical activity; however, RPEs with low ionic content provided the highest "on-off" ratio in electrochemical activity at elevated temperatures. Overall, solution pH and conductivity were altered by an order of magnitude and device performance (ability to store charge) decreased by over 70%. After demonstration of a model responsive electrolyte in an aqueous system, ionic liquid (IL) based electrolytes were developed as a means of controlling the electrochemical performance in the non-aqueous environments that batteries, specifically Li-ion, require. Here, two systems were developed: (1) an electrolyte comprising poly(ethylene oxide) (PEO), the IL, [EMIM][BF4], and a lithium salt and (2) an electrolyte comprising poly(benzyl methacrylate) (PBzMA), the IL, [EMIM][TFSI], and a lithium salt. In each system, the polymer-IL phase separation inhibited device operation at elevated temperatures. For the PEO/IL electrolyte, the thermally induced liquid-liquid phase separation was shown to decrease the ionic conductivity, thereby affecting the concentration of ions at the electrode. Additionally, an increasing charge transfer resistance associated with the phase separated polymer coating the porous electrode was shown to limit electrochemical activity significantly. For the PBzMA/IL electrolyte, the solid-liquid phase separation did not show a change in conductivity, but did cause a drastic increase in charge transfer resistance, effectively shutting off Li-ion battery operation at high temperatures. Such responsive mixtures provide a transformative approach to regulating electrochemical processes, which is necessary to achieve inherently safe operation in large format energy storage with EDLCs, supercapacitors and Li-ion batteries.

  16. Molecular mobility, morphology, and ion conduction in ionomers for electroactive devices

    NASA Astrophysics Data System (ADS)

    Tudryn, Gregory J.

    A sequential study of ion-containing polymers capable of ion solvation with varied ion content, dielectric constant, and counterions is presented in this dissertation in order to compare ion transport properties in ionomers with various ionic interactions. Structure-property relationships in these ion containing polymers are defined using x-ray scattering, rheology and dielectric spectroscopy, enabling the quantification of ion transport dynamics. Poly(ethylene oxide), (PEO) based ionomers are investigated in order to probe the relation between ion conduction and segmental relaxation, and copolymers of PEO and Poly(tetramethylene oxide), (PTMO) further develop an understanding of the trade-off between ion solvation and segmental dynamics. Ionomers with ionic liquid counterions probe diffuse charge interactions and steric effects on ion transport, and incorporation of ionic liquids into ionomer membranes such as Nafion provides desirable thermal and ion conducting properties which extend the use of such membranes for electroactive devices. PEO ionomers exhibit a strong relation between ionic conductivity and segmental dynamics, providing insight that the glass transition temperature, Tg, dominates the ion conduction mechanism. Increasing temperature induces aggregation of ionic groups as evidenced by the static dielectric constant and X-ray scattering as a function of temperature, revealing the contribution of ionic dipoles in the measured dielectric constant. The trade-off between ion solvation and fast polymer segmental dynamics are quantified in copolymer ionomers of PEO and lower Tg PTMO. While conducting ion content remains nearly unchanged, conductivity is lowered upon incorporation of PTMO, because the vast majority of the PTMO microphase separates from the PEO-rich microdomain that remains continuous and contributes most of the ion conduction. Dielectric constants and X-ray scattering show consistent changes with temperature that suggest a cascading aggregation process in Na ionomers as ionic dipoles thermally randomize and lower the measured dielectric constant of the medium, leading to further aggregation. We observe amplified microphase-separation through ionic groups preferentially solvated by PEO chains, as seen in block copolymers with added salt. Even at 25%PEO / 75%PTMO the ionomers have VFT temperature dependence of conducting ion mobility, meaning that the 25% PEO/ion microphase is still continuous A model is developed to describe the frequency dependent storage and loss modulus and the delay in Rouse motion due to ion association lifetime, as functions of ion content and molecular weight for our low molecular weight ionomers. The ion rearrangement relaxation in dielectric spectroscopy is clearly the ion association lifetime that controls terminal dynamics in linear viscoelasticity, allowing a simple sticky Rouse model, using the most-probable distribution based on NMR Mn, to fully describe master curves of the frequency dependent storage and loss modulus. Using insight from ionic interaction strength, ionic liquids are used as counterions, effectively plasticizing the ionomers without added solvent. Ionic interactions were weakened with increasing counterion size, and with modification of cations using ether-oxygen, promoting self-solvation, which increases conducting ion density by an order of magnitude. Room temperature ionic liquids were subsequently used in combination with NafionRTM membranes as electroactive substrates to correlate ion transport to morphology as a function of volume fraction of ionic liquid. This study illuminated the critical volume uptake of ionic liquid in Nafion, identifying percolation of ionic pathways and a significant increase in dielectric constant at low frequencies, indicating an increase in the number density of ions capable of polarizing at the electrode surface. Consequently, the fundamental information obtained about the structure-property relations of ionomers can be used to predict and design advanced ion-containing polymers to be used in battery membranes and a variety of electroactive devices, including actuators and electromechanical sensors.

  17. A Bioinspired Mineral Hydrogel as a Self-Healable, Mechanically Adaptable Ionic Skin for Highly Sensitive Pressure Sensing.

    PubMed

    Lei, Zhouyue; Wang, Quankang; Sun, Shengtong; Zhu, Wencheng; Wu, Peiyi

    2017-06-01

    In the past two decades, artificial skin-like materials have received increasing research interests for their broad applications in artificial intelligence, wearable devices, and soft robotics. However, profound challenges remain in terms of imitating human skin because of its unique combination of mechanical and sensory properties. In this work, a bioinspired mineral hydrogel is developed to fabricate a novel type of mechanically adaptable ionic skin sensor. Due to its unique viscoelastic properties, the hydrogel-based capacitive sensor is compliant, self-healable, and can sense subtle pressure changes, such as a gentle finger touch, human motion, or even small water droplets. It might not only show great potential in applications such as artificial intelligence, human/machine interactions, personal healthcare, and wearable devices, but also promote the development of next-generation mechanically adaptable intelligent skin-like devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Role of salt concentration in blend polymer for energy storage conversion devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arya, Anil; Sharma, A. L., E-mail: alsharmaiitkgp@gmail.com; Sadiq, M.

    2016-05-06

    Solid Polymer Electrolytes (SPE) are materials of considerable interest worldwide, which serves dual purpose of electrolyte and separator between electrode compartments in renewable energy conversion/storage devices such as; high energy density batteries, electrochromic display devices, and supercapacitors. Polymer blend electrolytes are prepared for various concentration of salt (Ö/Li) with the constant ratio (0.5 gm) of each PEO and PAN polymers (blend polymer) using solution casting technique. Solid polymeric ionic conductor as a separator is the ultimate substitute to eliminate the drawback related to liquid and gel polymer ionic conductors. In the present work, solid polymer electrolyte film consisting of PEO,more » PAN and LiPF{sub 6} are examined for various concentration of lithium salt by keeping PEO/PAN blend ratio as a constant with a view to optimize the dominant salt concentration which could give the maximum conductivity at ambient temperature.« less

  19. Mechanically Tunable, Readily Processable Ion Gels by Self-Assembly of Block Copolymers in Ionic Liquids.

    PubMed

    Lodge, Timothy P; Ueki, Takeshi

    2016-01-01

    Room temperature ionic liquids are of great interest for many advanced applications, due to the combination of attractive physical properties with essentially unlimited tunability of chemical structure. High chemical and thermal stability, favorable ionic conductivity, and complete nonvolatility are just some of the most important physical characteristics that make ionic liquids promising candidates for emerging technologies. Examples include separation membranes, actuators, polymer gel electrolytes, supercapacitors, ion batteries, fuel cell membranes, sensors, printable plastic electronics, and flexible displays. However, in these and other applications, it is essential to solidify the ionic liquid, while retaining the liquid state properties of interest. A broadly applicable solidification strategy relies on gelation by addition of suitable triblock copolymers with the ABA architecture, producing ion gels or ionogels. In this paradigm, the A end blocks are immiscible with the ionic liquid, and consequently self-assemble into micellar cores, while some fraction of the well-solvated B midblocks bridge between micelles, forming a percolating network. The chemical structures of the A and B repeat units, the molar mass of the blocks, and the concentration of the copolymer in the ionic liquid are all independently tunable to attain desired property combinations. In particular, the modulus of the resulting ion gel can be readily varied between 100 Pa and 1 MPa, with little sacrifice of the transport properties of the ionic liquid, such as ionic conductivity or gas diffusivity. Suitable A blocks can impart thermoreversible gelation (with solidification either on heating or cooling) or even photoreversible gelation. By virtue of the nonvolatility of ionic liquids, a wide range of processing strategies can be employed directly to prepare ion gels in thin or thick film forms, including solvent casting, spin coating, aerosol jet printing, photopatterning, and transfer printing. For higher modulus ion gels it is even possible to employ a manual "cut and stick" strategy for easy device fabrication. Ion gels prepared from common triblock copolymers, for example, with A = polystyrene and B = poly(ethylene oxide) or poly(methyl methacrylate), in imidazolium based ionic liquids provide exceptional performance in membranes for separating CO 2 from N 2 or CH 4 . The same materials also are the best available gate dielectrics for printed plastic electronics, because their high capacitance endows organic transistors with milliamp output currents for sub-1 V applied bias, with switching speeds that can go well beyond 100 kHz, while being amenable to large area roll-to-roll printing. Incorporation of well-designed electroluminescent (e.g., Ru(bpy) 3 -based) or electrochromic (e.g., viologen-based) moieties into ion gels held between transparent electrodes yields flexible color displays operating with sub-1 V dc inputs.

  20. Designing 3D Multihierarchical Heteronanostructures for High-Performance On-Chip Hybrid Supercapacitors: Poly(3,4-(ethylenedioxy)thiophene)-Coated Diamond/Silicon Nanowire Electrodes in an Aprotic Ionic Liquid.

    PubMed

    Aradilla, David; Gao, Fang; Lewes-Malandrakis, Georgia; Müller-Sebert, Wolfgang; Gentile, Pascal; Boniface, Maxime; Aldakov, Dmitry; Iliev, Boyan; Schubert, Thomas J S; Nebel, Christoph E; Bidan, Gérard

    2016-07-20

    A versatile and robust hierarchically multifunctionalized nanostructured material made of poly(3,4-(ethylenedioxy)thiophene) (PEDOT)-coated diamond@silicon nanowires has been demonstrated to be an excellent capacitive electrode for supercapacitor devices. Thus, the electrochemical deposition of nanometric PEDOT films on diamond-coated silicon nanowire (SiNW) electrodes using N-methyl-N-propylpyrrolidinium bis((trifluoromethyl)sulfonyl)imide ionic liquid displayed a specific capacitance value of 140 F g(-1) at a scan rate of 1 mV s(-1). The as-grown functionalized electrodes were evaluated in a symmetric planar microsupercapacitor using butyltrimethylammonium bis((trifluoromethyl)sulfonyl)imide aprotic ionic liquid as the electrolyte. The device exhibited extraordinary energy and power density values of 26 mJ cm(-2) and 1.3 mW cm(-2) within a large voltage cell of 2.5 V, respectively. In addition, the system was able to retain 80% of its initial capacitance after 15 000 galvanostatic charge-discharge cycles at a high current density of 1 mA cm(-2) while maintaining a Coulombic efficiency around 100%. Therefore, this multifunctionalized hybrid device represents one of the best electrochemical performances concerning coated SiNW electrodes for a high-energy advanced on-chip supercapacitor.

  1. The Role of Ionic Interactions in the Adherence of the S. epidermidis Adhesin SdrF to Prosthetic Material

    PubMed Central

    Toba, Faustino A.; Visai, Livia; Trivedi, Sheetal; Lowy, Franklin D.

    2012-01-01

    Staphylococcus epidermidis infections are common complications of prosthetic device implantation. SdrF, a surface protein, appears to play a critical role in the initial colonization step by adhering to type I collagen and Dacron™. The role of ionic interactions in S. epidermidis adherence to prosthetic material was examined. SdrF was cloned and expressed in Lactococcus lactis. The effect of pH, cation concentration and detergents on adherence to different types of plastic surfaces was assessed by crystal violet staining and bacterial cell counting. SdrF, in contrast with controls and other S. epidermidis surface proteins, bound to hydrophobic materials such as polystyrene. Binding was an ionic interaction and was affected by surface charge of the plastic, pH and cation concentration. Adherence of the SdrF construct was increased to positively charged plastics and was reduced by increasing concentrations of Ca2+ and Na+. Binding was optimal at pH 7.4. Kinetic studies demonstrated that the SdrF B domain, as well as one of the B subdomains was sufficient to mediate binding. The SdrF construct also bound more avidly to Goretex™ than the lacotococcal control. SdrF is a multifunctional protein that contributes to prosthetic devices infections by ionic, as well as specific receptor-ligand interactions. PMID:23039791

  2. Nanoscale Solid State Batteries Enabled by Thermal Atomic Layer Deposition of a Lithium Polyphosphazene Solid State Electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearse, Alexander J.; Schmitt, Thomas E.; Fuller, Elliot J.

    Several active areas of research in novel energy storage technologies, including three-dimensional solid state batteries and passivation coatings for reactive battery electrode components, require conformal solid state electrolytes. We describe an atomic layer deposition (ALD) process for a member of the lithium phosphorus oxynitride (LiPON) family, which is employed as a thin film lithium-conducting solid electrolyte. The reaction between lithium tert-butoxide (LiO tBu) and diethyl phosphoramidate (DEPA) produces conformal, ionically conductive thin films with a stoichiometry close to Li 2PO 2N between 250 and 300°C. The P/N ratio of the films is always 1, indicative of a particular polymorph ofmore » LiPON which closely resembles a polyphosphazene. Films grown at 300°C have an ionic conductivity of (6.51 ± 0.36)×10 -7 S/cm at 35°C, and are functionally electrochemically stable in the window from 0 to 5.3V vs. Li/Li +. We demonstrate the viability of the ALD-grown electrolyte by integrating it into full solid state batteries, including thin film devices using LiCoO 2 as the cathode and Si as the anode operating at up to 1 mA/cm 2. The high quality of the ALD growth process allows pinhole-free deposition even on rough crystalline surfaces, and we demonstrate the fabrication and operation of thin film batteries with the thinnest (<40nm) solid state electrolytes yet reported. Finally, we show an additional application of the moderate-temperature ALD process by demonstrating a flexible solid state battery fabricated on a polymer substrate.« less

  3. Nanoscale Solid State Batteries Enabled by Thermal Atomic Layer Deposition of a Lithium Polyphosphazene Solid State Electrolyte

    DOE PAGES

    Pearse, Alexander J.; Schmitt, Thomas E.; Fuller, Elliot J.; ...

    2017-04-10

    Several active areas of research in novel energy storage technologies, including three-dimensional solid state batteries and passivation coatings for reactive battery electrode components, require conformal solid state electrolytes. We describe an atomic layer deposition (ALD) process for a member of the lithium phosphorus oxynitride (LiPON) family, which is employed as a thin film lithium-conducting solid electrolyte. The reaction between lithium tert-butoxide (LiO tBu) and diethyl phosphoramidate (DEPA) produces conformal, ionically conductive thin films with a stoichiometry close to Li 2PO 2N between 250 and 300°C. The P/N ratio of the films is always 1, indicative of a particular polymorph ofmore » LiPON which closely resembles a polyphosphazene. Films grown at 300°C have an ionic conductivity of (6.51 ± 0.36)×10 -7 S/cm at 35°C, and are functionally electrochemically stable in the window from 0 to 5.3V vs. Li/Li +. We demonstrate the viability of the ALD-grown electrolyte by integrating it into full solid state batteries, including thin film devices using LiCoO 2 as the cathode and Si as the anode operating at up to 1 mA/cm 2. The high quality of the ALD growth process allows pinhole-free deposition even on rough crystalline surfaces, and we demonstrate the fabrication and operation of thin film batteries with the thinnest (<40nm) solid state electrolytes yet reported. Finally, we show an additional application of the moderate-temperature ALD process by demonstrating a flexible solid state battery fabricated on a polymer substrate.« less

  4. Role of Oxygen in Ionic Liquid Gating on Two-Dimensional Cr2Ge2Te6: A Non-oxide Material.

    PubMed

    Chen, Yangyang; Xing, Wenyu; Wang, Xirui; Shen, Bowen; Yuan, Wei; Su, Tang; Ma, Yang; Yao, Yunyan; Zhong, Jiangnan; Yun, Yu; Xie, X C; Jia, Shuang; Han, Wei

    2018-01-10

    Ionic liquid gating can markedly modulate a material's carrier density so as to induce metallization, superconductivity, and quantum phase transitions. One of the main issues is whether the mechanism of ionic liquid gating is an electrostatic field effect or an electrochemical effect, especially for oxide materials. Recent observation of the suppression of the ionic liquid gate-induced metallization in the presence of oxygen for oxide materials suggests the electrochemical effect. However, in more general scenarios, the role of oxygen in the ionic liquid gating effect is still unclear. Here, we perform ionic liquid gating experiments on a non-oxide material: two-dimensional ferromagnetic Cr 2 Ge 2 Te 6 . Our results demonstrate that despite the large increase of the gate leakage current in the presence of oxygen, the oxygen does not affect the ionic liquid gating effect on  the channel resistance of Cr 2 Ge 2 Te 6 devices (<5% difference), which suggests the electrostatic field effect as the mechanism on non-oxide materials. Moreover, our results show that ionic liquid gating is more effective on the modulation of the channel resistances compared to the back gating across the 300 nm thick SiO 2 .

  5. Passive electrically switchable circuit element having improved tunability and method for its manufacture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickel, Patrick R; James, Conrad D

    2014-09-16

    A resistive switching device and methods for making the same are disclosed. In the above said device, a resistive switching layer is interposed between opposing electrodes. The resistive switching layer comprises at least two sub-layers of switchable insulative material characterized by different ionic mobilities.

  6. Ionic Liquid Catalyzed Electrolyte for Electrochemical Polyaniline Supercapacitors

    NASA Astrophysics Data System (ADS)

    Inamdar, A. I.; Im, Hyunsik; Jung, Woong; Kim, Hyungsang; Kim, Byungchul; Yu, Kook-Hyun; Kim, Jin-Sang; Hwang, Sung-Min

    2013-05-01

    The effect of different wt.% of ionic liquid "1,6-bis (trimethylammonium-1-yl) hexane tetrafluoroborate" in 0.5 M LiClO4+PC electrolyte on the supercapacitor properties of polyaniline (PANI) thin film are investigated. The PANI film is synthesized using electropolymerization of aniline in the presence of sulfuric acid. The electrochemical properties of the PANI thin film are studied by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) measurements. The optimum amount of the ionic liquid is found to be 2 wt.% which provides better ionic conductivity of the electrolyte. The highest specific capacitance of 259 F/g is obtained using the 2 wt.% electrolyte. This capacitance remains at up to 208 F/g (80% capacity retention) after 1000 charge-discharge cycles at a current density of 0.5 mA/g. The PANI film in the 2 wt.% ionic liquid catalyzed 0.5 M LiClO4+PC electrolyte shows small electrochemical resistance, better rate performance and higher cyclability. The increased ionic conductivity of the 2 wt.% ionic liquid catalyzed electrolyte causes a reduction in resistance at the electrode/electrolyte interface, which can be useful in electrochemically-preferred power devices for better applicability.

  7. Charge Dynamics and Bending Actuation in Aquivion Membrane Swelled with Ionic Liquids.

    PubMed

    Lin, Junhong; Liu, Yang; Zhang, Q M

    2011-01-21

    The actuation strain and speed of ionic electroactive polymer (EAP) actuators are mainly determined by the charge transport through the actuators and excess ion storage near the electrodes. We employ a recently developed theory on ion transport and storage to investigate the charge dynamics of short-side-chain Aquivion® (Hyflon®) membranes with different uptakes of ionic liquid (IL) 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMI-Tf). The results reveal the existence of a critical uptake of ionic liquids above which the membrane exhibit a high ionic conductivity (σ>5×10(-2) mS/cm). Especially, we investigate the charge dynamics under voltages which are in the range for practical device operation (~1 volts and higher). The results show that the ionic conductivity, ionic mobility, and mobile ion concentration do not change with the applied voltage below 1 volt (and for σ below 4 volts). The results also show that bending actuation of the Aquivion membrane with 40 wt% EMI-Tf is much larger than that of Nafion, indicating that the shorter flexible side chains improve the electromechanical coupling between the excess ions and the membrane backbones, while not affect the actuation speed.

  8. Charge Dynamics and Bending Actuation in Aquivion Membrane Swelled with Ionic Liquids

    PubMed Central

    Lin, Junhong; Liu, Yang; Zhang, Q. M.

    2011-01-01

    The actuation strain and speed of ionic electroactive polymer (EAP) actuators are mainly determined by the charge transport through the actuators and excess ion storage near the electrodes. We employ a recently developed theory on ion transport and storage to investigate the charge dynamics of short-side-chain Aquivion® (Hyflon®) membranes with different uptakes of ionic liquid (IL) 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMI-Tf). The results reveal the existence of a critical uptake of ionic liquids above which the membrane exhibit a high ionic conductivity (σ>5×10−2 mS/cm). Especially, we investigate the charge dynamics under voltages which are in the range for practical device operation (~1 volts and higher). The results show that the ionic conductivity, ionic mobility, and mobile ion concentration do not change with the applied voltage below 1 volt (and for σ below 4 volts). The results also show that bending actuation of the Aquivion membrane with 40 wt% EMI-Tf is much larger than that of Nafion, indicating that the shorter flexible side chains improve the electromechanical coupling between the excess ions and the membrane backbones, while not affect the actuation speed. PMID:21339839

  9. Electromechanical engineering in SnO2 nanoparticle tethered hybrid ionic liquid

    NASA Astrophysics Data System (ADS)

    Deb, Debalina; Bhattacharya, Subhratanu

    2017-05-01

    Challenge of developing electrolytes comprising synergic properties of high mechanical strength with superior electrical and electrochemical properties has so far been unmet towards the application of secondary storage devices. In this research, we have engineered the electromechanical properties of 2-(trimethylamino) ethyl methacrylate bis(trifluoromethylsulfonyl) imide [TMEM]TFSI ionic liquid by tethering silane modified SnO2 nanoparticles within it. Different percentages of tethering are employed to achieve improved ionic conductivity, better discharge/ charging ratio (40%) along with gel like mechanical properties. Our findings appear to provide an optimal solution towards the future prospects in application in a number of areas, notably in energy-related technologies.

  10. Conductivity Scaling Relationships of Nanostructured Membranes based on Hydrated Protic Polymerized Ionic Liquids: Effect of Domain Spacing

    NASA Astrophysics Data System (ADS)

    Sanoja, Gabriel; Popere, Bhooshan; Beckingham, Bryan; Evans, Christopher; Lynd, Nathaniel; Segalman, Rachel

    Elucidating the relationship between chemical structure, morphology, and ionic conductivity is essential for designing novel materials for electrochemical applications. In this work, the effect of lamellar domain spacing (d) on ionic conductivity (σ) is investigated for a model system of hydrated block copolymer based on a protic polymerized ionic liquid. We present a strategy that allows for the synthesis of a well-defined series of narrowly dispersed PS- b - PIL with constant volume fraction of ionic liquid moieties (fIL ~ 0.39). These materials self-assemble into ordered lamellar morphologies with variable domain spacing (23-59 nm) as demonstrated by SAXS. PS- b - PIL membranes exhibit ionic conductivities above 10-4 S/cm at room temperature, which are independent of domain spacing. The conductivity scaling relationship demonstrated in this work suggests that a mechanically robust membrane can be designed without compromising its ability to transport ions. In addition, PIL-based membranes exhibit lower water uptake (λ = 10) in comparison with many proton-conducting systems reported elsewhere. The low water content of these materials makes them promising candidates for solar-fuels electrochemical devices.

  11. Structural and Dielectric Properties of Ionic Liquid Doped Metal Organic Framework based Polymer Electrolyte Nanocomposites

    NASA Astrophysics Data System (ADS)

    Dutta, Rituraj; Kumar, Ashok

    2016-10-01

    Metal Organic Frameworks (MOFs) are mesoporous materials that can be treated as potential hosts for trapping guest molecules in their pores. Ion conduction and phase behavior dynamics of Ionic Liquids (ILs) can be controlled by tunable interactions of MOFs with the ILs. MOFs incorporated with ionic liquid can be dispersed in the polymers to synthesize polymer electrolyte nanocomposites with high ionic conductivity, electrochemical and thermal stability for applications in energy storage and conversion devices such as rechargeable Li-ion batteries. In the present work we have synthesized Cu-based MOF [Cu3(l,3,5-benzene tricarboxylate)2(H2O)] incorporated with the ionic liquid 1-Butyl-3-methylimidazolium bromide at different weight ratios of MOF and IL. The synthesized MOF-IL composites are dispersed in Poly (ethylene oxide) (PEO). Frequency dependent behavior of permittivity and dielectric loss of the nanocomposites depict the non-Debye dielectric relaxation mechanism. The room temperature Nyquist plots reveal decreasing bulk resistance upto 189 Ω with optimum ionic conductivity of 1.3×10-3S cm-1at maximum doping concentration of IL in the nanocomposite system.

  12. Origin of the OFF state variability in ReRAM cells

    NASA Astrophysics Data System (ADS)

    Salaoru, Iulia; Khiat, Ali; Li, Qingjiang; Berdan, Radu; Papavassiliou, Christos; Prodromakis, Themistoklis

    2014-04-01

    This work exploits the switching dynamics of nanoscale resistive random access memory (ReRAM) cells with particular emphasis on the origin of the observed variability when cells are consecutively cycled/programmed at distinct memory states. It is demonstrated that this variance is a common feature of all ReRAM elements and is ascribed to the formation and rupture of conductive filaments that expand across the active core, independently of the material employed as the active switching core, the causal physical switching mechanism, the switching mode (bipolar/unipolar) or even the unit cells' dimensions. Our hypothesis is supported through both experimental and theoretical studies on TiO2 and In2O3 : SnO2 (ITO) based ReRAM cells programmed at three distinct resistive states. Our prototypes employed TiO2 or ITO active cores over 5 × 5 µm2 and 100 × 100 µm2 cell areas, with all tested devices demonstrating both unipolar and bipolar switching modalities. In the case of TiO2-based cells, the underlying switching mechanism is based on the non-uniform displacement of ionic species that foster the formation of conductive filaments. On the other hand, the resistive switching observed in the ITO-based devices is considered to be due to a phase change mechanism. The selected experimental parameters allowed us to demonstrate that the observed programming variance is a common feature of all ReRAM devices, proving that its origin is dependent upon randomly oriented local disorders within the active core that have a substantial impact on the overall state variance, particularly for high-resistive states.

  13. An Alternative to the Ionic Model

    ERIC Educational Resources Information Center

    Sanderson, R. T.

    1975-01-01

    Describes the "coordinated polymeric model," which yields more accurate energy calculations than the "ionic model" for compounds which exhibit considerable covalency. The dichotomy between ionic and covalent bonding is thus largely broken down for solids which are nonmolecular in the crystalline state. (MLH)

  14. Effect of Aprotic Solvents on the Dynamics of a Room Temperature Ionic Liquid

    NASA Astrophysics Data System (ADS)

    Osti, Naresh; van Aken, Katherine; Thompson, Matthew; Tiet, Felix; Jiang, De-En; Cummings, Peter; Gogotsi, Yury; Mamontov, Eugene

    Room temperature ionic liquids (RTILs) have attracted much attention as electrolytes in energy storage devices because of their peculiar physical and chemical characteristics. However, their remarkably high viscosity, which results in low conductivity and diffusivity, may adversely affect the charging and discharging rates. Despite changing molecular configurations, use of aprotic solvent allows to enhance the transport properties of ionic liquids by disrupting the cation-anion interactions. We explore the impact of dipole moment of aprotic solvents on the cation-anion interaction and transport in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [BMIM +][Tf2N-], RTIL using molecular dynamics (MD) simulations and quasi-elastic neutrons scattering (QENS) measurements. We observed an increase in cation diffusivity with the increasing dipole moment of the solvent. This effect is due to a decrease in the solvation free energy induced by the increasing solvent polarity. A clear nano-phase separation into ionic liquid-rich and ionic liquid-poor phases as observed by QENS will be also discussed.

  15. Solid-State Thin-Film Supercapacitors with Ultrafast Charge/Discharge Based on N-Doped-Carbon-Tubes/Au-Nanoparticles-Doped-MnO2 Nanocomposites.

    PubMed

    Lv, Qiying; Wang, Shang; Sun, Hongyu; Luo, Jun; Xiao, Jian; Xiao, JunWu; Xiao, Fei; Wang, Shuai

    2016-01-13

    Although carbonaceous materials possess long cycle stability and high power density, their low-energy density greatly limits their applications. On the contrary, metal oxides are promising pseudocapacitive electrode materials for supercapacitors due to their high-energy density. Nevertheless, poor electrical conductivity of metal oxides constitutes a primary challenge that significantly limits their energy storage capacity. Here, an advanced integrated electrode for high-performance pseudocapacitors has been designed by growing N-doped-carbon-tubes/Au-nanoparticles-doped-MnO2 (NCTs/ANPDM) nanocomposite on carbon fabric. The excellent electrical conductivity and well-ordered tunnels of NCTs together with Au nanoparticles of the electrode cause low internal resistance, good ionic contact, and thus enhance redox reactions for high specific capacitance of pure MnO2 in aqueous electrolyte, even at high scan rates. A prototype solid-state thin-film symmetric supercapacitor (SSC) device based on NCTs/ANPDM exhibits large energy density (51 Wh/kg) and superior cycling performance (93% after 5000 cycles). In addition, the asymmetric supercapacitor (ASC) device assembled from NCTs/ANPDM and Fe2O3 nanorods demonstrates ultrafast charge/discharge (10 V/s), which is among the best reported for solid-state thin-film supercapacitors with both electrodes made of metal oxide electroactive materials. Moreover, its superior charge/discharge behavior is comparable to electrical double layer type supercapacitors. The ASC device also shows superior cycling performance (97% after 5000 cycles). The NCTs/ANPDM nanomaterial demonstrates great potential as a power source for energy storage devices.

  16. Thermoelectricity in Heterogeneous Nanofluidic Channels.

    PubMed

    Li, Long; Wang, Qinggong

    2018-05-01

    Ionic fluids are essential to energy conversion, water desalination, drug delivery, and lab-on-a-chip devices. Ionic transport in nanoscale confinements and complex physical fields still remain elusive. Here, a nanofluidic system is developed using nanochannels of heterogeneous surface properties to investigate transport properties of ions under different temperatures. Steady ionic currents are observed under symmetric temperature gradients, which is equivalent to generating electricity using waste heat (e.g., electronic chips and solar panels). The currents increase linearly with temperature gradient and nonlinearly with channel size. Contributions to ion motion from temperatures and channel properties are evaluated for this phenomenon. The findings provide insights into the study of confined ionic fluids in multiphysical fields, and suggest applications in thermal energy conversion, temperature sensors, and chip-level thermal management. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Mechanisms of transport and electron transfer at conductive polymer/liquid interfaces

    NASA Astrophysics Data System (ADS)

    Ratcliff, Erin

    Organic semiconductors (OSCs) have incredible prospects for next-generation, flexible electronic devices including bioelectronics, thermoelectrics, opto-electronics, and energy storage and conversion devices. Yet many fundamental challenges still exist. First, solution processing prohibits definitive control over microstructure, which is fundamental for controlling electrical, ionic, and thermal transport properties. Second, OSCs generally suffer from poor electrical conductivities due to a combination of low carriers and low mobility. Third, polymeric semiconductors have potential-dependent, dynamically evolving electronic and chemical states, leading to complex interfacial charge transfer properties in contact with liquids. This talk will focus on the use of alternative synthetic strategies of oxidative chemical vapor deposition and electrochemical deposition to control physical, electronic, and chemical structure. We couple our synthetic efforts with energy-, time-, and spatially resolved spectroelectrochemical and microscopy techniques to understand the critical interfacial chemistry-microstructure-property relationships: first at the macroscale, and then moving towards the nanoscale. In particular, approaches to better understand electron transfer events at polymer/liquid interfaces as a function of: 1.) chemical composition; 2.) electronic density of states (DOS); and 3.) crystallinity and microstructure will be discussed.

  18. GaN light-emitting device based on ionic liquid electrolyte

    NASA Astrophysics Data System (ADS)

    Hirai, Tomoaki; Sakanoue, Tomo; Takenobu, Taishi

    2018-06-01

    Ionic liquids (ILs) are attractive materials for fabricating unique hybrid devices based on electronics and electrochemistry; thus, IL-gated transistors and organic light-emitting devices of light-emitting electrochemical cells (LECs) are investigated for future low-voltage and high-performance devices. In LECs, voltage application induces the formation of electrochemically doped p–n homojunctions owing to ion rearrangements in composites of semiconductors and electrolytes, and achieves electron–hole recombination for light emission at the homojunctions. In this work, we applied this concept of IL-induced electrochemical doping to the fabrication of GaN-based light-emitting devices. We found that voltage application to the layered IL/GaN structure accumulated electrons on the GaN surface owing to ion rearrangements and improved the conductivity of GaN. The ion rearrangement also enabled holes to be injected by the strong electric field of electric double layers on hole injection contacts. This simultaneous injection of holes and electrons into GaN mediated by ions achieves light emission at a low voltage of around 3.4 V. The light emission from the simple IL/GaN structure indicates the usefulness of an electrochemical technique in generating light emission with great ease of fabrication.

  19. Validating the technological feasibility of yttria-stabilized zirconia-based semiconducting-ionic composite in intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Cai, Yixiao; Wang, Baoyuan; Wang, Yi; Xia, Chen; Qiao, Jinli; van Aken, Peter A.; Zhu, Bin; Lund, Peter

    2018-04-01

    YSZ as the electrolyte of choice has dominated the progressive development of solid oxide fuel cell (SOFC) technologies for many years. To enable SOFCs operating at intermediate temperatures of 600 °C or below, major technical advances were built on a foundation of a thin-film YSZ electrolyte, NiO anode, and perovskite cathode, e.g. La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF). Inspired by functionalities in engineered heterostructure interfaces, the present work uses the components from state-of-the-art SOFCs, i.e, the anode NiO-YSZ and the cathode LSCF-YSZ, or the convergence of all three components, i.e., NiO-YSZ-LSCF, to fabricate semiconductor-ionic membranes (SIMs) and devices. A series of proof-of-concept fuel cell devices are designed by using each of the above SIMs sandwiched between two semiconducting Ni0.8Co0.15Al0.05LiO2-δ (NCAL) layers. We systematically compare these novel designs at 600 °C with two reference fuel cells: a commercial product of anode-supported YSZ electrolyte thin-film cell, and a lab-assembled fuel cell with a conventional configuration of NiO-YSZ (anode)/YSZ (electrolyte)/LSCF-YSZ (cathode). In comparison to the reference cells, the SIM device in a configuration of NCAL/NiO-YSZ-LSCF/NCAL reaches more than 3-fold enhancement of the maximum power output. By using spherical aberration-corrected transmission electron microscopy and spectroscopy approaches, this work offers insight into the mechanisms underlying SIM-associated SOFC performance enhancement.

  20. Structure and transport properties of a plastic crystal ion conductor: diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate.

    PubMed

    Jin, Liyu; Nairn, Kate M; Forsyth, Craig M; Seeber, Aaron J; MacFarlane, Douglas R; Howlett, Patrick C; Forsyth, Maria; Pringle, Jennifer M

    2012-06-13

    Understanding the ion transport behavior of organic ionic plastic crystals (OIPCs) is crucial for their potential application as solid electrolytes in various electrochemical devices such as lithium batteries. In the present work, the ion transport mechanism is elucidated by analyzing experimental data (single-crystal XRD, multinuclear solid-state NMR, DSC, ionic conductivity, and SEM) as well as the theoretical simulations (second moment-based solid static NMR line width simulations) for the OIPC diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate ([P(1,2,2,4)][PF(6)]). This material displays rich phase behavior and advantageous ionic conductivities, with three solid-solid phase transitions and a highly "plastic" and conductive final solid phase in which the conductivity reaches 10(-3) S cm(-1). The crystal structure shows unique channel-like packing of the cations, which may allow the anions to diffuse more easily than the cations at lower temperatures. The strongly phase-dependent static NMR line widths of the (1)H, (19)F, and (31)P nuclei in this material have been well simulated by different levels of molecular motions in different phases. Thus, drawing together of the analytical and computational techniques has allowed the construction of a transport mechanism for [P(1,2,2,4)][PF(6)]. It is also anticipated that utilization of these techniques will allow a more detailed understanding of the transport mechanisms of other plastic crystal electrolyte materials.

  1. Electrical conductivity studies on Ammonium bromide incorporated with Zwitterionic polymer blend electrolyte for battery application

    NASA Astrophysics Data System (ADS)

    Parameswaran, V.; Nallamuthu, N.; Devendran, P.; Nagarajan, E. R.; Manikandan, A.

    2017-06-01

    Solid polymer blend electrolytes are widely studied due to their extensive applications particularly in electrochemical devices. Blending polymer makes the thermal stability, higher mechanical strength and inorganic salt provide ionic charge carrier to enhance the conductivity. In these studies, 50% polyvinyl alcohol (PVA), 50% poly (N-vinyl pyrrolidone) (PVP) and 2.5% L-Asparagine mixed with different ratio of the Ammonium bromide (NH4Br), have been synthesized using solution casting technique. The prepared PVA/PVP/L-Asparagine/doped-NH4Br polymer blend electrolyte films have been characterized by various analytical methods such as FT-IR, XRD, impedance spectroscopy, TG-DSC and scanning electron microscopy. FT-IR, XRD and TG/DSC analysis revealed the structural and thermal behavior of the complex formation between PVA/PVP/L-Asparagine/doped-NH4Br. The ionic conductivity and the dielectric properties of PVA/PVP/L-Asparagine/doped-NH4Br polymer blend electrolyte films were examined using impedance analysis. The highest ionic conductivity was found to be 2.34×10-4 S cm-1 for the m.wt. composition of 50%PVA:50%PVP:2.5%L-Asparagine:doped 0.15 g NH4Br at ambient temperature. Solid state proton battery is fabricated and the observed open circuit voltage is 1.1 V and its performance has been studied.

  2. A correlated nickelate synaptic transistor.

    PubMed

    Shi, Jian; Ha, Sieu D; Zhou, You; Schoofs, Frank; Ramanathan, Shriram

    2013-01-01

    Inspired by biological neural systems, neuromorphic devices may open up new computing paradigms to explore cognition, learning and limits of parallel computation. Here we report the demonstration of a synaptic transistor with SmNiO₃, a correlated electron system with insulator-metal transition temperature at 130°C in bulk form. Non-volatile resistance and synaptic multilevel analogue states are demonstrated by control over composition in ionic liquid-gated devices on silicon platforms. The extent of the resistance modulation can be dramatically controlled by the film microstructure. By simulating the time difference between postneuron and preneuron spikes as the input parameter of a gate bias voltage pulse, synaptic spike-timing-dependent plasticity learning behaviour is realized. The extreme sensitivity of electrical properties to defects in correlated oxides may make them a particularly suitable class of materials to realize artificial biological circuits that can be operated at and above room temperature and seamlessly integrated into conventional electronic circuits.

  3. A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Hou, Yi; Du, Xiaoyan; Scheiner, Simon; McMeekin, David P.; Wang, Zhiping; Li, Ning; Killian, Manuela S.; Chen, Haiwei; Richter, Moses; Levchuk, Ievgen; Schrenker, Nadine; Spiecker, Erdmann; Stubhan, Tobias; Luechinger, Norman A.; Hirsch, Andreas; Schmuki, Patrik; Steinrück, Hans-Peter; Fink, Rainer H.; Halik, Marcus; Snaith, Henry J.; Brabec, Christoph J.

    2017-12-01

    A major bottleneck delaying the further commercialization of thin-film solar cells based on hybrid organohalide lead perovskites is interface loss in state-of-the-art devices. We present a generic interface architecture that combines solution-processed, reliable, and cost-efficient hole-transporting materials without compromising efficiency, stability, or scalability of perovskite solar cells. Tantalum-doped tungsten oxide (Ta-WOx)/conjugated polymer multilayers offer a surprisingly small interface barrier and form quasi-ohmic contacts universally with various scalable conjugated polymers. In a simple device with regular planar architecture and a self-assembled monolayer, Ta-WOx-doped interface-based perovskite solar cells achieve maximum efficiencies of 21.2% and offer more than 1000 hours of light stability. By eliminating additional ionic dopants, these findings open up the entire class of organics as scalable hole-transporting materials for perovskite solar cells.

  4. Solid state ionics: a Japan perspective

    NASA Astrophysics Data System (ADS)

    Yamamoto, Osamu

    2017-12-01

    The 70-year history of scientific endeavor of solid state ionics research in Japan is reviewed to show the contribution of Japanese scientists to the basic science of solid state ionics and its applications. The term 'solid state ionics' was defined by Takehiko Takahashi of Nagoya University, Japan: it refers to ions in solids, especially solids that exhibit high ionic conductivity at a fairly low temperature below their melting points. During the last few decades of exploration, many ion conducting solids have been discovered in Japan such as the copper-ion conductor Rb4Cu16I7Cl13, proton conductor SrCe1-xYxO3, oxide-ion conductor La0.9Sr0.9Ga0.9Mg0.1O3, and lithium-ion conductor Li10GeP2S12. Rb4Cu16I7Cl13 has a conductivity of 0.33 S cm-1 at 25 °C, which is the highest of all room temperature ion conductive solid electrolytes reported to date, and Li10GeP2S12 has a conductivity of 0.012 S cm-1 at 25 °C, which is the highest among lithium-ion conductors reported to date. Research on high-temperature proton conducting ceramics began in Japan. The history, the discovery of novel ionic conductors and the story behind them are summarized along with basic science and technology.

  5. Characterization and Modeling of Superconducting Josephson Junction Arrays at Low Voltage and Liquid Helium Temperatures

    DTIC Science & Technology

    2016-09-01

    to the characteristics and extract the non-ideality. These capabilities and calibration results will assist in the characterization of advanced...superconductor-ionic quantum memory and computation devices. iv CONTENTS EXECUTIVE SUMMARY...Josephson effect makes these measurements useful for characterization and calibration of superconducting quantum memory and computational devices

  6. Rapid, cool sintering of wet processed yttria-stabilized zirconia ceramic electrolyte thin films.

    PubMed

    Park, Jun-Sik; Kim, Dug-Joong; Chung, Wan-Ho; Lim, Yonghyun; Kim, Hak-Sung; Kim, Young-Beom

    2017-09-29

    Here we report a photonic annealing process for yttria-stabilized zirconia films, which are one of the most well-known solid-state electrolytes for solid oxide fuel cells (SOFCs). Precursor films were coated using a wet-chemical method with a simple metal-organic precursor solution and directly annealed at standard pressure and temperature by two cycles of xenon flash lamp irradiation. The residual organics were almost completely decomposed in the first pre-annealing step, and the fluorite crystalline phases and good ionic conductivity were developed during the second annealing step. These films showed properties comparable to those of thermally annealed films. This process is much faster than conventional annealing processes (e.g. halogen furnaces); a few seconds compared to tens of hours, respectively. The significance of this work includes the treatment of solid-state electrolyte oxides for SOFCs and the demonstration of the feasibility of other oxide components for solid-state energy devices.

  7. Micropatterned Pyramidal Ionic Gels for Sensing Broad-Range Pressures with High Sensitivity.

    PubMed

    Cho, Sung Hwan; Lee, Seung Won; Yu, Seunggun; Kim, Hyeohn; Chang, Sooho; Kang, Donyoung; Hwang, Ihn; Kang, Han Sol; Jeong, Beomjin; Kim, Eui Hyuk; Cho, Suk Man; Kim, Kang Lib; Lee, Hyungsuk; Shim, Wooyoung; Park, Cheolmin

    2017-03-22

    The development of pressure sensors that are effective over a broad range of pressures is crucial for the future development of electronic skin applicable to the detection of a wide pressure range from acoustic wave to dynamic human motion. Here, we present flexible capacitive pressure sensors that incorporate micropatterned pyramidal ionic gels to enable ultrasensitive pressure detection. Our devices show superior pressure-sensing performance, with a broad sensing range from a few pascals up to 50 kPa, with fast response times of <20 ms and a low operating voltage of 0.25 V. Since high-dielectric-constant ionic gels were employed as constituent sensing materials, an unprecedented sensitivity of 41 kPa -1 in the low-pressure regime of <400 Pa could be realized in the context of a metal-insulator-metal platform. This broad-range capacitive pressure sensor allows for the efficient detection of pressure from a variety of sources, including sound waves, a lightweight object, jugular venous pulses, radial artery pulses, and human finger touch. This platform offers a simple, robust approach to low-cost, scalable device design, enabling practical applications of electronic skin.

  8. Fabrication and evaluation of variable focus and large deformation plano-convex microlens based on non-ionic poly(vinyl chloride)/dibutyl adipate gels

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Youn; Yeo, Myoung; Shin, Eun-Jae; Park, Won-Hyeong; Jang, Jong-Seok; Nam, Byeong-Uk; Bae, Jin Woo

    2015-11-01

    In this paper, we propose a variable focus microlens module based on a transparent, electroactive, and non-ionic PVC/DBA gel. A non-ionic PVC/DBA (nPVC) gel on an ITO glass was confined beneath a rigid annular electrode, and applied pressure squeezed a bulge of the nPVC gel into the annular electrode, resulting in a hemispherical plano-convex nPVC gel microlens. The proposed nPVC gel microlens was analyzed and optimized. When voltage is applied to the circular perimeter (the annular electrode) of this fabricated microlens, electrically induced creep deformation of the nPVC gel occurs, changing its optical focal length. The focal length remarkably increases from 3.8 mm up to 14.3 mm with increasing applied voltages from 300 V to 800 V. Due to its compact, transparent, and electroactive characteristics, the proposed nPVC gel microlens can be easily inserted into small consumer electronic devices, such as digital cameras, camcorders, cell phones, and other portable optical devices.

  9. Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices.

    PubMed

    Watanabe, Masayoshi; Thomas, Morgan L; Zhang, Shiguo; Ueno, Kazuhide; Yasuda, Tomohiro; Dokko, Kaoru

    2017-05-24

    Ionic liquids (ILs) are liquids consisting entirely of ions and can be further defined as molten salts having melting points lower than 100 °C. One of the most important research areas for IL utilization is undoubtedly their energy application, especially for energy storage and conversion materials and devices, because there is a continuously increasing demand for clean and sustainable energy. In this article, various application of ILs are reviewed by focusing on their use as electrolyte materials for Li/Na ion batteries, Li-sulfur batteries, Li-oxygen batteries, and nonhumidified fuel cells and as carbon precursors for electrode catalysts of fuel cells and electrode materials for batteries and supercapacitors. Due to their characteristic properties such as nonvolatility, high thermal stability, and high ionic conductivity, ILs appear to meet the rigorous demands/criteria of these various applications. However, for further development, specific applications for which these characteristic properties become unique (i.e., not easily achieved by other materials) must be explored. Thus, through strong demands for research and consideration of ILs unique properties, we will be able to identify indispensable applications for ILs.

  10. Improved Performance of Ionic Liquid Supercapacitors by using Tetracyanoborate Anions

    PubMed Central

    Martins, Vitor L.; Rennie, Anthony J. R.; Sanchez‐Ramirez, Nedher; Torresi, Roberto M.; Hall, Peter J.

    2018-01-01

    Abstract Supercapacitors are energy storage devices designed to operate at higher power densities than conventional batteries, but their energy density is still too low for many applications. Efforts are made to design new electrolytes with wider electrochemical windows than aqueous or conventional organic electrolytes in order to increase energy density. Ionic liquids (ILs) with wide electrochemical stability windows are excellent candidates to be employed as supercapacitor electrolytes. ILs containing tetracyanoborate anions [B(CN)4] offer wider electrochemical stability than conventional electrolytes and maintain a high ionic conductivity (6.9 mS cm−1). Herein, we report the use of ILs containing the [B(CN)4] anion for such an application. They presented a high maximum operating voltage of 3.7 V, and two‐electrode devices demonstrate high specific capacitances even when operating at relatively high rates (ca. 20 F g−1 @ 15 A g−1). This supercapacitor stored more energy and operated at a higher power at all rates studied when compared with cells using a commonly studied ILs. PMID:29577008

  11. Ionic Liquids as Extraction Media for Metal Ions

    NASA Astrophysics Data System (ADS)

    Hirayama, Naoki

    In solvent extraction separation of metal ions, recently, many researchers have investigated possible use of hydrophobic ionic liquids as extraction media instead of organic solvents. Ionic liquids are salts of liquid state around room temperature and can act not only as solvents but also as ion-exchangers. Therefore, the extraction mechanism of metal ions into ionic liquids is complicated. This review presents current overview and perspective on evaluation of nature of hydrophobic ionic liquids as extraction media for metal ions.

  12. Electrical Stress Influences the Efficiency of CH3 NH3 PbI3 Perovskite Light Emitting Devices.

    PubMed

    Zhao, Lianfeng; Gao, Jia; Lin, YunHui L; Yeh, Yao-Wen; Lee, Kyung Min; Yao, Nan; Loo, Yueh-Lin; Rand, Barry P

    2017-06-01

    Organic-inorganic hybrid perovskite materials are emerging as semiconductors with potential application in optoelectronic devices. In particular, perovskites are very promising for light-emitting devices (LEDs) due to their high color purity, low nonradiative recombination rates, and tunable bandgap. Here, using pure CH 3 NH 3 PbI 3 perovskite LEDs with an external quantum efficiency (EQE) of 5.9% as a platform, it is shown that electrical stress can influence device performance significantly, increasing the EQE from an initial 5.9% to as high as 7.4%. Consistent with the enhanced device performance, both the steady-state photoluminescence (PL) intensity and the time-resolved PL decay lifetime increase after electrical stress, indicating a reduction in nonradiative recombination in the perovskite film. By investigating the temperature-dependent characteristics of the perovskite LEDs and the cross-sectional elemental depth profile, it is proposed that trap reduction and resulting device-performance enhancement is due to local ionic motion of excess ions, likely excess mobile iodide, in the perovskite film that fills vacancies and reduces interstitial defects. On the other hand, it is found that overstressed LEDs show irreversibly degraded device performance, possibly because ions initially on the perovskite lattice are displaced during extended electrical stress and create defects such as vacancies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Excitation wavelength dependence of excited state intramolecular proton transfer reaction of 4'-N,N-diethylamino-3-hydroxyflavone in room temperature ionic liquids studied by optical Kerr gate fluorescence measurement.

    PubMed

    Suda, Kayo; Terazima, Masahide; Sato, Hirofumi; Kimura, Yoshifumi

    2013-10-17

    Excited state intramolecular proton transfer reactions (ESIPT) of 4'-N,N-diethylamino-3-hydroxyflavone (DEAHF) in ionic liquids have been studied by steady-state and time-resolved fluorescence measurements at different excitation wavelengths. Steady-state measurements show the relative yield of the tautomeric form to the normal form of DEAHF decreases as excitation wavelength is increased from 380 to 450 nm. The decrease in yield is significant in ionic liquids that have cations with long alkyl chains. The extent of the decrease is correlated with the number of carbon atoms in the alkyl chains. Time-resolved fluorescence measurements using optical Kerr gate spectroscopy show that ESIPT rate has a strong excitation wavelength dependence. There is a large difference between the spectra at a 200 ps delay from different excitation wavelengths in each ionic liquid. The difference is pronounced in ionic liquids having a long alkyl chain. The equilibrium constant in the electronic excited state obtained at a 200 ps delay and the average reaction rate are also correlated with the alkyl chain length. Considering the results of the steady-state fluorescence and time-resolved measurements, the excitation wavelength dependence of ESIPT is explained by state selective excitation due to the difference of the solvation, and the number of alkyl chain carbon atoms is found to be a good indicator of the effect of inhomogeneity for this reaction.

  14. Surface hopping investigation of the relaxation dynamics in radical cations

    DOE PAGES

    Assmann, Mariana; Weinacht, Thomas; Matsika, Spiridoula

    2016-01-19

    Ionization processes can lead to the formation of radical cations with population in several ionic states. In this study, we examine the dynamics of three radical cations starting from an excited ionic state using trajectory surface hopping dynamics in combination with multiconfigurational electronic structure methods. The efficiency of relaxation to the ground state is examined in an effort to understand better whether fragmentation of cations is likely to occur directly on excited states or after relaxation to the ground state. The results on cyclohexadiene, hexatriene, and uracil indicate that relaxation to the ground ionic state is very fast in thesemore » systems, while fragmentation before relaxation is rare. Ultrafast relaxation is facilitated by the close proximity of electronic states and the presence of two- and three-state conical intersections. Furthermore, examining the properties of the systems in the Franck-Condon region can give some insight into the subsequent dynamics.« less

  15. Average-atom model for two-temperature states and ionic transport properties of aluminum in the warm dense matter regime

    NASA Astrophysics Data System (ADS)

    Hou, Yong; Fu, Yongsheng; Bredow, Richard; Kang, Dongdong; Redmer, Ronald; Yuan, Jianmin

    2017-03-01

    The average-atom model combined with the hyper-netted chain approximation is an efficient tool for electronic and ionic structure calculations for warm dense matter. Here we generalize this method in order to describe non-equilibrium states with different electron and ion temperature as produced in laser-matter interactions on ultra-short time scales. In particular, the electron-ion and ion-ion correlation effects are considered when calculating the electron structure. We derive an effective ion-ion pair-potential using the electron densities in the framework of temperature-depended density functional theory. Using this ion-ion potential we perform molecular dynamics simulations in order to determine the ionic transport properties such as the ionic diffusion coefficient and the shear viscosity through the ionic velocity autocorrelation functions.

  16. A computational study on choline benzoate and choline salicylate ionic liquids in the pure state and after CO2 adsorption.

    PubMed

    Aparicio, Santiago; Atilhan, Mert

    2012-08-02

    Choline-based ionic liquids show very adequate environmental, toxicological, and economical profiles for their application in many different technological areas. We report in this work a computational study on the properties of choline benzoate and choline salicylate ionic liquids, as representatives of this family of compounds, in the pure state and after CO(2) adsorption. Quantum chemistry calculations using the density functional theory approach for ionic pairs and ions, CO(2) pairs, were carried out, and the results analyzed using natural bond orbital and atoms in a molecule approaches. Classical molecular dynamics simulations of ionic liquids were done as a function of pressure, temperature, and CO(2) concentration. Microscopic structuring and intermolecular forces are analyzed together with the dynamic behavior of the studied fluids.

  17. Theoretical Study of Renewable Ionic Liquids in the Pure State and with Graphene and Carbon Nanotubes.

    PubMed

    García, Gregorio; Atilhan, Mert; Aparicio, Santiago

    2015-09-17

    The N-ethyl-N-(furan-2-ylmethyl)ethanaminium dihydrogen phosphate ionic liquid was studied as a model of ionic liquids which can be produced from totally renewable sources. A computational study using both molecular dynamics and density functional theory methods was carried out. The properties, structuring, and intermolecular interactions (hydrogen bonding) of this fluid in the pure state were studied as a function of pressure and temperature. Likewise, the adsorption on graphene and the confinement between graphene sheets was also studied. The solvation of single walled carbon nanotubes in the selected ionic liquid was analyzed together with the behavior of ions confined inside these nanotubes. The reported results show remarkable properties for this fluid, which show that many of the most relevant properties of ionic liquids and their ability to interact with carbon nanosystems may be maintained and even improved using new families of renewable compounds instead of classic types of ionic liquids with worse environmental, toxicological, and economical profiles.

  18. Self-Healing Polymer Dielectric for a High Capacitance Gate Insulator.

    PubMed

    Ko, Jieun; Kim, Young-Jae; Kim, Youn Sang

    2016-09-14

    Self-healing materials are required for development of various flexible electronic devices to repair cracks and ruptures caused by repetitive bending or folding. Specifically, a self-healing dielectric layer has huge potential to achieve healing electronics without mechanical breakdown in flexible operations. Here, we developed a high performance self-healing dielectric layer with an ionic liquid and catechol-functionalized polymer which exhibited a self-healing ability for both bulk and film states under mild self-healing conditions at 55 °C for 30 min. Due to the sufficient ion mobility of the ionic liquid in the polymer matrix, it had a high capacitance value above 1 μF/cm(2) at 20 Hz. Moreover, zinc oxide (ZnO) thin-film transistors (TFTs) with a self-healing dielectric layer exhibited a high field-effect mobility of 16.1 ± 3.07 cm(2) V(-1) s(-1) at a gate bias of 3 V. Even after repetitive self-healing of the dielectric layer from mechanical breaking, the electrical performance of the TFTs was well-maintained.

  19. Optimizing Ionic Electrolytes for Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Fan, Xiaojuan; Hall, Sarah

    2009-03-01

    Dye-sensitized solar cells DSSCs provide next generation, low cost, and easy fabrication photovoltaic devices based on organic sensitizing molecules, polymer gel electrolyte, and metal oxide semiconductors. One of the key components is the solvent-free ionic liquid electrolyte that has low volatility and high stability. We report a rapid and low cost method to fabricate ionic polymer electrolyte used in DSSCs. Poly(ethylene oxide) (PEO) is blended with imidazolinium salt without any chemical solvent to form a gel electrolyte. Uniform and crack-free porous TiO2 thin films are sensitized by porphrine dye covered by the synthesized gel electrolyte. The fabricated DSSCs are more stable and potentially increase the photo-electricity conversion efficiency.

  20. Ionic and electronic behaviors of earth-abundant semiconductor materials and their applications toward solar energy harvesting

    NASA Astrophysics Data System (ADS)

    Mayer, Matthew T.

    Semiconductor devices offer promise for efficient conversion of sunlight into other useful forms of energy, in either photovoltaic or photoelectrochemical cell configurations to produce electrical power or chemical energy, respectively. This dissertation examines ionic and electronic phenomena in some candidate semiconductors and seeks to understand their implications toward solar energy conversion applications. First, copper sulfide (Cu2S) was examined as a candidate photovoltaic material. It was discovered that its unique property of cation diffusion allows the room-temperature synthesis of vertically-aligned nanowire arrays, a morphology which facilitates study of the diffusion processes. This diffusivity was found to induce hysteresis in the electronic behavior, leading to the phenomena of resistive switching and negative differential resistance. The Cu2S were then demonstrated as morphological templates for solid-state conversion into different types of heterostructures, including segmented and rod-in-tube morphologies. Near-complete conversion to ZnS, enabled by the out-diffusion of Cu back into the substrate, was also achieved. While the ion diffusion property likely hinders the reliability of Cu 2S in photovoltaic applications, it was shown to enable useful electronic and ionic behaviors. Secondly, iron oxide (Fe2O3, hematite) was examined as a photoanode for photoelectrochemical water splitting. Its energetic limitations toward the water electrolysis reactions were addressed using two approaches aimed at achieving greater photovoltages and thereby improved water splitting efficiencies. In the first, a built-in n-p junction produced an internal field to drive charge separation and generate photovoltage. In the second, Fe 2O3 was deposited onto a smaller band gap material, silicon, to form a device capable of producing enhanced total photovoltage by a dual-absorber Z-scheme mechanism. Both approaches resulted in a cathodic shift of the photocurrent onset potential, signifying enhanced power output and progress toward the unassisted photoelectrolysis of water.

  1. Molecular origin of high free energy barriers for alkali metal ion transfer through ionic liquid-graphene electrode interfaces.

    PubMed

    Ivaništšev, Vladislav; Méndez-Morales, Trinidad; Lynden-Bell, Ruth M; Cabeza, Oscar; Gallego, Luis J; Varela, Luis M; Fedorov, Maxim V

    2016-01-14

    In this work we study mechanisms of solvent-mediated ion interactions with charged surfaces in ionic liquids by molecular dynamics simulations, in an attempt to reveal the main trends that determine ion-electrode interactions in ionic liquids. We compare the interfacial behaviour of Li(+) and K(+) at a charged graphene sheet in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, and its mixtures with lithium and potassium tetrafluoroborate salts. Our results show that there are dense interfacial solvation structures in these electrolytes that lead to the formation of high free energy barriers for these alkali metal cations between the bulk and direct contact with the negatively charged surface. We show that the stronger solvation of Li(+) in the ionic liquid leads to the formation of significantly higher interfacial free energy barriers for Li(+) than for K(+). The high free energy barriers observed in our simulations can explain the generally high interfacial resistance in electrochemical storage devices that use ionic liquid-based electrolytes. Overcoming these barriers is the rate-limiting step in the interfacial transport of alkali metal ions and, hence, appears to be a major drawback for a generalised application of ionic liquids in electrochemistry. Some plausible strategies for future theoretical and experimental work for tuning them are suggested.

  2. Ionic Liquid Mediated Dispersion and Support of Functional Molecules on Cellulose Fibers for Stimuli-Responsive Chromic Paper Devices.

    PubMed

    Koga, Hirotaka; Nogi, Masaya; Isogai, Akira

    2017-11-22

    Functional molecules play a significant role in the development of high-performance composite materials. Functional molecules should be well dispersed (ideally dissolved) and supported within an easy-to-handle substrate to take full advantage of their functionality and ensure easy handling. However, simultaneously achieving the dissolution and support of functional molecules remains a challenge. Herein, we propose the combination of a nonvolatile ionic liquid and an easy-to-handle cellulose paper substrate for achieving this goal. First, the photochromic molecule, i.e., diarylethene, was dissolved in the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([bmim]NTf 2 ). Then, diarylethene/[bmim]NTf 2 was supported on cellulose fibers within the paper, through hydrogen bonding between [bmim] cations of the ionic liquid and the abundant hydroxyl groups of cellulose. The as-prepared paper composites exhibited reversible, rapid, uniform, and vivid coloration and bleaching upon ultraviolet and visible light irradiation. The photochromic performance was superior to that of the paper prepared in the absence of [bmim]NTf 2 . This concept could be applied to other functional molecules. For example, lithium perchlorate/[bmim] tetrafluoroborate supported within cellulose paper acted as a flexible electrolyte to provide a paper-based electrochromic device. These findings are expected to further the development of composite materials with high functionality and practicality.

  3. Ion conduction in crystalline superionic solids and its applications

    NASA Astrophysics Data System (ADS)

    Chandra, Angesh

    2014-06-01

    Superionic solids an area of multidisciplinary research activity, incorporates to study the physical, chemical and technological aspects of rapid ion movements within the bulk of the special class of ionic materials. It is an emerging area of materials science, as these solids show tremendous technological scopes to develop wide variety of solid state electrochemical devices such as batteries, fuel cells, supercapacitors, sensors, electrochromic displays (ECDs), memories, etc. These devices have wide range of applicabilities viz. power sources for IC microchips to transport vehicles, novel sensors for controlling atmospheric pollution, new kind of memories for computers, smart windows/display panels, etc. The field grew with a rapid pace since then, especially with regards to designing new materials as well as to explore their device potentialities. Amongst the known superionic solids, fast Ag+ ion conducting crystalline solid electrolytes are attracted special attention due to their relatively higher room temperature conductivity as well as ease of materials handling/synthesis. Ion conduction in these electrolytes is very much interesting part of today. In the present review article, the ion conducting phenomenon and some device applications of crystalline/polycrystalline superionic solid electrolytes have been reviewed in brief. Synthesis and characterization tools have also been discussed in the present review article.

  4. Study on Zinc Oxide-Based Electrolytes in Low-Temperature Solid Oxide Fuel Cells.

    PubMed

    Xia, Chen; Qiao, Zheng; Feng, Chu; Kim, Jung-Sik; Wang, Baoyuan; Zhu, Bin

    2017-12-28

    Semiconducting-ionic conductors have been recently described as excellent electrolyte membranes for low-temperature operation solid oxide fuel cells (LT-SOFCs). In the present work, two new functional materials based on zinc oxide (ZnO)-a legacy material in semiconductors but exceptionally novel to solid state ionics-are developed as membranes in SOFCs for the first time. The proposed ZnO and ZnO-LCP (La/Pr doped CeO₂) electrolytes are respectively sandwiched between two Ni 0.8 Co 0.15 Al 0.05 Li-oxide (NCAL) electrodes to construct fuel cell devices. The assembled ZnO fuel cell demonstrates encouraging power outputs of 158-482 mW cm -2 and high open circuit voltages (OCVs) of 1-1.06 V at 450-550 °C, while the ZnO-LCP cell delivers significantly enhanced performance with maximum power density of 864 mW cm -2 and OCV of 1.07 V at 550 °C. The conductive properties of the materials are investigated. As a consequence, the ZnO electrolyte and ZnO-LCP composite exhibit extraordinary ionic conductivities of 0.09 and 0.156 S cm -1 at 550 °C, respectively, and the proton conductive behavior of ZnO is verified. Furthermore, performance enhancement of the ZnO-LCP cell is studied by electrochemical impedance spectroscopy (EIS), which is found to be as a result of the significantly reduced grain boundary and electrode polarization resistances. These findings indicate that ZnO is a highly promising alternative semiconducting-ionic membrane to replace the electrolyte materials for advanced LT-SOFCs, which in turn provides a new strategic pathway for the future development of electrolytes.

  5. The Chemical Bond and Solid-state Physics

    ERIC Educational Resources Information Center

    Phillips, James C.

    1970-01-01

    Proposes a new scale of ionicity, with which the ionic character of bonding in crystals can be predicted and measured. This new scale of ionicity has led to improved understanding of such crystalline properties as lattice structure, heats of formation, elastic constants, and nonlinear optical properties. Bibliography. (LC)

  6. Designing a Novel Polymer Electrolyte for Improving the Electrode/Electrolyte Interface in Flexible All-Solid-State Electrical Double-Layer Capacitors.

    PubMed

    Wang, Jeng-An; Lu, Yi-Ting; Lin, Sheng-Chi; Wang, Yu-Sheng; Ma, Chen-Chi M; Hu, Chi-Chang

    2018-05-30

    A novel copolymer, polyurethane-poly(acrylic acid) (PAA), is successfully synthesized from poly(acrylic acid) (PAA) backbone cross-linked with waterborne polyurethane (WPU). This sticky polymer, which is neutralized with 1 M KOH and then soaked in 1 M KOH (denoted as WPU-PAAK-K), provides an ionic conductivity greater than 10 -2 S cm -1 and acts as a gel electrolyte perfectly improving the electrode/electrolyte interfaces in a flexible all-solid-state electrical double-layer capacitor (EDLC). The PAA backbone chains in the copolymer increase the amount of carboxyl groups and promote the segmental motion. The carboxyl groups enhance the water-uptake capacity, which facilitates the ion transport and promotes the ionic conductivity. The cross-linked agent, WPU chains, effectively maintains the rich water content and provides mechanical stickiness to bind two electrodes together. An acid-treated carbon paper (denoted as ACP) combining with such a gel polymer electrolyte demonstrates excellent capacitive behavior with a high areal capacitance of 211.6 mF cm -2 at 10 mV s -1 . A full cell consisting of ACP/WPU-PAAK-K/ACP displays a low equivalent series resistance of 0.44 Ω from the electrochemical impedance spectroscopic results. An all-solid-state ACP/WPU-PAAK-K/ACP EDLC provides an areal specific capacitance of 94.6 mF cm -2 at 1 mA cm -2 . This device under 180° bending shows a capacitance retention over 90%, revealing its remarkable flexibility.

  7. Nanocellulose as Material Building Block for Energy and Flexible Electronics

    NASA Astrophysics Data System (ADS)

    Hu, Liangbing

    2014-03-01

    In this talk, I will discuss the fabrications, properties and device applications of functional nanostructured paper based on nanocellulose. Nanostructures with tunable optical, electrical, ionic and mechanical properties will be discussed. Lab-scale demonstration devices, including low-cost Na-ion batteries, microbial fuel cells, solar cells, transparent transistors, actuators and touch screens will be briefly mentioned. These studies show that nanocellulose is a promising green material for electronics and energy devices.

  8. The use of ionic salt dyes as amorphous, thermally stable emitting layers in organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Chondroudis, Konstantinos; Mitzi, David B.

    2000-01-01

    The conversion of two neutral dye molecules (D) to ionic salts (H2N-D-NH2ṡ2HX) and their utilization as emitting layers in organic light-emitting diodes (OLEDs) is described. The dye salts, AEQTṡ2HCl and APTṡ2HCl, can be deposited as amorphous films using conventional evaporation techniques. X-ray diffraction and scanning electron microscopy analysis, coupled with thermal annealing studies, demonstrate the resistance of the films to crystallization. This stability is attributed to strong ionic forces between the relatively rigid molecules. OLEDs incorporating such salts for emitting layers exhibit better thermal stability compared with devices made from the corresponding neutral dyes (H2N-D-NH2). These results suggest that ionic salts may more generally enable the formation of thermally stable, amorphous emitting, and charge transporting layers.

  9. Silica-grafted ionic liquids for revealing the respective charging behaviors of cations and anions in supercapacitors.

    PubMed

    Dou, Qingyun; Liu, Lingyang; Yang, Bingjun; Lang, Junwei; Yan, Xingbin

    2017-12-19

    Supercapacitors based on activated carbon electrodes and ionic liquids as electrolytes are capable of storing charge through the electrosorption of ions on porous carbons and represent important energy storage devices with high power delivery/uptake. Various computational and instrumental methods have been developed to understand the ion storage behavior, however, techniques that can probe various cations and anions of ionic liquids separately remain lacking. Here, we report an approach to monitoring cations and anions independently by using silica nanoparticle-grafted ionic liquids, in which ions attaching to silica nanoparticle cannot access activated carbon pores upon charging, whereas free counter-ions can. Aided by this strategy, conventional electrochemical characterizations allow the direct measurement of the respective capacitance contributions and acting potential windows of different ions. Moreover, coupled with electrochemical quartz crystal microbalance, this method can provide unprecedented insight into the underlying electrochemistry.

  10. Flexible thin-film battery based on solid-like ionic liquid-polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Li, Qin; Ardebili, Haleh

    2016-01-01

    The development of high-performance flexible batteries is imperative for several contemporary applications including flexible electronics, wearable sensors and implantable medical devices. However, traditional organic liquid-based electrolytes are not ideal for flexible batteries due to their inherent safety and stability issues. In this study, a non-volatile, non-flammable and safe ionic liquid (IL)-based polymer electrolyte film with solid-like feature is fabricated and incorporated in a flexible lithium ion battery. The ionic liquid is 1-Ethyl-3-methylimidazolium dicyanamide (EMIMDCA) and the polymer is composed of poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP). The electrolyte exhibits good thermal stability (i.e. no weight loss up to 300 °C) and relatively high ionic conductivity (6 × 10-4 S cm-1). The flexible thin-film lithium ion battery based on solid-like electrolyte film is encapsulated using a thermal-lamination process and demonstrates excellent electrochemical performance, in both flat and bent configurations.

  11. Laser-driven fusion etching process

    DOEpatents

    Ashby, Carol I. H.; Brannon, Paul J.; Gerardo, James B.

    1989-01-01

    The surfaces of solid ionic substrates are etched by a radiation-driven chemical reaction. The process involves exposing an ionic substrate coated with a layer of a reactant material on its surface to radiation, e.g. a laser, to induce localized melting of the substrate which results in the occurrance of a fusion reaction between the substrate and coating material. The resultant reaction product and excess reactant salt are then removed from the surface of the substrate with a solvent which is relatively inert towards the substrate. The laser-driven chemical etching process is especially suitable for etching ionic salt substrates, e.g., a solid inorganic salt such as LiNbO.sub.3, such as used in electro-optical/acousto-optic devices. It is also suitable for applications wherein the etching process is required to produce an etched ionic substrate having a smooth surface morphology or when a very rapid etching rate is desired.

  12. Sub-0.5 V Highly Stable Aqueous Salt Gated Metal Oxide Electronics

    PubMed Central

    Park, Sungjun; Lee, SeYeong; Kim, Chang-Hyun; Lee, Ilseop; Lee, Won-June; Kim, Sohee; Lee, Byung-Geun; Jang, Jae-Hyung; Yoon, Myung-Han

    2015-01-01

    Recently, growing interest in implantable bionics and biochemical sensors spurred the research for developing non-conventional electronics with excellent device characteristics at low operation voltages and prolonged device stability under physiological conditions. Herein, we report high-performance aqueous electrolyte-gated thin-film transistors using a sol-gel amorphous metal oxide semiconductor and aqueous electrolyte dielectrics based on small ionic salts. The proper selection of channel material (i.e., indium-gallium-zinc-oxide) and precautious passivation of non-channel areas enabled the development of simple but highly stable metal oxide transistors manifested by low operation voltages within 0.5 V, high transconductance of ~1.0 mS, large current on-off ratios over 107, and fast inverter responses up to several hundred hertz without device degradation even in physiologically-relevant ionic solutions. In conjunction with excellent transistor characteristics, investigation of the electrochemical nature of the metal oxide-electrolyte interface may contribute to the development of a viable bio-electronic platform directly interfacing with biological entities in vivo. PMID:26271456

  13. High-performance microsupercapacitors based on two-dimensional graphene/manganese dioxide/silver nanowire ternary hybrid film.

    PubMed

    Liu, Wenwen; Lu, Congxiang; Wang, Xingli; Tay, Roland Yingjie; Tay, Beng Kang

    2015-02-24

    Microsupercapacitors (MSCs), as one type of significant power source or energy storage unit in microelectronic devices, have attracted more and more attention. However, how to reasonably design electrode structures and exploit the active materials to endow the MSCs with excellent performances in a limited surface area still remains a challenge. Here, a reduced graphene oxide (RGO)/manganese dioxide (MnO2)/silver nanowire (AgNW) ternary hybrid film (RGMA ternary hybrid film) is successfully fabricated by a facile vacuum filtration and subsequent thermal reduction, and is used directly as a binder-free electrode for MSCs. Additionally, a flexible, transparent, all-solid state RMGA-MSC is also built, and its electrochemical performance in an ionic liquid gel electrolyte are investigated in depth. Notably, the RGMA-MSCs display superior electrochemical properties, including exceptionally high rate capability (up to 50000 mV·s(-1)), high frequency response (very short corresponding time constant τ0 = 0.14 ms), and excellent cycle stability (90.3% of the initial capacitance after 6000 cycles in ionic liquid gel electrolyte). Importantly, the electrochemical performance of RGMA-MSCs shows a strong dependence on the geometric parameters including the interspace between adjacent fingers and the width of the finger of MSCs. These encouraging results may not only provide important references for the design and fabrication of high-performance MSCs, but also make the RGMA ternary hybrid film promising for the next generation film lithium ion batteries and other energy storage devices.

  14. Instant tough bonding of hydrogels for soft machines and electronics

    PubMed Central

    Wirthl, Daniela; Pichler, Robert; Drack, Michael; Kettlguber, Gerald; Moser, Richard; Gerstmayr, Robert; Hartmann, Florian; Bradt, Elke; Kaltseis, Rainer; Siket, Christian M.; Schausberger, Stefan E.; Hild, Sabine; Bauer, Siegfried; Kaltenbrunner, Martin

    2017-01-01

    Introducing methods for instant tough bonding between hydrogels and antagonistic materials—from soft to hard—allows us to demonstrate elastic yet tough biomimetic devices and machines with a high level of complexity. Tough hydrogels strongly attach, within seconds, to plastics, elastomers, leather, bone, and metals, reaching unprecedented interfacial toughness exceeding 2000 J/m2. Healing of severed ionic hydrogel conductors becomes feasible and restores function instantly. Soft, transparent multilayered hybrids of elastomers and ionic hydrogels endure biaxial strain with more than 2000% increase in area, facilitating soft transducers, generators, and adaptive lenses. We demonstrate soft electronic devices, from stretchable batteries, self-powered compliant circuits, and autonomous electronic skin for triggered drug delivery. Our approach is applicable in rapid prototyping and in delicate environments inaccessible for extended curing and cross-linking. PMID:28691092

  15. Photo-switchable two-dimensional nanofluidic ionic diodes.

    PubMed

    Wang, Lili; Feng, Yaping; Zhou, Yi; Jia, Meijuan; Wang, Guojie; Guo, Wei; Jiang, Lei

    2017-06-01

    The bottom-up assembly of ion-channel-mimetic nanofluidic devices and materials with two-dimensional (2D) nano-building blocks paves a straightforward way towards the real-world applications of the novel transport phenomena on a nano- or sub-nanoscale. One immediate challenge is to provide the 2D nanofluidic systems with adaptive responsibilities and asymmetric ion transport characteristics. Herein, we introduce a facile and general strategy to provide a graphene-oxide-based 2D nanofluidic system with photo-switchable ionic current rectification (ICR). The degree of ICR can be prominently enhanced upon UV irradiation and it can be perfectly retrieved under irradiation with visible light. A maximum ICR ratio of about 48 was achieved. The smart and functional nanofluidic devices have applications in energy conversion, chemical sensing, water treatment, etc .

  16. Instant tough bonding of hydrogels for soft machines and electronics.

    PubMed

    Wirthl, Daniela; Pichler, Robert; Drack, Michael; Kettlguber, Gerald; Moser, Richard; Gerstmayr, Robert; Hartmann, Florian; Bradt, Elke; Kaltseis, Rainer; Siket, Christian M; Schausberger, Stefan E; Hild, Sabine; Bauer, Siegfried; Kaltenbrunner, Martin

    2017-06-01

    Introducing methods for instant tough bonding between hydrogels and antagonistic materials-from soft to hard-allows us to demonstrate elastic yet tough biomimetic devices and machines with a high level of complexity. Tough hydrogels strongly attach, within seconds, to plastics, elastomers, leather, bone, and metals, reaching unprecedented interfacial toughness exceeding 2000 J/m 2 . Healing of severed ionic hydrogel conductors becomes feasible and restores function instantly. Soft, transparent multilayered hybrids of elastomers and ionic hydrogels endure biaxial strain with more than 2000% increase in area, facilitating soft transducers, generators, and adaptive lenses. We demonstrate soft electronic devices, from stretchable batteries, self-powered compliant circuits, and autonomous electronic skin for triggered drug delivery. Our approach is applicable in rapid prototyping and in delicate environments inaccessible for extended curing and cross-linking.

  17. Ultra-Thin Solid-State Nanopores: Fabrication and Applications

    NASA Astrophysics Data System (ADS)

    Kuan, Aaron Tzeyang

    Solid-state nanopores are a nanofluidic platform with unique advantages for single-molecule analysis and filtration applications. However, significant improvements in device performance and scalable fabrication methods are needed to make nanopore devices competitive with existing technologies. This dissertation investigates the potential advantages of ultra-thin nanopores in which the thickness of the membrane is significantly smaller than the nanopore diameter. Novel, scalable fabrication methods were first developed and then utilized to examine device performance for water filtration and single molecule sensing applications. Fabrication of nanometer-thin pores in silicon nitride membranes was achieved using a feedback-controlled ion beam method in which ion sputtering is arrested upon detection of the first few ions that drill through the membrane. Performing fabrication at liquid nitrogen temperatures prevents surface atom rearrangements that have previously complicated similar processes. A novel cross-sectional imaging method was also developed to allow careful examination of the full nanopore geometry. Atomically-thin graphene nanopores were fabricated via an electrical pulse method in which sub-microsecond electrical pulses applied across a graphene membrane in electrolyte solution are used to create a defect in the membrane and controllably enlarge it into a nanopore. This method dramatically increases the accuracy and reliability of graphene nanopore production, allowing consistent production of single nanopores down to subnanometer sizes. In filtration applications in which nanopores are used to selectively restrict the passage of dissolved contaminants, ultra-thin nanopores minimize the flow resistance, increasing throughput and energy-efficiency. The ability of graphene nanopores to separate different ions was characterized via ionic conductance and reversal potential measurements. Graphene nanopores were observed to conduct cations preferentially over anions with selectivity ratios of 100 or higher for pores as large as 20 nm in diameter, suggesting that porous graphene membranes can be used to create highly effective cation exchange membranes for electrodialysis filtration. These surprisingly high selectivities cannot be explained by current models of ionic conduction in graphene nanopores, motivating the development of a new model in which elevated concentrations of mobile cations near the graphene surface generate additional ion selectivity.

  18. All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode.

    PubMed

    Zhu, Zhiqiang; Hong, Meiling; Guo, Dongsheng; Shi, Jifu; Tao, Zhanliang; Chen, Jun

    2014-11-26

    The cathode capacity of common lithium ion batteries (LIBs) using inorganic electrodes and liquid electrolytes must be further improved. Alternatively, all-solid-state lithium batteries comprising the electrode of organic compounds can offer much higher capacity. Herein, we successfully fabricated an all-solid-state lithium battery based on organic pillar[5]quinone (C35H20O10) cathode and composite polymer electrolyte (CPE). The poly(methacrylate) (PMA)/poly(ethylene glycol) (PEG)-LiClO4-3 wt % SiO2 CPE has an optimum ionic conductivity of 0.26 mS cm(-1) at room temperature. Furthermore, pillar[5]quinine cathode in all-solid-state battery rendered an average operation voltage of ∼2.6 V and a high initial capacity of 418 mAh g(-1) with a stable cyclability (94.7% capacity retention after 50 cycles at 0.2C rate) through the reversible redox reactions of enolate/quinonid carbonyl groups, showing favorable prospect for the device application with high capacity.

  19. Structure of cyano-anion ionic liquids: X-ray scattering and simulations.

    PubMed

    Dhungana, Kamal B; Faria, Luiz F O; Wu, Boning; Liang, Min; Ribeiro, Mauro C C; Margulis, Claudio J; Castner, Edward W

    2016-07-14

    Ionic liquids with cyano anions have long been used because of their unique combination of low-melting temperatures, reduced viscosities, and increased conductivities. Recently we have shown that cyano anions in ionic liquids are particularly interesting for their potential use as electron donors to excited state photo-acceptors [B. Wu et al., J. Phys. Chem. B 119, 14790-14799 (2015)]. Here we report on bulk structural and quantum mechanical results for a series of ionic liquids based on the 1-ethyl-3-methylimidazolium cation, paired with the following five cyano anions: SeCN(-), SCN(-), N(CN)2 (-), C(CN)3 (-), and B(CN)4 (-). By combining molecular dynamics simulations, high-energy X-ray scattering measurements, and periodic boundary condition DFT calculations, we are able to obtain a comprehensive description of the liquid landscape as well as the nature of the HOMO-LUMO states for these ionic liquids in the condensed phase. Features in the structure functions for these ionic liquids are somewhat different than the commonly observed adjacency, charge-charge, and polarity peaks, especially for the bulkiest B(CN)4 (-) anion. While the other four cyano-anion ionic liquids present an anionic HOMO, the one for Im2,1 (+)/B(CN)4 (-) is cationic.

  20. Effect of halide-mixing on the switching behaviors of organic-inorganic hybrid perovskite memory

    NASA Astrophysics Data System (ADS)

    Hwang, Bohee; Gu, Chungwan; Lee, Donghwa; Lee, Jang-Sik

    2017-03-01

    Mixed halide perovskite materials are actively researched for solar cells with high efficiency. Their hysteresis which originates from the movement of defects make perovskite a candidate for resistive switching memory devices. We demonstrate the resistive switching device based on mixed-halide organic-inorganic hybrid perovskite CH3NH3PbI3-xBrx (x = 0, 1, 2, 3). Solvent engineering is used to deposit the homogeneous CH3NH3PbI3-xBrx layer on the indium-tin oxide-coated glass substrates. The memory device based on CH3NH3PbI3-xBrx exhibits write endurance and long retention, which indicate reproducible and reliable memory properties. According to the increase in Br contents in CH3NH3PbI3-xBrx the set electric field required to make the device from low resistance state to high resistance state decreases. This result is in accord with the theoretical calculation of migration barriers, that is the barrier to ionic migration in perovskites is found to be lower for Br- (0.23 eV) than for I- (0.29-0.30 eV). The resistive switching may be the result of halide vacancy defects and formation of conductive filaments under electric field in the mixed perovskite layer. It is observed that enhancement in operating voltage can be achieved by controlling the halide contents in the film.

  1. Ionic electroactive polymer artificial muscles in space applications.

    PubMed

    Punning, Andres; Kim, Kwang J; Palmre, Viljar; Vidal, Frédéric; Plesse, Cédric; Festin, Nicolas; Maziz, Ali; Asaka, Kinji; Sugino, Takushi; Alici, Gursel; Spinks, Geoff; Wallace, Gordon; Must, Indrek; Põldsalu, Inga; Vunder, Veiko; Temmer, Rauno; Kruusamäe, Karl; Torop, Janno; Kaasik, Friedrich; Rinne, Pille; Johanson, Urmas; Peikolainen, Anna-Liisa; Tamm, Tarmo; Aabloo, Alvo

    2014-11-05

    A large-scale effort was carried out to test the performance of seven types of ionic electroactive polymer (IEAP) actuators in space-hazardous environmental factors in laboratory conditions. The results substantiate that the IEAP materials are tolerant to long-term freezing and vacuum environments as well as ionizing Gamma-, X-ray, and UV radiation at the levels corresponding to low Earth orbit (LEO) conditions. The main aim of this material behaviour investigation is to understand and predict device service time for prolonged exposure to space environment.

  2. Iontronics

    NASA Astrophysics Data System (ADS)

    Chun, Honggu; Chung, Taek Dong

    2015-07-01

    Iontronics is an emerging technology based on sophisticated control of ions as signal carriers that bridges solid-state electronics and biological system. It is found in nature, e.g., information transduction and processing of brain in which neurons are dynamically polarized or depolarized by ion transport across cell membranes. It suggests the operating principle of aqueous circuits made of predesigned structures and functional materials that characteristically interact with ions of various charge, mobility, and affinity. Working in aqueous environments, iontronic devices offer profound implications for biocompatible or biodegradable logic circuits for sensing, ecofriendly monitoring, and brain-machine interfacing. Furthermore, iontronics based on multi-ionic carriers sheds light on futuristic biomimic information processing. In this review, we overview the historical achievements and the current state of iontronics with regard to theory, fabrication, integration, and applications, concluding with comments on where the technology may advance.

  3. Fabrication of a stretchable solid-state micro-supercapacitor array.

    PubMed

    Kim, Daeil; Shin, Gunchul; Kang, Yu Jin; Kim, Woong; Ha, Jeong Sook

    2013-09-24

    We fabricated a stretchable micro-supercapacitor array with planar SWCNT electrodes and an ionic liquid-based triblock copolymer electrolyte. The mechanical stability of the entire supercapacitor array upon stretching was obtained by adopting strategic design concepts. First, the narrow and long serpentine metallic interconnections were encapsulated with polyimide thin film to ensure that they were within the mechanical neutral plane. Second, an array of two-dimensional planar micro-supercapacitor with SWCNT electrodes and an ion-gel-type electrolyte was made to achieve all-solid-state energy storage devices. The formed micro-supercapacitor array showed excellent performances which were stable over stretching up to 30% without any noticeable degradation. This work shows the strong potential of a stretchable micro-supercapacitor array in applications such as wearable computers, power dressing, electronic newspapers, paper-like mobile phones, and other easily collapsible gadgets.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Letian; Lai, Minliang; Kley, Christopher S.

    Halide perovskites are promising semiconductor materials for solution-processed optoelectronic devices. Their strong ionic bonding nature results in highly dynamic crystal lattices, inherently allowing rapid ion exchange at the solid–vapor and solid–liquid interface. In this paper, we show that the anion-exchange chemistry can be precisely controlled in single-crystalline halide perovskite nanomaterials when combined with nanofabrication techniques. We demonstrate spatially resolved multicolor CsPbX 3 (X = Cl, Br, I, or alloy of two halides) nanowire heterojunctions with a pixel size down to 500 nm with the photoluminescence tunable over the entire visible spectrum. In addition, the heterojunctions show distinct electronic states acrossmore » the interface, as revealed by Kelvin probe force microscopy. Finally, these perovskite heterojunctions represent key building blocks for high-resolution multicolor displays beyond current state-of-the-art technology as well as high-density diode/transistor arrays.« less

  5. Supercapacitors based on modified graphene electrodes with poly(ionic liquid)

    NASA Astrophysics Data System (ADS)

    Trigueiro, João Paulo C.; Lavall, Rodrigo L.; Silva, Glaura G.

    2014-06-01

    The improved accessibility of the electrolyte to the surface of carbon nanomaterials is a challenge to be overcome in supercapacitors based on ionic liquid electrolytes. In this study, we report the preparation of supercapacitors based on reduced graphene oxide (RGO) electrodes and ionic liquid as the electrolyte (specifically, 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide or [MPPy][TFSI]). Two types of electrodes were compared: the RGO-based electrode and a poly(ionic liquid)-modified RGO electrode (PIL:RGO). The supercapacitor produced with the PIL:RGO electrode and [MPPy][TFSI] showed an electrochemical stability of 3 V and provided a capacitance of 71.5 F g-1 at room temperature; this capacitance is 130% higher with respect to the RGO-based supercapacitor. The decrease of the specific capacitance after 2000 cycles is only 10% for the PIL:RGO-based device. The results revealed the potential of the PIL:RGO material as an electrode for supercapacitors. This composite electrode increases the compatibility with the ionic liquid electrolyte compared to an RGO electrode, promoting an increase in the effective surface area of the electrode accessible to the electrolyte ions.

  6. Tuning transport selectivity of ionic species by phosphoric acid gradient in positively charged nanochannel membranes.

    PubMed

    Yang, Meng; Yang, Xiaohai; Wang, Kemin; Wang, Qing; Fan, Xin; Liu, Wei; Liu, Xizhen; Liu, Jianbo; Huang, Jin

    2015-02-03

    The transport of ionic species through a nanochannel plays important roles in fundamental research and practical applications of the nanofluidic device. Here, we demonstrated that ionic transport selectivity of a positively charged nanochannel membrane can be tuned under a phosphoric acid gradient. When phosphoric acid solution and analyte solution were connected by the positively charged nanochannel membrane, the faster-moving analyte through the positively charged nanochannel membrane was the positively charged dye (methylviologen, MV(2+)) instead of the negatively charged dye (1,5-naphthalene disulfonate, NDS(2-)). In other words, a reversed ion selectivity of the nanochannel membranes can be found. It can be explained as a result of the combination of diffusion, induced electroosmosis, and induced electrophoresis. In addition, the influencing factors of transport selectivity, including concentration of phosphoric acid, penetration time, and volume of feed solution, were also investigated. The results showed that the transport selectivity can further be tuned by adjusting these factors. As a method of tuning ionic transport selectivity by establishing phosphoric acid gradient, it will be conducive to improving the separation of ionic species.

  7. Narrow Band Gap Conjugated Polyelectrolytes.

    PubMed

    Cui, Qiuhong; Bazan, Guillermo C

    2018-01-16

    Two essential structural elements define a class of materials called conjugated polyelectrolytes (CPEs). The first is a polymer framework with an electronically delocalized, π-conjugated structure. This component allows one to adjust desirable optical and electronic properties, for example the range of wavelengths absorbed, emission quantum yields, electron affinity, and ionization potential. The second defining feature is the presence of ionic functionalities, which are usually linked via tethers that can modulate the distance of the charged groups relative to the backbone. These ionic groups render CPEs distinct relative to their neutral conjugated polymer counterparts. Solubility in polar solvents, including aqueous media, is an immediately obvious difference. This feature has enabled the development of optically amplified biosensor protocols and the fabrication of multilayer organic semiconductor devices through deposition techniques using solvents with orthogonal properties. Important but less obvious potential advantages must also be considered. For example, CPE layers have been used to introduce interfacial dipoles and thus modify the effective work function of adjacent electrodes. One can thereby modulate the barriers for charge injection into semiconductor layers and improve the device efficiencies of organic light-emitting diodes and solar cells. With a hydrophobic backbone and hydrophilic ionic sites, CPEs can also be used as dispersants for insoluble materials. Narrow band gap CPEs (NBGCPEs) have been studied only recently. They contain backbones that comprise electron-rich and electron-poor fragments, a combination that leads to intramolecular charge transfer excited states and enables facile oxidation and reduction. One particularly interesting combination is NBGCPEs with anionic sulfonate side groups, for which spontaneous self-doping in aqueous media is observed. That no such doping is observed with cationic NBGCPEs indicates that the interplay between electrostatic forces and the redox chemistry of the organic semiconducting chain is essential for stabilizing the polaronic states and increasing the conductivity of the bulk. Capitalizing upon the properties of NBGCPEs has resulted in a range of new applications. When doped, they can be introduced as interlayers in organic and perovskite solar cells. Single-walled carbon nanotubes can be n- or p-doped with NBGCPEs, depending on whether the same backbone contains attached cationic or anionic side groups, respectively. The resulting dispersions can be used to fabricate flexible thermoelectric devices in which the n- and p-semiconductor legs are nearly identical in terms of chemical composition. Electrostatic interactions with negatively charged cell walls, in combination with the long-wavelength absorption and high photothermal efficiencies, have been used to create effective agents for photothermal killing of bacteria. Additionally, recent results have shown that cationic NBGCPEs can effectively n-dope graphene and that this doping is temperature-dependent. The preferential charge carriers can therefore be chosen to be electrons or holes depending on the applied temperature.

  8. Neuron-Glia Interactions and Nervous System Homeostasis

    DTIC Science & Technology

    1988-06-01

    active neuron states, the mechanisms which glial cells and neurons use to modulate each others metabolic state and the chemical, electrical and... mechanisms by which axons/neurons and their glial cell investments communicate to actively regulate the ionic microenvironment of the nervous system and...of the glial cell in maintenance of the ionic homeostasis of the perineural environment during resting and active neuron states, the mechanisms which

  9. Integration of solid-state nanopores in a 0.5 μm cmos foundry process

    PubMed Central

    Uddin, A; Yemenicioglu, S; Chen, C-H; Corigliano, E; Milaninia, K; Theogarajan, L

    2013-01-01

    High-bandwidth and low-noise nanopore sensor and detection electronics are crucial in achieving single-DNA base resolution. A potential way to accomplish this goal is to integrate solid-state nanopores within a CMOS platform, in close proximity to the biasing electrodes and custom-designed amplifier electronics. Here we report the integration of solid-state nanopore devices in a commercial complementary metal-oxide semiconductor (CMOS) potentiostat chip implemented in On-Semiconductor’s 0.5 μm technology. Nanopore membranes incorporating electrodes are fabricated by post-CMOS micromachining utilizing the N+ polysilicon/SiO2/N+ polysilicon capacitor structure available in the aforementioned process. Nanopores are created in the CMOS process by drilling in a transmission electron microscope and shrinking by atomic layer deposition. We also describe a batch fabrication method to process a large of number of electrode-embedded nanopores with sub-10 nm diameter across CMOS-compatible wafers by electron beam lithography and atomic layer deposition. The CMOS-compatibility of our fabrication process is verified by testing the electrical functionality of on-chip circuitry. We observe high current leakage with the CMOS nanopore devices due to the ionic diffusion through the SiO2 membrane. To prevent this leakage, we coat the membrane with Al2O3 which acts as an efficient diffusion barrier against alkali ions. The resulting nanopore devices also exhibit higher robustness and lower 1/f noise as compared to SiO2 and SiNx. Furthermore, we propose a theoretical model for our low-capacitance CMOS nanopore devices, showing good agreement with the experimental value. In addition, experiments and theoretical models of translocation studies are presented using 48.5 kbp λ-DNA in order to prove the functionality of on-chip pores coated with Al2O3. PMID:23519330

  10. Investigation of “benign” ionic content in epoxy that induces microelectronic device failure

    Treesearch

    Gregory T. Schueneman; Jeffery Kingsbury; Edmund Klinkerch

    2011-01-01

    Microelectronics and the devices dependent upon them have the extremely challenging requirements of becoming more capable and less expensive every year. This drives the industry to pack more functions into an ever smaller footprint until the next technological revolution. Adding to this situation is the removal of lead from the bill of materials followed closely by...

  11. Solid State Ionic Materials - Proceedings of the 4th Asian Conference on Solid State Ionics

    NASA Astrophysics Data System (ADS)

    Chowdari, B. V. R.; Yahaya, M.; Talib, I. A.; Salleh, M. M.

    1994-07-01

    The Table of Contents for the full book PDF is as follows: * Preface * I. INVITED PAPERS * Diffusion of Cations and Anions in Solid Electrolytes * Silver Ion Conductors in the Crystalline State * NMR Studies of Superionic Conductors * Hall Effect and Thermoelectric Power in High Tc Hg-Ba-Ca-Cu-O Ceramics * Solid Electrolyte Materials Prepared by Sol-Gel Chemistry * Preparation of Proton-Conducting Gel Films and their Application to Electrochromic Devices * Thin Film Fuel Cells * Zirconia based Solid Oxide Ion Conductors in Solid Oxide Fuel Cells * The Influence of Anion Substitution on Some Phosphate-based Ion Conducting Glasses * Lithium Intercalation in Carbon Electrodes and its Relevance in Rocking Chair Batteries * Chemical Sensors using Proton Conducting Ceramics * NMR/NQR Studies of Y-Ba-Cu-O Superconductors * Silver Molybdate Glasses and Battery Systems * New Highly Conducting Polymer Ionics and their Application in Electrochemical Devices * Study of Li Electrokinetics on Oligomeric Electrolytes using Microelectrodes * Calculation of Conductivity for Mixed-Phase Electrolytes PEO-MX-Immiscible Additive by Means of Effective Medium Theory * II. CONTRIBUTED PAPERS * Phase Relationship and Electrical Conductivity of Sr-V-O System with Vanadium Suboxide * Amorphous Li+ Ionic Conductors in Li2SO4-Li2O-P2O5 System * Fast Ion Transport in KCl-Al2O3 Composites * The Effect of the Second Phase Precipitation on the Ionic Conductivity of Zr0.85Mg0.15O1.85 * Conductivity Measurements and Phase Relationships in CaCl2-CaHCl Solid Electrolyte * Relationships Between Crystal Structure and Sodium Ion Conductivity in Na7Fe4(AsO4)6 and Na3Al2(AsO4)3 * Electrical Conductivity and Solubility Limit of Ti4+ Ion in Na1+x TiyZr2-ySixP3-xO12 System * Study on Sodium Fast Ion Conductors of Na1+3xAlxTi2-xSi2xP3-2xO12 System * Influences of Zirconia on the Properties of β''-Alumina Ceramics * Decay of Luminescence from Cr3+ Ions in β-Alumina * Lithium Ion Conductivity in the Li4XO4-Li2SO4 (X=Si, Ge, Ti) Systems * A DSC and Conductivity Study of the Influence of Cesium Ion on the Beta-Alpha Transition in Silver Iodide * Phase Diagrams, Stoichiometries and Properties of Bi4V2O11:M2+ Solid Electrolytes * Physical Properties of Electrodeposited Silver Chromotungstate * Pseudopotential Study of Bonding in the Superionic Material AgI: The Effect of Statistical Distribution of Mobile Ions * Cubic Phase Dominant Region in Submicron BaTiO3 Particles * The Crystallization of CoZr Amorphous Alloys via Electrical Resistivity * Cation Ratio Related Properties of Synthetic Mg/Al Layered Double Hydroxide and it's Nanocomposite * DC Conductivity of Nano-Particles of Silver Iodide * Effect of Anomalous Diffusion on Quasielastic Scattering in Superionic Conductors * Computer Simulation Study of Conductivity Enhancement in Superionic-Insulator Composites * Dynamics of Superionic Silver and Copper Iodide Salt Melts * Influence of Dopant Salt AgI, Glass Modifier Ag2O and Glass Formers (SeO3 + MoO3) on Electrical Conductivity in Quaternary Glassy System * Fast Ion Conductivity in the Presence of Competitive Network Formers * Role of Alkali Ions in Borate Glasses * Inelastic Light Scattering in Cadmium Borate Glasses * Investigation on Transport Properties of Mixed Glass System 0.75 [0.75AgI:0.25AgCl]. 0.25[Ag2O:CrO3] * Conduction Mechanism in Lithium Tellurite Glasses * Optimized Silver Tungstoarsenate Glass Electrolyte * Stabilized Superfine Zirconia Powder Prepared by Sol-Gel Process * Study of New PAN-based Electrolytes * Electrical and Thermal Characterization of PVA based Polymer Electrolytes * Conductive Electroactive Polymers: Versatile Solid State Ionic Materials * The Role of Ag2O Addition on the Superconducting Properties of Y-124 Compound * Absorption Spectra Studies of the C60 Films on Transition Metal Film Substrates * Effect of Alumina Dispersal on the Conductivity and Crystallite Size of Polymer Electrolyte * New Mixed Galss-Polymer Solid Electrolytes * The Sputtered La0.5Sr0.5MnO3-Yttria Stabilized Zirconia Composite Electrode in Solid Oxide Fuel Cells * A Solid Electrochemical Ferro Sensor for Molten Matte * SnO2-based Sensor for H2S Monitoring-Electrical Conductivity Measurements and Device Testing * Humidity Sensor using Potassium Tungsten Bronze Synthesized from Peroxo-Polytungstic Acid * Study on Li/LiClO4/V6O13 Test Cells * Fabrication and Characterisation of Some Solid Electrolyte Cells Containing CuI and Silver Oxysalts * Solid State Battery of Proton Conducting Sodium Thiosulphate Pentahydrate * Low Temperature Synthesis of LiMn2O4 for Secondary Lithium Batteries * Effect of Different Cathode Active Materials on Battery Performance with Silver Molybdate Electrolyte Partially Substituted with Zinc Oxide * Fabrication and Characterization of Electrochemical Cells based on Silver Molybdoarsenate and Silver Tungstoarsenate Glass Electrolytes * Lorentz Force Dependence of Dissipation in a Granular Superconductor * Late Entry (Invited paper) * Simultaneous Voltammetry and Spectroscopy of Polyaniline in Propylene Carbonate * Author Index * Tentative List of Participants

  12. Next-Generation Electrochemical Energy Materials for Intermediate Temperature Molten Oxide Fuel Cells and Ion Transport Molten Oxide Membranes.

    PubMed

    Belousov, Valery V

    2017-02-21

    High temperature electrochemical devices such as solid oxide fuel cells (SOFCs) and oxygen separators based on ceramic materials are used for efficient energy conversion. These devices generally operate in the temperature range of 800-1000 °C. The high operating temperatures lead to accelerated degradation of the SOFC and oxygen separator materials. To solve this problem, the operating temperatures of these electrochemical devices must be lowered. However, lowering the temperature is accompanied by decreasing the ionic conductivity of fuel cell electrolyte and oxygen separator membrane. Therefore, there is a need to search for alternative electrolyte and membrane materials that have high ionic conductivity at lower temperatures. A great many opportunities exist for molten oxides as electrochemical energy materials. Because of their unique electrochemical properties, the molten oxide innovations can offer significant benefits for improving energy efficiency. In particular, the newly developed electrochemical molten oxide materials show high ionic conductivities at intermediate temperatures (600-800 °C) and could be used in molten oxide fuel cells (MOFCs) and molten oxide membranes (MOMs). The molten oxide materials containing both solid grains and liquid channels at the grain boundaries have advantages compared to the ceramic materials. For example, the molten oxide materials are ductile, which solves a problem of thermal incompatibility (difference in coefficient of thermal expansion, CTE). Besides, the outstanding oxygen selectivity of MOM materials allows us to separate ultrahigh purity oxygen from air. For their part, the MOFC electrolytes show the highest ionic conductivity at intermediate temperatures. To evaluate the potential of molten oxide materials for technological applications, the relationship between the microstructure of these materials and their transport and mechanical properties must be revealed. This Account summarizes the latest results on oxygen ion transport in potential MOM materials and MOFC electrolytes. In addition, we consider the rapid oxygen transport in a molten oxide scale formed on a metal surface during catastrophic oxidation and show that the same transport could be used beneficially in MOMs and MOFCs. A polymer model explaining the oxygen transport in molten oxides is also considered. Understanding the oxygen transport mechanisms in oxide melts is important for the development of new generation energy materials, which will contribute to more efficient operation of electrochemical devices at intermediate temperatures. Here we highlight the progress made in developing this understanding. We also show the latest advances made in search of alternative molten oxide materials having high mixed ion electronic and ionic conductivities for use in MOMs and MOFCs, respectively. Prospects for further research are presented.

  13. Real-time detection of mercury ions in water using a reduced graphene oxide/DNA field-effect transistor with assistance of a passivation layer

    DOE PAGES

    Chang, Jingbo; Zhou, Guihua; Gao, Xianfeng; ...

    2015-08-01

    Field-effect transistor (FET) sensors based on reduced graphene oxide (rGO) for detecting chemical species provide a number of distinct advantages, such as ultrasensitivity, label-free, and real-time response. However, without a passivation layer, channel materials directly exposed to an ionic solution could generate multiple signals from ionic conduction through the solution droplet, doping effect, and gating effect. Therefore, a method that provides a passivation layer on the surface of rGO without degrading device performance will significantly improve device sensitivity, in which the conductivity changes solely with the gating effect. In this work, we report rGO FET sensor devices with Hg 2+-dependentmore » DNA as a probe and the use of an Al 2O 3 layer to separate analytes from conducting channel materials. The device shows good electronic stability, excellent lower detection limit (1 nM), and high sensitivity for real-time detection of Hg 2+ in an underwater environment. Our work shows that optimization of an rGO FET structure can provide significant performance enhancement and profound fundamental understanding for the sensor mechanism.« less

  14. Long-range electrostatic screening in ionic liquids

    PubMed Central

    Gebbie, Matthew A.; Dobbs, Howard A.; Valtiner, Markus; Israelachvili, Jacob N.

    2015-01-01

    Electrolyte solutions with high concentrations of ions are prevalent in biological systems and energy storage technologies. Nevertheless, the high interaction free energy and long-range nature of electrostatic interactions makes the development of a general conceptual picture of concentrated electrolytes a significant challenge. In this work, we study ionic liquids, single-component liquids composed solely of ions, in an attempt to provide a novel perspective on electrostatic screening in very high concentration (nonideal) electrolytes. We use temperature-dependent surface force measurements to demonstrate that the long-range, exponentially decaying diffuse double-layer forces observed across ionic liquids exhibit a pronounced temperature dependence: Increasing the temperature decreases the measured exponential (Debye) decay length, implying an increase in the thermally driven effective free-ion concentration in the bulk ionic liquids. We use our quantitative results to propose a general model of long-range electrostatic screening in ionic liquids, where thermally activated charge fluctuations, either free ions or correlated domains (quasiparticles), take on the role of ions in traditional dilute electrolyte solutions. This picture represents a crucial step toward resolving several inconsistencies surrounding electrostatic screening and charge transport in ionic liquids that have impeded progress within the interdisciplinary ionic liquids community. More broadly, our work provides a previously unidentified way of envisioning highly concentrated electrolytes, with implications for diverse areas of inquiry, ranging from designing electrochemical devices to rationalizing electrostatic interactions in biological systems. PMID:26040001

  15. All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes.

    PubMed

    Kang, Yu Jin; Chung, Haegeun; Han, Chi-Hwan; Kim, Woong

    2012-02-17

    All-solid-state flexible supercapacitors were fabricated using carbon nanotubes (CNTs), regular office papers, and ionic-liquid-based gel electrolytes. Flexible electrodes were made by coating CNTs on office papers by a drop-dry method. The gel electrolyte was prepared by mixing fumed silica nanopowders with ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][NTf(2)]). This supercapacitor showed high power and energy performance as a solid-state flexible supercapacitor. The specific capacitance of the CNT electrodes was 135 F g(-1) at a current density of 2 A g(-1), when considering the mass of active materials only. The maximum power and energy density of the supercapacitors were 164 kW kg(-1) and 41 Wh kg(-1), respectively. Interestingly, the solid-state supercapacitor with the gel electrolyte showed comparable performance to the supercapacitors with ionic-liquid electrolyte. Moreover, the supercapacitor showed excellent stability and flexibility. The CNT/paper- and gel-based supercapacitors may hold great potential for low-cost and high-performance flexible energy storage applications.

  16. All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes

    NASA Astrophysics Data System (ADS)

    Kang, Yu Jin; Chung, Haegeun; Han, Chi-Hwan; Kim, Woong

    2012-02-01

    All-solid-state flexible supercapacitors were fabricated using carbon nanotubes (CNTs), regular office papers, and ionic-liquid-based gel electrolytes. Flexible electrodes were made by coating CNTs on office papers by a drop-dry method. The gel electrolyte was prepared by mixing fumed silica nanopowders with ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][NTf2]). This supercapacitor showed high power and energy performance as a solid-state flexible supercapacitor. The specific capacitance of the CNT electrodes was 135 F g-1 at a current density of 2 A g-1, when considering the mass of active materials only. The maximum power and energy density of the supercapacitors were 164 kW kg-1 and 41 Wh kg-1, respectively. Interestingly, the solid-state supercapacitor with the gel electrolyte showed comparable performance to the supercapacitors with ionic-liquid electrolyte. Moreover, the supercapacitor showed excellent stability and flexibility. The CNT/paper- and gel-based supercapacitors may hold great potential for low-cost and high-performance flexible energy storage applications.

  17. New Insights into Mechanism of Surface Reactions of ZnO Nanorods During Electrons Beam Irradiation.

    PubMed

    Cho, Youngseung; Ji, Hyunjin; Kim, Hyoungsub; Yoon, Jinsuop; Choi, Byoungdeog

    2018-09-01

    This study provides new insight into mechanisms of ionic reactions on the surface of ZnO nanorod networks, which could result in enhanced performance in optical or molecular sensors. The current- voltage characteristics of ZnO nanorod network devices exhibit typical nonlinear behavior in air, which implies the formation of a Schottky barrier when metals are used as contacts. The conductance of the device increased significantly in vacuum, which can be explained by the desorption of hydroxyl groups at very low pressure. While physisorbed water or oxygen-related ions can detach from the ZnO surface during evacuation, exposure to high energy in the electron beam is believed to detach the chemisorbed anions of O- and O-2 from the surface of ZnO nanorods, which releases more electrons into the channel. The increase in available electrons enhances the conductance of the ZnO nanorods. Slow initialization of the conductance under ambient conditions indicates that the ionic re-adsorption is inactive under these conditions. Thus, the electron irradiation process can be used to reset the surface ionic molecules on metal oxide nano-structures by tuning the surface potential prior to the passivation process.

  18. Detection beyond the Debye screening length in a high-frequency nanoelectronic biosensor.

    PubMed

    Kulkarni, Girish S; Zhong, Zhaohui

    2012-02-08

    Nanosensors based on the unique electronic properties of nanotubes and nanowires offer high sensitivity and have the potential to revolutionize the field of Point-of-Care (POC) medical diagnosis. The direct current (dc) detection of a wide array of organic and inorganic molecules has been demonstrated on these devices. However, sensing mechanism based on measuring changes in dc conductance fails at high background salt concentrations, where the sensitivity of the devices suffers from the ionic screening due to mobile ions present in the solution. Here, we successfully demonstrate that the fundamental ionic screening effect can be mitigated by operating single-walled carbon nanotube field effect transistor as a high-frequency biosensor. The nonlinear mixing between the alternating current excitation field and the molecular dipole field can generate mixing current sensitive to the surface-bound biomolecules. Electrical detection of monolayer streptavidin binding to biotin in 100 mM buffer solution is achieved at a frequency beyond 1 MHz. Theoretical modeling confirms improved sensitivity at high frequency through mitigation of the ionic screening effect. The results should promise a new biosensing platform for POC detection, where biosensors functioning directly in physiologically relevant condition are desired. © 2012 American Chemical Society

  19. Poly(ionic liquids)-coated stainless-steel wires packed into a polyether ether ketone tube for in-tube solid-phase microextraction.

    PubMed

    Feng, Juanjuan; Wang, Xiuqin; Tian, Yu; Luo, Chuannan; Sun, Min

    2017-12-01

    An in-tube solid-phase microextraction device was developed by packing poly(ionic liquids)-coated stainless-steel wires into a polyether ether ketone tube. An anion-exchange process was performed to enhance the extraction performance. Surface properties of poly(ionic liquids)-coated stainless-steel wires were characterized by scanning electron microscopy and energy dispersive X-ray spectrometry. The extraction device was connected to high-performance liquid chromatography equipment to build an online enrichment and analysis system. Ten polycyclic aromatic hydrocarbons were used as model analytes, and important conditions including extraction time and desorption time were optimized. The enrichment factors from 268 to 2497, linear range of 0.03-20 μg/L, detection limits of 0.010-0.020 μg/L, extraction and preparation repeatability with relative standard deviation less than 1.8 and 19%, respectively were given by the established online analysis method. It has been used to detect polycyclic aromatic hydrocarbons in environmental samples, with the relative recovery (5, 10 μg/L) in the range of 85.1-118.9%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. First Principles Investigation of Fluorine Based Strontium Series of Perovskites

    NASA Astrophysics Data System (ADS)

    Erum, Nazia; Azhar Iqbal, Muhammad

    2016-11-01

    Density functional theory is used to explore structural, elastic, and mechanical properties of SrLiF3, SrNaF3, SrKF3 and SrRbF3 fluoroperovskite compounds by means of an ab-initio Full Potential-Linearized Augmented Plane Wave (FP-LAPW) method. Several lattice parameters are employed to obtain accurate equilibrium volume (Vo). The resultant quantities include ground state energy, elastic constants, shear modulus, bulk modulus, young's modulus, cauchy's pressure, poisson's ratio, shear constant, ratio of elastic anisotropy factor, kleinman's parameter, melting temperature, and lame's coefficient. The calculated structural parameters via DFT as well as analytical methods are found to be consistent with experimental findings. Chemical bonding is used to investigate corresponding chemical trends which authenticate combination of covalent-ionic behavior. Furthermore electron density plots as well as elastic and mechanical properties are reported for the first time which reveals that fluorine based strontium series of perovskites are mechanically stable and posses weak resistance towards shear deformation as compared to resistance towards unidirectional compression while brittleness and ionic behavior is dominated in them which decreases from SrLiF3 to SrRbF3. Calculated cauchy's pressure, poisson's ratio and B/G ratio also proves ionic nature in these compounds. The present methodology represents an effective and influential approach to calculate the whole set of elastic and mechanical parameters which would support to understand various physical phenomena and empower device engineers for implementing these materials in numerous applications.

  1. Bucky gel actuators optimization towards haptic applications

    NASA Astrophysics Data System (ADS)

    Bubak, Grzegorz; Ansaldo, Alberto; Ceseracciu, Luca; Hata, Kenji; Ricci, Davide

    2014-03-01

    An ideal plastic actuator for haptic applications should generate a relatively large displacement (minimum 0.2-0.6 mm, force (~50 mN/cm2) and a fast actuation response to the applied voltage. Although many different types of flexible, plastic actuators based on electroactive polymers (EAP) are currently under investigation, the ionic EAPs are the only ones that can be operated at low voltage. This property makes them suitable for applications that require inherently safe actuators. Among the ionic EAPs, bucky gel based actuators are very promising. Bucky gel is a physical gel made by grounding imidazolium ionic liquids with carbon nanotubes, which can then be incorporated in a polymeric composite matrix to prepare the active electrode layers of linear and bending actuators. Anyhow, many conflicting factors have to be balanced to obtain required performance. In order to produce high force a large stiffness is preferable but this limits the displacement. Moreover, the bigger the active electrode the larger the force. However the thicker an actuator is, the slower the charging process becomes (it is diffusion limited). In order to increase the charging speed a thin electrolyte would be desirable, but this increases the probability of pinholes and device failure. In this paper we will present how different approaches in electrolyte and electrode preparation influence actuator performance and properties taking particularly into account the device ionic conductivity (which influences the charging speed) and the electrode surface resistance (which influences both the recruitment of the whole actuator length and its speed).

  2. Printed environmentally friendly supercapacitors with ionic liquid electrolytes on paper

    NASA Astrophysics Data System (ADS)

    Pettersson, F.; Keskinen, J.; Remonen, T.; von Hertzen, L.; Jansson, E.; Tappura, K.; Zhang, Y.; Wilén, C.-E.; Österbacka, R.

    2014-12-01

    Environmentally friendly supercapacitors are fabricated using commercial grade aluminum coated paper as a substrate and symmetrical activated carbon electrodes as large area electrodes. Different choline chloride-based eutectic solvents are used as electrolyte. These are inexpensive, environmentally friendly and have a larger operating window compared to that of water electrolytes. As the entire device is printed and the materials used are inexpensive, both small- and large-area power sources can be fabricated to be used in cheap, disposable and recyclable devices. Supercapacitors with different eutectic solvents are measured using cyclic charge-discharge and impedance spectroscopy measurements and compared to one widely used and one "green" imidazolium ionic liquid; EMIM:TFSI and EcoEng 212™, respectively. A mixture of ethylene glycol and choline chloride, Glyceline™, show the highest capacitance and power densities of the electrolytes being tested, including the imidazolium alternatives.

  3. 3D-Printable Photochromic Molecular Materials for Reversible Information Storage.

    PubMed

    Wales, Dominic J; Cao, Qun; Kastner, Katharina; Karjalainen, Erno; Newton, Graham N; Sans, Victor

    2018-06-01

    The formulation of advanced molecular materials with bespoke polymeric ionic-liquid matrices that stabilize and solubilize hybrid organic-inorganic polyoxometalates and allow their processing by additive manufacturing, is effectively demonstrated. The unique photo and redox properties of nanostructured polyoxometalates are translated across the scales (from molecular design to functional materials) to yield macroscopic functional devices with reversible photochromism. These properties open a range of potential applications including reversible information storage based on controlled topological and temporal reduction/oxidation of pre-formed printed devices. This approach pushes the boundaries of 3D printing to the molecular limits, allowing the freedom of design enabled by 3D printing to be coupled with the molecular tuneability of polymerizable ionic liquids and the photoactivity and orbital engineering possible with hybrid polyoxometalates. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Oxide-based synaptic transistors gated by solution-processed gelatin electrolytes

    NASA Astrophysics Data System (ADS)

    He, Yinke; Sun, Jia; Qian, Chuan; Kong, Ling-An; Gou, Guangyang; Li, Hongjian

    2017-04-01

    In human brain, a large number of neurons are connected via synapses. Simulation of the synaptic behaviors using electronic devices is the most important step for neuromorphic systems. In this paper, proton conducting gelatin electrolyte-gated oxide field-effect transistors (FETs) were used for emulating synaptic functions, in which the gate electrode is regarded as pre-synaptic neuron and the channel layer as the post-synaptic neuron. In analogy to the biological synapse, a potential spike can be applied at the gate electrode and trigger ionic motion in the gelatin electrolyte, which in turn generates excitatory post-synaptic current (EPSC) in the channel layer. Basic synaptic behaviors including spike time-dependent EPSC, paired-pulse facilitation (PPF), self-adaptation, and frequency-dependent synaptic transmission were successfully mimicked. Such ionic/electronic hybrid devices are beneficial for synaptic electronics and brain-inspired neuromorphic systems.

  5. Ionic liquid-functionalized carbon nanoparticles-modified cathode for efficiency enhancement in polymer solar cells

    NASA Astrophysics Data System (ADS)

    Chen, Xiaohong; Yang, Jiaxiang; Lu, Jiong; Manga, Kiran Kumar; Loh, Kian Ping; Zhu, Furong

    2009-09-01

    The power conversion efficiency (PCE) of regioregular poly(3-hexylthiophene) (P3HT) and {6,6}-phenyl C61-butyric acid methylester (PCBM)-based polymer solar cells was increased using an ionic liquid-functionalized carbon nanoparticles (ILCNs) thin film-modified cathode. The PCE of P3HT:PCBM based-polymer solar cells with a conventional aluminum (Al)-only cathode was increased by 20%-30% when the identical devices were made with an ILCNs-modified Al cathode, but its PCE was 10% lower than that of devices with LiF/Al cathode, measured under AM1.5G illumination of 100 mW/cm2. The ILCN interlayer approach, however, offers practical advantages to LiF in terms of its solution-processability, which is compatible with low cost, large area, and flexible solar cell fabrication.

  6. Inorganic nanotubes and electro-fluidic devices fabricated therefrom

    DOEpatents

    Yang, Peidong [Kensington, CA; Majumdar, Arunava [Orinda, CA; Fan, Rong [Pasadena, CA; Karnik, Rohit [Cambridge, MA

    2011-03-01

    Nanofluidic devices incorporating inorganic nanotubes fluidly coupled to channels or nanopores for supplying a fluid containing chemical or bio-chemical species are described. In one aspect, two channels are fluidly interconnected with a nanotube. Electrodes on opposing sides of the nanotube establish electrical contact with the fluid therein. A bias current is passed between the electrodes through the fluid, and current changes are detected to ascertain the passage of select molecules, such as DNA, through the nanotube. In another aspect, a gate electrode is located proximal the nanotube between the two electrodes thus forming a nanofluidic transistor. The voltage applied to the gate controls the passage of ionic species through the nanotube selected as either or both ionic polarities. In either of these aspects the nanotube can be modified, or functionalized, to control the selectivity of detection or passage.

  7. Generation of Quality Pulses for Control of Qubit/Quantum Memory Spin States: Experimental and Simulation

    DTIC Science & Technology

    2016-09-01

    TECHNICAL REPORT 3046 September 2016 GENERATION OF QUALITY PULSES FOR CONTROL OF QUBIT/QUANTUM MEMORY SPIN STATES: EXPERIMENTAL AND SIMULATION...nuclear spin states of qubits/quantum memory applicable to semiconductor, superconductor, ionic, and superconductor-ionic hybrid technologies. As the...pulse quality and need for development of single pulses with very high quality will impact directly the coherence time of the qubit/ memory , we present

  8. Ion Conduction in Polymerized Ionic Liquids with Different Pendant Groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Fei; Wang, Yangyang; Hong, Tao

    2015-07-17

    Polymerized ionic liquids (PolyILs) are promising candidates for energy storage and electrochemical devices applications. Understanding their ionic transport mechanism is the key for designing highly conductive PolyILs. By using broadband dielectric spectroscopy (BDS), rheology, and differential scanning calorimetry (DSC), a systematic study has been carried out to provide a better understanding of the ionic transport mechanism in PolyILs with different pendant groups. The variation of pendant groups results in different dielectric, mechanical, and thermal properties of these PolyILs. The Walden plot analysis shows that the data points for all these PolyILs fall above the ideal Walden line, and the deviationmore » from the ideal line increases upon approaching the glass transition temperature (T g). Moreover, the conductivity for these PolyILs at their Tgs are much higher than the usually reported value 10 15 S/cm for polymer electrolytes, in which the ionic transport is closely coupled to the segmental dynamics. These results indicate a decoupling of ionic conductivity from the segmental relaxation in these materials. The degree of decoupling increases with the increase of the fragility of polymer segmental relaxation. Finally, we relate this observation to a decrease in polymer packing efficiency with an increase in fragility.« less

  9. Microscopic Theory of Supercapacitors

    NASA Astrophysics Data System (ADS)

    Skinner, Brian Joseph

    As new energy technologies are designed and implemented, there is a rising demand for improved energy storage devices. At present the most promising class of these devices is the electric double-layer capacitor (EDLC), also known as the supercapacitor. A number of recently created supercapacitors have been shown to produce remarkably large capacitance, but the microscopic mechanisms that underlie their operation remain largely mysterious. In this thesis we present an analytical, microscopic-level theory of supercapacitors, and we explain how such large capacitance can result. Specifically, we focus on four types of devices that have been shown to produce large capacitance. The first is a capacitor composed of a clean, low-temperature two-dimensional electron gas adjacent to a metal gate electrode. Recent experiments have shown that such a device can produce capacitance as much as 40% larger than that of a conventional plane capacitor. We show that this enhanced capacitance can be understood as the result of positional correlations between electrons and screening by the gate electrode in the form of image charges. Thus, the enhancement of the capacitance can be understood primarily as a classical, electrostatic phenomenon. Accounting for the quantum mechanical properties of the electron gas provides corrections to the classical theory, and these are discussed. We also present a detailed numerical calculation of the capacitance of the system based on a calculation of the system's ground state energy using the variational principle. The variational technique that we develop is broadly applicable, and we use it here to make an accurate comparison to experiment and to discuss quantitatively the behavior of the electrons' correlation function. The second device discussed in this thesis is a simple EDLC composed of an ionic liquid between two metal electrodes. We adopt a simple description of the ionic liquid and show that for realistic parameter values the capacitance can be as much as three times larger than that of a plane capacitor with thickness equal to the ion diameter. As in the previous system, this large capacitance is the result of image charge formation in the metal electrode and positional correlations between discrete ions that comprise the electric double-layer. We show that the maximum capacitance scales with the temperature to the power -1/3, and that at moderately large voltage the capacitance also decays as the inverse one third power of voltage. These results are confirmed by a Monte Carlo simulation. The third type of device we consider is that of a porous supercapacitor, where the electrode is made from a conducting material with a dense arrangement of narrow, planar pores into which ionic liquid can enter when a voltage is applied. In this case we show that when the electrode is metallic the narrow pores aggressively screen the interaction between neighboring ions in a pore, leading to an interaction energy between ions that decays exponentially. This exponential interaction between ions allows the capacitance to be nearly an order of magnitude larger than what is predicted by mean-field theories. This result is confirmed by a Monte Carlo simulation. We also present a theory for the capacitance when the electrode is not a perfect metal, but has a finite electronic screening radius. When this screening radius is larger than the distance between pores, ions begin to interact across multiple pores and the capacitance is determined by the Yukawa-like interaction of a three-dimensional, correlated arrangement of ions. Finally, we consider the case of supercapacitor electrodes made from a stack of graphene sheets with randomly-inserted "spacer" molecules. For such devices, experiments have produced very large capacitance despite the small density of states of the electrode material, which would seem to imply poor screening of the ionic charge. We show that these large capacitance values can be understood as the result of collective entrance of ions into the graphene stack (GS) and the renormalization of the ionic charge produced by nonlinear screening. The collective behavior of ions results from the strong elastic energy associated with intercalated ions deforming the GS, which creates an effective attraction between them. The result is the formation of "disks" of charge that enter the electrode collectively and have their charge renormalized by the strong, nonlinear screening of the surrounding graphene layers. This renormalization leads to a capacitance that at small voltages increases linearly with voltage and is enhanced over mean-field predictions by a large factor proportional to the number of ions within the disk to the power 9/4. At large voltages, the capacitance is dictated by the physics of graphite intercalation compounds and is proportional to the voltage raised to the power -4/5. We also examine theoretically the case where the effective fine structure constant of the GS is a small parameter, and we uncover a wealth of scaling regimes.

  10. Realisation of an all solid state lithium battery using solid high temperature plastic crystal electrolytes exhibiting liquid like conductivity.

    PubMed

    Shekibi, Youssof; Rüther, Thomas; Huang, Junhua; Hollenkamp, Anthony F

    2012-04-07

    Replacement of volatile and combustible electrolytes in conventional lithium batteries is desirable for two reasons: safety concerns and increase in specific energy. In this work we consider the use of an ionic organic plastic crystal material (IOPC), N-ethyl-N-methylpyrrolidinium tetrafluoroborate, [C2mpyr][BF(4)], as a solid-state electrolyte for lithium battery applications. The effect of inclusion of 1 to 33 mol% lithium tetrafluoroborate, LiBF(4), into [C2mpyr][BF(4)] has been investigated over a wide temperature range by differential scanning calorimetry (DSC), impedance spectroscopy, cyclic voltammetry and cycling of full Li|LiFePO(4) batteries. The increases in ionic conductivity by orders of magnitude observed at higher temperature are most likely associated with an increase in Li ion mobility in the highest plastic phase. At concentrations >5 mol% LiBF(4) the ionic conductivity of these solid-state composites is comparable to the ionic conductivity of room temperature ionic liquids. Galvanostatic cycling of Li|Li symmetrical cells showed that the reversibility of the lithium metal redox reaction at the interface of this plastic crystal electrolyte is sufficient for lithium battery applications. For the first time we demonstrate an all solid state lithium battery incorporating solid electrolytes based on IOPC as opposed to conventional flammable organic solvents.

  11. Ionic Liquids Beyond Simple Solvents: Glimpses at the State of the Art in Organic Chemistry.

    PubMed

    Kuchenbuch, Andrea; Giernoth, Ralf

    2015-12-01

    Within the last 25 years ionic liquids have written a tremendous success story, which is documented in a nearly uncountable amount of original research papers, reviews, and numerous applications in research and industry. These days, ionic liquids can be considered as a mature class of compounds for many different applications. Frequently, they are used as neoteric solvents for chemical tansformations, and the number of reviews on this field of research is huge. In this focused review, though, we are trying to evaluate the state of the art of ionic liquid chemistry beyond using them simply as solvents for chemical transformations. It is not meant to be a comprehensive overview on the topic; the choice of emphasis and examples rather refects the authors' personal view on the field. We are especially highlighting fields in which we believe the most fundamental developments within the next five years will take place: biomass processing, (chiral) ionic liquids from natural sources, biotransformations, and organic synthesis.

  12. Crosslinked Polymer Ionic Liquid/Ionic Liquid Blends Prepared by Photopolymerization as Solid-State Electrolytes in Supercapacitors.

    PubMed

    Wang, Po-Hsin; Wang, Tzong-Liu; Lin, Wen-Churng; Lin, Hung-Yin; Lee, Mei-Hwa; Yang, Chien-Hsin

    2018-04-07

    A photopolymerization method is used to prepare a mixture of polymer ionic liquid (PIL) and ionic liquid (IL). This mixture is used as a solid-state electrolyte in carbon nanoparticle (CNP)-based symmetric supercapacitors. The solid electrolyte is a binary mixture of a PIL and its corresponding IL. The PIL matrix is a cross-linked polyelectrolyte with an imidazole salt cation coupled with two anions of Br - in PIL-M-(Br) and TFSI - in PIL-M-(TFSI), respectively. The corresponding ionic liquids have imidazolium salt cation coupled with two anions of Br - and TFSI - , respectively. This study investigates the electrochemical characteristics of PILs and their corresponding IL mixtures used as a solid electrolyte in supercapacitors. Results show that a specific capacitance, maximum power density and energy density of 87 and 58 F·g - ¹, 40 and 48 kW·kg - ¹, and 107 and 59.9 Wh·kg - ¹ were achieved in supercapacitors based on (PIL-M-(Br)) and (PIL-M-(TFSI)) solid electrolytes, respectively.

  13. Embedding solar cell materials with on-board integrated energy storage for load-leveling and dark power delivery (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Pint, Cary L.; Westover, Andrew S.; Cohn, Adam P.; Erwin, William R.; Share, Keith; Metke, Thomas; Bardhan, Rizia

    2015-10-01

    This work will discuss our recent advances focused on integrating high power energy storage directly into the native materials of both conventional photovoltaics (PV) and dye-sensitized solar cells (DSSCs). In the first case (PV), we demonstrate the ability to etch high surface-area porous silicon charge storage interfaces directly into the backside of a conventional polycrystalline silicon photovoltaic device exhibiting over 14% efficiency. These high surface area materials are then coupled with solid-state ionic liquid-polymer electrolytes to produce solid-state fully integrated devices where the PV device can directly inject charge into an on-board supercapacitor that can be separately discharged under dark conditions with a Coulombic efficiency of 84%. In a similar manner, we further demonstrate that surface engineered silicon materials can be utilized to replace Pt counterelectrodes in conventional DSSC energy conversion devices. As the silicon counterelectrodes rely strictly on surface Faradaic chemical reactions with the electrolyte on one side of the wafer electrode, we demonstrate double-sided processing of electrodes that enables dual-function of the material for simultaneous energy storage and conversion, each on opposing sides. In both of these devices, we demonstrate the ability to produce an all-silicon coupled energy conversion and storage system through the common ability to convert unused silicon in solar cells into high power silicon-based supercapacitors. Beyond the proof-of-concept design and performance of this integrated solar-storage system, this talk will conclude with a brief discussion of the hurdles and challenges that we envision for this emerging area both from a fundamental and technological viewpoint.

  14. Multilevel Molecular Modeling Approach for a Rational Design of Ionic Current Sensors for Nanofluidics.

    PubMed

    Kirch, Alexsandro; de Almeida, James M; Miranda, Caetano R

    2018-05-10

    The complexity displayed by nanofluidic-based systems involves electronic and dynamic aspects occurring across different size and time scales. To properly model such kind of system, we introduced a top-down multilevel approach, combining molecular dynamics simulations (MD) with first-principles electronic transport calculations. The potential of this technique was demonstrated by investigating how the water and ionic flow through a (6,6) carbon nanotube (CNT) influences its electronic transport properties. We showed that the confinement on the CNT favors the partially hydrated Na, Cl, and Li ions to exchange charge with the nanotube. This leads to a change in the electronic transmittance, allowing for the distinguishing of cations from anions. Such an ionic trace may handle an indirect measurement of the ionic current that is recorded as a sensing output. With this case study, we are able to show the potential of this top-down multilevel approach, to be applied on the design of novel nanofluidic devices.

  15. Development of an automated experimental setup for the study of ionic-exchange kinetics. Application to the ionic adsorption, equilibrium attainment and dissolution of apatite compounds.

    PubMed

    Thomann, J M; Gasser, P; Bres, E F; Voegel, J C; Gramain, P

    1990-02-01

    An ion-selective electrode and microcomputer-based experimental setup for the study of ionic-exchange kinetics between a powdered solid and the solution is described. The equipment is composed of easily available commercial devices and a data acquisition and regularization computer program is presented. The system, especially developed to investigate the ionic adsorption, equilibrium attainment and dissolution of hard mineralized tissues, provides good reliable results by taking into account the volume changes of the reacting solution and the electrode behaviour under different experimental conditions, and by avoiding carbonation of the solution. A second computer program, using the regularized data and the experimental parameters, calculates the quantities of protons consumed and calcium released in the case of equilibrium attainment and dissolution of apatite-like compounds. Finally, typical examples of ion-exchange and dissolution kinetics under constant pH of enamel and synthetic hydroxyapatite are examined.

  16. Superconductivity Series in Transition Metal Dichalcogenides by Ionic Gating

    PubMed Central

    Shi, Wu; Ye, Jianting; Zhang, Yijin; Suzuki, Ryuji; Yoshida, Masaro; Miyazaki, Jun; Inoue, Naoko; Saito, Yu; Iwasa, Yoshihiro

    2015-01-01

    Functionalities of two-dimensional (2D) crystals based on semiconducting transition metal dichalcogenides (TMDs) have now stemmed from simple field effect transistors (FETs) to a variety of electronic and opto-valleytronic devices, and even to superconductivity. Among them, superconductivity is the least studied property in TMDs due to methodological difficulty accessing it in different TMD species. Here, we report the systematic study of superconductivity in MoSe2, MoTe2 and WS2 by ionic gating in different regimes. Electrostatic gating using ionic liquid was able to induce superconductivity in MoSe2 but not in MoTe2 because of inefficient electron accumulation limited by electronic band alignment. Alternative gating using KClO4/polyethylene glycol enabled a crossover from surface doping to bulk doping, which induced superconductivities in MoTe2 and WS2 electrochemically. These new varieties greatly enriched the TMD superconductor families and unveiled critical methodology to expand the capability of ionic gating to other materials. PMID:26235962

  17. Superconductivity Series in Transition Metal Dichalcogenides by Ionic Gating.

    PubMed

    Shi, Wu; Ye, Jianting; Zhang, Yijin; Suzuki, Ryuji; Yoshida, Masaro; Miyazaki, Jun; Inoue, Naoko; Saito, Yu; Iwasa, Yoshihiro

    2015-08-03

    Functionalities of two-dimensional (2D) crystals based on semiconducting transition metal dichalcogenides (TMDs) have now stemmed from simple field effect transistors (FETs) to a variety of electronic and opto-valleytronic devices, and even to superconductivity. Among them, superconductivity is the least studied property in TMDs due to methodological difficulty accessing it in different TMD species. Here, we report the systematic study of superconductivity in MoSe2, MoTe2 and WS2 by ionic gating in different regimes. Electrostatic gating using ionic liquid was able to induce superconductivity in MoSe2 but not in MoTe2 because of inefficient electron accumulation limited by electronic band alignment. Alternative gating using KClO4/polyethylene glycol enabled a crossover from surface doping to bulk doping, which induced superconductivities in MoTe2 and WS2 electrochemically. These new varieties greatly enriched the TMD superconductor families and unveiled critical methodology to expand the capability of ionic gating to other materials.

  18. Enhanced proton transport in nanostructured polymer electrolyte/ionic liquid membranes under water-free conditions.

    PubMed

    Kim, Sung Yeon; Kim, Suhan; Park, Moon Jeong

    2010-10-05

    Proton exchange fuel cells (PEFCs) have the potential to provide power for a variety of applications ranging from electronic devices to transportation vehicles. A major challenge towards economically viable PEFCs is finding an electrolyte that is both durable and easily passes protons. In this article, we study novel anhydrous proton-conducting membranes, formed by incorporating ionic liquids into synthetic block co-polymer electrolytes, poly(styrenesulphonate-b-methylbutylene) (S(n)MB(m)), as high-temperature PEFCs. The resulting membranes are transparent, flexible and thermally stable up to 180 °C. The increases in the sulphonation level of S(n)MB(m) co-polymers (proton supplier) and the concentration of the ionic liquid (proton mediator) produce an overall increase in conductivity. Morphology effects were studied by X-ray scattering and electron microscopy. Compared with membranes having discrete ionic domains (including Nafion 117), the nanostructured membranes revealed over an order of magnitude increase in conductivity with the highest conductivity of 0.045 S cm(-1) obtained at 165 °C.

  19. CuS nanoplates from ionic liquid precursors—Application in organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Kim, Yohan; Heyne, Benjamin; Abouserie, Ahed; Pries, Christopher; Ippen, Christian; Günter, Christina; Taubert, Andreas; Wedel, Armin

    2018-05-01

    Hexagonal p-type semiconductor CuS nanoplates were synthesized via a hot injection method from bis(trimethylsilyl)sulfide and the ionic liquid precursor bis(N-dodecylpyridinium) tetrachloridocuprate(ii). The particles have a broad size distribution with diameters between 30 and 680 nm and well-developed crystal habits. The nanoplates were successfully incorporated into organic photovoltaic (OPV) cells as hole conduction materials. The power conversion efficiency of OPV cells fabricated with the nanoplates is 16% higher than that of a control device fabricated without the nanoplates.

  20. Ionic electroactive polymer artificial muscles in space applications

    PubMed Central

    Punning, Andres; Kim, Kwang J.; Palmre, Viljar; Vidal, Frédéric; Plesse, Cédric; Festin, Nicolas; Maziz, Ali; Asaka, Kinji; Sugino, Takushi; Alici, Gursel; Spinks, Geoff; Wallace, Gordon; Must, Indrek; Põldsalu, Inga; Vunder, Veiko; Temmer, Rauno; Kruusamäe, Karl; Torop, Janno; Kaasik, Friedrich; Rinne, Pille; Johanson, Urmas; Peikolainen, Anna-Liisa; Tamm, Tarmo; Aabloo, Alvo

    2014-01-01

    A large-scale effort was carried out to test the performance of seven types of ionic electroactive polymer (IEAP) actuators in space-hazardous environmental factors in laboratory conditions. The results substantiate that the IEAP materials are tolerant to long-term freezing and vacuum environments as well as ionizing Gamma-, X-ray, and UV radiation at the levels corresponding to low Earth orbit (LEO) conditions. The main aim of this material behaviour investigation is to understand and predict device service time for prolonged exposure to space environment. PMID:25372857

  1. Self-consistent modelling of electrochemical strain microscopy in mixed ionic-electronic conductors: Nonlinear and dynamic regimes

    DOE PAGES

    Varenyk, O. V.; Silibin, M. V.; Kiselev, Dmitri A.; ...

    2015-08-19

    The frequency dependent Electrochemical Strain Microscopy (ESM) response of mixed ionic-electronic conductors is analyzed within the framework of Fermi-Dirac statistics and the Vegard law, accounting for steric effects from mobile donors. The emergence of dynamic charge waves and nonlinear deformation of the surface in response to bias applied to the tip-surface junction is numerically explored. The 2D maps of the strain and concentration distributions across the mixed ionic-electronic conductor and bias-induced surface displacements are calculated. Furthermore, the obtained numerical results can be applied to quantify the ESM response of Li-based solid electrolytes, materials with resistive switching, and electroactive ferroelectric polymers,more » which are of potential interest for flexible and high-density non-volatile memory devices.« less

  2. Electrochemical and morphological studies of ionic polymer metal composites as stress sensors

    DOE PAGES

    Hong, Wangyujue; Almomani, Abdallah; Montazami, Reza

    2016-10-04

    Ionic polymer metal composites (IPMCs) are the backbone of a wide range of ionic devices. IPMC mechanoelectric sensors are advanced nanostructured transducers capable of converting mechanical strain into easily detectable electric signal. Such attribute is realized by ion mobilization in and through IPMC nanostructure. In this study we have investigated electrochemical and morphological characteristics of IPMCs by varying the morphology of their metal composite component (conductive network composite (CNC)). We have demonstrated the dependence of electrochemical properties on CNC nanostructure as well as mechanoelectrical performance of IPMC sensors as a function of CNC morphology. Lastly, it is shown that themore » morphology of CNC can be used as a means to improve sensitivity of IPMC sensors by 3–4 folds.« less

  3. Self-consistent modelling of electrochemical strain microscopy in mixed ionic-electronic conductors: Nonlinear and dynamic regimes

    NASA Astrophysics Data System (ADS)

    Varenyk, O. V.; Silibin, M. V.; Kiselev, D. A.; Eliseev, E. A.; Kalinin, S. V.; Morozovska, A. N.

    2015-08-01

    The frequency dependent Electrochemical Strain Microscopy (ESM) response of mixed ionic-electronic conductors is analyzed within the framework of Fermi-Dirac statistics and the Vegard law, accounting for steric effects from mobile donors. The emergence of dynamic charge waves and nonlinear deformation of the surface in response to bias applied to the tip-surface junction is numerically explored. The 2D maps of the strain and concentration distributions across the mixed ionic-electronic conductor and bias-induced surface displacements are calculated. The obtained numerical results can be applied to quantify the ESM response of Li-based solid electrolytes, materials with resistive switching, and electroactive ferroelectric polymers, which are of potential interest for flexible and high-density non-volatile memory devices.

  4. Ionic behavior of organic-inorganic metal halide perovskite based metal-oxide-semiconductor capacitors.

    PubMed

    Wang, Yucheng; Zhang, Yuming; Pang, Tiqiang; Xu, Jie; Hu, Ziyang; Zhu, Yuejin; Tang, Xiaoyan; Luan, Suzhen; Jia, Renxu

    2017-05-24

    Organic-inorganic metal halide perovskites are promising semiconductors for optoelectronic applications. Despite the achievements in device performance, the electrical properties of perovskites have stagnated. Ion migration is speculated to be the main contributing factor for the many unusual electrical phenomena in perovskite-based devices. Here, to understand the intrinsic electrical behavior of perovskites, we constructed metal-oxide-semiconductor (MOS) capacitors based on perovskite films and performed capacitance-voltage (C-V) and current-voltage (I-V) measurements of the capacitors. The results provide direct evidence for the mixed ionic-electronic transport behavior within perovskite films. In the dark, there is electrical hysteresis in both the C-V and I-V curves because the mobile negative ions take part in charge transport despite frequency modulation. However, under illumination, the large amount of photoexcited free carriers screens the influence of the mobile ions with a low concentration, which is responsible for the normal C-V properties. Validation of ion migration for the gate-control ability of MOS capacitors is also helpful for the investigation of perovskite MOS transistors and other gate-control photovoltaic devices.

  5. Heat Capacity of Room-Temperature Ionic Liquids: A Critical Review

    NASA Astrophysics Data System (ADS)

    Paulechka, Yauheni U.

    2010-09-01

    Experimental data on heat capacity of room-temperature ionic liquids in the liquid state were compiled and critically evaluated. The compilation contains data for 102 aprotic ionic liquids from 63 literature references and covers the period of time from 1998 through the end of February 2010. Parameters of correlating equations for temperature dependence of the heat capacities were developed.

  6. Atomic switches: atomic-movement-controlled nanodevices for new types of computing

    PubMed Central

    Hino, Takami; Hasegawa, Tsuyoshi; Terabe, Kazuya; Tsuruoka, Tohru; Nayak, Alpana; Ohno, Takeo; Aono, Masakazu

    2011-01-01

    Atomic switches are nanoionic devices that control the diffusion of metal cations and their reduction/oxidation processes in the switching operation to form/annihilate a metal atomic bridge, which is a conductive path between two electrodes in the on-state. In contrast to conventional semiconductor devices, atomic switches can provide a highly conductive channel even if their size is of nanometer order. In addition to their small size and low on-resistance, their nonvolatility has enabled the development of new types of programmable devices, which may achieve all the required functions on a single chip. Three-terminal atomic switches have also been developed, in which the formation and annihilation of a metal atomic bridge between a source electrode and a drain electrode are controlled by a third (gate) electrode. Three-terminal atomic switches are expected to enhance the development of new types of logic circuits, such as nonvolatile logic. The recent development of atomic switches that use a metal oxide as the ionic conductive material has enabled the integration of atomic switches with complementary metal-oxide-semiconductor (CMOS) devices, which will facilitate the commercialization of atomic switches. The novel characteristics of atomic switches, such as their learning and photosensing abilities, are also introduced in the latter part of this review. PMID:27877376

  7. Nonstoichiometric fluorides—Solid electrolytes for electrochemical devices: A review

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.; Sobolev, B. P.

    2007-09-01

    The solid electrolytes with fluorine-ion conductivity that were revealed during the analysis of the phase diagrams of the MF m - RF n systems within the program of search for new multicomponent fluoride crystalline materials carried out at the Shubnikov Institute of Crystallography, Russian Academy of Sciences, are described. The most widespread and promising materials are the nonstoichiometric phases with fluorite (CaF2) and tysonite (LaF3) structures, which are formed in the MF2- RF3 systems ( M = Ca, Sr, Ba, Cd, or Pb; R = Sc, Y, or La-Lu). These phases have superionic fluorine conductivity due to the anion sublattice disorder. The ionic conductivity of crystals of both structure types has been studied and the limits of its change with composition and temperature are determined. Nonstoichiometric fluorides are used as solid electrolytes in chemical sensors, fluorine sources, and batteries. The prospects of the use of fluorine-ion conductors in solid-state electrochemical devices, principles of their operation, and the problems of optimization of their composition are discussed.

  8. Nanoscale Bio-engineering Solutions for Space Exploration: The Nanopore Sequencer

    NASA Technical Reports Server (NTRS)

    Stolc, Viktor; Cozmuta, Ioana

    2004-01-01

    Characterization of biological systems at the molecular level and extraction of essential information for nano-engineering design to guide the nano-fabrication of solid-state sensors and molecular identification devices is a computational challenge. The alpha hemolysin protein ion channel is used as a model system for structural analysis of nucleic acids like DNA. Applied voltage draws a DNA strand and surrounding ionic solution through the biological nanopore. The subunits in the DNA strand block ion flow by differing amounts. Atomistic scale simulations are employed using NASA supercomputers to study DNA translocation, with the aim to enhance single DNA subunit identification. Compared to protein channels, solid-state nanopores offer a better temporal control of the translocation of DNA and the possibility to easily tune its chemistry to increase the signal resolution. Potential applications for NASA missions, besides real-time genome sequencing include astronaut health, life detection and decoding of various genomes.

  9. Electrical Control of Metallic Heavy-Metal-Ferromagnet Interfacial States

    NASA Astrophysics Data System (ADS)

    Bi, Chong; Sun, Congli; Xu, Meng; Newhouse-Illige, Ty; Voyles, Paul M.; Wang, Weigang

    2017-09-01

    Voltage-control effects provide an energy-efficient means of tailoring material properties, especially in highly integrated nanoscale devices. However, only insulating and semiconducting systems can be controlled so far. In metallic systems, there is no electric field due to electron screening effects and thus no such control effect exists. Here, we demonstrate that metallic systems can also be controlled electrically through ionic rather than electronic effects. In a Pt /Co structure, the control of the metallic Pt /Co interface can lead to unprecedented control effects on the magnetic properties of the entire structure. Consequently, the magnetization and perpendicular magnetic anisotropy of the Co layer can be independently manipulated to any desired state, the efficient spin toques can be enhanced about 3.5 times, and the switching current can be reduced about one order of magnitude. This ability to control a metallic system may be extended to control other physical phenomena.

  10. Ambipolar insulator-to-metal transition in black phosphorus by ionic-liquid gating.

    PubMed

    Saito, Yu; Iwasa, Yoshihiro

    2015-03-24

    We report ambipolar transport properties in black phosphorus using an electric-double-layer transistor configuration. The transfer curve clearly exhibits ambipolar transistor behavior with an ON-OFF ratio of ∼5 × 10(3). The band gap was determined as ≅0.35 eV from the transfer curve, and Hall-effect measurements revealed that the hole mobility was ∼190 cm(2)/(V s) at 170 K, which is 1 order of magnitude larger than the electron mobility. By inducing an ultrahigh carrier density of ∼10(14) cm(-2), an electric-field-induced transition from the insulating state to the metallic state was realized, due to both electron and hole doping. Our results suggest that black phosphorus will be a good candidate for the fabrication of functional devices, such as lateral p-n junctions and tunnel diodes, due to the intrinsic narrow band gap.

  11. Nanoscale Bioengineering Solutions for Space Exploration the Nanopore Sequencer

    NASA Technical Reports Server (NTRS)

    Ioana, Cozmuta; Viktor, Stoic

    2005-01-01

    Characterization of biological systems at the molecular level and extraction of essential information for nano-engineering design to guide the nano-fabrication of solid-state sensors and molecular identification devices is a computational challenge. The alpha hemolysin protein ion channel is used as a model system for structural analysis of nucleic acids like DNA. Applied voltage draws a DNA strand and surrounding ionic solution through the biological nanopore. The subunits in the DNA strand block ion flow by differing amounts. Atomistic scale simulations are employed using NASA supercomputers to study DNA translocation. with the aim to enhance single DNA subunit identification. Compared to protein channels, solid-state nanopores offer a better temporal control of the translocation of DNA and the possibility to easily tune its chemistry to increase the signal resolution. Potential applications for NASA missions, besides real-time genome sequencing include astronaut health, life detection and decoding of various genomes. http://phenomrph.arc.nasa.gov/index.php

  12. Spatially resolved multicolor CsPbX 3 nanowire heterojunctions via anion exchange

    DOE PAGES

    Dou, Letian; Lai, Minliang; Kley, Christopher S.; ...

    2017-06-26

    Halide perovskites are promising semiconductor materials for solution-processed optoelectronic devices. Their strong ionic bonding nature results in highly dynamic crystal lattices, inherently allowing rapid ion exchange at the solid–vapor and solid–liquid interface. In this paper, we show that the anion-exchange chemistry can be precisely controlled in single-crystalline halide perovskite nanomaterials when combined with nanofabrication techniques. We demonstrate spatially resolved multicolor CsPbX 3 (X = Cl, Br, I, or alloy of two halides) nanowire heterojunctions with a pixel size down to 500 nm with the photoluminescence tunable over the entire visible spectrum. In addition, the heterojunctions show distinct electronic states acrossmore » the interface, as revealed by Kelvin probe force microscopy. Finally, these perovskite heterojunctions represent key building blocks for high-resolution multicolor displays beyond current state-of-the-art technology as well as high-density diode/transistor arrays.« less

  13. Polymer stability and function for electrolyte and mixed conductor applications

    NASA Astrophysics Data System (ADS)

    Hammond, Paula; Davis, Nicole; Liu, David; Amanchukwu, Chibueze; Lewis, Nate; Shao-Horn, Yang

    2015-03-01

    Polymers exhibit a number of attractive properties as solid state electrolytes for electrochemical energy devices, including the light weight, flexibility, low cost and adaptive transport properties that polymeric materials can exhibit. For a number of applications, mixed ionic and electronic conducting materials are of interest to achieve transport of electrons and holes or ions within an electrode or at the electrode-electrolyte interface (e.g. aqueous batteries, solar water splitting, lithium battery electrode). Using layer-by-layer assembly, a mode of alternating adsorption of charged or complementary hydrogen bonding group, we can design composite thin films that contain bicontinuous networks of electronically and ionically conducting polymers. We have found that manipulation of salt concentration and the use of divalent ions during assembly can significantly enhance the number of free acid anions available for ion hopping. Unfortunately, for certain electrochemical applications, polymer stability is a true challenge. In separate studies, we have been investigating macromolecular systems that may provide acceptable ion transport properties, but withstand the harsh oxidative environment of lithium air systems. An investigation of different polymeric materials commonly examined for electrochemical applications provides insight into polymer design for these kinds of environments. NSF Center for Chemical Innovation, NDSEG Fellowship and Samsung Corporation.

  14. Importance of liquid fragility for energy applications of ionic liquids

    NASA Astrophysics Data System (ADS)

    Sippel, Pit; Lunkenheimer, Peter; Krohns, Stephan; Thoms, Erik; Loidl, Alois

    Ionic liquids (ILs) are salts that are liquid at ambient temperatures. The strong electrostatic forces between their molecular ions result, e.g., in low volatility and high stability for many members of this huge material class. For this reason they bear a high potential for new advancements in applications, e.g., as electrolytes in energy-storage devices such as supercapacitors or batteries, where the ionic conductivity is an essential figure of merit. Most ILs show dynamic properties typical for glassy matter, which dominate many of their physical properties. An important method to study these dynamical glass-properties is dielectric spectroscopy that can access relaxation times of dynamic processes and the conductivity in a broad frequency and temperature range. In the present contribution, we present results on a large variety of ionic liquids showing that the conductivity of ILs depends in a systematic way not only on their glass temperature but also on the so-called fragility, characterizing the non-canonical super-Arrhenius temperature dependence of their ionic mobility. This work was supported by the Deutsche Forschungsgemeinschaft via Research Unit FOR1394 and by the BMBF via ENREKON 03EK3015.

  15. Lithium ion intercalation in thin crystals of hexagonal TaSe2 gated by a polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Wu, Yueshen; Lian, Hailong; He, Jiaming; Liu, Jinyu; Wang, Shun; Xing, Hui; Mao, Zhiqiang; Liu, Ying

    2018-01-01

    Ionic liquid gating has been used to modify the properties of layered transition metal dichalcogenides (TMDCs), including two-dimensional (2D) crystals of TMDCs used extensively recently in the device work, which has led to observations of properties not seen in the bulk. The main effect comes from the electrostatic gating due to the strong electric field at the interface. In addition, ionic liquid gating also leads to ion intercalation when the ion size of the gate electrolyte is small compared to the interlayer spacing of TMDCs. However, the microscopic processes of ion intercalation have rarely been explored in layered TMDCs. Here, we employed a technique combining photolithography device fabrication and electrical transport measurements on the thin crystals of hexagonal TaSe2 using multiple channel devices gated by a polymer electrolyte LiClO4/Polyethylene oxide (PEO). The gate voltage and time dependent source-drain resistances of these thin crystals were used to obtain information on the intercalation process, the effect of ion intercalation, and the correlation between the ion occupation of allowed interstitial sites and the device characteristics. We found a gate voltage controlled modulation of the charge density waves and a scattering rate of charge carriers. Our work suggests that ion intercalation can be a useful tool for layered materials engineering and 2D crystal device design.

  16. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Short articles describing the construction of a self-testing device for learning ionic formulae, problems with standard'' experiments in crystallizing sulfur, preparative details for a cold-setting adhesive and vermillion dye, and providing data related to the industrial manufacture of sulphuric acid. (AL)

  17. Battery Structures, self-organizing structures, and related methods

    DOEpatents

    Chiang, Yet-Ming; Moorehead, William Douglas

    2013-11-12

    An energy storage device includes a first electrode comprising a first material and a second electrode comprising a second material, at least a portion of the first and second materials forming an interpenetrating network when dispersed in an electrolyte, the electrolyte, the first material and the second material are selected so that the first and second materials exert a repelling force on each other when combined. An electrochemical device, includes a first electrode in electrical communication with a first current collector; a second electrode in electrical communication with a second current collector; and an ionically conductive medium in ionic contact with said first and second electrodes, wherein at least a portion of the first and second electrodes form an interpenetrating network and wherein at least one of the first and second electrodes comprises an electrode structure providing two or more pathways to its current collector.

  18. Battery structures, self-organizing structures and related methods

    DOEpatents

    Chiang, Yet-Ming [Framingham, MA; Moorehead, William Douglas [Virginia Beach, VA

    2012-06-26

    An energy storage device includes a first electrode comprising a first material and a second electrode comprising a second material, at least a portion of the first and second materials forming an interpenetrating network when dispersed in an electrolyte, the electrolyte, the first material and the second material are selected so that the first and second materials exert a repelling force on each other when combined. An electrochemical device, includes a first electrode in electrical communication with a first current collector; a second electrode in electrical communication with a second current collector; and an ionically conductive medium in ionic contact with said first and second electrodes, wherein at least a portion of the first and second electrodes form an interpenetrating network and wherein at least one of the first and second electrodes comprises an electrode structure providing two or more pathways to its current collector.

  19. Battery structures, self-organizing structures and related methods

    DOEpatents

    Chiang, Yet Ming [Framingham, MA; Moorehead, William Douglas [Virginia Beach, VA; Gozdz, Antoni S [Marlborough, MA; Holman, Richard K [Belmont, MA; Loxley, Andrew [Somerville, MA; Riley, Jr., Gilbert N.; Viola, Michael S [Burlington, MA

    2009-08-25

    An energy storage device includes a first electrode comprising a first material and a second electrode comprising a second material, at least a portion of the first and second materials forming an interpenetrating network when dispersed in an electrolyte, the electrolyte, the first material and the second material are selected so that the first and second materials exert a repelling force on each other when combined. An electrochemical device, includes a first electrode in electrical communication with a first current collector; a second electrode in electrical communication with a second current collector; and an ionically conductive medium in ionic contact with said first and second electrodes, wherein at least a portion of the first and second electrodes form an interpenetrating network and wherein at least one of the first and second electrodes comprises an electrode structure providing two or more pathways to its current collector.

  20. Battery structures, self-organizing structures and related methods

    DOEpatents

    Chiang, Yet-Ming [Framingham, MA; Moorehead, William D [Virginia Beach, VA; Gozdz, Antoni S [Marlborough, MA; Holman, Richard K [Belmont, MA; Loxley, Andrew L [Roslindale, MA; Riley, Jr., Gilbert N.; Viola, Michael S [Burlington, MA

    2012-05-01

    An energy storage device includes a first electrode comprising a first material and a second electrode comprising a second material, at least a portion of the first and second materials forming an interpenetrating network when dispersed in an electrolyte, the electrolyte, the first material and the second material are selected so that the first and second materials exert a repelling force on each other when combined. An electrochemical device, includes a first electrode in electrical communication with a first current collector; a second electrode in electrical communication with a second current collector; and an ionically conductive medium in ionic contact with said first and second electrodes, wherein at least a portion of the first and second electrodes form an interpenetrating network and wherein at least one of the first and second electrodes comprises an electrode structure providing two or more pathways to its current collector.

  1. Battery structures, self-organizing structures and related methods

    DOEpatents

    Chiang, Yet-Ming [Framingham, MA; Moorehead, William D [Virginia Beach, VA; Gozdz, Antoni S [Marlborough, MA; Holman, Richard K [Belmont, MA; Loxley, Andrew L [Roslindale, MA; Riley, Jr., Gilbert N.; Viola, Michael S [Burlington, MA

    2011-08-02

    An energy storage device includes a first electrode comprising a first material and a second electrode comprising a second material, at least a portion of the first and second materials forming an interpenetrating network when dispersed in an electrolyte, the electrolyte, the first material and the second material are selected so that the first and second materials exert a repelling force on each other when combined. An electrochemical device, includes a first electrode in electrical communication with a first current collector; a second electrode in electrical communication with a second current collector; and an ionically conductive medium in ionic contact with said first and second electrodes, wherein at least a portion of the first and second electrodes form an interpenetrating network and wherein at least one of the first and second electrodes comprises an electrode structure providing two or more pathways to its current collector.

  2. Underwater energy harvesting from a turbine hosting ionic polymer metal composites

    NASA Astrophysics Data System (ADS)

    Cellini, Filippo; Pounds, Jason; Peterson, Sean D.; Porfiri, Maurizio

    2014-08-01

    In this study, we explore the possibility of energy harvesting from fluid flow through a turbine hosting ionic polymer metal composites (IPMCs). Specifically, IPMC harvesters are embedded in the blades of a small-scale vertical axis water turbine to convert flow kinetics into electrical power via low-frequency flow-induced IPMC deformations. An in-house fabricated Savonius-Darrieus hybrid active turbine with three IPMCs is tested in a laboratory water tunnel to estimate the energy harvesting capabilities of the device as a function of the shunting electrical load. The turbine is shown to harvest a few nanowatt from a mean flow of 0.43\\;m\\;{{s}^{-1}} for shunting resistances in the range 100-1000\\;\\Omega . To establish a first understanding of the energy harvesting device, we propose a quasi-static hydroelastic model for the bending of the IPMCs and we utilize a black-box model to study their electromechanical response.

  3. Flow-induced voltage generation in non-ionic liquids over monolayer graphene

    NASA Astrophysics Data System (ADS)

    Ho Lee, Seung; Jung, Yousung; Kim, Soohyun; Han, Chang-Soo

    2013-02-01

    To clarify the origin of the flow-induced voltage generation in graphene, we prepared a new experimental device whose electrodes were aligned perpendicular to the flow with a non-ionic liquid. We found that significant voltage in our device was generated with increasing flow velocity, thereby confirming that voltage was due to an intrinsic interaction between graphene and the flowing liquid. To understand the mechanism of the observed flow-induced voltage generation, we systematically varied several important experimental parameters: flow velocity, electrode alignment, liquid polarity, and liquid viscosity. Based on these measurements, we suggest that polarity of the fluid is a significant factor in determining the extent of the voltage generated, and the major mechanism can be attributed to instantaneous potential differences induced in the graphene due to an interaction with polar liquids and to the momentum transferred from the flowing liquid to the graphene.

  4. Facilitated ion transport in all-solid-state flexible supercapacitors.

    PubMed

    Choi, Bong Gill; Hong, Jinkee; Hong, Won Hi; Hammond, Paula T; Park, HoSeok

    2011-09-27

    The realization of highly flexible and all-solid-state energy-storage devices strongly depends on both the electrical properties and mechanical integrity of the constitutive materials and the controlled assembly of electrode and solid electrolyte. Herein we report the preparation of all-solid-state flexible supercapacitors (SCs) through the easy assembly of functionalized reduced graphene oxide (f-RGO) thin films (as electrode) and solvent-cast Nafion electrolyte membranes (as electrolyte and separator). In particular, the f-RGO-based SCs (f-RGO-SCs) showed a 2-fold higher specific capacitance (118.5 F/g at 1 A/g) and rate capability (90% retention at 30 A/g) compared to those of all-solid-state graphene SCs (62.3 F/g at 1A/g and 48% retention at 30 A/g). As proven by the 4-fold faster relaxation of the f-RGO-SCs than that of the RGO-SCs and more capacitive behavior of the former at the low-frequency region, these results were attributed to the facilitated ionic transport at the electrical double layer by means of the interfacial engineering of RGO by Nafion. Moreover, the superiority of all-solid-state flexible f-RGO-SCs was demonstrated by the good performance durability under the 1000 cycles of charging and discharging due to the mechanical integrity as a consequence of the interconnected networking structures. Therefore, this research provides new insight into the rational design and fabrication of all-solid-state flexible energy-storage devices as well as the fundamental understanding of ion and charge transport at the interface. © 2011 American Chemical Society

  5. Structure of cyano-anion ionic liquids: X-ray scattering and simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhungana, Kamal B.; Faria, Luiz F. O.; Wu, Boning

    2016-07-14

    Ionic liquids with cyano anions have long been used because of their unique combination of low-melting temperatures, reduced viscosities, and increased conductivities. Recently we have shown that cyano anions in ionic liquids are particularly interesting for their potential use as electron donors to excited state photo-acceptors [B. Wu et al., J. Phys. Chem. B 119, 14790–14799 (2015)]. Here we report on bulk structural and quantum mechanical results for a series of ionic liquids based on the 1-ethyl-3-methylimidazolium cation, paired with the following five cyano anions: SeCN-, SCN-, N(CN)-2N(CN)2-, C(CN)-3C(CN)3-, and B(CN)-4B(CN)4-. By combining molecular dynamics simulations, high-energy X-ray scattering measurements,more » and periodic boundary condition DFT calculations, we are able to obtain a comprehensive description of the liquid landscape as well as the nature of the HOMO-LUMO states for these ionic liquids in the condensed phase. Features in the structure functions for these ionic liquids are somewhat different than the commonly observed adjacency, charge-charge, and polarity peaks, especially for the bulkiest B(CN)-4B(CN)4- anion. While the other four cyano-anion ionic liquids present an anionic HOMO, the one for Im+2,1Im2,1+/B(CN)-4B(CN)4- is cationic.« less

  6. Switchable solvents and methods of use thereof

    DOEpatents

    Jessop, Philip G.; Eckert, Charles A.; Liotta, Charles L.; Heldebrant, David J.

    2013-08-20

    A solvent that reversibly converts from a nonionic liquid mixture to an ionic liquid upon contact with a selected trigger, e.g., contact with CO.sub.2, is described. In preferred embodiments, the ionic solvent is readily converted back to the nonionic liquid mixture. The nonionic liquid mixture includes an amidine or guanidine or both, and water, alcohol, or a combination thereof. Single component amine solvents that reversibly convert between ionic and non-ionic states are also described. Some embodiments require increased pressure to convert; others convert at 1 atmosphere.

  7. Switchable solvents and methods of use thereof

    DOEpatents

    Jessop, Philip G [Kingston, CA; Eckert, Charles A [Atlanta, GA; Liotta, Charles L [Atlanta, GA; Heldebrant, David J [Richland, WA

    2011-07-19

    A solvent that reversibly converts from a nonionic liquid mixture to an ionic liquid upon contact with a selected trigger, e.g., contact with CO.sub.2, is described. In preferred embodiments, the ionic solvent is readily converted back to the nonionic liquid mixture. The nonionic liquid mixture includes an amidine or guanidine or both, and water, alcohol, or a combination thereof. Single component amine solvents that reversibly convert between ionic and non-ionic states are also described. Some embodiments require increased pressure to convert; others convert at 1 atmosphere.

  8. Switchable solvents and methods of use thereof

    DOEpatents

    Jessop, Philip G; Eckert, Charles A; Liotta, Charles L; Heldebrant, David J

    2014-04-29

    A solvent that reversibly converts from a nonionic liquid mixture to an ionic liquid upon contact with a selected trigger, e.g., contact with CO.sub.2, is described. In preferred embodiments, the ionic solvent is readily converted back to the nonionic liquid mixture. The nonionic liquid mixture includes an amidine or guanidine or both, and water, alcohol, or a combination thereof. Single component amine solvents that reversibly convert between ionic and non-ionic states are also described. Some embodiments require increased pressure to convert; others convert at 1 atmosphere.

  9. Solid state ionics: a Japan perspective

    PubMed Central

    Yamamoto, Osamu

    2017-01-01

    Abstract The 70-year history of scientific endeavor of solid state ionics research in Japan is reviewed to show the contribution of Japanese scientists to the basic science of solid state ionics and its applications. The term ‘solid state ionics’ was defined by Takehiko Takahashi of Nagoya University, Japan: it refers to ions in solids, especially solids that exhibit high ionic conductivity at a fairly low temperature below their melting points. During the last few decades of exploration, many ion conducting solids have been discovered in Japan such as the copper-ion conductor Rb4Cu16I7Cl13, proton conductor SrCe1–xYxO3, oxide-ion conductor La0.9Sr0.9Ga0.9Mg0.1O3, and lithium-ion conductor Li10GeP2S12. Rb4Cu16I7Cl13 has a conductivity of 0.33 S cm–1 at 25 °C, which is the highest of all room temperature ion conductive solid electrolytes reported to date, and Li10GeP2S12 has a conductivity of 0.012 S cm–1 at 25 °C, which is the highest among lithium-ion conductors reported to date. Research on high-temperature proton conducting ceramics began in Japan. The history, the discovery of novel ionic conductors and the story behind them are summarized along with basic science and technology. PMID:28804526

  10. Ambipolar transport in CVD grown MoSe2 monolayer using an ionic liquid gel gate dielectric

    NASA Astrophysics Data System (ADS)

    Ortiz, Deliris N.; Ramos, Idalia; Pinto, Nicholas J.; Zhao, Meng-Qiang; Kumar, Vinayak; Johnson, A. T. Charlie

    2018-03-01

    CVD grown MoSe2 monolayers were electrically characterized at room temperature in a field effect transistor (FET) configuration using an ionic liquid (IL) as the gate dielectric. During the growth, instead of using MoO3 powder, ammonium heptamolybdate was used for better Mo control of the source and sodium cholate added for lager MoSe2 growth areas. In addition, a high specific capacitance (˜7 μF/cm2) IL was used as the gate dielectric to significantly reduce the operating voltage. The device exhibited ambipolar charge transport at low voltages with enhanced parameters during n- and p-FET operation. IL gating thins the Schottky barrier at the metal/semiconductor interface permitting efficient charge injection into the channel and reduces the effects of contact resistance on device performance. The large specific capacitance of the IL was also responsible for a much higher induced charge density compared to the standard SiO2 dielectric. The device was successfully tested as an inverter with a gain of ˜2. Using a common metal for contacts simplifies fabrication of this ambipolar device, and the possibility of radiative recombination of holes and electrons could further extend its use in low power optoelectronic applications.

  11. Ionic Liquid Crystals: Versatile Materials.

    PubMed

    Goossens, Karel; Lava, Kathleen; Bielawski, Christopher W; Binnemans, Koen

    2016-04-27

    This Review covers the recent developments (2005-2015) in the design, synthesis, characterization, and application of thermotropic ionic liquid crystals. It was designed to give a comprehensive overview of the "state-of-the-art" in the field. The discussion is focused on low molar mass and dendrimeric thermotropic ionic mesogens, as well as selected metal-containing compounds (metallomesogens), but some references to polymeric and/or lyotropic ionic liquid crystals and particularly to ionic liquids will also be provided. Although zwitterionic and mesoionic mesogens are also treated to some extent, emphasis will be directed toward liquid-crystalline materials consisting of organic cations and organic/inorganic anions that are not covalently bound but interact via electrostatic and other noncovalent interactions.

  12. Studies of bio-mimetic medium of ionic and non-ionic micelles by a simple charge transfer fluorescence probe N,N-dimethylaminonapthyl-(acrylo)-nitrile

    NASA Astrophysics Data System (ADS)

    Samanta, Anuva; Paul, Bijan Kumar; Guchhait, N.

    2011-05-01

    In this report we have studied micellization process of anionic, cationic and non-ionic surfactants using N,N-dimethylaminonapthyl-(acrylo)-nitrile (DMANAN) as an external fluorescence probe. Micropolarity, microviscosity, critical micellar concentration of these micelles based on steady state absorption and fluorescence and time resolved emission spectroscopy of the probe DMANAN show that the molecule resides in the micelle-water interface for ionic micelles and in the core for the non-ionic micelle. The effect of variation of pH of the micellar solution as well as fluorescence quenching measurements of DMANAN provide further support for the location of the probe in the micelles.

  13. Revealing the Bonding Environment of Zn in ALD Zn(O,S) Buffer Layers through X-ray Absorption Spectroscopy

    PubMed Central

    2017-01-01

    Zn(O,S) buffer layer electronic configuration is determined by its composition and thickness, tunable through atomic layer deposition. The Zn K and L-edges in the X-ray absorption near edge structure verify ionicity and covalency changes with S content. A high intensity shoulder in the Zn K-edge indicates strong Zn 4s hybridized states and a preferred c-axis orientation. 2–3 nm thick films with low S content show a subdued shoulder showing less contribution from Zn 4s hybridization. A lower energy shift with film thickness suggests a decreasing bandgap. Further, ZnSO4 forms at substrate interfaces, which may be detrimental for device performance. PMID:29083141

  14. Stable dye-sensitized solar cells based on a gel electrolyte with ethyl cellulose as the gelator

    NASA Astrophysics Data System (ADS)

    Vasei, Maryam; Tajabadi, Fariba; Jabbari, Ali; Taghavinia, Nima

    2015-09-01

    A simple gelating process is developed for the conventional acetonitrile-based electrolyte of dye solar cells, based on ethyl cellulose as the gelator. The electrolyte becomes quasi-solid-state upon addition of an ethanolic solution of ethyl cellulose to the conventional acetonitrile-based liquid electrolyte. The photovoltaic conversion efficiency with the new gel electrolyte is only slightly lower than with the liquid electrolyte, e.g., 6.5 % for liquid electrolyte versus 5.9 % for gel electrolyte with 5.8 wt% added ethyl cellulose. Electrolyte gelation has small effect on the ionic diffusion coefficient of iodide, and the devices are remarkably stable for at least 550 h under irradiation at 55 °C.

  15. Materials Genomics Screens for Adaptive Ion Transport Behavior by Redox-Switchable Microporous Polymer Membranes in Lithium-Sulfur Batteries.

    PubMed

    Ward, Ashleigh L; Doris, Sean E; Li, Longjun; Hughes, Mark A; Qu, Xiaohui; Persson, Kristin A; Helms, Brett A

    2017-05-24

    Selective ion transport across membranes is critical to the performance of many electrochemical energy storage devices. While design strategies enabling ion-selective transport are well-established, enhancements in membrane selectivity are made at the expense of ionic conductivity. To design membranes with both high selectivity and high ionic conductivity, there are cues to follow from biological systems, where regulated transport of ions across membranes is achieved by transmembrane proteins. The transport functions of these proteins are sensitive to their environment: physical or chemical perturbations to that environment are met with an adaptive response. Here we advance an analogous strategy for achieving adaptive ion transport in microporous polymer membranes. Along the polymer backbone are placed redox-active switches that are activated in situ, at a prescribed electrochemical potential, by the device's active materials when they enter the membrane's pore. This transformation has little influence on the membrane's ionic conductivity; however, the active-material blocking ability of the membrane is enhanced. We show that when used in lithium-sulfur batteries, these membranes offer markedly improved capacity, efficiency, and cycle-life by sequestering polysulfides in the cathode. The origins and implications of this behavior are explored in detail and point to new opportunities for responsive membranes in battery technology development.

  16. The inside-out supercapacitor: induced charge storage in reduced graphene oxide.

    PubMed

    Martin, Samuel T; Akbari, Abozar; Chakraborty Banerjee, Parama; Neild, Adrian; Majumder, Mainak

    2016-11-30

    Iontronic circuits are built using components which are analogous to those used in electronic circuits, however they involve the movement of ions in an electrolyte rather than electrons in a metal or semiconductor. Developments in these circuits' performance have led to applications in biological sensing, interfacing and drug delivery. While transistors, diodes and elementary logic circuits have been demonstrated for ionic circuits if more complex circuits are to be realized, the precident set by electrical circuits suggests that a component which is analogous to an electrical capacitor is required. Herein, an ionic supercapacitor is reported, our experiments show that charge may be stored in a conductive porous reduced graphene oxide film that is contacted by two isolated aqueous solutions and that this concept extends to an arbitrary polarizable sample. Parametric studies indicate that the conductivity and porosity of this film play important roles in the resultant device's performance. This ionic capacitor has a specific capacitance of 8.6 F cm -3 at 1 mV s -1 and demonstrates the ability to filter and smooth signals in an electrolyte at a variety of low frequencies. The device has the same interfaces as a supercapacitor but their arrangement is changed, hence the name inside-out supercapacitor.

  17. Fabrication of nanostructured electrodes and interfaces using combustion CVD

    NASA Astrophysics Data System (ADS)

    Liu, Ying

    Reducing fabrication and operation costs while maintaining high performance is a major consideration for the design of a new generation of solid-state ionic devices such as fuel cells, batteries, and sensors. The objective of this research is to fabricate nanostructured materials for energy storage and conversion, particularly porous electrodes with nanostructured features for solid oxide fuel cells (SOFCs) and high surface area films for gas sensing using a combustion CVD process. This research started with the evaluation of the most important deposition parameters: deposition temperature, deposition time, precursor concentration, and substrate. With the optimum deposition parameters, highly porous and nanostructured electrodes for low-temperature SOFCs have been then fabricated. Further, nanostructured and functionally graded La0.8Sr0.2MnO2-La 0.8SrCoO3-Gd0.1Ce0.9O2 composite cathodes were fabricated on YSZ electrolyte supports. Extremely low interfacial polarization resistances (i.e. 0.43 Ocm2 at 700°C) and high power densities (i.e. 481 mW/cm2 at 800°C) were generated at operating temperature range of 600°C--850°C. The original combustion CVD process is modified to directly employ solid ceramic powder instead of clear solution for fabrication of porous electrodes for solid oxide fuel cells. Solid particles of SOFC electrode materials suspended in an organic solvent were burned in a combustion flame, depositing a porous cathode on an anode supported electrolyte. Combustion CVD was also employed to fabricate highly porous and nanostructured SnO2 thin film gas sensors with Pt interdigitated electrodes. The as-prepared SnO2 gas sensors were tested for ethanol vapor sensing behavior in the temperature range of 200--500°C and showed excellent sensitivity, selectivity, and speed of response. Moreover, several novel nanostructures were synthesized using a combustion CVD process, including SnO2 nanotubes with square-shaped or rectangular cross sections, well-aligned ZnO nanorods, and two-dimensional ZnO flakes. Solid-state gas sensors based on single piece of these nanostructures demonstrated superior gas sensing performances. These size-tunable nanostructures could be the building blocks of or a template for fabrication of functional devices. In summary, this research has developed new ways for fabrication of high-performance solid-state ionic devices and has helped generating fundamental understanding of the correlation between processing conditions, microstructure, and properties of the synthesized structures.

  18. Solution-processable electrochemiluminescent ion gels for flexible, low-voltage, emissive displays on plastic.

    PubMed

    Moon, Hong Chul; Lodge, Timothy P; Frisbie, C Daniel

    2014-03-05

    Ion gels comprising ABA triblock copolymers and ionic liquids have received much attention as functional materials in numerous applications, especially as gate dielectrics in organic transistors. Here we have expanded the functionality of ion gels by demonstrating low-voltage, flexible electrochemiluminescent (ECL) devices using patterned ion gels containing redox-active luminophores. The ECL devices consisted only of a 30 μm thick emissive gel and two electrodes and were fabricated on indium tin oxide-coated substrates (e.g., polyester) simply by solution-casting the ECL gel and brush-painting a top Ag electrode. The triblock copolymer employed in the gel was polystyrene-block-poly(methyl methacrylate)-block-polystyrene, where the solvophobic polystyrene end blocks associate into micellar cross-links in the versatile ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMI][TFSI]). An ECL gel containing ~6.25 wt % Ru(bpy)3Cl2 (relative to [EMI][TFSI]) as the luminophore turned on at an AC peak-to-peak voltage as low as 2.6 V (i.e., -1.3 to +1.3 V) and showed a relatively rapid response (sub-ms). The wavelength of maximum emission was 610 nm (red-orange). With the use of an iridium(III) complex, Ir(diFppy)2(bpy)PF6 [diFppy = 2-(2',4'-difluorophenyl)pyridine; bpy = 2,2'-bipyridyl], the emitting color was tuned to a maximum wavelength of 540 nm (green). Moreover, when a blended luminophore system containing a 60:40 mixture of Ru(bpy)3(2+) and Ir(diFppy)2(bpy)(+) was used in the emissive layer, the luminance of red-orange-colored light was enhanced by a factor of 2, which is explained by the generation of the additional excited state Ru(bpy)3(2+)* by a coreactant pathway with Ir(diFppy)2(bpy)(+)* in addition to the usual annihilation pathway. This is the first time that enhanced ECL has been achieved in ion gels (or ionic liquids) using a coreactant. Overall, the results indicate that ECL ion gels are attractive multifunctional materials for printed electronics.

  19. Phase transitions in local equation-of-state approximation and anomalies of spatial charge profiles in non-uniform plasma

    NASA Astrophysics Data System (ADS)

    Chigvintsev, A. Yu; Zorina, I. G.; Noginova, L. Yu; Iosilevskiy, I. L.

    2018-01-01

    Impressive appearance of discontinuities in equilibrium spatial charge profiles in non-uniform Coulomb systems is under discussions in wide number of thermoelectrostatics problems. Such discontinuities are considered as peculiar micro-level manifestation of phase transitions and intrinsic macro-level non-ideality effects in local equation of state (EOS), which should be used for description of non-ideal ionic subsystem in frames of local-density (or “pseudofluid”, or “jellium” etc) approximation. Such discontinuities were discussed already by the authors for electronic subsystems. Special emphasis is made in present paper on the mentioned above non-ideality effects in non-uniform ionic subsystems, such as micro-ions profile within screening “cloud” around macro-ion in complex (dusty, colloid etc) plasmas, equilibrium charge profile in ionic traps or (and) in the neighborhood vicinity of “charged wall” etc). Multiphase EOS for simplified ionic model of classical charged hard spheres on uniformly compressible electrostatic compensating background was constructed and several illustrative examples of discussed discontinuous ionic profiles were calculated.

  20. Crosslinked Polymer Ionic Liquid/Ionic Liquid Blends Prepared by Photopolymerization as Solid-State Electrolytes in Supercapacitors

    PubMed Central

    Wang, Po-Hsin; Wang, Tzong-Liu; Lin, Wen-Churng; Lin, Hung-Yin; Lee, Mei-Hwa; Yang, Chien-Hsin

    2018-01-01

    A photopolymerization method is used to prepare a mixture of polymer ionic liquid (PIL) and ionic liquid (IL). This mixture is used as a solid-state electrolyte in carbon nanoparticle (CNP)-based symmetric supercapacitors. The solid electrolyte is a binary mixture of a PIL and its corresponding IL. The PIL matrix is a cross-linked polyelectrolyte with an imidazole salt cation coupled with two anions of Br− in PIL-M-(Br) and TFSI− in PIL-M-(TFSI), respectively. The corresponding ionic liquids have imidazolium salt cation coupled with two anions of Br− and TFSI−, respectively. This study investigates the electrochemical characteristics of PILs and their corresponding IL mixtures used as a solid electrolyte in supercapacitors. Results show that a specific capacitance, maximum power density and energy density of 87 and 58 F·g−1, 40 and 48 kW·kg−1, and 107 and 59.9 Wh·kg−1 were achieved in supercapacitors based on (PIL-M-(Br)) and (PIL-M-(TFSI)) solid electrolytes, respectively. PMID:29642456

  1. A correlation between extensional displacement and architecture of ionic polymer transducers

    NASA Astrophysics Data System (ADS)

    Akle, Barbar J.; Duncan, Andrew; Leo, Donald J.

    2008-03-01

    Ionic polymer transducers (IPT), sometimes referred to as artificial muscles, are known to generate a large bending strain and a moderate stress at low applied voltages (<5V). Bending actuators have limited engineering applications due to the low forcing capabilities and the need for complicated external devices to convert the bending action into rotating or linear motion desired in most devices. Recently Akle and Leo reported extensional actuation in ionic polymer transducers. In this study, extensional IPTs are characterized as a function of transducer architecture. In this study 2 actuators are built and there extensional displacement response is characterized. The transducers have similar electrodes while the middle membrane in the first is a Nafion / ionic liquid and an aluminum oxide - ionic liquid in the second. The first transducer is characterized for constant current input, voltage step input, and sweep voltage input. The model prediction is in agreement in both shape and magnitude for the constant current experiment. The values of α and β used are within the range of values reported in Akle and Leo. Both experiments and model demonstrate that there is a preferred direction of applying the potential so that the transducer will exhibit large deformations. In step response the model well predicted the negative potential and the early part of the step in the positive potential and failed to predict the displacement after approximately 180s has elapsed. The model well predicted the sweep response, and the observed 1st harmonic in the displacement further confirmed the existence of a quadratic in the charge response. Finally the aluminum oxide based transducer is characterized for a step response and compared to the Nafion based transducer. The second actuator demonstrated electromechanical extensional response faster than that in the Nafion based transducer. The Aluminum oxide based transducer is expected to provide larger forces and hence larger energy density.

  2. Novel Routes for Sintering of Ultra-high Temperature Ceramics and their Properties

    DTIC Science & Technology

    2014-10-31

    H. Gocmez, Hydrothermal synthesis and properties of Ce1-xGdxO2-δ solid solutions // Solid State Sciences. – 2002. – Vol. 4. – P. 585-590. 19. E...J. Kilner, Ionic conductivity in the CeO2-Gd2O3 system (0.05≤Gd/Ce≤0.4) prepared by oxalate coprecipitation // Solid State Ionics. - 2002. – Vol

  3. State-resolved Thermal/Hyperthermal Dynamics of Atmospheric Species

    DTIC Science & Technology

    2015-06-23

    gas -room temperature ionic liquid (RTIL) interfaces. 2) Large scale trajectory simulations for theoretical analysis of gas - liquid scattering studies...areas: 1) Diode laser and LIF studies of hyperthermal CO2 and NO collisions at the gas -room temperature ionic liquid (RTIL) interfaces. 2) Large...scale trajectory simulations for theoretical analysis of gas - liquid scattering studies, 3) LIF data for state-resolved scattering of hyperthermal NO at

  4. Mapping the Free Energy of Lithium Solvation in the Protic Ionic Liquid Ethylammonuim Nitrate: A Metadynamics Study.

    PubMed

    Kachmar, Ali; Carignano, Marcelo; Laino, Teodoro; Iannuzzi, Marcella; Hutter, Jürg

    2017-08-10

    Understanding lithium solvation and transport in ionic liquids is important due to their possible application in electrochemical devices. Using first-principles simulations aided by a metadynamics approach we study the free-energy landscape for lithium ions at infinite dilution in ethylammonium nitrate, a protic ionic liquid. We analyze the local structure of the liquid around the lithium cation and obtain a quantitative picture in agreement with experimental findings. Our simulations show that the lowest two free energy minima correspond to conformations with the lithium ion being solvated either by three or four nitrate ions with a transition barrier between them of 0.2 eV. Other less probable conformations having different solvation pattern are also investigated. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Time-dependent density functional theory for the charging kinetics of electric double layer containing room-temperature ionic liquids

    DOE PAGES

    Lian, Cheng; Univ. of California, Riverside, CA; Zhao, Shuangliang; ...

    2016-11-29

    Understanding the charging kinetics of electric double layers is of fundamental importance for the design and development of novel electrochemical devices such as supercapacitors and field-effect transistors. In this paper, we study the dynamic behavior of room-temperature ionic liquids using a classical time-dependent density functional theory that accounts for the molecular excluded volume effects, the electrostatic correlations, and the dispersion forces. While the conventional models predict a monotonic increase of the surface charge with time upon application of an electrode voltage, our results show that dispersion between ions results in a non-monotonic increase of the surface charge with the durationmore » of charging. Finally and furthermore, we investigate the effects of van der Waals attraction between electrode/ionic-liquid interactions on the charging processes.« less

  6. Interconnected ionic domains enhance conductivity in microphase separated block copolymer electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arges, Christopher G.; Kambe, Yu; Dolejsi, Moshe

    Block copolymer electrolytes (BCEs) represent an attractive choice as solid-state ionic conductors for electrochemical technologies used in energy storage and conversion, water treatment, sensors, and data storage and processing. Unlocking the maximum ionic conductivity of BCEs requires an intimate understanding as to how the microphase separated structure influences transport properties. However, elucidating such knowledge remains elusive due to the challenging task of precisely engineering BCEs with a defined structure in bulk materials. In this work, we examined BCEs in a thin film format because it was amenable to attaining BCEs with a desired nanostructure. Specifically, we systematically investigated anion-conducting BCEsmore » with different degrees of connectivity of the ionic domains. For the first time, we demonstrate that increasing terminal defects in the ionic domain from 1 terminal defect per mu m(2) to 20 terminal defects per mu m(2) ( a relatively small amount of defects) decreased ionic conductivity by 67% compared to the maximum value attained. Conversely, maximizing ionic domain connectivity increased the ionic conductivity by two-fold over a non-ordered BCE film. These experiments highlight that microphase separation alone was insufficient for ameliorating ionic conductivity in BCEs. Rather, microphase separation coupled with complete ionic domain connectivity realized BCEs with significantly enhanced ionic conductivity.« less

  7. Study of the extra-ionic electron distributions in semi-metallic structures by nuclear quadrupole resonance techniques

    NASA Technical Reports Server (NTRS)

    Murty, A. N.

    1976-01-01

    A straightforward self-consistent method was developed to estimate solid state electrostatic potentials, fields and field gradients in ionic solids. The method is a direct practical application of basic electrostatics to solid state and also helps in the understanding of the principles of crystal structure. The necessary mathematical equations, derived from first principles, were presented and the systematic computational procedure developed to arrive at the solid state electrostatic field gradients values was given.

  8. Ultra-thin solid oxide fuel cells: Materials and devices

    NASA Astrophysics Data System (ADS)

    Kerman, Kian

    Solid oxide fuel cells are electrochemical energy conversion devices utilizing solid electrolytes transporting O2- that typically operate in the 800 -- 1000 °C temperature range due to the large activation barrier for ionic transport. Reducing electrolyte thickness or increasing ionic conductivity can enable lower temperature operation for both stationary and portable applications. This thesis is focused on the fabrication of free standing ultrathin (<100 nm) oxide membranes of prototypical O 2- conducting electrolytes, namely Y2O3-doped ZrO2 and Gd2O3-doped CeO2. Fabrication of such membranes requires an understanding of thin plate mechanics coupled with controllable thin film deposition processes. Integration of free standing membranes into proof-of-concept fuel cell devices necessitates ideal electrode assemblies as well as creative processing schemes to experimentally test devices in a high temperature dual environment chamber. We present a simple elastic model to determine stable buckling configurations for free standing oxide membranes. This guides the experimental methodology for Y 2O3-doped ZrO2 film processing, which enables tunable internal stress in the films. Using these criteria, we fabricate robust Y2O3-doped ZrO2 membranes on Si and composite polymeric substrates by semiconductor and micro-machining processes, respectively. Fuel cell devices integrating these membranes with metallic electrodes are demonstrated to operate in the 300 -- 500 °C range, exhibiting record performance at such temperatures. A model combining physical transport of electronic carriers in an insulating film and electrochemical aspects of transport is developed to determine the limits of performance enhancement expected via electrolyte thickness reduction. Free standing oxide heterostructures, i.e. electrolyte membrane and oxide electrodes, are demonstrated. Lastly, using Y2O3-doped ZrO2 and Gd2O 3-doped CeO2, novel electrolyte fabrication schemes are explored to develop oxide alloys and nanoscale compositionally graded membranes that are thermomechanically robust and provide added interfacial functionality. The work in this thesis advances experimental state-of-the-art with respect to solid oxide fuel cell operation temperature, provides fundamental boundaries expected for ultrathin electrolytes, develops the ability to integrate highly dissimilar material (such as oxide-polymer) heterostructures, and introduces nanoscale compositionally graded electrolyte membranes that can lead to monolithic materials having multiple functionalities.

  9. Biologically Inspired Electronic, Photovoltaic and Microfluidic Devices Based on Aqueous Soft Matter

    NASA Astrophysics Data System (ADS)

    Koo, Hyung Jun

    Hydrogels are a water-based soft material where three dimensional networks of hydrophilic polymer retain large amounts of water. We developed hydrogel based devices with new functionalities inspired by materials, structures and processes in nature. The advantages, such as softness, biocompatibility and high ionic conductivity, could enable hydrogels to be novel materials for biomimetic devices operated by ionic current. Moreover, microfluidic patterns are easily embedded in moldable hydrogels and allow for unique convective/diffusive transport mechanism in porous gel to be used for uniform delivery of reagent solution. We first developed and characterized a device with unidirectional ionic current flow across a SiO2/Gel junction, which showed highly efficient rectification of the ionic current by non-linear conductivity of SiO2 films. Addition of polyelectrolytes and salt to the gel layer significantly improved the performance of the new diode device because of the enhanced gel conductance. A soft matter based diode composed of hydrogel and liquid metal (eutectic gallium indium, EGaIn) was also presented. The ability to control the thickness, and thus resistivity, of an insulating oxide skin on the metal enables the current rectification. The effect of ionic conductivity and pH on the formation of the insulating oxide was investigated in a simple model system with liquid metal/electrolyte solution or hydrogel/Pt interfaces. Finally, we present a diode composed entirely of soft materials by replacing the platinum electrode with a second liquid metal electrode. A new type of hydrogel-based photovoltaic systems (HGPVs) was constructed. Two photosensitive ionized molecules embedded in aqueous gel served as photoactive species. The HGPVs showed performance comparable with or higher than those of some other biomimetic or ionic photovoltaic systems reported recently. We suggest a provisional mechanism of the device operation, based on a synergetic effect of the two dye molecules. To reduce the fabrication cost without efficiency loss, we found an inexpensive replacement of the expensive Pt counter-electrode with copper coated with carbon materials. Biologically derived photoactive molecules, such as Chlorophyll and Photosystem II, were successfully operated in the aqueous gel of such HGPVs. As a proof of demonstration of biomimetic structures, a light driven biomimetic reactor was developed by using hydrogel media with embedded photocatalytic TiO2 nanoparticles. Uniform supply of the reactants and extraction of the products was accomplished via a microfluidic channel network, broadly similar to the vein structure of live leaves. The dyes were transported in the gel between the microchannels and degraded by photocatalytic oxidation by the illuminated TiO2 particles. Quantitative analysis of the photocatalytic degradation rate of the injected dyes revealed that the microvascular reactor has high quantum efficiency per catalyst mass. Numerical modeling was performed to explore how a soluble reagent could be supplied rapidly and efficiently through microfluidic channel networks embedded in hydrogels. The computational model takes into account the fluid transport in porous media and the solute convection and diffusion, to simulate the solute distribution and outflux with time in microfluidic hydrogel media. The effect of the channel dimensions and shapes on mass transport rapidity and efficiency was quantitatively evaluated. Experimental data proved the validity of the time dependent concentration profile calculated by the simulation. Lastly, a microfluidic hydrogel solar cell with biomimetic regeneration functionality was demonstrated as a result of the above experimental and modeling studies. A new concept of open and replenishable photovoltaics was constructed on the basis of dye-sensitized solar cells. Photovoltaic reagents, dyes and redox electrolytes, were uniformly delivered via microfluidic networks embedded in a hydrogel, resulting in increase of photocurrent generation. The regeneration process was established, based on the pH dependence of adsorption/desorption kinetics of the dye molecules on a TiO2 photoanode. Complete and reliable recovery of the photocurrent after an accelerated photodegradation in the biomimetic photovoltaics was demonstrated.

  10. Hydrogel ionotronics

    NASA Astrophysics Data System (ADS)

    Yang, Canhui; Suo, Zhigang

    2018-06-01

    An ionotronic device functions by a hybrid circuit of mobile ions and mobile electrons. Hydrogels are stretchable, transparent, ionic conductors that can transmit electrical signals of high frequency over long distance, enabling ionotronic devices such as artificial muscles, skins and axons. Moreover, ionotronic luminescent devices, ionotronic liquid crystal devices, touchpads, triboelectric generators, artificial eels and gel-elastomer-oil devices can be designed based on hydrogels. In this Review, we discuss first-generation hydrogel ionotronic devices and the challenges associated with the mechanical properties and the chemistry of the materials. We examine how strong and stretchable adhesion between hydrophilic and hydrophobic polymer networks can be achieved, how water can be retained in hydrogels and how to design hydrogels that resist fatigue under cyclic loads. Finally, we highlight applications of hydrogel ionotronic devices and discuss the future of the field.

  11. Influence of the ionic liquid/gas surface on ionic liquid chemistry.

    PubMed

    Lovelock, Kevin R J

    2012-04-21

    Applications such as gas storage, gas separation, NP synthesis and supported ionic liquid phase catalysis depend upon the interaction of different species with the ionic liquid/gas surface. Consequently, these applications cannot proceed to the full extent of their potential without a profound understanding of the surface structure and properties. As a whole, this perspective contains more questions than answers, which demonstrates the current state of the field. Throughout this perspective, crucial questions are posed and a roadmap is proposed to answer these questions. A critical analysis is made of the field of ionic liquid/gas surface structure and properties, and a number of design rules are mined. The effects of ionic additives on the ionic liquid/gas surface structure are presented. A possible driving force for surface formation is discussed that has, to the best of my knowledge, not been postulated in the literature to date. This driving force suggests that for systems composed solely of ions, the rules for surface formation of dilute electrolytes do not apply. The interaction of neutral additives with the ionic liquid/gas surface is discussed. Particular attention is focussed upon H(2)O and CO(2), vital additives for many applications of ionic liquids. Correlations between ionic liquid/gas surface structure and properties, ionic liquid surfaces plus additives, and ionic liquid applications are given. This journal is © the Owner Societies 2012

  12. Boundary control of bidomain equations with state-dependent switching source functions in the ionic model

    NASA Astrophysics Data System (ADS)

    Chamakuri, Nagaiah; Engwer, Christian; Kunisch, Karl

    2014-09-01

    Optimal control for cardiac electrophysiology based on the bidomain equations in conjunction with the Fenton-Karma ionic model is considered. This generic ventricular model approximates well the restitution properties and spiral wave behavior of more complex ionic models of cardiac action potentials. However, it is challenging due to the appearance of state-dependent discontinuities in the source terms. A computational framework for the numerical realization of optimal control problems is presented. Essential ingredients are a shape calculus based treatment of the sensitivities of the discontinuous source terms and a marching cubes algorithm to track iso-surface of excitation wavefronts. Numerical results exhibit successful defibrillation by applying an optimally controlled extracellular stimulus.

  13. The radiation chemistry of ionic liquids: A review

    DOE PAGES

    Mincher, Bruce J.; Wishart, James F.

    2014-07-03

    Ionic liquids have received increasing attention as media for radiochemical separations. Recent literature includes examinations of the efficiencies and mechanisms of the solvent extraction of lanthanides, actinides and fission products into ionic liquid solutions. For radiochemical applications, including as replacement solvents for nuclear fuel reprocessing, a thorough understanding of the radiation chemistry of ionic liquids will be required. Such an understanding can be achieved based on a combination of steady-state radiolysis experiments coupled with post-irradiation product identification and pulse-radiolysis experiments to acquire kinetic information. These techniques allow for the elucidation of radiolytic mechanisms. This contribution reviews the current ionic liquidmore » radiation chemistry literature as it affects separations, with these considerations in mind.« less

  14. Ionic Liquid Directed Mesoporous Carbon Nanoflakes as an Effiencient Electrode material

    NASA Astrophysics Data System (ADS)

    Kong, Lirong; Chen, Wei

    2015-12-01

    Supercapacitors are considered to be the most promising approach to meet the pressing requirements for energy storage devices. The electrode materials for supercapacitors have close relationship with their electrochemical properties and thus become the key point to improve their energy storage efficiency. Herein, by using poly (vinylidene fluoride-co-hexafluoropropylene) and ionic liquid as the dual templates, polyacrylonitrile as the carbon precursor, a flake-like carbon material was prepared by a direct carbonization method. In this method, poly (vinylidene fluoride-co-hexafluoropropylene) worked as the separator for the formation of isolated carbon flakes while aggregated ionic liquid worked as the pore template. The obtained carbon flakes exhibited a specific capacitance of 170 F/g at 0.1 A/g, a high energy density of 12.2 Wh/kg and a high power density of 5 kW/kg at the current of 10 A/g. It also maintained a high capacitance retention capability with almost no declination after 500 charge-discharge cycles. The ionic liquid directed method developed here also provided a new idea for the preparation of hierarchically porous carbon nanomaterials.

  15. Polarization effect in the Ionic conductor TlBr

    NASA Astrophysics Data System (ADS)

    Rocha Leao, Cedric; Lordi, Vincenzo

    2012-02-01

    TlBr is an ionic crystal that in recent years has been standing out as one of the most promising materials for effective room temperature radiation detection. However, its exceptional performance invariably degrades after operation times that vary from hours to several weeks. This phenomenon, known as polarization, is assigned to the undesirable ionic current that sets in the crystal under an applied bias, leading to the accumulation of oppositely charged Tl+ and Br- ions at the electric contacts of the device. This charge build up induces a field that opposes the applied bias, impairing the collection of the photo-induced carriers. In this presentation, we use parameter free quantum mechanical simulations to discuss the possible origins of the polarization effect in TlBr, showing that ionic mobility in the intrinsic material is not enough to account for effects reported by several groups. We then discuss other possible causes for the degradation of biased TlBr and propose ways to prevent its occurrence, via careful co-doping as well as a judicious choice of the metal contacts to be employed.

  16. Enhancing grain boundary ionic conductivity in mixed ionic–electronic conductors

    DOE PAGES

    Lin, Ye; Fang, Shumin; Su, Dong; ...

    2015-04-10

    Mixed ionic–electronic conductors are widely used in devices for energy conversion and storage. Grain boundaries in these materials have nanoscale spatial dimensions, which can generate substantial resistance to ionic transport due to dopant segregation. Here, we report the concept of targeted phase formation in a Ce 0.8Gd 0.2O 2₋δ–CoFe 2O 4 composite that serves to enhance the grain boundary ionic conductivity. Using transmission electron microscopy and spectroscopy approaches, we probe the grain boundary charge distribution and chemical environments altered by the phase reaction between the two constituents. The formation of an emergent phase successfully avoids segregation of the Gd dopantmore » and depletion of oxygen vacancies at the Ce 0.8Gd 0.2O 2₋δ–Ce 0.8Gd 0.2O 2₋δ grain boundary. This results in superior grain boundary ionic conductivity as demonstrated by the enhanced oxygen permeation flux. Lastly, this work illustrates the control of mesoscale level transport properties in mixed ionic–electronic conductor composites through processing induced modifications of the grain boundary defect distribution.« less

  17. Programmable Hydrogel Ionic Circuits for Biologically Matched Electronic Interfaces.

    PubMed

    Zhao, Siwei; Tseng, Peter; Grasman, Jonathan; Wang, Yu; Li, Wenyi; Napier, Bradley; Yavuz, Burcin; Chen, Ying; Howell, Laurel; Rincon, Javier; Omenetto, Fiorenzo G; Kaplan, David L

    2018-06-01

    The increased need for wearable and implantable medical devices has driven the demand for electronics that interface with living systems. Current bioelectronic systems have not fully resolved mismatches between engineered circuits and biological systems, including the resulting pain and damage to biological tissues. Here, salt/poly(ethylene glycol) (PEG) aqueous two-phase systems are utilized to generate programmable hydrogel ionic circuits. High-conductivity salt-solution patterns are stably encapsulated within PEG hydrogel matrices using salt/PEG phase separation, which route ionic current with high resolution and enable localized delivery of electrical stimulation. This strategy allows designer electronics that match biological systems, including transparency, stretchability, complete aqueous-based connective interface, distribution of ionic electrical signals between engineered and biological systems, and avoidance of tissue damage from electrical stimulation. The potential of such systems is demonstrated by generating light-emitting diode (LED)-based displays, skin-mounted electronics, and stimulators that deliver localized current to in vitro neuron cultures and muscles in vivo with reduced adverse effects. Such electronic platforms may form the basis of future biointegrated electronic systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Triboelectric energy harvesting with surface-charge-fixed polymer based on ionic liquid

    PubMed Central

    Sano, Chikako; Mitsuya, Hiroyuki; Ono, Shimpei; Miwa, Kazumoto; Toshiyoshi, Hiroshi; Fujita, Hiroyuki

    2018-01-01

    Abstract A novel triboelectric energy harvester has been developed using an ionic liquid polymer with cations fixed at the surface. In this report, the fabrication of the device and the characterization of its energy harvesting performance are detailed. An electrical double layer was induced in the ionic liquid polymer precursor to attract the cations to the surface where they are immobilized using a UV-based crosslinking reaction. The finalized polymer is capable of generating an electrical current when contacted by a metal electrode. Using this property, energy harvesting experiments were conducted by cyclically contacting a gold-surface electrode with the charge fixed surface of the polymer. Control experiments verified the effect of immobilizing the cations at the surface. By synthesizing a polymer with the optimal composition ratio of ionic liquid to macromonomer, an output of 77 nW/cm2 was obtained with a load resistance of 1 MΩ at 1 Hz. This tuneable power supply with a μA level current output may contribute to Internet of Things networks requiring numerous sensor nodes at remote places in the environment. PMID:29707070

  19. Strain tuning and strong enhancement of ionic conductivity in SrZrO 3-RE 2O 3 (RE = Sm, Eu, Gd, Dy, and Er) nanocomposite films

    DOE PAGES

    Lee, Shinbuhm; Zhang, Wenrui; Khatkhatay, Fauzia; ...

    2015-06-05

    Fast ion transport channels at interfaces in thin films have attracted great attention due to a range of potential applications for energy materials and devices, for, solid oxide fuel cells, sensors, and memories. Here, it is shown that in vertical nanocomposite heteroepitaxial films of SrZrO 3–RE 2O 3 (RE = Sm, Eu, Gd, Dy, and Er) the ionic conductivity of the composite can be tuned and strongly enhanced using embedded, stiff, and vertical nanopillars of RE 2O 3. With increasing lattice constant of RE 2O 3 from Er 2O 3 to Sm 2O 3, it is found that the tensilemore » strain in the SrZrO 3 increases proportionately, and the ionic conductivity of the composite increases accordingly, by an order of magnitude. Lastly, the results here conclusively show, for the first time, that strain in films can be effectively used to tune the ionic conductivity of the materials.« less

  20. Microphase separation and the formation of ion conductivity channels in poly(ionic liquid)s: A coarse-grained molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Weyman, Alexander; Bier, Markus; Holm, Christian; Smiatek, Jens

    2018-05-01

    We study generic properties of poly(ionic liquid)s (PILs) via coarse-grained molecular dynamics simulations in bulk solution and under confinement. The influence of different side chain lengths on the spatial properties of the PIL systems and on the ionic transport mechanism is investigated in detail. Our results reveal the formation of apolar and polar nanodomains with increasing side chain length in good agreement with previous results for molecular ionic liquids. The ion transport numbers are unaffected by the occurrence of these domains, and the corresponding values highlight the potential role of PILs as single-ion conductors in electrochemical devices. In contrast to bulk behavior, a pronounced formation of ion conductivity channels in confined systems is initiated in close vicinity to the boundaries. We observe higher ion conductivities in these channels for increasing PIL side chain lengths in comparison with bulk values and provide an explanation for this effect. The appearance of these domains points to an improved application of PILs in modern polymer electrolyte batteries.

  1. Polyelectrolyte brushes in mixed ionic medium studied via intermolecular forces

    NASA Astrophysics Data System (ADS)

    Farina, Robert; Laugel, Nicolas; Pincus, Philip; Tirrell, Matthew

    2011-03-01

    The vast uses and applications of polyelectrolyte brushes make them an attractive field of research especially with the growing interest in responsive materials. Polymers which respond via changes in temperature, pH, and ionic strength are increasingly being used for applications in drug delivery, chemical gating, etc. When polyelectrolyte brushes are found in either nature (e.g., surfaces of cartilage and mammalian lung interiors) or commercially (e.g., skin care products, shampoo, and surfaces of medical devices) they are always surrounded by mixed ionic medium. This makes the study of these brushes in varying ionic environments extremely relevant for both current and future potential applications. The polyelectrolyte brushes in this work are diblock co-polymers of poly-styrene sulfonate (N=420) and poly-t-butyl styrene (N=20) which tethers to a hydrophobic surface allowing for a purely thermodynamic study of the polyelectrolyte chains. Intermolecular forces between two brushes are measured using the SFA. As multi-valent concentrations are increased, the brushes collapse internally and form strong adhesion between one another after contact (properties not seen in a purely mono-valent environment).

  2. Enhancing grain boundary ionic conductivity in mixed ionic–electronic conductors

    PubMed Central

    Lin, Ye; Fang, Shumin; Su, Dong; Brinkman, Kyle S; Chen, Fanglin

    2015-01-01

    Mixed ionic–electronic conductors are widely used in devices for energy conversion and storage. Grain boundaries in these materials have nanoscale spatial dimensions, which can generate substantial resistance to ionic transport due to dopant segregation. Here, we report the concept of targeted phase formation in a Ce0.8Gd0.2O2−δ–CoFe2O4 composite that serves to enhance the grain boundary ionic conductivity. Using transmission electron microscopy and spectroscopy approaches, we probe the grain boundary charge distribution and chemical environments altered by the phase reaction between the two constituents. The formation of an emergent phase successfully avoids segregation of the Gd dopant and depletion of oxygen vacancies at the Ce0.8Gd0.2O2−δ–Ce0.8Gd0.2O2−δ grain boundary. This results in superior grain boundary ionic conductivity as demonstrated by the enhanced oxygen permeation flux. This work illustrates the control of mesoscale level transport properties in mixed ionic–electronic conductor composites through processing induced modifications of the grain boundary defect distribution. PMID:25857355

  3. Enhancing grain boundary ionic conductivity in mixed ionic–electronic conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Ye; Fang, Shumin; Su, Dong

    Mixed ionic–electronic conductors are widely used in devices for energy conversion and storage. Grain boundaries in these materials have nanoscale spatial dimensions, which can generate substantial resistance to ionic transport due to dopant segregation. Here, we report the concept of targeted phase formation in a Ce 0.8Gd 0.2O 2₋δ–CoFe 2O 4 composite that serves to enhance the grain boundary ionic conductivity. Using transmission electron microscopy and spectroscopy approaches, we probe the grain boundary charge distribution and chemical environments altered by the phase reaction between the two constituents. The formation of an emergent phase successfully avoids segregation of the Gd dopantmore » and depletion of oxygen vacancies at the Ce 0.8Gd 0.2O 2₋δ–Ce 0.8Gd 0.2O 2₋δ grain boundary. This results in superior grain boundary ionic conductivity as demonstrated by the enhanced oxygen permeation flux. Lastly, this work illustrates the control of mesoscale level transport properties in mixed ionic–electronic conductor composites through processing induced modifications of the grain boundary defect distribution.« less

  4. Microfluidic-based Broadband Measurements of Fluid Permittivity and Permeability to 100 GHz

    NASA Astrophysics Data System (ADS)

    Little, Charles A. E.

    This dissertation concerns the development of unique microfluidic microwave devices and associated microwave calibrations to quantitatively extract the broadband permittivity and permeability of fluids between 100 kHz and 110 GHz. The devices presented here consist of SU-8- and PDMS-based microfluidic channels integrated lithographically with coplanar waveguides (CPWs), measured via an external vector network analyzer (VNA). By applying our hybrid set of microwave calibrations to the raw data we extract distributed circuit parameters, representative of the electromagnetic response of the microfluidic channel. We then correlate these parameters to the permittivity and permeability of the fluid within the channels. We are primarily focused on developing devices, calibrations, and analyses to characterize various chemical and biological systems. The small fluid volumes and overall scale of our devices lends the technique to point-of-care blood and cell analysis, as well as to the analysis of high-value chemicals. Broadband microwave microfluidics is sensitive to three primary categories of phenomena: Ionic, dipolar, and magnetic resonances. All three can occur in complex fluids such as blood, proteins and particle suspensions. In order to make quantitative measurements, we need to be able to model and separate all three types of responses. Here we first measure saline solutions (NaCl and water) as an ideal system to better understanding both the ionic and dipolar response. Specifically, we are targeting the electrical double-layer (EDL) response, an ionic effect, which dominates over the intrinsic fluid response at lower frequencies. We have found that the EDL response for saline obeys a strict Debye-type relaxation model, the frequency response of which is dependent solely on the conductivity of the solution. To develop a better understanding of the magnetic response, we first measure magnetic nanoparticles; showing it is possible to detect the magnetic resonances of magnetic nanoparticle in a fluid environment using the broad-band approach, and that the response matches cavity-based measurements. In addition, we demonstrate the complicated intermixing that occurs between magnetic and electrical responses in CPW-type measurements through both numerical modeling, and empirical measurements of impeded embedded permalloy devices.

  5. An Acoustic Charge Transport Imager for High Definition Television Applications: Reliability Modeling and Parametric Yield Prediction of GaAs Multiple Quantum Well Avalanche Photodiodes. Degree awarded Oct. 1997

    NASA Technical Reports Server (NTRS)

    Hunt, W. D.; Brennan, K. F.; Summers, C. J.; Yun, Ilgu

    1994-01-01

    Reliability modeling and parametric yield prediction of GaAs/AlGaAs multiple quantum well (MQW) avalanche photodiodes (APDs), which are of interest as an ultra-low noise image capture mechanism for high definition systems, have been investigated. First, the effect of various doping methods on the reliability of GaAs/AlGaAs multiple quantum well (MQW) avalanche photodiode (APD) structures fabricated by molecular beam epitaxy is investigated. Reliability is examined by accelerated life tests by monitoring dark current and breakdown voltage. Median device lifetime and the activation energy of the degradation mechanism are computed for undoped, doped-barrier, and doped-well APD structures. Lifetimes for each device structure are examined via a statistically designed experiment. Analysis of variance shows that dark-current is affected primarily by device diameter, temperature and stressing time, and breakdown voltage depends on the diameter, stressing time and APD type. It is concluded that the undoped APD has the highest reliability, followed by the doped well and doped barrier devices, respectively. To determine the source of the degradation mechanism for each device structure, failure analysis using the electron-beam induced current method is performed. This analysis reveals some degree of device degradation caused by ionic impurities in the passivation layer, and energy-dispersive spectrometry subsequently verified the presence of ionic sodium as the primary contaminant. However, since all device structures are similarly passivated, sodium contamination alone does not account for the observed variation between the differently doped APDs. This effect is explained by the dopant migration during stressing, which is verified by free carrier concentration measurements using the capacitance-voltage technique.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, Michael H., E-mail: m.h.palmer@ed.ac.uk; Ridley, Trevor, E-mail: t.ridley@ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@sns.it, E-mail: kipeters@wsu.edu; Hoffmann, Søren Vrønning, E-mail: t.ridley@ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@sns.it, E-mail: kipeters@wsu.edu

    New photoelectron, ultraviolet (UV), and vacuum UV (VUV) spectra have been obtained for bromobenzene by synchrotron study with higher sensitivity and resolution than previous work. This, together with use of ab initio calculations with both configuration interaction and time dependent density functional theoretical methods, has led to major advances in interpretation. The VUV spectrum has led to identification of a considerable number of Rydberg states for the first time. The Franck-Condon (FC) analyses including both hot and cold bands lead to identification of the vibrational structure of both ionic and electronically excited states including two Rydberg states. The UV onsetmore » has been interpreted in some detail, and an interpretation based on the superposition of FC and Herzberg-Teller contributions has been performed. In a similar way, the 6 eV absorption band which is poorly resolved is analysed in terms of the presence of two ππ* states of {sup 1}A{sub 1} (higher oscillator strength) and {sup 1}B{sub 2} (lower oscillator strength) symmetries, respectively. The detailed analysis of the vibrational structure of the 2{sup 2}B{sub 1} ionic state is particularly challenging, and the best interpretation is based on equation-of-motion-coupled cluster with singles and doubles computations. A number of equilibrium structures of the ionic and singlet excited states show that the molecular structure is less subject to variation than corresponding studies for iodobenzene. The equilibrium structures of the 3b{sub 1}3s and 6b{sub 2}3s (valence shell numbering) Rydberg states have been obtained and compared with the corresponding ionic limit structures.« less

  7. Corresponding-states behavior of an ionic model fluid with variable dispersion interactions

    NASA Astrophysics Data System (ADS)

    Weiss, Volker C.

    2016-06-01

    Guggenheim's corresponding-states approach for simple fluids leads to a remarkably universal representation of their thermophysical properties. For more complex fluids, such as polar or ionic ones, deviations from this type of behavior are to be expected, thereby supplying us with valuable information about the thermodynamic consequences of the interaction details in fluids. Here, the gradual transition of a simple fluid to an ionic one is studied by varying the relative strength of the dispersion interactions compared to the electrostatic interactions among the charged particles. In addition to the effects on the reduced surface tension that were reported earlier [F. Leroy and V. C. Weiss, J. Chem. Phys. 134, 094703 (2011)], we address the shape of the coexistence curve and focus on properties that are related to and derived from the vapor pressure. These quantities include the enthalpy and entropy of vaporization, the boiling point, and the critical compressibility factor Zc. For all of these properties, the crossover from simple to characteristically ionic fluid is seen once the dispersive attraction drops below 20%-40% of the electrostatic attraction (as measured for two particles at contact). Below this threshold, ionic fluids display characteristically low values of Zc as well as large Guggenheim and Guldberg ratios for the reduced enthalpy of vaporization and the reduced boiling point, respectively. The coexistence curves are wider and more skewed than those for simple fluids. The results for the ionic model fluid with variable dispersion interactions improve our understanding of the behavior of real ionic fluids, such as inorganic molten salts and room temperature ionic liquids, by gauging the importance of different types of interactions for thermodynamic properties.

  8. Effects of Ionic Dependence of DNA Persistence Length on the DNA Condensation at Room Temperature

    NASA Astrophysics Data System (ADS)

    Mao, Wei; Liu, Yan-Hui; Hu, Lin; Xu, Hou-Qiang

    2016-05-01

    DNA persistence length is a key parameter for quantitative interpretation of the conformational properties of DNA and related to the bending rigidity of DNA. A series of experiments pointed out that, in the DNA condensation process by multivalent cations, the condensed DNA takes elongated coil or compact globule states and the population of the compact globule states increases with an increase in ionic concentration. At the same time, single molecule experiments carried out in solution with multivalent cations (such as spermidine, spermine) indicated that DNA persistence length strongly depends on the ionic concentration. In order to revolve the effects of ionic concentration dependence of persistence length on DNA condensation, a model including the ionic concentration dependence of persistence length and strong correlation of multivalent cation on DNA is provided. The autocorrelation function of the tangent vectors is found as an effective way to detect the ionic concentration dependence of toroidal conformations. With an increase in ion concentration, the first periodic oscillation contained in the autocorrelation function shifts, the number of segment contained in the first periodic oscillation decreases gradually. According to the experiments, the average long-axis length is defined to estimate the ionic concentration dependence of condensation process further. The relation between long-axis length and ionic concentration matches the experimental results qualitatively. Supported by National Natural Science Foundation of China under Grant Nos. 11047022, 11204045, 11464004 and 31360215; The Research Foundation from Ministry of Education of China (212152), Guizhou Provincial Tracking Key Program of Social Development (SY20123089, SZ20113069); The General Financial Grant from the China Postdoctoral Science Foundation (2014M562341); The Research Foundation for Young University Teachers from Guizhou University (201311); The West Light Foundation (2015) and College Innovation Talent Team of Guizhou Province, (2014) 32

  9. Corresponding-states behavior of an ionic model fluid with variable dispersion interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, Volker C., E-mail: volker.weiss@bccms.uni-bremen.de

    2016-06-21

    Guggenheim’s corresponding-states approach for simple fluids leads to a remarkably universal representation of their thermophysical properties. For more complex fluids, such as polar or ionic ones, deviations from this type of behavior are to be expected, thereby supplying us with valuable information about the thermodynamic consequences of the interaction details in fluids. Here, the gradual transition of a simple fluid to an ionic one is studied by varying the relative strength of the dispersion interactions compared to the electrostatic interactions among the charged particles. In addition to the effects on the reduced surface tension that were reported earlier [F. Leroymore » and V. C. Weiss, J. Chem. Phys. 134, 094703 (2011)], we address the shape of the coexistence curve and focus on properties that are related to and derived from the vapor pressure. These quantities include the enthalpy and entropy of vaporization, the boiling point, and the critical compressibility factor Z{sub c}. For all of these properties, the crossover from simple to characteristically ionic fluid is seen once the dispersive attraction drops below 20%–40% of the electrostatic attraction (as measured for two particles at contact). Below this threshold, ionic fluids display characteristically low values of Z{sub c} as well as large Guggenheim and Guldberg ratios for the reduced enthalpy of vaporization and the reduced boiling point, respectively. The coexistence curves are wider and more skewed than those for simple fluids. The results for the ionic model fluid with variable dispersion interactions improve our understanding of the behavior of real ionic fluids, such as inorganic molten salts and room temperature ionic liquids, by gauging the importance of different types of interactions for thermodynamic properties.« less

  10. A simulation study of CS2 solutions in two related ionic liquids with dications and monocations

    NASA Astrophysics Data System (ADS)

    Lynden-Bell, R. M.; Quitevis, E. L.

    2018-05-01

    Atomistic simulations of solutions of CS2 in an ionic liquid, [C8(C1im)2 ] [NTf2]2, with a divalent cation and in the corresponding ionic liquid with a monovalent cation, [C4C1im][NTf2], were carried out. The low-frequency librational density of states of the CS2 was of particular interest in view of recent optical heterodyne-detected Raman-induced Kerr effect spectroscopy (OHD-RIKES). Compared to the monocation ionic liquid, the maximum shifts to higher frequencies in the dication ionic liquid under ambient conditions, but was found to be significantly pressure-dependent. CS2 molecules lie above and below the plane of the imidazolium rings and found to be close to the butyl tails of the monocation. The diffusion rates and embedding energies of solvent ions and CS2 in the two ionic liquids were measured.

  11. Ionic liquids and their solid-state analogues as materials for energy generation and storage

    NASA Astrophysics Data System (ADS)

    Macfarlane, Douglas R.; Forsyth, Maria; Howlett, Patrick C.; Kar, Mega; Passerini, Stefano; Pringle, Jennifer M.; Ohno, Hiroyuki; Watanabe, Masayoshi; Yan, Feng; Zheng, Wenjun; Zhang, Shiguo; Zhang, Jie

    2016-02-01

    Salts that are liquid at room temperature, now commonly called ionic liquids, have been known for more than 100 years; however, their unique properties have only come to light in the past two decades. In this Review, we examine recent work in which the properties of ionic liquids have enabled important advances to be made in sustainable energy generation and storage. We discuss the use of ionic liquids as media for synthesis of electromaterials, for example, in the preparation of doped carbons, conducting polymers and intercalation electrode materials. Focusing on their intrinsic ionic conductivity, we examine recent reports of ionic liquids used as electrolytes in emerging high-energy-density and low-cost batteries, including Li-ion, Li-O2, Li-S, Na-ion and Al-ion batteries. Similar developments in electrolyte applications in dye-sensitized solar cells, thermo-electrochemical cells, double-layer capacitors and CO2 reduction are also discussed.

  12. Memory and learning behaviors mimicked in nanogranular SiO2-based proton conductor gated oxide-based synaptic transistors

    NASA Astrophysics Data System (ADS)

    Wan, Chang Jin; Zhu, Li Qiang; Zhou, Ju Mei; Shi, Yi; Wan, Qing

    2013-10-01

    In neuroscience, signal processing, memory and learning function are established in the brain by modifying ionic fluxes in neurons and synapses. Emulation of memory and learning behaviors of biological systems by nanoscale ionic/electronic devices is highly desirable for building neuromorphic systems or even artificial neural networks. Here, novel artificial synapses based on junctionless oxide-based protonic/electronic hybrid transistors gated by nanogranular phosphorus-doped SiO2-based proton-conducting films are fabricated on glass substrates by a room-temperature process. Short-term memory (STM) and long-term memory (LTM) are mimicked by tuning the pulse gate voltage amplitude. The LTM process in such an artificial synapse is due to the proton-related interfacial electrochemical reaction. Our results are highly desirable for building future neuromorphic systems or even artificial networks via electronic elements.In neuroscience, signal processing, memory and learning function are established in the brain by modifying ionic fluxes in neurons and synapses. Emulation of memory and learning behaviors of biological systems by nanoscale ionic/electronic devices is highly desirable for building neuromorphic systems or even artificial neural networks. Here, novel artificial synapses based on junctionless oxide-based protonic/electronic hybrid transistors gated by nanogranular phosphorus-doped SiO2-based proton-conducting films are fabricated on glass substrates by a room-temperature process. Short-term memory (STM) and long-term memory (LTM) are mimicked by tuning the pulse gate voltage amplitude. The LTM process in such an artificial synapse is due to the proton-related interfacial electrochemical reaction. Our results are highly desirable for building future neuromorphic systems or even artificial networks via electronic elements. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr02987e

  13. Interface modulated currents in periodically proton exchanged Mg doped lithium niobate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neumayer, Sabine M.; Rodriguez, Brian J., E-mail: brian.rodriguez@ucd.ie, E-mail: gallo@kth.se; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4

    2016-03-21

    Conductivity in Mg doped lithium niobate (Mg:LN) plays a key role in the reduction of photorefraction and is therefore widely exploited in optical devices. However, charge transport through Mg:LN and across interfaces such as electrodes also yields potential electronic applications in devices with switchable conductivity states. Furthermore, the introduction of proton exchanged (PE) phases in Mg:LN enhances ionic conductivity, thus providing tailorability of conduction mechanisms and functionality dependent on sample composition. To facilitate the construction and design of such multifunctional electronic devices based on periodically PE Mg:LN or similar ferroelectric semiconductors, fundamental understanding of charge transport in these materials, asmore » well as the impact of internal and external interfaces, is essential. In order to gain insight into polarization and interface dependent conductivity due to band bending, UV illumination, and chemical reactivity, wedge shaped samples consisting of polar oriented Mg:LN and PE phases were investigated using conductive atomic force microscopy. In Mg:LN, three conductivity states (on/off/transient) were observed under UV illumination, controllable by the polarity of the sample and the externally applied electric field. Measurements of currents originating from electrochemical reactions at the metal electrode–PE phase interfaces demonstrate a memresistive and rectifying capability of the PE phase. Furthermore, internal interfaces such as domain walls and Mg:LN–PE phase boundaries were found to play a major role in the accumulation of charge carriers due to polarization gradients, which can lead to increased currents. The insight gained from these findings yield the potential for multifunctional applications such as switchable UV sensitive micro- and nanoelectronic devices and bistable memristors.« less

  14. Enhanced Mixed Electronic-Ionic Conductors through Cation Ordering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, Allan J.; Morgan, Dane; Grey, Clare

    2014-08-31

    The performance of many energy conversion and storage devices depend on the properties of mixed ionic-electronic conducting (miec) materials. Mixed or ambipolar conductors simultaneously transport ions and electrons and provide the critical interface between chemical and electrical energy in devices such as fuel cells, ion transport membranes, and batteries. Enhancements in storage capacity, reversibility, power density and device lifetime all require new materials and a better understanding of the fundamentals of ambipolar conductivity and surface reactivity.The high temperature properties of the ordered perovksites AA’B 2O 5+x, where A = rare earth ion, Y and B = Ba, Sr were studied.more » The work was motivated by the high oxygen transport and surface exchange rates observed for members of this class of mixed ionic and electronic conductors. A combined experimental and computational approach, including structural, electrochemical, and transport characterization and modeling was used. The approach attacks the problem simultaneously at global (e.g., neutron diffraction and impedance spectroscopy), local (e.g., pair distribution function, nuclear magnetic resonance) and molecular (ab initio thermokinetic modeling) length scales. The objectives of the work were to understand how the cation and associated anion order lead to exceptional ionic and electronic transport properties and surface reactivity in AA’B2O5+x perovskites. A variety of compounds were studied by X-ray and neutron diffraction, measurements of thermodynamics and transport and theoretically. These included PrBaCo 2O 5+x and NdBaCo 2O 5+x, PrBaCo 2-xFexO 6- δ (x = 0, 0.5, 1.0, 1.5 and 2) and LnBaCoFeO 6- δ (Ln = La, Pr, Nd, Sm, Eu and Gd), Sr 3YCo 4O 10.5, YBaMn 2O 5+x. A 0.5A’ 0.5BO 3 (where A=Y, Sc, La, Ce, Pr, Nd, Pm, Sm; A’= Sr, Ba; and B= Fe, Co, Mn, Ni), Ba 2In 2O 5, and La 1 xSr xCoO 3-δ /(La 1-ySry) 2CoO 4±δ interfaces.« less

  15. Multi-charge-state molecular dynamics and self-diffusion coefficient in the warm dense matter regime

    NASA Astrophysics Data System (ADS)

    Fu, Yongsheng; Hou, Yong; Kang, Dongdong; Gao, Cheng; Jin, Fengtao; Yuan, Jianmin

    2018-01-01

    We present a multi-ion molecular dynamics (MIMD) simulation and apply it to calculating the self-diffusion coefficients of ions with different charge-states in the warm dense matter (WDM) regime. First, the method is used for the self-consistent calculation of electron structures of different charge-state ions in the ion sphere, with the ion-sphere radii being determined by the plasma density and the ion charges. The ionic fraction is then obtained by solving the Saha equation, taking account of interactions among different charge-state ions in the system, and ion-ion pair potentials are computed using the modified Gordon-Kim method in the framework of temperature-dependent density functional theory on the basis of the electron structures. Finally, MIMD is used to calculate ionic self-diffusion coefficients from the velocity correlation function according to the Green-Kubo relation. A comparison with the results of the average-atom model shows that different statistical processes will influence the ionic diffusion coefficient in the WDM regime.

  16. Toward ambient temperature operation with all-solid-state lithium metal batteries with a sp3 boron-based solid single ion conducting polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfeng; Cai, Weiwei; Rohan, Rupesh; Pan, Meize; Liu, Yuan; Liu, Xupo; Li, Cuicui; Sun, Yubao; Cheng, Hansong

    2016-02-01

    The ionic conductivity decay problem of poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) when increase the lithium salt of the SPEs up to high concentration is here functionally overcome by the incorporation of a charge delocalized sp3 boron based single ion conducting polymer electrolyte (SIPE) with poly(ethylene oxide) to fabricate solid-state sp3 boron based SIPE membranes (S-BSMs). By characterizations, particularly differential scanning calorimeter (DSC) and ionic conductivity studies, the fabricated S-BSMs showed decreased melting points and increased ionic conductivity as steadily increase the content of sp3 boron based SIPE, which significantly improved the low temperature performance of the all-solid-state lithium batteries. The fabricated Li | S-BSMs | LiFePO4 cells exhibit highly electrochemical stability and excellent cycling at temperature below melting point of PEO, which has never been reported so far for SIPEs based all-solid-state lithium batteries.

  17. High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes

    NASA Astrophysics Data System (ADS)

    Kim, Byungwoo; Chung, Haegeun; Kim, Woong

    2012-04-01

    We demonstrate the high performance of supercapacitors fabricated with vertically aligned carbon nanotubes and nonaqueous electrolytes such as ionic liquids and conventional organic electrolytes. Specific capacitance, maximum power and energy density of the supercapacitor measured in ionic liquid were ˜75 F g-1, ˜987 kW kg-1 and ˜27 W h kg-1, respectively. The high power performance was consistently indicated by a fast relaxation time constant of 0.2 s. In addition, electrochemical oxidation of the carbon nanotubes improved the specific capacitance (˜158 F g-1) and energy density (˜53 W h kg-1). Both high power and energy density could be attributed to the fast ion transport realized by the alignment of carbon nanotubes and the wide operational voltage defined by the ionic liquid. The demonstrated carbon-nanotube- and nonaqueous-electrolyte-based supercapacitors show great potential for the development of high-performance energy storage devices.

  18. The effects of non-ionic polymeric surfactants on the cleaning of biofouled hydrogel materials.

    PubMed

    Guan, Allan; Li, Zhenyu; Phillips, K Scott

    2015-01-01

    Block co-polymer surfactants have been used for cleaning hydrogel medical devices that contact the body (e.g., contact lenses) because of their biocompatibility. This work examined the relationship between concentration and detergency of two non-ionic polymeric surfactants (Pluronic F127 and Triton X-100) for cleaning protein soil, with anionic surfactants (sodium dodecyl sulfate and sodium laureth sulfate) as positive controls. Surface plasmon resonance was used to quantify removal of simulated tear soil from self-assembled monolayer surfaces, and a microplate format was used to study the removal of fluorescently labeled soil proteins from contact lenses. While detergency increased as a function of concentration for anionic surfactants, it decreased with concentration for the two polymeric surfactants. The fact that the protein detergency of some non-ionic polymeric surfactants did not increase with concentration above the critical micelle concentration could have implications for optimizing the tradeoff between detergency and biocompatibility.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Shinbuhm; Zhang, Wenrui; Khatkhatay, Fauzia

    Fast ion transport channels at interfaces in thin films have attracted great attention due to a range of potential applications for energy materials and devices, for, solid oxide fuel cells, sensors, and memories. Here, it is shown that in vertical nanocomposite heteroepitaxial films of SrZrO 3–RE 2O 3 (RE = Sm, Eu, Gd, Dy, and Er) the ionic conductivity of the composite can be tuned and strongly enhanced using embedded, stiff, and vertical nanopillars of RE 2O 3. With increasing lattice constant of RE 2O 3 from Er 2O 3 to Sm 2O 3, it is found that the tensilemore » strain in the SrZrO 3 increases proportionately, and the ionic conductivity of the composite increases accordingly, by an order of magnitude. Lastly, the results here conclusively show, for the first time, that strain in films can be effectively used to tune the ionic conductivity of the materials.« less

  20. High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes.

    PubMed

    Kim, Byungwoo; Chung, Haegeun; Kim, Woong

    2012-04-20

    We demonstrate the high performance of supercapacitors fabricated with vertically aligned carbon nanotubes and nonaqueous electrolytes such as ionic liquids and conventional organic electrolytes. Specific capacitance, maximum power and energy density of the supercapacitor measured in ionic liquid were ~75 F g(-1), ~987 kW kg(-1) and ~27 W h kg(-1), respectively. The high power performance was consistently indicated by a fast relaxation time constant of 0.2 s. In addition, electrochemical oxidation of the carbon nanotubes improved the specific capacitance (~158 F g(-1)) and energy density (~53 W h kg(-1)). Both high power and energy density could be attributed to the fast ion transport realized by the alignment of carbon nanotubes and the wide operational voltage defined by the ionic liquid. The demonstrated carbon-nanotube- and nonaqueous-electrolyte-based supercapacitors show great potential for the development of high-performance energy storage devices. © 2012 IOP Publishing Ltd

  1. Focus tunable device actuator based on ionic polymer metal composite

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Wei; Su, Guo-Dung J.

    2015-09-01

    IPMC (Ionic Polymer Metallic Composite) is a kind of electroactive polymer (EAP) which is used as an actuator because of its low driving voltage and small size. The mechanism of IPMC actuator is due to the ionic diffusion when the voltage gradient is applied. In this paper, the complex IPMC fabrication such as Ag-IPMC be further developed in this paper. The comparison of response time and tip bending displacement of Pt-IPMC and Ag-IPMC will also be presented. We also use the optimized IPMC as the lens actuator integrated with curvilinear microlens array, and use the 3D printer to make a simple module and spring stable system. We also used modeling software, ANSYS Workbench, to confirm the effect of spring system. Finally, we successfully drive the lens system in 200μm stroke under 2.5V driving voltage within 1 seconds, and the resonant frequency is approximately 500 Hz.

  2. Integration of solid-state nanopores in a 0.5 μm CMOS foundry process.

    PubMed

    Uddin, A; Yemenicioglu, S; Chen, C-H; Corigliano, E; Milaninia, K; Theogarajan, L

    2013-04-19

    High-bandwidth and low-noise nanopore sensor and detection electronics are crucial in achieving single-DNA-base resolution. A potential way to accomplish this goal is to integrate solid-state nanopores within a CMOS platform, in close proximity to the biasing electrodes and custom-designed amplifier electronics. Here we report the integration of solid-state nanopore devices in a commercial complementary metal-oxide-semiconductor (CMOS) potentiostat chip implemented in On-Semiconductor's 0.5 μm technology. Nanopore membranes incorporating electrodes are fabricated by post-CMOS micromachining utilizing the n+ polysilicon/SiO2/n+ polysilicon capacitor structure available in the aforementioned process. Nanopores are created in the CMOS process by drilling in a transmission electron microscope and shrinking by atomic layer deposition. We also describe a batch fabrication method to process a large of number of electrode-embedded nanopores with sub-10 nm diameter across CMOS-compatible wafers by electron beam lithography and atomic layer deposition. The CMOS-compatibility of our fabrication process is verified by testing the electrical functionality of on-chip circuitry. We observe high current leakage with the CMOS nanopore devices due to the ionic diffusion through the SiO2 membrane. To prevent this leakage, we coat the membrane with Al2O3, which acts as an efficient diffusion barrier against alkali ions. The resulting nanopore devices also exhibit higher robustness and lower 1/f noise as compared to SiO2 and SiNx. Furthermore, we propose a theoretical model for our low-capacitance CMOS nanopore devices, showing good agreement with the experimental value. In addition, experiments and theoretical models of translocation studies are presented using 48.5 kbp λ-DNA in order to prove the functionality of on-chip pores coated with Al2O3.

  3. Light emission from organic single crystals operated by electrolyte doping

    NASA Astrophysics Data System (ADS)

    Matsuki, Keiichiro; Sakanoue, Tomo; Yomogida, Yohei; Hotta, Shu; Takenobu, Taishi

    2018-03-01

    Light-emitting devices based on electrolytes, such as light-emitting electrochemical cells (LECs) and electric double-layer transistors (EDLTs), are solution-processable devices with a very simple structure. Therefore, it is necessary to apply this device structure into highly fluorescent organic materials for future printed applications. However, owing to compatibility problems between electrolytes and organic crystals, electrolyte-based single-crystal light-emitting devices have not yet been demonstrated. Here, we report on light-emitting devices based on organic single crystals and electrolytes. As the fluorescent materials, α,ω-bis(biphenylyl)terthiophene (BP3T) and 5,6,11,12-tetraphenylnaphthacene (rubrene) single crystals were selected. Using ionic liquids as electrolytes, we observed clear light emission from BP3T LECs and rubrene EDLTs.

  4. Testing Fundamental Properties of Ionic Liquids for Colloid Microthruster Applications

    NASA Technical Reports Server (NTRS)

    Anderson, John R.; Plett, Gary; Anderson, Mark; Ziemer, John

    2006-01-01

    NASA's New Millennium Program is scheduled to test a Disturbance Reduction System (DRS) on Space Technology 7 (ST7) as part of the European Space Agency's (ESA's) LISA Pathfinder Mission in late 2009. Colloid Micronewton Thrusters (CMNTs) will be used to counteract forces, mainly solar photon pressure, that could disturb gravitational reference sensors as part of the DRS. The micronewton thrusters use an ionic liquid, a room temperature molten salt, as propellant. The ionic liquid has a number of unusual properties that have a direct impact on thruster design. One of the most important issues is bubble formation before and during operation, especially during rapid pressure transitions from atmospheric to vacuum conditions. Bubbles have been observed in the feed system causing variations in propellant flow rate that can adversely affect thruster control. Bubbles in the feed system can also increase the likelihood that propellant will spray onto surfaces that can eventually lead to shorting high voltage electrodes. Two approaches, reducing the probability of bubble formation and removing bubbles with a new bubble eliminator device in the flow system, were investigated at Busek Co., Inc. and the Jet Propulsion Laboratory (JPL) to determine the effectiveness of both approaches. Results show that bubble formation is mainly caused by operation at low pressure and volatile contaminants in the propellant coming out of solution. A specification for the maximum tolerable level of contamination has been developed, and procedures for providing system cleanliness have been tested and implemented. The bubble eliminator device has also been tested successfully and has been implemented in recent thruster designs at Busek. This paper focuses on the propellant testing work at JPL, including testing of a breadboard level bubble eliminator device.

  5. Effect of Ionic Strength and Surface Charge Density on the Kinetics of Cellulose Nanocrystal Thin Film Swelling.

    PubMed

    Reid, Michael S; Kedzior, Stephanie A; Villalobos, Marco; Cranston, Emily D

    2017-08-01

    This work explores cellulose nanocrystal (CNC) thin films (<50 nm) and particle-particle interactions by investigating film swelling in aqueous solutions with varying ionic strength (1-100 mM). CNC film hydration was monitored in situ via surface plasmon resonance, and the kinetics of liquid uptake were quantified. The contribution of electrostatic double-layer forces to film swelling was elucidated by using CNCs with different surface charges (anionic sulfate half ester groups, high and low surface charge density, and cationic trimethylammonium groups). Total water uptake in the thin films was found to be independent of ionic strength and surface chemistry, suggesting that in the aggregated state van der Waals forces dominate over double-layer forces to hold the films together. However, the rate of swelling varied significantly. The water uptake followed Fickian behavior, and the measured diffusion constants decreased with the ionic strength gradient between the film and the solution. This work highlights that nanoparticle interactions and dispersion are highly dependent on the state of particle aggregation and that the rate of water uptake in aggregates and thin films can be tailored based on surface chemistry and solution ionic strength.

  6. Switchable silver mirrors with long memory effects.

    PubMed

    Park, Chihyun; Seo, Seogjae; Shin, Haijin; Sarwade, Bhimrao D; Na, Jongbeom; Kim, Eunkyoung

    2015-01-01

    An electrochemically stable and bistable switchable mirror was achieved for the first time by introducing (1) a thiol-modified indium tin oxide (ITO) electrode for the stabilization of the metallic film and (2) ionic liquids as an anion-blocking layer, to achieve a long memory effect. The growth of the metallic film was denser and faster at the thiol-modified ITO electrode than at a bare ITO electrode. The electrochemical stability of the metallic film on the thiol-modified ITO was enhanced, maintaining the metallic state without rupture. In the voltage-off state, the metal film maintained bistability for a long period (>2 h) when ionic liquids were introduced as electrolytes for the switchable mirror. The electrical double layer in the highly viscous ionic liquid electrolyte seemed to effectively form a barrier to the bromide ions, to protect the metal thin film from them when in the voltage-off state.

  7. Ionic charge state measurements during He(+)-rich solar particle events

    NASA Technical Reports Server (NTRS)

    Hovestadt, D.; Klecker, B.; Scholer, M.; Gloeckler, G.

    1984-01-01

    Ionic charge state measurements of carbon, oxygen, and iron in He(+)-rich energetic particle events are presented. The data have been obtained with the Max-Planck-Institut/University of Maryland sensor system on the ISEE 3 spacecraft. The ionic charge states cannot be explained in terms of a model in which the coronal temperature determines a charge equilibrium which is subsequently frozen-in nor in terms of charge exchange during transition through coronal matter after acceleration. It is concluded that the acceleration and probably also the injection process is biased against particles with high mass-to-charge ratios. The plasma injected into the acceleration process must consist of material of cold (not greater than 8.5 x 10 to the 4th K) as well as hot (2.5 x 10 to the 6th K) origin. The cold material must be more abundant than the hot material.

  8. Intrinsic electronic defects and multiple-atom processes in the oxidic semiconductor Ga2O3

    NASA Astrophysics Data System (ADS)

    Schmeißer, Dieter; Henkel, Karsten

    2018-04-01

    We report on the electronic structure of gallium oxide (Ga2O3) single crystals as studied by resonant photoelectron spectroscopy (resPES). We identify intrinsic electronic defects that are formed by mixed-atomic valence states. We differentiate three coexisting defect states that differ in their electronic correlation energy and their spatial localization lengths. Their relative abundance is described by a fractional ionicity with covalent and ionic bonding contributions. For Ga2O3, our analyses of the resPES data enable us to derive two main aspects: first, experimental access is given to determine the ionicity based on the original concepts of Pauling and Phillips. Second, we report on multi-atomic energy loss processes in the Ga2p core level and X-ray absorption data. The two experimental findings can be explained consistently in the same context of mixed-atomic valence states and intrinsic electronic defects.

  9. Effect of nearest-neighbor ions on excited ionic states, emission spectra, and line profiles in hot and dense plasmas

    NASA Technical Reports Server (NTRS)

    Salzmann, D.; Stein, J.; Goldberg, I. B.; Pratt, R. H.

    1991-01-01

    The effect of the cylindrical symmetry imposed by the nearest-neighbor ions on the ionic levels and the emission spectra of a Li-like Kr ion immersed in hot and dense plasmas is investigated using the Stein et al. (1989) two-centered model extended to include computations of the line profiles, shifts, and widths, as well as the energy-level mixing and the forbidden transition probabilities. It is shown that the cylindrical symmetry mixes states with different orbital quantum numbers l, particularly for highly excited states, and, thereby, gives rise to forbidden transitions in the emission spectrum. Results are obtained for the variation of the ionic level shifts and mixing coefficients with the distance to the nearest neighbor. Also obtained are representative computed spectra that show the density effects on the spectral line profiles, shifts, and widths, and the forbidden components in the spectrum.

  10. A Quaternary Sodium Superionic Conductor - Na 10.8Sn 1.9PS 11.8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zhaoxin; Shang, Shun -Li; Gao, Yue

    Sulfide-based Na-ion conductors are promising candidates as solid-state electrolytes (SSEs) for fabrication of solid-state Na-ion batteries (NIBs) because of their high ionic conductivities and low grain boundary resistance. Currently, most of the sulfide-based Na-ion conductors with high conductivities are focused on Na 3PS 4 phases and its derivatives. It is desirable to develop Na-ion conductors with new composition and crystal structure to achieve superior ionic conductivities. Here we report a new quaternary Na-ion conductor, Na 10.8Sn 1.9PS 11.8, exhibiting a high ionic conductivity of 0.67 mS cm –1 at 25 °C. This high ionic conductivity originates from the presence ofmore » a large number of intrinsic Na-vacancies and three-dimensional Na-ion conduction pathways, which has been confirmed by single-crystal X-ray diffraction and first-principles calculations. In conclusion, the Na 10.8Sn 1.9PS 11.8 phase is further evaluated as an electrolyte in a Na-Sn alloy/TiS 2 battery, demonstrating its potential application in all-solid-state NIBs.« less

  11. A Quaternary Sodium Superionic Conductor - Na 10.8Sn 1.9PS 11.8

    DOE PAGES

    Yu, Zhaoxin; Shang, Shun -Li; Gao, Yue; ...

    2018-01-31

    Sulfide-based Na-ion conductors are promising candidates as solid-state electrolytes (SSEs) for fabrication of solid-state Na-ion batteries (NIBs) because of their high ionic conductivities and low grain boundary resistance. Currently, most of the sulfide-based Na-ion conductors with high conductivities are focused on Na 3PS 4 phases and its derivatives. It is desirable to develop Na-ion conductors with new composition and crystal structure to achieve superior ionic conductivities. Here we report a new quaternary Na-ion conductor, Na 10.8Sn 1.9PS 11.8, exhibiting a high ionic conductivity of 0.67 mS cm –1 at 25 °C. This high ionic conductivity originates from the presence ofmore » a large number of intrinsic Na-vacancies and three-dimensional Na-ion conduction pathways, which has been confirmed by single-crystal X-ray diffraction and first-principles calculations. In conclusion, the Na 10.8Sn 1.9PS 11.8 phase is further evaluated as an electrolyte in a Na-Sn alloy/TiS 2 battery, demonstrating its potential application in all-solid-state NIBs.« less

  12. Microwave-assisted liquid-liquid microextraction based on solidification of ionic liquid for the determination of sulfonamides in environmental water samples.

    PubMed

    Song, Ying; Wu, Lijie; Lu, Chunmei; Li, Na; Hu, Mingzhu; Wang, Ziming

    2014-12-01

    An easy, quick, and green method, microwave-assisted liquid-liquid microextraction based on solidification of ionic liquid, was first developed and applied to the extraction of sulfonamides in environmental water samples. 1-Ethy-3-methylimidazolium hexafluorophosphate, which is a solid-state ionic liquid at room temperature, was used as extraction solvent in the present method. After microwave irradiation for 90 s, the solid-state ionic liquid was melted into liquid phase and used to finish the extraction of the analytes. The ionic liquid and sample matrix can be separated by freezing and centrifuging. Several experimental parameters, including amount of extraction solvent, microwave power and irradiation time, pH of sample solution, and ionic strength, were investigated and optimized. Under the optimum experimental conditions, good linearity was observed in the range of 2.00-400.00 μg/L with the correlation coefficients ranging from 0.9995 to 0.9999. The limits of detection for sulfathiazole, sulfachlorpyridazine, sulfamethoxazole, and sulfaphenazole were 0.39, 0.33, 0.62, and 0.85 μg/L, respectively. When the present method was applied to the analysis of environmental water samples, the recoveries of the analytes ranged from 75.09 to 115.78% and relative standard deviations were lower than 11.89%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. CO2 Responsive Imidazolium-Type Poly(Ionic Liquid) Gels.

    PubMed

    Zhang, Jing; Xu, Dan; Guo, Jiangna; Sun, Zhe; Qian, Wenjing; Zhang, Ye; Yan, Feng

    2016-07-01

    Poly(ionic liquid) (PIL) gels with CO2 stimulus responsiveness have been synthesized through the copolymerization of an imidazolium-type ionic liquid monomer with 2-(dimethyl amino) ethyl methacrylate. Upon bubbling with CO2 gas, the prepared PIL solution is converted to a transparent and stable gel, which can be turned back to the initial solution state after N2 bubbling. The reversible sol-gel phase transition behavior is proved by the reversible values of viscosity and ionic conductivity. The possible mechanism for such a reversible sol-gel phase transition is demonstrated by NMR, conductivity, and rheological measurements. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Aquagel electrode separator for use in batteries and supercapacitors

    DOEpatents

    Mayer, Steven T.; Kaschmitter, James L.; Pekala, Richard W.

    1995-01-01

    An electrode separator for electrochemical energy storage devices, such as a high energy density capacitor incorporating a variety of carbon foam electrodes. The separator is derived from an aquagel of resorcinol-formaldehyde and related polymers and containing ionically conducting electrolyte in the pores thereof.

  15. Surface-bonded ionic liquid stationary phases in high-performance liquid chromatography--a review.

    PubMed

    Pino, Verónica; Afonso, Ana M

    2012-02-10

    Ionic liquids (ILs) are a class of ionic, nonmolecular solvents which remain in liquid state at temperatures below 100°C. ILs possess a variety of properties including low to negligible vapor pressure, high thermal stability, miscibility with water or a variety of organic solvents, and variable viscosity. IL-modified silica as novel high-performance liquid chromatography (HPLC) stationary phases have attracted considerable attention for their differential behavior and low free-silanol activity. Indeed, around 21 surface-confined ionic liquids (SCIL) stationary phases have been developed in the last six years. Their chromatographic behavior has been studied, and, despite the presence of a positive charge on the stationary phase, they showed considerable promise for the separation of neutral solutes (not only basic analytes), when operated in reversed phase mode. This aspect points to the potential for truly multimodal stationary phases. This review attempts to summarize the state-of-the-art about SCIL phases including their preparation, chromatographic behavior, and analytical performance. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Suspended sub-50 nm vanadium dioxide membrane transistors: fabrication and ionic liquid gating studies

    NASA Astrophysics Data System (ADS)

    Sim, Jai S.; Zhou, You; Ramanathan, Shriram

    2012-10-01

    We demonstrate a robust lithographic patterning method to fabricate self-supported sub-50 nm VO2 membranes that undergo a phase transition. Utilizing such self-supported membranes, we directly observed a shift in the metal-insulator transition temperature arising from stress relaxation and consistent opening of the hysteresis. Electric double layer transistors were then fabricated with the membranes and compared to thin film devices. The ionic liquid allowed reversible modulation of channel resistance and distinguishing bulk processes from the surface effects. From the shift in the metal-insulator transition temperature, the carrier density doped through electrolyte gating is estimated to be 1 × 1020 cm-3. Hydrogen annealing studies showed little difference in resistivity between the film and the membrane indicating rapid diffusion of hydrogen in the vanadium oxide rutile lattice consistent with previous observations. The ability to fabricate electrically-wired, suspended VO2 ultra-thin membranes creates new opportunities to study mesoscopic size effects on phase transitions and may also be of interest in sensor devices.

  17. Water-evaporation-induced electricity with nanostructured carbon materials.

    PubMed

    Xue, Guobin; Xu, Ying; Ding, Tianpeng; Li, Jia; Yin, Jun; Fei, Wenwen; Cao, Yuanzhi; Yu, Jin; Yuan, Longyan; Gong, Li; Chen, Jian; Deng, Shaozhi; Zhou, Jun; Guo, Wanlin

    2017-05-01

    Water evaporation is a ubiquitous natural process that harvests thermal energy from the ambient environment. It has previously been utilized in a number of applications including the synthesis of nanostructures and the creation of energy-harvesting devices. Here, we show that water evaporation from the surface of a variety of nanostructured carbon materials can be used to generate electricity. We find that evaporation from centimetre-sized carbon black sheets can reliably generate sustained voltages of up to 1 V under ambient conditions. The interaction between the water molecules and the carbon layers and moreover evaporation-induced water flow within the porous carbon sheets are thought to be key to the voltage generation. This approach to electricity generation is related to the traditional streaming potential, which relies on driving ionic solutions through narrow gaps, and the recently reported method of moving ionic solutions across graphene surfaces, but as it exploits the natural process of evaporation and uses cheap carbon black it could offer advantages in the development of practical devices.

  18. Refinement of current monitoring methodology for electroosmotic flow assessment under low ionic strength conditions

    PubMed Central

    Saucedo-Espinosa, Mario A.; Lapizco-Encinas, Blanca H.

    2016-01-01

    Current monitoring is a well-established technique for the characterization of electroosmotic (EO) flow in microfluidic devices. This method relies on monitoring the time response of the electric current when a test buffer solution is displaced by an auxiliary solution using EO flow. In this scheme, each solution has a different ionic concentration (and electric conductivity). The difference in the ionic concentration of the two solutions defines the dynamic time response of the electric current and, hence, the current signal to be measured: larger concentration differences result in larger measurable signals. A small concentration difference is needed, however, to avoid dispersion at the interface between the two solutions, which can result in undesired pressure-driven flow that conflicts with the EO flow. Additional challenges arise as the conductivity of the test solution decreases, leading to a reduced electric current signal that may be masked by noise during the measuring process, making for a difficult estimation of an accurate EO mobility. This contribution presents a new scheme for current monitoring that employs multiple channels arranged in parallel, producing an increase in the signal-to-noise ratio of the electric current to be measured and increasing the estimation accuracy. The use of this parallel approach is particularly useful in the estimation of the EO mobility in systems where low conductivity mediums are required, such as insulator based dielectrophoresis devices. PMID:27375813

  19. Photo-switching of a non-ionic azobenzene amphiphile in Langmuir and Langmuir-Blodgett films.

    PubMed

    Piosik, Emilia; Kotkowiak, Michał; Korbecka, Izabela; Galewski, Zbigniew; Martyński, Tomasz

    2017-08-30

    The concept of programmable and reconfigurable soft matter has emerged in science in the last few decades and can be realized by photoisomerization of azobenzene derivatives. This possibility results in great application potential of these compounds in optical storage devices, molecular junctions of electronic devices, command layers of liquid crystal displays or holographic gratings. In this paper, we present the results of a study on the organization and isomerization of the non-ionic and amphiphilic methyl 4-[(E)-2-[4-(nonyloxy)phenyl]diazen-1-yl]benzoate (LCA) in a 2D layer architecture of Langmuir and Langmuir-Blodgett (LB) films supported by spectroscopic studies on LCA chloroform solutions. Our investigation has shown a significantly different molecular organization of LCA depending on the ratio of trans and cis isomers in the monolayers. Taking advantage of a relatively low packing density and aggregation strength in the cis-LCA monolayer, we demonstrated the reversible isomerization in the LB film initially formed of LCA molecules in the cis form, while in the trans-LCA monolayer this effect was not observed. Our approach allows the formation of a switchable monolayer made of the amphiphilic LCA showing liquid crystalline properties without introducing an ionic group into the molecule structure, mixing with another compound or changing the subphase pH to provide free space for the molecules' isomerization.

  20. Enhanced super-hydrophobic and switching behavior of ZnO nanostructured surfaces prepared by simple solution--immersion successive ionic layer adsorption and reaction process.

    PubMed

    Suresh Kumar, P; Sundaramurthy, J; Mangalaraj, D; Nataraj, D; Rajarathnam, D; Srinivasan, M P

    2011-11-01

    A simple and cost-effective successive ionic layer adsorption and reaction (SILAR) method was adopted to fabricate hydrophobic ZnO nanostructured surfaces on transparent indium-tin oxide (ITO), glass and polyethylene terephthalate (PET) substrates. ZnO films deposited on different substrates show hierarchical structures like spindle, flower and spherical shape with diameters ranging from 30 to 300 nm. The photo-induced switching behaviors of ZnO film surfaces between hydrophobic and hydrophilic states were examined by water contact angle and X-ray photoelectron spectroscopy (XPS) analysis. ZnO nanostructured films had contact angles of ~140° and 160°±2 on glass and PET substrates, respectively, exhibiting hydrophobic behavior without any surface modification or treatment. Upon exposure to ultraviolet (UV) illumination, the films showed hydrophilic behavior (contact angle: 15°±2), which upon low thermal stimuli revert back to its original hydrophobic nature. Such reversible and repeatable switching behaviors were observed upon cyclical exposure to ultraviolet radiation. These biomimetic ZnO surfaces exhibit good anti-reflective properties with lower reflectance of 9% for PET substrates. Thus, the present work is significant in terms of its potential application in switching devices, solar coatings and self-cleaning smart windows. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Thermal Conductivity Changes Due to Degradation of Cathode Film Subjected to Charge-Discharge Cycles in a Li Ion Battery

    NASA Astrophysics Data System (ADS)

    Jagannadham, K.

    2018-05-01

    A battery device with graphene platelets as anode, lithium nickel manganese oxide as cathode, and solid-state electrolyte consisting of layers of lithium phosphorous oxynitride and lithium lanthanum titanate is assembled on the stainless steel substrate. The battery in a polymer enclosure is subjected to several electrical tests consisting of charge and discharge cycles at different current and voltage levels. Thermal conductivity of the cathode layer is determined at the end of charge-discharge cycles using transient thermoreflectance. The microstructure and composition of the cathode layer and the interface between the cathode, the anode, and the electrolyte are characterized using scanning electron microscopy and elemental mapping. The decrease in the thermal conductivity of the same cathode observed after each set of electrical test cycles is correlated with the volume changes and formation of low ionic and thermal conductivity lithium oxide and lithium oxychloride at the interface and along porous regions. The interface between the metal current collector and the cathode is also found to be responsible for the increase in thermal resistance. The results indicate that changes in the thermal conductivity of the electrodes provide a measure of the resistance to heat transfer and degradation of ionic transport in the cathode accompanying the charge-discharge cycles in the batteries.

  2. Ultrahigh Ionic Conduction in Water-Stable Close-Packed Metal-Carbonate Frameworks.

    PubMed

    Manna, Biplab; Desai, Aamod V; Illathvalappil, Rajith; Gupta, Kriti; Sen, Arunabha; Kurungot, Sreekumar; Ghosh, Sujit K

    2017-08-21

    Utilization of the robust metal-carbonate backbone in a series of water-stable, anionic frameworks has been harnessed for the function of highly efficient solid-state ion-conduction. The compact organization of hydrophilic guest ions facilitates water-assisted ion-conduction in all the compounds. The dense packing of the compounds imparts high ion-conducting ability and minimizes the possibility of fuel crossover, making this approach promising for design and development of compounds as potential components of energy devices. This work presents the first report of evaluating ion-conduction in a purely metal-carbonate framework, which exhibits high ion-conductivity on the order of 10 -2 S cm -1 along with very low activation energy, which is comparable to highly conducting well-known crystalline coordination polymers or commercialized organic polymers like Nafion.

  3. Performance of solid state supercapacitors based on polymer electrolytes containing different ionic liquids

    NASA Astrophysics Data System (ADS)

    Tiruye, Girum Ayalneh; Muñoz-Torrero, David; Palma, Jesus; Anderson, Marc; Marcilla, Rebeca

    2016-09-01

    Four Ionic Liquid based Polymer Electrolytes (IL-b-PE) were prepared by blending a Polymeric Ionic Liquid, Poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (PILTFSI), with four different ionic liquids: 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) (IL-b-PE1), 1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide (PYR14FSI) (IL-b-PE2), 1-(2-hydroxy ethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (HEMimTFSI) (IL-b-PE3), and 1-Butyl-1-methylpyrrolidinium dicyanamide, (PYR14DCA) (IL-b-PE4). Physicochemical properties of IL-b-PE such as ionic conductivity, thermal and electrochemical stability were found to be dependent on the IL properties. For instance, ionic conductivity was significantly higher for IL-b-PE2 and IL-b-PE4 containing IL with small size anions (FSI and DCA) than IL-b-PE1 and IL-b-PE3 bearing IL with bigger anion (TFSI). On the other hand, wider electrochemical stability window (ESW) was found for IL-b-PE1 and IL-b-PE2 having ILs with electrochemically stable pyrrolidinium cation and FSI and TFSI anions. Solid state Supercapacitors (SCs) were assembled with activated carbon electrodes and their electrochemical performance was correlated with the polymer electrolyte properties. Best performance was obtained with SC having IL-b-PE2 that exhibited a good compromise between ionic conductivity and electrochemical window. Specific capacitance (Cam), real energy (Ereal) & real power densities (Preal) as high as 150 F g-1, 36 Wh kg-1 & 1170 W kg-1 were found at operating voltage of 3.5 V.

  4. Characterization of Thallium Bromide (TlBr) for Room Temperature Radiation Detectors

    NASA Astrophysics Data System (ADS)

    Smith, Holland McTyeire

    Thallium bromide (TlBr) has emerged as a remarkably well-suited material for room temperature radiation detection. The unique combination of high-Z elements, high density, suitable band gap, and excellent electrical transport properties present in TlBr have brought device performance up to par with CdZnTe (CZT), the current market-leading room temperature radiation detector material. TlBr research is at an earlier stage than that of CZT, giving hope that the material will see even further improvement in electronic properties. Improving a resistive semiconductor material requires knowledge of deep levels present in the material and the effects of these deep levels on transport properties. Very few deep level studies have been conducted on TlBr, and none with the depth required to generate useful growth suggestions. In this dissertation, deep levels in nominally undoped and doped TlBr samples are studied with electrical and optical methods. Photo-Induced Conductivity Transient Spectroscopy (PICTS) is used to discover many deep levels in TlBr electrically. These levels are compared to sub-band gap optical transitions originating from defects observed in emission spectra. The results of this research indicate that the origin of resistivity in TlBr is likely due to deep level defects pinning the Fermi level at least ˜0.7 eV from either the conduction or valence band edge. The effect of dopants and deep levels on transport in TlBr is assessed with microwave photoconductivity decay analysis. It is found that Pb-, Se-, and O-doping decreases carrier lifetime in TlBr, whereas C-doping does not. TlBr exhibits weak ionic conductivity at room temperature, which both negatively affects the leakage current of detectors and leads to device degradation over time. Researchers are actively looking for ways to reduce or eliminate the ionic conductivity, but are faced with an intriguing challenge of materials engineering: is it possible to mitigate the ionic conduction of TlBr without harming the excellent electronic transport properties? Doping TlBr in order to control the ionic conductivity has been proposed and shown to be effective in reducing dark ionic current, but the electronic effects of the dopants has not been previously studied in detail. In this dissertation, the electronic effects of dopants introduced for ionic reasons are evaluated.

  5. Modulation of Molecular Flux Using a Graphene Nanopore Capacitor.

    PubMed

    Shankla, Manish; Aksimentiev, Aleksei

    2017-04-20

    Modulation of ionic current flowing through nanoscale pores is one of the fundamental biological processes. Inspired by nature, nanopores in synthetic solid-state membranes are being developed to enable rapid analysis of biological macromolecules and to serve as elements of nanofludic circuits. Here, we theoretically investigate ion and water transport through a graphene-insulator-graphene membrane containing a single, electrolyte-filled nanopore. By means of all-atom molecular dynamics simulations, we show that the charge state of such a graphene nanopore capacitor can regulate both the selectivity and the magnitude of the nanopore ionic current. At a fixed transmembrane bias, the ionic current can be switched from being carried by an equal mixture of cations and anions to being carried almost exclusively by either cationic or anionic species, depending on the sign of the charge assigned to both plates of the capacitor. Assigning the plates of the capacitor opposite sign charges can either increase the nanopore current or reduce it substantially, depending on the polarity of the bias driving the transmembrane current. Facilitated by the changes of the nanopore surface charge, such ionic current modulations are found to occur despite the physical dimensions of the nanopore being an order of magnitude larger than the screening length of the electrolyte. The ionic current rectification is accompanied by a pronounced electro-osmotic effect that can transport neutral molecules such as proteins and drugs across the solid-state membrane and thereby serve as an interface between electronic and chemical signals.

  6. Mg2B2O5 Nanowire Enabled Multifunctional Solid-State Electrolytes with High Ionic Conductivity, Excellent Mechanical Properties, and Flame-Retardant Performance.

    PubMed

    Sheng, Ouwei; Jin, Chengbin; Luo, Jianmin; Yuan, Huadong; Huang, Hui; Gan, Yongping; Zhang, Jun; Xia, Yang; Liang, Chu; Zhang, Wenkui; Tao, Xinyong

    2018-05-09

    High ionic conductivity, satisfactory mechanical properties, and wide electrochemical windows are crucial factors for composite electrolytes employed in solid-state lithium-ion batteries (SSLIBs). Based on these considerations, we fabricate Mg 2 B 2 O 5 nanowire enabled poly(ethylene oxide) (PEO)-based solid-state electrolytes (SSEs). Notably, these SSEs have enhanced ionic conductivity and a large electrochemical window. The elevated ionic conductivity is attributed to the improved motion of PEO chains and the increased Li migrating pathway on the interface between Mg 2 B 2 O 5 and PEO-LiTFSI. Moreover, the interaction between Mg 2 B 2 O 5 and -SO 2 - in TFSI - anions could also benefit the improvement of conductivity. In addition, the SSEs containing Mg 2 B 2 O 5 nanowires exhibit improved the mechanical properties and flame-retardant performance, which are all superior to the pristine PEO-LiTFSI electrolyte. When these multifunctional SSEs are paired with LiFePO 4 cathodes and lithium metal anodes, the SSLIBs show better rate performance and higher cyclic capacity of 150, 106, and 50 mAh g -1 under 0.2 C at 50, 40, and 30 °C. This strategy of employing Mg 2 B 2 O 5 nanowires provides the design guidelines of assembling multifunctional SSLIBs with high ionic conductivity, excellent mechanical properties, and flame-retardant performance at the same time.

  7. Theoretical studies on structural, magnetic, and spintronic characteristics of sandwiched Eu(n)COT(n+1) (n = 1-4) clusters.

    PubMed

    Zhang, Xiuyun; Ng, Man-Fai; Wang, Yanbiao; Wang, Jinlan; Yang, Shuo-Wang

    2009-09-22

    Europium (Eu)-cyclootetatrene (COT = C(8)H(8)) multidecker clusters (Eu(n)COT(n+1), n = 1-4) are studied by relativistic density functional theory calculations. These clusters are found to be thermodynamically stable with freely rotatable COT rings, and their total magnetic moments (MMs) increase linearly along with the number of Eu atoms. Each Eu atom contributes about 7 mu(B) to the cluster. Meanwhile, the internal COT rings have little MM contribution while the external COT rings have about 1 mu(B) MM aligned in opposite direction to that of the Eu atoms. The total MM of the Eu(n)COT(n+1) clusters can thus be generalized as 7n - 2 mu(B) where n is the number of Eu atoms. Besides, the ground states of these clusters are ferromagnetic and energetically competitive with the antiferromagnetic states, meaning that their spin states are very unstable, especially for larger clusters. More importantly, we uncover an interesting bonding characteristic of these clusters in which the interior ionic structure is capped by two hybrid covalent-ionic terminals. We suggest that such a characteristic makes the Eu(n)COT(n+1) clusters extremely stable. Finally, we reveal that for the positively charged clusters, the hybrid covalent-ionic terminals will tip further toward the interior part of the clusters to form deeper covalent-ionic caps. In contrast, the negatively charged clusters turn to pure ionic structures.

  8. Concerted Interconversion between Ionic Lock Substates of the β2 Adrenergic Receptor Revealed by Microsecond Timescale Molecular Dynamics

    PubMed Central

    Romo, Tod D.; Grossfield, Alan; Pitman, Michael C.

    2010-01-01

    Abstract The recently solved crystallographic structures for the A2A adenosine receptor and the β1 and β2 adrenergic receptors have shown important differences between members of the class-A G-protein-coupled receptors and their archetypal model, rhodopsin, such as the apparent breaking of the ionic lock that stabilizes the inactive structure. Here, we characterize a 1.02 μs all-atom simulation of an apo-β2 adrenergic receptor that is missing the third intracellular loop to better understand the inactive structure. Although we find that the structure is remarkably rigid, there is a rapid influx of water into the core of the protein, as well as a slight expansion of the molecule relative to the crystal structure. In contrast to the x-ray crystal structures, the ionic lock rapidly reforms, although we see an activation-precursor-like event wherein the ionic lock opens for ∼200 ns, accompanied by movements in the transmembrane helices associated with activation. When the lock reforms, we see the structure return to its inactive conformation. We also find that the ionic lock exists in three states: closed (or locked), semi-open with a bridging water molecule, and open. The interconversion of these states involves the concerted motion of the entire protein. We characterize these states and the concerted motion underlying their interconversion. These findings may help elucidate the connection between key local events and the associated global structural changes during activation. PMID:20074514

  9. Performance of Multi Walled Carbon Nanotubes Grown on Conductive Substrates as Supercapacitors Electrodes using Organic and Ionic liquid electrolytes

    NASA Astrophysics Data System (ADS)

    Winchester, Andrew; Ghosh, Sujoy; Turner, Ben; Zhang, X. F.; Talapatra, Saikat

    2012-02-01

    In this work we will present the use of Multi Walled Carbon Nanotubes (MWNT) directly grown on inconel substrates via chemical vapor deposition, as electrode materials for electrochemical double layer capacitors (EDLC). The performance of the MWNT EDLC electrodes were investigated using two electrolytes, an organic electrolyte, tetraethylammonium tetrafluoroborate in propylene carbonate (Et4NBF4 in PC), and a room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6). Cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy measurements to obtain values for the capacitance and internal resistance of these devices will be presented and compared.

  10. Towards flexible solid-state supercapacitors for smart and wearable electronics.

    PubMed

    Dubal, Deepak P; Chodankar, Nilesh R; Kim, Do-Heyoung; Gomez-Romero, Pedro

    2018-03-21

    Flexible solid-state supercapacitors (FSSCs) are frontrunners in energy storage device technology and have attracted extensive attention owing to recent significant breakthroughs in modern wearable electronics. In this study, we review the state-of-the-art advancements in FSSCs to provide new insights on mechanisms, emerging electrode materials, flexible gel electrolytes and novel cell designs. The review begins with a brief introduction on the fundamental understanding of charge storage mechanisms based on the structural properties of electrode materials. The next sections briefly summarise the latest progress in flexible electrodes (i.e., freestanding and substrate-supported, including textile, paper, metal foil/wire and polymer-based substrates) and flexible gel electrolytes (i.e., aqueous, organic, ionic liquids and redox-active gels). Subsequently, a comprehensive summary of FSSC cell designs introduces some emerging electrode materials, including MXenes, metal nitrides, metal-organic frameworks (MOFs), polyoxometalates (POMs) and black phosphorus. Some potential practical applications, such as the development of piezoelectric, photo-, shape-memory, self-healing, electrochromic and integrated sensor-supercapacitors are also discussed. The final section highlights current challenges and future perspectives on research in this thriving field.

  11. Higher Efficiency for Quasi-Solid State Dye Sensitized Solar Cells Under Low Light Irradiance

    NASA Astrophysics Data System (ADS)

    Desilva, Ajith; Bandara, T. M. W. J.; Fernado, H. D. N. S.; Fernando, P. S. L.; Dissanayake, M. A. K. L.; Jayasundara, W. J. M. J. S. R.; Furlani, M.; Mellander, B.-E.

    2014-03-01

    Dye-sensitized solar cells (DSSCs), lower cost solar energy conversion devices are alternative green energy source. The liquid based electrolyte DSSCs have higher efficiencies with many practical issues while the quasi-solid-state DSSCs resolve the key problems but efficiencies are relatively low. Polyacrylonitrile (PAN) based gel polymer electrolytes were fabricated as DSSCs by incorporating ethylene carbonate and propylene carbonate plasticizers and tetrapropylammonium iodide salt. A thin layer of electrolyte was sandwiched between the TiO2 anode (sensitized with N719 dye) and the Pt counter electrode. The electrolyte had an ionic conductivity of 2.6 mS/cm at 25 degrees of Celsius. DSSCs incorporating this gel electrolyte revealed Vsc circuit, Jsc, fill factor (FF) and efficiency values of 0.71 V, 11.8 mA, 51 percent and 4.2 percent respectively under 1 sun irradiation. The efficiency of the cell increased with decreasing solar irradiance achieving up to 10 percent efficiency and 80 percent FF at low irradiance values. This work uncovers that quasi-solid state DSSCs can reach efficiencies close to that of liquid electrolytes based cells.

  12. Time-Resolved Small-Angle X-ray Scattering Reveals Millisecond Transitions of a DNA Origami Switch.

    PubMed

    Bruetzel, Linda K; Walker, Philipp U; Gerling, Thomas; Dietz, Hendrik; Lipfert, Jan

    2018-04-11

    Self-assembled DNA structures enable creation of specific shapes at the nanometer-micrometer scale with molecular resolution. The construction of functional DNA assemblies will likely require dynamic structures that can undergo controllable conformational changes. DNA devices based on shape complementary stacking interactions have been demonstrated to undergo reversible conformational changes triggered by changes in ionic environment or temperature. An experimentally unexplored aspect is how quickly conformational transitions of large synthetic DNA origami structures can actually occur. Here, we use time-resolved small-angle X-ray scattering to monitor large-scale conformational transitions of a two-state DNA origami switch in free solution. We show that the DNA device switches from its open to its closed conformation upon addition of MgCl 2 in milliseconds, which is close to the theoretical diffusive speed limit. In contrast, measurements of the dimerization of DNA origami bricks reveal much slower and concentration-dependent assembly kinetics. DNA brick dimerization occurs on a time scale of minutes to hours suggesting that the kinetics depend on local concentration and molecular alignment.

  13. A lithium superionic conductor.

    PubMed

    Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro; Hirayama, Masaaki; Kanno, Ryoji; Yonemura, Masao; Kamiyama, Takashi; Kato, Yuki; Hama, Shigenori; Kawamoto, Koji; Mitsui, Akio

    2011-07-31

    Batteries are a key technology in modern society. They are used to power electric and hybrid electric vehicles and to store wind and solar energy in smart grids. Electrochemical devices with high energy and power densities can currently be powered only by batteries with organic liquid electrolytes. However, such batteries require relatively stringent safety precautions, making large-scale systems very complicated and expensive. The application of solid electrolytes is currently limited because they attain practically useful conductivities (10(-2) S cm(-1)) only at 50-80 °C, which is one order of magnitude lower than those of organic liquid electrolytes. Here, we report a lithium superionic conductor, Li(10)GeP(2)S(12) that has a new three-dimensional framework structure. It exhibits an extremely high lithium ionic conductivity of 12 mS cm(-1) at room temperature. This represents the highest conductivity achieved in a solid electrolyte, exceeding even those of liquid organic electrolytes. This new solid-state battery electrolyte has many advantages in terms of device fabrication (facile shaping, patterning and integration), stability (non-volatile), safety (non-explosive) and excellent electrochemical properties (high conductivity and wide potential window).

  14. Ionic Association Ion-Selective Electrode Experiment.

    ERIC Educational Resources Information Center

    Emara, Mostafa M.; And Others

    1979-01-01

    Describes an experiment that, using a commercially available solid-state selective electrode in conjunction with a pH-meter, determines the stability constants of sodium sulfate while varying the ionic strength of the media using sodium chloride. Detailed reproducible procedures of both the measurements and calculations are described. (BT)

  15. Composite mixed oxide ionic and electronic conductors for hydrogen separation

    DOEpatents

    Gopalan, Srikanth [Westborough, MA; Pal, Uday B [Dover, MA; Karthikeyan, Annamalai [Quincy, MA; Hengdong, Cui [Allston, MA

    2009-09-15

    A mixed ionic and electronic conducting membrane includes a two-phase solid state ceramic composite, wherein the first phase comprises an oxygen ion conductor and the second phase comprises an n-type electronically conductive oxide, wherein the electronically conductive oxide is stable at an oxygen partial pressure as low as 10.sup.-20 atm and has an electronic conductivity of at least 1 S/cm. A hydrogen separation system and related methods using the mixed ionic and electronic conducting membrane are described.

  16. First Principles Modeling of Structure and Transport in Solid Polymer Electrolytes, Ionic Liquids, and Methanol/Water Mixtures

    DTIC Science & Technology

    2016-02-10

    potential in making high- performance solid state lithium ion batteries [1,2]. Among them, the polyethylene oxide-alkali salts systems PEO6:XPF6 (X = H...electrolytes for magnesium batteries incorporating chloro- or iodo- ionic liquids. Much of this work was done in collaboration with the experimental group...magnesium batteries incorporating chloro- or iodo- ionic liquids. Much of this work was done in collaboration with the experimental group of Prof. Vito Di

  17. Conductivity and Thermal Studies on Plasticized Nano-Composite Solid Polymer Electrolyte, Peo: Ec: LiTf: Al2O3

    NASA Astrophysics Data System (ADS)

    Pitawala, H. M. J. C.; Dissanayake, M. A. K. L.; Seneviratne, V. A.

    2006-06-01

    Poly (ethylene oxide)-(PEO)-based composite polymer electrolytes are of great interest for solid-state-electrochemical devices. This paper presents the results of a preliminary study on electrical conductivity and thermal behavior (DSC) of composite polymer electrolytes (CPEs) containing PEO: LiCF3SO3 complexed with plasticizer (EC) and incorporating nano-sized particles of the ceramic filler Al2O3. Ionic conductivity enhancement in these electrolytes has been obtained by optimizing the combined effect of the plasticizer and the ceramic filler. Nano-composite, plasticized polymer electrolyte films (400-600μm) were prepared by common solvent casting method. It was revealed that the presence of the Al2O3 filler in PEO: LiTf polymer electrolyte significantly enhanced the ionic conductivity in the temperature range of interest, giving the maximum conductivity for (PEO)9LiTf+15 wt.% Al2O3 CPE [σRT (max)=2×10-5 S cm-1]. It was also observed that the addition of plasticizer (EC) to this electrolyte up to a concentration of 50 wt. % EC, showed a further conductivity enhancement [σRT (max) = 1.5×10-4 S cm-1]. It is suggested that the conductivity is enhanced mainly by two mechanisms. The plasticizer (EC) would directly contribute by reducing the crystallinity and increasing the amorphous phase content of the polymer electrolytes. The ceramic filler (Al2O3) would contribute to conductivity enhancement by creating additional sites to migrating ionic species through transient bonding with O/OH groups in the filler surface. The decrease of Tg values of plasticized CPE systems seen in the DSC thermograms points towards the improved segmental flexibility of polymer chains, increasing the mobility of conducting ions.

  18. Solution Conformations of Graphene Oxide Sheets, and Two-Dimensional Nanofluidics

    NASA Astrophysics Data System (ADS)

    Koltonow, Andrew R.

    This work reports studies on the physical properties of collections of nanosheets. First, the configurations of graphene oxide sheets in solution are studied. Polarized optical microscopy reveals quickly and decisively that sheets remain flat and form lyotropic liquid crystals over a wide range of solvent conditions. When solvent conditions are inhospitable enough, sheets agglomerate into stacks rather crumpling upon themselves. Theory and simulation suggest that the crumpled state, which can be formed by compressing sheets, is metastable. This work might correct a persistent misunderstanding about the solution physics of graphene oxide. The other major area of study concerns the hydration layers in between lamellar stacks of exfoliated, restacked nanosheets. These layers comprise massive arrays of parallel two-dimensional nanofluidic channels, which exhibit enhanced unipolar ionic conductivity with counterions as the majority charge carriers. Based on the previously discovered graphene oxide nanofluidic platform, exfoliated vermiculite nanofluidic channels are constructed, which shuttle protons through the hydration channels by a Grotthuss mechanism, and which show superior thermal stability to graphene oxide. The 2D nanofluidics platform is also used to demonstrate "kirigami nanofluidics", where ion transport can be manipulated by cutting the film into specific shapes. This can give rise to ionic current rectification. The rectification effect is attributed to the size and shape mismatch of the concentration polarization zones developed at the inlets and outlets of the nanofluidic channels. The kirigami nanofluidic platform can be used to fabricate ionic diodes and other simple devices. This material platform is expected to be a useful tool for nanofluidics researchers, because it offers a way to carry out nanofluidic experiments quickly with minimal equipment and little expense.

  19. Study on Zinc Oxide-Based Electrolytes in Low-Temperature Solid Oxide Fuel Cells

    PubMed Central

    Qiao, Zheng; Feng, Chu; Wang, Baoyuan; Zhu, Bin

    2017-01-01

    Semiconducting-ionic conductors have been recently described as excellent electrolyte membranes for low-temperature operation solid oxide fuel cells (LT-SOFCs). In the present work, two new functional materials based on zinc oxide (ZnO)—a legacy material in semiconductors but exceptionally novel to solid state ionics—are developed as membranes in SOFCs for the first time. The proposed ZnO and ZnO-LCP (La/Pr doped CeO2) electrolytes are respectively sandwiched between two Ni0.8Co0.15Al0.05Li-oxide (NCAL) electrodes to construct fuel cell devices. The assembled ZnO fuel cell demonstrates encouraging power outputs of 158–482 mW cm−2 and high open circuit voltages (OCVs) of 1–1.06 V at 450–550 °C, while the ZnO-LCP cell delivers significantly enhanced performance with maximum power density of 864 mW cm−2 and OCV of 1.07 V at 550 °C. The conductive properties of the materials are investigated. As a consequence, the ZnO electrolyte and ZnO-LCP composite exhibit extraordinary ionic conductivities of 0.09 and 0.156 S cm−1 at 550 °C, respectively, and the proton conductive behavior of ZnO is verified. Furthermore, performance enhancement of the ZnO-LCP cell is studied by electrochemical impedance spectroscopy (EIS), which is found to be as a result of the significantly reduced grain boundary and electrode polarization resistances. These findings indicate that ZnO is a highly promising alternative semiconducting-ionic membrane to replace the electrolyte materials for advanced LT-SOFCs, which in turn provides a new strategic pathway for the future development of electrolytes. PMID:29283395

  20. HOLISTIC APPROACH FOR ASSESSING THE PRESENCE ...

    EPA Pesticide Factsheets

    As an integral part of our continuing research in environmental quality assessment approaches, we have developed a variety of passive integrative sampling devices widely applicable for use in defining the presence and potential impacts of a broad array of contaminants. The semipermeable membrane device (SPMD) has gained widespread use for sampling hydrophobic chemicals from water and air, the polar organic chemical integrative sampler (POCIS) is applicable for sequestering waterborne hydrophilic organic chemicals, the stabilized liquid membrane device (SLMD) is used to integratively sample waterborne ionic metals, and the passive integrative mercury sampler (PIMS) is applicable for sampling vapor phase or dissolved neutral mercury species. This suite of integrative samplers forms the basis for a new passive sampling approach for assessing the presence and potential toxicological significance of a broad spectrum of environmental contaminants. In a proof-of-concept study, three of our four passive integrative samplers were used to assess the presence o,f a wide variety of contaminants in , the waters of a constructed wetland, and to determine the effectiveness of the constructed wetland in removing contaminants. The wetland is used for fmal polishing of secondary- treatment municipal wastewater and the effluent is used as a source of water for a state wildlife area. Numerous contaminants, including organochlorine pesticides (OCs), polycyclic aromatic hydrocarbons

  1. In Situ STEM-EELS observation of nanoscale interfacial phenomena in all-solid-state batteries

    DOE PAGES

    Wang, Ziying; Santhanagopalan, Dhamodaran; Zhang, Wei; ...

    2016-05-03

    Behaviors of functional interfaces are crucial factors in the performance and safety of energy storage and conversion devices. Indeed, solid electrode–solid electrolyte interfacial impedance is now considered the main limiting factor in all-solid-state batteries rather than low ionic conductivity of the solid electrolyte. In this paper, we present a new approach to conducting in situ scanning transmission electron microscopy (STEM) coupled with electron energy loss spectroscopy (EELS) in order to uncover the unique interfacial phenomena related to lithium ion transport and its corresponding charge transfer. Our approach allowed quantitative spectroscopic characterization of a galvanostatically biased electrochemical system under in situmore » conditions. Using a LiCoO 2/LiPON/Si thin film battery, an unexpected structurally disordered interfacial layer between LiCoO 2 cathode and LiPON electrolyte was discovered to be inherent to this interface without cycling. During in situ charging, spectroscopic characterization revealed that this interfacial layer evolved to form highly oxidized Co ions species along with lithium oxide and lithium peroxide species. These findings suggest that the mechanism of interfacial impedance at the LiCoO 2/LiPON interface is caused by chemical changes rather than space charge effects. Finally, insights gained from this technique will shed light on important challenges of interfaces in all-solid-state energy storage and conversion systems and facilitate improved engineering of devices operated far from equilibrium.« less

  2. Fabrication technology of CNT-Nickel Oxide based planar pseudocapacitor for MEMS and NEMS

    NASA Astrophysics Data System (ADS)

    Lebedev, E. A.; Kitsyuk, E. P.; Gavrilin, I. M.; Gromov, D. G.; Gruzdev, N. E.; Gavrilov, S. A.; Dronov, A. A.; Pavlov, A. A.

    2015-11-01

    Fabrication technology of planar pseudocapacitor (PsC) based on carbon nanotube (CNT) forest, synthesized using plasma enhanced chemical vapor deposition (PECVD) method, covered with thin nickel oxide layer deposited by successive ionic layer adsorption and reaction (SILAR) method, is demonstrated. Dependences of deposited oxide layers thickness on device specific capacities is studied. It is shown that pseudocapacity of nickel oxide thin layer increases specific capacity of the CNT's based device up to 2.5 times.

  3. Reliability assessment of multiple quantum well avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Yun, Ilgu; Menkara, Hicham M.; Wang, Yang; Oguzman, Isamil H.; Kolnik, Jan; Brennan, Kevin F.; May, Gray S.; Wagner, Brent K.; Summers, Christopher J.

    1995-01-01

    The reliability of doped-barrier AlGaAs/GsAs multi-quantum well avalanche photodiodes fabricated by molecular beam epitaxy is investigated via accelerated life tests. Dark current and breakdown voltage were the parameters monitored. The activation energy of the degradation mechanism and median device lifetime were determined. Device failure probability as a function of time was computed using the lognormal model. Analysis using the electron beam induced current method revealed the degradation to be caused by ionic impurities or contamination in the passivation layer.

  4. Highly Sensitive Biosensing with Solid-State Nanopores Displaying Enzymatically Reconfigurable Rectification Properties.

    PubMed

    Pérez-Mitta, Gonzalo; Peinetti, Ana S; Cortez, M Lorena; Toimil-Molares, María Eugenia; Trautmann, Christina; Azzaroni, Omar

    2018-05-09

    Molecular design of biosensors based on enzymatic processes taking place in nanofluidic elements is receiving increasing attention by the scientific community. In this work, we describe the construction of novel ultrasensitive enzymatic nanopore biosensors employing "reactive signal amplifiers" as key elements coupled to the transduction mechanism. The proposed framework offers innovative design concepts not only to amplify the detected ionic signal and develop ultrasensitive nanopore-based sensors but also to construct nanofluidic diodes displaying specific chemo-reversible rectification properties. The integrated approach is demonstrated by electrostatically assembling poly(allylamine) on the anionic pore walls followed by the assembly of urease. We show that the cationic weak polyelectrolyte acts as a "reactive signal amplifier" in the presence of local pH changes induced by the enzymatic reaction. These bioinduced variations in proton concentration ultimately alter the protonation degree of the polyamine resulting in amplifiable, controlled, and reproducible changes in the surface charge of the pore walls, and consequently on the generated ionic signals. The "iontronic" response of the as-obtained devices is fully reversible, and nanopores are reused and assayed with different urea concentrations, thus ensuring reliable design. The limit of detection (LOD) was 1 nM. To the best of our knowledge, this value is the lowest LOD reported to date for enzymatic urea detection. In this context, we envision that this approach based on the use of "reactive signal amplifiers" into solid-state nanochannels will provide new alternatives for the molecular design of highly sensitive nanopore biosensors as well as (bio)chemically addressable nanofluidic elements.

  5. Chemical Stabilization of Perovskite Solar Cells with Functional Fulleropyrrolidines

    PubMed Central

    2017-01-01

    While perovskite solar cells have invigorated the photovoltaic research community due to their excellent power conversion efficiencies (PCEs), these devices notably suffer from poor stability. To address this crucial issue, a solution-processable organic chemical inhibition layer (OCIL) was integrated into perovskite solar cells, resulting in improved device stability and a maximum PCE of 16.3%. Photoenhanced self-doping of the fulleropyrrolidine mixture in the interlayers afforded devices that were advantageously insensitive to OCIL thickness, ranging from 4 to 190 nm. X-ray photoelectron spectroscopy (XPS) indicated that the fulleropyrrolidine mixture improved device stability by stabilizing the metal electrode and trapping ionic defects (i.e., I–) that originate from the perovskite active layer. Moreover, degraded devices were rejuvenated by repeatedly peeling away and replacing the OCIL/Ag electrode, and this repeel and replace process resulted in further improvement to device stability with minimal variation of device efficiency. PMID:29532021

  6. Chemical Stabilization of Perovskite Solar Cells with Functional Fulleropyrrolidines.

    PubMed

    Liu, Yao; Page, Zachariah A; Zhou, Dongming; Duzhko, Volodimyr V; Kittilstved, Kevin R; Emrick, Todd; Russell, Thomas P

    2018-02-28

    While perovskite solar cells have invigorated the photovoltaic research community due to their excellent power conversion efficiencies (PCEs), these devices notably suffer from poor stability. To address this crucial issue, a solution-processable organic chemical inhibition layer (OCIL) was integrated into perovskite solar cells, resulting in improved device stability and a maximum PCE of 16.3%. Photoenhanced self-doping of the fulleropyrrolidine mixture in the interlayers afforded devices that were advantageously insensitive to OCIL thickness, ranging from 4 to 190 nm. X-ray photoelectron spectroscopy (XPS) indicated that the fulleropyrrolidine mixture improved device stability by stabilizing the metal electrode and trapping ionic defects (i.e., I - ) that originate from the perovskite active layer. Moreover, degraded devices were rejuvenated by repeatedly peeling away and replacing the OCIL/Ag electrode, and this repeel and replace process resulted in further improvement to device stability with minimal variation of device efficiency.

  7. Ionic Conductivity Increased by Two Orders of Magnitude in Micrometer-Thick Vertical Yttria-Stabilized ZrO 2 Nanocomposite Films

    DOE PAGES

    Lee, Shinbuhm; Zhang, Wenrui; Khatkhatay, Fauzia; ...

    2015-09-03

    We design and create a unique cell geometry of templated micrometer-thick epitaxial nanocomposite films which contain ~20 nm diameter yttria-stabilized ZrO 2 (YSZ) nanocolumns, strain coupled to a SrTiO 3 matrix. We also enhanced the ionic conductivity of these nanocolumnsby over 2 orders of magnitude compared to plain YSZ films. Concomitant with the higher ionic conduction is the finding that the YSZ nanocolumns in the films have much higher crystallinity and orientation, compared to plain YSZ films. Hence, “oxygen migration highways” are formed in the desired out-of-plane direction. This improved structure is shown to originate from the epitaxial coupling ofmore » the YSZ nanocolumns to the SrTiO 3 film matrix and from nucleation of the YSZ nanocolumns on an intermediate nanocomposite base layer of highly aligned Sm-doped CeO 2 nanocolumns within the SrTiO 3 matrix. Furthermore, this intermediate layer reduces the lattice mismatch between the YSZ nanocolumns and the substrate. Vertical ionic conduction values as high as 10 –2 Ω –1 cm –1 were demonstrated at 360 °C (300 °C lower than plain YSZ films), showing the strong practical potential of these nanostructured films for use in much lower operation temperature ionic devices.« less

  8. On the influence of hydrated ionic liquids on the dynamical structure of model proteins: a computational study.

    PubMed

    Haberler, Michael; Steinhauser, Othmar

    2011-10-28

    The solvation of the protein ubiquitin (PDB entry "1UBQ") in hydrated molecular ionic liquids was studied for varying water content or, equivalently, a diversity of ionic strengths. The cations and anions were 1-ethyl-3-methylimidazolium and trifluoromethanesulfonate, respectively. The protein's shape and stability as well as the solvation structure, the shell dynamics and the shell resolved dielectric properties were investigated by means of molecular dynamics simulations. The respective simulation trajectories covered 200 nanoseconds. Besides the characteristic point already found for the zinc finger motif at the transition from the pure aqueous environment to the ionic solution an even more pronounced state is found where several properties show extremal behaviour (maximum or minimum). This second characteristic point occurs at the transition from the ionic solution to the hydrated ionic melt where water changes its role from a solvent to a co-solvent. Most of the data analysis presented here is based on the Voronoi decomposition of space. This journal is © the Owner Societies 2011

  9. Local Structural Investigations, Defect Formation, and Ionic Conductivity of the Lithium Ionic Conductor Li 4 P 2 S 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietrich, Christian; Sadowski, Marcel; Sicolo, Sabrina

    Glassy, glass–ceramic, and crystalline lithium thiophosphates have attracted interest in their use as solid electrolytes in all-solid-state batteries. Despite similar structural motifs, including PS 4 3–, P 2S 6 4–, and P 2S 7 4– polyhedra, these materials exhibit a wide range of possible compositions, crystal structures, and ionic conductivities. Here, we present a combined approach of Bragg diffraction, pair distribution function analysis, Raman spectroscopy, and 31P magic angle spinning nuclear magnetic resonance spectroscopy to study the underlying crystal structure of Li 4P 2S 6. In this work, we show that the material crystallizes in a planar structural arrangement asmore » a glass ceramic composite, explaining the observed relatively low ionic conductivity, depending on the fraction of glass content. Calculations based on density functional theory provide an understanding of occurring diffusion pathways and ionic conductivity of this Li + ionic conductor.« less

  10. Photoresponse of a Bilayer Graphene p-n Junction Using a Combination of Electrostatic and Electrolytic Gating

    NASA Astrophysics Data System (ADS)

    Grover, Sameer; Joshi, Anupama; Tulapurkar, Ashwin; Deshmukh, Mandar

    Electrolyic gating can induce large carrier densities in graphene and other 2D-materials. We demonstrate a technique for the formation of p-n junctions in graphene using a combination of electrostatic and electrolytic gating. This was done by patterning the negative resist hydrogen silsesquioxane (HSQ) to cover part of a bilayer graphene flake. We performed electrical and photoresponse measurements with the ionic liquid EMI-Im as the top gate and with a silicon back gate. The device characteristics were measured both at room temperature, where the ions are mobile, and at low temperatures, where the ionic liquid is frozen. We created p-n junctions that work at both room temperature and at low temperatures below the freezing point of the ionic liquid. This technique is suited for studying the photoresponse of graphene p-n junctions because of the larger transparency of ionic liquids compared to metallic gates as used in previous studies. We found that the photoresponse is dominated by the photo-thermoelectric effect, characterized by a six fold pattern in the photovoltage. The photovoltage increases as the temperature decreases which is indicative of hot electron thermalization by disorder assisted supercollisions. DST, DAE, Government of India.

  11. Computational and experimental characterization of a pyrrolidinium-based ionic liquid for electrolyte applications

    NASA Astrophysics Data System (ADS)

    Torabifard, Hedieh; Reed, Luke; Berry, Matthew T.; Hein, Jason E.; Menke, Erik; Cisneros, G. Andrés

    2017-10-01

    The development of Li-ion batteries for energy storage has received significant attention. The synthesis and characterization of electrolytes in these batteries are an important component of this development. Ionic liquids (ILs) have been proposed as possible electrolytes in these devices. Thus, the accurate determination of thermophysical properties for these solvents becomes important for determining their applicability as electrolytes. In this contribution, we present the synthesis and experimental/computational characterization of thermodynamic and transport properties of a pyrrolidinium based ionic liquid as a first step to investigate the possible applicability of this class of ILs for Li-ion batteries. A quantum mechanical-based force field with many-body polarizable interactions has been developed for the simulation of spirocyclic pyrrolidinium, [sPyr+], with BF4- and Li+. Molecular dynamics calculations employing intra-molecular polarization predicted larger heat of vaporization and self-diffusion coefficients and smaller densities in comparison with the model without intra-molecular polarization, indicating that the inclusion of this term can significantly effect the inter-ionic interactions. The calculated properties are in good agreement with available experimental data for similar IL pairs and isothermal titration calorimetry data for [sPyr+][BF4-].

  12. Refractive index measurement of imidazolium based ionic liquids in the Vis-NIR

    NASA Astrophysics Data System (ADS)

    Arosa, Yago; Rodríguez Fernández, Carlos Damián; López Lago, Elena; Amigo, Alfredo; Varela, Luis Miguel; Cabeza, Oscar; de la Fuente, Raúl

    2017-11-01

    In this paper spectrally resolved white light interferometry is applied for measuring the refractive index of different ionic liquids over a wide spectral band from 400 to 1000 nm. The measuring device is compound by a Michelson interferometer whose output is analyzed by means of two spectrometers. The first one is a homemade prism spectrometer which provides the interferogram produced by the sample over a wide continuum spectrum. The second one is a commercial diffraction grating spectrometer used to make high precision measurements of the displacement between the Michelson mirrors by interferometry. Both instruments combined allow the retrieval of the refractive index of the sample over a wide visible-near infrared continuum spectrum with deviations on the fourth decimal. A group of 14 different ionic liquids based on the 1-alkyl-3-methylimidazolium cation have been studied through this technique. The measured refractive index of the ionic liquids is used to calculate their electronic polarizability. This makes possible to gain insight into the microscopic behavior of the compounds. To give a better picture, the liquids have been classified in four groups and their refractive indices and polarizabilities are compared in order to find correlations between these magnitudes and the structure of the liquids.

  13. A self-forming composite electrolyte for solid-state sodium battery with ultra-long cycle life

    DOE PAGES

    Zhang, Zhizhen; Yang, Xiao -Qing; Zhang, Qinghua; ...

    2016-10-31

    Replacing organic liquid electrolyte with inorganic solid electrolytes (SE) can potentially address the inherent safety problems in conventional rechargeable batteries. Furthermore, all-solid-state batteries have been plagues by the relatively low ionic conductivity of solid electrolytes and large charge-transfer resistance resulted from solid-solid interfaces between electrode materials and solid electrolytes. Here we report a new design strategy for improving the ionic conductivity of solid electrolyte by self-forming a composite material. An optimized Na + ion conducting composite electrolyte derived from the NASICON structure was successfully synthesized, yielding ultra-high ionic conductivity of 3.4 mS cm –1 at 25°C and 14 ms cmmore » –1 at 80°C.« less

  14. Internal Electric Field Modulation in Molecular Electronic Devices by Atmosphere and Mobile Ions.

    PubMed

    Chandra Mondal, Prakash; Tefashe, Ushula M; McCreery, Richard L

    2018-06-13

    The internal potential profile and electric field are major factors controlling the electronic behavior of molecular electronic junctions consisting of ∼1-10 nm thick layers of molecules oriented in parallel between conducting contacts. The potential profile is assumed linear in the simplest cases, but can be affected by internal dipoles, charge polarization, and electronic coupling between the contacts and the molecular layer. Electrochemical processes in solutions or the solid state are entirely dependent on modification of the electric field by electrolyte ions, which screen the electrodes and form the ionic double layers that are fundamental to electrode kinetics and widespread applications. The current report investigates the effects of mobile ions on nominally solid-state molecular junctions containing aromatic molecules covalently bonded between flat, conducting carbon surfaces, focusing on changes in device conductance when ions are introduced into an otherwise conventional junction design. Small changes in conductance were observed when a polar molecule, acetonitrile, was present in the junction, and a large decrease of conductance was observed when both acetonitrile (ACN) and lithium ions (Li + ) were present. Transient experiments revealed that conductance changes occur on a microsecond-millisecond time scale, and are accompanied by significant alteration of device impedance and temperature dependence. A single molecular junction containing lithium benzoate could be reversibly transformed from symmetric current-voltage behavior to a rectifier by repetitive bias scans. The results are consistent with field-induced reorientation of acetonitrile molecules and Li + ion motion, which screen the electrodes and modify the internal potential profile and provide a potentially useful means to dynamically alter junction electronic behavior.

  15. Influence of Electrical and Ionic Conductivities of Organic Electronic Ion Pump on Acetylcholine Exchange Performance

    PubMed Central

    Abdullayeva, Nazrin; Sankir, Mehmet

    2017-01-01

    By using an easy and effective method of depositing conjugated polymers (PEDOT:PSS) on flexible substrates, a new design for organic bioelectronic devices has been developed. The purpose was to build up a system that mimics the motion of neurotransmitters in the synaptic cleft by obtaining an electrical to chemical signal transport. Fourier transform infrared (FTIR) spectroscopy and Raman measurements have demonstrated that electrochemical overoxidation region which separates the pristine PEDOT:PSS electrodes and allows ionic conduction has been achieved successfully. The influence of both electrical and ionic conductivities on organic electronic ion pump (OEIP) performances has been studied. The ultimate goal was to achieve the highest equilibrium current density at the lowest applied voltage via enhancing the electrical conductivity of PEDOT:PSS and ionic conductivity of electrochemically overoxidized region. The highest equilibrium current density, which corresponds to 4.81 × 1017 number of ions of acetylcholine was about 41 μA cm−2 observed for the OEIP with the electrical conductivities of 54 S cm−1. This was a threshold electrical conductivity beyond which the OEIP performances were not changed much. Once Nafion™ has been applied for enhancing the ionic conductivity, the equilibrium current density increased about ten times and reached up to 408 μA cm−2. Therefore, it has been demonstrated that the OEIP performance mainly scales with the ionic conductivity. A straightforward method of producing organic bioelectronics is proposed here may provide a clue for their effortless mass production in the near future. PMID:28772946

  16. Density Optimization of Lithium Lanthanum Titanate Ceramics for Lightweight Lithium-Air Batteries

    DTIC Science & Technology

    2014-11-01

    Thangadurai V, Weppner W. Lithium lanthanum titanates: a review. Chemistry of Materials. 2003;15:3974–3990. 4. Knauth P. Inorganic solid Li ion conductors...an overview. Solid State Ionics. 2009;180:911–916. 5. Ban CW, Choi GM. The effect of sintering on the grain boundary conductivity of lithium ...lanthanum titanates. Solid State Ionics. 2001;140:285–292. 6. Inada R, Kimura K, Kusakabe K, Tojo T, Sakurai Y. Synthesis and lithium -ion conductivity

  17. Solid-state supercapacitors with ionic liquid gel polymer electrolyte based on poly (3, 4-ethylenedioxythiophene), carbon nanotubes, and metal oxides nanocomposites for electrical energy storage

    NASA Astrophysics Data System (ADS)

    Obeidat, Amr M.

    Clean and renewable energy systems have emerged as an important area of research having diverse and significant new applications. These systems utilize different energy storage methods such as the batteries and supercapacitors. Supercapacitors are electrochemical energy storage devices that are designed to bridge the gap between batteries and conventional capacitors. Supercapacitors which store electrical energy by electrical double layer capacitance are based on large surface area structured carbons. The materials systems in which the Faradaic reversible redox reactions store electrical energy are the transition metal oxides and electronically conducting polymers. Among the different types of conducting polymers, poly (3, 4- ethylenedioxythiophene) (PEDOT) is extensively investigated owing to its chemical and mechanical stability. Due to instability of aqueous electrolytes at high voltages and toxicity of organic electrolytes, potential of supercapacitors has not been fully exploited. A novel aspect of this work is in utilizing the ionic liquid gel polymer electrolyte to design solid-state supercapacitors for energy storage. Various electrochemical systems were investigated including graphene, PEDOT, PEDOT-carbon nanotubes, PEDOT-manganese oxide, and PEDOT-iron oxide nanocomposites. The electrochemical performance of solid-state supercapacitor devices was evaluated based on cyclic voltammetry (CV), charge-discharge (CD), prolonged cyclic tests, and electrochemical impedance spectroscopy (EIS) techniques. Raman spectroscopy technique was also utilized to analyze the bonding structure of the electrode materials. The graphene solid-state supercapacitor system displayed areal capacitance density of 141.83 mF cm-2 based on high potential window up to 4V. The PEDOT solid-state supercapacitor system was synthesized in acetonitrile and aqueous mediums achieving areal capacitance density of 219.17 mF cm-2. The hybrid structure of solid-state supercapacitors was also studied in solid-state design based on PEDOT and graphene electrodes that produced areal capacitance density of 198.26 mF cm-2. Symmetrical PEDOT-manganese oxide nanocomposites were synthesized by co-deposition and dip-coating techniques to fabricate solid-state supercapacitor systems achieving areal capacitance density of 122.08 mF cm-2 credited to the PEDOT-MnO2 supercapacitor that was synthesized by dipping the PEDOT electrode in pure KMnO4 solution. The electrochemical performance of PEDOT-carbon nanotube solid-state supercapacitors was also investigated in both acetonitrile and aqueous medium showing good dispersion characteristics with optimum CNT content of 1 mg. The PEDOT-CNT solid-state supercapacitor system synthesized in acetonitrile displayed areal capacitance density of 297.43 mF cm-2. PEDOT-Fe2O3 nanocomposites were synthesized by single-step co-deposition techniques, and these were used to fabricate solid-state supercapacitors achieving areal capacitance density of 96.89 mF cm-2. Furthermore, some of these thin flexible solid-state supercapacitors were integrated with solar cells for direct storage of solar electricity, which proved to be promising as autonomous power source for flexible and wearable electronics. This dissertation describes the electrode synthesis, design and properties of solid-state supercapacitors, and their electrochemical performance in the storage of electrical energy.

  18. Influence of Ionic Liquids on Thermodynamics of Small Molecule-DNA Interaction: The Binding of Ethidium Bromide to Calf Thymus DNA.

    PubMed

    Mishra, Arpit; Ekka, Mary Krishna; Maiti, Souvik

    2016-03-17

    Ionic liquids (ILs) are salts with poor ionic coordination, resultantly remaining in liquid state below 100 °C and some may retain liquid state even at room temperature. ILs are known to provide a conducive environment for many biological enzymatic reactions, but their interaction with biomacromolecules are poorly understood. In the present study, we investigate the effect of various ionic liquids on DNA-small molecule interaction using calf thymus DNA (ctDNA)-ethidium bromide (EB) as a model system. The effect of various ionic liquids on these interactions is studied by an array of techniques such as circular dichroism (CD), UV melting, fluorescence exclusion and isothermal titration calorimetry. Interestingly, we observed that presence of IL increased the stability of ctDNA without altering its structure. The binding affinities Kbs for EB binding to ctDNA in the presence of 300 mM ILs are about half order of magnitude smaller than the Kbs in absence of ILs and correspond to a less favorable free energy. We noted that, when adjusted to corresponding buffer condition, the unfavorable shift in ΔG of ctDNA-EB interaction is attributed to decreased entropy in the case of ILs, whereas the same effect by NaCl was due to increased enthalpy.

  19. Development and Use of Fluorescent Antibody and qPCR Protocols for the Electrostatic Spore Trap

    USDA-ARS?s Scientific Manuscript database

    Fluorescent antibody (FA) and qPCR protocols were evaluated for the newly developed aerobiological sampler (Ionic Spore Trap), which depends upon electrostatic deposition of particulates onto a 25 mm aluminum disk (stub). This device was originally designed for assessment of captured particulates by...

  20. Aquagel electrode separator for use in batteries and supercapacitors

    DOEpatents

    Mayer, S.T.; Kaschmitter, J.L.; Pekala, R.W.

    1995-03-28

    An electrode separator is described for electrochemical energy storage devices, such as a high energy density capacitor incorporating a variety of carbon foam electrodes. The separator is derived from an aquagel of resorcinol-formaldehyde and related polymers and containing ionically conducting electrolyte in the pores thereof. 9 figures.

  1. Preconcentration for Improved Long-Term Monitoring of Contaminants in Groundwater: Sorbent Development

    DTIC Science & Technology

    2013-02-11

    calibration curves was ±5%. Ion chromatography (IC) was used for analysis of perchlorate and other ionic targets. Analysis was carried out on a...The methods utilize liquid or gas chromatography , techniques that do not lend themselves well to portable devices and methods. Portable methods are...

  2. Magnesium-based methods, systems, and devices

    DOEpatents

    Zhao, Yufeng; Ban, Chunmei; Ruddy, Daniel; Parilla, Philip A.; Son, Seoung-Bum

    2017-12-12

    An aspect of the present invention is an electrical device, where the device includes a current collector and a porous active layer electrically connected to the current collector to form an electrode. The porous active layer includes MgB.sub.x particles, where x.gtoreq.1, mixed with a conductive additive and a binder additive to form empty interstitial spaces between the MgB.sub.x particles, the conductive additive, and the binder additive. The MgB.sub.x particles include a plurality of boron sheets of boron atoms covalently bound together, with a plurality of magnesium atoms reversibly intercalated between the boron sheets and ionically bound to the boron atoms.

  3. Fabrication and characterization of a micromachined swirl-shaped ionic polymer metal composite actuator with electrodes exhibiting asymmetric resistance.

    PubMed

    Feng, Guo-Hua; Liu, Kim-Min

    2014-05-12

    This paper presents a swirl-shaped microfeatured ionic polymer-metal composite (IPMC) actuator. A novel micromachining process was developed to fabricate an array of IPMC actuators on a glass substrate and to ensure that no shortcircuits occur between the electrodes of the actuator. We demonstrated a microfluidic scheme in which surface tension was used to construct swirl-shaped planar IPMC devices of microfeature size and investigated the flow velocity of Nafion solutions, which formed the backbone polymer of the actuator, within the microchannel. The unique fabrication process yielded top and bottom electrodes that exhibited asymmetric surface resistance. A tool for measuring surface resistance was developed and used to characterize the resistances of the electrodes for the fabricated IPMC device. The actuator, which featured asymmetric electrode resistance, caused a nonzero-bias current when the device was driven using a zero-bias square wave, and we propose a circuit model to describe this phenomenon. Moreover, we discovered and characterized a bending and rotating motion when the IPMC actuator was driven using a square wave. We observed a strain rate of 14.6% and a displacement of 700 μm in the direction perpendicular to the electrode surfaces during 4.5-V actuation.

  4. Stagnation point flow of wormlike micellar solutions in a microfluidic cross-slot device: effects of surfactant concentration and ionic environment.

    PubMed

    Haward, Simon J; McKinley, Gareth H

    2012-03-01

    We employ the techniques of microparticle image velocimetry and full-field birefringence microscopy combined with mechanical measurements of the pressure drop to perform a detailed characterization of the extensional rheology and elastic flow instabilities observed for a range of wormlike micellar solutions flowing through a microfluidic cross-slot device. As the flow rate through the device is increased, the flow first bifurcates from a steady symmetric to a steady asymmetric configuration characterized by a birefringent strand of highly aligned micellar chains oriented along the shear-free centerline of the flow field. At higher flow rates the flow becomes three dimensional and time dependent and is characterized by aperiodic spatiotemporal fluctuations of the birefringent strand. The extensional properties and critical conditions for the onset of flow instabilities in the fluids are highly dependent on the fluid formulation (surfactant concentration and ionic strength) and the resulting changes in the linear viscoelasticity and nonlinear shear rheology of the fluids. By combining the measurements of critical conditions for the flow transitions with the viscometric material properties and the degree of shear-thinning characterizing each test fluid, it is possible to construct a stability diagram for viscoelastic flow of complex fluids in the cross-slot geometry.

  5. Fabrication and Characterization of a Micromachined Swirl-Shaped Ionic Polymer Metal Composite Actuator with Electrodes Exhibiting Asymmetric Resistance

    PubMed Central

    Feng, Guo-Hua; Liu, Kim-Min

    2014-01-01

    This paper presents a swirl-shaped microfeatured ionic polymer-metal composite (IPMC) actuator. A novel micromachining process was developed to fabricate an array of IPMC actuators on a glass substrate and to ensure that no shortcircuits occur between the electrodes of the actuator. We demonstrated a microfluidic scheme in which surface tension was used to construct swirl-shaped planar IPMC devices of microfeature size and investigated the flow velocity of Nafion solutions, which formed the backbone polymer of the actuator, within the microchannel. The unique fabrication process yielded top and bottom electrodes that exhibited asymmetric surface resistance. A tool for measuring surface resistance was developed and used to characterize the resistances of the electrodes for the fabricated IPMC device. The actuator, which featured asymmetric electrode resistance, caused a nonzero-bias current when the device was driven using a zero-bias square wave, and we propose a circuit model to describe this phenomenon. Moreover, we discovered and characterized a bending and rotating motion when the IPMC actuator was driven using a square wave. We observed a strain rate of 14.6% and a displacement of 700 μm in the direction perpendicular to the electrode surfaces during 4.5-V actuation. PMID:24824370

  6. Large apparent electric size of solid-state nanopores due to spatially extended surface conduction.

    PubMed

    Lee, Choongyeop; Joly, Laurent; Siria, Alessandro; Biance, Anne-Laure; Fulcrand, Rémy; Bocquet, Lydéric

    2012-08-08

    Ion transport through nanopores drilled in thin membranes is central to numerous applications, including biosensing and ion selective membranes. This paper reports experiments, numerical calculations, and theoretical predictions demonstrating an unexpectedly large ionic conduction in solid-state nanopores, taking its origin in anomalous entrance effects. In contrast to naive expectations based on analogies with electric circuits, the surface conductance inside the nanopore is shown to perturb the three-dimensional electric current streamlines far outside the nanopore in order to meet charge conservation at the pore entrance. This unexpected contribution to the ionic conductance can be interpreted in terms of an apparent electric size of the solid-state nanopore, which is much larger than its geometric counterpart whenever the number of charges carried by the nanopore surface exceeds its bulk counterpart. This apparent electric size, which can reach hundreds of nanometers, can have a major impact on the electrical detection of translocation events through nanopores, as well as for ionic transport in biological nanopores.

  7. Effect of chitosan ethers on fresh state properties of lime mortars

    NASA Astrophysics Data System (ADS)

    Vyšvařil, M.; Žižlavský, T.

    2017-10-01

    The fresh state properties of mortars are eminently important since determine the material workability and also have a great influence on its hardened state characteristics. In this paper, the behaviour of fresh lime mortars modified by etherified derivatives of chitosan (hydroxypropylchitosan (HPCH) and carboxymethylchitosan (CMCH)) is assessed with the purpose of exploring a new application of such derivatives as lime mortar admixtures. The rheological parameters (relative yield stress, consistency coefficient and fluidity index) and viscoelastic properties were correlated with flow table tests, relative density measurements, water retention abilities of mortars and air content in mortars. Results were seen to be strongly dependent on substituents of the chitosan. Non-ionic derivative (HPCH) had a plasticizing influence on the mortars; the ionic CMCH showed the thickening effect. The effect of chitosan ethers was found to be dosage-dependent. CMCH had low impact on water retention, while HPCH displayed high water retention capability. It was concluded, that the ionic derivative (CMCH) is very similar by its viscosity enhancing effect to starch ether.

  8. Effect of Mixed Glass Former on Ionic Conductivity of Silver Boro Tungstate glass system x[0.75AgI:0.25AgCl]: (1-x) [Ag2O-{B2O3:WO3}

    NASA Astrophysics Data System (ADS)

    Dehariya, Harsha; Kumar, R.; Polu, A. R.

    2012-05-01

    The idea to explore new 'Superionic Electrolytes', "Fast ionic conductors" is due to their tremendous potential applications in solid state electrochemical devices viz. solid state batteries, fuel cells, sensors, super capacitors. Superionic glasses have attracted great deal of attention due to their several advantageous over their crystalline counterparts such as high ionic conductivity, easy preparation, wide selection of compositions, isotropic properties and high stability etc [4-7]. Large numbers of silver ion based glasses have been reported in the literature for the glassy system of AgI:Ag2O: MxOy (MxOy = B2O3, SiO2, P2O5, GeO2, V2O5, As2O5, CrO3, SeO2, MoO3 & TeO3 etc many of them shows high silver ion conductivity [8]. Ion transport behavior of Silver Boro Tungstate glass system x[0.75AgI:0.25AgCl]: (1-x) [Ag2O{B2O3:WO3}], where 0 <= x <= 1 in molar wt% prepared by melt quench technique were reported. The new host [0.75AgI:0.25AgCl] was used as a better alternate in place of conventional host salt AgI. Conductivity measurement were carried out on this glass system as a function of frequency from 50 Hz to 5 MHz, over a temperature range of 27°C to 200°C, for different compositions by Impedance spectroscopy. The composition 0.7[0.75AgI:0.25AgCl]: 0.3[Ag2O{B2O3:WO3}] shows the highest conductivity of the order of σrt ~ 2.76 × 10-2 S/cm, referred to as the Optimum Conducting Composition (OCC). The enhancement in the conductivity has been obtained by mixed former effect. XRD result shows that the system is completely amorphous. Temperature dependence of conductivity of all compositions were studied & reported. Activation energies (Ea) were also evaluated from the slope of .Log(σ) vs 1000/T, Arrhenius plots.

  9. Evolutionary Optimization of a Charge Transfer Ionic Potential Model for Ta/Ta-Oxide Heterointerfaces

    DOE PAGES

    Sasikumar, Kiran; Narayanan, Badri; Cherukara, Mathew; ...

    2017-03-19

    Heterostructures of tantalum and its oxide are of tremendous technological interest for a myriad of technological applications, including electronics, thermal management, catalysis and biochemistry. In particular, local oxygen stoichiometry variation in TaO x memristors comprising of thermodynamically stable metallic (Ta) and insulating oxide (Ta 2O 5) have been shown to result in fast switching on the subnanosecond timescale over a billion cycles. This rapid switching opens up the potential for advanced functional platforms such as stateful logic operations and neuromorphic computation. Despite its broad importance, an atomistic scale understanding of oxygen stoichiometry variation across Ta/TaO x heterointerfaces, such as duringmore » early stages of oxidation and oxide growth, is not well understood. This is mainly due to the lack of a unified interatomic potential model for tantalum oxides that can accurately describe metallic (Ta), ionic (TaO x) as well as mixed (Ta/TaO x interfaces) bonding environments simultaneously. To address this challenge, we introduce a Charge Transfer Ionic Potential (CTIP) model for Ta/Ta-oxide system by training against lattice parameters, cohesive energies, equations of state (EOS), elastic properties, and surface energies of the various experimentally observed Ta 2O 5 polymorphs (hexagonal, orthorhombic and monoclinic) obtained from density functional theory (DFT) calculations. The best CTIP parameters are determined by employing a global optimization scheme driven by genetic algorithms followed by local Simplex optimization. Our newly developed CTIP potential accurately predicts structure, thermodynamics, energetic ordering of polymorphs, as well as elastic and surface properties of both Ta and Ta 2O 5, in excellent agreement with DFT calculations and experiments. We employ our newly parameterized CTIP potential to investigate the early stages of oxidation and atomic scale mechanisms associated with oxide growth on Ta surface at various temperatures. Furthermore, the CTIP potential developed in this work is an invaluable tool to investigate atomic-scale mechanisms and transport phenomena underlying the response of Ta/TaO x interfaces to external stimuli (e.g, temperature, pressure, strain, electric field etc.), as well as other interesting dynamical phenomena including the physics of switching dynamics in TaO x based memristors and neuromorphic devices.« less

  10. Specific detection of biomolecules in physiological solutions using graphene transistor biosensors

    PubMed Central

    Gao, Ning; Gao, Teng; Yang, Xiao; Dai, Xiaochuan; Zhou, Wei; Zhang, Anqi; Lieber, Charles M.

    2016-01-01

    Nanomaterial-based field-effect transistor (FET) sensors are capable of label-free real-time chemical and biological detection with high sensitivity and spatial resolution, although direct measurements in high–ionic-strength physiological solutions remain challenging due to the Debye screening effect. Recently, we demonstrated a general strategy to overcome this challenge by incorporating a biomolecule-permeable polymer layer on the surface of silicon nanowire FET sensors. The permeable polymer layer can increase the effective screening length immediately adjacent to the device surface and thereby enable real-time detection of biomolecules in high–ionic-strength solutions. Here, we describe studies demonstrating both the generality of this concept and application to specific protein detection using graphene FET sensors. Concentration-dependent measurements made with polyethylene glycol (PEG)-modified graphene devices exhibited real-time reversible detection of prostate specific antigen (PSA) from 1 to 1,000 nM in 100 mM phosphate buffer. In addition, comodification of graphene devices with PEG and DNA aptamers yielded specific irreversible binding and detection of PSA in pH 7.4 1x PBS solutions, whereas control experiments with proteins that do not bind to the aptamer showed smaller reversible signals. In addition, the active aptamer receptor of the modified graphene devices could be regenerated to yield multiuse selective PSA sensing under physiological conditions. The current work presents an important concept toward the application of nanomaterial-based FET sensors for biochemical sensing in physiological environments and thus could lead to powerful tools for basic research and healthcare. PMID:27930344

  11. Specific detection of biomolecules in physiological solutions using graphene transistor biosensors.

    PubMed

    Gao, Ning; Gao, Teng; Yang, Xiao; Dai, Xiaochuan; Zhou, Wei; Zhang, Anqi; Lieber, Charles M

    2016-12-20

    Nanomaterial-based field-effect transistor (FET) sensors are capable of label-free real-time chemical and biological detection with high sensitivity and spatial resolution, although direct measurements in high-ionic-strength physiological solutions remain challenging due to the Debye screening effect. Recently, we demonstrated a general strategy to overcome this challenge by incorporating a biomolecule-permeable polymer layer on the surface of silicon nanowire FET sensors. The permeable polymer layer can increase the effective screening length immediately adjacent to the device surface and thereby enable real-time detection of biomolecules in high-ionic-strength solutions. Here, we describe studies demonstrating both the generality of this concept and application to specific protein detection using graphene FET sensors. Concentration-dependent measurements made with polyethylene glycol (PEG)-modified graphene devices exhibited real-time reversible detection of prostate specific antigen (PSA) from 1 to 1,000 nM in 100 mM phosphate buffer. In addition, comodification of graphene devices with PEG and DNA aptamers yielded specific irreversible binding and detection of PSA in pH 7.4 1x PBS solutions, whereas control experiments with proteins that do not bind to the aptamer showed smaller reversible signals. In addition, the active aptamer receptor of the modified graphene devices could be regenerated to yield multiuse selective PSA sensing under physiological conditions. The current work presents an important concept toward the application of nanomaterial-based FET sensors for biochemical sensing in physiological environments and thus could lead to powerful tools for basic research and healthcare.

  12. Effects of Polymer Structure and Relaxations on Ionic Conductivity in Anion Exchange Membranes with Quaternary Ammonium Functional Groups

    NASA Astrophysics Data System (ADS)

    Maes, Ashley M.

    Anion exchange membranes (AEMs) are of considerable interest to developers and researchers of electrochemical conversion and storage devices such as anion exchange membrane fuel cells (AAEMFCs), alkaline polymer electrolyte electrolysers, redox flow batteries and bioelectrochemical devices. AEMs are generally in competition with more established proton exchange membranes (PEMs), but offer the potential for reduction of materials costs and greater fuel flexibility across these applications. This work includes an introduction to AEMs in the context of fuel cell technologies and some key techniques for AEM characterization. There are many synthetic strategies to incorporate cationic functional groups, which promote anion transport, into a polymer matrix. Two membrane chemistries are investigated in the following chapters. The first is based on a simple synthesis procedure that produced a membrane consisting of random, crosslinked polypropylene- ran-polyethyleneimine with quaternary ammonium functional groups. This membrane had moderate chloride ionic conductivity of 0.03 S cm -1 at 95 °C and high water uptake with minimal dimensional swelling. However, the lack of control of crosslink location and density during synthesis produced a material with a very random nature, making it a poor candidate for more fundamental transport studies. The second membrane chemistry is a block copolymer with a hydrophobic and hydrophilic block. The hydrophobic block was selected to provide favorable mechanical and barrier characteristics while a hydrophilic block was selected to provide water uptake and anion conducting functionalities. Poly(vinyl benzyl trimethyl ammonium bromide)-b-poly(methylbutylene) ([PVBTMA][Br]- b-PMB) was synthesized by partners at the University of Massachusetts-Amherst with varied degrees of functionalization (DF) along the hydrophilic block, resulting in ion exchange capacities ranging from 0.77 to 2.20 mmol g -1. Water uptake, in-plane ionic conductivity and membrane morphology were measured across a series of membranes with the original bromide (Br -) counter-ion. These bulk materials characterization experiments demonstrated that this polymer structure produces well-ordered lamellar morphology with moderate water uptake and competitive ionic conductivity (ca. 40 mS cm-1 at 90 °C and 95% relative humidity). These characteristics make it an appropriate candidate for the following more fundamental investigations of ionic conductivity mechanisms. Broadband electrical spectroscopy (BES) was conducted on one [PVBTMA][Br]- b-PMB sample in the Br- form and analyzed in conjunction with thermal stability and relaxation experiments in Chapter 4. We were able to propose two separate ionic conductivity mechanisms and relate each to physical attributes of the polymer structure. A significant thermal transition was observed at Tdelta , which resulted in a dramatic drop in conductivity. In a continued effort to characterize the ionic conductivity of these block-copolymer membranes, another BES study was conducted on three samples with varying DFs. Samples were converted to hydroxide (OH- ) form so we could contrast the Br- conductivity mechanisms to those in a more relevant counter-ion form. After analysis of the electric response of the material, combined with the thermal analysis by TGA, MDSC and DMA, conductivity mechanisms were described. As in the Br- study, conductivity involves two distinct conduction pathways, sigmaEP and sigmaIP,1. Importantly, we again observed a drop in conductivity at Tdelta in each of these samples, with Tdelta decreasing as the density of functional groups along the hydrophilic block increased. It is undesirable for this transition to occur during operation in a fuel cell or other electrochemical device, so future work to investigate strategies for inhibition are recommended.

  13. Harnessing Solid-State Ionic Transport for Nanomanufacturing and Nanodevices

    ERIC Educational Resources Information Center

    Hsu, Keng Hao

    2009-01-01

    Through this work a new all-solid, ambient processing condition direct metal patterning technique has been developed and characterized. This ionic-transport-based patterning technique is capable of sub-50nm feature resolution under ambient conditions. It generates features with a rate that is comparable to conventional dry-etching techniques. A…

  14. State-of-the-Art pH Electrode Quality Control for Measurements of Acidic, Low Ionic Strength Waters.

    ERIC Educational Resources Information Center

    Stapanian, Martin A.; Metcalf, Richard C.

    1990-01-01

    Described is the derivation of the relationship between the pH measurement error and the resulting percentage error in hydrogen ion concentration including the use of variable activity coefficients. The relative influence of the ionic strength of the solution on the percentage error is shown. (CW)

  15. Temperature-dependent gel-type ionic liquid compounds based on vanadium-substituted polyoxometalates with Keggin structure.

    PubMed

    Huang, Tianpei; Xie, Zhirong; Wu, Qingyin; Yan, Wenfu

    2016-03-07

    A series of temperature-dependent gel-type ionic liquid compounds have been synthesized from 1-(3-sulfonic group) propyl-3-methyl imidazolium (abbreviated as MIMPS) and three vanadium-substituted heteropoly acids H5SiW11VO40, H5SiMo11VO40 and H7SiW9V3O40. The designed and synthesized gel-type polyoxometalate ionic liquids (POM-ILs) have demonstrated a tendency to exhibit a layered structure. Moreover, they can undergo a phase transformation from a viscous gel-state to a liquid-state below 100 °C, and ionic conductivity up to 10(-3) S cm(-1) was observed at 120 °C. Cyclic voltammetry was carried out to study their electrochemical properties in organic solutions, and it was found that the oxidizability of the three POM-ILs decreases in the order: [MIMPS]7SiW9V3O40 > [MIMPS]5SiMo11VO40 > [MIMPS]5SiW11VO40. This result indicates that the redox behavior can be tuned by changing the chemical composition of the heteropolyanions.

  16. The effect of pH and ionic strength of dissolution media on in-vitro release of two model drugs of different solubilities from HPMC matrices.

    PubMed

    Asare-Addo, Kofi; Conway, Barbara R; Larhrib, Hassan; Levina, Marina; Rajabi-Siahboomi, Ali R; Tetteh, John; Boateng, Joshua; Nokhodchi, Ali

    2013-11-01

    The evaluation of the effects of different media ionic strengths and pH on the release of hydrochlorothiazide, a poorly soluble drug, and diltiazem hydrochloride, a cationic and soluble drug, from a gel forming hydrophilic polymeric matrix was the objective of this study. The drug to polymer ratio of formulated tablets was 4:1. Hydrochlorothiazide or diltiazem HCl extended release (ER) matrices containing hypromellose (hydroxypropyl methylcellulose (HPMC)) were evaluated in media with a pH range of 1.2-7.5, using an automated USP type III, Bio-Dis dissolution apparatus. The ionic strength of the media was varied over a range of 0-0.4M to simulate the gastrointestinal fed and fasted states and various physiological pH conditions. Sodium chloride was used for ionic regulation due to its ability to salt out polymers in the midrange of the lyotropic series. The results showed that the ionic strength had a profound effect on the drug release from the diltiazem HCl K100LV matrices. The K4M, K15M and K100M tablets however withstood the effects of media ionic strength and showed a decrease in drug release to occur with an increase in ionic strength. For example, drug release after the 1h mark for the K100M matrices in water was 36%. Drug release in pH 1.2 after 1h was 30%. An increase of the pH 1.2 ionic strength to 0.4M saw a reduction of drug release to 26%. This was the general trend for the K4M and K15M matrices as well. The similarity factor f2 was calculated using drug release in water as a reference. Despite similarity occurring for all the diltiazem HCl matrices in the pH 1.2 media (f2=64-72), increases of ionic strength at 0.2M and 0.4M brought about dissimilarity. The hydrochlorothiazide tablet matrices showed similarity at all the ionic strength tested for all polymers (f2=56-81). The values of f2 however reduced with increasing ionic strengths. DSC hydration results explained the hydrochlorothiazide release from their HPMC matrices. There was an increase in bound water as ionic strengths increased. Texture analysis was employed to determine the gel strength and also to explain the drug release for the diltiazem hydrochloride. This methodology can be used as a valuable tool for predicting potential ionic effects related to in vivo fed and fasted states on drug release from hydrophilic ER matrices. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Probing the solvation structure and dynamics in ionic liquids by time-resolved infrared spectroscopy of 4-(dimethylamino)benzonitrile.

    PubMed

    Ando, Rômulo A; Brown-Xu, Samantha E; Nguyen, Lisa N Q; Gustafson, Terry L

    2017-09-20

    In this work we demonstrate the use of the push-pull model system 4-(dimethylamino)benzonitrile (DMABN) as a convenient molecular probe to investigate the local solvation structure and dynamics by means of time-resolved infrared spectroscopy (TRIR). The photochemical features associated with this system provide several advantages due to the high charge separation between the ground and charge transfer states involving the characteristic nitrile bond, and an excited state lifetime that is long enough to observe the slow solvation dynamics in organic solvents and ionic liquids. The conversion from a locally excited state to an intramolecular charge transfer state (LE-ICT) in ionic liquids shows similar kinetic lifetimes in comparison to organic solvents. This similarity confirms that such conversion depends solely on the intramolecular reorganization of DMABN in the excited state, and not by the dynamics of solvation. In contrast, the relative shift of the ν(CN) vibration during the relaxation of the ICT state reveals two distinct lifetimes that are sensitive to the solvent environment. This study reveals a fast time component which is attributed to the dipolar relaxation of the solvent and a slower time component related to the rotation of the dimethylamino group of DMABN.

  18. General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors.

    PubMed

    Gao, Ning; Zhou, Wei; Jiang, Xiaocheng; Hong, Guosong; Fu, Tian-Ming; Lieber, Charles M

    2015-03-11

    Transistor-based nanoelectronic sensors are capable of label-free real-time chemical and biological detection with high sensitivity and spatial resolution, although the short Debye screening length in high ionic strength solutions has made difficult applications relevant to physiological conditions. Here, we describe a new and general strategy to overcome this challenge for field-effect transistor (FET) sensors that involves incorporating a porous and biomolecule permeable polymer layer on the FET sensor. This polymer layer increases the effective screening length in the region immediately adjacent to the device surface and thereby enables detection of biomolecules in high ionic strength solutions in real-time. Studies of silicon nanowire field-effect transistors with additional polyethylene glycol (PEG) modification show that prostate specific antigen (PSA) can be readily detected in solutions with phosphate buffer (PB) concentrations as high as 150 mM, while similar devices without PEG modification only exhibit detectable signals for concentrations ≤10 mM. Concentration-dependent measurements exhibited real-time detection of PSA with a sensitivity of at least 10 nM in 100 mM PB with linear response up to the highest (1000 nM) PSA concentrations tested. The current work represents an important step toward general application of transistor-based nanoelectronic detectors for biochemical sensing in physiological environments and is expected to open up exciting opportunities for in vitro and in vivo biological sensing relevant to basic biology research through medicine.

  19. Ultrahigh-throughput exfoliation of graphite into pristine 'single-layer' graphene using microwaves and molecularly engineered ionic liquids.

    PubMed

    Matsumoto, Michio; Saito, Yusuke; Park, Chiyoung; Fukushima, Takanori; Aida, Takuzo

    2015-09-01

    Graphene has shown much promise as an organic electronic material but, despite recent achievements in the production of few-layer graphene, the quantitative exfoliation of graphite into pristine single-layer graphene has remained one of the main challenges in developing practical devices. Recently, reduced graphene oxide has been recognized as a non-feasible alternative to graphene owing to variable defect types and levels, and attention is turning towards reliable methods for the high-throughput exfoliation of graphite. Here we report that microwave irradiation of graphite suspended in molecularly engineered oligomeric ionic liquids allows for ultrahigh-efficiency exfoliation (93% yield) with a high selectivity (95%) towards 'single-layer' graphene (that is, with thicknesses <1 nm) in a short processing time (30 minutes). The isolated graphene sheets show negligible structural deterioration. They are also readily redispersible in oligomeric ionic liquids up to ~100 mg ml(-1), and form physical gels in which an anisotropic orientation of graphene sheets, once induced by a magnetic field, is maintained.

  20. Influence of humidity on performance and microscopic dynamics of an ionic liquid in supercapacitor

    NASA Astrophysics Data System (ADS)

    Osti, Naresh C.; Dyatkin, Boris; Thompson, Matthew W.; Tiet, Felix; Zhang, Pengfei; Dai, Sheng; Tyagi, Madhusudan; Cummings, Peter T.; Gogotsi, Yury; Wesolowski, David J.; Mamontov, Eugene

    2017-08-01

    We investigated the influence of water molecules on the diffusion, dynamics, and electrosorption of a room temperature ionic liquid (RTIL), [BMI m+] [T f2N-] , confined in carbide-derived carbon with a bimodal nanoporosity. Water molecules in pores improved power densities and rate handling abilities of these materials in supercapacitor electrode configurations. We measured the water-dependent microscopic dynamics of the RTIL cations using quasielastic neutron scatting (QENS). The ionic liquid demonstrated greater mobility with increasing water uptake, facilitated by the nanoporous carbon environment, up to a well-defined saturation point. We concluded that water molecules displaced RTIL ions attached to the pore surfaces and improved the diffusivity of the displaced cations. This effect consequently increased capacitance and rate handling of the electrolyte in water-containing pores. Our findings suggest the possible effect of immiscible co-solvents on energy and power densities of energy storage devices, as well as the operating viability of nonaqueous supercapacitor electrolytes in humid environments.

  1. Beyond the Debye length in high ionic strength solution: direct protein detection with field-effect transistors (FETs) in human serum.

    PubMed

    Chu, Chia-Ho; Sarangadharan, Indu; Regmi, Abiral; Chen, Yen-Wen; Hsu, Chen-Pin; Chang, Wen-Hsin; Lee, Geng-Yen; Chyi, Jen-Inn; Chen, Chih-Chen; Shiesh, Shu-Chu; Lee, Gwo-Bin; Wang, Yu-Lin

    2017-07-12

    In this study, a new type of field-effect transistor (FET)-based biosensor is demonstrated to be able to overcome the problem of severe charge-screening effect caused by high ionic strength in solution and detect proteins in physiological environment. Antibody or aptamer-immobilized AlGaN/GaN high electron mobility transistors (HEMTs) are used to directly detect proteins, including HIV-1 RT, CEA, NT-proBNP and CRP, in 1X PBS (with 1%BSA) or human sera. The samples do not need any dilution or washing process to reduce the ionic strength. The sensor shows high sensitivity and the detection takes only 5 minutes. The designs of the sensor, the methodology of the measurement, and the working mechanism of the sensor are discussed and investigated. A theoretical model is proposed based on the finding of the experiments. This sensor is promising for point-of-care, home healthcare, and mobile diagnostic device.

  2. Quantitative Determination on Ionic-Liquid-Gating Control of Interfacial Magnetism

    DOE PAGES

    Zhao, Shishun; Zhou, Ziyao; Peng, Bin; ...

    2017-03-03

    Ionic-liquid gating on a functional thin film with a low voltage has drawn a lot of attention due to rich chemical, electronic, and magnetic phenomena at the interface. A key challenge in quantitative determination of voltage-controlled magnetic anisotropy (VCMA) in Au/[DEME] +[TFSI] -/Co field-effect transistor heterostructures is addressed. The magnetic anisotropy change as response to the gating voltage is precisely detected by in situ electron spin resonance measurements. Furthermore, a reversible change of magnetic anisotropy up to 219 Oe is achieved with a low gating voltage of 1.5 V at room temperature, corresponding to a record high VCMA coefficient ofmore » ≈146 Oe V -1. Two gating effects, the electrostatic doping and electrochemical reaction, are distinguished at various gating voltage regions, as confirmed by X-ray photoelectron spectroscopy and atomic force microscopy experiments. Our work shows a unique ionic-liquid-gating system for strong interfacial magnetoelectric coupling with many practical advantages, paving the way toward ion-liquid-gating spintronic/electronic devices.« less

  3. An Investigation of Ionic Wind Propulsion

    NASA Technical Reports Server (NTRS)

    Wilson, Jack; Perkins, Hugh D.; Thompson, William K.

    2009-01-01

    A corona discharge device generates an ionic wind and thrust, when a high voltage corona discharge is struck between sharply pointed electrodes and larger radius ground electrodes. The objective of this study was to examine whether this thrust could be scaled to values of interest for aircraft propulsion. An initial experiment showed that the thrust observed did equal the thrust of the ionic wind. Different types of high voltage electrodes were tried, including wires, knife-edges, and arrays of pins. A pin array was found to be optimum. Parametric experiments, and theory, showed that the thrust per unit power could be raised from early values of 5 N/kW to values approaching 50 N/kW, but only by lowering the thrust produced, and raising the voltage applied. In addition to using DC voltage, pulsed excitation, with and without a DC bias, was examined. The results were inconclusive as to whether this was advantageous. It was concluded that the use of a corona discharge for aircraft propulsion did not seem very practical.

  4. Inverted battery design as ion generator for interfacing with biosystems

    DOE PAGES

    Wang, Chengwei; Fu, Kun; Dai, Jiaqi; ...

    2017-07-24

    In a lithium-ion battery, electrons are released from the anode and go through an external electronic circuit to power devices, while ions simultaneously transfer through internal ionic media to meet with electrons at the cathode. Inspired by the fundamental electrochemistry of the lithium-ion battery, we envision a cell that can generate a current of ions instead of electrons, so that ions can be used for potential applications in biosystems. Based on this concept, we report an ‘electron battery’ configuration in which ions travel through an external circuit to interact with the intended biosystem whereas electrons are transported internally. As amore » proof-of-concept, we demonstrate the application of the electron battery by stimulating a monolayer of cultured cells, which fluoresces a calcium ion wave at a controlled ionic current. Electron batteries with the capability to generate a tunable ionic current could pave the way towards precise ion-system control in a broad range of biological applications« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ertem, S. Piril; Caire, Benjamin R.; Tsai, Tsung-Han

    Anion exchange membranes (AEMs) are a promising class of materials for applications that require selective ion transport, such as fuel cells, water purification, and electrolysis devices. Studies of structure–morphology–property relationships of ion-exchange membranes revealed that block copolymers exhibit improved ion conductivity and mechanical properties due to their microphase-separated morphologies with well-defined ionic domains. While most studies focused on symmetric diblock or triblock copolymers, here, the first example of a midblock quaternized pentablock AEM is presented. A symmetric ABCBA pentablock copolymer was functionalized to obtain a midblock brominated polymer. Solution cast films were then quaternized to obtain AEMs with resulting ionmore » exchange capacities (IEC) ranging from 0.4 to 0.9 mmol/g. Despite the relatively low IEC, the polymers were highly conductive (up to 60 mS/cm Br2 at 90 8C and 95%RH) with low water absorption (<25 wt %) and maintained adequate mechanical properties in both dry and hydrated conditions. Xray scattering and transmission electron microscopy (TEM) revealed formation of cylindrical non-ionic domains in a connected ionic phase.« less

  6. Inverted battery design as ion generator for interfacing with biosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chengwei; Fu, Kun; Dai, Jiaqi

    In a lithium-ion battery, electrons are released from the anode and go through an external electronic circuit to power devices, while ions simultaneously transfer through internal ionic media to meet with electrons at the cathode. Inspired by the fundamental electrochemistry of the lithium-ion battery, we envision a cell that can generate a current of ions instead of electrons, so that ions can be used for potential applications in biosystems. Based on this concept, we report an ‘electron battery’ configuration in which ions travel through an external circuit to interact with the intended biosystem whereas electrons are transported internally. As amore » proof-of-concept, we demonstrate the application of the electron battery by stimulating a monolayer of cultured cells, which fluoresces a calcium ion wave at a controlled ionic current. Electron batteries with the capability to generate a tunable ionic current could pave the way towards precise ion-system control in a broad range of biological applications« less

  7. Quantitative Determination on Ionic-Liquid-Gating Control of Interfacial Magnetism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Shishun; Zhou, Ziyao; Peng, Bin

    Ionic-liquid gating on a functional thin film with a low voltage has drawn a lot of attention due to rich chemical, electronic, and magnetic phenomena at the interface. A key challenge in quantitative determination of voltage-controlled magnetic anisotropy (VCMA) in Au/[DEME] +[TFSI] -/Co field-effect transistor heterostructures is addressed. The magnetic anisotropy change as response to the gating voltage is precisely detected by in situ electron spin resonance measurements. Furthermore, a reversible change of magnetic anisotropy up to 219 Oe is achieved with a low gating voltage of 1.5 V at room temperature, corresponding to a record high VCMA coefficient ofmore » ≈146 Oe V -1. Two gating effects, the electrostatic doping and electrochemical reaction, are distinguished at various gating voltage regions, as confirmed by X-ray photoelectron spectroscopy and atomic force microscopy experiments. Our work shows a unique ionic-liquid-gating system for strong interfacial magnetoelectric coupling with many practical advantages, paving the way toward ion-liquid-gating spintronic/electronic devices.« less

  8. Inverted battery design as ion generator for interfacing with biosystems

    PubMed Central

    Wang, Chengwei; Fu, Kun (Kelvin); Dai, Jiaqi; Lacey, Steven D.; Yao, Yonggang; Pastel, Glenn; Xu, Lisha; Zhang, Jianhua; Hu, Liangbing

    2017-01-01

    In a lithium-ion battery, electrons are released from the anode and go through an external electronic circuit to power devices, while ions simultaneously transfer through internal ionic media to meet with electrons at the cathode. Inspired by the fundamental electrochemistry of the lithium-ion battery, we envision a cell that can generate a current of ions instead of electrons, so that ions can be used for potential applications in biosystems. Based on this concept, we report an ‘electron battery’ configuration in which ions travel through an external circuit to interact with the intended biosystem whereas electrons are transported internally. As a proof-of-concept, we demonstrate the application of the electron battery by stimulating a monolayer of cultured cells, which fluoresces a calcium ion wave at a controlled ionic current. Electron batteries with the capability to generate a tunable ionic current could pave the way towards precise ion-system control in a broad range of biological applications. PMID:28737174

  9. A soft biomolecule actuator based on a highly functionalized bacterial cellulose nano-fiber network with carboxylic acid groups.

    PubMed

    Wang, Fan; Jeon, Jin-Han; Park, Sukho; Kee, Chang-Doo; Kim, Seong-Jun; Oh, Il-Kwon

    2016-01-07

    Upcoming human-related applications such as soft wearable electronics, flexible haptic systems, and active bio-medical devices will require bio-friendly actuating materials. Here, we report a soft biomolecule actuator based on carboxylated bacterial cellulose (CBC), ionic liquid (IL), and poly (3,4-ethylenedioxythiophene)-poly(styrenesulfonate) ( PSS) electrodes. Soft and biocompatible polymer-IL composites were prepared via doping of CBC with ILs. The highly conductive PSS layers were deposited on both sides of the CBC-IL membranes by a dip-coating technique to yield a sandwiched actuator system. Ionic conductivity and ionic exchange capacity of the CBC membrane can be increased up to 22.8 times and 1.5 times compared with pristine bacterial cellulose (BC), respectively, resulting in 8 times large bending deformation than the pure BC actuators with metallic electrodes in an open air environment. The developed CBC-IL actuators show significant progress in the development of biocompatible and soft actuating materials with quick response, low operating voltage and comparatively large bending deformation.

  10. Non-haloaluminate room-temperature ionic liquids in electrochemistry--a review.

    PubMed

    Buzzeo, Marisa C; Evans, Russell G; Compton, Richard G

    2004-08-20

    Some twenty-five years after they first came to prominence as alternative electrochemical solvents, room temperature ionic liquids (RTILs) are currently being employed across an increasingly wide range of chemical fields. This review examines the current state of ionic liquid-based electrochemistry, with particular focus on the work of the last decade. Being composed entirely of ions and possesing wide electrochemical windows (often in excess of 5 volts), it is not difficult to see why these compounds are seen by electrochemists as attractive potential solvents. Accordingly, an examination of the pertinent properties of ionic liquids is presented, followed by an assessment of their application to date across the various electrochemical disciplines, concluding with an outlook viewing current problems and directions.

  11. Sodium bromide additive improved film morphology and performance in perovskite light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Li, Jinghai; Cai, Feilong; Yang, Liyan; Ye, Fanghao; Zhang, Jinghui; Gurney, Robert S.; Liu, Dan; Wang, Tao

    2017-07-01

    Organometal halide perovskite is a promising material to fabricate light-emitting diodes (LEDs) via solution processing due to its exceptional optoelectronic properties. However, incomplete precursor conversion and various defect states in the perovskite light-emitting layer lead to low luminance and external quantum efficiency of perovskite LEDs. We show here the addition of an optimum amount of sodium bromide in the methylammonium lead bromide (MAPbBr3) precursor during a one-step perovskite solution casting process can effectively improve the film coverage, enhance the crystallinity, and passivate ionic defects on the surface of MAPbBr3 crystal grains, resulting in LEDs with a reduced turn-on voltage from 2.8 to 2.3 V and an enhanced maximum luminance from 1059 to 6942 Cd/m2 when comparing with the pristine perovskite-based device.

  12. Chemical instability leads to unusual chemical-potential-independent defect formation and diffusion in perovskite solar cell material CH 3 NH 3 PbI 3

    DOE PAGES

    Ming, Wenmei; Chen, Shiyou; East China Normal Univ.; ...

    2016-10-13

    Methylammonium (MA) lead triiodide (MAPbI 3) has recently emerged as a promising solar cell material. But, MAPbI3 is known to have chemical instability, i.e., MAPbI3 is prone to decomposition into MAI and PbI 2 even at moderate temperatures (e.g. 330 K). Here, we show that the chemical instability, as reflected by the calculated negligible enthalpy of formation of MAPbI 3 (with respect to MAI and PbI 2), has an unusual and important consequence for defect properties, i.e., defect formation energies in low-carrier-density MAPbI 3 are nearly independent of the chemical potentials of constituent elements and thus can be uniquely determined. This allows straightforward calculations of defect concentrations and the activation energy of ionic conductivity (the sum of the formation energy and the diffusion barrier of the charged mobile defect) in MAPbI 3. Furthermore, the calculated activation energy for ionic conductivity due to Vmore » $$+\\atop{1}$$ diffusion is in excellent agreement with the experimental values, which demonstrates unambiguously that V$$+\\atop{1}$$ is the dominant diffusing defect and is responsible for the observed ion migration and device polarization in MAPbI3 solar cells. The calculated low formation energy of a Frenkel pair (V$$+\\atop{1}$$ -I$$-\\atop{i}$$ and low diffusion barriers of V$$+\\atop{1}$$ and Image I$$-\\atop{i}$$ suggest that the iodine ion migration and the resulting device polarization may occur even in single-crystal devices and grain-boundary-passivated polycrystalline thin film devices (which were previously suggested to be free from ion-migration-induced device polarization), leading to device degradation. Moreover, the device polarization due to the Frenkel pair (which has a relatively low concentration) may take a long time to develop and thus may avoid the appearance of the current–voltage hysteresis at typical scan rates.« less

  13. Single particle electrochemical sensors and methods of utilization

    DOEpatents

    Schoeniger, Joseph [Oakland, CA; Flounders, Albert W [Berkeley, CA; Hughes, Robert C [Albuquerque, NM; Ricco, Antonio J [Los Gatos, CA; Wally, Karl [Lafayette, CA; Kravitz, Stanley H [Placitas, NM; Janek, Richard P [Oakland, CA

    2006-04-04

    The present invention discloses an electrochemical device for detecting single particles, and methods for using such a device to achieve high sensitivity for detecting particles such as bacteria, viruses, aggregates, immuno-complexes, molecules, or ionic species. The device provides for affinity-based electrochemical detection of particles with single-particle sensitivity. The disclosed device and methods are based on microelectrodes with surface-attached, affinity ligands (e.g., antibodies, combinatorial peptides, glycolipids) that bind selectively to some target particle species. The electrodes electrolyze chemical species present in the particle-containing solution, and particle interaction with a sensor element modulates its electrolytic activity. The devices may be used individually, employed as sensors, used in arrays for a single specific type of particle or for a range of particle types, or configured into arrays of sensors having both these attributes.

  14. Self-Healable and Cold-Resistant Supercapacitor Based on a Multifunctional Hydrogel Electrolyte.

    PubMed

    Tao, Feng; Qin, Liming; Wang, Zhikui; Pan, Qinmin

    2017-05-10

    Excellent self-healability and cold resistance are attractive properties for a portable/wearable energy-storage device. However, achieving the features is fundamentally dependent on an intrinsically self-healable electrolyte with high ionic conduction at low temperature. Here we report such a hydrogel electrolyte comprising sodium alginate cross-linked by dynamic catechol-borate ester bonding. Since its dynamically cross-linked alginate network can tolerate high-content inorganic salts, the electrolyte possesses excellent healing efficiency/cyclability but also high ionic conduction at both room temperature and low temperature. A supercapacitor with the multifunctional hydrogel electrolyte completely restores its capacitive properties even after breaking/healing for 10 cycles without external stimulus. At a low temperature of -10 °C, the capacitor is even able to maintain at least 80% of its room-temperature capacitance. Our investigations offer a strategy to assemble self-healable and cold-resistant energy storage devices by using a multifunctional hydrogel electrolyte with rationally designed polymeric networks, which has potential application in portable/wearable electronics, intelligent apparel or flexible robot, and so on.

  15. Surface effects on ionic Coulomb blockade in nanometer-size pores

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroya; Iizuka, Hideo; Pershin, Yuriy V.; Di Ventra, Massimiliano

    2018-01-01

    Ionic Coulomb blockade in nanopores is a phenomenon that shares some similarities but also differences with its electronic counterpart. Here, we investigate this phenomenon extensively using all-atom molecular dynamics of ionic transport through nanopores of about one nanometer in diameter and up to several nanometers in length. Our goal is to better understand the role of atomic roughness and structure of the pore walls in the ionic Coulomb blockade. Our numerical results reveal the following general trends. First, the nanopore selectivity changes with its diameter, and the nanopore position in the membrane influences the current strength. Second, the ionic transport through the nanopore takes place in a hopping-like fashion over a set of discretized states caused by local electric fields due to membrane atoms. In some cases, this creates a slow-varying ‘crystal-like’ structure of ions inside the nanopore. Third, while at a given voltage, the resistance of the nanopore depends on its length, the slope of this dependence appears to be independent of the molarity of ions. An effective kinetic model that captures the ionic Coulomb blockade behavior observed in MD simulations is formulated.

  16. Surface effects on ionic Coulomb blockade in nanometer-size pores.

    PubMed

    Tanaka, Hiroya; Iizuka, Hideo; Pershin, Yuriy V; Ventra, Massimiliano Di

    2018-01-12

    Ionic Coulomb blockade in nanopores is a phenomenon that shares some similarities but also differences with its electronic counterpart. Here, we investigate this phenomenon extensively using all-atom molecular dynamics of ionic transport through nanopores of about one nanometer in diameter and up to several nanometers in length. Our goal is to better understand the role of atomic roughness and structure of the pore walls in the ionic Coulomb blockade. Our numerical results reveal the following general trends. First, the nanopore selectivity changes with its diameter, and the nanopore position in the membrane influences the current strength. Second, the ionic transport through the nanopore takes place in a hopping-like fashion over a set of discretized states caused by local electric fields due to membrane atoms. In some cases, this creates a slow-varying 'crystal-like' structure of ions inside the nanopore. Third, while at a given voltage, the resistance of the nanopore depends on its length, the slope of this dependence appears to be independent of the molarity of ions. An effective kinetic model that captures the ionic Coulomb blockade behavior observed in MD simulations is formulated.

  17. The influence of the mould cooling temperature on the surface appearance and the internal quality of ESR ingots

    NASA Astrophysics Data System (ADS)

    Kubin, M.; Ofner, B.; Holzgruber, H.; Schneider, R.; Enzenhofer, D.; Filzwieser, A.; Konetschnik, S.

    2016-07-01

    One of the main benefits of the ESR process is to obtain an ingot surface which is smooth and allows a subsequent forging operation without any surface dressing. The main influencing factor on surface quality is the precise controlling of the process such as melt rate and electrode immersion depth. However, the relatively strong cooling effect of water as a cooling medium can result in the solidification of the meniscus of the liquid steel on the boundary liquid steel and slag which is most likely the origin of surface defects. The usage of different cooling media like ionic liquids, a salt solution which can be heated up to 250°C operating temperature might diminish the meniscus solidification phenomenon. This paper shows the first results of the usage of an ionic liquid as a mould cooling medium. In doing so, 210mm diameter ESR ingots were produced with the laboratory scale ESR furnace at the university of applied science using an ionic liquid cooling device developed by the company METTOP. For each trial melt different inlet and outlet temperatures of the ionic liquid were chosen and the impact on the surface appearance and internal quality were analyzed. Furthermore the influence on the energy balance is also briefly highlighted. Ultimately, an effect of the usage of ionic liquids as a cooling medium could be determined and these results will be described in detail within the scope of this paper.

  18. Transport and remobilization of multi-walled carbon nanotubes in porous media during dynamic saturation change

    NASA Astrophysics Data System (ADS)

    Sharma, P.

    2012-04-01

    Nanotechnology is one of the most important technologies in this century and it is evoking a new industrial revolution. Carbon nanotubes (CNTs) are important engineered nanoparticles with unique and beneficial properties. As a result, CNT has been used in a wide range of commercial products including electronics, optical devices and drug delivery leading to their disposal in the natural environment. Literature studies have investigated the mobility of CNTs in saturated porous media under differing physical and chemical conditions. However CNT transport in temporarily changing porous media water content has not been investigated thus far (a common scenario with rainfall/infiltration events in the vadose zone). This study investigated the mobilization of multi-walled CNTs (MCNTs) in repeated wetting and drying cycles with varying flow rates and ionic strength of the inflow solution. Imbibition-drainage-imbibition cycle experiments suggest that MCNTs mobilization increased with increase in flow rates. MCNTs mobilization occurred only with first imbibition events at low ionic strengths however less mobilization happened for higher ionic strength inflow solution in the first imbibition cycle and additional MCNTs were found in the outflow solution in second imbibition cycle, using low ionic strength solution. This observation was likely due to the attachment force between MCNTs and sand surface. Most of the MCNT mobilization occurred during liquid-gas interface movement with less chance of MCNTs to jump the energy barrier at higher ionic strength solution. As a result, less detachment of MCNTs occurred from the sand surface during drainage.

  19. Electrolytes For Electrooptic Devices Comprising Ionic Liqu Ids

    DOEpatents

    Warner, Benjamin P.; McCleskey, T. Mark; Agrawal, Anoop; Cronin, John P.; Tonazzi, Juan C. L.; Burrell, Anthony K.

    2005-02-08

    Electrolyte solutions of soluble bifunctional redox dyes in molten salt solvent may be used to prepare electrooptic devices with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3 SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3 SO.sub.2).sub.2 N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3 CF.sub.2 SO.sub.2).sub.2 N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3 SO.sub.2).sub.3 C.sup.-).

  20. Nano-sponge ionic liquid-polymer composite electrolytes for solid-state lithium power sources

    NASA Astrophysics Data System (ADS)

    Liao, Kang-Shyang; Sutto, Thomas E.; Andreoli, Enrico; Ajayan, Pulickel; McGrady, Karen A.; Curran, Seamus A.

    Solid polymer gel electrolytes composed of 75 wt.% of the ionic liquid, 1- n-butyl-2,3-dimethylimidazolium bis-trifluoromethanesulfonylimide with 1.0 M lithium bis-trifluoromethanesulfonylimide and 25 wt.% poly(vinylidenedifluoro-hexafluoropropene) are characterized as the electrolyte/separator in solid-state lithium batteries. The ionic conductivity of these gels ranges from 1.5 to 2.0 mS cm -1, which is several orders of magnitude more conductive than any of the more commonly used solid polymers, and comparable to the best solid gel electrolytes currently used in industry. TGA indicates that these polymer gel electrolytes are thermally stable to over 280 °C, and do not begin to thermally decompose until over 300 °C; exhibiting a significant advancement in the safety of lithium batteries. Atomic force microscopy images of these solid thin films indicate that these polymer gel electrolytes have the structure of nano-sponges, with a sub-micron pore size. For these thin film batteries, 150 charge-discharge cycles are run for Li xCoO 2 where x is cycled between 0.95 down to 0.55. Minimal internal resistance effects are observed over the charging cycles, indicating the high ionic conductivity of the ionic liquid solid polymer gel electrolyte. The overall cell efficiency is approximately 98%, and no significant loss in battery efficiency is observed over the 150 cycles.

Top