State Comparative Maps Help | ECHO | US EPA
Comparative Maps in ECHO focus on environmental compliance and enforcement trends at a state and national level. Comparative maps provide a quick cross-country look at key environmental compliance and enforcement indicators. The maps link to dashboards that provide details by state/territory.
Intelligent geocoding system to locate traffic crashes.
Qin, Xiao; Parker, Steven; Liu, Yi; Graettinger, Andrew J; Forde, Susie
2013-01-01
State agencies continue to face many challenges associated with new federal crash safety and highway performance monitoring requirements that use data from multiple and disparate systems across different platforms and locations. On a national level, the federal government has a long-term vision for State Departments of Transportation (DOTs) to report state route and off-state route crash data in a single network. In general, crashes occurring on state-owned or state maintained highways are a priority at the Federal and State level; therefore, state-route crashes are being geocoded by state DOTs. On the other hand, crashes occurring on off-state highway system do not always get geocoded due to limited resources and techniques. Creating and maintaining a statewide crash geographic information systems (GIS) map with state route and non-state route crashes is a complicated and expensive task. This study introduces an automatic crash mapping process, Crash-Mapping Automation Tool (C-MAT), where an algorithm translates location information from a police report crash record to a geospatial map and creates a pinpoint map for all crashes. The algorithm has approximate 83 percent mapping rate. An important application of this work is the ability to associate the mapped crash records to underlying business data, such as roadway inventory and traffic volumes. The integrated crash map is the foundation for effective and efficient crash analyzes to prevent highway crashes. Published by Elsevier Ltd.
Comparative Maps & Dashboards Home | ECHO | US EPA
Comparative Maps and Dashboards focus on environmental compliance and enforcement trends at a state and national level. Comparative maps provide a quick cross-country look at key environmental compliance and enforcement indicators. The maps link to dashboards that provide details by state/territory.
Level III Ecoregions of Alaska
Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. The ecoregions of Alaska are a framework for organizing and interpreting environmental data for State, national, and international level inventory, monitoring, and research efforts. The map and descriptions for 20 ecological regions were derived by synthesizing information on the geographic distribution of environmental factors such as climate, physiography, geology, permafrost, soils, and vegetation. A qualitative assessment was used to interpret the distributional patterns and relative importance of these factors from place to place (Gallant and others, 1995). Numeric identifiers assigned to the ecoregions are coordinated with those used on the map of Ecoregions of the Conterminous United States (Omernik 1987, U.S. EPA 2010) as a continuation of efforts to map ecoregions for the United States. Additionally, the ecoregions for Alaska and the conterminous United States, along with ecological regions for Canada (Wiken 1986) and Mexico, have been combined for maps at three hierarchical levels for North America (Omernik 1995, Commission for Environmental Cooperation, 1997, 2006). A Roman numeral hierarchical scheme has been adopted for different levels of ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions. At Level III, there are currently 182
Spatially Regularized Machine Learning for Task and Resting-state fMRI
Song, Xiaomu; Panych, Lawrence P.; Chen, Nan-kuei
2015-01-01
Background Reliable mapping of brain function across sessions and/or subjects in task- and resting-state has been a critical challenge for quantitative fMRI studies although it has been intensively addressed in the past decades. New Method A spatially regularized support vector machine (SVM) technique was developed for the reliable brain mapping in task- and resting-state. Unlike most existing SVM-based brain mapping techniques, which implement supervised classifications of specific brain functional states or disorders, the proposed method performs a semi-supervised classification for the general brain function mapping where spatial correlation of fMRI is integrated into the SVM learning. The method can adapt to intra- and inter-subject variations induced by fMRI nonstationarity, and identify a true boundary between active and inactive voxels, or between functionally connected and unconnected voxels in a feature space. Results The method was evaluated using synthetic and experimental data at the individual and group level. Multiple features were evaluated in terms of their contributions to the spatially regularized SVM learning. Reliable mapping results in both task- and resting-state were obtained from individual subjects and at the group level. Comparison with Existing Methods A comparison study was performed with independent component analysis, general linear model, and correlation analysis methods. Experimental results indicate that the proposed method can provide a better or comparable mapping performance at the individual and group level. Conclusions The proposed method can provide accurate and reliable mapping of brain function in task- and resting-state, and is applicable to a variety of quantitative fMRI studies. PMID:26470627
Rainwater harvesting state regulations and technical resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loper, Susan A.
Pacific Northwest National Laboratory (PNNL) conducted in-depth research of state-level rainwater harvesting regulations for the Federal Energy Management Program (FEMP) to help federal agencies strategically identify locations conducive to rainwater harvesting projects. Currently, rainwater harvesting is not regulated by the federal government but rather it is up to individual states to regulate the collection and use of rainwater. There is no centralized information on state-level regulations on rainwater harvesting maintained by a federal agency or outside organization. To fill this information gap, PNNL performed detailed internet searches for each state, which included state agencies, universities, Cooperative Extension Offices, city governments,more » and related organizations. The state-by-state information on rainwater harvesting regulations was compiled and assembled into an interactive map that is color coded by state regulations. The map provides a visual representation of the general types of rainwater harvesting policies across the country as well as general information on the state programs if applicable. The map allows the user to quickly discern where rainwater harvesting is supported and regulated by the state. This map will be available on the FEMP website by September 2015.« less
NASA Astrophysics Data System (ADS)
Jeyaraj, K. L.; Muralidharan, C.; Mahalingam, R.; Deshmukh, S. G.
2013-01-01
The purpose of this paper is to explain how value stream mapping (VSM) is helpful in lean implementation and to develop the road map to tackle improvement areas to bridge the gap between the existing state and the proposed state of a manufacturing firm. Through this case study, the existing stage of manufacturing is mapped with the help of VSM process symbols and the biggest improvement areas like excessive TAKT time, production, and lead time are identified. Some modifications in current state map are suggested and with these modifications future state map is prepared. Further TAKT time is calculated to set the pace of production processes. This paper compares the current state and future state of a manufacturing firm and witnessed 20 % reduction in TAKT time, 22.5 % reduction in processing time, 4.8 % reduction in lead time, 20 % improvement in production, 9 % improvement in machine utilization, 7 % improvement in man power utilization, objective improvement in workers skill level, and no change in the product and semi finished product inventory level. The findings are limited due to the focused nature of the case study. This case study shows that VSM is a powerful tool for lean implementation and allows the industry to understand and continuously improve towards lean manufacturing.
Soddu, Andrea; Gómez, Francisco; Heine, Lizette; Di Perri, Carol; Bahri, Mohamed Ali; Voss, Henning U; Bruno, Marie-Aurélie; Vanhaudenhuyse, Audrey; Phillips, Christophe; Demertzi, Athena; Chatelle, Camille; Schrouff, Jessica; Thibaut, Aurore; Charland-Verville, Vanessa; Noirhomme, Quentin; Salmon, Eric; Tshibanda, Jean-Flory Luaba; Schiff, Nicholas D; Laureys, Steven
2016-01-01
The mildly invasive 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) is a well-established imaging technique to measure 'resting state' cerebral metabolism. This technique made it possible to assess changes in metabolic activity in clinical applications, such as the study of severe brain injury and disorders of consciousness. We assessed the possibility of creating functional MRI activity maps, which could estimate the relative levels of activity in FDG-PET cerebral metabolic maps. If no metabolic absolute measures can be extracted, our approach may still be of clinical use in centers without access to FDG-PET. It also overcomes the problem of recognizing individual networks of independent component selection in functional magnetic resonance imaging (fMRI) resting state analysis. We extracted resting state fMRI functional connectivity maps using independent component analysis and combined only components of neuronal origin. To assess neuronality of components a classification based on support vector machine (SVM) was used. We compared the generated maps with the FDG-PET maps in 16 healthy controls, 11 vegetative state/unresponsive wakefulness syndrome patients and four locked-in patients. The results show a significant similarity with ρ = 0.75 ± 0.05 for healthy controls and ρ = 0.58 ± 0.09 for vegetative state/unresponsive wakefulness syndrome patients between the FDG-PET and the fMRI based maps. FDG-PET, fMRI neuronal maps, and the conjunction analysis show decreases in frontoparietal and medial regions in vegetative patients with respect to controls. Subsequent analysis in locked-in syndrome patients produced also consistent maps with healthy controls. The constructed resting state fMRI functional connectivity map points toward the possibility for fMRI resting state to estimate relative levels of activity in a metabolic map.
Documentation for the 2008 Update of the United States National Seismic Hazard Maps
Petersen, Mark D.; Frankel, Arthur D.; Harmsen, Stephen C.; Mueller, Charles S.; Haller, Kathleen M.; Wheeler, Russell L.; Wesson, Robert L.; Zeng, Yuehua; Boyd, Oliver S.; Perkins, David M.; Luco, Nicolas; Field, Edward H.; Wills, Chris J.; Rukstales, Kenneth S.
2008-01-01
The 2008 U.S. Geological Survey (USGS) National Seismic Hazard Maps display earthquake ground motions for various probability levels across the United States and are applied in seismic provisions of building codes, insurance rate structures, risk assessments, and other public policy. This update of the maps incorporates new findings on earthquake ground shaking, faults, seismicity, and geodesy. The resulting maps are derived from seismic hazard curves calculated on a grid of sites across the United States that describe the frequency of exceeding a set of ground motions. The USGS National Seismic Hazard Mapping Project developed these maps by incorporating information on potential earthquakes and associated ground shaking obtained from interaction in science and engineering workshops involving hundreds of participants, review by several science organizations and State surveys, and advice from two expert panels. The National Seismic Hazard Maps represent our assessment of the 'best available science' in earthquake hazards estimation for the United States (maps of Alaska and Hawaii as well as further information on hazard across the United States are available on our Web site at http://earthquake.usgs.gov/research/hazmaps/).
Gregory K. Dillon; Zachary A. Holden; Penny Morgan; Bob Keane
2009-01-01
The Fire Severity Mapping System project is geared toward providing fire managers across the western United States with critical information for dealing with and planning for the ecological effects of wildfire at multiple levels of thematic, spatial, and temporal detail. For this project, we are developing a comprehensive, west-wide map of the landscape potential for...
Flood Vulnerability Assessment Map
Maps of energy infrastructure with real-time storm and emergency information by fuel type and by state. Flood hazard information from FEMA has been combined with EIA's energy infrastructure layers as a tool to help state, county, city, and private sector planners assess which key energy infrastructure assets are vulnerable to rising sea levels, storm surges, and flash flooding. Note that flood hazard layers must be zoomed-in to street level before they become visible.
Level III and IV Ecoregions by State
Information and links to downloadable maps and datasets for Level III and IV ecoregions, listed by state. Ecoregions are areas of general similarity in the type, quality, and quantity of environmental resources.
NASA Astrophysics Data System (ADS)
Wardlow, Brian Douglas
The objectives of this research were to: (1) investigate time-series MODIS (Moderate Resolution Imaging Spectroradiometer) 250-meter EVI (Enhanced Vegetation Index) and NDVI (Normalized Difference Vegetation Index) data for regional-scale crop-related land use/land cover characterization in the U.S. Central Great Plains and (2) develop and test a MODIS-based crop mapping protocol. A pixel-level analysis of the time-series MODIS 250-m VIs for 2,000+ field sites across Kansas found that unique spectral-temporal signatures were detected for the region's major crop types, consistent with the crops' phenology. Intra-class variations were detected in VI data associated with different land use practices, climatic conditions, and planting dates for the crops. The VIs depicted similar seasonal variations and were highly correlated. A pilot study in southwest Kansas found that accurate and detailed cropping patterns could be mapped using the MODIS 250-m VI data. Overall and class-specific accuracies were generally greater than 90% for mapping crop/non-crop, general crops (alfalfa, summer crops, winter wheat, and fallow), summer crops (corn, sorghum, and soybeans), and irrigated/non-irrigated crops using either VI dataset. The classified crop areas also had a high level of agreement (<5% difference) with the USDA reported crop areas. Both VIs produced comparable crop maps with only a 1-2% difference between their classification accuracies and a high level of pixel-level agreement (>90%) between their classified crop patterns. This hierarchical crop mapping protocol was tested for Kansas and produced similar classification results over a larger and more diverse area. Overall and class-specific accuracies were typically between 85% and 95% for the crop maps. At the state level, the maps had a high level of areal agreement (<5% difference) with the USDA crop area figures and their classified patterns were consistent with the state's cropping practices. In general, the protocol's performance was relatively consistent across the state's range of environmental conditions, landscape patterns, and cropping practices. The largest areal differences occurred in eastern Kansas due to the omission of many small cropland areas that were not resolvable at MODIS' 250-m resolution. Notable regional deviations in classified areas also occurred for selected classes due to localized precipitation patterns and specific cropping practices.
Level III and IV Ecoregions of the Continental United States
Information and downloadable maps and datasets for Level III and IV ecoregions of the continental United States. Ecoregions are areas of general similarity in the type, quality, and quantity of environmental resources.
Mapping Standardised Test Scores with Other Variables Using GIS
ERIC Educational Resources Information Center
Kerski, Joseph; Linn, Sophia; Gindele, Rick
2005-01-01
This article discusses the Mapping CSAP (Colorado Student Achievement Program) project, an extension of a grant-funded programme that sought to show the importance of a geographic perspective on public policy decision-making at the state level. In this programme, high school students were asked to grapple with current state issues in Colorado,…
Bedrock geologic map of Vermont
Ratcliffe, Nicholas M.; Stanley, Rolfe S.; Gale, Marjorie H.; Thompson, Peter J.; Walsh, Gregory J.; With contributions by Hatch, Norman L.; Rankin, Douglas W.; Doolan, Barry L.; Kim, Jonathan; Mehrtens, Charlotte J.; Aleinikoff, John N.; McHone, J. Gregory; Cartography by Masonic, Linda M.
2011-01-01
The Bedrock Geologic Map of Vermont is the result of a cooperative agreement between the U.S. Geological Survey (USGS) and the State of Vermont. The State's complex geology spans 1.4 billion years of Earth's history. The new map comes 50 years after the most recent map of the State by Charles G. Doll and others in 1961 and a full 150 years since the publication of the first geologic map of Vermont by Edward Hitchcock and others in 1861. At a scale of 1:100,000, the map shows an uncommon level of detail for State geologic maps. Mapped rock units are primarily based on lithology, or rock type, to facilitate derivative studies in multiple disciplines. The 1961 map was compiled from 1:62,500-scale or smaller maps. The current map was created to integrate more detailed (1:12,000- to 1:24,000-scale) modern and older (1:62,500-scale) mapping with the theory of plate tectonics to provide a framework for geologic, tectonic, economic, hydrogeologic, and environmental characterization of the bedrock of Vermont. The printed map consists of three oversize sheets (52 x 76 inches). Sheets 1 and 2 show the southern and northern halves of Vermont, respectively, and can be trimmed and joined so that the entire State can be displayed as a single entity. These sheets also include 10 cross sections and a geologic structure map. Sheet 3 on the front consists of descriptions of 486 map units, a correlation of map units, and references cited. Sheet 3 on the back features a list of the 195 sources of geologic map data keyed to an index map of 7.5-minute quadrangles in Vermont, as well as a table identifying ages of rocks dated by uranium-lead zircon geochronology.
Mapping Control and Affiliation in Teacher-Student Interaction with State Space Grids
ERIC Educational Resources Information Center
Mainhard, M. Tim; Pennings, Helena J. M.; Wubbels, Theo; Brekelmans, Mieke
2012-01-01
This paper explores how State Space Grids (SSG), a dynamic systems research method, can be used to map teacher-student interactions from moment-to-moment and thereby to incorporate temporal aspects of interaction. Interactions in two secondary school classrooms are described in terms of level of interpersonal control and affiliation, and of…
EnviroAtlas - NHDPlus V2 Hydrologic Unit Boundaries Web Service - Conterminous United States
This EnviroAtlas web service contains layers depicting hydrologic unit boundary layers and labels for the Subregion level (4-digit HUCs), Subbasin level (8-digit HUCs), and Subwatershed level (12-digit HUCs) for the conterminous United States. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
A web-based tool for groundwater mapping and drought analysis
NASA Astrophysics Data System (ADS)
Christensen, S.; Burns, M.; Jones, N.; Strassberg, G.
2012-12-01
In 2011-2012, the state of Texas saw the worst one-year drought on record. Fluctuations in gravity measured by GRACE satellites indicate that as much as 100 cubic kilometers of water was lost during this period. Much of this came from reservoirs and shallow soil moisture, but a significant amount came from aquifers. In response to this crisis, a Texas Drought Technology Steering Committee (TDTSC) consisting of academics and water managers was formed to develop new tools and strategies to assist the state in monitoring, predicting, and responding to drought events. In this presentation, we describe one of the tools that was developed as part of this effort. When analyzing the impact of drought on groundwater levels, it is fairly common to examine time series data at selected monitoring wells. However, accurately assessing impacts and trends requires both spatial and temporal analysis involving the development of detailed water level maps at various scales. Creating such maps in a flexible and rapid fashion is critical for effective drought analysis, but can be challenging due to the massive amounts of data involved and the processing required to generate such maps. Furthermore, wells are typically not sampled at the same points in time, and so developing a water table map for a particular date requires both spatial and temporal interpolation of water elevations. To address this challenge, a Cloud-based water level mapping system was developed for the state of Texas. The system is based on the Texas Water Development Board (TWDB) groundwater database, but can be adapted to use other databases as well. The system involves a set of ArcGIS workflows running on a server with a web-based front end and a Google Earth plug-in. A temporal interpolation geoprocessing tool was developed to estimate the piezometric heads for all wells in a given region at a specific date using a regression analysis. This interpolation tool is coupled with other geoprocessing tools to filter data and interpolate point elevations spatially to produce water level, drawdown, and depth to groundwater maps. The web interface allows for users to generate these maps at locations and times of interest. A sequence of maps can be generated over a period of time and animated to visualize how water levels are changing. The time series regression analysis can also be used to do short-term predictions of future water levels.
Stehman, S.V.; Wickham, J.D.; Smith, J.H.; Yang, L.
2003-01-01
The accuracy of the 1992 National Land-Cover Data (NLCD) map is assessed via a probability sampling design incorporating three levels of stratification and two stages of selection. Agreement between the map and reference land-cover labels is defined as a match between the primary or alternate reference label determined for a sample pixel and a mode class of the mapped 3×3 block of pixels centered on the sample pixel. Results are reported for each of the four regions comprising the eastern United States for both Anderson Level I and II classifications. Overall accuracies for Levels I and II are 80% and 46% for New England, 82% and 62% for New York/New Jersey (NY/NJ), 70% and 43% for the Mid-Atlantic, and 83% and 66% for the Southeast.
ERIC Educational Resources Information Center
Chen, Tina; Starns, Jeffrey J.; Rotello, Caren M.
2015-01-01
The 2-high-threshold (2HT) model of recognition memory assumes that test items result in distinct internal states: they are either detected or not, and the probability of responding at a particular confidence level that an item is "old" or "new" depends on the state-response mapping parameters. The mapping parameters are…
USDA-ARS?s Scientific Manuscript database
New cellobiose Phi-H/Si-H maps are rapidly generated using a mixed basis set DFT method, found to achieve a high level of confidence while reducing computer resources dramatically. Relaxed iso-potential maps are made for different conformational states of cellobiose, showing how glycosidic bond dihe...
NASA Astrophysics Data System (ADS)
González Huesca, A. E.; Ferrés, D.; Domínguez-M, L.
2013-05-01
Numerous cases of different types of slope instability occur every year in the mountain areas of México. Sometimes these instabilities severely affect the exposed communities, roads and infrastructure, causing deaths and serious material damage, mainly in the states of Puebla, Veracruz, Oaxaca, Guerrero and Chiapas, at the central and south sectors of the country. The occurrence of the slope instability is the result of the combination of climatic, geologic, hydrologic, geomorphologic and anthropogenic factors. The National Center for Disaster Prevention (CENAPRED) is developing several projects in order to offer civil protection authorities of the Mexican states some methodologies to address the hazard assessment for different natural phenomena in a regional level. In this framework, during the past two years, a methodology was prepared to construct susceptibility maps for slope instability at regional (≤ 1:100 000) and national (≤ 1:1 000 000) levels. This research was addressed in accordance to the criteria established by the International Association of Engineering Geology, which is the highest international authority in this topic. The state of Guerrero has been taken as a pilot scheme to elaborate the susceptibility map for slope instability at a regional level. The major constraints considered in the methodology to calculate susceptibility are: a) the slope of the surface, b) the geology and c) the land use, which were integrated using a Geographic Information System (GIS). The arithmetic sum and weighting factors to obtain the final susceptibility map were based on the average values calculated in the individual study of several cases of slope instability occurred in the state in the past decade. For each case, the evaluation format proposed by CENAPRED in 2006 in the "Guía Básica para la elaboración de Atlas Estatales y Municipales de Peligros y Riesgos" to evaluate instabilities in a local level, was applied. The resulting susceptibility map shows that the central and east-central sectors of the state of Guerrero are those with higher values of susceptibility to slope instability. Future work will elaborate the hazard maps of slope instability for the state of Guerrero using and combining the information of susceptibility obtained with the data of the trigger factors, such as precipitation and seismicity, for different periods of recurrence. The final goal is that this methodology can be applied to other states of the country, in order to nourish and enhance their Atlas of hazards and risk.
Annual summary of ground-water conditions in Arizona, spring 1975 to spring 1976
Babcock, H.M.
1977-01-01
Two small-scale maps of Arizona show (1) pumpage of ground water by areas and (2) the status of the ground-water inventory in the State. A larger map of the State at a scale of 1:500,000 shows potential well production, depth to water in selected wells in spring 1976, and change in water level in selected wells from 1971 to 1976. The brief text that accompanies the maps summarizes the current ground-water conditions in the State. The withdrawal of ground water in Arizona was about 5.6 million acre-feet in 1975, of which about 4.7 million acre-feet was used for the irrigation of crops. The Salt River Valley and the lower Santa Cruz basin are the largest agricultural areas in the State. For 1971-75, ground-water withdrawal in the two areas was about 8.3 and 4.7 million acre-feet, respectively, and, in general, water levels are declining. Other areas in which ground-water withdrawals have caused large water-level declines are the Willcox, San Simon, upper Santa Cruz, Avra Valley, Gila Bend, Harquahala Plains, and McMullen Valley areas. (Woodard-USGS)
A posteriori model validation for the temporal order of directed functional connectivity maps.
Beltz, Adriene M; Molenaar, Peter C M
2015-01-01
A posteriori model validation for the temporal order of neural directed functional connectivity maps is rare. This is striking because models that require sequential independence among residuals are regularly implemented. The aim of the current study was (a) to apply to directed functional connectivity maps of functional magnetic resonance imaging data an a posteriori model validation procedure (i.e., white noise tests of one-step-ahead prediction errors combined with decision criteria for revising the maps based upon Lagrange Multiplier tests), and (b) to demonstrate how the procedure applies to single-subject simulated, single-subject task-related, and multi-subject resting state data. Directed functional connectivity was determined by the unified structural equation model family of approaches in order to map contemporaneous and first order lagged connections among brain regions at the group- and individual-levels while incorporating external input, then white noise tests were run. Findings revealed that the validation procedure successfully detected unmodeled sequential dependencies among residuals and recovered higher order (greater than one) simulated connections, and that the procedure can accommodate task-related input. Findings also revealed that lags greater than one were present in resting state data: With a group-level network that contained only contemporaneous and first order connections, 44% of subjects required second order, individual-level connections in order to obtain maps with white noise residuals. Results have broad methodological relevance (e.g., temporal validation is necessary after directed functional connectivity analyses because the presence of unmodeled higher order sequential dependencies may bias parameter estimates) and substantive implications (e.g., higher order lags may be common in resting state data).
Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework
Omernik, James M.; Griffith, Glenn E.
2014-01-01
A map of ecological regions of the conterminous United States, first published in 1987, has been greatly refined and expanded into a hierarchical spatial framework in response to user needs, particularly by state resource management agencies. In collaboration with scientists and resource managers from numerous agencies and institutions in the United States, Mexico, and Canada, the framework has been expanded to cover North America, and the original ecoregions (now termed Level III) have been refined, subdivided, and aggregated to identify coarser as well as more detailed spatial units. The most generalized units (Level I) define 10 ecoregions in the conterminous U.S., while the finest-scale units (Level IV) identify 967 ecoregions. In this paper, we explain the logic underpinning the approach, discuss the evolution of the regional mapping process, and provide examples of how the ecoregions were distinguished at each hierarchical level. The variety of applications of the ecoregion framework illustrates its utility in resource assessment and management.
Ecoregions of the Conterminous United States: Evolution of a Hierarchical Spatial Framework
NASA Astrophysics Data System (ADS)
Omernik, James M.; Griffith, Glenn E.
2014-12-01
A map of ecological regions of the conterminous United States, first published in 1987, has been greatly refined and expanded into a hierarchical spatial framework in response to user needs, particularly by state resource management agencies. In collaboration with scientists and resource managers from numerous agencies and institutions in the United States, Mexico, and Canada, the framework has been expanded to cover North America, and the original ecoregions (now termed Level III) have been refined, subdivided, and aggregated to identify coarser as well as more detailed spatial units. The most generalized units (Level I) define 10 ecoregions in the conterminous U.S., while the finest-scale units (Level IV) identify 967 ecoregions. In this paper, we explain the logic underpinning the approach, discuss the evolution of the regional mapping process, and provide examples of how the ecoregions were distinguished at each hierarchical level. The variety of applications of the ecoregion framework illustrates its utility in resource assessment and management.
NASA Technical Reports Server (NTRS)
Sweet, D. C.; Pincura, P. G.; Meier, C. J.; Garrett, G. B.; Herd, L.; Wukelic, G. E.; Stephan, J. G.; Smail, H. E.
1974-01-01
Described are techniques utilized and the progress made in applying ERTS-1 data to (1) detecting, inventorying, and monitoring surface mining activities, particularly in relation to recently passed strip mine legislation in Ohio; (2) updating current land use maps at various scales for multiagency usage, and (3) solving other real-time problems existing throughout the various Ohio governmental agencies. General conclusions regarding current user views as to the opportunities and limitations of operationally using ERTS-1 data at the state level are also noted.
US EPA Nonattainment Areas and Designations-Annual PM2.5 (1997 NAAQS)
This web service contains the following layers: PM2.5 Annual 1997 NAAQS State Level and PM2.5 Annual 1997 NAAQS National . It also contains the following tables: maps99.FRED_MAP_VIEWER.%fred_area_map_data and maps99.FRED_MAP_VIEWER.%fred_area_map_view. Full FGDC metadata records for each layer may be found by clicking the layer name at the web service endpoint (https://gispub.epa.gov/arcgis/rest/services/OAR_OAQPS/NAA1997PM25Annual/MapServer) and viewing the layer description.These layers identify areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for criteria air pollutants and have been designated nonattainment?? areas (NAA). The data are updated weekly from an OAQPS internal database. However, that does not necessarily mean the data have changed. The EPA Office of Air Quality Planning and Standards (OAQPS) has set National Ambient Air Quality Standards for six principal pollutants, which are called criteria pollutants. Under provisions of the Clean Air Act, which is intended to improve the quality of the air we breathe, EPA is required to set National Ambient Air Quality Standards for six common air pollutants. These commonly found air pollutants (also known as criteria pollutants) are found all over the United States. They are particle pollution (often referred to as particulate matter), ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. For each criteria pollutant, there
NASA Astrophysics Data System (ADS)
Spaulding, M. L.
2015-12-01
The vision for STORMTOOLS is to provide access to a suite of coastal planning tools (numerical models et al), available as a web service, that allows wide spread accessibly and applicability at high resolution for user selected coastal areas of interest. The first product developed under this framework were flood inundation maps, with and without sea level rise, for varying return periods for RI coastal waters. The flood mapping methodology is based on using the water level vs return periods at a primary NOAA water level gauging station and then spatially scaling the values, based on the predictions of high resolution, storm and wave simulations performed by Army Corp of Engineers, North Atlantic Comprehensive Coastal Study (NACCS) for tropical and extratropical storms on an unstructured grid, to estimate inundation levels for varying return periods. The scaling for the RI application used Newport, RI water levels as the reference point. Predictions are provided for once in 25, 50, and 100 yr return periods (at the upper 95% confidence level), with sea level rises of 1, 2, 3, and 5 ft. Simulations have also been performed for historical hurricane events including 1938, Carol (1954), Bob (1991), and Sandy (2012) and nuisance flooding events with return periods of 1, 3, 5, and 10 yr. Access to the flooding maps is via a web based, map viewer that seamlessly covers all coastal waters of the state at one meter resolution. The GIS structure of the map viewer allows overlays of additional relevant data sets (roads and highways, wastewater treatment facilities, schools, hospitals, emergency evacuation routes, etc.) as desired by the user. The simplified flooding maps are publically available and are now being implemented for state and community resilience planning and vulnerability assessment activities in response to climate change impacts.
A posteriori model validation for the temporal order of directed functional connectivity maps
Beltz, Adriene M.; Molenaar, Peter C. M.
2015-01-01
A posteriori model validation for the temporal order of neural directed functional connectivity maps is rare. This is striking because models that require sequential independence among residuals are regularly implemented. The aim of the current study was (a) to apply to directed functional connectivity maps of functional magnetic resonance imaging data an a posteriori model validation procedure (i.e., white noise tests of one-step-ahead prediction errors combined with decision criteria for revising the maps based upon Lagrange Multiplier tests), and (b) to demonstrate how the procedure applies to single-subject simulated, single-subject task-related, and multi-subject resting state data. Directed functional connectivity was determined by the unified structural equation model family of approaches in order to map contemporaneous and first order lagged connections among brain regions at the group- and individual-levels while incorporating external input, then white noise tests were run. Findings revealed that the validation procedure successfully detected unmodeled sequential dependencies among residuals and recovered higher order (greater than one) simulated connections, and that the procedure can accommodate task-related input. Findings also revealed that lags greater than one were present in resting state data: With a group-level network that contained only contemporaneous and first order connections, 44% of subjects required second order, individual-level connections in order to obtain maps with white noise residuals. Results have broad methodological relevance (e.g., temporal validation is necessary after directed functional connectivity analyses because the presence of unmodeled higher order sequential dependencies may bias parameter estimates) and substantive implications (e.g., higher order lags may be common in resting state data). PMID:26379489
A transect through the base of the Bronson Hill Terrane in western New Hampshire
Walsh, Gregory J.; Valley, Peter M.; Sicard, Karri R.; Thompson, Thelma Barton; Thompson, Peter J.
2012-01-01
This trip will present the preliminary results of ongoing bedrock mapping in the North Hartland and Claremont North 7.5-minute quadrangles in western New Hampshire. The trip will travel from the Lebanon pluton to just north of the Sugar River pluton (Fig. 1) with the aim of examining the lower structural levels of the Bronson Hill anticlinorium (BHA), and the nature of the boundary with the rocks of the Connecticut Valley trough (CVT). Spear and others (2002, 2003, 2008) proposed that western New Hampshire was characterized by five major faults bounding five structural levels including, from lowest to highest, the “chicken yard line”, Western New Hampshire Boundary Thrust, Skitchewaug nappe, Fall Mountain nappe, and Chesham Pond nappe. Lyons and others (1996, 1997) showed the lowest level cored by the Cornish nappe and floored by the Monroe fault. Thompson and others (1968) explained the geometry of units by folding without major thrust faults, and described the second level as the Skitchewaug nappe. This trip will focus on the two lowest levels which we have revised to call the Monroe and Skitchewaug Mountain thrust sheets. Despite decades of geologic mapping in the northeastern United States at various scales, little 1:24,000-scale (or larger scale) modern bedrock mapping has been published for the state of New Hampshire. In fact, of the New England states, New Hampshire contains the fewest published, modern bedrock geologic maps. Conversely, adjacent Vermont has a relatively high percentage of modern bedrock maps due to focused efforts to create a new state-wide bedrock geologic map over the last few decades. The new Vermont map (Ratcliffe and others, 2011) has identified considerable gaps in our knowledge of the bedrock geology in adjacent New Hampshire where published maps are, in places, more than 50 years old and at scales ranging from 1:62,500 to 1:250,000. Fundamental questions remain concerning the geology across the Connecticut River, especially in regards to the stratigraphy of the BHA and CVT, and the distribution, or even existence, of faults ranging in age from Devonian to Mesozoic (e.g., Spear and others, 2008; McWilliams and others, 2010; Walsh and others, 2010). Questions to ponder on this trip include, but are not limited to: 1) Is the Bronson Hill anticlinorium allochthonous? 2) What is the crust beneath the Bronson Hill anticlinorium? 3) Is there a “Big Staurolite nappe” as proposed by Spear and others (2002, 2003, 2008)? 4) What is the role of Taconic, Acadian, and Alleghanian orogenesis in the tectonic development of the region? Modern 1:24,000-scale mapping is the first step towards answering these questions. Mapping will be supplemented by modern geochronology and geochemistry as this project develops. We plan to share some of our provisional results during this field trip.
Branco, Paulo; Seixas, Daniela; Castro, São Luís
2018-03-01
Resting-state fMRI is a well-suited technique to map functional networks in the brain because unlike task-based approaches it requires little collaboration from subjects. This is especially relevant in clinical settings where a number of subjects cannot comply with task demands. Previous studies using conventional scanner fields have shown that resting-state fMRI is able to map functional networks in single subjects, albeit with moderate temporal reliability. Ultra-high resolution (7T) imaging provides higher signal-to-noise ratio and better spatial resolution and is thus well suited to assess the temporal reliability of mapping results, and to determine if resting-state fMRI can be applied in clinical decision making including preoperative planning. We used resting-state fMRI at ultra-high resolution to examine whether the sensorimotor and language networks are reliable over time - same session and one week after. Resting-state networks were identified for all subjects and sessions with good accuracy. Both networks were well delimited within classical regions of interest. Mapping was temporally reliable at short and medium time-scales as demonstrated by high values of overlap in the same session and one week after for both networks. Results were stable independently of data quality metrics and physiological variables. Taken together, these findings provide strong support for the suitability of ultra-high field resting-state fMRI mapping at the single-subject level. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Thematic accuracy of the 1992 National Land-Cover Data for the western United States
Wickham, J.D.; Stehman, S.V.; Smith, J.H.; Yang, L.
2004-01-01
The MultiResolution Land Characteristics (MRLC) consortium sponsored production of the National Land Cover Data (NLCD) for the conterminous United States, using Landsat imagery collected on a target year of 1992 (1992 NLCD). Here we report the thematic accuracy of the 1992 NLCD for the six western mapping regions. Reference data were collected in each region for a probability sample of pixels stratified by map land-cover class. Results are reported for each of the six mapping regions with agreement defined as a match between the primary or alternate reference land-cover label and a mode class of the mapped 3×3 block of pixels centered on the sample pixel. Overall accuracy at Anderson Level II was low and variable across the regions, ranging from 38% for the Midwest to 70% for the Southwest. Overall accuracy at Anderson Level I was higher and more consistent across the regions, ranging from 82% to 85% for five of the six regions, but only 74% for the South-central region.
State Space Modeling of Time-Varying Contemporaneous and Lagged Relations in Connectivity Maps
Molenaar, Peter C. M.; Beltz, Adriene M.; Gates, Kathleen M.; Wilson, Stephen J.
2017-01-01
Most connectivity mapping techniques for neuroimaging data assume stationarity (i.e., network parameters are constant across time), but this assumption does not always hold true. The authors provide a description of a new approach for simultaneously detecting time-varying (or dynamic) contemporaneous and lagged relations in brain connectivity maps. Specifically, they use a novel raw data likelihood estimation technique (involving a second-order extended Kalman filter/smoother embedded in a nonlinear optimizer) to determine the variances of the random walks associated with state space model parameters and their autoregressive components. The authors illustrate their approach with simulated and blood oxygen level-dependent functional magnetic resonance imaging data from 30 daily cigarette smokers performing a verbal working memory task, focusing on seven regions of interest (ROIs). Twelve participants had dynamic directed functional connectivity maps: Eleven had one or more time-varying contemporaneous ROI state loadings, and one had a time-varying autoregressive parameter. Compared to smokers without dynamic maps, smokers with dynamic maps performed the task with greater accuracy. Thus, accurate detection of dynamic brain processes is meaningfully related to behavior in a clinical sample. PMID:26546863
The National Atlas of the United States now on the Web and in print
Hutchinson, John A.
2004-01-01
The National Atlas of the United States of America® was published in 1970 as a book, with more than 400 pages and 765 maps. Since then, many people have called for a new edition, and many maps have been published as single sheets using the classic National Atlas 1:7,500,000-scale format. Work began in 1997 on a new, web-based edition of the National Atlas of the United States®. Accessible at http://nationalatlas.gov, the new atlas features an interactive mapmaker with more than 1,000 data layers. Developed as a coordinated package of dynamic webbased map products and services, and printed and printable maps for selected themes, the National Atlas of the United States of America® has grown beyond a book. Yet, the cartographer’s fundamental job remains the same as it was in 1970—to translate national-level geographic data into an understandable view of the nation.
Chimera states in networks of logistic maps with hierarchical connectivities
NASA Astrophysics Data System (ADS)
zur Bonsen, Alexander; Omelchenko, Iryna; Zakharova, Anna; Schöll, Eckehard
2018-04-01
Chimera states are complex spatiotemporal patterns consisting of coexisting domains of coherence and incoherence. We study networks of nonlocally coupled logistic maps and analyze systematically how the dilution of the network links influences the appearance of chimera patterns. The network connectivities are constructed using an iterative Cantor algorithm to generate fractal (hierarchical) connectivities. Increasing the hierarchical level of iteration, we compare the resulting spatiotemporal patterns. We demonstrate that a high clustering coefficient and symmetry of the base pattern promotes chimera states, and asymmetric connectivities result in complex nested chimera patterns.
Rapid and Accurate Idea Transfer: Presenting Ideas with Concept Maps
2008-07-30
AndolanerAncholik Itihas (Regional Histor of the State Language Movement), Dhaka: Bangla Academy. Muhith. A.M.A. (1978) Bangladesh. Emergence qf a Nation, Dhaka...The incidental learning paradigm presumes that information processed at deeper (i.e., more conceptually connected) levels will result in superior...consideration dovetails with Kinchen and Cabot’s (2007) results showing that Concept Maps enable deeper levels of information processing over PowerPoint
NASA Technical Reports Server (NTRS)
Probine, M. C.; Suggate, R. P.; Mcgreevy, M. G.; Stirling, I. F. (Principal Investigator)
1977-01-01
The author has identified the following significant results. Inspection of pixels obtained from LANDSAT of New Zealand revealed that not only can ships and their wakes be detected, but that information on the size, state of motion, and direction of movement was inferred by calculating the total number of pixels occupied by the vessel and wake, the orientation of these pixels, and the sum of their radiance values above the background level. Computer enhanced images showing the Waimihia State Forest and much of Kaingaroa State Forest on 22 December 1975 were examined. Most major forest categories were distinguished on LANDSAT imagery. However, the LANDSAT imagery seemed to be most useful for updating and checking existing forest maps, rather than making new maps with many forest categories. Snow studies were performed using two basins: Six Mile Creek and Mt. Robert. The differences in radiance levels indicated that a greater areal snow cover in Six Mile Creek Basin with the effect of lower radiance values from vegetation/snow regions. A comparison of the two visible bands (MSS 4 and 5) demonstrate this difference for the two basins.
Annual summary of ground-water conditions in Arizona, spring 1977 to spring 1978
,
1978-01-01
The withdrawal of ground water was about 5.5 million acre-feet in Arizona in 1977. About 4.7 million acre-feet of ground water was used for the irrigation of crops in 1977. The Salt River Valley and the lower Santa Cruz basin are the largest agricultural areas in the State. For 1973-77, ground-water withdrawal in the two areas was about 8.1 and 5.1 million acre-feet, respectively, and, in general, water levels are declining. Other areas in which ground-water withdrawals have caused water-level declines are the Willcox, San Simon, upper Santa Cruz, Avra Valley, Gila Bend, Harquahala Plains, and McMullen Valley areas. Two small-scale maps of Arizona show (1) pumpage of ground water by areas and (2) the status of the ground-water inventory in the State. The main map, scale 1:500 ,000, shows potential well production, depth to water in selected wells in spring 1978, and change in water level in selected wells from 1973 to 1978. The brief text that accompanies the maps summarizes the current ground-water conditions in the State. (Woodard-USGS)
Annual summary of ground-water conditions in Arizona, spring 1976 to spring 1977
Babcock, H.M.
1977-01-01
Two small-scale maps of Arizona show (1) pumpage of ground water by areas and (2) the status of the ground-water inventory in the State. The main map, which is at a scale of 1:500,000, shows potential well production, depth of water in selected wells in spring 1977, and change in water level in selected wells from 1972 to 1977. The brief text that accompanies the maps summarizes the current ground-water conditions in the State. The withdrawal of ground water was about 5.5 million acre-feet in Arizona in 1976 of which about 4.7 million acre-feet was used for the irrigation. The Salt River Valley and the lower Santa Cruz basin are the largest agricultural areas in the State. For 1972-76, ground-water withdrawal in the two areas was about 8.2 to 4.9 million acre-feet, respectively, and, in general, water levels are declining. Other areas in which ground-water withdrawals have caused large water-level declines are the Willcox, San Simon, upper Santa Cruz, Avra Valley, Gila Bend, Harquahala Plains, and McMullen Valley areas. (Woodard-USGS)
Cortical connective field estimates from resting state fMRI activity.
Gravel, Nicolás; Harvey, Ben; Nordhjem, Barbara; Haak, Koen V; Dumoulin, Serge O; Renken, Remco; Curčić-Blake, Branislava; Cornelissen, Frans W
2014-01-01
One way to study connectivity in visual cortical areas is by examining spontaneous neural activity. In the absence of visual input, such activity remains shaped by the underlying neural architecture and, presumably, may still reflect visuotopic organization. Here, we applied population connective field (CF) modeling to estimate the spatial profile of functional connectivity in the early visual cortex during resting state functional magnetic resonance imaging (RS-fMRI). This model-based analysis estimates the spatial integration between blood-oxygen level dependent (BOLD) signals in distinct cortical visual field maps using fMRI. Just as population receptive field (pRF) mapping predicts the collective neural activity in a voxel as a function of response selectivity to stimulus position in visual space, CF modeling predicts the activity of voxels in one visual area as a function of the aggregate activity in voxels in another visual area. In combination with pRF mapping, CF locations on the cortical surface can be interpreted in visual space, thus enabling reconstruction of visuotopic maps from resting state data. We demonstrate that V1 ➤ V2 and V1 ➤ V3 CF maps estimated from resting state fMRI data show visuotopic organization. Therefore, we conclude that-despite some variability in CF estimates between RS scans-neural properties such as CF maps and CF size can be derived from resting state data.
U.S. Level III and IV Ecoregions (U.S. EPA)
This map service displays Level III and Level IV Ecoregions of the United States and was created from ecoregion data obtained from the U.S. Environmental Protection Agency Office of Research and Development's Western Ecology Division. The original ecoregion data was projected from Albers to Web Mercator for this map service. To download shapefiles of ecoregion data (in Albers), please go to: ftp://newftp.epa.gov/EPADataCommons/ORD/Ecoregions/. IMPORTANT NOTE ABOUT LEVEL IV POLYGON LEGEND DISPLAY IN ARCMAP: Due to the limitations of Graphical Device Interface (GDI) resources per application on Windows, ArcMap does not display the legend in the Table of Contents for the ArcGIS Server service layer if the legend has more than 100 items. As of December 2011, there are 968 unique legend items in the Level IV Ecoregion Polygon legend. Follow this link (http://support.esri.com/en/knowledgebase/techarticles/detail/33741) for instructions about how to increase the maximum number of ArcGIS Server service layer legend items allowed for display in ArcMap. Note the instructions at this link provide a slightly incorrect path to Maximum Legend Count. The correct path is HKEY_CURRENT_USER > Software > ESRI > ArcMap > Server > MapServerLayer > Maximum Legend Count. When editing the Maximum Legend Count, update the field, Value data to 1000. To download a PDF version of the Level IV ecoregion map and legend, go to ftp://newftp.epa.gov/EPADataCommons/ORD/Ecoregions/us/Eco_Level_IV
School-Based Health Care State Policy Survey. Executive Summary
ERIC Educational Resources Information Center
National Assembly on School-Based Health Care, 2012
2012-01-01
The National Assembly on School-Based Health Care (NASBHC) surveys state public health and Medicaid offices every three years to assess state-level public policies and activities that promote the growth and sustainability of school-based health services. The FY2011 survey found 18 states (see map below) reporting investments explicitly dedicated…
Justin, G.B.; Julich, R.; Payne, K.L.
2009-01-01
Selected groundwater level hydrographs for the Chambers-Clover Creek watershed (CCCW) and vicinity, Washington, are presented in an interactive web-based map to illustrate changes in groundwater levels in and near the CCCW on a monthly and seasonal basis. Hydrographs are linked to points corresponding to the well location on an interactive map of the study area. Groundwater level data and well information from Federal, State, and local agencies were obtained from the U.S. Geological Survey National Water Information System (NWIS), Groundwater Site Inventory (GWSI) System.
Wetlands delineation by spectral signature analysis and legal implications
NASA Technical Reports Server (NTRS)
Anderon, R. R.; Carter, V.
1972-01-01
High altitude analysis of wetland resources and the use of such information in an operational mode to address specific problems of wetland preservation at a state level are discussed. Work efforts were directed toward: (1) developing techniques for using large scale color IR photography in state wetlands mapping program, (2) developing methods for obtaining wetlands ecology information from high altitude photography, (3) developing means by which spectral data can be more accurately analyzed visually, and (4) developing spectral data for automatic mapping of wetlands.
Arterial and venous plasma levels of bupivacaine following peripheral nerve blocks.
Moore, D C; Mather, L E; Bridenbaugh, L D; Balfour, R I; Lysons, D F; Horton, W G
1976-01-01
Mean arterial plasma (MAP) and peripheral mean venous plasma (MVP) levels of bupivacaine were ascertained in 3 groups of 10 patients each for: (1) intercostal nerve block, 400 mg; (2) block of the sciatic, femoral, and lateral femoral cutaneous nerves, with or without block of the obturator nerve, 400 mg; and (3) supraclavicular brachial plexus block, 300 mg. MAP levels were consistently higher than simultaneously sampled MVP levels, the highest levels occurring from bilateral intercostal nerve block. No evidence of systemic toxicity was observed. The results suggest that bupivacaine has a much wider margin of safety in humans than is now stated.
State space modeling of time-varying contemporaneous and lagged relations in connectivity maps.
Molenaar, Peter C M; Beltz, Adriene M; Gates, Kathleen M; Wilson, Stephen J
2016-01-15
Most connectivity mapping techniques for neuroimaging data assume stationarity (i.e., network parameters are constant across time), but this assumption does not always hold true. The authors provide a description of a new approach for simultaneously detecting time-varying (or dynamic) contemporaneous and lagged relations in brain connectivity maps. Specifically, they use a novel raw data likelihood estimation technique (involving a second-order extended Kalman filter/smoother embedded in a nonlinear optimizer) to determine the variances of the random walks associated with state space model parameters and their autoregressive components. The authors illustrate their approach with simulated and blood oxygen level-dependent functional magnetic resonance imaging data from 30 daily cigarette smokers performing a verbal working memory task, focusing on seven regions of interest (ROIs). Twelve participants had dynamic directed functional connectivity maps: Eleven had one or more time-varying contemporaneous ROI state loadings, and one had a time-varying autoregressive parameter. Compared to smokers without dynamic maps, smokers with dynamic maps performed the task with greater accuracy. Thus, accurate detection of dynamic brain processes is meaningfully related to behavior in a clinical sample. Published by Elsevier Inc.
This EnviroAtlas dataset contains polygons depicting the number of watershed-level market-based programs, referred to herein as markets, in operation per 8-digit HUC watershed throughout the United States. The data were collected via surveys and desk research conducted by Forest Trends' Ecosystem Marketplace during 2014 regarding markets operating to protect watershed ecosystem services. Utilizing these data, the number of water market coverage areas overlaying each HUC8 watershed were calculated to produce this dataset. Only water markets identified as operating at the watershed level (i.e., single or multiple watersheds define the market boundaries) were included in the count of water markets per HUC8 watershed. Excluded were water markets operating at the national, state, county, or federal lands level and all water projects. Attribute data include the watershed's 8-digit hydrologic unit code and name, in addition to the watershed-level water market count associated with the watershed. This dataset was produced by Forest Trends' Ecosystem Marketplace to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Addi
Welder, G.E.
1977-01-01
The altitude and gradient of the water table in the ' shallow aquifer ' of the Roswell basin in Chaves and Eddy Counties, New Mexico, for January 1975 is shown on a map, scale of 1/2-inch per mile. The map was prepared by the U.S. Geological Survey in cooperation with the New Mexico State Engineer Office. (Woodard-USGS)
Welder, G.E.
1977-01-01
The altitude and gradient of the water table in the ' shallow aquifer ' of the Roswell basin in Chaves and Eddy Counties, New Mexico, for January 1964 is shown on a map, scale of 1/2-inch per mile. The map was prepared by the U.S. Geological Survey in cooperation with the New Mexico State Engineer Office. (Woodard-USGS)
ERIC Educational Resources Information Center
Gottfredson, Linda S.
1986-01-01
United States Employment Service data on the cognitive and noncognitive aptitude requirements of different occupations were used to create an occupational classification--the Occupational Aptitude Patterns (OAP) Map. Thirteen job clusters are arrayed according to major differences in overall intellectual difficulty level and in functional focus…
Mapping water use - Landsat and water resources in the United States
Johnson, Rebecca L.
2016-06-27
Crucial to the process is the thermal (infrared) band from Landsat. Using the Landsat thermal band with its 100-meter resolution, water-use maps can be created at a scale detailed enough to show how much water crops are using at the level of individual fields anywhere in the world.
A Methylmercury Prediction Too For Surface Waters Across The Contiguous United States (Invited)
NASA Astrophysics Data System (ADS)
Krabbenhoft, D. P.; Booth, N.; Lutz, M.; Fienen, M. N.; Saltman, T.
2009-12-01
About 20 years ago, researchers at a few locations across the globe discovered high levels of mercury in fish from remote settings lacking any obvious mercury source. We now know that for most locations atmospheric deposition is the dominant mercury source, and that mercury methylation is the key process that translates low mercury loading rates into relatively high levels in top predators of aquatic food webs. Presently, almost all US states have advisories for elevated levels of mercury in sport fish, and as a result there is considerable public awareness and concern for this nearly ubiquitous contaminant issue. In some states, “statewide” advisories have been issued because elevated fish mercury levels are so common, or the state has no effective way to monitor thousands of lakes, reservoirs, wetlands, and streams. As such, resource managers and public health officials have limited options for informing the public on of where elevated mercury concentrations in sport fish are more likely to occur than others. This project provides, for the first time, a national map of predicted (modeled) methylmercury concentrations in surface waters, which is the most toxic and bioaccumulative form of mercury in the environment. The map is the result of over two decades of research that resulted in the formulation of conceptual models of the mercury methylation process, which is strongly governed by environmental conditions - specifically hydrologic landscapes and water quality. The resulting predictive map shows clear regional trends in the distribution of methylmercury concentrations in surface waters. East of the Mississippi, the Gulf and southeastern Atlantic coast, the northeast, the lower Mississippi valley, and Great Lakes area are predicted to have generally higher environmental methylmercury levels. Higher-elevation, well-drained areas of Appalachia are predicted to have relatively lower methylmercury abundance. Other than the prairie pothole region, in the western US incessant regional patterns are less clear. However, the full range of predicted methylmercury levels are predicted to occur in western US watersheds. Lastly, although this map is being presented at the continental US scale, the principles used to generate the modeled results can easily applied to data sets that represent a range of geographic scales.
Seli, Paul; Risko, Evan F; Smilek, Daniel
2016-04-01
Recent research has demonstrated that mind wandering can be subdivided into spontaneous and deliberate types, and this distinction has been found to hold at both the trait and state levels. However, to date, no attempts have been made to link trait-level spontaneous and deliberate mind wandering with state-level assessments of these two subtypes of mind wandering. Here we evaluated whether trait-level deliberate and spontaneous mind wandering map onto state levels of these subtypes of mind wandering. Results showed correspondence between trait-level reports of spontaneous and deliberate mind wandering and their state-level counterparts, indicating that people's reports on the intentionality of their mind wandering in the laboratory correspond to their reports of the intentionality of mind wandering in everyday life. Thus, the trait- and state-level scales of mind wandering were found to validate each other: Whereas the state-level measures provided some construct validity for the trait-level measures, the trait-level measures indicated that the state-level measures may be generalizable to everyday situations. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wilcox, T.
2016-12-01
How quickly can students (and educators) get started using a "ready to fly" UAS and popular publicly available photogrammetric mapping software for student research at the undergraduate level? This poster presentation focuses on the challenges of starting up your own drone-mapping program for undergraduate research in a compressed timescale of three months. Particular focus will be given to learning the operation of the platforms, hardware and software interface challenges, and using these electronic systems in real-world field settings that pose a range of physical challenges to both operators and equipment. We will be using a combination of the popular DJI Phantom UAS and Pix4D mapping software to investigate mass wasting processes and potential hazards present in public lands popular with recreational users. Projects are aimed at characterizing active geological hazards that operate on short timescales and may include gully headwall erosion in Flaming Geyser State Park and potential landslide instability within Capital State Forest, both in the Puget Sound region of Washington State.
NASA Astrophysics Data System (ADS)
Gannon, C.
2016-12-01
Climate change will have many impacts on human health, perhaps most directly through extreme heat. High temperature and humidity combinations inhibit the body's ability to cool through physiological responses such as sweating. In conjunction with extended periods of extreme heat and shifted seasonality, these conditions are particularly dangerous. Current research and literature can be used to show where dangerous heat and humidity conditions are likely to be most prevalent, or where populations vulnerable to heat stress reside. To provide a better assessment of overall heat vulnerability, however, many complex factors, such as relative changes in temperature patterns or local socioeconomic conditions, must also be considered. Here, we utilize a multivariate approach to establish county-level risk scores by combining the most relevant indicators for heat vulnerability with climate model projections of wet bulb globe temperature, a metric useful for understanding how the human body will respond to conditions of high heat and humidity. We present our findings as an ESRI ArcOnline Story Map with data aggregated at the county-level in the continental United States. This format allows users to access maps showing each county's score in four categories related to heat vulnerability: heat and humidity hazards, population vulnerability, medical access, and physical infrastructure. A final map showcases a composite heat vulnerability score for each county, with comparisons to state and national averages. Our tool, part of the White House's Climate Data Initiative, is presented as a series of maps with a normalized scoring system to provide clear and easy access to the indicators most relevant to evaluating heat vulnerability at a local level. Ultimately, this readily available tool with general indices helps community decision makers communicate heat vulnerability and identify which resilience factors are most critical to improving local resilience.
NASA Technical Reports Server (NTRS)
Huckle, H. F. (Principal Investigator)
1980-01-01
The most probable current U.S. taxonomic classification of the soils estimated to dominate world soil map units (WSM)) in selected crop producing states of Argentina and Brazil are presented. Representative U.S. soil series the units are given. The map units occurring in each state are listed with areal extent and major U.S. land resource areas in which similar soils most probably occur. Soil series sampled in LARS Technical Report 111579 and major land resource areas in which they occur with corresponding similar WSM units at the taxonomic subgroup levels are given.
Geographic patterns of industry in the United States. An aid to the study of occupational disease.
Stone, B J; Blot, W J; Fraumeni, J F
1978-07-01
The geographic location of 18 major manufacturing industries within the United States is illustrated by a series of computer-generated county maps. The metal and machinery industries, the two largest employers, an the transportation and rubber industries are concentrated in the northeastern quadrant of the United States, while most counties with textile, apparel, tobacco, and furniture manufacturing are in the South. Other industries had different patterns. The counties where industry was concentrated tended to be more urban and to have higher levels of income and education. The maps and associated demographic data on industrial counties may prove a useful adjunct to county maps illustrating mortality patterns for cancer and other diseases. Despite obvious limitations, the visual patterns and correlation analyses may help to generate and formulate hypothese concerning occupationally induced diease.
Westermeier, Christian; Fiebig, Matthias; Nickel, Bert
2013-10-25
Frequency-resolved scanning photoresponse microscopy of pentacene thin-film transistors is reported. The photoresponse pattern maps the in-plane distribution of trap states which is superimposed by the level of trap filling adjusted by the gate voltage of the transistor. Local hotspots in the photoresponse map thus indicate areas of high trap densities within the pentacene thin film. © 2013 WILEY-VCH Verlag GmbH 8 Co. KGaA, Weinheim.
The accuracy of the National Land Cover Data (NLCD) map is assessed via a probability sampling design incorporating three levels of stratification and two stages of selection. Agreement between the map and reference land-cover labels is defined as a match between the primary or a...
NASA Technical Reports Server (NTRS)
Blair, R. W., Jr.
1981-01-01
An undergraduate level course in regional geology is described in which map exercises using LANDSAT composite images are required. From these exercises, students lean to appreciate LANDSAT imagery, learn elementary skills in imagery reading and interpretation, in addition to making the association of geography, geology, maps, and imagery.
Ecoregions and ecodistricts: Ecological regionalizations for the Netherlands' environmental policy
NASA Astrophysics Data System (ADS)
Klijn, Frans; de Waal, Rein W.; Oude Voshaar, Jan H.
1995-11-01
For communicating data on the state of the environment to policy makers, various integrative frameworks are used, including regional integration. For this kind of integration we have developed two related ecological regionalizations, ecoregions and ecodistricts, which are two levels in a series of classifications for hierarchically nested ecosystems at different spatial scale levels. We explain the compilation of the maps from existing geographical data, demonstrating the relatively holistic, a priori integrated approach. The resulting maps are submitted to discriminant analysis to test the consistancy of the use of mapping characteristics, using data on individual abiotic ecosystem components from a national database on a 1-km2 grid. This reveals that the spatial patterns of soil, groundwater, and geomorphology correspond with the ecoregion and ecodistrict maps. Differences between the original maps and maps formed by automatically reclassifying 1-km2 cells with these discriminant components are found to be few. These differences are discussed against the background of the principal dilemma between deductive, a priori integrated, and inductive, a posteriori, classification.
ERIC Educational Resources Information Center
Stoneberg, Bert D.
2015-01-01
The National Center of Education Statistics conducted a mapping study that equated the percentage proficient or above on each state's NCLB reading and mathematics tests in grades 4 and 8 to the NAEP scale. Each "NAEP equivalent score" was labeled according to NAEP's achievement levels and used to compare state proficiency standards and…
1981-04-01
and will not be impacted. Remarks: Level II. Father William Sherman, Pastor of St. Michael’s Church can be reached at St. Michael’s Church, 520 North...Trygg, J. William 1967 Composite Map of the Uni- % [ted States Land Surveyors’ L Original Plats and Field Notes, Minnesota Series, Sheet 20, Ely...Investigators/Years: Surveyors’ Original Plats and Notes, ’ 1872 Report/Reference: Trygg, J. William * 1967 Composite Map of United States Surveyors
Technical Data and Reports on Particulate Matter (PM) Measurements and SIP Status
EPA collects data from the states and regions on their air quality, including levels of pollutants such as PM, and state implementation plan (SIP) progress. This information is compiled in a database, and used to create reports, trend charts, and maps.
Ecoregions of Arizona (poster)
Griffith, Glenn E.; Omernik, James M.; Johnson, Colleen Burch; Turner, Dale S.
2014-01-01
Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources; they are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. By recognizing the spatial differences in the capacities and potentials of ecosystems, ecoregions stratify the environment by its probable response to disturbance. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The Arizona ecoregion map was compiled at a scale of 1:250,000. It revises and subdivides an earlier national ecoregion map that was originally compiled at a smaller scale. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of the spatial patterns and the composition of biotic and abiotic phenomena that affect or reflect differences in ecosystem quality and integrity. These phenomena include geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another regardless of the hierarchical level. A Roman numeral hierarchical scheme has been adopted for different levels of ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions. At level III, the continental United States contains 105 ecoregions and the conterminous United States has 85 ecoregions. Level IV is a further subdivision of level III ecoregions. Arizona contains arid deserts and canyonlands, semiarid shrub- and grass-covered plains, woodland- and shrubland-covered hills, lava fields and volcanic plateaus, forested mountains, glaciated peaks, and river alluvial floodplains. Ecological diversity is remarkably high. There are 7 level III ecoregions and 52 level IV ecoregions in Arizona and many continue into ecologically similar parts of adjacent states. This poster is part of a collaborative project primarily between the U.S. Geological Survey (USGS), USEPA National Health and Environmental Effects Research Laboratory (Corvallis, Oregon), USEPA Region IX, U.S. Department of Agriculture (USDA)–Natural Resources Conservation Service (NRCS), The Nature Conservancy, and several Arizona state agencies. The project is associated with an interagency effort to develop a common national framework of ecological regions. Reaching that objective requires recognition of the differences in the conceptual approaches and mapping methodologies applied to develop the most common ecoregion-type frameworks, including those developed by the USDA–Forest Service, the USEPA, and the NRCS. As each of these frameworks is further refined, their differences are becoming less discernible. Collaborative ecoregion projects, such as this one in Arizona, are a step toward attaining consensus and consistency in ecoregion frameworks for the entire nation.
NASA Technical Reports Server (NTRS)
Baldridge, P. E.; Geosling, P. H.; Leone, F.; Minshall, C.; Rodgers, R. H.; Wilhelm, C. L.
1975-01-01
The programmatic, technical, user application, and cost factors associated with the development of an operational, statewide land use inventory from LANDSAT data are described. The LANDSAT multispectral data are subjected to geometrical and categorical processing to produce map files for each of the 200 fifteen (15) minute quads covering Ohio. Computer compatible tapes are rescanned to produce inventory tapes which identify eight (8) Level I land use categories and a variety of Level II categories. The inventory tapes are processed through a series of ten (10) software programs developed by the State of Ohio. The net result is a computerized inventory which can be displayed in map or tabular form for various geographic units, at a variety of scales and for selected categories of usage. The computerized inventory data files are applied to technical programs developed by the various state agencies to be used in state, regional, and local planning programs.
NASA Technical Reports Server (NTRS)
Ansari, Nirwan; Liu, Dequan
1991-01-01
A neural-network-based traffic management scheme for a satellite communication network is described. The scheme consists of two levels of management. The front end of the scheme is a derivation of Kohonen's self-organization model to configure maps for the satellite communication network dynamically. The model consists of three stages. The first stage is the pattern recognition task, in which an exemplar map that best meets the current network requirements is selected. The second stage is the analysis of the discrepancy between the chosen exemplar map and the state of the network, and the adaptive modification of the chosen exemplar map to conform closely to the network requirement (input data pattern) by means of Kohonen's self-organization. On the basis of certain performance criteria, whether a new map is generated to replace the original chosen map is decided in the third stage. A state-dependent routing algorithm, which arranges the incoming call to some proper path, is used to make the network more efficient and to lower the call block rate. Simulation results demonstrate that the scheme, which combines self-organization and the state-dependent routing mechanism, provides better performance in terms of call block rate than schemes that only have either the self-organization mechanism or the routing mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yuyu; Smith, Steven J.; Elvidge, Christopher
Accurate information of urban areas at regional and global scales is important for both the science and policy-making communities. The Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime stable light data (NTL) provide a potential way to map urban area and its dynamics economically and timely. In this study, we developed a cluster-based method to estimate the optimal thresholds and map urban extents from the DMSP/OLS NTL data in five major steps, including data preprocessing, urban cluster segmentation, logistic model development, threshold estimation, and urban extent delineation. Different from previous fixed threshold method with over- and under-estimation issues, in ourmore » method the optimal thresholds are estimated based on cluster size and overall nightlight magnitude in the cluster, and they vary with clusters. Two large countries of United States and China with different urbanization patterns were selected to map urban extents using the proposed method. The result indicates that the urbanized area occupies about 2% of total land area in the US ranging from lower than 0.5% to higher than 10% at the state level, and less than 1% in China, ranging from lower than 0.1% to about 5% at the province level with some municipalities as high as 10%. The derived thresholds and urban extents were evaluated using high-resolution land cover data at the cluster and regional levels. It was found that our method can map urban area in both countries efficiently and accurately. Compared to previous threshold techniques, our method reduces the over- and under-estimation issues, when mapping urban extent over a large area. More important, our method shows its potential to map global urban extents and temporal dynamics using the DMSP/OLS NTL data in a timely, cost-effective way.« less
NASA Technical Reports Server (NTRS)
Panda, Binayak
2009-01-01
Modern analytical tools can yield invaluable results during materials characterization and failure analysis. Scanning electron microscopes (SEMs) provide significant analytical capabilities, including angstrom-level resolution. These systems can be equipped with a silicon drift detector (SDD) for very fast yet precise analytical mapping of phases, as well as electron back-scattered diffraction (EBSD) units to map grain orientations, chambers that admit large samples, variable pressure for wet samples, and quantitative analysis software to examine phases. Advanced solid-state electronics have also improved surface and bulk analysis instruments: Secondary ion mass spectroscopy (SIMS) can quantitatively determine and map light elements such as hydrogen, lithium, and boron - with their isotopes. Its high sensitivity detects impurities at parts per billion (ppb) levels. X-ray photo-electron spectroscopy (XPS) can determine oxidation states of elements, as well as identifying polymers and measuring film thicknesses on coated composites. This technique is also known as electron spectroscopy for chemical analysis (ESCA). Scanning Auger electron spectroscopy (SAM) combines surface sensitivity, spatial lateral resolution (10 nm), and depth profiling capabilities to describe elemental compositions of near and below surface regions down to the chemical state of an atom.
NASA Astrophysics Data System (ADS)
Hernández Vera, Mario; Wester, Roland; Gianturco, Francesco Antonio
2018-01-01
We construct the velocity map images of the proton transfer reaction between helium and molecular hydrogen ion {{{H}}}2+. We perform simulations of imaging experiments at one representative total collision energy taking into account the inherent aberrations of the velocity mapping in order to explore the feasibility of direct comparisons between theory and future experiments planned in our laboratory. The asymptotic angular distributions of the fragments in a 3D velocity space is determined from the quantum state-to-state differential reactive cross sections and reaction probabilities which are computed by using the time-independent coupled channel hyperspherical coordinate method. The calculations employ an earlier ab initio potential energy surface computed at the FCI/cc-pVQZ level of theory. The present simulations indicate that the planned experiments would be selective enough to differentiate between product distributions resulting from different initial internal states of the reactants.
Mapping of Florida's Coastal and Marine Resources: Setting Priorities Workshop
Robbins, Lisa; Wolfe, Steven; Raabe, Ellen
2008-01-01
The importance of mapping habitats and bioregions as a means to improve resource management has become increasingly clear. Large areas of the waters surrounding Florida are unmapped or incompletely mapped, possibly hindering proper management and good decisionmaking. Mapping of these ecosystems is among the top priorities identified by the Florida Oceans and Coastal Council in their Annual Science Research Plan. However, lack of prioritization among the coastal and marine areas and lack of coordination of agency efforts impede efficient, cost-effective mapping. A workshop on Mapping of Florida's Coastal and Marine Resources was sponsored by the U.S. Geological Survey (USGS), Florida Department of Environmental Protection (FDEP), and Southeastern Regional Partnership for Planning and Sustainability (SERPPAS). The workshop was held at the USGS Florida Integrated Science Center (FISC) in St. Petersburg, FL, on February 7-8, 2007. The workshop was designed to provide State, Federal, university, and non-governmental organizations (NGOs) the opportunity to discuss their existing data coverage and create a prioritization of areas for new mapping data in Florida. Specific goals of the workshop were multifold, including to: * provide information to agencies on state-of-the-art technology for collecting data; * inform participants of the ongoing mapping programs in waters off Florida; * present the mapping needs and priorities of the State and Federal agencies and entities operating in Florida; * work with State of Florida agencies to establish an overall priority for areas needing mapping; * initiate discussion of a unified classification of habitat and bioregions; * discuss and examine the need to standardize terminology and data collection/storage so that data, in particular habitat data, can be shared; 9 identify opportunities for partnering and leveraging mapping efforts among agencies and entities; * identify impediments and organizational gaps that hinder collection of data for mapping; * seek innovative solutions to the primary obstacles identified; * identify the steps needed to move mapping of Florida's oceans and coasts forward, in preparation for a better coordinated, more cost-effective mapping program to allow State and Federal agencies to make better decisions on coastal-resource issues. Over 90 invited participants representing more than 30 State and Federal agencies, universities, NGOs, and private industries played a large role in the success of this two-day workshop. State of Florida agency participants created a ranked priority order for mapping 13 different regions around Florida. The data needed for each of the 13 priority regions were outlined. A matrix considering State and Federal priorities was created, utilizing input from all agencies. The matrix showed overlapping interests of the entities and will allow for partnering and leveraging of resources. The five most basic mapping needs were determined to be bathymetry, high-vertical resolution coastline for sea-level rise scenarios, shoreline change, subsurface geology, and benthic habitats at sufficient scale. There was a clear convergence on the need to coordinate mapping activities around the state. Suggestions for coordination included: * creating a glossary of terms: a standard for specifying agency data-mapping needs; * creating a geographic information officer (GIO) position or permanent organizing group to maintain communications established at this workshop and to maintain progress on the issues identified during the workshop. The person or group could develop a website, maintain a project-status matrix, develop a list of contacts, create links to legislative updates and links to funding sources; * developing a web portal and one-stop/clearinghouse of data. There was general consensus on the need to adopt a single habitat classification system and a strategy to accommodate existing systems smoothly. Unresolve
The Environmental Protection Agency's Enforcement and Compliance History Online (ECHO) website provides customizable and downloadable information about environmental inspections, violations, and enforcement actions for EPA-regulated facilities, like power plants and factories. ECHO advances public information by sharing data related to facility compliance with and regulatory agency activity related to air, hazardous waste, clean water, and drinking water regulations. ECHO offers many user-friendly options to explore data, including:1. Facility Search (http://echo.epa.gov/facilities/facility-search?mediaSelected=all): ECHO information is searchable by varied criteria, including location, facility type, and compliance status related to the Clean Air Act, Clean Water Act, Resource Conservation and Recovery Act, and Safe Drinking Water Act. Search results are customizable and downloadable.2. Comparative Maps (http://echo.epa.gov/maps/state-comparative-maps) and State Dashboards (http://echo.epa.gov/trends/comparative-maps-dashboards/state-air-dashboard): These tools offer aggregated information about facility compliance status and regulatory agency compliance monitoring and enforcement activity at the national and state level.3. Bulk Data Downloads (http://echo.epa.gov/resources/echo-data/data-downloads): One of ECHO's most popular features is the ability to work offline by downloading large data sets. Users can take advantage of the ECHO Exporter, which provides su
OpenStreetMap Collaborative Prototype, Phase 1
Wolf, Eric B.; Matthews, Greg D.; McNinch, Kevin; Poore, Barbara S.
2011-01-01
Phase One of the OpenStreetMap Collaborative Prototype (OSMCP) attempts to determine if the open source software developed for the OpenStreetMap (OSM, http://www.openstreetmap.org) can be used for data contributions and improvements that meet or exceed the requirements for integration into The National Map (http://www.nationalmap.gov). OpenStreetMap Collaborative Prototype Phase One focused on road data aggregated at the state level by the Kansas Data Access and Support Center (DASC). Road data from the DASC were loaded into a system hosted by the U.S. Geological Survey (USGS) National Geospatial Technical Operations Center (NGTOC) in Rolla, Missouri. U.S. Geological Survey editing specifications were developed by NGTOC personnel (J. Walters and G. Matthews, USGS, unpub. report, 2010). Interstate and U.S. Highways in the dataset were edited to the specifications by NGTOC personnel while State roads were edited by DASC personnel. Resulting data were successfully improved to meet standards for The National Map once the system and specifications were in place. The OSM software proved effective in providing a usable platform for collaborative data editing
USGS EDMAP Program-Training the Next Generation of Geologic Mappers
,
2010-01-01
EDMAP is an interactive and meaningful program for university students to gain experience and knowledge in geologic mapping while contributing to national efforts to map the geology of the United States. It is a matching-funds grant program with universities and is one of the three components of the congressionally mandated U.S. Geological Survey (USGS) National Cooperative Geologic Mapping Program. Geology professors whose specialty is geologic mapping request EDMAP funding to support upper-level undergraduate and graduate students at their colleges or universities in a 1-year mentor-guided geologic mapping project that focuses on a specific geographic area. Every Federal dollar that is awarded is matched with university funds.
Towards developing Kentucky's landscape change maps
Zourarakis, D.P.; Lambert, S.C.; Palmer, M.
2003-01-01
The Kentucky Landscape Snapshot Project, a NASA-funded project, was established to provide a first baseline land cover/land use map for Kentucky. Through this endeavor, change detection will be institutionalized, thus aiding in decision-making at the local, state, and federal planning levels. 2002 Landsat 7 imaginery was classified following and Anderson Level III scheme, providing an enhancement over the 1992 USGS National Land Cover Data Set. Also as part of the deliverables, imperviousness and canopy closure layers were produced with the aid of IKONOS high resolution, multispectral imagery.
80 and 100 Meter Wind Energy Resource Potential for the United States (Poster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, D.; Schwartz, M.; Haymes, S.
Accurate information about the wind potential in each state is required for federal and state policy initiatives that will expand the use of wind energy in the United States. The National Renewable Energy Laboratory (NREL) and AWS Truewind have collaborated to produce the first comprehensive new state-level assessment of wind resource potential since 1993. The estimates are based on high-resolution maps of predicted mean annual wind speeds for the contiguous 48 states developed by AWS Truewind. These maps, at spatial resolution of 200 meters and heights of 60 to 100 meters, were created with a mesoscale-microscale modeling technique and adjustedmore » to reduce errors through a bias-correction procedure involving data from more than 1,000 measurement masts. NREL used the capacity factor maps to estimate the wind energy potential capacity in megawatts for each state by capacity factor ranges. The purpose of this presentation is to (1) inform state and federal policy makers, regulators, developers, and other stakeholders on the availability of the new wind potential information that may influence development, (2) inform the audience of how the new information was derived, and (3) educate the audience on how the information should be interpreted in developing state and federal policy initiatives.« less
Use of a geographic information system (GIS) for targeting radon screening programs in South Dakota
Kearfott, Kimberlee J.; Whetstone, Zachary D.; Rafique Mir, Khwaja M.
2016-01-01
Because 222Rn is a progeny of 238U, the relative abundance of uranium may be used to predict the areas that have the potential for high indoor radon concentration and therefore determine the best areas to conduct future surveys. Geographic Information System (GIS) mapping software was used to construct maps of South Dakota that included levels of uranium concentrations in soil and stream water and uranium deposits. Maps of existing populations and the types of land were also generated. Existing data about average indoor radon levels by county taken from a databank were included for consideration. Although the soil and stream data and existing recorded average indoor radon levels were sparse, it was determined that the most likely locations of elevated indoor radon would be in the northwest and southwest corners of the state. Indoor radon levels were only available for 9 out of 66 counties in South Dakota. This sparcity of data precluded a study of correlation of radon to geological features, but further motivates the need for more testing in the state. Only actual measurements should be used to determine levels of indoor radon because of the strong roles home construction and localized geology play in radon concentration. However, the data visualization method demonstrated here is potentially useful for directing resources relating to radon screening campaigns. PMID:26472478
Learning Inverse Rig Mappings by Nonlinear Regression.
Holden, Daniel; Saito, Jun; Komura, Taku
2017-03-01
We present a framework to design inverse rig-functions-functions that map low level representations of a character's pose such as joint positions or surface geometry to the representation used by animators called the animation rig. Animators design scenes using an animation rig, a framework widely adopted in animation production which allows animators to design character poses and geometry via intuitive parameters and interfaces. Yet most state-of-the-art computer animation techniques control characters through raw, low level representations such as joint angles, joint positions, or vertex coordinates. This difference often stops the adoption of state-of-the-art techniques in animation production. Our framework solves this issue by learning a mapping between the low level representations of the pose and the animation rig. We use nonlinear regression techniques, learning from example animation sequences designed by the animators. When new motions are provided in the skeleton space, the learned mapping is used to estimate the rig controls that reproduce such a motion. We introduce two nonlinear functions for producing such a mapping: Gaussian process regression and feedforward neural networks. The appropriate solution depends on the nature of the rig and the amount of data available for training. We show our framework applied to various examples including articulated biped characters, quadruped characters, facial animation rigs, and deformable characters. With our system, animators have the freedom to apply any motion synthesis algorithm to arbitrary rigging and animation pipelines for immediate editing. This greatly improves the productivity of 3D animation, while retaining the flexibility and creativity of artistic input.
Fox, Naomi J; Caldow, George L; Liebeschuetz, Hilary; Stevenson, Karen; Hutchings, Michael R
2018-06-02
Paratuberculosis (Johne's disease) is caused by the bacterium Mycobacterium avium subspecies paratuberculosis ( Map ). Achieving herd-level control of mycobacterial infection is notoriously difficult, despite widespread adoption of test-and-cull-based control strategies. The presence of infection in wildlife populations could be contributing to this difficulty. Rabbits are naturally infected with the same Map strain as cattle, and can excrete high levels in their faeces. The aim of this study is to determine if implementation of paratuberculosis control in cattle leads to a decline in Map infection levels in rabbits. An island-wide, test-and-cull-based paratuberculosis control programme was initiated on a Scottish island in 2008. In this study annual tests were obtained from 15 cattle farms, from 2008 to 2011, totalling 2609 tests. Rabbits (1564) were sampled from the 15 participating farms, from 2008 to 2011, and Map was detected by faecal culture. Map seroprevalence in cattle decreased from 16 to 7.2 per cent, while Map prevalence in rabbits increased from 10.3 to 20.3 per cent. Results indicate that efforts to control paratuberculosis in cattle do not reduce Map levels in sympatric rabbits. This adds to mounting evidence that if Map becomes established in wild rabbit populations, rabbits represent a persistent and widespread source of infection, potentially impeding livestock control strategies. © British Veterinary Association (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
NASA Astrophysics Data System (ADS)
Pototschnig, Johann V.; Meyer, Ralf; Hauser, Andreas W.; Ernst, Wolfgang E.
2017-02-01
Research on ultracold molecules has seen a growing interest recently in the context of high-resolution spectroscopy and quantum computation. After forming weakly bound molecules from atoms in cold collisions, the preparation of molecules in low vibrational levels of the ground state is experimentally challenging, and typically achieved by population transfer using excited electronic states. Accurate potential energy surfaces are needed for a correct description of processes such as the coherent de-excitation from the highest and therefore weakly bound vibrational levels in the electronic ground state via couplings to electronically excited states. This paper is dedicated to the vibrational analysis of potentially relevant electronically excited states in the alkali-metal (Li, Na, K, Rb)- alkaline-earth metal (Ca,Sr) diatomic series. Graphical maps of Frank-Condon overlap integrals are presented for all molecules of the group. By comparison to overlap graphics produced for idealized potential surfaces, we judge the usability of the selected states for future experiments on laser-enhanced molecular formation from mixtures of quantum degenerate gases.
State of Louisiana - Highlighting low-lying areas derived from USGS Digital Elevation Data
Kosovich, John J.
2008-01-01
In support of U.S. Geological Survey (USGS) disaster preparedness efforts, this map depicts a color shaded relief representation highlighting the State of Louisiana and depicts the surrounding areas using muted elevation colors. The first 30 feet of relief above mean sea level are displayed as brightly colored 5-foot elevation bands, which highlight low-elevation areas at a coarse spatial resolution. Areas below sea level typically are surrounded by levees or some other type of flood-control structures. Standard USGS National Elevation Dataset (NED) 1 arc-second (nominally 30-meter) digital elevation model (DEM) data are the basis for the map, which is designed to be used at a broad scale and for informational purposes only. The NED data are a mixture of data and were derived from the original 1:24,000-scale USGS topographic map bare-earth contours, which were converted into gridded quadrangle-based DEM tiles at a constant post spacing (grid cell size) of either 30 meters (data before the mid-1990s) or 10 meters (mid-1990s and later data). These individual-quadrangle DEMs were then converted to spherical coordinates (latitude/longitude decimal degrees) and edge-matched to ensure seamlessness. Approximately one-half of the area shown on this map has DEM source data at a 30-meter resolution, with the remaining half consisting of mostly 10-meter contour-derived DEM data and some small areas of higher-resolution LIght Detection And Ranging (LIDAR) data along parts of the coastline. Areas below sea level typically are surrounded by levees or some other type of flood-control structures. State and parish boundary, hydrography, city, and road layers were modified from USGS National Atlas data downloaded in 2003. The NED data were downloaded in 2007.
Fendick, Robert B.; Nyman, Dale J.
1987-01-01
The Chicot aquifer is the principle source of groundwater in southwestern Louisiana and is the most extensively pumped (nearly 1 billion gallons per day) aquifer in the State. Withdrawals from the Chicot aquifer are used primarily for irrigation. Two maps show the generalized potentiometric surfaces of the upper sand unit ('200-ft ' sand in the Lake Charles area) and the ' 500-ft ' sand of the Chicot aquifer. General water level altitudes and flow directions may be inferred from these maps which were prepared in cooperation with the Louisiana Department of Transportation and Development, Office of Public Works. Previous studies of groundwater hydrology in southwestern Louisiana are included in selected references. (Lantz-PTT)
Sonja Oswalt; Chengquan Huang; Hua Shi; James Vogelmann; Zhiliang Zhu; Samuel N. Goward; John Coulston
2009-01-01
Landsat images have been widely used for assessing forest characteristics and dynamics. Recently, significant progress has been made towards indepth exploration of the rich Landsat archive kept by the U.S. Geological Survey to improve our under standing of forest disturbance and recovery processes. In this study, we used Landsat images to map forest disturbances at...
New "Risk-Targeted" Seismic Maps Introduced into Building Codes
Luco, Nicholas; Garrett, B.; Hayes, J.
2012-01-01
Throughout most municipalities of the United States, structural engineers design new buildings using the U.S.-focused International Building Code (IBC). Updated editions of the IBC are published every 3 years. The latest edition (2012) contains new "risk-targeted maximum considered earthquake" (MCER) ground motion maps, which are enabling engineers to incorporate a more consistent and better defined level of seismic safety into their building designs.
Mapping the Prevalence of Physical Inactivity in U.S. States, 1984-2015.
An, Ruopeng; Xiang, Xiaoling; Yang, Yan; Yan, Hai
2016-01-01
Physical inactivity is a leading cause of morbidity, disability and premature mortality in the U.S. and worldwide. This study aimed to map the prevalence of physical inactivity across U.S. states over the past three decades, and estimate the over-time adjusted changes in the prevalence of physical inactivity in each state. Individual-level data (N = 6,701,954) were taken from the 1984-2015 Behavioral Risk Factor Surveillance System (BRFSS), an annually repeated cross-sectional survey of state-representative adult population. Prevalence of self-reported leisure-time physical inactivity was estimated by state and survey year, accounting for the BRFSS sampling design. Logistic regressions were performed to estimate the changes in the prevalence of physical inactivity over the study period for each state, adjusting for individual characteristics including sex, age, race/ethnicity, education, marital status, and employment status. The prevalence of leisure-time physical inactivity varied substantially across states and survey years. In general, the adjusted prevalence of physical inactivity gradually declined over the past three decades in a majority of states. However, a substantial proportion of American adults remain physically inactive. Among the 50 states and District of Columbia, 45 had over a fifth of their adult population without any leisure-time physical activity, and 8 had over 30% without physical activity in 2015. Moreover, the adjusted prevalence of physical inactivity in several states (Arizona, North Carolina, North Dakota, Utah, West Virginia, and Wyoming) remained largely unchanged or even increased (Minnesota and Ohio) over the study period. Although the prevalence of physical inactivity declined over the past three decades in a majority of states, the rates remain substantially high and vary considerably across states. Closely monitoring and tracking physical activity level using the state physical activity maps can help guide policy and program development to promote physical activity and reduce the burden of chronic disease.
Mapping the Prevalence of Physical Inactivity in U.S. States, 1984-2015
Xiang, Xiaoling; Yang, Yan; Yan, Hai
2016-01-01
Background Physical inactivity is a leading cause of morbidity, disability and premature mortality in the U.S. and worldwide. This study aimed to map the prevalence of physical inactivity across U.S. states over the past three decades, and estimate the over-time adjusted changes in the prevalence of physical inactivity in each state. Methods Individual-level data (N = 6,701,954) were taken from the 1984–2015 Behavioral Risk Factor Surveillance System (BRFSS), an annually repeated cross-sectional survey of state-representative adult population. Prevalence of self-reported leisure-time physical inactivity was estimated by state and survey year, accounting for the BRFSS sampling design. Logistic regressions were performed to estimate the changes in the prevalence of physical inactivity over the study period for each state, adjusting for individual characteristics including sex, age, race/ethnicity, education, marital status, and employment status. Results The prevalence of leisure-time physical inactivity varied substantially across states and survey years. In general, the adjusted prevalence of physical inactivity gradually declined over the past three decades in a majority of states. However, a substantial proportion of American adults remain physically inactive. Among the 50 states and District of Columbia, 45 had over a fifth of their adult population without any leisure-time physical activity, and 8 had over 30% without physical activity in 2015. Moreover, the adjusted prevalence of physical inactivity in several states (Arizona, North Carolina, North Dakota, Utah, West Virginia, and Wyoming) remained largely unchanged or even increased (Minnesota and Ohio) over the study period. Conclusions Although the prevalence of physical inactivity declined over the past three decades in a majority of states, the rates remain substantially high and vary considerably across states. Closely monitoring and tracking physical activity level using the state physical activity maps can help guide policy and program development to promote physical activity and reduce the burden of chronic disease. PMID:27959906
Detection of stress/anxiety state from EEG features during video watching.
Giannakakis, Giorgos; Grigoriadis, Dimitris; Tsiknakis, Manolis
2015-01-01
This paper studies the effect of stress/anxiety states on EEG signals during video sessions. The levels of arousal and valence that are induced to each subject while watching each video are self rated. These levels are mapped in stress and relaxed states and subjects that fufill criteria of adequate anxiety/stress scale were chosen leading to a subset of 18 subjects. Then, temporal, spectral and non linear EEG features are evaluated for being able to represent accurately states under investigation. Feature selection schemes choose the most significant of them in order to provide increased discrimination ability between relaxed and anxiety/stress states.
Unified Ecoregions of Alaska: 2001
Nowacki, Gregory J.; Spencer, Page; Fleming, Michael; Brock, Terry; Jorgenson, Torre
2003-01-01
Major ecosystems have been mapped and described for the State of Alaska and nearby areas. Ecoregion units are based on newly available datasets and field experience of ecologists, biologists, geologists and regional experts. Recently derived datasets for Alaska included climate parameters, vegetation, surficial geology and topography. Additional datasets incorporated in the mapping process were lithology, soils, permafrost, hydrography, fire regime and glaciation. Thirty two units are mapped using a combination of the approaches of Bailey (hierarchial), and Omernick (integrated). The ecoregions are grouped into two higher levels using a 'tri-archy' based on climate parameters, vegetation response and disturbance processes. The ecoregions are described with text, photos and tables on the published map.
2008 United States National Seismic Hazard Maps
Petersen, M.D.; ,
2008-01-01
The U.S. Geological Survey recently updated the National Seismic Hazard Maps by incorporating new seismic, geologic, and geodetic information on earthquake rates and associated ground shaking. The 2008 versions supersede those released in 1996 and 2002. These maps are the basis for seismic design provisions of building codes, insurance rate structures, earthquake loss studies, retrofit priorities, and land-use planning. Their use in design of buildings, bridges, highways, and critical infrastructure allows structures to better withstand earthquake shaking, saving lives and reducing disruption to critical activities following a damaging event. The maps also help engineers avoid costs from over-design for unlikely levels of ground motion.
Resting State Network Estimation in Individual Subjects
Hacker, Carl D.; Laumann, Timothy O.; Szrama, Nicholas P.; Baldassarre, Antonello; Snyder, Abraham Z.
2014-01-01
Resting-state functional magnetic resonance imaging (fMRI) has been used to study brain networks associated with both normal and pathological cognitive function. The objective of this work is to reliably compute resting state network (RSN) topography in single participants. We trained a supervised classifier (multi-layer perceptron; MLP) to associate blood oxygen level dependent (BOLD) correlation maps corresponding to pre-defined seeds with specific RSN identities. Hard classification of maps obtained from a priori seeds was highly reliable across new participants. Interestingly, continuous estimates of RSN membership retained substantial residual error. This result is consistent with the view that RSNs are hierarchically organized, and therefore not fully separable into spatially independent components. After training on a priori seed-based maps, we propagated voxel-wise correlation maps through the MLP to produce estimates of RSN membership throughout the brain. The MLP generated RSN topography estimates in individuals consistent with previous studies, even in brain regions not represented in the training data. This method could be used in future studies to relate RSN topography to other measures of functional brain organization (e.g., task-evoked responses, stimulation mapping, and deficits associated with lesions) in individuals. The multi-layer perceptron was directly compared to two alternative voxel classification procedures, specifically, dual regression and linear discriminant analysis; the perceptron generated more spatially specific RSN maps than either alternative. PMID:23735260
Using a Geographic Information System to Improve Childhood Lead-Screening Efforts
2013-01-01
The Idaho Division of Public Health conducted a pilot study to produce a lead-exposure–risk map to help local and state agencies better target childhood lead-screening efforts. Priority lead-screening areas, at the block group level, were created by using county tax assessor data and geographic information system software. A series of maps were produced, indicating childhood lead-screening prevalence in areas in which there was high potential for exposure to lead. These maps could enable development of more systematically targeted and cost-effective childhood lead-screening efforts. PMID:23764346
Comparing the Performance of Japan's Earthquake Hazard Maps to Uniform and Randomized Maps
NASA Astrophysics Data System (ADS)
Brooks, E. M.; Stein, S. A.; Spencer, B. D.
2015-12-01
The devastating 2011 magnitude 9.1 Tohoku earthquake and the resulting shaking and tsunami were much larger than anticipated in earthquake hazard maps. Because this and all other earthquakes that caused ten or more fatalities in Japan since 1979 occurred in places assigned a relatively low hazard, Geller (2011) argued that "all of Japan is at risk from earthquakes, and the present state of seismological science does not allow us to reliably differentiate the risk level in particular geographic areas," so a map showing uniform hazard would be preferable to the existing map. Defenders of the maps countered by arguing that these earthquakes are low-probability events allowed by the maps, which predict the levels of shaking that should expected with a certain probability over a given time. Although such maps are used worldwide in making costly policy decisions for earthquake-resistant construction, how well these maps actually perform is unknown. We explore this hotly-contested issue by comparing how well a 510-year-long record of earthquake shaking in Japan is described by the Japanese national hazard (JNH) maps, uniform maps, and randomized maps. Surprisingly, as measured by the metric implicit in the JNH maps, i.e. that during the chosen time interval the predicted ground motion should be exceeded only at a specific fraction of the sites, both uniform and randomized maps do better than the actual maps. However, using as a metric the squared misfit between maximum observed shaking and that predicted, the JNH maps do better than uniform or randomized maps. These results indicate that the JNH maps are not performing as well as expected, that what factors control map performance is complicated, and that learning more about how maps perform and why would be valuable in making more effective policy.
Kosovich, John J.
2008-01-01
In support of U.S. Geological Survey (USGS) disaster preparedness efforts, this map depicts 1:24,000- and 1:100,000-scale quadrangle footprints over a color shaded relief representation of the State of Florida. The first 30 feet of relief above mean sea level are displayed as brightly colored 5-foot elevation bands, which highlight low-elevation areas at a coarse spatial resolution. Standard USGS National Elevation Dataset (NED) 1 arc-second (nominally 30-meter) digital elevation model (DEM) data are the basis for the map, which is designed to be used at a broad scale and for informational purposes only. The NED source data for this map consists of a mixture of 30-meter- and 10-meter-resolution DEMs. The NED data were derived from the original 1:24,000-scale USGS topographic map bare-earth contours, which were converted into gridded quadrangle-based DEM tiles at a constant post spacing (grid cell size) of either 30 meters (data before the mid-1990s) or 10 meters (mid-1990s and later data). These individual-quadrangle DEMs were then converted to spherical coordinates (latitude/longitude decimal degrees) and edge-matched to ensure seamlessness. Figure 1 shows a similar representation for the entire U.S. Gulf Coast, using coarsened 30-meter NED data. Areas below sea level typically are surrounded by levees or some other type of flood-control structures. State and county boundary, hydrography, city, and road layers were modified from USGS National Atlas data downloaded in 2003. Quadrangle names, dated April, 2006, were obtained from the Federal Geographic Names Information System. The NED data were downloaded in 2004.
Developing Tsunami Evacuation Plans, Maps, And Procedures: Pilot Project in Central America
NASA Astrophysics Data System (ADS)
Arcos, N. P.; Kong, L. S. L.; Arcas, D.; Aliaga, B.; Coetzee, D.; Leonard, J.
2015-12-01
In the End-to-End tsunami warning chain, once a forecast is provided and a warning alert issued, communities must know what to do and where to go. The 'where to' answer would be reliable and practical community-level tsunami evacuation maps. Following the Exercise Pacific Wave 2011, a questionnaire was sent to the 46 Member States of Pacific Tsunami Warning System (PTWS). The results revealed over 42 percent of Member States lacked tsunami mass coastal evacuation plans. Additionally, a significant gap in mapping was exposed as over 55 percent of Member States lacked tsunami evacuation maps, routes, signs and assembly points. Thereby, a significant portion of countries in the Pacific lack appropriate tsunami planning and mapping for their at-risk coastal communities. While a variety of tools exist to establish tsunami inundation areas, these are inconsistent while a methodology has not been developed to assist countries develop tsunami evacuation maps, plans, and procedures. The International Tsunami Information Center (ITIC) and partners is leading a Pilot Project in Honduras demonstrating that globally standardized tools and methodologies can be applied by a country, with minimal tsunami warning and mitigation resources, towards the determination of tsunami inundation areas and subsequently community-owned tsunami evacuation maps and plans for at-risk communities. The Pilot involves a 1- to 2-year long process centered on a series of linked tsunami training workshops on: evacuation planning, evacuation map development, inundation modeling and map creation, tsunami warning & emergency response Standard Operating Procedures (SOPs), and conducting tsunami exercises (including evacuation). The Pilot's completion is capped with a UNESCO/IOC document so that other countries can replicate the process in their tsunami-prone communities.
Digital version of the European Atlas of natural radiation.
Cinelli, Giorgia; Tollefsen, Tore; Bossew, Peter; Gruber, Valeria; Bogucarskis, Konstantins; De Felice, Luca; De Cort, Marc
2018-02-26
The European Atlas of Natural Radiation is a collection of maps displaying the levels of natural radioactivity caused by different sources. It has been developed and is being maintained by the Joint Research Centre (JRC) of the European Commission, in line with its mission, based on the Euratom Treaty: to collect, validate and report information on radioactivity levels in the environment of the EU Member States. This work describes the first version of the European Atlas of Natural Radiation, available in digital format through a web portal, as well as the methodology and results for the maps already developed. So far the digital Atlas contains: an annual cosmic-ray dose map; a map of indoor radon concentration; maps of uranium, thorium and potassium concentration in soil and in bedrock; a terrestrial gamma dose rate map; and a map of soil permeability. Through these maps, the public will be able to: familiarize itself with natural environmental radioactivity; be informed about the levels of natural radioactivity caused by different sources; have a more balanced view of the annual dose received by the European population, to which natural radioactivity is the largest contributor; and make direct comparisons between doses from natural sources of ionizing radiation and those from man-made (artificial) ones, hence, to better assess the latter. Work will continue on the European Geogenic Radon Map and on estimating the annual dose that the public may receive from natural radioactivity, by combining all the information from the different maps. More maps could be added to the Atlas, such us radon in outdoor air and in water and concentration of radionuclides in water, even if these sources usually contribute less to the total exposure. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Griffith, Glenn E.; Omernik, James M.; Smith, David W.; Cook, Terry D.; Tallyn, Ed; Moseley, Kendra; Johnson, Colleen B.
2016-02-23
Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. By recognizing the spatial differences in the capacities and potentials of ecosystems, ecoregions stratify the environment by its probable response to disturbance (Bryce and others, 1999). These general purpose regions are critical for structuring and implementing ecosystem management strategies across Federal agencies, State agencies, and nongovernment organizations that are responsible for different types of resources in the same geographical areas (Omernik and others, 2000).The approach used to compile this map is based on the premise that ecological regions are hierarchical and can be identified through the analysis of the spatial patterns and the composition of biotic and abiotic phenomena that affect or reflect differences in ecosystem quality and integrity (Wiken, 1986; Omernik, 1987, 1995). These phenomena include geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another regardless of the hierarchical level. A Roman numeral hierarchical scheme has been adopted for different levels of ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997, map revised 2006). At level III, the continental United States contains 105 ecoregions and the conterminous United States has 85 ecoregions (U.S. Environmental Protection Agency, 2013). Level IV, depicted here for California, is a further refinement of level III ecoregions. Explanations of the methods used to define these ecoregions are given in Omernik (1995), Omernik and others (2000), and Omernik and Griffith (2014).California has great ecological and biological diversity. The State contains offshore islands and coastal lowlands, large alluvial valleys, forested mountain ranges, deserts, and various aquatic habitats. There are 13 level III ecoregions and 177 level IV ecoregions in California and most continue into ecologically similar parts of adjacent States of the United States or Mexico (Bryce and others, 2003; Thorson and others, 2003; Griffith and others, 2014).The California ecoregion map was compiled at a scale of 1:250,000. It revises and subdivides an earlier national ecoregion map that was originally compiled at a smaller scale (Omernik, 1987; U.S. Environmental Protection Agency, 2013). This poster is the result of a collaborative project primarily between U.S. Environmental Protection Agency (USEPA) Region IX, USEPA National Health and Environmental Effects Research Laboratory (Corvallis, Oregon), California Department of Fish and Wildlife (DFW), U.S. Department of Agriculture (USDA)–Natural Resources Conservation Service (NRCS), U.S. Department of the Interior–Geological Survey (USGS), and other State of California agencies and universities.The project is associated with interagency efforts to develop a common framework of ecological regions (McMahon and others, 2001). Reaching that objective requires recognition of the differences in the conceptual approaches and mapping methodologies applied to develop the most common ecoregion-type frameworks, including those developed by the USDA–Forest Service (Bailey and others, 1994; Miles and Goudy, 1997; Cleland and others, 2007), the USEPA (Omernik 1987, 1995), and the NRCS (U.S. Department of Agriculture–Soil Conservation Service, 1981; U.S. Department of Agriculture–Natural Resources Conservation Service, 2006). As each of these frameworks is further refined, their differences are becoming less discernible. Regional collaborative projects such as this one in California, where some agreement has been reached among multiple resource-management agencies, are a step toward attaining consensus and consistency in ecoregion frameworks for the entire nation.
Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery
USDA-ARS?s Scientific Manuscript database
Crop progress and condition are required for crop management and yield estimation. In the United States, they are reported weekly at state or district level by the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) using the field observations provided by local far...
New Science Applications Within the U.S. National Tsunami Hazard Mitigation Program
NASA Astrophysics Data System (ADS)
Wilson, R. I.; Eble, M. C.; Forson, C. K.; Horrillo, J. J.; Nicolsky, D.
2017-12-01
The U.S. National Tsunami Hazard Mitigation Program (NTHMP) is a collaborative State and Federal program which supports consistent and cost effective tsunami preparedness and mitigation activities at a community level. The NTHMP is developing a new five-year Strategic Plan based on the 2017 Tsunami Warning, Education, and Research Act as well as recommendations the 2017 NTHMP External Review Panel. Many NTHMP activities are based on the best available scientific methods through the NTHMP Mapping and Modeling Subcommittee (MMS). The primary activities for the MMS member States are to characterize significant tsunami sources, numerically model those sources, and create tsunami inundation maps for evacuation planning. This work remains a focus for many unmapped coastlines. With the lessons learned from the 2004 Indian Ocean and 2011 Tohoku Japan tsunamis, where both immediate risks and long-term recovery issues where recognized, the NTHMP MMS is expanding efforts into other areas that address community resilience. Tsunami evacuation modeling based on both pedestrian and vehicular modes of transportation are being developed by NTHMP States. Products include tools for the public to create personal evacuation maps. New tsunami response planning tools are being developed for both maritime and coastal communities. Maritime planning includes tsunami current-hazard maps for in-harbor and offshore response activities. Multi-tiered tsunami evacuation plans are being developed in some states to address local- versus distant-source tsunamis, as well as real-time evacuation plans, or "playbooks," for distant-source tsunamis forecasted to be less than the worst-case flood event. Products to assist community mitigation and recovery are being developed at a State level. Harbor Improvement Reports, which evaluate the impacts of currents, sediment, and debris on harbor infrastructure, include direct mitigation activities for Local Hazard Mitigation Plans. Building code updates in the five Pacific states will include new sections on tsunami load analysis of structures, and require Tsunami Design Zones based on probabilistic analyses. Guidance for community recovery planning has also been initiated. These new projects are being piloted by some States and will help create guidance for other States in the future.
Gusso, Anibal; Arvor, Damien; Ducati, Jorge Ricardo; Veronez, Mauricio Roberto; da Silveira, Luiz Gonzaga
2014-01-01
Estimations of crop area were made based on the temporal profiles of the Enhanced Vegetation Index (EVI) obtained from moderate resolution imaging spectroradiometer (MODIS) images. Evaluation of the ability of the MODIS crop detection algorithm (MCDA) to estimate soybean crop areas was performed for fields in the Mato Grosso state, Brazil. Using the MCDA approach, soybean crop area estimations can be provided for December (first forecast) using images from the sowing period and for February (second forecast) using images from the sowing period and the maximum crop development period. The area estimates were compared to official agricultural statistics from the Brazilian Institute of Geography and Statistics (IBGE) and from the National Company of Food Supply (CONAB) at different crop levels from 2000/2001 to 2010/2011. At the municipality level, the estimates were highly correlated, with R (2) = 0.97 and RMSD = 13,142 ha. The MCDA was validated using field campaign data from the 2006/2007 crop year. The overall map accuracy was 88.25%, and the Kappa Index of Agreement was 0.765. By using pre-defined parameters, MCDA is able to provide the evolution of annual soybean maps, forecast of soybean cropping areas, and the crop area expansion in the Mato Grosso state.
NASA Astrophysics Data System (ADS)
Mercado, A., Jr.
2015-12-01
The island of Puerto Rico is not only located in the so-called Caribbean hurricane alley, but is also located in a tsunami prone region. And both phenomena have affected the island. For the past few years we have undergone the task of upgrading the available coastal flood maps due to storm surges and tsunamis. This has been done taking advantage of new Lidar-derived, high resolution, topography and bathymetry and state-of-the-art models (MOST for tsunamis and ADCIRC/SWAN for storm surges). The tsunami inundation maps have been converted to evacuation maps. In tsunamis we are also working in preparing hazard maps due to tsunami currents inside ports, bays, and marinas. The storm surge maps include two scenarios of sea level rise: 0.5 and 1.0 m above Mean High Water. All maps have been adopted by the Puerto Rico State Emergency Management Agency, and are publicly available through the Internet. It is the purpose of this presentation to summarize how it has been done, the spin-off applications they have generated, and how we plan to improve coastal flooding predictions.
A guided inquiry approach to learning the geology of the U.S
Leech, M.L.; Howell, D.G.; Egger, A.E.
2004-01-01
A guided inquiry exercise has been developed to help teach the geology of the U.S. This exercise is intended for use early in the school term when undergraduate students have little background knowledge of geology. Before beginning, students should be introduced to rock types and have a basic understanding of geologic time. This exercise uses three maps: the U.S. Geological Survey's "A Tapestry of Time and Terrain" and "Landforms of the Conterminous United States" maps, and a geologic map of the United States. Using these maps, groups of 3 to 5 students are asked to identify between 8 and 12 geologic provinces based on topography, the age of rocks, and rock types. Each student is given a blank outline map of the contiguous U.S. and each group is given a set of the three maps and colored pencils; as a group, students work to define regions in the U.S. with similar geology. A goal of 8 to 12 geologic provinces is given to help establish the level of detail being asked of students. One member of each group is asked to present their group's findings to the class, describing their geologic provinces and the reasoning behind their choices.
Temporal mapping of photochemical reactions and molecular excited states with carbon specificity
NASA Astrophysics Data System (ADS)
Wang, K.; Murahari, P.; Yokoyama, K.; Lord, J. S.; Pratt, F. L.; He, J.; Schulz, L.; Willis, M.; Anthony, J. E.; Morley, N. A.; Nuccio, L.; Misquitta, A.; Dunstan, D. J.; Shimomura, K.; Watanabe, I.; Zhang, S.; Heathcote, P.; Drew, A. J.
2017-04-01
Photochemical reactions are essential to a large number of important industrial and biological processes. A method for monitoring photochemical reaction kinetics and the dynamics of molecular excitations with spatial resolution within the active molecule would allow a rigorous exploration of the pathway and mechanism of photophysical and photochemical processes. Here we demonstrate that laser-excited muon pump-probe spin spectroscopy (photo-μSR) can temporally and spatially map these processes with a spatial resolution at the single-carbon level in a molecule with a pentacene backbone. The observed time-dependent light-induced changes of an avoided level crossing resonance demonstrate that the photochemical reactivity of a specific carbon atom is modified as a result of the presence of the excited state wavefunction. This demonstrates the sensitivity and potential of this technique in probing molecular excitations and photochemistry.
Magneto-conductance fingerprints of purely quantum states in the open quantum dot limit
NASA Astrophysics Data System (ADS)
Mendoza, Michel; Ujevic, Sebastian
2012-06-01
We present quantum magneto-conductance simulations, at the quantum low energy condition, to study the open quantum dot limit. The longitudinal conductance G(E,B) of spinless and non-interacting electrons is mapped as a function of the magnetic field B and the energy E of the electrons. The quantum dot linked to the semi-infinite leads is tuned by quantum point contacts of variable width w. We analyze the transition from a quantum wire to an open quantum dot and then to an effective closed system. The transition, as a function of w, occurs in the following sequence: evolution of quasi-Landau levels to Fano resonances and quasi-bound states between the quasi-Landau levels, followed by the formation of crossings that evolve to anti-crossings inside the quasi-Landau level region. After that, Fano resonances are created between the quasi-Landau states with the final generation of resonant tunneling peaks. By comparing the G(E,B) maps, we identify the closed and open-like limits of the system as a function of the applied magnetic field. These results were used to build quantum openness diagrams G(w,B). Also, these maps allow us to determine the w-limit value from which we can qualitatively relate the closed system properties to the open one. The above analysis can be used to identify single spinless particle effects in experimental measurements of the open quantum dot limit.
Diffusion MRI noise mapping using random matrix theory
Veraart, Jelle; Fieremans, Els; Novikov, Dmitry S.
2016-01-01
Purpose To estimate the spatially varying noise map using a redundant magnitude MR series. Methods We exploit redundancy in non-Gaussian multi-directional diffusion MRI data by identifying its noise-only principal components, based on the theory of noisy covariance matrices. The bulk of PCA eigenvalues, arising due to noise, is described by the universal Marchenko-Pastur distribution, parameterized by the noise level. This allows us to estimate noise level in a local neighborhood based on the singular value decomposition of a matrix combining neighborhood voxels and diffusion directions. Results We present a model-independent local noise mapping method capable of estimating noise level down to about 1% error. In contrast to current state-of-the art techniques, the resultant noise maps do not show artifactual anatomical features that often reflect physiological noise, the presence of sharp edges, or a lack of adequate a priori knowledge of the expected form of MR signal. Conclusions Simulations and experiments show that typical diffusion MRI data exhibit sufficient redundancy that enables accurate, precise, and robust estimation of the local noise level by interpreting the PCA eigenspectrum in terms of the Marchenko-Pastur distribution. PMID:26599599
NASA Astrophysics Data System (ADS)
Love, J. J.
2016-12-01
Magnetic-storm induction of geoelectric fields in the Earth's electrically conducting crust, lithosphere, mantle, and ocean can interfere with the operations of electric-power grid systems. The future occurrence of an extremely intense magnetic storm might even result in continental-scale failure of electric-power distribution. Such an event would entail significant deleterious consequence for the economy and international security. Building on a project established by the President's National Science and Technology Council and the Office of Science and Technology Policy for assessing space-weather induction hazards, we develop a series of geoelectric hazard maps. These are constructed using an empirical parameterization of induction: local estimates of Earth-surface impedance, obtained from EarthScope and USGS magnetotelluric survey data, are convolved with latitude-dependent statistical maps of extreme-value geomagnetic activity, obtained from decades magnetic observatory data. Geoelectric hazard maps are constructed for both north-south and east-west geomagnetic variation, and for both 240-s and 1200-s sinusoidal variation -- periods of interest to the power-grid industry. The maps cover about half of the continental United States. They depict the threshold level that geoelectric amplitude can be expected to exceed, on average, once per century at discrete geographic sites in response to extreme-intensity geomagnetic activity. Of the regions where magnetotelluric data are available, the greatest induction hazards are found in Minnesota, Wisconsin, and Iowa - this being the result of both high-latitude geomagntic activity and complex subsurface conductivity structure. At some sites in the continental United States, once-per-century geoelectric amplitudes can exceed the 1.7 V/km realized in Quebec during the March 1989 storm. This work highlights the importance of geophysical surveys and ground-level monitoring data for assessing space-weather induction hazards.
Challenges in making a seismic hazard map for Alaska and the Aleutians
Wesson, R.L.; Boyd, O.S.; Mueller, C.S.; Frankel, A.D.; Freymueller, J.T.
2008-01-01
We present a summary of the data and analyses leading to the revision of the time-independent probabilistic seismic hazard maps of Alaska and the Aleutians. These maps represent a revision of existing maps based on newly obtained data, and reflect best current judgments about methodology and approach. They have been prepared following the procedures and assumptions made in the preparation of the 2002 National Seismic Hazard Maps for the lower 48 States, and will be proposed for adoption in future revisions to the International Building Code. We present example maps for peak ground acceleration, 0.2 s spectral amplitude (SA), and 1.0 s SA at a probability level of 2% in 50 years (annual probability of 0.000404). In this summary, we emphasize issues encountered in preparation of the maps that motivate or require future investigation and research.
Scholtens, Lianne H.; Turk, Elise; Mantini, Dante; Vanduffel, Wim; Feldman Barrett, Lisa
2016-01-01
Abstract The cerebral cortex is well known to display a large variation in excitatory and inhibitory chemoarchitecture, but the effect of this variation on global scale functional neural communication and synchronization patterns remains less well understood. Here, we provide evidence of the chemoarchitecture of cortical regions to be associated with large‐scale region‐to‐region resting‐state functional connectivity. We assessed the excitatory versus inhibitory chemoarchitecture of cortical areas as an ExIn ratio between receptor density mappings of excitatory (AMPA, M1) and inhibitory (GABAA, M2) receptors, computed on the basis of data collated from pioneering studies of autoradiography mappings as present in literature of the human (2 datasets) and macaque (1 dataset) cortex. Cortical variation in ExIn ratio significantly correlated with total level of functional connectivity as derived from resting‐state functional connectivity recordings of cortical areas across all three datasets (human I: P = 0.0004; human II: P = 0.0008; macaque: P = 0.0007), suggesting cortical areas with an overall more excitatory character to show higher levels of intrinsic functional connectivity during resting‐state. Our findings are indicative of the microscale chemoarchitecture of cortical regions to be related to resting‐state fMRI connectivity patterns at the global system's level of connectome organization. Hum Brain Mapp 37:3103–3113, 2016. © 2016 Wiley Periodicals, Inc. PMID:27207489
We present a simple approach to estimating ground-level fine particle (PM2.5, particles smaller than 2.5 um in diameter) concentration using global atmospheric chemistry models and aerosol optical thickness (AOT) measurements from the Multi- angle Imaging SpectroRadiometer (MISR)...
Thread mapping using system-level model for shared memory multicores
NASA Astrophysics Data System (ADS)
Mitra, Reshmi
Exploring thread-to-core mapping options for a parallel application on a multicore architecture is computationally very expensive. For the same algorithm, the mapping strategy (MS) with the best response time may change with data size and thread counts. The primary challenge is to design a fast, accurate and automatic framework for exploring these MSs for large data-intensive applications. This is to ensure that the users can explore the design space within reasonable machine hours, without thorough understanding on how the code interacts with the platform. Response time is related to the cycles per instructions retired (CPI), taking into account both active and sleep states of the pipeline. This work establishes a hybrid approach, based on Markov Chain Model (MCM) and Model Tree (MT) for system-level steady state CPI prediction. It is designed for shared memory multicore processors with coarse-grained multithreading. The thread status is represented by the MCM states. The program characteristics are modeled as the transition probabilities, representing the system moving between active and suspended thread states. The MT model extrapolates these probabilities for the actual application size (AS) from the smaller AS performance. This aspect of the framework, along with, the use of mathematical expressions for the actual AS performance information, results in a tremendous reduction in the CPI prediction time. The framework is validated using an electromagnetics application. The average performance prediction error for steady state CPI results with 12 different MSs is less than 1%. The total run time of model is of the order of minutes, whereas the actual application execution time is in terms of days.
Stoeser, Douglas B.; Green, Gregory N.; Morath, Laurie C.; Heran, William D.; Wilson, Anna B.; Moore, David W.; Van Gosen, Bradley S.
2005-01-01
The growth in the use of Geographic Information Systems (GIS) has highlighted the need for regional and national digital geologic maps attributed with age and lithology information. Such maps can be conveniently used to generate derivative maps for purposes including mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This Open-File Report is a preliminary version of part of a series of integrated state geologic map databases that cover the entire United States. The only national-scale digital geologic maps that portray most or all of the United States for the conterminous U.S. are the digital version of the King and Beikman (1974a, b) map at a scale of 1:2,500,000, as digitized by Schruben and others (1994) and the digital version of the Geologic Map of North America (Reed and others, 2005a, b) compiled at a scale of 1:5,000,000 which is currently being prepared by the U.S. Geological Survey. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. In a few cases, new digital compilations were prepared (e.g. OH, SC, SD) or existing paper maps were digitized (e.g. KY, TX). For Alaska and Hawaii, new regional maps are being compiled and ultimately new state maps will be produced. The digital geologic maps are presented in standardized formats as ARC/INFO (.e00) export files and as ArcView shape (.shp) files. Accompanying these spatial databases are a set of five supplemental data tables that relate the map units to detailed lithologic and age information. The maps for the CONUS have been fitted to a common set of state boundaries based on the 1:100,000 topographic map series of the United States Geological Survey (USGS). When the individual state maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps. No attempt has been made to reconcile differences in mapped geology across state lines. This is the first version of this product and it will be subsequently updated to include four additional states (North Dakota, South Dakota, Nebraska, and Iowa)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, T. III; Street, F.A.; Howe, S.
The goal of the research described in this report is to document the climatic variability over the past 10,000 to 20,000 years in areas in which sites may be designated for the burial of nuclear wastes. Three separate data sets were studied, and the results are presented in three chapters. The first data set consisted of radiocarbon dates documenting past changes in lake levels in lakes and playas in the western United States. The sites were mapped where water levels were higher than the levels today and were presented in a table telling what evidence is available at each site.more » The lake-level fluctuations for the past 24,000 years at sites in the West were also mapped and time series for these fluctuations at four sites were presented. The second data set was a selection of the published radiocarbon-dated pollen diagrams from the western United States. These data are a valuable source of climatic information and complement the geological evidence of lake-level fluctuations in the West. A table is presented that gives the location, elevation, and number of radiocarbon dates for each site. The third data set was a set of fossil pollen data from 20 sites in the upper Midwest. These data were calibrated in terms of precipitation changes over the past 10,000 years, and maps are presented of the estimated precipitation changes between 10,000 and 7000 years ago and between 7000 years ago and today.« less
Glendon W. Smalley; Carlie McCowan; S. David Todd; Phillip M. Morrissey; J. Andrew McBride
2013-01-01
This paper summarizes the application of a land classification system developed by the senior author to the Standing Stone State Forest and State Park (SSSF&SP) on the Eastern Highland Rim. Landtypes are the most detailed level in the hierarchical system and represent distinct units of the landscape (mapped at a scale of 1:24,000) as defined by climate, geology,...
United States Geological Survey, programs in Nevada
,
1995-01-01
The U.S. Geological Survey (USGS) has been collecting and interpreting natural-resources data in Nevada for more than 100 years. This long-term commitment enables planners to manage better the resources of a State noted for paradoxes. Although Nevada is one of the most sparsely populated States in the Nation, it has the fastest growing population (fig. 1). Although 90 percent of the land is rural, it is the fourth most urban State. Nevada is the most arid State and relies heavily on water resources. Historically, mining and agriculture have formed the basis of the economy; now tourism and urban development also have become important. The USGS works with more than 40 local, State, and other Federal agencies in Nevada to provide natural-resources information for immediate and long-term decisions.Subjects included in this fact sheet:Low-Level Radioactive-Waste DisposalMining and Water in the Humboldt BasinAquifer Systems in the Great BasinWater Allocation in Truckee and Carson BasinsNational Water-Quality Assessment ProgramMinerals Assessment for Land ManagementIrrigation DrainageGround-Water Movement at Nevada Test SiteOil and Gas ResourcesNational Mapping ProgramDigital Mapping and Aerial PhotographyCollection of Hydrologlc DataGeologic MappingEarthquake HazardsAssessing Mineral Resources of the SubsurfaceEarth Observation DataCooperative Programs
Automatic Polyp Detection via A Novel Unified Bottom-up and Top-down Saliency Approach.
Yuan, Yixuan; Li, Dengwang; Meng, Max Q-H
2017-07-31
In this paper, we propose a novel automatic computer-aided method to detect polyps for colonoscopy videos. To find the perceptually and semantically meaningful salient polyp regions, we first segment images into multilevel superpixels. Each level corresponds to different sizes of superpixels. Rather than adopting hand-designed features to describe these superpixels in images, we employ sparse autoencoder (SAE) to learn discriminative features in an unsupervised way. Then a novel unified bottom-up and top-down saliency method is proposed to detect polyps. In the first stage, we propose a weak bottom-up (WBU) saliency map by fusing the contrast based saliency and object-center based saliency together. The contrast based saliency map highlights image parts that show different appearances compared with surrounding areas while the object-center based saliency map emphasizes the center of the salient object. In the second stage, a strong classifier with Multiple Kernel Boosting (MKB) is learned to calculate the strong top-down (STD) saliency map based on samples directly from the obtained multi-level WBU saliency maps. We finally integrate these two stage saliency maps from all levels together to highlight polyps. Experiment results achieve 0.818 recall for saliency calculation, validating the effectiveness of our method. Extensive experiments on public polyp datasets demonstrate that the proposed saliency algorithm performs favorably against state-of-the-art saliency methods to detect polyps.
Gates, Kathleen M; Molenaar, Peter C M
2012-10-15
At its best, connectivity mapping can offer researchers great insight into how spatially disparate regions of the human brain coordinate activity during brain processing. A recent investigation conducted by Smith and colleagues (2011) on methods for estimating connectivity maps suggested that those which attempt to ascertain the direction of influence among ROIs rarely provide reliable results. Another problem gaining increasing attention is heterogeneity in connectivity maps. Most group-level methods require that the data come from homogeneous samples, and misleading findings may arise from current methods if the connectivity maps for individuals vary across the sample (which is likely the case). The utility of maps resulting from effective connectivity on the individual or group levels is thus diminished because they do not accurately inform researchers. The present paper introduces a novel estimation technique for fMRI researchers, Group Iterative Multiple Model Estimation (GIMME), which demonstrates that using information across individuals assists in the recovery of the existence of connections among ROIs used by Smith and colleagues (2011) and the direction of the influence. Using heterogeneous in-house data, we demonstrate that GIMME offers a unique improvement over current approaches by arriving at reliable group and individual structures even when the data are highly heterogeneous across individuals comprising the group. An added benefit of GIMME is that it obtains reliable connectivity map estimates equally well using the data from resting state, block, or event-related designs. GIMME provides researchers with a powerful, flexible tool for identifying directed connectivity maps at the group and individual levels. Copyright © 2012 Elsevier Inc. All rights reserved.
Application of OpenStreetMap (OSM) to Support the Mapping Village in Indonesia
NASA Astrophysics Data System (ADS)
Swasti Kanthi, Nurin; Hery Purwanto, Taufik
2016-11-01
Geospatial Information is a important thing in this era, because the need for location information is needed to know the condition of a region. In 2015 the Indonesian government release detailed mapping in village level and their Parent maps Indonesian state regulatory standards set forth in Rule form Norm Standards, Procedures and Criteria for Mapping Village (NSPK). Over time Web and Mobile GIS was developed with a wide range of applications. The merger between detailed mapping and Web GIS is still rarely performed and not used optimally. OpenStreetMap (OSM) is a WebGIS which can be utilized as Mobile GIS providing sufficient information to the representative levels of the building and can be used for mapping the village.Mapping Village using OSM was conducted using remote sensing approach and Geographical Information Systems (GIS), which's to interpret remote sensing imagery from OSM. The study was conducted to analyzed how far the role of OSM to support the mapping of the village, it's done by entering the house number data, administrative boundaries, public facilities and land use into OSM with reference data and data image Village Plan. The results of the mapping portion villages in OSM as a reference map-making village and analyzed in accordance with NSPK for detailed mapping Rukun Warga (RW) is part of the village mapping. The use of OSM greatly assists the process of mapping the details of the region with data sources in the form of images and can be accessed for Open Source. But still need their care and updating the data source to maintain the validity of the data.
Investigation into the behaviors of ventilated supercavities in unsteady flow
NASA Astrophysics Data System (ADS)
Shao, Siyao; Wu, Yue; Haynes, Joseph; Arndt, Roger E. A.; Hong, Jiarong
2018-05-01
A systematic investigation of ventilated supercavitation behaviors in an unsteady flow is conducted using a high-speed water tunnel at the Saint Anthony Falls Laboratory. The cavity is generated with a forward facing model under varying ventilation rates and cavitator sizes. The unsteady flow is produced by a gust generator consisting of two hydrofoils flapping in unison with a varying angle of attack (AoA) and frequency (fg). The current experiment reveals five distinct cavity states, namely, the stable state, wavy state, pulsating state I, pulsating state II, and collapsing state, based on the variation of cavity geometry and pressure signatures inside the cavity. The distribution of cavity states over a broad range of unsteady conditions is summarized in a cavity state map. It shows that the transition of the supercavity from the stable state to pulsating and collapsing states is primarily induced by increasing AoA while the transition to the wavy state triggers largely by increasing fg. Remarkably, the state map over the non-dimensionalized half wavelength and wave amplitude of the perturbation indicates that the supercavity loses its stability and transitions to pulsating or collapsing states when the level of its distortion induced by the flow unsteadiness exceeds the cavity dimension under a steady condition. The state maps under different ventilation rates and cavitator sizes yield similar distribution but show that the occurrence of the cavity collapse can be suppressed with increasing ventilation coefficient or cavitator size. Such knowledge can be integrated into designing control strategies for the supercavitating devices operating under different unsteady conditions.
From the European indoor radon map towards an atlas of natural radiation.
Tollefsen, T; Cinelli, G; Bossew, P; Gruber, V; De Cort, M
2014-11-01
In 2006, the Joint Research Centre of the European Commission launched a project to map radon at the European level, as part of a planned European Atlas of Natural Radiation. It started with a map of indoor radon concentrations. As of May 2014, this map includes data from 24 countries, covering a fair part of Europe. Next, a European map of geogenic radon, intended to show 'what earth delivers' in terms of radon potential (RP), was started in 2008. A first trial map has been created, and a database was established to collect all available data relevant to the RP. The Atlas should eventually display the geographical distribution of physical quantities related to natural radiation. In addition to radon, it will comprise maps of quantities such as cosmic rays and terrestrial gamma radiation. In this paper, the authors present the current state of the radon maps and the Atlas. © The Author 2014. Published by Oxford University Press.
Ground motion models used in the 2014 U.S. National Seismic Hazard Maps
Rezaeian, Sanaz; Petersen, Mark D.; Moschetti, Morgan P.
2015-01-01
The National Seismic Hazard Maps (NSHMs) are an important component of seismic design regulations in the United States. This paper compares hazard using the new suite of ground motion models (GMMs) relative to hazard using the suite of GMMs applied in the previous version of the maps. The new source characterization models are used for both cases. A previous paper (Rezaeian et al. 2014) discussed the five NGA-West2 GMMs used for shallow crustal earthquakes in the Western United States (WUS), which are also summarized here. Our focus in this paper is on GMMs for earthquakes in stable continental regions in the Central and Eastern United States (CEUS), as well as subduction interface and deep intraslab earthquakes. We consider building code hazard levels for peak ground acceleration (PGA), 0.2-s, and 1.0-s spectral accelerations (SAs) on uniform firm-rock site conditions. The GMM modifications in the updated version of the maps created changes in hazard within 5% to 20% in WUS; decreases within 5% to 20% in CEUS; changes within 5% to 15% for subduction interface earthquakes; and changes involving decreases of up to 50% and increases of up to 30% for deep intraslab earthquakes for most U.S. sites. These modifications were combined with changes resulting from modifications in the source characterization models to obtain the new hazard maps.
Invasive species management and research using GIS
Holcombe, Tracy R.; Stohlgren, Thomas J.; Jarnevich, Catherine S.
2007-01-01
Geographical Information Systems (GIS) are powerful tools in the field of invasive species management. GIS can be used to create potential distribution maps for all manner of taxa, including plants, animals, and diseases. GIS also performs well in the early detection and rapid assessment of invasive species. Here, we used GIS applications to investigate species richness and invasion patterns in fish in the United States (US) at the 6-digit Hydrologic Unit Code (HUC) level. We also created maps of potential spread of the cane toad (Bufo marinus) in the southeastern US at the 8-digit HUC level using regression and environmental envelope techniques. Equipped with this potential map, resource managers can target their field surveys to areas most vulnerable to invasion. Advances in GIS technology, maps, data, and many of these techniques can be found on websites such as the National Institute of Invasive Species Science (www.NIISS.org). Such websites provide a forum for data sharing and analysis that is an invaluable service to the invasive species community.
Back analysis of Swiss flood danger map to define local flood hazards
NASA Astrophysics Data System (ADS)
Choffet, Marc; Derron, Marc-Henri; Jaboyedoff, Michel; Leroi, Eric; Mayis, Arnaud
2010-05-01
The flood hazard maps for the entire Switzerland will be available at the end of 2011. Furthermore, the Swiss territory has been covered by aerial laser scanning (ALS) providing high resolution digital elevation model (DEM). This paper describes the development of a method for analyzing the local flood hazard based on Swiss hazard maps and HR-DEM. In their original state, Swiss hazard maps are constructed on the basis of an aggregation of information, a matrix intensity, and frequency. The degree of danger represented by the yellow, blue and red zones gives no information on the water level at each point of the territory. The developed method is based on a superposition of the danger map with the HR-DEM to determine the water level in a hazard area. To perform this method, (1) a triangulation is based on the intersection of the hazard map with the HR-DEM. It uses the limits of area where information is contrain. The hazard map perimeter and the boundaries of hazard areas give information on the widest possible overflow in case of flooding. It is also possible to associate it with a return period. (2) Based on these areas and the difference with the DEM, it is possible to calibrate the highest flood level and the extract water levels for the entire area. This analysis of existing documents opens up interesting perspectives for understanding how infrastructures are threatened by flood hazard by predicting water levels and potential damages to buildings while proposing remedial measures. Indeed, this method allows estimating the water level at each point of a building in case of flooding. It is designed to provide spatial information on water height levels; this offers a different approach of buildings in danger zones. Indeed, it is possible to discern several elements, such as areas of water accumulation involving longer flood duration, possible structural damages to buildings due to high hydrostatic pressure, determination of a local hazard, or the display of water levels in 3D.
Creating Geologically Based Radon Potential Maps for Kentucky
NASA Astrophysics Data System (ADS)
Overfield, B.; Hahn, E.; Wiggins, A.; Andrews, W. M., Jr.
2017-12-01
Radon potential in the United States, Kentucky in particular, has historically been communicated using a single hazard level for each county; however, physical phenomena are not controlled by administrative boundaries, so single-value county maps do not reflect the significant variations in radon potential in each county. A more accurate approach uses bedrock geology as a predictive tool. A team of nurses, health educators, statisticians, and geologists partnered to create 120 county maps showing spatial variations in radon potential by intersecting residential radon test kit results (N = 60,000) with a statewide 1:24,000-scale bedrock geology coverage to determine statistically valid radon-potential estimates for each geologic unit. Maps using geology as a predictive tool for radon potential are inherently more detailed than single-value county maps. This mapping project revealed that areas in central and south-central Kentucky with the highest radon potential are underlain by shales and karstic limestones.
Stevens, Alan R.
1985-01-01
Since its inception in 1974 the National Cartographic Information Center (NCIC), US Geological Survey, has rapidly developed to become a focal point for providing information on the availability of cartographic data, including maps/charts, aerial photographs, satellite imagery, geodetic control, digital mapping data, map materials and related cartographic products. In early years NCIC concentrated its efforts on encoding and entering several major National Mapping Division record collections into its systems. NCIC is now stressing the acquisition of data from sources outside the National Mapping Division, including 37 Federal agencies and more than a thousand State and private institutions. A critical review has recently been conducted by NCIC of its systems with the aim of improving its efficiency and levels of operation. Several activities which resulted include improving its existing networks, refinement of digital data distribution, study of new storage media and related projects.
Mapping as a visual health communication tool: promises and dilemmas.
Parrott, Roxanne; Hopfer, Suellen; Ghetian, Christie; Lengerich, Eugene
2007-01-01
In the era of evidence-based public health promotion and planning, the use of maps as a form of evidence to communicate about the multiple determinants of cancer is on the rise. Geographic information systems and mapping technologies make future proliferation of this strategy likely. Yet disease maps as a communication form remain largely unexamined. This content analysis considers the presence of multivariate information, credibility cues, and the communication function of publicly accessible maps for cancer control activities. Thirty-six state comprehensive cancer control plans were publicly available in July 2005 and were reviewed for the presence of maps. Fourteen of the 36 state cancer plans (39%) contained map images (N = 59 static maps). A continuum of map inter activity was observed, with 10 states having interactive mapping tools available to query and map cancer information. Four states had both cancer plans with map images and interactive mapping tools available to the public on their Web sites. Of the 14 state cancer plans that depicted map images, two displayed multivariate data in a single map. Nine of the 10 states with interactive mapping capability offered the option to display multivariate health risk messages. The most frequent content category mapped was cancer incidence and mortality, with stage at diagnosis infrequently available. The most frequent communication function served by the maps reviewed was redundancy, as maps repeated information contained in textual forms. The social and ethical implications for communicating about cancer through the use of visual geographic representations are discussed.
Utilizing random forests imputation of forest plot data for landscape-level wildfire analyses
Karin L. Riley; Isaac C. Grenfell; Mark A. Finney; Nicholas L. Crookston
2014-01-01
Maps of the number, size, and species of trees in forests across the United States are desirable for a number of applications. For landscape-level fire and forest simulations that use the Forest Vegetation Simulator (FVS), a spatial tree-level dataset, or âtree listâ, is a necessity. FVS is widely used at the stand level for simulating fire effects on tree mortality,...
Population and business exposure to twenty scenario earthquakes in the State of Washington
Wood, Nathan; Ratliff, Jamie
2011-01-01
This report documents the results of an initial analysis of population and business exposure to scenario earthquakes in Washington. This analysis was conducted to support the U.S. Geological Survey (USGS) Pacific Northwest Multi-Hazards Demonstration Project (MHDP) and an ongoing collaboration between the State of Washington Emergency Management Division (WEMD) and the USGS on earthquake hazards and vulnerability topics. This report was developed to help WEMD meet internal planning needs. A subsequent report will provide analysis to the community level. The objective of this project was to use scenario ground-motion hazard maps to estimate population and business exposure to twenty Washington earthquakes. In consultation with the USGS Earthquake Hazards Program and the Washington Division of Geology and Natural Resources, the twenty scenario earthquakes were selected by WEMD (fig. 1). Hazard maps were then produced by the USGS and placed in the USGS ShakeMap archive.
Land use statistics for West Virginia, Part I
Erwin, Robert B.; ,; ,
1979-01-01
The West Virginia Geological and Economic Survey and the United States Geological Survey have completed a cooperative program to provide land-use and land-cover maps and data for the State. This program begins to satisfy a longstanding need for a consistent level of detail, standardization in categorization, and scale of compilation for land-use and land-cover maps and data. The statistical information contained in this Bulletin provides land-use acreage tabulations for the first 20 counties that have been completed. Statistics are being compiled for the remaining counties and will be published shortly. This information has been derived from the recently completed Land-Use Map of West Virginia (on open file at the West Virginia Geological and Economic Survey - Environmental Section). In addition to land-use acreage, we have also included land-use percent. All statistics throughout this Bulletin are in the same format for ease of comparison.
Harmonizing estimates of forest land area from national-level forest inventory and satellite imagery
Bonnie Ruefenacht; Mark D. Nelson; Mark Finco
2009-01-01
Estimates of forest land area are derived both from national-level forest inventories and satellite image-based map products. These estimates can differ substantially within subregional extents (e.g., states or provinces) primarily due to differences in definitions of forest land between inventory- and image-based approaches. We present a geospatial modeling approach...
SPRINGER, YURI P.; EISEN, LARS; BEATI, LORENZA; JAMES, ANGELA M.; EISEN, REBECCA J.
2015-01-01
In addition to being a major nuisance biter, the lone star tick, Amblyomma americanum (L.), is increasingly recognized as an important vector of pathogens affecting humans, domestic animals, and wildlife. Despite its notoriety, efforts have been lacking to define the spatial occurrence of A. americanum in the continental United States with precision beyond that conveyed in continental-scale distribution maps. Here we present a county-level distribution map for A. americanum generated by compiling collection records obtained from a search of the published literature and databases managed by the USDA, U.S. National Tick Collection, and Walter Reed Biosystematics Unit. Our decadal and cumulative maps, which visually summarize 18,121 collections made between 1898 and 2012, show that A. americanum is either established (≥six ticks or ≥two life stages) or reported (
Integration of mass drug administration programmes in Nigeria: The challenge of schistosomiasis.
Richards, Frank O.; Eigege, Abel; Miri, Emmanuel S.; Jinadu, M. Y.; Hopkins, Donald R.
2006-01-01
PROBLEM: Annual mass drug administration (MDA) with safe oral anthelminthic drugs (praziquantel, ivermectin and albendazole) is the strategy for control of onchocerciasis, lymphatic filariasis (LF) and schistosomiasis. District health officers seek to integrate treatment activities in areas of overlapping disease endemicity, but they are faced with having to merge different programmatic guidelines. APPROACH: We proceeded through the three stages of integrated MDA implementation: mapping the distribution of the three diseases at district level; tailoring district training and logistics based on the results of the mapping exercises; and implementing community-based annual health education and mass treatment where appropriate. During the process we identified the "know-do" gaps in the MDA guidelines for each disease that prevented successful integration of these programmes. LOCAL SETTING: An integrated programme launched in 1999 in Plateau and Nasarawa States in central Nigeria, where all three diseases were known to occur. RELEVANT CHANGES: Current guidelines allowed onchocerciasis and LF activities to be integrated, resulting in rapid mapping throughout the two states, and states-wide provision of over 9.3 million combined ivermectin-albendazole treatments for the two diseases between 2000 and 2004. In contrast, schistosomiasis activities could not be effectively integrated because of the more restrictive guidelines, resulting in less than half of the two states being mapped, and delivery of only 701,419 praziquantel treatments for schistosomiasis since 1999. LESSONS LEARNED: Integration of schistosomiasis into other MDA programmes would be helped by amended guidelines leading to simpler mapping, more liberal use of praziquantel and the ability to administer praziquantel simultaneously with ivermectin and albendazole. PMID:16917658
I Am Nevada: A Basic Informational Guide in Nevada History and Geography.
ERIC Educational Resources Information Center
Dunn, Helen M.
The booklet presents information on Nevada's history and geography which can be incorporated into social studies or history courses on the elementary or junior high level. There are eight chapters. Chapter I discusses symbolism in the state's emblems, (its seal, flag, flower, bird, and song). Maps and brief histories of each of the state's 17…
Ecological Subregions: Sections and Subsections for the conterminous United States
D.T. Cleland; J.A. Freeouf; J.E. Keys; G.J. Nowacki; C.A. Carpenter; W.H. McNab
2007-01-01
This map and accompanying descriptions were developed through participation with numerous individuals from federal and state agencies and non-governmental organizations using criteria defined in the National Hierarchical Framework of Ecological Units. Delineation generally involved the âtop-down approachâ of subdividing section level units. A âbottom-up approachâ was...
Fasciola hepatica IN BOVINES IN BRAZIL: DATA AVAILABILITY AND SPATIAL DISTRIBUTION
Bennema, Sita C.; Scholte, Ronaldo Guilherme Carvalho; Molento, Marcelo Beltrão; Medeiros, Camilla; Carvalho, Omar dos Santos
2014-01-01
Fasciolosis is a disease of importance for both veterinary and public health. For the first time, georeferenced prevalence data of Fasciola hepatica in bovines were collected and mapped for the Brazilian territory and data availability was discussed. Bovine fasciolosis in Brazil is monitored on a Federal, State and Municipal level, and to improve monitoring it is essential to combine the data collected on these three levels into one dataset. Data were collected for 1032 municipalities where livers were condemned by the Federal Inspection Service (MAPA/SIF) because of the presence of F. hepatica. The information was distributed over 11 states: Espírito Santo, Goiás, Minas Gerais, Mato Grosso do Sul, Mato Grosso, Pará, Paraná, Rio de Janeiro, Rio Grande do Sul, Santa Catarina and São Paulo. The highest prevalence of fasciolosis was observed in the southern states, with disease clusters along the coast of Paraná and Santa Catarina and in Rio Grande do Sul. Also, temporal variation of the prevalence was observed. The observed prevalence and the kriged prevalence maps presented in this paper can assist both animal and human health workers in estimating the risk of infection in their state or municipality. PMID:24553606
Climate Change: Resilience and Adaptation in New England (RAINE)
This database catalogs vulnerability, resilience and adaptation reports, plans and webpages at the state, regional and community level. It provides links, maps and reports for basic and advanced searches. It includes a comment box for more information.
Sheffield, Kathryn; Morse-McNabb, Elizabeth; Clark, Rob; Robson, Susan; Lewis, Hayden
2015-01-01
There is a demand for regularly updated, broad-scale, accurate land cover information in Victoria from multiple stakeholders. This paper documents the methods used to generate an annual dominant land cover (DLC) map for Victoria, Australia from 2009 to 2013. Vegetation phenology parameters derived from an annual time series of the Moderate Resolution Imaging Spectroradiometer Vegetation Indices 16-day 250 m (MOD13Q1) product were used to generate annual DLC maps, using a three-tiered hierarchical classification scheme. Classification accuracy at the broadest (primary) class level was over 91% for all years, while it ranged from 72 to 81% at the secondary class level. The most detailed class level (tertiary) had accuracy levels ranging from 61 to 68%. The approach used was able to accommodate variable climatic conditions, which had substantial impacts on vegetation growth patterns and agricultural production across the state between both regions and years. The production of an annual dataset with complete spatial coverage for Victoria provides a reliable base data set with an accuracy that is fit-for-purpose for many applications. PMID:26602009
Geographic footprint of electricity use for water services in the Western U.S.
Tidwell, Vincent C; Moreland, Barbie; Zemlick, Katie
2014-01-01
A significant fraction of our nation's electricity use goes to lift, convey, and treat water, while the resulting expenditures on electricity represent a key budgetary consideration for water service providers. To improve understanding of the electricity-for-water interdependency, electricity used in providing water services is mapped at the regional, state and county level for the 17-conterminous states in the Western U.S. This study is unique in estimating electricity use for large-scale conveyance and agricultural pumping as well as mapping these electricity uses along with that for drinking and wastewater services at a state and county level. Results indicate that drinking and wastewater account for roughly 2% of total West-wide electricity use, while an additional 1.2% is consumed by large-scale conveyance projects and 2.6% is consumed by agricultural pumping. The percent of electricity used for water services varies strongly by state with some as high as 34%, while other states expend less than 1%. Every county in the West uses some electricity for water services; however, there is a large disparity in use ranging from 10 MWh/yr to 5.8 TWh/yr. These results support long-term transmission planning in the Western U.S. by characterizing an important component of the electric load.
EEG microstates of wakefulness and NREM sleep.
Brodbeck, Verena; Kuhn, Alena; von Wegner, Frederic; Morzelewski, Astrid; Tagliazucchi, Enzo; Borisov, Sergey; Michel, Christoph M; Laufs, Helmut
2012-09-01
EEG-microstates exploit spatio-temporal EEG features to characterize the spontaneous EEG as a sequence of a finite number of quasi-stable scalp potential field maps. So far, EEG-microstates have been studied mainly in wakeful rest and are thought to correspond to functionally relevant brain-states. Four typical microstate maps have been identified and labeled arbitrarily with the letters A, B, C and D. We addressed the question whether EEG-microstate features are altered in different stages of NREM sleep compared to wakefulness. 32-channel EEG of 32 subjects in relaxed wakefulness and NREM sleep was analyzed using a clustering algorithm, identifying the most dominant amplitude topography maps typical of each vigilance state. Fitting back these maps into the sleep-scored EEG resulted in a temporal sequence of maps for each sleep stage. All 32 subjects reached sleep stage N2, 19 also N3, for at least 1 min and 45 s. As in wakeful rest we found four microstate maps to be optimal in all NREM sleep stages. The wake maps were highly similar to those described in the literature for wakefulness. The sleep stage specific map topographies of N1 and N3 sleep showed a variable but overall relatively high degree of spatial correlation to the wake maps (Mean: N1 92%; N3 87%). The N2 maps were the least similar to wake (mean: 83%). Mean duration, total time covered, global explained variance and transition probabilities per subject, map and sleep stage were very similar in wake and N1. In wake, N1 and N3, microstate map C was most dominant w.r.t. global explained variance and temporal presence (ratio total time), whereas in N2 microstate map B was most prominent. In N3, the mean duration of all microstate maps increased significantly, expressed also as an increase in transition probabilities of all maps to themselves in N3. This duration increase was partly--but not entirely--explained by the occurrence of slow waves in the EEG. The persistence of exactly four main microstate classes in all NREM sleep stages might speak in favor of an in principle maintained large scale spatial brain organization from wakeful rest to NREM sleep. In N1 and N3 sleep, despite spectral EEG differences, the microstate maps and characteristics were surprisingly close to wakefulness. This supports the notion that EEG microstates might reflect a large scale resting state network architecture similar to preserved fMRI resting state connectivity. We speculate that the incisive functional alterations which can be observed during the transition to deep sleep might be driven by changes in the level and timing of activity within this architecture. Copyright © 2012 Elsevier Inc. All rights reserved.
The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States
Horton, John D.; San Juan, Carma A.; Stoeser, Douglas B.
2017-06-30
The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States (https://doi. org/10.5066/F7WH2N65) represents a seamless, spatial database of 48 State geologic maps that range from 1:50,000 to 1:1,000,000 scale. A national digital geologic map database is essential in interpreting other datasets that support numerous types of national-scale studies and assessments, such as those that provide geochemistry, remote sensing, or geophysical data. The SGMC is a compilation of the individual U.S. Geological Survey releases of the Preliminary Integrated Geologic Map Databases for the United States. The SGMC geodatabase also contains updated data for seven States and seven entirely new State geologic maps that have been added since the preliminary databases were published. Numerous errors have been corrected and enhancements added to the preliminary datasets using thorough quality assurance/quality control procedures. The SGMC is not a truly integrated geologic map database because geologic units have not been reconciled across State boundaries. However, the geologic data contained in each State geologic map have been standardized to allow spatial analyses of lithology, age, and stratigraphy at a national scale.
Zhao, Yitian; Zheng, Yalin; Liu, Yonghuai; Yang, Jian; Zhao, Yifan; Chen, Duanduan; Wang, Yongtian
2017-01-01
Leakage in retinal angiography currently is a key feature for confirming the activities of lesions in the management of a wide range of retinal diseases, such as diabetic maculopathy and paediatric malarial retinopathy. This paper proposes a new saliency-based method for the detection of leakage in fluorescein angiography. A superpixel approach is firstly employed to divide the image into meaningful patches (or superpixels) at different levels. Two saliency cues, intensity and compactness, are then proposed for the estimation of the saliency map of each individual superpixel at each level. The saliency maps at different levels over the same cues are fused using an averaging operator. The two saliency maps over different cues are fused using a pixel-wise multiplication operator. Leaking regions are finally detected by thresholding the saliency map followed by a graph-cut segmentation. The proposed method has been validated using the only two publicly available datasets: one for malarial retinopathy and the other for diabetic retinopathy. The experimental results show that it outperforms one of the latest competitors and performs as well as a human expert for leakage detection and outperforms several state-of-the-art methods for saliency detection.
The Role of Earth Science in Oregon’s Tsunami Preparedness (Invited)
NASA Astrophysics Data System (ADS)
Priest, G. R.
2009-12-01
Earth science played a critical role in understanding the scope of Oregon’s tsunami hazard. When in the early 1990’s earth scientists communicated to stakeholders the seriousness of the threat posed by local Cascadia subduction zone tsunamis, tsunami preparedness began to rise in priority at all levels of government. Hard field evidence in the form of prehistoric tsunami deposits was a critical component in making the hazard “real” to local governments. State-produced tsunami inundation maps derived from numerical simulations gave decision makers and educators reliable tools to illustrate the spatial scope of the hazard. These maps allowed local cities to plan for evacuation and empowered the State of Oregon to begin “hard” mitigation by limiting new construction of critical facilities seaward of a regulatory inundation line. “Entering” and “Leaving” tsunami hazard zone signs were placed along the Oregon Coast Highway where it dips below this inundation line as means of raising awareness of both the local and transient populations. When detailed inundation studies and derivative evacuation maps were produced for individual communities, State scientists sought advice from local officials at every stage, giving them ownership of the final products. This sense of ownership gave decision makers much greater confidence in the maps and turned many skeptics into passionate advocates. This network of advocates has, over time, resulted in local jurisdictions taking substantive preparedness actions such as replacing critical evacuation bridges, starting networks of emergency response volunteers, and moving critical structures like schools and fire stations. One place that earth science has some difficulty is in communicating probability and uncertainty. For example, the State of Oregon is currently producing new maps that depict uncertainty of tsunami flooding from a future Cascadia subduction zone earthquake. These maps show a range of inundation lines that reflect the relative confidence level (percentage) that a local Cascadia tsunami will NOT exceed each line. In the first of these studies at Cannon Beach, Oregon (Priest et al., 2009) the 90th percentile flood level was only about half to two-thirds as high as the 99th percentile. On the northern Oregon coast Cascadia recurrence is ~500 years, so a percentile map depicts spatial uncertainty of inundation for that event. A Cascadia tsunami approximating the 99th percentile confidence level is no doubt a rare event, but how rare we really do not know. We suspect from offshore turbidite data that only one of these extreme events may have occurred in the last 10,000 years. When the map and underlying data were presented to local officials, they had some difficulty in understanding how to use the information. Erring on the side of caution, they chose the 99th percentile line for evacuation planning but this decision greatly limited available evacuation sites. Cost may make a similarly conservative decision inappropriate for use in building codes or for design of vertical evacuation structures. REFERENCE Priest, G.R.; Goldfinger C.; Wang, K.; Witter, R.C.; Zhang; Y., Baptista, A.M. (2009) Tsunami hazard assessment of the Northern Oregon coast: a multi-deterministic approach tested at Cannon Beach, Clatsop County, Oregon. Oregon Dept. Geol. Mineral Industries Special Paper 41.
The Holdridge life zones of the conterminous United States in relation to ecosystem mapping
A.E. Lugo; S. L. Brown; R. Dodson; T. S Smith; H. H. Shugart
1999-01-01
Aim Our main goals were to develop a map of the life zones for the conterminous United States, based on the Holdridge Life Zone system, as a tool for ecosystem mapping, and to compare the map of Holdridge life zones with other global vegetation classification and mapping efforts. Location The area of interest is the forty-eight contiguous states of the United States....
NASA Astrophysics Data System (ADS)
Jin, Jeongwan; Slater, Joshua A.; Saglamyurek, Erhan; Sinclair, Neil; George, Mathew; Ricken, Raimund; Oblak, Daniel; Sohler, Wolfgang; Tittel, Wolfgang
2013-08-01
Quantum memories allowing reversible transfer of quantum states between light and matter are central to quantum repeaters, quantum networks and linear optics quantum computing. Significant progress regarding the faithful transfer of quantum information has been reported in recent years. However, none of these demonstrations confirm that the re-emitted photons remain suitable for two-photon interference measurements, such as C-NOT gates and Bell-state measurements, which constitute another key ingredient for all aforementioned applications. Here, using pairs of laser pulses at the single-photon level, we demonstrate two-photon interference and Bell-state measurements after either none, one or both pulses have been reversibly mapped to separate thulium-doped lithium niobate waveguides. As the interference is always near the theoretical maximum, we conclude that our solid-state quantum memories, in addition to faithfully mapping quantum information, also preserve the entire photonic wavefunction. Hence, our memories are generally suitable for future applications of quantum information processing that require two-photon interference.
Jin, Jeongwan; Slater, Joshua A; Saglamyurek, Erhan; Sinclair, Neil; George, Mathew; Ricken, Raimund; Oblak, Daniel; Sohler, Wolfgang; Tittel, Wolfgang
2013-01-01
Quantum memories allowing reversible transfer of quantum states between light and matter are central to quantum repeaters, quantum networks and linear optics quantum computing. Significant progress regarding the faithful transfer of quantum information has been reported in recent years. However, none of these demonstrations confirm that the re-emitted photons remain suitable for two-photon interference measurements, such as C-NOT gates and Bell-state measurements, which constitute another key ingredient for all aforementioned applications. Here, using pairs of laser pulses at the single-photon level, we demonstrate two-photon interference and Bell-state measurements after either none, one or both pulses have been reversibly mapped to separate thulium-doped lithium niobate waveguides. As the interference is always near the theoretical maximum, we conclude that our solid-state quantum memories, in addition to faithfully mapping quantum information, also preserve the entire photonic wavefunction. Hence, our memories are generally suitable for future applications of quantum information processing that require two-photon interference.
ERIC Educational Resources Information Center
Stoffel, Jennifer
1989-01-01
This article discusses the public health dangers associated with radon exposure in homes and schools. In addition, testing and corrective efforts by federal and state agencies are discussed. A map indicating areas in the U.S. with potentially high radon levels is included. (IAH)
USGS DLGs are digital representations of program-quadrangle format and sectional maps. All DLG data distributed by the United States Geological Survey (USGS) are DLG-Level 3 (DLG-3), which means the data contain a full range of attribute codes, have full topological structuring, ...
The Soil Series in Soil Classifications of the United States
NASA Astrophysics Data System (ADS)
Indorante, Samuel; Beaudette, Dylan; Brevik, Eric C.
2014-05-01
Organized national soil survey began in the United States in 1899, with soil types as the units being mapped. The soil series concept was introduced into the U.S. soil survey in 1903 as a way to relate soils being mapped in one area to the soils of other areas. The original concept of a soil series was all soil types formed in the same parent materials that were of the same geologic age. However, within about 15 years soil series became the primary units being mapped in U.S. soil survey. Soil types became subdivisions of soil series, with the subdivisions based on changes in texture. As the soil series became the primary mapping unit the concept of what a soil series was also changed. Instead of being based on parent materials and geologic age, the soil series of the 1920s was based on the morphology and composition of the soil profile. Another major change in the concept of soil series occurred when U.S. Soil Taxonomy was released in 1975. Under Soil Taxonomy, the soil series subdivisions were based on the uses the soils might be put to, particularly their agricultural uses (Simonson, 1997). While the concept of the soil series has changed over the years, the term soil series has been the longest-lived term in U.S. soil classification. It has appeared in every official classification system used by the U.S. soil survey (Brevik and Hartemink, 2013). The first classification system was put together by Milton Whitney in 1909 and had soil series at its second lowest level, with soil type at the lowest level. The second classification system used by the U.S. soil survey was developed by C.F. Marbut, H.H. Bennett, J.E. Lapham, and M.H. Lapham in 1913. It had soil series at the second highest level, with soil classes and soil types at more detailed levels. This was followed by another system in 1938 developed by M. Baldwin, C.E. Kellogg, and J. Thorp. In this system soil series were again at the second lowest level with soil types at the lowest level. The soil type concept was dropped and replaced by the soil phase in the 1950s in a modification of the 1938 Baldwin et al. classification (Simonson, 1997). When Soil Taxonomy was released in 1975, soil series became the most detailed (lowest) level of the classification system, and the only term maintained throughout all U.S. classifications to date. While the number of recognized soil series have increased steadily throughout the history of U.S. soil survey, there was a rapid increase in the recognition of new soil series following the introduction of Soil Taxonomy (Brevik and Hartemink, 2013). References Brevik, E.C., and A.E. Hartemink. 2013. Soil maps of the United States of America. Soil Science Society of America Journal 77:1117-1132. doi:10.2136/sssaj2012.0390. Simonson, R.W. 1997. Evolution of soil series and type concepts in the United States. Advances in Geoecology 29:79-108.
Saigal, Saurabh; Sharma, Jai Prakash; Pakhare, Abhijit; Bhaskar, Santosh; Dhanuka, Sanjay; Kumar, Sanjay; Sabde, Yogesh; Bhattacharya, Pradip; Joshi, Rajnish
2017-10-01
In low- and middle-income countries such as India, where health systems are weak, the number of available Critical Care Unit (Intensive Care Unit [ICU]) beds is expected to be low. There is no study from the Indian subcontinent that has reported the characteristics and distribution of existing ICUs. We performed this study to understand the characteristics and distribution of ICUs in Madhya Pradesh (MP) state of Central India. We also aimed to develop a consensus scoring system and internally validate it to define levels of care and to improve health system planning and to strengthen referral networks in the state. We obtained a list of potential ICU facilities from various sources and then performed a cross-sectional survey by visiting each facility and determining characteristics for each facility. We collected variables with respect to infrastructure, human resources, equipment, support services, procedures performed, training courses conducted, and in-place policies or standard operating procedure documents. We identified a total of 123 ICUs in MP. Of 123 ICUs, 35 were level 1 facilities, 74 were level 2 facilities, and only 14 were level 3 facilities. Overall, there were 0.17 facilities per 100,000 population (95* confidence interval [CI] 0.14-0.20 per 100,000 populations). There were a total of 1816 ICU beds in the state, with an average of 2.5 beds per 100,000 population (95* CI 2.4-2.6 per 100,000 population). Of the total number of ICU beds, 250 are in level 1, 1141 are in level 2, and 425 are in level 3 facilities. This amounts to 0.34, 1.57, and 0.59 ICU beds per 100,000 population for levels 1, 2, and 3, respectively. This study could just be an eye opener for our healthcare authorities at both state and national levels to estimate the proportion of ICU beds per lac population. Similar mapping of intensive care services from other States will generate national data that is hitherto unknown.
A geospatial model of ambient sound pressure levels in the contiguous United States.
Mennitt, Daniel; Sherrill, Kirk; Fristrup, Kurt
2014-05-01
This paper presents a model that predicts measured sound pressure levels using geospatial features such as topography, climate, hydrology, and anthropogenic activity. The model utilizes random forest, a tree-based machine learning algorithm, which does not incorporate a priori knowledge of source characteristics or propagation mechanics. The response data encompasses 270 000 h of acoustical measurements from 190 sites located in National Parks across the contiguous United States. The explanatory variables were derived from national geospatial data layers and cross validation procedures were used to evaluate model performance and identify variables with predictive power. Using the model, the effects of individual explanatory variables on sound pressure level were isolated and quantified to reveal systematic trends across environmental gradients. Model performance varies by the acoustical metric of interest; the seasonal L50 can be predicted with a median absolute deviation of approximately 3 dB. The primary application for this model is to generalize point measurements to maps expressing spatial variation in ambient sound levels. An example of this mapping capability is presented for Zion National Park and Cedar Breaks National Monument in southwestern Utah.
Whitehead, Matthew T.; Ostheimer, Chad J.
2014-01-01
Flood profiles for selected reaches were prepared by calibrating steady-state step-backwater models to selected streamgage rating curves. The step-backwater models were used to determine water-surface-elevation profiles for up to 12 flood stages at a streamgage with corresponding stream-flows ranging from approximately the 10- to 0.2-percent chance annual-exceedance probabilities for each of the 3 streamgages that correspond to the flood-inundation maps. Additional hydraulic modeling was used to account for the effects of backwater from the Ohio River on water levels in the Muskingum River. The computed longitudinal profiles of flood levels were used with a Geographic Information System digital elevation model (derived from light detection and ranging) to delineate flood-inundation areas. Digital maps showing flood-inundation areas overlain on digital orthophotographs were prepared for the selected floods.
Mangaraj, S; K Goswami, T; Mahajan, P V
2015-07-01
MAP is a dynamic system where respiration of the packaged product and gas permeation through the packaging film takes place simultaneously. The desired level of O2 and CO2 in a package is achieved by matching film permeation rates for O2 and CO2 with respiration rate of the packaged product. A mathematical model for MAP of fresh fruits applying enzyme kinetics based respiration equation coupled with the Arrhenious type model was developed. The model was solved numerically using MATLAB programme. The model was used to determine the time to reach to the equilibrium concentration inside the MA package and the level of O2 and CO2 concentration at equilibrium state. The developed model for prediction of equilibrium O2 and CO2 concentration was validated using experimental data for MA packaging of apple, guava and litchi.
Water table in Long Island, New York, March 1971
Koszalka, Edward J.; Koch, Ellis
1971-01-01
The geologic framework and the hydrologic situation in Long Island are periodically reviewed by the U.S. Geological Survey as new knowledge is obtained from current investigations. This work is done through cooperative programs with Nassau and Suffolk County agencies and the New York State Department of Environmental Conservation. A unique opportunity to update many of the hydrogeologic maps occurred when the Geological Survey's Mineola, N.Y., office participated in the New England River Basins Commission's "Long Island Sound Study." This map, one of a series of open-file maps showing the updated information, was compiled from data obtained from G. E. Kimmel (written commun., July 1972) and Jensen and Soren (in press). Comparison of the March 1971 data with similar data for March 1970 (Kimmel, 1970) shows virtually no change in water levels on Long Island during the 12 month period, except for a slight decline in levels in central Suffolk County.
Assessment of water resources potential of Ceará state (Brazil)
NASA Astrophysics Data System (ADS)
Araujo, Angelo; Pereira, Diamantino; Pereira, Paulo
2016-04-01
A methodological approach and results on water resources assessment in large areas are described with the case study of Ceará State (148,016 km2, northeast Brazil), where the scarceness of water resources is one of the main challenges in territorial planning and development. This work deals with the quantification and the mapping of water resources potential, being part of methodological approaches applied to the quantification of hydric diversity and geodiversity. Water resources potential is here considered as the sum of the hydric elements rainfall, groundwater specific discharge, water reservoirs, and river hierarchy. The assessment was based in a territorial organization by drainage sub-basins and in vector maps generated and treated with GIS software. Rainfall, groundwater specific discharge and hydrographical data were obtained in official institutions and allowed the construction of the annual mean rainfall map for a forty year period (1974-2014), the annual mean groundwater specific discharge map for a thirty-four year period, and the river and drainage basin hierarchy maps. These delivered rainfall, groundwater specific discharge, water reservoirs and river hierarchy partial indices expressed on quantitative maps with normalized values distributed by level 3 drainage basins. The sum of the partial indices originated the quantitative map of water resources potential index and by the Gaussian interpolation of this quantitative data a map of hydric diversity in Ceará state was created. Therefore, the water resources potential index is higher in 4 regions of the state (Noroeste Cearense, Zona Metropolitana de Fortaleza e da Zona Norte, Vale do Jaguaribe and Zonas Centro-sul e Sul Cearense). The index is low or very low in the whole region of Sertões Cearenses, confirming the important role of climatic features in hydrological diversity. Water resources management must consider technical tools for water resources assessment, in the line of other methods for quantitative assessment of natural features either biotic or abiotic. These results quantify water resources and their distribution in a large region with important climatic differences. They constitute a basis for the knowledge of regional issues concerning water needs, flood and droughts events and even engineering solutions for water resources management.
Altered Whole-Brain and Network-Based Functional Connectivity in Parkinson's Disease.
de Schipper, Laura J; Hafkemeijer, Anne; van der Grond, Jeroen; Marinus, Johan; Henselmans, Johanna M L; van Hilten, Jacobus J
2018-01-01
Background: Functional imaging methods, such as resting-state functional magnetic resonance imaging, reflect changes in neural connectivity and may help to assess the widespread consequences of disease-specific network changes in Parkinson's disease. In this study we used a relatively new graph analysis approach in functional imaging: eigenvector centrality mapping. This model-free method, applied to all voxels in the brain, identifies prominent regions in the brain network hierarchy and detects localized differences between patient populations. In other neurological disorders, eigenvector centrality mapping has been linked to changes in functional connectivity in certain nodes of brain networks. Objectives: Examining changes in functional brain connectivity architecture on a whole brain and network level in patients with Parkinson's disease. Methods: Whole brain resting-state functional architecture was studied with a recently introduced graph analysis approach (eigenvector centrality mapping). Functional connectivity was further investigated in relation to eight known resting-state networks. Cross-sectional analyses included group comparison of functional connectivity measures of Parkinson's disease patients ( n = 107) with control subjects ( n = 58) and correlations with clinical data, including motor and cognitive impairment and a composite measure of predominantly non-dopaminergic symptoms. Results: Eigenvector centrality mapping revealed that frontoparietal regions were more prominent in the whole-brain network function in patients compared to control subjects, while frontal and occipital brain areas were less prominent in patients. Using standard resting-state networks, we found predominantly increased functional connectivity, namely within sensorimotor system and visual networks in patients. Regional group differences in functional connectivity of both techniques between patients and control subjects partly overlapped for highly connected posterior brain regions, in particular in the posterior cingulate cortex and precuneus. Clinico-functional imaging relations were not found. Conclusions: Changes on the level of functional brain connectivity architecture might provide a different perspective of pathological consequences of Parkinson's disease. The involvement of specific, highly connected (hub) brain regions may influence whole brain functional network architecture in Parkinson's disease.
Localization of Stable and Chaotic Nonpropagating Structures in Nonlinear Mesoscopic Lattices.
NASA Astrophysics Data System (ADS)
Greenfield, Alan Barry
Recent developments in the study of non-linear localized states, especially non-propagating ones, are outlined. Theoretical models of linear and nonlinear states in a lattice of coupled pendulums and related systems are reviewed. Particular attention is paid to those states which can be described by the Nonlinear Schrodinger equation as well as states where two modes can coexist and states exhibiting chaos. Measurement of localized stable and chaotic states in a 35 site physical pendulum lattice is reported. Various measurement techniques that were used are explained. States that were measured include the tanh profile or kink soliton, and the corresponding uniform state in the wavelength 2 mode, a similar soliton and uniform state in the wavelength 4 mode, a domain wall between the wavelength 2 and 4 modes and a domain wall between a chaotic state and the wavelength 2 mode. Amplitude profiles were measured for the stable kink and domain wall states and smooth curves were obtained by dividing the kink states by the corresponding uniform states. Return maps were measured for two sites in the chaotic domain wall. Simulation of a chaotic domain wall in a 50 site numerical lattice is reported. This system has the advantage that its parameters can be modified much more easily than those of the physical lattice. An attempt is made at quantifying the level of chaos as a function of lattice site with fractal dimension calculations on return maps embedded in a three dimensional space. The drive plane of the chaotic domain wall is mapped out in the drive amplitude - drive frequency plane. Transitions to various stable and quasiperiodic domain walls are noted.
,; ,; Ellis, Melvin Y.
1978-01-01
Passage of the Coastal Zone Management Act of 1972 focused attention on the Nation's coastal land and water areas. As plans for more effective management of the coastal zone evolved, it soon became apparent that improved maps and charts of these areas were needed. This handbook was prepared with the requirements of the entire coastal community in mind, giving greatest attention to the needs of coastal zone managers and planners at the State and local levels. Its principal objective is to provide general information and guidance; it is neither a textbook nor a technical manual, but rather a primer on coastal mapping. This handbook should help planners and managers of coastal programs to determine their mapping requirements, select the best maps and charts for their particular needs, and to deal effectively with personnel who gather data and prepare maps. The sections on "Sources of Assistance and Advice" and "Product and Data Sources" should be especially useful to all involved in mapping the coastal zone. Brief summaries of the mapping efforts of several State coastal zone management programs are included. "Future outlook" discusses anticipated progress and changes in mapping procedures and techniques. Illustrations are inserted, where appropriate, to illustrate the products and equipment discussed. Because of printing restrictions, the colors in map illustrations may vary from those in the original publication. The appendixes include substantial material which also should be of interest. In addition a glossary and an index are included to provide easy and quick access to the terms and concepts used in the text. For those interested in more technical detail than is provided in this handbook, the "Selected references" will be useful. Also, the publications of the professional societies listed in appendix 4 will provide technical information in detail.
76 FR 1093 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-07
... Communities affected elevation above ground [caret] Elevation in meters (MSL) Modified Stephenson County.../Wisconsin +782 State boundary. Yellow Creek Approximately 400 feet +814 Unincorporated Areas of downstream... Sea Level, rounded to the nearest 0.1 meter. ADDRESSES City of Freeport Maps are available for...
DIGITAL LINE GRAPHS - USGS 1:24,000
USGS DLGs are digital representations of program-quadrangle format and sectional maps. All DLG data distributed by the United States Geological Survey (USGS) are DLG-Level 3 (DLG-3), which means the data contain a full range of attribute codes, have full topological structuring, ...
DIGITAL LINE GRAPHS - USGS 1:100,000
USGS DLGs are digital representations of program-quadrangle format and sectional maps. All DLG data distributed by the United States Geological Survey (USGS) are DLG-Level 3 (DLG-3), which means the data contain a full range of attribute codes, have full topological structuring, ...
ERIC Educational Resources Information Center
School Library Media Activities Monthly, 1986
1986-01-01
Provides six library media activities designed for use in connection with specific curriculum units in art, science, and social studies. The activities focus on appreciating Georgia O'Keefe, sound travel, rock identification, Thanksgiving customs, state road maps, and world religions. The descriptions include objectives, grade levels,…
Inventory and analysis of rangeland resources of the state land block on Parker Mountain, Utah
NASA Technical Reports Server (NTRS)
Jaynes, R. A. (Principal Investigator)
1983-01-01
High altitude color infrared (CIR) photography was interpreted to provide an 1:24,000 overlay to U.S.G.S. topographic maps. The inventory and analysis of rangeland resources was augmented by the digital analysis of LANDSAT MSS data. Available geology, soils, and precipitation maps were used to sort out areas of confusion on the CIR photography. The map overlay from photo interpretation was also prepared with reference to print maps developed from LANDSAT MSS data. The resulting map overlay has a high degree of interpretive and spatial accuracy. An unacceptable level of confusion between the several sagebrush types in the MSS mapping was largely corrected by introducing ancillary data. Boundaries from geology, soils, and precipitation maps, as well as field observations, were digitized and pixel classes were adjusted according to the location of pixels with particular spectral signatures with respect to such boundaries. The resulting map, with six major cover classes, has an overall accuracy of 89%. Overall accuracy was 74% when these six classes were expanded to 20 classes.
NASA Technical Reports Server (NTRS)
May, G. A.; Holko, M. L.; Anderson, J. E.
1983-01-01
Ground-gathered data and LANDSAT multispectral scanner (MSS) digital data from 1981 were analyzed to produce a classification of Kansas land areas into specific types called land covers. The land covers included rangeland, forest, residential, commercial/industrial, and various types of water. The analysis produced two outputs: acreage estimates with measures of precision, and map-type or photo products of the classification which can be overlaid on maps at specific scales. State-level acreage estimates were obtained and substate-level land cover classification overlays and estimates were generated for selected geographical areas. These products were found to be of potential use in managing land and water resources.
Plouff, Donald
1992-01-01
A residual isostatic gravity map (sheet 2) was prepared so that the regional effect of isostatic compensation present on the Bouguer gravity anomaly map (sheet 1) would be minimized. Isostatic corrections based on the Airy-Heiskanen system (Heiskanen and Vening Meinesz, 1958, p. 135-137) were estimated by using 3-minute topographic digitization and applying the method of Jachens and Roberts (1981). Parameters selected for the isostatic model were 25 km for the normal crustal thickness at sea level, 2.67 g/cm3 for the density of the crust, and 0.4 g/cm3 for the contrast in density between the crust and the upper mantle. These parameters were selected so that the isostatic residual gravity map would be consistent with isostatic residual gravity maps of the adjacent Walker Lake quadrangle (Plouff, 1987) and the state of Nevada (Saltus, 1988c).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weichman, Marissa L.; Cheng, Lan; Kim, Jongjin B.
A joint experimental and theoretical study is reported on the low-lying vibronic level structure of the ground state of the methoxy radical using slow photoelectron velocity-map imaging spectroscopy of cryogenically cooled, mass-selected anions (cryo-SEVI) and Köppel-Domcke-Cederbaum (KDC) vibronic Hamiltonian calculations. The KDC vibronic model Hamiltonian in the present study was parametrized using high-level quantum chemistry, allowing the assignment of the cryo-SEVI spectra for vibronic levels of CH 3O up to 2000 cm –1 and of CD 3O up to 1500 cm –1 above the vibrational origin, using calculated vibronic wave functions. The adiabatic electron affinities of CH 3O and CDmore » 3O are determined from the cryo-SEVI spectra to be 1.5689 ± 0.0007 eV and 1.5548 ± 0.0007 eV, respectively, demonstrating improved precision compared to previous work. Experimental peak splittings of <10 cm –1 are resolved between the e 1/2 and e 3/2 components of the 6 1 and 5 1 vibronic levels. A pair of spin-vibronic levels at 1638 and 1677 cm –1 were predicted in the calculation as the e 1/2 and e 3/2 components of 6 2 levels and experimentally resolved for the first time. The strong variation of the spin-orbit splittings with a vibrational quantum number is in excellent agreement between theory and experiment. In conclusion, the observation of signals from nominally forbidden a 1 vibronic levels in the cryo-SEVI spectra also provides direct evidence of vibronic coupling between ground and electronically excited states of methoxy.« less
Weichman, Marissa L.; Cheng, Lan; Kim, Jongjin B.; ...
2017-06-12
A joint experimental and theoretical study is reported on the low-lying vibronic level structure of the ground state of the methoxy radical using slow photoelectron velocity-map imaging spectroscopy of cryogenically cooled, mass-selected anions (cryo-SEVI) and Köppel-Domcke-Cederbaum (KDC) vibronic Hamiltonian calculations. The KDC vibronic model Hamiltonian in the present study was parametrized using high-level quantum chemistry, allowing the assignment of the cryo-SEVI spectra for vibronic levels of CH 3O up to 2000 cm –1 and of CD 3O up to 1500 cm –1 above the vibrational origin, using calculated vibronic wave functions. The adiabatic electron affinities of CH 3O and CDmore » 3O are determined from the cryo-SEVI spectra to be 1.5689 ± 0.0007 eV and 1.5548 ± 0.0007 eV, respectively, demonstrating improved precision compared to previous work. Experimental peak splittings of <10 cm –1 are resolved between the e 1/2 and e 3/2 components of the 6 1 and 5 1 vibronic levels. A pair of spin-vibronic levels at 1638 and 1677 cm –1 were predicted in the calculation as the e 1/2 and e 3/2 components of 6 2 levels and experimentally resolved for the first time. The strong variation of the spin-orbit splittings with a vibrational quantum number is in excellent agreement between theory and experiment. In conclusion, the observation of signals from nominally forbidden a 1 vibronic levels in the cryo-SEVI spectra also provides direct evidence of vibronic coupling between ground and electronically excited states of methoxy.« less
Development of a Florida Coastal Mapping Program Through Local and Regional Coordination
NASA Astrophysics Data System (ADS)
Hapke, C. J.; Kramer, P. A.; Fetherston-Resch, E.; Baumstark, R.
2017-12-01
The State of Florida has the longest coastline in the contiguous United States (2,170 km). The coastal zone is heavily populated and contains 1,900 km of sandy beaches that support economically important recreation and tourism. Florida's waters also host important marine mineral resources, unique ecosystems, and the largest number of recreational boats and saltwater fishermen in the country. There is increasing need and demand for high resolution data of the coast and adjacent seafloor for resource and habitat mapping, understanding coastal vulnerability, evaluating performance of restoration projects, and many other coastal and marine spatial planning efforts. The Florida Coastal Mapping Program (FCMP), initiated in 2017 as a regional collaboration between four federal and three state agencies, has goals of establishing the priorities for high resolution seafloor mapping of Florida's coastal environment, and developing a strategy for leveraging funds to support mapping priorities set by stakeholders. We began by creating a comprehensive digital inventory of existing data (collected by government, the private sector, and academia) from 1 kilometer inland to the 200 meter isobath for a statewide geospatial database and gap analysis. Data types include coastal topography, bathymetry, and acoustic data such as sidescan sonar and subbottom profiles. Next, we will develop appropriate proposals and legislative budget requests in response to opportunities to collect priority data in high priority areas. Data collection will be undertaken by a combination of state and federal agencies. The FCMP effort will provide the critical baseline information that is required for characterizing changes to fragile ecosystems, assessing marine resources, and forecasting the impacts on coastal infrastructure and recreational beaches from future storms and sea-level rise.
A Hierarchical Framework for State-Space Matrix Inference and Clustering.
Zuo, Chandler; Chen, Kailei; Hewitt, Kyle J; Bresnick, Emery H; Keleş, Sündüz
2016-09-01
In recent years, a large number of genomic and epigenomic studies have been focusing on the integrative analysis of multiple experimental datasets measured over a large number of observational units. The objectives of such studies include not only inferring a hidden state of activity for each unit over individual experiments, but also detecting highly associated clusters of units based on their inferred states. Although there are a number of methods tailored for specific datasets, there is currently no state-of-the-art modeling framework for this general class of problems. In this paper, we develop the MBASIC ( M atrix B ased A nalysis for S tate-space I nference and C lustering) framework. MBASIC consists of two parts: state-space mapping and state-space clustering. In state-space mapping, it maps observations onto a finite state-space, representing the activation states of units across conditions. In state-space clustering, MBASIC incorporates a finite mixture model to cluster the units based on their inferred state-space profiles across all conditions. Both the state-space mapping and clustering can be simultaneously estimated through an Expectation-Maximization algorithm. MBASIC flexibly adapts to a large number of parametric distributions for the observed data, as well as the heterogeneity in replicate experiments. It allows for imposing structural assumptions on each cluster, and enables model selection using information criterion. In our data-driven simulation studies, MBASIC showed significant accuracy in recovering both the underlying state-space variables and clustering structures. We applied MBASIC to two genome research problems using large numbers of datasets from the ENCODE project. The first application grouped genes based on transcription factor occupancy profiles of their promoter regions in two different cell types. The second application focused on identifying groups of loci that are similar to a GATA2 binding site that is functional at its endogenous locus by utilizing transcription factor occupancy data and illustrated applicability of MBASIC in a wide variety of problems. In both studies, MBASIC showed higher levels of raw data fidelity than analyzing these data with a two-step approach using ENCODE results on transcription factor occupancy data.
Measuring historic water levels of Lake Balaton and tributary wetlands using georeferenced maps
NASA Astrophysics Data System (ADS)
Zlinszky, A.
2009-04-01
Lake Balaton is a large and relatively shallow lake located in western Hungary. The lake is joined by small wetlands on the north shore and larger water-filled valleys on the south separated by and elevated sand bar. These wetlands are assumed to have been connected with Lake Balaton before the water level was artificially lowered in 1893. No regular measurements of the water level of the lake or these wetlands were carried out before the draining of the lake. Most of the wetlands were completely isolated from the water system of the lake after the water level change as roads, railway and holiday homes were built. The low valleys of the southern shore still hold many fishponds, swamps and wet meadows, which are important sanctuaries for rare wetland species, and are often less disturbed than the lake, which is a popular holiday resort. Hydrologic restoration of these wetlands is only possible if accurate information exists on the original, natural state. The 1776 Krieger-map and the first military survey (1782-1785) are the most accurate known maps of the original state of the Lake Balaton area. These maps were surveyed using triangulation and leveling, and are accurate enough to be compared with the present-day situation. Some of the depicted buildings and landmarks still survive and can be used as control points for georeferencing and correcting these maps. Since the bathymetry of the lake and the topography of the surrounding countryside have hardly changed, existing digital elevation models of the present-day relief could be compared to these georeferenced maps. The elevation profile of the lake shore and wetland borders can be calculated by tracing these lines on a Digital Elevation Model. The shore area of Lake Balaton has been filled in and changed, so present-day land topography can not be used to estimate the water level from the elevation profile of the shore line. However, the Krieger-map also shows bathymetric contours, and previous studies have shown that the topography of the lake floor has not changed measurably in the last hundred years. The bathymetric contours of Lake Balaton depicted on the georeferenced Krieger-map were digitized and overlain on the present-day DEM of the lake floor. The elevation profile of these lines was used to calculate the original elevation of the water level of the lake with the accuracy of one meter. The height of the water table around the lake depends closely on the water level of the lake, but wetlands can retain water and thus sustain a higher water table in the tributary valleys than in the lake itself. In order to measure the elevation of the water table around the lake, the borders of the water-logged areas on the southern shore of the lake were also digitized from the sheets of the First Military Survey and traced on a DEM of the hills on the southern side of the lake. The elevation of the water level in these wetlands was calculated based on these profiles. The water level in some valleys adjoining the lake is significantly higher than the water level of the lake itself, which shows that the water balance of these wetlands was mostly independent of the fluctuation of the lake. Some other large wetlands have borders that are in the same elevation as the shores of the lake itself, which shows that these wetlands are in close connection with the lake. The mapping of these historic wetland properties provides a valuable guide for future habitat restoration efforts.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-11
... must be made to the NRCS State Technical Guides concerning State wetland mapping conventions. The two States are proposing to issue joint State wetland mapping conventions. The joint State wetland mapping conventions will be used as part of the technical documents to conduct wetland determinations on agriculture...
Maps | Geospatial Data Science | NREL
Maps Maps NREL develops an array of maps to support renewable energy development and generation resource in the United States by county Geothermal Maps of geothermal power plants, resources for enhanced geothermal systems, and hydrothermal sites in the United States Hydrogen Maps of hydrogen production
Applicability of ERTS-1 to lineament and photogeologic mapping in Montana: Preliminary report
NASA Technical Reports Server (NTRS)
Weidman, R. M.; Alt, D. D.; Flood, R. E.; Hawley, K. T.; Wackwitz, L. K.; Berg, R. B.; Johns, W. M.
1973-01-01
A lineament map prepared from a mosaic of western Montana shows about 85 lines not represented on the state geologic map, including elements of a northeast-trending set through central western Montana which merit ground truth checking and consideration in regional structural analysis. Experimental fold annotation resulted in a significant local correction to the state geologic map. Photogeologic mapping studies produced only limited success in identification of rock types, but they did result in the precise delineation of a late Cretaceous or early Tertiary volcanic field (Adel Mountain field) and the mapping of a connection between two granitic bodies shown on the state map. Imagery was used successfully to map clay pans associated with bentonite beds in gently dipping Bearpaw Shale. It is already apparent that ERTS imagery should be used to facilitate preparation of a much needed statewide tectonic map and that satellite imagery mapping, aided by ground calibration, provides and economical means to discover and correct errors in the state geologic map.
Mapping Academic Library Contributions to Campus Internationalization
ERIC Educational Resources Information Center
Witt, Steven W.; Kutner, Laurie; Cooper, Liz
2015-01-01
This study surveyed academic libraries across the United States to establish baseline data on their contributions to campus internationalization. Supplementing data from the American Council on Education (ACE) on internationalization of higher education, this research measured the level of international activities taking place in academic…
Agarwal, Shruti; Lu, Hanzhang; Pillai, Jay J
2017-08-01
The aim of this study was to explore whether the phenomenon of brain tumor-related neurovascular uncoupling (NVU) in resting-state blood oxygen level-dependent functional magnetic resonance imaging (BOLD fMRI) (rsfMRI) may also affect the resting-state fMRI (rsfMRI) frequency domain metrics the amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF). Twelve de novo brain tumor patients, who underwent clinical fMRI examinations, including task-based fMRI (tbfMRI) and rsfMRI, were included in this Institutional Review Board-approved study. Each patient displayed decreased/absent tbfMRI activation in the primary ipsilesional (IL) sensorimotor cortex in the absence of a corresponding motor deficit or suboptimal task performance, consistent with NVU. Z-score maps for the motor tasks were obtained from general linear model analysis (reflecting motor activation vs. rest). Seed-based correlation analysis (SCA) maps of sensorimotor network, ALFF, and fALFF were calculated from rsfMRI data. Precentral and postcentral gyri in contralesional (CL) and IL hemispheres were parcellated using an automated anatomical labeling template for each patient. Region of interest (ROI) analysis was performed on four maps: tbfMRI, SCA, ALFF, and fALFF. Voxel values in the CL and IL ROIs of each map were divided by the corresponding global mean of ALFF and fALFF in the cortical brain tissue. Group analysis revealed significantly decreased IL ALFF (p = 0.02) and fALFF (p = 0.03) metrics compared with CL ROIs, consistent with similar findings of significantly decreased IL BOLD signal for tbfMRI (p = 0.0005) and SCA maps (p = 0.0004). The frequency domain metrics ALFF and fALFF may be markers of lesion-induced NVU in rsfMRI similar to previously reported alterations in tbfMRI activation and SCA-derived resting-state functional connectivity maps.
Nanoscale mapping of the three-dimensional deformation field within commercial nanodiamonds
Maqbool, Muhammad Salman; Hoxley, David; Phillips, Nicholas W.; ...
2017-02-21
Here, the unique properties of nanodiamonds make them suitable for use in a wide range of applications, including as biomarkers for cellular tracking in vivo at the molecular level. The sustained fluorescence of nanodiamonds containing nitrogen-vacancy (N-V) centres is related to their internal structure and strain state. Theoretical studies predict that the location of the N-V centre and the nanodiamonds' residual elastic strain state have a major influence on their photoluminescence properties. However, to date there have been no direct measurements made of their spatially resolved deformation fields owing to the challenges that such measurements present. Here we apply themore » recently developed technique of Bragg coherent diffractive imaging (BCDI) to map the three-dimensional deformation field within a single nanodiamond of approximately 0.5 µm diameter. The results indicate that there are high levels of residual elastic strain present in the nanodiamond which could have a critical influence on its optical and electronic properties.« less
Nanoscale mapping of the three-dimensional deformation field within commercial nanodiamonds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maqbool, Muhammad Salman; Hoxley, David; Phillips, Nicholas W.
2017-01-01
The unique properties of nanodiamonds make them suitable for use in a wide range of applications, including as biomarkers for cellular tracking in vivo at the molecular level. The sustained fluorescence of nanodiamonds containing nitrogen-vacancy (N-V) centres is related to their internal structure and strain state. Theoretical studies predict that the location of the N-V centre and the nanodiamonds' residual elastic strain state have a major influence on their photoluminescence properties. However, to date there have been no direct measurements made of their spatially resolved deformation fields owing to the challenges that such measurements present. Here we apply the recentlymore » developed technique of Bragg coherent diffractive imaging (BCDI) to map the three-dimensional deformation field within a single nanodiamond of approximately 0.5 µm diameter. The results indicate that there are high levels of residual elastic strain present in the nanodiamond which could have a critical influence on its optical and electronic properties.« less
Group-regularized individual prediction: theory and application to pain.
Lindquist, Martin A; Krishnan, Anjali; López-Solà, Marina; Jepma, Marieke; Woo, Choong-Wan; Koban, Leonie; Roy, Mathieu; Atlas, Lauren Y; Schmidt, Liane; Chang, Luke J; Reynolds Losin, Elizabeth A; Eisenbarth, Hedwig; Ashar, Yoni K; Delk, Elizabeth; Wager, Tor D
2017-01-15
Multivariate pattern analysis (MVPA) has become an important tool for identifying brain representations of psychological processes and clinical outcomes using fMRI and related methods. Such methods can be used to predict or 'decode' psychological states in individual subjects. Single-subject MVPA approaches, however, are limited by the amount and quality of individual-subject data. In spite of higher spatial resolution, predictive accuracy from single-subject data often does not exceed what can be accomplished using coarser, group-level maps, because single-subject patterns are trained on limited amounts of often-noisy data. Here, we present a method that combines population-level priors, in the form of biomarker patterns developed on prior samples, with single-subject MVPA maps to improve single-subject prediction. Theoretical results and simulations motivate a weighting based on the relative variances of biomarker-based prediction-based on population-level predictive maps from prior groups-and individual-subject, cross-validated prediction. Empirical results predicting pain using brain activity on a trial-by-trial basis (single-trial prediction) across 6 studies (N=180 participants) confirm the theoretical predictions. Regularization based on a population-level biomarker-in this case, the Neurologic Pain Signature (NPS)-improved single-subject prediction accuracy compared with idiographic maps based on the individuals' data alone. The regularization scheme that we propose, which we term group-regularized individual prediction (GRIP), can be applied broadly to within-person MVPA-based prediction. We also show how GRIP can be used to evaluate data quality and provide benchmarks for the appropriateness of population-level maps like the NPS for a given individual or study. Copyright © 2015 Elsevier Inc. All rights reserved.
H. T. Schreuder; M. S. Williams; C. Aguirre-Bravo; P. L. Patterson
2003-01-01
The sampling strategy is presented for the initial phase of the natural resources pilot project in the Mexican States of Jalisco and Colima. The sampling design used is ground-based cluster sampling with poststratification based on Landsat Thematic Mapper imagery. The data collected will serve as a basis for additional data collection, mapping, and spatial modeling...
NASA Astrophysics Data System (ADS)
Qiu, Liming; Vaughn, Mark; Cheng, Kelvin
2013-03-01
Beta-amyloid (Abeta) interactions with neurons are linked to Alzheimer's. Using a multiscale MD simulation strategy that combines the high efficiency of phase space sampling of coarse-grained MD (CGD) and the high spatial resolution of Atomistic MD (AMD) simulations, we studied the Abeta insertion dynamics in cholesterol-enriched and -depleted lipid bilayers that mimic the neuronal membranes domains. Forward (AMD-CGD) and reverse (CGD-AMD) mappings were used. At the atomistic level, cholesterol promoted insertion of Abeta with high (folded) or low (unfolded) helical contents of the lipid insertion domain (Lys28-Ala42), and the insertions were stabilized by the Lys28 snorkeling and Ala42-anchoring to the polar lipid groups of the bilayer up to 200ns. After the forward mapping, the folded inserted state switched to a new extended inserted state with the Lys28 descended to the middle of the bilayer while the unfolded inserted state migrated to the membrane surface up to 4000ns. The two new states remained stable for 200ns at the atomistic scale after the reverse mapping. Our results suggested that different Abeta membrane-orientation states separated by free energy barriers can be explored by the multiscale MD more effectively than by Atomistic MD simulations alone. NIH RC1-GM090897-02
Anderson, Becci; Fuller, Tracy
2014-01-01
In July 2013, the USGS National Geospatial Program began producing new topographic maps for Alaska, providing a new map series for the state known as US Topo. Prior to the start of US Topo map production in Alaska, the most detailed statewide USGS topographic maps were 15-minute 1:63,360-scale maps, with their original production often dating back nearly fifty years. The new 7.5-minute digital maps are created at 1:25,000 map scale, and show greatly increased topographic detail when compared to the older maps. The map scale and data specifications were selected based on significant outreach to various map user groups in Alaska. This multi-year mapping initiative will vastly enhance the base topographic maps for Alaska and is possible because of improvements to key digital map datasets in the state. The new maps and data are beneficial in high priority applications such as safety, planning, research and resource management. New mapping will support science applications throughout the state and provide updated maps for parks, recreation lands and villages.
A translational platform for prototyping closed-loop neuromodulation systems
Afshar, Pedram; Khambhati, Ankit; Stanslaski, Scott; Carlson, David; Jensen, Randy; Linde, Dave; Dani, Siddharth; Lazarewicz, Maciej; Cong, Peng; Giftakis, Jon; Stypulkowski, Paul; Denison, Tim
2013-01-01
While modulating neural activity through stimulation is an effective treatment for neurological diseases such as Parkinson's disease and essential tremor, an opportunity for improving neuromodulation therapy remains in automatically adjusting therapy to continuously optimize patient outcomes. Practical issues associated with achieving this include the paucity of human data related to disease states, poorly validated estimators of patient state, and unknown dynamic mappings of optimal stimulation parameters based on estimated states. To overcome these challenges, we present an investigational platform including: an implanted sensing and stimulation device to collect data and run automated closed-loop algorithms; an external tool to prototype classifier and control-policy algorithms; and real-time telemetry to update the implanted device firmware and monitor its state. The prototyping system was demonstrated in a chronic large animal model studying hippocampal dynamics. We used the platform to find biomarkers of the observed states and transfer functions of different stimulation amplitudes. Data showed that moderate levels of stimulation suppress hippocampal beta activity, while high levels of stimulation produce seizure-like after-discharge activity. The biomarker and transfer function observations were mapped into classifier and control-policy algorithms, which were downloaded to the implanted device to continuously titrate stimulation amplitude for the desired network effect. The platform is designed to be a flexible prototyping tool and could be used to develop improved mechanistic models and automated closed-loop systems for a variety of neurological disorders. PMID:23346048
Geographic Footprint of Electricity Use for Water Services in the Western U.S.
Tidwell, Vincent C.; Moreland, Barbara Denise; Zemlick, Katie
2014-06-25
A significant fraction of our nation’s electricity use goes to lift, convey, and treat water, while the resulting expenditures on electricity represent a key budgetary consideration for water service providers. In order to improve understanding of the electricity-for-water interdependency, electricity used in providing water services is mapped at the regional, state and county level for the 17-conterminous states in the Western U.S. Our study is unique in estimating electricity use for large-scale conveyance and agricultural pumping as well as mapping these electricity uses along with that for drinking and wastewater services at a state and county level. These results indicatemore » that drinking and wastewater account for roughly 2% of total West-wide electricity use, while an additional 1.2% is consumed by large-scale conveyance projects and 2.6% is consumed by agricultural pumping. The percent of electricity used for water services varies strongly by state with some as high as 34%, while other states expend less than 1%. Every county in the West uses some electricity for water services; however, there is a large disparity in use ranging from 10 MWh/yr to 5.8 TWh/yr. Finally, our results support long-term transmission planning in the Western U.S. by characterizing an important component of the electric load.« less
A translational platform for prototyping closed-loop neuromodulation systems.
Afshar, Pedram; Khambhati, Ankit; Stanslaski, Scott; Carlson, David; Jensen, Randy; Linde, Dave; Dani, Siddharth; Lazarewicz, Maciej; Cong, Peng; Giftakis, Jon; Stypulkowski, Paul; Denison, Tim
2012-01-01
While modulating neural activity through stimulation is an effective treatment for neurological diseases such as Parkinson's disease and essential tremor, an opportunity for improving neuromodulation therapy remains in automatically adjusting therapy to continuously optimize patient outcomes. Practical issues associated with achieving this include the paucity of human data related to disease states, poorly validated estimators of patient state, and unknown dynamic mappings of optimal stimulation parameters based on estimated states. To overcome these challenges, we present an investigational platform including: an implanted sensing and stimulation device to collect data and run automated closed-loop algorithms; an external tool to prototype classifier and control-policy algorithms; and real-time telemetry to update the implanted device firmware and monitor its state. The prototyping system was demonstrated in a chronic large animal model studying hippocampal dynamics. We used the platform to find biomarkers of the observed states and transfer functions of different stimulation amplitudes. Data showed that moderate levels of stimulation suppress hippocampal beta activity, while high levels of stimulation produce seizure-like after-discharge activity. The biomarker and transfer function observations were mapped into classifier and control-policy algorithms, which were downloaded to the implanted device to continuously titrate stimulation amplitude for the desired network effect. The platform is designed to be a flexible prototyping tool and could be used to develop improved mechanistic models and automated closed-loop systems for a variety of neurological disorders.
Affective State Level Recognition in Naturalistic Facial and Vocal Expressions.
Meng, Hongying; Bianchi-Berthouze, Nadia
2014-03-01
Naturalistic affective expressions change at a rate much slower than the typical rate at which video or audio is recorded. This increases the probability that consecutive recorded instants of expressions represent the same affective content. In this paper, we exploit such a relationship to improve the recognition performance of continuous naturalistic affective expressions. Using datasets of naturalistic affective expressions (AVEC 2011 audio and video dataset, PAINFUL video dataset) continuously labeled over time and over different dimensions, we analyze the transitions between levels of those dimensions (e.g., transitions in pain intensity level). We use an information theory approach to show that the transitions occur very slowly and hence suggest modeling them as first-order Markov models. The dimension levels are considered to be the hidden states in the Hidden Markov Model (HMM) framework. Their discrete transition and emission matrices are trained by using the labels provided with the training set. The recognition problem is converted into a best path-finding problem to obtain the best hidden states sequence in HMMs. This is a key difference from previous use of HMMs as classifiers. Modeling of the transitions between dimension levels is integrated in a multistage approach, where the first level performs a mapping between the affective expression features and a soft decision value (e.g., an affective dimension level), and further classification stages are modeled as HMMs that refine that mapping by taking into account the temporal relationships between the output decision labels. The experimental results for each of the unimodal datasets show overall performance to be significantly above that of a standard classification system that does not take into account temporal relationships. In particular, the results on the AVEC 2011 audio dataset outperform all other systems presented at the international competition.
NASA Astrophysics Data System (ADS)
Zeraatpisheh, Mojtaba; Ayoubi, Shamsollah; Jafari, Azam; Finke, Peter
2017-05-01
The efficiency of different digital and conventional soil mapping approaches to produce categorical maps of soil types is determined by cost, sample size, accuracy and the selected taxonomic level. The efficiency of digital and conventional soil mapping approaches was examined in the semi-arid region of Borujen, central Iran. This research aimed to (i) compare two digital soil mapping approaches including Multinomial logistic regression and random forest, with the conventional soil mapping approach at four soil taxonomic levels (order, suborder, great group and subgroup levels), (ii) validate the predicted soil maps by the same validation data set to determine the best method for producing the soil maps, and (iii) select the best soil taxonomic level by different approaches at three sample sizes (100, 80, and 60 point observations), in two scenarios with and without a geomorphology map as a spatial covariate. In most predicted maps, using both digital soil mapping approaches, the best results were obtained using the combination of terrain attributes and the geomorphology map, although differences between the scenarios with and without the geomorphology map were not significant. Employing the geomorphology map increased map purity and the Kappa index, and led to a decrease in the 'noisiness' of soil maps. Multinomial logistic regression had better performance at higher taxonomic levels (order and suborder levels); however, random forest showed better performance at lower taxonomic levels (great group and subgroup levels). Multinomial logistic regression was less sensitive than random forest to a decrease in the number of training observations. The conventional soil mapping method produced a map with larger minimum polygon size because of traditional cartographic criteria used to make the geological map 1:100,000 (on which the conventional soil mapping map was largely based). Likewise, conventional soil mapping map had also a larger average polygon size that resulted in a lower level of detail. Multinomial logistic regression at the order level (map purity of 0.80), random forest at the suborder (map purity of 0.72) and great group level (map purity of 0.60), and conventional soil mapping at the subgroup level (map purity of 0.48) produced the most accurate maps in the study area. The multinomial logistic regression method was identified as the most effective approach based on a combined index of map purity, map information content, and map production cost. The combined index also showed that smaller sample size led to a preference for the order level, while a larger sample size led to a preference for the great group level.
Seismicity map of the state of Georgia
Reagor, B. Glen; Stover, C.W.; Algermissen, S.T.; Long, L.T.
1987-01-01
This map is one of a series of seimicity maps produced by the U.S. Geological Survey that show earthquake data of individual states or groups of states at the scale of 1:1,000,000. This map shows only those earthquakes with epicenters located within the boundaries of Georgia, even though earthquakes in nearby states or countries may have been felt or may have caused damage in Georgia.
Flacke, Johannes; Schüle, Steffen Andreas; Köckler, Heike; Bolte, Gabriele
2016-07-13
Spatial differences in urban environmental conditions contribute to health inequalities within cities. The purpose of the paper is to map environmental inequalities relevant for health in the City of Dortmund, Germany, in order to identify needs for planning interventions. We develop suitable indicators for mapping socioeconomically-driven environmental inequalities at the neighborhood level based on published scientific evidence and inputs from local stakeholders. Relationships between socioeconomic and environmental indicators at the level of 170 neighborhoods were analyzed continuously with Spearman rank correlation coefficients and categorically applying chi-squared tests. Reclassified socioeconomic and environmental indicators were then mapped at the neighborhood level in order to determine multiple environmental burdens and hotspots of environmental inequalities related to health. Results show that the majority of environmental indicators correlate significantly, leading to multiple environmental burdens in specific neighborhoods. Some of these neighborhoods also have significantly larger proportions of inhabitants of a lower socioeconomic position indicating hotspots of environmental inequalities. Suitable planning interventions mainly comprise transport planning and green space management. In the conclusions, we discuss how the analysis can be used to improve state of the art planning instruments, such as clean air action planning or noise reduction planning towards the consideration of the vulnerability of the population.
Flacke, Johannes; Schüle, Steffen Andreas; Köckler, Heike; Bolte, Gabriele
2016-01-01
Spatial differences in urban environmental conditions contribute to health inequalities within cities. The purpose of the paper is to map environmental inequalities relevant for health in the City of Dortmund, Germany, in order to identify needs for planning interventions. We develop suitable indicators for mapping socioeconomically-driven environmental inequalities at the neighborhood level based on published scientific evidence and inputs from local stakeholders. Relationships between socioeconomic and environmental indicators at the level of 170 neighborhoods were analyzed continuously with Spearman rank correlation coefficients and categorically applying chi-squared tests. Reclassified socioeconomic and environmental indicators were then mapped at the neighborhood level in order to determine multiple environmental burdens and hotspots of environmental inequalities related to health. Results show that the majority of environmental indicators correlate significantly, leading to multiple environmental burdens in specific neighborhoods. Some of these neighborhoods also have significantly larger proportions of inhabitants of a lower socioeconomic position indicating hotspots of environmental inequalities. Suitable planning interventions mainly comprise transport planning and green space management. In the conclusions, we discuss how the analysis can be used to improve state of the art planning instruments, such as clean air action planning or noise reduction planning towards the consideration of the vulnerability of the population. PMID:27420090
Heat Vulnerability Index Mapping for Milwaukee and Wisconsin.
Christenson, Megan; Geiger, Sarah Dee; Phillips, Jeffrey; Anderson, Ben; Losurdo, Giovanna; Anderson, Henry A
Extreme heat waves elevate the population's risk for heat-related morbidity and mortality, specifically for vulnerable groups such as older adults and young children. In this context, we developed 2 Heat Vulnerability Indices (HVIs), one for the state of Wisconsin and one for the Milwaukee metropolitan area. Through the creation of an HVI, state and local agencies will be able to use the indices as a planning tool for extreme heat events. Data used for the HVIs were grouped into 4 categories: (1) population density; (2) health factors; (3) demographic and socioeconomic factors; and (4) natural and built environment factors. These categories were mapped at the Census block group level. Unweighted z-score data were used to determine index scores, which were then mapped by quantiles ranging from "high" to "low" vulnerability. Statewide, Menominee County exhibited the highest vulnerability to extreme heat. Milwaukee HVI findings indicated high vulnerability in the city's inner core versus low vulnerability along the lakeshore. Visualization of vulnerability could help local public health agencies prepare for future extreme heat events.
Using a Web-based GIS to Teach Problem-based Science in High School and College
NASA Astrophysics Data System (ADS)
Metzger, E.; Lenkeit Meezan, , K. A.; Schmidt, C.; Taketa, R.; Carter, J.; Iverson, R.
2008-12-01
Foothill College has partnered with San Jose State University to bring GIS web mapping technology to the high school and college classroom. The project consists of two parts. In the first part, Foothill and San Jose State University have teamed up to offer classes on building and maintaining Web based Geographic Information Systems (GIS). Web-based GIS such as Google Maps, MapQuest and Yahoo Maps have become ubiquitous, and the skills to build and maintain these systems are in high demand from many employers. In the second part of the project, high school students will be able to learn about Web GIS as a real world tool used by scientists. The students in the Foothill College/San Jose State class will build their Web GIS using scientific data related to the San Francisco/San Joaquin Delta region, with a focus on watersheds, biodiversity and earthquake hazards. This project includes high school level curriculum development that will tie in to No Child Left Behind and National Curriculum Standards in both Science and Geography, and provide workshops for both pre-and in- service teachers in the use of Web GIS-driven course material in the high school classroom. The project will bring the work of professional scientists into any high school classroom with an internet connection; while simultaneously providing workforce training in high demand technology based jobs.
DeVine, Jessalyn A; Weichman, Marissa L; Zhou, Xueyao; Ma, Jianyi; Jiang, Bin; Guo, Hua; Neumark, Daniel M
2016-12-21
High-resolution slow photoelectron velocity-map imaging spectra of cryogenically cooled X̃ 2 B 2 H 2 CC - and D 2 CC - in the region of the vinylidene triplet excited states are reported. Three electronic bands are observed and, with the assistance of electronic structure calculations and quantum dynamics on ab initio-based near-equilibrium potential energy surfaces, are assigned as detachment to the [Formula: see text] 3 B 2 (T 1 ), b̃ 3 A 2 (T 2 ), and à 1 A 2 (S 1 ) excited states of neutral vinylidene. This work provides the first experimental observation of the à singlet excited state of H 2 CC. While regular vibrational structure is observed for the ã and à electronic bands, a number of irregular features are resolved in the vicinity of the b̃ band vibrational origin. High-level ab initio calculations suggest that this anomalous structure arises from a conical intersection between the ã and b̃ triplet states near the b̃ state minimum, which strongly perturbs the vibrational levels in the two electronic states through nonadiabatic coupling. Using the adiabatic electron affinity of H 2 CC previously measured to be 0.490(6) eV by Ervin and co-workers [J. Chem. Phys. 1989, 91, 5974], term energies for the excited neutral states of H 2 CC are found to be T 0 (ã 3 B 2 ) = 2.064(6), T 0 (b̃ 3 A 2 ) = 2.738(6), and T 0 (à 1 A 2 ) = 2.991(6) eV.
Mapping the Coastline Limits of the Mexican State Sinaloa Using GPS
NASA Astrophysics Data System (ADS)
Vazquez, G. E.
2007-12-01
This research work presents the delimitation of the coastline limits of Sinaloa (one of the richest states of northwestern Mexico). In order to achieve this big task, it was required to use GPS (Global Positioning System) together with leveling spirit measurements. Based on the appropriate selection of the cited measurement techniques, the objective was to map the Sinaloa's state coastline to have the cartography of approximate 1600 km of littoral. The GPS measurements were performed and referred with respect to a GPS network located across the state. This GPS network consists of at least one first-order-site at each of the sixteen counties that constitute the state, and three to four second-order-sites of the ten counties of the state surrounded by sea. The leveling spirit measurements were referred to local benchmarks pre-established by the Mexican agency SEMARNAT (SEcretaría Del Medio Ambiente y Recursos NATurales). Within the main specifications of the GPS measurements and equipment, we used geodetic-dual-frequency GPS receivers in kinematic mode for both base stations (first and second order sites of the GPS state network) and rover stations (points forming the state littoral) with 5-sec log-rate interval and 10 deg cut-off angle. The GPS data processing was performed using the commercial software Trimble Geomatics Office (TGO) with Double Differences (DD) in post-processing mode. To this point, the field measurements had been totally covered including the cartography (scale 1:1000) and this includes the specifications and appropriate labeling according to the Mexican norm NOM-146-SEMARNAT-2005.
Malaria Disease Mapping in Malaysia based on Besag-York-Mollie (BYM) Model
NASA Astrophysics Data System (ADS)
Azah Samat, Nor; Mey, Liew Wan
2017-09-01
Disease mapping is the visual representation of the geographical distribution which give an overview info about the incidence of disease within a population through spatial epidemiology data. Based on the result of map, it helps in monitoring and planning resource needs at all levels of health care and designing appropriate interventions, tailored towards areas that deserve closer scrutiny or communities that lead to further investigations to identify important risk factors. Therefore, the choice of statistical model used for relative risk estimation is important because production of disease risk map relies on the model used. This paper proposes Besag-York-Mollie (BYM) model to estimate the relative risk for Malaria in Malaysia. The analysis involved using the number of Malaria cases that obtained from the Ministry of Health Malaysia. The outcomes of analysis are displayed through graph and map, including Malaria disease risk map that constructed according to the estimation of relative risk. The distribution of high and low risk areas of Malaria disease occurrences for all states in Malaysia can be identified in the risk map.
Element level bridge inspection : benefits and use of data for bridge management.
DOT National Transportation Integrated Search
2016-02-01
In 2012, Congress passed the Moving Ahead for Progress in the 21st Century Act (MAP-21) and committed to the development of a datadriven, : risk based approach to asset management in the United States. This law requires the collection and submission ...
AMERICAN SOURCES OF SPANISH REALIA.
ERIC Educational Resources Information Center
Kansas State Teachers Coll., Emporia.
DESIGNED FOR SPANISH TEACHERS AT ALL LEVELS, THIS BIBLIOGRAPHY OF SELECTED SPANISH REALIA CURRENTLY AVAILABLE IN THE UNITED STATES CONTAINS SECTIONS OF PICTURES, SLIDES, FLIMS, MAPS, NEWSPAPERS AND MAGAZINES, TAPES AND PHONOGRAPH RECORDS, AND PINS AND MEDALS. EACH ITEM IS ANNOTATED FOR CONTENT, COST (WHEN APPROPRIATE), NAME AND ADDRESS OF…
The national land use data program of the US Geological Survey
NASA Technical Reports Server (NTRS)
Anderson, J. R.; Witmer, R. E.
1975-01-01
The Land Use Data and Analysis (LUDA) Program which provides a systematic and comprehensive collection and analysis of land use and land cover data on a nationwide basis is described. Maps are compiled at about 1:125,000 scale showing present land use/cover at Level II of a land use/cover classification system developed by the U.S. Geological Survey in conjunction with other Federal and state agencies and other users. For each of the land use/cover maps produced at 1:125,000 scale, overlays are also compiled showing Federal land ownership, river basins and subbasins, counties, and census county subdivisions. The program utilizes the advanced technology of the Special Mapping Center of the U.S. Geological Survey, high altitude NASA photographs, aerial photographs acquired for the USGS Topographic Division's mapping program, and LANDSAT data in complementary ways.
Nicholson, Suzanne W.; Dicken, Connie L.; Horton, John D.; Foose, Michael P.; Mueller, Julia A.L.; Hon, Rudi
2006-01-01
The rapid growth in the use of Geographic Information Systems (GIS) has highlighted the need for regional and national scale digital geologic maps that have standardized information about geologic age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. Although two digital geologic maps (Schruben and others, 1994; Reed and Bush, 2004) of the United States currently exist, their scales (1:2,500,000 and 1:5,000,000) are too general for many regional applications. Most states have digital geologic maps at scales of about 1:500,000, but the databases are not comparably structured and, thus, it is difficult to use the digital database for more than one state at a time. This report describes the result for a seven state region of an effort by the U.S. Geological Survey to produce a series of integrated and standardized state geologic map databases that cover the entire United States. In 1997, the United States Geological Survey's Mineral Resources Program initiated the National Surveys and Analysis (NSA) Project to develop national digital databases. One primary activity of this project was to compile a national digital geologic map database, utilizing state geologic maps, to support studies in the range of 1:250,000- to 1:1,000,000-scale. To accomplish this, state databases were prepared using a common standard for the database structure, fields, attribution, and data dictionaries. For Alaska and Hawaii new state maps are being prepared and the preliminary work for Alaska is being released as a series of 1:250,000 scale quadrangle reports. This document provides background information and documentation for the integrated geologic map databases of this report. This report is one of a series of such reports releasing preliminary standardized geologic map databases for the United States. The data products of the project consist of two main parts, the spatial databases and a set of supplemental tables relating to geologic map units. The datasets serve as a data resource to generate a variety of stratigraphic, age, and lithologic maps. This documentation is divided into four main sections: (1) description of the set of data files provided in this report, (2) specifications of the spatial databases, (3) specifications of the supplemental tables, and (4) an appendix containing the data dictionaries used to populate some fields of the spatial database and supplemental tables.
Time course based artifact identification for independent components of resting-state FMRI.
Rummel, Christian; Verma, Rajeev Kumar; Schöpf, Veronika; Abela, Eugenio; Hauf, Martinus; Berruecos, José Fernando Zapata; Wiest, Roland
2013-01-01
In functional magnetic resonance imaging (fMRI) coherent oscillations of the blood oxygen level-dependent (BOLD) signal can be detected. These arise when brain regions respond to external stimuli or are activated by tasks. The same networks have been characterized during wakeful rest when functional connectivity of the human brain is organized in generic resting-state networks (RSN). Alterations of RSN emerge as neurobiological markers of pathological conditions such as altered mental state. In single-subject fMRI data the coherent components can be identified by blind source separation of the pre-processed BOLD data using spatial independent component analysis (ICA) and related approaches. The resulting maps may represent physiological RSNs or may be due to various artifacts. In this methodological study, we propose a conceptually simple and fully automatic time course based filtering procedure to detect obvious artifacts in the ICA output for resting-state fMRI. The filter is trained on six and tested on 29 healthy subjects, yielding mean filter accuracy, sensitivity and specificity of 0.80, 0.82, and 0.75 in out-of-sample tests. To estimate the impact of clearly artifactual single-subject components on group resting-state studies we analyze unfiltered and filtered output with a second level ICA procedure. Although the automated filter does not reach performance values of visual analysis by human raters, we propose that resting-state compatible analysis of ICA time courses could be very useful to complement the existing map or task/event oriented artifact classification algorithms.
Level III Ecoregions of Kentucky
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level IV Ecoregions of Michigan
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level IV Ecoregions of Arkansas
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level IV Ecoregions of Mississippi
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level III Ecoregions of Connecticut
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level III Ecoregions of Georgia
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level IV Ecoregions of Colorado
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level IV Ecoregions of Wisconsin
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level III Ecoregions of Oregon
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level III Ecoregions of Arkansas
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level IV Ecoregions of Florida
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level III Ecoregions of Nevada
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level IV Ecoregions of Virginia
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level III Ecoregions of Illinois
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level III Ecoregions of Virginia
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level III Ecoregions of Delaware
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level IV Ecoregions of Wyoming
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level IV Ecoregions of Alabama
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level III Ecoregions of Alabama
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level III Ecoregions of Nebraska
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level IV Ecoregions of Delaware
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level III Ecoregions of Kansas
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level III Ecoregions of Louisiana
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level III Ecoregions of Michigan
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level IV Ecoregions of Arizona
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level IV Ecoregions of Georgia
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level III Ecoregions of Montana
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level IV Ecoregions of Nebraska
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level III Ecoregions of Vermont
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level III Ecoregions of Wisconsin
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level III Ecoregions of Tennessee
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level III Ecoregions of Colorado
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level III Ecoregions of Oklahoma
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level III Ecoregions of Maryland
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level III Ecoregions of Wyoming
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level IV Ecoregions of Connecticut
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level IV Ecoregions of Missouri
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level III Ecoregions of Washington
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level III Ecoregions of Minnesota
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level III Ecoregions of Massachusetts
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level IV Ecoregions of Tennessee
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level IV Ecoregions of Washington
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level IV Ecoregions of Maryland
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level III Ecoregions of Mississippi
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level IV Ecoregions of Vermont
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level IV Ecoregions of Kentucky
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level IV Ecoregions of Illinois
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level IV Ecoregions of Indiana
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level IV Ecoregions of Louisiana
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level IV Ecoregions of Oklahoma
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level IV Ecoregions of Massachusetts
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level IV Ecoregions of Montana
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level III Ecoregions of California
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level IV Ecoregions of Pennsylvania
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level III Ecoregions of Florida
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level IV Ecoregions of California
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level IV Ecoregions of Minnesota
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level III Ecoregions of Arizona
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level III Ecoregions of Pennsylvania
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level III Ecoregions of Indiana
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level III Ecoregions of Missouri
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
NASA Astrophysics Data System (ADS)
Amri, Khairul; Nugraha, Loparedo; Barchia, Muhammad Faiz
2017-11-01
Land use changes in Manna watershed are caused degradation in the watershed functions. When water infiltration goes down, some water runs off flowing to Manna River cause submerged on the downstream. The aim of this study is to analyze how the Manna watershed overcoming environmentally degraded conditions. The critical level of the Manna catchment areas was determined by overlaying some digital maps based on procedure applying in the Ministry of Forestry, Republic of Indonesia (P.32/MENHUT-II/2009). Measuring the critical level of the catchment also needed natural and actual infiltrations map, and the interpretation process of the analysis used ArcGIS 10.1 software. Based on the spatial data analysis by overlaying maps of slope, soils, and rainfall, the natural infiltration rate in the Manna watershed categorized high level (44.1%). While, the critical level of the catchment areas of the Manna watershed classified in good condition cover about 64,5 % of the areas, and starting to degraded state cover about 35,5 % of the watershed areas. The environment degradation conditions indicated the land use changes in the Manna watershed could deteriorate infiltration rates. The cultivated agricultural activities neglected conservation rule could accelerate the critical catchment areas in the Manna watershed.
2016-01-01
Reports an error in "A violation of the conditional independence assumption in the two-high-threshold model of recognition memory" by Tina Chen, Jeffrey J. Starns and Caren M. Rotello (Journal of Experimental Psychology: Learning, Memory, and Cognition, 2015[Jul], Vol 41[4], 1215-1222). In the article, Chen et al. compared three models: a continuous signal detection model (SDT), a standard two-high-threshold discrete-state model in which detect states always led to correct responses (2HT), and a full-mapping version of the 2HT model in which detect states could lead to either correct or incorrect responses. After publication, Rani Moran (personal communication, April 21, 2015) identified two errors that impact the reported fit statistics for the Bayesian information criterion (BIC) metric of all models as well as the Akaike information criterion (AIC) results for the full-mapping model. The errors are described in the erratum. (The following abstract of the original article appeared in record 2014-56216-001.) The 2-high-threshold (2HT) model of recognition memory assumes that test items result in distinct internal states: they are either detected or not, and the probability of responding at a particular confidence level that an item is "old" or "new" depends on the state-response mapping parameters. The mapping parameters are independent of the probability that an item yields a particular state (e.g., both strong and weak items that are detected as old have the same probability of producing a highest-confidence "old" response). We tested this conditional independence assumption by presenting nouns 1, 2, or 4 times. To maximize the strength of some items, "superstrong" items were repeated 4 times and encoded in conjunction with pleasantness, imageability, anagram, and survival processing tasks. The 2HT model failed to simultaneously capture the response rate data for all item classes, demonstrating that the data violated the conditional independence assumption. In contrast, a Gaussian signal detection model, which posits that the level of confidence that an item is "old" or "new" is a function of its continuous strength value, provided a good account of the data. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
The Current Status of Mapping in the World - Spotlight on Oceania
NASA Astrophysics Data System (ADS)
Trinder, John C.
2016-06-01
A summary is presented of the results of questionnaires sent to mapping agencies in Oceania, covering Australia, New Zealand and the Pacific Island countries, to investigate the status of mapping in those countries. After World War II, the Australian Federal Government funded the initial small scale mapping of the whole country leading to increased percentages of map coverage of Australia. Mapping at larger scales is undertaken by the states and territories in Australia, including cadastral mapping. In New Zealand mapping is maintained by Land Information New Zealand (LINZ) at 1:50,000 scale and smaller with regular updating. The results of the questionnaires also demonstrate the extent of map coverage in six Pacific Islands, but there is little information available on the actual percent coverage. Overall there are estimated to be an increases in the percentages of coverage of most map scales in Oceania. However, there appear to be insufficient professionals in most Pacific Island countries to maintain the mapping programs. Given that many Pacific Island countries will be impacted by rising sea level in the future, better mapping of these countries is essential. The availability of modern technology especially satellite images, digital aerial photography and airborne lidar data should enable the Pacific Island countries to provide better map products in future, but this would depend on foreign aid on many occasions.
Revision of Time-Independent Probabilistic Seismic Hazard Maps for Alaska
Wesson, Robert L.; Boyd, Oliver S.; Mueller, Charles S.; Bufe, Charles G.; Frankel, Arthur D.; Petersen, Mark D.
2007-01-01
We present here time-independent probabilistic seismic hazard maps of Alaska and the Aleutians for peak ground acceleration (PGA) and 0.1, 0.2, 0.3, 0.5, 1.0 and 2.0 second spectral acceleration at probability levels of 2 percent in 50 years (annual probability of 0.000404), 5 percent in 50 years (annual probability of 0.001026) and 10 percent in 50 years (annual probability of 0.0021). These maps represent a revision of existing maps based on newly obtained data and assumptions reflecting best current judgments about methodology and approach. These maps have been prepared following the procedures and assumptions made in the preparation of the 2002 National Seismic Hazard Maps for the lower 48 States. A significant improvement relative to the 2002 methodology is the ability to include variable slip rate along a fault where appropriate. These maps incorporate new data, the responses to comments received at workshops held in Fairbanks and Anchorage, Alaska, in May, 2005, and comments received after draft maps were posted on the National Seismic Hazard Mapping Web Site. These maps will be proposed for adoption in future revisions to the International Building Code. In this documentation we describe the maps and in particular explain and justify changes that have been made relative to the 1999 maps. We are also preparing a series of experimental maps of time-dependent hazard that will be described in future documents.
FACETS: using open data to measure community social determinants of health.
Cantor, Michael N; Chandras, Rajan; Pulgarin, Claudia
2018-04-01
To develop a dataset based on open data sources reflective of community-level social determinants of health (SDH). We created FACETS (Factors Affecting Communities and Enabling Targeted Services), an architecture that incorporates open data related to SDH into a single dataset mapped at the census-tract level for New York City. FACETS (https://github.com/mcantor2/FACETS) can be easily used to map individual addresses to their census-tract-level SDH. This dataset facilitates analysis across different determinants that are often not easily accessible. Wider access to open data from government agencies at the local, state, and national level would facilitate the aggregation and analysis of community-level determinants. Timeliness of updates to federal non-census data sources may limit their usefulness. FACETS is an important first step in standardizing and compiling SDH-related data in an open architecture that can give context to a patient's condition and enable better decision-making when developing a plan of care.
Booza, Jason C; Bridge, Patrick D; Neale, Anne Victoria; Schenk, Maryjean
2010-01-01
To address the shortage of physicians practicing in rural areas of Michigan, the Wayne State University School of Medicine developed an integrated rural core curriculum to interest students in rural practice careers. Here we focus on the evaluation strategy used to determine the extent to which students in the new rural medicine interest group who self-identified as selecting a rural clerkship or externship did secure a clinical training experience in a rural setting. Three measures of rurality were compared to determine whether students were placed in rural training settings: (1) the percentage of the county living in rural areas; (2) a county-level dichotomous measure of rural/nonrural; and (3) a dichotomous measure based on urban area boundaries within the county. Practice address and geographic data were integrated into geographic information systems software, which we used to map out rural characteristics of Michigan counties through a process called thematic mapping; this shows characteristic variation by color-shading geographic features. In addition, reference maps were created showing the boundaries of urban areas and metropolitan/micropolitan areas. Once these processes were completed, we overlaid the practice location on the contextual-level geographic features to produce a visual representation of the relationship between student placement and rural areas throughout the state. The outcome of student placement in rural practices varied by the definition of rural. We concluded that, although students were not placed in the most rural areas of Michigan, they received clerkship or externship training near rural areas or in semirural areas. This process evaluation had a direct impact on program management by highlighting gaps in preceptor recruitment. A greater effort is being made to recruit physicians for more rural areas of the state rather than urban and semirural areas. Geographic information systems mapping also defined levels of ruralism for students to help them make informed selections of training sties. This is especially important for students who are not sure about a rural experience and might be discouraged by placement in a remote rural area.
NASA Astrophysics Data System (ADS)
Sheng, Y.; Davis, J. R.; Paramygin, V. A.; LaRow, T.; Chassignet, E.; Stefanova, L. B.; Lu, J.; Xie, L.; Montalvo, S.; Liu, J.; Liu, B.
2012-12-01
75% of the world population lives within 100 km from the coastline. Coastal communities are subject to increasing coastal inundation risk due to the combined effects of hurricane-induced storm surge, tsunami, climate change, and sea level rise. This study is developing the next generation decision support systems (DSS) for storm surge and coastal inundation by incorporating the climate change impacts on hurricanes and sea level rise (SLR) along the Florida and North Carolina coast. Using a new methodology (instead of the "bath tub" approach) enhanced by the Institute for Sustainable Coastal Environment and Infrastructure (InSCEI) at University of Florida (UF), highly accurate and efficient coastal inundation maps (Base Flood Elevations and Surge Atlas) are being produced for current climate conditions. Atmospheric and climate scientists at Florida State University (FSU) and North Carolina State University (NCSU) are using global (FSU/COAPS) and regional (WRF) atmospheric models to estimate the range in hurricane activities during 2020-2040 and 2080-2100, using projected SSTs from the IPCC CMIP5 climate scenarios as lower boundary conditions. SLR experts at NCSU and FSU are analyzing historical sea level data and conducting numerical modeling to estimate the SLR at the coastal boundaries for the same IPCC scenarios. UF and NCSU are using the hurricane ensembles and the SLR scenarios provided by FSU and NCSU as input to storm surge and inundation models (CH3D-SSMS and CMAEPS, respectively) to produce high resolution inundation maps which include climate change effects. These future-climate coastal inundation maps will be much more accurate than the current ones and greatly improve the stakeholders' ability to mitigate coastal inundation risk throughout the U.S. and the world. These inundation maps for current and future climates will be communicated to a wide spectrum of stakeholders for feedback and further improvement. A national workshop will be held in January 2013 to engage stakeholders, researchers, and managers (federal, state, and local) of coastal inundation to develop strategies to improve communications among the various entities and to gather inputs on the development of the next -generation coastal inundation decision support system.
2014-01-01
Background Breeders in the allo-octoploid strawberry currently make little use of molecular marker tools. As a first step of a QTL discovery project on fruit quality traits and resistance to soil-borne pathogens such as Phytophthora cactorum and Verticillium we built a genome-wide SSR linkage map for the cross Holiday x Korona. We used the previously published MADCE method to obtain full haplotype information for both of the parental cultivars, facilitating in-depth studies on their genomic organisation. Results The linkage map incorporates 508 segregating loci and represents each of the 28 chromosome pairs of octoploid strawberry, spanning an estimated length of 2050 cM. The sub-genomes are denoted according to their sequence divergence from F. vesca as revealed by marker performance. The map revealed high overall synteny between the sub-genomes, but also revealed two large inversions on LG2C and LG2D, of which the latter was confirmed using a separate mapping population. We discovered interesting breeding features within the parental cultivars by in-depth analysis of our haplotype data. The linkage map-derived homozygosity level of Holiday was similar to the pedigree-derived inbreeding level (33% and 29%, respectively). For Korona we found that the observed homozygosity level was over three times higher than expected from the pedigree (13% versus 3.6%). This could indicate selection pressure on genes that have favourable effects in homozygous states. The level of kinship between Holiday and Korona derived from our linkage map was 2.5 times higher than the pedigree-derived value. This large difference could be evidence of selection pressure enacted by strawberry breeders towards specific haplotypes. Conclusion The obtained SSR linkage map provides a good base for QTL discovery. It also provides the first biologically relevant basis for the discernment and notation of sub-genomes. For the first time, we revealed genomic rearrangements that were verified in a separate mapping population. We believe that haplotype information will become increasingly important in identifying marker-trait relationships and regions that are under selection pressure within breeding material. Our attempt at providing a biological basis for the discernment of sub-genomes warrants follow-up studies to streamline the naming of the sub-genomes among different octoploid strawberry maps. PMID:24581289
van Dijk, Thijs; Pagliarani, Giulia; Pikunova, Anna; Noordijk, Yolanda; Yilmaz-Temel, Hulya; Meulenbroek, Bert; Visser, Richard G F; van de Weg, Eric
2014-03-01
Breeders in the allo-octoploid strawberry currently make little use of molecular marker tools. As a first step of a QTL discovery project on fruit quality traits and resistance to soil-borne pathogens such as Phytophthora cactorum and Verticillium we built a genome-wide SSR linkage map for the cross Holiday x Korona. We used the previously published MADCE method to obtain full haplotype information for both of the parental cultivars, facilitating in-depth studies on their genomic organisation. The linkage map incorporates 508 segregating loci and represents each of the 28 chromosome pairs of octoploid strawberry, spanning an estimated length of 2050 cM. The sub-genomes are denoted according to their sequence divergence from F. vesca as revealed by marker performance. The map revealed high overall synteny between the sub-genomes, but also revealed two large inversions on LG2C and LG2D, of which the latter was confirmed using a separate mapping population. We discovered interesting breeding features within the parental cultivars by in-depth analysis of our haplotype data. The linkage map-derived homozygosity level of Holiday was similar to the pedigree-derived inbreeding level (33% and 29%, respectively). For Korona we found that the observed homozygosity level was over three times higher than expected from the pedigree (13% versus 3.6%). This could indicate selection pressure on genes that have favourable effects in homozygous states. The level of kinship between Holiday and Korona derived from our linkage map was 2.5 times higher than the pedigree-derived value. This large difference could be evidence of selection pressure enacted by strawberry breeders towards specific haplotypes. The obtained SSR linkage map provides a good base for QTL discovery. It also provides the first biologically relevant basis for the discernment and notation of sub-genomes. For the first time, we revealed genomic rearrangements that were verified in a separate mapping population. We believe that haplotype information will become increasingly important in identifying marker-trait relationships and regions that are under selection pressure within breeding material. Our attempt at providing a biological basis for the discernment of sub-genomes warrants follow-up studies to streamline the naming of the sub-genomes among different octoploid strawberry maps.
Gaggìa, Francesca; Nielsen, Dennis Sandris; Biavati, Bruno; Siegumfeldt, Henrik
2010-07-31
Mycobacterium avium subsp. paratuberculosis (MAP) is the etiologic agent of Johne's disease; moreover, it seems to be implicated in the development of Crohn's disease in humans. In the present study, fluorescence ratio imaging microscopy (FRIM) was used to assess changes in intracellular pH (pH(i)) of one strain of MAP after exposure to nisin and neutralized cell-free supernatants (NCSs) from five bacteriocin-producing lactic acid bacteria (LAB) with known probiotic properties. The evaluation of pH(i) by FRIM provides information about the physiological state of bacterial cells, bypassing the long and problematic incubations needed for methods relying upon growth of MAP such as determination of colony forming units. The FRIM results showed that both nisin and the cell-free supernatant from Lactobacillus plantarum PCA 236 affected the pH(i) of MAP within a few hours. However, monitoring the population for 24h revealed the presence of a subpopulation of cells probably resistant to the antimicrobial compounds tested. Use of nisin and bacteriocin-producing LAB strains could lead to new intervention strategies for the control of MAP based on in vivo application of probiotic cultures as feed additives at farm level. Copyright 2010 Elsevier B.V. All rights reserved.
Orga, Ferran; Alías, Francesc; Alsina-Pagès, Rosa Ma
2017-12-23
Noise pollution is a critical factor affecting public health, the relationship between road traffic noise (RTN) and several diseases in urban areas being especially disturbing. The Environmental Noise Directive 2002/49/EC and the CNOSSOS-EU framework are the main instruments of the European Union to identify and combat noise pollution, requiring Member States to compose and publish noise maps and noise management action plans every five years. Nowadays, the noise maps are starting to be tailored by means of Wireless Acoustic Sensor Networks (WASN). In order to exclusively monitor the impact of RTN on the well-being of citizens through WASN-based approaches, those noise sources unrelated to RTN denoted as Anomalous Noise Events (ANEs) should be removed from the noise map generation. This paper introduces an analysis methodology considering both Signal-to-Noise Ratio (SNR) and duration of ANEs to evaluate their impact on the A-weighted equivalent RTN level calculation for different integration times. The experiments conducted on 9 h of real-life data from the WASN-based DYNAMAP project show that both individual high-impact events and aggregated medium-impact events bias significantly the equivalent noise levels of the RTN map, making any derived study about public health impact inaccurate.
2017-01-01
Noise pollution is a critical factor affecting public health, the relationship between road traffic noise (RTN) and several diseases in urban areas being especially disturbing. The Environmental Noise Directive 2002/49/EC and the CNOSSOS-EU framework are the main instruments of the European Union to identify and combat noise pollution, requiring Member States to compose and publish noise maps and noise management action plans every five years. Nowadays, the noise maps are starting to be tailored by means of Wireless Acoustic Sensor Networks (WASN). In order to exclusively monitor the impact of RTN on the well-being of citizens through WASN-based approaches, those noise sources unrelated to RTN denoted as Anomalous Noise Events (ANEs) should be removed from the noise map generation. This paper introduces an analysis methodology considering both Signal-to-Noise Ratio (SNR) and duration of ANEs to evaluate their impact on the A-weighted equivalent RTN level calculation for different integration times. The experiments conducted on 9 h of real-life data from the WASN-based DYNAMAP project show that both individual high-impact events and aggregated medium-impact events bias significantly the equivalent noise levels of the RTN map, making any derived study about public health impact inaccurate. PMID:29295492
NASA Astrophysics Data System (ADS)
Washington-Allen, R. A.; Mitchell, J. E.; Oslen, H. E.
2008-12-01
The "State of Nation's Ecosystems" by the Heinz Institute and the recent "Millennium Ecosystem Assessment of Drylands" concluded that the amount of desertification and the extent to which human management actions contribute to this process is unknown at national to global spatial scales. This is primarily due to lack of studies at these large spatial scales and the temporal scales (> a 15-year time series of data) necessary to separate the effects of anthropogenic practices from climate change on Drylands. Consequently, this research seeks to develop procedures for determining 1) the area of Drylands within the United States where commercial grazing livestock occur or the livestock ecological footprint and 2) the impact of the footprint on the US's productive capacity. Our approach has been to develop a pilot geodatabase of year 2002 data that includes administrative boundaries, the Moderate Resolution Infrared Spectroradiometer's (MODIS) measures of gross and net primary productivity (GPP and NPP, respectively), US Department of Agriculture's National Agricultural Statistics Service's (USDA-NASS) county-level data on cattle, sheep, and goat inventories, transportation and power consumption networks, dryland extent, and land cover/land use. Secondly, the ratio of 1-km2 gridded mean annual potential evapotranspiration (MAPET) to mean annual precipitation (MAP) data were used to define the 50-year mean dryland extent in accordance with the United Nations Convention to Combat Desertification's definition of Drylands, the aridity index (AI) ≤ 0.65. Urban features, including transportation, power consumption, and land use/land cover, were subtracted from this dryland map to further refine it. The NASS tabular data was then related to the counties boundary map thus producing a county-level livestock number map that was then intersected with the dryland extent map to yield the US livestock ecological footprint. Lastly, this footprint map was then converted to a footprint map of the annual forage requirement or estimated consumption (or impact) of grazing livestock and then subtracted from a GPP map to yield a livestock appropriation of net primary productivity map (LANPP). We expect that commercial livestock will spatially impact < 20% of NPP, the conservative global estimate of human appropriation of NPP (HANPP), as LANPP is embedded within this estimate from previous studies.
Edwin James' and John Hinton's revisions of Maclure's geologic map of the United States
NASA Astrophysics Data System (ADS)
Aalto, K. R.
2012-03-01
William Maclure's pioneering geologic map of the eastern United States, published first in 1809 with Observations on the Geology of the United States, provided a foundation for many later maps - a template from which geologists could extend their mapping westward from the Appalachians. Edwin James, botanist, geologist and surgeon for the 1819/1820 United States Army western exploring expedition under Major Stephen H. Long, published a full account of this expedition with map and geologic sections in 1822-1823. In this he extended Maclure's geology across the Mississippi Valley to the Colorado Rockies. John Howard Hinton (1791-1873) published his widely read text: The History and Topography of the United States in 1832, which included a compilations of Maclure's and James' work in a colored geologic map and vertical sections. All three men were to some degree confounded in their attempts to employ Wernerian rock classification in their mapping and interpretations of geologic history, a common problem in the early 19th Century prior to the demise of Neptunist theory and advent of biostratigraphic techniques of correlation. However, they provided a foundation for the later, more refined mapping and geologic interpretation of the eastern United States.
NASA Technical Reports Server (NTRS)
Borella, H. M.; Estes, J. E.; Ezra, C. E.; Scepan, J.; Tinney, L. R.
1982-01-01
For two test sites in Pennsylvania the interpretability of commercially acquired low-altitude and existing high-altitude aerial photography are documented in terms of time, costs, and accuracy for Anderson Level II land use/land cover mapping. Information extracted from the imagery is to be used in the evaluation process for siting energy facilities. Land use/land cover maps were drawn at 1:24,000 scale using commercially flown color infrared photography obtained from the United States Geological Surveys' EROS Data Center. Detailed accuracy assessment of the maps generated by manual image analysis was accomplished employing a stratified unaligned adequate class representation. Both 'area-weighted' and 'by-class' accuracies were documented and field-verified. A discrepancy map was also drawn to illustrate differences in classifications between the two map scales. Results show that the 1:24,000 scale map set was more accurate (99% to 94% area-weighted) than the 1:62,500 scale set, especially when sampled by class (96% to 66%). The 1:24,000 scale maps were also more time-consuming and costly to produce, due mainly to higher image acquisition costs.
Family Friendly Policies in STEM Departments: Awareness and Determinants
ERIC Educational Resources Information Center
Su, Xuhong; Bozeman, Barry
2016-01-01
Focused on academic departments in science, technology, engineering, and mathematics (STEM) fields in the United States, we attempt to map department chairs' awareness of family friendly policies and investigate possible determinants of their knowledge levels. Based on a sample of STEM department chairs in American research universities, we find…
High School Improvement: Indicators of Effectiveness and School-Level Benchmarks
ERIC Educational Resources Information Center
National High School Center, 2012
2012-01-01
The National High School Center's "Eight Elements of High School Improvement: A Mapping Framework" provides a cohesive high school improvement framework comprised of eight elements and related indicators of effectiveness. These indicators of effectiveness allow states, districts, and schools to identify strengths and weaknesses of their current…
Zhang, Shengyu; Hu, Qiang; Tang, Tao; Liu, Chao; Li, Chengchong; Zang, Yin-Yin; Cai, Wei-Xiong
2018-06-13
BACKGROUND Using regional homogeneity (ReHo) blood oxygen level-dependent functional MR (BOLD-fMRI), we investigated the structural and functional alterations of brain regions among patients with methamphetamine-associated psychosis (MAP). MATERIAL AND METHODS This retrospective study included 17 MAP patients, 16 schizophrenia (SCZ) patients, and 18 healthy controls. Informed consent was obtained from all patients before the clinical assessment, the severity of clinical symptoms was evaluated prior to the fMRI scanning, and then images were acquired and preprocessed after each participant received 6-min fRMI scanning. The participants all underwent BOLD-fMRI scanning. Voxel-based morphometry was used to measure gray matter density (GMD). Resting-state fMRI (rs-fMRI) was conducted to analyze functional MR, ReHo, and functional connectivity (FC). RESULTS GMD analysis results suggest that MAP patients, SCZ patients, and healthy volunteers show different GMDs within different brain regions. Similarly, the ReHo analysis results suggest that MAP patients, SCZ patients, and healthy volunteers have different GMDs within different brain regions. Negative correlations were found between ReHo- and the PANSS-positive scores within the left orbital interior frontal gyrus (L-orb-IFG) of MAP patients. ReHo- and PANSS-negative scores of R-SFG were negatively correlated among SCZ patients. The abnormal FC of R-MFG showed a negative correlation with the PANSS score among MAP patients. CONCLUSIONS The abnormalities in brain structure and FC were associated with the development of MAP.
Mapping resilience not risk: Turning the tide in New York City and Jamaica Bay
NASA Astrophysics Data System (ADS)
Parris, A. S.; Sanderson, E. W.
2015-12-01
Resilience in urban coastal areas is affected by actions at multiple levels from individuals to community groups to city, state and federal governments. At any level, actions can be a response to immediate hazards (e.g. flooding of coastal homes) or long-term drivers of change (e.g. sea level rise). Jamaica Bay, a highly urbanized estuary within New York City, exemplifies the Nation's coastal zone challenges. Prior to Hurricane Sandy, city, state, and federal governments had made the estuary a major focal point for habitat restoration, improvements to public access and outdoor recreation, and sustainable development. Sandy caused the highest flood level in the recorded history of New York City, eventually claiming 44 lives and costing over $19 billion. Electrical system failure caused four of NYCs wastewater pollution control plants to shutdown, discharging untreated sewage into Jamaica Bay. The Sea Level Rise Tool for Sandy Recovery (the Tool), a flood mapping tool developed by several government agencies including FEMA, NYC, and the Executive Branch, integrated science from the National Flood Insurance Program and the New York City Panel on Climate Change (NPCC). While compound flooding hazards (stormwater plus coastal flooding) remain an important uncertainty, the Tool and subsequent NPCC mapping efforts provide sufficient evidence for science-based discourse around coastal flood risks in Jamaica Bay. But toward what outcome? Coastal flood risk reduction measures and other management actions are managed within existing regulatory frameworks. Disaster relief funds appropriated by Congress in the immediate aftermath of Sandy have provided critical resources to the Jamaica Bay region. However, the challenge now is to transition from the short-term response to long-term resilience planning, a challenge which requires new institutional capacity. This transition to resilience planning and implementation is not only critical in New York City, but in other coastal cities around the nation. The Science and Resilience Institute at Jamaica Bay is a rare partnership between the City of New York, the National Park Service and a consortium of nine research institutions, focused on collaborative problem solving. Central to the Institute's to success will be the question - can we start mapping resilience and not risk?
Ningaloo Reef: Shallow Marine Habitats Mapped Using a Hyperspectral Sensor
Kobryn, Halina T.; Wouters, Kristin; Beckley, Lynnath E.; Heege, Thomas
2013-01-01
Research, monitoring and management of large marine protected areas require detailed and up-to-date habitat maps. Ningaloo Marine Park (including the Muiron Islands) in north-western Australia (stretching across three degrees of latitude) was mapped to 20 m depth using HyMap airborne hyperspectral imagery (125 bands) at 3.5 m resolution across the 762 km2 of reef environment between the shoreline and reef slope. The imagery was corrected for atmospheric, air-water interface and water column influences to retrieve bottom reflectance and bathymetry using the physics-based Modular Inversion and Processing System. Using field-validated, image-derived spectra from a representative range of cover types, the classification combined a semi-automated, pixel-based approach with fuzzy logic and derivative techniques. Five thematic classification levels for benthic cover (with probability maps) were generated with varying degrees of detail, ranging from a basic one with three classes (biotic, abiotic and mixed) to the most detailed with 46 classes. The latter consisted of all abiotic and biotic seabed components and hard coral growth forms in dominant or mixed states. The overall accuracy of mapping for the most detailed maps was 70% for the highest classification level. Macro-algal communities formed most of the benthic cover, while hard and soft corals represented only about 7% of the mapped area (58.6 km2). Dense tabulate coral was the largest coral mosaic type (37% of all corals) and the rest of the corals were a mix of tabulate, digitate, massive and soft corals. Our results show that for this shallow, fringing reef environment situated in the arid tropics, hyperspectral remote sensing techniques can offer an efficient and cost-effective approach to mapping and monitoring reef habitats over large, remote and inaccessible areas. PMID:23922921
NADM Conceptual Model 1.0 -- A Conceptual Model for Geologic Map Information
,
2004-01-01
Executive Summary -- The NADM Data Model Design Team was established in 1999 by the North American Geologic Map Data Model Steering Committee (NADMSC) with the purpose of drafting a geologic map data model for consideration as a standard for developing interoperable geologic map-centered databases by state, provincial, and federal geological surveys. The model is designed to be a technology-neutral conceptual model that can form the basis for a web-based interchange format using evolving information technology (e.g., XML, RDF, OWL), and guide implementation of geoscience databases in a common conceptual framework. The intended purpose is to allow geologic information sharing between geologic map data providers and users, independent of local information system implementation. The model emphasizes geoscience concepts and relationships related to information presented on geologic maps. Design has been guided by an informal requirements analysis, documentation of existing databases, technology developments, and other standardization efforts in the geoscience and computer-science communities. A key aspect of the model is the notion that representation of the conceptual framework (ontology) that underlies geologic map data must be part of the model, because this framework changes with time and understanding, and varies between information providers. The top level of the model distinguishes geologic concepts, geologic representation concepts, and metadata. The geologic representation part of the model provides a framework for representing the ontology that underlies geologic map data through a controlled vocabulary, and for establishing the relationships between this vocabulary and a geologic map visualization or portrayal. Top-level geologic classes in the model are Earth material (substance), geologic unit (parts of the Earth), geologic age, geologic structure, fossil, geologic process, geologic relation, and geologic event.
Annual summary of ground-water conditions in Arizona, spring 1984 to spring 1985
,
1986-01-01
In arid and semiarid regions such as Arizona, the availability of adequate water supplies has a significant influence on the type and extent of economic development. About two-thirds of the water used in the State is groundwater. The nature and extent of the groundwater reservoirs must be known for proper management of this valuable resource. The U.S. Geological Survey, in cooperation with the State of Arizona, has conducted a program of groundwater studies in Arizona since 1939. The primary purposes of these studies are to define the amount, location, and quality of the groundwater resources of Arizona and to monitor the effects of large-scale development of the groundwater supplies. The program includes the collection, compilation, and analysis of the geologic and hydrologic data necessary to evaluate the groundwater resources of the State. The basic hydrologic data are in computer storage and are available to the public. Since 1974, a major thrust of the program has been to inventory the groundwater conditions in the 68 groundwater areas of the State. Several selected groundwater areas are studied each year; water levels are measured annually in a statewide observation well network, many groundwater samples are collected and analyzed annually, and groundwater pumpage is computed for most of the areas. As of July 1985, reports had been published for 56 of the 68 groundwater areas. Data collected in the groundwater areas include information on selected wells, water level measurements, and water samples for chemical analysis. The data for each of the selected groundwater areas are analyzed, and the results are published in map form. Typically, the maps show depth to water; change in water levels; altitude of the water level; and quality of water data, such as specific conductance, dissolved solids, and fluoride. (Lantz-PTT)
The U.S. Geological Survey mapping and cartographic database activities, 2006-2010
Craun, Kari J.; Donnelly, John P.; Allord, Gregory J.
2011-01-01
The U.S. Geological Survey (USGS) began systematic topographic mapping of the United States in the 1880s, beginning with scales of 1:250,000 and 1:125,000 in support of geological mapping. Responding to the need for higher resolution and more detail, the 1:62,500-scale, 15-minute, topographic map series was begun in the beginning of the 20th century. Finally, in the 1950s the USGS adopted the 1:24,000-scale, 7.5-minute topographic map series to portray even more detail, completing the coverage of the conterminous 48 states of the United States with this series in 1992. In 2001, the USGS developed the vision and concept of The National Map, a topographic database for the 21st century and the source for a new generation of topographic maps (http://nationalmap.gov/). In 2008, the initial production of those maps began with a 1:24,000-scale digital product. In a separate, but related project, the USGS began scanning the existing inventory of historical topographic maps at all scales to accompany the new topographic maps. The USGS also had developed a digital database of The National Atlas of the United States. The digital version of Atlas is now Web-available and supports a mapping engine for small scale maps of the United States and North America. These three efforts define topographic mapping activities of the USGS during the last few years and are discussed below.
Stochastic thermodynamics of quantum maps with and without equilibrium.
Barra, Felipe; Lledó, Cristóbal
2017-11-01
We study stochastic thermodynamics for a quantum system of interest whose dynamics is described by a completely positive trace-preserving (CPTP) map as a result of its interaction with a thermal bath. We define CPTP maps with equilibrium as CPTP maps with an invariant state such that the entropy production due to the action of the map on the invariant state vanishes. Thermal maps are a subgroup of CPTP maps with equilibrium. In general, for CPTP maps, the thermodynamic quantities, such as the entropy production or work performed on the system, depend on the combined state of the system plus its environment. We show that these quantities can be written in terms of system properties for maps with equilibrium. The relations that we obtain are valid for arbitrary coupling strengths between the system and the thermal bath. The fluctuations of thermodynamic quantities are considered in the framework of a two-point measurement scheme. We derive the entropy production fluctuation theorem for general maps and a fluctuation relation for the stochastic work on a system that starts in the Gibbs state. Some simplifications for the probability distributions in the case of maps with equilibrium are presented. We illustrate our results by considering spin 1/2 systems under thermal maps, nonthermal maps with equilibrium, maps with nonequilibrium steady states, and concatenations of them. Finally, and as an important application, we consider a particular limit in which the concatenation of maps generates a continuous time evolution in Lindblad form for the system of interest, and we show that the concept of maps with and without equilibrium translates into Lindblad equations with and without quantum detailed balance, respectively. The consequences for the thermodynamic quantities in this limit are discussed.
Stochastic thermodynamics of quantum maps with and without equilibrium
NASA Astrophysics Data System (ADS)
Barra, Felipe; Lledó, Cristóbal
2017-11-01
We study stochastic thermodynamics for a quantum system of interest whose dynamics is described by a completely positive trace-preserving (CPTP) map as a result of its interaction with a thermal bath. We define CPTP maps with equilibrium as CPTP maps with an invariant state such that the entropy production due to the action of the map on the invariant state vanishes. Thermal maps are a subgroup of CPTP maps with equilibrium. In general, for CPTP maps, the thermodynamic quantities, such as the entropy production or work performed on the system, depend on the combined state of the system plus its environment. We show that these quantities can be written in terms of system properties for maps with equilibrium. The relations that we obtain are valid for arbitrary coupling strengths between the system and the thermal bath. The fluctuations of thermodynamic quantities are considered in the framework of a two-point measurement scheme. We derive the entropy production fluctuation theorem for general maps and a fluctuation relation for the stochastic work on a system that starts in the Gibbs state. Some simplifications for the probability distributions in the case of maps with equilibrium are presented. We illustrate our results by considering spin 1/2 systems under thermal maps, nonthermal maps with equilibrium, maps with nonequilibrium steady states, and concatenations of them. Finally, and as an important application, we consider a particular limit in which the concatenation of maps generates a continuous time evolution in Lindblad form for the system of interest, and we show that the concept of maps with and without equilibrium translates into Lindblad equations with and without quantum detailed balance, respectively. The consequences for the thermodynamic quantities in this limit are discussed.
Gehrels, George E.; Berg, Henry C.
2006-01-01
The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set of 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.
Bedford, David R.; Ludington, Steve; Nutt, Constance M.; Stone, Paul A.; Miller, David M.; Miller, Robert J.; Wagner, David L.; Saucedo, George J.
2003-01-01
The USGS is creating an integrated national database for digital state geologic maps that includes stratigraphic, age, and lithologic information. The majority of the conterminous 48 states have digital geologic base maps available, often at scales of 1:500,000. This product is a prototype, and is intended to demonstrate the types of derivative maps that will be possible with the national integrated database. This database permits the creation of a number of types of maps via simple or sophisticated queries, maps that may be useful in a number of areas, including mineral-resource assessment, environmental assessment, and regional tectonic evolution. This database is distributed with three main parts: a Microsoft Access 2000 database containing geologic map attribute data, an Arc/Info (Environmental Systems Research Institute, Redlands, California) Export format file containing points representing designation of stratigraphic regions for the Geologic Map of Utah, and an ArcView 3.2 (Environmental Systems Research Institute, Redlands, California) project containing scripts and dialogs for performing a series of generalization and mineral resource queries. IMPORTANT NOTE: Spatial data for the respective stage geologic maps is not distributed with this report. The digital state geologic maps for the states involved in this report are separate products, and two of them are produced by individual state agencies, which may be legally and/or financially responsible for this data. However, the spatial datasets for maps discussed in this report are available to the public. Questions regarding the distribution, sale, and use of individual state geologic maps should be sent to the respective state agency. We do provide suggestions for obtaining and formatting the spatial data to make it compatible with data in this report. See section ‘Obtaining and Formatting Spatial Data’ in the PDF version of the report.
THE HOLDRIDGE LIFE ZONES OF THE CONTERMINOUS UNITED STATES IN RELATION TO ECOSYSTEM MAPPING
Our main goals were to develop a map of the life zones for the conterminous United States, based on the Holdridge Life Zone system as a tool for ecosystem mapping, and to compare the map of Holdridge life zones with other global vegetation classification and mapping efforts.
...
OZONE MONITORING, MAPPING, AND PUBLIC OUTREACH ...
The U.S. EPA had developed a handbook to help state and local government officials implement ozone monitoring, mapping, and outreach programs. The handbook, called Ozone Monitoring, Mapping, and Public Outreach: Delivering Real-Time Ozone Information to Your Community, provides step-by-step instructions on how to: Design, site, operate, and maintain an ozone monitoring network. Install, configure, and operate the Automatic Data Transfer System Use MapGen software to create still-frame and animated ozone maps. Develop and outreach plan to communicate information about real-time ozone levels and their health effects to the public.This handbook was developed by EPA's EMPACT program. The program takes advantage of new technologies that make it possible to provide environmental information to the public in near real time. EMPACT is working with the 86 largest metropolitan areas of the country to help communities in these areas: Collect, manage and distribute time-relevant environmental information. Provide their residents with easy-to-understand information they can use in making informed, day-to-day decisions. Information
This dataset represents the density of 18 USGS lithology classes within individual, local NHDPlusV2 catchments and upstream, contributing watersheds(see Data Sources for links to NHDPlusV2 data and USGS). Attributes were calculated for every local NHDPlusV2 catchment and then accumulated to provide watershed-level metrics for USGS lithology data. This data set is derived from the USGS raster map of 18 lithology classes (categorical data type) for the conterminous USA. The map was produced based on texture, internal structure, thickness, and environment of deposition or formation of materials. These 18 lithology classes were summarized by local catchment and by watershed to produce 18 local catchment-level and watershed-level metrics as a categorical data type (see Data Structure and Attribute Information for a description of each metric).
Statewide LANDSAT inventory of California forests
NASA Technical Reports Server (NTRS)
Likens, W.; Peterson, D. (Principal Investigator)
1981-01-01
Six forest cover categories were mapped, along with 10 general land cover classes. To map the state's 100 million acres, 1.6 acre mapping units were utilized. Map products were created. Standing forest acreage for the state was computed to be 26.8 million acres.
Mapping Resting-State Brain Networks in Conscious Animals
Zhang, Nanyin; Rane, Pallavi; Huang, Wei; Liang, Zhifeng; Kennedy, David; Frazier, Jean A.; King, Jean
2010-01-01
In the present study we mapped brain functional connectivity in the conscious rat at the “resting state” based on intrinsic blood-oxygenation-level dependent (BOLD) fluctuations. The conscious condition eliminated potential confounding effects of anesthetic agents on the connectivity between brain regions. Indeed, using correlational analysis we identified multiple cortical and subcortical regions that demonstrated temporally synchronous variation with anatomically well-defined regions that are crucial to cognitive and emotional information processing including the prefrontal cortex (PFC), thalamus and retrosplenial cortex. The functional connectivity maps created were stringently validated by controlling for false positive detection of correlation, the physiologic basis of the signal source, as well as quantitatively evaluating the reproducibility of maps. Taken together, the present study has demonstrated the feasibility of assessing functional connectivity in conscious animals using fMRI and thus provided a convenient and non-invasive tool to systematically investigate the connectional architecture of selected brain networks in multiple animal models. PMID:20382183
Stable Scalp EEG Spatiospectral Patterns Across Paradigms Estimated by Group ICA.
Labounek, René; Bridwell, David A; Mareček, Radek; Lamoš, Martin; Mikl, Michal; Slavíček, Tomáš; Bednařík, Petr; Baštinec, Jaromír; Hluštík, Petr; Brázdil, Milan; Jan, Jiří
2018-01-01
Electroencephalography (EEG) oscillations reflect the superposition of different cortical sources with potentially different frequencies. Various blind source separation (BSS) approaches have been developed and implemented in order to decompose these oscillations, and a subset of approaches have been developed for decomposition of multi-subject data. Group independent component analysis (Group ICA) is one such approach, revealing spatiospectral maps at the group level with distinct frequency and spatial characteristics. The reproducibility of these distinct maps across subjects and paradigms is relatively unexplored domain, and the topic of the present study. To address this, we conducted separate group ICA decompositions of EEG spatiospectral patterns on data collected during three different paradigms or tasks (resting-state, semantic decision task and visual oddball task). K-means clustering analysis of back-reconstructed individual subject maps demonstrates that fourteen different independent spatiospectral maps are present across the different paradigms/tasks, i.e. they are generally stable.
NASA Technical Reports Server (NTRS)
Schmer, F. A. (Principal Investigator); Isakson, R. E.; Eidenshink, J. C.
1977-01-01
The author has identified the following significant results. Visual interpretation of 1:125,000 color LANDSAT prints produced timely level 1 maps of accuracies in excess of 80% for agricultural land identification. Accurate classification of agricultural land via digital analysis of LANDSAT CCT's required precise timing of the date of data collection with mid to late June optimum for western South Dakota. The LANDSAT repetitive nine day cycle over the state allowed the surface areas of stockdams and small reservoir systems to be monitored to provide a timely approximation of surface water conditions on the range. Combined use of DIRS, K-class, and LANDSAT CCT's demonstrated the ability to produce aspen maps of greater detail and timeliness than was available using US Forest Service maps. Visual temporal analyses of LANDSAT imagery improved highway map drainage information and were used to prepare a seven county drainage network. An optimum map of flood-prone areas was developed, utilizing high altitude aerial photography and USGS maps.
EnviroAtlas - Metrics for Austin, TX
This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://enviroatlas.epa.gov/EnviroAtlas). The layers in this web service depict ecosystem services at the census block group level for the community of Austin, Texas. These layers illustrate the ecosystems and natural resources that are associated with clean air (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_CleanAir/MapServer); clean and plentiful water (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_CleanPlentifulWater/MapServer); natural hazard mitigation (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_NaturalHazardMitigation/MapServer); climate stabilization (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_ClimateStabilization/MapServer); food, fuel, and materials (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_FoodFuelMaterials/MapServer); recreation, culture, and aesthetics (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_RecreationCultureAesthetics/MapServer); and biodiversity conservation (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_BiodiversityConservation/MapServer), and factors that place stress on those resources. EnviroAtlas allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the conterminous United States as well as de
Ground-water levels in Wyoming, 1975
Ballance, Wilbur C.; Freudenthal, Pamela B.
1976-01-01
Ground-water levels are measured periodically in a network of about 260 observation wells in Wyoming to record changes in ground-water storage. The areas of water-level observation are mostly where ground water is used in large quantities for irrigation or municipal purposes. This report contains maps showing location of observation wells and water-level changes from 1975 to 1976. Well history, highest and lowest water levels , and hydrographs for most wells also are included in this report.The program of ground-water observation is conducted by the U.S. Geological Survey in cooperation with the Wyoming State Engineer and the city of Cheyenne.
Karin L. Riley; Isaac C. Grenfell; Mark A. Finney
2015-01-01
Mapping the number, size, and species of trees in forests across the western United States has utility for a number of research endeavors, ranging from estimation of terrestrial carbon resources to tree mortality following wildfires. For landscape fire and forest simulations that use the Forest Vegetation Simulator (FVS), a tree-level dataset, or âtree listâ, is a...
National Atlas of the United States Maps
,
2001-01-01
The "National Atlas of the United States of America®", published by the U.S. Geological Survey (USGS) in 1970, is out of print, but many of its maps can be purchased separately. Maps that span facing pages in the atlas are printed on one sheet. Maps dated after 1970 and before 1997 are either revisions of original atlas maps or new maps published in the original atlas format. The USGS and its partners in government and industry began work on a new "National Atlas" in 1997. Though most new atlas products are designed for the World Wide Web, we are continuing our tradition of printing high-quality maps of America. In 1998, the first completely redesigned maps of the "National Atlas of the United States®" were published.
Climate patterns as predictors of amphibians species richness and indicators of potential stress
Battaglin, W.; Hay, L.; McCabe, G.; Nanjappa, P.; Gallant, Alisa L.
2005-01-01
Amphibians occupy a range of habitats throughout the world, but species richness is greatest in regions with moist, warm climates. We modeled the statistical relations of anuran and urodele species richness with mean annual climate for the conterminous United States, and compared the strength of these relations at national and regional levels. Model variables were calculated for county and subcounty mapping units, and included 40-year (1960-1999) annual mean and mean annual climate statistics, mapping unit average elevation, mapping unit land area, and estimates of anuran and urodele species richness. Climate data were derived from more than 7,500 first-order and cooperative meteorological stations and were interpolated to the mapping units using multiple linear regression models. Anuran and urodele species richness were calculated from the United States Geological Survey's Amphibian Research and Monitoring Initiative (ARMI) National Atlas for Amphibian Distributions. The national multivariate linear regression (MLR) model of anuran species richness had an adjusted coefficient of determination (R2) value of 0.64 and the national MLR model for urodele species richness had an R2 value of 0.45. Stratifying the United States by coarse-resolution ecological regions provided models for anUrans that ranged in R2 values from 0.15 to 0.78. Regional models for urodeles had R2 values. ranging from 0.27 to 0.74. In general, regional models for anurans were more strongly influenced by temperature variables, whereas precipitation variables had a larger influence on urodele models.
Falkowski, Michael J.; Evans, Jeffrey S.; Naugle, David E.; Hagen, Christian A.; Carleton, Scott A.; Maestas, Jeremy D.; Henareh Khalyani, Azad; Poznanovic, Aaron J.; Lawrence, Andrew J.
2017-01-01
Invasive woody plant expansion is a primary threat driving fragmentation and loss of sagebrush (Artemisia spp.) and prairie habitats across the central and western United States. Expansion of native woody plants, including conifer (primarily Juniperus spp.) and mesquite (Prosopis spp.), over the past century is primarily attributable to wildfire suppression, historic periods of intensive livestock grazing, and changes in climate. To guide successful conservation programs aimed at reducing top-down stressors, we mapped invasive woody plants at regional scales to evaluate landscape level impacts, target restoration actions, and monitor restoration outcomes. Our overarching goal was to produce seamless regional products across sociopolitical boundaries with resolution fine enough to depict the spatial extent and degree of woody plant invasion relevant to greater sage-grouse (Centrocercus urophasianus) and lesser prairie-chicken (Tympanuchus pallidicinctus)conservation efforts. We mapped tree canopy cover at 1-m spatial resolution across an 11-state region (508 265 km2). Greater than 90% of occupied lesser prairie-chicken habitat was largely treeless for conifers (< 1% canopy cover), whereas > 67% was treeless for mesquite. Conifers in the higher canopy cover classes (16 − 50% and > 50% canopy cover) were scarce (< 2% and 1% canopy cover), as was mesquite (< 5% and 1% canopy cover). Occupied habitat by sage-grouse was more variable but also had a relatively large proportion of treeless areas (x−">x− = 71, SE = 5%). Low to moderate levels of conifer cover (1 − 20%) were fewer (x−">x− = 23, SE = 5%) as were areas in the highest cover class (> 50%; x−">x−= 6, SE = 2%). Mapping indicated that a high proportion of invading woody plants are at a low to intermediate level. Canopy cover maps for conifer and mesquite resulting from this study provide the first and most geographically complete, high-resolution assessment of woody plant cover as a top-down threat to western sage-steppe and prairie ecosystems.
Floodplain-mapping With Modern It-instruments
NASA Astrophysics Data System (ADS)
Bley, D.; Pasche, E.
of all natural hazards, floods occur globally most frequently, claim most casualities and cause the biggest economic losses. Reasons are anthropogenic changes (river cor- rection, land surface sealing, waldsterben, climatic changes) combined with a high population density. Counteractions must be the resettlement of human beings away from flood-prone areas, flood controls and environmental monitoring, as well as renat- uralization and provision of retention basins and areas. The consequence, especially if we think of the recent flood-events on the rivers Rhine, Odra and Danube must be a preventive and sustainable flood control. As a consequence the legislator de- manded in the Water Management Act nation-wide floodplain-mapping, to preserve the necessary retention-areas for high water flows and prevent misuses. In this context, water level calculations based on a one-dimensional steady-flow computer model are among the major tasks in hydraulic engineering practice. Bjoernsen Consulting En- gineers developed in cooperation with the Technical University of Hamburg-Harburg the integrated software system WSPWIN. It is based upon state of the art informa- tion technology and latest developments in hydraulic research. WSPWIN consists of a pre-processing module, a calculation core, and GIS-based post-processing elements. As water level calculations require the recording and storage of large amounts of to- pographic and hydraulic data it is helpful that WSPWIN consists of an interactive graphical profile-editor, which allows visual data checking and editing. The calcu- lation program comprises water level calculations under steady uniform and steady non-uniform flow conditions using the formulas of Darcy-Weisbach and Gauckler- Manning-Strickler. Bridges, weirs, pipes as well as the effects of submerged vege- tation are taken into account. Post-processing includes plotting facilities for cross- sectional and longitudinal profiles as well as map-oriented GIS-based data editing and result presentation. Import of digital elevation models and generation of profiles are possible. Furthermore, the intersection of the DEM with the calculated water level en- ables the creation of floodplain maps. WSPWIN is the official standard software for one-dimensional hydraulic modeling in six German Federal States, where it is used by all water-management agencies. Moreover, many private companies, universities and water-associations employ WSPWIN as well. The program is presented showing the procedure and difficulties of floodplain-mapping and flood control on a Bavarian river.
Tillery, Anne
2008-01-01
The Southern High Plains aquifer is the principal aquifer and primary source of water in southeastern New Mexico. The Lea County portion of the aquifer covers approximately the northern two thirds of the 4,393-square-mile county. Successful water-supply planning for New Mexico's Southern High Plains requires knowledge of the current aquifer conditions and a context from which to estimate future trends given current aquifer-management policy. Maps representing water-level declines, current (2007) water levels, aquifer saturated thickness, and depth to water accompanied by hydrographs from representative wells for the Southern High Plains aquifer in the Lea County Underground Water Basin were prepared in cooperation with the New Mexico Office of the State Engineer. Results of this mapping effort show the water level has declined as much as 97 feet in the Lea County Underground Water Basin from predevelopment (1914-54) to 2007 with rates as high as 0.88 feet per year.
NASA Technical Reports Server (NTRS)
Schmer, F. A. (Principal Investigator); Isakson, R. E.; Eidenshink, J. C.
1977-01-01
The author has identified the following significant results. Successful operational applications of LANDSAT data were found for level 1 land use mapping, drainage network delineation, and aspen mapping. Visual LANDSAT interpretation using 1:125,000 color composite imagery was the least expensive method of obtaining timely level 1 land use data. With an average agricultural/rangeland interpretation accuracy in excess of 80%, such a data source was considered the most cost effective of those sources available to state agencies. Costs do not compare favorably with those incurred using the present method of extracting land use data from historical tabular summaries. The cost increase in advancing from the present procedure to a satellite-based data source was justified in terms of expanded data content.
Labeling Projections on Published Maps
Snyder, John P.
1987-01-01
To permit accurate scaling on a map, and to use the map as a source of accurate positions in the transfer of data, certain parameters - such as the standard parallels selected for a conic projection - must be stated on the map. This information is often missing on published maps. Three current major world atlases are evaluated with respect to map projection identification. The parameters essential for the projections used in these three atlases are discussed and listed. These parameters should be stated on any map based on the same projection.
,
2006-01-01
he growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.
,
2006-01-01
The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO Exportfiles/ and as ArcView shape files. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.
Till, Alison B.; Dumoulin, Julie A.; Phillips, Jeffrey D.; Stanley, Richard G.; Crews, Jessie
2006-01-01
The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.
,
2006-01-01
The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.
2015-12-01
by Year and Category..................................... 3 Figure 2. Map of Florida...16 Figure 3. Map of St. Petersburg................................................................... 17 Figure 4. Method of Line of... Map of Eastern United States ....................................................... 32 Figure 8. Virginia State Police Division Map
Contributions of Youth Engagement to the Development of Social Capital through Community Mapping
ERIC Educational Resources Information Center
Nathaniel, Keith C.; Kinsey, Sharon B.
2013-01-01
The Multi-State North Central Extension Research Activity (NCERA), Contributions of 4-H Participation to the Development of Social Capital, identified a strategy to pilot a research method that incorporates an inquiry-based approach to understanding community level impact of youth programs. This article focuses on how youth engagement educators…
World Geography Curriculum Guide: Secondary Social Studies. Bulletin 1727.
ERIC Educational Resources Information Center
Nicolosi, Louis J.; And Others
This world geography curriculum guide is designed to help teachers improve the quality of secondary level geography instruction. The guide contains Louisiana's social studies curriculum goals and information about the scope and sequence of the state's social studies program. Part 1 discusses the major geographical concepts of: (1) map and globe…
Analyzing key ecological functions for transboundary subbasin assessments.
B.G Marcot; T.A. O' Neil; J.B. Nyberg; A. MacKinnon; P.J. Paquet; D.H. Johnson
2007-01-01
We present an evaluation of the ecological roles ("key ecological functions" or KEFs) of 618 wildlife species as one facet of subbasin assessment in the Columbia River basin (CRB) of the United States and Canada. Using a wildlife-habitat relationships database (IBIS) and geographic information system, we have mapped KEFs as levels of functional redundancy (...
Assessment of the SMAP level 2 passive soil moisture product
USDA-ARS?s Scientific Manuscript database
The NASA Soil Moisture Active Passive (SMAP) satellite mission was launched on Jan 31, 2015. The observatory was developed to provide global mapping of high-resolution soil moisture and freeze-thaw state every 2–3 days using an L-band (active) radar and an L-band (passive) radiometer. SMAP provides ...
AMERICAN SOURCES OF REALIA FOR FRENCH CLASSES--REVISED EDITION, 1966.
ERIC Educational Resources Information Center
Kansas State Teachers Coll., Emporia.
DESIGNED FOR FRENCH TEACHERS AT ALL LEVELS, THIS BIBLIOGRAPHY OF SELECTED REALIA CURRENTLY AVAILABLE IN THE UNITED STATES CONTAINS SECTIONS ON PICTURES, MATERIALS FROM SERVICE BUREAUS, LOAN EXHIBITS, MAPS, NEWSPAPERS AND MAGAZINES IN FRENCH, PHONOGRAPH RECORDS, SLIDES AND FILMS, SONGS, AND TAPES. EACH ITEM IS ANNOTATED FOR CONTENT, COST (WHEN…
Natural-focal diseases: mapping experience in Russia.
Malkhazova, Svetlana M; Mironova, Varvara A; Kotova, Tatiana V; Shartova, Natalia V; Orlov, Dmitry S
2014-06-14
Natural-focal diseases constitute a serious hazard for human health. Agents and vectors of such diseases belong to natural landscapes. The aim of this study is to identify the diversity and geography of natural-focal diseases in Russia and to develop cartographic approaches for their mapping, including mathematical-cartographical modeling. Russian medico-geographical mapping of natural-focal diseases is highly developed regionally and locally but extremely limited at the national level. To solve this problem, a scientific team of the Faculty of Geography at Lomonosov Moscow State University has developed and implemented a project of a medico-geographical Atlas of Russia "Natural-Focal Diseases". The mapping is based on medical statistics data. The Atlas contains a series of maps on disease incidence, long-term dynamics of disease morbidity, etc. In addition, other materials available to the authors were used: mapping of the natural environment, field data, archival materials, analyzed satellite images, etc. The maps are processed using ArcGIS (ESRI) software application. Different methods of rendering of mapped phenomena are used (geographical ranges, diagrams, choropleth maps etc.). A series of analytical, integrated, and synthetic maps shows disease incidence in the population at both the national and regional levels for the last 15 years. Maps of the mean annual morbidity of certain infections and maps of morbidity dynamics and nosological profiles allow for a detailed analysis of the situation for each of 83 administrative units of the Russian Federation. The degree of epidemic hazard in Russia by natural-focal diseases is reflected in a synthetic medico-geographical map that shows the degree of epidemic risks due to such diseases in Russia and allows one to estimate the risk of disease manifestation in a given region. This is the first attempt at aggregation and public presentation of diverse and multifaceted information about natural-focal diseases in Russia. Taken in entirety, the maps that have been prepared for the Atlas will enable researchers to evaluate the stability of epidemic manifestation of individual diseases and the susceptibility of a given territory to disease transmission. The results can be used for sanitary monitoring and disease prevention.
Crossed-beam velocity map imaging of collisional autoionization processes
NASA Astrophysics Data System (ADS)
Delmdahl, Ralph F.; Bakker, Bernard L. G.; Parker, David H.
2000-11-01
Applying the velocity map imaging technique Penning ion formation as well as generation of associative ions is observed in autoionizing collisions of metastable neon atoms (Ne* 2p5 3s 3P2,0) with ground state argon targets in a crossed molecular beam experiment. Metastable neon reactants are obtained by nozzle expansion through a dc discharge ring. The quality of the obtained results clearly demonstrates the suitability of this new, particularly straightforward experimental approach with respect to angle and kinetic energy resolved investigations of Penning processes in crossed-beam studies which are known to provide the highest level of detail.
Alternative Fuels Data Center: Maps and Data
Biofuelsatlas BioFuels Atlas is an interactive map for comparing biomass feedstocks and biofuels by location . This tool helps users select from and apply biomass data layers to a map, as well as query and download State Biodiesel-stations View Map Graph E85-stations-map E85 Fueling Station Locations by State E85
A digital geologic map database for the state of Oklahoma
Heran, William D.; Green, Gregory N.; Stoeser, Douglas B.
2003-01-01
This dataset is a composite of part or all of the 12 1:250,000 scale quadrangles that make up Oklahoma. The result looks like a geologic map of the State of Oklahoma. But it is only an Oklahoma shaped map clipped from the 1:250,000 geologic maps. This is not a new geologic map. No new mapping took place. The geologic information from each quadrangle is available within the composite dataset.
Level IV Ecoregions of New Jersey
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level IV Ecoregions of New Mexico
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level IV Ecoregions of the Conterminous United States
Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2005). Level IV ecoregions are further subdivisions of Level III ecoregions. Methods used to define the ecoregions are explained in Omernik (
Level IV Ecoregions of North Carolina
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level III Ecoregions of South Carolina
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Level III Ecoregions of New Hampshire
Ecoregions by state were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 105 regions whereas the conterminous United States has 85 (U.S. Environmental Protection Agency, 2011). Level IV ecoregions are further subdivisions of Level III eco
Profile surveys along Henrys Fork, Idaho, and Logan River and Blacksmith Fork, Utah
Herron, William Harrison
1916-01-01
In order to determine the location of undeveloped water powers the United States Geological Survey has from time to time, alone and in cooperation with State organizations, made surveys and profiles of some of the rivers of the United States that are adapted to the development of power by low or medium heads of 20 to 100 feet.The surveys are made by means of plane table and stadia. Elevations are based on heights derived from primary or precise levels of the United States Geological Survey. The maps/are made in the field, and show not only the outlines of the river banks, the islands, the positions of rapids/falls, shoals, and existing dams, and the crossings of all ferries and roads, but the contours of banks to an elevation high enough to indicate the possibility of using the stream. The elevations of the various bench marks left are noted on the field sheets in their proper positions. The figures given with the gaging stations shown on the maps indicate the elevation of the zero of the gage.
Construction of optimal resources for concatenated quantum protocols
NASA Astrophysics Data System (ADS)
Pirker, A.; Wallnöfer, J.; Briegel, H. J.; Dür, W.
2017-06-01
We consider the explicit construction of resource states for measurement-based quantum information processing. We concentrate on special-purpose resource states that are capable to perform a certain operation or task, where we consider unitary Clifford circuits as well as non-trace-preserving completely positive maps, more specifically probabilistic operations including Clifford operations and Pauli measurements. We concentrate on 1 →m and m →1 operations, i.e., operations that map one input qubit to m output qubits or vice versa. Examples of such operations include encoding and decoding in quantum error correction, entanglement purification, or entanglement swapping. We provide a general framework to construct optimal resource states for complex tasks that are combinations of these elementary building blocks. All resource states only contain input and output qubits, and are hence of minimal size. We obtain a stabilizer description of the resulting resource states, which we also translate into a circuit pattern to experimentally generate these states. In particular, we derive recurrence relations at the level of stabilizers as key analytical tool to generate explicit (graph) descriptions of families of resource states. This allows us to explicitly construct resource states for encoding, decoding, and syndrome readout for concatenated quantum error correction codes, code switchers, multiple rounds of entanglement purification, quantum repeaters, and combinations thereof (such as resource states for entanglement purification of encoded states).
NASA Astrophysics Data System (ADS)
Fluet-Chouinard, E.; Lehner, B.; Aires, F.; Prigent, C.; McIntyre, P. B.
2017-12-01
Global surface water maps have improved in spatial and temporal resolutions through various remote sensing methods: open water extents with compiled Landsat archives and inundation with topographically downscaled multi-sensor retrievals. These time-series capture variations through time of open water and inundation without discriminating between hydrographic features (e.g. lakes, reservoirs, river channels and wetland types) as other databases have done as static representation. Available data sources present the opportunity to generate a comprehensive map and typology of aquatic environments (deepwater and wetlands) that improves on earlier digitized inventories and maps. The challenge of classifying surface waters globally is to distinguishing wetland types with meaningful characteristics or proxies (hydrology, water chemistry, soils, vegetation) while accommodating limitations of remote sensing data. We present a new wetland classification scheme designed for global application and produce a map of aquatic ecosystem types globally using state-of-the-art remote sensing products. Our classification scheme combines open water extent and expands it with downscaled multi-sensor inundation data to capture the maximal vegetated wetland extent. The hierarchical structure of the classification is modified from the Cowardin Systems (1979) developed for the USA. The first level classification is based on a combination of landscape positions and water source (e.g. lacustrine, riverine, palustrine, coastal and artificial) while the second level represents the hydrologic regime (e.g. perennial, seasonal, intermittent and waterlogged). Class-specific descriptors can further detail the wetland types with soils and vegetation cover. Our globally consistent nomenclature and top-down mapping allows for direct comparison across biogeographic regions, to upscale biogeochemical fluxes as well as other landscape level functions.
USE OF ROAD MAPS IN NATIONAL ASSESSMENTS OF FOREST FRAGMENTATION IN THE UNITED STATES
Including road-mediated forest fragmentation is a contentious issue in United States national assessments. We compared fragmentation as calculated from national land-cover maps alone, and from land-cover maps in combination with road maps. The increment of forest edge from roads ...
,
1998-01-01
The U.S. Geological Survey (USGS) sells a variety of maps of the United States. Who needs these maps? Students, land planners, politicians, teachers, marketing specialists, delivery companies, authors and illustrators, attorneys, railroad enthusiasts, travelers, Government agencies, military recruiters, newspapers, map collectors, truckers, boaters, hikers, sales representatives, communication specialists. Everybody.
NASA Astrophysics Data System (ADS)
Ishii, M.; Rigopoulos, N.; Poolton, N. R. J.; Hamilton, B.
2007-02-01
A new technique named X-EFM that measures the x-ray absorption fine structure (XAFS) of nanometer objects was developed. In X-EFM, electrostatic force microscopy (EFM) is used as an x-ray absorption detector, and photoionization induced by x-ray absorption of surface electron trapping sites is detected by EFM. An EFM signal with respect to x-ray photon energy provides the XAFS spectra of the trapping sites. We adopted X-EFM to observe Si oxide thin films. An edge jump shift intrinsic to the X-EFM spectrum was found, and it was explained with a model where an electric field between the trapping site and probe deepens the energy level of the inner-shell. A scanning probe under x-rays with fixed photon energy provided the chemical state mapping on the surface.
Mapping Ionic Currents and Reactivity on the Nanoscale: Electrochemical Strain Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalinin, S.V.
2010-10-19
Solid-state electrochemical processes in oxides underpin a broad spectrum of energy and information storage devices, ranging from Li-ion and Li-air batteries, to solid oxide fuel cells (SOFC) to electroresistive and memristive systems. These functionalities are controlled by the bias-driven diffusive and electromigration transport of mobile ionic species, as well as intricate a set of electrochemical and defect-controlled reactions at interfaces and in bulk. Despite the wealth of device-level and atomistic studies, little is known on the mesoscopic mechanisms of ion diffusion and electronic transport on the level of grain clusters, individual grains, and extended defects. The development of the capabilitymore » for probing ion transport on the nanometer scale is a key to deciphering complex interplay between structure, functionality, and performance in these systems. Here we introduce Electrochemical Strain Microscopy, a scanning probe microscopy technique based on strong strain-bias coupling in the systems in which local ion concentrations are changed by electrical fields. The imaging capability, as well as time- and voltage spectroscopies analogous to traditional current based electrochemical characterization methods are developed. The reversible intercalation of Li and mapping electrochemical activity in LiCoO2 is demonstrated, illustrating higher Li diffusivity at non-basal planes and grain boundaries. In Si-anode device structure, the direct mapping of Li diffusion at extended defects and evolution of Li-activity with charge state is explored. The electrical field-dependence of Li mobility is studied to determine the critical bias required for the onset of electrochemical transformation, allowing reaction and diffusion processes in the battery system to be separated at each location. Finally, the applicability of ESM for probing oxygen vacancy diffusion and oxygen reduction/evolution reactions is illustrated, and the high resolution ESM maps are correlated with aberration corrected scanning transmission electron microscopy imaging. The future potential for deciphering mechanisms of electrochemical transformations on an atomically-defined single-defect level is discussed.« less
Speciation within Columnea section Angustiflora (Gesneriaceae): islands, pollinators and climate.
Schulte, Lacie J; Clark, John L; Novak, Stephen J; Jeffries, Shandra K; Smith, James F
2015-03-01
Despite many advances in evolutionary biology, understanding the proximate mechanisms that lead to speciation for many taxonomic groups remains elusive. Phylogenetic analyses provide a means to generate well-supported estimates of species relationships. Understanding how genetic isolation (restricted gene flow) occurred in the past requires not only a well-supported molecular phylogenetic analysis, but also an understanding of when character states that define species may have changed. In this study, phylogenetic trees resolve species level relationships for fourteen of the fifteen species within Columnea section Angustiflorae (Gesneriaceae). The distributions of sister species pairs are compared and ancestral character states are reconstructed using Bayesian stochastic mapping. Climate variables were also assessed and shifts in ancestral climate conditions were mapped using SEEVA. The relationships between morphological character states and climate variables were assessed with correlation analyses. These results indicate that species in section Angustiflorae have likely diverged as a result of allopatric, parapatric, and sympatric speciation, with both biotic and abiotic forces driving morphological and phenological divergence. Copyright © 2015 Elsevier Inc. All rights reserved.
Kephalopoulos, Stylianos; Paviotti, Marco; Anfosso-Lédée, Fabienne; Van Maercke, Dirk; Shilton, Simon; Jones, Nigel
2014-06-01
The Environmental Noise Directive (2002/49/EC) requires EU Member States to determine the exposure to environmental noise through strategic noise mapping and to elaborate action plans in order to reduce noise pollution, where necessary. A common framework for noise assessment methods (CNOSSOS-EU) has been developed by the European Commission in co-operation with the EU Member States to be applied for strategic noise mapping as required by the Environment Noise Directive (2002/49/EC). CNOSSOS-EU represents a harmonised and coherent approach to assess noise levels from the main sources of noise (road traffic, railway traffic, aircraft and industrial) across Europe. This paper outlines the process behind the development of CNOSSOS-EU and the parts of the CNOSSOS-EU core methodological framework which were developed during phase A of the CNOSSOS-EU process (2010-2012), whilst focusing on the main scientific and technical issues that were addressed, and the implementation challenges that are being faced before it can become fully operational in the EU MS. Copyright © 2014. Published by Elsevier B.V.
Vasopressor Use for Severe Hypotension-A Multicentre Prospective Observational Study.
Lamontagne, Francois; Cook, Deborah J; Meade, Maureen O; Seely, Andrew; Day, Andrew G; Charbonney, Emmanuel; Serri, Karim; Skrobik, Yoanna; Hebert, Paul; St-Arnaud, Charles; Quiroz-Martinez, Hector; Mayette, Michaël; Heyland, Daren K
2017-01-01
The optimal approach to titrate vasopressor therapy is unclear. Recent sepsis guidelines recommend a mean arterial pressure (MAP) target of 65 mmHg and higher for chronic hypertensive patients. As data emerge from clinical trials comparing blood pressure targets for vasopressor therapy, an accurate description of usual care is required to interpret study results. Our aim was to measure MAP values during vasopressor therapy in Canadian intensive care units (ICUs) and to compare these with stated practices and guidelines. In a multicenter prospective cohort study of critically ill adults with severe hypotension, we recorded MAP and vasopressor doses hourly. We investigated variability across patients and centres using multivariable regression models and Analysis of variance (ANOVA), respectively. We included data from 56 patients treated in 6 centers. The mean (standard deviation [SD]) age and Acute Physiology and Chronic Health Evaluation (APACHE) II score were 64 (14) and 25 (8). Half (28 of 56) of the patients were at least 65 years old, and half had chronic hypertension. The patient-averaged MAP while receiving vasopressors was 75 mm Hg (6) and the median (1st quartile, 3rd quartile) duration of vasopressor therapy was 43 hours (23, 84). MAP achieved was not associated with history of underlying hypertension (p = 0.46) but did vary by center (p<0.001). In this multicenter, prospective observational study, the patient-level average MAP while receiving vasopressors for severe hypotension was 75 mmHg, approximately 10 mmHg above current recommendations and stated practices. Moreover, our results do not support the notion that clinicians tailor vasopressor therapy to individual patient characteristics such as underlying chronic hypertension but MAP achieved while receiving vasopressors varied by site.
Vasopressor Use for Severe Hypotension—A Multicentre Prospective Observational Study
Cook, Deborah J.; Meade, Maureen O.; Seely, Andrew; Day, Andrew G.; Charbonney, Emmanuel; Serri, Karim; Skrobik, Yoanna; Hebert, Paul; St-Arnaud, Charles; Quiroz-Martinez, Hector; Mayette, Michaël; Heyland, Daren K.
2017-01-01
Background The optimal approach to titrate vasopressor therapy is unclear. Recent sepsis guidelines recommend a mean arterial pressure (MAP) target of 65 mmHg and higher for chronic hypertensive patients. As data emerge from clinical trials comparing blood pressure targets for vasopressor therapy, an accurate description of usual care is required to interpret study results. Our aim was to measure MAP values during vasopressor therapy in Canadian intensive care units (ICUs) and to compare these with stated practices and guidelines. Method In a multicenter prospective cohort study of critically ill adults with severe hypotension, we recorded MAP and vasopressor doses hourly. We investigated variability across patients and centres using multivariable regression models and Analysis of variance (ANOVA), respectively. Results We included data from 56 patients treated in 6 centers. The mean (standard deviation [SD]) age and Acute Physiology and Chronic Health Evaluation (APACHE) II score were 64 (14) and 25 (8). Half (28 of 56) of the patients were at least 65 years old, and half had chronic hypertension. The patient-averaged MAP while receiving vasopressors was 75 mm Hg (6) and the median (1st quartile, 3rd quartile) duration of vasopressor therapy was 43 hours (23, 84). MAP achieved was not associated with history of underlying hypertension (p = 0.46) but did vary by center (p<0.001). Conclusions In this multicenter, prospective observational study, the patient-level average MAP while receiving vasopressors for severe hypotension was 75 mmHg, approximately 10 mmHg above current recommendations and stated practices. Moreover, our results do not support the notion that clinicians tailor vasopressor therapy to individual patient characteristics such as underlying chronic hypertension but MAP achieved while receiving vasopressors varied by site. PMID:28107357
U.S. Geological Survey Ground-Water Climate Response Network
,
2007-01-01
The U.S. Geological Survey serves the Nation by providing reliable hydrologic information used by others to manage the Nation's water resources. The U.S. Geological Survey (USGS) measures more than 20,000 wells each year for a variety of objectives as part of Federal programs and in cooperation with State and local agencies. Water-level data are collected using consistent data-collection and quality-control methods. A small subset of these wells meets the criteria necessary to be included in a 'Climate Response Network' of wells designed to illustrate the response of the ground-water system to climate variations nationwide. The primary purpose of the Climate Response Network is to portray the effect of climate on ground-water levels in unconfined aquifers or near-surface confined aquifers that are minimally affected by pumping or other anthropogenic stresses. The Climate Response Network Web site (http://groundwaterwatch.usgs.gov/) is the official USGS Web site for illustrating current ground-water conditions in the United States and Puerto Rico. The Climate Response Network Web pages provide information on ground-water conditions at a variety of scales. A national map provides a broad overview of water-table conditions across the Nation. State maps provide a more local picture of ground-water conditions. Site pages provide the details about a specific well.
Functional magnetic resonance imaging.
Buchbinder, Bradley R
2016-01-01
Functional magnetic resonance imaging (fMRI) maps the spatiotemporal distribution of neural activity in the brain under varying cognitive conditions. Since its inception in 1991, blood oxygen level-dependent (BOLD) fMRI has rapidly become a vital methodology in basic and applied neuroscience research. In the clinical realm, it has become an established tool for presurgical functional brain mapping. This chapter has three principal aims. First, we review key physiologic, biophysical, and methodologic principles that underlie BOLD fMRI, regardless of its particular area of application. These principles inform a nuanced interpretation of the BOLD fMRI signal, along with its neurophysiologic significance and pitfalls. Second, we illustrate the clinical application of task-based fMRI to presurgical motor, language, and memory mapping in patients with lesions near eloquent brain areas. Integration of BOLD fMRI and diffusion tensor white-matter tractography provides a road map for presurgical planning and intraoperative navigation that helps to maximize the extent of lesion resection while minimizing the risk of postoperative neurologic deficits. Finally, we highlight several basic principles of resting-state fMRI and its emerging translational clinical applications. Resting-state fMRI represents an important paradigm shift, focusing attention on functional connectivity within intrinsic cognitive networks. © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Panda, Binayak; Gorti, Sridhar
2013-01-01
A number of research instruments are available at NASA's Marshall Space Flight Center (MSFC) to support ISS researchers and their investigations. These modern analytical tools yield valuable and sometimes new informative resulting from sample characterization. Instruments include modern scanning electron microscopes equipped with field emission guns providing analytical capabilities that include angstron-level image resolution of dry, wet and biological samples. These microscopes are also equipped with silicon drift X-ray detectors (SDD) for fast yet precise analytical mapping of phases, as well as electron back-scattered diffraction (EBSD) units to map grain orientations in crystalline alloys. Sample chambers admit large samples, provide variable pressures for wet samples, and quantitative analysis software to determine phase relations. Advances in solid-state electronics have also facilitated improvements for surface chemical analysis that are successfully employed to analyze metallic materials and alloys, ceramics, slags, and organic polymers. Another analytical capability at MSFC is a mganetic sector Secondary Ion Mass Spectroscopy (SIMS) that quantitatively determines and maps light elements such as hydrogen, lithium, and boron along with their isotopes, identifies and quantifies very low level impurities even at parts per billion (ppb) levels. Still other methods available at MSFC include X-ray photo-electron spectroscopy (XPS) that can determine oxidation states of elements as well as identify polymers and measure film thicknesses on coated materials, Scanning Auger electron spectroscopy (SAM) which combines surface sensitivity, spatial lateral resolution (approximately 20 nm), and depth profiling capabilities to describe elemental compositions in near surface regions and even the chemical state of analyzed atoms. Conventional Transmission Electron Microscope (TEM) for observing internal microstructures at very high magnifications and the Electron Probe Micro-analyzer (EPMA) for very precise microanalysis are available as needed by the researcher. Space Station researchers are invited to work with MSFC in analyzing their samples using these techniques.
NASA Astrophysics Data System (ADS)
Câmara, F.; Oliveira, J.; Hormigo, T.; Araújo, J.; Ribeiro, R.; Falcão, A.; Gomes, M.; Dubois-Matra, O.; Vijendran, S.
2015-06-01
This paper discusses the design and evaluation of data fusion strategies to perform tiered fusion of several heterogeneous sensors and a priori data. The aim is to increase robustness and performance of hazard detection and avoidance systems, while enabling safe planetary and small body landings anytime, anywhere. The focus is on Mars and asteroid landing mission scenarios and three distinct data fusion algorithms are introduced and compared. The first algorithm consists of a hybrid camera-LIDAR hazard detection and avoidance system, the H2DAS, in which data fusion is performed at both sensor-level data (reconstruction of the point cloud obtained with a scanning LIDAR using the navigation motion states and correcting the image for motion compensation using IMU data), feature-level data (concatenation of multiple digital elevation maps, obtained from consecutive LIDAR images, to achieve higher accuracy and resolution maps while enabling relative positioning) as well as decision-level data (fusing hazard maps from multiple sensors onto a single image space, with a single grid orientation and spacing). The second method presented is a hybrid reasoning fusion, the HRF, in which innovative algorithms replace the decision-level functions of the previous method, by combining three different reasoning engines—a fuzzy reasoning engine, a probabilistic reasoning engine and an evidential reasoning engine—to produce safety maps. Finally, the third method presented is called Intelligent Planetary Site Selection, the IPSIS, an innovative multi-criteria, dynamic decision-level data fusion algorithm that takes into account historical information for the selection of landing sites and a piloting function with a non-exhaustive landing site search capability, i.e., capable of finding local optima by searching a reduced set of global maps. All the discussed data fusion strategies and algorithms have been integrated, verified and validated in a closed-loop simulation environment. Monte Carlo simulation campaigns were performed for the algorithms performance assessment and benchmarking. The simulations results comprise the landing phases of Mars and Phobos landing mission scenarios.
Utilizing multi-sensor fire detections to map fires in the United States
Howard, Stephen M.; Picotte, Joshua J.; Coan, Michael
2014-01-01
In 2006, the Monitoring Trends in Burn Severity (MTBS) project began a cooperative effort between the US Forest Service (USFS) and the U.S.Geological Survey (USGS) to map and assess burn severity all large fires that have occurred in the United States since 1984. Using Landsat imagery, MTBS is mandated to map wildfire and prescribed fire that meet specific size criteria: greater than 1000 acres in the west and 500 acres in the east, regardless of ownership. Relying mostly on federal and state fire occurrence records, over 15,300 individual fires have been mapped. While mapping recorded fires, an additional 2,700 “unknown” or undocumented fires were discovered and assessed. It has become apparent that there are perhaps thousands of undocumented fires in the US that are yet to be mapped. Fire occurrence records alone are inadequate if MTBS is to provide a comprehensive accounting of fire across the US. Additionally, the sheer number of fires to assess has overwhelmed current manual procedures. To address these problems, the National Aeronautics and Space Administration (NASA) Applied Sciences Program is helping to fund the efforts of the USGS and its MTBS partners (USFS, National Park Service) to develop, and implement a system to automatically identify fires using satellite data. In near real time, USGS will combine active fire satellite detections from MODIS, AVHRR and GOES satellites with Landsat acquisitions. Newly acquired Landsat imagery will be routinely scanned to identify freshly burned area pixels, derive an initial perimeter and tag the burned area with the satellite date and time of detection. Landsat imagery from the early archive will be scanned to identify undocumented fires. Additional automated fire assessment processes will be developed. The USGS will develop these processes using open source software packages in order to provide freely available tools to local land managers providing them with the capability to assess fires at the local level.
Voss, Frank D.
2003-01-01
In a joint effort by the Washington State Department of Agriculture, the Washington Department of Ecology, and the U.S. Geological Survey, the Environmental Protection Agency's Pesticide Root Zone Model and a Geographic Information System were used to develop and test a method for screening and mapping the susceptibility of ground water in agricultural areas to pesticide contamination. The objective was to produce a map that would be used by the Washington State Department of Agriculture to allocate resources for monitoring pesticide levels in ground water. The method was tested by producing a map showing susceptibility to leaching of the pesticide atrazine for the Columbia Basin Irrigation Project, which encompasses an area of intensive agriculture in eastern Washington. The reliability of the atrazine map was assessed by using statistical procedures to determine whether the median of the percentage of atrazine simulated to leach below the root zone in wells where atrazine was detected was statistically greater than the median percentage at wells where atrazine was not detected (at or above 0.001 microgram per liter) in 134 wells sampled by the U.S. Geological Survey. A statistical difference in medians was not found when all 134 wells were compared. However, a statistical difference was found in medians for two subsets of the 134 wells that were used in land-use studies (studies examining the quality of ground water beneath specific crops). The statistical results from wells from the land-use studies indicate that the model potentially can be used to map the relative susceptibility of agricultural areas to atrazine leaching. However, the distinction between areas of high and low susceptibility may not yet be sufficient to use the method for allocating resources to monitor water quality. Several options are offered for improving the reliability of future simulations.
Utilizing Multi-Sensor Fire Detections to Map Fires in the United States
NASA Astrophysics Data System (ADS)
Howard, S. M.; Picotte, J. J.; Coan, M. J.
2014-11-01
In 2006, the Monitoring Trends in Burn Severity (MTBS) project began a cooperative effort between the US Forest Service (USFS) and the U.S.Geological Survey (USGS) to map and assess burn severity all large fires that have occurred in the United States since 1984. Using Landsat imagery, MTBS is mandated to map wildfire and prescribed fire that meet specific size criteria: greater than 1000 acres in the west and 500 acres in the east, regardless of ownership. Relying mostly on federal and state fire occurrence records, over 15,300 individual fires have been mapped. While mapping recorded fires, an additional 2,700 "unknown" or undocumented fires were discovered and assessed. It has become apparent that there are perhaps thousands of undocumented fires in the US that are yet to be mapped. Fire occurrence records alone are inadequate if MTBS is to provide a comprehensive accounting of fire across the US. Additionally, the sheer number of fires to assess has overwhelmed current manual procedures. To address these problems, the National Aeronautics and Space Administration (NASA) Applied Sciences Program is helping to fund the efforts of the USGS and its MTBS partners (USFS, National Park Service) to develop, and implement a system to automatically identify fires using satellite data. In near real time, USGS will combine active fire satellite detections from MODIS, AVHRR and GOES satellites with Landsat acquisitions. Newly acquired Landsat imagery will be routinely scanned to identify freshly burned area pixels, derive an initial perimeter and tag the burned area with the satellite date and time of detection. Landsat imagery from the early archive will be scanned to identify undocumented fires. Additional automated fire assessment processes will be developed. The USGS will develop these processes using open source software packages in order to provide freely available tools to local land managers providing them with the capability to assess fires at the local level.
NASA Astrophysics Data System (ADS)
Bellini, A.; Anderson, J.; van der Marel, R. P.; King, I. R.; Piotto, G.; Bedin, L. R.
2017-06-01
We take advantage of the exquisite quality of the Hubble Space Telescope astro-photometric catalog of the core of ωCen presented in the first paper of this series to derive a high-resolution, high-precision, high-accuracy differential-reddening map of the field. The map has a spatial resolution of 2 × 2 arcsec2 over a total field of view of about 4.‧3 × 4.‧3. The differential reddening itself is estimated via an iterative procedure using five distinct color-magnitude diagrams, which provided consistent results to within the 0.1% level. Assuming an average reddening value E(B - V) = 0.12, the differential reddening within the cluster’s core can vary by up to ±10%, with a typical standard deviation of about 4%. Our differential-reddening map is made available to the astronomical community in the form of a multi-extension FITS file. This differential-reddening map is essential for a detailed understanding of the multiple stellar populations of ωCen, as presented in the next paper in this series. Moreover, it provides unique insight into the level of small spatial-scale extinction variations in the Galactic foreground. Based on archival observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.
Molecular-biological analysis of the effect of methamphetamine on the heart in restrained mice.
Shinone, Kotaro; Tomita, Masafumi; Inoue, Hiromasa; Nakagawa, Yasuhisa; Ikemura, Mayumi; Nata, Masayuki
2010-03-01
In order to investigate the interaction in the heart between the administration of methamphetamine (MAP) and restraint of the body following it, we administrated MAP intraperitoneally to mice and restrained them, and then determined the level of mRNA expression of 22 genes in the heart using quantitative RT-PCR method. The mRNA expressions of Nfkbiz, Nr4a1 and Dusp1 changed significantly after the administration of MAP, suggesting the induction of an inflammatory condition such as damage to the myocardium. Moreover, the serum concentrations of inflammatory cytokines such as tumor necrosis factor-alpha, interleukin (IL)-1 beta and IL-6 were significantly increased by the administration of MAP. On the other hand, the mRNA expressions of Rgs2 and Rasd1 were changed by both the administration of MAP and body restraint without interaction, which indicated that these insults affected the circulatory system additively or synergistically. From these results, it is likely that the administration of MAP, followed by body restraint, might cause acute myocardial damage due to the direct myocardial toxic effect of MAP, myocardial hypoxia and/or severe hypertension, which is one of the mechanisms for sudden death in MAP abusers who were restrained due to their excited state. (c) 2010. Published by Elsevier Ireland Ltd.
Energy map of southwestern Wyoming, Part A - Coal and wind
Biewick, Laura; Jones, Nicholas R.
2012-01-01
To further advance the objectives of the Wyoming Landscape Conservation Initiative (WLCI) the U.S. Geological Survey (USGS) and the Wyoming State Geological Survey (WSGS) have compiled Part A of the Energy Map of Southwestern Wyoming. Focusing primarily on electrical power sources, Part A of the energy map is a compilation of both published and previously unpublished coal (including coalbed gas) and wind energy resources data, presented in a Geographic Information System (GIS) data package. Energy maps, data, documentation and spatial data processing capabilities are available in a geodatabase, published map file (pmf), ArcMap document (mxd), Adobe Acrobat PDF map (plate 1) and other digital formats that can be downloaded at the USGS website. Accompanying the map (plate 1) and the geospatial data are four additional plates that describe the geology, energy resources, and related infrastructure. These tabular plates include coal mine (plate 2), coal field (plate 3), coalbed gas assessment unit (plate 4), and wind farm (plate 5) information with hyperlinks to source publications and data on the internet. The plates can be printed and examined in hardcopy, or accessed digitally. The data represent decades of research by the USGS, WSGS, BLM and others, and can facilitate landscape-level science assessments, and resource management decisionmaking.
Lifetime of vibrational levels from Fourier grid calculations: RbCs example.
Londoño, B E; Mahecha, J; Luc-Koenig, E; Crubellier, A
2011-11-14
We present systematic calculations of the lifetimes of vibrational levels of excited Rb(5s)Cs(6p(1/2)) 0(+) electronic states. We show that a precise description of the variation with the internuclear distance of the transition dipole moment between electronic states is essential. It is also crucial to account precisely for the spin-orbit coupling between the Rb(5s)Cs(6p) A (1)Σ(+) and b (3)Π states. We describe the general trends of the probability of formation of stable molecules in the Rb(5s)Cs(6s) X (1)Σ(+) and a (3)Σ(+) electronic states, through radiative decay from the 0(+)v' levels, together with the branching ratios for the obtention of singlet or triplet molecules, stable with respect to dissociation. Furthermore, this analysis allows us to demonstrate the efficiency of the Mapped Fourier Grid Hamiltonian Representation method (MFGHR) to determine rigorously the energy variation, throughout the continuous part of the spectrum, of the density of an observable connecting bound vibrational levels and continuum states. The resolution in energy can be adapted to the studied problem through a judicious choice of the grid parameters.
Soybean Crop Area Estimation and Mapping in Mato Grosso State, Brazil
NASA Astrophysics Data System (ADS)
Gusso, A.; Ducati, J. R.
2012-07-01
Evaluation of the MODIS Crop Detection Algorithm (MCDA) procedure for estimating historical planted soybean crop areas was done on fields in Mato Grosso State, Brazil. MCDA is based on temporal profiles of EVI (Enhanced Vegetation Index) derived from satellite data of the MODIS (Moderate Resolution Imaging Spectroradiometer) imager, and was previously developed for soybean area estimation in Rio Grande do Sul State, Brazil. According to the MCDA approach, in Mato Grosso soybean area estimates can be provided in December (1st forecast), using images from the sowing period, and in February (2nd forecast), using images from sowing and maximum crop development period. The results obtained by the MCDA were compared with Brazilian Institute of Geography and Statistics (IBGE) official estimates of soybean area at municipal level. Coefficients of determination were between 0.93 and 0.98, indicating a good agreement, and also the suitability of MCDA to estimations performed in Mato Grosso State. On average, the MCDA results explained 96% of the variation of the data estimated by the IBGE. In this way, MCDA calibration was able to provide annual thematic soybean maps, forecasting the planted area in the State, with results which are comparable to the official agricultural statistics.
Salton Sea ecosystem monitoring and assessment plan
Case(compiler), H. L.; Boles, Jerry; Delgado, Arturo; Nguyen, Thang; Osugi, Doug; Barnum, Douglas A.; Decker, Drew; Steinberg, Steven; Steinberg, Sheila; Keene, Charles; White, Kristina; Lupo, Tom; Gen, Sheldon; Baerenklau, Ken A.
2013-01-01
The Salton Sea, California’s largest lake, provides essential habitat for several fish and wildlife species and is an important cultural and recreational resource. It has no outlet, and dissolved salts contained in the inflows concentrate in the Salton Sea through evaporation. The salinity of the Salton Sea, which is currently nearly one and a half times the salinity of ocean water, has been increasing as a result of evaporative processes and low freshwater inputs. Further reductions in inflows from water conservation, recycling, and transfers will lower the level of the Salton Sea and accelerate the rate of salinity increases, reduce the suitability of fish and wildlife habitat, and affect air quality by exposing lakebed playa that could generate dust. Legislation enacted in 2003 to implement the Quantification Settlement Agreement (QSA) stated the Legislature’s intent for the State of California to undertake the restoration of the Salton Sea ecosystem. As required by the legislation, the California Resources Agency (now California Natural Resources Agency) produced the Salton Sea Ecosystem Restoration Study and final Programmatic Environmental Impact Report (PEIR; California Resources Agency, 2007) with the stated purpose to “develop a preferred alternative by exploring alternative ways to restore important ecological functions of the Salton Sea that have existed for about 100 years.” A decision regarding a preferred alternative currently resides with the California State Legislature (Legislature), which has yet to take action. As part of efforts to identify an ecosystem restoration program for the Salton Sea, and in anticipation of direction from the Legislature, the California Department of Water Resources (DWR), California Department of Fish and Wildlife (CDFW), U.S. Bureau of Reclamation (Reclamation), and U.S. Geological Survey (USGS) established a team to develop a monitoring and assessment plan (MAP). This plan is the product of that effort. The goal of the MAP is to provide a guide for data collection, analysis, management, and reporting to inform management actions for the Salton Sea ecosystem. Monitoring activities are directed at species and habitats that could be affected by or drive future restoration activities. The MAP is not intended to be a prescriptive document. Rather, it is envisioned to be a flexible, program-level guide that articulates high-level goals and objectives, and establishes broad sideboards within which future project-level investigations and studies will be evaluated and authorized. As such, the MAP, by design, does not, for example, include detailed protocols describing how investigations will be implemented. It is anticipated that detailed study proposals will be prepared as part of an implementation plan that will include such things as specific sampling objectives, sampling schemes, and statistical and spatial limits.
A linkage map for the B-genome of Arachis (Fabaceae) and its synteny to the A-genome
Moretzsohn, Márcio C; Barbosa, Andrea VG; Alves-Freitas, Dione MT; Teixeira, Cristiane; Leal-Bertioli, Soraya CM; Guimarães, Patrícia M; Pereira, Rinaldo W; Lopes, Catalina R; Cavallari, Marcelo M; Valls, José FM; Bertioli, David J; Gimenes, Marcos A
2009-01-01
Background Arachis hypogaea (peanut) is an important crop worldwide, being mostly used for edible oil production, direct consumption and animal feed. Cultivated peanut is an allotetraploid species with two different genome components, A and B. Genetic linkage maps can greatly assist molecular breeding and genomic studies. However, the development of linkage maps for A. hypogaea is difficult because it has very low levels of polymorphism. This can be overcome by the utilization of wild species of Arachis, which present the A- and B-genomes in the diploid state, and show high levels of genetic variability. Results In this work, we constructed a B-genome linkage map, which will complement the previously published map for the A-genome of Arachis, and produced an entire framework for the tetraploid genome. This map is based on an F2 population of 93 individuals obtained from the cross between the diploid A. ipaënsis (K30076) and the closely related A. magna (K30097), the former species being the most probable B genome donor to cultivated peanut. In spite of being classified as different species, the parents showed high crossability and relatively low polymorphism (22.3%), compared to other interspecific crosses. The map has 10 linkage groups, with 149 loci spanning a total map distance of 1,294 cM. The microsatellite markers utilized, developed for other Arachis species, showed high transferability (81.7%). Segregation distortion was 21.5%. This B-genome map was compared to the A-genome map using 51 common markers, revealing a high degree of synteny between both genomes. Conclusion The development of genetic maps for Arachis diploid wild species with A- and B-genomes effectively provides a genetic map for the tetraploid cultivated peanut in two separate diploid components and is a significant advance towards the construction of a transferable reference map for Arachis. Additionally, we were able to identify affinities of some Arachis linkage groups with Medicago truncatula, which will allow the transfer of information from the nearly-complete genome sequences of this model legume to the peanut crop. PMID:19351409
NASA Astrophysics Data System (ADS)
Rybalova, Elena; Semenova, Nadezhda; Strelkova, Galina; Anishchenko, Vadim
2017-06-01
We study the transition from coherence (complete synchronization) to incoherence (spatio-temporal chaos) in ensembles of nonlocally coupled chaotic maps with nonhyperbolic and hyperbolic attractors. As basic models of a partial element we use the Henon map and the Lozi map. We show that the transition to incoherence in a ring of coupled Henon maps occurs through the appearance of phase and amplitude chimera states. An ensemble of coupled Lozi maps demonstrates the coherence-incoherence transition via solitary states and no chimera states are observed in this case.
NASA Technical Reports Server (NTRS)
1995-01-01
In the early 1990s, the Ohio State University Center for Mapping, a NASA Center for the Commercial Development of Space (CCDS), developed a system for mobile mapping called the GPSVan. While driving, the users can map an area from the sophisticated mapping van equipped with satellite signal receivers, video cameras and computer systems for collecting and storing mapping data. George J. Igel and Company and the Ohio State University Center for Mapping advanced the technology for use in determining the contours of a construction site. The new system reduces the time required for mapping and staking, and can monitor the amount of soil moved.
NASA Astrophysics Data System (ADS)
Song, Juntao; Fine, Carolyn; Prodan, Emil
2014-11-01
The effect of strong disorder on chiral-symmetric three-dimensional lattice models is investigated via analytical and numerical methods. The phase diagrams of the models are computed using the noncommutative winding number, as functions of disorder strength and model's parameters. The localized/delocalized characteristic of the quantum states is probed with level statistics analysis. Our study reconfirms the accurate quantization of the noncommutative winding number in the presence of strong disorder, and its effectiveness as a numerical tool. Extended bulk states are detected above and below the Fermi level, which are observed to undergo the so-called "levitation and pair annihilation" process when the system is driven through a topological transition. This suggests that the bulk invariant is carried by these extended states, in stark contrast with the one-dimensional case where the extended states are completely absent and the bulk invariant is carried by the localized states.
,
2005-01-01
Discover a small sample of the millions of maps produced by the U.S. Geological Survey (USGS) in its mission to map the Nation and survey its resources. This booklet gives a brief overview of the types of maps sold and distributed by the USGS through its Earth Science Information Centers (ESIC) and also available from business partners located in most States. The USGS provides a wide variety of maps, from topographic maps showing the geographic relief and thematic maps displaying the geology and water resources of the United States, to special studies of the moon and planets.
Composite fermion theory for bosonic quantum Hall states on lattices.
Möller, G; Cooper, N R
2009-09-04
We study the ground states of the Bose-Hubbard model in a uniform magnetic field, motivated by the physics of cold atomic gases on lattices at high vortex density. Mapping the bosons to composite fermions (CF) leads to the prediction of quantum Hall fluids that have no counterpart in the continuum. We construct trial states for these phases and test numerically the predictions of the CF model. We establish the existence of strongly correlated phases beyond those in the continuum limit and provide evidence for a wider scope of the composite fermion approach beyond its application to the lowest Landau level.
Magnetic properties and energy-mapping analysis.
Xiang, Hongjun; Lee, Changhoon; Koo, Hyun-Joo; Gong, Xingao; Whangbo, Myung-Hwan
2013-01-28
The magnetic energy levels of a given magnetic solid are closely packed in energy because the interactions between magnetic ions are weak. Thus, in describing its magnetic properties, one needs to generate its magnetic energy spectrum by employing an appropriate spin Hamiltonian. In this review article we discuss how to determine and specify a necessary spin Hamiltonian in terms of first principles electronic structure calculations on the basis of energy-mapping analysis and briefly survey important concepts and phenomena that one encounters in reading the current literature on magnetic solids. Our discussion is given on a qualitative level from the perspective of magnetic energy levels and electronic structures. The spin Hamiltonian appropriate for a magnetic system should be based on its spin lattice, i.e., the repeat pattern of its strong magnetic bonds (strong spin exchange paths), which requires one to evaluate its Heisenberg spin exchanges on the basis of energy-mapping analysis. Other weaker energy terms such as Dzyaloshinskii-Moriya (DM) spin exchange and magnetocrystalline anisotropy energies, which a spin Hamiltonian must include in certain cases, can also be evaluated by performing energy-mapping analysis. We show that the spin orientation of a transition-metal magnetic ion can be easily explained by considering its split d-block levels as unperturbed states with the spin-orbit coupling (SOC) as perturbation, that the DM exchange between adjacent spin sites can become comparable in strength to the Heisenberg spin exchange when the two spin sites are not chemically equivalent, and that the DM interaction between rare-earth and transition-metal cations is governed largely by the magnetic orbitals of the rare-earth cation.
NASA Astrophysics Data System (ADS)
Haggerty, Dennis Charles
Community college students need to be abstract thinkers in order to be successful in the introductory Physics curriculum. The purpose of this dissertation is to map the abstract thinking of community college Physics students. The laboratory environment was used as a vehicle for the mapping. Three laboratory experiments were encountered. One laboratory was based on the classic Piagetian task, the centripetal motion (CM) problem. The other two laboratories were introductory electrostatic Physics experiments, Resistance (RES) and Capacitance (CAP). The students performed all laboratories using the thinking-aloud technique. The researcher collected their verbal protocols using audiotapes. The audiotaped data was quantified by comparing it to a scoring matrix based on the Piagetian logical operators (Inhelder & Piaget, 1958) for abstract thinking. The students received scores for each laboratory experiment. These scores were compared to a reliable test of intellectual functioning, the Shipley Institute of Living Scale (SILS). Spearman rank correlation coefficients (SRCC) were obtained for SILS versus CM; SILS versus RES; and SILS versus CAP. Statistically significant results were obtained for SILS versus CM and SILS versus RES at the p < 0.05 level. When an outlier to the data was considered and suppressed, the SILS versus CAP was also statistically significant at the p < 0.05 level. The scoring matrix permits a bridge from the qualitative Piagetian level of cognitive development to a quantified, mapped level of cognitive development. The ability to quantify student abstract thinking in Physics education provides a means to adjust an instructional approach. This approach could lead to a proper state of Physics education.
Evaluation of urban drainage network based geographycal information system (GIS) in Sumenep City
NASA Astrophysics Data System (ADS)
Agrianto, F.; Hadiani, R.; Purwana, Y. M.
2017-02-01
Sumenep City frequently hit by floods. Drainage network conditions greatly affect the performance of her maid, especially those aspects that affect the capacity of the drainage channel. Aspects that affect the capacity of the drainage channel in the form of sedimentation rate and complementary buildings on drainage channels, for example, the presence of street inlet and trash rack. The method used is a drainage channel capacity level approach that level assessment of each segment drainage network conditions by calculating the ratio of the channel cross-sectional area that is filled with sediment to the total cross-sectional area wet and the existence of complementary buildings. Having obtained the condition index value of each segment, the subsequent analysis is spatial analysis using ArcGIS applications to obtain a map of the drainage network information. The analysis showed that the level condition of drainage network in the city of Sumenep in 2016 that of the total 428 drainage network there are 43 sections belonging to the state level “Good”, 198 drainage network belong to the state level “Enough”, 115 drainage network belong to the state “Mild Damaged”, 50 sections belonging to the state “Heavy Damage” and 22 drainage network belong to the state of “Dysfunction”.
NASA Astrophysics Data System (ADS)
French, R. A.; Felson, A. J.; Kirmmse, E.; Hagemann, K.
2015-12-01
Connecticut's densely developed coastline is highly vulnerable to sea level rise and coastal storms. 95% of the state's entire population lives within 50 miles of the shore. Connecticut has more than $542 billion in insured assets in harms way, only Florida has a greater exposure. As part of the state of Connecticut Phase 1 application for the HUD National Disaster Resilience Competition, the Connecticut Institute for Resilience and Climate Adaptation (CIRCA) at the University of Connecticut undertook an assessment of coastal vulnerabilities, including the impacts of sea level rise on the frequency of flooding, socioeconomic factors, critical infrastructure, and housing using data collected from federal, state, and municipal sources. Connecticut's unique geology, characterized by a glaciated coastline with highly erodible former deltas and elevated ridgelines extending out to rocky headlands, became the basis of the climate adaptation approach. Together with a nine state agency workgroup, municipal and regional government, and non-profit and industry representatives, CIRCA and the Yale UED lab developed a long-term urban redevelopment solution of resilient access and egress corridors layered over ridgelines and resilient zones of transit oriented economic development linked to shoreline communities. This concept can be applied in both Connecticut's coastal cities like New Haven and its smaller towns. The process demonstrated the effective partnership between the universities and state agencies in bringing the science of flood modeling and mapping together with innovative design to create solutions for climate adaptation. However, it also revealed significant gaps in data availability to analyze the economic and social drivers for adopting different adaptation strategies. Furthermore, the accuracy of current flood mapping tools needs to be improved to predict future flooding at the municipal project scale. As Connecticut and other states move forward with resilience planning, continued investment in physical and social sciences at the local level will be necessary to effectively implement those plans.
Digital Data for the reconnaissance geologic map for the Kuskokwim Bay Region of Southwest Alaska
Wilson, Frederic H.; Hults, Chad P.; Mohadjer, Solmaz; Coonrad, Warren L.; Shew, Nora B.; Labay, Keith A.
2008-01-01
INTRODUCTION The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.
NASA Astrophysics Data System (ADS)
Massey, Richard
Cropland characteristics and accurate maps of their spatial distribution are required to develop strategies for global food security by continental-scale assessments and agricultural land use policies. North America is the major producer and exporter of coarse grains, wheat, and other crops. While cropland characteristics such as crop types are available at country-scales in North America, however, at continental-scale cropland products are lacking at fine sufficient resolution such as 30m. Additionally, applications of automated, open, and rapid methods to map cropland characteristics over large areas without the need of ground samples are needed on efficient high performance computing platforms for timely and long-term cropland monitoring. In this study, I developed novel, automated, and open methods to map cropland extent, crop intensity, and crop types in the North American continent using large remote sensing datasets on high-performance computing platforms. First, a novel method was developed in this study to fuse pixel-based classification of continental-scale Landsat data using Random Forest algorithm available on Google Earth Engine cloud computing platform with an object-based classification approach, recursive hierarchical segmentation (RHSeg) to map cropland extent at continental scale. Using the fusion method, a continental-scale cropland extent map for North America at 30m spatial resolution for the nominal year 2010 was produced. In this map, the total cropland area for North America was estimated at 275.2 million hectares (Mha). This map was assessed for accuracy using randomly distributed samples derived from United States Department of Agriculture (USDA) cropland data layer (CDL), Agriculture and Agri-Food Canada (AAFC) annual crop inventory (ACI), Servicio de Informacion Agroalimentaria y Pesquera (SIAP), Mexico's agricultural boundaries, and photo-interpretation of high-resolution imagery. The overall accuracies of the map are 93.4% with a producer's accuracy for crop class at 85.4% and user's accuracy of 74.5% across the continent. The sub-country statistics including state-wise and county-wise cropland statistics derived from this map compared well in regression models resulting in R2 > 0.84. Secondly, an automated phenological pattern matching (PPM) method to efficiently map cropping intensity was also developed in this study. This study presents a continental-scale cropping intensity map for the North American continent at 250m spatial resolution for 2010. In this map, the total areas for single crop, double crop, continuous crop, and fallow were estimated to be 123.5 Mha, 11.1 Mha, 64.0 Mha, and 83.4 Mha, respectively. This map was assessed using limited country-level reference datasets derived from United States Department of Agriculture cropland data layer and Agriculture and Agri-Food Canada annual crop inventory with overall accuracies of 79.8% and 80.2%, respectively. Third, two novel and automated decision tree classification approaches to map crop types across the conterminous United States (U.S.) using MODIS 250 m resolution data: 1) generalized, and 2) year-specific classification were developed. The classification approaches use similarities and dissimilarities in crop type phenology derived from NDVI time-series data for the two approaches. Annual crop type maps were produced for 8 major crop types in the United States using the generalized classification approach for 2001-2014 and the year-specific approach for 2008, 2010, 2011 and 2012. The year-specific classification had overall accuracies greater than 78%, while the generalized classifier had accuracies greater than 75% for the conterminous U.S. for 2008, 2010, 2011, and 2012. The generalized classifier enables automated and routine crop type mapping without repeated and expensive ground sample collection year after year with overall accuracies > 70% across all independent years. Taken together, these cropland products of extent, cropping intensity, and crop types, are significantly beneficial in agricultural and water use planning and monitoring to formulate policies towards global and North American food security issues.
Ward, Zachary J.; Long, Michael W.; Resch, Stephen C.; Gortmaker, Steven L.; Cradock, Angie L.; Giles, Catherine; Hsiao, Amber; Wang, Y. Claire
2016-01-01
Background State-level estimates from the Centers for Disease Control and Prevention (CDC) underestimate the obesity epidemic because they use self-reported height and weight. We describe a novel bias-correction method and produce corrected state-level estimates of obesity and severe obesity. Methods Using non-parametric statistical matching, we adjusted self-reported data from the Behavioral Risk Factor Surveillance System (BRFSS) 2013 (n = 386,795) using measured data from the National Health and Nutrition Examination Survey (NHANES) (n = 16,924). We validated our national estimates against NHANES and estimated bias-corrected state-specific prevalence of obesity (BMI≥30) and severe obesity (BMI≥35). We compared these results with previous adjustment methods. Results Compared to NHANES, self-reported BRFSS data underestimated national prevalence of obesity by 16% (28.67% vs 34.01%), and severe obesity by 23% (11.03% vs 14.26%). Our method was not significantly different from NHANES for obesity or severe obesity, while previous methods underestimated both. Only four states had a corrected obesity prevalence below 30%, with four exceeding 40%–in contrast, most states were below 30% in CDC maps. Conclusions Twelve million adults with obesity (including 6.7 million with severe obesity) were misclassified by CDC state-level estimates. Previous bias-correction methods also resulted in underestimates. Accurate state-level estimates are necessary to plan for resources to address the obesity epidemic. PMID:26954566
Landscapes of Vermont. A Curriculum Guide in Land Use Education.
ERIC Educational Resources Information Center
Ring, Noel, Ed.
This manual is designed to assist schools and organizations in gaining a better understanding of land use at the community, state, and national levels. The manual emphasizes interpretation of maps and photo-imagery to analyze the geographic concepts relating to landscape. The manual promotes the use of local government publications from the U.S.…
Sensitivity of Attitude Determination on the Model Assumed for ISAR Radar Mappings
NASA Astrophysics Data System (ADS)
Lemmens, S.; Krag, H.
2013-09-01
Inverse synthetic aperture radars (ISAR) are valuable instrumentations for assessing the state of a large object in low Earth orbit. The images generated by these radars can reach a sufficient quality to be used during launch support or contingency operations, e.g. for confirming the deployment of structures, determining the structural integrity, or analysing the dynamic behaviour of an object. However, the direct interpretation of ISAR images can be a demanding task due to the nature of the range-Doppler space in which these images are produced. Recently, a tool has been developed by the European Space Agency's Space Debris Office to generate radar mappings of a target in orbit. Such mappings are a 3D-model based simulation of how an ideal ISAR image would be generated by a ground based radar under given processing conditions. These radar mappings can be used to support a data interpretation process. E.g. by processing predefined attitude scenarios during an observation sequence and comparing them with actual observations, one can detect non-nominal behaviour. Vice versa, one can also estimate the attitude states of the target by fitting the radar mappings to the observations. It has been demonstrated for the latter use case that a coarse approximation of the target through an 3D-model is already sufficient to derive the attitude information from the generated mappings. The level of detail required for the 3D-model is determined by the process of generating ISAR images, which is based on the theory of scattering bodies. Therefore, a complex surface can return an intrinsically noisy ISAR image. E.g. when many instruments on a satellite are visible to the observer, the ISAR image can suffer from multipath reflections. In this paper, we will further analyse the sensitivity of the attitude fitting algorithms to variations in the dimensions and the level of detail of the underlying 3D model. Moreover, we investigate the ability to estimate the orientations of different spacecraft components with respect to each other from the fitting procedure.
NASA Astrophysics Data System (ADS)
Rautenbach, Victoria; Coetzee, Serena; Çöltekin, Arzu
2017-05-01
Topographic maps are among the most commonly used map types, however, their complex and information-rich designs depicting natural, human-made and cultural features make them difficult to read. Regardless of their complexity, spatial planners make extensive use of topographic maps in their work. On the other hand, various studies suggest that map literacy among the development planning professionals in South Africa is not very high. The widespread use of topographic maps combined with the low levels of map literacy presents challenges for effective development planning. In this paper we address some of these challenges by developing a specialized task taxonomy based on systematically assessed map literacy levels; and conducting an empirical experiment with topographic maps to evaluate our task taxonomy. In such empirical studies if non-realistic tasks are used, the results of map literacy tests may be skewed. Furthermore, experience and familiarity with the studied map type play a role in map literacy. There is thus a need to develop map literacy tests aimed at planners specifically. We developed a taxonomy of realistic map reading tasks typically executed during the planning process. The taxonomy defines six levels tasks of increasing difficulty and complexity, ranging from recognising symbols to extracting knowledge. We hypothesized that competence in the first four levels indicates functional map literacy. In this paper, we present results from an empirical experiment with 49 map literate participants solving a subset of tasks from the first four levels of the taxonomy with a topographic map. Our findings suggest that the proposed taxonomy is a good reference for evaluating topographic map literacy. Participants solved the tasks on all four levels as expected and we therefore conclude that the experiment based on the first four levels of the taxonomy successfully determined the functional map literacy of the participants. We plan to continue the study for the remaining levels, repeat the experiments with a group of map illiterate participants to confirm that the taxonomy can also be used to determine map illiteracy.
Semi-automatic Data Integration using Karma
NASA Astrophysics Data System (ADS)
Garijo, D.; Kejriwal, M.; Pierce, S. A.; Houser, P. I. Q.; Peckham, S. D.; Stanko, Z.; Hardesty Lewis, D.; Gil, Y.; Pennington, D. D.; Knoblock, C.
2017-12-01
Data integration applications are ubiquitous in scientific disciplines. A state-of-the-art data integration system accepts both a set of data sources and a target ontology as input, and semi-automatically maps the data sources in terms of concepts and relationships in the target ontology. Mappings can be both complex and highly domain-specific. Once such a semantic model, expressing the mapping using community-wide standard, is acquired, the source data can be stored in a single repository or database using the semantics of the target ontology. However, acquiring the mapping is a labor-prone process, and state-of-the-art artificial intelligence systems are unable to fully automate the process using heuristics and algorithms alone. Instead, a more realistic goal is to develop adaptive tools that minimize user feedback (e.g., by offering good mapping recommendations), while at the same time making it intuitive and easy for the user to both correct errors and to define complex mappings. We present Karma, a data integration system that has been developed over multiple years in the information integration group at the Information Sciences Institute, a research institute at the University of Southern California's Viterbi School of Engineering. Karma is a state-of-the-art data integration tool that supports an interactive graphical user interface, and has been featured in multiple domains over the last five years, including geospatial, biological, humanities and bibliographic applications. Karma allows a user to import their own ontology and datasets using widely used formats such as RDF, XML, CSV and JSON, can be set up either locally or on a server, supports a native backend database for prototyping queries, and can even be seamlessly integrated into external computational pipelines, including those ingesting data via streaming data sources, Web APIs and SQL databases. We illustrate a Karma workflow at a conceptual level, along with a live demo, and show use cases of Karma specifically for the geosciences. In particular, we show how Karma can be used intuitively to obtain the mapping model between case study data sources and a publicly available and expressive target ontology that has been designed to capture a broad set of concepts in geoscience with standardized, easily searchable names.
Bartos, Timothy T.; Hallberg, Laura L.
2011-01-01
The High Plains aquifer system, commonly called the High Plains aquifer in many publications, is a nationally important water resource that underlies a 111-million-acre area (173,000 square miles) in parts of eight States including Wyoming. Through irrigation of crops with groundwater from the High Plains aquifer system, the area that overlies the aquifer system has become one of the major agricultural regions in the world. In addition, the aquifer system also serves as the primary source of drinking water for most residents of the region. The High Plains aquifer system is one of the largest aquifers or aquifer systems in the world. The High Plains aquifer system underlies an area of 8,190 square miles in southeastern Wyoming. Including Laramie County, the High Plains aquifer system is present in parts of five counties in southeastern Wyoming. The High Plains aquifer system underlies 8 percent of Wyoming, and 5 percent of the aquifer system is located within the State. Based on withdrawals for irrigation, public supply, and industrial use in 2000, the High Plains aquifer system is the most utilized source of groundwater in Wyoming. With the exception of the Laramie Mountains in western Laramie County, the High Plains aquifer system is present throughout Laramie County. In Laramie County, the High Plains aquifer system is the predominant groundwater resource for agricultural (irrigation), municipal, industrial, and domestic uses. Withdrawal of groundwater for irrigation (primarily in the eastern part of the county) is the largest use of water from the High Plains aquifer system in Laramie County and southeastern Wyoming. Continued interest in groundwater levels in the High Plains aquifer system in Laramie County prompted a study by the U.S. Geological Survey in cooperation with the Wyoming State Engineer's Office to update the potentiometric-surface map of the aquifer system in Laramie County. Groundwater levels were measured in wells completed in the High Plains aquifer system from March to June 2009. The groundwater levels were used to construct a map of the potentiometric surface of the High Plains aquifer system. In addition, depth to water and estimated saturated-thickness maps of the aquifer system were constructed using the potentiometric-surface map.
Map of forest ownership in the conterminous United States. [Scale 1:7,500,000].
Mark D. Nelson; Greg C. Liknes; Brett J. Butler
2010-01-01
This map depicts the spatial distribution of forest land across the conterminous United States, in 2007, differentiated into public vs. private forest land, and the percentage of corporate ownership of private forest land. Notable differences between eastern and western United States are evident on the map. Over two-thirds of western forest land is publicly owned, the...
Liu, Zhanjiang; Karsi, Attila; Li, Ping; Cao, Dongfeng; Dunham, R
2003-01-01
Catfish is the major aquaculture species in the United States. The hybrid catfish produced by crossing channel catfish females with blue catfish males exhibit a number of desirable production traits, but their mass production has been difficult. To introduce desirable genes from blue catfish into channel catfish through introgression, a genetic linkage map is helpful. In this project, a genetic linkage map was constructed using amplified fragment length polymorphism (AFLP). A total of 607 AFLP markers were analyzed using 65 primer combinations and an interspecific backcross resource family. A total of 418 AFLP markers were assigned to 44 linkage groups. Among the remaining 189 markers, 101 were not used because of significant segregation distortion, 29 were unlinked, and 59 were eliminated because they span very large distances. The 418 AFLP markers covered 1593 cM Kosambi. The AFLP markers showed a high level of clustering that appears to be related to certain primer combinations. This linkage map will serve as the basis for mapping a greater number of markers to provide a map with high enough resolution for it to be useful for selective breeding programs using introgression. PMID:14573480
Activities for Plate Tectonics using GeoMapApp
NASA Astrophysics Data System (ADS)
Goodwillie, A. M.
2016-12-01
The concept of plate tectonics is a fundamental component of our understanding of how Earth works yet authentic, high-quality geoscience data related to plate tectonics may not be readily available to all students. To compound matters, when data is accessible, students may not possess the skills or resources necessary to explore and analyse it. As a result, much emphasis at federal and state level is now placed upon encouraging students to work with more data and more technology more often and more rigourously. Easy-to-use digital platforms offer much potential for promoting inquiry-based learning at all levels of education. GeoMapApp is one such tool. Developed at Columbia University's Lamont-Doherty Earth Observatory, GeoMapApp (http://www.geomapapp.org) is a free resource that integrates a wide range of research-grade geoscience data in one intuitive map-based interface. Simple strategies for data manipulation, visualisation and presentation allow uses to explore the data in meaningful ways. Layering and transparency capabilities further allow learners to use GeoMapApp to compare multiple data sets at once, and high-impact Save Session functionality allows a GeoMapApp project to be saved for sharing or later use. In this presentation, activities related to plate tectonics will be highlighted. One GeoMapApp activity helps students investigate plate boundaries by exploring earthquake and volcano locations. Another requires students to calculate the rate of seafloor spreading using crustal age data in various ocean basins. A third uses the GeoMapApp layering technique to explore the influence of geological forces in shaping the landscape. Each activity shown can be done by students on an individual basis, as pairs, or as groups. Educators report that student use of GeoMapApp fosters an increased sense of data "ownership" amongst students, promotes STEM skills, and provides them with access to authentic research-grade geoscience data using the same cutting-edge technological tool used by researchers.
Methodology of the interpretation of remote sensing data and applications in geology
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Veneziani, P.; Dosanjos, C. E.
1981-01-01
Methods used for interpreting orbital (LANDSAT) data for regional geological mapping in Brazil are examined. Particular attention is given to the levels of analysis used for studying geomorphology, structural geology, lithology, stratigraphy, surface geology, and dynamic processes. Examples of regional mapping described include: (1) rock intrusions in SE Sao Paulo, the southern parts of Minas Gerais, and the states of Rio de Janeiro, and Espiritu Santo; (2) a preliminary survey of Pre-Cambrian geology in the State of Piaui; and (3) the Gondwana Project - surveying Jaguaribe plants. Mineral exploration in Rio Grande do Sul, and the geology of the Alcalino complex of Itatiaia are discussed as well as the use of automatic classifications of rock intrusions and of ilmenite deposits in the Floresta Region. Aerial photography, side looking radar, and thermal infrared scanning are other types of remote sensors also used in prospecting for geothermal anomalies in the city of Caldas Novas-Goias.
Annual summary of ground-water conditions in Arizona, Spring 1981 to Spring 1982
,
1982-01-01
The withdrawal of ground water was about 5.4 million acre-feet in Arizona in 1981, which is about 800,000 acre-feet more than the amount withdrawn in 1980. Most of the increase in 1981 was in the amount of ground water used for irrigation in the Basin and Range lowlands province. Through 1981, slightly more than 189 million acre-feet of ground water had been withdrawn from the ground-water reservoirs in Arizona. The report contains two small-scale maps that show ground-water pumpage by areas and the status of the ground-water inventory in the State. The main map, which is at a scale of 1:500,000, shows potential well production, depth to water in selected wells in spring 1982, and change in water level in selected wells from 1977 to 1982. A brief text summarizes the current ground-water conditions in the State. (USGS)
InMAP: a new model for air pollution interventions
NASA Astrophysics Data System (ADS)
Tessum, C. W.; Hill, J. D.; Marshall, J. D.
2015-10-01
Mechanistic air pollution models are essential tools in air quality management. Widespread use of such models is hindered, however, by the extensive expertise or computational resources needed to run most models. Here, we present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations - the air pollution outcome generally causing the largest monetized health damages - attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical information from the output of a state-of-the-science chemical transport model (WRF-Chem) within an Eulerian modeling framework, to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. InMAP uses a variable resolution grid that focuses on human exposures by employing higher spatial resolution in urban areas and lower spatial resolution in rural and remote locations and in the upper atmosphere; and by directly calculating steady-state, annual average concentrations. In comparisons run here, InMAP recreates WRF-Chem predictions of changes in total PM2.5 concentrations with population-weighted mean fractional error (MFE) and bias (MFB) < 10 % and population-weighted R2 ~ 0.99. Among individual PM2.5 species, the best predictive performance is for primary PM2.5 (MFE: 16 %; MFB: 13 %) and the worst predictive performance is for particulate nitrate (MFE: 119 %; MFB: 106 %). Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. Features planned for future model releases include a larger spatial domain, more temporal information, and the ability to predict ground-level ozone (O3) concentrations. The InMAP model source code and input data are freely available online.
Netzel, Pawel
2017-01-01
The United States is increasingly becoming a multi-racial society. To understand multiple consequences of this overall trend to our neighborhoods we need a methodology capable of spatio-temporal analysis of racial diversity at the local level but also across the entire U.S. Furthermore, such methodology should be accessible to stakeholders ranging from analysts to decision makers. In this paper we present a comprehensive framework for visualizing and analyzing diversity data that fulfills such requirements. The first component of our framework is a U.S.-wide, multi-year database of race sub-population grids which is freely available for download. These 30 m resolution grids have being developed using dasymetric modeling and are available for 1990-2000-2010. We summarize numerous advantages of gridded population data over commonly used Census tract-aggregated data. Using these grids frees analysts from constructing their own and allows them to focus on diversity analysis. The second component of our framework is a set of U.S.-wide, multi-year diversity maps at 30 m resolution. A diversity map is our product that classifies the gridded population into 39 communities based on their degrees of diversity, dominant race, and population density. It provides spatial information on diversity in a single, easy-to-understand map that can be utilized by analysts and end users alike. Maps based on subsequent Censuses provide information about spatio-temporal dynamics of diversity. Diversity maps are accessible through the GeoWeb application SocScape (http://sil.uc.edu/webapps/socscape_usa/) for an immediate online exploration. The third component of our framework is a proposal to quantitatively analyze diversity maps using a set of landscape metrics. Because of its form, a grid-based diversity map could be thought of as a diversity “landscape” and analyzed quantitatively using landscape metrics. We give a brief summary of most pertinent metrics and demonstrate how they can be applied to diversity maps. PMID:28358862
Soil amplification maps for estimating earthquake ground motions in the Central US
Bauer, R.A.; Kiefer, J.; Hester, N.
2001-01-01
The State Geologists of the Central United States Earthquake Consortium (CUSEC) are developing maps to assist State and local emergency managers and community officials in evaluating the earthquake hazards for the CUSEC region. The state geological surveys have worked together to produce a series of maps that show seismic shaking potential for eleven 1 X 2 degree (scale 1:250 000 or 1 in. ??? 3.9 miles) quadrangles that cover the high-risk area of the New Madrid Seismic Zone in eight states. Shear wave velocity values for the surficial materials were gathered and used to classify the soils according to their potential to amplify earthquake ground motions. Geologic base maps of surficial materials or 3-D material maps, either existing or produced for this project, were used in conjunction with shear wave velocities to classify the soils for the upper 15-30 m. These maps are available in an electronic form suitable for inclusion in the federal emergency management agency's earthquake loss estimation program (HAZUS). ?? 2001 Elsevier Science B.V. All rights reserved.
Hydrologic Unit Map -- 1978, state of South Dakota
,
1978-01-01
This map and accompanying table show Hydrologic Unites that are basically hydrographic in nature. The Cataloging Unites shown supplant the Cataloging Units previously depicted n the 1974 State Hydrologic Unit Map. The boundaries as shown have been adapted from the 1974 State Hydrologic Unit Map, "The Catalog of Information on Water Data" (1972), "Water Resources Regions and Subregions for the National Assessment of Water and Related Land Resources" by the U.S. Water Resources Council (1970), "River Basin of the United States" by the U.S. Soil Conservation Service (1963, 1970), "River Basin Maps Showing Hydrologic Stations" by the Inter-Agency Committee on Water Resources, Subcommittee on Hydrology (1961), and State planning maps. The Political Subdivision has been adopted from "Counties and County Equivalents of the States if the United States" presented in Federal Information Processing Standards Publication 6-2, issued by the National Bureau of Standards (1973) in which each county or county equivalent is identified by a 2-character State code and a 3-character county code. The Regions, Subregions and Accounting Units are aggregates of the Cataloging Unites. The Regions and Sub regions are currently (1978) used by the U.S> Water Resources Council for comprehensive planning, including the National Assessment, and as a standard geographical framework for more detailed water and related land-resources planning. The Accounting Units are those currently (1978) in use by the U.S. Geological Survey for managing the National Water Data Network. This map was revised to include a boundary realinement between Cataloging Units 10140103 and 10160009.
Reducing Future International Chemical and Biological Dangers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haddal, Chad; Bull, Diana L.; Hernandez, Patricia Marie
The International Biological and Chemical Threat Reduction Program at Sandia National Laboratories is developing a 15 - year technology road map in support the United States Government efforts to reduce international chemical and biological dangers . In 2017, the program leadership chartered an analysis team to explore dangers in the future international chemical and biological landscape through engagements with national security experts within and beyond Sandia to gain a multidisciplinary perspective on the future . This report offers a hi gh level landscape of future chemical and biological dangers based upon analysis of those engagements and provides support for furthermore » technology road map development.« less
Risk maps for targeting exotic plant pest detection programs in the United States
R.D. Magarey; D.M. Borchert; J.S. Engle; M Garcia-Colunga; Frank H. Koch; et al
2011-01-01
In the United States, pest risk maps are used by the Cooperative Agricultural Pest Survey for spatial and temporal targeting of exotic plant pest detection programs. Methods are described to create standardized host distribution, climate and pathway risk maps for the top nationally ranked exotic pest targets. Two examples are provided to illustrate the risk mapping...
California State Waters Map Series—Offshore of Monterey, California
Johnson, Samuel Y.; Dartnell, Peter; Hartwell, Stephen R.; Cochrane, Guy R.; Golden, Nadine E.; Watt, Janet T.; Davenport, Clifton W.; Kvitek, Rikk G.; Erdey, Mercedes D.; Krigsman, Lisa M.; Sliter, Ray W.; Maier, Katherine L.; Johnson, Samuel Y.; Cochran, Susan A.
2016-08-18
IntroductionIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath bathymetry data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow subsurface geology.The Offshore of Monterey map area in central California is located on the Pacific Coast, about 120 km south of San Francisco. Incorporated cities in the map area include Seaside, Monterey, Marina, Pacific Grove, Carmel-by-the-Sea, and Sand City. The local economy receives significant resources from tourism, as well as from the Federal Government. Tourist attractions include the Monterey Bay Aquarium, Cannery Row, Fisherman’s Wharf, and the many golf courses near Pebble Beach, and the area serves as a gateway to the spectacular scenery and outdoor activities along the Big Sur coast to the south. Federal facilities include the Army’s Defense Language Institute, the Naval Postgraduate School, and the Fleet Numerical Meteorology and Oceanography Center (operated by the Navy). In 1994, Fort Ord army base, located between Seaside and Marina, was closed; much of former army base land now makes up the Fort Ord National Monument, managed by the U.S. Bureau of Land Management as part of the National Landscape Conservation System. In addition, part of the old Fort Ord is now occupied by California State University, Monterey Bay.The offshore part of the map area lies entirely within the Monterey Bay National Marine Sanctuary, one of the nation’s largest marine sanctuaries. State beaches and parks within the map area include Fort Ord Dunes State Park and the Marina, Monterey, and Asilomar State Beaches, as well as Carmel River State Beach, which includes the Carmel River Lagoon and Wetland Natural Preserve. The map area also includes all or part of several State Marine Protected Areas, including the Carmel Pinnacles, Asilomar, and Lovers Point–Julia Platt State Marine Reserves, as well as the Carmel Bay, Pacific Grove Marine Gardens, Edward F. Ricketts, and Portuguese Ledge State Marine Conservation Areas.The coastal zone in the map area is characterized by two distinct physiographies. From Marina to Monterey, sandy beaches are backed by a belt of sand dunes, as much as 30 to 40 m high and as wide as 8 km. The Salinas River supplies the sand for the beaches and dunes. Nearshore sediment transport is primarily to the south, in the southern Monterey littoral cell.Along the Monterey peninsula, which lies at the north end of the rugged Santa Lucia Range, coastal relief is very different. The peninsula is characterized largely by low marine terraces that formed mostly on hard and relatively stable granitic bedrock. Carmel Beach in Carmel-by-the-Sea is the longest continuous beach in this area; bedrock points and small pocket beaches characterize most of the rest of the peninsula. The Carmel River littoral cell extends along the coast from Point Pinos to Point Lobos (just south of the map area), including Carmel Beach; sediment transport is primarily to the south.The granitic rocks that crop out so prominently along the Monterey peninsula make up part of the Salinian block, a crustal terrane that in this area lies west of the San Andreas Fault and east of the San Gregorio Fault. The strike-slip San Andreas Fault Zone, which lies just 26 km east of the map area, is the most important structure within the Pacific–North American transform plate boundary. The San Gregorio Fault, a secondary fault within the distributed plate boundary, cuts through (and is roughly aligned with) Carmel Canyon, a submarine canyon in the southwest corner of the map area that is part of the Monterey Canyon system. The San Gregorio Fault Zone is part of a fault system that is present predominantly in the offshore for about 400 km, from Point Conception in the south (where it is known as the Hosgri Fault) to Bolinas and Point Reyes in the north.The offshore part of the map area primarily consists of relatively flat continental shelf, bounded on the west by the steep flanks of Carmel Canyon. Shelf width varies from 2 to 3 km in the southern part of the map area, near the mouth of Carmel Canyon, to 14 km in Monterey Bay. Bedrock beneath the shelf is overlain in many areas by variable amounts (0 to 16 m) of upper Quaternary shelf and nearshore sediments deposited as sea level fluctuated in the late Pleistocene. “Soft-induration,” unconsolidated sediment is the dominant (about 63 percent) habitat type on the continental shelf, followed by “hard-induration” rock and boulders (about 34 percent) and “mixed-induration” substrate (about 3 percent). At water depths of about 100 to 130 m, the shelf break approximates the shoreline during the sea-level lowstand of the Last Glacial Maximum, about 21,000 years ago.Carmel Canyon and other parts of the Monterey Canyon system in the map area extend from the shelf break to water depths that reach 1,600 m. Most of the extensive incision of the shelf break and canyon flanks probably occurred during repeated Quaternary sea-level lowstands. The relatively straight floor of Carmel Canyon notably is aligned with the San Gregorio Fault Zone. Mixed hard-soft substrate is the most common (about 51 percent) habitat type in Carmel Canyon; hard bedrock and soft, unconsolidated sediment cover about 40 percent and 9 percent of canyon habitat, respectively.This part of the central California coast is exposed to large North Pacific swells from the northwest throughout the year. Wave heights range from 2 to 10 m, the larger swells occurring from October to May. During El Niño–Southern Oscillation (ENSO) events, winter storms track farther south than they do in normal (non-ENSO) years, thereby impacting the map area more frequently and with waves of larger heights.Benthic species observed in the map area are natives of the cold-temperate biogeographic zone that is called either the “Oregonian province” or the “northern California ecoregion.” This biogeographic province is maintained by the long-term stability of the southward-flowing California Current, the eastern limb of the North Pacific subtropical gyre that flows from southern British Columbia to Baja California.Biological productivity resulting from coastal upwelling supports populations of Sooty Shearwater, Western Gull, Common Murre, Cassin’s Auklet, and many other less populous bird species. An observable recovery of Humpback and Blue Whales has occurred in the area; both species are dependent on coastal upwelling to provide nutrients. The large extent of exposed inner shelf bedrock supports large forests of “bull kelp,” which is well adapted for high-wave-energy environments. The kelp beds are well-known habitat for the population of southern sea otters. Common fish species found in the kelp beds and rocky reefs include lingcod and various species of rockfish and greenling.
,
2005-01-01
The U.S. Geological Survey (USGS) sells a variety of maps of the United States. Who needs these maps? Students, land planners, politicians, teachers, marketing specialists, delivery companies, authors and illustrators, attorneys, railroad enthusiasts, travelers, Government agencies, military recruiters, newspapers, map collectors, truckers, boaters, hikers, sales representatives, communication specialists. Everybody. Users of these maps range from a corporation planning a regional expansion or a national marketing campaign, to a person who wants a decoration to hang on the wall. If you are not sure which map best meets your needs, call the Earth Science Information Center for assistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mar, M.H.
1995-07-01
Based on the vulnerability Lethality (V/L) taxonomy developed by the Ballistic Vulnerability Lethality Division (BVLD) of the Survivability Lethality Analysis Directorate (SLAD), a nuclear electromagnetic pulse (EMP) coupling V/L analysis taxonomy has been developed. A nuclear EMP threat to a military system can be divided into two levels: (1) coupling to a system level through a cable, antenna, or aperture; and (2) the component level. This report will focus on the initial condition, which includes threat definition and target description, as well as the mapping process from the initial condition to damaged components state. EMP coupling analysis at a systemmore » level is used to accomplish this. This report introduces the nature of EMP threat, interaction between the threat and target, and how the output of EMP coupling analysis at a system level becomes the input to the component level analysis. Many different tools (EMP coupling codes) will be discussed for the mapping process, which correponds to the physics of phenomenology. This EMP coupling V/L taxonomy and the models identified in this report will provide the tools necessary to conduct basic V/L analysis of EMP coupling.« less
A map of abstract relational knowledge in the human hippocampal-entorhinal cortex.
Garvert, Mona M; Dolan, Raymond J; Behrens, Timothy Ej
2017-04-27
The hippocampal-entorhinal system encodes a map of space that guides spatial navigation. Goal-directed behaviour outside of spatial navigation similarly requires a representation of abstract forms of relational knowledge. This information relies on the same neural system, but it is not known whether the organisational principles governing continuous maps may extend to the implicit encoding of discrete, non-spatial graphs. Here, we show that the human hippocampal-entorhinal system can represent relationships between objects using a metric that depends on associative strength. We reconstruct a map-like knowledge structure directly from a hippocampal-entorhinal functional magnetic resonance imaging adaptation signal in a situation where relationships are non-spatial rather than spatial, discrete rather than continuous, and unavailable to conscious awareness. Notably, the measure that best predicted a behavioural signature of implicit knowledge and blood oxygen level-dependent adaptation was a weighted sum of future states, akin to the successor representation that has been proposed to account for place and grid-cell firing patterns.
NASA Technical Reports Server (NTRS)
Lambert, Winifred; Short, David; Wolkmer, Matthew; Sharp, David; Spratt, Scott
2006-01-01
Each morning, the forecasters at the National Weather Service in Melbourne, FL (NWS MLB) produce an experimental cloud-to-ground (CG) lightning threat index map for their county warning area (CWA) that is posted to their web site (http://www.srh.weather.gov/mlb/ghwo/lightning.shtml) . Given the hazardous nature of lightning in East Central Florida, especially during the warm season months of May September, these maps help users factor the threat of lightning, relative to their location, into their daily plans. The maps are color-coded in five levels from Very Low to Extreme, with threat level definitions based on the probability of lightning occurrence and the expected amount of CG activity. On a day in which thunderstorms are expected, there are typically two or more threat levels depicted spatially across the CWA. The locations of relative lightning threat maxima and minima often depend on the position and orientation of the low-level ridge axis, forecast propagation and interaction of sea/lake/outflow boundaries, expected evolution of moisture and stability fields, and other factors that can influence the spatial distribution of thunderstorms over the CWA. The lightning threat index maps are issued for the 24-hour period beginning at 1200 UTC each day with a grid resolution of 5 km x 5 km. Product preparation is performed on the AWIPS Graphical Forecast Editor (GFE), which is the standard NWS platform for graphical editing. Currently, the forecasters create each map manually, starting with a blank map. To improve efficiency of the forecast process, NWS MLB requested that the Applied Meteorology Unit (AMU) create gridded warm season lightning climatologies that could be used as first-guess inputs to initialize lightning threat index maps. The gridded values requested included CG strike densities and frequency of occurrence stratified by synoptic-scale flow regime. The intent is to improve consistency between forecasters while allowing them to focus on the mesoscale detail of the forecast, ultimately benefiting the end-users of the product. Several studies took place at the Florida State University (FSU) and NWS Tallahassee (TAE) in which they created daily flow regimes using Florida 1200 UTC synoptic soundings and CG strike densities, or number of strikes per specified area. The soundings used to determine the flow regimes were taken at Miami (MIA), Tampa (TBW), and Jacksonville (JAX), FL, and the lightning data for the strike densities came from the National Lightning Detection Network (NLDN). The densities were created on a 2.5 km x 2.5 km grid for every hour of every day during the warm seasons in the years 1989-2004. The grids encompass an area that includes the entire state of Florida and adjacent Atlantic and Gulf of Mexico waters. Personnel at FSU and NWS TAE provided this data and supporting software for the work performed by the AMU.
NASA Technical Reports Server (NTRS)
Lambert, Winifred; Short, David; Volkmer, Matthew; Sharp, David; Spratt, Scott
2007-01-01
Each morning, the forecasters at the National Weather Service in Melbourne, FL (NWS MLB) produce an experimental cloud-to-ground (CG) lightning threat index map for their county warning area (CWA) that is posted to their web site (httl://www.srh.weather.gov/mlb/ghwo/lightning.shtml) . Given the hazardous nature of lightning in East Central Florida, especially during the warm season months of May September, these maps help users factor the threat of lightning, relative to their location, into their daily plans. The maps are color-coded in five levels from Very Low to Extreme, with threat level definitions based on the probability of lightning occurrence and the expected amount of CG activity. On a day in which thunderstorms are expected, there are typically two or more threat levels depicted spatially across the CWA. The locations of relative lightning threat maxima and minima often depend on the position and orientation of the low-level ridge axis, forecast propagation and interaction of sea/lake/outflow boundaries, expected evolution of moisture and stability fields, and other factors that can influence the spatial distribution of thunderstorms over the CWA. The lightning threat index maps are issued for the 24-hour period beginning at 1200 UTC each day with a grid resolution of 5 km x 5 km. Product preparation is performed on the AWIPS Graphical Forecast Editor (GFE), which is the standard NWS platform for graphical editing. Until recently, the forecasters created each map manually, starting with a blank map. To improve efficiency of the forecast process, NWS MLB requested that the Applied Meteorology Unit (AMU) create gridded warm season lightning climatologies that could be used as first-guess inputs to initialize lightning threat index maps. The gridded values requested included CG strike densities and frequency of occurrence stratified by synoptic-scale flow regime. The intent was to improve consistency between forecasters while allowing them to focus on the mesoscale detail of the forecast. Several studies took place at the Florida State University (FSU) and NWS Tallahassee (TAE) in which they created daily flow regimes using Florida 1200 UTC synoptic soundings and CG strike densities, or number of strikes per specified area. The soundings used to determine the flow regimes were taken at Miami (MIA), Tampa (TBW), and Jacksonville (JAX), FL, and the lightning data for the strike densities came from the National Lightning Detection Network (NLDN). The densities were created on a 2.5 km x 2.5 km grid for every hour of every day during the warm seasons in the years 1989-2004. The grids encompass an area that includes the entire state of Florida and adjacent Atlantic and Gulf of Mexico waters. Personnel at FSU and NWS TAE provided this data and supporting software for the work performed by the AMU.
Extraction of basic roadway information for non-state roads in Florida.
DOT National Transportation Integrated Search
2015-06-01
The Florida Department of Transportation (FDOT) has continued to maintain a linear-referenced All-Roads map : that includes both state and non-state local roads. The state portion of the map could be populated with select data : from FDOTs R...
Preliminary map of temperature gradients in the conterminous United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guffanti, M.; Nathenson, M.
1980-09-01
Temperature gradients have been determined from temperature/depth measurements made in drill holes deeper than 600 m and used in the construction of a temperature-gradient map of the conterminous United States. The map displays temperature gradients (in /sup 0/C/km) that can be expected to exist regionally in a conductive thermal regime to a depth of 2 km. The major difference between this map and the AAPG-USGS temperature-gradient map is in the midcontinental region where the AAPG-USGS map does not demarcate a division between colder eastern and warmer western thermal regimes. A comparison with the heat-flow map of Sass et al. (1980)more » indicates that temperature gradients commonly reflect regional heat flow, and the gross east-west division of the United States on the basis of heat flow is also expressed by temperature gradient.« less
NASA Technical Reports Server (NTRS)
Wilson, C.; Dye, R.; Reed, L.
1982-01-01
The errors associated with planimetric mapping of the United States using satellite remote sensing techniques are analyzed. Assumptions concerning the state of the art achievable for satellite mapping systems and platforms in the 1995 time frame are made. An analysis of these performance parameters is made using an interactive cartographic satellite computer model, after first validating the model using LANDSAT 1 through 3 performance parameters. An investigation of current large scale (1:24,000) US National mapping techniques is made. Using the results of this investigation, and current national mapping accuracy standards, the 1995 satellite mapping system is evaluated for its ability to meet US mapping standards for planimetric and topographic mapping at scales of 1:24,000 and smaller.
Map of assessed continuous (unconventional) oil resources in the United States, 2014
,; Biewick, Laura R. H.
2015-01-01
The U.S. Geological Survey (USGS) conducts quantitative assessments of potential oil and gas resources of the onshore United States and associated coastal State waters. Since 2000, the USGS has completed assessments of continuous (unconventional) resources in the United States based on geologic studies and analysis of well-production data and has compiled digital maps of the assessment units classified into four categories: shale gas, tight gas, coalbed gas, and shale oil or tight oil (continuous oil). This is the fourth digital map product in a series of USGS unconventional oil and gas resource maps; its focus being shale-oil or tight-oil (continuous-oil) assessments. The map plate included in this report can be printed in hardcopy form or downloaded in a Geographic Information System (GIS) data package, which includes an ArcGIS ArcMap document (.mxd), geodatabase (.gdb), and a published map file (.pmf). Supporting geologic studies of total petroleum systems and assessment units, as well as studies of the methodology used in the assessment of continuous-oil resources in the United States, are listed with hyperlinks in table 1. Assessment results and geologic reports are available at the USGS websitehttp://energy.usgs.gov/OilGas/AssessmentsData/NationalOilGasAssessment.aspx.
New Tsunami Inundation Maps for California
NASA Astrophysics Data System (ADS)
Barberopoulou, Aggeliki; Borrero, Jose; Uslu, Burak; Kanoglu, Utku; Synolakis, Costas
2010-05-01
California is the first US State to complete its tsunami inundation mapping. A new generation of tsunami inundation maps is now available for 17 coastal counties.. The new maps offer improved coverage for many areas, they are based on the most recent descriptions of potential tsunami farfield and nearfield sources and use the best available bathymetric and topographic data for modelling. The need for new tsunami maps for California became clear since Synolakis et al (1998) described how inundation projections derived with inundation models that fully calculate the wave evolution over dry land can be as high as twice the values predicted with earlier threshold models, for tsunamis originating from tectonic source. Since the 1998 Papua New Guinea tsunami when the hazard from offshore submarine landslides was better understood (Bardet et al, 2003), the State of California funded the development of the first generation of maps, based on local tectonic and landslide sources. Most of the hazard was dominated by offshore landslides, whose return period remains unknown but is believed to be higher than 1000 years for any given locale, at least in Southern California. The new generation of maps incorporates local and distant scenarios. The partnership between the Tsunami Research Center at USC, the California Emergency Management Agency and the California Seismic Safety Commission let the State to be the first among all US States to complete the maps. (Exceptions include the offshore islands and Newport Beach, where higher resolution maps are under way). The maps were produced with the lowest cost per mile of coastline, per resident or per map than all other States, because of the seamless integration of the USC and NOAA databases and the use of the MOST model. They are a significant improvement over earlier map generations. As part of a continuous improvement in response, mitigation and planning and community education, the California inundation maps can contribute in reducing tsunami risk. References -Bardet, JP et al (2003), Landslide tsunamis: Recent findings and research directions, Pure and Applied Geophysics, 160, (10-11), 1793-1809. -Eisner, R., Borrero, C., Synolakis, C.E. (2001) Inundation Maps for the State of California, International Tsunami Symposium, ITS 2001 Proceedings, NHTMP Review Paper #4, 67-81. -Synolakis, C.E., D. McCarthy, V.V. Titov, J.C. Borrero, (1998) Evaluating the Tsunami Risk in California, CALIFORNIA AND THE WORLD OCEAN '97, 1225-1236, Proceedings ASCE, ISBN: 0-7844-0297-3.
FUSE: a profit maximization approach for functional summarization of biological networks.
Seah, Boon-Siew; Bhowmick, Sourav S; Dewey, C Forbes; Yu, Hanry
2012-03-21
The availability of large-scale curated protein interaction datasets has given rise to the opportunity to investigate higher level organization and modularity within the protein interaction network (PPI) using graph theoretic analysis. Despite the recent progress, systems level analysis of PPIS remains a daunting task as it is challenging to make sense out of the deluge of high-dimensional interaction data. Specifically, techniques that automatically abstract and summarize PPIS at multiple resolutions to provide high level views of its functional landscape are still lacking. We present a novel data-driven and generic algorithm called FUSE (Functional Summary Generator) that generates functional maps of a PPI at different levels of organization, from broad process-process level interactions to in-depth complex-complex level interactions, through a pro t maximization approach that exploits Minimum Description Length (MDL) principle to maximize information gain of the summary graph while satisfying the level of detail constraint. We evaluate the performance of FUSE on several real-world PPIS. We also compare FUSE to state-of-the-art graph clustering methods with GO term enrichment by constructing the biological process landscape of the PPIS. Using AD network as our case study, we further demonstrate the ability of FUSE to quickly summarize the network and identify many different processes and complexes that regulate it. Finally, we study the higher-order connectivity of the human PPI. By simultaneously evaluating interaction and annotation data, FUSE abstracts higher-order interaction maps by reducing the details of the underlying PPI to form a functional summary graph of interconnected functional clusters. Our results demonstrate its effectiveness and superiority over state-of-the-art graph clustering methods with GO term enrichment.
Assessing state-wide biodiversity in the Florida Gap analysis project
Pearlstine, L.G.; Smith, S.E.; Brandt, L.A.; Allen, Craig R.; Kitchens, W.M.; Stenberg, J.
2002-01-01
The Florida Gap (FI-Gap) project provides an assessment of the degree to which native animal species and natural communities are or are not represented in existing conservation lands. Those species and communities not adequately represented in areas being managed for native species constitute 'gaps' in the existing network of conservation lands. The United States Geological Survey Gap Analysis Program is a national effort and so, eventually, all 50 states will have completed it. The objective of FI-Gap was to provide broad geographic information on the status of terrestrial vertebrates, butterflies, skippers and ants and their respective habitats to address the loss of biological diversity. To model the distributions and potential habitat of all terrestrial species of mammals, breeding birds, reptiles, amphibians, butterflies, skippers and ants in Florida, natural land cover was mapped to the level of dominant or co-dominant plant species. Land cover was classified from Landsat Thematic Mapper (TM) satellite imagery and auxiliary data such as the national wetlands inventory (NWI), soils maps, aerial imagery, existing land use/land cover maps, and on-the-ground surveys, Wildlife distribution models were produced by identifying suitable habitat for each species within that species' range, Mammalian models also assessed a minimum critical area required for sustainability of the species' population. Wildlife species richness was summarized against land stewardship ranked by an area's mandates for conservation protection. ?? 2002 Elsevier Science Ltd. All rights reserved.
This EnviroAtlas dataset contains biodiversity metrics reflecting ecosystem services or other aspects of biodiversity for reptile species, based on the number of reptile species as measured by predicted habitat present within a pixel. These metrics were created from grouping national level single species habitat models created by the USGS Gap Analysis Program into smaller ecologically based, phylogeny based, or stakeholder suggested composites. The dataset includes reptile species richness metrics for all reptile species, lizards, snakes, turtles, poisonous reptiles, Natureserve-listed G1,G2, and G3 reptile species, and reptile species listed by IUCN (International Union for Conservation of Nature), PARC (Partners in Amphibian and Reptile Conservation) and SWPARC (Southwest Partners in Amphibian and Reptile Conservation). This dataset was produced by a joint effort of New Mexico State University, US EPA, and USGS to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa
Ground-water levels in Wyoming, 1976 through 1985
Kennedy, H.I.; Oberender, C.B.
1987-01-01
Groundwater levels are measured periodically in a network of 84 observation wells in Wyoming, mostly in areas where groundwater is used in large quantities for irrigation or municipal purposes. The program is conducted by the U.S. Geological Survey in cooperation with the Wyoming State Engineer and the Wyoming Economic Development and Stabilization Board. This report contains hydrographs for 84 observation wells showing water-level fluctuations from 1976 through 1985. Also included in the report are maps showing locations of observation wells and tables listing well depths, use of water, geologic source, records available, and highest and lowest water levels for the period of record. (USGS)
Ground-water levels in Wyoming, 1978 through September 1987
Kennedy, H.I.; Green, S.L.
1988-01-01
Groundwater levels are measured periodically in a network of 95 observation wells in Wyoming, mostly in areas where groundwater is used in large quantities for irrigation or municipal purposes. The program is conducted by the U.S. Geological Survey in cooperation with the Wyoming State Engineer and the Wyoming Economic Development and Stabilization Board. This report contains hydrographs for 95 observation wells showing water level fluctuations from 1978 through September 1987. Also included in the report are maps showing locations of observation wells and tables listing well depths, use of water, geologic source, records available, and highest and lowest water levels for the period of record. (USGS)
USDA-ARS?s Scientific Manuscript database
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a devastating disease of wheat worldwide. Spring wheat germplasm PI 192252 showed a high level of high-temperature adult-plant (HTAP) resistance to stripe rust in germplasm evaluation over eight years in the State of Washington. ...
State of Texas - Highlighting low-lying areas derived from USGS Digital Elevation Data
Kosovich, John J.
2008-01-01
In support of U.S. Geological Survey (USGS) disaster preparedness efforts, this map depicts a color shaded relief representation of Texas and a grayscale relief of the surrounding areas. The first 30 feet of relief above mean sea level are displayed as brightly colored 5-foot elevation bands, which highlight low-elevation areas at a coarse spatial resolution. Standard USGS National Elevation Dataset (NED) 1 arc-second (nominally 30-meter) digital elevation model (DEM) data are the basis for the map, which is designed to be used at a broad scale and for informational purposes only. The NED data were derived from the original 1:24,000-scale USGS topographic map bare-earth contours, which were converted into gridded quadrangle-based DEM tiles at a constant post spacing (grid cell size) of either 30 meters (data before the mid-1990s) or 10 meters (mid-1990s and later data). These individual-quadrangle DEMs were then converted to spherical coordinates (latitude/longitude decimal degrees) and edge-matched to ensure seamlessness. The NED source data for this map consists of a mixture of 30-meter- and 10-meter-resolution DEMs. State and county boundary, hydrography, city, and road layers were modified from USGS National Atlas data downloaded in 2003. The NED data were downloaded in 2002. Shaded relief over Mexico was obtained from the USGS National Atlas.
NASA Astrophysics Data System (ADS)
Soulard, C. E.; Acevedo, W.; Yang, Z.; Cohen, W. B.; Stehman, S. V.; Taylor, J. L.
2015-12-01
A wide range of spatial forest disturbance data exist for the conterminous United States, yet inconsistencies between map products arise because of differing programmatic objectives and methodologies. Researchers on the Land Change Research Project (LCRP) are working to assess spatial agreement, characterize uncertainties, and resolve discrepancies between these national level datasets, in regard to forest disturbance. Disturbance maps from the Global Forest Change (GFC), Landfire Vegetation Disturbance (LVD), National Land Cover Dataset (NLCD), Vegetation Change Tracker (VCT), Web-enabled Landsat Data (WELD), and Monitoring Trends in Burn Severity (MTBS) were harmonized using a pixel-based data fusion process. The harmonization process reconciled forest harvesting, forest fire, and remaining forest disturbance across four intervals (1986-1992, 1992-2001, 2001-2006, and 2006-2011) by relying on convergence of evidence across all datasets available for each interval. Pixels with high agreement across datasets were retained, while moderate-to-low agreement pixels were visually assessed and either manually edited using reference imagery or discarded from the final disturbance map(s). National results show that annual rates of forest harvest and overall fire have increased over the past 25 years. Overall, this study shows that leveraging the best elements of readily-available data improves forest loss monitoring relative to using a single dataset to monitor forest change, particularly by reducing commission errors.
de Mio, Giuliano; Giacheti, Heraldo L
2007-03-01
Correlations between mapping units of costal sedimentary basin and interpretation of piezocone test results are presented and discussed based on examples from Caravelas strandplain, (State of Bahia), Paranaguá (State of Paraná) and Guarujá bays (State of São Paulo), Brazil. Recognizing that the sedimentary environment was mainly controlled by sea level fluctuations led to the interpretation of transgressive and regressive sedimentary sequences, which is in a good agreement with the sea level fluctuation curves currently accepted for these regions. The interpretation of piezocone test results shows that the sedimentary sequences of Caravelas and Guarujá sites are similar and they have a good correlation to the sea level fluctuation curve accepted for Salvador region, State of Bahia. On the other hand, the piezocone test results from Paranaguá site indicate a different sedimentary sequence from the previous ones, relating to the sea level fluctuation curve accepted for Paranaguá region. The results show the high applicability of piezocone testing for stratigraphical logging and suggest that it is possible to integrate it with other current techniques used for paleo-environmental studies in Brazil, in accordance with recent approaches used in international research on the subject.
Annual summary of ground-water conditions in Arizona, spring 1979 to spring 1980
,
1981-01-01
Withdrawal of ground water, about 4.0 million acre-feet in Arizona in 1979, is about 200,000 acre-feet less than the amount withdrawn in 1978. The withdrawals in 1978 and 1979 are the smallest since the mid-1950 's except in 1966. Nearly all the decrease was in the amount of ground water used for irrigation in the Basin and Range lowlands province. The large amount of water in storage in the surface-water reservoirs, release of water from the reservoirs, floods, and conservation practices contributed to the decrease in ground-water use and caused water-level rises in the Salt River Valley, Gila Bend basin, and Gila River drainage from Painted Rock Dam to Texas Hill. Two small-scale maps show ground-water pumpage by areas and the status of the ground-water inventory in the State. The main map, which is at a scale of 1:500,000, shows potential well production, depth to water in selected wells in spring 1980, and change in water level in selected wells from 1975 to 1980. A brief text summarizes the current ground-water conditions in the State. (USGS)
California State Waters Map Series Data Catalog
Golden, Nadine E.
2013-01-01
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California's State Waters. The CSMP approach is to create highly detailed seafloor maps and associated data layers through the collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. CSMP has divided coastal California into 110 map blocks (fig. 1), each to be published individually as USGS Scientific Investigations Maps (SIMs) at a scale of 1:24,000. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. This CSMP data catalog contains much of the data used to prepare the SIMs in the California State Waters Map Series. Other data that were used to prepare the maps were compiled from previously published sources (for example, onshore geology) and, thus, are not included herein.
Identification of residue pairing in interacting β-strands from a predicted residue contact map.
Mao, Wenzhi; Wang, Tong; Zhang, Wenxuan; Gong, Haipeng
2018-04-19
Despite the rapid progress of protein residue contact prediction, predicted residue contact maps frequently contain many errors. However, information of residue pairing in β strands could be extracted from a noisy contact map, due to the presence of characteristic contact patterns in β-β interactions. This information may benefit the tertiary structure prediction of mainly β proteins. In this work, we propose a novel ridge-detection-based β-β contact predictor to identify residue pairing in β strands from any predicted residue contact map. Our algorithm RDb 2 C adopts ridge detection, a well-developed technique in computer image processing, to capture consecutive residue contacts, and then utilizes a novel multi-stage random forest framework to integrate the ridge information and additional features for prediction. Starting from the predicted contact map of CCMpred, RDb 2 C remarkably outperforms all state-of-the-art methods on two conventional test sets of β proteins (BetaSheet916 and BetaSheet1452), and achieves F1-scores of ~ 62% and ~ 76% at the residue level and strand level, respectively. Taking the prediction of the more advanced RaptorX-Contact as input, RDb 2 C achieves impressively higher performance, with F1-scores reaching ~ 76% and ~ 86% at the residue level and strand level, respectively. In a test of structural modeling using the top 1 L predicted contacts as constraints, for 61 mainly β proteins, the average TM-score achieves 0.442 when using the raw RaptorX-Contact prediction, but increases to 0.506 when using the improved prediction by RDb 2 C. Our method can significantly improve the prediction of β-β contacts from any predicted residue contact maps. Prediction results of our algorithm could be directly applied to effectively facilitate the practical structure prediction of mainly β proteins. All source data and codes are available at http://166.111.152.91/Downloads.html or the GitHub address of https://github.com/wzmao/RDb2C .
Wilson, Frederic H.; Hults, Chad P.; Labay, Keith A.; Shew, Nora B.
2007-01-01
The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. The files named __geol contain geologic polygons and line (contact) attributes; files named __fold contain fold axes; files named __lin contain lineaments; and files named __dike contain dikes as lines. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.
Nicholson, Suzanne W.; Stoeser, Douglas B.; Wilson, Frederic H.; Dicken, Connie L.; Ludington, Steve
2007-01-01
The growth in the use of Geographic nformation Systems (GS) has highlighted the need for regional and national digital geologic maps attributed with age and rock type information. Such spatial data can be conveniently used to generate derivative maps for purposes that include mineral-resource assessment, metallogenic studies, tectonic studies, human health and environmental research. n 1997, the United States Geological Survey’s Mineral Resources Program initiated an effort to develop national digital databases for use in mineral resource and environmental assessments. One primary activity of this effort was to compile a national digital geologic map database, utilizing state geologic maps, to support mineral resource studies in the range of 1:250,000- to 1:1,000,000-scale. Over the course of the past decade, state databases were prepared using a common standard for the database structure, fields, attributes, and data dictionaries. As of late 2006, standardized geological map databases for all conterminous (CONUS) states have been available on-line as USGS Open-File Reports. For Alaska and Hawaii, new state maps are being prepared, and the preliminary work for Alaska is being released as a series of 1:500,000-scale regional compilations. See below for a list of all published databases.
Estimation of utilities in attention-deficit hyperactivity disorder for economic evaluations.
Lloyd, Andrew; Hodgkins, Paul; Sasane, Rahul; Akehurst, Ron; Sonuga-Barke, Edmund J S; Fitzgerald, Patrick; Nixon, Annabel; Erder, Haim; Brazier, John
2011-01-01
Attempts to estimate the cost effectiveness of attention-deficit hyperactivity disorder (ADHD) treatments in the past have relied on classifying ADHD patients as responders or non-responders to treatment. Responder status has been associated with a small gain in health-related quality of life (HR-QOL) [or utility, as measured using the generic QOL measure EQ-5D] of 0.06 (on a scale from 0 being dead to 1.0 being full health). The goal of the present study was to develop and validate several ADHD-related health states, and to estimate utility values measured amongst the general public for those states and to re-estimate utility values associated with responder status. Detailed qualitative interview data were collected from 20 young ADHD patients to characterize their HR-QOL. In addition, item-by-item clinical and HR-QOL data from a clinical trial were used to define and describe four health states (normal; borderline to mildly ill; moderately to markedly ill; and severely ill). ADHD experts assessed the content validity of the descriptions. The states were rated by 100 members of the UK general public using the time trade-off (TTO) interview and visual analog scale. Statistical mapping was also undertaken to estimate Clinical Global Impression-Improvement (CGI-I) utilities (i.e. response status) from Clinical Global Impression-Severity (CGI-S) defined states. The mapping work estimated changes in utilities from study baseline to last visit for patients with a CGI-I score of ≤ 2 or ≤ 3. The validity of the four health states developed in this study was supported by in-depth interviews with ADHD experts and patients, and clinical trial data. TTO-derived utilities for the four health states ranged from 0.839 (CGI-S state 'normal') to 0.444 (CGI-S state 'severely ill'). From the mapping work, the change in utility for treatment responders was 0.19 for patients with a CGI-I score of ≤ 2 and 0.15 for patients with a CGI-I score of ≤ 3. The present study provides utilities for different severity levels of ADHD estimated in a TTO study. This approach provides a more granular assessment of the impact of ADHD on HR-QOL than binary approaches employed in previous economic analyses. Change in utility for responders and non-responders at different levels of CGI-I was estimated, and thus these utilities may be used to compare health gains of different ADHD interventions.
Model-independent curvature determination with 21 cm intensity mapping experiments
NASA Astrophysics Data System (ADS)
Witzemann, Amadeus; Bull, Philip; Clarkson, Chris; Santos, Mario G.; Spinelli, Marta; Weltman, Amanda
2018-06-01
Measurements of the spatial curvature of the Universe have improved significantly in recent years, but still tend to require strong assumptions to be made about the equation of state of dark energy (DE) in order to reach sub-percent precision. When these assumptions are relaxed, strong degeneracies arise that make it hard to disentangle DE and curvature, degrading the constraints. We show that forthcoming 21 cm intensity mapping experiments such as Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) are ideally designed to carry out model-independent curvature measurements, as they can measure the clustering signal at high redshift with sufficient precision to break many of the degeneracies. We consider two different model-independent methods, based on `avoiding' the DE-dominated regime and non-parametric modelling of the DE equation of state, respectively. Our forecasts show that HIRAX will be able to improve upon current model-independent constraints by around an order of magnitude, reaching percent-level accuracy even when an arbitrary DE equation of state is assumed. In the same model-independent analysis, the sample variance limit for a similar survey is another order of magnitude better.
Model-independent curvature determination with 21cm intensity mapping experiments
NASA Astrophysics Data System (ADS)
Witzemann, Amadeus; Bull, Philip; Clarkson, Chris; Santos, Mario G.; Spinelli, Marta; Weltman, Amanda
2018-04-01
Measurements of the spatial curvature of the Universe have improved significantly in recent years, but still tend to require strong assumptions to be made about the equation of state of dark energy (DE) in order to reach sub-percent precision. When these assumptions are relaxed, strong degeneracies arise that make it hard to disentangle DE and curvature, degrading the constraints. We show that forthcoming 21cm intensity mapping experiments such as HIRAX are ideally designed to carry out model-independent curvature measurements, as they can measure the clustering signal at high redshift with sufficient precision to break many of the degeneracies. We consider two different model-independent methods, based on `avoiding' the DE-dominated regime and non-parametric modelling of the DE equation of state respectively. Our forecasts show that HIRAX will be able to improve upon current model-independent constraints by around an order of magnitude, reaching percent-level accuracy even when an arbitrary DE equation of state is assumed. In the same model-independent analysis, the sample variance limit for a similar survey is another order of magnitude better.
Fitzpatrick, Katherine A.
1975-01-01
Accuracy analyses for the land use maps of the Central Atlantic Regional Ecological Test Site were performed for a 1-percent sample of the area. Researchers compared Level II land use maps produced at three scales, 1:24,000, 1:100,000, and 1:250,000 from high-altitude photography, with each other and with point data obtained in the field. They employed the same procedures to determine the accuracy of the Level I land use maps produced at 1:250,000 from high-altitude photography and color composite ERTS imagery. The accuracy of the Level II maps was 84.9 percent at 1:24,000, 77.4 percent at 1:100,000, and 73.0 percent at 1:250,000. The accuracy of the Level I 1:250,000 maps produced from high-altitude aircraft photography was 76.5 percent and for those produced from ERTS imagery was 69.5 percent The cost of Level II land use mapping at 1:24,000 was found to be high ($11.93 per km2 ). The cost of mapping at 1:100,000 ($1.75) was about 2 times as expensive as mapping at 1:250,000 ($.88), and the accuracy increased by only 4.4 percent. Level I land use maps, when mapped from highaltitude photography, were about 4 times as expensive as the maps produced from ERTS imagery, although the accuracy is 7.0 percent greater. The Level I land use category that is least accurately mapped from ERTS imagery is urban and built-up land in the non-urban areas; in the urbanized areas, built-up land is more reliably mapped.
Digital data for the geology of the Southern Brooks Range, Alaska
Till, Alison B.; Dumoulin, Julie A.; Harris, Anita G.; Moore, Thomas E.; Bleick, Heather A.; Siwiec, Benjamin; Labay, Keith A.; Wilson, Frederic H.; Shew, Nora B.
2008-01-01
The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. The files named __geol contain geologic polygons and line (contact) attributes; files named __fold contain fold axes; files named __lin contain lineaments; and files named __dike contain dikes as lines. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.
Mapping current fluctuations of stochastic pumps to nonequilibrium steady states.
Rotskoff, Grant M
2017-03-01
We show that current fluctuations in a stochastic pump can be robustly mapped to fluctuations in a corresponding time-independent nonequilibrium steady state. We thus refine a recently proposed mapping so that it ensures equivalence of not only the averages, but also optimal representation of fluctuations in currents and density. Our mapping leads to a natural decomposition of the entropy production in stochastic pumps similar to the "housekeeping" heat. As a consequence of the decomposition of entropy production, the current fluctuations in weakly perturbed stochastic pumps are shown to satisfy a universal bound determined by the steady state entropy production.
A multiplexed system for quantitative comparisons of chromatin landscapes
van Galen, Peter; Viny, Aaron D.; Ram, Oren; Ryan, Russell J.H.; Cotton, Matthew J.; Donohue, Laura; Sievers, Cem; Drier, Yotam; Liau, Brian B.; Gillespie, Shawn M.; Carroll, Kaitlin M.; Cross, Michael B.; Levine, Ross L.; Bernstein, Bradley E.
2015-01-01
Genome-wide profiling of histone modifications can provide systematic insight into the regulatory elements and programs engaged in a given cell type. However, conventional chromatin immunoprecipitation and sequencing (ChIP-seq) does not capture quantitative information on histone modification levels, requires large amounts of starting material, and involves tedious processing of each individual sample. Here we address these limitations with a technology that leverages DNA barcoding to profile chromatin quantitatively and in multiplexed format. We concurrently map relative levels of multiple histone modifications across multiple samples, each comprising as few as a thousand cells. We demonstrate the technology by monitoring dynamic changes following inhibition of P300, EZH2 or KDM5, by linking altered epigenetic landscapes to chromatin regulator mutations, and by mapping active and repressive marks in purified human hematopoietic stem cells. Hence, this technology enables quantitative studies of chromatin state dynamics across rare cell types, genotypes, environmental conditions and drug treatments. PMID:26687680
Zhou, Xiang-Fa; Wu, Congjun; Guo, Guang-Can; Wang, Ruquan; Pu, Han; Zhou, Zheng-Wei
2018-03-30
We present a flexible scheme to realize exact flat Landau levels on curved spherical geometry in a system of spinful cold atoms. This is achieved by applying the Floquet engineering of a magnetic quadrupole field to create a synthetic monopole field in real space. The system can be exactly mapped to the electron-monopole system on a sphere, thus realizing Haldane's spherical geometry for fractional quantum Hall physics. This method works for either bosons or fermions. We investigate the ground-state vortex pattern for an s-wave interacting atomic condensate by mapping this system to the classical Thompson's problem. The distortion and stability of the vortex pattern are further studied in the presence of dipolar interaction. Our scheme is compatible with the current experimental setup, and may serve as a promising route of investigating quantum Hall physics and exotic spinor vortex matter on curved space.
Plans for a sensitivity analysis of bridge-scour computations
Dunn, David D.; Smith, Peter N.
1993-01-01
Plans for an analysis of the sensitivity of Level 2 bridge-scour computations are described. Cross-section data from 15 bridge sites in Texas are modified to reflect four levels of field effort ranging from no field surveys to complete surveys. Data from United States Geological Survey (USGS) topographic maps will be used to supplement incomplete field surveys. The cross sections are used to compute the water-surface profile through each bridge for several T-year recurrence-interval design discharges. The effect of determining the downstream energy grade-line slope from topographic maps is investigated by systematically varying the starting slope of each profile. The water-surface profile analyses are then used to compute potential scour resulting from each of the design discharges. The planned results will be presented in the form of exceedance-probability versus scour-depth plots with the maximum and minimum scour depths at each T-year discharge presented as error bars.
NASA Astrophysics Data System (ADS)
Zhou, Xiang-Fa; Wu, Congjun; Guo, Guang-Can; Wang, Ruquan; Pu, Han; Zhou, Zheng-Wei
2018-03-01
We present a flexible scheme to realize exact flat Landau levels on curved spherical geometry in a system of spinful cold atoms. This is achieved by applying the Floquet engineering of a magnetic quadrupole field to create a synthetic monopole field in real space. The system can be exactly mapped to the electron-monopole system on a sphere, thus realizing Haldane's spherical geometry for fractional quantum Hall physics. This method works for either bosons or fermions. We investigate the ground-state vortex pattern for an s -wave interacting atomic condensate by mapping this system to the classical Thompson's problem. The distortion and stability of the vortex pattern are further studied in the presence of dipolar interaction. Our scheme is compatible with the current experimental setup, and may serve as a promising route of investigating quantum Hall physics and exotic spinor vortex matter on curved space.
A climatology of late-spring freezes in the northeastern United States.
Brian E. Potter; Thomas W. Cate
1999-01-01
Presents maps of late-spring freeze characteristics for the northeastern and north central United States based on heat-sum thresholds and historic climate data. Discusses patterns seen in the maps. Provides examples and ways these maps could be used by resource managers and research scientists.
ERIC Educational Resources Information Center
McLean, G. Robert
1985-01-01
Describes geographical, subject, and chronological aspects of 25 cartographic collections housed in university, public, special, state, and semi-state libraries in Sao Paulo, Brazil. Three size categories of map holdings (more than 10,000, 1,000-10,000, less than 1,000) are distinguished. A list of 27 Sao Paulo institutions housing map collections…
75 FR 48235 - Rural Health Care Universal Service Support Mechanism
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-09
... references to recognized broadband mapping studies, such as NTIA's national broadband map, State or local... network area. In addition to referencing such NTIA or State broadband mapping studies, the applicant would... network design studies (but not in excess of the cap identified below); (2) engineering, materials and...
Level III Ecoregions of EPA Region 7
Ecoregions by EPA region were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 52 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 104 regions whereas the conterminous United States has 84 (U.S. Environmental Protection Agency, 2005). Level IV ecoregions are further subdivisions of Level I
Level IV Ecoregions of EPA Region 7
Ecoregions by EPA region were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 52 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 104 regions whereas the conterminous United States has 84 (U.S. Environmental Protection Agency, 2005). Level IV ecoregions are further subdivisions of Level I
Level IV Ecoregions of EPA Region 1
Ecoregions by EPA region were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 52 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 104 regions whereas the conterminous United States has 84 (U.S. Environmental Protection Agency, 2005). Level IV ecoregions are further subdivisions of Level I
Level IV Ecoregions of EPA Region 10
Ecoregions by EPA region were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 52 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 104 regions whereas the conterminous United States has 84 (U.S. Environmental Protection Agency, 2005). Level IV ecoregions are further subdivisions of Level I
Level IV Ecoregions of EPA Region 3
Ecoregions by EPA region were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 52 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 104 regions whereas the conterminous United States has 84 (U.S. Environmental Protection Agency, 2005). Level IV ecoregions are further subdivisions of Level I
Level III Ecoregions of EPA Region 10
Ecoregions by EPA region were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 52 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 104 regions whereas the conterminous United States has 84 (U.S. Environmental Protection Agency, 2005). Level IV ecoregions are further subdivisions of Level I
Level IV Ecoregions of EPA Region 2
Ecoregions by EPA region were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 52 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 104 regions whereas the conterminous United States has 84 (U.S. Environmental Protection Agency, 2005). Level IV ecoregions are further subdivisions of Level I
Level III Ecoregions of EPA Region 2
Ecoregions by EPA region were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 52 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 104 regions whereas the conterminous United States has 84 (U.S. Environmental Protection Agency, 2005). Level IV ecoregions are further subdivisions of Level I
Level III Ecoregions of EPA Region 5
Ecoregions by EPA region were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 52 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 104 regions whereas the conterminous United States has 84 (U.S. Environmental Protection Agency, 2005). Level IV ecoregions are further subdivisions of Level I
Level IV Ecoregions of EPA Region 5
Ecoregions by EPA region were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 52 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 104 regions whereas the conterminous United States has 84 (U.S. Environmental Protection Agency, 2005). Level IV ecoregions are further subdivisions of Level I
Level III Ecoregions of EPA Region 1
Ecoregions by EPA region were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 52 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 104 regions whereas the conterminous United States has 84 (U.S. Environmental Protection Agency, 2005). Level IV ecoregions are further subdivisions of Level I
Level IV Ecoregions of EPA Region 6
Ecoregions by EPA region were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 52 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 104 regions whereas the conterminous United States has 84 (U.S. Environmental Protection Agency, 2005). Level IV ecoregions are further subdivisions of Level I
Level III Ecoregions of EPA Region 3
Ecoregions by EPA region were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 52 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 104 regions whereas the conterminous United States has 84 (U.S. Environmental Protection Agency, 2005). Level IV ecoregions are further subdivisions of Level I
Level III Ecoregions of EPA Region 6
Ecoregions by EPA region were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 52 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 104 regions whereas the conterminous United States has 84 (U.S. Environmental Protection Agency, 2005). Level IV ecoregions are further subdivisions of Level I
Level IV Ecoregions of EPA Region 4
Ecoregions by EPA region were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 52 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 104 regions whereas the conterminous United States has 84 (U.S. Environmental Protection Agency, 2005). Level IV ecoregions are further subdivisions of Level I
Level III Ecoregions of EPA Region 4
Ecoregions by EPA region were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of patterns of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another. A Roman numeral hierarchical scheme has been adopted for different levels for ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 52 regions (Commission for Environmental Cooperation Working Group, 1997). At Level III, the continental United States contains 104 regions whereas the conterminous United States has 84 (U.S. Environmental Protection Agency, 2005). Level IV ecoregions are further subdivisions of Level I
Lowry, J.; Ramsey, R.D.; Thomas, K.; Schrupp, D.; Sajwaj, T.; Kirby, J.; Waller, E.; Schrader, S.; Falzarano, S.; Langs, L.; Manis, G.; Wallace, C.; Schulz, K.; Comer, P.; Pohs, K.; Rieth, W.; Velasquez, C.; Wolk, B.; Kepner, W.; Boykin, K.; O'Brien, L.; Bradford, D.; Thompson, B.; Prior-Magee, J.
2007-01-01
Land-cover mapping efforts within the USGS Gap Analysis Program have traditionally been state-centered; each state having the responsibility of implementing a project design for the geographic area within their state boundaries. The Southwest Regional Gap Analysis Project (SWReGAP) was the first formal GAP project designed at a regional, multi-state scale. The project area comprises the southwestern states of Arizona, Colorado, Nevada, New Mexico, and Utah. The land-cover map/dataset was generated using regionally consistent geospatial data (Landsat ETM+ imagery (1999-2001) and DEM derivatives), similar field data collection protocols, a standardized land-cover legend, and a common modeling approach (decision tree classifier). Partitioning of mapping responsibilities amongst the five collaborating states was organized around ecoregion-based "mapping zones". Over the course of 21/2 field seasons approximately 93,000 reference samples were collected directly, or obtained from other contemporary projects, for the land-cover modeling effort. The final map was made public in 2004 and contains 125 land-cover classes. An internal validation of 85 of the classes, representing 91% of the land area was performed. Agreement between withheld samples and the validated dataset was 61% (KHAT = .60, n = 17,030). This paper presents an overview of the methodologies used to create the regional land-cover dataset and highlights issues associated with large-area mapping within a coordinated, multi-institutional management framework. ?? 2006 Elsevier Inc. All rights reserved.
Radüntz, Thea
2017-01-01
One goal of advanced information and communication technology is to simplify work. However, there is growing consensus regarding the negative consequences of inappropriate workload on employee's health and the safety of persons. In order to develop a method for continuous mental workload monitoring, we implemented a task battery consisting of cognitive tasks with diverse levels of complexity and difficulty. We conducted experiments and registered the electroencephalogram (EEG), performance data, and the NASA-TLX questionnaire from 54 people. Analysis of the EEG spectra demonstrates an increase of the frontal theta band power and a decrease of the parietal alpha band power, both under increasing task difficulty level. Based on these findings we implemented a new method for monitoring mental workload, the so-called Dual Frequency Head Maps (DFHM) that are classified by support vectors machines (SVMs) in three different workload levels. The results are in accordance with the expected difficulty levels arising from the requirements of the tasks on the executive functions. Furthermore, this article includes an empirical validation of the new method on a secondary subset with new subjects and one additional new task without any adjustment of the classifiers. Hence, the main advantage of the proposed method compared with the existing solutions is that it provides an automatic, continuous classification of the mental workload state without any need for retraining the classifier—neither for new subjects nor for new tasks. The continuous workload monitoring can help ensure good working conditions, maintain a good level of performance, and simultaneously preserve a good state of health. PMID:29276490
Johnson, K.S.
1991-01-01
The Oklahoma Geological Survey has developed several maps and reports for preliminary screening of the state of Oklahoma to identify areas that are generally acceptable or unacceptable for disposal of a wide variety of waste materials. These maps and reports focus on the geologic and hydrogeologic parameters that must be evaluated in the screening process. One map (and report) shows the outcrop distribution of 35 thick shale or clay units that are generally suitable for use as host rocks for surface disposal of wastes. A second map shows the distribution of unconsolidated alluvial and terrace-deposit aquifers, and a third map shows the distribution and hydrologic character of bedrock aquifers and their recharge areas. These latter two maps show the areas in the state where special attention must be exercised in permitting storage or disposal of waste materials that could degrade the quality of groundwater. State regulatory agencies and industry are using these maps and reports in preliminary screening of the state to identify potential disposal sites. These maps in no way replace the need for site-specific investigations to prove (or disprove) the adequacy of a site to safely contain waste materials. ?? 1991 Springer-Verlag New York Inc.
Mapping Applications Center, National Mapping Division, U.S. Geological Survey
,
1996-01-01
The Mapping Applications Center (MAC), National Mapping Division (NMD), is the eastern regional center for coordinating the production, distribution, and sale of maps and digital products of the U.S. Geological Survey (USGS). It is located in the John Wesley Powell Federal Building in Reston, Va. The MAC's major functions are to (1) establish and manage cooperative mapping programs with State and Federal agencies; (2) perform new research in preparing and applying geospatial information; (3) prepare digital cartographic data, special purpose maps, and standard maps from traditional and classified source materials; (4) maintain the domestic names program of the United States; (5) manage the National Aerial Photography Program (NAPP); (6) coordinate the NMD's publications and outreach programs; and (7) direct the USGS mapprinting operations.
NASA Astrophysics Data System (ADS)
Stephenson, D. B.
1997-10-01
The skill in predicting spatially varying weather/climate maps depends on the definition of the measure of similarity between the maps. Under the justifiable approximation that the anomaly maps are distributed multinormally, it is shown analytically that the choice of weighting metric, used in defining the anomaly correlation between spatial maps, can change the resulting probability distribution of the correlation coefficient. The estimate of the numbers of degrees of freedom based on the variance of the correlation distribution can vary from unity up to the number of grid points depending on the choice of weighting metric. The (pseudo-) inverse of the sample covariance matrix acts as a special choice for the metric in that it gives a correlation distribution which has minimal kurtosis and maximum dimension. Minimal kurtosis suggests that the average predictive skill might be improved due to the rarer occurrence of troublesome outlier patterns far from the mean state. Maximum dimension has a disadvantage for analogue prediction schemes in that it gives the minimum number of analogue states. This metric also has an advantage in that it allows one to powerfully test the null hypothesis of multinormality by examining the second and third moments of the correlation coefficient which were introduced by Mardia as invariant measures of multivariate kurtosis and skewness. For these reasons, it is suggested that this metric could be usefully employed in the prediction of weather/climate and in fingerprinting anthropogenic climate change. The ideas are illustrated using the bivariate example of the observed monthly mean sea-level pressures at Darwin and Tahitifrom 1866 1995.
Sleeter, Rachel; Acevedo, William; Soulard, Christopher E.; Sleeter, Benjamin M.
2015-01-01
Spatially-explicit state-and-transition simulation models of land use and land cover (LULC) increase our ability to assess regional landscape characteristics and associated carbon dynamics across multiple scenarios. By characterizing appropriate spatial attributes such as forest age and land-use distribution, a state-and-transition model can more effectively simulate the pattern and spread of LULC changes. This manuscript describes the methods and input parameters of the Land Use and Carbon Scenario Simulator (LUCAS), a customized state-and-transition simulation model utilized to assess the relative impacts of LULC on carbon stocks for the conterminous U.S. The methods and input parameters are spatially explicit and describe initial conditions (strata, state classes and forest age), spatial multipliers, and carbon stock density. Initial conditions were derived from harmonization of multi-temporal data characterizing changes in land use as well as land cover. Harmonization combines numerous national-level datasets through a cell-based data fusion process to generate maps of primary LULC categories. Forest age was parameterized using data from the North American Carbon Program and spatially-explicit maps showing the locations of past disturbances (i.e. wildfire and harvest). Spatial multipliers were developed to spatially constrain the location of future LULC transitions. Based on distance-decay theory, maps were generated to guide the placement of changes related to forest harvest, agricultural intensification/extensification, and urbanization. We analyze the spatially-explicit input parameters with a sensitivity analysis, by showing how LUCAS responds to variations in the model input. This manuscript uses Mediterranean California as a regional subset to highlight local to regional aspects of land change, which demonstrates the utility of LUCAS at many scales and applications.
Flood-inundation maps for Indian Creek and Tomahawk Creek, Johnson County, Kansas, 2014
Peters, Arin J.; Studley, Seth E.
2016-01-25
Digital flood-inundation maps for a 6.4-mile upper reach of Indian Creek from College Boulevard to the confluence with Tomahawk Creek, a 3.9-mile reach of Tomahawk Creek from 127th Street to the confluence with Indian Creek, and a 1.9-mile lower reach of Indian Creek from the confluence with Tomahawk Creek to just beyond the Kansas/Missouri border at State Line Road in Johnson County, Kansas, were created by the U.S. Geological Survey in cooperation with the city of Overland Park, Kansas. The flood-inundation maps, which can be accessed through the U.S. Geological Survey Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the U.S. Geological Survey streamgages on Indian Creek at Overland Park, Kansas; Indian Creek at State Line Road, Leawood, Kansas; and Tomahawk Creek near Overland Park, Kansas. Near real time stages at these streamgages may be obtained on the Web from the U.S. Geological Survey National Water Information System at http://waterdata.usgs.gov/nwis or the National Weather Service Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at these sites.Flood profiles were computed for the stream reaches by means of a one-dimensional step-backwater model. The model was calibrated for each reach by using the most current stage-discharge relations at the streamgages. The hydraulic models were then used to determine 15 water-surface profiles for Indian Creek at Overland Park, Kansas; 17 water-surface profiles for Indian Creek at State Line Road, Leawood, Kansas; and 14 water-surface profiles for Tomahawk Creek near Overland Park, Kansas, for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the next interval above the 0.2-percent annual exceedance probability flood level (500-year recurrence interval). The simulated water-surface profiles were then combined in a geographic information system with a digital elevation model derived from light detection and ranging data (having a 0.429-foot vertical and 0.228-foot horizontal accuracy) to delineate the area flooded at each water level.The availability of these maps, along with Web information regarding current stage from the U.S. Geological Survey streamgages and forecasted high-flow stages from the National Weather Service, will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations, road closures, and postflood recovery efforts.
Portable LQCD Monte Carlo code using OpenACC
NASA Astrophysics Data System (ADS)
Bonati, Claudio; Calore, Enrico; Coscetti, Simone; D'Elia, Massimo; Mesiti, Michele; Negro, Francesco; Fabio Schifano, Sebastiano; Silvi, Giorgio; Tripiccione, Raffaele
2018-03-01
Varying from multi-core CPU processors to many-core GPUs, the present scenario of HPC architectures is extremely heterogeneous. In this context, code portability is increasingly important for easy maintainability of applications; this is relevant in scientific computing where code changes are numerous and frequent. In this talk we present the design and optimization of a state-of-the-art production level LQCD Monte Carlo application, using the OpenACC directives model. OpenACC aims to abstract parallel programming to a descriptive level, where programmers do not need to specify the mapping of the code on the target machine. We describe the OpenACC implementation and show that the same code is able to target different architectures, including state-of-the-art CPUs and GPUs.
NASA Astrophysics Data System (ADS)
Nass, Andrea; van Gasselt, Stephan; Hargitai, Hendrik; Hare, Trent; Manaud, Nicolas; Karachevtseva, Irina; Kersten, Elke; Roatsch, Thomas; Wählisch, Marita; Kereszturi, Akos
2016-04-01
Cartography is one of the most important communication channels between users of spatial information and laymen as well as the open public alike. This applies to all known real-world objects located either here on Earth or on any other object in our Solar System. In planetary sciences, however, the main use of cartography resides in a concept called planetary mapping with all its various attached meanings: it can be (1) systematic spacecraft observation from orbit, i.e. the retrieval of physical information, (2) the interpretation of discrete planetary surface units and their abstraction, or it can be (3) planetary cartography sensu strictu, i.e., the technical and artistic creation of map products. As the concept of planetary mapping covers a wide range of different information and knowledge levels, aims associated with the concept of mapping consequently range from a technical and engineering focus to a scientific distillation process. Among others, scientific centers focusing on planetary cartography are the United State Geological Survey (USGS, Flagstaff), the Moscow State University of Geodesy and Cartography (MIIGAiK, Moscow), Eötvös Loránd University (ELTE, Hungary), and the German Aerospace Center (DLR, Berlin). The International Astronomical Union (IAU), the Commission Planetary Cartography within International Cartographic Association (ICA), the Open Geospatial Consortium (OGC), the WG IV/8 Planetary Mapping and Spatial Databases within International Society for Photogrammetry and Remote Sensing (ISPRS) and a range of other institutions contribute on definition frameworks in planetary cartography. Classical cartography is nowadays often (mis-)understood as a tool mainly rather than a scientific discipline and an art of communication. Consequently, concepts of information systems, mapping tools and cartographic frameworks are used interchangeably, and cartographic workflows and visualization of spatial information in thematic maps have often been neglected or were left to software systems to decide by some arbitrary default values. The diversity of cartography as a research discipline and its different contributions in geospatial sciences and communication of information and knowledge will be highlighted in this contribution. We invite colleagues from this and other discipline to discuss concepts and topics for joint future collaboration and research.
NASA Astrophysics Data System (ADS)
Wilson, R. I.; Eble, M. C.
2013-12-01
The U.S. National Tsunami Hazard Mitigation Program (NTHMP) is comprised of representatives from coastal states and federal agencies who, under the guidance of NOAA, work together to develop protocols and products to help communities prepare for and mitigate tsunami hazards. Within the NTHMP are several subcommittees responsible for complimentary aspects of tsunami assessment, mitigation, education, warning, and response. The Mapping and Modeling Subcommittee (MMS) is comprised of state and federal scientists who specialize in tsunami source characterization, numerical tsunami modeling, inundation map production, and warning forecasting. Until September 2012, much of the work of the MMS was authorized through the Tsunami Warning and Education Act, an Act that has since expired but the spirit of which is being adhered to in parallel with reauthorization efforts. Over the past several years, the MMS has developed guidance and best practices for states and territories to produce accurate and consistent tsunami inundation maps for community level evacuation planning, and has conducted benchmarking of numerical inundation models. Recent tsunami events have highlighted the need for other types of tsunami hazard analyses and products for improving evacuation planning, vertical evacuation, maritime planning, land-use planning, building construction, and warning forecasts. As the program responsible for producing accurate and consistent tsunami products nationally, the NTHMP-MMS is initiating a multi-year plan to accomplish the following: 1) Create and build on existing demonstration projects that explore new tsunami hazard analysis techniques and products, such as maps identifying areas of strong currents and potential damage within harbors as well as probabilistic tsunami hazard analysis for land-use planning. 2) Develop benchmarks for validating new numerical modeling techniques related to current velocities and landslide sources. 3) Generate guidance and protocols for the production and use of new tsunami hazard analysis products. 4) Identify multistate collaborations and funding partners interested in these new products. Application of these new products will improve the overall safety and resilience of coastal communities exposed to tsunami hazards.
Subnormalized states and trace-nonincreasing maps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cappellini, Valerio; Sommers, Hans-Juergen; Zyczkowski, Karol
2007-05-15
We investigate the set of completely positive, trace-nonincreasing linear maps acting on the set M{sub N} of mixed quantum states of size N. Extremal point of this set of maps are characterized and its volume with respect to the Hilbert-Schmidt (HS) (Euclidean) measure is computed explicitly for an arbitrary N. The spectra of partially reduced rescaled dynamical matrices associated with trace-nonincreasing completely positive maps belong to the N cube inscribed in the set of subnormalized states of size N. As a by-product we derive the measure in M{sub N} induced by partial trace of mixed quantum states distributed uniformly withmore » respect to the HS measure in M{sub N{sup 2}}.« less
Trans fatty acids and cholesterol levels: An evidence map of the available science.
Liska, DeAnn J; Cook, Chad M; Wang, Ding Ding; Gaine, P Courtney; Baer, David J
2016-12-01
High intakes of industrial trans fatty acids (iTFA) increase circulating low density lipoprotein cholesterol (LDL-C) levels, which has implicated iTFA in coronary heart disease (CHD) risk. Published data on iTFA and LDL-C, however, represent higher intake levels than the U.S. population currently consume. This study used state-of-the-art evidence mapping approaches to characterize the full body of literature on LDL-C and iTFA at low intake levels. A total of 32 independent clinical trials that included at least one intervention or control group with iTFA at ≤3%en were found. Findings indicated that a wide range of oils and interventions were used, limiting the ability to determine an isolated effect of iTFA intake. Few data points were found for iTFA at <3%en, with the majority of low-level exposures actually representing control group interventions containing non-partially hydrogenated (PHO) oils. Further, it appears that few dose-response data points are available to assess the relationship of low levels of iTFA, particularly from PHO exposure, and LDL-C. Therefore, limited evidence is available to determine the effect of iTFA at current consumption levels on CHD risk. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Map Downloads | USDA Plant Hardiness Zone Map
formats. National, regional, and state maps are available under the View Maps section. Print Quality Maps dpi Graphic TIF 222 MB US Map 300 dpi Adobe Photoshop PS 25 MB *Print quality maps are very large | Non-Discrimination Statement | Information Quality | USA.gov | Whitehouse.gov
NASA Astrophysics Data System (ADS)
Brevik, E. C.; Heilig, J.; Kempenich, J.; Doolittle, J.; Ulmer, M.
2012-04-01
Sodium-affected soils (SAS) cover over 4 million hectares in the Northern Great Plains of the United States. Improving the classification, interpretation, and mapping of SAS is a major goal of the United States Department of Agriculture-Natural Resource Conservation Service (USDA-NRCS) as Northern Great Plains soil surveys are updated. Apparent electrical conductivity (ECa) as measured with ground conductivity meters has shown promise for mapping SAS, however, this use of this geophysical tool needs additional evaluation. This study used an EM-38 MK2-2 meter (Geonics Limited, Mississauga, Ontario), a Trimble AgGPS 114 L-band DGPS (Trimble, Sunnyvale, CA) and the RTmap38MK2 program (Geomar Software, Inc., Mississauga, Ontario) on an Allegro CX field computer (Juniper Systems, North Logan, UT) to collect, observe, and interpret ECa data in the field. The ECa map generated on-site was then used to guide collection of soil samples for soil characterization and to evaluate the influence of soil properties in SAS on ECa as measured with the EM-38MK2-2. Stochastic models contained in the ESAP software package were used to estimate the SAR and salinity levels from the measured ECa data in 30 cm depth intervals to a depth of 90 cm and for the bulk soil (0 to 90 cm). This technique showed promise, with meaningful spatial patterns apparent in the ECa data. However, many of the stochastic models used for salinity and SAR for individual depth intervals and for the bulk soil had low R-squared values. At both sites, significant variability in soil clay and water contents along with a small number of soil samples taken to calibrate the ECa values to soil properties likely contributed to these low R-squared values.
Shi, Xun; Miller, Stephanie; Mwenda, Kevin; Onda, Akikazu; Reese, Judy; Onega, Tracy; Gui, Jiang; Karagas, Margret; Demidenko, Eugene; Moeschler, John
2013-09-06
Limited by data availability, most disease maps in the literature are for relatively large and subjectively-defined areal units, which are subject to problems associated with polygon maps. High resolution maps based on objective spatial units are needed to more precisely detect associations between disease and environmental factors. We propose to use a Restricted and Controlled Monte Carlo (RCMC) process to disaggregate polygon-level location data to achieve mapping aggregate data at an approximated individual level. RCMC assigns a random point location to a polygon-level location, in which the randomization is restricted by the polygon and controlled by the background (e.g., population at risk). RCMC allows analytical processes designed for individual data to be applied, and generates high-resolution raster maps. We applied RCMC to the town-level birth defect data for New Hampshire and generated raster maps at the resolution of 100 m. Besides the map of significance of birth defect risk represented by p-value, the output also includes a map of spatial uncertainty and a map of hot spots. RCMC is an effective method to disaggregate aggregate data. An RCMC-based disease mapping maximizes the use of available spatial information, and explicitly estimates the spatial uncertainty resulting from aggregation.
Mapping America in 1880: The Urban Transition Historical GIS Project
Logan, John R.; Jindrich, Jason; Shin, Hyoungjin; Zhang, Weiwei
2011-01-01
The Urban Transition Historical GIS Project is a new data resource for United States counties and cities that takes advantage of NAPP’s 100% digital transcription of records from the 1880 Census. It has developed several additional resources to make possible analysis of social patterns at the level of individuals and households while also taking into account information about their communities. One key contribution is the creation of historically accurate GIS maps showing the boundaries of enumeration districts in 39 major cities. These materials are now publicly available through a web-based mapping system. Addresses of all households in these cities are also being geocoded, a step that will enable spatial analyses of residential patterns at any geographic scale. Preliminary analyses demonstrate the utility of multiple scales and the ability to combine information about individuals with data about their neighborhoods. PMID:21475614
Edge map analysis in chest X-rays for automatic pulmonary abnormality screening.
Santosh, K C; Vajda, Szilárd; Antani, Sameer; Thoma, George R
2016-09-01
Our particular motivator is the need for screening HIV+ populations in resource-constrained regions for the evidence of tuberculosis, using posteroanterior chest radiographs (CXRs). The proposed method is motivated by the observation that abnormal CXRs tend to exhibit corrupted and/or deformed thoracic edge maps. We study histograms of thoracic edges for all possible orientations of gradients in the range [Formula: see text] at different numbers of bins and different pyramid levels, using five different regions-of-interest selection. We have used two CXR benchmark collections made available by the U.S. National Library of Medicine and have achieved a maximum abnormality detection accuracy (ACC) of 86.36 % and area under the ROC curve (AUC) of 0.93 at 1 s per image, on average. We have presented an automatic method for screening pulmonary abnormalities using thoracic edge map in CXR images. The proposed method outperforms previously reported state-of-the-art results.
Toward digital geologic map standards: a progress report
Ulrech, George E.; Reynolds, Mitchell W.; Taylor, Richard B.
1992-01-01
Establishing modern scientific and technical standards for geologic maps and their derivative map products is vital to both producers and users of such maps as we move into an age of digital cartography. Application of earth-science data in complex geographic information systems, acceleration of geologic map production, and reduction of population costs require that national standards be developed for digital geologic cartography and computer analysis. Since December 1988, under commission of the Chief Geologic of the U.S. Geological Survey and the mandate of the National Geologic Mapping Program (with added representation from the Association of American State Geologists), a committee has been designing a comprehensive set of scientific map standards. Three primary issues were: (1) selecting scientific symbology and its digital representation; (2) creating an appropriate digital coding system that characterizes geologic features with respect to their physical properties, stratigraphic and structural relations, spatial orientation, and interpreted mode of origin; and (3) developing mechanisms for reporting levels of certainty for descriptive as well as measured properties. Approximately 650 symbols for geoscience maps, including present usage of the U.S Geological Survey, state geological surveys, industry, and academia have been identified and tentatively adopted. A proposed coding system comprises four-character groupings of major and minor codes that can identify all attributes of a geologic feature. Such a coding system allows unique identification of as many as 105 geologic names and values on a given map. The new standard will track closely the latest developments of the Proposed Standard for Digital Cartographic Data soon to be submitted to the National Institute of Standards and Technology by the Federal Interagency Coordinating Committee on Digital Cartography. This standard will adhere generally to the accepted definitions and specifications for spatial data transfer. It will require separate specifications of digital cartographic quality relating to positional accuracy and ranges of measured and interpreted values such as geologic age and rock composition. Provisional digital geologic map standards will be published for trial implementation. After approximately two years, when comments on the proposed standards have been solicited and modifications made, formal adoption of the standards will be recommended. Widespread acceptance of the new standards will depend on their applicability to the broadest range of earth-science map products and their adaptability to changing cartographic technology.
Inverse full state hybrid projective synchronization for chaotic maps with different dimensions
NASA Astrophysics Data System (ADS)
Ouannas, Adel; Grassi, Giuseppe
2016-09-01
A new synchronization scheme for chaotic (hyperchaotic) maps with different dimensions is presented. Specifically, given a drive system map with dimension n and a response system with dimension m, the proposed approach enables each drive system state to be synchronized with a linear response combination of the response system states. The method, based on the Lyapunov stability theory and the pole placement technique, presents some useful features: (i) it enables synchronization to be achieved for both cases of n < m and n > m; (ii) it is rigorous, being based on theorems; (iii) it can be readily applied to any chaotic (hyperchaotic) maps defined to date. Finally, the capability of the approach is illustrated by synchronization examples between the two-dimensional Hénon map (as the drive system) and the three-dimensional hyperchaotic Wang map (as the response system), and the three-dimensional Hénon-like map (as the drive system) and the two-dimensional Lorenz discrete-time system (as the response system).
Petersen, Mark D.; Zeng, Yuehua; Haller, Kathleen M.; McCaffrey, Robert; Hammond, William C.; Bird, Peter; Moschetti, Morgan; Shen, Zhengkang; Bormann, Jayne; Thatcher, Wayne
2014-01-01
The 2014 National Seismic Hazard Maps for the conterminous United States incorporate additional uncertainty in fault slip-rate parameter that controls the earthquake-activity rates than was applied in previous versions of the hazard maps. This additional uncertainty is accounted for by new geodesy- and geology-based slip-rate models for the Western United States. Models that were considered include an updated geologic model based on expert opinion and four combined inversion models informed by both geologic and geodetic input. The two block models considered indicate significantly higher slip rates than the expert opinion and the two fault-based combined inversion models. For the hazard maps, we apply 20 percent weight with equal weighting for the two fault-based models. Off-fault geodetic-based models were not considered in this version of the maps. Resulting changes to the hazard maps are generally less than 0.05 g (acceleration of gravity). Future research will improve the maps and interpret differences between the new models.
Fusion of multi-source remote sensing data for agriculture monitoring tasks
NASA Astrophysics Data System (ADS)
Skakun, S.; Franch, B.; Vermote, E.; Roger, J. C.; Becker Reshef, I.; Justice, C. O.; Masek, J. G.; Murphy, E.
2016-12-01
Remote sensing data is essential source of information for enabling monitoring and quantification of crop state at global and regional scales. Crop mapping, state assessment, area estimation and yield forecasting are the main tasks that are being addressed within GEO-GLAM. Efficiency of agriculture monitoring can be improved when heterogeneous multi-source remote sensing datasets are integrated. Here, we present several case studies of utilizing MODIS, Landsat-8 and Sentinel-2 data along with meteorological data (growing degree days - GDD) for winter wheat yield forecasting, mapping and area estimation. Archived coarse spatial resolution data, such as MODIS, VIIRS and AVHRR, can provide daily global observations that coupled with statistical data on crop yield can enable the development of empirical models for timely yield forecasting at national level. With the availability of high-temporal and high spatial resolution Landsat-8 and Sentinel-2A imagery, course resolution empirical yield models can be downscaled to provide yield estimates at regional and field scale. In particular, we present the case study of downscaling the MODIS CMG based generalized winter wheat yield forecasting model to high spatial resolution data sets, namely harmonized Landsat-8 - Sentinel-2A surface reflectance product (HLS). Since the yield model requires corresponding in season crop masks, we propose an automatic approach to extract winter crop maps from MODIS NDVI and MERRA2 derived GDD using Gaussian mixture model (GMM). Validation for the state of Kansas (US) and Ukraine showed that the approach can yield accuracies > 90% without using reference (ground truth) data sets. Another application of yearly derived winter crop maps is their use for stratification purposes within area frame sampling for crop area estimation. In particular, one can simulate the dependence of error (coefficient of variation) on the number of samples and strata size. This approach was used for estimating the area of winter crops in Ukraine for 2013-2016. The GMM-GDD approach is further extended for HLS data to provide automatic winter crop mapping at 30 m resolution for crop yield model and area estimation. In case of persistent cloudiness, addition of Sentinel-1A synthetic aperture radar (SAR) images is explored for automatic winter crop mapping.
Salient region detection by fusing bottom-up and top-down features extracted from a single image.
Tian, Huawei; Fang, Yuming; Zhao, Yao; Lin, Weisi; Ni, Rongrong; Zhu, Zhenfeng
2014-10-01
Recently, some global contrast-based salient region detection models have been proposed based on only the low-level feature of color. It is necessary to consider both color and orientation features to overcome their limitations, and thus improve the performance of salient region detection for images with low-contrast in color and high-contrast in orientation. In addition, the existing fusion methods for different feature maps, like the simple averaging method and the selective method, are not effective sufficiently. To overcome these limitations of existing salient region detection models, we propose a novel salient region model based on the bottom-up and top-down mechanisms: the color contrast and orientation contrast are adopted to calculate the bottom-up feature maps, while the top-down cue of depth-from-focus from the same single image is used to guide the generation of final salient regions, since depth-from-focus reflects the photographer's preference and knowledge of the task. A more general and effective fusion method is designed to combine the bottom-up feature maps. According to the degree-of-scattering and eccentricities of feature maps, the proposed fusion method can assign adaptive weights to different feature maps to reflect the confidence level of each feature map. The depth-from-focus of the image as a significant top-down feature for visual attention in the image is used to guide the salient regions during the fusion process; with its aid, the proposed fusion method can filter out the background and highlight salient regions for the image. Experimental results show that the proposed model outperforms the state-of-the-art models on three public available data sets.
Geospatial interpolation and mapping of tropospheric ozone pollution using geostatistics.
Kethireddy, Swatantra R; Tchounwou, Paul B; Ahmad, Hafiz A; Yerramilli, Anjaneyulu; Young, John H
2014-01-10
Tropospheric ozone (O3) pollution is a major problem worldwide, including in the United States of America (USA), particularly during the summer months. Ozone oxidative capacity and its impact on human health have attracted the attention of the scientific community. In the USA, sparse spatial observations for O3 may not provide a reliable source of data over a geo-environmental region. Geostatistical Analyst in ArcGIS has the capability to interpolate values in unmonitored geo-spaces of interest. In this study of eastern Texas O3 pollution, hourly episodes for spring and summer 2012 were selectively identified. To visualize the O3 distribution, geostatistical techniques were employed in ArcMap. Using ordinary Kriging, geostatistical layers of O3 for all the studied hours were predicted and mapped at a spatial resolution of 1 kilometer. A decent level of prediction accuracy was achieved and was confirmed from cross-validation results. The mean prediction error was close to 0, the root mean-standardized-prediction error was close to 1, and the root mean square and average standard errors were small. O3 pollution map data can be further used in analysis and modeling studies. Kriging results and O3 decadal trends indicate that the populace in Houston-Sugar Land-Baytown, Dallas-Fort Worth-Arlington, Beaumont-Port Arthur, San Antonio, and Longview are repeatedly exposed to high levels of O3-related pollution, and are prone to the corresponding respiratory and cardiovascular health effects. Optimization of the monitoring network proves to be an added advantage for the accurate prediction of exposure levels.
NASA Technical Reports Server (NTRS)
Hogan, Christine A.
1996-01-01
A land cover-vegetation map with a base classification system for remote sensing use in a tropical island environment was produced of the island of Hawaii for the State of Hawaii to evaluate whether or not useful land cover information can be derived from Landsat TM data. In addition, an island-wide change detection mosaic combining a previously created 1977 MSS land classification with the TM-based classification was produced. In order to reach the goal of transferring remote sensing technology to State of Hawaii personnel, a pilot project was conducted while training State of Hawaii personnel in remote sensing technology and classification systems. Spectral characteristics of young island land cover types were compared to determine if there are differences in vegetation types on lava, vegetation types on soils, and barren lava from soils, and if they can be detected remotely, based on differences in pigments detecting plant physiognomic type, health, stress at senescence, heat, moisture level, and biomass. Geographic information systems (GIS) and global positioning systems (GPS) were used to assist in image rectification and classification. GIS was also used to produce large-format color output maps. An interactive GIS program was written to provide on-line access to scanned photos taken at field sites. The pilot project found Landsat TM to be a credible source of land cover information for geologically young islands, and TM data bands are effective in detecting spectral characteristics of different land cover types through remote sensing. Large agriculture field patterns were resolved and mapped successfully from wildland vegetation, but small agriculture field patterns were not. Additional processing was required to work with the four TM scenes from two separate orbits which span three years, including El Nino and drought dates. Results of the project emphasized the need for further land cover and land use processing and research. Change in vegetation composition was noted in the change detection image.
The emerging role of lidar remote sensing in coastal research and resource management
Brock, J.C.; Purkis, S.J.
2009-01-01
Knowledge of coastal elevation is an essential requirement for resource management and scientific research. Recognizing the vast potential of lidar remote sensing in coastal studies, this Special Issue includes a collection of articles intended to represent the state-of-the-art for lidar investigations of nearshore submerged and emergent ecosystems, coastal morphodynamics, and hazards due to sea-level rise and severe storms. Some current applications for lidar remote sensing described in this Special Issue include bluegreen wavelength lidar used for submarine coastal benthic environments such as coral reef ecosystems, airborne lidar used for shoreline mapping and coastal change detection, and temporal waveform-resolving lidar used for vegetation mapping. ?? 2009 Coastal Education and Research Foundation.
The emerging role of lidar remote sensing in coastal research and resource management
Brock, John C.; Purkis, Samuel J.
2009-01-01
Knowledge of coastal elevation is an essential requirement for resource management and scientific research. Recognizing the vast potential of lidar remote sensing in coastal studies, this Special Issue includes a collection of articles intended to represent the state-of-the-art for lidar investigations of nearshore submerged and emergent ecosystems, coastal morphodynamics, and hazards due to sea-level rise and severe storms. Some current applications for lidar remote sensing described in this Special Issue include bluegreen wavelength lidar used for submarine coastal benthic environments such as coral reef ecosystems, airborne lidar used for shoreline mapping and coastal change detection, and temporal waveform-resolving lidar used for vegetation mapping.
NASA Astrophysics Data System (ADS)
Zhuravlev, Vladimir; Duan, Wenye; Maniv, Tsofar
2017-10-01
The Nambu-Gorkov Green's function approach is applied to strongly type-II superconductivity in a 2D spin-momentum-locked (Weyl) Fermi gas model at high perpendicular magnetic fields. The resulting phase diagram can be mapped onto that derived for the standard, parabolic band-structure model, having the same Fermi surface parameters, E F and v, but with cyclotron effective mass m\\ast=EF/2v2 . Significant deviations from the predicted mapping are found only for very small E F , when the Landau-Level filling factors are smaller than unity, and E F shrinks below the cutoff energy.
Cressman, Earle Rupert; Noger, Martin C.
1981-01-01
In 1960, the U.S. Geological Survey and the Kentucky Geological Survey began a program to map the State geologically at a scale of 1:24,000 and to publish the maps as 707 U.S. Geological Survey Geologic Quadrangle Maps. Fieldwork was completed by the spring of 1977, and all maps were published by December 1978. Geologic mapping of the State was proposed by the Kentucky Society of Professional Engineers in 1959. Wallace W. Hagan, Director and State Geologist of the Kentucky Geological Survey, and Preston McGrain, Assistant State Geologist, promoted support for the proposal among organizations such as Chambers of Commerce, industrial associations, professional societies, and among members of the State government. It was also arranged for the U.S. Geological Survey to supply mapping personnel and to publish the maps; the cost would be shared equally by the two organizations. Members of the U.S. Geological Survey assigned to the program were organized as the Branch of Kentucky Geology. Branch headquarters, including an editorial staff, was at Lexington, Ky., but actual mapping was conducted from 18 field offices distributed throughout the State. The Publications Division of the U.S. Geological Survey established a cartographic office at Lexington to prepare the maps for publication. About 260 people, including more than 200 professionals, were assigned to the Branch of Kentucky Geology by the U.S. Geological Survey at one time or another. The most geologists assigned any one year was 61. To complete the mapping and ancillary studies, 661 professional man-years were required, compared with an original estimate of 600 man-years. A wide variety of field methods were used, but most geologists relied on the surveying altimeter to obtain elevations. Surface data were supplemented by drill-hole records, and several dozen shallow diamond-drill holes were drilled to aid the mapping. Geologists generally scribed their own maps, with a consequent saving of publication costs. Paleontologists and stratigraphers of the U.S. Geological Survey cooperated closely with the program. Paleontologic studies were concentrated in the Ordovician of central Kentucky, the Pennsylvanian of eastern and western Kentucky, and the Mesozoic and Cenozoic of westernmost Kentucky. In addition to financial support, the Kentucky Geological Survey provided economic data, stratigraphic support, and drillhole records to the field offices. Geologists of the State Survey made subsurface structural interpretations, constructed bedrock topography maps, and mapped several quadrangles. Some of the problems encountered were the inadequacy of much of the existing stratigraphic nomenclature, the uneven quality of some of the mapping, and the effects of relative isolation on the professional development of some of the geologists. The program cost a total of $20,927,500. In terms of 1960 dollars, it cost $16,035,000; this compares with an original estimate of $12,000,000. Although it is difficult to place a monetary value on the geologic mapping, the program has contributed to newly discovered mineral wealth, jobs, and money saved by government and industry. The maps are used widely in the exploration for coal, oil and gas, fluorspar, limestone, and clay. The maps are also used in planning highways and locations of dams, in evaluating foundation and excavation conditions, in preparing environmental impact statements, and in land-use planning.
Hydrology of the Reelfoot Lake basin, Obion and Lake counties, northwestern Tennessee
Robbins, C.H.
1985-01-01
Nine maps describe the following water resources aspects of the Reelfoot Lake watershed: Map 1-Surface water gaging stations, lake level, and locations of observation wells, rainfall stations and National Weather Service rainfall stations; Maps 2 and 3-water level contours, river stage, groundwater movement; Maps 4 and 5-grid blocks simulating constant head on the Mississippi River, Reelfoot Lake, Running Reelfoot Bayou, Reelfoot Creek, and Running Slough; Maps 6 and 7-difference between model calculated and observed water levels; and Maps 8 and 9-line of equal groundwater level increase and approximate lake area at pool elevation. (Lantz-PTT)
A Control Algorithm for Chaotic Physical Systems
1991-10-01
revision expands the grid to cover the entire area of any attractor that is present. 5 Map Selection The final choices of the state- space mapping process...interval h?; overrange R0 ; control parameter interval AkO and range [kbro, khigh]; iteration depth. "* State- space mapping : 1. Set up grid by expanding
This map service displays the results data from the EPA's Environmental Quality Index. The US Environmental Protection Agency's (EPA) National Health and Environmental Effects Research Laboratory (NHEERL) in the Environmental Public Health Division (EPHD) is currently engaged in research aimed at developing a measure that estimates overall environmental quality at the county level for the United States. This work is being conducted as an effort to learn more about how various environmental factors simultaneously contribute to health disparities in low-income and minority populations, and to better estimate the total environmental and social context to which humans are exposed. This dataset contains the finalized Environmental Quality Index (EQI), and an index for each of the associated domains (air, water, land, built environment, and sociodemographic environment). Indices are at the county level for all counties in the United States.
Functional Covariance Networks: Obtaining Resting-State Networks from Intersubject Variability
Gohel, Suril; Di, Xin; Walter, Martin; Biswal, Bharat B.
2012-01-01
Abstract In this study, we investigate a new approach for examining the separation of the brain into resting-state networks (RSNs) on a group level using resting-state parameters (amplitude of low-frequency fluctuation [ALFF], fractional ALFF [fALFF], the Hurst exponent, and signal standard deviation). Spatial independent component analysis is used to reveal covariance patterns of the relevant resting-state parameters (not the time series) across subjects that are shown to be related to known, standard RSNs. As part of the analysis, nonresting state parameters are also investigated, such as mean of the blood oxygen level-dependent time series and gray matter volume from anatomical scans. We hypothesize that meaningful RSNs will primarily be elucidated by analysis of the resting-state functional connectivity (RSFC) parameters and not by non-RSFC parameters. First, this shows the presence of a common influence underlying individual RSFC networks revealed through low-frequency fluctation (LFF) parameter properties. Second, this suggests that the LFFs and RSFC networks have neurophysiological origins. Several of the components determined from resting-state parameters in this manner correlate strongly with known resting-state functional maps, and we term these “functional covariance networks”. PMID:22765879
Resting-State Functional Magnetic Resonance Imaging for Language Preoperative Planning
Branco, Paulo; Seixas, Daniela; Deprez, Sabine; Kovacs, Silvia; Peeters, Ronald; Castro, São L.; Sunaert, Stefan
2016-01-01
Functional magnetic resonance imaging (fMRI) is a well-known non-invasive technique for the study of brain function. One of its most common clinical applications is preoperative language mapping, essential for the preservation of function in neurosurgical patients. Typically, fMRI is used to track task-related activity, but poor task performance and movement artifacts can be critical limitations in clinical settings. Recent advances in resting-state protocols open new possibilities for pre-surgical mapping of language potentially overcoming these limitations. To test the feasibility of using resting-state fMRI instead of conventional active task-based protocols, we compared results from fifteen patients with brain lesions while performing a verb-to-noun generation task and while at rest. Task-activity was measured using a general linear model analysis and independent component analysis (ICA). Resting-state networks were extracted using ICA and further classified in two ways: manually by an expert and by using an automated template matching procedure. The results revealed that the automated classification procedure correctly identified language networks as compared to the expert manual classification. We found a good overlay between task-related activity and resting-state language maps, particularly within the language regions of interest. Furthermore, resting-state language maps were as sensitive as task-related maps, and had higher specificity. Our findings suggest that resting-state protocols may be suitable to map language networks in a quick and clinically efficient way. PMID:26869899
Van Gosen, Bradley S.
2010-01-01
This map and its accompanying dataset provide information for 51 natural occurrences of asbestos in Washington and Oregon, using descriptions found in the geologic literature. Data on location, mineralogy, geology, and relevant literature for each asbestos site are provided. Using the map and digital data in this report, the user can examine the distribution of previously reported asbestos occurrences and their geological characteristics in the Pacific Northwest States of Washington and Oregon. This report is part of an ongoing study by the U.S. Geological Survey to identify and map reported natural asbestos occurrences in the United States, which thus far includes similar maps and datasets of natural asbestos occurrences within the Eastern United States (http://pubs.usgs.gov/of/2005/1189/), the Central United States (http://pubs.usgs.gov/of/2006/1211/), the Rocky Mountain States (http://pubs.usgs.gov/of/2007/1182/), and the Southwestern United States (http://pubs.usgs.gov/of/2008/1095/). These reports are intended to provide State and local government agencies and other stakeholders with geologic information on natural occurrences of asbestos in the United States.
Ambient noise levels in the continental United States
McNamara, D.E.; Buland, R.P.
2004-01-01
The results of our noise analysis are useful for characterizing the performance of existing broadband stations and for detecting operational problems and should be relevant to the future siting of ANSS backbone stations. The noise maps at body-wave frequencies should be useful for estimating the magnitude threshold for the ANSS backbone and regional networks or conversely for optimizing the distribution of regional network stations.
Tactical Level Commander and Staff Toolkit
2010-01-01
Sites Geodata.gov (for maps) http://gos2.geodata.gov Google Earth for .mil (United States Army Corps of Engineers (USACE) site) https...the eyes, ears, head, hands, back, and feet. When appropriate, personnel should wear protective lenses, goggles, or face shields . Leaders should...Typical hurricanes are about 300 miles wide, although they can vary considerably. Size is not necessarily an indication of hurricane intensity. The
Explaining rISC and 100% efficient TADF (Conference Presentation)
NASA Astrophysics Data System (ADS)
Monkman, Andrew P.; Etherington, Marc; Graves, David; Data, Przemyslaw; Dos Santos, Paloma Lays; Nobuyasu, Roberto; Baiao Dias, Fernando M.
2016-09-01
Detailed photophysical measurements of intramolecular charge transfer (ICT) states have been made both in solution and solid state. Temperature dependent time resolved emission, delayed emission and photoinduced absorption are used to map the energy levels involved in molecule decay, and through detailed kinetic modelling of the thermally activated processes observed, true electron exchange energies and other energy barriers of the systems determined with the real states involved in the reversed intersystem crossing mechanism elucidated. For specific donor acceptor molecules, the CT singlet and local triplet states (of donor or acceptor) are found to be the lowest lying excited states of the molecule with very small energy barrier between them ? kT. In these cases the decay kinetics of the molecules become significantly different to normal molecules, and the effect of rapid recycling between CT singlet and local triplet states is observed which gives rise to the true triplet harvesting mechanism in TADF. Using a series of different TADF emitters we will show how the energy level ordering effects or does not effect TADF and how ultimate OLED performance is dictated by energy level ordering, from 5% to 22% external quantum efficiency. From this understanding, we are able to define three criterion for TADF in different molecules and these will be discussed.
Geologic map of the Calamity Mesa quadrangle, Colorado
Cater, Fred W.
1955-01-01
The series of Geologic Quadrangle Maps of the United States continues the series of quadrangle maps begun with the folios of the Geologic Atlas of the United States, which were published from 1894 to 1945. The present series consists of geologic maps, supplemented where possible by structure sections, columnar sections, and other graphic means of presenting geologic data, and accompanied by a brief explanatory text to make the maps useful for general scientific and economic purposes. Full description and interpretation of the geology of the areas shown on these maps are reserved for publication in other channels, such as the Bulletins and Professional Papers of the Geological Survey. Separate maps of the same areas, covering bedrock, surficial, engineering, and other phases of geology, may be published in the geologic quadrangle map series.
LANDSAT's role in HUD 701 programs. [New Jersey and South Dakota
NASA Technical Reports Server (NTRS)
1979-01-01
A survey of states concerning the use of LANDSAT in support of the comprehensive planning assistance program (Title IV, section 701) of the Housing and Community Development Act (1974) which is aimed mostly at small communities and rural counties, shows: (1) state governments used or were aware of the application of LANDSAT for inventorying land use and land cover at the state and local level; (2) use of satellite data was associated with the development of automated geographic information systems and the computer capability of handling and analyzing mapped information and other data tied to geographic coordinates and boundaries; and (3) LANDSAT capabilities in states tend to be institutionalized within state government information services where they can be readily assessed by state agencies. A summary of the state program for New Jersey and South Dakota is presented along with the state development guide plans, the rationale for using the satellite, and potential applications.
Predefined Redundant Dictionary for Effective Depth Maps Representation
NASA Astrophysics Data System (ADS)
Sebai, Dorsaf; Chaieb, Faten; Ghorbel, Faouzi
2016-01-01
The multi-view video plus depth (MVD) video format consists of two components: texture and depth map, where a combination of these components enables a receiver to generate arbitrary virtual views. However, MVD presents a very voluminous video format that requires a compression process for storage and especially for transmission. Conventional codecs are perfectly efficient for texture images compression but not for intrinsic depth maps properties. Depth images indeed are characterized by areas of smoothly varying grey levels separated by sharp discontinuities at the position of object boundaries. Preserving these characteristics is important to enable high quality view synthesis at the receiver side. In this paper, sparse representation of depth maps is discussed. It is shown that a significant gain in sparsity is achieved when particular mixed dictionaries are used for approximating these types of images with greedy selection strategies. Experiments are conducted to confirm the effectiveness at producing sparse representations, and competitiveness, with respect to candidate state-of-art dictionaries. Finally, the resulting method is shown to be effective for depth maps compression and represents an advantage over the ongoing 3D high efficiency video coding compression standard, particularly at medium and high bitrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, Peter A.
For the purposes of making reliable first-principles predictions of defect energies in semiconductors, it is crucial to distinguish between effective-mass-like defects, which cannot be treated accurately with existing supercell methods, and deep defects, for which density functional theory calculations can yield reliable predictions of defect energy levels. The gallium antisite defect GaAs is often associated with the 78/203 meV shallow double acceptor in Ga-rich gallium arsenide. Within a conceptual framework of level patterns, analyses of structure and spin stabilization can be used within a supercell approach to distinguish localized deep defect states from shallow acceptors such as B As. Thismore » systematic approach determines that the gallium antisite supercell results has signatures inconsistent with an effective mass state and cannot be the 78/203 shallow double acceptor. Lastly, the properties of the Ga antisite in GaAs are described, total energy calculations that explicitly map onto asymptotic discrete localized bulk states predict that the Ga antisite is a deep double acceptor and has at least one deep donor state.« less
Mapping current fluctuations of stochastic pumps to nonequilibrium steady states.
NASA Astrophysics Data System (ADS)
Rotskoff, Grant
We show that current fluctuations in stochastic pumps can be robustly mapped to fluctuations in a corresponding time-independent non-equilibrium steady state. We thus refine a recently proposed mapping so that it ensures equivalence of not only the averages, but also the optimal representation of fluctuations in currents and density. Our mapping leads to a natural decomposition of the entropy production in stochastic pumps, similar to the ``housekeeping'' heat. As a consequence of the decomposition of entropy production, the current fluctuations in weakly perturbed stochastic pumps satisfy a universal bound determined by the steady state entropy production. National Science Foundation Graduate Research Fellowship.
A working environment for digital planetary data processing and mapping using ISIS and GRASS GIS
Frigeri, A.; Hare, T.; Neteler, M.; Coradini, A.; Federico, C.; Orosei, R.
2011-01-01
Since the beginning of planetary exploration, mapping has been fundamental to summarize observations returned by scientific missions. Sensor-based mapping has been used to highlight specific features from the planetary surfaces by means of processing. Interpretative mapping makes use of instrumental observations to produce thematic maps that summarize observations of actual data into a specific theme. Geologic maps, for example, are thematic interpretative maps that focus on the representation of materials and processes and their relative timing. The advancements in technology of the last 30 years have allowed us to develop specialized systems where the mapping process can be made entirely in the digital domain. The spread of networked computers on a global scale allowed the rapid propagation of software and digital data such that every researcher can now access digital mapping facilities on his desktop. The efforts to maintain planetary missions data accessible to the scientific community have led to the creation of standardized digital archives that facilitate the access to different datasets by software capable of processing these data from the raw level to the map projected one. Geographic Information Systems (GIS) have been developed to optimize the storage, the analysis, and the retrieval of spatially referenced Earth based environmental geodata; since the last decade these computer programs have become popular among the planetary science community, and recent mission data start to be distributed in formats compatible with these systems. Among all the systems developed for the analysis of planetary and spatially referenced data, we have created a working environment combining two software suites that have similar characteristics in their modular design, their development history, their policy of distribution and their support system. The first, the Integrated Software for Imagers and Spectrometers (ISIS) developed by the United States Geological Survey, represents the state of the art for processing planetary remote sensing data, from the raw unprocessed state to the map projected product. The second, the Geographic Resources Analysis Support System (GRASS) is a Geographic Information System developed by an international team of developers, and one of the core projects promoted by the Open Source Geospatial Foundation (OSGeo). We have worked on enabling the combined use of these software systems throughout the set-up of a common user interface, the unification of the cartographic reference system nomenclature and the minimization of data conversion. Both software packages are distributed with free open source licenses, as well as the source code, scripts and configuration files hereafter presented. In this paper we describe our work done to merge these working environments into a common one, where the user benefits from functionalities of both systems without the need to switch or transfer data from one software suite to the other one. Thereafter we provide an example of its usage in the handling of planetary data and the crafting of a digital geologic map. ?? 2010 Elsevier Ltd. All rights reserved.
Zandbergen, Paul A
2014-01-01
Public health datasets increasingly use geographic identifiers such as an individual's address. Geocoding these addresses often provides new insights since it becomes possible to examine spatial patterns and associations. Address information is typically considered confidential and is therefore not released or shared with others. Publishing maps with the locations of individuals, however, may also breach confidentiality since addresses and associated identities can be discovered through reverse geocoding. One commonly used technique to protect confidentiality when releasing individual-level geocoded data is geographic masking. This typically consists of applying a certain amount of random perturbation in a systematic manner to reduce the risk of reidentification. A number of geographic masking techniques have been developed as well as methods to quantity the risk of reidentification associated with a particular masking method. This paper presents a review of the current state-of-the-art in geographic masking, summarizing the various methods and their strengths and weaknesses. Despite recent progress, no universally accepted or endorsed geographic masking technique has emerged. Researchers on the other hand are publishing maps using geographic masking of confidential locations. Any researcher publishing such maps is advised to become familiar with the different masking techniques available and their associated reidentification risks.
[Analysis of the geographical distribution of cases of leprosy. Rio de Janeiro, 2001-2012].
Gracie, Renata; Peixoto, Julia Novaes de Barros; Soares, Fabiane Bertoni Dos Reis; Hacker, Mariana de Andrea Vilas-Boas
2017-05-01
Studies have demonstrated that the geographical distribution of leprosy is related to different socioeconomic factors. This article aims to study the geographical distribution of leprosy in the state of Rio de Janeiro. The cases of leprosy reported in the 2001-2012 period were mapped according to municipality. Epidemiological and socioeconomic indicators were calculated. The ArcMap program was used for the construction of maps and Earth View to calculate the Bayesian rate. It was observed that leprosy is presented in hyper-endemic levels especially in the metropolitan area. However, there is also a reduction of the detection rate in the most recent study period. In municipalities in the metropolitan region and the north western region detection in children under 15 is high, indicating an active transmission situation. In municipalities in the south-central region and especially in the coastal region, there was a high proportion of cases diagnosed with level II disability, reflecting late diagnosis. There was no linear correlation between socioeconomic indicators and leprosy rate. These results contribute to the analysis of the geographical distribution of leprosy, important for the identification of areas for resource allocation, aiming to control and eliminate the disease.
Wilson, Frederic H.; Hults, Chad P.; Schmoll, Henry R.; Haeussler, Peter J.; Schmidt, Jeanine M.; Yehle, Lynn A.; Labay, Keith A.; Shew, Nora B.
2009-01-01
The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. The files named __geol contain geologic polygons and line (contact) attributes; files named __fold contain fold axes; files named __lin contain lineaments; and files named __dike contain dikes as lines. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.
Khana, Diba; Rossen, Lauren M; Hedegaard, Holly; Warner, Margaret
2018-01-01
Hierarchical Bayes models have been used in disease mapping to examine small scale geographic variation. State level geographic variation for less common causes of mortality outcomes have been reported however county level variation is rarely examined. Due to concerns about statistical reliability and confidentiality, county-level mortality rates based on fewer than 20 deaths are suppressed based on Division of Vital Statistics, National Center for Health Statistics (NCHS) statistical reliability criteria, precluding an examination of spatio-temporal variation in less common causes of mortality outcomes such as suicide rates (SRs) at the county level using direct estimates. Existing Bayesian spatio-temporal modeling strategies can be applied via Integrated Nested Laplace Approximation (INLA) in R to a large number of rare causes of mortality outcomes to enable examination of spatio-temporal variations on smaller geographic scales such as counties. This method allows examination of spatiotemporal variation across the entire U.S., even where the data are sparse. We used mortality data from 2005-2015 to explore spatiotemporal variation in SRs, as one particular application of the Bayesian spatio-temporal modeling strategy in R-INLA to predict year and county-specific SRs. Specifically, hierarchical Bayesian spatio-temporal models were implemented with spatially structured and unstructured random effects, correlated time effects, time varying confounders and space-time interaction terms in the software R-INLA, borrowing strength across both counties and years to produce smoothed county level SRs. Model-based estimates of SRs were mapped to explore geographic variation.
NORTH AMERICAN DATUM 1983 IMPLEMENTATION IMPACTS ON THE USGS NATIONAL MAPPING PROGRAM.
Jones, William J.; Needham, Paul E.
1985-01-01
The U. S. Geological Survey has previously experienced the impacts on the National Mapping Program that are associated with implementing a readjustment of the horizontal datum. The impacts of these past readjustments were minimal compared to those of the current readjustment. The Geological Survey currently has produced and published over 60,000 different map products. The 7. 5-minute mapping program is nearing completion with over 85 percent of the conterminous States mapped. The intermediate-scale mapping program of the conterminous United States is scheduled for completion of planimetric editions by the end of 1986. It is apparent that until digital cartographic data are available, implementation of the North American Datum 1983 will primarily consist of cartographic adjustment of existing map products.
Permeability of soils in Mississippi
O'Hara, Charles G.
1994-01-01
The permeability of soils in Mississippi was determined and mapped using a geographic information system (GIS). Soil permeabilities in Mississippi were determined to range in value from nearly 0.0 to values exceeding 5.0 inches per hour. The U.S. Soil Conservation Service's State Soil Geographic Data Base (STATSGO) was used as the primary source of data for the determination of area-weighted soil permeability. STATSGO provides soil layer properties that are spatially referenced to mapped areas. These mapped areas are referred to as polygons in the GIS. The polygons arc boundaries of soils mapped as a group and are given unique Map Unit Identifiers (MUIDs). The data describing the physical characteristics of the soils within each polygon are stored in a tabular data base format and are referred to as attributes. The U.S. Soil Conservation Service developed STATSGO to be primarily used as a guide for regional resource planning, management, and monitoring. STATSGO was designed so that soil information could be extracted from properties tables at the layer level, combined by component, and statistically expanded to cover the entire map unit. The results of this study provide a mapped value for permeability which is representative of the vertical permeability of soils in that area. The resultant permeability map provides a representative vertical soil permeability for a given area sufficient for county, multi- county, and area planning, and will be used as the soil permeability data component in the evaluation of the susceptibility of major aquifers to contami- nation in Mississippi.
Improve EPA's AIRNow Air Quality Index Maps with NASA/NOAA Satellite Data
NASA Astrophysics Data System (ADS)
Pasch, A.; Zahn, P. H.; DeWinter, J. L.; Haderman, M. D.; White, J. E.; Dickerson, P.; Dye, T. S.; Martin, R. V.
2011-12-01
The U.S. Environmental Protection Agency's (EPA) AIRNow program provides maps of real-time hourly Air Quality Index (AQI) conditions and daily AQI forecasts nationwide (http://www.airnow.gov). The public uses these maps to make decisions concerning their respiratory health. The usefulness of the AIRNow air quality maps depends on the accuracy and spatial coverage of air quality measurements. Currently, the maps use only ground-based measurements, which have significant gaps in coverage in some parts of the United States. As a result, contoured AQI levels have high uncertainty in regions far from monitors. To improve the usefulness of air quality maps, scientists at EPA and Sonoma Technology, Inc. are working in collaboration with the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA), and university researchers on a project to incorporate additional measurements into the maps via the AIRNow Satellite Data Processor (ASDP). These measurements include estimated surface PM
Optics to rectify CORONA panoramic photographs for map making
NASA Astrophysics Data System (ADS)
Hilbert, Robert S.
2006-08-01
In the 1960's, accurate maps of the United States were available to all, from the U.S. Government, but maps of the Soviet Union were not, and in fact were classified. Maps of the Soviet Union were needed by the U.S. Government, including for U.S. targeting of Soviet ICBM sites, and for negotiating the SALT ICBM disarmament treaty. Although mapping cameras were historically frame cameras with low distortion, the CORONA panoramic film coverage was used to identify any ICBM sites. If distortion-free photographs could be produced from this inherently distorted panoramic material, accurate maps could be produced that would be valuable. Use of the stereo photographs from CORONA, for developing accurate topographical maps, was the mission of Itek's Gamma Rectifier. Bob Shannon's department at Itek was responsible for designing the optics for the Gamma Rectifier. He assigned the design to the author. The optical requirements of this system are described along with the optical design solution, which allowed the inherent panoramic distortion of the original photographs to be "rectified" to a very high level of accuracy, in enlarged photographs. These rectifiers were used three shifts a day, for over a decade, and produced the most accurate maps of the earth's surface, that existed at that time. The results facilitated the success of the Strategic Arms Limitation Talks (SALT) Treaty signed by the US and the Soviet Union in 1972, which were verified by "national means of verification" (i.e. space reconnaissance).
Quantum state matching of qubits via measurement-induced nonlinear transformations
NASA Astrophysics Data System (ADS)
Kálmán, Orsolya; Kiss, Tamás
2018-03-01
We consider the task of deciding whether an unknown qubit state falls in a prescribed neighborhood of a reference state. We assume that several copies of the unknown state are given and apply a unitary operation pairwise on them combined with a postselection scheme conditioned on the measurement result obtained on one of the qubits of the pair. The resulting transformation is a deterministic, nonlinear, chaotic map in the Hilbert space. We derive a class of these transformations capable of orthogonalizing nonorthogonal qubit states after a few iterations. These nonlinear maps orthogonalize states which correspond to the two different convergence regions of the nonlinear map. Based on the analysis of the border (the so-called Julia set) between the two regions of convergence, we show that it is always possible to find a map capable of deciding whether an unknown state is within a neighborhood of fixed radius around a desired quantum state. We analyze which one- and two-qubit operations would physically realize the scheme. It is possible to find a single two-qubit unitary gate for each map or, alternatively, a universal special two-qubit gate together with single-qubit gates in order to carry out the task. We note that it is enough to have a single physical realization of the required gates due to the iterative nature of the scheme.
Identification of Nonlinear Micron-Level Mechanics for a Precision Deployable Joint
NASA Technical Reports Server (NTRS)
Bullock, S. J.; Peterson, L. D.
1994-01-01
The experimental identification of micron-level nonlinear joint mechanics and dynamics for a pin-clevis joint used in a precision, adaptive, deployable space structure are investigated. The force-state mapping method is used to identify the behavior of the joint under a preload. The results of applying a single tension-compression cycle to the joint under a tensile preload are presented. The observed micron-level behavior is highly nonlinear and involves all six rigid body motion degrees-of-freedom of the joint. it is also suggests that at micron levels of motion modelling of the joint mechanics and dynamics must include the interactions between all internal components, such as the pin, bushings, and the joint node.
... Download Maps Prevalence of Self-Reported Obesity Among Non-Hispanic White Adults by State and Territory, BRFSS, ... 29.2) Prevalence of Self-Reported Obesity Among Non-Hispanic Black Adults by State and Territory, BRFSS, ...
Applications of national land cover maps in United States forestry
Kurt H. Riitters; Gregory A. Reams
2008-01-01
Land cover maps derived from satellite imagery have a long and varied history of uses in United States forestry science and management. This article reviews recent developments concerning the use of national- to continental-scale land cover maps for inventory, monitoring, and resource assessment in the U.S. Forest Service. The use of mid-scale digital resolution...