Ärrälä, Minna; Hafiz, Hasnain; Mou, Daixiang; ...
2016-10-27
Here, we have obtained angle-resolved photoemission (ARPES) spectra from single crystals of the topological insulator material Bi 2Te 3 using tunable laser spectrometer. The spectra were collected for eleven different photon energies ranging from 5.57 to 6.70 eV for incident light polarized linearly along two different in-plane directions. Parallel first-principles, fully relativistic computations of photo-intensities were carried out using the experimental geometry within the framework of the one-step model of photoemission. Good overall accord between theory and experiment is used to gain insight into how properties of the initial and final state band structures as well as those of themore » topological surface states and their spin-textures are reflected in the laser-ARPES spectra. In conclusion, our analysis reveals that laser-ARPES is sensitive to both the initial state k z dispersion and the presence of delicate gaps in the final state electronic spectrum.« less
Quasi four-level Tm:LuAG laser
NASA Technical Reports Server (NTRS)
Jani, Mahendra G. (Inventor); Barnes, Norman P. (Inventor); Hutcheson, Ralph L. (Inventor); Rodriguez, Waldo J. (Inventor)
1997-01-01
A quasi four-level solid-state laser is provided. A laser crystal is disposed in a laser cavity. The laser crystal has a LuAG-based host material doped to a final concentration between about 2% and about 7% thulium (Tm) ions. For the more heavily doped final concentrations, the LuAG-based host material is a LuAG seed crystal doped with a small concentration of Tm ions. Laser diode arrays are disposed transversely to the laser crystal for energizing the Tm ions.
Ultrafast Laser System for Producing on-Demand Single-and Multi-Photon Quantum States
2015-09-20
14-Mar-2015 Approved for Public Release; Distribution Unlimited Final Report: Ultrafast laser system for producing on-demand single- and multi...Champaign, IL 61820 -7406 14-Mar-2015 ABSTRACT Number of Papers published in peer-reviewed journals: Final Report: Ultrafast laser system for producing
ERIC Educational Resources Information Center
North Central Technical Inst., Wausau, WI.
This final report contains the program proposal with supporting data for developing curriculum materials for and implementing an associate-degree laser technology program at the North Central Technical Institute. The proposal outline provides this information: (1) objectives for the program designed to prepare a technician to safely operate,…
NASA Technical Reports Server (NTRS)
Frese, Erich A.; Chiragh, Furqan L.; Switzer, Robert; Vasilyev, Aleksey A.; Thomes, Joe; Coyle, D. Barry; Stysley, Paul R.
2018-01-01
Flight quality solid-state lasers require a unique and extensive set of testing and qualification processes, both at the system and component levels to insure the laser's promised performance. As important as the overall laser transmitter design is, the quality and performance of individual subassemblies, optics, and electro-optics dictate the final laser unit's quality. The Global Ecosystem Dynamics Investigation (GEDI) laser transmitters employ all the usual components typical for a diode-pumped, solid-state laser, yet must each go through their own individual process of specification, modeling, performance demonstration, inspection, and destructive testing. These qualification processes and results for the laser crystals, laser diode arrays, electro-optics, and optics, will be reviewed as well as the relevant critical issues encountered, prior to their installation in the GEDI flight laser units.
Quantum dynamics of charge state in silicon field evaporation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silaeva, Elena P.; Uchida, Kazuki; Watanabe, Kazuyuki, E-mail: kazuyuki@rs.kagu.tus.ac.jp
2016-08-15
The charge state of an ion field-evaporating from a silicon-atom cluster is analyzed using time-dependent density functional theory coupled to molecular dynamics. The final charge state of the ion is shown to increase gradually with increasing external electrostatic field in agreement with the average charge state of silicon ions detected experimentally. When field evaporation is triggered by laser-induced electronic excitations the charge state also increases with increasing intensity of the laser pulse. At the evaporation threshold, the charge state of the evaporating ion does not depend on the electrostatic field due to the strong contribution of laser excitations to themore » ionization process both at low and high laser energies. A neutral silicon atom escaping the cluster due to its high initial kinetic energy is shown to be eventually ionized by external electrostatic field.« less
Graded Reflectivity Mirror for the Solid State Heat Capacity Laser Final Report CRADA No. TC-2085-04
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, R.; Davis, J. A.
This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and the Boeing Company, to develop a Graded Reflectivity Mirror (GRM) to achieve improved near field fill and higher brightness in the far field output of LLNL’s Solid State Heat Capacity Laser (SSHCL).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng Taiwang; Brown, Alex
2004-12-01
The interaction of a two-level dipolar molecule with two laser pulses, where one laser's frequency is tuned to the energy level separation (pump laser) while the second laser's frequency is extremely small (probe laser), is investigated. A dipolar molecule is one with a nonzero difference between the permanent dipole moments of the molecular states. As shown previously [A. Brown, Phys. Rev. A 66, 053404 (2002)], the final population transfer between the two levels exhibits a dependence on the carrier-envelope phase of the probe laser. Based on the rotating-wave approximation (RWA), an effective Hamiltonian is derived to account for the basicmore » characteristics of the carrier-envelope phase dependence effect. By analysis of the effective Hamiltonian, scaling properties of the system are found with regard to field strengths, pulse durations, and frequencies. According to these scaling properties, the final-state population transfer can be controlled by varying the carrier-envelope phase of the probe laser field using lasers with weak field strengths (low intensities) and relatively long pulse durations. In order to examine the possible roles of background states, the investigation is extended to a three-level model. It is demonstrated that the carrier-envelope phase effect still persists in a well-defined manner even when neighboring energy levels are present. These results illustrate the potential of utilizing excitation in dipolar molecules as a means of measuring the carrier-envelope phase of a laser pulse or if one can manipulate the carrier envelope phase, as a method of controlling population transfer in dipolar molecules. The results also suggest that the carrier-envelope phases must be taken into account properly when performing calculations involving pump-probe excitation schemes with laser frequencies which differ widely in magnitude.« less
Optical Feshbach resonances and ground-state-molecule production in the RbHg system
NASA Astrophysics Data System (ADS)
Borkowski, Mateusz; Muñoz Rodriguez, Rodolfo; Kosicki, Maciej B.; Ciuryło, Roman; Żuchowski, Piotr S.
2017-12-01
We present the prospects for photoassociation, optical control of interspecies scattering lengths, and, finally, the production of ultracold absolute ground-state molecules in the Rb+Hg system. We use the state-of-the-art ab initio methods for the calculations of ground- [CCSD(T)] and excited-state (EOM-CCSD) potential curves. The RbHg system, thanks to the wide range of stable Hg bosonic isotopes, offers possibilities for mass tuning of ground-state interactions. The optical lengths describing the strengths of optical Feshbach resonances near the Rb transitions are favorable even at large laser detunings. Ground-state RbHg molecules can be produced with efficiencies ranging from about 20% for deeply bound to at least 50% for weakly bound states close to the dissociation limit. Finally, electronic transitions with favorable Franck-Condon factors can be found for the purposes of a STIRAP transfer of the weakly bound RbHg molecules to the absolute ground state using commercially available lasers.
X-Ray Laser Program Final Report for FY92
1993-07-01
also produced population inversion. Ultra- intense , femtosecond- pulsed laboratory lasers ranging from the ultraviolet to the infrared represent an...with pulse lengths of 650 femtoseconds normally Incident on a 2p. thick planar aluminum slab. Comparisons are made for two laser Intensities , two...prepulse is subsequently irradiated by the main high intensity pulse . The persistence of the heliumlike ground state raises the possibility that a photon
Fundamentals of metasurface lasers based on resonant dark states
Droulias, Sotiris; Jain, Aditya; Koschny, Thomas; ...
2017-10-30
Recently, our group proposed a metamaterial laser design based on explicitly coupled dark resonant states in low-loss dielectrics, which conceptually separates the gain-coupled resonant photonic state responsible for macroscopic stimulated emission from the coupling to specific free-space propagating modes, allowing independent adjustment of the lasing state and its coherent radiation output. Due to this functionality, it is now possible to make lasers that can overcome the trade-off between system dimensions and Q factor, especially for surface emitting lasers with deeply subwavelength thickness. In this paper, we give a detailed discussion of the key functionality and benefits of this design, suchmore » as radiation damping tunability, directionality, subwavelength integration, and simple layer-by-layer fabrication. Finally, we examine in detail the fundamental design tradeoffs that establish the principle of operation and must be taken into account and give guidance for realistic implementations.« less
Excimer laser ablation of the cornea
NASA Astrophysics Data System (ADS)
Pettit, George H.; Ediger, Marwood N.; Weiblinger, Richard P.
1995-03-01
Pulsed ultraviolet laser ablation is being extensively investigated clinically to reshape the optical surface of the eye and correct vision defects. Current knowledge of the laser/tissue interaction and the present state of the clinical evaluation are reviewed. In addition, the principal findings of internal Food and Drug Administration research are described in some detail, including a risk assessment of the laser-induced-fluorescence and measurement of the nonlinear optical properties of cornea during the intense UV irradiation. Finally, a survey is presented of the alternative laser technologies being explored for this ophthalmic application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, J F
2007-01-31
This final report will cover work performed over the period of November 11, 2005 to September 30, 2006 on the contract to develop technologies using laser sources for radiation effects sciences. The report will discuss four topic areas; the laser source experiments on the Gekko Laser at Osaka, Japan, planning for the Charge State Freeze Out experiments to be performed in calendar year 2007, a review of previous xenon gasbags on the LANL Trident laser to provide planning support to the May-June 2007 HELEN experiments.
Temporal model of an optically pumped co-doped solid state laser
NASA Technical Reports Server (NTRS)
Wangler, T. G.; Swetits, J. J.; Buoncristiani, A. M.
1993-01-01
Currently, research is being conducted on the optical properties of materials associated with the development of solid state lasers in the two micron region. In support of this effort, a mathematical model describing the energy transfer in a holmium laser sensitized with thulium is developed. In this paper, we establish some qualitative properties of the solution of the model, such as non-negativity, boundedness, and integrability. A local stability analysis is then performed from which conditions for asymptotic stability are attained. Finally, we report on our numerical analysis of the system and how it compares with experimental results.
Multiphoton Scattering Tomography with Coherent States.
Ramos, Tomás; García-Ripoll, Juan José
2017-10-13
In this work we develop an experimental procedure to interrogate the single- and multiphoton scattering matrices of an unknown quantum system interacting with propagating photons. Our proposal requires coherent state laser or microwave inputs and homodyne detection at the scatterer's output, and provides simultaneous information about multiple-elastic and inelastic-segments of the scattering matrix. The method is resilient to detector noise and its errors can be made arbitrarily small by combining experiments at various laser powers. Finally, we show that the tomography of scattering has to be performed using pulsed lasers to efficiently gather information about the nonlinear processes in the scatterer.
Klinkusch, Stefan; Saalfrank, Peter; Klamroth, Tillmann
2009-09-21
We report simulations of laser-pulse driven many-electron dynamics by means of a simple, heuristic extension of the time-dependent configuration interaction singles (TD-CIS) approach. The extension allows for the treatment of ionizing states as nonstationary states with a finite, energy-dependent lifetime to account for above-threshold ionization losses in laser-driven many-electron dynamics. The extended TD-CIS method is applied to the following specific examples: (i) state-to-state transitions in the LiCN molecule which correspond to intramolecular charge transfer, (ii) creation of electronic wave packets in LiCN including wave packet analysis by pump-probe spectroscopy, and, finally, (iii) the effect of ionization on the dynamic polarizability of H(2) when calculated nonperturbatively by TD-CIS.
Development of a Curriculum in Laser Technology. Final Report.
ERIC Educational Resources Information Center
Wasserman, William J.
A Seattle Central Community College project visited existing programs, surveyed need, and developed a curriculum for a future program in Laser-Electro-Optics (LEO) Technology. To establish contacts and view successful programs, project staff made visits to LEO technology programs at San Jose City College and Texas State Technical Institute, Center…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ó Dúill, Sean P., E-mail: sean.oduill@dcu.ie; Anandarajah, Prince M.; Zhou, Rui
2015-05-25
We present detailed numerical simulations of the laser dynamics that describe optical frequency comb formation by injection-locking a gain-switched laser. The typical rate equations for semiconductor lasers including stochastic carrier recombination and spontaneous emission suffice to show the injection-locking behavior of gain switched lasers, and we show how the optical frequency comb evolves starting from the free-running state, right through the final injection-locked state. Unlike the locking of continuous wave lasers, we show that the locking range for gain switched lasers is considerably greater because injection locking can be achieved by injecting at frequencies close to one of the combmore » lines. The quality of the comb lines is formally assessed by calculating the frequency modulation (FM)-noise spectral density and we show that under injection-locking conditions the FM-noise spectral density of the comb lines tend to that of the maser laser.« less
Optimization of Laser Keyhole Welding Strategies of Dissimilar Metals by FEM Simulation
NASA Astrophysics Data System (ADS)
Garcia Navas, Virginia; Leunda, Josu; Lambarri, Jon; Sanz, Carmen
2015-07-01
Laser keyhole welding of dissimilar metals has been simulated to study the effect of welding strategies (laser beam displacements and tilts) and combination of metals to be welded on final quality of the joints. Molten pool geometry and welding penetration have been studied but special attention has been paid to final joint material properties, such as microstructure/phases and hardness, and especially to the residual stress state because it greatly conditions the service life of laser-welded components. For a fixed strategy (laser beam perpendicular to the joint) austenitic to carbon steel laser welding leads to residual stresses at the joint area very similar to those obtained in austenitic to martensitic steel welding, but welding of steel to Inconel 718 results in steeper residual stress gradients and higher area at the joint with detrimental tensile stresses. Therefore, when the difference in thermo-mechanical properties of the metals to be welded is higher, the stress state generated is more detrimental for the service life of the component, and consequently more relevant is the optimization of welding strategy. In laser keyhole welding of austenitic to martensitic stainless steel and austenitic to carbon steel, the optimum welding strategy is displacing the laser beam 1 mm toward the austenitic steel. In the case of austenitic steel to Inconel welding, the optimum welding strategy consists in setting the heat source tilted 45 deg and moved 2 mm toward the austenitic steel.
NASA Technical Reports Server (NTRS)
Abel, Bernd; Coy, Stephen L.; Klaassen, Jody J.; Steinfeld, Jeffrey I.
1992-01-01
The state-resolved rotational (R-R, R-T) energy transfer in (N-14)H3 (for NH3-NH3 and NH3-Ar collisions) was studied using an IR double-resonance laser spectroscopic technique. Measurements of both the total rate of depopulation by collisions, and the rates of transfer into specific final rovibrational states (v,J,K) were performed using time-resolved tunable diode laser absorption spectroscopy. A kinetic master-equation analysis of time-resolved level populatons was carried out, yielding state-to-state rate constants and propensity rules for NH3-NH3 and NH3-Ar collisions.
Spectroscopic and laser characterization of emerald. Final report, April 1983-April 1986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, S.T.; Chai, B.H.
1986-08-01
The spectroscopic characteristics and laser properties of emerald were investigated. The laser measurements showed that the emerald-laser tuning range was 720-842 nm and exhibited a high gain and high efficiency in the 760-790 nm range. Under a crystal growth development program, the laser loss was reduced from 11%/cm to 0.4%/cm. The limiting factor in the laser efficiency is the excited-state absorption (ESA). The ESA was measured by two methods: a laser-pumped single-pass gain method, which is generally applicable to all tunable laser materials, and a laser-pumped laser method. A 76% laser quantum yield was obtained in high-optical-quality emerald. The maximummore » yield is estimated to be 83%, based on the ESA measurements.« less
Atomic vapor laser isotope separation of lead-210 isotope
Scheibner, K.F.; Haynam, C.A.; Johnson, M.A.; Worden, E.F.
1999-08-31
An isotopically selective laser process and apparatus for removal of Pb-210 from natural lead that involves a one-photon near-resonant, two-photon resonant excitation of one or more Rydberg levels, followed by field ionization and then electrostatic extraction. The wavelength to the near-resonant intermediate state is counter propagated with respect to the second wavelength required to populate the final Rydberg state. This scheme takes advantage of the large first excited state cross section, and only modest laser fluences are required. The non-resonant process helps to avoid two problems: first, stimulated Raman Gain due to the nearby F=3/2 hyperfine component of Pb-207 and, second, direct absorption of the first transition process light by Pb-207. 5 figs.
Atomic vapor laser isotope separation of lead-210 isotope
Scheibner, Karl F.; Haynam, Christopher A.; Johnson, Michael A.; Worden, Earl F.
1999-01-01
An isotopically selective laser process and apparatus for removal of Pb-210 from natural lead that involves a one-photon near-resonant, two-photon resonant excitation of one or more Rydberg levels, followed by field ionization and then electrostatic extraction. The wavelength to the near-resonant intermediate state is counter propagated with respect to the second wavelength required to populate the final Rydberg state. This scheme takes advantage of the large first excited state cross section, and only modest laser fluences are required. The non-resonant process helps to avoid two problems: first, stimulated Raman Gain due to the nearby F=3/2 hyperfine component of Pb-207 and, second, direct absorption of the first transition process light by Pb-207.
Applicability of post-ionization theory to laser-assisted field evaporation of magnetite
Schreiber, Daniel K.; Chiaramonti, Ann N.; Gordon, Lyle M.; ...
2014-12-15
Analysis of the mean Fe ion charge state from laser-assisted field evaporation of magnetite (Fe3O4) reveals unexpected trends as a function of laser pulse energy that break from conventional post-ionization theory for metals. For Fe ions evaporated from magnetite, the effects of post-ionization are partially offset by the increased prevalence of direct evaporation into higher charge states with increasing laser pulse energy. Therefore the final charge state is related to both the field strength and the laser pulse energy, despite those variables themselves being intertwined when analyzing at a constant detection rate. Comparison of data collected at different base temperaturesmore » also show that the increased prevalence of Fe2+ at higher laser energies is possibly not a direct thermal effect. Conversely, the ratio of 16O+:16O2+ is well-correlated with field strength and unaffected by laser pulse energy on its own, making it a better overall indicator of the field evaporation conditions than the mean Fe charge state. Plotting the normalized field strength versus laser pulse energy also elucidates a non-linear dependence, in agreement with previous observations on semiconductors, that suggests a field-dependent laser absorption efficiency. Together these observations demonstrate that the field evaporation process for laser-pulsed oxides exhibits fundamental differences from metallic specimens that cannot be completely explained by post-ionization theory. Further theoretical studies, combined with detailed analytical observations, are required to understand fully the field evaporation process of non-metallic samples.« less
How to harvest efficient laser from solar light
NASA Astrophysics Data System (ADS)
Zhao, Changming; Guan, Zhe; Zhang, Haiyang
2018-02-01
Solar Pumped Solid State Lasers (SPSSL) is a kind of solid state lasers that can transform solar light into laser directly, with the advantages of least energy transform procedure, higher energy transform efficiency, simpler structure, higher reliability, and longer lifetime, which is suitable for use in unmanned space system, for solar light is the only form of energy source in space. In order to increase the output power and improve the efficiency of SPSSL, we conducted intensive studies on the suitable laser material selection for solar pump, high efficiency/large aperture focusing optical system, the optimization of concave cavity as the second focusing system, laser material bonding and surface processing. Using bonded and grooved Nd:YAG rod as laser material, large aperture Fresnel lens as the first stage focusing element, concave cavity as the second stage focusing element, we finally got 32.1W/m2 collection efficiency, which is the highest collection efficiency in the world up to now.
Fu, Guang; Zhang, David Z; He, Allen N; Mao, Zhongfa; Zhang, Kaifei
2018-05-10
A deep understanding of the laser-material interaction mechanism, characterized by laser absorption, is very important in simulating the laser metal powder bed fusion (PBF) process. This is because the laser absorption of material affects the temperature distribution, which influences the thermal stress development and the final quality of parts. In this paper, a three-dimensional finite element analysis model of heat transfer taking into account the effect of material state and phase changes on laser absorption is presented to gain insight into the absorption mechanism, and the evolution of instantaneous absorptance in the laser metal PBF process. The results showed that the instantaneous absorptance was significantly affected by the time of laser radiation, as well as process parameters, such as hatch space, scanning velocity, and laser power, which were consistent with the experiment-based findings. The applicability of this model to temperature simulation was demonstrated by a comparative study, wherein the peak temperature in fusion process was simulated in two scenarios, with and without considering the effect of material state and phase changes on laser absorption, and the simulated results in the two scenarios were then compared with experimental data respectively.
Quenching of highly vibrationally excited pyrimidine by collisions with CO2
NASA Astrophysics Data System (ADS)
Johnson, Jeremy A.; Duffin, Andrew M.; Hom, Brian J.; Jackson, Karl E.; Sevy, Eric T.
2008-02-01
Relaxation of highly vibrationally excited pyrimidine (C4N2H4) by collisions with carbon dioxide has been investigated using diode laser transient absorption spectroscopy. Vibrationally hot pyrimidine (E'=40635cm-1) was prepared by 248-nm excimer laser excitation, followed by rapid radiationless relaxation to the ground electronic state. The nascent rotational population distribution (J=58-80) of the 0000 ground state of CO2 resulting from collisions with hot pyrimidine was probed at short times following the excimer laser pulse. Doppler spectroscopy was used to measure the CO2 recoil velocity distribution for J =58-80 of the 0000 state. Rate constants and probabilities for collisions populating these CO2 rotational states were determined. The measured energy transfer probabilities, indexed by final bath state, were resorted as a function of ΔE to create the energy transfer distribution function, P(E,E'), from E'-E˜1300-7000cm-1. P(E,E') is fitted to a single exponential and a biexponential function to determine the average energy transferred in a single collision between pyrimidine and CO2 and parameters that can be compared to previously studied systems using this technique, pyrazine/CO2, C6F6/CO2, and methylpyrazine/CO2. P(E,E') parameters for these four systems are also compared to various molecular properties of the donor molecules. Finally, P(E,E') is analyzed in the context of two models, one which suggests that the shape of P(E,E') is primarily determined by the low-frequency out-of-plane donor vibrational modes and one which suggests that the shape of P(E,E') can be determined by how the donor molecule final density of states changes with ΔE.
Optimization of an intracavity Q-switched solid-state second order Raman laser
NASA Astrophysics Data System (ADS)
Chen, Zhiqiong; Fu, Xihong; Peng, Hangyu; Zhang, Jun; Qin, Li; Ning, Yongqiang
2017-01-01
In this paper, the model of an intracavity Q-switched second order Raman laser is established, the characteristics of the output 2nd Stokes are simulated. The dynamic balance mechanism among intracavity conversion rates of stimulated emission, first order Raman and second order Raman is obtained. Finally, optimization solutions for increasing output 2nd Stokes pulse energy are proposed.
High Power Laser Diode Arrays for 2-Micron Solid State Coherent Lidars Applications
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Meadows, Byron; Kavaya, Michael J.; Singh, Upendra; Sudesh, Vikas; Baker, Nathaniel
2003-01-01
Laser diode arrays are critical components of any diode-pumped solid state laser systems, constraining their performance and reliability. Laser diode arrays (LDAs) are used as the pump source for energizing the solid state lasing media to generate an intense coherent laser beam with a high spatial and spectral quality. The solid state laser design and the characteristics of its lasing materials define the operating wavelength, pulse duration, and power of the laser diodes. The pump requirements for high pulse energy 2-micron solid state lasers are substantially different from those of more widely used 1-micron lasers and in many aspects more challenging [1]. Furthermore, the reliability and lifetime demanded by many coherent lidar applications, such as global wind profiling from space and long-range clear air turbulence detection from aircraft, are beyond the capability of currently available LDAs. In addition to the need for more reliable LDAs with longer lifetime, further improvement in the operational parameters of high power quasi-cw LDAs, such as electrical efficiency, brightness, and duty cycle, are also necessary for developing cost-effective 2-micron coherent lidar systems for applications that impose stringent size, heat dissipation, and power constraints. Global wind sounding from space is one of such applications, which is the main driver for this work as part of NASA s Laser Risk Reduction Program. This paper discusses the current state of the 792 nm LDA technology and the technology areas being pursued toward improving their performance. The design and development of a unique characterization facility for addressing the specific issues associated with the LDAs for pumping 2-micron coherent lidar transmitters and identifying areas of technological improvement will be described. Finally, the results of measurements to date on various standard laser diode packages, as well as custom-designed packages with potentially longer lifetime, will be reported.
Multiple core-hole formation by free-electron laser radiation in molecular nitrogen
NASA Astrophysics Data System (ADS)
Banks, H. I. B.; Little, D. A.; Emmanouilidou, A.
2018-05-01
We investigate the formation of multiple-core-hole states of molecular nitrogen interacting with a free-electron laser pulse. In previous work, we obtained bound and continuum molecular orbitals in the single-center expansion scheme and used these orbitals to calculate photo-ionization and auger decay rates. We extend our formulation to track the proportion of the population that accesses single-site versus two-site double-core-hole (TSDCH) states, before the formation of the final atomic ions. We investigate the pulse parameters that favor the formation of the single-site and TSDCH as well as triple-core-hole states for 525 and 1100 eV photons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Droulias, Sotiris; Jain, Aditya; Koschny, Thomas
Recently, our group proposed a metamaterial laser design based on explicitly coupled dark resonant states in low-loss dielectrics, which conceptually separates the gain-coupled resonant photonic state responsible for macroscopic stimulated emission from the coupling to specific free-space propagating modes, allowing independent adjustment of the lasing state and its coherent radiation output. Due to this functionality, it is now possible to make lasers that can overcome the trade-off between system dimensions and Q factor, especially for surface emitting lasers with deeply subwavelength thickness. In this paper, we give a detailed discussion of the key functionality and benefits of this design, suchmore » as radiation damping tunability, directionality, subwavelength integration, and simple layer-by-layer fabrication. Finally, we examine in detail the fundamental design tradeoffs that establish the principle of operation and must be taken into account and give guidance for realistic implementations.« less
Noise induced stabilization of chaotic free-running laser diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Virte, Martin, E-mail: mvirte@b-phot.org
In this paper, we investigate theoretically the stabilization of a free-running vertical-cavity surface-emitting laser exhibiting polarization chaos dynamics. We report the existence of a boundary isolating the chaotic attractor on one side and a steady-state on the other side and identify the unstable periodic orbit playing the role of separatrix. In addition, we highlight a small range of parameters where the chaotic attractor passes through this boundary, and therefore where chaos only appears as a transient behaviour. Then, including the effect of spontaneous emission noise in the laser, we demonstrate that, for realistic levels of noise, the system is systematicallymore » pushed over the separating solution. As a result, we show that the chaotic dynamics cannot be sustained unless the steady-state on the other side of the separatrix becomes unstable. Finally, we link the stability of this steady-state to a small value of the birefringence in the laser cavity and discuss the significance of this result on future experimental work.« less
Efficient photoassociation of ultracold cesium atoms with picosecond pulse laser
NASA Astrophysics Data System (ADS)
Hai, Yang; Hu, Xue-Jin; Li, Jing-Lun; Cong, Shu-Lin
2017-08-01
We investigate theoretically the formation of ultracold Cs2 molecules via photoassociation (PA) with three kinds of pulses (the Gaussian pulse, the asymmetric shaped laser pulse SL1 with a large rising time and a small falling time and the asymmetric shaped laser pulse SL2 with a small rising time and a large falling time). For the three kinds of pulses, the final population on vibrational levels from v‧ = 120 to 175 of the excited state displays a regular oscillation change with pulse width and interaction strength, and a high PA efficiency can be achieved with optimised parameters. The PA efficiency in the excited state steered by the SL1-pulse (SL2-pulse) train with optimised parameters which is composed of four SL1 (SL2) pulses is 1.74 times as much as that by the single SL1 (SL2) pulse due to the population accumulation effect. Moreover, a dump laser is employed to transfer the excited molecules from the excited state to the vibrational level v″ = 12 of the ground state to obtain stable molecules.
Nanosecond laser coloration on stainless steel surface.
Lu, Yan; Shi, Xinying; Huang, Zhongjia; Li, Taohai; Zhang, Meng; Czajkowski, Jakub; Fabritius, Tapio; Huttula, Marko; Cao, Wei
2017-08-02
In this work, we present laser coloration on 304 stainless steel using nanosecond laser. Surface modifications are tuned by adjusting laser parameters of scanning speed, repetition rate, and pulse width. A comprehensive study of the physical mechanism leading to the appearance is presented. Microscopic patterns are measured and employed as input to simulate light-matter interferences, while chemical states and crystal structures of composites to figure out intrinsic colors. Quantitative analysis clarifies the final colors and RGB values are the combinations of structural colors and intrinsic colors from the oxidized pigments, with the latter dominating. Therefore, the engineering and scientific insights of nanosecond laser coloration highlight large-scale utilization of the present route for colorful and resistant steels.
Developing Density of Laser-Cooled Neutral Atoms and Molecules in a Linear Magnetic Trap
NASA Astrophysics Data System (ADS)
Velasquez, Joe, III; Walstrom, Peter; di Rosa, Michael
2013-05-01
In this poster we show that neutral particle injection and accumulation using laser-induced spin flips may be used to form dense ensembles of ultracold magnetic particles, i.e., laser-cooled paramagnetic atoms and molecules. Particles are injected in a field-seeking state, are switched by optical pumping to a field-repelled state, and are stored in the minimum-B trap. The analogous process in high-energy charged-particle accumulator rings is charge-exchange injection using stripper foils. The trap is a linear array of sextupoles capped by solenoids. Particle-tracking calculations and design of our linear accumulator along with related experiments involving 7Li will be presented. We test these concepts first with atoms in preparation for later work with selected molecules. Finally, we present our preliminary results with CaH, our candidate molecule for laser cooling. This project is funded by the LDRD program of Los Alamos National Laboratory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lubell, M.S.
1980-06-01
Motivated by the need for measurements of metastable depopulation mechanisms of Ar and Kr in the KrF rare-gas monohalide excimer laser, an ultra-high vacuum triple crossed-beams apparatus has been designed, fabricated, and assembled for the purpose of studying electron scattering from excited states of Ar and Kr atoms. A beam of metastable rare gas atoms, produced by near-resonant charge transfer of rare gas ions with alkali neutral atoms, is crossed by an electron beam and a far-red laser beam along mutually orthogonal axes. A hemispherical electron monochromator-spectrometer pair is used to measure the cross section for electron scattering from themore » 2p/sub 9/ excited state of the rare gas atom. Testing of parts of the assembled apparatus has been completed.« less
Pedestal cleaning for high laser pulse contrast ratio with a 100 TW class laser system.
Fourmaux, S; Payeur, S; Buffechoux, S; Lassonde, P; St-Pierre, C; Martin, F; Kieffer, J C
2011-04-25
Laser matter interaction at relativistic intensities using 100 TW class laser systems or higher is becoming more and more widespread. One of the critical issues of such laser systems is to let the laser pulse interact at high intensity with the solid target and avoid any pre-plasma. Thus, a high Laser Pulse Contrast Ratio (LPCR) parameter is of prime importance. We present the LPCR characterization of a high repetition 100 TW class laser system. We demonstrate that the generated Amplified Spontaneous Emission (ASE) degrades the overall LPCR performance. We propose a simple way to clean the pulse after the first amplification stage by introducing a solid state saturable absorber which results in a LPCR improvement to better than 10(10) with only a 30% energy loss at a 10 Hz repetition rate. We finally correlated this cleaning method with experimental results.
Fiber Raman laser and amplifier pumped by Nd3+:YVO4 solid state laser
NASA Astrophysics Data System (ADS)
Liu, Deming; Zhang, Minming; Liu, Shuang; Nie, Mingju; Wang, Ying
2005-04-01
Pumping source is the key technology of fiber Raman amplifiers (FRA) which are important for ultra long haul and high bit rate dense wavelength division multiplexing (DWDM) systems. In this paper the research work of the project, "Fiber Raman Laser and Amplifier pumped by Nd3+:YVO4 Solid State Laser", supported by the National High-tech Program (863-program) of China is introduced, in which a novel 14xx nm pump module with fine characteristics of high efficiency, simplicity, compactness and low cost is researched and developed. A compact 1342 nm Nd3+:YVO4 diode pumped solid state laser (DPSSL) module is developed with the total laser power of 655mW and the slope efficiency of 42.6% pumped by a 2W 808nm laser diode (LD). A special C-lens fiber collimator is designed to couple the 1342nm laser beam into a piece of single mode fiber (SMF) and the coupling efficiency of 80% is reached. The specific 14xx nm output laser is generated from a single stage Raman resonator which includes a pair of fiber Bragg gratings and a piece of Germanic-silicate or Phospho-silicate fiber pumped by such DPSSL module. The slope efficiency for conversion from 1342 to 14xx nm radiation is 75% and the laser power is more than 300mW each. Finally, Raman gain experiments are carried out with 100km SMF. 100 nm bandwidth with 10dB on-off Raman gain and 1.1dB gain flatness is achieved by pumped at 1425, 1438, 1455 and 1490nm.
Compact lasing system at 13.5-nm to ground state of LiIII at 2Hz
NASA Astrophysics Data System (ADS)
Goltsov, A. Y.; Korobkin, D.; Nam, C. H.; Suckewer, Szymon
1997-11-01
The recent results of the demonstration of the lasing action at 13.5 nm in transition to ground state of LiIII at 2 Hz repetition rate using two lasers is being presented in this paper. A gain length of GL approximately equals 5.5 was measured in the 5 mm long, 0.3 mm diameter, LiF microcapillary using a 50 mJ, 250 fsec UV laser beam. The initial plasma was created in the microcapillary by a low power, relatively long pulse Nd/YAG laser. In order to shed light on observed unusually high efficiency of the ionization of the atoms in microcapillaries, the subpicosecond UV laser beam transmissions through the plasma in microcapillaries were measured. Strong dependence of the beam transmission on the delay time between inial plasma formation with the Nd/YAG laser and the sub-picosecond UV laser was recorded. The final part of the paper discusses some necessary conditions for an extension of the present results towards the shorter wavelength lasers with an emphasis on the presently conducted experiments at Princeton University for the generation gain at 4.8 nm in BV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pronko, J.G.; Kohler, D.
1996-05-31
An experiment had been proposed to investigate a photopumped x-ray laser approach using a novel, high-density, laser heated supersonic gas jet plasma to prepare the lasant plasma. The scheme to be investigated uses the he-like sodium 1.10027 nm line to pump the He-like neon 1s-4p transition at 1.10003 nm with the lasing transitions between the n = 4 to n = 2,3 states and the n = 3 to n = 2 state at 5.8 nm, 23.0 nm, and 8.2 nm, respectively. The experiment had been proposed in 1990 and funding began in January 1991. After extensive preparations to performmore » the experiment on the GDL laser, a series of circumstances made it impossible to pursue the research over the past 5 years. These were (1) lack of access to the GDL laser and its eventual closing, (2) the inability to identify an alternate laser system with which to perform the experiment, and (3) the lack of problem relevancy after 5 years of delays. As a consequence, it has been decided not to pursue the research any further.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wierer, Jonathan J.; Tsao, Jeffrey Y.
2015-01-14
III-nitride laser diodes (LDs) are an interesting light source for solid-state lighting (SSL). Modelling of LDs is performed to reveal the potential advantages over traditionally used light-emitting diodes (LEDs). The first, and most notable, advantage is LDs have higher efficiency at higher currents when compared to LEDs. This is because Auger recombination that causes efficiency droop can no longer grow after laser threshold. Second, the same phosphor-converted methods used with LEDs can also be used with LDs to produce white light with similar color rendering and color temperature. Third, producing white light from color mixed emitters is equally challenging formore » both LEDs and LDs, with neither source having a direct advantage. Fourth, the LD emission is directional and can be more readily captured and focused, leading to the possibility of novel and more compact luminaires. Finally, the smaller area and higher current density operation of LDs provides them with a potential cost advantage over LEDs. These advantages make LDs a compelling source for future SSL.« less
NASA Astrophysics Data System (ADS)
Kushina, Mark E.; Heberle, Geoff; Hope, Michael; Hall, David; Bethel, Michael; Calmes, Lonnie K.
2003-06-01
The ALMDS (Airborne Laser Mine Detection System) has been developed utilizing a solid-state laser operating at 532nm for naval mine detection. The laser system is integrated into a pod that mounts externally on a helicopter. This laser, along with other receiver systems, enables detailed underwater bathymetry. CEO designs and manufactures the laser portion of this system. Arete Associates integrates the laser system into the complete LIDAR package that utilizes sophisticated streak tube detection technology. Northrop Grumman is responsible for final pod integration. The laser sub-system is comprised of two separate parts: the LTU (Laser Transmitter Unit) and the LEU (Laser Electronics Unit). The LTU and LEU are undergoing MIL-STD-810 testing for vibration, shock, temperature storage and operation extremes, as well as MIL-STD-704E electrical power testing and MIL-STD-461E EMI testing. The Nd:YAG MOPA laser operates at 350 Hz pulse repetition frequency at 45 Watts average 532nm power and is controlled at the system level from within the helicopter. Power monitor circuits allow real time laser health monitoring, which enables input parameter adjustments for consistent laser behavior.
NASA Astrophysics Data System (ADS)
Mortensen, Henrik Lund; Sørensen, Jens Jakob W. H.; Mølmer, Klaus; Sherson, Jacob Friis
2018-02-01
We propose an efficient strategy to find optimal control functions for state-to-state quantum control problems. Our procedure first chooses an input state trajectory, that can realize the desired transformation by adiabatic variation of the system Hamiltonian. The shortcut-to-adiabaticity formalism then provides a control Hamiltonian that realizes the reference trajectory exactly but on a finite time scale. As the final state is achieved with certainty, we define a cost functional that incorporates the resource requirements and a perturbative expression for robustness. We optimize this functional by systematically varying the reference trajectory. We demonstrate the method by application to population transfer in a laser driven three-level Λ-system, where we find solutions that are fast and robust against perturbations while maintaining a low peak laser power.
Flower-Like Squeezing in the Motion of a Laser-Driven Trapped Ion
NASA Astrophysics Data System (ADS)
Nguyen, Ba An; Truong, Minh Duc
We investigate the Nth order amplitude squeezing in the fan-state |ξ2k,f>F which is a linear superposition of the 2k-quantum nonlinear coherent states. Unlike in usual states where an ellipse is the symbol of squeezing, a 4k-winged flower results in the fan state. We first derive the analytical expression of squeezing for arbitrary k, N, f and then study in detail the case of a laser-driven trapped ion characterized by a specific form of the nonlinear function f. We show that the lowest order in which squeezing may appear and the number of directions along which the amplitude may be squeezed depend only on k whereas the precise directions of squeezing are determined also by the other physical parameters involved. Finally, we present a scheme to produce such fan-states.
Compact 2100 nm laser diode module for next-generation DIRCM
NASA Astrophysics Data System (ADS)
Dvinelis, Edgaras; Greibus, Mindaugas; TrinkÅ«nas, Augustinas; NaujokaitÄ--, Greta; Vizbaras, Augustinas; Vizbaras, Dominykas; Vizbaras, Kristijonas
2017-10-01
Compact high-power 2100 nm laser diode module for next-generation directional infrared countermeasure (DIRCM) systems is presented. Next-generation DIRCM systems require compact, light-weight and robust laser modules which could provide intense IR light emission capable of disrupting the tracking sensor of heat-seeking missile. Currently used solid-state and fiber laser solutions for mid-IR band are bulky and heavy making them difficult to implement in smaller form-factor DIRCM systems. Recent development of GaSb laser diode technology greatly improved optical output powers and efficiencies of laser diodes working in 1900 - 2450 nm band [1] while also maintaining very attractive size, weight, power consumption and cost characteristics. 2100 nm laser diode module presented in this work performance is based on high-efficiency broad emitting area GaSb laser diode technology. Each laser diode emitter is able to provide 1 W of CW output optical power with working point efficiency up to 20% at temperature of 20 °C. For output beam collimation custom designed fast-axis collimator and slow-axis collimator lenses were used. These lenses were actively aligned and attached using UV epoxy curing. Total 2 emitters stacked vertically were used in 2100 nm laser diode module. Final optical output power of the module goes up to 2 W at temperature of 20 °C. Total dimensions of the laser diode module are 35 x 25 x 16 mm (L x W x H) with a weight of 28 grams. Finally output beam is bore-sighted to mechanical axes of the module housing allowing for easy integration into next-generation DIRCM systems.
Cryogenic cooling for high power laser amplifiers
NASA Astrophysics Data System (ADS)
Perin, J. P.; Millet, F.; Divoky, M.; Rus, B.
2013-11-01
Using DPSSL (Diode Pumped Solid State Lasers) as pumping technology, PW-class lasers with enhanced repetition rates are developed. Each of the Yb YAG amplifiers will be diode-pumped at a wavelength of 940 nm. This is a prerequisite for achieving high repetition rates (light amplification duration 1 millisecond and repetition rate 10 Hz). The efficiency of DPSSL is inversely proportional to the temperature, for this reason the slab amplifier have to be cooled at a temperature in the range of 100 K-170 K with a heat flux of 1 MW*m-2. This paper describes the thermo-mechanical analysis for the design of the amplification laser head, presents a preliminary proposal for the required cryogenic cooling system and finally outlines the gain of cryogenic operation for the efficiency of high pulsed laser.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Volker; Paa, Wolfgang; Triebel, Wolfgang
We describe a specially designed diode pumped solid state laser system based on the disk laser architecture for combustion diagnostics under microgravity (μg) conditions at the drop tower in Bremen. The two-stage oscillator-amplifier-system provides an excellent beam profile (TEM{sub 00}) at narrowband operation (Δλ < 1 pm) and is tunable from 1018 nm to 1052 nm. The laser repetition rate of up to 4 kHz at pulse durations of 10 ns enables the tracking of processes on a millisecond time scale. Depending on the specific issue it is possible to convert the output radiation up to the fourth harmonic aroundmore » 257 nm. The very compact laser system is integrated in a slightly modified drop capsule and withstands decelerations of up to 50 g (>11 ms). At first the concept of the two-stage disk laser is briefly explained, followed by a detailed description of the disk laser adaption to the drop tower requirements with special focus on the intended use under μg conditions. In order to demonstrate the capabilities of the capsule laser as a tool for μg combustion diagnostics, we finally present an investigation of the precursor-reactions before the droplet ignition using 2D imaging of the Laser Induced Fluorescence of formaldehyde.« less
Modeling target normal sheath acceleration using handoffs between multiple simulations
NASA Astrophysics Data System (ADS)
McMahon, Matthew; Willis, Christopher; Mitchell, Robert; King, Frank; Schumacher, Douglass; Akli, Kramer; Freeman, Richard
2013-10-01
We present a technique to model the target normal sheath acceleration (TNSA) process using full-scale LSP PIC simulations. The technique allows for a realistic laser, full size target and pre-plasma, and sufficient propagation length for the accelerated ions and electrons. A first simulation using a 2D Cartesian grid models the laser-plasma interaction (LPI) self-consistently and includes field ionization. Electrons accelerated by the laser are imported into a second simulation using a 2D cylindrical grid optimized for the initial TNSA process and incorporating an equation of state. Finally, all of the particles are imported to a third simulation optimized for the propagation of the accelerated ions and utilizing a static field solver for initialization. We also show use of 3D LPI simulations. Simulation results are compared to recent ion acceleration experiments using SCARLET laser at The Ohio State University. This work was performed with support from ASOFR under contract # FA9550-12-1-0341, DARPA, and allocations of computing time from the Ohio Supercomputing Center.
ELI-beamlines: progress in development of next generation short-pulse laser systems
NASA Astrophysics Data System (ADS)
Rus, B.; Bakule, P.; Kramer, D.; Naylon, J.; Thoma, J.; Fibrich, M.; Green, J. T.; Lagron, J. C.; Antipenkov, R.; Bartoníček, J.; Batysta, F.; Baše, R.; Boge, R.; Buck, S.; Cupal, J.; Drouin, M. A.; Durák, M.; Himmel, B.; Havlíček, T.; Homer, P.; Honsa, A.; Horáček, M.; Hríbek, P.; Hubáček, J.; Hubka, Z.; Kalinchenko, G.; Kasl, K.; Indra, L.; Korous, P.; Košelja, M.; Koubíková, L.; Laub, M.; Mazanec, T.; Meadows, A.; Novák, J.; Peceli, D.; Polan, J.; Snopek, D.; Šobr, V.; Trojek, P.; Tykalewicz, B.; Velpula, P.; Verhagen, E.; Vyhlídka, Å.; Weiss, J.; Haefner, C.; Bayramian, A.; Betts, S.; Erlandson, A.; Jarboe, J.; Johnson, G.; Horner, J.; Kim, D.; Koh, E.; Marshall, C.; Mason, D.; Sistrunk, E.; Smith, D.; Spinka, T.; Stanley, J.; Stolz, C.; Suratwala, T.; Telford, S.; Ditmire, T.; Gaul, E.; Donovan, M.; Frederickson, C.; Friedman, G.; Hammond, D.; Hidinger, D.; Chériaux, G.; Jochmann, A.; Kepler, M.; Malato, C.; Martinez, M.; Metzger, T.; Schultze, M.; Mason, P.; Ertel, K.; Lintern, A.; Edwards, C.; Hernandez-Gomez, C.; Collier, J.
2017-05-01
Overview of progress in construction and testing of the laser systems of ELI-Beamlines, accomplished since 2015, is presented. Good progress has been achieved in construction of all four lasers based largely on the technology of diode-pumped solid state lasers (DPSSL). The first part of the L1 laser, designed to provide 200 mJ <15 fs pulses at 1 kHz repetition rate, is up and running. The L2 is a development line employing a 10 J / 10 Hz cryogenic gas-cooled pump laser which has recently been equipped with an advanced cryogenic engine. Operation of the L3-HAPLS system, using a gas-cooled DPSSL pump laser and a Ti:sapphire broadband amplifier, was recently demonstrated at 16 J / 28 fs, at 3.33 Hz rep rate. Finally, the 5 Hz OPCPA front end of the L4 kJ laser is up running and amplification in the Nd:glass large-aperture power amplifiers was demonstrated.
Miehlke, A; Chilla, R; Vollrath, M
1980-11-01
Cryosurgery of the larynx is still in a state of development. In the treatment of laryngeal papillomas cryosurgery has been quite successful. The use of cryosurgery in laryngo-hypopharyngeal carcinoma and in laryngeal stenosis is so far restricted to special indications (old age, risk patients). A combination of cryosurgery with telecobalt irradiation has proved valuable in the managemenmt of tumors. After the basic physics of laser radiation are explained, the principle mechanisms of interaction between the CO2-laser and human tissue are mentioned. This is followed by the description of the different indications for laser surgery in the larynx. A chordectomy and the opening of a subglottic stenosis with the laser beam are described and documented with photographs. Finally there is an outlook to an eventually broader spectrum of indications for laser surgery in the ENT-field.
355-nm, nanosecond laser mirror thin film damage competition
Negres, Raluca A.; Stolz, Christopher J.; Thomas, Michael D.; ...
2017-11-23
Here, this competition aimed to survey state-of-the-art UV high reflectors. The requirements of the coatings are a minimum reflection of 99.5% at 45 degrees incidence angle for P-polarized light at 355-nm. The choice of coating materials, design, and deposition method were left to the participants. Laser damage testing was performed at a single testing facility using the raster scan method with a 5-ns pulse length laser system operating at 10 Hz in a single longitudinal mode. A double blind test assured sample and submitter anonymity. Finally, in addition to the laser damage resistance results, details of the deposition processes, cleaningmore » method, coating materials and layer count are also shared.« less
Active media for up-conversion diode-pumped lasers
NASA Astrophysics Data System (ADS)
Tkachuk, Alexandra M.
1996-03-01
In this work, we consider the different methods of populating the initial and final working levels of laser transitions in TR-doped crystals under the selective 'up-conversion' and 'avalanche' diode laser pumping. On the basis of estimates of the probabilities of competing non-radiative energy-transfer processes rates obtained from the experimental data and theoretical calculations, we estimated the efficiency of the up-conversion pumping and selfquenching of the upper TR3+ states excited by laser-diode emission. The effect of the host composition, dopant concentration, and temperature on the output characteristics and up-conversion processes in YLF:Er; BaY2F8:Er; BaY2F8:Er,Yb and BaY2F8:Yb,Ho are determined.
Recombination and collisional X-UV lasers at ORSAY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klisnick, A.; Carillon, A.; Dhez, P.
1995-01-10
In this paper we describe the progress achieved recently in our laboratory in the field of X-ray lasers. Both collisional excitation and recombination pumped systems are under investigation. We show that the 5g-4f transition in lithium-like ions could bring out a significant increase of the gain-length accessible with recombination X-ray lasers. We present preliminary results on an absorption spectroscopy experiment designed to probe the ionization state of recombination X-ray laser plasmas. Finally we report on the observation of a strong amplified signal at 212 A, the wavelength of a 3p-3s (J=0--1) in neon-like zinc. [copyright] 1995 [ital American] [ital Institute]more » [ital of] [ital Physics]« less
Domain of validity of the perturbative approach to femtosecond optical spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelin, Maxim F.; Rao, B. Jayachander; Nest, Mathias
2013-12-14
We have performed numerical nonperturbative simulations of transient absorption pump-probe responses for a series of molecular model systems. The resulting signals as a function of the laser field strength and the pump-probe delay time are compared with those obtained in the perturbative response function formalism. The simulations and their theoretical analysis indicate that the perturbative description remains valid up to moderately strong laser pulses, corresponding to a rather substantial depopulation (population) of the initial (final) electronic states.
NASA Astrophysics Data System (ADS)
Park, Kwan-Woo; Na, Suck-Joo
2010-06-01
A computational model for UV pulsed-laser scribing of silicon target is presented and compared with experimental results. The experiments were performed with a high-power Q-switched diode-pumped solid state laser which was operated at 355 nm. They were conducted on n-type 500 μm thick silicon wafers. The scribing width and depth were measured using scanning electron microscopy. The model takes into account major physics, such as heat transfer, evaporation, multiple reflections, and Rayleigh scattering. It also considers the attenuation and redistribution of laser energy due to Rayleigh scattering. Especially, the influence of the average particle sizes in the model is mainly investigated. Finally, it is shown that the computational model describing the laser scribing of silicon is valid at an average particle size of about 10 nm.
Medical applications of ultra-short pulse lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, B M; Marion, J E
1999-06-08
The medical applications for ultra short pulse lasers (USPLs) and their associated commercial potential are reviewed. Short pulse lasers offer the surgeon the possibility of precision cutting or disruption of tissue with virtually no thermal or mechanical damage to the surrounding areas. Therefore the USPL offers potential improvement to numerous existing medical procedures. Secondly, when USPLs are combined with advanced tissue diagnostics, there are possibilities for tissue-selective precision ablation that may allow for new surgeries that cannot at present be performed. Here we briefly review the advantages of short pulse lasers, examine the potential markets both from an investment communitymore » perspective, and from the view. of the technology provider. Finally nominal performance and cost requirements for the lasers, delivery systems and diagnostics and the present state of development will be addressed.« less
Method for laser spot welding monitoring
NASA Astrophysics Data System (ADS)
Manassero, Giorgio
1994-09-01
As more powerful solid state laser sources appear on the market, new applications become technically possible and important from the economical point of view. For every process a preliminary optimization phase is necessary. The main parameters, used for a welding application by a high power Nd-YAG laser, are: pulse energy, pulse width, repetition rate and process duration or speed. In this paper an experimental methodology, for the development of an electrooptical laser spot welding monitoring system, is presented. The electromagnetic emission from the molten pool was observed and measured with appropriate sensors. The statistical method `Parameter Design' was used to obtain an accurate analysis of the process parameter that influence process results. A laser station with a solid state laser coupled to an optical fiber (1 mm in diameter) was utilized for the welding tests. The main material used for the experimental plan was zinc coated steel sheet 0.8 mm thick. This material and the related spot welding technique are extensively used in the automotive industry, therefore, the introduction of laser technology in production line will improve the quality of the final product. A correlation, between sensor signals and `through or not through' welds, was assessed. The investigation has furthermore shown the necessity, for the modern laser production systems, to use multisensor heads for process monitoring or control with more advanced signal elaboration procedures.
Recombination-enhanced surface expansion of clusters in intense soft x-ray laser pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rupp, Daniela; Flückiger, Leonie; Adolph, Marcus
Here, we studied the nanoplasma formation and explosion dynamics of single large xenon clusters in ultrashort, intense x-ray free-electron laser pulses via ion spectroscopy. The simultaneous measurement of single-shot diffraction images enabled a single-cluster analysis that is free from any averaging over the cluster size and laser intensity distributions. The measured charge state-resolved ion energy spectra show narrow distributions with peak positions that scale linearly with final ion charge state. These two distinct signatures are attributed to highly efficient recombination that eventually leads to the dominant formation of neutral atoms in the cluster. The measured mean ion energies exceed themore » value expected without recombination by more than an order of magnitude, indicating that the energy release resulting from electron-ion recombination constitutes a previously unnoticed nanoplasma heating process. This conclusion is supported by results from semiclassical molecular dynamics simulations.« less
Recombination-enhanced surface expansion of clusters in intense soft x-ray laser pulses
Rupp, Daniela; Flückiger, Leonie; Adolph, Marcus; ...
2016-10-07
Here, we studied the nanoplasma formation and explosion dynamics of single large xenon clusters in ultrashort, intense x-ray free-electron laser pulses via ion spectroscopy. The simultaneous measurement of single-shot diffraction images enabled a single-cluster analysis that is free from any averaging over the cluster size and laser intensity distributions. The measured charge state-resolved ion energy spectra show narrow distributions with peak positions that scale linearly with final ion charge state. These two distinct signatures are attributed to highly efficient recombination that eventually leads to the dominant formation of neutral atoms in the cluster. The measured mean ion energies exceed themore » value expected without recombination by more than an order of magnitude, indicating that the energy release resulting from electron-ion recombination constitutes a previously unnoticed nanoplasma heating process. This conclusion is supported by results from semiclassical molecular dynamics simulations.« less
Spatial transport of electron quantum states with strong attosecond pulses
NASA Astrophysics Data System (ADS)
Chovancova, M.; Agueny, H.; Førre, M.; Kocbach, L.; Hansen, J. P.
2017-11-01
This work follows up the work of Dimitrovsky, Briggs and co-workers on translated electron atomic states by a strong field of an atto-second laser pulse, also described as creation of atoms without a nucleus. Here, we propose a new approach by analyzing the electron states in the Kramers-Henneberger moving frame in the dipole approximation. The wave function follows the displacement vector α (t). This allows arbitrarily shaped pulses, including the model delta-function potentials in the Dimitrovsky and Briggs approach. In the case of final-length single-cycle pulses, we apply both the Kramers-Henneberger moving frame analysis and a full numerical treatment of our 1D model. When the laser pulse frequency exceeds the frequency associated by the energy difference between initial and final states, the entire wavefunction is translated in space nearly without loss of coherence, to a well defined distance from the original position where the ionized core is left behind. This statement is demonstrated on the excited Rydberg states (n = 10, n = 15), where almost no distortion in the transported wave functions has been observed. However, the ground state (n = 1) is visibly distorted during the removal by pulses of reasonable frequencies, as also predicted by Dimitrovsky and Briggs analysis. Our approach allows us to analyze general pulses as well as the model delta-function potentials on the same footing in the Kramers-Henneberger frame.
DOT National Transportation Integrated Search
2007-07-31
This report provides an evaluation of the current state of the SOCRATES sensor and its readiness for use as an operational sensor for active monitoring of aircraft wake turbulence. SOCRATES is a laser opto-acoustic array designed to passively detect ...
NASA Technical Reports Server (NTRS)
1980-01-01
Alternatives to the microwave transmission system previously defined Solar Power Satellite Systems were investigated. These were the laser power transmission, transportation systems, and an analysis or solid state power transmission. The advantages of each system are presented.
Optimum design on refrigeration system of high-repetition-frequency laser
NASA Astrophysics Data System (ADS)
Li, Gang; Li, Li; Jin, Yezhou; Sun, Xinhua; Mao, Shaojuan; Wang, Yuanbo
2014-12-01
A refrigeration system with fluid cycle, semiconductor cooler and air cooler is designed to solve the problems of thermal lensing effect and unstable output of high-repetition-frequency solid-state lasers. Utilizing a circulating water pump, water recycling system carries the water into laser cavity to absorb the heat then get to water cooling head. The water cooling head compacts cold spot of semiconductor cooling chips, so the heat is carried to hot spot which contacts the radiating fins, then is expelled through cooling fan. Finally, the cooled water return to tank. The above processes circulate to achieve the purposes of highly effective refrigeration in miniative solid-state lasers.The refrigeration and temperature control components are designed strictly to ensure refrigeration effect and practicability. we also set up a experiment to test the performances of this refrigeration system, the results show that the relationship between water temperature and cooling power of semiconductor cooling chip is linear at 20°C-30°C (operating temperature range of Nd:YAG), the higher of the water temperature, the higher of cooling power. According to the results, cooling power of single semiconductor cooling chip is above 60W, and the total cooling power of three semiconductor cooling chips achieves 200W that will satisfy the refrigeration require of the miniative solid-state lasers.The performance parameters of laser pulse are also tested, include pulse waveform, spectrogram and laser spot. All of that indicate that this refrigeration system can ensure the output of high-repetition-frequency pulse whit high power and stability.
LDRD Final Report for''Tactical Laser Weapons for Defense'' SI (Tracking Code 01-SI-011)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beach, R; Zapata, L
The focus of this project was a convincing demonstration of two new technological approaches to high beam quality; high average power solid-state laser systems that would be of interest for tactical laser weapon applications. Two pathways had been identified to such systems that built on existing thin disk and fiber laser technologies. This SI was used as seed funding to further develop and vet these ideas. Significantly, the LLNL specific enhancements to these proposed technology paths were specifically addressed for devising systems scaleable to the 100 kW average power level. In the course of performing this work we have establishedmore » an intellectual property base that protects and distinguishes us from other competitive approaches to the same end.« less
Applications of high power lasers in the battlefield
NASA Astrophysics Data System (ADS)
Kalisky, Yehoshua
2009-09-01
Laser weapon is currently considered as tactical as well as strategic beam weapons, and is considered as a part of a general layered defense system against ballistic missiles and short-range rockets. This kind of weapon can disable or destroy military targets or incoming objects used by small groups of terrorists or countries, at the speed of light. Laser weapon is effective at long or short distances, owing to beam's unique characteristics such as narrow bandwidth, high brightness, coherent both in time and space, and it travels at the speed of light. Unlike kinetic weapon, laser weapon converts the energy stored in an electromagnetic laser beam into a large amount of heat aimed on a small area spot at the skin of the missile, usually close to the liquid fuel storage tank, warhead case or engine area, following by a temperature increase and finally-catastrophic failure by material ablation or melt. The usefulness of laser light as a weapon has been studied for decades but only in recent years became feasible. There are two types of lasers being used: gas lasers and solid state lasers, including fiber lasers. All these types of lasers will be discussed below.
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Sinha, C.
2012-01-01
The free-free transition is studied for an electron-hydrogen atom in ground state when a low-energy electron (external) is injected into hydrogenic plasma in the presence of an external homogenous, monochromatic, and linearly polarized laser field. The effect of plasma screening is considered in the Debye-Huckel approximation. The calculations are performed in the soft photon limit. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing the Volkov solutions in both the initial and final channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the electron exchange. The laser-assisted differential and total cross sections are calculated for single-photon absorption or emission and no-photon exchange in the soft photon limit, the laser intensity being much less than the atomic field intensity. The calculations have been carried out for various values of Debye parameter, ranging from 0.005 to 0.12. A strong suppression is noted in the laser-assisted cross sections as compared to the field-free situation. A significant difference is noted for the singlet and triplet cross sections. The suppression is much more in the triplet states.
Temperature performance analysis of intersubband Raman laser in quantum cascade structures
NASA Astrophysics Data System (ADS)
Yousefvand, Hossein Reza
2017-06-01
In this paper we investigate the effects of temperature on the output characteristics of the intersubband Raman laser (RL) that integrated monolithically with a quantum cascade (QC) laser as an intracavity optical pump. The laser bandstructure is calculated by a self-consistent solution of Schrodinger-Poisson equations, and the employed physical model of carrier transport is based on a five-level carrier scattering rates; a two-level rate equations for the pump laser and a three-level scattering rates to include the stimulated Raman process in the RL. The temperature dependency of the relevant physical effects such as thermal broadening of the intersubband transitions (ISTs), thermally activated phonon emission lifetimes, and thermal backfilling of the final lasing state of the Raman process from the injector are included in the model. Using the presented model, the steady-state, small-signal modulation response and transient device characteristics are investigated for a range of sink temperatures (80-220 K). It is found that the main characteristics of the device such as output power, threshold current, Raman modal gain, turn-on delay time and 3-dB optical bandwidth are remarkably affected by the temperature.
NASA Astrophysics Data System (ADS)
Zhou, Xingjiang; He, Shaolong; Liu, Guodong; Zhao, Lin; Yu, Li; Zhang, Wentao
2018-06-01
The significant progress in angle-resolved photoemission spectroscopy (ARPES) in last three decades has elevated it from a traditional band mapping tool to a precise probe of many-body interactions and dynamics of quasiparticles in complex quantum systems. The recent developments of deep ultraviolet (DUV, including ultraviolet and vacuum ultraviolet) laser-based ARPES have further pushed this technique to a new level. In this paper, we review some latest developments in DUV laser-based photoemission systems, including the super-high energy and momentum resolution ARPES, the spin-resolved ARPES, the time-of-flight ARPES, and the time-resolved ARPES. We also highlight some scientific applications in the study of electronic structure in unconventional superconductors and topological materials using these state-of-the-art DUV laser-based ARPES. Finally we provide our perspectives on the future directions in the development of laser-based photoemission systems.
Optimization of end-pumped, actively Q-switched quasi-III-level lasers.
Jabczynski, Jan K; Gorajek, Lukasz; Kwiatkowski, Jacek; Kaskow, Mateusz; Zendzian, Waldemar
2011-08-15
The new model of end-pumped quasi-III-level laser considering transient pumping processes, ground-state-depletion and up-conversion effects was developed. The model consists of two parts: pumping stage and Q-switched part, which can be separated in a case of active Q-switching regime. For pumping stage the semi-analytical model was developed, enabling the calculations for final occupation of upper laser level for given pump power and duration, spatial profile of pump beam, length and dopant level of gain medium. For quasi-stationary inversion, the optimization procedure of Q-switching regime based on Lagrange multiplier technique was developed. The new approach for optimization of CW regime of quasi-three-level lasers was developed to optimize the Q-switched lasers operating with high repetition rates. Both methods of optimizations enable calculation of optimal absorbance of gain medium and output losses for given pump rate. © 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Domínguez-Gutiérrez, F. Javier; Cabrera-Trujillo, R.
2014-05-01
Total, n = 2 , and 3 charge transfer and n = 2 target excitation probabilities for collision of Li+ with ground state atomic hydrogen are calculated numerically, in the impact energy collision range 0.25-5 keV. The total wave function at the end of the dynamics of the collision is obtained by solving the time-dependent Schrödinger equation by means the finite-difference method. We use a pseudo-potential method to model the electronic structure of the Li+ ion. The n = 2 , and 3 charge transfer and n = 2 target excitation probabilities are obtained by projecting the stationary states of Lithium and Hydrogen neutral atoms to the total wave function of the collision, respectively; the stationary states of Li and H are obtained numerically. To assess the validity of our method, our numerical results have been compared with those obtained experimentally and by other theoretical methods found in the literature. We study the laser-assited collision by using a short (3 fs at FWHM) and intense (3.15 ×12 W/cm2) Gaussian laser pulse. We consider a wavelength range between 400 - 1000 nm in steps of 100 nm. Finally, we analyze the laser assisted collision by a qualitatively way with a two level approach. We acknowledge support from grant PAPIIT IN 110-714 and CONACyT (Ph.D. scholarship).
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Sinha, C.
2012-01-01
The free-free transition is studied for an electron-hydrogen in the ground state at low incident energies in the presence of an external homogenous, monochromatic, and linearly polarized laser-field inside a hot dense plasma.The effect of plasma screening is considered in the Debye-Huckel approximation. The calculations are performed in the soft photon limit, assuming that the plasma frequency is much higher than the laser frequency. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing the Volkov solutions in both the initial and final channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the electron exchange. The laser-assisted differential and total cross sections are calculated for single-photon absorption /emission and no photon exchange in the soft photon limit, the laser intensity being much less than the atomic field intensity. The calculations have been carried out for various values of Debye parameter, ranging from 0.005 to 0.12. A strong suppression is noted in the laser-assisted cross sections as compared to the field-free situation. A significant difference is noted for the singlet and triplet cross sections. The suppression is much more in the triplet states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Negres, Raluca A.; Stolz, Christopher J.; Thomas, Michael D.
Here, this competition aimed to survey state-of-the-art UV high reflectors. The requirements of the coatings are a minimum reflection of 99.5% at 45 degrees incidence angle for P-polarized light at 355-nm. The choice of coating materials, design, and deposition method were left to the participants. Laser damage testing was performed at a single testing facility using the raster scan method with a 5-ns pulse length laser system operating at 10 Hz in a single longitudinal mode. A double blind test assured sample and submitter anonymity. Finally, in addition to the laser damage resistance results, details of the deposition processes, cleaningmore » method, coating materials and layer count are also shared.« less
Trevisan, Francesco; Calignano, Flaviana; Lorusso, Massimo; Pakkanen, Jukka; Aversa, Alberta; Ambrosio, Elisa Paola; Lombardi, Mariangela; Fino, Paolo; Manfredi, Diego
2017-01-01
The aim of this review is to analyze and to summarize the state of the art of the processing of aluminum alloys, and in particular of the AlSi10Mg alloy, obtained by means of the Additive Manufacturing (AM) technique known as Selective Laser Melting (SLM). This process is gaining interest worldwide, thanks to the possibility of obtaining a freeform fabrication coupled with high mechanical properties related to a very fine microstructure. However, SLM is very complex, from a physical point of view, due to the interaction between a concentrated laser source and metallic powders, and to the extremely rapid melting and the subsequent fast solidification. The effects of the main process variables on the properties of the final parts are analyzed in this review: from the starting powder properties, such as shape and powder size distribution, to the main process parameters, such as laser power and speed, layer thickness, and scanning strategy. Furthermore, a detailed overview on the microstructure of the AlSi10Mg material, with the related tensile and fatigue properties of the final SLM parts, in some cases after different heat treatments, is presented. PMID:28772436
X-Ray Laser Program Final Report for FY91
1992-09-16
from a Na z pinch is used to photoionize Ne to the He-like ground state and radiation from the Na 1 s 2-1 s2p 1P1 transition is used to resonantly...creating photopumped x-ray lasers2 , imploding inertial confinement fusion capsules, 3 and studying the photoionization kinetics of plasmas in intense...has received extensive theoretical study, 5 -8 employs radiation from the 1s2 -1s2p 1P1 transition at 11.0027 A in He-like Na to resonantly photoexcite
Vortex operation in Er:LuYAG crystal laser at ∼1.6 μm
NASA Astrophysics Data System (ADS)
Liu, Qiyao; Zhao, Yongguang; Zhou, Wei; Shen, Deyuan
2017-09-01
An Er3+-doped Lu1.5Y1.5Al5O12 (Er:LuYAG) solid-state laser with direct generation of optical vortex is reported. The vortex laser operation was realized through being pumped by an annular beam at 1532 nm, which was reformatted by a specially fabricated optical mirror. With two different laser output couplers of 10% and 20% transmissions, pure LG01 mode lasers with right-handedness at 1647.7 nm and 1619.5 nm were yielded from a simple two-mirror cavity, respectively, without any helicity control optical element. Furthermore, stable pulse trains at 1647.7 nm have been achieved via employing an acousto-optic Q-switch, and ∼0.66 mJ pulsed energy and ∼65 ns pulse duration were finally obtained at 1 kHz repetition rate, corresponding to a peak power of ∼10.2 kW. The generated pulse vortex maintained LG01 mode with well-determined right-handedness, as in the case of cw laser operation.
NASA Astrophysics Data System (ADS)
Adam, A. G.; Esson, L. M.; Linton, C.; Smith, A. M.; Tokaryk, D. W.
2018-07-01
Laser-induced fluorescence (LIF) spectra of the (0, 0) and (1, 0) bands of the [13.8]0.5 - X2Δ3/2 and [14.2]1.5 - X2Δ3/2 transitions of HfF have been obtained at high resolution (∼120 MHz) using a laser ablation source. Spectra of all five isotopologues, from 180HfF to 176HfF have been clearly resolved and the two most abundant, 180HfF and 178HfF, were chosen for analysis. The rotational levels of the [13.8]0.5 state showed clear Ω - doubling closely resembling that of a 2Σ state in the v = 0 level. Irregularity in the doubling in the v = 1 level and in the isotope shift indicated a strong perturbation affecting this level. The final fit included all the previously analysed bands in the visible region and the doubling of all the Ω = 0.5 states and the isotope effect are examined and discussed.
Valley dynamics of intravalley and intervalley multiexcitonic states in monolayer WS2
NASA Astrophysics Data System (ADS)
Fu, Jiyong; Bezerra, Andre; Qu, Fanyao
2018-03-01
We present a comprehensive model comprising of a complete set of rate equations, which account for charge transfer among multiexcitonic channels including excitons, trions, and biexcitons, to investigate valley (locked with spin) dynamics in monolayer WS2. The steady-state photoluminescence (PL) spectra, underlying the laser power dependence of excitonic populations, are also determined. Our computed PL for all excitonic states agrees with the experimental data of Paradisanos et al. [Appl. Phys. Lett. 110, 193102 (2017), 10.1063/1.4983285]. We find that the relative weight of PL, stemmed from different excitonic channels, strongly depends on the laser power even under dynamical conditions. Remarkably, the biexciton channel, having the weakest PL intensity at low laser powers, tends to prevail in PL over other excitonic states as the power strengthens. In addition, by accounting for intervalley scatterings, which enable transfer of excitonic states from one valley to the other, we determine the valley polarization, which strongly depends on intervalley scatterings and the exciton generation rates in the two valleys. On the other hand, the valley polarization for all excitonic channels is found almost independent of the laser power, consistent with experimental measurements as well. Finally, the valley dynamics involving both intra- and intervalley trions is discussed. Our model and numerical outcome should be beneficial to experiments especially featuring the interplay of multiexcitonic channels in, e.g., elucidating experimental data, estimating central excitonic quantities including recombination times and transition rates, and in widening possible new experimental scopes.
Evidence for unnatural-parity contributions to electron-impact ionization of laser-aligned atoms
Armstrong, Gregory S. J.; Colgan, James Patrick; Pindzola, M. S.; ...
2015-09-11
Recent measurements have examined the electron-impact ionization of excited-state laser-aligned Mg atoms. In this paper we show that the ionization cross section arising from the geometry where the aligned atom is perpendicular to the scattering plane directly probes the unnatural parity contributions to the ionization amplitude. The contributions from natural parity partial waves cancel exactly in this geometry. Our calculations resolve the discrepancy between the nonzero measured cross sections in this plane and the zero cross section predicted by distorted-wave approaches. Finally, we demonstrate that this is a general feature of ionization from p-state targets by additional studies of ionizationmore » from excited Ca and Na atoms.« less
Heterogeneous Silicon III-V Mode-Locked Lasers
NASA Astrophysics Data System (ADS)
Davenport, Michael Loehrlein
Mode-locked lasers are useful for a variety of applications, such as sensing, telecommunication, and surgical instruments. This work focuses on integrated-circuit mode-locked lasers: those that combine multiple optical and electronic functions and are manufactured together on a single chip. While this allows production at high volume and lower cost, the true potential of integration is to open applications for mode-locked laser diodes where solid state lasers cannot fit, either due to size and power consumption constraints, or where small optical or electrical paths are needed for high bandwidth. Unfortunately, most high power and highly stable mode-locked laser diode demonstrations in scientific literature are based on the Fabry-Perot resonator design, with cleaved mirrors, and are unsuitable for use in integrated circuits because of the difficulty of producing integrated Fabry-Perot cavities. We use silicon photonics and heterogeneous integration with III-V gain material to produce the most powerful and lowest noise fully integrated mode-locked laser diode in the 20 GHz frequency range. If low noise and high peak power are required, it is arguably the best performing fully integrated mode-locked laser ever demonstrated. We present the design methodology and experimental pathway to realize a fully integrated mode-locked laser diode. The construction of the device, beginning with the selection of an integration platform, and proceeding through the fabrication process to final optimization, is presented in detail. The dependence of mode-locked laser performance on a wide variety of design parameters is presented. Applications for integrated circuit mode-locked lasers are also discussed, as well as proposed methods for using integration to improve mode-locking performance to beyond the current state of the art.
NASA Astrophysics Data System (ADS)
Guo, Jing; Ge, Xin-Lei; Zhong, Huiying; Zhao, Xi; Zhang, Meixia; Jiang, Yuanfei; Liu, Xue-Shen
2014-11-01
The high-order-harmonic generation (HHG) from the N2 molecule in an intense laser field is investigated by applying the Lewenstein method. The initial state is constructed as a linear combination of the highest occupied molecular orbital (HOMO) and the lower-lying orbital below the HOMO, which is well described by a Gaussian wave packet generated by using the gamess-uk package. The HHG with different vibrational states of N2 are calculated and our results show that the harmonic intensity can be enhanced by higher vibrational states, which can be explained by the ionization probability. We also compared the cases with a different full width at half maximum of laser fields together, which can be well understood by the time-frequency analysis and the three-step model. Finally, the attosecond pulse generation is studied with different vibrational states, where a series of attosecond pulses can be produced with the shortest being 91 as.
NASA Astrophysics Data System (ADS)
Zhang, Yi; Lin, Qida; Yin, Xuni; Li, Simeng; Deng, Jiquan
2018-04-01
Both the morphology and temperature are two important characteristics of the keyhole and the molten pool in laser deep-penetration welding. The modified ‘sandwich’ method was adopted to overcome the difficulty in obtaining inner information about the keyhole and the molten pool. Based on this method, experimental platforms were built for observing the variations in the surface morphology, the longitudinal keyhole profile and the internal temperature. The experimental results of three dynamic behaviors exbibit as follows. The key factor, which makes the pool width go into a quasi-steady state, lies in the balance between the vortex and the sideways flows around the keyhole. Experimental observation shows that the keyhole goes through three stages in laser welding: the rapid drilling stage, the slow drilling stage and the quasi-steady state. The time for achieving a relative fixed keyhole depth is close to the formation time of the maximum pool width. The internal temperatures inside the keyhole and the molten pool first experience a rapid increase, then a decrease and finally go into a quasi-steady state. Compared to that in the unstable stage, the liquid–metal uphill formed in the stable stage of laser welding has less influence on the internal temperature.
High-energy laser weapons: technology overview
NASA Astrophysics Data System (ADS)
Perram, Glen P.; Marciniak, Michael A.; Goda, Matthew
2004-09-01
High energy laser (HEL) weapons are ready for some of today"s most challenging military applications. For example, the Airborne Laser (ABL) program is designed to defend against Theater Ballistic Missiles in a tactical war scenario. Similarly, the Tactical High Energy Laser (THEL) program is currently testing a laser to defend against rockets and other tactical weapons. The Space Based Laser (SBL), Advanced Tactical Laser (ATL) and Large Aircraft Infrared Countermeasures (LAIRCM) programs promise even greater applications for laser weapons. This technology overview addresses both strategic and tactical roles for HEL weapons on the modern battlefield and examines current technology limited performance of weapon systems components, including various laser device types, beam control systems, atmospheric propagation, and target lethality issues. The characteristics, history, basic hardware, and fundamental performance of chemical lasers, solid state lasers and free electron lasers are summarized and compared. The elements of beam control, including the primary aperture, fast steering mirror, deformable mirrors, wavefront sensors, beacons and illuminators will be discussed with an emphasis on typical and required performance parameters. The effects of diffraction, atmospheric absorption, scattering, turbulence and thermal blooming phenomenon on irradiance at the target are described. Finally, lethality criteria and measures of weapon effectiveness are addressed. The primary purpose of the presentation is to define terminology, establish key performance parameters, and summarize technology capabilities.
Semiconductor Laser Low Frequency Noise Characterization
NASA Technical Reports Server (NTRS)
Maleki, Lute; Logan, Ronald T.
1996-01-01
This work summarizes the efforts in identifying the fundamental noise limit in semiconductor optical sources (lasers) to determine the source of 1/F noise and it's associated behavior. In addition, the study also addresses the effects of this 1/F noise on RF phased arrays. The study showed that the 1/F noise in semiconductor lasers has an ultimate physical limit based upon similar factors to fundamental noise generated in other semiconductor and solid state devices. The study also showed that both additive and multiplicative noise can be a significant detriment to the performance of RF phased arrays especially in regard to very low sidelobe performance and ultimate beam steering accuracy. The final result is that a noise power related term must be included in a complete analysis of the noise spectrum of any semiconductor device including semiconductor lasers.
EAGLE: relay mirror technology development
NASA Astrophysics Data System (ADS)
Hartman, Mary; Restaino, Sergio R.; Baker, Jeffrey T.; Payne, Don M.; Bukley, Jerry W.
2002-06-01
EAGLE (Evolutionary Air & Space Global Laser Engagement) is the proposed high power weapon system with a high power laser source, a relay mirror constellation, and the necessary ground and communications links. The relay mirror itself will be a satellite composed of two optically-coupled telescopes/mirrors used to redirect laser energy from ground, air, or space based laser sources to distant points on the earth or space. The receiver telescope captures the incoming energy, relays it through an optical system that cleans up the beam, then a separate transmitter telescope/mirror redirects the laser energy at the desired target. Not only is it a key component in extending the range of DoD's current laser weapon systems, it also enables ancillary missions. Furthermore, if the vacuum of space is utilized, then the atmospheric effects on the laser beam propagation will be greatly attenuated. Finally, several critical technologies are being developed to make the EAGLE/Relay Mirror concept a reality, and the Relay Mirror Technology Development Program was set up to address them. This paper will discuss each critical technology, the current state of the work, and the future implications of this program.
78 FR 32424 - Notice of Issuance of Final Determination Concerning Monochrome Laser Printers
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-30
... for manufacture in the U.S. and subsequent sale to U.S. government agencies. Ricoh states that it developed the SP52000-series printers in Japan, and that the entire engineering, development, design and..., Ltd. At the initial stage of the printers production process, individual parts are assembled into...
Development of 873 nm Raman Seed Pulse for Raman-seeded Laser Wakefield Acceleration
NASA Astrophysics Data System (ADS)
Grigsby, F.; Peng, D.; Downer, M. C.
2004-12-01
By using a Raman-shifted seed pulse coincident with a main driving pulse, laser wakefields can be generated with sub-relativistic intensity, coherent control and high repetition rate in the self-modulated regime. Experimentally, the generation of a chirped Stokes laser pulse by inserting a solid state Raman shifter, Ba(NO3)2, into a CPA system before the compressor (to suppress self-phase modulation) will be described. We will also report on design, modeling and experimental demonstration of a novel compressor for the Stokes pulse that uses a mismatched grating pair to achieve a near transform-limited seed pulse. Finally, we will describe the design, simulation and current status of Raman-seeded LWFA experiments that use this novel source.
Ring-Down Spectroscopy for Characterizing a CW Raman Laser
NASA Technical Reports Server (NTRS)
Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute
2007-01-01
.A relatively simple technique for characterizing an all-resonant intracavity continuous-wave (CW) solid-state Raman laser involves the use of ring-down spectroscopy. As used here, characterizing signifies determining such parameters as threshold pump power, Raman gain, conversion efficiency, and quality factors (Q values) of the pump and Stokes cavity modes. Heretofore, in order to characterize resonant-cavity-based Raman lasers, it has usually been necessary to manipulate the frequencies and power levels of pump lasers and, in each case, to take several sets of measurements. In cases involving ultra-high-Q resonators, it also has been desirable to lock pump lasers to resonator modes to ensure the quality of measurement data. Simpler techniques could be useful. In the present ring-down spectroscopic technique, one infers the parameters of interest from the decay of the laser out of its steady state. This technique does not require changing the power or frequency of the pump laser or locking the pump laser to the resonator mode. The technique is based on a theoretical analysis of what happens when the pump laser is abruptly switched off after the Raman generation reaches the steady state. The analysis starts with differential equations for the evolution of the amplitudes of the pump and Stokes electric fields, leading to solutions for the power levels of the pump and Stokes fields as functions of time and of the aforementioned parameters. Among other things, these solutions show how the ring-down time depends, to some extent, on the electromagnetic energy accumulated in the cavity. The solutions are readily converted to relatively simple equations for the parameters as functions of quantities that can be determined from measurements of the time-dependent power levels. For example, the steady-state intracavity conversion efficiency is given by G1/G2 1 and the threshold power is given by Pin(G2/G1)2, where Pin is the steady-state input pump power immediately prior to abrupt switch-off, G1 is the initial rate of decay of the pump field, and G2 is the final rate of decay of the pump field. Hence, it is possible to determine all the parameters from a single ring-down scan, provided that the measurements taken in that scan are sufficiently accurate and complete.
Topaz, O; McIvor, M; Stone, G W; Krucoff, M W; Perin, E C; Foschi, A E; Sutton, J; Nair, R; deMarchena, E
1998-01-01
The solid-state, mid-infrared holmium:YAG laser (2.1 microm wavelength) is a relatively new percutaneous device that has recently been evaluated in a multicenter study. Because of its unique wavelength and photoacoustic effects on atherosclerotic plaques, this laser may be useful in treatment of symptomatic patients with coronary artery disease. This study sought to evaluate the safety and efficacy of mid-infrared laser angioplasty in the treatment of coronary artery lesions. Laser angioplasty was performed on 2,038 atherosclerotic lesions in 1,862 consecutive patients with a mean age of 61 +/- 11 years. Clinical indications included unstable angina (69%), stable angina (20%), acute infarction (6%), and positive exercise test (5%). Complex lesion morphology included eccentricity (62%), thrombus (30%), total occlusion (27%), long lesions (14%), and saphenous vein grafts (11%). This laser catheter alone successfully reduced stenosis (>20%) in 87% of lesions. With adjunct balloon angioplasty, 93% procedural success was achieved. The presence of thrombus within the target lesion was a predictor of procedural success (OR = 2.0 [95% confidence interval 2.0, 4.0], P = .04). Bifurcation lesions (OR = 0.5 [95% confidence interval 0.2, 1.0], P = .05) and severe tortuosity of the treated vessel (OR = 0.4 [95% confidence interval 0.2, 0.9], P = .02) were identified as significant predictors of decreased laser success. Calcium within the lesion was associated with reduced procedural success (OR = 0.57 [95% confidence interval 0.34, 0.97], P = .03), and calcified lesions required significantly more energy pulses than noncalcified lesions (119 +/- 91 pulses vs. 101 +/- 86 pulses, respectively, P = .0002). Complications included in-hospital bypass surgery 2.5%, Q-wave myocardial infarction 1.2%, and death 0.8%. Perforation occurred in 2.2% of patients; major dissection in 5.8% of patients, and spasm in 12% of patients. No predictor of major complications was identified. Six-month angiographic restenosis was documented in 54% of patients, and clinical restenosis occurred in 34% of patients. Mid-infrared laser has a safety profile similar to that of other debulking devices. This laser may be useful in select patients presenting with acute ischemic syndromes associated with intracoronary thrombus; however, like other coronary lasers, it is limited by the need for adjunctive balloon angioplasty and/or stenting to achieve adequate final luminal diameter. No beneficial effects on reducing 6-month restenosis rates were observed.
FY00 LDRD Final Report High Power IFE Driver Component Development 00-SI-009
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bibeau, C; Schaffers, K; Tassano, J
We have begun building the ''Mercury'' laser system as the first in a series of new generation diode-pumped solid-state lasers for target physics research. Mercury will integrate three key technologies: diodes, crystals, and gas cooling, within a unique laser architecture that is scalable to kilojoule and megajoule energy levels for fusion energy applications. The primary near-term performance goals include 10% electrical efficiencies at 10 Hz and 100 J with a 2-10 ns pulse length at 1.047 {micro}m wavelength. Currently, this review concentrates on the critical development and production of Yb:S-FAP crystals. After solving many defect issues that can be presentmore » in the crystals, reproducibility is the final issue that needs to be resolved. We have enlisted the help of national experts and have strongly integrated two capable commercial crystal growth companies (Litton-Airton/Synoptics and Scientific Materials) into the effort, and have solicited the advice of Robert Morris (retired from Allied Signal), a recognized international expert in high temperature oxide growth.« less
Remote Operations of Laser Guide Star Systems: Gemini Observatory.
NASA Astrophysics Data System (ADS)
Oram, Richard J.; Fesquet, Vincent; Wyman, Robert; D'Orgeville, Celine
2011-03-01
The Gemini North telescope, equipped with a 14W laser, has been providing Laser Guide Star Adaptive Optics (LGS AO) regular science queue observations for worldwide astronomers since February 2007. The new 55W laser system for MCAO was installed on the Gemini South telescope in May 2010. In this paper, we comment on how Gemini Observatory developed regular remote operation of the Laser Guide Star Facility and high-power solid-state laser as routine normal operations. Fully remote operation of the LGSF from the Hilo base facility HBF was initially trialed and then optimized and became the standard operating procedure (SOP) for LGS operation in December 2008. From an engineering perspective remote operation demands stable, well characterized and base-lined equipment sets. In the effort to produce consistent, stable and controlled laser parameters (power, wavelength and beam quality) we completed a failure mode effect analysis of the laser system and sub systems that initiated a campaign of hardware upgrades and procedural improvements to the routine maintenance operations. Finally, we provide an overview of normal operation procedures during LGS runs and present a snapshot of data accumulated over several years that describes the overall LGS AO observing efficiency at the Gemini North telescope.
Review of infrared scene projector technology-1993
NASA Astrophysics Data System (ADS)
Driggers, Ronald G.; Barnard, Kenneth J.; Burroughs, E. E.; Deep, Raymond G.; Williams, Owen M.
1994-07-01
The importance of testing IR imagers and missile seekers with realistic IR scenes warrants a review of the current technologies used in dynamic infrared scene projection. These technologies include resistive arrays, deformable mirror arrays, mirror membrane devices, liquid crystal light valves, laser writers, laser diode arrays, and CRTs. Other methods include frustrated total internal reflection, thermoelectric devices, galvanic cells, Bly cells, and vanadium dioxide. A description of each technology is presented along with a discussion of their relative benefits and disadvantages. The current state of each methodology is also summarized. Finally, the methods are compared and contrasted in terms of their performance parameters.
High energy, high average power solid state green or UV laser
Hackel, Lloyd A.; Norton, Mary; Dane, C. Brent
2004-03-02
A system for producing a green or UV output beam for illuminating a large area with relatively high beam fluence. A Nd:glass laser produces a near-infrared output by means of an oscillator that generates a high quality but low power output and then multi-pass through and amplification in a zig-zag slab amplifier and wavefront correction in a phase conjugator at the midway point of the multi-pass amplification. The green or UV output is generated by means of conversion crystals that follow final propagation through the zig-zag slab amplifier.
Additive Manufacturing Solutions in the United States Marine Corps
2017-12-01
4 demonstrates this process. A laser or a blade then cuts each layer to shape the final product. Wohlers (2017) states that “the cost of material is...printed sole for its running shoes. The top of the shoe is constructed from conventional fabric and is attached to the sole after it is printed...milling). This runs on 208 volts and provides a small work area (T. Arndt, personal communication, June 21, 2017). 1st Maintenance Battalion Marines
Statistical study of single and multiple pulse laser-induced damage in glasses.
Gallais, L; Natoli, J; Amra, C
2002-12-16
Single and multiple pulse laser damage studies are performed in Suprasil silica and BK-7 borosilicate glasses. Experiments are made in the bulk of materials at 1.064microm with nanosecond pulses, using an accurate and reliable measurement system. By means of a statistical study on laser damage probabilities, we demonstrate that the same nano-precursors could be involved in the multiple shot and single shot damage process. A damage mechanism with two stages is then proposed to explain the results. Firstly, a pre-damage process, corresponding to material changes at a microscopic level, leads the precursor to a state that can induce a one-pulse damage. And secondly a final damage occurs, with a mechanism identical to the single shot case. For each material, a law is found to predict the precursor life-time. We can then deduce the long term life of optical elements in high-power laser systems submitted to multipulse irradiation.
Design strategy for terahertz quantum dot cascade lasers.
Burnett, Benjamin A; Williams, Benjamin S
2016-10-31
The development of quantum dot cascade lasers has been proposed as a path to obtain terahertz semiconductor lasers that operate at room temperature. The expected benefit is due to the suppression of nonradiative electron-phonon scattering and reduced dephasing that accompanies discretization of the electronic energy spectrum. We present numerical modeling which predicts that simple scaling of conventional quantum well based designs to the quantum dot regime will likely fail due to electrical instability associated with high-field domain formation. A design strategy adapted for terahertz quantum dot cascade lasers is presented which avoids these problems. Counterintuitively, this involves the resonant depopulation of the laser's upper state with the LO-phonon energy. The strategy is tested theoretically using a density matrix model of transport and gain, which predicts sufficient gain for lasing at stable operating points. Finally, the effect of quantum dot size inhomogeneity on the optical lineshape is explored, suggesting that the design concept is robust to a moderate amount of statistical variation.
Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond
NASA Astrophysics Data System (ADS)
Huang, Min; Zhao, Fuli; Cheng, Ya; Xu, Ningsheg; Xu, Zhizhan
2009-03-01
Deep-subwavelength gratings with periodicities of 170, 120, and 70 nm can be observed on highly oriented pyrolytic graphite irradiated by a femtosecond (fs) laser at 800 nm. Under picosecond laser irradiation, such gratings likewise can be produced. Interestingly, the 170-nm grating is also observed on single-crystal diamond irradiated by the 800-nm fs laser. In our opinion, the optical properties of the high-excited state of material surface play a key role for the formation of the deep-subwavelength gratings. The numerical simulations of the graphite deep-subwavelength grating at normal and high-excited states confirm that in the groove the light intensity can be extraordinarily enhanced via cavity-mode excitation in the condition of transverse-magnetic wave irradiation with near-ablation-threshold fluences. This field enhancement of polarization sensitiveness in deep-subwavelength apertures acts as an important feedback mechanism for the growth and polarization dependence of the deep-subwavelength gratings. In addition, we suggest that surface plasmons are responsible for the formation of seed deep-subwavelength apertures with a particular periodicity and the initial polarization dependence. Finally, we propose that the nanoscale Coulomb explosion occurring in the groove is responsible for the ultrafast nonthermal ablation mechanism.
Maximum value of the pulse energy of a passively Q-switched laser as a function of the pump power.
Li, Jianlang; Ueda, Ken-ichi; Dong, Jun; Musha, Mitsuru; Shirakawa, Akira
2006-07-20
The finite recovery time Ts of the bleached absorber is presented as one of the possible mechanisms accounting for the increase-maximum-decrease in pulse energy E with the pumping rate Wp in cw-pumped passively Q-switched solid-state lasers, by analytically evaluating the sign of the derivative partial differentialE/ partial differentialWP. The results show that, in the low pump regime (T>Ts, T is the interpulse period), the initial population density ni remains constant, the final population density nf decreases with Wp, and this results in a monotonic increase of E with Wp. In the high pump regime (T
Development of optical diagnostics for performance evaluation of arcjet thrusters
NASA Technical Reports Server (NTRS)
Cappelli, Mark A.
1995-01-01
Laser and optical emission-based measurements have been developed and implemented for use on low-power hydrogen arcjet thrusters and xenon-propelled electric thrusters. In the case of low power hydrogen arcjets, these laser induce fluorescence measurements constitute the first complete set of data that characterize the velocity and temperature field of such a device. The research performed under the auspices of this NASA grant includes laser-based measurements of atomic hydrogen velocity and translational temperature, ultraviolet absorption measurements of ground state atomic hydrogen, Raman scattering measurements of the electronic ground state of molecular hydrogen, and optical emission based measurements of electronically excited atomic hydrogen, electron number density, and electron temperature. In addition, we have developed a collisional-radiative model of atomic hydrogen for use in conjunction with magnetohydrodynamic models to predict the plasma radiative spectrum, and near-electrode plasma models to better understand current transfer from the electrodes to the plasma. In the final year of the grant, a new program aimed at developing diagnostics for xenon plasma thrusters was initiated, and results on the use of diode lasers for interrogating Hall accelerator plasmas has been presented at recent conferences.
The generation of amplified spontaneous emission in high-power CPA laser systems.
Keppler, Sebastian; Sävert, Alexander; Körner, Jörg; Hornung, Marco; Liebetrau, Hartmut; Hein, Joachim; Kaluza, Malte Christoph
2016-03-01
An analytical model is presented describing the temporal intensity contrast determined by amplified spontaneous emission in high-intensity laser systems which are based on the principle of chirped pulse amplification. The model describes both the generation and the amplification of the amplified spontaneous emission for each type of laser amplifier. This model is applied to different solid state laser materials which can support the amplification of pulse durations ≤350 fs . The results are compared to intensity and fluence thresholds, e.g. determined by damage thresholds of a certain target material to be used in high-intensity applications. This allows determining if additional means for contrast improvement, e.g. plasma mirrors, are required for a certain type of laser system and application. Using this model, the requirements for an optimized high-contrast front-end design are derived regarding the necessary contrast improvement and the amplified "clean" output energy for a desired focussed peak intensity. Finally, the model is compared to measurements at three different high-intensity laser systems based on Ti:Sapphire and Yb:glass. These measurements show an excellent agreement with the model.
Towards fundamental understanding of ultracold KRb
NASA Astrophysics Data System (ADS)
Kotochigova, Svetlana
2009-05-01
The recent formation of ultracold KRb molecules in their absolute rovibrational ground state [1] has created great promise for study of collective phenomena that rely on the long-range interactions between polar molecules. Here we discuss the theoretical analysis of various essential properties of the KRb molecules [2] that accompanied these experimental advances. This analysis is based on multi-channel bound-state calculations of both ground and excited electronic states. We have found that the theoretical hyperfine and Zeeman mixed X^1&+circ; and a^3&+circ; vibrational structure shows excellent agreement with the experimentally observed structure. In addition, multi-channel calculations of the rovibrational structure of the excited state potentials have allowed us to find the optimal transitions to the lowest v=0 vibrational levels. Finally, we examine the dynamic polarizability of vibrationally cold KRb molecules as a function of laser frequency. Based on this knowledge, laser frequencies can be selected to minimize decoherence from loss of molecules due to spontaneous or laser-induced transitions. [1] K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Peer, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, Science 322, 231 (2008). [2] S. Kotochigova, E. Tiesinga, and P. S. Julienne, submitted to New J. Phys. (2009).
Quantitative theoretical analysis of lifetimes and decay rates relevant in laser cooling BaH
NASA Astrophysics Data System (ADS)
Moore, Keith; Lane, Ian C.
2018-05-01
Tiny radiative losses below the 0.1% level can prove ruinous to the effective laser cooling of a molecule. In this paper the laser cooling of a hydride is studied with rovibronic detail using ab initio quantum chemistry in order to document the decays to all possible electronic states (not just the vibrational branching within a single electronic transition) and to identify the most populated final quantum states. The effect of spin-orbit and associated couplings on the properties of the lowest excited states of BaH are analysed in detail. The lifetimes of the A2Π1/2, H2Δ3/2 and E2Π1/2 states are calculated (136 ns, 5.8 μs and 46 ns respectively) for the first time, while the theoretical value for B2 Σ1/2+ is in good agreement with experiments. Using a simple rate model the numbers of absorption-emission cycles possible for both one- and two-colour cooling on the competing electronic transitions are determined, and it is clearly demonstrated that the A2Π - X2Σ+ transition is superior to B2Σ+ - X2Σ+ , where multiple tiny decay channels degrade its efficiency. Further possible improvements to the cooling method are proposed.
Radiationless Transitions and Excited-State Absorption of Low-Field Chromium Complexes in Solids
1989-07-20
host-lattice modes and, in the case of the scandium compound with 5 % chromium concentration, of the a and tIg 2g localized modes. The local-mode...Radiationless transitions and excited-state Final report I/I/86-5/31/89 absorption of low-field chromium complexes 6. PERFORMING ORG. REPORT NUMBER ( 1 in...complexes, chromium ; tunable lasers, high pressure,-photoluminescence 4. 26, AMTVrAC? (Cbm e @CAP N Igemem’ a IdoMit’ by block nambew) The continuation of a
NASA Astrophysics Data System (ADS)
Agueny, Hicham; Makhoute, Abdelkader; Dubois, Alain
2017-06-01
We theoretically investigate quantum virtual path interference caused by the dynamic Stark effect in bound-bound electronic transitions. The effect is studied in an intermediate resonant region and in connection with the energetic electron impact excitation of a helium atom embedded in a weak low-frequency laser field. The process under investigation is dealt with via a Born-Floquet approach. Numerical calculations show a resonant feature in laser-assisted cross sections. The latter is found to be sensitive to the intensity of the laser field dressing. We show that this feature is a signature of quantum beats which result from the coherent mixture of different quantum virtual pathways, and that excitation may follow in order to end up with a common final channel. This mixture arises from the dynamic Stark effect, which produces a set of avoided crossings in laser-dressed states. The effect allows one to coherently control quantum virtual path interference by varying the intensity of the laser field dressing. Our findings suggest that the combination of an energetic electron and a weak laser field is a useful tool for the coherent control of nonadiabatic transitions in an intermediate resonant region.
NASA Astrophysics Data System (ADS)
Martini, Lara; Boll, Diego I. R.; Fojón, Omar A.
2017-08-01
Basic reactions involving water molecules are essential to understand the interaction between radiation and the biological tissue because living cells are composed mostly by water. Therefore, the knowledge of ionization of the latter is crucial in many domains of Biology and Physics. So, we study theoretically the photoionization of water molecules by extreme ultraviolet attopulse trains assisted by lasers in the near-infrared range. We use a separable Coulomb-Volkov model in which the temporal evolution of the system can be divided into three stages allowing spatial and temporal separation for the Coulomb and Volkov final state wavefunctions. First, we analyze photoelectron angular distributions for different delays between the attopulse train and the assistant laser field. We compare our results for water and Ne atoms as they belong to the same isoelectronic series. Moreover, we contrast our calculations with previous theoretical and experimental work for Ar atoms due to the similarities of the orbitals involved in the reaction. Second, we study the effect of varying the relative orientations of the attopulse and laser field polarizations and we compare our predictions with other theories and experiments. We expect these studies contribute to the improvement of polarization experiments and the development of the attopulse trains and assistant laser fields technologies. Finally, we hope our work promote progress on the control of the chemical reactivity of water molecules since this could be useful in different fields such as radiobiology and medical physics.
Charge-state distribution of Li ions from the β decay of laser-trapped He 6 atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, R.; Leredde, A.; Bagdasarova, Y.
The accurate determination of atomic final states following nuclear β decay plays an important role in several experiments. In particular, the charge state distributions of ions following nuclear β decay are important for determinations of the β-ν angular correlation with improved precision. Also, beyond the hydrogenic cases, the decay of neutral 6He presents the simplest case. Our measurement aims at providing benchmarks to test theoretical calculations. The kinematics of Li n+ ions produced following the β decay of 6He within an electric field were measured using 6He atoms in the metastable (1s2s, 3S 1) and (1s2p, 3P 2) states confinedmore » by a magneto-optical trap. The electron shakeoff probabilities were deduced, including their dependence on ion energy. Finally, we find significant discrepancies on the fractions of Li ions in the different charge states with respect to a recent calculation.« less
Charge-state distribution of Li ions from the β decay of laser-trapped He 6 atoms
Hong, R.; Leredde, A.; Bagdasarova, Y.; ...
2017-11-13
The accurate determination of atomic final states following nuclear β decay plays an important role in several experiments. In particular, the charge state distributions of ions following nuclear β decay are important for determinations of the β-ν angular correlation with improved precision. Also, beyond the hydrogenic cases, the decay of neutral 6He presents the simplest case. Our measurement aims at providing benchmarks to test theoretical calculations. The kinematics of Li n+ ions produced following the β decay of 6He within an electric field were measured using 6He atoms in the metastable (1s2s, 3S 1) and (1s2p, 3P 2) states confinedmore » by a magneto-optical trap. The electron shakeoff probabilities were deduced, including their dependence on ion energy. Finally, we find significant discrepancies on the fractions of Li ions in the different charge states with respect to a recent calculation.« less
Laser ignition of engines: a realistic option!
NASA Astrophysics Data System (ADS)
Weinrotter, M.; Srivastava, D. K.; Iskra, K.; Graf, J.; Kopecek, H.; Klausner, J.; Herdin, G.; Wintner, E.
2006-01-01
Due to the demands of the market to increase efficiencies and power densities of gas engines, existing ignition schemes are gradually reaching their limits. These limitations initially triggered the development of laser ignition as an effective alternative, first only for gas engines and now for a much wider range of internal combustion engines revealing a number of immediate advantages like no electrode erosion or flame kernel quenching. Furthermore and most noteworthy, already the very first engine tests about 5 years ago had resulted in a drastic reduction of NO x emissions. Within this broad range investigation, laser plasmas were generated by ns Nd-laser pulses and characterized by emission and Schlieren diagnostic methods. High-pressure chamber experiments with lean hydrogen-methane-air mixtures were successfully performed and allowed the determination of essential parameters like minimum pulse energies at different ignition pressures and temperatures as well as at variable fuel air compositions. Multipoint ignition was studied for different ignition point locations. In this way, relevant parameters were acquired allowing to estimate future laser ignition systems. Finally, a prototype diode-pumped passively Q-switched Nd:YAG laser was tested successfully at a gasoline engine allowing to monitor the essential operation characteristics. It is expected that laser ignition involving such novel solid-state lasers will allow much lower maintenance efforts.
NASA Astrophysics Data System (ADS)
Grum-Grzhimailo, A. N.; Cubaynes, D.; Heinecke, E.; Hoffmann, P.; Zimmermann, P.; Meyer, M.
2010-10-01
The generalized geometrical model for photoionization from polarized atoms is extended to include mixing of configurations in the initial atomic and/or the final photoion states. The theoretical results for angle-resolved linear and circular magnetic dichroism are in good agreement with new high-resolution photoelectron data for 3p-1 photoionization of potassium atoms polarized in the K 3p64s 2S1/2 ground state by laser optical pumping.
Laser Integration on Silicon Photonic Circuits Through Transfer Printing
2017-03-10
AFRL-AFOSR-UK-TR-2017-0019 Laser integration on silicon photonic circuits through transfer printing Gunther Roelkens UNIVERSITEIT GENT VZW Final...TYPE Final 3. DATES COVERED (From - To) 15 Sep 2015 to 14 Sep 2016 4. TITLE AND SUBTITLE Laser integration on silicon photonic circuits through...parallel integration of III-V lasers on silicon photonic integrated circuits. The report discusses the technological process that has been developed as
NASA Astrophysics Data System (ADS)
Min, Qi; Su, Maogen; Wang, Bo; Cao, Shiquan; Sun, Duixiong; Dong, Chenzhong
2018-05-01
The radiation and dynamics properties of laser-produced carbon plasma in vacuum were studied experimentally with aid of a spatio-temporally resolved emission spectroscopy technique. In addition, a radiation hydrodynamics model based on the fluid dynamic equations and the radiative transfer equation was presented, and calculation of the charge states was performed within the time-dependent collisional radiative model. Detailed temporal and spatial evolution behavior about plasma parameters have been analyzed, such as velocity, electron temperature, charge state distribution, energy level population, and various atomic processes. At the same time, the effects of different atomic processes on the charge state distribution were examined. Finally, the validity of assuming a local thermodynamic equilibrium in the carbon plasma expansion was checked, and the results clearly indicate that the assumption was valid only at the initial (<80 ns) stage of plasma expansion. At longer delay times, it was not applicable near the plasma boundary because of a sharp drop of plasma temperature and electron density.
Microwave-optical two-photon excitation of Rydberg states
NASA Astrophysics Data System (ADS)
Tate, D. A.; Gallagher, T. F.
2018-03-01
We report efficient microwave-optical two photon excitation of Rb Rydberg atoms in a magneto-optical trap. This approach allows the excitation of normally inaccessible states and provides a path toward excitation of high-angular-momentum states. The efficiency stems from the elimination of the Doppler width, the use of a narrow-band pulsed laser, and the enormous electric-dipole matrix element connecting the intermediate and final states of the transition. The excitation is efficient in spite of the low optical and microwave powers, of order 1 kW and 1 mW, respectively. This is an application of the large dipole coupling strengths between Rydberg states to achieve two-photon excitation of Rydberg atoms.
Luminorefrigeration: vibrational cooling of NaCs.
Wakim, A; Zabawa, P; Haruza, M; Bigelow, N P
2012-07-02
We demonstrate the use of optical pumping of kinetically ultracold NaCs to cool an initial vibrational distribution of electronic ground state molecules X(1)Σ(+)(v ≥ 4) into the vibrational ground state X(1)Σ(+)(v=0). Our approach is based on the use of simple, commercially available multimode diode lasers selected to optically pump population into X(1)Σ(+)(v=0). We investigate the impact of the cooling process on the rotational state distribution of the vibrational ground state, and observe that an initial distribution, J(initial)=0-2 is only moderately affected resulting in J(final)=0-4. This method provides an inexpensive approach to creation of vibrational ground state ultracold polar molecules.
Advanced Orion Optimized Laser System Analysis
NASA Technical Reports Server (NTRS)
1996-01-01
Contractor shall perform a complete analysis of the potential of the solid state laser in the very long pulse mode (100 ns pulse width, 10-30 hz rep-rate) and in the very short pulse mode (100 ps pulse width 10-30 hz rep rate) concentrating on the operation of the device in the 'hot-rod' mode, where no active cooling the laser operation is attempted. Contractor's calculations shall be made of the phase aberrations which develop during the repped-pulse train, and the results shall feed into the adaptive optics analyses. The contractor shall devise solutions to work around ORION track issues. A final report shall be furnished to the MSFC COTR including all calculations and analysis of estimates of bulk phase and intensity aberration distribution in the laser output beam as a function of time during the repped-pulse train for both wave forms (high-energy/long-pulse, as well as low-energy/short-pulse). Recommendations shall be made for mitigating the aberrations by laser re-design and/or changes in operating parameters of optical pump sources and/or designs.
NASA Technical Reports Server (NTRS)
Stysley, Paul
2016-01-01
Applicability to Early Stage Innovation NIAC Cutting edge and innovative technologies are needed to achieve the demanding requirements for NASA origin missions that require sample collection as laid out in the NRC Decadal Survey. This proposal focused on fully understanding the state of remote laser optical trapping techniques for capturing particles and returning them to a target site. In future missions, a laser-based optical trapping system could be deployed on a lander that would then target particles in the lower atmosphere and deliver them to the main instrument for analysis, providing remote access to otherwise inaccessible samples. Alternatively, for a planetary mission the laser could combine ablation and trapping capabilities on targets typically too far away or too hard for traditional drilling sampling systems. For an interstellar mission, a remote laser system could gather particles continuously at a safe distance; this would avoid the necessity of having a spacecraft fly through a target cloud such as a comet tail. If properly designed and implemented, a laser-based optical trapping system could fundamentally change the way scientists designand implement NASA missions that require mass spectroscopy and particle collection.
Design definition of the Laser Atmospheric Wind Sounder (LAWS), phase 2. Volume 2: Final report
NASA Technical Reports Server (NTRS)
Wilson, D. J.
1992-01-01
Lockheed personnel, along with team member subcontractors and consultants, have performed a preliminary design for the LAWS Instrument. Breadboarding and testing of a LAWS class laser have also been performed. These efforts have demonstrated that LAWS is a feasible Instrument and can be developed with existing state-of-the-art technology. Only a commitment to fund the instrument development and deployment is required to place LAWS in orbit and obtain the anticipated science and operational forecasting benefits. The LAWS Science Team was selected in 1988-89 as were the competing LAWS phase 1/2 contractor teams. The LAWS Science Team developed requirements for the LAWS Instrument, and the NASA/LAWS project office defined launch vehicle and platform design constraints. From these requirements and constraints, the lockheed team developed LAWS Instrument concepts and configurations. A system designed to meet these requirements and constraints is outlined. The LAWS primary subsystem and interfaces - laser, optical, and receiver/processor - required to assemble a lidar are identified. Also identified are the support subsystems required for the lidar to function from space: structures and mechanical, thermal, electrical, and command and data management. The Lockheed team has developed a preliminary design of a LAWS Instrument System consisting of these subsystems and interfaces which will meet the requirements and objectives of the Science Team. This final report provides a summary of the systems engineering analyses and trades of the LAWS. Summaries of the configuration, preliminary designs of the subsystems, testing recommendations, and performance analysis are presented. Environmental considerations associated with deployment of LAWS are discussed. Finally, the successful LAWS laser breadboard effort is discussed along with the requirements and test results.
Interband optical pulse injection locking of quantum dot mode-locked semiconductor laser.
Kim, Jimyung; Delfyett, Peter J
2008-07-21
We experimentally demonstrate optical clock recovery from quantum dot mode-locked semiconductor lasers by interband optical pulse injection locking. The passively mode-locked slave laser oscillating on the ground state or the first excited state transition is locked through the injection of optical pulses generated via the opposite transition bands, i.e. the first excited state or the ground state transition from the hybridly mode-locked master laser, respectively. When an optical pulse train generated via the first excited state from the master laser is injected to the slave laser oscillating via ground state, the slave laser shows an asymmetric locking bandwidth around the nominal repetition rate of the slave laser. In the reverse injection case of, i.e. the ground state (master laser) to the first excited state (slave laser), the slave laser does not lock even though both lasers oscillate at the same cavity frequency. In this case, the slave laser only locks to higher injection rates as compared to its own nominal repetition rate, and also shows a large locking bandwidth of 6.7 MHz.
NASA Technical Reports Server (NTRS)
Coyle, D. Barry; Stysley, Paul R.; Poulios, Demetrios; Fredrickson, Robert M.; Kay, Richard B.; Cory, Kenneth C.
2014-01-01
We report on a newly solid state laser transmitter, designed and packaged for Earth and planetary space-based remote sensing applications for high efficiency, low part count, high pulse energy scalability/stability, and long life. Finally, we have completed a long term operational test which surpassed 2 Billion pulses with no measured decay in pulse energy.
Assessment of research needs for laser technologies applied to advanced spectroscopic methods
NASA Astrophysics Data System (ADS)
1990-01-01
The Department of Energy (DOE) recognizes that new developments in laser technology and laser spectroscopy can substantially improve the ability to carry out the mission of its Office of Health and Environmental Research (OHER). In brief, the mission of OHER is to support programs of research which allow DOE to understand and anticipate long term effects upon human health and the environment from the production and utilization of alternate forms of energy, and to apply the department's unique capabilities to solve numerous problems in biology and medicine. A DOE study was managed by Consultec Scientific, Inc. who furnished from its staff the Principal Investigator who, in turn, coordinated the enthusiastic efforts of a group of consultants consisting of some of the world's best scientists. The panel made six specific recommendations which dealt with three important areas. First the panel recommends that OHER closely monitor and be prepared to use the advances now being made in solid-state laser technology. These advances, comparable in nature to the revolution which began during the 1950's in solid-state electronics, will radically improve present-day laser technology. Secondly, the panel addressed the use of this advanced technology to maintain the preeminent position which OHER has already created for itself in the development of selective and sensitive instruments for the analysis of atomic and molecular substances and to extend the use of these to measure chemical pollutants in air, soil, and water. Finally, another area of the recommendations dealt with the use of lasers to determine structural and dynamical features of macromolecules and especially to develop x ray lasers and other imaging techniques, including holographic ones, for sequencing DNA and the human genome.
Probing Sizes and Shapes of Nobelium Isotopes by Laser Spectroscopy
NASA Astrophysics Data System (ADS)
Raeder, S.; Ackermann, D.; Backe, H.; Beerwerth, R.; Berengut, J. C.; Block, M.; Borschevsky, A.; Cheal, B.; Chhetri, P.; Düllmann, Ch. E.; Dzuba, V. A.; Eliav, E.; Even, J.; Ferrer, R.; Flambaum, V. V.; Fritzsche, S.; Giacoppo, F.; Götz, S.; Heßberger, F. P.; Huyse, M.; Kaldor, U.; Kaleja, O.; Khuyagbaatar, J.; Kunz, P.; Laatiaoui, M.; Lautenschläger, F.; Lauth, W.; Mistry, A. K.; Minaya Ramirez, E.; Nazarewicz, W.; Porsev, S. G.; Safronova, M. S.; Safronova, U. I.; Schuetrumpf, B.; Van Duppen, P.; Walther, T.; Wraith, C.; Yakushev, A.
2018-06-01
Until recently, ground-state nuclear moments of the heaviest nuclei could only be inferred from nuclear spectroscopy, where model assumptions are required. Laser spectroscopy in combination with modern atomic structure calculations is now able to probe these moments directly, in a comprehensive and nuclear-model-independent way. Here we report on unique access to the differential mean-square charge radii of
Padgett, Miles [University of Glasgow, Glasgow, Scotland
2017-12-09
Optical vortices and orbital angular momentum are currently topical subjects in the optics literature. Although seemingly esoteric, they are, in fact, the generic state of light and arise whenever three or more plane waves interfere. To be observed by eye the light must be monochromatic. Laser speckle is one such example, where the optical energy circulates around each black spot, giving a local orbital angular momentum. This talk with report three on-going studies. First, when considering a volume of interfering waves, the laser specs map out threads of complete darkness embedded in the light. Do these threads form loops? Links? Or even knots? Second, when looking through a rapidly spinning window, the image of the world on the other side is rotated: true or false? Finally, the entanglement of orbital angular momentum states means measuring how the angular position of one photons sets the angular momentum of another: is this an angular version of the EPR (Einstein, Podolsky, and Rosen) paradox?
NASA Technical Reports Server (NTRS)
Byer, R. L. (Editor); Trebino, R. (Editor); Gustafson, E. K. (Editor)
1985-01-01
Papers are presented on solid-state lasers for remote sensing, diode-pumped Nd:YAG lasers, and tunable solid-state-laser systems. Topics discussed include titanium-sapphire tunable laser systems, the performance of slab geometry, and the development of slab lasers. Consideration is given to garnet host solid-state lasers, the growth of lasers and nonlinear materials, and nonlinear frequency conversion and tunable sources.
Ultrafast Modulation and Switching of Quantum-Well Lasers using Terahertz Fields
NASA Technical Reports Server (NTRS)
Ning, Cun-Zheng; Hughes, S.; Citrin, D.; Saini, Subhash (Technical Monitor)
1998-01-01
Modulation and switching of semiconductor lasers are important for laser-based information technology. Typically the speed of modulation and switching is limited by interband processes such as stimulated and spontaneous recombinations which occur on a nanosecond time scale. This is why the diode laser modulation has been restricted to tens of GHz. Modulation at higher speed is highly desirable as the information technology enters into the so-called tera-era. In this paper, we study the possibility of utilizing THz-field-induced plasma heating to modulate quantum-well lasers. This is a timely study since, with the advancement of THz solid-state sources and free-electron lasers, THz physics and related technology is currently coming out of its infancy. The investigation of interplaying THz and optical fields is also of intruiging fundamental interest. First, we introduce theoretical plasma heating results for the quantum-well optical amplifier in the presense of an intense half-cycle THz pulse. The heated carrier distributions are then utilized to calculate the THz-pulse-induced change in refractive index and gain profile. Since the electron-hole-plasma is heated using intraband transitions, we circumvent the usual complications due to an overall change in density, and the nonlinear recovery is governed solely by the carrier-LO-phonon interactions, typically 5 ps for a complete recovery. This procedure implies THz and sub-THz switching and recovery rates, respectively; using either gain modulation or index modulation. Plasma heating via steady-state THz fields is also studied. Finally, numerical simulation of a coupled set of equations to investigate the THz modulation based on a simplified model for quantum-well lasers is presented. Our results show that a semiconductor laser can be modulated at up to 1 THz with little distortion with a THz field amplitude at the order of a few kV/cm. Laser responses to a change in THz frequency will be shown. Constraints, practicalities, and applications will be discussed.
The cooling of confined ions driven by laser beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reyna, L.G.; Sobehart, J.R.
1993-07-01
We finalize the dynamics of confined ions driven by a quantized radiation field. The ions can absorb photons from an incident laser beam and relax back to the ground state by either induced emissions or spontaneous emissions. Here we assume that the absorption of photons is immediately followed by spontaneous emissions, resulting in single-level ions perturbed by the exchange of momentum with the radiation field. The probability distribution of the ions is calculated using singular expansions in the low noise asymptotic limit. The present calculations reproduce the quantum results in the limit of heavy particles in static traps, and themore » classical results of ions in radio-frequency confining wells.« less
Quantum dot lasers: From promise to high-performance devices
NASA Astrophysics Data System (ADS)
Bhattacharya, P.; Mi, Z.; Yang, J.; Basu, D.; Saha, D.
2009-03-01
Ever since self-organized In(Ga)As/Ga(AI)As quantum dots were realized by molecular beam epitaxy, it became evident that these coherently strained nanostructures could be used as the active media in devices. While the expected advantages stemming from three-dimensional quantum confinement were clearly outlined, these were not borne out by the early experiments. It took a very detailed understanding of the unique carrier dynamics in the quantum dots to exploit their full potential. As a result, we now have lasers with emission wavelengths ranging from 0.7 to 1.54 μm, on GaAs, which demonstrate ultra-low threshold currents, near-zero chip and α-factor and large modulation bandwidth. State-of-the-art performance characteristics of these lasers are briefly reviewed. The growth, fabrication and characteristics of quantum dot lasers on silicon substrates are also described. With the incorporation of multiple quantum dot layers as a dislocation filter, we demonstrate lasers with Jth=900 A/cm 2. The monolithic integration of the lasers with guided wave modulators on silicon is also described. Finally, the properties of spin-polarized lasers with quantum dot active regions are described. Spin injection of electrons is done with a MnAs/GaAs tunnel barrier. Laser operation at 200 K is demonstrated, with the possibility of room temperature operation in the near future.
NASA Astrophysics Data System (ADS)
Tabirian, Anna Murazian
This dissertation describes a series of experiments and theoretical studies, which led to the development of two new solid state laser systems: efficient, room temperature mid-infrared solid state laser at 3.9 μm in Ho 3+ doped BaY2F8 and visible Pr:LiYF4 laser at 640 mn for holography. The 3.9 μm laser wavelength matches the peak of mid-IR atmospheric transmission window, which makes it very important for multiple applications such as remote sensing, imaging, IR countermeasures, eye-safe lidars and environmental agent detection. We present the results of spectroscopic evaluations and numerical modeling of energy transfer processes between rare earth ions of Ho3+ doped in two host laser materials: BaY2F8 and LiYF 4. The 3.9 μm laser is based on transition with upper laser lifetime considerably shorter than lower level lifetime, which in general leads to self-terminating laser action in the cw mode or at high repetition rates. Therefore, three different pumping and lasing schemes, that could allow overcoming these limitations have been suggested and studied. First, cascade laser action at 1.4 μm and 3.9 μm was achieved with low thresholds and near-theoretical quantum efficiency in Ho3+ doped BaY2F8 pumped at 532 nm by a Q- switched frequency doubled Nd:YAG laser. Next, the feasibility of achieving 3.9 μm laser with cw resonant cascade pumping at 750 mn by a Ti:Sapphire laser was studied. New energy transfer process, such as upconversion from terminal level of the 3.9 μm laser was observed in high concentration Ho3+ doped BaY2F 8. Finally, we proposed to use high-energy flashlamp pumped tunable Cr:LiSAF laser operating in long pulse regime for the direct pumping of the upper level of the 3.9 μm laser. Pulsed laser oscillation at 3.9 μm is demonstrated in Ho3+ doped BaY2F8 with low threshold of 3 mJ and a slope efficiency of 14.5% with maximal energy of 30 mJ. The second part of the thesis describes the design and the development of the visible Pr:LiYF4 laser for holography at 640 nm resonantly pumped by the frequency-doubled flashlamp pumped tunable Cr:LiSAF laser at 444 nm.
NASA Astrophysics Data System (ADS)
Simonsson, Samuel
1989-03-01
It gives me a great deal of pleasure to introduce our final speaker of this morning's session for two reasons: First of all, his company has been very much in the news not only in our own community but in the pages of Wall Street Journal and in the world economic press. And, secondly, we would like to welcome him to our shores. He is a temporary resident of the United States, for a few months, forsaking his home in Germany to come here and help with the start up of a new company which we believe, probably, ranks #1 as the world supplier of CO2 lasers now, through the combination of former Spectra Physics Industrial Laser Division and Rofin-Sinar GMBH. Samuel Simonsson is the Chairman of the Board of Rofin-Sinar, Inc., here in the U.S. and managing director of Rofin-Sinar GMBH. It is a pleasure to welcome him.
Self-photopumped x-ray lasers from elements in the Ne-like and Ni-like ionization state
Siegrist, Michael; Staub, Felix; Jia, Fei; ...
2016-08-11
In this paper, we report on experiments on the self-photopumped 3d 1P 1→3p 1P 1 and 4f 1P 1→4d 1P 1 laser transitions in Ne-like and Ni-like ions, respectively. Lasing on the self-photopumped laser line has been observed for the first time for a number of elements including Ne-like V, Cr, Fe, and Co as well as Ni-like Ru and Pd. We have investigated the lasing process by varying the prepulse delay, which shows a shift of the optimum main pulse to second prepulse delays towards lower values with higher atomic number Z. Time-resolved measurements showed that self-photopumped and monopolemore » collision-pumped lasing emission occurs essentially simultaneously. Finally, accurate wavelength measurements and calculations are shown to be in excellent agreement.« less
2017-01-11
and to mitigate the defects in the coating that lead to damage under laser irradiation . In this final 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...understand and to mitigate the defects in the coating that lead to damage under laser irradiation . In this final report we list the accomplishments of this...Luke A. Emmert, Wolfgang Rudolph. Time-dependent absorption of TiO_2 optical thin films under pulsed and continuous wave 790??nm laser irradiation
Tao, Li; Zhu, Kun; Zhu, Jungao; Xu, Xiaohan; Lin, Chen; Ma, Wenjun; Lu, Haiyang; Zhao, Yanying; Lu, Yuanrong; Chen, Jia-Er; Yan, Xueqing
2017-07-07
With the development of laser technology, laser-driven proton acceleration provides a new method for proton tumor therapy. However, it has not been applied in practice because of the wide and decreasing energy spectrum of laser-accelerated proton beams. In this paper, we propose an analytical model to reconstruct the spread-out Bragg peak (SOBP) using laser-accelerated proton beams. Firstly, we present a modified weighting formula for protons of different energies. Secondly, a theoretical model for the reconstruction of SOBPs with laser-accelerated proton beams has been built. It can quickly calculate the number of laser shots needed for each energy interval of the laser-accelerated protons. Finally, we show the 2D reconstruction results of SOBPs for laser-accelerated proton beams and the ideal situation. The final results show that our analytical model can give an SOBP reconstruction scheme that can be used for actual tumor therapy.
NASA Astrophysics Data System (ADS)
d'Orgeville, C.; Fetzer, G.
This presentation recalls the history of sodium guide star laser systems used in astronomy and space situational awareness adaptive optics, analysing the impact that sodium laser technology evolution has had on routine telescope operations. While it would not be practical to describe every single sodium guide star laser system developed to date, it is possible to characterize their evolution in broad technology terms. The first generation of sodium lasers used dye laser technology to create the first sodium laser guide stars in Hawaii, California, and Spain in the late 1980's and 1990's. These experimental systems were turned into the first laser guide star facilities to equip medium-to-large diameter adaptive optics telescopes, opening a new era of LGS AO-enabled diffraction-limited imaging from the ground. Although they produced exciting scientific results, these laser guide star facilities were large, power-hungry and messy. In the USA, a second-generation of sodium lasers was developed in the 2000's that used cleaner, yet still large and complex, solid-state laser technology. These are the systems in routine operation at the 8-10m class astronomical telescopes and 4m-class satellite imaging facilities today. Meanwhile in Europe, a third generation of sodium lasers was being developed using inherently compact and efficient fiber laser technology, and resulting in the only commercially available sodium guide star laser system to date. Fiber-based sodium lasers will be deployed at two astronomical telescopes and at least one space debris tracking station this year. Although highly promising, these systems remain significantly expensive and they have yet to demonstrate high performance in the field. We are proposing to develop a fourth generation of sodium lasers: based on semiconductor technology, these lasers could provide the final solution to the problem of sodium laser guide star adaptive optics for all astronomy and space situational awareness applications.
NASA Astrophysics Data System (ADS)
Bock, Katherine J.
This thesis focuses on research I have done on ytterbium-doped femtosecond fiber lasers. These lasers operate in the near infrared region, lasing at 1030 nm. This wavelength is particularly important in biomedical applications, which includes but is not limited to confocal microscopy and ablation for surgical incisions. Furthermore, fiber lasers are advantageous compared to solid state lasers in terms of their cost, form factor, and ease of use. Solid state lasers still dominate the market due to their comparatively high energy pulses. High energy pulse generation in fiber lasers is hindered by either optical wave breaking or by multipulsing. One of the main challenges for fiber lasers is to overcome these limitations to achieve high energy pulses. The motivation for the work done in this thesis is increasing the output pulse peak power and energy. The main idea of the work is that decreasing the nonlinearity that acts on the pulse inside the cavity will prevent optical wave breaking, and thus will generate higher energy pulses. By increasing the output energy, ytterbium-doped femtosecond fiber lasers can be competitive with solid state lasers which are used commonly in research. Although fiber lasers tend to lack the wavelength tuning ability of solid state lasers, many biomedical applications take advantage of the 1030 microm central wavelength of ytterbium-doped fiber lasers, so the major limiting factor of fiber lasers in this field is simply the output power. By increasing the output energy without resorting to external amplification, the cavity is optimized and cost can remain low and economical. During verification of the main idea, the cavity was examined for possible back-reflections and for components with narrow spectral bandwidths which may have contributed to the presence of multipulsing. Distinct cases of multipulsing, bound pulse and harmonic mode-locking, were observed and recorded as they may be of more interest in the future. The third-order dispersion contribution from the diffraction gratings inside the laser cavity was studied, as it was also considered to be an energy-limiting factor. No significant effect was found as a result of third-order dispersion; however, a region of operation was observed where two different pulse regimes were found at the same values of net cavity group velocity dispersion. Results verify the main idea and indicate that a long length of low-doped gain fiber is preferable to a shorter, more highly doped one. The low-doped fiber in an otherwise equivalent cavity allows the nonlinear phase shift to grow at a slower rate, which results in the pulse achieving a higher peak power before reaching the nonlinear phase shift threshold at which optical wave breaking occurs. For a range of net cavity group velocity dispersion values, the final result is that the low doped fiber generates pulses of approximately twice the value of energy of the highly-doped gain fiber. Two techniques of mode-locking cavities were investigated to achieve this result. The first cavity used NPE mode-locking which masked the results, and the second used a SESAM for mode-locking which gave clear results supporting the hypothesis.
Organic Micro/Nanoscale Lasers.
Zhang, Wei; Yao, Jiannian; Zhao, Yong Sheng
2016-09-20
Micro/nanoscale lasers that can deliver intense coherent light signals at (sub)wavelength scale have recently captured broad research interest because of their potential applications ranging from on-chip information processing to high-throughput sensing. Organic molecular materials are a promising kind of ideal platform to construct high-performance microlasers, mainly because of their superiority in abundant excited-state processes with large active cross sections for high gain emissions and flexibly assembled structures for high-quality microcavities. In recent years, ever-increasing efforts have been dedicated to developing such organic microlasers toward low threshold, multicolor output, broadband tunability, and easy integration. Therefore, it is increasingly important to summarize this research field and give deep insight into the structure-property relationships of organic microlasers to accelerate the future development. In this Account, we will review the recent advances in organic miniaturized lasers, with an emphasis on tunable laser performances based on the tailorable microcavity structures and controlled excited-state gain processes of organic materials toward integrated photonic applications. Organic π-conjugated molecules with weak intermolecular interactions readily assemble into regular nanostructures that can serve as high-quality optical microcavities for the strong confinement of photons. On the basis of rational material design, a series of optical microcavities with different structures have been controllably synthesized. These microcavity nanostructures can be endowed with effective four-level dynamic gain processes, such as excited-state intramolecular charge transfer, excited-state intramolecular proton transfer, and excimer processes, that exhibit large dipole optical transitions for strongly active gain behaviors. By tailoring these excited-state processes with molecular/crystal engineering and external stimuli, people have effectively modulated the performances of organic micro/nanolasers. Furthermore, by means of controlled assembly and tunable laser performances, efficient outcoupling of microlasers has been successfully achieved in various organic hybrid microstructures, showing considerable potential for the integrated photonic applications. This Account starts by presenting an overview of the research evolution of organic microlasers in terms of microcavity resonators and energy-level gain. Then a series of strategies to tailor the microcavity structures and excited-state dynamics of organic nanomaterials for the modulation of lasing performances are highlighted. In the following part, we introduce the construction and advanced photonic functionalities of organic-microlaser-based hybrid structures and their applications in integrated nanophotonics. Finally, we provide our outlook on the current challenges as well as the future development of organic microlasers. It is anticipated that this Account will provide inspiration for the development of miniaturized lasers with desired performances by tailoring of excited-state processes and microcavity structures toward integrated photonic applications.
Diode pumped solid-state laser oscillators for spectroscopic applications
NASA Technical Reports Server (NTRS)
Byer, R. L.; Basu, S.; Fan, T. Y.; Kozlovsky, W. J.; Nabors, C. D.; Nilsson, A.; Huber, G.
1987-01-01
The rapid improvement in diode laser pump sources has led to the recent progress in diode laser pumped solid state lasers. To date, electrical efficiencies of greater than 10 percent were demonstrated. As diode laser costs decrease with increased production volume, diode laser and diode laser array pumped solid state lasers will replace the traditional flashlamp pumped Nd:YAG laser sources. The use of laser diode array pumping of slab geometry lasers will allow efficient, high peak and average power solid state laser sources to be developed. Perhaps the greatest impact of diode laser pumped solid state lasers will be in spectroscopic applications of miniature, monolithic devices. Single-stripe diode-pumped operation of a continuous-wave 946 nm Nd:YAG laser with less than 10 m/w threshold was demonstrated. A slope efficiency of 16 percent near threshold was shown with a projected slope efficiency well above a threshold of 34 percent based on results under Rhodamine 6G dye-laser pumping. Nonlinear crystals for second-harmonic generation of this source were evaluated. The KNbO3 and periodically poled LiNbO3 appear to be the most promising.
NASA Astrophysics Data System (ADS)
Gu, Chunxing; Shen, Zongbao; Liu, Huixia; Li, Pin; Lu, Mengmeng; Zhao, Yinxin; Wang, Xiao
2013-04-01
This paper describes a precise and non-contact adjustment technique using the water-confined laser-generated plasma to adjust the curvature of micro-components (micro-mechanical cantilevers). A series of laser shock micro-adjustment experiments were conducted on 0.4 mm-thick Al samples using pulsed Nd:YAG lasers operating at 1064 nm wavelengths to verify the technical feasibility. Systematic study was carried out in the term of effects of various factors on the adjusting results, including laser energies, laser focus positions, laser shock times and confined regime configuration. The research results have shown that the different bending angles and bending directions can be obtained by changing the laser processing parameters. And, for the adjustment process, the absence of confined regime configuration could also generate suitable bending deformation. But, in the case of larger energy, the final surfaces would have the sign of ablation, hence resulting in poor surface quality. An analysis procedure including dynamic analysis performed by ANSYS/LS-DYNA and static analysis performed by ANSYS is presented in detail to attain the simulation of laser shock micro-adjustment to predict the final bending deformation. The predicted bending profiles is well correlated with the available experimental data, showing the finite element analysis can predict the final curvatures of the micro-cantilevers properly.
2015-01-01
Unimolecular gas-phase laser-photodissociation reaction mechanisms of open-shell lanthanide cyclopentadienyl complexes, Ln(Cp)3 and Ln(TMCp)3, are analyzed from experimental and computational perspectives. The most probable pathways for the photoreactions are inferred from photoionization time-of-flight mass spectrometry (PI-TOF-MS), which provides the sequence of reaction intermediates and the distribution of final products. Time-dependent excited-state molecular dynamics (TDESMD) calculations provide insight into the electronic mechanisms for the individual steps of the laser-driven photoreactions for Ln(Cp)3. Computational analysis correctly predicts several key reaction products as well as the observed branching between two reaction pathways: (1) ligand ejection and (2) ligand cracking. Simulations support our previous assertion that both reaction pathways are initiated via a ligand-to-metal charge-transfer (LMCT) process. For the more complex chemistry of the tetramethylcyclopentadienyl complexes Ln(TMCp)3, TMESMD is less tractable, but computational geometry optimization reveals the structures of intermediates deduced from PI-TOF-MS, including several classic “tuck-in” structures and products of Cp ring expansion. The results have important implications for metal–organic catalysis and laser-assisted metal–organic chemical vapor deposition (LCVD) of insulators with high dielectric constants. PMID:24910492
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jahangir, S.; Cheng, Xuan; Huang, H. H.
2014-10-28
Solid state dewetting and the subsequent morphological changes for platinum thin films grown on zinc oxide (ZnO) buffered (001) silicon substrates (Pt/ZnO/SiO{sub 2}/(001)Si system) is investigated under vacuum conditions via a custom-designed confocal laser microscope coupled with a laser heating system. Live imaging of thin film dewetting under a range of heating and quenching vacuum ambients reveals events including hillock formation, hole formation, and hole growth that lead to formation of a network of Pt ligaments, break up of Pt ligaments to individual islands and subsequent Pt islands shape reformation, in chronological fashion. These findings are corroborated by ex-situ materialsmore » characterization and quantitative electron microscopy analysis. A secondary hole formation via blistering before film rupture is revealed to be the critical stage, after which a rapid dewetting catastrophe occurs. This process is instantaneous and cannot be captured by ex-situ methods. Finally, an intermetallic phase forms at 900 °C and alters the morphology of Pt islands, suggesting a practical limit to the thermal environments that may be used for these platinized silicon wafers in vacuum conditions.« less
Advances in solid state laser technology for space and medical applications
NASA Technical Reports Server (NTRS)
Byvik, C. E.; Buoncristiani, A. M.
1988-01-01
Recent developments in laser technology and their potential for medical applications are discussed. Gas discharge lasers, dye lasers, excimer lasers, Nd:YAG lasers, HF and DF lasers, and other commonly used lasers are briefly addressed. Emerging laser technology is examined, including diode-pumped lasers and other solid state lasers.
The reflection of airborne UV laser pulses from the ocean
NASA Technical Reports Server (NTRS)
Hoge, F. E.; Krabill, W. B.; Swift, R. N.
1984-01-01
It is experimentally shown here for the first time that the normalized laser backscatter cross-section of the sea surface is a function of elevation or height position on teh ocean wave. All data were taken off-nadir, resulting in incidence angles of about 6.5 deg measured relative to the normal to mean sea level (MSL). In the limited data sets analyzed to date, the normalized backscatter cross-section was found to be higher in wave crest regions and lower in wave troughs for a swell-dominated sea over which the wind speed was 5 m/s. The reverse was found to be the case for a sea that was driven by a 14 m/s wind. These isolated results show that the MSL, as measured by an off-nadir and/or multibeam type satellite laser altimeter, will be found above, at, or below the true MSL, depending on the local sea conditions existing in the footprint of the altimeter. Airborne nadir-pointed laser altimeter data for a wide variety of sea conditions are needed before a final determination can be made of the effect of sea state on the backscatter cross-section as measured by a down-looking satellite laser system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katsouleas, Thomas C.; Sahai, Aakash A.
2016-08-08
There were two goals for this funded project: 1. Studies of plasma wakefields for high repetition-rate plasma collider, and 2. Theoretical study of laser-plasma proton and ion acceleration. For goal 1, an analytical model was developed to determine the ion-motion resulting from the interaction of non-linear “blow-out” wakefields excited by beam-plasma and laser-plasma interactions. This is key to understanding the state of the plasma at timescales of 1 picosecond to a few 10s of picoseconds behind the driver-energy pulse. More information can be found in the document. For goal 2, we analytically and computationally analyzed the longitudinal instabilities of themore » laser-plasma interactions at the critical layer. Specifically, the process of “Doppler-shifted Ponderomotive bunching” is significant to eliminate the very high-energy spread and understand the importance of chirping the laser pulse frequency. We intend to publish the results of the mixing process in 2-D. We intend to publish Chirp-induced transparency. More information can be found in the document.« less
Fusion energy with lasers, direct drive targets, and dry wall chambers
NASA Astrophysics Data System (ADS)
Sethian, J. D.; Friedman, M.; Lehmberg, R. H.; Myers, M.; Obenschain, S. P.; Giuliani, J.; Kepple, P.; Schmitt, A. J.; Colombant, D.; Gardner, J.; Hegeler, F.; Wolford, M.; Swanekamp, S. B.; Weidenheimer, D.; Welch, D.; Rose, D.; Payne, S.; Bibeau, C.; Baraymian, A.; Beach, R.; Schaffers, K.; Freitas, B.; Skulina, K.; Meier, W.; Latkowski, J.; Perkins, L. J.; Goodin, D.; Petzoldt, R.; Stephens, E.; Najmabadi, F.; Tillack, M.; Raffray, R.; Dragojlovic, Z.; Haynes, D.; Peterson, R.; Kulcinski, G.; Hoffer, J.; Geller, D.; Schroen, D.; Streit, J.; Olson, C.; Tanaka, T.; Renk, T.; Rochau, G.; Snead, L.; Ghoneim, N.; Lucas, G.
2003-12-01
A coordinated, focused effort is underway to develop Laser Inertial Fusion Energy. The key components are developed in concert with one another and the science and engineering issues are addressed concurrently. Recent advances include: target designs have been evaluated that show it could be possible to achieve the high gains (>100) needed for a practical fusion system.These designs feature a low-density CH foam that is wicked with solid DT and over-coated with a thin high-Z layer. These results have been verified with three independent one-dimensional codes, and are now being evaluated with two- and three-dimensional codes. Two types of lasers are under development: Krypton Fluoride (KrF) gas lasers and Diode Pumped Solid State Lasers (DPSSL). Both have recently achieved repetitive 'first light', and both have made progress in meeting the fusion energy requirements for durability, efficiency, and cost. This paper also presents the advances in development of chamber operating windows (target survival plus no wall erosion), final optics (aluminium at grazing incidence has high reflectivity and exceeds the required laser damage threshold), target fabrication (demonstration of smooth DT ice layers grown over foams, batch production of foam shells, and appropriate high-Z overcoats), and target injection (new facility for target injection and tracking studies).
Low charge state heavy ion production with sub-nanosecond laser.
Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M
2016-02-01
We have investigated laser ablation plasma of various species using nanosecond and sub-nanosecond lasers for both high and low charge state ion productions. We found that with sub-nanosecond laser, the generated plasma has a long tail which has low charge state ions determined by an electrostatic ion analyzer even under the laser irradiation condition for highly charged ion production. This can be caused by insufficient laser absorption in plasma plume. This property might be suitable for low charge state ion production. We used a nanosecond laser and a sub-nanosecond laser for low charge state ion production to investigate the difference of generated plasma using the Zirconium target.
Low charge state heavy ion production with sub-nanosecond laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanesue, T., E-mail: tkanesue@bnl.gov; Okamura, M.; Kumaki, M.
2016-02-15
We have investigated laser ablation plasma of various species using nanosecond and sub-nanosecond lasers for both high and low charge state ion productions. We found that with sub-nanosecond laser, the generated plasma has a long tail which has low charge state ions determined by an electrostatic ion analyzer even under the laser irradiation condition for highly charged ion production. This can be caused by insufficient laser absorption in plasma plume. This property might be suitable for low charge state ion production. We used a nanosecond laser and a sub-nanosecond laser for low charge state ion production to investigate the differencemore » of generated plasma using the Zirconium target.« less
NASA Astrophysics Data System (ADS)
Thorpe, S. J.; Quinlan, N.; Ainsworth, R. W.
2000-10-01
Doppler Global Velocimetry (DGV) is a whole-field measurement technique which has attracted significant interest from the fluid-flow research community since its introduction in 1991. Practical implementations of the methodology have focused on two principal laser light sources: the argon ion laser, applied to steady state or slowly varying flows; and the pulsed neodymium YAG laser for the measurement of instantaneous velocity fields. However, the emphasis in the published literature has been very much on research using the argon laser. This paper reports the application of a Q-switched, injection-seeded neodymium YAG laser to the proven Oxford DGV system, and the use of this combination in a short duration unsteady high-speed flow. The pertinent characteristics of the apparatus are described, and the impact of these on the integrity of the resulting velocity measurements is presented. Adaptations to the commercial laser system that make it suitable for application to the measurement of transient high-speed flows are described. Finally, the application of this system to a short duration unsteady flow is described. This application is based on the flow found in a new type of transdermal drug delivery device, where particles of the drug material are projected at high speed through the skin. Whole-field velocities are recorded, and values as high as 800 m/ s are evident.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulgakova, Nadezhda M., E-mail: nadezhda.bulgakova@hilase.cz; Institute of Thermophysics SB RAS, 1 Lavrentyev Ave., 630090 Novosibirsk; Zhukov, Vladimir P.
A comprehensive analysis of laser-induced modification of bulk glass by single ultrashort laser pulses is presented which is based on combination of optical Maxwell-based modeling with thermoelastoplastic simulations of post-irradiation behavior of matter. A controversial question on free electron density generated inside bulk glass by ultrashort laser pulses in modification regimes is addressed on energy balance grounds. Spatiotemporal dynamics of laser beam propagation in fused silica have been elucidated for the regimes used for direct laser writing in bulk glass. 3D thermoelastoplastic modeling of material relocation dynamics under laser-induced stresses has been performed up to the microsecond timescale when allmore » motions in the material decay. The final modification structure is found to be imprinted into material matrix already at sub-nanosecond timescale. Modeling results agree well with available experimental data on laser light transmission through the sample and the final modification structure.« less
Achieving minimum-error discrimination of an arbitrary set of laser-light pulses
NASA Astrophysics Data System (ADS)
da Silva, Marcus P.; Guha, Saikat; Dutton, Zachary
2013-05-01
Laser light is widely used for communication and sensing applications, so the optimal discrimination of coherent states—the quantum states of light emitted by an ideal laser—has immense practical importance. Due to fundamental limits imposed by quantum mechanics, such discrimination has a finite minimum probability of error. While concrete optical circuits for the optimal discrimination between two coherent states are well known, the generalization to larger sets of coherent states has been challenging. In this paper, we show how to achieve optimal discrimination of any set of coherent states using a resource-efficient quantum computer. Our construction leverages a recent result on discriminating multicopy quantum hypotheses [Blume-Kohout, Croke, and Zwolak, arXiv:1201.6625]. As illustrative examples, we analyze the performance of discriminating a ternary alphabet and show how the quantum circuit of a receiver designed to discriminate a binary alphabet can be reused in discriminating multimode hypotheses. Finally, we show that our result can be used to achieve the quantum limit on the rate of classical information transmission on a lossy optical channel, which is known to exceed the Shannon rate of all conventional optical receivers.
Analysis of the Performance of a Laser Scanner for Predictive Automotive Applications
NASA Astrophysics Data System (ADS)
Zeisler, J.; Maas, H.-G.
2015-08-01
In this paper we evaluate the use of a laser scanner for future advanced driver assistance systems. We focus on the important task of predicting the target vehicle for longitudinal ego vehicle control. Our motivation is to decrease the reaction time of existing systems during cut-in maneuvers of other traffic participants. A state-of-the-art laser scanner, the Ibeo Scala B2 R , is presented, providing its sensing characteristics and the subsequent high level object data output. We evaluate the performance of the scanner towards object tracking with the help of a GPS real time kinematics system on a test track. Two designed scenarios show phases with constant distance and velocity as well as dynamic motion of the vehicles. We provide the results for the error in position and velocity of the scanner and furthermore, review our algorithm for target vehicle prediction. Finally we show the potential of the laser scanner with the estimated error, that leads to a decrease of up to 40% in reaction time with best conditions.
High precision, rapid laser hole drilling
Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.
2007-03-20
A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.
High precision, rapid laser hole drilling
Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.
2005-03-08
A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.
High precision, rapid laser hole drilling
Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.
2013-04-02
A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruggiero, A.; Orgren, A.
This project was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL) and LGS Innovations, LLC (formerly Lucent Technologies, Inc.), to develop long-range and mobile operational free-space optical (FSO) laser communication systems for specialized government applications. LLNL and LGS Innovations formerly Lucent Bell Laboratories Government Communications Systems performed this work for a United States Government (USG) Intelligence Work for Others (I-WFO) customer, also referred to as "Government Customer", or "Customer" and "Government Sponsor." The CRADA was a critical and required part of the LLNL technology transfer plan formore » the customer.« less
Raman scattering from phonons and magnons in magnetic semiconductors, MnTe
NASA Technical Reports Server (NTRS)
Mobasser, S. R.; Hart, T. R.
1985-01-01
Comparisons are made between theoretical and experimental data on laser Raman scattering by phonons and two-magnons in antiferromagnetic and paramagnetic phases of MnTe. The study was performed specifically to characterize the magnetic exchange coupling constants of the Mn ions in the samples. Crystal MnTe samples were bombarded with an Ar ion laser beam to obtain spectrometer and photon counter data. One E(2g) phonon with a room temperature energy of 178/cm and a two-magnon peak of 360/cm were observed in the Raman spectrum. A spin wave dispersion relation is presented for the spectrum. Finally, a Monte Carlo technique was used to calculate the two-magnon joint density of states that best fits the experimental data.
Factorization of laser-pulse ionization probabilities in the multiphotonic regime
NASA Astrophysics Data System (ADS)
Della Picca, R.; Fiol, J.; Fainstein, P. D.
2013-09-01
We present a detailed study of the ionization probability of H and H_{2}^{+} induced by a short intense laser pulse. Starting from a Coulomb-Volkov description of the process we derive a multipole-like expansion where each term is factored into two contributions: one that accounts for the effect of the electromagnetic field on the free-electron final state and a second factor that depends only on the target structure. Such a separation may be valuable to solve complex atomic or molecular systems as well as to interpret the dynamics of the process in simpler terms. We show that the series expansion converges rapidly, and thus the inclusion of the first few terms is sufficient to produce accurate results.
Frequency stabilization of diode-laser-pumped solid state lasers
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1988-01-01
The goal of the NASA Sunlite program is to fly two diode-laser-pumped solid-state lasers on the space shuttle and while doing so to perform a measurement of their frequency stability and temporal coherence. These measurements will be made by combining the outputs of the two lasers on an optical radiation detector and spectrally analyzing the beat note. Diode-laser-pumped solid-state lasers have several characteristics that will make them useful in space borne experiments. First, this laser has high electrical efficiency. Second, it is of a technology that enables scaling to higher powers in the future. Third, the laser can be made extremely reliable, which is crucial for many space based applications. Fourth, they are frequency and amplitude stable and have high temporal coherence. Diode-laser-pumped solid-state lasers are inherently efficient. Recent results have shown 59 percent slope efficiency for a diode-laser-pumped solid-state laser. As for reliability, the laser proposed should be capable of continuous operation. This is possible because the diode lasers can be remote from the solid state gain medium by coupling through optical fibers. Diode lasers are constructed with optical detectors for monitoring their output power built into their mounting case. A computer can actively monitor the output of each diode laser. If it sees any variation in the output power that might indicate a problem, the computer can turn off that diode laser and turn on a backup diode laser. As for stability requirements, it is now generally believed that any laser can be stabilized if the laser has a frequency actuator capable of tuning the laser frequency as far as it is likely to drift in a measurement time.
The LIFE Laser Design in Context: A Comparison to the State-of-the-Art
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deri, R J; Bayramian, A J; Erlandson, A C
2011-03-21
The current point design for the LIFE laser leverages decades of solid-state laser development in order to achieve the performance and attributes required for inertial fusion energy. This document provides a brief comparison of the LIFE laser point design to other state-of-the-art solid-state lasers. Table I compares the attributes of the current LIFE laser point design to other systems. the state-of-the-art for single-shot performance at fusion-relevant beamline energies is exemplified by performance observed on the National Ignition Facility. The state-of-the-art for high average power is exemplified by the Northrup Grumman JHPSSL laser. Several items in Table I deal with themore » laser efficiency; a more detailed discussion of efficiency can be found in reference 5. The electrical-to-optical efficiency of the LIFE design exceeds that of reference 4 due to the availability of higher efficiency laser diode pumps (70% vs. {approx}50% used in reference 4). LIFE diode pumps are discussed in greater detail in reference 6. The 'beam steering' state of the art is represented by the deflection device that will be used in the LIFE laser, not a laser system. Inspection of Table I shows that most LIFE laser attributes have already been experimentally demonstrated. The two cases where the LIFE design is somewhat better than prior experimental work do not involve the development of new concepts: beamline power is increased simply by increasing aperture (as demonstrated by the power/aperture comparison in Table I), and efficiency increases are achieved by employing state-of-the-art diode pumps. In conclusion, the attributes anticipated for the LIFE laser are consistent with the demonstrated performance of existing solid-state lasers.« less
Evaluation of IMS - Swedish Laser road tester : final report.
DOT National Transportation Integrated Search
1990-09-01
A test of the IMS - Swedish Laser road tester was conducted in September 1988. The vehicle mounted laser equipment was used to survey pavement conditions on sections of Oregon's Interstate and non-interstate highway system. : The IMS laser equipment ...
[The design of all solid-state tunable pulsed Ti:sapphire laser system].
Chen, Zhe; Ku, Geng; Wan, Junchao; Wang, Wei; Zhou, Chuanqing
2013-05-01
This paper presented a design of broadly all solid-state tunable pulsed Ti:sapphire laser with high power and stable performance. The laser was pumped by custom-made Nd:YAG laser which had water cooling system and amplified by two stage amplifier. The method accomplished tunable output of all solid-state tunable pulsed Ti:sapphire laser by modifying the reflection angle of the back mirror. We investigated the relationship between the power of the pumping laser and the all solid-state tunable pulsed Ti: sapphire laser by changing the power of the pumping source.
NASA Astrophysics Data System (ADS)
Mokrane, Aoulaiche; Boutaous, M'hamed; Xin, Shihe
2018-05-01
The aim of this work is to address a modeling of the SLS process at the scale of the part in PA12 polymer powder bed. The powder bed is considered as a continuous medium with homogenized properties, meanwhile understanding multiple physical phenomena occurring during the process and studying the influence of process parameters on the quality of final product. A thermal model, based on enthalpy approach, will be presented with details on the multiphysical couplings that allow the thermal history: laser absorption, melting, coalescence, densification, volume shrinkage and on numerical implementation using FV method. The simulations were carried out in 3D with an in-house developed FORTRAN code. After validation of the model with comparison to results from literature, a parametric analysis will be proposed. Some original results as densification process and the thermal history with the evolution of the material, from the granular solid state to homogeneous melted state will be discussed with regards to the involved physical phenomena.
NASA Astrophysics Data System (ADS)
Urbańczyk, T.; Dudek, J.; Koperski, J.
2018-06-01
A method of experimental selection of molecular isotopologues using optical-optical double resonance (OODR) scheme and supersonic beam source of van der Waals (vdW) complexes is presented. Due to an appropriately large isotopic shift, the proper choice of a wavenumber of a sufficiently narrowband laser in the first transition of OODR scheme can lead to a selective isotopologue excitation to the intermediate state. Thanks to this approach, it is possible to select some of the isotopologues which subsequently give a contribution to laser induced fluorescence (LIF) signal originated from the final state of OODR. In this article, results of tests of the proposed method that employs the E3 Σ1+ ←A3Π0+ ←X1Σ0+ transitions in two vdW complexes, CdKr and CdAr, are presented and analysed.
NASA Astrophysics Data System (ADS)
Premasiri, Amaranath; Happawana, Gemunu; Rosen, Arye
2007-02-01
Photodynamic therapy (PDT) is an approved treatment modality for Barrett's and invasive esophageal carcinoma. Proper Combination of photosentizing agent, oxygen, and a specific wavelength of light to activate the photosentizing agents is necessary for the cytotoxic destruction of cancerous cells by PDT. As a light source expensive solid-state laser sources currently are being used for the treatment. Inexpensive semiconductor lasers have been suggested for the light delivery system, however packaging of semiconductor lasers for optimal optical power output is challenging. In this paper, we present a multidirectional direct water-cooling of semiconductor lasers that provides a better efficiency than the conventional unidirectional cooling. AlGaAsP lasers were tested under de-ionized (DI) water and it is shown that the optical power output of the lasers under the DI water is much higher than that of the uni-directional cooling of lasers. Also, in this paper we discuss how direct DI water-cooling can optimize power output of semiconductor lasers. Thereafter an optimal design of the semiconductor laser package is shown with the DI water-cooling system. Further, a microwave antenna is designed which is to be imprinted on to a balloon catheter in order to provide local heating of esophagus, leading to an increase in local oxygenation of the tumor to generate an effective level of singlet oxygen for cellular death. Finally the optimal level of light energy that is required to achieve the expected level of singlet oxygen is modeled to design an efficient PDT protocol.
Solid state laser technology - A NASA perspective
NASA Technical Reports Server (NTRS)
Allario, F.
1985-01-01
NASA's program for developing solid-state laser technology and applying it to the Space Shuttle and Space Platform is discussed. Solid-state lasers are required to fulfill the Earth Observation System's requirements. The role of the Office of Aeronautics and Space Technology in developing a NASA tunable solid-state laser program is described. The major goals of the program involve developing a solid-state pump laser in the green, using AlGaAs array technology, pumping a Nd:YAG/SLAB crystal or glass, and fabricating a lidar system, with either a CO2 laser at 10.6 microns or a Nd:YAG laser at 1.06 microns, to measure tropospheric winds to an accuracy of + or - 1 m/s and a vertical resolution of 1 km. The procedures to be followed in order to visualize this technology plan include: (1) material development and characterization, (2) laser development, and (3) implementation of the lasers.
Electro-Optical Laser Technology. Curriculum Utilization. Final Report.
ERIC Educational Resources Information Center
Nawn, John H.
This report describes a program to prepare students for employment as laser technicians and laser operators and to ensure that they have the necessary skills required by the industry. The objectives are to prepare a curriculum and syllabus for an associate degree program in Electro-Optical Laser Technology. The 2-year Electro-Optical Laser program…
Vranckx, S; Loreau, J; Vaeck, N; Meier, C; Desouter-Lecomte, M
2015-10-28
The photodissociation and laser assisted dissociation of the carbon monoxide dication X(3)Π CO(2+) into the (3)Σ(-) states are investigated. Ab initio electronic structure calculations of the adiabatic potential energy curves, radial nonadiabatic couplings, and dipole moments for the X (3)Π state are performed for 13 excited (3)Σ(-) states of CO(2+). The photodissociation cross section, calculated by time-dependent methods, shows that the C(+) + O(+) channels dominate the process in the studied energy range. The carbon monoxide dication CO(2+) is an interesting candidate for control because it can be produced in a single, long lived, v = 0 vibrational state due to the instability of all the other excited vibrational states of the ground (3)Π electronic state. In a spectral range of about 25 eV, perpendicular transition dipoles couple this (3)Π state to a manifold of (3)Σ(-) excited states leading to numerous C(+) + O(+) channels and a single C(2+) + O channel. This unique channel is used as target for control calculations using local control theory. We illustrate the efficiency of this method in order to find a tailored electric field driving the photodissociation in a manifold of strongly interacting electronic states. The selected local pulses are then concatenated in a sequence inspired by the "laser distillation" strategy. Finally, the local pulse is compared with optimal control theory.
Path toward a high-energy solid-state laser
NASA Astrophysics Data System (ADS)
Wood, Gary L.; Merkle, Larry D.; Dubinskii, Mark; Zandi, Bahram
2004-04-01
Lasers have come a long way since the first demonstration by Maiman of a ruby crystal laser in 1960. Lasers are used as scientific tools as well as for a wide variety of applications for both commercial industry and the military. Today lasers come in all types, shapes and sizes depending on their application. The solid-state laser has some distinct advantages in that it can be rugged, compact, and self contained, making it reliable over long periods of time. With the advent of diode laser pumping a ten times increase in overall laser efficiency has been realized. This significant event, and others, is changing the way solid-state lasers are applied and allows new possibilities. One of those new areas of exploration is the high energy laser. Solid-state lasers for welding are already developed and yield energies in the 0.5 to 6 kilojoule range. These lasers are at the forefront of what is possible in terms of high energy solid-state lasers. It is possible to achieve energies of greater than 100 kJ. These sorts of energies would allow applications, in addition to welding, such as directed energy weapons, extremely remote sensing, power transfer, propulsion, biological and chemical agent neutralization and unexploded and mine neutralization. This article will review these new advances in solid-state lasers and the different paths toward achieving a high energy laser. The advantages and challenges of each approach will be highlighted.
Low-frequency approximation for high-order harmonic generation by a bicircular laser field
NASA Astrophysics Data System (ADS)
Milošević, D. B.
2018-01-01
We present low-frequency approximation (LFA) for high-order harmonic generation (HHG) process. LFA represents the lowest-order term of an expansion of the final-state interaction matrix element in powers of the laser-field frequency ω . In this approximation the plane-wave recombination matrix element which appears in the strong-field approximation is replaced by the exact laser-free recombination matrix element calculated for the laser-field dressed electron momenta. First, we have shown that the HHG spectra obtained using the LFA agree with those obtained solving the time-dependent Schrödinger equation. Next, we have applied this LFA to calculate the HHG rate for inert gases exposed to a bicircular field. The bicircular field, which consists of two coplanar counter-rotating fields having different frequencies (usually ω and 2 ω ), is presently an important subject of scientific research since it enables efficient generation of circularly polarized high-order harmonics (coherent soft x rays). Analyzing the photorecombination matrix element we have found that the HHG rate can efficiently be calculated using the angular momentum basis with the states oriented in the direction of the bicircular field components. Our numerical results show that the HHG rate for atoms having p ground state, for higher high-order harmonic energies, is larger for circularly polarized harmonics having the helicity -1 . For lower energies the harmonics having helicity +1 prevails. The transition between these two harmonic energy regions can appear near the Cooper minimum, which, in the case of Ar atoms, makes the selection of high-order harmonics having the same helicity much easier. This is important for applications (for example, for generation of attosecond pulse trains of circularly polarized harmonics).
NASA Astrophysics Data System (ADS)
Bimal Satpathy, Bubloom; Nandy, Jyotirmoy; Sahoo, Seshadev
2018-03-01
Direct metal laser sintering is one of the very efficient processes which comes under the field of additive manufacturing and is capable of producing products of good mechanical and physical properties. The process parameters affect the physical and mechanical properties of the final products. Rapid solidification plays an important role in the consolidation kinetics as the powdered material sinters and forms a polycrystalline structure. In the recent times, the enormous use of computational modeling has helped in examining the utility of final products in a wide range of applications. In this study, a phase field model has been implemented to foresee the consolidation kinetics during the liquid state sintering. Temperature profiles have been used to study the densification behavior and neck growth which is caused by the surface diffusion of particles at initial stage. Later, importance of grain boundary and the volume diffusion during densification process is analyzed. It is also found that with rise in temperature, neck growth also increases rapidly due to the interaction of adjacent grains through grain boundary diffusion and stabilization of grain growth.
Wen, Daizong; Huang, Jinhai; Li, Xuexi; Savini, Giacomo; Feng, Yifan; Lin, Qiaoya; Wang, Qinmei
2014-01-01
To identify possible differences between laser-assisted subepithelial keratectomy and epipolis laser in situ keratomileusis for myopia. Meta-analysis. Patients from previously reported comparative studies treated by laser-assisted subepithelial keratectomy versus epipolis laser in situ keratomileusis. A systematic literature retrieval was conducted in the MEDLINE, EMBASE and Cochrane Library, up to January 2013. The included studies were subject to a meta-analysis using a RevMan 5.1 version software. The differences in efficacy, predictability, safety, epithelial healing time, pain perception and corneal haze formation. A total of six studies involving 517 eyes were included. There were no statistically significant differences in the final proportion of eyes with uncorrected visual acuity of 6/6 or better (P = 0.43), mean postoperative uncorrected visual acuity (P = 0.53), final proportion of eyes with refraction within ± 0.50 D (P = 0.62) and ± 1.00 D (P = 0.16) of target, final proportion of eyes losing two or more lines of best spectacle-corrected visual acuity (P = 1.00), healing time of corneal epithelium (P = 0.58), final proportion of eyes with corneal haze grade 0.5 or higher (P = 0.26), and corneal haze levels (P = 0.36). There were no significant differences in efficacy, predictability, safety, epithelial healing time and corneal haze formation between laser-assisted subepithelial keratectomy and epipolis laser in situ keratomileusis, but the result was limited. Future more data are required to detect the potential differences between the two procedures. © 2013 Royal Australian and New Zealand College of Ophthalmologists.
NASA Astrophysics Data System (ADS)
Dutta, D.; Becherer, M.; Bellaire, D.; Dietrich, F.; Gerhards, M.; Lefkidis, G.; Hübner, W.
2018-06-01
We experimentally and theoretically study the geometry, as well as the electronic and vibrational properties, of the heterotetranuclear magnetic cluster [Co3Ni (EtOH )] +, which is prepared in the gas phase with molecular beam expansion. We characterize the cluster and identify possible isomers through the comparison of experimentally observed infrared spectra with state-of-the-art quantum chemistry calculations, more specifically by focusing on the OH stretching frequency. Furthermore, we suggest ultrafast, laser-induced, local spin-flip scenarios on every Co atom, and report a cooperative effect, in which the spin density is localized on one Co atom, gets transiently transferred to another, and then bounces back pointing in the opposite direction. Finally, we predict a tolerance of the suggested scenarios with respect to the laser detuning of about 20 meV, which lies within an experimentally applicable range. Our joint investigation is an additional step toward the implementation of laser-controlled nanospintronic devices.
Modelling ultrafast laser ablation
NASA Astrophysics Data System (ADS)
Rethfeld, Baerbel; Ivanov, Dmitriy S.; E Garcia, Martin; Anisimov, Sergei I.
2017-05-01
This review is devoted to the study of ultrafast laser ablation of solids and liquids. The ablation of condensed matter under exposure to subpicosecond laser pulses has a number of peculiar properties which distinguish this process from ablation induced by nanosecond and longer laser pulses. The process of ultrafast ablation includes light absorption by electrons in the skin layer, energy transfer from the skin layer to target interior by nonlinear electronic heat conduction, relaxation of the electron and ion temperatures, ultrafast melting, hydrodynamic expansion of heated matter accompanied by the formation of metastable states and subsequent formation of breaks in condensed matter. In case of ultrashort laser excitation, these processes are temporally separated and can thus be studied separately. As for energy absorption, we consider peculiarities of the case of metal irradiation in contrast to dielectrics and semiconductors. We discuss the energy dissipation processes of electronic thermal wave and lattice heating. Different types of phase transitions after ultrashort laser pulse irradiation as melting, vaporization or transitions to warm dense matter are discussed. Also nonthermal phase transitions, directly caused by the electronic excitation before considerable lattice heating, are considered. The final material removal occurs from the physical point of view as expansion of heated matter; here we discuss approaches of hydrodynamics, as well as molecular dynamic simulations directly following the atomic movements. Hybrid approaches tracing the dynamics of excited electrons, energy dissipation and structural dynamics in a combined simulation are reviewed as well.
Atomic Processes for XUV Lasers: Alkali Atoms and Ions
NASA Astrophysics Data System (ADS)
Dimiduk, David Paul
The development of extreme ultraviolet (XUV) lasers is dependent upon knowledge of processes in highly excited atoms. Described here are spectroscopy experiments which have identified and characterized certain autoionizing energy levels in core-excited alkali atoms and ions. Such levels, termed quasi-metastable, have desirable characteristics as upper levels for efficient, powerful XUV lasers. Quasi -metastable levels are among the most intense emission lines in the XUV spectra of core-excited alkalis. Laser experiments utilizing these levels have proved to be useful in characterizing other core-excited levels. Three experiments to study quasi-metastable levels are reported. The first experiment is vacuum ultraviolet (VUV) absorption spectroscopy on the Cs 109 nm transitions using high-resolution laser techniques. This experiment confirms the identification of transitions to a quasi-metastable level, estimates transition oscillator strengths, and estimates the hyperfine splitting of the quasi-metastable level. The second experiment, XUV emission spectroscopy of Ca II and Sr II in a microwave-heated plasma, identifies transitions from quasi-metastable levels in these ions, and provides confirming evidence of their radiative, rather than autoionizing, character. In the third experiment, core-excited Ca II ions are produced by inner-shell photoionization of Ca with soft x-rays from a laser-produced plasma. This preliminary experiment demonstrated a method of creating large numbers of these highly-excited ions for future spectroscopic experiments. Experimental and theoretical evidence suggests the CA II 3{ rm p}^5 3d4s ^4 {rm F}^circ_{3/2 } quasi-metastable level may be directly pumped via a dipole ionization process from the Ca I ground state. The direct process is permitted by J conservation, and occurs due to configuration mixing in the final state and possibly the initial state as well. The experiments identifying and characterizing quasi-metastable levels are compared to calculations using the Hartree-Fock code RCN/RCG. Calculated parameters include energy levels, wavefunctions, and transition rates. Based on an extension of this code, earlier unexplained experiments showing strong two-electron radiative transitions from quasi-metastable levels are now understood.
High-quality beam generation using an RF gun and a 150 MeV microtron
NASA Astrophysics Data System (ADS)
Kuroda, R.; Washio, M.; Kashiwagi, S.; Kobuki, T.; Ben-Zvi, I.; Wang, X. J.; Hori, T.; Sakai, F.; Tsunemi, A.; Urakawa, J.; Hirose, T.
2000-11-01
Low-emittance sub-picosecond electron pulses are expected to be used in a wide field, such as free electron laser, laser acceleration, femtosecond X-ray generation by Inverse Compton scattering, pulse radiolysis, etc. In order to produce the low-emittance sub-picosecond electron pulse, we are developing a compact Racetrack Microtron (RTM) with a new 5 MeV injection system adopting a laser photo cathode RF gun (Washio et al., Seventh China-Japan Bilateral Symposium on Radiation Chemistry, October 28, Cengdu, China, 1996). The operation of RTM has been kept under a steady state of beam loading for long pulse mode so far (Washio et al., J. Surf. Sci. Soc. Jpn. 19 (2) (1998) 23). In earlier work (Washio et al., PAC99, March 31, New York, USA, 1999), we have succeeded in the numerical simulation for the case of single short pulse acceleration. Finally, the modified RTM was demonstrated as a useful accelerator for a picosecond electron pulse generation under a transient state of beam loading. In the simulation, a picosecond electron pulse was accelerated to 149.6 MeV in RTM for the injection of 5 MeV electron bunch with a pulse length of 10 ps (FWHM), a charge of 1 nC per pulse, and an emittance of 3 πmm mrad.
Laser Drilling Development Trial Final Report CRADA No. TSB-1538-98
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermann, M. R.; Hebbar, R. R.
This project performed various laser drilling tests to demonstrate femtosecond laser drilling of fuel injector nozzles with minimal recast, minimal heat affected zone and no collateral damage. LLNL had extensive experience in ultra short-pulse laser systems and developed specialized hardware for these applications.
Evolution of a Gaussian laser beam in warm collisional magnetoplasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jafari, M. J.; Jafari Milani, M. R., E-mail: mrj.milani@gmail.com; Niknam, A. R.
2016-07-15
In this paper, the spatial evolution of an intense circularly polarized Gaussian laser beam propagated through a warm plasma is investigated, taking into account the ponderomotive force, Ohmic heating, external magnetic field, and collisional effects. Using the momentum transfer and energy equations, both modified electron temperature and electron density in plasma are obtained. By introducing the complex dielectric permittivity of warm magnetized plasma and using the complex eikonal function, coupled differential equations for beam width parameter are established and solved numerically. The effects of polarization state of laser and magnetic field on the laser spot size evolution are studied. Itmore » is observed that in case of the right-handed polarization, an increase in the value of external magnetic field causes an increase in the strength of the self-focusing, especially in the higher values, and consequently, the self-focusing occurs in shorter distance of propagation. Moreover, the results demonstrate the existence of laser intensity and electron temperature ranges where self-focusing can occur, while the beam diverges outside of these regions; meanwhile, in these intervals, there exists a turning point for each of intensity and temperature in which the self-focusing process has its strongest strength. Finally, it is found that the self-focusing effect can be enhanced by increasing the plasma frequency (plasma density).« less
Is this the time for a high-energy laser weapon program?
NASA Astrophysics Data System (ADS)
Kiel, David H.
2013-02-01
The U.S. Department of Defense (DoD) has made large investments weaponizing laser technology for air defense. Despite billions of dollars spent, there has not been a successful transition of a high-energy laser (HEL) weapon from the lab to the field. Is the dream of a low-cost-per-shot, deep-magazine, speed-of-light HEL weapon an impossible dream or a set of technologies that are ready to emerge on the modern battlefield? Because of the rapid revolution taking place in modern warfare that is making conventional defensive weapons very expensive relative to the offensive weapons systems, the pull for less expensive air defense may necessitate a HEL weapon system. Also, due to the recent technological developments in solid-state lasers (SSL), especially fiber lasers, used throughout manufacturing for cutting and welding, a HEL weapon finally may be able to meet all the requirements of ease of use, sustainability, and reliability. Due to changes in warfare and SSL technology advances, the era of HEL weapons isn't over; it may be just starting if DoD takes an evolutionary approach to fielding a HEL weapon. The U.S. Navy, with its large ships and their available electric power, should lead the way.
Electron-molecule scattering in a strong laser field: Two-center interference effects
NASA Astrophysics Data System (ADS)
Dakić, J.; Habibović, D.; Čerkić, A.; Busuladžić, M.; Milošević, D. B.
2017-10-01
Laser-assisted scattering of electrons on diatomic molecules is considered using the S -matrix theory within the second Born approximation. The first term of the expansion in powers of the scattering potential corresponds to the direct or single laser-assisted scattering of electrons on molecular targets, while the second term of this expansion corresponds to the laser-assisted rescattering or double scattering. The rescattered electrons may have considerably higher energies in the final state than those that scattered only once. For multicenter polyatomic molecules scattering and rescattering may happen at any center and in any order. All these cases contribute to the scattering amplitude and the interference of different contributions leads to an increase or a decrease of the differential cross section in particular electron energy regions. For diatomic molecules there are two such contributions for single scattering and four contributions for double scattering. Analyzing the spectra of the scattered electrons, we find two interesting effects. For certain molecular orientations, the plateaus in the electron energy spectrum, characteristic of laser-assisted electron-atom scattering, are replaced by a sequence of gradually declining maxima, caused by the two-center interference effects. The second effect is the appearance of symmetric U -shaped structures in the angle-resolved energy spectra, which are described very well by the analytical formulas we provide.
Coherent control of photoelectron wavepacket angular interferograms
NASA Astrophysics Data System (ADS)
Hockett, P.; Wollenhaupt, M.; Baumert, T.
2015-11-01
Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process, where the final (time-integrated) observable coherently samples all instantaneous states of the light-matter interaction. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the coherent control over the resultant photoelectron interferogram is thus explored in detail. Based on this understanding, the use of coherent control with polarization-shaped pulses as a methodology for a highly multiplexed coherent quantum metrology is also investigated, and defined in terms of the information content of the observable.
NASA Technical Reports Server (NTRS)
Haugen, H. K.; Weitz, E.; Leone, S. R.
1985-01-01
Various techniques have been used to study photodissociation dynamics of the halogens and interhalogens. The quantum yields obtained by these techniques differ widely. The present investigation is concerned with a qualitatively new approach for obtaining highly accurate quantum yields for electronically excited states. This approach makes it possible to obtain an accuracy of 1 percent to 3 percent. It is shown that measurement of the initial transient gain/absorption vs the final absorption in a single time-resolved signal is a very accurate technique in the study of absolute branching fractions in photodissociation. The new technique is found to be insensitive to pulse and probe laser characteristics, molecular absorption cross sections, and absolute precursor density.
Experimental Demonstration of Coherent Control in Quantum Chaotic Systems
NASA Astrophysics Data System (ADS)
Bitter, M.; Milner, V.
2017-01-01
We experimentally demonstrate coherent control of a quantum system, whose dynamics is chaotic in the classical limit. Interaction of diatomic molecules with a periodic sequence of ultrashort laser pulses leads to the dynamical localization of the molecular angular momentum, a characteristic feature of the chaotic quantum kicked rotor. By changing the phases of the rotational states in the initially prepared coherent wave packet, we control the rotational distribution of the final localized state and its total energy. We demonstrate the anticipated sensitivity of control to the exact parameters of the kicking field, as well as its disappearance in the classical regime of excitation.
A-O Q-switching of 2.1-μm laser
NASA Astrophysics Data System (ADS)
Zheng, Jia; Liu, Jingjiao; Tang, Yi; Hu, Yongzhao
2005-01-01
2.1μm solid state laser operating at room temperature is a very useful laser source for optical communication, medical care, air pollution monitoring and Lidar, etc. It is eye-safe. It is also a very ideal pump source for optic parametric oscillator to get 3μm -5μm radiation. In order to further explore its potential applications, higher peak power and shorter pulse width are very desirable. Q-switching the laser is a most practical way to realize those goals. Among the most common used Q-switching techniques, mechanical Q-switching is not preferred due to that it involves use of a rotating motor, which has lower life time and causes undesirable vibration. E-O Q-switch material in this wavelength range is very expensive and quite susceptible to optical damage. On the other hand, low OH concentration quartz material exhibits very low absorption at the 2.1μm. The Cr:Tm:Ho:YAG 2.1μm laser has undesirable lower gain from the laser efficiency point of view, but offers a feasibility of using the A-O device for the Q-switching even the laser is pulse pumped. The Cr:Tm:Ho:YAG 2.1μm laser is a so called quasi-three level laser, which is characterized as having a higher threshold and lower gain. This study is focused on the optimization of the laser resonator design and the A-O Q-switch design for a higher laser peak power and shorter pulse width. Factors considered in the study include AO Q-switch"s RF frequency, modulation depth, active aperture, resonator length, resonator loss and pumping design, etc. Experiment results are compared with the Q-switched quasi-three level laser model. Final result of the Q-switched 2.1μm laser after preliminary optimization will be presented.
Improving Reliability of High Power Quasi-CW Laser Diode Arrays for Pumping Solid State Lasers
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Baggott, Renee S.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.
2005-01-01
Most Lidar applications rely on moderate to high power solid state lasers to generate the required transmitted pulses. However, the reliability of solid state lasers, which can operate autonomously over long periods, is constrained by their laser diode pump arrays. Thermal cycling of the active regions is considered the primary reason for rapid degradation of the quasi-CW high power laser diode arrays, and the excessive temperature rise is the leading suspect in premature failure. The thermal issues of laser diode arrays are even more drastic for 2-micron solid state lasers which require considerably longer pump pulses compared to the more commonly used pump arrays for 1-micron lasers. This paper describes several advanced packaging techniques being employed for more efficient heat removal from the active regions of the laser diode bars. Experimental results for several high power laser diode array devices will be reported and their performance when operated at long pulsewidths of about 1msec will be described.
Coherent control in bulk and nanostructure semiconductors
NASA Astrophysics Data System (ADS)
Sipe, John E.; van Driel, Henry M.
1998-04-01
Laser light has been used as a probe of atoms, molecules, and solids since the invention of the laser. The use of laser light in a more active role, to modify and process surfaces, and initiate chemical reactions, followed shortly thereafter. But usually it is the intensity and the directionality of the laser light that is employed, not necessarily its coherence, and not particularly the fact that it has a well-defined phase. 'Coherence control' can be broadly understood as the set of processes whereby light modifies matter in a way that is critically dependent on the incident light beams possessing well-defined phases. While in a laser matter is manipulated to produce light of the desired properties, in coherent control light is manipulated -- in particular, its phase and intensity is adjusted -- to produce a material response of the desired type. Of the various coherent control processes that are currently being investigated, some involve a transition in the material medium from an initial state to a final state by two or more possible processes. With each of these is associated a quantum mechanical amplitude, and hence the probability for the transition can show interference effects between the two amplitudes, just as in the familiar two-slit interference experiment the probability for the electron to be observed at a given position involves a probability that is the square of the sum of two amplitudes. In quantum interference control (QUIC), the relative phase of the two amplitudes is adjusted by adjusting the relative phase of two polarizations of a single beam, or the relative phase of two beams at different frequencies. It is this particular type of coherent control that is of interest in this communication.
Residual heat generated during laser processing of CFRP with picosecond laser pulses
NASA Astrophysics Data System (ADS)
Freitag, Christian; Pauly, Leon; Förster, Daniel J.; Wiedenmann, Margit; Weber, Rudolf; Kononenko, Taras V.; Konov, Vitaly I.; Graf, Thomas
2018-05-01
One of the major reasons for the formation of a heat-affected zone during laser processing of carbon fiber-reinforced plastics (CFRP) with repetitive picosecond (ps) laser pulses is heat accumulation. A fraction of every laser pulse is left as what we termed residual heat in the material also after the completed ablation process and leads to a gradual temperature increase in the processed workpiece. If the time between two consecutive pulses is too short to allow for a sufficient cooling of the material in the interaction zone, the resulting temperature can finally exceed a critical temperature and lead to the formation of a heat-affected zone. This accumulation effect depends on the amount of energy per laser pulse that is left in the material as residual heat. Which fraction of the incident pulse energy is left as residual heat in the workpiece depends on the laser and process parameters, the material properties, and the geometry of the interaction zone, but the influence of the individual quantities at the present state of knowledge is not known precisely due to the lack of comprehensive theoretical models. With the present study, we, therefore, experimentally determined the amount of residual heat by means of calorimetry. We investigated the dependence of the residual heat on the fluence, the pulse overlap, and the depth of laser-generated grooves in CRFP. As expected, the residual heat was found to increase with increasing groove depth. This increase occurs due to an indirect heating of the kerf walls by the ablation plasma and the change in the absorbed laser fluence caused by the altered geometry of the generated structures.
Long range laser propagation: power scaling and beam quality issues
NASA Astrophysics Data System (ADS)
Bohn, Willy L.
2010-09-01
This paper will address long range laser propagation applications where power and, in particular beam quality issues play a major role. Hereby the power level is defined by the specific mission under consideration. I restrict myself to the following application areas: (1)Remote sensing/Space based LIDAR, (2) Space debris removal (3)Energy transmission, and (4)Directed energy weapons Typical examples for space based LIDARs are the ADM Aeolus ESA mission using the ALADIN Nd:YAG laser with its third harmonic at 355 nm and the NASA 2 μm Tm:Ho:LuLiF convectively cooled solid state laser. Space debris removal has attracted more attention in the last years due to the dangerous accumulation of debris in orbit which become a threat to the satellites and the ISS space station. High power high brightness lasers may contribute to this problem by partially ablating the debris material and hence generating an impulse which will eventually de-orbit the debris with their subsequent disintegration in the lower atmosphere. Energy transmission via laser beam from space to earth has long been discussed as a novel long term approach to solve the energy problem on earth. In addition orbital transfer and stationkeeping are among the more mid-term applications of high power laser beams. Finally, directed energy weapons are becoming closer to reality as corresponding laser sources have matured due to recent efforts in the JHPSSL program. All of this can only be realized if he laser sources fulfill the necessary power requirements while keeping the beam quality as close as possible to the diffraction limited value. And this is the rationale and motivation of this paper.
Study the fragment size distribution in dynamic fragmentation of laser shock loding tin
NASA Astrophysics Data System (ADS)
He, Weihua; Xin, Jianting; Chu, Genbai; Shui, Min; Xi, Tao; Zhao, Yongqiang; Gu, Yuqiu
2017-06-01
Characterizing the distribution of fragment size produced from dynamic fragmentation process is very important for fundamental science like predicting material dymanic response performance and for a variety of engineering applications. However, only a few data about fragment mass or size have been obtained due to its great challenge in its dynamic measurement. This paper would focus on investigating the fragment size distribution from the dynamic fragmentation of laser shock-loaded metal. Material ejection of tin sample with wedge shape groove in the free surface is collected with soft recovery technique. Via fine post-shot analysis techniques including X-ray micro-tomography and the improved watershed method, it is found that fragments can be well detected. To characterize their size distributions, a random geometric statistics method based on Poisson mixtures was derived for dynamic heterogeneous fragmentation problem, which leads to a linear combinational exponential distribution. Finally we examined the size distribution of laser shock-loaded tin with the derived model, and provided comparisons with other state-of-art models. The resulting comparisons prove that our proposed model can provide more reasonable fitting result for laser shock-loaded metal.
Thermal management in inertial fusion energy slab amplifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, S.B.; Albrecht, G.F.
As the technology associated with the development of solid-state drivers for inertial fusion energy (IFE) has evolved, increased emphasis has been placed on the development of an efficient approach for managing the waste heat generated in the laser media. This paper addresses the technical issues associated with the gas cooling of large aperture slabs, where the laser beam propagates through the cooling fluid. It is shown that the major consequence of proper thermal management is the introduction of simple wedge, or beam steering, into the system. Achieving proper thermal management requires careful consideration of the geometry, cooling fluid characteristics, coolingmore » flow characteristics, as well as the thermal/mechanical/optical characteristics of the laser media. Particularly important are the effects of cooling rate variation and turbulent scattering on the system optical performance. Helium is shown to have an overwhelming advantage with respect to turbulent scattering losses. To mitigate cooling rate variations, the authors introduce the concept of flow conditioning. Finally, optical path length variations across the aperture are calculated. A comparison of two laser materials (S-FAP and YAG) shows the benefit of a nearly a-thermal material on optical variations in the system.« less
Development and analysis of closed cycle circulator elements. Final report 31 Jul 978-31 May 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shih, C.C.; Karr, G.R.; Perkins, J.F.
1980-05-01
A series of experiments with various flow rates of laser gas and coolants under several levels of energy inputs has been conducted on the Army Closed Cycle Circulator for pulsed EDL to collect sufficient data for flow calibration and coefficient determination. Verification of the theoretical models depicting the functions of the heat exchangers in maintaining the thermal balance in the flow through the steady and transient states are made through comparison with results of the experimental analysis.
Space Operation of the MOLA Laser
NASA Technical Reports Server (NTRS)
Afzal, Robert S.
2000-01-01
Interest in lasers for space applications such as active remote sensing in Earth orbit, planetary science, and inter-satellite laser communications is growing. These instruments typically use diode-pumped solid state lasers for the laser transmitter. The mission specifications and constraints of space qualification, place strict requirements on the design and operation of the laser. Although a laser can be built in the laboratory to meet performance specifications relatively routinely, tile mission constraints demand unique options and compromises in the materials used, and design to ensure the success of the mission. Presently, the best laser architecture for a light weight, rugged, high peak power and efficient transmitter is a diode laser pumped ND:YAG laser. Diode lasers can often obviate the need for water cooling, reduce the size and weight of the laser, increase the electrical to optical efficiency, system reliability, and lifetime. This paper describes the in-space operation and performance of the Mars Orbiter Laser Altimeter (MOLA) laser transmitter, representing the current state-of-the-art in space-based solid- state lasers.
Watching the Real-time Evolution of a Laser Modified Atom Using Attosecond Pulses
NASA Astrophysics Data System (ADS)
Shivaram, Niranjan; Timmers, Henry; Tong, Xiao-Min; Sandhu, Arvinder
2011-10-01
In the presence of even moderately strong laser fields, atomic states are heavily modified and develop rich structure. Such a laser dressed atom can be described using the Floquet theory in which the laser dressed states called Floquet states are composed of different Fourier components. In this work we use XUV attosecond pulses to excite a He atom from its ground state to near-infrared (NIR) laser dressed Floquet states, which are ionized by the dressing laser field. Quantum interferences between Fourier components of these Floquet states lead to oscillations in He ion yield as a function of time-delay between the XUV and NIR pulses. From the ion yield signal we measure the quantum phase difference between transition matrix elements to two different Fourier components as a function of both time-delay (instantaneous NIR intensity) and NIR pulse peak intensity. These measurements along with information from time-dependent Schrodinger equation simulations enable us to observe the real-time evolution of the laser modified atom as the dominant Floquet state mediating the ionization changes from the 5p Floquet state to the 2p Floquet state with increasing NIR intensity.
Helium in chirped laser fields as a time-asymmetric atomic switch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaprálová-Žďánská, Petra Ruth, E-mail: kapralova@jh-inst.cas.cz; J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague 8; Moiseyev, Nimrod, E-mail: nimrod@tx.technion.ac.il
2014-07-07
Tuning the laser parameters exceptional points in the spectrum of the dressed laser helium atom are obtained. The weak linearly polarized laser couples the ground state and the doubly excited P-states of helium. We show here that for specific chirped laser pulses that encircle an exceptional point one can get the time-asymmetric phenomenon, where for a negative chirped laser pulse the ground state is transformed into the doubly excited auto-ionization state, while for a positive chirped laser pulse the resonance state is not populated and the neutral helium atoms remains in the ground state as the laser pulse is turnedmore » off. Moreover, we show that the results are very sensitive to the closed contour we choose. This time-asymmetric state exchange phenomenon can be considered as a time-asymmetric atomic switch. The optimal time-asymmetric switch is obtained when the closed loop that encircles the exceptional point is large, while for the smallest loops, the time-asymmetric phenomenon does not take place. A systematic way for studying the effect of the chosen closed contour that encircles the exceptional point on the time-asymmetric phenomenon is proposed.« less
Laser resonance ionization spectroscopy of antimony
NASA Astrophysics Data System (ADS)
Li, R.; Lassen, J.; Ruczkowski, J.; Teigelhöfer, A.; Bricault, P.
2017-02-01
The resonant ionization laser ion source is an element selective, efficient and versatile ion source to generate radioactive ion beams at on-line mass separator facilities. For some elements with complex atomic structures and incomplete spectroscopic data, laser spectroscopic investigations are required for ionization scheme development. Laser resonance ionization spectroscopy using Ti:Sa lasers has been performed on antimony (Sb) at TRIUMF's off-line laser ion source test stand. Laser light of 230.217 nm (vacuum wavelength) as the first excitation step and light from a frequency-doubled Nd:YVO4 laser (532 nm) as the nonresonant ionization step allowed to search for suitable second excitation steps by continuous wavelength scans from 720 nm to 920 nm across the wavelength tuning range of a grating-tuned Ti:Sa laser. Upon the identification of efficient SES, the third excitation steps for resonance ionization were investigated by laser scans across Rydberg states, the ionization potential and autoionizing states. One Rydberg state and six AI states were found to be well suitable for efficient resonance ionization.
UV solid state laser ablation of intraocular lenses
NASA Astrophysics Data System (ADS)
Apostolopoulos, A.; Lagiou, D. P.; Evangelatos, Ch.; Spyratou, E.; Bacharis, C.; Makropoulou, M.; Serafetinides, A. A.
2013-06-01
Commercially available intraocular lenses (IOLs) are manufactured from silicone and acrylic, both rigid (e.g. PMMA) and foldable (hydrophobic or hydrophilic acrylic biomaterials), behaving different mechanical and optical properties. Recently, the use of apodizing technology to design new diffractive-refractive multifocals improved the refractive outcome of these intraocular lenses, providing good distant and near vision. There is also a major ongoing effort to refine laser refractive surgery to correct other defects besides conventional refractive errors. Using phakic IOLs to treat high myopia potentially provides better predictability and optical quality than corneal-based refractive surgery. The aim of this work was to investigate the effect of laser ablation on IOL surface shaping, by drilling circular arrays of holes, with a homemade motorized rotation stage, and scattered holes on the polymer surface. In material science, the most popular lasers used for polymer machining are the UV lasers, and, therefore, we tried in this work the 3rd and the 5th harmonic of a Q-switched Nd:YAG laser (λ=355 nm and λ=213 nm respectively). The morphology of the ablated IOL surface was examined with a scanning electron microscope (SEM, Fei - Innova Nanoscope) at various laser parameters. Quantitative measurements were performed with a contact profilometer (Dektak-150), in which a mechanical stylus scanned across the surface of gold-coated IOLs (after SEM imaging) to measure variations in surface height and, finally, the ablation rates were also mathematically simulated for depicting the possible laser ablation mechanism(s). The experimental results and the theoretical modelling of UV laser interaction with polymeric IOLs are discussed in relation with the physical (optical, mechanical and thermal) properties of the material, in addition to laser radiation parameters (laser energy fluence, number of pulses). The qualitative aspects of laser ablation at λ=213 nm reveal a smooth optical surface on the intraocular lens with no irregularities, observed with other wavelengths.
Hybrid semiconductor fiber lasers for telecommunications
NASA Astrophysics Data System (ADS)
Khalili, Alireza
2006-12-01
Highly stable edge emitting semiconductor lasers are of utmost importance in most telecommunications applications where high-speed data transmission sets strict limits on the purity of the laser signal. Unfortunately, most edge emitting semiconductor lasers, unlike gaseous or solid-state laser sources, operate with many closely spaced axial modes, which accounts for the observed instability and large spikes in the output spectrum of such lasers. Consequently, in most telecom applications distributed feedback (DFB) or distributed Bragg reflector (DBR) techniques are used to ensure stability and single-frequency operation, further adding to the cost and complexity of such lasers. Additionally, coupling of the highly elliptical output beam of these lasers to singlemode fibers complicates the packaging procedure and sub-micron alignment of various optical components is often necessary. Utilizing the evanescent coupling between a semiconductor antiresonant reflecting optical waveguide (ARROW) and a side polished fiber, this thesis presents an alternative side-coupled laser module that eliminates the need for the cumbersome multi-component alignment processes of conventional laser packages, and creates an inherent mode selection mechanism that guarantees singlemode radiation into the fiber without any gratings. We have been able to demonstrate the first side-coupled fiber semiconductor laser in this technology, coupling more than 3mW of power at 850nm directly into a 5/125mum singlemode fiber. This mixed-cavity architecture yields a high thermal stability (˜0.06nm/°C), and negligible spectral spikes are observed. Theoretical background and simulation results, as well as several supplementary materials are also presented to further rationalize the experimental data. A side-coupled light-emitter and pre-amplifier are also proposed and discussed. We also study different architectures for attaining higher efficiency, higher output power, and wavelength tunability in such lasers. Finally, we discuss possible venues for integration of these side-coupled devices in a telecommunication system. Approved for publication.
High power diode and solid state lasers
NASA Astrophysics Data System (ADS)
Eichler, H. J.; Fritsche, H.; Lux, O.; Strohmaier, S. G.
2017-01-01
Diode lasers are now basic pump sources of crystal, glass fiber and other solid state lasers. Progress in the performance of all these lasers is related. Examples of recently developed diode pumped lasers and Raman frequency converters are described for applications in materials processing, Lidar and medical surgery.
Applications of lasers to production metrology, control, and machine 'Vision'
NASA Astrophysics Data System (ADS)
Pryor, T. R.; Erf, R. K.; Gara, A. D.
1982-06-01
General areas of laser application to production measurement and inspection are reviewed together with the associated laser measurement techniques. The topics discussed include dimensional gauging of part profiles using laser imaging or scanning techniques, laser triangulation for surface contour measurement, surface finish measurement and defect inspection, holography and speckle techniques, and strain measurement. The emerging field of robot guidance utilizing lasers and other sensing means is examined, and, finally, the use of laser marking and reading equipment is briefly discussed.
Gaussian-Beam Laser-Resonator Program
NASA Technical Reports Server (NTRS)
Cross, Patricia L.; Bair, Clayton H.; Barnes, Norman
1989-01-01
Gaussian Beam Laser Resonator Program models laser resonators by use of Gaussian-beam-propagation techniques. Used to determine radii of beams as functions of position in laser resonators. Algorithm used in program has three major components. First, ray-transfer matrix for laser resonator must be calculated. Next, initial parameters of beam calculated. Finally, propagation of beam through optical elements computed. Written in Microsoft FORTRAN (Version 4.01).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vranckx, S.; Laboratoire de Chimie Physique; Loreau, J.
The photodissociation and laser assisted dissociation of the carbon monoxide dication X{sup 3}Π CO{sup 2+} into the {sup 3}Σ{sup −} states are investigated. Ab initio electronic structure calculations of the adiabatic potential energy curves, radial nonadiabatic couplings, and dipole moments for the X {sup 3}Π state are performed for 13 excited {sup 3}Σ{sup −} states of CO{sup 2+}. The photodissociation cross section, calculated by time-dependent methods, shows that the C{sup +} + O{sup +} channels dominate the process in the studied energy range. The carbon monoxide dication CO{sup 2+} is an interesting candidate for control because it can be producedmore » in a single, long lived, v = 0 vibrational state due to the instability of all the other excited vibrational states of the ground {sup 3}Π electronic state. In a spectral range of about 25 eV, perpendicular transition dipoles couple this {sup 3}Π state to a manifold of {sup 3}Σ{sup −} excited states leading to numerous C{sup +} + O{sup +} channels and a single C{sup 2+} + O channel. This unique channel is used as target for control calculations using local control theory. We illustrate the efficiency of this method in order to find a tailored electric field driving the photodissociation in a manifold of strongly interacting electronic states. The selected local pulses are then concatenated in a sequence inspired by the “laser distillation” strategy. Finally, the local pulse is compared with optimal control theory.« less
Fundamental characteristics of degradation-recoverable solid-state DFB polymer laser.
Yoshioka, Hiroaki; Yang, Yu; Watanabe, Hirofumi; Oki, Yuji
2012-02-13
A novel solid-state dye laser with degradation recovery was proposed and demonstrated. Polydimethylsiloxane was used as a nanoporous solid matrix to enable the internal circulation of dye molecules in the solid state. An internal circulation model for the dye molecules was also proposed and verified numerically by assuming molecular mobility and using a proposed diffusion equation. The durability of the laser was increased 20.5-fold compared with that of a conventional polymethylmethacrylate laser. This novel laser solves the low-durability problem of dye-doped polymer lasers.
Linear positioning laser calibration setup of CNC machine tools
NASA Astrophysics Data System (ADS)
Sui, Xiulin; Yang, Congjing
2002-10-01
The linear positioning laser calibration setup of CNC machine tools is capable of executing machine tool laser calibraiotn and backlash compensation. Using this setup, hole locations on CNC machien tools will be correct and machien tool geometry will be evaluated and adjusted. Machien tool laser calibration and backlash compensation is a simple and straightforward process. First the setup is to 'find' the stroke limits of the axis. Then the laser head is then brought into correct alignment. Second is to move the machine axis to the other extreme, the laser head is now aligned, using rotation and elevation adjustments. Finally the machine is moved to the start position and final alignment is verified. The stroke of the machine, and the machine compensation interval dictate the amount of data required for each axis. These factors determine the amount of time required for a through compensation of the linear positioning accuracy. The Laser Calibrator System monitors the material temperature and the air density; this takes into consideration machine thermal growth and laser beam frequency. This linear positioning laser calibration setup can be used on CNC machine tools, CNC lathes, horizontal centers and vertical machining centers.
Compact Ozone Differential Absorption Lidar (DIAL) Transmitter Using Solid-State Dye Polymers
NASA Technical Reports Server (NTRS)
Jones, Alton L., Jr.; DeYoung, Russell J.; Elsayid-Ele, Hani
2001-01-01
A new potential DIAL laser transmitter is described that uses solid-state dye laser materials to make a simpler, more compact, lower mass laser system. Two solid-state dye laser materials were tested to evaluate their performance in a laser oscillator cavity end pumped by a pulsed Nd:YAG laser at 532 nm. The polymer host polymethyl-methacrylate was injected with a pyrromethene laser dye, PM 580, or PM 597. A narrowband laser oscillator cavity was constructed to produce visible wavelengths of 578 and 600 nm which were frequency doubled into the UV region (299 or 300 nm) by using a BBO crystal, resulting in a maximum energy of 11 mJ at a wavelength of 578 nm when pumped by the Nd:YAG laser at an energy of 100 mJ (532 nm). A maximum output energy of 378 microJ was achieved in the UV region at a wavelength of 289 nm but lasted only 2000 laser shots at a repetition rate of 10 Hz. The results are promising and show that a solid-state dye laser based ozone DIAL system is possible with improvements in the design of the laser transmitter.
Charge-state distribution of Li ions from the β decay of laser-trapped 6He atoms
NASA Astrophysics Data System (ADS)
Hong, R.; Leredde, A.; Bagdasarova, Y.; Fléchard, X.; García, A.; Knecht, A.; Müller, P.; Naviliat-Cuncic, O.; Pedersen, J.; Smith, E.; Sternberg, M.; Storm, D. Â. W.; Swanson, H. Â. E.; Wauters, F.; Zumwalt, D.
2017-11-01
The accurate determination of atomic final states following nuclear β decay plays an important role in several experiments. In particular, the charge state distributions of ions following nuclear β decay are important for determinations of the β -ν angular correlation with improved precision. Beyond the hydrogenic cases, the decay of neutral 6He presents the simplest case. Our measurement aims at providing benchmarks to test theoretical calculations. The kinematics of Lin + ions produced following the β decay of 6He within an electric field were measured using 6He atoms in the metastable (1 s 2 s ,S31) and (1 s 2 p ,P32) states confined by a magneto-optical trap. The electron shakeoff probabilities were deduced, including their dependence on ion energy. We find significant discrepancies on the fractions of Li ions in the different charge states with respect to a recent calculation.
Development of fiber lasers and devices for coherent Raman scattering microscopy
NASA Astrophysics Data System (ADS)
Lamb, Erin Stranford
As ultrafast laser technology has found expanding application in machining, spectroscopy, microscopy, surgery, and numerous other areas, the desire for inexpensive and robust laser sources has grown. Until recently, nonlinear effects in fiber systems due to the tight confinement of the light in the core have limited their performance. However, with advances in managing nonlinearity through pulse propagation physics and the use of large core fibers, the performance of fiber lasers can compete with that of their solid-state counterparts. As specific applications, such as coherent Raman scattering microscopy, emerge that stand to benefit from fiber technology, new performance challenges in areas such as laser noise are anticipated. This thesis studies nonlinear pulse propagation in fiber lasers and fiber parametric devices. Applications of dissipative solitons and self-similar pulse propagation to low-repetition rate oscillators that have the potential to simplify short-pulse amplification schemes will be examined. The rest of this thesis focuses on topics relevant to fiber laser development for coherent Raman scattering microscopy sources. Coherent pulse division and recombination inside the laser cavity will be introduced as an energy-scaling mechanism and demonstrated for a fiber soliton laser. The relative intensity noise properties of mode-locked fiber lasers, with a particular emphasis on normal dispersion lasers, will be explored in simulation and experiment. A fiber optical parametric oscillator will be studied in detail for low noise frequency conversion of picosecond pulses, and its utility for coherent Raman imaging will be demonstrated. Spectral compression of femtosecond pulses is used to generate picosecond pulses to pump this device, and this technique provides a route to future noise reduction in the system. Furthermore, this device forms a multimodal source capable of providing the picosecond pulses for coherent Raman scattering microscopy and the high energy femtosecond pulses for other multiphoton imaging techniques. Finally, ideas for future extensions of this work will be discussed.
Ultra-fast movies of thin-film laser ablation
NASA Astrophysics Data System (ADS)
Domke, Matthias; Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.
2012-11-01
Ultra-short-pulse laser irradiation of thin molybdenum films from the glass substrate side initiates an intact Mo disk lift off free from thermal effects. For the investigation of the underlying physical effects, ultra-fast pump-probe microscopy is used to produce stop-motion movies of the single-pulse ablation process, initiated by a 660-fs laser pulse. The ultra-fast dynamics in the femtosecond and picosecond ranges are captured by stroboscopic illumination of the sample with an optically delayed probe pulse of 510-fs duration. The nanosecond and microsecond delay ranges of the probe pulse are covered by an electronically triggered 600-ps laser. Thus, the setup enables an observation of general laser ablation processes from the femtosecond delay range up to the final state. A comparison of time- and space-resolved observations of film and glass substrate side irradiation of a 470-nm molybdenum layer reveals the driving mechanisms of the Mo disk lift off initiated by glass-side irradiation. Observations suggest that a phase explosion generates a liquid-gas mixture in the molybdenum/glass interface about 10 ps after the impact of the pump laser pulse. Then, a shock wave and gas expansion cause the molybdenum layer to bulge, while the enclosed liquid-gas mixture cools and condenses at delay times in the 100-ps range. The bulging continues for approximately 20 ns, when an intact Mo disk shears and lifts off at a velocity of above 70 m/s. As a result, the remaining hole is free from thermal effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karatutlu, Ali, E-mail: a.karatutlu@qmul.ac.uk, E-mail: ali.karatutlu@bou.edu.tr; Electrical and Electronics Engineering, Bursa Orhangazi University, 16310 Yıldırım/Bursa; Little, William
In this study, with the aid of Raman measurements, we have observed transformations in small (∼3 nm and ∼10 nm) free-standing Ge nanoparticles under laser light exposure. The nanoparticles were obtained by the chemical stain etching of a monocrystalline Ge wafer and of Ge powder and by colloidal synthesis route. We found that the transformation path depends on laser power and exposure time. At relatively low values of the laser power (2 mW) over a period of 100 min, the Raman signal indicates transformation of the sample from a nanocrystaline to bulk-like state, followed by partial oxidation and finally a conversion of themore » entire sample into alpha-quartz type GeO{sub 2}. However, when the laser power is set at 60 mW, we observed a heat release during an explosive crystallization of the nanocrystalline material into bulk Ge without noticeable signs of oxidation. Together with the transmission electron microscopy measurements, these results suggest that the chemical stain etching method for the preparation of porous Ge may not be a top-down process as has been widely considered, but a bottom up one. Systematic studies of the laser exposure on Ge nanoparticles prepared by colloidal synthesis results in the fact that the explosive crystallisation is common for H-terminated and partially disordered Ge nanoparticles regardless of its particle size. We suggest possible bio-medical applications for the observed phenomena.« less
Beam shaping by using small-aperture SLM and DM in a high power laser
NASA Astrophysics Data System (ADS)
Li, Sensen; Lu, Zhiwei; Du, Pengyuan; Wang, Yulei; Ding, Lei; Yan, Xiusheng
2018-03-01
High-power laser plays an important role in many fields, such as directed energy weapon, optoelectronic contermeasures, inertial confinement fusion, industrial processing and scientific research. The uniform nearfield and wavefront are the important part of the beam quality for high power lasers, which is conducive to maintaining the high spatial beam quality in propagation. We demonstrate experimentally that the spatial intensity and wavefront distribution at the output is well compensated in the complex high-power solid-state laser system by using the small-aperture spatial light modulator (SLM) and deformable mirror (DM) in the front stage. The experimental setup is a hundred-Joule-level Nd:glass laser system operating at three wavelengths at 1053 nm (1ω), 527 nm (2ω) and 351 nm (3ω) with 3 ns pulse duration with the final output beam aperture of 60 mm. While the clear arperture of the electrically addressable SLM is less than 20 mm and the effective diameter of the 52-actuators DM is about 15 mm. In the beam shaping system, the key point is that the two front-stage beam shaping devices needs to precompensate the gain nonuniform and wavefront distortion of the laser system. The details of the iterative algorithm for improving the beam quality are presented. Experimental results show that output nearfield and wavefont are both nearly flat-topped with the nearfield modulation of 1.26:1 and wavefront peak-to-valley value of 0.29 λ at 1053nm after beam shaping.
High Energy 2-micron Laser Developments
NASA Technical Reports Server (NTRS)
Yu, Jirong; Trieu, Bo C.; Petros, Mulugeta; Bai, Yingxin; Petzar, Paul J.; Koch, Grady J.; Singh, Upendra N.; Kavaya, Michael J.
2007-01-01
This viewgraph presentation shows the development of 2-micron solid state lasers. The topics covered include: 1) Overview 2-micron solid state lasers; 2) Modeling and population inversion measurement; 3) Side pump oscillator; and 4) One Joule 2-m Laser.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-28
... Determination Concerning Laser-Based Multi-Function Office Machines AGENCY: U.S. Customs and Border Protection... country of origin of laser-based multi-function office machines. Based upon the facts presented, CBP has... essential character of the laser-based multi-function office machine, and it is at their assembly and...
Solar-pumped solid state Nd lasers
NASA Technical Reports Server (NTRS)
Williams, M. D.; Zapata, L.
1985-01-01
Solid state neodymium lasers are considered candidates for space-based polar-pumped laser for continuous power transmission. Laser performance for three different slab laser configurations has been computed to show the excellent power capability of such systems if heat problems can be solved. Ideas involving geometries and materials are offered as potential solutions to the heat problem.
High power multiple wavelength diode laser stack for DPSSL application without temperature control
NASA Astrophysics Data System (ADS)
Hou, Dong; Yin, Xia; Wang, Jingwei; Chen, Shi; Zhan, Yun; Li, Xiaoning; Fan, Yingmin; Liu, Xingsheng
2018-02-01
High power diode laser stack is widely used in pumping solid-state laser for years. Normally an integrated temperature control module is required for stabilizing the output power of solid-state laser, as the output power of the solid-state laser highly depends on the emission wavelength and the wavelength shift of diode lasers according to the temperature changes. However the temperature control module is inconvenient for this application, due to its large dimension, high electric power consumption and extra adding a complicated controlling system. Furthermore, it takes dozens of seconds to stabilize the output power when the laser system is turned on. In this work, a compact hard soldered high power conduction cooled diode laser stack with multiple wavelengths is developed for stabilizing the output power of solid-state laser in a certain temperature range. The stack consists of 5 laser bars with the pitch of 0.43mm. The peak output power of each bar in the diode laser stack reaches as much as 557W and the combined lasing wavelength spectrum profile spans 15nm. The solidstate laser, structured with multiple wavelength diode laser stacks, allows the ambient temperature change of 65°C without suddenly degrading the optical performance.
A quantum dynamics study of the benzopyran ring opening guided by laser pulses
NASA Astrophysics Data System (ADS)
Saab, Mohamad; Doriol, Loïc Joubert; Lasorne, Benjamin; Guérin, Stéphane; Gatti, Fabien
2014-10-01
The ring-opening photoisomerization of benzopyran, which occurs via a photochemical route involving a conical intersection, has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method (MCTDH). We introduce a mechanistic strategy to control the conversion of benzopyran to merocyanine with laser pulses. We use a six-dimensional model developed in a previous work for the potential energy surfaces (PES) based on an extension of the vibronic-coupling Hamiltonian model (diabatization method by ansatz), which depends on the most active degrees of freedom. The main objective of these quantum dynamics simulations is to provide a set of strategies that could help experimentalists to control the photoreactivity vs. photostability ratio (selectivity). In this work we present: (i) a pump-dump technique used to control the photostability, (ii) a two-step strategy to enhance the reactivity of the system: first, a pure vibrational excitation in the electronic ground state that prepares the system and, second, an ultraviolet excitation that brings the system to the first adiabatic electronic state; (iii) finally the effect of a non-resonant pulse (Stark effect) on the dynamics.
Cavity-coupled double-quantum dot at finite bias: Analogy with lasers and beyond
NASA Astrophysics Data System (ADS)
Kulkarni, Manas; Cotlet, Ovidiu; Türeci, Hakan E.
2014-09-01
We present a theoretical and experimental study of photonic and electronic transport properties of a voltage biased InAs semiconductor double quantum dot (DQD) that is dipole coupled to a superconducting transmission line resonator. We obtain the master equation for the reduced density matrix of the coupled system of cavity photons and DQD electrons accounting systematically for both the presence of phonons and the effect of leads at finite voltage bias. We subsequently derive analytical expressions for transmission, phase response, photon number, and the nonequilibrium steady-state electron current. We show that the coupled system under finite bias realizes an unconventional version of a single-atom laser and analyze the spectrum and the statistics of the photon flux leaving the cavity. In the transmission mode, the system behaves as a saturable single-atom amplifier for the incoming photon flux. Finally, we show that the back action of the photon emission on the steady-state current can be substantial. Our analytical results are compared to exact master equation results establishing regimes of validity of various analytical models. We compare our findings to available experimental measurements.
Model of Laser-Induced Temperature Changes in Solid-State Optical Refrigerators
2010-01-01
Model of laser-induced temperature changes in solid-state optical refrigerators W. M. Patterson,1,a M. Sheik- Bahae ,1 R. I . Epstein,2 and M. P...Applications of Laser Cooling of Sol- ids, edited by R. I . Epstein and M. Sheik- Bahae Wiley, Weinheim, 2009. 2W. Koechner, Solid-State Laser...2004. 19D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, R. I . Epstein, and M. Sheik- Bahae , in Conference on Lasers and Electro
Diagnosis of Plasma States in X-Ray Laser Experiments
1992-10-01
J e AD-A256 909 FOREIGN AEROSPACE SCIENCE AND TECHNOLOGY CENTER DTIC 4 OCT 2 6 1992’ DIAGNOSIS OF PLASMA STATES IN X-RAY LASER EXPERIMENTS by Yang ...0619-92 HUMAN TRANSLATION FASTC-ID(RS)T-0619-92 8 October 1992 DIAGNOSIS OF PLASMA STATES IN X-RAY LASER EXPERIMENTS By: Yang Shangjin, Cai Yuqin, Chunyu... Yang Shangjin, Cai Yuqin, and Chunyu Shutai China Academy of Engineering Physics Abstract At an LF-12 laser installation, an Nd glass laser of
Ultracold Fermions in the P-Orbital Band of an Optical Lattice
2015-07-27
introduces (1) a new degree of freedom due to orbital degeneracy and (2) a tunneling anisotropy which depends on the orientation of the orbital wavefunction...demonstrated this new technique with a diode -pumped solid-state laser operating at 1342 nm that could be frequency doubled to provide 671 nm light for laser...Figure 3: Self-injection locked, diode -pumped solid-state laser for laser cooling of Li atoms. The solid-state Nd:YVO4 laser at the top consists of a
NASA Astrophysics Data System (ADS)
Burimov, V. N.; Zherikhin, A. N.; Popkov, V. L.
1995-02-01
Laser-induced fluorescence was used in an investigation of the populations of the ground and excited (6s5d 3D1 and 3D2) states of Ba atoms in a plasma formed by laser ablation of Y—Ba—Cu—O target. A nonequilibrium velocity distribution of the atoms was detected. At large distances from the target about 4% of the atoms were in an excited state.
A new solid-state, frequency-doubled neodymium-YAG photocoagulation system.
Jalkh, A E; Pflibsen, K; Pomerantzeff, O; Trempe, C L; Schepens, C L
1988-06-01
We have developed a solid-state laser system that produces a continuous green monochromatic laser beam of 532 nm by doubling the frequency of a neodymium-YAG laser wavelength of 1064 nm with a potassium-titamyl-phosphate crystal. Photocoagulation burns of equal size and intensity were placed in two rabbit eyes with the solid-state laser system and the regular green argon laser system, respectively, using the same slit-lamp mode of delivery. Histologic findings of lesion sections revealed no important differences between the two systems. In theory, the longer wavelength of the solid-state laser offers the advantages of less scattering in ocular media, higher absorption by oxyhemoglobin, and less absorption by macular xanthophyll than the 514-nm wavelength of the regular green argon laser. The solid-state laser has impressive technical advantages: it contains no argon-ion gas tube that wears out and is expensive to replace; it is much more power efficient, and thus considerably smaller and compact; it is sturdier and easily movable; it does not require external cooling; it uses a 220-V monophasic alternating current; and it requires little maintenance.
Multilevel relaxation phenomena and population trapping. Final report, July 1, 1984--June 30, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hioe, F.T.
1991-11-01
This final report summarizes the main results of our work supported by DOE since 1982. A list of 45 publications supported by this DOE Grant is attached at the end of this report. The use and exploitation of the SU(N) dynamic symmetry to the study of the dynamics of laser-atom interaction was the starting point of our research work under this DOE Grant, and is our most original contribution to the field of quantum electrodynamics. Many results of general and special interests have been derived and developed from this starting point and the following is a summary of them: (1)more » We have introduced a set of simple relations based on the principle of unitary invariance which has proved to be useful for the study of the dynamics of a quantum system involving coupling. (2) We have found various specific conditions under which (a) we may have trapped population, or (b) we may send laser pulses through a multilevel atomic medium without attenuation. (3) We have found a remarkably efficient method for optimal state selective multiphoton population transfer, that employs two or more spatially overlapping lasers arranged in an unconventional sequence which we called ``counterintuitive``. A recent suggestion by Profs. P. Marte, P. Zoller and J.L. Hall to use this counterintuitive method for atomic beam deflections promises to make this remarkably effective procedure to become an important method in atomic interferometry.« less
Chen, Ye-Hong; Xia, Yan; Song, Jie; Chen, Qing-Qin
2015-10-28
Berry's approach on "transitionless quantum driving" shows how to set a Hamiltonian which drives the dynamics of a system along instantaneous eigenstates of a reference Hamiltonian to reproduce the same final result of an adiabatic process in a shorter time. In this paper, motivated by transitionless quantum driving, we construct shortcuts to adiabatic passage in a three-atom system to create the Greenberger-Horne-Zeilinger states with the help of quantum Zeno dynamics and of non-resonant lasers. The influence of various decoherence processes is discussed by numerical simulation and the result proves that the scheme is fast and robust against decoherence and operational imperfection.
NASA Astrophysics Data System (ADS)
Louchev, Oleg A.; Bakule, Pavel; Saito, Norihito; Wada, Satoshi; Yokoyama, Koji; Ishida, Katsuhiko; Iwasaki, Masahiko
2011-09-01
We present a theoretical model combined with a computational study of a laser four-wave mixing process under optical discharge in which the non-steady-state four-wave amplitude equations are integrated with the kinetic equations of initial optical discharge and electron avalanche ionization in Kr-Ar gas. The model is validated by earlier experimental data showing strong inhibition of the generation of pulsed, tunable Lyman-α (Ly-α) radiation when using sum-difference frequency mixing of 212.6 nm and tunable infrared radiation (820-850 nm). The rigorous computational approach to the problem reveals the possibility and mechanism of strong auto-oscillations in sum-difference resonant Ly-α generation due to the combined effect of (i) 212.6-nm (2+1)-photon ionization producing initial electrons, followed by (ii) the electron avalanche dominated by 843-nm radiation, and (iii) the final breakdown of the phase matching condition. The model shows that the final efficiency of Ly-α radiation generation can achieve a value of ˜5×10-4 which is restricted by the total combined absorption of the fundamental and generated radiation.
NASA Astrophysics Data System (ADS)
Bousquet, B.; Travaillé, G.; Ismaël, A.; Canioni, L.; Michel-Le Pierrès, K.; Brasseur, E.; Roy, S.; le Hecho, I.; Larregieu, M.; Tellier, S.; Potin-Gautier, M.; Boriachon, T.; Wazen, P.; Diard, A.; Belbèze, S.
2008-10-01
Principal Components Analysis (PCA) is successfully applied to the full laser-induced breakdown spectroscopy (LIBS) spectra of soil samples, defining classes according to the concentrations of the major elements. The large variability of the LIBS data is related to the heterogeneity of the samples and the representativeness of the data is finally discussed. Then, the development of a mobile LIBS system dedicated to the in-situ analysis of soils polluted by heavy metals is described. Based on the use of ten-meter long optical fibers, the mobile system allows deported measurements. Finally, the laser-assisted drying process studied by the use of a customized laser has not been retained to overcome the problem of moisture.
Clerkin, Eoin; O'Brien, Stephen; Amann, Andreas
2014-03-01
We theoretically investigate the dynamics of two mutually coupled, identical single-mode semi-conductor lasers. For small separation and large coupling between the lasers, symmetry-broken one-color states are shown to be stable. In this case the light outputs of the lasers have significantly different intensities while at the same time the lasers are locked to a single common frequency. For intermediate coupling we observe stable symmetry-broken two-color states, where both lasers lase simultaneously at two optical frequencies which are separated by up to 150 GHz. Using a five-dimensional model, we identify the bifurcation structure which is responsible for the appearance of symmetric and symmetry-broken one-color and two-color states. Several of these states give rise to multistabilities and therefore allow for the design of all-optical memory elements on the basis of two coupled single-mode lasers. The switching performance of selected designs of optical memory elements is studied numerically.
NASA Astrophysics Data System (ADS)
Clerkin, Eoin; O'Brien, Stephen; Amann, Andreas
2014-03-01
We theoretically investigate the dynamics of two mutually coupled, identical single-mode semi-conductor lasers. For small separation and large coupling between the lasers, symmetry-broken one-color states are shown to be stable. In this case the light outputs of the lasers have significantly different intensities while at the same time the lasers are locked to a single common frequency. For intermediate coupling we observe stable symmetry-broken two-color states, where both lasers lase simultaneously at two optical frequencies which are separated by up to 150 GHz. Using a five-dimensional model, we identify the bifurcation structure which is responsible for the appearance of symmetric and symmetry-broken one-color and two-color states. Several of these states give rise to multistabilities and therefore allow for the design of all-optical memory elements on the basis of two coupled single-mode lasers. The switching performance of selected designs of optical memory elements is studied numerically.
NASA Astrophysics Data System (ADS)
Al-Muraeb, Ahmed Mohammed Maim
This dissertation presents new approaches to design photonic crystal fiber Bragg grating, which is a main component in wavelength-tunable fiber and solid-state laser (SSL) systems operating in eye-safe wavelength region (1.4 - 2 mum). Although they have their own name, fiber lasers can be categorized as SSL as they are being used in making Ion-doped SSL. Today however, fiber lasers compete with and threaten to replace most of high-power, bulk SSLs and even some gas lasers. Hence, an eye-safe dual-wavelength Tunable Fiber Ring Laser (TFRL) system is considered in this work. This work addresses: 1. Eye-safe region laser areas of applications, TFRL system description, and wavelength tuning mechanisms with focus on (1.8 - 2 mum) range. 2. Optimal design method for Fiber Bragg Grating (FBG) using the Bat Algorithm, with the novel Adaptive Position Update (APU-BA) (our work [1]). The latter enhances the search performance and accuracy of BA for FBG design. Also, APU-BA shows better search performance and higher accuracy against previously reported methods and algorithms. 3. Investigation and design of novel High-Birefringence Photonic Crystal Fiber (JIBPCF) structures based on the Binary Morse-Thue fractal Sequence (BMTS) [2]. The latter offers desirably higher birefringence and lower confinement loss with dispersion-free single-mode operation in the eye-safe region of interest (1.8 - 2 microm). 4. Combining the above results, for final design of the photonic crystal fiber Bragg grating device (serving as wavelength-selective reflector in TFRL). Fiber Bragg grating design and analysis were carried out using MATLAG RTM. Resulting in refractive index modulation over the designed FBG length for a given target FBG reflectance spectrum. Hexagonal standard Silica Glass solid-core 5-ring HB-PCF with circular air holes, is designed based on BMTS. COMSOL MultiphysicsRTM - Wave Optics Module is used in modeling and analysis for the design. Four BMTS formations were proposed, and compared in terms of PCF design parameters (mainly: birefringence). Fabrication in agreement with commercially available PCFs, are concerned in structure geometrical design.
NASA Astrophysics Data System (ADS)
Eakins, D. E.; Thadhani, N. N.
2006-10-01
Instrumented Taylor anvil-on-rod impact tests have been conducted on oxygen-free electronic copper to validate the accuracy of current strength models for predicting transient states during dynamic deformation events. The experiments coupled the use of high-speed digital photography to record the transient deformation states and laser interferometry to monitor the sample back (free surface) velocity as a measure of the elastic/plastic wave propagation through the sample length. Numerical continuum dynamics simulations of the impact and plastic wave propagation employing the Johnson-Cook [Proceedings of the Seventh International Symposium on Ballistics, 1983, The Netherlands (Am. Def. Prep. Assoc. (ADPA)), pp. 541-547], Zerilli-Armstrong [J. Appl. Phys. C1, 1816 (1987)], and Steinberg-Guinan [J. Appl. Phys. 51, 1498 (1980)] constitutive equations were used to generate transient deformation profiles and the free surface velocity traces. While these simulations showed good correlation with the measured free surface velocity traces and the final deformed sample shape, varying degrees of deviations were observed between the photographed and calculated specimen profiles at intermediate deformation states. The results illustrate the usefulness of the instrumented Taylor anvil-on-rod impact technique for validating constitutive equations that can describe the path-dependent deformation response and can therefore predict the transient and final deformation states.
Stokowski, S.E.
1987-10-20
A laser medium is particularly useful in high average power solid state lasers. The laser medium includes a chromium dopant and preferably neodymium ions as codopant, and is primarily a gadolinium scandium gallium garnet, or an analog thereof. Divalent cations inhibit spiral morphology as large boules from which the laser medium is derived are grown, and a source of ions convertible between a trivalent state and a tetravalent state at a low ionization energy are in the laser medium to reduce an absorption coefficient at about one micron wavelength otherwise caused by the divalent cations. These divalent cations and convertible ions are dispersed in the laser medium. Preferred convertible ions are provided from titanium or cerium sources.
Stokowski, Stanley E.
1989-01-01
A laser medium is particularly useful in high average power solid state lasers. The laser medium includes a chormium dopant and preferably neodymium ions as codopant, and is primarily a gadolinium scandium gallium garnet, or an analog thereof. Divalent cations inhibit spiral morphology as large boules from which the laser medium is derived are grown, and a source of ions convertible between a trivalent state and a tetravalent state at a low ionization energy are in the laser medium to reduce an absorption coefficient at about one micron wavelength otherwise caused by the divalent cations. These divalent cations and convertible ions are dispersed in the laser medium. Preferred convertible ions are provided from titanium or cerium sources.
Solid-state coherent laser radar wind shear measuring systems
NASA Technical Reports Server (NTRS)
Huffaker, R. Milton
1992-01-01
Coherent Technologies, Inc. (CTI) was established in 1984 to engage in the development of coherent laser radar systems and subsystems with applications in atmospheric remote sensing, and in target tracking, ranging and imaging. CTI focuses its capabilities in three major areas: (1) theoretical performance and design of coherent laser radar system; (2) development of coherent laser radar systems for government agencies such as DoD and NASA; and (3) development of coherent laser radar systems for commercial markets. The topics addressed are: (1) 1.06 micron solid-state coherent laser radar system; (2) wind measurement using 1.06 micron system; and flashlamp-pumped 2.09 micron solid-state coherent laser radar system.
Laser ignition application in a space experiment
NASA Technical Reports Server (NTRS)
Liou, Larry C.; Culley, Dennis E.
1993-01-01
A laser ignition system is proposed for the Combustion Experiment Module on an orbiting spacecraft. The results of a design study are given using the scheduled 'Flame Ball Experiment' as the design guidelines. Three laser ignition mechanisms and wavelengths are evaluated. A prototype laser is chosen and its specifications are given, followed by consideration of the beam optical arrangement, the ignition power requirement, the laser ignition system weight, size, reliability, and laser cooling and power consumption. Electromagnetic interference to the onboard electronics caused by the laser ignition process is discussed. Finally, ground tests are suggested.
Corona Preionization Technique for Carbon Dioxide TEA Lasers.
1982-11-30
34’" " " " "- -. .. " "I~ 82R8O701-02 CORONA PREIONIZATION TECHNIQUE FOR CARBON DIOXIDE TEA LASERS W after R. Kamnki SUnited Technologiles Research Center C...TITLE (and Subtitle) S. TYPE OF REPORT a PERIOD COVERED CORONA PREIONIZATION TECHNIQUE FOR CARBON Final Report DIOXIDE TEA LASERS May 5, 1981...Preionization Laser UV Preionization Pulsed CO2 Laser Corona Preionization CO2 TEA Laser 10. ABSTRACT (Continue on reverse side If neceeeiny md Identify
Heat damage-free laser-microjet cutting achieves highest die fracture strength
NASA Astrophysics Data System (ADS)
Perrottet, Delphine; Housh, Roy; Richerzhagen, Bernold; Manley, John
2005-04-01
Unlike conventional laser-based technologies, the water jet guided laser does not generate heat damage and contamination is also very low. The negligible heat-affected zone is one reason why die fracture strength is higher than with sawing. This paper first presents the water jet guided laser technology and then explains how it differs from conventional dry laser cutting. Finally, it presents the results obtained by three recent studies conducted to determine die fracture strength after Laser-Microjet cutting.
Impact of initial surface parameters on the final quality of laser micro-polished surfaces
NASA Astrophysics Data System (ADS)
Chow, Michael; Bordatchev, Evgueni V.; Knopf, George K.
2012-03-01
Laser micro-polishing (LμP) is a new laser-based microfabrication technology for improving surface quality during a finishing operation and for producing parts and surfaces with near-optical surface quality. The LμP process uses low power laser energy to melt a thin layer of material on the previously machined surface. The polishing effect is achieved as the molten material in the laser-material interaction zone flows from the elevated regions to the local minimum due to surface tension. This flow of molten material then forms a thin ultra-smooth layer on the top surface. The LμP is a complex thermo-dynamic process where the melting, flow and redistribution of molten material is significantly influenced by a variety of process parameters related to the laser, the travel motions and the material. The goal of this study is to analyze the impact of initial surface parameters on the final surface quality. Ball-end micromilling was used for preparing initial surface of samples from H13 tool steel that were polished using a Q-switched Nd:YAG laser. The height and width of micromilled scallops (waviness) were identified as dominant parameter affecting the quality of the LμPed surface. By adjusting process parameters, the Ra value of a surface, having a waviness period of 33 μm and a peak-to-valley value of 5.9 μm, was reduced from 499 nm to 301 nm, improving the final surface quality by 39.7%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geltman, S.
Recent measurements on CO{sub 2}-laser-assisted electron-atom collisions have shown large inconsistencies with the Kroll-Watson formula for small-angle scattering. We have carried out a detailed study to compare the predictions of Kroll-Watson theory (for both single and multimode fields) with those of conventional perturbation theory for stimulated free-free transitions. It is found that for {ital E}{sub 0}/2{omega}{sup 2}{lt}1, where perturbation theory is valid, there are large differences with the Kroll-Watson theory. Comparisons of experimental variations with respect to scattering angle and electron energy show much better agreement with perturbation theory than with Kroll-Watson theory. A study of the angular variations inmore » perturbation theory shows that use of the {open_quote}{open_quote}outgoing{close_quote}{close_quote} wave final state gives much better agreement with experiment than does the {open_quote}{open_quote}ingoing{close_quote}{close_quote} wave final state, which is different from the choice made in early bremsstrahlung theory. {copyright} {ital 1996 The American Physical Society.}« less
Coherent laser radar at 2 microns using solid-state lasers
NASA Technical Reports Server (NTRS)
Henderson, Sammy W.; Suni, Paul J. M.; Hale, Charley P.; Hannon, Stephen M.; Magee, James R.; Bruns, Dale L.; Yuen, Eric H.
1993-01-01
Coherent laser radar systems using 2-micron Tm- and Tm, Ho-doped solid-state lasers are useful for the remote range-resolved measurement of atmospheric winds, aerosol backscatter, and DIAL measurements of atmospheric water vapor and CO2 concentrations. Recent measurements made with a 2-micron coherent laser radar system, advances in the laser technology, and atmospheric propagation effects on 2-micron coherent lidar performance are described.
The solid state detector technology for picosecond laser ranging
NASA Technical Reports Server (NTRS)
Prochazka, Ivan
1993-01-01
We developed an all solid state laser ranging detector technology, which makes the goal of millimeter accuracy achievable. Our design and construction philosophy is to combine the techniques of single photon ranging, ultrashort laser pulses, and fast fixed threshold discrimination while avoiding any analog signal processing within the laser ranging chain. The all solid state laser ranging detector package consists of the START detector and the STOP solid state photon counting module. Both the detectors are working in an optically triggered avalanche switching regime. The optical signal is triggering an avalanche current buildup which results in the generation of a uniform, fast risetime output pulse.
Simulation of planetary entry radiative heating with a CO2 gasdynamic laser
NASA Technical Reports Server (NTRS)
Lundell, J. H.; Dickey, R. R.; Howe, J. T.
1975-01-01
Heating encountered during entry into the atmospheres of Jupiter, Saturn, and Uranus is described, followed by a discussion of the use of a CO2 gasdynamic laser to simulate the radiative component of the heating. Operation and performance of the laser is briefly described. Finally, results of laser tests of some candidate heat-shield materials are presented.
NASA Astrophysics Data System (ADS)
Fonseca, R. A.; Vieira, J.; Fiuza, F.; Davidson, A.; Tsung, F. S.; Mori, W. B.; Silva, L. O.
2013-12-01
A new generation of laser wakefield accelerators (LWFA), supported by the extreme accelerating fields generated in the interaction of PW-Class lasers and underdense targets, promises the production of high quality electron beams in short distances for multiple applications. Achieving this goal will rely heavily on numerical modelling to further understand the underlying physics and identify optimal regimes, but large scale modelling of these scenarios is computationally heavy and requires the efficient use of state-of-the-art petascale supercomputing systems. We discuss the main difficulties involved in running these simulations and the new developments implemented in the OSIRIS framework to address these issues, ranging from multi-dimensional dynamic load balancing and hybrid distributed/shared memory parallelism to the vectorization of the PIC algorithm. We present the results of the OASCR Joule Metric program on the issue of large scale modelling of LWFA, demonstrating speedups of over 1 order of magnitude on the same hardware. Finally, scalability to over ˜106 cores and sustained performance over ˜2 P Flops is demonstrated, opening the way for large scale modelling of LWFA scenarios.
Transient radiative transfer in a scattering slab considering polarization.
Yi, Hongliang; Ben, Xun; Tan, Heping
2013-11-04
The characteristics of the transient and polarization must be considered for a complete and correct description of short-pulse laser transfer in a scattering medium. A Monte Carlo (MC) method combined with a time shift and superposition principle is developed to simulate transient vector (polarized) radiative transfer in a scattering medium. The transient vector radiative transfer matrix (TVRTM) is defined to describe the transient polarization behavior of short-pulse laser propagating in the scattering medium. According to the definition of reflectivity, a new criterion of reflection at Fresnel surface is presented. In order to improve the computational efficiency and accuracy, a time shift and superposition principle is applied to the MC model for transient vector radiative transfer. The results for transient scalar radiative transfer and steady-state vector radiative transfer are compared with those in published literatures, respectively, and an excellent agreement between them is observed, which validates the correctness of the present model. Finally, transient radiative transfer is simulated considering the polarization effect of short-pulse laser in a scattering medium, and the distributions of Stokes vector in angular and temporal space are presented.
Hahn, C; Weber, G; Märtin, R; Höfer, S; Kämpfer, T; Stöhlker, Th
2016-04-01
Single-photon spectroscopy of pulsed, high-intensity sources of hard X-rays - such as laser-generated plasmas - is often hampered by the pileup of several photons absorbed by the unsegmented, large-volume sensors routinely used for the detection of high-energy radiation. Detectors based on the Timepix chip, with a segmentation pitch of 55 μm and the possibility to be equipped with high-Z sensor chips, constitute an attractive alternative to commonly used passive solutions such as image plates. In this report, we present energy calibration and characterization measurements of such devices. The achievable energy resolution is comparable to that of scintillators for γ spectroscopy. Moreover, we also introduce a simple two-detector Compton polarimeter setup with a polarimeter quality of (98 ± 1)%. Finally, a proof-of-principle polarimetry experiment is discussed, where we studied the linear polarization of bremsstrahlung emitted by a laser-driven plasma and found an indication of the X-ray polarization direction depending on the polarization state of the incident laser pulse.
Flower-like Na2O nanotip synthesis via femtosecond laser ablation of glass
2012-01-01
The current state-of-the-art in nanotip synthesis relies on techniques that utilize elaborate precursor chemicals, catalysts, or vacuum conditions, and any combination thereof. To realize their ultimate potential, synthesized nanotips require simpler fabrication techniques that allow for control over their final nano-morphology. We present a unique, dry, catalyst-free, and ambient condition method for creating densely clustered, flower-like, sodium oxide (Na2O) nanotips with controllable tip widths. Femtosecond laser ablation of a soda-lime glass substrate at a megahertz repetition rate, with nitrogen flow, was employed to generate nanotips with base and head widths as small as 100 and 20 nm respectively, and lengths as long as 10 μm. Control of the nanotip widths was demonstrated via laser dwell time with longer dwell times producing denser clusters of thinner nanotips. Energy dispersive X-ray analysis reveals that nanotip composition is Na2O. A new formation mechanism is proposed, involving an electrostatic effect between ionized nitrogen and polar Na2O. The synthesized nanotips may potentially be used in antibacterial and hydrogen storage applications. PMID:22809176
NASA Astrophysics Data System (ADS)
Hahn, C.; Weber, G.; Märtin, R.; Höfer, S.; Kämpfer, T.; Stöhlker, Th.
2016-04-01
Single-photon spectroscopy of pulsed, high-intensity sources of hard X-rays — such as laser-generated plasmas — is often hampered by the pileup of several photons absorbed by the unsegmented, large-volume sensors routinely used for the detection of high-energy radiation. Detectors based on the Timepix chip, with a segmentation pitch of 55 μm and the possibility to be equipped with high-Z sensor chips, constitute an attractive alternative to commonly used passive solutions such as image plates. In this report, we present energy calibration and characterization measurements of such devices. The achievable energy resolution is comparable to that of scintillators for γ spectroscopy. Moreover, we also introduce a simple two-detector Compton polarimeter setup with a polarimeter quality of (98 ± 1)%. Finally, a proof-of-principle polarimetry experiment is discussed, where we studied the linear polarization of bremsstrahlung emitted by a laser-driven plasma and found an indication of the X-ray polarization direction depending on the polarization state of the incident laser pulse.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn, C., E-mail: christoph.hahn@uni-jena.de; Höfer, S.; Kämpfer, T.
Single-photon spectroscopy of pulsed, high-intensity sources of hard X-rays — such as laser-generated plasmas — is often hampered by the pileup of several photons absorbed by the unsegmented, large-volume sensors routinely used for the detection of high-energy radiation. Detectors based on the Timepix chip, with a segmentation pitch of 55 μm and the possibility to be equipped with high-Z sensor chips, constitute an attractive alternative to commonly used passive solutions such as image plates. In this report, we present energy calibration and characterization measurements of such devices. The achievable energy resolution is comparable to that of scintillators for γ spectroscopy.more » Moreover, we also introduce a simple two-detector Compton polarimeter setup with a polarimeter quality of (98 ± 1)%. Finally, a proof-of-principle polarimetry experiment is discussed, where we studied the linear polarization of bremsstrahlung emitted by a laser-driven plasma and found an indication of the X-ray polarization direction depending on the polarization state of the incident laser pulse.« less
NASA Astrophysics Data System (ADS)
Bonesini, Maurizio
2017-12-01
The FAMU (Fisica degli Atomi Muonici) experiment has the goal to measure precisely the proton Zemach radius, thus contributing to the solution of the so-called proton radius "puzzle". To this aim, it makes use of a high-intensity pulsed muon beam at RIKEN-RAL impinging on a cryogenic hydrogen target with an high-Z gas admixture and a tunable mid-IR high power laser, to measure the hyperfine (HFS) splitting of the 1S state of the muonic hydrogen. From the value of the exciting laser frequency, the energy of the HFS transition may be derived with high precision ( 10-5) and thus, via QED calculations, the Zemach radius of the proton. The experimental apparatus includes a precise fiber-SiPMT beam hodoscope and a crown of eight LaBr3 crystals and a few HPGe detectors for detection of the emitted characteristic X-rays. Preliminary runs to optimize the gas target filling and its operating conditions have been taken in 2014 and 2015-2016. The final run, with the pump laser to drive the HFS transition, is expected in 2018.
Ordered materials for organic electronics and photonics.
O'Neill, Mary; Kelly, Stephen M
2011-02-01
We present a critical review of semiconducting/light emitting, liquid crystalline materials and their use in electronic and photonic devices such as transistors, photovoltaics, OLEDs and lasers. We report that annealing from the mesophase improves the order and packing of organic semiconductors to produce state-of-the-art transistors. We discuss theoretical models which predict how charge transport and light emission is affected by the liquid crystalline phase. Organic photovoltaics and OLEDs require optimization of both charge transport and optical properties and we identify the various trade-offs involved for ordered materials. We report the crosslinking of reactive mesogens to give pixellated full-colour OLEDs and distributed bi-layer photovoltaics. We show how the molecular organization inherent to the mesophase can control the polarization of light-emitting devices and the gain in organic, thin-film lasers and can also provide distributed feedback in chiral nematic mirrorless lasers. We update progress on the surface alignment of liquid crystalline semiconductors to obtain monodomain devices without defects or devices with spatially varying properties. Finally the significance of all of these developments is assessed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Suppression of Laser Shot Noise Using Laser-Cooled OptoMechanical Systems
2010-04-22
that this device will be able to demonstrate squeezing in a fairly short time . Background: The goal of this effort was to create laser light with...The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing...REPORT Final report on Seedling project: "Suppression of Laser Shot Noise Using Laser -Cooled Opto-Mechanical Systems" 14. ABSTRACT 16. SECURITY
WDM Nanoscale Laser Diodes for Si Photonic Interconnects
2016-07-25
mounting on silicon. The nanoscale VCSELs can achieve small optical modes and present a compact laser diode that is also robust. In this work we have used...Distribution Unlimited UU UU UU UU 25-07-2016 1-Feb-2012 31-Dec-2015 Final Report: WDM Nanoscale Laser Diodes for Si Photonic Interconnects The views...P.O. Box 12211 Research Triangle Park, NC 27709-2211 VCSEL, optical interconnect, laser diode , semiconductor laser, microcavity REPORT DOCUMENTATION
Electron-Beam Vapor Deposition of Mold Inserts Final Report CRADA No. TSB-777-94
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shepp, T.; Feeley, T.
Lawrence Livermore National Laboratory and H.G.G. Laser Fare, Inc. studied the application of electron-beam vapor deposition technology to the production of mold inserts for use in an injection molding machine by Laser Fare. Laser Fare provided LLNL with the requirements of the mold inserts as well as sample inserts. LLNL replicated the mold insert(s) to Laser Fare for testing by Laser Fare.
NASA Astrophysics Data System (ADS)
Koldunov, M. F.; Manenkov, Alexander A.; Sitnikov, N. M.; Dolotov, S. M.
1994-07-01
Polymer-filled microporous glass (PFMG) composite materials have been recently proposed as a proper host for dyes to create solid-state dye lasers and laser beam control elements (Q-switchers, etc.) [1,2]. In this paper we report investigation of some laser-related properties of Polymethilmethacrylate (PMAA) - filled porous glass doped with Rhodamine 6G perchiorate (active lasing dye) and 1055 dye (passive bleachable dye): laser induced damage threshold, lasmg efficiency, bleaching efficiency, and microhardness have been measured. All these characteristics have been found to be rather high indicating that PFMG composite materials are perspective hosts for dye impregnation and fabrication highly effective solid-state dye lasers and other laser related elements (Q-switchers, mode-lockers, modeselectors, spatial filters).
NASA Technical Reports Server (NTRS)
Allario, F.; Taylor, L. V.
1986-01-01
Current plans for the Earth Observing System (EOS) include development of a lidar facility to conduct scientific experiments from a polar orbiting platforms. A recommended set of experiments were scoped, which includes techniques of atmospheric backscatter (Lidar), Differential Absorption Lidar (DIAL), altimetry, and retroranging. Preliminary assessments of the resources (power, weight, volume) required by the Eos Lidar Facility were conducted. A research program in tunable solid state laser technology was developed, which includes laser materials development, modeling and experiments on the physics of solid state laser materials, and development of solid state laser transmitters with a strong focus on Eos scientific investigations. Some of the system studies that were conducted which highlight the payoff of solid state laser technology for the Eos scientific investigations will be discussed. Additionally, a summary of some promising research results which have recently emerged from the research program will be presented.
Nguyen, D.C.; Faulkner, G.E.
1990-08-14
A blue-green laser (450--550 nm) uses a host crystal doped with Tm[sup 3+]. The Tm[sup 3+] is excited through upconversion by a red pumping laser and an IR pumping laser to a state which transitions to a relatively lower energy level through emissions in the blue-green band, e.g., 450.20 nm at 75 K. The exciting laser may be tunable dye lasers or may be solid-state semiconductor laser, e.g., GaAlAs and InGaAlP. 3 figs.
Nguyen, Dinh C.; Faulkner, George E.
1990-01-01
A blue-green laser (450-550 nm) uses a host crystal doped with Tm.sup.3+. The Tm.sup.+ is excited through upconversion by a red pumping laser and an IR pumping laser to a state which transitions to a relatively lower energy level through emissions in the blue-green band, e.g., 450.20 nm at 75 K. The exciting laser may be tunable dye lasers or may be solid-state semiconductor laser, e.g., GaAlAs and InGaAlP.
Evaluation of 3-D Laser Scanning Equipment : 2018 Final Report
DOT National Transportation Integrated Search
2018-05-01
As a follow-up to ICT Project R27-030, Evaluation of 3-D Laser Scanning, this report provides findings of an evaluation of 3-D laser scanning equipment to determine the tangible costs versus benefits and the manpower savings realized by using the equ...
Emerging solid-state laser technology by lidar/DIAL remote sensing
NASA Technical Reports Server (NTRS)
Killinger, Dennis
1992-01-01
Significant progress has been made in recent years in the development of new, solid-state laser sources. This talk will present an overview of some of the new developments in solid-state lasers, and their application toward lidar/DIAL measurements of the atmosphere. Newly emerging lasers such as Ho:YAG, Tm:YAG, OPO, and Ti:Sapphire will be covered, along with the spectroscopic parameters required for differential operational modes of atmospheric remote sensing including Doppler-Windshear lidar, Tunable laser detection of water/CO2, and broad linewidth OPO's for open path detection of pollutant hydrocarbon gases. Additional considerations of emerging laser technology for lidar/DIAL will also be covered.
NASA Technical Reports Server (NTRS)
1990-01-01
The Titan-CW Ti:sapphire (titanium-doped sapphire) tunable laser is an innovation in solid-state laser technology jointly developed by the Research and Solid State Laser Divisions of Schwartz Electro-optics, Inc. (SEO). SEO is producing the laser for the commercial market, an outgrowth of a program sponsored by Langley Research Center to develop Ti:sapphire technology for space use. SEO's Titan-CW series of Ti:sapphire tunable lasers have applicability in analytical equipment designed for qualitative analysis of carbohydrates and proteins, structural analysis of water, starch/sugar analyses, and measurements of salt in meat. Further applications are expected in semiconductor manufacture, in medicine for diagnosis and therapy, and in biochemistry.
Laser-induced selective metallization of polypropylene doped with multiwall carbon nanotubes
NASA Astrophysics Data System (ADS)
Ratautas, Karolis; Gedvilas, Mindaugas; Stankevičiene, Ina; Jagminienė, Aldona; Norkus, Eugenijus; Pira, Nello Li; Sinopoli, Stefano; Račiukaitis, Gediminas
2017-08-01
Moulded interconnect devices (MID) offer the material, weight and cost saving by integration electronic circuits directly into polymeric components used in automotive and other consumer products. Lasers are used to write circuits directly by modifying the surface of polymers followed by an electroless metal plating. A new composite material - the polypropylene doped with multiwall carbon nanotubes was developed for the laser-induced selective metallization. Mechanism of surface activation by laser irradiation was investigated in details utilising pico- and nanoseconds lasers. Deposition of copper was performed in the autocatalytic electroless plating bath. The laser-activated polymer surfaces have been studied using the Raman spectroscopy and scanning electron microscope (SEM). Microscopic images revealed that surface becomes active only after its melting by a laser. Alterations in the Raman spectra of the D and G bands indicated the clustering of carbon additives in the composite material. Optimal laser parameters for the surface activation were found by measuring a sheet resistance of the finally metal-plated samples. A spatially selective copper plating was achieved with the smallest conductor line width of 22 μm at the laser scanning speed of 3 m/s and the pulse repetition rate of 100 kHz. Finally, the technique was validated by making functional electronic circuits by this MID approach.
Color speckle in laser displays
NASA Astrophysics Data System (ADS)
Kuroda, Kazuo
2015-07-01
At the beginning of this century, lighting technology has been shifted from discharge lamps, fluorescent lamps and electric bulbs to solid-state lighting. Current solid-state lighting is based on the light emitting diodes (LED) technology, but the laser lighting technology is developing rapidly, such as, laser cinema projectors, laser TVs, laser head-up displays, laser head mounted displays, and laser headlamps for motor vehicles. One of the main issues of laser displays is the reduction of speckle noise1). For the monochromatic laser light, speckle is random interference pattern on the image plane (retina for human observer). For laser displays, RGB (red-green-blue) lasers form speckle patterns independently, which results in random distribution of chromaticity, called color speckle2).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunahori, Fumie X.; Nagarajan, Ramya; Clouthier, Dennis J., E-mail: dclaser@uky.edu
The cold boron carbide free radical (BC X {sup 4}Σ{sup −}) has been produced in a pulsed discharge free jet expansion using a precursor mixture of trimethylborane in high pressure argon. High resolution laser induced fluorescence spectra have been obtained for the B {sup 4}Σ{sup −}–X {sup 4}Σ{sup −} and E {sup 4}Π–X {sup 4}Σ{sup −} band systems of both {sup 11}BC and {sup 10}BC. An optical-optical double resonance (OODR) scheme was implemented to study the finer details of both band systems. This involved pumping a single rotational level of the B state with one laser and then recording the various allowed transitions from themore » intermediate B state to the final E state with a second laser by monitoring the subsequent E–X ultraviolet fluorescence. In this fashion, we were able to prove unambiguously that, contrary to previous studies, the spin-spin constant λ is negative in the ground state and positive in the B {sup 4}Σ{sup −} excited state. It has been shown that λ″ < 0 is in fact expected based on a semiempirical second order perturbation theory calculation of the magnitude of the spin-spin constant. The OODR spectra have also been used to validate our assignments of the complex and badly overlapped E {sup 4}Π–X {sup 4}Σ{sup −} 0-0 and 1-0 bands of {sup 11}BC. The E–X 0-0 band of {sup 10}BC was found to be severely perturbed. The ground state main electron configuration is …3σ{sup 2}4σ{sup 2}5σ{sup 1}1π{sup 2}2π{sup 0} and the derived bond lengths show that there is a 0.03 Å contraction in the B state, due to the promotion of an electron from the 4σ antibonding orbital to the 5σ bonding orbital. In contrast, the bond length elongates by 0.15 Å in the E state, a result of promoting an electron from the 5σ bonding orbital to the 2π antibonding orbitals.« less
Solid State Lasers from an Efficiency Perspective
NASA Technical Reports Server (NTRS)
Barnes, Norman P.
2007-01-01
Solid state lasers have remained a vibrant area of research because several major innovations expanded their capability. Major innovations are presented with emphasis focused on the laser efficiency. A product of efficiencies approach is developed and applied to describe laser performance. Efficiency factors are presented in closed form where practical and energy transfer effects are included where needed. In turn, efficiency factors are used to estimate threshold and slope efficiency, allowing a facile estimate of performance. Spectroscopic, thermal, and mechanical data are provided for common solid state laser materials.
Single-frequency Ince-Gaussian mode operations of laser-diode-pumped microchip solid-state lasers.
Ohtomo, Takayuki; Kamikariya, Koji; Otsuka, Kenju; Chu, Shu-Chun
2007-08-20
Various single-frequency Ince-Gaussian mode oscillations have been achieved in laser-diode-pumped microchip solid-state lasers, including LiNdP(4)O(12) (LNP) and Nd:GdVO(4), by adjusting the azimuthal symmetry of the short laser resonator. Ince-Gaussian modes formed by astigmatic pumping have been reproduced by numerical simulation.
Large laser projection displays utilizing all-solid-state RGB lasers
NASA Astrophysics Data System (ADS)
Xu, Zuyan; Bi, Yong
2005-01-01
RGB lasers projection displays have the advantages of producing large color triangle, high color saturation and high image resolution. In this report, with more than 4W white light synthesized by red (671nm), green (532nm) and blue (473nm) lasers, a RGB laser projection display system based on diode pumped solid-state lasers is developed and the performance of brilliant and vivid DVD dynamitic pictures on 60 inch screen is demonstrated.
Free-flying experiment to measure the Schawlow-Townes linewidth limit of a 300 THz laser oscillator
NASA Technical Reports Server (NTRS)
Byer, R. L.; Byvik, C. E.
1988-01-01
Recent advances in laser diode-pumped solid state laser sources permit the design and testing of laser sources with linewidths that approach the Schawlow-Townes limit of 1 Hz/mW of output power. Laser diode pumped solid state ring oscillators have been operated with CW output power levels of 25 mW at electrical efficiencies that exceed 6 percent. These oscillators are expected to operate for lifetimes that approach those of the laser diode sources which is now approaching 20,000 hours. The efficiency and lifetime of these narrow linewidth laser sources will enable space measurements of gravity waves, remote sensing applications (including local range rate and measurements), and laser sources for frequency and time standards. A free-flight experiment, 'SUNLITE', is being designed to measure the linewidth of this all-solid-state laser system.
DOT National Transportation Integrated Search
2016-10-01
Laser-induced breakdown spectroscopy (LIBS) has been studied as a fast method of detecting chlorine in concrete samples. Both single pulse (SP) and double pulse (DP) experiments have been tested. Several combinations of lasers (Neodymium-Yttrium Alum...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rambo, Patrick; Schwarz, Jens; Kimmel, Mark
We have developed high damage threshold filters to modify the spatial profile of a high energy laser beam. The filters are formed by laser ablation of a transmissive window. The ablation sites constitute scattering centers which can be filtered in a subsequent spatial filter. Finally, by creating the filters in dielectric materials, we see an increased laser-induced damage threshold from previous filters created using ‘metal on glass’ lithography.
Rambo, Patrick; Schwarz, Jens; Kimmel, Mark; ...
2016-09-27
We have developed high damage threshold filters to modify the spatial profile of a high energy laser beam. The filters are formed by laser ablation of a transmissive window. The ablation sites constitute scattering centers which can be filtered in a subsequent spatial filter. Finally, by creating the filters in dielectric materials, we see an increased laser-induced damage threshold from previous filters created using ‘metal on glass’ lithography.
Trapping cold ground state argon atoms.
Edmunds, P D; Barker, P F
2014-10-31
We trap cold, ground state argon atoms in a deep optical dipole trap produced by a buildup cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of cotrapped metastable argon atoms and determine an elastic cross section. Using a type of parametric loss spectroscopy we also determine the polarizability of the metastable 4s[3/2](2) state to be (7.3±1.1)×10(-39) C m(2)/V. Finally, Penning and associative losses of metastable atoms in the absence of light assisted collisions, are determined to be (3.3±0.8)×10(-10) cm(3) s(-1).
Tsujimoto, Yoshiaki; Tanaka, Motoki; Iwasaki, Nobuo; Ikuta, Rikizo; Miki, Shigehito; Yamashita, Taro; Terai, Hirotaka; Yamamoto, Takashi; Koashi, Masato; Imoto, Nobuyuki
2018-01-23
We experimentally demonstrate a high-fidelity entanglement swapping and a generation of the Greenberger-Horne-Zeilinger (GHZ) state using polarization-entangled photon pairs at telecommunication wavelength produced by spontaneous parametric down conversion with continuous-wave pump light. While spatially separated sources asynchronously emit photon pairs, the time-resolved photon detection guarantees the temporal indistinguishability of photons without active timing synchronizations of pump lasers and/or adjustment of optical paths. In the experiment, photons are sufficiently narrowed by fiber-based Bragg gratings with the central wavelengths of 1541 nm & 1580 nm, and detected by superconducting nanowire single-photon detectors with low timing jitters. The observed fidelities of the final states for entanglement swapping and the generated three-qubit state were 0.84 ± 0.04 and 0.70 ± 0.05, respectively.
The near-infrared spectrum of ethynyl radical
Le, Anh T.; Hall, Gregory E.; Sears, Trevor J.
2016-08-17
We used transient diode laser absorption spectroscopy to measure three strong vibronic bands in the near infrared spectrum of the C 2H, ethynyl, radical not previously observed in the gas phase. The radical was produced by ultraviolet excimer laser photolysis of either acetylene or (1,1,1)-trifluoropropyne in a slowly flowing sample of the precursor diluted in inert gas, and the spectral resolution was Doppler-limited. The character of the upper states was determined from the rotational and fine structure in the observed spectra and assigned by measurement of ground state rotational combination differences. The upper states include a 2Σ + state atmore » 6696 cm -1, a second 2Σ + state at 7088 cm -1, and a 2Π state at 7110 cm -1. By comparison with published calculations [R. Tarroni and S. Carter, J. Chem. Phys 119, 12878 (2003); Mol. Phys. 102, 2167 (2004)], the vibronic character of these levels was also assigned. Moreover, the observed states contain both X 2Σ + and A 2Π electronic characters. Several local rotational level perturbations were observed in the excited states. Kinetic measurements of the time-evolution of the ground state populations following collisional relaxation and reactive loss of the radicals formed in a hot, non-thermal, population distribution were made using some of the strong rotational lines observed. Finally, the case of C 2H may be a good place to investigate the behavior at intermediate pressures of inert colliders, where the competition between relaxation and reaction can be tuned and observed to compare with master equation models, rather than deliberately suppressed to measure thermal rate constants.« less
Applications of Laser Scattering Probes to Turbulent Diffusion Flames
1983-11-01
APPLICATIONS OF LASER SCATTERING PROBES TO TURBULENT DIFFUSION FLAMES u ^ j FINAL REPORT Contract N00014-80-C-0882 Submitted to Office of...Include Security Classification) Applications of Laser Scattering Probes to Turbulent Diffusion Flames PROJECT NO. TASK NO. WORK UNIT NO. 12...for a co-flowing jet turbulent diffusion flame, and planar laser-induced fluorescence to provide two- dimensional instantaneous images of the flame
Radiation damage and waste management options for the SOMBRERO final focus system and neutron dumps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latkowski, J F; Meier, W R; Reyes, S
1999-08-09
Previous studies of the safety and environmental aspects of the SOMBRERO inertial fusion energy (IFE) power plant design did not completely address the issues associated with the final focus system. While past work calculated neutron fluences for a grazing incidence metal mirror (GIMM) and a final focus mirror, scattering off of the final optical component was not included, and thus, fluences in the final focus mirror were significantly underestimated. In addition, past work did not consider neutron-induced gamma-rays. Finally, power plant lifetime waste volumes may have been underestimated as neutron activation of the neutron dumps and building structure were notmore » addressed. In the present work, a modified version of the SOMBRERO target building is presented where a significantly larger open solid-angle fraction (5%) is used to enhance beam smoothing of a diode-pumped solid-state laser (DPSSL). The GIMMs are replaced with transmissive fused silica wedges and have been included in three -dimensional neutron and photon transport calculations. This work shows that a power plant with a large open solid-angle fraction, needed for beam smoothing with a DPSSL, is acceptable from tritium breeding, and neutron activation points-of-view.« less
Akcay, Merve; Arslan, Hakan; Mese, Merve; Durmus, Nazlı; Capar, Ismail Davut
2017-09-01
The aim of this in vitro study was to evaluate the efficacy of different irrigation techniques including laser-activated irrigation using an erbium:yttrium-aluminum-garnet (Er:YAG) laser with a novel tip design (photon-induced photoacoustic streaming (PIPS)), Er:YAG laser with Preciso tip, sonic activation, and passive ultrasonic activation on the final irrigation solution penetration into dentinal tubules by using a laser scanning confocal microscope. In this study, 65 extracted single-rooted human mandibular premolars were instrumented up to size 40 and randomly divided into 5 groups (n = 13) based on the activation technique of the final irrigation solution as follows: conventional irrigation (control group), sonic activation, passive ultrasonic activation, Er:YAG-PIPS tip activation, and Er:YAG-Preciso tip activation. In each group, 5 mL of 5% NaOCl labeled with fluorescent dye was used during the activation as the final irrigation solution. Specimens were sectioned at 2.5 and 8 mm from the apex and then examined under a confocal microscope to calculate the dentinal tubule penetration area. Data were analyzed using two-way analysis of variance (ANOVA) and Tukey's post hoc tests (P = 0.05). Both Er:YAG laser (Preciso/PIPS) activations exhibited a significantly higher penetration area than the other groups (P < 0.05). Additionally, passive ultrasonic activation had significantly higher penetration than the sonic activation group and the control group. Statistically significant differences were also found between each root canal third (coronal > middle > apical) (P < 0.001). The results from the present study support the use of Er:YAG laser activation (Preciso/PIPS) to improve the effectiveness of the final irrigation procedure by increasing the irrigant penetration area into the dentinal tubules. The activation of the irrigant and the creation of the streaming with the Er:YAG laser have a positive effect on the irrigant penetration.
Monolithic solid-state lasers for spaceflight
NASA Astrophysics Data System (ADS)
Krainak, Michael A.; Yu, Anthony W.; Stephen, Mark A.; Merritt, Scott; Glebov, Leonid; Glebova, Larissa; Ryasnyanskiy, Aleksandr; Smirnov, Vadim; Mu, Xiaodong; Meissner, Stephanie; Meissner, Helmuth
2015-02-01
A new solution for building high power, solid state lasers for space flight is to fabricate the whole laser resonator in a single (monolithic) structure or alternatively to build a contiguous diffusion bonded or welded structure. Monolithic lasers provide numerous advantages for space flight solid-state lasers by minimizing misalignment concerns. The closed cavity is immune to contamination. The number of components is minimized thus increasing reliability. Bragg mirrors serve as the high reflector and output coupler thus minimizing optical coatings and coating damage. The Bragg mirrors also provide spectral and spatial mode selection for high fidelity. The monolithic structure allows short cavities resulting in short pulses. Passive saturable absorber Q-switches provide a soft aperture for spatial mode filtering and improved pointing stability. We will review our recent commercial and in-house developments toward fully monolithic solid-state lasers.
NASA Technical Reports Server (NTRS)
Zimmermann, M.
1980-01-01
A technique is presented for visualizing and quantitatively measuring velocity, temperature, and pressure by shining a single frequency laser beam into a gaseous flow which is seeded with an atomic species. The laser is tuned through the absorption frequencies of the seeded species and the absorption profile is detected by observing fluorescence as the atoms relax back to the ground state. The flow velocity is determined by observing the Doppler shift in the absorption frequency. Spectroscopic absorption line broadening mechanisms furnish information regarding the static temperature and pressure of the moving gas. Results of experiments conducted in the free stream and in the bow shock of a conical model mounted in a hypersonic wind tunnel indicate that the experimental uncertainties in the measurement of average values for the velocity, temperature and pressure of the flow are 0.1, 5 and 10 percent respectively.
Load management strategy for Particle-In-Cell simulations in high energy particle acceleration
NASA Astrophysics Data System (ADS)
Beck, A.; Frederiksen, J. T.; Dérouillat, J.
2016-09-01
In the wake of the intense effort made for the experimental CILEX project, numerical simulation campaigns have been carried out in order to finalize the design of the facility and to identify optimal laser and plasma parameters. These simulations bring, of course, important insight into the fundamental physics at play. As a by-product, they also characterize the quality of our theoretical and numerical models. In this paper, we compare the results given by different codes and point out algorithmic limitations both in terms of physical accuracy and computational performances. These limitations are illustrated in the context of electron laser wakefield acceleration (LWFA). The main limitation we identify in state-of-the-art Particle-In-Cell (PIC) codes is computational load imbalance. We propose an innovative algorithm to deal with this specific issue as well as milestones towards a modern, accurate high-performance PIC code for high energy particle acceleration.
L2F and LDV velocimetry measurement and analysis of the 3-D flow field in a centrifugal compressor
NASA Technical Reports Server (NTRS)
Fagan, John R., Jr.; Fleeter, Sanford
1989-01-01
The flow field in the Purdue Research Centrifugal Compressor is studied using a laser two-focus (L2F) velocimeter. L2F data are obtained which quantify: (1) the compressor inlet flow field; (2) the steady-state velocity field in the impeller blade passages; and (3) the flow field in the radial diffuser. The L2F data are compared with both laser Doppler velocimetry (LDV) data and predictions from three-dimensional inviscid and viscous flow models. In addition, a model is developed to calculate the effect on the measurement volume geometry of refraction by curved windows. Finally, the advantages and disadvantages of using the L2F for turbomachinery measurements is discussed in terms of measurement accuracy, ease of use, including sample time per correlated event and the ability to make measurements in regions of high noise due to stray radiation from wall reflections.
Brygoo, Stephanie; Millot, Marius; Loubeyre, Paul; ...
2015-11-16
Megabar (1 Mbar = 100 GPa) laser shocks on precompressed samples allow reaching unprecedented high densities and moderately high ~10 3–10 4 K temperatures. We describe in this paper a complete analysis framework for the velocimetry (VISAR) and pyrometry (SOP) data produced in these experiments. Since the precompression increases the initial density of both the sample of interest and the quartz reference for pressure-density, reflectivity, and temperature measurements, we describe analytical corrections based on available experimental data on warm dense silica and density-functional-theory based molecular dynamics computer simulations. Finally, using our improved analysis framework, we report a re-analysis of previouslymore » published data on warm dense hydrogen and helium, compare the newly inferred pressure, density, and temperature data with most advanced equation of state models and provide updated reflectivity values.« less
Emission beyond 4 μm and mid-infrared lasing in a dysprosium-doped indium fluoride (InF3) fiber.
Majewski, Matthew R; Woodward, Robert I; Carreé, Jean-Yves; Poulain, Samuel; Poulain, Marcel; Jackson, Stuart D
2018-04-15
Optical emission from rare-earth-doped fluoride fibers has thus far been limited to less than 4 μm. We extend emission beyond this limit by employing an indium fluoride (InF 3 ) glass fiber as the host, which exhibits an increased infrared transparency over commonly used zirconium fluoride (ZBLAN). Near-infrared pumping of a dysprosium-doped InF 3 fiber results in broad emission centered around 4.3 μm, representing the longest emission yet achieved from a fluoride fiber. The first laser emission in an InF 3 fiber is also demonstrated from the 3 μm dysprosium transition. Finally, a frequency domain excited state lifetime measurement comparison between fluoride hosts suggests that multiphonon effects are significantly reduced in indium fluoride fiber, paving the way to more efficient, longer wavelength lasers compared to ZBLAN fibers.
Littrow-type external-cavity blue laser for holographic data storage.
Tanaka, Tomiji; Takahashi, Kazuo; Sako, Kageyasu; Kasegawa, Ryo; Toishi, Mitsuru; Watanabe, Kenjiro; Samuels, David; Takeya, Motonobu
2007-06-10
An external-cavity laser with a wavelength of 405 nm and an output of 80 mW has been developed for holographic data storage. The laser has three states: the first is a perfect single mode, whose coherent length is 14 m; the second is a three-mode state with a coherent length of 3 mm; and the third is a six-mode state with a coherent length of 0.3 mm. The first and second states are available for angular-multiplexing recording; all states are available for coaxial multiplexing recording. Due to its short wavelength, the recording density is higher than that of a 532 nm laser.
Experiments with trapped ions and ultrafast laser pulses
NASA Astrophysics Data System (ADS)
Johnson, Kale Gifford
Since the dawn of quantum information science, laser-cooled trapped atomic ions have been one of the most compelling systems for the physical realization of a quantum computer. By applying qubit state dependent forces to the ions, their collective motional modes can be used as a bus to realize entangling quantum gates. Ultrafast state-dependent kicks [1] can provide a universal set of quantum logic operations, in conjunction with ultrafast single qubit rotations [2], which uses only ultrafast laser pulses. This may present a clearer route to scaling a trapped ion processor [3]. In addition to the role that spin-dependent kicks (SDKs) play in quantum computation, their utility in fundamental quantum mechanics research is also apparent. In this thesis, we present a set of experiments which demonstrate some of the principle properties of SDKs including ion motion independence (we demonstrate single ion thermometry from the ground state to near room temperature and the largest Schrodinger cat state ever created in an oscillator), high speed operations (compared with conventional atom-laser interactions), and multi-qubit entanglement operations with speed that is not fundamentally limited by the trap oscillation frequency. We also present a method to provide higher stability in the radial mode ion oscillation frequencies of a linear radiofrequency (rf) Paul trap-a crucial factor when performing operations on the rf-sensitive modes. Finally, we present the highest atomic position sensitivity measurement of an isolated atom to date of 0.5 nm Hz. (-1/2) with a minimum uncertaintyof 1.7 nm using a 0.6 numerical aperature (NA) lens system, along with a method to correct aberrations and a direct position measurement of ion micromotion (the inherent oscillations of an ion trapped in an oscillating rf field). This development could be used to directly image atom motion in the quantum regime, along with sensing forces at the yoctonewton [10. (-24) N)] scale forgravity sensing, and 3D imaging of atoms from static to higher frequency motion. These ultrafast atomic qubit manipulation tools demonstrate inherent advantages over conventional techniques, offering a fundamentally distinct regime of control and speed not previously achievable.
Murina, Filippo; Karram, Mickey; Salvatore, Stefano; Felice, Raffaele
2016-12-01
Chronic vulvar pain and burning remains one of the most perplexing problems faced by practicing gynecologists. To evaluate the effectiveness and safety of the application of micro-ablative fractional CO 2 laser to the vulvar vestibule in the management of patients with vulvar pain from vestibulodynia or genitourinary syndrome of menopause. Patients (N = 70) underwent fractional micro-ablative CO 2 laser treatment for vestibular pain plus vestibulodynia (n = 37) or genitourinary syndrome of menopause (n = 33). Inclusion criteria were the existence of vestibular atrophic changes and the absence of moderate or severe pelvic floor hypertonic dysfunction. A visual analog scale of pain and the Marinoff score of dyspareunia were chosen to evaluate improvement. Grading of vestibular health also was quantified using a four-point scoring system (0 = no atrophy, 3 = severe atrophy). Data were collected at baseline, at weeks 4, 8, and 12, and 4 months after the final treatment. For visual analog scale and dyspareunia scoring and for the overall vestibular health index scoring, statistically significant improvement was noted after three sessions of vestibular fractional CO 2 laser treatment. Improvement gradually increased throughout the study period and was maintained through the 4-month follow-up visit. There was no statistically significant difference in outcomes between the two study groups. No adverse events from fractional CO 2 laser treatment were noted. Overall, 67.6% of patients stated significant improvement from the laser procedure. This preliminary case series showed encouraging results using fractional CO 2 laser treatment of the vestibule in women with vestibulodynia and genitourinary syndrome of menopause. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Diode-pumped Tunable 3 Micron Laser Sources
2000-02-21
DoD Ballistic Missile Defense Organization U.S. Army Space and Missile Defense Command SBIR Phase I Final Report AC Materials, Inc. 2721 Forsyth...pumped tunable 3 micron laser sources 6. AUTHORISI Arlete Cassanho, Hans Jenssen 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AC Materials, Inc...impurities in the final crystal, starting materials for the crystal growth were prepared at AC Materials from optical grade barium fluoride and
The HALNA project: Diode-pumped solid-state laser for inertial fusion energy
NASA Astrophysics Data System (ADS)
Kawashima, T.; Ikegawa, T.; Kawanaka, J.; Miyanaga, N.; Nakatsuka, M.; Izawa, Y.; Matsumoto, O.; Yasuhara, R.; Kurita, T.; Sekine, T.; Miyamoto, M.; Kan, H.; Furukawa, H.; Motokoshi, S.; Kanabe, T.
2006-06-01
High-enery, rep.-rated, diode-pumped solid-state laser (DPSSL) is one of leading candidates for inertial fusion energy driver (IFE) and related laser-driven high-field applications. The project for the development of IFE laser driver in Japan, HALNA (High Average-power Laser for Nuclear Fusion Application) at ILE, Osaka University, aims to demonstrate 100-J pulse energy at 10 Hz rep. rate with 5 times diffraction limited beam quality. In this article, the advanced solid-state laser technologies for one half scale of HALNA (50 J, 10 Hz) are presented including thermally managed slab amplifier of Nd:phosphate glass and zig-zag optical geometry, and uniform, large-area diode-pumping.
Zhang, Hanwei; Zhou, Pu; Wang, Xiong; Du, Xueyuan; Xiao, Hu; Xu, Xiaojun
2015-06-29
Two kinds of hundred-watt-level random distributed feedback Raman fiber have been demonstrated. The optical efficiency can reach to as high as 84.8%. The reported power and efficiency of the random laser is the highest one as we know. We have also demonstrated that the developed random laser can be further used to pump a Ho-doped fiber laser for mid-infrared laser generation. Finally, 23 W 2050 nm laser is achieved. The presented laser can obtain high power output efficiently and conveniently and opens a new direction for high power laser sources at designed wavelength.
In space performance of the lunar orbiter laser altimeter (LOLA) laser transmitter
NASA Astrophysics Data System (ADS)
Yu, Anthony W.; Shaw, George B.; Novo-Gradac, Ann Marie; Li, Steven X.; Cavanaugh, John
2011-11-01
In this paper we present the final configuration of the space flight laser transmitter as delivered to the Lunar Orbiter Laser Altimeter (LOLA) instrument along with some in-space operation performance data. The LOLA instrument is designed to map the lunar surface and provide unprecedented data products in anticipation of future manned flight missions. The laser transmitter has been operating on orbit at the Moon continuously since July 2009 and accumulated over 1.8 billion laser shots in space. The LOLA laser transmitter design has heritage dated back to the MOLA laser transmitter launched more than 10 years ago and incorporates lessons learned from previous laser altimeter missions at NASA Goddard Space Flight Center.
Optimal parameters for laser tissue soldering
NASA Astrophysics Data System (ADS)
McNally-Heintzelman, Karen M.; Sorg, Brian S.; Chan, Eric K.; Welch, Ashley J.; Dawes, Judith M.; Owen, Earl R.
1998-07-01
Variations in laser irradiance, exposure time, solder composition, chromophore type and concentration have led to inconsistencies in published results of laser-solder repair of tissue. To determine optimal parameters for laser tissue soldering, an in vitro study was performed using an 808-nm diode laser in conjunction with an indocyanine green (ICG)- doped albumin protein solder to weld bovine aorta specimens. Liquid and solid protein solders prepared from 25% and 60% bovine serum albumin (BSA), respectively, were compared. The effects of laser irradiance and exposure time on tensile strength of the weld and temperature rise as well as the effect of hydration on bond stability were investigated. Optimum irradiance and exposure times were identified for each solder type. Increasing the BSA concentration from 25% to 60% greatly increased the tensile strength of the weld. A reduction in dye concentration from 2.5 mg/ml to 0.25 mg/ml was also found to result in an increase in tensile strength. The strongest welds were produced with an irradiance of 6.4 W/cm2 for 50 s using a solid protein solder composed of 60% BSA and 0.25 mg/ml ICG. Steady-state solder surface temperatures were observed to reach 85 plus or minus 5 degrees Celsius with a temperature gradient across the solid protein solder strips of between 15 and 20 degrees Celsius. Finally, tensile strength was observed to decrease significantly (20 to 25%) after the first hour of hydration in phosphate-buffered saline. No appreciable change was observed in the strength of the tissue bonds with further hydration.
Mode transition of plasma expansion for laser induced breakdown in Air
NASA Astrophysics Data System (ADS)
Shimamura, Kohei; Matsui, Kohei; Ofosu, Joseph A.; Yokota, Ippei; Komurasaki, Kimiya
2017-03-01
High-speed shadowgraph visualization experiments conducted using a 10 J pulse transversely excited atmospheric (TEA) CO2 laser in ambient air provided a state transition from overdriven to Chapman-Jouguet in the laser-supported detonation regime. At the state transition, the propagation velocity of the laser-supported detonation wave and the threshold laser intensity were 10 km/s and 1011 W/m2, respectively. State transition information, such as the photoionization caused by plasma UV radiation, of the avalanche ionization ahead of the ionization wave front can be elucidated from examination of the source seed electrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anastasi, A.; Basti, A.; Bedeschi, F.
We report the test of many of the key elements of the laser-based calibration system for muon g - 2 experiment E989 at Fermilab. The test was performed at the Laboratori Nazionali di Frascati's Beam Test Facility using a 450 MeV electron beam impinging on a small subset of the final g - 2 lead-fluoride crystal calorimeter system. The calibration system was configured as planned for the E989 experiment and uses the same type of laser and most of the final optical elements. We show results regarding the calorimeter's response calibration, the maximum equivalent electron energy which can be providedmore » by the laser and the stability of the calibration system components.« less
Grating enhanced solid-state laser amplifiers
Erlandson, Alvin C.; Britten, Jerald A.
2010-11-09
A novel method and apparatus for suppressing ASE and parasitic oscillation modes in a high average power laser is introduced. Such an invention, as disclosed herein, uses diffraction gratings to increase gain, stored energy density, and pumping efficiency of solid-state laser gain media, such as, but not limited to rods, disks and slabs. By coupling predetermined gratings to solid-state gain media, such as crystal or ceramic laser gain media, ASE and parasitic oscillation modes can be effectively suppressed.
Taatjes, Craig A.; Gijsbertsen, Arjan; de Lange, Marc J. L.; ...
2007-06-02
In this paper, relative integrated cross sections are measured for spin-orbit-conserving, rotationally inelastic scattering of NO ( 2Π 1/2), hexapole-selected in the upper Λ-doublet level of the ground rotational state (j = 0.5), in collisions with D 2 at a nominal energy of 551 cm -1. The final state of the NO molecule is detected by laser-induced fluorescence (LIF). The state-selected NO molecule is oriented with either the N end or the O end toward the incoming D 2 molecule by application of a static electric field E in the scattering region. This field is directed parallel or antiparallel tomore » the relative velocity vector v. Comparison of signals taken for the different applied field directions gives the experimental steric asymmetry SA, defined by SA = (σ v↑↓E - σ v↑↑E)/(σ v↑↓E + σ v↑↑E), which is equal to within a factor of -1 to the molecular steric effect, S i→f ≡ (σ D2→NO - σ D2→ON)/(σ D2→NO + σ D2→ON). The dependence of the integral inelastic cross section on the incoming Λ-doublet component is also measured as a function of the final rotational (j final) and Λ-doublet (ε final) state. The measured steric asymmetries are similar to those previously observed for NO-He scattering. Spin-orbit manifold-conserving collisions exhibit a larger propensity for parity conservation than their NO-He counterparts. The results are interpreted in the context of the recently developed quasi-quantum treatment (QQT) of rotationally inelastic scattering. The QQT predictions can be inverted to obtain a fitted hard-shell potential that reproduces the experimental steric asymmetry; this fitted potential gives an empirical estimate of the anisotropy of the repulsive interaction between NO and D 2. Finally, QQT computation of the differential cross section using this simple model potential shows reasonable agreement with the measured differential cross sections.« less
On pulse duration of self-terminating lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bokhan, P A
2011-02-28
The problem of the maximum pulse duration {tau}{sub max} of self-terminating lasers is considered. It is shown that the duration depends on the transition probability in the laser channel, on the decay rate of the resonant state in all other channels, and on the excitation rate of the metastable state. As a result, {tau}{sub max} is found to be significantly shorter than previously estimated. The criteria for converting the 'self-terminating' lasing to quasi-cw lasing are determined. It is shown that in the case of nonselective depopulation of the metastable state, for example in capillary lasers or in a fast flowmore » of the active medium gas, it is impossible to obtain continuous lasing. Some concrete examples are considered. It is established that in several studies of barium vapour lasers ({lambda} = 1.5 {mu}m) and nitrogen lasers ({lambda} = 337 nm), collisional lasing is obtained by increasing the relaxation rate of the metastable state in collisions with working particles (barium atoms and nitrogen molecules). (lasers)« less
Electron-hydrogen collisions in a laser field. (Reannouncement with new availability information)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, P.H.; Flannery, M.R.
1991-12-31
The Floquet treatment has already been successfully employed (Chu, Potvliege and Shakeshaft) in calculations of laser-induced multiphoton ionizations, where it provides dressed states for an atom in a laser field. The (perturbative) dressing of target states can have important consequences in laser-assisted scattering was illustrated by Byron and Joachain. These dressed states are useful, not only for laser-induced phenomena, but also as a collisional basis set for laser-assisted collisions. In this role they are in fact very appealing, since the Floquet treatment naturally lends itself to a time-independent analysis, and hence are compatible with present field-free scattering theories. Despite themore » apparent applicability of this approach, work along these lines has only just recently appeared (Sharma and Mohan, Smith and Flannery, Burke et al). Byron and Joachain have illustrated that perturbative dressing of the target states can have important consequences in laser-assisted scattering. Floquet dressing however provides a more complete description (Smith and Flannery).« less
Comparing the effectiveness of laser vs. conventional endoforehead lifting.
Chang, Cheng-Jen; Yu, De-Yi; Chang, Shu-Ying; Hsiao, Yen-Chang
2018-04-01
The objective of this study was to compare the efficacy and safety of laser versus conventional endoforehead lifting. Over a period of 12 years (January 2000-January 2012), a total of 110 patients with hyperactive muscles over the frontal region have been collected for a retrospective study. The SurgiLase 150XJ CO 2 laser system, in conjunction with the flexible FIBERLASE, was used. The endoscope was 4 mm in diameter with an angle of 30°. The primary efficacy measurement was the assessment of the final outcome for using laser vs. conventional methods. Both groups were observed at three weeks, six weeks and six months after surgery. The most common complication in early convalescence (three weeks) was swelling. This was followed by local paraesthesia, ecchymosis, localized hematomas and scar with alopecia. All these problems disappeared completely after the 6-month study period. Based on a chi-square analysis, there were clinically and statistically significant differences favouring the laser endoforehead surgery in the operative time, early and late complications. All patients achieved significant improvement after both laser and conventional endoforehead surgery in the final outcome. However, the early and late complications indicated a greater difference in the laser group.
Rapid Prototyping: State of the Art
2003-10-23
Rapid Prototyping SCS Solid Creation System SLM Selective Laser Melting SLP Solid Laser diode Plotter SLS Selective Laser Sintering SOAR State of the...121,000, respectively. SLP stands for Sold Laser Diode Plotter. The machines are relatively slow and parts are small, so, to date, the products have been...Gigerenzer, H., “Directed Laser Welding of Metal Matrix Composite Structures for Space Based Applications,“ Triton Systems Inc., Chelmsford, MA., 1
Sudo, S; Ohtomo, T; Otsuka, K
2015-08-01
We achieved a highly sensitive method for observing the motion of colloidal particles in a flowing suspension using a self-mixing laser Doppler velocimeter (LDV) comprising a laser-diode-pumped thin-slice solid-state laser and a simple photodiode. We describe the measurement method and the optical system of the self-mixing LDV for real-time measurements of the motion of colloidal particles. For a condensed solution, when the light scattered from the particles is reinjected into the solid-state laser, the laser output is modulated in intensity by the reinjected laser light. Thus, we can capture the motion of colloidal particles from the spectrum of the modulated laser output. For a diluted solution, when the relaxation oscillation frequency coincides with the Doppler shift frequency, fd, which is related to the average velocity of the particles, the spectrum reflecting the motion of the colloidal particles is enhanced by the resonant excitation of relaxation oscillations. Then, the spectral peak reflecting the motion of colloidal particles appears at 2×fd. The spectrum reflecting the motion of colloidal particles in a flowing diluted solution can be measured with high sensitivity, owing to the enhancement of the spectrum by the thin-slice solid-state laser.
High power diode lasers for solid-state laser pumps
NASA Technical Reports Server (NTRS)
Linden, Kurt J.; Mcdonnell, Patrick N.
1994-01-01
The development and commercial application of high power diode laser arrays for use as solid-state laser pumps is described. Such solid-state laser pumps are significantly more efficient and reliable than conventional flash-lamps. This paper describes the design and fabrication of diode lasers emitting in the 780 - 900 nm spectral region, and discusses their performance and reliability. Typical measured performance parameters include electrical-to-optical power conversion efficiencies of 50 percent, narrow-band spectral emission of 2 to 3 nm FWHM, pulsed output power levels of 50 watts/bar with reliability values of over 2 billion shots to date (tests to be terminated after 10 billion shots), and reliable operation to pulse lengths of 1 ms. Pulse lengths up to 5 ms have been demonstrated at derated power levels, and CW performance at various power levels has been evaluated in a 'bar-in-groove' laser package. These high-power 1-cm stacked-bar arrays are now being manufactured for OEM use. Individual diode laser bars, ready for package-mounting by OEM customers, are being sold as commodity items. Commercial and medical applications of these laser arrays include solid-state laser pumping for metal-working, cutting, industrial measurement and control, ranging, wind-shear/atmospheric turbulence detection, X-ray generation, materials surface cleaning, microsurgery, ophthalmology, dermatology, and dental procedures.
NASA Technical Reports Server (NTRS)
Stupl, Jan Michael; Faber, Nicolas; Foster, Cyrus; Yang Yang, Fan; Levit, Creon
2013-01-01
The potential to perturb debris orbits using photon pressure from ground-based lasers has been confirmed by independent research teams. Two useful applications of this scheme are protecting space assets from impacts with debris and stabilizing the orbital debris environment, both relying on collision avoidance rather than de-orbiting debris. This paper presents the results of a new assessment method to analyze the efficiency of the concept for collision avoidance. Earlier research concluded that one ground based system consisting of a 10 kW class laser, directed by a 1.5 m telescope with adaptive optics, can prevent a significant fraction of debris-debris collisions in low Earth orbit. That research used in-track displacement to measure efficiency and restricted itself to an analysis of a limited number of objects. As orbit prediction error is dependent on debris object properties, a static displacement threshold should be complemented with another measure to assess the efficiency of the scheme. In this paper we present the results of an approach using probability of collision. Using a least-squares fitting method, we improve the quality of the original TLE catalogue in terms of state and co-state accuracy. We then calculate collision probabilities for all the objects in the catalogue. The conjunctions with the highest risk of collision are then engaged by a simulated network of laser ground stations. After those engagements, the perturbed orbits are used to re-assess the collision probability in a 20 minute window around the original conjunction. We then use different criteria to evaluate the utility of the laser-based collision avoidance scheme and assess the number of base-line ground stations needed to mitigate a significant number of high probability conjunctions. Finally, we also give an account how a laser ground station can be used for both orbit deflection and debris tracking.
Early, James W.
1990-01-01
A light-driven phase shifter is provided for modulating a transmission light beam. A gaseous medium such as argon is provided with electron energy states excited to populate a metastable state. A tunable dye laser is selected with a wavelength effective to deplete the metastable electron state and may be intensity modulated. The dye laser is directed through the gaseous medium to define a first optical path having an index of refraction determined by the gaseous medium having a depleted metastable electron state. A transmission laser beam is also directed through the gaseous medium to define a second optical path at least partially coincident with the first optical path. The intensity of the dye laser beam may then be varied to phase modulate the transmission laser beam.
Integrated semiconductor twin-microdisk laser under mutually optical injection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Ling-Xiu; Liu, Bo-Wen; Lv, Xiao-Meng
2015-05-11
We experimentally study the characteristics of an integrated semiconductor twin-microdisk laser under mutually optical injection through a connected optical waveguide. Based on the lasing spectra, four-wave mixing, injection locking, and period-two oscillation states are observed due to the mutually optical injection by adjusting the injected currents applied to the two microdisks. The enhanced 3 dB bandwidth is realized for the microdisk laser at the injection locking state, and photonic microwave is obtained from the electrode of the microdisk laser under the period-two oscillation state. The plentifully dynamical states similar as semiconductor lasers subject to external optical injection are realized due tomore » strong optical interaction between the two microdisks.« less
Innovative Facet Passivation for High-Brightness Laser Diodes
2016-02-05
and anti-reflection (AR) coatings are deposited after cleaving. Edge- emitting laser diodes emit very high optical powers from small emission areas, as...SECURITY CLASSIFICATION OF: The objective of this effort is to increase the power of low fill-factor (20%) laser diode (LD) bars from the present...2012 16-Nov-2015 Approved for Public Release; Distribution Unlimited Final Report: Innovative Facet Passivation for High-Brightness Laser Diodes The
High-power laser diodes at various wavelengths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emanuel, M.A.
High power laser diodes at various wavelengths are described. First, performance and reliability of an optimized large transverse mode diode structure at 808 and 941 nm are presented. Next, data are presented on a 9.5 kW peak power array at 900 nm having a narrow emission bandwidth suitable for pumping Yb:S-FAP laser materials. Finally, results on a fiber-coupled laser diode array at {approx}730 nm are presented.
Theoretical studies of solar-pumped lasers
NASA Technical Reports Server (NTRS)
Harries, W. L.
1982-01-01
Solar-pumped lasers were investigated by comparing experimental results from pulse experiments with steady state calculations. The time varying behavior of an IBr laser is studied. The analysis is only approximate, but indicates that conditions occurring in a pulsed experiment are quite different from those at steady state. The possibility of steady-state lasing in an IBr laser is determined. The effects of high temperatures on the quenching and recombination rates are examined. Although uncertainties in the values of the rate coefficients make it difficult to draw firm conclusions, it seems steady state running may be possible at high temperatures.
Tunable femtosecond lasers with low pump thresholds
NASA Astrophysics Data System (ADS)
Oppo, Karen
The work in this thesis is concerned with the development of tunable, femtosecond laser systems, exhibiting low pump threshold powers. The main motive for this work was the development of a low threshold, self-modelocked Ti:Al2O3 laser in order to replace the conventional large-frame argon-ion pump laser with a more compact and efficient all-solid-state alternative. Results are also presented for an all-solid-state, self-modelocked Cr:LiSAF laser, however most of this work is concerned with self-modelocked Ti:Al2O3 laser systems. In chapter 2, the operation of a regeneratively-initiated, and a hard-aperture self- modelocked Ti:Al2O3 laser, pumped by an argon-ion laser, is discussed. Continuous- wave oscillation thresholds as low as 160mW have been demonstrated, along with self-modelocked threshold powers as low as 500mW. The measurement and suppression of phase noise on modelocked lasers is discussed in chapter 3. This is followed by a comparison of the phase noise characteristics of the regeneratively-initiated, and hard-aperture self-modelocked Ti:Al2O3 lasers. The use of a synchronously-operating, high resolution electron-optical streak camera in the evaluation of timing jitter is also presented. In chapter 4, the construction and self-modelocked operation of an all-solid-state Ti:Al2O3 laser is described. The all-solid-state alternative to the conventional argon-ion pump laser was a continuous-wave, intracavity-frequency doubled, diode-laser pumped Nd:YLF ring laser. At a total diode-laser pump power of 10W, this minilaser was capable of producing a single frequency output of 1W, at 523.5nm in a TEM00 beam. The remainder of this thesis looks at the operation of a self-modelocked Ti:Al2O3 laser generating ultrashort pulses at wavelengths as long as 1053nm. The motive for this work was the development of an all-solid-state, self- modelocked Ti:Al2O3 laser operating at 1053nm, for use as a master oscillator in a Nd:glass power chain.
Cantrell, Cyrus D.; Carbone, Robert J.; Cooper, Ralph S.
1977-01-01
An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.
Cantrell, Cyrus D.; Carbone, Robert J.; Cooper, Ralph
1982-01-01
An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.
In-Flight Performance of the Mercury Laser Altimeter Laser Transmitter
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Sun, Xiaoli; Li, Steven X.; Cavanaugh, John F.; Neumann, Gregory A.
2014-01-01
The Mercury Laser Altimeter (MLA) is one of the payload instruments on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, which was launched on August 3, 2004. MLA maps Mercury's shape and topographic landforms and other surface characteristics using a diode-pumped solid-state laser transmitter and a silicon avalanche photodiode receiver that measures the round-trip time of individual laser pulses. The laser transmitter has been operating nominally during planetary flyby measurements and in orbit about Mercury since March 2011. In this paper, we review the MLA laser transmitter telemetry data and evaluate the performance of solid-state lasers under extended operation in a space environment.
High energy bursts from a solid state laser operated in the heat capacity limited regime
Albrecht, G.; George, E.V.; Krupke, W.F.; Sooy, W.; Sutton, S.B.
1996-06-11
High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes. 5 figs.
High energy bursts from a solid state laser operated in the heat capacity limited regime
Albrecht, Georg; George, E. Victor; Krupke, William F.; Sooy, Walter; Sutton, Steven B.
1996-01-01
High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes.
Stabilized 1762 nm Laser for Barium Ion Qubit Readout via Adiabatic Passage
NASA Astrophysics Data System (ADS)
Salacka, Joanna
2008-05-01
Trapped ions are one of the most promising candidates for the implementation of quantum computation. We are trapping single ions of Ba^137 to serve as our qubit, because the hyperfine structure of its ground state and its various visible-wavelength transitions make it favorable for quantum computation. The two hyperfine ground levels will serve as our |1> and |0> qubit states. The readout of the qubit will be accomplished by first selectively shelving the ion directly to the metastable 5D5/2 state using a 1762 nm narrow band fiber laser. Next, the cooling and repumping lasers are turned on and the fluorescence of the ion is measured. Since the 5D5/2 state is decoupled from the laser cooling transitions, the ion will remain dark when shelved. Thus if fluorescence is seen we know that the qubit was in the |0> state, and if no fluorescence is seen it was in the |1> state. The laser is actively stabilized to a temperature-controlled, high-finesse 1.76 um Zerodur optical cavity. The shelving to the 5D5/2 state is most efficiently achieved with adiabatic passage, which requires a smooth scan of the laser frequency across the transition resonance. To accomplish this, the laser frequency is modulated by an AOM driven by a smooth frequency sweep of adjustable amplitude and duration.
Alsaad, Salman M S; Ross, E Victor; Mishra, Vineet; Miller, Lee
2014-12-01
To determine the safety and efficacy of a 50 ns Q switched Nd YAG laser vs. a 5 ns Q switched Nd YAG laser for clearance of melasma. To compare subject satisfaction, efficacy, and comfort level between the two lasers. This is a prospective, randomized split face clinical study. The study was approved by the Scripps IRB. Ten healthy female subjects with moderate to severe melasma were enrolled. Each subject had three laser treatments one month apart. Patients were followed up approximately 1 month, 3 months, and 6 months after the final laser treatment. A treatment session consisted of a microdermabrasion, 1064 nm QS laser, and topicals. Subjects were asked to rate treatment pain based on a numerical scale range 0-10 (0 = no pain and 10 = worst pain). A melasma area and severity index (MASI) grading system was applied. Also, melanin measurements were acquired by a reflectance spectrophotometer. Side effects were documented during the study including post treatment erythema. Eight patients completed the study. Subjects showed improvement on both sides of the face. From baseline to 1 month post the final laser treatment, the average MASI scores showed a 16% reduction for the 50 ns QS 1064 nm laser vs. a 27% reduction for the 5 ns QS 1064 nm laser (both significant versus baseline pigment, P < 0.05). This difference in MASI scores between the two lasers was not statistically significant (P = 0.87930). Laser treatments displayed mild erythema that resolved after one day. The melanin meter measurements showed a reduction in pigment readings on both sides. Three months after the final treatment there was some relapse in the melasma, as the mean pigment reduction fell to 12% for the 50 ns laser and 11% for the 5 ns laser. By 3 months pigment reduction was not statistically significant for either laser, and no significant differences in pigment reduction were noted between the two pulse durations. There was a statistically significant difference (P < 0.05) in pain scores reported by the subjects (scale 0-10), the mean pain score for 50 ns QS 1064 nm laser was 1.2 and for the 5 ns QS 2.9 the score was 2.9. In this study, we showed that a combination of microdermabrasion, QS1064 nm laser, and topicals decreased the MASI and meter scores without clinically significant side effects. Moreover, the longer pulsed Q switched 1064 nm laser i.e. (50 ns) was associated with less pain than its shorter pulse width counterpart. © 2014 Wiley Periodicals, Inc.
2016-08-25
AFRL-AFOSR-UK-TR-2016-0029 Intense Plasma-Waveguide Terahertz Sources for High-Field THz probe science with ultrafast lasers for Solid State Physics...Plasma-Waveguide Terahertz Sources for High-Field THz probe science with ultrafast lasers for Solid State Physics, 5a. CONTRACT NUMBER 5b. GRANT...an existing high energy laser system, has been applied to the study of intense terahertz radiation generated in gaseous plasmas in purpose
Chaotic dynamics and synchronization in microchip solid-state lasers with optoelectronic feedback.
Uchida, Atsushi; Mizumura, Keisuke; Yoshimori, Shigeru
2006-12-01
We experimentally observe the dynamics of a two-mode Nd:YVO4 microchip solid-state laser with optoelectronic feedback. The total laser output is detected and fed back to the injection current of the laser diode for pumping. Chaotic oscillations are observed in the microchip laser with optoelectronic self-feedback. We also observe the dynamics of two microchip lasers coupled mutually with optoelectronic link. The output of one laser is detected by a photodiode and the electronic signal converted from the laser output is sent to the pumping of the other laser. Chaotic fluctuation of the laser output is observed when the relaxation oscillation frequency is close to each other between the two microchip lasers. Synchronization of periodic wave form is also obtained when the microchip lasers have a single-longitudinal mode.
Hahn, David W; Omenetto, Nicoló
2012-04-01
The first part of this two-part review focused on the fundamental and diagnostics aspects of laser-induced plasmas, only touching briefly upon concepts such as sensitivity and detection limits and largely omitting any discussion of the vast panorama of the practical applications of the technique. Clearly a true LIBS community has emerged, which promises to quicken the pace of LIBS developments, applications, and implementations. With this second part, a more applied flavor is taken, and its intended goal is summarizing the current state-of-the-art of analytical LIBS, providing a contemporary snapshot of LIBS applications, and highlighting new directions in laser-induced breakdown spectroscopy, such as novel approaches, instrumental developments, and advanced use of chemometric tools. More specifically, we discuss instrumental and analytical approaches (e.g., double- and multi-pulse LIBS to improve the sensitivity), calibration-free approaches, hyphenated approaches in which techniques such as Raman and fluorescence are coupled with LIBS to increase sensitivity and information power, resonantly enhanced LIBS approaches, signal processing and optimization (e.g., signal-to-noise analysis), and finally applications. An attempt is made to provide an updated view of the role played by LIBS in the various fields, with emphasis on applications considered to be unique. We finally try to assess where LIBS is going as an analytical field, where in our opinion it should go, and what should still be done for consolidating the technique as a mature method of chemical analysis. © 2012 Society for Applied Spectroscopy
Chu, Shu-Chun; Chen, Yun-Ting; Tsai, Ko-Fan; Otsuka, Kenju
2012-03-26
This study reports the first systematic approach to the excitation of all high-order Hermite-Gaussian modes (HGMs) in end-pumped solid-state lasers. This study uses a metal-wire-inserted laser resonator accompanied with the "off axis pumping" approach. This study presents numerical analysis of the excitation of HGMs in end-pumped solid-state lasers and experimentally generated HGM patterns. This study also experimentally demonstrates the generation of an square vortex array laser beams by passing specific high-order HGMs (HGn,n + 1 or HGn + 1,n modes) through a Dove prism-embedded unbalanced Mach-Zehnder interferometer [Optics Express 16, 19934-19949]. The resulting square vortex array laser beams with embedded vortexes aligned in a square array can be applied to multi-spot dark optical traps in the future.
Atomic and Molecular Systems in Intense Ultrashort Laser Pulses
NASA Astrophysics Data System (ADS)
Saenz, A.
2008-07-01
The full quantum mechanical treatment of atomic and molecular systems exposed to intense laser pulses is a so far unsolved challenge, even for systems as small as molecular hydrogen. Therefore, a number of simplified qualitative and quantitative models have been introduced in order to provide at least some interpretational tools for experimental data. The assessment of these models describing the molecular response is complicated, since a comparison to experiment requires often a number of averages to be performed. This includes in many cases averaging of different orientations of the molecule with respect to the laser field, focal volume effects, etc. Furthermore, the pulse shape and even the peak intensity is experimentally not known with very high precision; considering, e.g., the exponential intensity dependence of the ionization signal. Finally, experiments usually provide only relative yields. As a consequence of all these averagings and uncertainties, it is possible that different models may successfully explain some experimental results or features, although these models disagree substantially, if their predictions are compared before averaging. Therefore, fully quantum-mechanical approaches at least for small atomic and molecular systems are highly desirable and have been developed in our group. This includes efficient codes for solving the time-dependent Schrodinger equation of atomic hydrogen, helium or other effective one- or two-electron atoms as well as for the electronic motion in linear (effective) one-and two-electron diatomic molecules like H_2.Very recently, a code for larger molecular systems that adopts the so-called single-active electron approximation was also successfully implemented and applied. In the first part of this talk popular models describing intense laser-field ionization of atoms and their extensions to molecules are described. Then their validity is discussed on the basis of quantum-mechanical calculations. Finally, some peculiar molecular strong-field effects and the possibility of strong-field control mechanisms will be demonstrated. This includes phenomena like enhanced ionization and bond softening as well as the creation of vibrational wavepacket in the non-ionized electronic ground state of H_2 by creating a Schrodinger-cat state between the ionized and the non-ionized molecules. The latter, theoretically predicted phenomenon was very recently experimentally observed and lead to the real-time observation of the so far fastest molecular motion.
Song, Shu-Tao; Cui, Lan; Yang, Jing; Du, Xi-Wen
2015-01-28
As a promising material for photoelectrical application, MoS2 has attracted extensive attention on its facile synthesis and unique properties. Herein, we explored a novel strategy of laser ablation to synthesize MoS2 fullerene-like nanoparticles (FL-NPs) with stable photoresponse under high temperature. Specifically, we employed a millisecond pulsed laser to ablate the molybdenum target in dimethyl trisulfide gas, and as a result, the molybdenum nanodroplets were ejected from the target and interacted with the highly reactive ambient gas to produce MoS2 FL-NPs. In contrast, the laser ablation in liquid could only produce core-shell nanoparticles. The crucial factors for controlling final nanostructures were found to be laser intensity, cooling rate, and gas reactivity. Finally, the MoS2 FL-NPs were assembled into a simple photoresponse device which exhibited excellent thermal stability, indicating their great potentialities for high-temperature photoelectrical applications.
NASA Astrophysics Data System (ADS)
Gref, Orman; Weizman, Moshe; Rhein, Holger; Gabriel, Onno; Gernert, Ulrich; Schlatmann, Rutger; Boit, Christian; Friedrich, Felice
2016-06-01
A conductive atomic force microscope is used to study the local topography and conductivity of laser-fired aluminum contacts on KOH-structured multicrystalline silicon surfaces. A significant increase in conductivity is observed in the laser-affected area. The area size and spatial uniformity of this enhanced conductivity depends on the laser energy fluence. The laser-affected area shows three ring-shaped regimes of different conductance depending on the local aluminum and oxygen concentration. Finally, it was found that the topographic surface structure determined by the silicon grain orientation does not significantly affect the laser-firing process.
Electro-optic harmonic conversion to switch a laser beam out of a cavity
Haas, R.A.; Henesian, M.A.
1984-10-19
The present invention relates to switching laser beams out of laser cavities, and more particularly, it relates to the use of generating harmonics of the laser beam to accomplish the switching. When laser light is generatd in a laser cavity the problem arises of how to switch the laser light out of the cavity in order to make use of the resulting laser beam in a well known multitude of ways. These uses include range finding, communication, remote sensing, medical surgery, laser fusion applications and many more. The switch-out problem becomes more difficult as the size of the laser aperture grows such as in laser fusion applications. The final amplifier stages of the Nova and Novette lasers at Lawrence Livermore National Laboratory are 46 centimeters with the laser beam expanded to 74 centimeters thereafter. Larger aperture lasers are planned.
Advanced optic fabrication using ultrafast laser radiation
NASA Astrophysics Data System (ADS)
Taylor, Lauren L.; Qiao, Jun; Qiao, Jie
2016-03-01
Advanced fabrication and finishing techniques are desired for freeform optics and integrated photonics. Methods including grinding, polishing and magnetorheological finishing used for final figuring and polishing of such optics are time consuming, expensive, and may be unsuitable for complex surface features while common photonics fabrication techniques often limit devices to planar geometries. Laser processing has been investigated as an alternative method for optic forming, surface polishing, structure writing, and welding, as direct tuning of laser parameters and flexible beam delivery are advantageous for complex freeform or photonics elements and material-specific processing. Continuous wave and pulsed laser radiation down to the nanosecond regime have been implemented to achieve nanoscale surface finishes through localized material melting, but the temporal extent of the laser-material interaction often results in the formation of a sub-surface heat affected zone. The temporal brevity of ultrafast laser radiation can allow for the direct vaporization of rough surface asperities with minimal melting, offering the potential for smooth, final surface quality with negligible heat affected material. High intensities achieved in focused ultrafast laser radiation can easily induce phase changes in the bulk of materials for processing applications. We have experimentally tested the effectiveness of ultrafast laser radiation as an alternative laser source for surface processing of monocrystalline silicon. Simulation of material heating associated with ultrafast laser-material interaction has been performed and used to investigate optimized processing parameters including repetition rate. The parameter optimization process and results of experimental processing will be presented.
Development of State of the Art Solid State Lasers for Altimetry and other LIDAR Applications
NASA Technical Reports Server (NTRS)
Kay, Richard B.
1997-01-01
This report describes work performed and research accomplished through the end of 1997. During this time period, we have designed and fabricated two lasers for flight LIDAR applications to medium altitudes (Laser Vegetation Imaging System designs LVIS 1 and LVIS 2), designed one earth orbiting LIDAR transmitter (VCL-Alt), and continued work on a high rep-rate LIDAR laser (Raster Scanned Altimeter, RASCAL). Additionally, a 'White Paper' was prepared which evaluates the current state of the art of Nd:YAG lasers and projects efficiencies to the year 2004. This report is attached as Appendix 1 of this report.
Electromagnetic and geometric characterization of accelerated ion beams by laser ablation
NASA Astrophysics Data System (ADS)
Nassisi, V.; Velardi, L.; Side, D. Delle
2013-05-01
Laser ion sources offer the possibility to get ion beam useful to improve particle accelerators. Pulsed lasers at intensities of the order of 108 W/cm2 and of ns pulse duration, interacting with solid matter in vacuum, produce plasma of high temperature and density. The charge state distribution of the plasma generates high electric fields which accelerate ions along the normal to the target surface. The energy of emitted ions has a Maxwell-Boltzmann distribution which depends on the ion charge state. To increase the ion energy, a post-acceleration system can be employed by means of high voltage power supplies of about 100 kV. The post acceleration system results to be a good method to obtain high ion currents by a not expensive system and the final ion beams find interesting applications in the field of the ion implantation, scientific applications and industrial use. In this work we compare the electromagnetic and geometric properties, like emittance, of the beams delivered by pure Cu, Y and Ag targets. The characterization of the plasma was performed by a Faraday cup for the electromagnetic characteristics, whereas a pepper pot system was used for the geometric ones. At 60 kV accelerating voltage the three examined ion bunches get a current peak of 5.5, 7.3 and 15 mA, with a normalized beam emittance of 0.22, 0.12 and 0.09 π mm mrad for the targets of Cu, Y, and Ag, respectively.
NASA Astrophysics Data System (ADS)
Iorsh, Ivan; Glauser, Marlene; Rossbach, Georg; Levrat, Jacques; Cobet, Munise; Butté, Raphaël; Grandjean, Nicolas; Kaliteevski, Mikhail A.; Abram, Richard A.; Kavokin, Alexey V.
2012-09-01
The main emission characteristics of electrically driven polariton lasers based on planar GaN microcavities with embedded InGaN quantum wells are studied theoretically. The polariton emission dependence on pump current density is first modeled using a set of semiclassical Boltzmann equations for the exciton polaritons that are coupled to the rate equation describing the electron-hole plasma population. Two experimentally relevant pumping geometries are considered, namely the direct injection of electrons and holes into the strongly coupled microcavity region and intracavity optical pumping via an embedded light-emitting diode. The theoretical framework allows the determination of the minimum threshold current density Jthr,min as a function of lattice temperature and exciton-cavity photon detuning for the two pumping schemes. A Jthr,min value of 5 and 6 A cm-2 is derived for the direct injection scheme and for the intracavity optical pumping one, respectively, at room temperature at the optimum detuning. Then an approximate quasianalytical model is introduced to derive solutions for both the steady-state and high-speed current modulation. This analysis makes it possible to show that the exciton population, which acts as a reservoir for the stimulated relaxation process, gets clamped once the condensation threshold is crossed, a behavior analogous to what happens in conventional laser diodes with the carrier density above threshold. Finally, the modulation transfer function is calculated for both pumping geometries and the corresponding cutoff frequency is determined.
Pulsed infrared difference frequency generation in CdGeAs.sub.2
Piltch, Martin S.; Rink, John P.; Tallman, Charles R.
1977-03-08
The disclosure relates to a laser apparatus for generating a line-tunable pulsed infrared difference frequency output. The apparatus comprises a CO.sub.2 laser which produces a first frequency, a CO laser which produces a second frequency and a mixer for combining the output of the CO.sub.2 and CO lasers so as to produce a final output comprising a difference frequency from the first and second frequency outputs.
Pulsed infrared difference frequency generation in CdGeAs/sub 2/
Piltch, M.S.; Rink, J.P.; Tallman, C.R.
1975-11-26
A laser apparatus for generating a line-tunable pulsed infrared difference frequency output is described. The apparatus comprises a CO/sub 2/ laser which produces a first frequency, a CO laser which produces a second frequency, and a mixer for combining the output of the CO/sub 2/ and CO lasers so as to produce a final output comprising a difference frequency from the first and second frequency outputs.
Stability of quantum-dot excited-state laser emission under simultaneous ground-state perturbation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaptan, Y., E-mail: yuecel.kaptan@physik.tu-berlin.de; Herzog, B.; Schöps, O.
2014-11-10
The impact of ground state amplification on the laser emission of In(Ga)As quantum dot excited state lasers is studied in time-resolved experiments. We find that a depopulation of the quantum dot ground state is followed by a drop in excited state lasing intensity. The magnitude of the drop is strongly dependent on the wavelength of the depletion pulse and the applied injection current. Numerical simulations based on laser rate equations reproduce the experimental results and explain the wavelength dependence by the different dynamics in lasing and non-lasing sub-ensembles within the inhomogeneously broadened quantum dots. At high injection levels, the observedmore » response even upon perturbation of the lasing sub-ensemble is small and followed by a fast recovery, thus supporting the capacity of fast modulation in dual-state devices.« less
Nilsen, Joseph
1991-01-01
An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.
Generation of bound states of pulses in a SESAM mode-locked Cr:ZnSe laser
NASA Astrophysics Data System (ADS)
Bu, Xiangbao; Shi, Yuhang; Xu, Jia; Li, Huijuan; Wang, Pu
2018-06-01
We report on the generation of bound states of pulses in a SESAM mode-locked Cr:ZnSe laser around 2415 nm. A thulium-doped double-clad fiber laser at 1908 nm was used as the pump source. Bound states with various pulse separations at different dispersion regimes were obtained. Especially, in the anomalous dispersion regime, vibrating bound state of solitons exhibiting an evolving phase was obtained.
Magnetic ground state of Sr 2 IrO 4 and implications for second-harmonic generation
Di Matteo, S.; Norman, M. R.
2016-08-24
The currently accepted magnetic ground state of Sr 2IrO 4 (the -++- state) preserves inversion symmetry. This is at odds, though, with recent experiments that indicate a magnetoelectric ground state, leading to the speculation that orbital currents or more exotic magnetic multipoles might exist in this material. In this paper, we analyze various magnetic configurations and demonstrate that two of them, the magnetoelectric -+-+ state and the nonmagnetoelectric ++++ state, can explain these recent second-harmonic generation (SHG) experiments, obviating the need to invoke orbital currents. The SHG-probed magnetic order parameter has the symmetry of a parity-breaking multipole in the -+-+more » state and of a parity-preserving multipole in the ++++ state. We speculate that either might have been created by the laser pump used in the experiments. An alternative is that the observed magnetic SHG signal is a surface effect. Finally, we suggest experiments that could be performed to test these various possibilities and also address the important issue of the suppression of the RXS intensity at the L 2 edge.« less
Magnetic ground state of Sr 2 IrO 4 and implications for second-harmonic generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Matteo, S.; Norman, M. R.
The currently accepted magnetic ground state of Sr 2IrO 4 (the -++- state) preserves inversion symmetry. This is at odds, though, with recent experiments that indicate a magnetoelectric ground state, leading to the speculation that orbital currents or more exotic magnetic multipoles might exist in this material. In this paper, we analyze various magnetic configurations and demonstrate that two of them, the magnetoelectric -+-+ state and the nonmagnetoelectric ++++ state, can explain these recent second-harmonic generation (SHG) experiments, obviating the need to invoke orbital currents. The SHG-probed magnetic order parameter has the symmetry of a parity-breaking multipole in the -+-+more » state and of a parity-preserving multipole in the ++++ state. We speculate that either might have been created by the laser pump used in the experiments. An alternative is that the observed magnetic SHG signal is a surface effect. Finally, we suggest experiments that could be performed to test these various possibilities and also address the important issue of the suppression of the RXS intensity at the L 2 edge.« less
NASA Astrophysics Data System (ADS)
Hsiao, F.-M.; Schnedler, M.; Portz, V.; Huang, Y.-C.; Huang, B.-C.; Shih, M.-C.; Chang, C.-W.; Tu, L.-W.; Eisele, H.; Dunin-Borkowski, R. E.; Ebert, Ph.; Chiu, Y.-P.
2017-01-01
We demonstrate the potential of sub-bandgap laser-excited cross-sectional scanning tunneling microscopy and spectroscopy to investigate the presence of defect states in semiconductors. The characterization method is illustrated on GaN layers grown on Si(111) substrates without intentional buffer layers. According to high-resolution transmission electron microscopy and cathodoluminescence spectroscopy, the GaN layers consist of nanoscale wurtzite and zincblende crystallites with varying crystal orientations and hence contain high defect state densities. In order to discriminate between band-to-band excitation and defect state excitations, we use sub-bandgap laser excitation. We probe a clear increase in the tunnel current at positive sample voltages during sub-bandgap laser illumination for the GaN layer with high defect density, but no effect is found for high quality GaN epitaxial layers. This demonstrates the excitation of free charge carriers at defect states. Thus, sub-bandgap laser-excited scanning tunneling spectroscopy is a powerful complimentary characterization tool for defect states.
Carrier Envelope Phase Effect of a Long Duration Pulse in the Low Frequency Region
NASA Astrophysics Data System (ADS)
Zhao, Xi; Yang, Yu-Jun; Liu, Xue-Shen; Wang, Bing-Bing
2014-04-01
Using the characteristic of small energy difference between two high Rydberg states, we theoretically investigate the carrier envelope phase (CEP) effect in a bound-bound transition of an atom in a low-frequency long laser pulse with tens of optical cycles. Particularly, we first prepare a Rydberg state of a hydrogen-like atom by a laser field with the resonant frequency between this state and the ground state. Then by using a low-frequency long laser pulse interacting with this Rydberg atom, we calculate the population of another Rydberg state nearby this Rydberg state at the end of the laser pulse and find that the population changes dramatically with the CEP of the low-frequency pulse. This CEP effect is attributed to the interference between the positive-frequency and negative-frequency components in one-photon transition. These results may provide a method to measure the CEP value of a long laser pulse with low frequency.
Liang, Qiangbing; Yang, Baodong; Zhang, Tiancai; Wang, Junmin
2010-06-21
By monitoring the transmission of probe laser beam (also served as coupling laser beam) which is locked to a cycling hyperfine transition of cesium D(2) line, while pumping laser is scanned across cesium D(1) or D(2) lines, the single-resonance optical pumping (SROP) spectra are obtained with atomic vapor cell. The SROP spectra indicate the variation of the zero-velocity atoms population of one hyperfine fold of ground state, which is optically pumped into another hyperfine fold of ground state by pumping laser. With the virtue of Doppler-free linewidth, high signal-to-noise ratio (SNR), flat background and elimination of crossover resonance lines (CRLs), the SROP spectra with atomic vapor cell around room temperature can be employed to measure dressed-state splitting of ground state, which is normally detected with laser-cooled atomic sample only, even if the dressed-state splitting is much smaller than the Doppler-broaden linewidth at room temperature.
Monitoring bolt torque levels through signal processing of full-field ultrasonic data
NASA Astrophysics Data System (ADS)
Haynes, Colin; Yeager, Michael; Todd, Michael; Lee, Jung-Ryul
2014-03-01
Using full-field ultrasonic guided wave data can provide a wealth of information on the state of a structure through a detailed characterization of its wave propagation properties. However, the need for appropriate feature selection and quantified metrics for making rigorous assessments of the structural state is in no way lessened by the density of information. In this study, a simple steel bolted connection with two bolts is monitored for bolt loosening. The full-field data were acquired using a scanning-laser-generated ultrasound system with a single surface-mounted sensor. Such laser systems have many advantages that make them attractive for nondestructive evaluation, including their high-speed, high spatial resolution, and the ability to scan large areas of in-service structures. In order to characterize the relationship between bolt torque and the resulting wavefield in this specimen, the bolt torque in each of the bolts is independently varied from fully tightened to fully loosened in several steps. First, qualitative observations about the changes in the wavefield are presented. Next, an approach to quantifying the wave transmission through the bolted joint is discussed. Finally, a method of monitoring the bolt torque using the ultrasonic data is demonstrated.
NASA Astrophysics Data System (ADS)
Cho, Gookbin; Kim, Jungho
2017-09-01
We theoretically investigate the effect of conduction band non-parabolicity (NPB) on the optical gain spectrum of quantum cascade lasers (QCLs) using the effective two-band finite difference method. Based on the effective two-band model to consider the NPB effect in the multiple quantum wells (QWs), the wave functions and confined energies of electron states are calculated in two different active-region structures, which correspond to three-QW single-phonon and four-QW double-phonon resonance designs. In addition, intersubband optical dipole moments and polar-optical-phonon scattering times are calculated and compared without and with the conduction band NPB effect. Finally, the calculation results of optical gain spectra are compared in the two QCL structures having the same peak gain wavelength of 8.55 μm. The gain peaks are greatly shifted to longer wavelengths and the overall gain magnitudes are slightly reduced when the NPB effect is considered. Compared with the three-QW active-region design, the redshift of the peak gain is more prominent in the four-QW active-region design, which makes use of higher electronic states for the lasing transition.
Basal accretion, a major mechanism for mountain building in Taiwan revealed in rock thermal history
NASA Astrophysics Data System (ADS)
Chen, Chih-Tung; Chan, Yu-Chang; Lo, Ching-Hua; Malavieille, Jacques; Lu, Chia-Yu; Tang, Jui-Ting; Lee, Yuan-Hsi
2018-02-01
Deep tectonic processes are key integral components in the evolution of mountain belts, while observations of their temporal development are generally obscured by thermal resetting, retrograde alteration and structural overprinting. Here we recorded an integrated rock time-temperature history for the first time in the pro-wedge part of the active Taiwan arc-continent collision starting from sedimentation through cleavage-forming state to its final exhumation. The integrated thermal and age results from the Raman Spectroscopy of Carbonaceous Material (RSCM) method, zircon U-Pb laser ablation dating, and in-situ40Ar/39Ar laser microprobe dating suggest that the basal accretion process was crucial to the development of the Taiwanese orogenic wedge. The basal accretion process commenced early in the mountain building history (∼6 Ma) and gradually migrated to greater depths, as constrained by persistent plate convergence and cleavage formation under nearly isothermal state at similar depths until ∼ 2.5 Ma recorded in the early-accreted units. Such development essentially contributed to mountain root growth by the increased depth of the wedge detachment and the downward wedge thickening during the incipient to full collision stages in the Taiwan mountain belt.
Generation of high powers from diode pumped chromium-3+ doped colquiriites
NASA Astrophysics Data System (ADS)
Eichenholz, Jason Matthew
1998-12-01
There is considerable interest in the area of laser diode pumped solid-state lasers. Diode pumped solid-state lasers (DPSSL) operating at high average power levels are attractive light sources for various applications such as materials processing, laser radar, and fundamental physics experiments. These laser systems have become more commonplace because of their efficiency, reliability, compactness, low relative cost, and long operational lifetimes. Induced thermal effects in the solid-state laser medium hinder the scaling of DPSSL's to higher average power levels. Therefore a deep insight into the thermo-mechanical properties of the solid state laser is crucial in order to ensure a laser design which is optimized for high average power operation. A comprehensive study of the factors that contribute to thermal loading of the colquiriites was performed. A three-dimensional thermal model has been created to determine the temperature rise inside the laser crystal. This new model calculates the temperature distribution by considering quantum defect, upconversion, and upper-state lifetime quenching as heating sources. The thermally induced lensing in end pumped Cr3+ doped LiSrAlF6, LiSrGaF6, LiSrCaAlF6, and LiCaAlF6 were experimentally measured. Several diode pumped colquiriite laser systems were assembled to quantitatively observe and identify thermally induced effects. Significant differences in each of the colquiriite materials were observed. These differences are explained by the differences in the thermo-mechanical and thermo-optical properties of the material and are explained by the theoretical thermal model.
Competency-Based Curriculum Guide for Laser Technology. September 1980-June 1981.
ERIC Educational Resources Information Center
Fioroni, John J.
This document contains materials developed by a project to provide a competency-based curriculum guide for laser technology at the community college level. An abstract of the final report is included. Next, the 17 job competencies determined as necessary to meet the job description of laser technician are listed. A career ladder and qualifications…
Solid state lasers for use in non-contact temperature measurements
NASA Technical Reports Server (NTRS)
Buoncristiani, A. M.
1989-01-01
The last decade has seen a series of dramatic developments in solid state laser technology. Prominent among these has been the emergence of high power semiconductor laser diode arrays and a deepening understanding of the dynamics of solid state lasers. Taken in tandem these two developments enable the design of laser diode pumped solid state lasers. Pumping solid state lasers with semiconductor diodes relieves the need for cumbersome and inefficient flashlamps and results in an efficient and stable laser with the compactness and reliability. It provides a laser source that can be reliably used in space. These new coherent sources are incorporated into the non-contact measurement of temperature. The primary focus is the development and characterization of new optical materials for use in active remote sensors of the atmosphere. In the course of this effort several new materials and new concepts were studied which can be used for other sensor applications. The general approach to the problem of new non-contact temperature measurements has had two components. The first component centers on passive sensors using optical fibers; an optical fiber temperature sensor for the drop tube was designed and tested at the Marshall Space Flight Center. Work on this problem has given insight into the use of optical fibers, especially new IR fibers, in thermal metrology. The second component of the effort is to utilize the experience gained in the study of passive sensors to examine new active sensor concepts. By active sensor are defined as a sensing device or mechanism which is interrogated in some way be radiation, usually from a laser. The status of solid state lasers as sources for active non-contact temperature sensors are summarized. Some specific electro-optic techniques are described which are applicable to the sensor problems at hand. Work on some of these ideas is in progress while other concepts are still being worked out.
Theoretical and experimental analysis of injection seeding a Q-switched alexandrite laser
NASA Technical Reports Server (NTRS)
Prasad, C. R.; Lee, H. S.; Glesne, T. R.; Monosmith, B.; Schwemmer, G. K.
1991-01-01
Injection seeding is a method for achieving linewidths of less than 500 MHz in the output of broadband, tunable, solid state lasers. Dye lasers, CW and pulsed diode lasers, and other solid state lasers have been used as injection seeders. By optimizing the fundamental laser parameters of pump energy, Q-switched pulse build-up time, injection seed power and mode matching, one can achieve significant improvements in the spectral purity of the Q-switched output. These parameters are incorporated into a simple model for analyzing spectral purity and pulse build-up processes in a Q-switched, injection-seeded laser. Experiments to optimize the relevant parameters of an alexandrite laser show good agreement.
Prototyping of Dental Structures Using Laser Milling
NASA Astrophysics Data System (ADS)
Andreev, A. O.; Kosenko, M. S.; Petrovskiy, V. N.; Mironov, V. D.
2016-02-01
The results of experimental studies of the effect of an ytterbium fiber laser radiation parameters on processing efficiency and quality of ZrO2 ceramics widely used in stomatology are presented. Laser operating conditions with optimum characteristics for obtaining high quality final surfaces and rapid material removal of dental structures are determined. The ability of forming thin-walled ceramic structures by laser milling technology (a minimum wall thickness of 50 μm) is demonstrated. The examples of three-dimensional dental structures created in computer 3D-models of human teeth using laser milling are shown.
Correlated Photodissociation Dynamics of Small Molecules: Carbonyl Sulfide and Carbon Suboxide
NASA Astrophysics Data System (ADS)
Strauss, Charlie Elliott Murton
1990-01-01
The photodissociation of OCS and of C _3O_2 at 157.6 nm have been studied with full quantum state resolution of all fragments. Correlation of the independently measured fragment state distributions has been achieved without coincidence measurement via a maximum entropy method. For the experiments, dilute concentrations seeded in helium were expanded in a supersonic free jet, and the final state distribution of the CO, S, and C fragments were probed by tunable vacuum-ultraviolet laser induced fluorescence within 300 nanoseconds after photolysis by F_2 laser radiation. For OCS: Sulfur is produced almost entirely in its (^1S) state. Ground electronic state CO is produced in vibrational levels nu = 0 - 3 in the approximate ratio (1.0):(1.0):(0.5):(0.3). The rotational distribution for each vibrational level is nearly Boltzmann, with temperatures that decrease from 1350 K for nu = 0 to 780 K for nu = 3. CO Doppler profiles demonstrate that the absorption transition is of parallel character (beta = 1.8 +/- 0.2) and that the CO velocity and angular momentum vectors are perpendicular to one another. C_3O_2 dissociates into three fragments. Carbon is produced in its ^3P and ^1D states in the ratio (0.97):(0.03). CO is produced in vibrational levels nu = 0 - 4 in the ratio (0.57):(0.27):(0.1):(0.05):(<0.01). The rotational distributions are nearly Boltzmann with temperatures that increase from 3430 K for nu = 0 to 4670 K for nu = 2. Doppler profiles reveal the dissociation is nearly isotropic. The dissociation most likely proceeds in two steps via an intermediate electronically excited C_2O. A maximum likelihood method based upon information theory is developed to abstract the correlation between the final states for reactions of multiple independently measured fragment species. Methods for ascribing dynamical mechanisms to the inferred joint probability distribution are discussed. A 'decoupled' surprisal analysis technique appropriate to distributions coupled by conservation laws is presented. A figure-of-merit indicating whether a three body dissociation proceeds in one or two steps is invented. Application on a personal computer is made to the dissociations of acetone at 193 nm and C_3O _2 at 157.6 nm. The prior distribution for three fragments conserving momentum is derived.
QCL seeded, ns-pulse, multi-line, CO2 laser oscillator for laser-produced-plasma extreme-UV source
NASA Astrophysics Data System (ADS)
Nowak, Krzysztof Michał; Suganuma, Takashi; Kurosawa, Yoshiaki; Ohta, Takeshi; Kawasuji, Yasufumi; Nakarai, Hiroaki; Saitou, Takashi; Fujimoto, Junichi; Mizoguchi, Hakaru; Sumitani, Akira; Endo, Akira
2017-01-01
Successful merger of state-of-the-art, semiconductor quantum-cascade lasers (QCL), with the mature CO2 laser technology, resulted in a delivery of highly-desired qualities of CO2 laser output that were not available previously without much effort. These qualities, such as multi-line operation, excellent spectro-temporal stability and pulse waveform control, became available from a single device of moderate complexity. This paper describes the operation principle and the unique properties of the solid{state seeded CO2 laser, invented for an application in laser-produced-plasma (LPP), extreme-UV (EUV) light source.
The suitability of barium monofluoride for laser cooling from ab initio study
NASA Astrophysics Data System (ADS)
Kang, Shuying; Kuang, Fangguang; Jiang, Gang; Du, Jiguang
2016-03-01
The feasibility of laser cooling the 138Ba19F molecule is performed using ab initio quantum chemistry. Three low-lying doublet electronic states X 2Σ+, A' 2Δ and A 2Π are determined by the multireference configuration-interaction (MRCI) method, where the spin-orbit coupling (SOC) effect is also taken into account in the electronic structure calculations. The computed spectroscopic constants and permanent dipole moments agree well with the available experimental data. The Franck-Condon factors of the A 2П → X 2Σ+ transition show highly diagonal dominance (f00 = 0.981, f11 = 0.940, f22 = 0.896) and the A 2П state has a radiative lifetime of τ = 37.8 ns, allowing for rapid laser cooling. Our calculation indicates that the laser-cooling scheme require only three lasers at 822 nm, 855 nm and 856 nm proceeded on the A 2П (ν‧) ← X 2Σ+ (ν‧‧) transitions. The appeared intervening state A' 2Δ between the X 2Σ+ and A 2П states is the main challenge for laser cooling this molecule. In fact, the calculated vibrational branching loss ratio to the intermediate A' 2Δ state is almost negligible at a level of η < 4.5 × 10-9. Thus, BaF is a promising laser-cooling candidate with a relatively simple laser-cooling scheme.
NASA Astrophysics Data System (ADS)
Xu, Jian; Liu, Bingguo; Liu, Zhiwen; Gong, Yuxuan; Hu, Baofu; Wang, Jian; Li, Hui; Wang, Xinliang; Du, Baoli
2018-01-01
In recent times, there have been rapid advances in the solid-state laser lighting technology. Due to the large amounts of heat accumulated from the high flux laser radiation, color conversion materials used in solid-state laser lighting devices should possess high durability, high thermal conductivity, and low thermal quenching. The aim of this study is to develop a thermally robust SiO2-YAG:Ce composite thick film (CTF) for high-power solid-state laser lighting applications. Commercial colloidal silica which was used as the source of SiO2, played the roles of an adhesive, a filler, and a protecting agent. Compared to the YAG:Ce powder, the CTF exhibits remarkable thermal stability (11.3% intensity drop at 200 °C) and durability (4.5% intensity drop after 1000 h, at 85 °C and 85% humidity). Furthermore, the effects of the substrate material and the thickness of the CTF on the laser lighting performance were investigated in terms of their thermal quenching and luminescence saturation behaviors, respectively. The CTF with a thickness of 50 μm on a sapphire substrate does not show luminescence saturation, despite a high-power density of incident radiation i.e. 20 W/mm2. These results demonstrate the potential applicability of the CTF in solid-state laser lighting devices.
Peng, Junsong; Tarasov, Nikita; Sugavanam, Srikanth; Churkin, Dmitry
2016-09-19
We report for the first time, rogue waves generation in a mode-locked fiber laser that worked in multiple-soliton state in which hundreds of solitons occupied the whole laser cavity. Using real-time spatio-temporal intensity dynamics measurements, it is unveiled that nonlinear soliton collision accounts for the formation of rogue waves in this laser state. The nature of interactions between solitons are also discussed. Our observation may suggest similar formation mechanisms of rogue waves in other systems.
Theoretical derivation of laser-dressed atomic states by using a fractal space
NASA Astrophysics Data System (ADS)
Duchateau, Guillaume
2018-05-01
The derivation of approximate wave functions for an electron submitted to both a Coulomb and a time-dependent laser electric fields, the so-called Coulomb-Volkov (CV) state, is addressed. Despite its derivation for continuum states does not exhibit any particular problem within the framework of the standard theory of quantum mechanics (QM), difficulties arise when considering an initially bound atomic state. Indeed the natural way of translating the unperturbed momentum by the laser vector potential is no longer possible since a bound state does not exhibit a plane wave form explicitly including a momentum. The use of a fractal space permits to naturally define a momentum for a bound wave function. Within this framework, it is shown how the derivation of laser-dressed bound states can be performed. Based on a generalized eikonal approach, a new expression for the laser-dressed states is also derived, fully symmetric relative to the continuum or bound nature of the initial unperturbed wave function. It includes an additional crossed term in the Volkov phase which was not obtained within the standard theory of quantum mechanics. The derivations within this fractal framework have highlighted other possible ways to derive approximate laser-dressed states in QM. After comparing the various obtained wave functions, an application to the prediction of the ionization probability of hydrogen targets by attosecond XUV pulses within the sudden approximation is provided. This approach allows to make predictions in various regimes depending on the laser intensity, going from the non-resonant multiphoton absorption to tunneling and barrier-suppression ionization.
NASA Astrophysics Data System (ADS)
Böhringer, Klaus; Hess, Ortwin
The spatio-temporal dynamics of novel semiconductor lasers is discussed on the basis of a space- and momentum-dependent full time-domain approach. To this means the space-, time-, and momentum-dependent Full-Time Domain Maxwell Semiconductor Bloch equations, derived and discussed in our preceding paper I [K. Böhringer, O. Hess, A full time-domain approach to spatio-temporal dynamics of semiconductor lasers. I. Theoretical formulation], are solved by direct numerical integration. Focussing on the device physics of novel semiconductor lasers that profit, in particular, from recent advances in nanoscience and nanotechnology, we discuss the examples of photonic band edge surface emitting lasers (PBE-SEL) and semiconductor disc lasers (SDLs). It is demonstrated that photonic crystal effects can be obtained for finite crystal structures, and leading to a significant improvement in laser performance such as reduced lasing thresholds. In SDLs, a modern device concept designed to increase the power output of surface-emitters in combination with near-diffraction-limited beam quality, we explore the complex interplay between the intracavity optical fields and the quantum well gain material in SDL structures. Our simulations reveal the dynamical balance between carrier generation due to pumping into high energy states, momentum relaxation of carriers, and stimulated recombination from states near the band edge. Our full time-domain approach is shown to also be an excellent framework for the modelling of the interaction of high-intensity femtosecond and picosecond pulses with semiconductor nanostructures. It is demonstrated that group velocity dispersion, dynamical gain saturation and fast self-phase modulation (SPM) are the main causes for the induced changes and asymmetries in the amplified pulse shape and spectrum of an ultrashort high-intensity pulse. We attest that the time constants of the intraband scattering processes are critical to gain recovery. Moreover, we present new insight into the physics of nonlinear coherent pulse propagation phenomena in active (semiconductor) gain media. Our numerical full time-domain simulations are shown to generally agree well with analytical predictions, while in the case of optical pulses with large pulse areas or few-cycle pulses they reveal the limits of analytic approaches. Finally, it is demonstrated that coherent ultrafast nonlinear propagation effects become less distinctive if we apply a realistic model of the quantum well semiconductor gain material, consider characteristic loss channels and take into account de-phasing processes and homogeneous broadening.
NASA Astrophysics Data System (ADS)
Marinescu, Maria; Cinteza, Ludmila Otilia; Marton, George Iuliu; Marutescu, Luminita Gabriela; Chifiriuc, Mariana-Carmen; Constantinescu, Catalin
2017-09-01
A series of 9-substituted 1,2,3,4,5,6,7,8-octahydroacridine-N(10)-oxides is evaluated against 12 bacterial and fungal strains, for their microbicidal and anti-pathogenic features. The largest spectrum of the antibacterial activity is evidenced for the nitro- (2b) and hydroxy- (5b) N-oxides, followed by the amino-N-oxide (3b). Density functional theory (DFT) modeling of the molecular structure and frontier molecular orbitals, i.e. highest occupied/lowest unoccupied molecular orbital (HOMO/LUMO), is accomplished by using the GAMESS 2012 software at M11/ktzvp level of theory in order to find their structural and electronic parameters. We show that the planarity of the molecules and the presence of the electron withdrawing group are advantages for its antimicrobial activity. Finally, we briefly present and discuss results on the processing of such compounds into thin films and hybrid structures by laser-assisted techniques, i.e. matrix-assisted pulsed laser evaporation (MAPLE) or laser-induced forward transfer (LIFT), to provide simple and environmental friendly, state-of-the-art solutions for antimicrobial/medical coatings and devices.
Berry, Jennifer L.; Day, Douglas A.; Elseberg, Tim; ...
2018-02-20
Mass spectrometry imaging is becoming an increasingly common analytical technique due to its ability to provide spatially resolved chemical information. In this paper, we report a novel imaging approach combining laser ablation with two mass spectrometric techniques, aerosol mass spectrometry and chemical ionization mass spectrometry, separately and in parallel. Both mass spectrometric methods provide the fast response, rapid data acquisition, low detection limits, and high-resolution peak separation desirable for imaging complex samples. Additionally, the two techniques provide complementary information with aerosol mass spectrometry providing near universal detection of all aerosol molecules and chemical ionization mass spectrometry with a heated inletmore » providing molecular-level detail of both gases and aerosols. The two techniques operate with atmospheric pressure interfaces and require no matrix addition for ionization, allowing for samples to be investigated in their native state under ambient pressure conditions. We demonstrate the ability of laser ablation-aerosol mass spectrometry-chemical ionization mass spectrometry (LA-AMS-CIMS) to create 2D images of both standard compounds and complex mixtures. Finally, the results suggest that LA-AMS-CIMS, particularly when combined with advanced data analysis methods, could have broad applications in mass spectrometry imaging applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, Jennifer L.; Day, Douglas A.; Elseberg, Tim
Mass spectrometry imaging is becoming an increasingly common analytical technique due to its ability to provide spatially resolved chemical information. In this paper, we report a novel imaging approach combining laser ablation with two mass spectrometric techniques, aerosol mass spectrometry and chemical ionization mass spectrometry, separately and in parallel. Both mass spectrometric methods provide the fast response, rapid data acquisition, low detection limits, and high-resolution peak separation desirable for imaging complex samples. Additionally, the two techniques provide complementary information with aerosol mass spectrometry providing near universal detection of all aerosol molecules and chemical ionization mass spectrometry with a heated inletmore » providing molecular-level detail of both gases and aerosols. The two techniques operate with atmospheric pressure interfaces and require no matrix addition for ionization, allowing for samples to be investigated in their native state under ambient pressure conditions. We demonstrate the ability of laser ablation-aerosol mass spectrometry-chemical ionization mass spectrometry (LA-AMS-CIMS) to create 2D images of both standard compounds and complex mixtures. Finally, the results suggest that LA-AMS-CIMS, particularly when combined with advanced data analysis methods, could have broad applications in mass spectrometry imaging applications.« less
Native Frames: Disentangling Sequential from Concerted Three-Body Fragmentation
NASA Astrophysics Data System (ADS)
Rajput, Jyoti; Severt, T.; Berry, Ben; Jochim, Bethany; Feizollah, Peyman; Kaderiya, Balram; Zohrabi, M.; Ablikim, U.; Ziaee, Farzaneh; Raju P., Kanaka; Rolles, D.; Rudenko, A.; Carnes, K. D.; Esry, B. D.; Ben-Itzhak, I.
2018-03-01
A key question concerning the three-body fragmentation of polyatomic molecules is the distinction of sequential and concerted mechanisms, i.e., the stepwise or simultaneous cleavage of bonds. Using laser-driven fragmentation of OCS into O++C++S+ and employing coincidence momentum imaging, we demonstrate a novel method that enables the clear separation of sequential and concerted breakup. The separation is accomplished by analyzing the three-body fragmentation in the native frame associated with each step and taking advantage of the rotation of the intermediate molecular fragment, CO2 + or CS2 + , before its unimolecular dissociation. This native-frame method works for any projectile (electrons, ions, or photons), provides details on each step of the sequential breakup, and enables the retrieval of the relevant spectra for sequential and concerted breakup separately. Specifically, this allows the determination of the branching ratio of all these processes in OCS3 + breakup. Moreover, we find that the first step of sequential breakup is tightly aligned along the laser polarization and identify the likely electronic states of the intermediate dication that undergo unimolecular dissociation in the second step. Finally, the separated concerted breakup spectra show clearly that the central carbon atom is preferentially ejected perpendicular to the laser field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madhav Rao Gonvindaraju
1999-10-18
Die casting dies used in the metal casting industry fail due to thermal fatigue cracking accompanied by the presence of residual tensile stresses, corrosion, erosion and wear of die surfaces. This phase 1 SBIR Final Report summarize Karta Technologies research involving the development of an innovative laser coating technology for metal casting dies. The process involves depositing complex protective coatings of nanocrystalline powders of TiC followed by a laser shot peening. The results indicate a significant improvement in corrosion and erosion resistance in molten aluminum for H13 die casting die steels. The laser-coated samples also showed improved surface finish, amore » homogeneous and uniform coating mircrostructure. The technology developed in this research can have a significant impact on the casting industry by saving the material costs involved in replacing dies, reducing downtime and improving the quality.« less
Laser demonstration and performance characterization of optically pumped Alkali Laser systems
NASA Astrophysics Data System (ADS)
Sulham, Clifford V.
Diode Pumped Alkali Lasers (DPALs) offer a promising approach for high power lasers in military applications that will not suffer from the long logistical trails of chemical lasers or the thermal management issues of diode pumped solid state lasers. This research focuses on characterizing a DPAL-type system to gain a better understanding of using this type of laser as a directed energy weapon. A rubidium laser operating at 795 nm is optically pumped by a pulsed titanium sapphire laser to investigate the dynamics of DPALs at pump intensities between 1.3 and 45 kW/cm2. Linear scaling as high as 32 times threshold is observed, with no evidence of second order kinetics. Comparison of laser characteristics with a quasi-two level analytic model suggests performance near the ideal steady-state limit, disregarding the mode mis-match. Additionally, the peak power scales linearly as high as 1 kW, suggesting aperture scaling to a few cm2 is sufficient to achieve tactical level laser powers. The temporal dynamics of the 100 ns pump and rubidium laser pulses are presented, and the continually evolving laser efficiency provides insight into the bottlenecking of the rubidium atoms in the 2P3/2 state. Lastly, multiple excited states of rubidium and cesium were accessed through two photon absorption in the red, yielding a blue and an IR photon through amplified stimulated emission. Threshold is modest at 0.3 mJ/pulse, and slope efficiencies increase dramatically with alkali concentrations and peak at 0.4%, with considerable opportunity for improvement. This versatile system might find applications for IR countermeasures or underwater communications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohn, Willy L.
First, an introductory overview of the different types of laser propulsion techniques will be given and illustrated by some historical examples. Second, laser devices available for basic experiments will be reviewed ranging from low power lasers sources to inertial confinement laser facilities. Subsequently, a status of work will show the impasse in which the laser propulsion community is currently engaged. Revisiting the basic relations leads to new avenues in ablative and direct laser propulsion for ground based and space based applications. Hereby, special attention will be devoted to the impact of emerging ultra-short pulse lasers on the coupling coefficient andmore » specific impulse. In particular, laser sources and laser propulsion techniques will be tested in microgravity environment. A novel approach to debris removal will be discussed with respect to the Satellite Laser Ranging (SRL) facilities. Finally, some non technical issues will be raised aimed at the future prospects of laser propulsion in the international community.« less
2013-12-05
visible light on instruments such as microscope tips and micro- surgical tools. Hard carbon known as diamond-like carbon films produced by pulsed laser ...visible (610 nm) LED source and a supplemental infra-red 980-nm laser diode (for the studies of the upconversion fluorescence). The basic package...5/2013 Final Performance Report 15 Sep 2012- 14 Sep 2013 LASER DEPOSITION OF POLYMER NANOCOMPOSITE THIN FILMS AND HARD MATERIALS AND THEIR OPTICAL
Spatially Modulated Gain Waveguide Electro-Optic Laser
2013-08-09
1997, pp 1223-1226. 5. Y. Li, S. M. Goldwasser, P. Herczfeld, L.M. Narducci, "Dynamics of an electro-optically tunable microchip laser ", IEEE...TYPE Final 3. DATES COVERED (From 7/2/2010-5-10-2013 To) 4. TITLE AND SUBTITLE Spatially modulated gain waveguide electro-optic laser 5a...optical waveguides laser on LiNb03 substrate. The main goal of this work is to implement an active LiNb03 waveguide with the desired spatially modulated
DOE Office of Scientific and Technical Information (OSTI.GOV)
Payne, S.A.; Beach, R.J.; Bibeau, C.
We discuss how solid-state laser technology can serve in the interests of fusion energy beyond the goals of the National Ignition Facility (NIF), which is now being constructed to ignite a deuterium-tritium target to fusion conditions in the laboratory for the first time. We think that advanced solid-state laser technology can offer the repetition-rate and efficiency needed to drive a fusion power plant, in contrast to the single-shot character of NIF. As discuss below, we propose that a gas-cooled, diode-pumped Yb:S-FAP laser can provide a new paradigm for fusion laser technology leading into the next century.
NASA Astrophysics Data System (ADS)
Wang, Xude; Luo, Aiping; Luo, Zhichao; Liu, Meng; Zou, Feng; Zhu, Yanfang; Xue, Jianping; Xu, Wencheng
2017-11-01
We presented a bound-state operation in a fiber laser with near-zero anomalous dispersion based on a silica-coated gold nanorods (GNRs@SiO2) saturable absorber (SA). Using a balanced twin detector measurement technique, the modulation depth and nonsaturable loss of the GNRs@SiO2 SA were measured to be approximately 3.5% and 39.3%, respectively. By virtue of the highly nonlinear effect of the GNRs@SiO2 SA, the bound-state pulses could be easily observed. Besides the lower-order bound-state pulses with two, three, and four solitons, the higher-order bound states with up to 12 solitons were also obtained in the laser cavity. The pulse profiles of the higher-order bound states were further reconstructed theoretically. The experimental results would give further insight towards understanding the complex nonlinear dynamics of bound-state pulses in fiber lasers.
Obsidianus lapis rugosity and hardness determination: fibre laser craftsmanship
NASA Astrophysics Data System (ADS)
Aguilar-Morales, A. I.; Velazquez-Gonzalez, J. S.; Marrujo-García, S.; Reyes-Sanchez, J. I.; Alvarez-Chávez, J. A.
2014-05-01
Obsidianus lapis is a volcanic rock that has been worked into tools for cutting or weaponry by Teotihuacan people for hundreds of years. Currently it is used in jewelry or for house decorative items such as elaborated sculptures. From the physico-chemical properties point of view, obsidianus lapis is considered a glass as its composition is 80% silicon dioxide. In México there are different kinds of obsidianus lapis according to its colour: rainbow, black, brown, red, silver, golden and snowflake. The traditional grinding process for working with obsidianus lapis includes fixed grinders and sandpaper for the polishing process, where the craftsman grinds the rock manually obtaining a variety of shapes. Laser processing of natural stones is a relatively new topic. We propose the use of an Yb3+-doped fibre laser for cutting and ablating obsidianus lapis into spherical, rectangular and oval shapes. By means of a theoretical analysis of roughness and hardness, which affect the different surfaces and final shapes, and considering the changes in material temperature during laser interaction, this work will focus on parameter determination such as: laser fluence, incidence angle, laser average power and peak pulse energy, from the proposed Q-switched fibre laser design. Full optical, hardness and rugosity, initial and final, characterization will be included in the presentation.
NASA Astrophysics Data System (ADS)
Xia, Wenze; Ma, Yayun; Han, Shaokun; Wang, Yulin; Liu, Fei; Zhai, Yu
2018-06-01
One of the most important goals of research on three-dimensional nonscanning laser imaging systems is the improvement of the illumination system. In this paper, a new three-dimensional nonscanning laser imaging system based on the illumination pattern of a point-light-source array is proposed. This array is obtained using a fiber array connected to a laser array with each unit laser having independent control circuits. This system uses a point-to-point imaging process, which is realized using the exact corresponding optical relationship between the point-light-source array and a linear-mode avalanche photodiode array detector. The complete working process of this system is explained in detail, and the mathematical model of this system containing four equations is established. A simulated contrast experiment and two real contrast experiments which use the simplified setup without a laser array are performed. The final results demonstrate that unlike a conventional three-dimensional nonscanning laser imaging system, the proposed system meets all the requirements of an eligible illumination system. Finally, the imaging performance of this system is analyzed under defocusing situations, and analytical results show that the system has good defocusing robustness and can be easily adjusted in real applications.
NASA Astrophysics Data System (ADS)
Li, T.; Lou, Q.; Dong, J.; Wei, Y.; Liu, J.
Surface ablation of cobalt-cemented tungsten carbide hard metal has been carried out in this work using a 308 nm, 20 ns XeCl excimer laser. Surface microphotography and XRD, as well as an electron probe have been used to investigate the transformation of phase and microstructure as a function of the pulse-number of laser shots at a laser fluence of 2.5 J/cm2. The experimental results show that the microstructure of cemented tungsten carbide is transformed from the original polygonal grains of size 3 μm to interlaced large, long grains with an increase in the number of laser shots up to 300, and finally to gross grains of size 10 μm with clear grain boundaries after 700 shots of laser irradiation. The crystalline structure of the irradiated area is partly transformed from the original WC to βWC1-x, then to αW2C and CW3, and finally to W crystal. It is suggested that the undulating `hill-valley' morphology may be the result of selective removal of cobalt binder from the surface layer of the hard metal. The formation of non-stoichiometric tungsten carbide may result from the escape of elemental carbon due to accumulated heating of the surface by pulsed laser irradiation.
Pulsed solid state lasers for medicine
NASA Astrophysics Data System (ADS)
Kertesz, Ivan; Danileiko, A. Y.; Denker, Boris I.; Kroo, Norbert; Osiko, Vyacheslav V.; Prokhorov, Alexander M.
1994-02-01
The effect on living tissues of different pulsed solid state lasers: Nd:YAG ((lambda) equals 1.06 micrometers ) Er:glass (1.54 micrometers ), Ho:YAG (2.1 micrometers ) and Er:YAG (2.94 micrometers ) is compared with the continuous wave Nd:YAG- and CO2-lasers used in operating theaters. Portable Er:glass- and Er:YAG-lasers are developed for surgery/cosmetics and HIV-safe blood testing.
Solid state laser media driven by remote nuclear powered fluorescence
Prelas, Mark A.
1992-01-01
An apparatus is provided for driving a solid state laser by a nuclear powered fluorescence source which is located remote from the fluorescence source. A nuclear reaction produced in a reaction chamber generates fluorescence or photons. The photons are collected from the chamber into a waveguide, such as a fiber optic waveguide. The waveguide transports the photons to the remote laser for exciting the laser.
Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers
NASA Astrophysics Data System (ADS)
Huang, Robin K.; Chann, Bien; Burgess, James; Kaiman, Michael; Overman, Robert; Glenn, John D.; Tayebati, Parviz
2012-03-01
TeraDiode has produced kW-class ultra-high brightness fiber-coupled direct diode lasers. A fiber-coupled direct diode laser with a power level of 2,040 W from a 50 μm core diameter, 0.15 numerical aperture (NA) output fiber at a single center wavelength was demonstrated. This was achieved with a novel beam combining and shaping technique using COTS diode lasers. The fiber-coupled output corresponds to a Beam Parameter Product (BPP) of 3.75 mm-mrad and is the lowest BPP kW-class direct diode laser yet reported. This laser is suitable for industrial materials processing applications, including sheet metal cutting and welding. This 2-kW fiber-coupled direct diode laser has comparable brightness to that of industrial fiber lasers and CO2 lasers, and is over 10x brighter than state-of-the-art direct diode lasers.
Performance calculation and simulation system of high energy laser weapon
NASA Astrophysics Data System (ADS)
Wang, Pei; Liu, Min; Su, Yu; Zhang, Ke
2014-12-01
High energy laser weapons are ready for some of today's most challenging military applications. Based on the analysis of the main tactical/technical index and combating process of high energy laser weapon, a performance calculation and simulation system of high energy laser weapon was established. Firstly, the index decomposition and workflow of high energy laser weapon was proposed. The entire system was composed of six parts, including classical target, platform of laser weapon, detect sensor, tracking and pointing control, laser atmosphere propagation and damage assessment module. Then, the index calculation modules were designed. Finally, anti-missile interception simulation was performed. The system can provide reference and basis for the analysis and evaluation of high energy laser weapon efficiency.
Multiharmonic Frequency-Chirped Transducers for Surface-Acoustic-Wave Optomechanics
NASA Astrophysics Data System (ADS)
Weiß, Matthias; Hörner, Andreas L.; Zallo, Eugenio; Atkinson, Paola; Rastelli, Armando; Schmidt, Oliver G.; Wixforth, Achim; Krenner, Hubert J.
2018-01-01
Wide-passband interdigital transducers are employed to establish a stable phase lock between a train of laser pulses emitted by a mode-locked laser and a surface acoustic wave generated electrically by the transducer. The transducer design is based on a multiharmonic split-finger architecture for the excitation of a fundamental surface acoustic wave and a discrete number of its overtones. Simply by introducing a variation of the transducer's periodicity p , a frequency chirp is added. This combination results in wide frequency bands for each harmonic. The transducer's conversion efficiency from the electrical to the acoustic domain is characterized optomechanically using single quantum dots acting as nanoscale pressure sensors. The ability to generate surface acoustic waves over a wide band of frequencies enables advanced acousto-optic spectroscopy using mode-locked lasers with fixed repetition rate. Stable phase locking between the electrically generated acoustic wave and the train of laser pulses is confirmed by performing stroboscopic spectroscopy on a single quantum dot at a frequency of 320 MHz. Finally, the dynamic spectral modulation of the quantum dot is directly monitored in the time domain combining stable phase-locked optical excitation and time-correlated single-photon counting. The demonstrated scheme will be particularly useful for the experimental implementation of surface-acoustic-wave-driven quantum gates of optically addressable qubits or collective quantum states or for multicomponent Fourier synthesis of tailored nanomechanical waveforms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, S.H.; Lory, E.R.; Chien, K.
1976-10-15
The objective of this research project, to discover a reaction, involving a sizable substrate (more than three atoms) the rate of which is selectively augmented by infrared laser radiation, has been achieved. A preliminary analysis led to criteria for the selection of an optimum reaction type, and for setting the most suitable experimental parameters. The self-scavenging decomposition was studied for a borane adduct: 2 H/sub 3/BPF/sub 3/ yields B/sub 2/H/sub 6/ + 2PF/sub 3/. The relative photolytic efficiencies of the various lines emitted by a CO2 laser were measured as was also the dependence of the rate on laser power,more » gas pressure and reaction cell temperature. Specificity of vibrational excitation was demonstrated in several ways, most directly by the observed isotope fractionation of H/D and /sup 10/B//sup 11/B ratios. The mechanism of the photoactivation process developed is in quantitative agreement with the observed conversion. A dynamic model (based on a normal mode analysis) was proposed for the selective activation. In a parallel study of borane adducts, we evaluated the thermodynamic and kinetic rate parameters for six exchange and abstraction reactions. Rational structures were proposed for the corresponding transition states. (Author)« less
The system spatial-frequency filtering of birefringence images of human blood layers
NASA Astrophysics Data System (ADS)
Ushenko, A. G.; Boychuk, T. M.; Mincer, O. P.; Angelsky, P. O.; Bodnar, N. B.; Oleinichenko, B. P.; Bizer, L. I.
2013-09-01
Among various opticophysical methods [1 - 3] of diagnosing the structure and properties of the optical anisotropic component of various biological objects a specific trend has been singled out - multidimensional laser polarimetry of microscopic images of the biological tissues with the following statistic, correlative and fractal analysis of the coordinate distributions of the azimuths and ellipticity of polarization in approximating of linear birefringence polycrystalline protein networks [4 - 10]. At the same time, in most cases, experimental obtaining of tissue sample is a traumatic biopsy operation. In addition, the mechanisms of transformation of the state of polarization of laser radiation by means of the opticoanisotropic biological structures are more varied (optical dichroism, circular birefringence). Hereat, real polycrystalline networks can be formed by different types, both in size and optical properties of biological crystals. Finally, much more accessible for an experimental investigation are biological fluids such as blood, bile, urine, and others. Thus, further progress of laser polarimetry can be associated with the development of new methods of analysis and processing (selection) of polarization- heterogeneous images of biological tissues and fluids, taking into account a wider set of mechanisms anisotropic mechanisms. Our research is aimed at developing experimental method of the Fourier polarimetry and a spatialfrequency selection for distributions of the azimuth and the ellipticity polarization of blood plasma laser images with a view of diagnosing prostate cancer.
NASA Astrophysics Data System (ADS)
Mattolat, C.; Rothe, S.; Schwellnus, F.; Gottwald, T.; Raeder, S.; Wendt, K.
2009-03-01
On-line production facilities for radioactive isotopes nowadays heavily rely on resonance ionization laser ion sources due to their demonstrated unsurpassed efficiency and elemental selectivity. Powerful high repetition rate tunable pulsed dye or Ti:sapphire lasers can be used for this purpose. To counteract limitations of short pulse pump lasers, as needed for dye laser pumping, i.e. copper vapor lasers, which include high maintenance and nevertheless often only imperfect reliability, an all-solid-state Nd:YAG pumped Ti:sapphire laser system has been constructed. This could complement or even replace dye laser systems, eliminating their disadvantages but on the other hand introduce shortcomings on the side of the available wavelength range. Pros and cons of these developments will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berns, M.W.
These proceedings collect papers on laser biomedicine. Topics include: light distributions on tissue; chemical byproducts of laser/tissue interactions; laser applications in ophthalmology; phododynamic therapy; diode pumped solid state lasers at two and three micrometers; and applications of excimer lasers to peripheral nerve repair.
Enabling lunar and space missions by laser power transmission
NASA Technical Reports Server (NTRS)
Deyoung, R. J.; Nealy, J. E.; Humes, D. H.; Meador, W. E.
1992-01-01
Applications are proposed for laser power transmission on the Moon. A solar-pumped laser in lunar orbit would beam power to the lunar surface for conversion into either electricity or propulsion needs. For example, lunar rovers could be much more flexible and lighter than rovers using other primary power sources. Also, laser power could be absorbed by lunar soil to create a hard glassy surface for dust-free roadways and launch pads. Laser power could also be used to power small lunar rockets or orbital transfer vehicles, and finally, photovoltaic laser converters could power remote excavation vehicles and human habitats. Laser power transmission is shown to be a highly flexible, enabling primary power source for lunar missions.
NASA Astrophysics Data System (ADS)
Korenev, V. V.; Savelyev, A. V.; Zhukov, A. E.; Omelchenko, A. V.; Maximov, M. V.; Shernyakov, Yu. M.
2012-06-01
The theoretical investigation of the double-state lasing phenomena in InAs/InGaAs quantum dot lasers has been carried out. The new mechanism of the ground-state lasing quenching, which takes place in quantum dot (QD) laser operating in double-state lasing regime at high pump level, was proposed. The difference between electron and hole capture rates causes the depletion of the hole levels and consequently leads to the decrease of an output lasing power via QD ground state with the growth of injection. Moreover, it was shown that the hole-to-electron capture rates ratio strongly affects both the light-current curve and the key laser parameters. The model of the simultaneous lasing through the ground and excited QD states was developed which allows to describe the observed quenching quantitatively.
Studies of new media radiation induced laser. Final Report, 1 February 1979-30 April 1984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, K.S.; Shiu, Y.J.; Raju, S.R.
Various lasants were investigated especially, 2-iodohepafluoropropane (i-C3F7I) for the direct solar pumped lasers. Optical pumping of iodine laser was achieved using a small flashlamp. Using i-C3F7I as a laser gain medium, threshold inversion density, small signal gain, and laser performance at the elevated temperature were measured. The experimental results and analysis are presented. The iodine laser kinetics of the C3F7I and IBr system were numerically simulated. The concept of a direct solar-pumped laser amplifier using (i-C3F7I) as the laser material was evaluated and several kinetic coefficients for i-C3F7I laser system were reexamined. The results are discussed.
NASA Astrophysics Data System (ADS)
Tsai, Ko-Fan; Chu, Shu-Chun
2018-03-01
This study proposes a complete and unified method for selective excitation of any specified nearly nondiffracting Helmholtz-Gauss (HzG) beam in end-pumped solid-state digital lasers. Four types of the HzG beams: cosine-Gauss beams, Bessel-Gauss beams, Mathieu-Gauss beams, and, in particular, parabolic-Gauss beams are successfully demonstrated to be generated with the proposed methods. To the best of the authors’ knowledge, parabolic-Gauss beams have not yet been directly generated from any kind of laser system. The numerical results of this study show that one can successfully achieve any lasing HzG beams directly from the solid-state digital lasers with only added control of the laser gain transverse position provided by off-axis end pumping. This study also presents a practical digital laser set-up for easily manipulating off-axis pumping in order to achieve the control of the laser gain transverse gain position in digital lasers. The reported results in this study provide advancement of digital lasers in dynamically generating nondiffracting beams. The control of the digital laser cavity gain position creates the possibility of achieving real-time selection of more laser modes in digital lasers, and it is worth further investigation in the future.
Tunable solid-state lasers - An emerging technology for remote sensing of planetary atmospheres
NASA Technical Reports Server (NTRS)
Barnes, Norman P.; Allario, Frank
1988-01-01
The present development status and prospective (1990s) performance-improvement evaluation of tunable solid-state laser technology notes recent trends toward spectrum coverage over the 0.20-14.0 microns range, in addition to dramatic increases in efficiency, service life, and reliability. It is judged that the Ti:Al2O3 laser and the AgGaSe2 optical parametric oscillator pumped by a Ho:YAG laser could cover the near-IR and mid-IR regions of the spectrum. Laser diodes operating at 0.78 microns should provide an excellent pump for a Ho:YAG laser.
Solid-state lasers for coherent communication and remote sensing
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1991-01-01
Work in the stabilization of monolithic Nd:YAG lasers and the application of these lasers to nonlinear optical frequency conversion is discussed. The intrinsic stability of semiconductor diode laser pumped solid state lasers has facilitated a number of demonstration in external resonant cavity harmonic generation and stable optical parametric oscillation. Relative laser frequency stabilization of 0.3 Hz was achieved, and absolute stability of a few hundred hertz is anticipated. The challenge is now to reproduce this frequency stability in the output of tunable nonlinear optical devices. Theoretical and experimental work toward this goal are continuing.
EFFECTS OF LASER RADIATION ON MATTER: Spectrum of the barium atom in a laser radiation field
NASA Astrophysics Data System (ADS)
Bondar', I. I.; Suran, V. V.
1990-08-01
An experimental investigation was made of the influence of a laser radiation field on the spectrum of barium atoms. The investigation was carried out by the method of three-photon ionization spectroscopy using dye laser radiation (ω = 14 800-18 700 cm - 1). The electric field intensity of the laser radiation was 103-106 V/cm. This laser radiation field had a strong influence on a number of bound and autoionizing states. The nature of this influence depended on the ratio of the excitation frequencies of bound and autoionizing states.
NASA Astrophysics Data System (ADS)
Brennan, Kevin F.
1999-02-01
Modern fabrication techniques have made it possible to produce semiconductor devices whose dimensions are so small that quantum mechanical effects dominate their behavior. This book describes the key elements of quantum mechanics, statistical mechanics, and solid-state physics that are necessary in understanding these modern semiconductor devices. The author begins with a review of elementary quantum mechanics, and then describes more advanced topics, such as multiple quantum wells. He then disusses equilibrium and nonequilibrium statistical mechanics. Following this introduction, he provides a thorough treatment of solid-state physics, covering electron motion in periodic potentials, electron-phonon interaction, and recombination processes. The final four chapters deal exclusively with real devices, such as semiconductor lasers, photodiodes, flat panel displays, and MOSFETs. The book contains many homework exercises and is suitable as a textbook for electrical engineering, materials science, or physics students taking courses in solid-state device physics. It will also be a valuable reference for practicing engineers in optoelectronics and related areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, S.; Wang, K.; Layton, E.
In this paper we accomplish three goals. First, we present new nonperturbative results of complex quasi-energies (shifts and widths) for several low-lying excited states of atomic H in strong fields, using the {ital L}{sup 2} non-Hermitian Floquet matrix technique. Second, we present a new nonperturbative {ital L}{sup 2} technique for the treatment of ac Stark shifts of arbitrary excited states. We found that all the Rydberg states in weak fields are upshifted and closely follow the quadratic field dependence described by the ponderomotive potential {ital e}{sup 2}{ital F}{sup 2}/4{ital mgw}{sup 2}. Large deviation from the ponderomotive shift and intricate level-shiftmore » behaviors, however, occur in strong fields. Finally, we present a classical nonperturbative treatment of the electronic motion in intense laser fields. We show that the spectral analysis of classical trajectories can provide detailed insights regarding the mechanisms responsible for the multiple-harmonic generation recently observed in high-intensity experiments.« less
Ramazani, Mohsen; Asnaashari, Mohammad; Ahmadi, Roghayyeh; Zarenejad, Nafiseh; Rafie, Alireza; Yazadani Charati, Jamshid
2018-01-01
This in vitro study aimed at comparing the effect of agitating the final irrigant solutions of root canal by ultrasonic or using 808 nm Diode laser on the apical seal of canal. A total of 90 extracted human maxillary central incisors were prepared up to size #45 and were randomly assigned to 4 experimental groups ( n =20) and two control groups ( n =5) respectively, as follows: I ): 3 mL of 5.25% NaOCl was agitated as final irrigant solution with ultrasonic for 30 sec. The ultrasonic tip was 1 mm shorter than the working length, II ): 3 mL of 5.25% NaOCl was agitated as final irrigant with 808 nm Diode laser for 30 sec. Fiber tip, placed in 1 mm shorter from working length was spirally moved coronally, III ): 3 mL of 17% EDTA was agitated as final irrigant with 808 nm Diode laser for 30 sec and was applied similar to group II, IV ): 3 mL of 17% EDTA was stimulated as final irrigant with ultrasonic for 30 sec and was applied similar to I. Apical seal was assessed by Dual Chamber technique using Bovine Serum Albumin protein. Kruskal-Wallis and Mann Whitney tests were used with significance level lower than 0.05% for statistical analysis. The average leakage in the negative control, positive control, and groups I, II, III, IV were: 0.00, 13.5±5.1, 1.72±2.9, 5.12±5.6, 3.36±3.7, 2.4±4.2, respectively. Statistical analysis showed significant difference between groups ( P <0.05). There was a significant difference between groups 1 and 2 in terms of protein leakage . Agitating 5.25% sodium hypochlorite solution as the final irrigant with ultrasonic is more effective in apical leakage reduction compared to other groups.
McKenzie, A L
1984-01-01
As the sales of surgical lasers continue to grow, the problem of laser safety in hospitals becomes increasingly more urgent. This article considers both the principles and the practice of laser safety, and indicates how safety codes should be organized within a hospital. Eye safety is of paramount importance, and the effects of different wavelengths of laser radiation on the eye are described, both for intrabeam and extended-source exposure. An account is given of the concept of Maximum Permissible Exposure (MPE) and how it depends upon wavelength and exposure duration. The standard laser classification is developed in relation to MPE. The use of laser protective eyewear is discussed for the surgeon, other theatre staff and the patient. Finally, the role of the Laser Protection Supervisor and of the Laser Protection Adviser are explained in the context of establishing a local laser safety code.
Optofluidic lasers and their applications in bioanalysis (Conference Presentation)
NASA Astrophysics Data System (ADS)
Fan, Xudong
2016-03-01
The optofluidic laser is an emerging technology that integrates microfluidics, miniaturized laser cavity, and laser gain medium in liquid. It is unique due to its biocompatibility, thus can be used for unconventional bioanalysis, in which biointeraction or process takes place within the optical cavity mode volume. Rather than using fluorescence, the optofluidic laser based detection employs laser emission, i.e., stimulated emission, as the sensing signal, which takes advantage of optical amplification provided by the laser cavity to achieve much higher sensitivity. In this presentation, I will first introduce the concept of optofluidic laser based bioanalysis. Then I will discuss each of the three components (cavity, gain medium, and fluidics) of the optofluidic laser and describe how to use the optofluidic laser in bioanalysis at the molecular, cellular, and tissue level. Finally, I will discuss future research and application directions.
NASA Technical Reports Server (NTRS)
Wang, Charles P. (Editor)
1993-01-01
Papers from the conference are presented, and the topics covered include the following: x-ray lasers, excimer lasers, chemical lasers, high power lasers, blue-green lasers, dye lasers, solid state lasers, semiconductor lasers, gas and discharge lasers, carbon dioxide lasers, ultrafast phenomena, nonlinear optics, quantum optics, dynamic gratings and wave mixing, laser radar, lasers in medicine, optical filters and laser communication, optical techniques and instruments, laser material interaction, and industrial and manufacturing applications.
Experimental and numerical investigation on laser-assisted bending of pre-loaded metal plate
NASA Astrophysics Data System (ADS)
Nowak, Zdzisław; Nowak, Marcin; Widłaszewski, Jacek; Kurp, Piotr
2018-01-01
The laser forming technique has an important disadvantage, which is the limitation of plastic deformation generated by a single laser beam pass. To increase the plastic deformation it is possible to apply external forces in the laser forming process. In this paper, we investigate the influence of external pre-loads on the laser bending of steel plate. The pre-loads investigated generate bending towards the laser beam. The thermal, elastic-plastic analysis is performed using the commercial nonlinear finite element analysis package ABAQUS. The focus of the paper is to identify how this pattern of the pre-load influence the final bend angle of the plate.
Laser diode initiated detonators for space applications
NASA Technical Reports Server (NTRS)
Ewick, David W.; Graham, J. A.; Hawley, J. D.
1993-01-01
Ensign Bickford Aerospace Company (EBAC) has over ten years of experience in the design and development of laser ordnance systems. Recent efforts have focused on the development of laser diode ordnance systems for space applications. Because the laser initiated detonators contain only insensitive secondary explosives, a high degree of system safety is achieved. Typical performance characteristics of a laser diode initiated detonator are described in this paper, including all-fire level, function time, and output. A finite difference model used at EBAC to predict detonator performance, is described and calculated results are compared to experimental data. Finally, the use of statistically designed experiments to evaluate performance of laser initiated detonators is discussed.
Self-Mixing Thin-Slice Solid-State Laser Metrology
Otsuka, Kenju
2011-01-01
This paper reviews the dynamic effect of thin-slice solid-state lasers subjected to frequency-shifted optical feedback, which led to the discovery of the self-mixing modulation effect, and its applications to quantum-noise-limited versatile laser metrology systems with extreme optical sensitivity. PMID:22319406
Use of a novel tunable solid state disk laser as a diagnostic system for laser-induced fluorescence
NASA Astrophysics Data System (ADS)
Paa, Wolfgang; Triebel, Wolfgang
2004-09-01
An all solid state disk laser system-named "Advanced Disk Laser (ADL)" -particularly tailored for laser induced fluorescence (LIF) in combustion processes is presented. The system currently under development comprises an Yb:YAG-seedlaser and a regenerative amplifier. Both are based on the disk laser concept as a new laser architecture. This allows a tunable, compact, efficient diode pumped solid state laser (DPSSL) system with repetition rates in the kHz region. After frequency conversion to the UV-spectral region via third and fourth harmonics generation, this laser-due to its unique properties such as single-frequency operation, wavelength tuneability and excellent beam profile-is well suited for excitation of small molecules such as formaldehyde, OH, NO or O2, which are characteristic for combustion processes. Using the method of planar laser induced fluorescence (PLIF) we observed concentration distributions of formaldehyde in cool and hot flames of a specially designed diethyl-ether burner. The images recorded with 1 kHz repetition rate allow visualizing the distribution of formaldehyde on a 1 ms time scale. This demonstrates for the first time the usability of this novel laser for LIF measurements and is the first step towards integration of the ADL into capsules for drop towers and the international space station.
2015-07-16
SECURITY CLASSIFICATION OF: The InAs quantum dot (QD) grown on GaAs substrates represents a highly performance active region in the 1 - 1.3 µm...2015 Approved for Public Release; Distribution Unlimited Final Report: Mode-locking of an InAs Quantum Dot Based Vertical External Cavity Surface...ABSTRACT Final Report: Mode-locking of an InAs Quantum Dot Based Vertical External Cavity Surface Emitting Laser Using Atomic Layer Graphene Report
Raman-laser spectroscopy of Wannier-Stark states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tackmann, G.; Pelle, B.; Hilico, A.
2011-12-15
Raman lasers are used as a spectroscopic probe of the state of atoms confined in a shallow one-dimensional (1D) vertical lattice. For sufficiently long laser pulses, resolved transitions in the bottom band of the lattice between Wannier Stark states corresponding to neighboring wells are observed. Couplings between such states are measured as a function of the lattice laser intensity and compared to theoretical predictions, from which the lattice depth can be extracted. Limits to the linewidth of these transitions are investigated. Transitions to higher bands can also be induced, as well as between transverse states for tilted Raman beams. Allmore » these features allow for a precise characterization of the trapping potential and for an efficient control of the atomic external degrees of freedom.« less
Advanced 2-micron Solid-state Laser for Wind and CO2 Lidar Applications
NASA Technical Reports Server (NTRS)
Yu, Jirong; Trieu, Bo C.; Petros, Mulugeta; Bai, Yingxin; Petzar, Paul J.; Koch, Grady J.; Singh, Upendra N.; Kavaya, Michael J.
2006-01-01
Significant advancements in the 2-micron laser development have been made recently. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. The world record 2-micron laser energy is demonstrated with an oscillator and two amplifiers system. It generates more than one joule per pulse energy with excellent beam quality. Based on the successful demonstration of a fully conductive cooled oscillator by using heat pipe technology, an improved fully conductively cooled 2-micron amplifier was designed, manufactured and integrated. It virtually eliminates the running coolant to increase the overall system efficiency and reliability. In addition to technology development and demonstration, a compact and engineering hardened 2-micron laser is under development. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser is expected to be integrated to a lidar system and take field measurements. The recent achievements push forward the readiness of such a laser system for space lidar applications. This paper will review the developments of the state-of-the-art solid-state 2-micron laser.
Method and system for compact, multi-pass pulsed laser amplifier
Erlandson, Alvin Charles
2014-11-25
A laser amplifier includes an input aperture operable to receive laser radiation having a first polarization, an output aperture coupled to the input aperture by an optical path, and a polarizer disposed along an optical path. A transmission axis of the polarizer is aligned with the first polarization. The laser amplifier also includes n optical switch disposed along the optical path. The optical switch is operable to pass the laser radiation when operated in a first state and to reflect the laser radiation when operated in a second state. The laser amplifier further includes an optical gain element disposed along the optical path and a polarization rotation device disposed along the optical path.
Two-temperature Brownian dynamics of a particle in a confining potential
NASA Astrophysics Data System (ADS)
Mancois, Vincent; Marcos, Bruno; Viot, Pascal; Wilkowski, David
2018-05-01
We consider the two-dimensional motion of a particle in a confining potential, subject to Brownian orthogonal forces associated with two different temperatures. Exact solutions are obtained for an asymmetric harmonic potential in the overdamped and underdamped regimes. For more general confining potentials, a perturbative approach shows that the stationary state exhibits some universal properties. The nonequilibrium stationary state is characterized with a nonzero orthoradial mean current, corresponding to a global rotation of the particle around the center. The rotation is due to two broken symmetries: two different temperatures and a mismatch between the principal axes of the confining asymmetric potential and the temperature axes. We confirm our predictions by performing a Brownian dynamics simulation. Finally, we propose to observe this effect on a laser-cooled atomic gas.
Influence of amorphous structure on polymorphism in vanadia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, Kevin H.; Schelhas, Laura T.; Garten, Lauren M.
Normally we think of the glassy state as a single phase and therefore crystallization from chemically identical amorphous precursors should be identical. Here we show that the local structure of an amorphous precursor is distinct depending on the initial deposition conditions, resulting in significant differences in the final state material. Using grazing incidence total x-ray scattering, we have determined the local structure in amorphous thin films of vanadium oxide grown under different conditions using pulsed laser deposition (PLD). Here we show that the subsequent crystallization of films deposited using different initial PLD conditions result in the formation of different polymorphsmore » of VO 2. Ultimately this suggests the possibility of controlling the formation of metastable polymorphs by tuning the initial amorphous structure to different formation pathways.« less
Influence of amorphous structure on polymorphism in vanadia
Stone, Kevin H.; Schelhas, Laura T.; Garten, Lauren M.; ...
2016-07-13
Normally we think of the glassy state as a single phase and therefore crystallization from chemically identical amorphous precursors should be identical. Here we show that the local structure of an amorphous precursor is distinct depending on the initial deposition conditions, resulting in significant differences in the final state material. Using grazing incidence total x-ray scattering, we have determined the local structure in amorphous thin films of vanadium oxide grown under different conditions using pulsed laser deposition (PLD). Here we show that the subsequent crystallization of films deposited using different initial PLD conditions result in the formation of different polymorphsmore » of VO 2. Ultimately this suggests the possibility of controlling the formation of metastable polymorphs by tuning the initial amorphous structure to different formation pathways.« less
2005-06-21
266-nm, l-,W, 500-ps laser pulse from a frequency-quadrupled Nd:YAG microchip laser operating at 10 kHz. Fluorescence and elastic scattering from the...on Solid State Research xv Organization xxiii QUANTUM ELECTRONICS 1.1 Fluorescence-Cued Laser -Induced Breakdown Spectroscopy Detection of Bioaerosols...2. ELECTRO-OfI’ICAL MATERIALS AND DEVICES 2.1 Narrow-Linewidth, High-Power 1556-nm Slab-Coupled Optical Waveguide External-Cavity Laser 7 3
Ternovoĭ, K S; Kryzhanovskiĭ, G N; Musiĭchuk, Iu I; Noskin, L A; Klopov, N V; Noskin, V A; Starodub, N F
1998-01-01
The usage of laser correlation spectroscopy for verification of preclinical and clinical states is substantiated. Developed "semiotic" classifier for solving the problems of preclinical and clinical states is presented. The substantiation of biological algorithms as well as the mathematical support and software for the proposed classifier for the data of laser correlation spectroscopy of blood plasma are presented.
Highly Efficient Nd:yag Lasers for Free-space Optical Communications
NASA Technical Reports Server (NTRS)
Sipes, D. L., Jr.
1985-01-01
A highly efficient Nd:YAG laser end-pumped by semiconductor lasers as a possible free-space optical communications source is discussed. Because this concept affords high pumping densities, a long absorption length, and excellent mode-matching characteristics, it is estimated that electrical-to-optical efficiencies greater than 5% could be achieved. Several engineering aspects such as resonator size and configuration, pump collecting optics, and thermal effects are also discussed. Finally, possible methods for combining laser-diode pumps to achieve higher output powers are illustrated.
Optically Pumped Atomic Rubidium Lasers: Two-Photon and Exciplex Excitation Mechanisms
2013-06-01
gain is very high with photon build-up times of 1−3.7 ns. Laser induced heating and subsequent condensation of alkali vapor in the heat pipe...encouragement during our time in classes, and recommendations while in the lab were invaluable. Finally, I want to thank the High Energy Laser Joint...intensity. The more non-traditional method is to use a single laser pulse to sketch out all needed energies. A photon build-up time was determined from
Model of the final borehole geometry for helical laser drilling
NASA Astrophysics Data System (ADS)
Kroschel, Alexander; Michalowski, Andreas; Graf, Thomas
2018-05-01
A model for predicting the borehole geometry for laser drilling is presented based on the calculation of a surface of constant absorbed fluence. It is applicable to helical drilling of through-holes with ultrashort laser pulses. The threshold fluence describing the borehole surface is fitted for best agreement with experimental data in the form of cross-sections of through-holes of different shapes and sizes in stainless steel samples. The fitted value is similar to ablation threshold fluence values reported for laser ablation models.
Filamentation due to the Weibel instability in two counterstreaming laser ablated plasmas
Dong, Quan -Li; Yuan, Dawei; Gao, Lan; ...
2016-05-01
Weibel-type filamentation instability was observed in the interaction of two counter streaming laser ablated plasma flows, which were supersonic, collisionless, and closely relevant to astrophysical conditions. The plasma flows were created by irradiating a pair of oppositely standing plastic (CH) foils with 1ns-pulsed laser beams of total energy of 1.7 kJ in two laser spots. Finally, with characteristics diagnosed in experiments, the calculated features of Weibel-type filaments are in good agreement with measurements.
Nanocrystal waveguide (NOW) laser
Simpson, John T.; Simpson, Marcus L.; Withrow, Stephen P.; White, Clark W.; Jaiswal, Supriya L.
2005-02-08
A solid state laser includes an optical waveguide and a laser cavity including at least one subwavelength mirror disposed in or on the optical waveguide. A plurality of photoluminescent nanocrystals are disposed in the laser cavity. The reflective subwavelength mirror can be a pair of subwavelength resonant gratings (SWG), a pair of photonic crystal structures (PC), or a distributed feedback structure. In the case of a pair of mirrors, a PC which is substantially transmissive at an operating wavelength of the laser can be disposed in the laser cavity between the subwavelength mirrors to improve the mode structure, coherence and overall efficiency of the laser. A method for forming a solid state laser includes the steps of providing an optical waveguide, creating a laser cavity in the optical waveguide by disposing at least one subwavelength mirror on or in the waveguide, and positioning a plurality of photoluminescent nanocrystals in the laser cavity.
2012-03-22
10 4. Three level energy diagram of an OPAL . N0 is a ground S1/2 state, and N1 and N2 are the 2P1/2 and 2P3/2 states, respectively...refer to these lasers by the more general term, OPAL for Optically-Pumped Alkali Laser. An OPAL is a three level laser where the ground state , N0, is...contains the buffer gas and alkali metal vapor. The temperature of OPAL lasers is typically in the range of 90 to 130 ◦C which amounts to a density of about
Final EDP Ti: sapphire amplifiers for ELI project
NASA Astrophysics Data System (ADS)
Chvykov, Vladimir; Kalashnikov, Mikhail; Osvay, Károly
2015-05-01
Recently several ultrahigh intensity Chirped Pulse Amplification (CPA) laser systems have reached petawatt output powers [1, 2] setting the next milestone at tens or even hundreds petawatts for the next three to ten years [3, 4]. These remarkable results were reached when laser amplifiers (opposite to Optical Parametric Amplification (OPA) [5]) were used as final ones and from them Ti:Sapphire crystals supposed to be the working horses as well in the future design of these laser systems. Nevertheless, the main limitation that arises on the path toward ultrahigh output power and intensity is the restriction on the pumping and extraction energy imposed by Transverse Amplified Spontaneous Emission (TASE) [6] and/or transverse parasitic generation (TPG) [7] within the large aperture of the disc-shape amplifier volume.
Ben, Shuai; Wang, Tian; Xu, Tongtong; Guo, Jing; Liu, Xueshen
2016-04-04
The carrier-envelop-phase (CEP) dependence of nonsequential double ionization (NSDI) of atomic Ar with few-cycle elliptically polarized laser pulse is investigated using 2D classical ensemble method. We distinguish two particular recollision channels in NSDI, which are recollision-impact ionization (RII) and recollision-induced excitation with subsequent ionization (RESI). We separate the RII and RESI channels according to the delay time between recollision and final double ionization. By tracing the history of the trajectories, we find the electron correlation spectra as well as the competition between the two channels are sensitively dependent on the laser field CEP. Finally, control can be achieved between the two channels by varying the CEP.
Extreme plasma states in laser-governed vacuum breakdown.
Efimenko, Evgeny S; Bashinov, Aleksei V; Bastrakov, Sergei I; Gonoskov, Arkady A; Muraviev, Alexander A; Meyerov, Iosif B; Kim, Arkady V; Sergeev, Alexander M
2018-02-05
Triggering vacuum breakdown at laser facility is expected to provide rapid electron-positron pair production for studies in laboratory astrophysics and fundamental physics. However, the density of the produced plasma may cease to increase at a relativistic critical density, when the plasma becomes opaque. Here, we identify the opportunity of breaking this limit using optimal beam configuration of petawatt-class lasers. Tightly focused laser fields allow generating plasma in a small focal volume much less than λ 3 and creating extreme plasma states in terms of density and produced currents. These states can be regarded to be a new object of nonlinear plasma physics. Using 3D QED-PIC simulations we demonstrate a possibility of reaching densities over 10 25 cm -3 , which is an order of magnitude higher than expected earlier. Controlling the process via initial target parameters provides an opportunity to reach the discovered plasma states at the upcoming laser facilities.
Piccardo, Marco; Chevalier, Paul; Mansuripur, Tobias S; Kazakov, Dmitry; Wang, Yongrui; Rubin, Noah A; Meadowcroft, Lauren; Belyanin, Alexey; Capasso, Federico
2018-04-16
The recently discovered ability of the quantum cascade laser to produce a harmonic frequency comb has attracted new interest in these devices for both applications and fundamental laser physics. In this review we present an extensive experimental phenomenology of the harmonic state, including its appearance in mid-infrared and terahertz quantum cascade lasers, studies of its destabilization induced by delayed optical feedback, and the assessment of its frequency comb nature. A theoretical model explaining its origin as due to the mutual interaction of population gratings and population pulsations inside the laser cavity will be described. We explore different approaches to control the spacing of the harmonic state, such as optical injection seeding and variation of the device temperature. Prospective applications of the harmonic state include microwave and terahertz generation, picosecond pulse generation in the mid-infrared, and broadband spectroscopy.
Advancement of High Power Quasi-CW Laser Diode Arrays For Space-based Laser Instruments
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Meadows, Byron L.; Baker, nathaniel R.; Baggott, Renee S.; Singh, Upendra N.; Kavaya, Michael J.
2004-01-01
Space-based laser and lidar instruments play an important role in NASA s plans for meeting its objectives in both Earth Science and Space Exploration areas. Almost all the lidar instrument concepts being considered by NASA scientist utilize moderate to high power diode-pumped solid state lasers as their transmitter source. Perhaps the most critical component of any solid state laser system is its pump laser diode array which essentially dictates instrument efficiency, reliability and lifetime. For this reason, premature failures and rapid degradation of high power laser diode arrays that have been experienced by laser system designers are of major concern to NASA. This work addresses these reliability and lifetime issues by attempting to eliminate the causes of failures and developing methods for screening laser diode arrays and qualifying them for operation in space.
Passively Q-switched Nd3+ solid-state lasers with antimonene as saturable absorber.
Wang, Mengixa; Zhang, Fang; Wang, Zhengping; Wu, Zhixin; Xu, Xinguang
2018-02-19
Based on the saturable absorption feature of a two-dimensional (2D) nano-material, antimonene, the passively Q-switched operation for solid-state laser was realized for the first time. For the 946 and 1064 nm laser emissions of the Nd:YAG crystal, the Q-switched pulse widths were 209 and 129 ns, and the peak powers were 1.48, 1.77 W, respectively. For the 1342 nm laser emission of the Nd:YVO 4 crystal, the Q-switched pulse width was 48 ns, giving a peak power of 28.17 W. Our research shows that antimonene can be used as a stable, broadband optical modulating device for a solid-state laser, which will be particularly effective for long wavelength operation.
Ultrafast Pulse Sequencing for Fast Projective Measurements of Atomic Hyperfine Qubits
NASA Astrophysics Data System (ADS)
Ip, Michael; Ransford, Anthony; Campbell, Wesley
2015-05-01
Projective readout of quantum information stored in atomic hyperfine structure typically uses state-dependent CW laser-induced fluorescence. This method requires an often sophisticated imaging system to spatially filter out the background CW laser light. We present an alternative approach that instead uses simple pulse sequences from a mode-locked laser to affect the same state-dependent excitations in less than 1 ns. The resulting atomic fluorescence occurs in the dark, allowing the placement of non-imaging detectors right next to the atom to improve the qubit state detection efficiency and speed. We also discuss methods of Doppler cooling with mode-locked lasers for trapped ions, where the creation of the necessary UV light is often difficult with CW lasers.
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Kavaya, Michael J.; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Modlin, Edward A.; Koch, Grady;
2010-01-01
Sustained research efforts at NASA Langley Research Center (LaRC) during last fifteen years have resulted in a significant advancement in 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurement from ground, air and space-borne platform. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.
NASA Technical Reports Server (NTRS)
Singh, Upendra N.
2011-01-01
Sustained research efforts at NASA Langley Research Center during last fifteen years have resulted in significant advancement of a 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurements from ground, air and space-borne platforms. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.
Inkjet-printed vertically emitting solid-state organic lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mhibik, Oussama; Chénais, Sébastien; Forget, Sébastien
In this paper, we show that Inkjet Printing can be successfully applied to external-cavity vertically emitting thin-film organic lasers and can be used to generate a diffraction-limited output beam with an output energy as high as 33.6 μJ with a slope efficiency S of 34%. Laser emission shows to be continuously tunable from 570 to 670 nm using an intracavity polymer-based Fabry-Perot etalon. High-optical quality films with several μm thicknesses are realized, thanks to ink-jet printing. We introduce a new optical material where EMD6415 commercial ink constitutes the optical host matrix and exhibits a refractive index of 1.5 and an absorption coefficientmore » of 0.66 cm{sup −1} at 550–680 nm. Standard laser dyes like Pyrromethene 597 and Rhodamine 640 are incorporated in solution to the EMD6415 ink. Such large size “printed pixels” of 50 mm{sup 2} present uniform and flat surfaces, with roughness measured as low as 1.5 nm in different locations of a 50 μm × 50 μm AFM scan. Finally, as the gain capsules fabricated by Inkjet printing are simple and do not incorporate any tuning or cavity element, they are simple to make, have a negligible fabrication cost, and can be used as fully disposable items. This work opens the way towards the fabrication of really low-cost tunable visible lasers with an affordable technology that has the potential to be widely disseminated.« less
UV diode-pumped solid state laser for medical applications
NASA Astrophysics Data System (ADS)
Apollonov, Victor V.; Konstantinov, K. V.; Sirotkin, A. A.
1999-07-01
A compact, solid-state, high-efficiency, and safe UV laser medical system with optical fiber output was created for treatment of destructive forms of pulmonary tuberculosis. A frequency-quadruped quasi-CW Nd:YVO4 laser system pumped by laser-diode array is investigated with various resonator configurations. A longitudinal end-pumping scheme was used in a compact acousto-optical Q-switched laser for producing stable pulses of UV radiation at the repetition frequency 10-20 kHz and the duration 7-10 ns with the fiber-guide output power exceeding 10 mW.
High-power pulse repetitive HF(DF) laser with a solid-state pump generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velikanov, S D; Domazhirov, A P; Zaretskiy, N A
2015-11-30
Operation of a repetitively pulsed electric-discharge HF(DF) laser with an all-solid-state pump generator based on FID switches is demonstrated. The energy stored in the pump generator capacitors was 880 J at an open-circuit voltage of 240 kV and a discharge pulse repetition rate of 25 Hz. The specific energy extractions were 3.8 and 3.4 J L{sup -1} for the HF and DF lasers, respectively. The possibilities of improving the output laser characteristics are discussed. (lasers)
Small lasers in flow cytometry.
Telford, William G
2004-01-01
Laser technology has made tremendous advances in recent years, particularly in the area of diode and diode-pumped solid state sources. Flow cytometry has been a direct beneficiary of these advances, as these small, low-maintenance, inexpensive lasers with reasonable power outputs are integrated into flow cytometers. In this chapter we review the contribution and potential of solid-state lasers to flow cytometry, and show several examples of these novel sources integrated into production flow cytometers. Technical details and critical parameters for successful application of these lasers for biomedical analysis are reviewed.
Bubbling in delay-coupled lasers.
Flunkert, V; D'Huys, O; Danckaert, J; Fischer, I; Schöll, E
2009-06-01
We theoretically study chaos synchronization of two lasers which are delay coupled via an active or a passive relay. While the lasers are synchronized, their dynamics is identical to a single laser with delayed feedback for a passive relay and identical to two delay-coupled lasers for an active relay. Depending on the coupling parameters the system exhibits bubbling, i.e., noise-induced desynchronization, or on-off intermittency. We associate the desynchronization dynamics in the coherence collapse and low-frequency fluctuation regimes with the transverse instability of some of the compound cavity's antimodes. Finally, we demonstrate how, by using an active relay, bubbling can be suppressed.
Optical trapping gold nanoparticles by a pulse laser
NASA Astrophysics Data System (ADS)
Liu, XiaoYu; Wang, Feng
2010-11-01
Gold nanoparticles are widely employed in nanomaterials, nanobiotechnology and health care, but generally they are considered difficult to trap stably. Compared with the continuous laser which is popular to the optical trapping, pulse laser has a relatively larger power in its work pulse, which is useful for trap particles. So this paper comprehensively analyzes the forces (the radiation forces, the gravitation, and the Brownian motion) on the gold nanoparticles in the optical tweezers formed by a pulse laser, through building up a mathematical model. Finally gets the dependence relation between the characteristics of the pulse laser and that of the gold nanoparticles.
Laser interferometric studies of thermal effects of diode-pumped solid state lasing medium
NASA Astrophysics Data System (ADS)
Peng, Xiaoyuan; Asundi, Anand K.; Xu, Lei; Chen, Yihong; Xiong, Zhengjun; Lim, Gnian Cher
2000-04-01
Thermal effects dramatically influence the laser performance of diode-pumped solid state lasers (DPSSL). There are three factors accounting for thermal effects in diode-pumped laser medium: the change of the refractive index due to temperature gradient, the change of the refractive index due to thermal stress, and the change of the physical length due to thermal expansion (end effect), in which the first two effects can be called as thermal parts. A laser interferometer is proposed to measure both the bulk and physical messages of solid-state lasing medium. There are two advantages of the laser interferometry to determine the thermal lensing effect. One is that it allows separating the average thermal lens into thermal parts and end effect. Another is that the laser interferometry provides a non- invasive, full field, high-resolution means of diagnosing such effects by measuring the optical path difference induced by thermal loading in a lasing crystal reliable without disturbing the normal working conditions of the DPSS laser. Relevant measurement results are presented in this paper.
Laser Program annual report 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Neal, E.M.; Murphy, P.W.; Canada, J.A.
1989-07-01
This report discusses the following topics: target design and experiments; target materials development; laboratory x-ray lasers; laser science and technology; high-average-power solid state lasers; and ICF applications studies.
Epitaxial corundum-VTiO 3 thin films grown on c-cut sapphire
Kramer, Alan; Sutter, Eli; Su, Dong; ...
2017-04-12
Corundum structured VTiO 3 has been grown as epitaxial films on c-cut sapphire by laser molecular beam epitaxy. The properties of the film were characterized by reflection high energy electron diffraction, x-ray diffraction, transmission electron microscopy, and photoemission spectroscopy. All the structural probes clearly indicate the corundum structure of the film. X-ray photoemission spectroscopy (XPS) indicates that V is in a 3+ charge state implying that Ti also needs to adopt a 3+ charge state in order for the corundum structure to form. However, the Ti-2p XPS, while clearly broadened to the lower binding energy side compared to TiO 2,more » also exhibits a pronounced Ti 4+ component. This is tentatively assigned to a final state effect in XPS measurements and not as the true cation state. In conclusion, the valence band spectra show occupation of 3d metal states that resemble more closely those of Ti 2O 3 than for V 2O 3, suggesting that only the a1g molecular states are occupied.« less
Laser Shot Peening Final Report CRADA No. TC-02059-03
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stuart, B. C.; Hackel, L.
This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and Metal Improvement Company, Inc. (MIC), to further develop the laser shot peening technology. This project had an emphasis on laser development and government and military applications including DOE’s natural gas and oil technology program (NGOTP), Yucca Mountain Project (YMP), F-22 Fighter, etc.
Laser-direct-drive program: Promise, challenge, and path forward
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, E. M.; Goncharov, V. N.; Sangster, T. C.
Along with laser-indirect (x-ray)-drive and magnetic-drive target concepts, laser direct drive is a viable approach to achieving ignition and gain with inertial confinement fusion. In the United States, a national program has been established to demonstrate and understand the physics of laser direct drive. The program utilizes the Omega Laser Facility to conduct implosion and coupling physics at the nominally 30-kJ scale and laser–plasma interaction and coupling physics at the MJ scale at the National Ignition Facility. This paper will discuss the motivation and challenges for laser direct drive and the broad-based program presently underway in the United States.
Laser-direct-drive program: Promise, challenge, and path forward
Campbell, E. M.; Goncharov, V. N.; Sangster, T. C.; ...
2017-03-19
Along with laser-indirect (x-ray)-drive and magnetic-drive target concepts, laser direct drive is a viable approach to achieving ignition and gain with inertial confinement fusion. In the United States, a national program has been established to demonstrate and understand the physics of laser direct drive. The program utilizes the Omega Laser Facility to conduct implosion and coupling physics at the nominally 30-kJ scale and laser–plasma interaction and coupling physics at the MJ scale at the National Ignition Facility. This paper will discuss the motivation and challenges for laser direct drive and the broad-based program presently underway in the United States.
Speckle reduction in laser projection using a dynamic deformable mirror.
Tran, Thi-Kim-Trinh; Chen, Xuyuan; Svensen, Øyvind; Akram, Muhammad Nadeem
2014-05-05
Despite of much effort and significant progress in recent years, speckle removal is still a challenge for laser projection technology. In this paper, speckle reduction by dynamic deformable mirror was investigated. Time varying independent speckle patterns were generated due to the angle diversity introduced by the dynamic mirror, and these speckle patterns were averaged out by the camera or human eyes, thus reducing speckle contrast in the final image. The speckle reduction by the wavelength diversity of the lasers was also studied. Both broadband lasers and narrowband laser were used for experiment. It is experimentally shown that speckle suppression can be attained by the widening of the spectrum of the lasers. Lower speckle contrast reduction was attained by the wavelength diversity for narrowband laser compared to the broadband lasers. This method of speckle reduction is suitable in laser projectors for wide screen applications where high power laser illumination is needed.
Duan, Yuwen; McKay, Aaron; Jovanovic, Nemanja; Ams, Martin; Marshall, Graham D; Steel, M J; Withford, Michael J
2013-07-29
We present a model for a Yb-doped distributed Bragg reflector (DBR) waveguide laser fabricated in phosphate glass using the femtosecond laser direct-write technique. The model gives emphasis to transverse integrals to investigate the energy distribution in a homogenously doped glass, which is an important feature of femtosecond laser inscribed waveguide lasers (WGLs). The model was validated with experiments comparing a DBR WGL and a fiber laser, and then used to study the influence of distributed rare earth dopants on the performance of such lasers. Approximately 15% of the pump power was absorbed by the doped "cladding" in the femtosecond laser inscribed Yb doped WGL case with the length of 9.8 mm. Finally, we used the model to determine the parameters that optimize the laser output such as the waveguide length, output coupler reflectivity and refractive index contrast.
Efficiency and threshold pump intensity of CW solar-pumped solid-state lasers
NASA Technical Reports Server (NTRS)
Hwang, In H.; Lee, Ja H.
1991-01-01
The authors consider the relation between the threshold pumping intensity, the material properties, the resonator parameters, and the ultimate slope efficiencies of various solid-state laser materials for solar pumping. They clarify the relation between the threshold pump intensity and the material parameters and the relation between the ultimate slope efficiency and the laser resonator parameters such that a design criterion for the solar-pumped solid-state laser can be established. Among the laser materials evaluated, alexandrite has the highest slope efficiency of about 12.6 percent; however, it does not seem to be practical for a solar-pumped laser application because of its high threshold pump intensity. Cr:Nd:GSGG is the most promising for solar-pumped lasing. Its threshold pump intensity is about 100 air-mass-zero (AM0) solar constants and its slope efficiency is about 12 percent when thermal deformation is completely prevented.
Simulation of Temperature Field Distribution for Cutting the Temperated Glass by Ultraviolet Laser
NASA Astrophysics Data System (ADS)
Yang, B. J.; He, Y. C.; Dai, F.; Lin, X. C.
2017-03-01
The finite element software ANSYS was adopted to simulate the temperature field distribution for laser cutting tempered glass, and the influence of different process parameters, including laser power, glass thickness and cutting speed, on temperature field distribution was studied in detail. The results show that the laser power has a greater influence on temperature field distribution than other paremeters, and when the laser power gets to 60W, the highest temperature reaches 749°C, which is higher than the glass softening temperature. It reflects the material near the laser spot is melted and the molten slag is removed by the high-energy water beam quickly. Finally, through the water guided laser cutting tempered glass experiment the FEM theoretical analysis was verified.
Multiple polarization states of vector soliton in fiber laser
NASA Astrophysics Data System (ADS)
Chen, Weicheng; Xu, Wencheng; Cao, Hui; Han, Dingan
2007-11-01
Vector soliton is obtained in erbium-doped fiber laser via nonlinear polarization rotation techniques. In experiment, we observe the every 4- and 7-pulse sinusoidal peak modulation. Temporal pulse sinusoidal peak modulation owes to evolution behavior of vector solitons in multiple polarization states. The polarizer in the laser modulates the mode-locked pulses with different polarization states into periodical pulse train intensities modulation. Moreover, the increasing pumping power lead to the appearance of the harmonic pulses and change the equivalent beat length to accelerate the polarization rotation. When the laser cavity length is the n-th multiple ratios to the beat length to maintain the mode-locking, the mode-locked vector soliton is in n-th multiple polarization states, exhibiting every n-pulse sinusoidal peak modulation.
Femtosecond solid-state laser based on a few-layered black phosphorus saturable absorber.
Su, Xiancui; Wang, Yiran; Zhang, Baitao; Zhao, Ruwei; Yang, Kejian; He, Jingliang; Hu, Qiangqiang; Jia, Zhitai; Tao, Xutang
2016-05-01
In this Letter, a high-quality, few-layered black phosphorus (BP) saturable absorber (SA) was fabricated successfully, and a femtosecond solid-state laser modulated by BP-SA was experimentally demonstrated for the first time, to the best of our knowledge. Pulses as short as 272 fs were achieved with an average output power of 0.82 W, corresponding to the pulse energy of 6.48 nJ and peak power of 23.8 MW. So far, these represent the shortest pulse duration and highest output power ever obtained with a BP-based mode-locked solid-state laser. The results indicate the promising potential of few-layered BP-SA for applications in solid-state femtosecond mode-locked lasers.
Two-photon excitation of 2,5-diphenyloxazole using a low power green solid state laser
NASA Astrophysics Data System (ADS)
Luchowski, Rafal
2011-01-01
This Letter concerns two-photon excitation of 2,5-diphenyloxazole (PPO) upon illumination from a pulsed 532 nm solid state laser, with an average power of 30 mW, and a repetition rate of 20 MHz. A very agreeable emission spectrum position and shape has been achieved for PPO receiving one- and two-photon excitation, which suggests that the same excited state is involved for both excitation modes. Also, a perfect quadratic dependence of laser power in the emission intensity function has been recorded. We tested the application of a small solid state green laser to two-photon induced time-resolved fluorescence, revealing the emission anisotropy of PPO to be considerably higher for two-photon than for one-photon excitation.
NASA Astrophysics Data System (ADS)
Tortschanoff, Andreas; Baumgart, Marcus; Kroupa, Gerhard
2017-12-01
Laser-induced breakdown spectroscopy (LIBS) technology holds the potential for onsite real-time measurements of steel products. However, for a mobile and robust LIBS measurement system, an adequate small and ruggedized laser source is a key requirement. In this contribution, we present tests with our compact high-power laser source, which, initially, was developed for ignition applications. The CTR HiPoLas® laser is a robust diode pumped solid-state laser with a passive Q-switch with dimensions of less than 10 cm3. The laser generates 2.5-ns pulses with 30 mJ at a maximum continuous repetition rate of about 30 Hz. Feasibility of LIBS experiments with the laser source was experimentally verified with steel samples. The results show that the laser with its current optical output parameters is very well-suited for LIBS measurements. We believe that the miniaturized laser presented here will enable very compact and robust portable high-performance LIBS systems.
Designing Birefringent Filters For Solid-State Lasers
NASA Technical Reports Server (NTRS)
Monosmith, Bryan
1992-01-01
Mathematical model enables design of filter assembly of birefringent plates as integral part of resonator cavity of tunable solid-state laser. Proper design treats polarization eigenstate of entire resonator as function of wavelength. Program includes software modules for variety of optical elements including Pockels cell, laser rod, quarter- and half-wave plates, Faraday rotator, and polarizers.
Angle-resolved molecular beam scattering of NO at the gas-liquid interface.
Zutz, Amelia; Nesbitt, David J
2017-08-07
This study presents first results on angle-resolved, inelastic collision dynamics of thermal and hyperthermal molecular beams of NO at gas-liquid interfaces. Specifically, a collimated incident beam of supersonically cooled NO ( 2 Π 1/2 , J = 0.5) is directed toward a series of low vapor pressure liquid surfaces ([bmim][Tf 2 N], squalane, and PFPE) at θ inc = 45(1)°, with the scattered molecules detected with quantum state resolution over a series of final angles (θ s = -60°, -30°, 0°, 30°, 45°, and 60°) via spatially filtered laser induced fluorescence. At low collision energies [E inc = 2.7(9) kcal/mol], the angle-resolved quantum state distributions reveal (i) cos(θ s ) probabilities for the scattered NO and (ii) electronic/rotational temperatures independent of final angle (θ s ), in support of a simple physical picture of angle independent sticking coefficients and all incident NO thermally accommodating on the surface. However, the observed electronic/rotational temperatures for NO scattering reveal cooling below the surface temperature (T elec < T rot < T S ) for all three liquids, indicating a significant dependence of the sticking coefficient on NO internal quantum state. Angle-resolved scattering at high collision energies [E inc = 20(2) kcal/mol] has also been explored, for which the NO scattering populations reveal angle-dependent dynamical branching between thermal desorption and impulsive scattering (IS) pathways that depend strongly on θ s . Characterization of the data in terms of the final angle, rotational state, spin-orbit electronic state, collision energy, and liquid permit new correlations to be revealed and investigated in detail. For example, the IS rotational distributions reveal an enhanced propensity for higher J/spin-orbit excited states scattered into near specular angles and thus hotter rotational/electronic distributions measured in the forward scattering direction. Even more surprisingly, the average NO scattering angle (⟨θ s ⟩) exhibits a remarkably strong correlation with final angular momentum, N, which implies a linear scaling between net forward scattering propensity and torque delivered to the NO projectile by the gas-liquid interface.
Angle-resolved molecular beam scattering of NO at the gas-liquid interface
NASA Astrophysics Data System (ADS)
Zutz, Amelia; Nesbitt, David J.
2017-08-01
This study presents first results on angle-resolved, inelastic collision dynamics of thermal and hyperthermal molecular beams of NO at gas-liquid interfaces. Specifically, a collimated incident beam of supersonically cooled NO (2 Π 1/2, J = 0.5) is directed toward a series of low vapor pressure liquid surfaces ([bmim][Tf2N], squalane, and PFPE) at θinc = 45(1)°, with the scattered molecules detected with quantum state resolution over a series of final angles (θs = -60°, -30°, 0°, 30°, 45°, and 60°) via spatially filtered laser induced fluorescence. At low collision energies [Einc = 2.7(9) kcal/mol], the angle-resolved quantum state distributions reveal (i) cos(θs) probabilities for the scattered NO and (ii) electronic/rotational temperatures independent of final angle (θs), in support of a simple physical picture of angle independent sticking coefficients and all incident NO thermally accommodating on the surface. However, the observed electronic/rotational temperatures for NO scattering reveal cooling below the surface temperature (Telec < Trot < TS) for all three liquids, indicating a significant dependence of the sticking coefficient on NO internal quantum state. Angle-resolved scattering at high collision energies [Einc = 20(2) kcal/mol] has also been explored, for which the NO scattering populations reveal angle-dependent dynamical branching between thermal desorption and impulsive scattering (IS) pathways that depend strongly on θs. Characterization of the data in terms of the final angle, rotational state, spin-orbit electronic state, collision energy, and liquid permit new correlations to be revealed and investigated in detail. For example, the IS rotational distributions reveal an enhanced propensity for higher J/spin-orbit excited states scattered into near specular angles and thus hotter rotational/electronic distributions measured in the forward scattering direction. Even more surprisingly, the average NO scattering angle (⟨θs⟩) exhibits a remarkably strong correlation with final angular momentum, N, which implies a linear scaling between net forward scattering propensity and torque delivered to the NO projectile by the gas-liquid interface.
Resonant intersubband polariton-LO phonon scattering in an optically pumped polaritonic device
NASA Astrophysics Data System (ADS)
Manceau, J.-M.; Tran, N.-L.; Biasiol, G.; Laurent, T.; Sagnes, I.; Beaudoin, G.; De Liberato, S.; Carusotto, I.; Colombelli, R.
2018-05-01
We report experimental evidence of longitudinal optical (LO) phonon-intersubband polariton scattering processes under resonant injection of light. The scattering process is resonant with both the initial (upper polariton) and final (lower polariton) states and is induced by the interaction of confined electrons with longitudinal optical phonons. The system is optically pumped with a mid-IR laser tuned between 1094 cm-1 and 1134 cm-1 (λ = 9.14 μm and λ = 8.82 μm). The demonstration is provided for both GaAs/AlGaAs and InGaAs/AlInAs doped quantum well systems whose intersubband plasmon lies at a wavelength of ≈10 μm. In addition to elucidating the microscopic mechanism of the polariton-phonon scattering, it is found to differ substantially from the standard single particle electron-LO phonon scattering mechanism, and this work constitutes an important step towards the hopefully forthcoming demonstration of an intersubband polariton laser.
A CANDLE for a deeper in vivo insight
Coupé, Pierrick; Munz, Martin; Manjón, Jose V; Ruthazer, Edward S; Louis Collins, D.
2012-01-01
A new Collaborative Approach for eNhanced Denoising under Low-light Excitation (CANDLE) is introduced for the processing of 3D laser scanning multiphoton microscopy images. CANDLE is designed to be robust for low signal-to-noise ratio (SNR) conditions typically encountered when imaging deep in scattering biological specimens. Based on an optimized non-local means filter involving the comparison of filtered patches, CANDLE locally adapts the amount of smoothing in order to deal with the noise inhomogeneity inherent to laser scanning fluorescence microscopy images. An extensive validation on synthetic data, images acquired on microspheres and in vivo images is presented. These experiments show that the CANDLE filter obtained competitive results compared to a state-of-the-art method and a locally adaptive optimized nonlocal means filter, especially under low SNR conditions (PSNR<8dB). Finally, the deeper imaging capabilities enabled by the proposed filter are demonstrated on deep tissue in vivo images of neurons and fine axonal processes in the Xenopus tadpole brain. PMID:22341767
Achievement of ultrahigh solar concentration with potential for efficient laser pumping.
Gleckman, P
1988-11-01
Measurements are reported of the irradiance produced by a two-stage solar concentrator designed to approach the thermodynamic limit. Sunlight is collected by a 40.6-cm diam parabolic primary which forms a 0.98-cm diam image. The image is reconcentrated by a nonimaging refracting secondary with index n = 1.53 to a final aperture 1.27 mm in diameter. Thus the geometrical concentration ratio is 102, 000. The highest irradiance value achieved was 4.4 +/- 0.2 kW cm(-2), or 56,000 +/- 5000 suns, relative to a solar disk insolation of 800 W m(-2). This is greater than the previous peak solar irradiance record by nearly a factor of 3, and it is 68% of that existing at the solar surface itself. The efficiency with which we concentrated 55 W of sunlight to a small spot suggests that our two-stage system would be an excellent candidate for solar pumping of solid state lasers.
Spin Observables for the ^3He(p,2p)^d_pn Proton Knockout Reaction at 497 MeV
NASA Astrophysics Data System (ADS)
Häusser, O.; Melconian, D.; Cummings, W. J.; Larson, B.; Lorenzon, W.; Brash, E. J.; Yen, S.; Walden, P.; Abegg, R.; Delheij, P. P. J.; Oelfke, U.; O'Donnell, J. M.; Roos, P. G.; Chant, N. S.; Epstein, M. B.; Aniol, K.; Rutt, P. M.
1997-10-01
Studies of the spin structure of ^3He are important and timely since ^3 He is used worldwide to investigate fundamental properties of the neutron. Unlike in previous (p,2p) knockout experiments, we were able to resolve the d and pn final states in the ^3He(p,2p) reaction using the two-arm magnetic spectrometer system DASS at TRIUMF. A cyclotron tune was developed to maintain the resolution of the 497 MeV proton beam at <= 0.7 MeV. The target consisted of 9 atm. ^3He gas, laser polarized to 70-80%. The spin observables A_000N, A_00N0 and A_00NN are compared to PWIA and DWIA calculations. A_00NN(d) is insensitive to distortion effects and provides a test of ^3He ground state wavefunctions [1-3]. The observables for the 3-body breakup channel are close to those for free (pp) scattering and provide information on small J=1 admixtures in the pn final state. 1. I.R. Afnan and N.D. Birrell, Phys. Rev. C16, 823 (1977). 2. Ch. Hajduk and P.U. Sauer, Nucl. Phys. A369, 321 (1981). 3. C. Ciofi degli Atti, E. Pace and G. Salme, Phys. Lett. B141, 14 (1984).
Miniature solid-state lasers for pointing, illumination, and warning devices
NASA Astrophysics Data System (ADS)
Brown, D. C.; Singley, J. M.; Yager, E.; Kowalewski, K.; Lotito, B.; Guelzow, J.; Hildreth, J.; Kuper, J. W.
2008-04-01
In this paper we review the current status of and progress towards higher power and more wavelength diverse diode-pumped solid-state miniature lasers. Snake Creek Lasers now offers unprecedented continuous wave (CW) output power from 9.0 mm and 5.6 mm TO type packages, including the smallest green laser in the world, the MicroGreen TM laser, and the highest density green laser in the world, the MiniGreen TM laser. In addition we offer an infrared laser, the MiniIR TM, operating at 1064 nm, and have just introduced a blue Mini laser operating at 473 nm in a 9.0 mm package. Recently we demonstrated over 1 W of output power at 1064 nm from a 12 mm TO type package, and green output power from 300-500 mW from the same 12 mm package. In addition, the company is developing a number of other innovative new miniature CW solid-state lasers operating at 750 nm, 820 nm, 458 nm, and an eye-safe Q-switched laser operating at 1550 nm. We also review recently demonstrated combining volume Bragg grating (VBG) technology has been combined with automatic power control (APC) to produce high power MiniGreen TM lasers whose output is constant to +/- 10 % over a wide temperature range, without the use of a thermoelectric cooler (TEC). This technology is expected to find widespread application in military and commercial applications where wide temperature operation is particularly important. It has immediate applications in laser pointers, illuminators, and laser flashlights, and displays.
Comparative research on medicine application with 0.53-um, 1.06-um, and 1.32-um Nd:YAG lasers
NASA Astrophysics Data System (ADS)
Li, Yahua; Li, Zhenjia; Zhu, Changhong; Huang, Yizhong
1996-09-01
Because of its high power and excellent optical features, laser has almost been applied to everywhere of medical research and clinic. Over the past several years, laser medical has achieved a rapid progress, and laser medical instruments has developed promptly, each new wavelength can be successfully applied in diagnostic and treatment of diseases. Among the medical lasers, Nd:YAG solid-state laser systems have proven useful in surgical use operate, such as neurosurgery, gastroenterology, cardioangiology, urology, gynecology, dermatology and ENT. As with other solid-state lasers, the Nd:YAG laser can be made to emit various wavelengths by means of suitable resonator configurations and some newest solid-state laser technology, pumped by the Krypton lamp, the Nd:YAG laser at room temperature exhibits transition at 1.06 micrometer Nd:YAG, using nonlinear crystal and Q-switch to double its frequency can attain 0.53 micrometer green beam. In our laser systems, the efficiency at 1.06 micrometer is more than 3 percent, an efficiency of 0.5 percent at 1.32 micrometer and 0.53 micrometer can be attained. For a power of 100w at 1.06 micrometer, 15w at 1.32 micrometer and 0.53 micrometer can therefore be produced. All of three kinds Nd:YAG laser hold these characteristics: high output power; optical fiber transition that can be cooperated with endoscope. The paper mainly discusses laser operating characteristics and clinic applications of three kinds wavelengths at 0.53 micrometer 1.06 micrometer and 1.32 micrometer Nd:YAG laser systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Bo; Tong, Xin; Jiang, Chenyang
2015-06-05
In this study, we developed a stable, narrow spectral line-width, fiber delivered laser source for spin exchange optical pumping. An optimized external cavity equipped with an off-the-shelf volume holographic grating narrowed the spectral line-width of a 100 W high-power diode laser and stabilized the laser spectrum. The laser spectrum showed a high side mode suppression ratio of >30 dB and good long-term stability (center wavelength drifting within ±0.002 nm during 220 h of operation). Finally, our laser is delivered by a multimode fiber with power ~70 W, center wavelength of 794.77 nm, and spectral bandwidth of ~0.12 nm.
Differential correction system of laser beam directional dithering based on symmetrical beamsplitter
NASA Astrophysics Data System (ADS)
Hongwei, Yang; Wei, Tao; Xiaoqia, Yin; Hui, Zhao
2018-02-01
This paper proposes a differential correction system with a differential optical path and a symmetrical beamsplitter for correcting the directional dithering of the laser beams. This system can split a collimated laser beam into two laser beams with equal and opposite movements. Thus, the positional averages of the two split laser beams remain constant irrespective of the dithering angle. The symmetrical beamsplitter designed based on transfer matrix principle is to balance the optical paths and irradiances of the two laser beams. Experimental results show that the directional dithering is reduced to less than one-pixel value. Finally, two examples show that this system can be widely used in one-dimensional measurement.
Laser-induced regeneration of cartilage
NASA Astrophysics Data System (ADS)
Sobol, Emil; Shekhter, Anatoly; Guller, Anna; Baum, Olga; Baskov, Andrey
2011-08-01
Laser radiation provides a means to control the fields of temperature and thermo mechanical stress, mass transfer, and modification of fine structure of the cartilage matrix. The aim of this outlook paper is to review physical and biological aspects of laser-induced regeneration of cartilage and to discuss the possibilities and prospects of its clinical applications. The problems and the pathways of tissue regeneration, the types and features of cartilage will be introduced first. Then we will review various actual and prospective approaches for cartilage repair; consider possible mechanisms of laser-induced regeneration. Finally, we present the results in laser regeneration of joints and spine disks cartilages and discuss some future applications of lasers in regenerative medicine.
Rugosity and hardness determination in obsidianus lapis for the design of an Yb3+-doped fiber laser
NASA Astrophysics Data System (ADS)
Alvarez-Chavez, J. A.; Aguilar-Morales, A. I.; Perez-Sanchez, G. G.; Morales-Ramirez, A. J.
2015-01-01
Obsidianus lapis is a volcanic rock that has been worked into tools for cutting or weaponry by Teotihuacan people for hundreds of years. Currently, it is used in jewelry or for house decorative items such as elaborated sculptures. From the physico-chemical properties point of view, obsidianus lapis is considered a glass as its composition is 80% silicon dioxide. In México, there are different kinds of obsidianus lapis which are classified according to its colour: rainbow, black, brown, red, silver, golden and snowflake. The traditional grinding process for working with obsidianus lapis includes fixed grinders and sandpaper for the polishing process, where the craftsman grinds the rock manually for obtaining a variety of shapes. Laser processing of natural stones is a relatively new area. We propose the use of an Yb3+-doped fibre laser for cutting and ablating obsidianus lapis into spherical, rectangular and oval shapes. By means of a theoretical analysis of roughness and hardness, which affect the different surfaces and final shapes, and by considering the changes in material temperature during laser interaction, this work will focus on parameter determination such as: laser fluence, incidence angle, laser average power and peak pulse energy, from the proposed Q-switched fibre laser design. Full optical, hardness and rugosity, initial and final characterization will be included in the presentation.
Laser technology and applications in gynaecology.
Adelman, M R; Tsai, L J; Tangchitnob, E P; Kahn, B S
2013-04-01
The term 'laser' is an acronym for Light Amplification by Stimulated Emission of Radiation. Lasers are commonly described by the emitted wavelength, which determines the colour of the light, as well as the active lasing medium. Currently, over 40 types of lasers have been developed with a wide range of both industrial and medical uses. Gas and solid-state lasers are frequently used in surgical applications, with CO2 and Ar being the most common examples of gas lasers, and the Nd:YAG and KTP:YAG being the most common examples of solid-state lasers. At present, it appears that the CO2, Nd:YAG, and KTP lasers provide alternative methods for achieving similar results, as opposed to superior results, when compared with traditional endoscopic techniques, such as cold-cutting monopolar and bipolar energy. This review focuses on the physics, tissue interaction, safety and applications of commonly used lasers in gynaecological surgery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y.; Gottwald, T.; Mattolat, C.
We have demonstrated three-photon resonance ionization of atomic manganese (Mn) in a hot-cavity ion source using Ti: sapphire lasers. Three-step ionization schemes employing different intermediate levels and Rydberg or autoionizing (AI) states in the final ionization step are established. Strong AI resonances were observed via the 3d 54s5s f 6S 5/2 level at 49 415.35 cm -1, while Rydberg transitions were reached from the 3d 54s4d e 6D 9/2,7/2,5/2) levels at around 47 210 cm -1. Analyses of the strong Rydberg transitions associated with the 3d 54s4d e 6D 7/2 lower level indicate that they belong to the dipole-allowed 4dmore » → nf 6F° 9/2,7/2,5/2 series converging to the 3d 54s 7S 3 ground state of Mn II. From this series, an ionization potential of 59 959.56 ± 0.01 cm -1 is obtained for Mn. At high ion source temperatures the semi-forbidden 4d → nf 8 F°9/2,7/2,5/2 series was also observed. The overall ionization efficiency for Mn has been measured to be about 0.9% when using the strong AI transition in the third excitation step and 0.3% when employing an intense Rydberg transition. Experimental data indicate that the ionization efficiency was limited by the interaction of Mn atoms with ion source materials at high temperatures.« less
Liu, Y.; Gottwald, T.; Mattolat, C.; ...
2015-05-08
We have demonstrated three-photon resonance ionization of atomic manganese (Mn) in a hot-cavity ion source using Ti: sapphire lasers. Three-step ionization schemes employing different intermediate levels and Rydberg or autoionizing (AI) states in the final ionization step are established. Strong AI resonances were observed via the 3d 54s5s f 6S 5/2 level at 49 415.35 cm -1, while Rydberg transitions were reached from the 3d 54s4d e 6D 9/2,7/2,5/2) levels at around 47 210 cm -1. Analyses of the strong Rydberg transitions associated with the 3d 54s4d e 6D 7/2 lower level indicate that they belong to the dipole-allowed 4dmore » → nf 6F° 9/2,7/2,5/2 series converging to the 3d 54s 7S 3 ground state of Mn II. From this series, an ionization potential of 59 959.56 ± 0.01 cm -1 is obtained for Mn. At high ion source temperatures the semi-forbidden 4d → nf 8 F°9/2,7/2,5/2 series was also observed. The overall ionization efficiency for Mn has been measured to be about 0.9% when using the strong AI transition in the third excitation step and 0.3% when employing an intense Rydberg transition. Experimental data indicate that the ionization efficiency was limited by the interaction of Mn atoms with ion source materials at high temperatures.« less
Research on the laser angle deception jamming technology of laser countermeasure
NASA Astrophysics Data System (ADS)
Ma, Shi-wei; Chen, Wen-jian; Gao, Wei; Duan, Yuan-yuan
2015-10-01
In recent years , laser guided weapons behave very well at destroying the military goals in the local wars, the single-shot probability, effective range and hitting precision getting better. And the semi-active laser guided weapons are the most widely used laser guided weapons. In order to improve the viability and protect important military goals, it's necessary to study the technology to against the semi-active guided weapons. This paper studies the working principle, the advantages and disadvantages of the semi-active guided weapons at first, and analyze the possibility of laser angle deception jamming system working. Then it analyzes the working principle and process of laser angle deception jamming technology. Finally it designs a half-real simulation system of laser angle deception jamming, which consists of semi-active laser guided weapons simulation system and laser angle deception jamming system. The simulation system demonstrates the working process of the laser angle deception jamming system. This paper provides fundamental base for the research on the countermeasure technology of semi-active laser guided weapons.
Remote sensing of atmospheric pressure and sea state using laser altimeters
NASA Technical Reports Server (NTRS)
Gardner, C. S.
1985-01-01
Short-pulse multicolor laser ranging systems are currently being developed for satellite ranging applications. These systems use Q-switched pulsed lasers and streak-tube cameras to provide timing accuracies approaching a few picoseconds. Satellite laser ranging systems have been used to evaluate many important geophysical phenomena such as fault motion, polar motion and solid earth tides, by measuring the orbital perturbations of retroreflector equipped satellites. Some existing operational systems provide range resolution approaching a few millimeters. There is currently considerable interest in adapting these highly accurate systems for use as airborne and satellite based altimeters. Potential applications include the measurement of sea state, ground topography and atmospheric pressure. This paper reviews recent progress in the development of multicolor laser altimeters for use in monitoring sea state and atmospheric pressure.
NASA Astrophysics Data System (ADS)
Korenev, V. V.; Savelyev, A. V.; Maximov, M. V.; Zubov, F. I.; Shernyakov, Yu M.; Zhukov, A. E.
2017-11-01
The effect of modulation p-doping on multi-state lasing in InAs/InGaAs quantum dot (QD) lasers is studied for different levels of acceptor concentration. It is shown that in case of the short laser cavities, p-doping results in higher output power of the ground-state optical transitions of InAs/InGaAs QDs whereas in longer samples p-doping may result in the decrease of this power component. On the basis of this observation, the optimal design of laser active region and optimal doping level are discussed in details.
Parasitic oscillation suppression in solid state lasers using absorbing thin films
Zapata, L.E.
1994-08-02
A thin absorbing film is bonded onto at least certain surfaces of a solid state laser gain medium. An absorbing metal-dielectric multilayer film is optimized for a broad range of incidence angles, and is resistant to the corrosive/erosive effects of a coolant such as water, used in the forced convection cooling of the film. Parasitic oscillations hamper the operation of solid state lasers by causing the decay of stored energy to amplified rays trapped within the gain medium by total and partial internal reflections off the gain medium facets. Zigzag lasers intended for high average power operation require the ASE absorber. 16 figs.
Parasitic oscillation suppression in solid state lasers using absorbing thin films
Zapata, Luis E.
1994-01-01
A thin absorbing film is bonded onto at least certain surfaces of a solid state laser gain medium. An absorbing metal-dielectric multilayer film is optimized for a broad range of incidence angles, and is resistant to the corrosive/erosive effects of a coolant such as water, used in the forced convection cooling of the film. Parasitic oscillations hamper the operation of solid state lasers by causing the decay of stored energy to amplified rays trapped within the gain medium by total and partial internal reflections off the gain medium facets. Zigzag lasers intended for high average power operation require the ASE absorber.
NASA Technical Reports Server (NTRS)
1979-01-01
The state of the art in nuclear pumped lasers is reviewed. Nuclear pumped laser modeling, nuclear volume and foil excitation of laser plasmas, proton beam simulations, nuclear flashlamp excitation, and reactor laser systems studies are covered.
High energy efficient solid state laser sources
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1987-01-01
Diode-laser-pumped solid-state laser oscillators and nonlinear processes were investigated. A new generation on nonplanar oscillator was fabricated, and it is anticipated that passive linewidths will be pushed to the kilohertz regime. A number of diode-pumped laser transitions were demonstrated in the rod configuration. Second-harmonic conversion efficiencies as high as 15% are routinely obtained in a servo-locked external resonant doubling crystal at 15 mW cw input power levels at 1064 nm.
NASA Astrophysics Data System (ADS)
Wendt, Klaus; Gottwald, Tina; Hanstorp, Dag; Mattolat, Christoph; Raeder, Sebastian; Rothe, Sebastian; Schwellnus, Fabio; Havener, Charles; Lassen, Jens; Liu, Yuan
2010-02-01
Laser ion sources based on resonant excitation and ionization of atoms are well-established tools for selective and efficient production of radioactive ion beams. A recent trend is the complementary installation of reliable state-of-the-art all solid-state Ti:Sapphire laser systems. To date, 35 elements of the Periodic Table are available at laser ion sources by using these novel laser systems, which complements the overall accessibility to 54 elements including use of traditional dye lasers. Recent progress in the field concerns the identification of suitable optical excitation schemes for Ti:Sapphire laser excitation as well as technical developments of the source in respect to geometry, cavity material as well as by incorporation of an ion guide system in the form of the laser ion source trap LIST.
NASA Astrophysics Data System (ADS)
Zadkov, Victor N.; Koroteev, Nikolai I.
1995-10-01
An experience of managing the continuing education and retraining programs at the International Laser Center (ILC) of Moscow State University is discussed. The offered programs are in a wide range of areas, namely laser physics and technology, laser biophysics and biomedicine, laser chemistry, and computers in laser physics. The attendees who are presumably scientists, engineers, technical managers, and graduate students can join these programs through the annual ILC term (6 months), individual training and research programs (up to a year), annual ILC Laser Graduate School, graduate study, and post-docs program, which are reviewed in the paper. A curriculum that includes basic and specialized courses is described in detail. A brief description of the ILC Laser Teaching and Computer Labs that support all the educational courses is given as well.
Constructing a Low-budget Laser Axotomy System to Study Axon Regeneration in C. elegans
Williams, Wes; Nix, Paola; Bastiani, Michael
2011-01-01
Laser axotomy followed by time-lapse microscopy is a sensitive assay for axon regeneration phenotypes in C. elegans1. The main difficulty of this assay is the perceived cost ($25-100K) and technical expertise required for implementing a laser ablation system2,3. However, solid-state pulse lasers of modest costs (<$10K) can provide robust performance for laser ablation in transparent preparations where target axons are "close" to the tissue surface. Construction and alignment of a system can be accomplished in a day. The optical path provided by light from the focused condenser to the ablation laser provides a convenient alignment guide. An intermediate module with all optics removed can be dedicated to the ablation laser and assures that no optical elements need be moved during a laser ablation session. A dichroic in the intermediate module allows simultaneous imaging and laser ablation. Centering the laser beam to the outgoing beam from the focused microscope condenser lens guides the initial alignment of the system. A variety of lenses are used to condition and expand the laser beam to fill the back aperture of the chosen objective lens. Final alignment and testing is performed with a front surface mirrored glass slide target. Laser power is adjusted to give a minimum size ablation spot (<1um). The ablation spot is centered with fine adjustments of the last kinematically mounted mirror to cross hairs fixed in the imaging window. Laser power for axotomy will be approximately 10X higher than needed for the minimum ablation spot on the target slide (this may vary with the target you use). Worms can be immobilized for laser axotomy and time-lapse imaging by mounting on agarose pads (or in microfluidic chambers4). Agarose pads are easily made with 10% agarose in balanced saline melted in a microwave. A drop of molten agarose is placed on a glass slide and flattened with another glass slide into a pad approximately 200 um thick (a single layer of time tape on adjacent slides is used as a spacer). A "Sharpie" cap is used to cut out a uniformed diameter circular pad of 13mm. Anesthetic (1ul Muscimol 20mM) and Microspheres (Chris Fang-Yen personal communication) (1ul 2.65% Polystyrene 0.1 um in water) are added to the center of the pad followed by 3-5 worms oriented so they are lying on their left sides. A glass coverslip is applied and then Vaseline is used to seal the coverslip and prevent evaporation of the sample. PMID:22126922
Coherent Doppler lidar for automated space vehicle, rendezvous, station-keeping and capture
NASA Technical Reports Server (NTRS)
Dunkin, James A.
1991-01-01
Recent advances in eye-safe, short wavelength solid-state lasers offer real potential for the development of compact, reliable, light-weight, efficient coherent lidar. Laser diode pumping of these devices has been demonstrated, thereby eliminating the need for flash lamp pumping, which has been a major drawback to the use of these lasers in space based applications. Also these lasers now have the frequency stability required to make them useful in coherent lidar, which offers all of the advantages of non-coherent lidar, but with the additional advantage that direct determination of target velocity is possible by measurement of the Doppler shift. By combining the Doppler velocity measurement capability with the inherent high angular resolution and range accuracy of lidar it is possible to construct Doppler images of targets for target motion assessment. A coherent lidar based on a Tm,Ho:YAG 2-micrometer wavelength laser was constructed and successfully field tested on atmospheric targets in 1990. This lidar incorporated an all solid state (laser diode pumped) master oscillator, in conjunction with a flash lamp pumped slave oscillator. Solid-state laser technology is rapidly advancing, and with the advent of high efficiency, high power, semiconductor laser diodes as pump sources, all-solid-state, coherent lidars are a real possibility in the near future. MSFC currently has a feasibility demonstration effort under way which will involve component testing, and preliminary design of an all-solid-state, coherent lidar for automatic rendezvous, and capture. This two year effort, funded by the Director's Discretionary Fund is due for completion in 1992.
Multi-pulse operation of a dissipative soliton fibre laser based on nonlinear polarisation rotation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, H L; Wang, X L; Zhou, P
We report an experimental observation of multiple dissipative soliton (DS) operation states in an all-normal-dispersion passively mode-locked Yb-doped fibre laser, including DS bound and oscillating states. In the bound state, multiple DSs up to 11 can coexist in the cavity. In the oscillating state, the DSs' movements are not purely random and three typical states are generalised and illustrated. A single-pulse mode-locked state is established at a high pump power by carefully adjusting the polarisation controllers. The broad spectrum indicates that it may be noise-like pulses, which can serve as a pump to generate a supercontinuum. (control of laser radiationmore » parameters)« less
Workshop on Squeezed States and Uncertainty Relations
NASA Technical Reports Server (NTRS)
Han, Daesoo (Editor); Kim, Y. S. (Editor); Zachary, W. W. (Editor)
1992-01-01
The proceedings from the workshop are presented, and the focus was on the application of squeezed states. There are many who say that the potential for industrial applications is enormous, as the history of the conventional laser suggests. All those who worked so hard to produce squeezed states of light are continuing their efforts to construct more efficient squeezed-state lasers. Quite naturally, they are looking for new experiments using these lasers. The physical basis of squeezed states is the uncertainty relation in Fock space, which is also the basis for the creation and annihilation of particles in quantum field theory. Indeed, squeezed states provide a unique opportunity for field theoreticians to develop a measurement theory for quantum field theory.
Treatment of Laser Induced Retinal Injuries
1985-01-01
AD TREATMENT OF LASER INDUCED RETINAL INJURIES cANNUAL/FINAL REPORT MICHAEL BELKIN INAVA NAVEH JANUARY 1985 Supported by U.S. ARMY MEDICAL RESEARCH...CF ,I446 11. TITLE (Include Security Classification) (U) Treatment of Laser Induced Retinal Injuries 12. PERSONAL AUTHOR(S) Michael Belkin 13a. TYPE...ciliary body as seen in uveitis , is associated by elevation of aqueous humor protein levels. Therefore, protein was used by some investigators as an
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huynh, T. T. D.; Petit, A.; Semmar, N., E-mail: nadjib.semmar@univ-orleans.fr
2015-11-09
Laser-induced periodic surface structures (LIPSS) were formed on Cu/Si or Cu/glass thin films using Nd:YAG laser beam (40 ps, 10 Hz, and 30 mJ/cm{sup 2}). The study of ablation threshold is always achieved over melting when the variation of the number of pulses increases from 1 to 1000. But the incubation effect is leading to reduce the threshold of melting as increasing the number of laser pulse. Also, real time reflectivity signals exhibit typical behavior to stress the formation of a liquid phase during the laser-processing regime and helps to determine the threshold of soft ablation. Atomic Force Microscopy (AFM) analyses have shownmore » the topology of the micro-crater containing regular spikes with different height. Transmission Electron Microscopy (TEM) allows finally to show three distinguished zones in the close region of isolated protrusions. The central zone is a typical crystallized area of few nanometers surrounded by a mixed poly-crystalline and amorphous area. Finally, in the region far from the protrusion zone, Cu film shows an amorphous structure. The real time reflectivity, AFM, and HR-TEM analyses evidence the formation of a liquid phase during the LIPSS formation in the picosecond regime.« less
Direct control of transitions between different mode-locking states of a fiber laser
NASA Astrophysics Data System (ADS)
Ilday, Fatih; Teamir, Tesfay; Iegorov, Roman; Makey, Ghaith
Mode-locking corresponds to a far-from-equilibrium steady state of a laser, whereby extremely short pulses can be produced. Capability to directly control mode-locking states can be used to improve laser performance with numerous applications, as well as shed light on their far-from-equilibrium physics using the laser as an experimental platform. Here, we demonstrate direct control of the mode-locking state using spectral pulse shaping by incorporating a spatial light modulator at a Fourier plane inside the cavity of an Yb-doped fiber laser. We show that we can halt and restart mode-locking, suppress instabilities, induce controlled reversible and irreversible transitions between mode-locking states, and perform advanced pulse shaping on pulses as short as 40 fs. This capability can be used to experimentally investigate bifurcations, reversible and irreversible transitions, by selecting, steering, and even competing various mode-locking states. Such studies can explore collective dynamics of dissipative soliton molecules, and ultimately test emerging theories about far-from-equilibrium physics, where there is an acute lack of experimental systems that are sufficiently well controlled. ERC CoG 617521, TUBITAK 113F319.
Preservation of Gaussian state entanglement in a quantum beat laser by reservoir engineering
NASA Astrophysics Data System (ADS)
Qurban, Misbah; Islam, Rameez ul; Ge, Guo-Qin; Ikram, Manzoor
2018-04-01
Quantum beat lasers have been considered as sources of entangled radiation in continuous variables such as Gaussian states. In order to preserve entanglement and to minimize entanglement degradation due to the system’s interaction with the surrounding environment, we propose to engineer environment modes through insertion of another system in between the laser resonator and the environment. This makes the environment surrounding the two-mode laser a structured reservoir. It not only enhances the entanglement among two modes of the laser but also preserves the entanglement for sufficiently longer times, a stringent requirement for quantum information processing tasks.
Otsuka, Kenju; Chu, Shu-Chun
2013-05-01
We report a simple method for generating cylindrical vector beams directly from laser-diode (LD)-pumped microchip solid-state lasers by using dual end-pumping beams. Radially as well as azimuthally polarized vector field emissions have been generated from the common c-cut Nd:GdVO4 laser cavity merely by controlling the focus positions of orthogonally polarized LD off-axis pump beams. Hyperbolically polarized vector fields have also been observed, in which the cylindrical symmetry of vector fields is broken. Experimental results have been well reproduced by numerical simulations.
Solid-State Laser Source of Tunable Narrow-Bandwidth Ultraviolet Radiation
NASA Technical Reports Server (NTRS)
Goldberg, Lew; Kliner, Dahv A.; Koplow, Jeffrey P.
1998-01-01
A solid-state laser source of tunable and narrow-bandwidth UV light is disclosed. The system relies on light from a diode laser that preferably generates light at infrared frequencies. The light from the seed diode laser is pulse amplified in a light amplifier, and converted into the ultraviolet by frequency tripling, quadrupling, or quintupling the infrared light. The narrow bandwidth, or relatively pure light, of the seed laser is preserved, and the pulse amplifier generates high peak light powers to increase the efficiency of the nonlinear crystals in the frequency conversion stage. Higher output powers may be obtained by adding a fiber amplifier to power amplify the pulsed laser light prior to conversion.
Laser initiated spark development in an air gap.
Lindner, F W; Rudolph, W; Brumme, G; Fischer, H
1975-09-01
Spark development is studied by 20-nsec image converter photography. A diffuse and transparent prechannel bridges the gap from the top of the metal vapor jet, which has counterelectrode potential. The prechannel cuts off the development of the cone shaped jet with increasing gap voltage. The final breakdown is initiated by a z-axis, laser induced filament, which expands into the prechannel volume within less, similar10 nsec. This interval represents the final high current thermalization phase of the breakdown. Thermal expansion of the initial spark channel (Braginskii) follows.
Laser Shot Peening System Final Report CRADA No. TC-1369-96
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stuart, B. C.; Harris, F.
This CRADA project was established with a primary goal to develop a laser shot peening system which could operate at production throughput rates and produce the desired depth and intensity of induced shots. The first objective was to understand all parameters required for acceptable peening, including pulse energy, pulse temporal format, pulse spatial format, sample configuration and tamping mechanism. The next objective was to demonstrate the technique on representative samples and then on representative parts. The final objective was to implement the technology into a meaningful industrial peen.
The operations of quantum logic gates with pure and mixed initial states.
Chen, Jun-Liang; Li, Che-Ming; Hwang, Chi-Chuan; Ho, Yi-Hui
2011-04-07
The implementations of quantum logic gates realized by the rovibrational states of a C(12)O(16) molecule in the X((1)Σ(+)) electronic ground state are investigated. Optimal laser fields are obtained by using the modified multitarget optimal theory (MTOCT) which combines the maxima of the cost functional and the fidelity for state and quantum process. The projection operator technique together with modified MTOCT is used to get optimal laser fields. If initial states of the quantum gate are pure states, states at target time approach well to ideal target states. However, if the initial states are mixed states, the target states do not approach well to ideal ones. The process fidelity is introduced to investigate the reliability of the quantum gate operation driven by the optimal laser field. We found that the quantum gates operate reliably whether the initial states are pure or mixed.
Koçak, Sibel; Koçak, Mustafa Murat; Sağlam, Baran Can
2014-04-01
The aim of this clinical study was to test the efficacy of a light-emitting diode (LED) light and a diode laser, when bleaching with sodium perborate. Thirty volunteers were selected to participate in the study. The patients were randomly divided into two groups. The initial colour of each tooth to be bleached was quantified with a spectrophotometer. In group A, sodium perborate and distilled water were mixed and placed into the pulp chamber, and the LED light was source applied. In group B, the same mixture was used, and the 810 nm diode laser was applied. The final colour of each tooth was quantified with the same spectrophotometer. Initial and final spectrophotometer values were recorded. Mann-Whitney U-test and Wicoxon tests were used to test differences between both groups. Both devices successfully whitened the teeth. No statistical difference was found between the efficacy of the LED light and the diode laser. © 2013 The Authors. Australian Endodontic Journal © 2013 Australian Society of Endodontology.
Final Technical Report: Magnetic Reconnection in High-Energy Laser-Produced Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Germaschewski, Kai; Fox, William; Bhattacharjee, Amitava
This report describes the final results from the DOE Grant DE-SC0007168, “Fast Magnetic Reconnection in HED Laser-Produced Plasmas.” The recent generation of laboratory high-energy-density physics facilities has opened significant physics opportunities for experimentally modeling astrophysical plasmas. The goal of this proposal is to use these new tools to study fundamental problems in plasma physics and plasma astrophysics. Fundamental topics in this area involve study of the generation, amplification, and fate of magnetic fields, which are observed to pervade the plasma universe and govern its evolution. This project combined experiments at DOE laser facilities with kinetic plasma simulation to study thesemore » processes. The primary original goal of the project was to study magnetic reconnection using a new experimental platform, colliding magnetized laser-produced plasmas. However through a series of fortuitous discoveries, the work broadened out to allow significant advancement on multiple topics in laboratory astrophysics, including magnetic reconnection, Weibel instability, and collisionless shocks.« less
NASA Technical Reports Server (NTRS)
Cruickshank, James; Pace, Paul; Mathieu, Pierre
1987-01-01
After introducing the desired features in a transmitter for laser radar applications, the output characteristics of several configurations of frequency-stable TEA-CO2 lasers are reviewed. Based on work carried out at the Defence Research Establishment Valcartier (DREV), output pulses are examined from short cavity lasers, CW-TEA hybrid lasers, and amplifiers for low power pulses. It is concluded that the technique of injecting a low-power laser beam into a TEA laser resonator with Gaussian reflectivity mirrors should be investigated because it appears well adapted to producing high energy, single mode, low chirp pulses. Finally, a brief report on tests carried out on catalysts composed of stannic oxide and noble metals demonstrates the potential of these catalysts, operating at close to room temperature, to provide complete closed-cycle laser operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atanasov, Petar A., E-mail: paatanas@ie.bas.bg; Nedyalkov, Nikolay N.; Valova, Eugenia I.
We present an experimental analysis on surface structuring of polydimethylsiloxane films with UV (263 nm) femtosecond laser pulses, in air. Laser processed areas are analyzed by optical microscopy, SEM, and μ-Raman spectroscopy. The laser-treated sample shows the formation of a randomly nanostructured surface morphology. μ-Raman spectra, carried out at both 514 and 785 nm excitation wavelengths, prior and after laser treatment allow evidencing the changes in the sample structure. The influence of the laser fluence on the surface morphology is studied. Finally, successful electro-less metallization of the laser-processed sample is achieved, even after several months from the laser-treatment contrary to previous observationmore » with nanosecond pulses. Our findings address the effectiveness of fs-laser treatment and chemical metallization of polydimethylsiloxane films with perspective technological interest in micro-fabrication devices for MEMS and nano-electromechanical systems.« less
Influence of Laser Glazing on the Characterization of Plasma-Sprayed YSZ Coatings
NASA Astrophysics Data System (ADS)
Wang, Yan; Liu, Jiangwei; Liao, Hanlin; Darut, Geoffrey; Stella, Jorge; Poirier, Thierry; Planche, Marie-Pierre
2017-01-01
In this study, 8 wt.% yttria-stabilized zirconia powder was deposited on the substrates by atmospheric plasma spray. The coatings were post-treated by laser glazing under different parameters in order to densify them. The characterization of the laser molten pools under different laser treatment conditions was studied. Preheating processes were also employed. Scanning electron microscopy observations of the surface and cross section of as-sprayed and laser-glazed coatings were carried out to investigate the influence of laser glazing on the microstructure on laser-glazed coatings. The results show that preheating processes improve the coating in terms of deepening the laser-glazed layer, reducing the number of vertical cracks and surface density of cracks and widening the molten pool. Finally, the influences of linear energy density on the characterization of the glazed layer are discussed.
Research Laboratory of Electronic Progress Report Number 135.
1993-06-01
78 @ 1.12 Ultrashort Pulse Generation in Solid State Lasers ...generation the use of intracavity self-phase-modulation and of ultrashort laser pulses is essential for studies of negative group velocity dispersion... pulses . Our studies focus on exploiting mode locked solid state lasers . While the dominant the short pulse durations and high peak intensity of effect of
Solar pumped laser technology options for space power transmission
NASA Technical Reports Server (NTRS)
Conway, E. J.
1986-01-01
An overview of long-range options for in-space laser power transmission is presented. The focus is on the new technology and research status of solar-pumped lasers and their solar concentration needs. The laser options include gas photodissociation lasers, optically-pumped solid-state lasers, and blackbody-pumped transfer lasers. The paper concludes with a summary of current research thrusts.
Signatures of the atomic nucleus in laser-assisted single ionization of one-electron atoms
NASA Astrophysics Data System (ADS)
Ajana, Imane; Khalil, Driss; Makhoute, Abdelkader
2018-03-01
The dynamics of the electron-impact single ionization of hydrogenic targets in the presence of a laser field (e, 2e) has been studied for different residual ion charges Z = 1, 2, 3 and 4. The state of fast electron in the laser field is described by the Volkov state, while the dressed state of the ejected slow electron and atomic target is treated perturbatively to the first-order perturbation theory. We calculate the triple differential cross section in the Ehrhardt asymmetric coplanar geometry. We have compared and analyzed the triple differential cross sections from one-electron atoms by varying the charge state of the residual ion, and evaluating the interplay between the laser influence and the role of scattering from the residual ion.
Gioannini, Mariangela; Dommermuth, Marius; Drzewietzki, Lukas; Krestnikov, Igor; Livshits, Daniil; Krakowski, Michel; Breuer, Stefan
2014-01-01
We exploit the coupled emission-states of a single-chip semiconductor InAs/GaAs quantum-dot laser emitting simultaneously on ground-state (λGS = 1245 nm) and excited-state (λES = 1175 nm) to demonstrate coupled-two-state self-mixing velocimetry for a moving diffuse reflector. A 13 Hz-narrow Doppler beat frequency signal at 317 Hz is obtained for a reflector velocity of 3 mm/s, which exemplifies a 66-fold improvement in width as compared to single-wavelength self-mixing velocimetry. Simulation results reveal the physical origin of this signal, the coupling of excited-state and ground-state photons via the carriers, which is unique for quantum-dot lasers and reproduce the experimental results with excellent agreement. PMID:25321809
The influence of laser pulse waveform on laser-TIG hybrid welding of AZ31B magnesium alloy
NASA Astrophysics Data System (ADS)
Song, Gang; Luo, Zhimin
2011-01-01
By dividing laser pulse duration into two parts, three kinds of laser waveforms are designed, including a high power density pulse (HPDP) laser in a short duration set at the beginning of the laser waveform. This paper aims to find out the laser pulse waveform and idiographic critical values of HPDP, which can affect the magnesium penetration in laser-tungsten inert gas (TIG) hybrid welding. Results show that when the laser pulse duration of HPDP is not more than 0.4 ms, the welding penetration values of lasers with HPDP are larger than otherwise. Also, the welding penetration values of laser with HPDP have increased by up to 26.1%. It has been found that with HPDP, the laser can form the keyhole more easily because the interaction between laser and the plate is changed, when the TIG arc preheats the plate. Besides, the laser with high power density and short duration strikes on the plates so heavily that the corresponding background power can penetrate into the bottom of the keyhole and maintain the keyhole open, which facilitates the final welding penetration.
NASA Astrophysics Data System (ADS)
Salvador, Israel Irone
The present research campaign centered on static and hypersonic experiments performed with a two-dimensional, repetitively-pulsed (RP) laser Lightcraft model. The future application of interest for this basic research endeavor is the laser launch of nano- and micro-satellites (i.e., 1-100 kg payloads) into Low Earth Orbit (LEO), at low-cost and "on-demand". This research began with an international collaboration on Beamed Energy Propulsion between the United States Air Force and Brazilian Air Force to conduct experiments at the Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics (HTN-LAH). The laser propulsion (LP) experiments employed the T3 Hypersonic Shock Tunnel (HST), integrated with twin gigawatt pulsed Lumonics 620-TEA CO2 lasers to produce the required test conditions. Following an introduction of the pulsed laser thermal propulsion concept and a state-of-the-art review of the topic, the principal physical processes are outlined starting from the onset of the laser pulse and subsequent laser-induced air-breakdown, to the expansion and exhaust of the resulting blast wave. After installation of the 254 mm wide, 2D Lightcraft model into the T3 tunnel, static LP tests were performed under quiescent (no-flow) conditions at ambient pressures of 0.06, 0.15, 0.3 and 1 bar, using the T3 test-section/dump-tank as a vacuum chamber. Time-dependent surface pressure distributions were measured over the engine thrust-generating surfaces following laser energy deposition; the delivered impulse and momentum coupling coefficients (Cm) were calculated from that pressure data. A Schlieren visualization system (using a high-speed Cordin digital camera) captured the laser breakdown and blast wave expansion process. The 2D model's Cm performance of 600 to 3000 N/MW was 2.5-5x higher than theoretical projections available in the literature, but indeed in the realm of feasibility for static conditions. Also, these Cm values exceed that for smaller Lightcraft models (98 to 161 mm in diameter), probably due to the more efficient delivery of laser-induced blast wave energy across the 2D model's larger impulse surface area. Next, the hypersonic campaign was carried out, subjecting the 2D model to nominal Mach numbers ranging from 6 to 10. Again, time-dependent surface pressure distributions were recorded together with Schlieren movies of the flow field structure resulting from laser energy deposition. These visualizations of inlet and absorption chamber flowfields, enabled the qualitative analysis of important phenomena impacting laser-propelled hypersonic airbreathing flight. The laser-induced breakdown took an elongated vertically-oriented geometry, occurring off-surface and across the inlet's mid-channel---quite different from the static case in which the energy was deposited very near the shroud under-surface. The shroud under-surface pressure data indicated laser-induced increases of 0.7-0.9 bar with laser pulse energies of ˜170 J, off-shroud induced breakdown condition, and Mach number of 7. The results of this research corroborate the feasibility of laser powered, airbreathing flight with infinite specific impulse (Isp=infinity): i.e., without the need for propellant injection at the laser focus. Additionally, it is shown that further reductions in inlet air working fluid velocity---with attendant increases in static pressure and density---is necessary to generate higher absorption chamber pressure and engine impulse. Finally, building on lessons learned from the present work, the future research plan is laid out for: a) the present 2D model with full inlet forebody, exploring higher laser pulse energies and multi-pulse phenomena; b) a smaller, redesigned 2D model; c) a 254 mm diameter axisymmetric Lightcraft model; and, d) a laser-electromagnetic accelerator model, designed around a 2-Tesla pulsed electromagnet contracted under the present program.
Yin, Jian; Han, Zhengfeng; Guo, Baofeng; Guo, Han; Zhang, Tongtong; Zeng, Yanjun; Ren, Longxi
2015-07-01
To compare the ablation ability of nucleus pulposus after 1,064 nm Nd:YAG laser and 980 nm diode laser radiation. Goat spine specimen (GSS) was radiated using Nd:YAG laser and 980 nm diode laser and then divided into five groups based on the final energy--200, 400, 600, 800 and 1,000 J groups. The ablation quality of nucleus pulposus after radiation was recorded. The ablation quality of GSS was greater at higher radiation energies in both lasers. When compared at the same energy level, the ablation quality of GSS was greater in 980 nm diode laser than in 1,064 nm Nd:YAG laser. Statistical significance was observed in 200 and 400 J groups (P < 0.05) and in 600, 800 and 1,000 J groups (P < 0.01). Radiation with 980 nm diode laser showed better ablation ability than 1,064 nm Nd:YAG laser.
The 1.083 micron tunable CW semiconductor laser
NASA Technical Reports Server (NTRS)
Wang, C. S.; Chen, Jan-Shin; Lu, Ken-Gen; Ouyang, Keng
1991-01-01
A tunable CW laser is desired to produce light equivalent to the helium spectral line at 1.08 microns. This laser will serve as an optical pumping source for He-3 and He-4 atoms used in space magnetometers. This light source can be fabricated either as a semiconductor laser diode or a pumped solid state laser. Continuous output power of greater than 10 mW is desired. Semiconductor lasers can be thermally tuned, but must be capable of locking onto the helium resonance lines. Solid state lasers must have efficient pumping sources suitable for space configuration. Additional requirements are as follows: space magnetometer applications will include low mass (less than 0.5 kg), low power consumption (less than 0.75 W), and high stability/reliability for long missions (5-10 years).
NASA Astrophysics Data System (ADS)
Wang, He
The few-cycle femtosecond laser pulse has proved itself to be a powerful tool for controlling the electron dynamics inside atoms and molecules. By applying such few-cycle pulses as a driving field, single isolated attosecond pulses can be produced through the high-order harmonic generation process, which provide a novel tool for capturing the real time electron motion. The first part of the thesis is devoted to the state of the art few-cycle near infrared (NIR) laser pulse development, which includes absolute phase control (carrier-envelope phase stabilization), amplitude control (power stabilization), and relative phase control (pulse compression and shaping). Then the double optical gating (DOG) method for generating single attosecond pulses and the attosecond streaking experiment for characterizing such pulses are presented. Various experimental limitations in the attosecond streaking measurement are illustrated through simulation. Finally by using the single attosecond pulses generated by DOG, an attosecond transient absorption experiment is performed to study the autoionization process of argon. When the delay between a few-cycle NIR pulse and a single attosecond XUV pulse is scanned, the Fano resonance shapes of the argon autoionizing states are modified by the NIR pulse, which shows the direct observation and control of electron-electron correlation in the temporal domain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halavanau, Aliaksei; Edstrom, Dean; Gai, Wei
2016-06-01
In photocathodes the achievable electron-beam parameters are controlled by the laser used to trigger the photoemission process. Non-ideal laser distribution hampers the final beam quality. Laser inhomogeneities, for instance, can be "amplified" by space-charge force and result in fragmented electron beams. To overcome this limitation laser shaping methods are routinely employed. In the present paper we demonstrate the use of simple microlens arrays to dramatically improve the transverse uniformity. We also show that this arrangement can be used to produce transversely-patterned electron beams. Our experiments are carried out at the Argonne Wakefield Accelerator facility.
NASA Astrophysics Data System (ADS)
Li, H. Y.; Liu, J. S.
2010-06-01
The simulations of three-dimensional particle dynamics are carried out to investigate the Coulomb explosion dynamics of deuterated methane clusters under the irradiation of an ultrashort intense laser pulse. The final kinetic energy of deuterons produced from the cluster explosion is calculated as a function of the pulse width, the laser intensity and the pulse chirp. It is found that the deuteron energy obtained in an intense laser pulse with negative chirp is higher than that with positive chirp, which agrees qualitatively with the experimental results reported by Fukuda et al. [Y. Fukuda et al., Phys. Rev. A 67, 061201 (2003)].
GaAs laser diode pumped Nd:YAG laser
NASA Technical Reports Server (NTRS)
Conant, L. C.; Reno, C. W.
1974-01-01
A 1.5-mm by 3-cm neodymium-ion doped YAG laser rod has been side pumped using a GaAs laser diode array tuned to the 8680-A absorption line, achieving a multimode average output power of 120 mW for a total input power of 20 W to the final-stage laser diode drivers. The pumped arrangement was designed to take advantage of the high brightness of a conventional GaAs array as a linear source by introducing the pump light through a slit into a close-wrapped gold coated pump cavity. This cavity forms an integrating chamber for the pump light.
Value of low-power lasers in the treatment of symptomatic spondilosis
NASA Astrophysics Data System (ADS)
Antipa, Ciprian; Moldoveanu, Vladimir; Rusca, Nicolae; Bruckner, Ion I.; Vlaiculescu, Mihaela; Ionescu, Elena; Vasiliu, Virgil V.
1998-07-01
Low power laser (LPL) use in the treatment of arthrosic rheumatism is well known. From a total number of 280 patients with symptomatic spondylosis we finally selected 66, with changes of the EEG color mapping. These investigation was done before and after treatment in order to obtain an objective method to appreciate these results. The patients were splitted in laser group (36 patients treated with HeNe and IR diode LPL) and control group (30 patients treated with placebo laser). The results indicate a significant improvement of the symptoms at 77% of the patients from laser group as compared with 33% favorable results at the placebo laser. The EEG mapping improved at 58% patients from laser group as compared with 20% at the control group.
Femtosecond all-solid-state laser for refractive surgery
NASA Astrophysics Data System (ADS)
Zickler, Leander; Han, Meng; Giese, G.'nter; Loesel, Frieder H.; Bille, Josef F.
2003-06-01
Refractive surgery in the pursuit of perfect vision (e.g. 20/10) requires firstly an exact measurement of abberations induced by the eye and then a sophisticated surgical approach. A recent extension of wavefront measurement techniques and adaptive optics to ophthalmology has quantitatively characterized the quality of the human eye. The next milestone towards perfect vision is developing a more efficient and precise laser scalpel and evaluating minimal-invasive laser surgery strategies. Femtosecond all-solid-state MOPA lasers based on passive modelocking and chirped pulse amplification are excellent candidates for eye surgery due to their stability, ultra-high intensity and compact tabletop size. Furthermore, taking into account the peak emission in the near IR and diffraction limited focusing abilities, surgical laser systems performing precise intrastromal incisions for corneal flap resection and intrastromal corneal reshaping promise significant improvement over today's Photorefractive Keratectomy (PRK) and Laser Assisted In Situ Keratomileusis (LASIK) techniques which utilize UV excimer lasers. Through dispersion control and optimized regenerative amplification, a compact femtosecond all-solid-state laser with pulsed energy well above LIOB threshold and kHz repetition rate is constructed. After applying a pulse sequence to the eye, the modified corneal morphology is investigated by high resolution microscopy (Multi Photon/SHG Confocal Microscope).
Lidar Measurements of the Stratosphere and Mesosphere at the Biejing Observatory
NASA Astrophysics Data System (ADS)
Du, Lifang; Yang, Guotao; Cheng, Xuewu; Wang, Jihong
With the high precision and high spatial and temporal resolution, the lidar has become a powerful weapon of near space environment monitoring. This paper describes the development of the solid-state 532nm and 589nm laser radar, which were used to detect the wind field of Beijing stratosphere and mesopause field. The injection seeding technique and atomic absorption saturation bubble frequency stabilization method was used to obtain narrow linewidth of 532nm lidar, Wherein the laser pulse energy of 800mJ, repetition rate of 30Hz. The 589nm yellow laser achieved by extra-cavity sum-frequency mixing 1064nm and 1319nm pulse laser with KTP crystal. The base frequency of 1064nm and 1319nm laser adopted injection seeding technique and YAG laser amplification for high energy pulse laser. Ultimately, the laser pulse of 150mJ and the linewidth of 130MHz of 589nm laser was obtain. And after AOM crystal frequency shift, Doppler frequency discriminator free methods achieved of the measuring of high-altitude wind. Both of 532nm and 589nm lidar system for engineering design of solid-state lidar provides a basis, and also provide a solid foundation for the development of all-solid-state wind lidar.
Xia, Yuan; Du, LiFang; Cheng, XueWu; Li, FaQuan; Wang, JiHong; Wang, ZeLong; Yang, Yong; Lin, Xin; Xun, YuChang; Gong, ShunSheng; Yang, GuoTao
2017-03-06
A solid-state sodium (Na) Doppler lidar developed at YanQing Station, Beijing, China (40°N, 116°E) aiming to simultaneous wind and temperature measurement of mesopause region was reported. The 589 nm pulse laser was produced by two injection seeded 1064 nm and 1319 nm Nd:YAG pulse lasers using the sum-frequency generation (SFG) technique. A fiber amplifier is implemented to boost the seed power at 1064 nm, enabling a robust, all-fiber-coupled design for seeding laser unit, absolute laser frequency locking, and cyclic three-frequency switching necessary for simultaneous temperature and wind measurements. The all-fiber-coupled injection seeding configuration together with the solid-state Nd:YAG lasers make the Na Doppler lidar more compact and greatly reduce the system maintenance, which is conducive to transportable and unattended operation. A preliminary observational result obtained with this solid-state sodium Doppler lidar was also reported in this paper.
Novel diode laser-based sensors for gas sensing applications
NASA Technical Reports Server (NTRS)
Tittel, F. K.; Lancaster, D. G.; Richter, D.
2000-01-01
The development of compact spectroscopic gas sensors and their applications to environmental sensing will be described. These sensors employ mid-infrared difference-frequency generation (DFG) in periodically poled lithium niobate (PPLN) crystals pumped by two single-frequency solid state lasers such as diode lasers, diode-pumped solid state, and fiber lasers. Ultrasensitive, highly selective, and real-time measurements of several important atmospheric trace gases, including carbon monoxide, nitrous oxide, carbon dioxide, formaldehyde [correction of formaldehye], and methane, have been demonstrated.
Excimer laser photorefractive surgery of the cornea
NASA Astrophysics Data System (ADS)
Gaster, Ronald N.
1998-09-01
The 193 nm argon fluoride (ArF) excimer laser can effectively be used to change the radius of curvature of the cornea and thus alter the refractive state of the eye. This change allows myopic (nearsighted) patients to see well with less dependence on glasses or contact lenses. The two major techniques of laser refractive surgery currently in effect in the United States are photorefractive keratectomy (PRK) and laser in situ keratomileusis (LASIK). This paper will discuss these refractive cornea surgical techniques.
New, Efficient Optically Pumped Solid State Lasers.
1989-02-21
Lasers", during the contract period from 15 August 1984 thru 11 November 1988 (AFOSR-88-0378) has led to some notable advances. This effort h,.s focused...lower laser states of both Er and 1Ho. This work has led to the inves t igation of the Nd,Er ion-ion interactions in other crystals such as Nd,Er:YALO...backed pyrex reflector. While the laser may work in a gold-plated cavity, the many visible, blue and near uv pump bands suggest better efficiency is
Efficient and accurate modeling of electron photoemission in nanostructures with TDDFT
NASA Astrophysics Data System (ADS)
Wopperer, Philipp; De Giovannini, Umberto; Rubio, Angel
2017-03-01
We derive and extend the time-dependent surface-flux method introduced in [L. Tao, A. Scrinzi, New J. Phys. 14, 013021 (2012)] within a time-dependent density-functional theory (TDDFT) formalism and use it to calculate photoelectron spectra and angular distributions of atoms and molecules when excited by laser pulses. We present other, existing computational TDDFT methods that are suitable for the calculation of electron emission in compact spatial regions, and compare their results. We illustrate the performance of the new method by simulating strong-field ionization of C60 fullerene and discuss final state effects in the orbital reconstruction of planar organic molecules.
Detection of OH on photolysis of styrene oxide at 193 nm in gas phase
NASA Astrophysics Data System (ADS)
Kumar, Awadhesh; SenGupta, Sumana; Pushpa, K. K.; Naik, P. D.; Bajaj, P. N.
2006-10-01
Photodissociation of styrene oxide at 193 nm in gas phase generates OH, as detected by laser-induced fluorescence technique. Under similar conditions, OH was not observed from ethylene and propylene oxides, primarily because of their low absorption cross-sections at 193 nm. Mechanism of OH formation involves first opening of the three-membered ring from the ground electronic state via cleavage of either of two C sbnd O bonds, followed by isomerization to enolic forms of phenylacetaldehyde and acetophenone, and finally scission of the C sbnd OH bond of enols. Ab initio molecular orbital calculations support the proposed mechanism.
State laser regulations: Arizona's approach and experience
NASA Astrophysics Data System (ADS)
Barat, Kenneth L.
1992-06-01
Approximately a dozen states have regulatory or statutory authority in the area of nonionizing radiation. With only half that number having established laser regulations. Examples are Texas, Florida, Arizona, Mass. many more are considering establishing such rules, such as N.J., Il., Neb. On the federal level, the Food and Drug Administration has been the most active entity. OSHA has just recently established laser safety guidelines for its inspection staff. In March of 1990 the State of Arizona enacted rules for the control of Nonionizing radiation. This fell under Article 14 of Tittle 12 of the Arizona Administrative Code, which is under the authority of the Arizona Radiation Regulatory Agency. The rules cover a wide range of nonionizing sources, but the major emphasis is in the area of laser devices. While all class lasers fall under Article 14, only Class IIIb and Class IV laser use facilities are required to be registered and inspected by the agency. The rules apply to all Class IIIb and Class IV laser users, meaning medical, industrial, entertainment, and also research facilities.
Liu, Minghuan; Liu, Yonggang; Peng, Zenghui; Wang, Shaoxin; Wang, Qidong; Mu, Quanquan; Cao, Zhaoliang; Xuan, Li
2017-05-07
Organic solid-state tri-wavelength lasing was demonstrated from dye-doped holographic polymer-dispersed liquid crystal (HPDLC) distributed feedback (DFB) laser with semiconducting polymer poly[-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene-vinylene] (MEH-PPV) and laser dye [4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran] (DCM) by a one-step holography technique, which centered at 605.5 nm, 611.9 nm, and 671.1 nm. The temperature-dependence tuning range for the tri-wavelength dye-doped HPDLC DFB laser was as high as 8 nm. The lasing emission from the 9th order HPDLC DFB laser with MEH-PPV as active medium was also investigated, which showed excellent s-polarization characterization. The diffraction order is 9th and 8th for the dual-wavelength lasing with DCM as the active medium. The results of this work provide a method for constructing the compact and cost-effective all solid-state smart laser systems, which may find application in scientific and applied research where multi-wavelength radiation is required.
Ghandi, Khashayar; Clark, Ian P; Lord, James S; Cottrell, Stephen P
2007-01-21
This study introduces laser-muon spin spectroscopy in the liquid phase, which extends muonium chemistry in liquids to the realm of excited states and enables the detection of muoniated molecules by their spin evolution after laser excitation. This leads to new opportunities to study the Kinetic Isotope Effects (KIEs) of muonium/atomic hydrogen reactions and to probe transient chemistry in radiolysis processes involved in muonium formation, as well as muoniated intermediates in excited states.
Wang, Jieying; Bai, Jiandong; He, Jun; Wang, Junmin
2017-09-18
We demonstrate a single-photon Rydberg excitation spectroscopy of cesium (Cs) atoms in a room-temperature vapor cell. Cs atoms are excited directly from 6S 1/2 ground state to nP 3/2 (n = 70 - 100) Rydberg states with a 318.6 nm ultraviolet (UV) laser, and Rydberg excitation spectra are obtained by transmission enhancement of a probe beam resonant to Cs 6S 1/2 , F = 4 - 6P 3/2 , F' = 5 transition as partial population on F = 4 ground state are transferred to Rydberg state. Analysis reveals that the observed spectra are velocity-selective spectroscopy of Rydberg state, from which the amplitude and linewidth influenced by lasers' Rabi frequency have been investigated. Fitting to energies of Cs nP 3/2 (n = 70 -100) states, the determined quantum defect is 3.56671(42). The demodulated spectra can also be employed as frequency references to stabilize the UV laser frequency to specific Cs Rydberg transition.
NASA Technical Reports Server (NTRS)
Lawandy, Nabil M.
1987-01-01
The third phase of research will focus on the propagation and energy extraction of the pump and SERS beams in a variety of configurations including oscillator structures. In order to address these questions a numerical code capable of allowing for saturation and full transverse beam evolution is required. The method proposed is based on a discretized propagation energy extraction model which uses a Kirchoff integral propagator coupled to the three level Raman model already developed. The model will have the resolution required by diffraction limits and will use the previous density matrix results in the adiabatic following limit. Owing to its large computational requirements, such a code must be implemented on a vector array processor. One code on the Cyber is being tested by using previously understood two-level laser models as guidelines for interpreting the results. Two tests were implemented: the evolution of modes in a passive resonator and the evolution of a stable state of the adiabatically eliminated laser equations. These results show mode shapes and diffraction losses for the first case and relaxation oscillations for the second one. Finally, in order to clarify the computing methodology used to exploit the speed of the Cyber's computational speed, the time it takes to perform both of the computations previously mentioned to run on the Cyber and VAX 730 must be measured. Also included is a short description of the current laser model (CAVITY.FOR) and a flow chart of the test computations.
NASA Astrophysics Data System (ADS)
Musgrave, Christopher S. A.; Murakami, Takehiro; Ugomori, Teruyuki; Yoshida, Kensuke; Fujioka, Shinsuke; Nishimura, Hiroaki; Atarashi, Hironori; Iyoda, Tomokazu; Nagai, Keiji
2017-03-01
With the advent of high volume manufacturing capabilities by extreme ultraviolet lithography, constant improvements in light source design and cost-efficiency are required. Currently, light intensity and conversion efficiency (CE) measurments are obtained by charged couple devices, faraday cups etc, but also phoshpor imaging plates (IPs) (BaFBr:Eu). IPs are sensitive to light and high-energy species, which is ideal for studying extreme ultraviolet (EUV) light from laser produced plasmas (LPPs). In this work, we used IPs to observe a large angular distribution (10°-90°). We ablated a tin target by high-energy lasers (1064 nm Nd:YAG, 1010 and 1011 W/cm2) to generate the EUV light. The europium ions in the IP were trapped in a higher energy state from exposure to EUV light and high-energy species. The light intensity was angular dependent; therefore excitation of the IP depends on the angle, and so highly informative about the LPP. We obtained high-space resolution (345 μm, 0.2°) angular distribution and grazing spectrometer (5-20 nm grate) data simultaneously at different target to IP distances (103 mm and 200 mm). Two laser systems and IP types (BAS-TR and BAS-SR) were also compared. The cosine fitting values from the IP data were used to calculate the CE to be 1.6% (SD ± 0.2) at 13.5 nm 2% bandwidth. Finally, a practical assessment of IPs and a damage issue are disclosed.
Generation of neutral and high-density electron–positron pair plasmas in the laboratory
Sarri, G.; Poder, K.; Cole, J. M.; Schumaker, W.; Di Piazza, A.; Reville, B.; Dzelzainis, T.; Doria, D.; Gizzi, L. A.; Grittani, G.; Kar, S.; Keitel, C. H.; Krushelnick, K.; Kuschel, S.; Mangles, S. P. D.; Najmudin, Z.; Shukla, N.; Silva, L. O.; Symes, D.; Thomas, A. G. R.; Vargas, M.; Vieira, J.; Zepf, M.
2015-01-01
Electron–positron pair plasmas represent a unique state of matter, whereby there exists an intrinsic and complete symmetry between negatively charged (matter) and positively charged (antimatter) particles. These plasmas play a fundamental role in the dynamics of ultra-massive astrophysical objects and are believed to be associated with the emission of ultra-bright gamma-ray bursts. Despite extensive theoretical modelling, our knowledge of this state of matter is still speculative, owing to the extreme difficulty in recreating neutral matter–antimatter plasmas in the laboratory. Here we show that, by using a compact laser-driven setup, ion-free electron–positron plasmas with unique characteristics can be produced. Their charge neutrality (same amount of matter and antimatter), high-density and small divergence finally open up the possibility of studying electron–positron plasmas in controlled laboratory experiments. PMID:25903920
Generation of neutral and high-density electron-positron pair plasmas in the laboratory.
Sarri, G; Poder, K; Cole, J M; Schumaker, W; Di Piazza, A; Reville, B; Dzelzainis, T; Doria, D; Gizzi, L A; Grittani, G; Kar, S; Keitel, C H; Krushelnick, K; Kuschel, S; Mangles, S P D; Najmudin, Z; Shukla, N; Silva, L O; Symes, D; Thomas, A G R; Vargas, M; Vieira, J; Zepf, M
2015-04-23
Electron-positron pair plasmas represent a unique state of matter, whereby there exists an intrinsic and complete symmetry between negatively charged (matter) and positively charged (antimatter) particles. These plasmas play a fundamental role in the dynamics of ultra-massive astrophysical objects and are believed to be associated with the emission of ultra-bright gamma-ray bursts. Despite extensive theoretical modelling, our knowledge of this state of matter is still speculative, owing to the extreme difficulty in recreating neutral matter-antimatter plasmas in the laboratory. Here we show that, by using a compact laser-driven setup, ion-free electron-positron plasmas with unique characteristics can be produced. Their charge neutrality (same amount of matter and antimatter), high-density and small divergence finally open up the possibility of studying electron-positron plasmas in controlled laboratory experiments.
NASA Astrophysics Data System (ADS)
de Léséleuc, Sylvain; Weber, Sebastian; Lienhard, Vincent; Barredo, Daniel; Büchler, Hans Peter; Lahaye, Thierry; Browaeys, Antoine
2018-03-01
We study a system of atoms that are laser driven to n D3 /2 Rydberg states and assess how accurately they can be mapped onto spin-1 /2 particles for the quantum simulation of anisotropic Ising magnets. Using nonperturbative calculations of the pair potentials between two atoms in the presence of electric and magnetic fields, we emphasize the importance of a careful selection of experimental parameters in order to maintain the Rydberg blockade and avoid excitation of unwanted Rydberg states. We benchmark these theoretical observations against experiments using two atoms. Finally, we show that in these conditions, the experimental dynamics observed after a quench is in good agreement with numerical simulations of spin-1 /2 Ising models in systems with up to 49 spins, for which numerical simulations become intractable.
Direct solar-pumped iodine laser amplifier
NASA Technical Reports Server (NTRS)
Han, Kwang S.; Kim, K. H.; Stock, L. V.
1987-01-01
The improvement on the collection system of the Tarmarack Solar Simulator beam was attemped. The basic study of evaluating the solid state laser materials for the solar pumping and also the work to construct a kinetic model algorithm for the flashlamp pumped iodine lasers were carried out. It was observed that the collector cone worked better than the lens assembly in order to collect the solar simulator beam and to focus it down to a strong power density. The study on the various laser materials and their lasing characteristics shows that the neodymium and chromium co-doped gadolinium scandium gallium garnet (Nr:Cr:GSGG) may be a strong candidate for the high power solar pumped solid state laser crystal. On the other hand the improved kinetic modeling for the flashlamp pumped iodine laser provides a good agreement between the theoretical model and the experimental data on the laser power output, and predicts the output parameters of a solar pumped iodine laser.