Implementing finite state machines in a computer-based teaching system
NASA Astrophysics Data System (ADS)
Hacker, Charles H.; Sitte, Renate
1999-09-01
Finite State Machines (FSM) are models for functions commonly implemented in digital circuits such as timers, remote controls, and vending machines. Teaching FSM is core in the curriculum of many university digital electronic or discrete mathematics subjects. Students often have difficulties grasping the theoretical concepts in the design and analysis of FSM. This has prompted the author to develop an MS-WindowsTM compatible software, WinState, that provides a tutorial style teaching aid for understanding the mechanisms of FSM. The animated computer screen is ideal for visually conveying the required design and analysis procedures. WinState complements other software for combinatorial logic previously developed by the author, and enhances the existing teaching package by adding sequential logic circuits. WinState enables the construction of a students own FSM, which can be simulated, to test the design for functionality and possible errors.
Casey, M
1996-08-15
Recurrent neural networks (RNNs) can learn to perform finite state computations. It is shown that an RNN performing a finite state computation must organize its state space to mimic the states in the minimal deterministic finite state machine that can perform that computation, and a precise description of the attractor structure of such systems is given. This knowledge effectively predicts activation space dynamics, which allows one to understand RNN computation dynamics in spite of complexity in activation dynamics. This theory provides a theoretical framework for understanding finite state machine (FSM) extraction techniques and can be used to improve training methods for RNNs performing FSM computations. This provides an example of a successful approach to understanding a general class of complex systems that has not been explicitly designed, e.g., systems that have evolved or learned their internal structure.
A technology mapping based on graph of excitations and outputs for finite state machines
NASA Astrophysics Data System (ADS)
Kania, Dariusz; Kulisz, Józef
2017-11-01
A new, efficient technology mapping method of FSMs, dedicated for PAL-based PLDs is proposed. The essence of the method consists in searching for the minimal set of PAL-based logic blocks that cover a set of multiple-output implicants describing the transition and output functions of an FSM. The method is based on a new concept of graph: the Graph of Excitations and Outputs. The proposed algorithm was tested using the FSM benchmarks. The obtained results were compared with the classical technology mapping of FSM.
A New Method for Incremental Testing of Finite State Machines
NASA Technical Reports Server (NTRS)
Pedrosa, Lehilton Lelis Chaves; Moura, Arnaldo Vieira
2010-01-01
The automatic generation of test cases is an important issue for conformance testing of several critical systems. We present a new method for the derivation of test suites when the specification is modeled as a combined Finite State Machine (FSM). A combined FSM is obtained conjoining previously tested submachines with newly added states. This new concept is used to describe a fault model suitable for incremental testing of new systems, or for retesting modified implementations. For this fault model, only the newly added or modified states need to be tested, thereby considerably reducing the size of the test suites. The new method is a generalization of the well-known W-method and the G-method, but is scalable, and so it can be used to test FSMs with an arbitrarily large number of states.
NASA Astrophysics Data System (ADS)
Jusoh, L. I.; Sulaiman, E.; Bahrim, F. S.; Kumar, R.
2017-08-01
Recent advancements have led to the development of flux switching machines (FSMs) with flux sources within the stators. The advantage of being a single-piece machine with a robust rotor structure makes FSM an excellent choice for speed applications. There are three categories of FSM, namely, the permanent magnet (PM) FSM, the field excitation (FE) FSM, and the hybrid excitation (HE) FSM. The PMFSM and the FEFSM have their respective PM and field excitation coil (FEC) as their key flux sources. Meanwhile, as the name suggests, the HEFSM has a combination of PM and FECs as the flux sources. The PMFSM is a simple and cheap machine, and it has the ability to control variable flux, which would be suitable for an electric bicycle. Thus, this paper will present a design comparison between an inner rotor and an outer rotor for a single-phase permanent magnet flux switching machine with 8S-10P, designed specifically for an electric bicycle. The performance of this machine was validated using the 2D- FEA. As conclusion, the outer-rotor has much higher torque approximately at 54.2% of an innerrotor PMFSM. From the comprehensive analysis of both designs it can be conclude that output performance is lower than the SRM and IPMSM design machine. But, it shows that the possibility to increase the design performance by using “deterministic optimization method”.
FSM-F: Finite State Machine Based Framework for Denial of Service and Intrusion Detection in MANET.
N Ahmed, Malik; Abdullah, Abdul Hanan; Kaiwartya, Omprakash
2016-01-01
Due to the continuous advancements in wireless communication in terms of quality of communication and affordability of the technology, the application area of Mobile Adhoc Networks (MANETs) significantly growing particularly in military and disaster management. Considering the sensitivity of the application areas, security in terms of detection of Denial of Service (DoS) and intrusion has become prime concern in research and development in the area. The security systems suggested in the past has state recognition problem where the system is not able to accurately identify the actual state of the network nodes due to the absence of clear definition of states of the nodes. In this context, this paper proposes a framework based on Finite State Machine (FSM) for denial of service and intrusion detection in MANETs. In particular, an Interruption Detection system for Adhoc On-demand Distance Vector (ID-AODV) protocol is presented based on finite state machine. The packet dropping and sequence number attacks are closely investigated and detection systems for both types of attacks are designed. The major functional modules of ID-AODV includes network monitoring system, finite state machine and attack detection model. Simulations are carried out in network simulator NS-2 to evaluate the performance of the proposed framework. A comparative evaluation of the performance is also performed with the state-of-the-art techniques: RIDAN and AODV. The performance evaluations attest the benefits of proposed framework in terms of providing better security for denial of service and intrusion detection attacks.
NASA Astrophysics Data System (ADS)
Zhang, Xiu; Wang, Xingyu; Wang, Bei; Sugi, Takenao; Nakamura, Masatoshi
Surface electromyogram (EMG) from elbow, wrist and hand has been widely used as an input of multifunction prostheses for many years. However, for patients with high-level limb deficiencies, muscle activities in upper-limbs are not strong enough to be used as control signals. In this paper, EMG from lower-limbs is acquired and applied to drive a meal assistance robot. An onset detection method with adaptive threshold based on EMG power is proposed to recognize different muscle contractions. Predefined control commands are output by finite state machine (FSM), and applied to operate the robot. The performance of EMG control is compared with joystick control by both objective and subjective indices. The results show that FSM provides the user with an easy-performing control strategy, which successfully operates robots with complicated control commands by limited muscle motions. The high accuracy and comfortableness of the EMG-control meal assistance robot make it feasible for users with upper limbs motor disabilities.
FSM-F: Finite State Machine Based Framework for Denial of Service and Intrusion Detection in MANET
N. Ahmed, Malik; Abdullah, Abdul Hanan; Kaiwartya, Omprakash
2016-01-01
Due to the continuous advancements in wireless communication in terms of quality of communication and affordability of the technology, the application area of Mobile Adhoc Networks (MANETs) significantly growing particularly in military and disaster management. Considering the sensitivity of the application areas, security in terms of detection of Denial of Service (DoS) and intrusion has become prime concern in research and development in the area. The security systems suggested in the past has state recognition problem where the system is not able to accurately identify the actual state of the network nodes due to the absence of clear definition of states of the nodes. In this context, this paper proposes a framework based on Finite State Machine (FSM) for denial of service and intrusion detection in MANETs. In particular, an Interruption Detection system for Adhoc On-demand Distance Vector (ID-AODV) protocol is presented based on finite state machine. The packet dropping and sequence number attacks are closely investigated and detection systems for both types of attacks are designed. The major functional modules of ID-AODV includes network monitoring system, finite state machine and attack detection model. Simulations are carried out in network simulator NS-2 to evaluate the performance of the proposed framework. A comparative evaluation of the performance is also performed with the state-of-the-art techniques: RIDAN and AODV. The performance evaluations attest the benefits of proposed framework in terms of providing better security for denial of service and intrusion detection attacks. PMID:27285146
NASA Astrophysics Data System (ADS)
Tkacz, J.; Bukowiec, A.; Doligalski, M.
2017-08-01
The paper presentes the method of modeling and implementation of concurrent controllers. Concurrent controllers are specified by Petri nets. Then Petri nets are decomposed using symbolic deduction method of analysis. Formal methods like sequent calculus system with considered elements of Thelen's algorithm have been used here. As a result, linked state machines (LSMs) are received. Each FSM is implemented using methods of structural decomposition during process of logic synthesis. The method of multiple encoding of microinstruction has been applied. It leads to decreased number of Boolean function realized by combinational part of FSM. The additional decoder could be implemented with the use of memory blocks.
A finite state machine read-out chip for integrated surface acoustic wave sensors
NASA Astrophysics Data System (ADS)
Rakshit, Sambarta; Iliadis, Agis A.
2015-01-01
A finite state machine based integrated sensor circuit suitable for the read-out module of a monolithically integrated SAW sensor on Si is reported. The primary sensor closed loop consists of a voltage controlled oscillator (VCO), a peak detecting comparator, a finite state machine (FSM), and a monolithically integrated SAW sensor device. The output of the system oscillates within a narrow voltage range that correlates with the SAW pass-band response. The period of oscillation is of the order of the SAW phase delay. We use timing information from the FSM to convert SAW phase delay to an on-chip 10 bit digital output operating on the principle of time to digital conversion (TDC). The control inputs of this digital conversion block are generated by a second finite state machine operating under a divided system clock. The average output varies with changes in SAW center frequency, thus tracking mass sensing events in real time. Based on measured VCO gain of 16 MHz/V our system will convert a 10 kHz SAW frequency shift to a corresponding mean voltage shift of 0.7 mV. A corresponding shift in phase delay is converted to a one or two bit shift in the TDC output code. The system can handle alternate SAW center frequencies and group delays simply by adjusting the VCO control and TDC delay control inputs. Because of frequency to voltage and phase to digital conversion, this topology does not require external frequency counter setups and is uniquely suitable for full monolithic integration of autonomous sensor systems and tags.
Methods for the design and analysis of power optimized finite-state machines using clock gating
NASA Astrophysics Data System (ADS)
Chodorowski, Piotr
2017-11-01
The paper discusses two methods of design of power optimized FSMs. Both methods use clock gating techniques. The main objective of the research was to write a program capable of generating automatic hardware description of finite-state machines in VHDL and testbenches to help power analysis. The creation of relevant output files is detailed step by step. The program was tested using the LGSynth91 FSM benchmark package. An analysis of the generated circuits shows that the second method presented in this paper leads to significant reduction of power consumption.
Sampled-data controller implementation
NASA Astrophysics Data System (ADS)
Wang, Yu; Leduc, Ryan J.
2012-09-01
The setting of this article is the implementation of timed discrete-event systems (TDES) as sampled-data (SD) controllers. An SD controller is driven by a periodic clock and sees the system as a series of inputs and outputs. On each clock edge (tick event), it samples its inputs, changes states and updates its outputs. In this article, we establish a formal representation of an SD controller as a Moore synchronous finite state machine (FSM). We describe how to translate a TDES supervisor to an FSM, as well as necessary properties to be able to do so. We discuss how to construct a single centralised controller as well as a set of modular controllers, and show that they will produce equivalent output. We briefly discuss how the recently introduced SD controllability definition relates to our translation method. SD controllability is an extension of TDES controllability which captures several new properties that are useful in dealing with concurrency issues, as well as make it easier to translate a TDES supervisor into an SD controller. We next discuss the application of SD controllability to a small flexible manufacturing system (FMS) from the literature. The example demonstrates the successful application of the new SD properties. We describe the design of the system in detail to illustrate the new conditions and to provide designers with guidance on how to apply the properties. We also present some FSM translation issues encountered, as well as the FSM version of the system's supervisors.
Model Driven Development of Web Services and Dynamic Web Services Composition
2005-01-01
27 2.4.1 Feature-Oriented Domain Analysis ( FODA ).......................................27 2.4.2 The need of automation for Feature-Oriented...Diagram Algebra FDL Feature Description Language FODA Feature-Oriented Domain Analysis FSM Finite State Machine GDM Generative Domain...Oriented Domain Analysis ( FODA ) in Section 2.4 and Aspect-Oriented Generative Do- main Modeling (AOGDM) in Section 2.5, which not only represent two
Duan, Qian-Qian; Yang, Gen-Ke; Pan, Chang-Chun
2014-01-01
A hybrid optimization algorithm combining finite state method (FSM) and genetic algorithm (GA) is proposed to solve the crude oil scheduling problem. The FSM and GA are combined to take the advantage of each method and compensate deficiencies of individual methods. In the proposed algorithm, the finite state method makes up for the weakness of GA which is poor at local searching ability. The heuristic returned by the FSM can guide the GA algorithm towards good solutions. The idea behind this is that we can generate promising substructure or partial solution by using FSM. Furthermore, the FSM can guarantee that the entire solution space is uniformly covered. Therefore, the combination of the two algorithms has better global performance than the existing GA or FSM which is operated individually. Finally, a real-life crude oil scheduling problem from the literature is used for conducting simulation. The experimental results validate that the proposed method outperforms the state-of-art GA method. PMID:24772031
A low complexity, low spur digital IF conversion circuit for high-fidelity GNSS signal playback
NASA Astrophysics Data System (ADS)
Su, Fei; Ying, Rendong
2016-01-01
A low complexity high efficiency and low spur digital intermediate frequency (IF) conversion circuit is discussed in the paper. This circuit is key element in high-fidelity GNSS signal playback instrument. We analyze the spur performance of a finite state machine (FSM) based numerically controlled oscillators (NCO), by optimization of the control algorithm, a FSM based NCO with 3 quantization stage can achieves 65dB SFDR in the range of the seventh harmonic. Compare with traditional lookup table based NCO design with the same Spurious Free Dynamic Range (SFDR) performance, the logic resource require to implemented the NCO is reduced to 1/3. The proposed design method can be extended to the IF conversion system with good SFDR in the range of higher harmonic components by increasing the quantization stage.
Fingerprinting Reverse Proxies Using Timing Analysis of TCP Flows
2013-09-01
bayes classifier,” in Cloud Computing Security , ser. CCSW ’09. New York City, NY: ACM, 2009, pp. 31–42. [30] J. Zhang, R. Perdisci, W. Lee, U. Sarfraz...FSM Finite State Machine HTML Hypertext Markup Language HTTP Hypertext Transfer Protocol HTTPS Hypertext Transfer Protocol Secure ICMP Internet Control...This hidden traffic concept supports network access control, security protection through obfuscation, and performance boosts at the Internet facing
Diagnosis of delay-deadline failures in real time discrete event models.
Biswas, Santosh; Sarkar, Dipankar; Bhowal, Prodip; Mukhopadhyay, Siddhartha
2007-10-01
In this paper a method for fault detection and diagnosis (FDD) of real time systems has been developed. A modeling framework termed as real time discrete event system (RTDES) model is presented and a mechanism for FDD of the same has been developed. The use of RTDES framework for FDD is an extension of the works reported in the discrete event system (DES) literature, which are based on finite state machines (FSM). FDD of RTDES models are suited for real time systems because of their capability of representing timing faults leading to failures in terms of erroneous delays and deadlines, which FSM-based ones cannot address. The concept of measurement restriction of variables is introduced for RTDES and the consequent equivalence of states and indistinguishability of transitions have been characterized. Faults are modeled in terms of an unmeasurable condition variable in the state map. Diagnosability is defined and the procedure of constructing a diagnoser is provided. A checkable property of the diagnoser is shown to be a necessary and sufficient condition for diagnosability. The methodology is illustrated with an example of a hydraulic cylinder.
Self-balanced modulation and magnetic rebalancing method for parallel multilevel inverters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hui; Shi, Yanjun
A self-balanced modulation method and a closed-loop magnetic flux rebalancing control method for parallel multilevel inverters. The combination of the two methods provides for balancing of the magnetic flux of the inter-cell transformers (ICTs) of the parallel multilevel inverters without deteriorating the quality of the output voltage. In various embodiments a parallel multi-level inverter modulator is provide including a multi-channel comparator to generate a multiplexed digitized ideal waveform for a parallel multi-level inverter and a finite state machine (FSM) module coupled to the parallel multi-channel comparator, the FSM module to receive the multiplexed digitized ideal waveform and to generate amore » pulse width modulated gate-drive signal for each switching device of the parallel multi-level inverter. The system and method provides for optimization of the output voltage spectrum without influence the magnetic balancing.« less
ControlShell: A real-time software framework
NASA Technical Reports Server (NTRS)
Schneider, Stanley A.; Chen, Vincent W.; Pardo-Castellote, Gerardo
1994-01-01
The ControlShell system is a programming environment that enables the development and implementation of complex real-time software. It includes many building tools for complex systems, such as a graphical finite state machine (FSM) tool to provide strategic control. ControlShell has a component-based design, providing interface definitions and mechanisms for building real-time code modules along with providing basic data management. Some of the system-building tools incorporated in ControlShell are a graphical data flow editor, a component data requirement editor, and a state-machine editor. It also includes a distributed data flow package, an execution configuration manager, a matrix package, and an object database and dynamic binding facility. This paper presents an overview of ControlShell's architecture and examines the functions of several of its tools.
Pike, Jamison; Tippins, Ashley; Nyaku, Mawuli; Eckert, Maribeth; Helgenberger, Louisa; Underwood, J Michael
2017-10-13
After 20years with no reported measles cases, on May 15, 2014 the Centers for Disease Control and Prevention (CDC) was notified of two cases testing positive for measles-specific immunoglobulin M (IgM) antibodies in the Federated States of Micronesia (FSM). Under the Compact of Free Association, FSM receives immunization funding and technical support from the United States (US) domestic vaccination program managed by the Centers for Disease Control and Prevention (CDC). In a collaborative effort, public health officials and volunteers from FSM and the US government worked to respond and contain the measles outbreak through an emergency mass vaccination campaign, contact tracing, and other outbreak investigation activities. Contributions were also made by United Nations Children's Emergency Fund (UNICEF) and World Health Organization (WHO). Total costs incurred as a result of the outbreak were nearly $4,000,000; approximately $10,000 per case. Direct medical costs (≈$141,000) were incurred in the treatment of those individuals infected, as well as lost productivity of the infected and informal caregivers (≈$250,000) and costs to contain the outbreak (≈$3.5 million). We assessed the economic burden of the 2014 measles outbreak to FSM, as well as the economic responsibilities of the US. Although the US paid the majority of total costs of the outbreak (≈67%), examining each country's costs relative to their respective economy illustrates a far greater burden to FSM. We demonstrate that while FSM was heavily assisted by the US in responding to the 2014 Measles Outbreak, the outbreak significantly impacted their economy. FSM's economic burden from the outbreak is approximately equivalent to their entire 2016 Fiscal Year budget dedicated to education. Published by Elsevier Ltd.
Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton.
del-Ama, Antonio J; Gil-Agudo, Angel; Pons, José L; Moreno, Juan C
2014-03-04
Robotic and functional electrical stimulation (FES) approaches are used for rehabilitation of walking impairment of spinal cord injured individuals. Although devices are commercially available, there are still issues that remain to be solved. Control of hybrid exoskeletons aims at blending robotic exoskeletons and electrical stimulation to overcome the drawbacks of each approach while preserving their advantages. Hybrid actuation and control have a considerable potential for walking rehabilitation but there is a need of novel control strategies of hybrid systems that adequately manage the balance between FES and robotic controllers. Combination of FES and robotic control is a challenging issue, due to the non-linear behavior of muscle under stimulation and the lack of developments in the field of hybrid control. In this article, a cooperative control strategy of a hybrid exoskeleton is presented. This strategy is designed to overcome the main disadvantages of muscular stimulation: electromechanical delay and change in muscle performance over time, and to balance muscular and robotic actuation during walking.Experimental results in healthy subjects show the ability of the hybrid FES-robot cooperative control to balance power contribution between exoskeleton and muscle stimulation. The robotic exoskeleton decreases assistance while adequate knee kinematics are guaranteed. A new technique to monitor muscle performance is employed, which allows to estimate muscle fatigue and implement muscle fatigue management strategies. Kinesis is therefore the first ambulatory hybrid exoskeleton that can effectively balance robotic and FES actuation during walking. This represents a new opportunity to implement new rehabilitation interventions to induce locomotor activity in patients with paraplegia.Acronym list: 10 mWT: ten meters walking test; 6 MWT: six minutes walking test; FSM: finite-state machine; t-FSM: time-domain FSM; c-FSM: cycle-domain FSM; FES: functional electrical stimulation; HKAFO: hip-knee-ankle-foot orthosis; ILC: iterative error-based learning control; MFE: muscle fatigue estimator; NILC: Normalized stimulation output from ILC controller; PID: Proportional-Integral-derivative Control; PW: Stimulation pulse width; QUEST: Quebec User Evaluation of Satisfaction with assistive Technology; SCI: Spinal cord injury; TTI: torque-time integral; VAS: Visual Analog Scale.
Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton
2014-01-01
Robotic and functional electrical stimulation (FES) approaches are used for rehabilitation of walking impairment of spinal cord injured individuals. Although devices are commercially available, there are still issues that remain to be solved. Control of hybrid exoskeletons aims at blending robotic exoskeletons and electrical stimulation to overcome the drawbacks of each approach while preserving their advantages. Hybrid actuation and control have a considerable potential for walking rehabilitation but there is a need of novel control strategies of hybrid systems that adequately manage the balance between FES and robotic controllers. Combination of FES and robotic control is a challenging issue, due to the non-linear behavior of muscle under stimulation and the lack of developments in the field of hybrid control. In this article, a cooperative control strategy of a hybrid exoskeleton is presented. This strategy is designed to overcome the main disadvantages of muscular stimulation: electromechanical delay and change in muscle performance over time, and to balance muscular and robotic actuation during walking. Experimental results in healthy subjects show the ability of the hybrid FES-robot cooperative control to balance power contribution between exoskeleton and muscle stimulation. The robotic exoskeleton decreases assistance while adequate knee kinematics are guaranteed. A new technique to monitor muscle performance is employed, which allows to estimate muscle fatigue and implement muscle fatigue management strategies. Kinesis is therefore the first ambulatory hybrid exoskeleton that can effectively balance robotic and FES actuation during walking. This represents a new opportunity to implement new rehabilitation interventions to induce locomotor activity in patients with paraplegia. Acronym list: 10mWT: ten meters walking test; 6MWT: six minutes walking test; FSM: finite-state machine; t-FSM: time-domain FSM; c-FSM: cycle-domain FSM; FES: functional electrical stimulation; HKAFO: hip-knee-ankle-foot orthosis; ILC: iterative error-based learning control; MFE: muscle fatigue estimator; NILC: Normalized stimulation output from ILC controller; PID: Proportional-Integral-derivative Control; PW: Stimulation pulse width; QUEST: Quebec User Evaluation of Satisfaction with assistive Technology; SCI: Spinal cord injury; TTI: torque-time integral; VAS: Visual Analog Scale. PMID:24594302
Accelerating String Set Matching in FPGA Hardware for Bioinformatics Research
Dandass, Yoginder S; Burgess, Shane C; Lawrence, Mark; Bridges, Susan M
2008-01-01
Background This paper describes techniques for accelerating the performance of the string set matching problem with particular emphasis on applications in computational proteomics. The process of matching peptide sequences against a genome translated in six reading frames is part of a proteogenomic mapping pipeline that is used as a case-study. The Aho-Corasick algorithm is adapted for execution in field programmable gate array (FPGA) devices in a manner that optimizes space and performance. In this approach, the traditional Aho-Corasick finite state machine (FSM) is split into smaller FSMs, operating in parallel, each of which matches up to 20 peptides in the input translated genome. Each of the smaller FSMs is further divided into five simpler FSMs such that each simple FSM operates on a single bit position in the input (five bits are sufficient for representing all amino acids and special symbols in protein sequences). Results This bit-split organization of the Aho-Corasick implementation enables efficient utilization of the limited random access memory (RAM) resources available in typical FPGAs. The use of on-chip RAM as opposed to FPGA logic resources for FSM implementation also enables rapid reconfiguration of the FPGA without the place and routing delays associated with complex digital designs. Conclusion Experimental results show storage efficiencies of over 80% for several data sets. Furthermore, the FPGA implementation executing at 100 MHz is nearly 20 times faster than an implementation of the traditional Aho-Corasick algorithm executing on a 2.67 GHz workstation. PMID:18412963
ERIC Educational Resources Information Center
Lerner, Max J.; Drier, Harry N.
In 1989 the Center on Education and Training for Employment at Ohio State University was asked by the government of the Federated States of Micronesia (FSM) to conduct a study on the postsecondary educational system within the FSM. During the course of the study, the survey team's postsecondary specialist visited community college campuses and…
Fletcher, Charles H.; Richmond, Bruce M.
2010-01-01
This is a report of findings following research and a three-week field assessment (April 2009) of the Federated States of Micronesia (FSM) in response to nation-wide marine inundation by extreme tides (December 2007, September 2008, December 2008).3 The study was conducted at the request of the US Department of Agriculture Forest Service and the state and federal governments of FSM.
Environmental dilemma game to establish a sustainable society dealing with an emergent value system
NASA Astrophysics Data System (ADS)
Tanimoto, Jun
2005-01-01
To induce whether we can obtain a sustainable society by shifting our paradigm from the materialistic to the eco-conscientious, we established a multi-agent simulation model. The model primarily featured a dilemma structure encouraged by a conflict between each agent's private desire to earn more and the need for environmental conservation. Another important feature is that the model has two evolutionary layers. The subordinate layer is a learning system comprised of a finite state machine (FSM) and a genetic algorithm (GA) primarily, which is carried with each individual agent to determine his/her next behavior and how much he/she must earn to maximize an individual fitness function. The supra layer is the so-called value system, the gene pool of which is shared within the society. The value system stipulates an agent's fitness function, which in turn affects the agent's behavior. The value system of each agent was set up to be entirely ego-oriented at the beginning of the simulation episode. A numerical experiment based on the model reveals a scene in which, under a certain condition related to assumptions of the value system, a group of agents undergoes a paradigm shift from the ego-oriented materialism to the eco-conscious sustainable society. The key condition is a latent existence of several values that ultimately lead to sustainability, even though they do not work at all at the beginning of the episode. In terms of the evolutionary game theory, this implies that changing game structure on the way of a simulation episode by transforming the fitness function seems to be much powerful measures for the emergent collective cooperation among the agents than ordinal options to support cooperation. In addition, we made a detailed analysis on how assumed agents have obtained a sustainable value system. Each agent has an individual decision-making process based on the input with a learning mechanism. We focus here on two types of learning system, the finite state machine (FSM) plus genetic algorithm (GA), and profit shearing (PS). Observation of the generative trails of FSM and the value table of PS lead us to a profound understanding of what kind of inception triggers the emergence of a sustainable society.
A muscle-driven approach to restore stepping with an exoskeleton for individuals with paraplegia.
Chang, Sarah R; Nandor, Mark J; Li, Lu; Kobetic, Rudi; Foglyano, Kevin M; Schnellenberger, John R; Audu, Musa L; Pinault, Gilles; Quinn, Roger D; Triolo, Ronald J
2017-05-30
Functional neuromuscular stimulation, lower limb orthosis, powered lower limb exoskeleton, and hybrid neuroprosthesis (HNP) technologies can restore stepping in individuals with paraplegia due to spinal cord injury (SCI). However, a self-contained muscle-driven controllable exoskeleton approach based on an implanted neural stimulator to restore walking has not been previously demonstrated, which could potentially result in system use outside the laboratory and viable for long term use or clinical testing. In this work, we designed and evaluated an untethered muscle-driven controllable exoskeleton to restore stepping in three individuals with paralysis from SCI. The self-contained HNP combined neural stimulation to activate the paralyzed muscles and generate joint torques for limb movements with a controllable lower limb exoskeleton to stabilize and support the user. An onboard controller processed exoskeleton sensor signals, determined appropriate exoskeletal constraints and stimulation commands for a finite state machine (FSM), and transmitted data over Bluetooth to an off-board computer for real-time monitoring and data recording. The FSM coordinated stimulation and exoskeletal constraints to enable functions, selected with a wireless finger switch user interface, for standing up, standing, stepping, or sitting down. In the stepping function, the FSM used a sensor-based gait event detector to determine transitions between gait phases of double stance, early swing, late swing, and weight acceptance. The HNP restored stepping in three individuals with motor complete paralysis due to SCI. The controller appropriately coordinated stimulation and exoskeletal constraints using the sensor-based FSM for subjects with different stimulation systems. The average range of motion at hip and knee joints during walking were 8.5°-20.8° and 14.0°-43.6°, respectively. Walking speeds varied from 0.03 to 0.06 m/s, and cadences from 10 to 20 steps/min. A self-contained muscle-driven exoskeleton was a feasible intervention to restore stepping in individuals with paraplegia due to SCI. The untethered hybrid system was capable of adjusting to different individuals' needs to appropriately coordinate exoskeletal constraints with muscle activation using a sensor-driven FSM for stepping. Further improvements for out-of-the-laboratory use should include implantation of plantar flexor muscles to improve walking speed and power assist as needed at the hips and knees to maintain walking as muscles fatigue.
Effects of the Compact of Free Association on Sovereignty in the Federated States of Micronesia
2017-06-01
limited authority to the United States, backed by the FSM’s international legal standing. In return, the FSM should gain the political and economic ...the FSM’s international legal standing. In return, the FSM should gain the political and economic capacity to be more effectively sovereign than it...FSM’S ECONOMIC AND POLITICAL CHALLENGES ..........4 D. POTENTIAL EXPLANATIONS AND HYPOTHESES .......................7 1. Explanations for the
Wen, Shameng; Meng, Qingkun; Feng, Chao; Tang, Chaojing
2017-01-01
Formal techniques have been devoted to analyzing whether network protocol specifications violate security policies; however, these methods cannot detect vulnerabilities in the implementations of the network protocols themselves. Symbolic execution can be used to analyze the paths of the network protocol implementations, but for stateful network protocols, it is difficult to reach the deep states of the protocol. This paper proposes a novel model-guided approach to detect vulnerabilities in network protocol implementations. Our method first abstracts a finite state machine (FSM) model, then utilizes the model to guide the symbolic execution. This approach achieves high coverage of both the code and the protocol states. The proposed method is implemented and applied to test numerous real-world network protocol implementations. The experimental results indicate that the proposed method is more effective than traditional fuzzing methods such as SPIKE at detecting vulnerabilities in the deep states of network protocol implementations.
Vitamin A deficiency among children--Federated States of Micronesia, 2000.
2001-06-22
Vitamin A, a fat-soluble, heat-stable nutrient (retinol) derived from animal sources and certain fruits and vegetables, forms the basic component of retinal pigments and plays a vital role in optimal health, growth, and development. Vitamin A deficiency (VAD) (serum retinol < or = 20 microg/dL [< or = 0.7 micromol/L] for subclinical VAD) can substantially increase the risk for childhood mortality from infectious and noninfectious causes. VAD impairs the mobilization and transport of iron and is usually associated with anemia and reduced growth. VAD is a major public health problem in parts of Africa, Asia, Latin America, and the Western Pacific. In Chuuk and Pohnpei, two of the four Federated States of Micronesia (FSM) (2000 population: 107,008), nutrition surveys during the early 1990s documented VAD prevalences among the highest in the world (CDC, unpublished data, 1991; U.S. Public Health Service, unpublished data, 1994). In response to these findings, FSM health authorities, with support of the United Nations Children's Fund (UNICEF), began distributing vitamin A supplements in 1993 and 1998 in Chuuk and Pohnpei, respectively. In November 1999, FSM requested assistance from CDC in VAD assessment surveys of children in Kosrae and Yap, the other two FSM states. This report summarizes levels of serum retinol and prevalence of VAD and other indicators of nutritional status among children aged 24-59 months in Kosrae and Yap. The findings indicated low serum retinol levels and high VAD prevalences but no substantial stunting or wasting. A comprehensive, long-term national strategy is needed in FSM to promote sustained improvement in vitamin A status.
Meeting school food standards - students' food choice and free school meals.
Ensaff, Hannah; Russell, Jean; Barker, Margo E
2013-12-01
To examine students’ school food choice in relation to school food standards and entitlement to free school meals (FSM). Cross-sectional analysis of students’ school food choices. Two large secondary schools in Yorkshire, England. Students (n 2660) aged 11–18 years. Sandwiches and pizza were the most popular main food items: 40·4 % and 31·2 %, respectively, in School A; 48·3 % and 27·3 %, respectively, in School B. More nutritionally valuable ‘dishes of the day’ accounted for 8·7 % and 8·3 % of main foods for School A and School B, respectively. FSM students were more likely (P < 0·0 0 1) to choose main foods (School A: FSM 87·04 %, non-FSM 70·28 %; School B: FSM 75·43 %, non-FSM 56·13 %). Dishes of the day were chosen on a significantly greater (P < 0·0 0 1) percentage of days by FSM v. non-FSM students (School A: FSM 15·67 %, non-FSM 7·11 %; School B: FSM 19·42 %, non-FSM 5·17 %). Despite the availability of nutritionally valuable dishes of the day, the most popular food items were sandwiches, pizza and desserts. FSM students were more likely to choose the more nutritionally valuable dish of the day. School food standards should be reassessed in light of students’ preferences.
Fermented soymilk increases voluntary wheel running activity and sexual behavior in male rats.
Sato, Takuya; Shinohara, Yasutomo; Kaneko, Daisuke; Nishimura, Ikuko; Matsuyama, Asahi
2010-12-01
Wheel running by rodents is thought to reflect voluntary exercise in humans. The present study examined the effect of fermented soymilk (FSM) on voluntary wheel running in rats. FSM was prepared from soymilk (SM) using the bacteria Leuconostoc pseudomesenteroides. The rats were fed a normal diet for 3 weeks followed by a 3-week administration of diet containing FSM or SM (5% w/w), and then the diets were switched back to a normal diet for 3 weeks. The voluntary wheel running activity was increased by FSM administration, although no changes were observed by SM administration. This effect was observed 2 weeks after FSM administration and lasted 1 week after deprivation of FSM. Then we evaluated the effect of FSM on sexual behavior in male rats. FSM administration for 10 days significantly increased the number of mounts. The protein expression of tyrosine hydroxylase (TH) increased in the hippocampus by FSM administration and it is suggested that FSM may change norepinephrine or dopamine signaling in the brain. Our study provides the first evidence that FSM increases voluntary wheel running activity and sexual behavior and suggests that TH may be involved in these effects.
Nobuko K. Conroy; Ali Fares; Katherine C. Ewel; Tomoaki Miura; Halina M. Zaleski
2011-01-01
Traditional food and its supporting agricultural and agroforestry systems still play a large part in peopleâs daily lives in Federated Sates of Micronesia (FSM). To date, however, there are few publications on details of these systems in the country. On Kosrae Island, the easternmost island of FSM, one type of agroforestry has been practiced for centuries in coastal...
Six-state phase modulation for reduced crosstalk in a fiber optic gyroscope.
Zhang, Chunxi; Zhang, Shaobo; Pan, Xiong; Jin, Jing
2018-04-16
Electrical crosstalk in an interferometric fiber-optic gyroscope (IFOG) is regarded as the most significant factor influencing dead bands. Here, we present a six-state modulation (SSM) technique to reduce crosstalk. Compared to conventional four-state modulation (FSM) or square-wave modulation (SWM), the SSM reduces the correlation between modulation voltage and demodulation reference by separating their fundamental frequencies, and thus reduces the bias error induced by crosstalk. The measured dead band of a 1500-m IFOG is approximately 0.02 °/h using FSM and approximately 0.08 °/h using SWM, whereas there is no evidence of dead band using SSM. The IFOG using SSM also exhibits better angular random walk (ARW) and bias instability performance compared to the same IFOG using FSM or SWM. These results verify the crosstalk reduction effect of SSM. In theory, by using the relative intensity noise (RIN) suppressing technique with the optimal modulation depth of 2π/3, the SSM can eliminate the crosstalk, which offers the potential for a high-performance IFOG with low noise, high sensitivity, wide dynamic range, and no dead band.
Space Shuttle Flight Support Motor no. 1 (FSM-1)
NASA Technical Reports Server (NTRS)
Hughes, Phil D.
1990-01-01
Space Shuttle Flight Support Motor No. 1 (FSM-1) was static test fired on 15 Aug. 1990 at the Thiokol Corporation Static Test Bay T-24. FSM-1 was a full-scale, full-duration static test fire of a redesigned solid rocket motor. FSM-1 was the first of seven flight support motors which will be static test fired. The Flight Support Motor program validates components, materials, and manufacturing processes. In addition, FSM-1 was the full-scale motor for qualification of Western Electrochemical Corporation ammonium perchlorate. This motor was subjected to all controls and documentation requirements CTP-0171, Revision A. Inspection and instrumentation data indicate that the FSM-1 static test firing was successful. The ambient temperature during the test was 87 F and the propellant mean bulk temperature was 82 F. Ballistics performance values were within the specified requirements. The overall performance of the FSM-1 components and test equipment was nominal.
Aertssen, W F M; Steenbergen, B; Smits-Engelsman, B C M
2018-06-07
There is lack of valid and reliable field-based tests for assessing functional strength in young children with mild intellectual disabilities (IDs). The aim of this study was to investigate the test-retest reliability and construct validity of the Functional Strength Measurement in children with ID (FSM-ID). Fifty-two children with mild ID (40 boys and 12 girls, mean age 8.48 years, SD = 1.48) were tested with the FSM. Test-retest reliability (n = 32) was examined by a two-way interclass correlation coefficient for agreement (ICC 2.1A). Standard error of measurement and smallest detectable change were calculated. Construct validity was determined by calculating correlations between the FSM-ID and handheld dynamometry (HHD) (convergent validity), FSM-ID, FSM-ID and subtest strength of the Bruininks-Oseretsky test of motor proficiency - second edition (BOT-2) (convergent validity) and the FSM-ID and balance subtest of the BOT-2 (discriminant validity). Test-retest reliability ICC ranged 0.89-0.98. Correlation between the items of the FSM-ID and HHD ranged 0.39-0.79 and between FSM-ID and BOT-2 (strength items) 0.41-0.80. Correlation between items of the FSM-ID and BOT-2 (balance items) ranged 0.41-0.70. The FSM-ID showed good test-retest reliability and good convergent validity with the HHD and BOT-2 subtest strength. The correlations assessing discriminant validity were higher than expected. Poor levels of postural control and core stability in children with mild IDs may be the underlying factor of those higher correlations. © 2018 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.
Telemedicine in the Federated States of Micronesia.
Rutstein, D
2000-09-01
Telemedicine (other than costly long distance telephone and facsimile messages) in the Federated States of Micronesia (FSM) started approximately 4 years ago with the establishment of Internet access in the State of Yap. A local access, for medical use only, via already established trunk lines maintained by Continental Airlines was established. It provided a connection to CompuServe at a baud rate of 300 bps. FSM TeleCom provided this free service. While this connection was slow, it allowed medical staff at Yap State Hospital to send and receive text based e-mail regarding patient management. By its use interest was generated in both medical and non-medical individuals to develop a commercial full scale Internet service. In March 1996, TeleCom became a full scale commercial Internet Service Provider in Yap. Rates were reasonable and the CompuServe access was phased out. The full scale internet allowed medical personnel to engage in telemedicine activities, including email; email attachments; the search and retrieval of medical literature; transmission to medical specialists of X-rays, ECG's and other images; and real-time teleconferencing over the Internet with both audio and video. In addition, to the improvement of medical care, this allowed for greater efficiency in arranging referral of patients for medical treatment outside of the FSM.
3D multiplayer virtual pets game using Google Card Board
NASA Astrophysics Data System (ADS)
Herumurti, Darlis; Riskahadi, Dimas; Kuswardayan, Imam
2017-08-01
Virtual Reality (VR) is a technology which allows user to interact with the virtual environment. This virtual environment is generated and simulated by computer. This technology can make user feel the sensation when they are in the virtual environment. The VR technology provides real virtual environment view for user and it is not viewed from screen. But it needs another additional device to show the view of virtual environment. This device is known as Head Mounted Device (HMD). Oculust Rift and Microsoft Hololens are the most famous HMD devices used in VR. And in 2014, Google Card Board was introduced at Google I/O developers conference. Google Card Board is VR platform which allows user to enjoy the VR with simple and cheap way. In this research, we explore Google Card Board to develop simulation game of raising pet. The Google Card Board is used to create view for the VR environment. The view and control in VR environment is built using Unity game engine. And the simulation process is designed using Finite State Machine (FSM). This FSM can help to design the process clearly. So the simulation process can describe the simulation of raising pet well. Raising pet is fun activity. But sometimes, there are many conditions which cause raising pet become difficult to do, i.e. environment condition, disease, high cost, etc. this research aims to explore and implement Google Card Board in simulation of raising pet.
Berendes, David M; Sumner, Trent A; Brown, Joe M
2017-03-07
Although global access to sanitation is increasing, safe management of fecal waste is a rapidly growing challenge in low- and middle-income countries (LMICs). The goal of this study was to evaluate the current need for fecal sludge management (FSM) in LMICs by region, urban/rural status, and wealth. Recent Demographic and Health Survey data from 58 countries (847 685 surveys) were used to classify households by sanitation facility (facilities needing FSM, sewered facilities, ecological sanitation/other, or no facilities). Onsite piped water infrastructure was quantified to approximate need for wastewater management and downstream treatment. Over all surveyed nations, 63% of households used facilities requiring FSM, totaling approximately 1.8 billion people. Rural areas had similar proportions of toilets requiring FSM as urban areas. FSM needs scaled inversely with wealth: in the poorest quintile, households' sanitation facilities were almost 170 times more likely to require FSM (vs sewerage) than in the richest quintile. About one out of five households needing FSM had onsite piped water infrastructure, indicating domestic or reticulated wastewater infrastructure may be required if lacking for safe management of aqueous waste streams. FSM strategies must be included in future sanitation investment to achieve safe management of fecal wastes and protect public health.
Development of the fast steering secondary mirror assembly of GMT
NASA Astrophysics Data System (ADS)
Lee, Sungho; Cho, Myung K.; Park, Chan; Han, Jeong-Yeol; Jeong, Ueejeong; Yoon, Yang-noh; Song, Je Heon; Park, Byeong-Gon; Dribusch, Christoph; Park, Won Hyun; Jun, Youra; Yang, Ho-Soon; Moon, Il-Kwon; Oh, Chang Jin; Kim, Ho-Sang; Lee, Kyoung-Don; Bernier, Robert; Alongi, Chris; Rakich, Andrew; Gardner, Paul; Dettmann, Lee; Rosenthal, Wylie
2016-07-01
The Giant Magellan Telescope (GMT) will be featured with two Gregorian secondary mirrors, an adaptive secondary mirror (ASM) and a fast-steering secondary mirror (FSM). The FSM has an effective diameter of 3.2 m and built as seven 1.1 m diameter circular segments, which are conjugated 1:1 to the seven 8.4m segments of the primary. Each FSM segment contains a tip-tilt capability for fine co-alignment of the telescope sub-apertures and fast guiding to attenuate telescope wind shake and mount control jitter. This tip-tilt capability thus enhances performance of the telescope in the seeing limited observation mode. As the first stage of the FSM development, Phase 0 study was conducted to develop a program plan detailing the design and manufacturing process for the seven FSM segments. The FSM development plan has been matured through an internal review by the GMTO-KASI team in May 2016 and fully assessed by an external review in June 2016. In this paper, we present the technical aspects of the FSM development plan.
Porcaro, Camillo; Cottone, Carlo; Cancelli, Andrea; Salustri, Carlo; Tecchio, Franca
2018-04-01
High time resolution techniques are crucial for investigating the brain in action. Here, we propose a method to identify a section of the upper-limb motor area representation (FS_M1) by means of electroencephalographic (EEG) signals recorded during a completely passive condition (FS_M1bySS). We delivered a galvanic stimulation to the median nerve and we applied to EEG the semi-Blind Source Separation (s-BSS) algorithm named Functional Source Separation (FSS). In order to prove that FS_M1bySS is part of FS_M1, we also collected EEG in a motor condition, i.e. during a voluntary movement task (isometric handgrip) and in a rest condition, i.e. at rest with eyes open and closed. In motor condition, we show that the cortico-muscular coherence (CMC) of FS_M1bySS does not differ from FS_ M1 CMC (0.04 for both sources). Moreover, we show that the FS_M1bySS's ongoing whole band activity during Motor and both rest conditions displays high mutual information and time correlation with FS_M1 (above 0.900 and 0.800, respectively) whereas much smaller ones with the primary somatosensory cortex [Formula: see text] (about 0.300 and 0.500, [Formula: see text]). FS_M1bySS as a marker of the upper-limb FS_M1 representation obtainable without the execution of an active motor task is a great achievement of the FSS algorithm, relevant in most experimental, neurological and psychiatric protocols.
Dodane, Pierre-Henri; Mbéguéré, Mbaye; Sow, Ousmane; Strande, Linda
2012-04-03
A financial comparison of a parallel sewer based (SB) system with activated sludge, and a fecal sludge management (FSM) system with onsite septic tanks, collection and transport (C&T) trucks, and drying beds was conducted. The annualized capital for the SB ($42.66 capita(-1) year(-1)) was ten times higher than the FSM ($4.05 capita(-1) year(-1)), the annual operating cost for the SB ($11.98 capita(-1) year(-1)) was 1.5 times higher than the FSM ($7.58 capita(-1) year(-1)), and the combined capital and operating for the SB ($54.64 capita(-1) year(-1)) was five times higher than FSM ($11.63 capita(-1) year(-1)). In Dakar, costs for SB are almost entirely borne by the sanitation utility, with only 6% of the annualized cost borne by users of the system. In addition to costing less overall, FSM operates with a different business model, with costs spread among households, private companies, and the utility. Hence, SB was 40 times more expensive to implement for the utility than FSM. However, the majority of FSM costs are borne at the household level and are inequitable. The results of the study illustrate that in low-income countries, vast improvements in sanitation can be affordable when employing FSM, whereas SB systems are prohibitively expensive.
2012-01-01
A financial comparison of a parallel sewer based (SB) system with activated sludge, and a fecal sludge management (FSM) system with onsite septic tanks, collection and transport (C&T) trucks, and drying beds was conducted. The annualized capital for the SB ($42.66 capita–1 year–1) was ten times higher than the FSM ($4.05 capita–1 year–1), the annual operating cost for the SB ($11.98 capita–1 year–1) was 1.5 times higher than the FSM ($7.58 capita–1 year–1), and the combined capital and operating for the SB ($54.64 capita–1 year–1) was five times higher than FSM ($11.63 capita–1 year–1). In Dakar, costs for SB are almost entirely borne by the sanitation utility, with only 6% of the annualized cost borne by users of the system. In addition to costing less overall, FSM operates with a different business model, with costs spread among households, private companies, and the utility. Hence, SB was 40 times more expensive to implement for the utility than FSM. However, the majority of FSM costs are borne at the household level and are inequitable. The results of the study illustrate that in low-income countries, vast improvements in sanitation can be affordable when employing FSM, whereas SB systems are prohibitively expensive. PMID:22413875
Akumuntu, Jean Baptiste; Wehn, Uta; Mulenga, Martin; Brdjanovic, Damir
2017-08-01
The lack of access to basic sanitation is a global concern and alarmingly prevalent in low- and middle- income countries. In the densely populated settlements of these countries, on-site sanitation systems are usually the only feasible option because dwellers there have no sewers in place to connect to. Using on-site sanitation facilities results in an accumulation of faecal sludge which needs to be properly managed to ensure the well-being of the users as well as the surrounding environment. Unfortunately, often the conditions for faecal sludge management (FSM) within dense settlements are adverse and thus hamper sustainable FSM. We use the normative framework of the FSM enabling environment to gather empirical evidence from densely populated settlements of Kigali city in Rwanda to examine current FSM practices and the extent to which these are being influenced and affected by the setting within which they are taking place. The analysis of the study findings confirms that the existing conditions for FSM in these settlements are inadequate. The specific constraints that hinder the achievement of sustainable FSM include limited government focus on the sanitation sector, high turnover of staff in relevant government institutions, pit sludge management is not placed on the sanitation projects agenda, the existing relevant bylaws are not pro-poor oriented, a lack of clear responsibilities, a lack of relevant local professional training opportunities, unaffordability of FSM services and an inhibition to discuss FSM. Drawing on the involved stakeholders' own perceptions and suggestions, we identify possible approaches to overcome the identified constraints and to allow all actors in the FSM chain to contribute effectively to the management of faecal sludge in densely populated low-income urban settlements. Finally, our study also presents a contribution to the theoretical conceptualisation of the enabling environment for sustainable FSM. Copyright © 2017 Elsevier GmbH. All rights reserved.
Wilkins, Stacy Schantz; Bourke, Paula; Salam, Abdul; Akhtar, Naveed; D'Souza, Atlantic; Kamran, Saadat; Bhutta, Zain; Shuaib, Ashfaq
2018-01-01
ABSTRACT Objective Approximately 30% of individuals who initially present with stroke are found to be stroke mimics (SM), with functional/psychological SM (FSM) accounting for up to 6.4% of all stroke presentations. Middle Eastern countries may have higher rates of somatization of emotional distress. The aim of this study was to evaluate the incidence and characteristics of FSM at a large general hospital in the Middle East. Methods All patients presenting with an initial diagnosis of stroke from June 2015 to September 2016 were eligible for this study. Clinical and sociodemographic data were obtained from the hospital's stroke database. All SM and strokes were diagnosed by Joint Commission International–certified stroke program neurologists. SM was defined as any discharge diagnosis (other than acute stroke) for symptoms that prompted initial admission for suspected stroke. FSM were compared with medical stroke mimics (MSM) and strokes (ischemic, hemorrhagic, and transient ischemic attacks). Results A total of 1961 patients were identified; 161 FSM (8.2%), 390 MSM (19.9%), and 1410 strokes (71.9%) (985 ischemic strokes, 196 transient ischemic attacks, 229 intracerebral hemorrhages). Admission with FSM was related to patients' nationality, with the highest frequency in Arabic (15.6%) and African (16.8%) patients. FSM patients were younger, more often female, and had fewer cardiovascular risk factors except for smoking compared with the strokes. FSM patients presented with more left-sided weakness and had more magnetic resonance imagings than the stroke and MSM groups. A total of 9.9% of FSM patients received thrombolysis versus only 0.5% of the MSM and 16.4% of ischemic strokes. Conclusions FSM frequencies varied by nationality, with Arab and African nationals being twice as prevalent. Stress, vulnerable status as expats, sociopolitical instability, and exposure to trauma are proposed as potential factors contributing to FSM. PMID:29394187
Chambers, Stephanie; Dundas, Ruth; Torsney, Ben
2016-01-01
School meals are an important state-delivered mechanism for improving children’s diets. Scottish local authorities have a statutory duty to provide free school meals (FSM) to families meeting means-testing criteria. Inevitably take-up of FSM does not reach 100%. Explanations put forward to explain this include social stigma, as well as a more general dissatisfaction amongst pupils about lack of modern facilities and meal quality, and a preference to eat where friends are eating. This study investigated characteristics associated with take-up across Scottish secondary schools in 2013–2014 using multilevel modelling techniques. Results suggest that stigma, food quality and the ability to eat with friends are associated with greater take-up. Levels of school modernisation appeared less important, as did differences between more urban or rural areas. Future studies should focus on additional school-level variables to identify characteristics associated with take-up, with the aim of reducing the number of registered pupils not taking-up FSM. PMID:28191363
Chambers, Stephanie; Dundas, Ruth; Torsney, Ben
2016-01-02
School meals are an important state-delivered mechanism for improving children's diets. Scottish local authorities have a statutory duty to provide free school meals (FSM) to families meeting means-testing criteria. Inevitably take-up of FSM does not reach 100%. Explanations put forward to explain this include social stigma, as well as a more general dissatisfaction amongst pupils about lack of modern facilities and meal quality, and a preference to eat where friends are eating. This study investigated characteristics associated with take-up across Scottish secondary schools in 2013-2014 using multilevel modelling techniques. Results suggest that stigma, food quality and the ability to eat with friends are associated with greater take-up. Levels of school modernisation appeared less important, as did differences between more urban or rural areas. Future studies should focus on additional school-level variables to identify characteristics associated with take-up, with the aim of reducing the number of registered pupils not taking-up FSM.
Probing the stochastic, motor-driven properties of the cytoplasm using force spectrum microscopy
Guo, Ming; Ehrlicher, Allen J.; Jensen, Mikkel H.; Renz, Malte; Moore, Jeffrey R.; Goldman, Robert D.; Lippincott-Schwartz, Jennifer; Mackintosh, Frederick C.; Weitz, David A.
2014-01-01
SUMMARY Molecular motors in cells typically produce highly directed motion; however, the aggregate, incoherent effect of all active processes also creates randomly fluctuating forces, which drive diffusive-like, non-thermal motion. Here we introduce force-spectrum-microscopy (FSM) to directly quantify random forces within the cytoplasm of cells and thereby probe stochastic motor activity. This technique combines measurements of the random motion of probe particles with independent micromechanical measurements of the cytoplasm to quantify the spectrum of force fluctuations. Using FSM, we show that force fluctuations substantially enhance intracellular movement of small and large components. The fluctuations are three times larger in malignant cells than in their benign counterparts. We further demonstrate that vimentin acts globally to anchor organelles against randomly fluctuating forces in the cytoplasm, with no effect on their magnitude. Thus, FSM has broad applications for understanding the cytoplasm and its intracellular processes in relation to cell physiology in healthy and diseased states. PMID:25126787
DOT National Transportation Integrated Search
1981-01-01
This document specifies the functional requirements for the AGT-SOS Feeder Systems Model (FSM), the type of hardware required, and the modeling techniques employed by the FSM. The objective of the FSM is to map the zone-to-zone transit patronage dema...
Lorens, Adelino; Pretrick, Moses; Tara, Mona J; Johnson, Emihner
2011-01-01
The Federated States of Micronesia (FSM) and other countries throughout the Pacific are facing an epidemic of non-communicable disease health problems. These are directly related to the increased consumption of unhealthy imported processed foods, the neglect of traditional food systems, and lifestyle changes, including decreased physical activity. The FSM faces the double burden of malnutrition with both non-communicable diseases and micronutrient deficiencies, including vitamin A deficiency and anemia. To help increase the use of traditional island foods and improve health, the Island Food Community of Pohnpei has initiated a program in the FSM to support and promote local food policies, along with its Go Local awareness campaign. Such local food policies are defined broadly and include individual and family commitments, community group local food policies and policies established by government, including presidential proclamations and increased taxation on soft drinks. The aim of this paper is to describe this work. An inter-agency, community- and research-based, participatory and media approach was used. Partners are both non-governmental and governmental. The use of continuing awareness work along with local food policy establishment and the acknowledgement of the individuals and groups involved are essential. The work is still in the preliminary stage but ad hoc examples show that this approach has had success in increased awareness on health issues and improving dietary intake on both an individual and group basis. This indicates that further use of local food policies could have an instrumental impact in FSM as well as other Pacific Island countries in promoting local foods and improving dietary intake and health, including the control of non-communicable diseases and other dietary-related health problems. PMID:22235156
Englberger, Lois; Lorens, Adelino; Pretrick, Moses; Tara, Mona J; Johnson, Emihner
2011-11-01
The Federated States of Micronesia (FSM) and other countries throughout the Pacific are facing an epidemic of non-communicable disease health problems. These are directly related to the increased consumption of unhealthy imported processed foods, the neglect of traditional food systems, and lifestyle changes, including decreased physical activity. The FSM faces the double burden of malnutrition with both non-communicable diseases and micronutrient deficiencies, including vitamin A deficiency and anemia. To help increase the use of traditional island foods and improve health, the Island Food Community of Pohnpei has initiated a program in the FSM to support and promote local food policies, along with its Go Local awareness campaign. Such local food policies are defined broadly and include individual and family commitments, community group local food policies and policies established by government, including presidential proclamations and increased taxation on soft drinks. The aim of this paper is to describe this work. An inter-agency, community- and research-based, participatory and media approach was used. Partners are both non-governmental and governmental. The use of continuing awareness work along with local food policy establishment and the acknowledgement of the individuals and groups involved are essential. The work is still in the preliminary stage but ad hoc examples show that this approach has had success in increased awareness on health issues and improving dietary intake on both an individual and group basis. This indicates that further use of local food policies could have an instrumental impact in FSM as well as other Pacific Island countries in promoting local foods and improving dietary intake and health, including the control of non-communicable diseases and other dietary-related health problems.
Optimization design of the angle detecting system used in the fast steering mirror
NASA Astrophysics Data System (ADS)
Ni, Ying-xue; Wu, Jia-bin; San, Xiao-gang; Gao, Shi-jie; Ding, Shao-hang; Wang, Jing; Wang, Tao; Wang, Hui-xian
2018-01-01
In this paper, in order to design a fast steering mirror (FSM) with large deflection angle and high linearity, a deflection angle detecting system (DADS) using quadrant detector (QD) is developed. And the mathematical model describing DADS is established by analyzing the principle of position detecting and error characteristics of QD. Based on this mathematical model, the variation tendencies of deflection angle and linearity of FSM are simulated. Then, by changing the parameters of the DADS, the optimization of deflection angle and linearity of FSM is demonstrated. Finally, a QD-based FSM is designed based on this method, which achieves ±2° deflection angle and 0.72% and 0.68% linearity along x and y axis, respectively. Moreover, this method will be beneficial to the design of large deflection angle and high linearity FSM.
Oda, Ippei; Hirata, Kotaro; Watanabe, Syoko; Shibata, Yutaka; Kajino, Tsutomu; Fukushima, Yoshiaki; Iwai, Satoshi; Itoh, Shigeru
2006-01-26
A high amount of functional membrane protein complex was introduced into a folded-sheet silica mesoporous material (FSM) that has nanometer-size pores of honeycomb-like hexagonal cylindrical structure inside. The photosynthetic light-harvesting complex LH2, which is a typical membrane protein, has a cylindrical structure of 7.3 nm diameter and contains 27 bacteriochlorophyll a and nine carotenoid molecules. The complex captures light energy in the anoxygenic thermophilic purple photosynthetic bacterium Thermochromatium tepidum. The amount of LH2 adsorbed to FSM was determined optically and by the adsorption isotherms of N2. The FSM compounds with internal pore diameters of 7.9 and 2.7 nm adsorbed LH2 at 1.11 and 0.24 mg/mg FSM, respectively, suggesting the high specific affinity of LH2 to the interior of the hydrophobic nanopores with a diameter of 7.9 nm. The LH2 adsorbed to FSM showed almost intact absorption bands of bacteriochlorophylls, and was fully active in the capture and transfer of excitation energy. The LH2 complex inside the FSM showed increased heat stability of the exciton-type absorption band of bacteriochlorophylls (B850), suggesting higher circular symmetry. The environment inside the hydrophobic silica nanopores can be a new matrix for the membrane proteins to reveal their functions. The silica-membrane protein adduct will be useful for the construction of new probes and reaction systems.
Feedforward Self-Modeling Enhances Skill Acquisition in Children Learning Trampoline Skills
Ste-Marie, Diane M.; Vertes, Kelly; Rymal, Amanda M.; Martini, Rose
2011-01-01
The purpose of this research was to examine whether children would benefit from a feedforward self-modeling (FSM) video and to explore possible explanatory mechanisms for the potential benefits, using a self-regulation framework. To this end, children were involved in learning two five-skill trampoline routines. For one of the routines, a FSM video was provided during acquisition, whereas only verbal instructions were provided for the alternate routine. The FSM involved editing video footage such that it showed the learner performing the trampoline routine at a higher skill level than their current capability. Analyses of the data showed that while physical performance benefits were observed for the routine that was learned with the FSM video, no differences were obtained in relation to the self-regulatory measures. Thus, the FSM video enhanced motor skill acquisition, but this could not be explained by changes to the varied self-regulatory processes examined. PMID:21779270
Feedforward self-modeling enhances skill acquisition in children learning trampoline skills.
Ste-Marie, Diane M; Vertes, Kelly; Rymal, Amanda M; Martini, Rose
2011-01-01
The purpose of this research was to examine whether children would benefit from a feedforward self-modeling (FSM) video and to explore possible explanatory mechanisms for the potential benefits, using a self-regulation framework. To this end, children were involved in learning two five-skill trampoline routines. For one of the routines, a FSM video was provided during acquisition, whereas only verbal instructions were provided for the alternate routine. The FSM involved editing video footage such that it showed the learner performing the trampoline routine at a higher skill level than their current capability. Analyses of the data showed that while physical performance benefits were observed for the routine that was learned with the FSM video, no differences were obtained in relation to the self-regulatory measures. Thus, the FSM video enhanced motor skill acquisition, but this could not be explained by changes to the varied self-regulatory processes examined.
Takaine, Masak; Imada, Kazuki; Numata, Osamu; Nakamura, Taro; Nakano, Kentaro
2014-10-15
Sporulation, gametogenesis in yeast, consists of meiotic nuclear division and spore morphogenesis. In the fission yeast Schizosaccharomyces pombe, the four haploid nuclei produced after meiosis II are encapsulated by the forespore membrane (FSM), which is newly synthesized from spindle pole bodies (SPBs) in the cytoplasm of the mother cell as spore precursors. Although the coordination between meiosis and FSM assembly is vital for proper sporulation, the underlying mechanism remains unclear. In the present study, we identified a new meiosis-specific protein Npg1, and found that it was involved in the efficient formation of spores and spore viability. The accumulation and organization of the FSM was compromised in npg1-null cells, leading to the error-prone envelopment of nuclei. Npg1 was first seen as internuclear dots and translocated to the SPBs before the FSM assembled. Genetic analysis revealed that Npg1 worked in conjunction with the FSM proteins Spo3 and Meu14. These results suggest a possible signaling link from the nucleus to the meiotic SPBs in order to associate the onset of FSM assembly with meiosis II, which ensures the successful partitioning of gametic nuclei. © 2014. Published by The Company of Biologists Ltd.
Random Vibration Analysis of the Tip-tilt System in the GMT Fast Steering Secondary Mirror
NASA Astrophysics Data System (ADS)
Lee, Kyoung-Don; Kim, Young-Soo; Kim, Ho-Sang; Lee, Chan-Hee; Lee, Won Gi
2017-09-01
A random vibration analysis was accomplished on the tip-tilt system of the fast steering secondary mirror (FSM) for the Giant Magellan Telescope (GMT). As the FSM was to be mounted on the top end of the secondary truss and disturbed by the winds, dynamic effects of the FSM disturbances on the tip-tilt correction performance was studied. The coupled dynamic responses of the FSM segments were evaluated with a suggested tip-tilt correction modeling. Dynamic equations for the tip-tilt system were derived from the force and moment equilibrium on the segment mirror and the geometric compatibility conditions with four design parameters. Statically stationary responses for the tip-tilt actuations to correct the wind-induced disturbances were studied with two design parameters based on the spectral density function of the star image errors in the frequency domain. Frequency response functions and root mean square values of the dynamic responses and the residual star image errors were numerically calculated for the off-axis and on-axis segments of the FSM. A prototype of on-axis segment of the FSM was developed for tip-tilt actuation tests to confirm the ratio of tip-tilt force to tip-tilt angle calculated from the suggested dynamic equations of the tip-tilt system. Tip-tilt actuation tests were executed at 4, 8 and 12 Hz by measuring displacements of piezoelectric actuators and reaction forces acting on the axial supports. The derived ratios of rms tip-tilt force to rms tip-tilt angle from tests showed a good correlation with the numerical results. The suggested process of random vibration analysis on the tip-tilt system to correct the wind-induced disturbances of the FSM segments would be useful to advance the FSM design and upgrade the capability to achieve the least residual star image errors by understanding the details of dynamics.
NASA Astrophysics Data System (ADS)
Ni, Yingxue; Wu, Jiabin; San, Xiaogang; Gao, Shijie; Ding, Shaohang; Wang, Jing; Wang, Tao
2018-02-01
A deflection angle detecting system (DADS) using a quadrant detector (QD) is developed to achieve the large deflection angle and high linearity for the fast steering mirror (FSM). The mathematical model of the DADS is established by analyzing the principle of position detecting and error characteristics of the QD. Based on this mathematical model, the method of optimizing deflection angle and linearity of FSM is demonstrated, which is proved feasible by simulation and experimental results. Finally, a QD-based FSM is designed and tested. The results show that it achieves 0.72% nonlinearity, ±2.0 deg deflection angle, and 1.11-μrad resolution. Therefore, the application of this method will be beneficial to design the FSM.
Complexation of furosemide with fulvic acid extracted from shilajit: a novel approach.
Agarwal, Suraj Prakash; Anwer, Mohammad Khalid; Aqil, Mohammad
2008-05-01
The aim of the present work was to complex furosemide (FSM) with fulvic acid (FA) extracted from shilajit with the hope of having a better understanding of the complexation behavior. The effect of FA on the aqueous solubility, dissolution rate, and permeability of FSM was investigated. Different techniques, such as grinding, freeze drying, solvent evaporation, and so forth, were used for the preparation of the complex. The complexes were prepared in molar ratios of 1:1 and 1:2 FSM:FA and were evaluated for drug inclusion, solubility, differential scanning calorimetry, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, dissolution study, and permeation study. These methods confirm the formation of an amorphous inclusion complex of FSM with FA.
Research on realization scheme of interactive voice response (IVR) system
NASA Astrophysics Data System (ADS)
Jin, Xin; Zhu, Guangxi
2003-12-01
In this paper, a novel interactive voice response (IVR) system is proposed, which is apparently different from the traditional. Using software operation and network control, the IVR system is presented which only depends on software in the server in which the system lies and the hardware in network terminals on user side, such as gateway (GW), personal gateway (PG), PC and so on. The system transmits the audio using real time protocol (RTP) protocol via internet to the network terminals and controls flow using finite state machine (FSM) stimulated by H.245 massages sent from user side and the system control factors. Being compared with other existing schemes, this IVR system results in several advantages, such as greatly saving the system cost, fully utilizing the existing network resources and enhancing the flexibility. The system is capable to be put in any service server anywhere in the Internet and even fits for the wireless applications based on packet switched communication. The IVR system has been put into reality and passed the system test.
A VLSI Implementation of Four-Phase Lift Controller Using Verilog HDL
NASA Astrophysics Data System (ADS)
Kumar, Manish; Singh, Priyanka; Singh, Shesha
2017-08-01
With the advent of an era of staggering range of new technologies to provide ease of mobility and transportation elevators have become an essential component of all high rise buildings. An elevator is a type of vertical transportation that moves people between the floors of a high rise building. A four-Phase lift controller modeled on Verilog HDL code using Finite State Machine (FSM) has been presented in this paper. Verilog HDL helps in automated analysis and simulation of lift controller circuit. This design is based on synchronous input that operates on a fixed frequency. The Lift motion is controlled by means of accepting the destination floor level as input and generate control signal as output. In the proposed design a Verilog RTL code is developed and verified. Project Navigator of XILINX has been used as a code writing platform and results were simulated using Modelsim 5.4a simulator. This paper discusses the overall evolution of design and also discusses simulated results.
A tip/tilt mirror with large dynamic range for the ESO VLT Four Laser Guide Star Facility
NASA Astrophysics Data System (ADS)
Rijnveld, N.; Henselmans, R.; Nijland, B.
2011-09-01
One of the critical elements in the Four Laser Guide Star Facility (4LGSF) for the ESO Very Large Telescope (VLT) is the Optical Tube Assembly (OTA), consisting of a stable 20x laser beam expander and an active tip/tilt mirror, the Field Selector Mechanism (FSM). This paper describes the design and performance testing of the FSM. The driving requirement for the FSM is its large stroke of +/-6.1 mrad, in combination with less than 1.5 μrad RMS absolute accuracy. The FSM design consists of a Zerodur mirror, bonded to a membrane spring and strut combination to allow only tip and tilt. Two spindle drives actuate the mirror, using a stiffness based transmission to increase resolution. Absolute accuracy is achieved with two differential inductive sensor pairs. A prototype of the FSM is realized to optimize the control configuration and measure its performance. Friction in the spindle drive is overcome by creating a local velocity control loop between the spindle drives and the shaft encoders. Accuracy is achieved by using a cascaded low bandwidth control loop with feedback from the inductive sensors. The pointing jitter and settling time of the FSM are measured with an autocollimator. The system performance meets the strict requirements, and is ready to be implemented in the first OTA.
Foundations in Science and Mathematics Program for Middle School and High School Students
NASA Astrophysics Data System (ADS)
Desai, Karna Mahadev; Yang, Jing; Hemann, Jason
2016-01-01
The Foundations in Science and Mathematics (FSM) is a graduate student led summer program designed to help middle school and high school students strengthen their knowledge and skills in mathematics and science. FSM provides two-week-long courses over a broad spectrum of disciplines including astronomy, biology, chemistry, computer programming, geology, mathematics, and physics. Students can chose two types of courses: (1) courses that help students learn the fundamental concepts in basic sciences and mathematics (e.g., "Precalculus"); and (2) knowledge courses that might be excluded from formal schooling (e.g., "Introduction to Universe"). FSM has served over 500 students in the Bloomington, IN, community over six years by acquiring funding from Indiana University and the Indiana Space Grant Consortium. FSM offers graduate students the opportunity to obtain first hand experience through independent teaching and curriculum design as well as leadership experience.We present the design of the program, review the achievements, and explore the challenges we face. We are open to collaboration with similar educational outreach programs. For more information, please visit http://www.indiana.edu/~fsm/ .
The Implement of a Multi-layer Frozen Soil Scheme into SSiB3 and its Evaluation over Cold Regions
NASA Astrophysics Data System (ADS)
Li, Q.
2016-12-01
The SSiB3 is a biophysics-based model of land-atmosphere interactions and is designed for global and regional studies. It has three soil layers, three snow layers, as well as one vegetation layer. Soil moisture of the three soil layers, interception water store for the canopy, subsurface soil temperature, ground temperature, canopy temperature and snow water equivalent are all predicted based on the water and energy balance at canopy, soil and snow. SSiB3 substantially enhances the model's capability for cold season studies and produces reasonable results compared with observations. However, frozen soil processes are ignored in the SSiB3 and may have effects on the interannual variability of soil temperature and deep soil memory. A multi-layer comprehensive frozen soil scheme (FSM), which is developed for climate study has been implemented into the SSiB3 to describe soil heat transfer and water flow affected by frozen processed in soil. In the coupled SSiB3-FSM, both liquid water and ice content have been taken into account in the frozen soil hydrologic and thermal property parameterization. The maximum soil layer depth could reach 10 meters thick depending on land conditions. To better evaluate the models' performance, the coupled offline SSiB3-FSM and SSiB3 have been driven from 1948 to 1958 by the Princeton global meteorological data set, respectively. For the 10yrs run, the coupled SSiB3-FSM almost captures the features over different regions, especially cold regions. In order to analysis and compare the differences of SSIB3-FSM and SSIB3 in detail, monthly mean surface temperature for different regions are compared with CAMS data. The statistical results of surface skin temperature show that high latitude regions, Africa, Eastern Australia, and North American monsoon regions have been greatly improved in SSIB3-FSM. For the global statistics, the RMSE of the surface temperature simulated by SSiB3-FSM can be improved about 0.6K compared to SSiB3. In this study, the improvements in the coupled SSiB3-FSM have also been analyzed.
Federated States of Micronesia's forest resources, 2006
Joseph A. Donnegan; Sarah L. Butler; Olaf Kuegler; Bruce A. Hiserote
2011-01-01
The Forest Inventory and Analysis program collected, analyzed, and summarized field data on 73 forested field plots on the islands of Kosrae, Chuuk, Pohnpei, and Yap in the Federated States of Micronesia (FSM). Estimates of forest area, tree stem volume and biomass, the numbers of trees, tree damages, and the distribution of tree sizes were summarized for this...
Vegetation survey of Moen, Dublon, Fefan, and Eten, State of Truk, Federated States of Micronesia
Marjorie Falanruw; Thomas G. Cole; Alan H Ambacher; Katherine E. McDuffie; John. Hom
1987-01-01
Truk is one of the four States of the Federated States of Micronesia (FSM). Knowledge of the extent and composition of its vegetation, including forest land, is needed for land-use planning. To fill this need, a formal agreement was drawn up between the High Commissioner of the Trust Territory of the Pacific Islands and two agencies of the U.S. Department of...
Research on Precision Tracking on Fast Steering Mirror and Control Strategy
NASA Astrophysics Data System (ADS)
Di, Lin; Yi-ming, Wu; Fan, Zhu
2018-01-01
Fast steering mirror is a device used for controlling the beam direction precisely. Due to the short travel of the push-pull FSM, a compound fast steering mirror system driven by both limited-angle voice coil motor and push-pull FSM together is proposed. In the compound FSM system, limited-angle voice coil motor quickly swings at wide angle, while the push-pull FSM do high frequency movement in a small range, which provides the system with the high bandwidth and long travel. In the control strategy, the method of combining feed-forward control in Kalman filtering with auto-disturbance rejection control is used to improve trajectory tracking accuracy. The simulation result shows that tracking accuracy measured by the compound method can be improved by more than 5 times than that of the conventional PID.
ERIC Educational Resources Information Center
US Government Accountability Office, 2011
2011-01-01
U.S. compacts with the freely associated states (FAS)--the Federated States of Micronesia (FSM), the Marshall Islands, and Palau--permit FAS citizens to migrate to the United States and its territories (U.S. areas) without regard to visa and labor certification requirements. Thousands of FAS citizens have migrated to U.S. areas (compact…
Tsao, Tsung-Ming; Tsai, Ming-Jer; Wang, Ya-Nan; Lin, Heng-Lun; Wu, Chang-Fu; Hwang, Jing-Shiang; Hsu, Sandy-H J; Chao, Hsing; Chuang, Kai-Jen; Chou, Charles-C K; Su, Ta-Chen
2014-01-01
Assessment of health effects of a forest environment is an important emerging area of public health and environmental sciences. To demonstrate the long-term health effects of living in a forest environment on subclinical cardiovascular diseases (CVDs) and health-related quality of life (HRQOL) compared with that in an urban environment. This study included the detailed health examination and questionnaire assessment of 107 forest staff members (FSM) and 114 urban staff members (USM) to investigate the long-term health effects of a forest environment. Air quality monitoring between the forest and urban environments was compared. In addition, work-related factors and HRQOL were evaluated. Levels of total cholesterol, low-density lipoprotein cholesterol, and fasting glucose in the USM group were significantly higher than those in the FSM group. Furthermore, a significantly higher intima-media thickness of the internal carotid artery was found in the USM group compared with that in the FSM group. Concentrations of air pollutants, such as NO, NO2, NOx, SO2, CO, PM2.5, and PM10 in the forest environment were significantly lower compared with those in the outdoor urban environment. Working hours were longer in the FSM group; however, the work stress evaluation as assessed by the job content questionnaire revealed no significant differences between FSM and USM. HRQOL evaluated by the World Health Organization Quality of Life-BREF questionnaire showed FSM had better HRQOL scores in the physical health domain. This study provides evidence of the potential beneficial effects of forest environments on CVDs and HRQOL.
eFSM--a novel online neural-fuzzy semantic memory model.
Tung, Whye Loon; Quek, Chai
2010-01-01
Fuzzy rule-based systems (FRBSs) have been successfully applied to many areas. However, traditional fuzzy systems are often manually crafted, and their rule bases that represent the acquired knowledge are static and cannot be trained to improve the modeling performance. This subsequently leads to intensive research on the autonomous construction and tuning of a fuzzy system directly from the observed training data to address the knowledge acquisition bottleneck, resulting in well-established hybrids such as neural-fuzzy systems (NFSs) and genetic fuzzy systems (GFSs). However, the complex and dynamic nature of real-world problems demands that fuzzy rule-based systems and models be able to adapt their parameters and ultimately evolve their rule bases to address the nonstationary (time-varying) characteristics of their operating environments. Recently, considerable research efforts have been directed to the study of evolving Tagaki-Sugeno (T-S)-type NFSs based on the concept of incremental learning. In contrast, there are very few incremental learning Mamdani-type NFSs reported in the literature. Hence, this paper presents the evolving neural-fuzzy semantic memory (eFSM) model, a neural-fuzzy Mamdani architecture with a data-driven progressively adaptive structure (i.e., rule base) based on incremental learning. Issues related to the incremental learning of the eFSM rule base are carefully investigated, and a novel parameter learning approach is proposed for the tuning of the fuzzy set parameters in eFSM. The proposed eFSM model elicits highly interpretable semantic knowledge in the form of Mamdani-type if-then fuzzy rules from low-level numeric training data. These Mamdani fuzzy rules define the computing structure of eFSM and are incrementally learned with the arrival of each training data sample. New rules are constructed from the emergence of novel training data and obsolete fuzzy rules that no longer describe the recently observed data trends are pruned. This enables eFSM to maintain a current and compact set of Mamdani-type if-then fuzzy rules that collectively generalizes and describes the salient associative mappings between the inputs and outputs of the underlying process being modeled. The learning and modeling performances of the proposed eFSM are evaluated using several benchmark applications and the results are encouraging.
Englberger, L; Lorens, A; Pretrick, M E; Spegal, R; Falcam, I
2010-04-01
Dietary- and lifestyle-related diseases are problems of epidemic proportion in the Federated States of Micronesia (FSM). Public health resources to help prevent nutrition-related problems are limited. There is also concern about biodiversity, neglect of traditional staple foods, and threatened loss of traditional knowledge. A "Go Local" campaign was initiated to increase production and consumption of locally grown foods, for their Culture, Health, Environment, Economics, and Food security ("CHEEF") benefits. To provide updates and discuss local island food topics, the Island Food Community of Pohnpei launched an interagency email network in 2003. Interested members' email addresses were recorded in distribution lists, weekly/bi-weekly emails were sent and from these messages, a database was organized to record email topic details. An analysis of all emails up to July 2009 showed that membership had expanded to over 600 listed people from all FSM states, other Pacific Island countries and beyond. Information was shared on topics ranging from scientific findings of carotenoid content in local island food cultivars, to discussions on how daily habits related to island food use can be improved. Over 200 men and women, aged 22 to 80 years, contributed items, some indicating that they had shared emails to a further network at their workplace or community. In conclusion, this email network is a simple, cost-effective method to share information, create awareness, and mobilize island food promotion efforts with potential for providing health, biodiversity and other benefits of island foods to populations in the FSM and other countries.
Kim, Se; Schlicke, Hagen; Van Ree, Kalie; Karvonen, Kristine; Subramaniam, Anant; Richter, Andreas; Grimm, Bernhard; Braam, Janet
2013-01-01
Chlorophyll, essential for photosynthesis, is composed of a chlorin ring and a geranylgeranyl diphosphate (GGPP)–derived isoprenoid, which are generated by the tetrapyrrole and methylerythritol phosphate (MEP) biosynthesis pathways, respectively. Although a functional MEP pathway is essential for plant viability, the underlying basis of the requirement has been unclear. We hypothesized that MEP pathway inhibition is lethal because a reduction in GGPP availability results in a stoichiometric imbalance in tetrapyrrolic chlorophyll precursors, which can cause deadly photooxidative stress. Consistent with this hypothesis, lethality of MEP pathway inhibition in Arabidopsis thaliana by fosmidomycin (FSM) is light dependent, and toxicity of MEP pathway inhibition is reduced by genetic and chemical impairment of the tetrapyrrole pathway. In addition, FSM treatment causes a transient accumulation of chlorophyllide and transcripts associated with singlet oxygen-induced stress. Furthermore, exogenous provision of the phytol molecule reduces FSM toxicity when the phytol can be modified for chlorophyll incorporation. These data provide an explanation for FSM toxicity and thereby provide enhanced understanding of the mechanisms of FSM resistance. This insight into MEP pathway inhibition consequences underlines the risk plants undertake to synthesize chlorophyll and suggests the existence of regulation, possibly involving chloroplast-to-nucleus retrograde signaling, that may monitor and maintain balance of chlorophyll precursor synthesis. PMID:24363312
Kim, Se; Schlicke, Hagen; Van Ree, Kalie; Karvonen, Kristine; Subramaniam, Anant; Richter, Andreas; Grimm, Bernhard; Braam, Janet
2013-12-01
Chlorophyll, essential for photosynthesis, is composed of a chlorin ring and a geranylgeranyl diphosphate (GGPP)-derived isoprenoid, which are generated by the tetrapyrrole and methylerythritol phosphate (MEP) biosynthesis pathways, respectively. Although a functional MEP pathway is essential for plant viability, the underlying basis of the requirement has been unclear. We hypothesized that MEP pathway inhibition is lethal because a reduction in GGPP availability results in a stoichiometric imbalance in tetrapyrrolic chlorophyll precursors, which can cause deadly photooxidative stress. Consistent with this hypothesis, lethality of MEP pathway inhibition in Arabidopsis thaliana by fosmidomycin (FSM) is light dependent, and toxicity of MEP pathway inhibition is reduced by genetic and chemical impairment of the tetrapyrrole pathway. In addition, FSM treatment causes a transient accumulation of chlorophyllide and transcripts associated with singlet oxygen-induced stress. Furthermore, exogenous provision of the phytol molecule reduces FSM toxicity when the phytol can be modified for chlorophyll incorporation. These data provide an explanation for FSM toxicity and thereby provide enhanced understanding of the mechanisms of FSM resistance. This insight into MEP pathway inhibition consequences underlines the risk plants undertake to synthesize chlorophyll and suggests the existence of regulation, possibly involving chloroplast-to-nucleus retrograde signaling, that may monitor and maintain balance of chlorophyll precursor synthesis.
NASA Astrophysics Data System (ADS)
Deng, Chao; Ren, Wei; Mao, Yao; Ren, Ge
2017-08-01
A plug-in module acceleration feedback control (Plug-In AFC) strategy based on the disturbance observer (DOB) principle is proposed for charge-coupled device (CCD)-based fast steering mirror (FSM) stabilization systems. In classical FSM tracking systems, dual-loop control (DLC), including velocity feedback and position feedback, is usually utilized to enhance the closed-loop performance. Due to the mechanical resonance of the system and CCD time delay, the closed-loop bandwidth is severely restricted. To solve this problem, cascade acceleration feedback control (AFC), which is a kind of high-precision robust control method, is introduced to strengthen the disturbance rejection property. However, in practical applications, it is difficult to realize an integral algorithm in an acceleration controller to compensate for the quadratic differential contained in the FSM acceleration model, resulting in a challenging controller design and a limited improvement. To optimize the acceleration feedback framework in the FSM system, different from the cascade AFC, the accelerometers are used to construct DOB to compensate for the platform vibrations directly. The acceleration nested loop can be plugged into the velocity loop without changing the system stability, and the controller design is quite simple. A series of comparative experimental results demonstrate that the disturbance rejection property of the CCD-based FSM can be effectively improved by the proposed approach.
Tsao, Tsung-Ming; Wang, Ya-Nan; Lin, Heng-Lun; Wu, Chang-Fu; Hwang, Jing-Shiang; Hsu, Sandy-H.J.; Chao, Hsing; Chuang, Kai-Jen; Chou, Charles- CK.
2014-01-01
Background Assessment of health effects of a forest environment is an important emerging area of public health and environmental sciences. Purpose To demonstrate the long-term health effects of living in a forest environment on subclinical cardiovascular diseases (CVDs) and health-related quality of life (HRQOL) compared with that in an urban environment. Materials and Methods This study included the detailed health examination and questionnaire assessment of 107 forest staff members (FSM) and 114 urban staff members (USM) to investigate the long-term health effects of a forest environment. Air quality monitoring between the forest and urban environments was compared. In addition, work-related factors and HRQOL were evaluated. Results Levels of total cholesterol, low-density lipoprotein cholesterol, and fasting glucose in the USM group were significantly higher than those in the FSM group. Furthermore, a significantly higher intima-media thickness of the internal carotid artery was found in the USM group compared with that in the FSM group. Concentrations of air pollutants, such as NO, NO2, NOx, SO2, CO, PM2.5, and PM10 in the forest environment were significantly lower compared with those in the outdoor urban environment. Working hours were longer in the FSM group; however, the work stress evaluation as assessed by the job content questionnaire revealed no significant differences between FSM and USM. HRQOL evaluated by the World Health Organization Quality of Life-BREF questionnaire showed FSM had better HRQOL scores in the physical health domain. Conclusions This study provides evidence of the potential beneficial effects of forest environments on CVDs and HRQOL. PMID:25068265
Serwicka, Ewa M; Bahranowski, Krzysztof; Sitarz, Maciej; Zimowska, Małgorzata; Michalik-Zym, Alicja
2016-09-27
Retraction of 'Vibrational evidence for the "missing link" in structural kinship between kanemite and FSM-16 mesoporous silica' by Ewa M. Serwicka, et al., Dalton Trans., 2016, DOI: 10.1039/C6DT01600F.
Active vibration control of a full scale aircraft wing using a reconfigurable controller
NASA Astrophysics Data System (ADS)
Prakash, Shashikala; Renjith Kumar, T. G.; Raja, S.; Dwarakanathan, D.; Subramani, H.; Karthikeyan, C.
2016-01-01
This work highlights the design of a Reconfigurable Active Vibration Control (AVC) System for aircraft structures using adaptive techniques. The AVC system with a multichannel capability is realized using Filtered-X Least Mean Square algorithm (FxLMS) on Xilinx Virtex-4 Field Programmable Gate Array (FPGA) platform in Very High Speed Integrated Circuits Hardware Description Language, (VHDL). The HDL design is made based on Finite State Machine (FSM) model with Floating point Intellectual Property (IP) cores for arithmetic operations. The use of FPGA facilitates to modify the system parameters even during runtime depending on the changes in user's requirements. The locations of the control actuators are optimized based on dynamic modal strain approach using genetic algorithm (GA). The developed system has been successfully deployed for the AVC testing of the full-scale wing of an all composite two seater transport aircraft. Several closed loop configurations like single channel and multi-channel control have been tested. The experimental results from the studies presented here are very encouraging. They demonstrate the usefulness of the system's reconfigurability for real time applications.
Free Speech Advocates at Berkeley.
ERIC Educational Resources Information Center
Watts, William A.; Whittaker, David
1966-01-01
This study compares highly committed members of the Free Speech Movement (FSM) at Berkeley with the student population at large on 3 sociopsychological foci: general biographical data, religious orientation, and rigidity-flexibility. Questionnaires were administered to 172 FSM members selected by chance from the 10 to 1200 who entered and…
76 FR 50438 - Folded Self-Mailers and Unenveloped Mailpieces
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-15
... are currently found in FSM designs, but are not defined in the DMM, are added. History To improve the... designed to identify the characteristics of FSMs that could be processed successfully on automated letter... characteristics of additional design elements for mailers who create FSM mailpieces. Folded self-mailer maximum...
NASA Astrophysics Data System (ADS)
Kim, Ji Hyung; Lee, JunMo; Affan, Md-Abu; Lee, Dae-Won; Kang, Do-Hyung
2017-09-01
Mangrove forests are known to be inhabited by diverse symbiotic cyanobacterial communities that are capable of N2 fixation. To investigate its biodiversity, root sediments were collected from a mangrove forest in Chuuk State, Federated States of Micronesia (FSM), and an entangled yellow-brown coccoid cyanobacterium was isolated. The isolated cyanobacterium was reproduced by multiple fission and eventually produced baeocytes. Phylogenetic analysis revealed that the isolate was most similar to the genera Myxosarcina and Chroococcidiopsis in the order Pleurocapsales. Compositions of protein, lipid and carbohydrate in the cyanobacterial cells were estimated to be 19.4 ± 0.1%, 18.8 ± 0.4% and 31.5 ± 0.1%, respectively. Interestingly, total fatty acids in the isolate were mainly composed of saturated fatty acids and monounsaturated fatty acids, whereas polyunsaturated fatty acids were not detected. Based on the molecular and biochemical characteristics, the isolate was finally classified in the genus Myxosarcina, and designated as Myxosarcina sp. KIOST-1. These results will contribute to better understanding of cyanobacterial biodiversity in the mangrove forest in FSM as well as the genus Myxosarcina, and also will allow further exploitation of its biotechnological potential on the basis of its cellular characteristics.
NASA Astrophysics Data System (ADS)
Lin, Yin-Chih; Lin, Chien-Feng
2015-05-01
The phase transformation and magnetostriction of bulk Fe73Ga27 and Fe73Ga18Zn9 (at. %) ferromagnetic shape memory alloys (FSMs) were investigated by transmission electron microscopy (TEM), x-ray diffraction (XRD), and a magnetostrictive-meter setup. For the Fe73Ga27 FSM alloy solution treated at 1100 °C for 4 h and quenched in ice brine, the antiphase boundary segments of the D03 domain were observed in the A2 (disordered) matrix, and the Fe73Ga27 FSM alloy had an optimal magnetostriction (λ‖s = 71 × 10-6 and λ⊥s = -31 × 10-6). In Fe73Ga27 FSM alloy as-quenched, aged at 700 °C for 24 h, and furnace cooled, D03 nanoclusters underwent phase transformation to an intermediate tetragonal phase (i.e., L10-like martensite) via Bain distortion, and finally L12 (Fe3Ga) structures precipitated, as observed by TEM and XRD. The L10-like martensite and L12 phases in the aged Fe73Ga27 FSM alloy drastically decreased the magnetostriction from positive to negative (λ‖s = -20 × 10-6 and λ⊥s = -8 × 10-6). However, in Fe73Ga18Zn9 FSM alloy as-quenched and aged, the phase transformation of D03 to an intermediate tetragonal martensite phase and precipitation of L12 structures were not found. The results indicate that the aged Fe73Ga18Zn9 FSM alloy maintained stable magnetostriction (λ‖s = 36 × 10-6 and λ⊥s = -31 × 10-6). Adding Zn can improve the ferromagnetic shape memory effect of aged Fe73Ga18Zn9 alloy, which may be useful in application of the alloy in high temperature environments.
Research on the ecology and management of Micronesian mangroves
J.A. Allen
1999-01-01
Mangroves are a vitally important natural resource on the high islands of Micronesia. This importance is especially valid in the Federated States of Micronisa (FSM) and the Republic of Palau, where mangroves cover 10-15% of the total land area and are used heavily by islanders as sources of wood, crabs, fish, thatching material, and other products.
Getting to Know Education in the Pacific Region
ERIC Educational Resources Information Center
Regional Educational Laboratory Pacific, 2014
2014-01-01
The Pacific region is comprised of American Samoa, the Commonwealth of the Northern Mariana Islands (CNMI); the Federated States of Micronesia (FSM)-Chuuk, Kosrae, Pohnpei, and Yap; Guam; Hawai'i; the Republic of the Marshall Islands; and the Republic of Palau. This document begins by providing a map of the REL Pacific region overlaid on a map of…
USDA-ARS?s Scientific Manuscript database
A laboratory study was conducted to measure the effects of diet, moisture, temperature, and time on greenhouse gas (GHG) emissions from feedlot surface materials (FSM). The FSM were collected from open-lot pens where beef cattle were fed either a dry-rolled corn (DRC) diet containing no wet distille...
USDA-ARS?s Scientific Manuscript database
A laboratory study was conducted to determine effects of pen location, moisture, and temperature on emissions of volatile organic compounds (VOC). Feedlot surface material (FSM) was obtained from pens where cattle were fed a diet containing 30% wet distillers grain plus soluble (WDGS). The FSM were ...
Adaptation of Dunn Solar Telescope for Jovian Doppler spectro imaging
NASA Astrophysics Data System (ADS)
Underwood, Thomas A.; Voelz, David; Schmider, François-Xavier; Jackiewicz, Jason; Dejonghe, Julien; Bresson, Yves; Hull, Robert; Goncalves, Ivan; Gualme, Patrick; Morand, Frédéric; Preis, Olivier
2017-09-01
This paper describes instrumentation used to adapt the Dunn Solar Telescope (DST) located on Sacramento Peak in Sunspot, NM for observations using the Doppler Spectro Imager (DSI). The DSI is based on a Mach-Zehnder interferometer and measures the Doppler shift of solar lines allowing for the study of atmospheric dynamics of giant planets and the detection of their acoustic oscillations. The instrumentation is being designed and built through a collaborative effort between a French team from the Observatoire de la Cote d'Azur (OCA) that designed the DSI and a US team at New Mexico State University (NMSU). There are four major components that couple the DSI to the DST: a guider/tracker, fast steering mirror (FSM), pupil stabilizer and transfer optics. The guider/tracker processes digital video to centroid-track the planet and outputs voltages to the DST's heliostat controls. The FSM removes wavefront tip/tilt components primarily due to turbulence and the pupil stabilizer removes any slow pupil "wander" introduced by the telescope's heliostat/turret arrangement. The light received at a science port of the DST is sent through the correction and stabilization components and into the DSI. The FSM and transfer optics designs are being provided by the OCA team and serve much the same functions as they do for other telescopes at which DSI observations have been conducted. The pupil stabilization and guider are new and are required to address characteristics of the DST.
Selective Comprehensives: The Social Composition of Top Comprehensive Schools
ERIC Educational Resources Information Center
Sutton Trust, 2013
2013-01-01
This study looks at publicly available data on the proportion of pupils eligible and claiming for free school meals (FSM) in the top 500 comprehensive state schools and at how representative they are of their localities and of their school type. We have looked at the top 500 when measured by five good GCSEs including English and Maths and at the…
Voltage linear transformation circuit design
NASA Astrophysics Data System (ADS)
Sanchez, Lucas R. W.; Jin, Moon-Seob; Scott, R. Phillip; Luder, Ryan J.; Hart, Michael
2017-09-01
Many engineering projects require automated control of analog voltages over a specified range. We have developed a computer interface comprising custom hardware and MATLAB code to provide real-time control of a Thorlabs adaptive optics (AO) kit. The hardware interface includes an op amp cascade to linearly shift and scale a voltage range. With easy modifications, any linear transformation can be accommodated. In AO applications, the design is suitable to drive a range of different types of deformable and fast steering mirrors (FSM's). Our original motivation and application was to control an Optics in Motion (OIM) FSM which requires the customer to devise a unique interface to supply voltages to the mirror controller to set the mirror's angular deflection. The FSM is in an optical servo loop with a wave front sensor (WFS), which controls the dynamic behavior of the mirror's deflection. The code acquires wavefront data from the WFS and fits a plane, which is subsequently converted into its corresponding angular deflection. The FSM provides +/-3° optical angular deflection for a +/-10 V voltage swing. Voltages are applied to the mirror via a National Instruments digital-to-analog converter (DAC) followed by an op amp cascade circuit. This system has been integrated into our Thorlabs AO testbed which currently runs at 11 Hz, but with planned software upgrades, the system update rate is expected to improve to 500 Hz. To show that the FSM subsystem is ready for this speed, we conducted two different PID tuning runs at different step commands. Once 500 Hz is achieved, we plan to make the code and method for our interface solution freely available to the community.
NASA Astrophysics Data System (ADS)
Bou-Fakhreddine, Bassam; Mougharbel, Imad; Faye, Alain; Abou Chakra, Sara; Pollet, Yann
2018-03-01
Accurate daily river flow forecast is essential in many applications of water resources such as hydropower operation, agricultural planning and flood control. This paper presents a forecasting approach to deal with a newly addressed situation where hydrological data exist for a period longer than that of meteorological data (measurements asymmetry). In fact, one of the potential solutions to resolve measurements asymmetry issue is data re-sampling. It is a matter of either considering only the hydrological data or the balanced part of the hydro-meteorological data set during the forecasting process. However, the main disadvantage is that we may lose potentially relevant information from the left-out data. In this research, the key output is a Two-Phase Constructive Fuzzy inference hybrid model that is implemented over the non re-sampled data. The introduced modeling approach must be capable of exploiting the available data efficiently with higher prediction efficiency relative to Constructive Fuzzy model trained over re-sampled data set. The study was applied to Litani River in the Bekaa Valley - Lebanon by using 4 years of rainfall and 24 years of river flow daily measurements. A Constructive Fuzzy System Model (C-FSM) and a Two-Phase Constructive Fuzzy System Model (TPC-FSM) are trained. Upon validating, the second model has shown a primarily competitive performance and accuracy with the ability to preserve a higher day-to-day variability for 1, 3 and 6 days ahead. In fact, for the longest lead period, the C-FSM and TPC-FSM were able of explaining respectively 84.6% and 86.5% of the actual river flow variation. Overall, the results indicate that TPC-FSM model has provided a better tool to capture extreme flows in the process of streamflow prediction.
Berendes, David; Kirby, Amy; Clennon, Julie A.; Raj, Suraja; Yakubu, Habib; Leon, Juan; Robb, Katharine; Kartikeyan, Arun; Hemavathy, Priya; Gunasekaran, Annai; Ghale, Ben; Kumar, J. Senthil; Mohan, Venkata Raghava; Kang, Gagandeep; Moe, Christine
2017-01-01
Urban sanitation necessitates management of fecal sludge inside and outside the household. This study examined associations between household sanitation, fecal contamination, and enteric infection in two low-income neighborhoods in Vellore, India. Surveys and spatial analysis assessed the presence and clustering of toilets and fecal sludge management (FSM) practices in 200 households. Fecal contamination was measured in environmental samples from 50 households and household drains. Enteric infection was assessed from stool specimens from children under 5 years of age in these households. The two neighborhoods differed significantly in toilet coverage (78% versus 33%) and spatial clustering. Overall, 49% of toilets discharged directly into open drains (“poor FSM”). Children in households with poor FSM had 3.78 times higher prevalence of enteric infection when compared with children in other households, even those without toilets. In the neighborhood with high coverage of household toilets, children in households with poor FSM had 10 times higher prevalence of enteric infection than other children in the neighborhood and drains in poor FSM clusters who had significantly higher concentrations of genogroup II norovirus. Conversely, children in households with a toilet that contained excreta in a tank onsite had 55% lower prevalence of enteric infection compared with the rest of the study area. Notably, households with a toilet in the neighborhood with low toilet coverage had more fecal contamination on floors where children played compared with those without a toilet. Overall, both toilet coverage levels and FSM were associated with environmental fecal contamination and, subsequently, enteric infection prevalence in this urban setting. PMID:28719269
Ding, Zhili; Zhang, Yixiang; Ye, Jinyun; Du, Zhenyu; Kong, Youqin
2015-05-01
Partial or complete replacement of fish meal (FM) with fermented soybean meal (FSM) was examined in Macrobrachium nipponense over an 8-week growth trial. Growth and immune characteristics were evaluated. Fermented soybean meal replaced 0 (FM, control), 25% (R25), 50% (R50), 75% (R75), or 100% of the FM (R100) in five isocaloric and isonitrogenous diets. Each diet was fed to juvenile prawns (mean weight, 0.103 ± 0.0009 g) twice daily to apparent satiation in five replicates. Weight gain and specific growth rate of M. nipponense were significantly higher in prawns fed the R25 diet than that of prawns fed the FM diet. No significant differences were observed among the other treatments. Total hemocyte count and hemolymph phagocytic activity decreased as the proportion of FSM increased. Total antioxidant activity competence and malondialdehyde level in the hepatopancreas were highest in prawns fed the R100 diet. mRNA levels of the antioxidant genes Cu-Zn superoxide dismutase and catalase, heat shock cognate protein 70, and heat shock protein 90 were significantly differentially regulated in the prawn hepatopancreas. In addition, percent mortality increased after challenge with live Aeromonas hydrophila. Percent mortality of prawns fed the R100 diet was significantly higher than that of prawns fed the FM and R25 diets. These findings demonstrate that (1) M. nipponense growth performance was not affected by including a high proportion of FSM in the diet, and the best growth performance was obtained when 25% of the FM was replaced with FSM; (2) nonspecific immunity was impaired when all of the FM was replaced with FSM. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nayak, Amit Kumar; Pal, Dilipkumar; Santra, Kousik
2015-08-01
The paper describes the isolation and screening of plant polysaccharides namely tamarind seed polysaccharide (TSP), fenugreek seed mucilage (FSM) and jackfruit seed starch (JFSS) from tamarind (Tamarindus indica L.) seeds, fenugreek (Trigonella foenum-graecum L.) seeds and jackfruit (Artocarpus heterophyllus L.) seeds, respectively. The yields of isolated dried TSP, FSM and JFSS were 47.00%, 17.36% and 18.86%, respectively. Various physicochemical properties like colour, odour, taste, solubility in water, pH and viscosity of these isolated plant polysaccharides were assessed. Isolated polysaccharide samples were subjected to some phytochemical identification tests. FTIR and (1)H NMR analyses of isolated polysaccharides were performed, which suggest the presence of sugar residues. Isolated TSP, FSM and JFSS can be used as pharmaceutical excipients in various pharmaceutical formulations. Copyright © 2015 Elsevier B.V. All rights reserved.
Autonomous formation flight of helicopters: Model predictive control approach
NASA Astrophysics Data System (ADS)
Chung, Hoam
Formation flight is the primary movement technique for teams of helicopters. However, the potential for accidents is greatly increased when helicopter teams are required to fly in tight formations and under harsh conditions. This dissertation proposes that the automation of helicopter formations is a realistic solution capable of alleviating risks. Helicopter formation flight operations in battlefield situations are highly dynamic and dangerous, and, therefore, we maintain that both a high-level formation management system and a distributed coordinated control algorithm should be implemented to help ensure safe formations. The starting point for safe autonomous formation flights is to design a distributed control law attenuating external disturbances coming into a formation, so that each vehicle can safely maintain sufficient clearance between it and all other vehicles. While conventional methods are limited to homogeneous formations, our decentralized model predictive control (MPC) approach allows for heterogeneity in a formation. In order to avoid the conservative nature inherent in distributed MPC algorithms, we begin by designing a stable MPC for individual vehicles, and then introducing carefully designed inter-agent coupling terms in a performance index. Thus the proposed algorithm works in a decentralized manner, and can be applied to the problem of helicopter formations comprised of heterogenous vehicles. Individual vehicles in a team may be confronted by various emerging situations that will require the capability for in-flight reconfiguration. We propose the concept of a formation manager to manage separation, join, and synchronization of flight course changes. The formation manager accepts an operator's commands, information from neighboring vehicles, and its own vehicle states. Inside the formation manager, there are multiple modes and complex mode switchings represented as a finite state machine (FSM). Based on the current mode and collected information, the FSM generates discrete reference points in state space. Then, the reference trajectory generator makes smooth trajectories from discrete reference points using interpolation and/or an online optimization scheme. By modifying the reference trajectory and triggering mode changes, the formation manager can override behaviors of the MPC controller. When a vehicle outside of the formation approaches a vehicle at the edge of the formation, the motion of the vehicle at the formation edge acts like a disturbance with respect to the vehicle attempting to join the formation. The vehicle at the edge of the formation cannot cooperate with any vehicle outside of the formation due to constraints on maintaining the existing formation. (Abstract shortened by UMI.)
Patterns of natural and anthropogenic disturbance of the mangroves on a small Pacific island.
James A. Allen; Katherine C. Ewel; Jason Jack
2001-01-01
Mangroves in many parts of the world are subjected to frequent, large-scale disturbances. A possible exception is Kosrae, Federated States of Micronesia (FSM), a small volcanic island in the west-central Pacific Ocean. Relative sea level has been stable for most of the last 1000 years and the last tropical cyclone to affect the island was in 1905. Many trees on Kosrae...
NASA Astrophysics Data System (ADS)
Han, Song; Zhang, Wei; Zhang, Jie
2017-09-01
A fast sweeping method (FSM) determines the first arrival traveltimes of seismic waves by sweeping the velocity model in different directions meanwhile applying a local solver. It is an efficient way to numerically solve Hamilton-Jacobi equations for traveltime calculations. In this study, we develop an improved FSM to calculate the first arrival traveltimes of quasi-P (qP) waves in 2-D tilted transversely isotropic (TTI) media. A local solver utilizes the coupled slowness surface of qP and quasi-SV (qSV) waves to form a quartic equation, and solve it numerically to obtain possible traveltimes of qP-wave. The proposed quartic solver utilizes Fermat's principle to limit the range of the possible solution, then uses the bisection procedure to efficiently determine the real roots. With causality enforced during sweepings, our FSM converges fast in a few iterations, and the exact number depending on the complexity of the velocity model. To improve the accuracy, we employ high-order finite difference schemes and derive the second-order formulae. There is no weak anisotropy assumption, and no approximation is made to the complex slowness surface of qP-wave. In comparison to the traveltimes calculated by a horizontal slowness shooting method, the validity and accuracy of our FSM is demonstrated.
David, Annette M.; Lew, Rod; Lyman, Annabel K.; Otto, Caleb; Robles, Rebecca; Cruz, George
2013-01-01
Tobacco remains a major risk factor for premature death and ill health among Pacific Islanders, and tobacco-related disparities persist. Eliminating these disparities requires a comprehensive approach to transform community norms about tobacco use through policy change, as contained in the World Health Organization (WHO) international Framework Convention on Tobacco Control (FCTC). Three of the six US-affiliated Pacific Islands – the Federated States of Micronesia (FSM), Palau and the Marshall Islands – are Parties to the FCTC; the remaining three territories – American Samoa, the Commonwealth of the Northern Mariana Islands (CNMI) and Guam – are excluded from the treaty by virtue of US non-ratification. Capacity building and leadership development are essential in achieving policy change and health equity within Pacific Islander communities. We describe promising practices from American Samoa, CNMI, FSM, Guam and Palau and highlight some of the key lessons learned in supporting and sustaining the reduction in tobacco use among Pacific Islanders as a first step towards eliminating tobacco-related disparities in these populations. PMID:23690256
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yin-Chih, E-mail: lin3312@cc.kuas.edu.tw; Lin, Chien-Feng
2015-05-07
The phase transformation and magnetostriction of bulk Fe{sub 73}Ga{sub 27} and Fe{sub 73}Ga{sub 18}Zn{sub 9} (at. %) ferromagnetic shape memory alloys (FSMs) were investigated by transmission electron microscopy (TEM), x-ray diffraction (XRD), and a magnetostrictive-meter setup. For the Fe{sub 73}Ga{sub 27} FSM alloy solution treated at 1100 °C for 4 h and quenched in ice brine, the antiphase boundary segments of the D0{sub 3} domain were observed in the A2 (disordered) matrix, and the Fe{sub 73}Ga{sub 27} FSM alloy had an optimal magnetostriction (λ{sub ‖}{sup s }= 71 × 10{sup −6} and λ{sub ⊥}{sup s }= −31 × 10{sup −6}). In Fe{sub 73}Ga{sub 27} FSM alloy as-quenched, aged at 700 °C formore » 24 h, and furnace cooled, D0{sub 3} nanoclusters underwent phase transformation to an intermediate tetragonal phase (i.e., L1{sub 0}-like martensite) via Bain distortion, and finally L1{sub 2} (Fe{sub 3}Ga) structures precipitated, as observed by TEM and XRD. The L1{sub 0}-like martensite and L1{sub 2} phases in the aged Fe{sub 73}Ga{sub 27} FSM alloy drastically decreased the magnetostriction from positive to negative (λ{sub ‖}{sup s }= −20 × 10{sup −6} and λ{sub ⊥}{sup s }= −8 × 10{sup −6}). However, in Fe{sub 73}Ga{sub 18}Zn{sub 9} FSM alloy as-quenched and aged, the phase transformation of D0{sub 3} to an intermediate tetragonal martensite phase and precipitation of L1{sub 2} structures were not found. The results indicate that the aged Fe{sub 73}Ga{sub 18}Zn{sub 9} FSM alloy maintained stable magnetostriction (λ{sub ‖}{sup s }= 36 × 10{sup −6} and λ{sub ⊥}{sup s }= −31 × 10{sup −6}). Adding Zn can improve the ferromagnetic shape memory effect of aged Fe{sub 73}Ga{sub 18}Zn{sub 9} alloy, which may be useful in application of the alloy in high temperature environments.« less
Kaufer, Laura; Englberger, Lois; Cue, Roger; Lorens, Adelino; Albert, Kiped; Pedrus, Podis; Kuhnlein, Harriet V
2010-04-01
Federated States of Micronesia (FSM) faces increasing rates of non-communicable diseases related to the neglect of the traditional food system and the shift to consumption of imported food and adoption of sedentary lifestyles. To reverse this trend, a two-year, food-based intervention in one Pohnpeian community in FSM promoted local food production and consumption using a variety of approaches including education, training, agriculture and social marketing following a "Go Local" message. Foods promoted were banana, giant swamp taro, breadfruit and pandanus varieties, green leafy vegetables and fruits for their provitamin A and total carotenoids, vitamins, minerals and fiber content. An evaluation was conducted in a random sample of households (n=47) to examine the extent of dietary changes following the intervention. Results indicated increased (110%) provitamin A carotenoid intake; increased frequency of consumption of local banana (53%), giant swamp taro (475%), and local vegetables (130%); and increased dietary diversity from local food. Exposure to intervention activities was high and there were positive changes in attitudes towards local food. The intervention approaches appear to have been successful in this short period. It is likely that similar approaches in additional communities in Pohnpei and other parts of the Pacific would also be successful in promoting local food. Evidence gathering should continue to document the long-term health outcomes of increased reliance on local food.
Self-Balancing, Optical-Center-Pivot, Fast-Steering Mirror
NASA Technical Reports Server (NTRS)
Moore, James D.; Carson, Johnathan W.
2011-01-01
A complete, self-contained fast-steering- mirror (FSM) mechanism is reported consisting of a housing, a mirror and mirror-mounting cell, three PZT (piezoelectric) actuators, and a counterbalance mass. Basically, it is a comparatively stiff, two-axis (tip-tilt), self-balanced FSM. The present invention requires only three (or three pairs for flight redundancy) actuators. If a PZT actuator degrades, the inherent balance remains, and compensation for degraded stroke is made by simply increasing the voltage to the PZT. Prior designs typically do not pivot at the mirror optical center, creating unacceptable beam shear.
Asbestos Free Insulation Development for the Space Shuttle Solid Propellant Rocket Motor (RSRM)
NASA Technical Reports Server (NTRS)
Allred, Larry D.; Eddy, Norman F.; McCool, A. A. (Technical Monitor)
2000-01-01
Asbestos has been used for many years as an ablation inhibitor in insulating materials. It has been a constituent of the AS/NBR insulation used to protect the steel case of the RSRM (Reusable Solid Rocket Motor) since its inception. This paper discusses the development of a potential replacement RSRM insulation design, several of the numerous design issues that were worked and processing problems that were resolved. The earlier design demonstration on FSM-5 (Flight Support Motor) of the selected 7% and 11% Kevlar(registered) filled EPDM (KF/EPDM) candidate materials was expanded. Full-scale process simulation articles were built and FSM-8 was manufactured using multiple Asbestos Free (AF) components and materials. Two major problems had to be overcome in developing the AF design. First, bondline corrosion, which occurred in the double-cured region of the aft dome, had to be eliminated. Second, KF/EPDM creates high levels of electrostatic energy (ESE), which does not readily dissipate from the insulation surface. An uncontrolled electrostatic discharge (ESD) of this surface energy during many phases of production could create serious safety hazards. Numerous processing changes were implemented and a conductive paint was developed to prevent exposed external insulation surfaces from generating ESE/ESD. Additionally, special internal instrumentation was incorporated into FSM-8 to record real-time internal motor environment data. These data included inhibitor insulation erosion rates and internal thermal environments. The FSM-8 static test was successfully conducted in February 2000 and much valuable data were obtained to characterize the AF insulation design.
Force Spectrum Microscopy Using Mitochondrial Fluctuations of Control and ATP-Depleted Cells.
Xu, Wenlong; Alizadeh, Elaheh; Prasad, Ashok
2018-06-19
A single-cell assay of active and passive intracellular mechanical properties of mammalian cells could give significant insight into cellular processes. Force spectrum microscopy (FSM) is one such technique, which combines the spontaneous motion of probe particles and the mechanical properties of the cytoskeleton measured by active microrheology using optical tweezers to determine the force spectrum of the cytoskeleton. A simpler and noninvasive method to perform FSM would be very useful, enabling its widespread adoption. Here, we develop an alternative method of FSM using measurement of the fluctuating motion of mitochondria. Mitochondria of the C3H-10T1/2 cell line were labeled and tracked using confocal microscopy. Mitochondrial probes were selected based on morphological characteristics, and their mean-square displacement, creep compliance, and distributions of directional change were measured. We found that the creep compliance of mitochondria resembles that of particles in viscoelastic media. However, comparisons of creep compliance between controls and cells treated with pharmacological agents showed that perturbations to the actomysoin network had surprisingly small effects on mitochondrial fluctuations, whereas microtubule disruption and ATP depletion led to a significantly decreased creep compliance. We used properties of the distribution of directional change to identify a regime of thermally dominated fluctuations in ATP-depleted cells, allowing us to estimate the viscoelastic parameters for a range of timescales. We then determined the force spectrum by combining these viscoelastic properties with measurements of spontaneous fluctuations tracked in control cells. Comparisons with previous measurements made using FSM revealed an excellent match. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Summary of JAYGO mixing and FSM-1 application of castable inhibitor and liner
NASA Technical Reports Server (NTRS)
Evans, Kurt B.
1990-01-01
Two JAYGO planetary mixers (12 and 42 gallon) are being qualified to mix STW5-3224 liner and STW5-3223 castable inhibitor. These mixers are an integral part of a mix process which allows for safe addition of the asbestos component. An essential part of the engineering evaluation (ETP-0347) of these mixers is the generation of static test fire data. Ultimately, these results will help confirm the adequacy of these mixers for production mixing of liner and inhibitor. (These data are not required for qualification of the Certification Test Plan CTP-0125). The details on the mixing, inhibiting, and sling-lining of JAYGO-mixed castable inhibitor and liner which were applied to the FSM-1 segments are presented. The objectives are the following: (1) to document processing events surrounding the JAYO mixing of castable inhibitor and liner, and the subsequent inhibiting and sling lining onto the FSM-1 segments; and (2) to substantiate the measured properties of these JAYGO-mixed materials (rheological and mechanical) and compare these properties to existing production database.
Fernandes, N C C A; Guerra, J M; Réssio, R A; Wasques, D G; Etlinger-Colonelli, D; Lorente, S; Nogueira, E; Dagli, M L Z
2016-08-01
Liquid-based Cytology (LBC) consists of immediate wet cell fixation with automated slide preparation. We applied LBC, cell block (CB) and immunocytochemistry to diagnose canine lymphoma and compare results with conventional cytology. Samples from enlarged lymph nodes of 18 dogs were collected and fixed in preservative solution for automated slide preparation (LBC), CB inclusion and immunophenotyping. Two CB techniques were tested: fixed sediment method (FSM) and agar method (AM). Anti-CD79a, anti-Pax5, anti-CD3 and anti-Ki67 were used in immunocytochemistry. LBC smears showed better nuclear and nucleolar definition, without cell superposition, but presented smaller cell size and worse cytoplasmic definition. FSM showed consistent cellular groups and were employed for immunocytochemistry, while AM CBs presented sparse groups of lymphocytes, with compromised analysis. Anti-Pax-5 allowed B-cell identification, both in reactive and neoplastic lymph nodes. Our preliminary report suggests that LBC and FSM together may be promising tools to improve lymphoma diagnosis through fine-needle aspiration. © 2015 John Wiley & Sons Ltd.
A new approach for turbulent simulations in complex geometries
NASA Astrophysics Data System (ADS)
Israel, Daniel M.
Historically turbulence modeling has been sharply divided into Reynolds averaged Navier-Stokes (RANS), in which all the turbulent scales of motion are modeled, and large-eddy simulation (LES), in which only a portion of the turbulent spectrum is modeled. In recent years there have been numerous attempts to couple these two approaches either by patching RANS and LES calculations together (zonal methods) or by blending the two sets of equations. In order to create a proper bridging model, that is, a single set of equations which captures both RANS and LES like behavior, it is necessary to place both RANS and LES in a more general framework. The goal of the current work is threefold: to provide such a framework, to demonstrate how the Flow Simulation Methodology (FSM) fits into this framework, and to evaluate the strengths and weaknesses of the current version of the FSM. To do this, first a set of filtered Navier-Stokes (FNS) equations are introduced in terms of an arbitrary generalized filter. Additional exact equations are given for the second order moments and the generalized subfilter dissipation rate tensor. This is followed by a discussion of the role of implicit and explicit filters in turbulence modeling. The FSM is then described with particular attention to its role as a bridging model. In order to evaluate the method a specific implementation of the FSM approach is proposed. Simulations are presented using this model for the case of a separating flow over a "hump" with and without flow control. Careful attention is paid to error estimation, and, in particular, how using flow statistics and time series affects the error analysis. Both mean flow and Reynolds stress profiles are presented, as well as the phase averaged turbulent structures and wall pressure spectra. Using the phase averaged data it is possible to examine how the FSM partitions the energy between the coherent resolved scale motions, the random resolved scale fluctuations, and the subfilter quantities. The method proves to be qualitatively successful at reproducing large turbulent structures. However, like other hybrid methods, it has difficulty in the region where the model behavior transitions from RANS to LES. Consequently the phase averaged structures reproduce the experiments quite well, and the forcing does significantly reduce the length of the separated region. Nevertheless, the recirculation length is significantly too large for all the cases. Overall the current results demonstrate the promise of bridging models in general and the FSM in particular. However, current bridging techniques are still in their infancy. There is still important progress to be made and it is hoped that this work points out the more important avenues for exploration.
Prototype Development of the GMT Fast Steering Mirror
NASA Astrophysics Data System (ADS)
Kim, Young-Soo; Koh, J.; Jung, H.; Jung, H.; Cho, M. K.; Park, W.; Yang, H.; Kim, H.; Lee, K.; Ahn, H.; Park, B.
2013-06-01
A Fast Steering Mirror (FSM) is going to be produced as a secondary mirror of the Giant Magellan Telescope (GMT). FSM is 3.2 m in diameter and the focal ratio is 0.65. It is composed of seven circular segments which match with the primary mirror segments. Each segment contains a light-weighted mirror whose diameter is 1.1 m. It also contains tip-tilt actuators which would compensate wind effect and structure jitter. An FSM prototype (FSMP) has been developed, which consists of a full-size off-axis mirror segment and a tip-tilt test-bed. The main purpose of the FSMP development is to achieve key technologies, such as fabrication of highly aspheric off-axis mirror and tip-tilt actuation. The development has been conducted by a consortium of five institutions in Korea and USA, and led by Korea Astronomy and Space Science Institute. The mirror was light-weighted and grinding of the front surface was finished. Polishing is in progress with computer generated hologram tests. The tip-tilt test-bed has been manufactured and assembled. Frequency tests are being performed and optical tilt set-up is arranged for visual demonstration. In this paper, we present progress of the prototype development, and future works.
Assessing Landslide Mobility Using GIS: Application to Kosrae, Micronesia
NASA Astrophysics Data System (ADS)
Reid, M. E.; Brien, D. L.; Godt, J.; Schmitt, R. G.; Harp, E. L.
2015-12-01
Deadly landslides are often mobile landslides, as exemplified by the disastrous landslide that occurred near Oso, Washington in 2014 killing 43. Despite this association, many landslide susceptibility maps do not identify runout areas. We developed a simple, GIS-based method for identifying areas potentially overrun by mobile slides and debris flows. Our method links three processes within a DEM landscape: landslide initiation, transport, and debris-flow inundation (from very mobile slides). Given spatially distributed shear strengths, we first identify initiation areas using an infinite-slope stability analysis. We then delineate transport zones, or regions of potential entrainment and/or deposition, using a height/length runout envelope. Finally, where these transport zones intersect the channel network, we start debris-flow inundation zones. The extent of inundation is computed using the USGS model Laharz, modified to include many debris-flow locations throughout a DEM. Potential debris-flow volumes are computed from upslope initiation areas and typical slide thicknesses. We applied this approach to the main island of Kosrae State, Federated States of Micronesia (FSM). In 2002, typhoon Chata'an triggered numerous landslides on the neighboring islands of Chuuk State, FSM, resulting in 43 fatalities. Using an infinite-slope stability model calibrated to the Chuuk event, we identified potential landslide initiation areas on Kosrae. We then delineated potential transport zones using a 20º runout envelope, based on runout observations from Chuuk. Potential debris-flow inundation zones were then determined using Laharz. Field inspections on Kosrae revealed that our resulting susceptibility map correctly classified areas covered by previous debris-flow deposits and did not include areas covered by fluvial deposits. Our map has the advantage of providing a visual tool to portray initiation, transport, and runout zones from mobile landslides.
Fuzzy scalar and vector median filters based on fuzzy distances.
Chatzis, V; Pitas, I
1999-01-01
In this paper, the fuzzy scalar median (FSM) is proposed, defined by using ordering of fuzzy numbers based on fuzzy minimum and maximum operations defined by using the extension principle. Alternatively, the FSM is defined from the minimization of a fuzzy distance measure, and the equivalence of the two definitions is proven. Then, the fuzzy vector median (FVM) is proposed as an extension of vector median, based on a novel distance definition of fuzzy vectors, which satisfy the property of angle decomposition. By defining properly the fuzziness of a value, the combination of the basic properties of the classical scalar and vector median (VM) filter with other desirable characteristics can be succeeded.
NASA Astrophysics Data System (ADS)
Polverino, Pierpaolo; Pianese, Cesare; Sorrentino, Marco; Marra, Dario
2015-04-01
The paper focuses on the design of a procedure for the development of an on-field diagnostic algorithm for solid oxide fuel cell (SOFC) systems. The diagnosis design phase relies on an in-deep analysis of the mutual interactions among all system components by exploiting the physical knowledge of the SOFC system as a whole. This phase consists of the Fault Tree Analysis (FTA), which identifies the correlations among possible faults and their corresponding symptoms at system components level. The main outcome of the FTA is an inferential isolation tool (Fault Signature Matrix - FSM), which univocally links the faults to the symptoms detected during the system monitoring. In this work the FTA is considered as a starting point to develop an improved FSM. Making use of a model-based investigation, a fault-to-symptoms dependency study is performed. To this purpose a dynamic model, previously developed by the authors, is exploited to simulate the system under faulty conditions. Five faults are simulated, one for the stack and four occurring at BOP level. Moreover, the robustness of the FSM design is increased by exploiting symptom thresholds defined for the investigation of the quantitative effects of the simulated faults on the affected variables.
Pit Latrine Emptying Behavior and Demand for Sanitation Services in Dar Es Salaam, Tanzania
Jenkins, Marion W.; Cumming, Oliver; Cairncross, Sandy
2015-01-01
Pit latrines are the main form of sanitation in unplanned areas in many rapidly growing developing cities. Understanding demand for pit latrine fecal sludge management (FSM) services in these communities is important for designing demand-responsive sanitation services and policies to improve public health. We examine latrine emptying knowledge, attitudes, behavior, trends and rates of safe/unsafe emptying, and measure demand for a new hygienic latrine emptying service in unplanned communities in Dar Es Salaam (Dar), Tanzania, using data from a cross-sectional survey at 662 residential properties in 35 unplanned sub-wards across Dar, where 97% had pit latrines. A picture emerges of expensive and poor FSM service options for latrine owners, resulting in widespread fecal sludge exposure that is likely to increase unless addressed. Households delay emptying as long as possible, use full pits beyond what is safe, face high costs even for unhygienic emptying, and resort to unsafe practices like ‘flooding out’. We measured strong interest in and willingness to pay (WTP) for the new pit emptying service at 96% of residences; 57% were WTP ≥U.S. $17 to remove ≥200 L of sludge. Emerging policy recommendations for safe FSM in unplanned urban communities in Dar and elsewhere are discussed. PMID:25734790
Prototype Development of the GMT Fast Steering Mirror
NASA Astrophysics Data System (ADS)
Kim, Young-Soo; Koh, J.; Jung, H.; Jung, H.; Cho, M. K.; Park, W.; Yang, H.; Kim, H.; Lee, K.; Ahn, H.; Park, B.
2014-01-01
A Fast Steering Mirror (FSM) is going to be provided as the secondary of the Giant Magellan Telescope (GMT) for the first light observations. FSM is 3.2 m in diameter and the focal ratio is 0.65. It is composed of seven circular segments which match with the primary mirror segments. Each segment contains a light-weighted mirror whose diameter is 1.1 m, and each mirror is activated by three tip-tilt actuators which compensate image degradations caused by winds and structure jitter. An FSM prototype (FSMP) has been developed to achieve the key technologies, fabrication of highly aspheric off-axis mirror and precise tip-tilt actuation. It consists of a full-size off-axis mirror segment and a tip-tilt test-bed. The development has been conducted by Korea Astronomy and Space Science Institute together with four other institutions in Korea and USA. The mirror was light-weighted by digging about a hundred holes at the backside, and the front surface has been polished. The result of computer generated hologram measurements showed the surface error of 11.7 nm rms. The tip-tilt test-bed has been manufactured and assembled. Tip-tilt range and resolution tests complied the requirements, and the attenuation test results also satisfied the performance requirements. In this paper, we present the successful developments of the prototype.
An architecture for object-oriented intelligent control of power systems in space
NASA Technical Reports Server (NTRS)
Holmquist, Sven G.; Jayaram, Prakash; Jansen, Ben H.
1993-01-01
A control system for autonomous distribution and control of electrical power during space missions is being developed. This system should free the astronauts from localizing faults and reconfiguring loads if problems with the power distribution and generation components occur. The control system uses an object-oriented simulation model of the power system and first principle knowledge to detect, identify, and isolate faults. Each power system component is represented as a separate object with knowledge of its normal behavior. The reasoning process takes place at three different levels of abstraction: the Physical Component Model (PCM) level, the Electrical Equivalent Model (EEM) level, and the Functional System Model (FSM) level, with the PCM the lowest level of abstraction and the FSM the highest. At the EEM level the power system components are reasoned about as their electrical equivalents, e.g, a resistive load is thought of as a resistor. However, at the PCM level detailed knowledge about the component's specific characteristics is taken into account. The FSM level models the system at the subsystem level, a level appropriate for reconfiguration and scheduling. The control system operates in two modes, a reactive and a proactive mode, simultaneously. In the reactive mode the control system receives measurement data from the power system and compares these values with values determined through simulation to detect the existence of a fault. The nature of the fault is then identified through a model-based reasoning process using mainly the EEM. Compound component models are constructed at the EEM level and used in the fault identification process. In the proactive mode the reasoning takes place at the PCM level. Individual components determine their future health status using a physical model and measured historical data. In case changes in the health status seem imminent the component warns the control system about its impending failure. The fault isolation process uses the FSM level for its reasoning base.
Lee, Chien-Te; Ng, Hwee-Yeong; Lee, Yueh-Ting; Lai, Li-Wen
2015-01-01
Calbindin-D28k (CBD-28k) is a calcium binding protein located in the distal convoluted tubule (DCT) and plays an important role in active calcium transport in the kidney. Loop and thiazide diuretics affect renal Ca and Mg handling: both cause Mg wasting, but have opposite effects on Ca excretion as loop diuretics increase, but thiazides decrease, Ca excretion. To understand the role of CBD-28k in renal Ca and Mg handling in response to diuretics treatment, we investigated renal Ca and Mg excretion and gene expression of DCT Ca and Mg transport molecules in wild-type (WT) and CBD-28k knockout (KO) mice. Mice were treated with chlorothiazide (CTZ; 50 mg·kg−1·day−1) or furosemide (FSM; 30 mg·kg−1·day−1) for 3 days. To avoid volume depletion, salt was supplemented in the drinking water. Urine Ca excretion was reduced in WT, but not in KO mice, by CTZ. FSM induced similar hypercalciuria in both groups. DCT Ca transport molecules, including transient receptor potential vanilloid 5 (TRPV5), TRPV6, and CBD-9k, were upregulated by CTZ and FSM in WT, but not in KO mice. Urine Mg excretion was increased and transient receptor potential subfamily M, member 6 (TRPM6) was upregulated by both CTZ and FSM in WT and KO mice. In conclusion, CBD-28k plays an important role in gene expression of DCT Ca, but not Mg, transport molecules, which may be related to its being a Ca, but not a Mg, intracellular sensor. The lack of upregulation of DCT Ca transport molecules by thiazides in the KO mice indicates that the DCT Ca transport system is critical for Ca conservation by thiazides. PMID:26582761
Fine pointing control for a Next-Generation Space Telescope
NASA Astrophysics Data System (ADS)
Mosier, Gary E.; Femiano, Michael; Ha, Kong; Bely, Pierre Y.; Burg, Richard; Redding, David C.; Kissil, Andrew; Rakoczy, John; Craig, Larry
1998-08-01
The Next Generation Space Telescope will provide at least ten times the collecting area of the Hubble Space Telescope in a package that fits into the shroud of an expendable launch vehicle. The resulting large, flexible structure provides a challenge to the design of a pointing control system for which the requirements are at the milli-arcsecond level. This paper describes a design concept in which pointing stability is achieved by means of a nested-loop design involving an inertial attitude control system (ACS) and a fast steering mirror (FSM). A key to the integrated control design is that the ACS controllers has a bandwidth well below known structural modes and the FSM uses a rotationally balanced mechanism which should not interact with the flexible modes that are within its control bandwidth. The ACS controller provides stable pointing of the spacecraft bus with star trackers and gyros. This low bandwidth loop uses nearly co-located sensors and actuators to slew and acquire faint guide stars in the NIR camera. This controller provides a payload reference stable to the arcsecond level. Low-frequency pointing errors due to sensor noise and dynamic disturbances are suppressed by a 2-axis gimbaled FSM locate din the instrument module. The FSM servo bandwidth of 6 Hz is intended to keep the guide star position stable in the NIR focal plane to the required milli-arcsecond level. The mirror is kept centered in its range of travel by a low-bandwidth loop closed around the ACS. This paper presents the result of parametric trade studies designed to assess the performance of this control design in the presence of modeled reaction wheel disturbances, assumed to be the principle source of vibration for the NGST, and variations in structural dynamics. Additionally, requirements for reaction wheel disturbance levels and potential vibration isolation subsystems were developed.
High resolution climate scenarios for snowmelt modelling in small alpine catchments
NASA Astrophysics Data System (ADS)
Schirmer, M.; Peleg, N.; Burlando, P.; Jonas, T.
2017-12-01
Snow in the Alps is affected by climate change with regard to duration, timing and amount. This has implications with respect to important societal issues as drinking water supply or hydropower generation. In Switzerland, the latter received a lot of attention following the political decision to phase out of nuclear electricity production. An increasing number of authorization requests for small hydropower plants located in small alpine catchments was observed in the recent years. This situation generates ecological conflicts, while the expected climate change poses a threat to water availability thus putting at risk investments in such hydropower plants. Reliable high-resolution climate scenarios are thus required, which account for small-scale processes to achieve realistic predictions of snowmelt runoff and its variability in small alpine catchments. We therefore used a novel model chain by coupling a stochastic 2-dimensional weather generator (AWE-GEN-2d) with a state-of-the-art energy balance snow cover model (FSM). AWE-GEN-2d was applied to generate ensembles of climate variables at very fine temporal and spatial resolution, thus providing all climatic input variables required for the energy balance modelling. The land-surface model FSM was used to describe spatially variable snow cover accumulation and melt processes. The FSM was refined to allow applications at very high spatial resolution by specifically accounting for small-scale processes, such as a subgrid-parametrization of snow covered area or an improved representation of forest-snow processes. For the present study, the model chain was tested for current climate conditions using extensive observational dataset of different spatial and temporal coverage. Small-scale spatial processes such as elevation gradients or aspect differences in the snow distribution were evaluated using airborne LiDAR data. 40-year of monitoring data for snow water equivalent, snowmelt and snow-covered area for entire Switzerland was used to verify snow distribution patterns at coarser spatial and temporal scale. The ability of the model chain to reproduce current climate conditions in small alpine catchments makes this model combination an outstanding candidate to produce high resolution climate scenarios of snowmelt in small alpine catchments.
Smith, Gregory C; Palmieri, Patrick A; Hancock, Gregory R; Richardson, Rhonda A
2008-01-01
An adaptation of the Family Stress Model (FSM) with hypothesized linkages between family contextual factors, custodial grandmothers' psychological distress, parenting practices, and grandchildren's adjustment was tested with structural equation modeling. Interview data from 733 custodial grandmothers of grandchildren between ages 4-17 revealed that the effect of grandmothers' distress on grandchildren's adjustment was mediated by dysfunctional parenting, especially regarding externalizing problems. The effects of contextual factors on grandchildren's adjustment were also indirect. The model's measurement and structural components were largely invariant across grandmothers' race and age, as well as grandchildren's gender and age. Group differences were more prevalent regarding the magnitude of latent means for model constructs. We conclude that parenting models like the FSM are useful for investigating custodial grandfamilies.
Smith, Gregory C.; Palmieri, Patrick A.; Hancock, Gregory R.; Richardson, Rhonda A.
2009-01-01
An adaptation of the Family Stress Model (FSM) with hypothesized linkages between family contextual factors, custodial grandmothers' psychological distress, parenting practices, and grandchildren's adjustment was tested with structural equation modeling. Interview data from 733 custodial grandmothers of grandchildren between ages 4-17 revealed that the effect of grandmothers' distress on grandchildren's adjustment was mediated by dysfunctional parenting, especially regarding externalizing problems. The effects of contextual factors on grandchildren's adjustment were also indirect. The model's measurement and structural components were largely invariant across grandmothers' race and age, as well as grandchildren's gender and age. Group differences were more prevalent regarding the magnitude of latent means for model constructs. We conclude that parenting models like the FSM are useful for investigating custodial grandfamilies. PMID:19266869
Hierarchical Cu precipitation in lamellated steel after multistage heat treatment
NASA Astrophysics Data System (ADS)
Liu, Qingdong; Gu, Jianfeng
2017-09-01
The hierarchical distribution of Cu-rich precipitates (CRPs) and related partitioning and segregation behaviours of solute atoms were investigated in a 1.54 Cu-3.51 Ni (wt.%) low-carbon high-strength low-alloy (HSLA) steel after multistage heat treatment by using the combination of electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and atom probe tomography (APT). Intercritical tempering at 725 °C of as-quenched lathlike martensitic structure leads to the coprecipitation of CRPs at the periphery of a carbide precipitate which is possibly in its paraequilibrium state due to distinct solute segregation at the interface. The alloyed carbide and CRPs provide constituent elements for each other and make the coprecipitation thermodynamically favourable. Meanwhile, austenite reversion occurs to form fresh secondary martensite (FSM) zone where is rich in Cu and pertinent Ni and Mn atoms, which gives rise to a different distributional morphology of CRPs with large size and high density. In addition, conventional tempering at 500 °C leads to the formation of nanoscale Cu-rich clusters in α-Fe matrix. As a consequence, three populations of CRPs are hierarchically formed around carbide precipitate, at FSM zone and in α-Fe matrix. The formation of different precipitated features can be turned by controlling diffusion pathways of related solute atoms and further to tailor mechanical properties via proper multistage heat treatments.
Rebellato, Ana Paula; Bussi, Jéssica; Silva, Joyce Grazielle Siqueira; Greiner, Ralf; Steel, Caroline Joy; Pallone, Juliana Azevedo Lima
2017-04-01
This study aimed at investigating the effect of iron compounds used in whole wheat flour (WWF) fortification, both on rheological properties of the dough and on bread technological quality. Furthermore, bioaccessibility of iron (Fe), zinc (Zn) and calcium (Ca) in the final breads was determined. Rheological properties (mainly dough development time, stability, mixing tolerance index, resistance to extension and ratio number) of the dough and the technological quality of bread (mainly oven spring and cut opening) were altered. However, producing roll breads fortified with different iron compounds was still possible. NaFeEDTA (ferric sodium ethylene diamine tetra acetic acid) proved to be the most effective iron compound in the fortification of WWF, since it presented the highest levels of solubility (44.80%) and dialysability (46.14%), followed by microencapsulated ferrous fumarate (FFm). On the other hand, the microencapsulated ferrous sulfate (FSm) and reduced iron presented the lowest solubility (5.40 and 18.30%, respectively) and dialysability (33.12 and 31.79%, respectively). Zn dialysis was positively influenced by NaFeEDTA, FSm, and ferrous fumarate. As for Ca, dialysis was positively influenced by FSm and negatively influenced by FFm. The data indicated that there is a competitive interaction for the absorption of these minerals in whole wheat roll breads, but all studied minerals can be considered bioaccessible. Copyright © 2017 Elsevier Ltd. All rights reserved.
Maletzki, Claudia; Huehns, Maja; Bauer, Ingrid; Ripperger, Tim; Mork, Maureen M; Vilar, Eduardo; Klöcking, Sabine; Zettl, Heike; Prall, Friedrich; Linnebacher, Michael
2017-07-01
Mismatch-repair deficient (MMR-D) malignancies include Lynch Syndrome (LS), which is secondary to germline mutations in one of the MMR genes, and the rare childhood-form of constitutional mismatch repair-deficiency (CMMR-D); caused by bi-allelic MMR gene mutations. A hallmark of LS-associated cancers is microsatellite instability (MSI), characterized by coding frameshift mutations (cFSM) in target genes. By contrast, tumors arising in CMMR-D patients are thought to display a somatic mutation pattern differing from LS. This study has the main goal to identify cFSM in MSI target genes relevant in CMMR-D and to compare the spectrum of common somatic mutations, including alterations in DNA polymerases POLE and D1 between LS and CMMR-D. CMMR-D-associated tumors harbored more somatic mutations compared to LS cases, especially in the TP53 gene and in POLE and POLD1, where novel mutations were additionally identified. Strikingly, MSI in classical mononucleotide markers BAT40 and CAT25 was frequent in CMMR-D cases. MSI-target gene analysis revealed mutations in CMMR-D-associated tumors, some of them known to be frequently hit in LS, such as RNaseT2, HT001, and TGFβR2. Our results imply a general role for these cFSM as potential new drivers of MMR-D tumorigenesis. © 2017 Wiley Periodicals, Inc.
Mase, Sundari R.; Jereb, John A.; Gonzalez, Daniel; Martin, Fatma; Daley, Charles L.; Fred, Dorina; Loeffler, Ann; Menon, Lakshmy; Morris, Sapna Bamrah; Brostrom, Richard; Chorba, Terence; Peloquin, Charles A.
2016-01-01
Background In the Federated States of Micronesia (FSM) and then the Republic of the Marshall Islands (RMI), levofloxacin pharmacokinetics (PK) were studied in children receiving directly observed once-daily regimens (10 mg/kg, age >5 years; 15–20 mg/kg, age ≤5 years) for either multidrug-resistant tuberculosis (MDR TB) disease or latent infection after MDR TB exposure, to inform future dosing strategies. Methods Blood samples were collected at 0 (RMI only), 1, 2, and 6 hours (50 children, aged 6 months to 15 years) after oral levofloxacin at >6 weeks of treatment. Clinical characteristics and levofloxacin Cmax, elimination half-life (t1/2), and area under the curve from 0 to 24 hours (AUC0–24 hours * µg/mL) were correlated to determine optimal dosage and to examine associations. Population PK and target attainment were modeled. With results from FSM, dosages were increased in RMI toward the target maximal drug concentration (Cmax) for Mycobacterium tuberculosis, 8–12 µg/ml. Results Cmax correlated linearly with per-weight dosage. Neither Cmax nor t1/2 was associated with gender, age, body mass index, concurrent medications, or pre-dose meals. At levofloxacin dosage of 15–20 mg/kg, Cmax ≥ 8 µg/ml was observed, and modeling corroborated a high target attainment across the ratio of the area under the free-concentration-versus-time curve to minimum inhibitory concentration (fAUCss,0–24/MIC) values. Conclusions Levofloxacin dosage should be 15–20 mg/kg for Cmax ≥ 8 µg/ml and a high target attainment across fAUCss,0–24/MIC values in children ≥2 years of age. PMID:26658531
Li, Jing; Guo, Hao; Ge, Ling; Cheng, Long; Wang, Junjie; Li, Hong; Zhang, Kerang; Xiang, Jie; Chen, Junjie; Zhang, Hui; Xu, Yong
2017-01-01
Cerebralcare Granule® (CG), a Chinese herbal medicine, has been used to ameliorate cognitive impairment induced by ischemia or mental disorders. The ability of CG to improve health status and cognitive function has drawn researchers' attention, but the relevant brain circuits that underlie the ameliorative effects of CG remain unclear. The present study aimed to explore the underlying neurobiological mechanisms of CG in ameliorating cognitive function in sub-healthy subjects using resting-state functional magnetic resonance imaging (fMRI). Thirty sub-healthy participants were instructed to take one 2.5-g package of CG three times a day for 3 months. Clinical cognitive functions were assessed with the Chinese Revised Wechsler Adult Intelligence Scale (WAIS-RC) and Wechsler Memory Scale (WMS), and fMRI scans were performed at baseline and the end of intervention. Functional brain network data were analyzed by conventional network metrics (CNM) and frequent subgraph mining (FSM). Then 21 other sub-healthy participants were enrolled as a blank control group of cognitive functional. We found that administrating CG can improve the full scale of intelligence quotient (FIQ) and Memory Quotient (MQ) scores. At the same time, following CG treatment, in CG group, the topological properties of functional brain networks were altered in various frontal, temporal, occipital cortex regions, and several subcortical brain regions, including essential components of the executive attention network, the salience network, and the sensory-motor network. The nodes involved in the FSM results were largely consistent with the CNM findings, and the changes in nodal metrics correlated with improved cognitive function. These findings indicate that CG can improve sub-healthy subjects' cognitive function through altering brain functional networks. These results provide a foundation for future studies of the potential physiological mechanism of CG.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-07-01
The report is divided into the following sections: (1) Introduction; (2) Conclusions and Recommendations; (3) Existing Conditions and Facilities for a Fuel Distribution Center; (4) Pacific Ocean Regional Tuna Fisheries and Resources; (5) Fishing Effort in the FSMEEZ 1992-1994; (6) Current Transshipping Operations in the Western Pacific Ocean; (7) Current and Probale Bunkering Practices of United States, Japanese, Koren, and Taiwanese Offshore-Based Vessels Operating in FSM and Adjacent Waters; (8) Shore-Based Fish-Handling/Processing; (9) Fuels Forecast; (10) Fuel Supply, Storage and Distribution; (11) Cost Estimates; (12) Economic Evaluation of Fuel Supply, Storage and Distribution.
Force Measurement Services at Kebs: AN Overview of Equipment, Procedures and Uncertainty
NASA Astrophysics Data System (ADS)
Bangi, J. O.; Maranga, S. M.; Nganga, S. P.; Mutuli, S. M.
This paper describes the facilities, instrumentation and procedures currently used in the force laboratory at the Kenya Bureau of Standards (KEBS) for force measurement services. The laboratory uses the Force Calibration Machine (FCM) to calibrate force-measuring instruments. The FCM derives its traceability via comparisons using reference transfer force transducers calibrated by the Force Standard Machines (FSM) of a National Metrology Institute (NMI). The force laboratory is accredited to ISO/IEC 17025 by the Germany Accreditation Body (DAkkS). The accredited measurement scope of the laboratory is 1 MN to calibrate force transducers in both compression and tension modes. ISO 376 procedures are used while calibrating force transducers. The KEBS reference transfer standards have capacities of 10, 50, 300 and 1000 kN to cover the full range of the FCM. The uncertainty in the forces measured by the FCM were reviewed and determined in accordance to the new EURAMET calibration guide. The relative expanded uncertainty of force W realized by FCM was evaluated in a range from 10 kN-1 MN, and was found to be 5.0 × 10-4 with the coverage factor k being equal to 2. The overall normalized error (En) of the comparison results was also found to be less than 1. The accredited Calibration and Measurement Capability (CMC) of the KEBS force laboratory was based on the results of those intercomparisons. The FCM enables KEBS to provide traceability for the calibration of class ‘1’ force instruments as per the ISO 376.
Investigating Galactic Structure with COBE/DIRBE and Simulation
NASA Technical Reports Server (NTRS)
Cohen, Martin
1999-01-01
In this work I applied the current version of the SKY model of the point source sky to the interpretation of the diffuse all-sky emission observed by COBE/DIRBE (Cosmic Background Explorer Satellite/Diffuse Infrared Background Experiment). The goal was to refine the SKY model using the all-sky DIRBE maps of the Galaxy, in order that a search could be made for an isotropic cosmic background."Faint Source Model" [FSM] was constructed to remove Galactic fore ground stars from the ZSMA products. The FSM mimics SKY version 1 but it was inadequate to seek cosmic background emission because of the sizeable residual emission in the ZSMA products after this starlight subtraction. At this point I can only support that such models are currently inadequate to reveal a cosmic background. Even SKY5 yields the same disappointing result.
Omega-3 fatty acids enriched chocolate spreads using soybean and coconut oils.
Jeyarani, T; Banerjee, T; Ravi, R; Krishna, A G Gopala
2015-02-01
Chocolate spreads were developed by incorporating two different soybean oil margarines, fat phases prepared using 85 % soybean oil (M1) and 1:1 blend of soybean oil and coconut oil (M2) with commercial palm stearin. Eight formulations were tried by varying skim milk powder (SMP)/fluid skimmed milk (FSM), type of fats (M1, M2, a commercial margarine and a table spread), sugar and cocoa powder and their quality characteristics were compared with a commercial hazelnut cocoa spread. The moisture and fat content were 5-6.1 % and 31.4-32.8 % for formulations with SMP and 21.5-24.7 % and 15.6-21.4 % respectively for those with FSM. Rheological studies of FSM spreads showed higher G″ value (loss modulus) than G' (storage modulus) indicating better spreadability. Descriptive sensory analysis revealed that the products had acceptability score of 8.3 to 10.5 (maximum score: 15). Fat extracted from spreads prepared using M1 and M2 was found to contain 43.9 and 22.3 % linoleic acid and 2.1 and 4.4 % linolenic acid respectively, were free from trans fat while the commercial hazelnut spread had 9.8 % linoleic acid but did not contain linolenic acid. Hence, the developed chocolate spreads have the potential to overcome ω-3 deficiency, ω-6/ω-3 imbalance and to enhance the health standard of people.
Differentially Private Frequent Sequence Mining via Sampling-based Candidate Pruning
Xu, Shengzhi; Cheng, Xiang; Li, Zhengyi; Xiong, Li
2016-01-01
In this paper, we study the problem of mining frequent sequences under the rigorous differential privacy model. We explore the possibility of designing a differentially private frequent sequence mining (FSM) algorithm which can achieve both high data utility and a high degree of privacy. We found, in differentially private FSM, the amount of required noise is proportionate to the number of candidate sequences. If we could effectively reduce the number of unpromising candidate sequences, the utility and privacy tradeoff can be significantly improved. To this end, by leveraging a sampling-based candidate pruning technique, we propose a novel differentially private FSM algorithm, which is referred to as PFS2. The core of our algorithm is to utilize sample databases to further prune the candidate sequences generated based on the downward closure property. In particular, we use the noisy local support of candidate sequences in the sample databases to estimate which sequences are potentially frequent. To improve the accuracy of such private estimations, a sequence shrinking method is proposed to enforce the length constraint on the sample databases. Moreover, to decrease the probability of misestimating frequent sequences as infrequent, a threshold relaxation method is proposed to relax the user-specified threshold for the sample databases. Through formal privacy analysis, we show that our PFS2 algorithm is ε-differentially private. Extensive experiments on real datasets illustrate that our PFS2 algorithm can privately find frequent sequences with high accuracy. PMID:26973430
NASA Astrophysics Data System (ADS)
Serafin, K.; Ruggiero, P.; Stockdon, H. F.; Barnard, P.; Long, J.
2014-12-01
Many coastal communities worldwide are vulnerable to flooding and erosion driven by extreme total water levels (TWL), potentially dangerous events produced by the combination of large waves, high tides, and high non-tidal residuals. The West coast of the United States provides an especially challenging environment to model these processes due to its complex geological setting combined with uncertain forecasts for sea level rise (SLR), changes in storminess, and possible changes in the frequency of major El Niños. Our research therefore aims to develop an appropriate methodology to assess present-day and future storm-induced coastal hazards along the entire U.S. West coast, filling this information gap. We present the application of this framework in a pilot study at Ocean Beach, California, a National Park site within the Golden Gate National Recreation Area where existing event-scale coastal change data can be used for model calibration and verification. We use a probabilistic, full simulation TWL model (TWL-FSM; Serafin and Ruggiero, in press) that captures the seasonal and interannual climatic variability in extremes using functions of regional climate indices, such as the Multivariate ENSO index (MEI), to represent atmospheric patterns related to the El Niño-Southern Oscillation (ENSO). In order to characterize the effect of climate variability on TWL components, we refine the TWL-FSM by splitting non-tidal residuals into low (monthly mean sea level anomalies) and high frequency (storm surge) components. We also develop synthetic climate indices using Markov sequences to reproduce the autocorrelated nature of ENSO behavior. With the refined TWL-FSM, we simulate each TWL component, resulting in synthetic TWL records providing robust estimates of extreme return level events (e.g., the 100-yr event) and the ability to examine the relative contribution of each TWL component to these extreme events. Extreme return levels are then used to drive storm impact models to examine the probability of coastal change (Stockdon et al., 2013) and thus, the vulnerability to storm-induced coastal hazards that Ocean Beach faces. Future climate variability is easily incorporated into this framework, allowing us to quantify how an evolving climate will alter future extreme TWLs and their related coastal impacts.
Design and simulation of EVA tools for first servicing mission of HST
NASA Technical Reports Server (NTRS)
Naik, Dipak; Dehoff, P. H.
1993-01-01
The Hubble Space Telescope (HST) was launched into near-earth orbit by the space shuttle Discovery on April 24, 1990. The payload of two cameras, two spectrographs, and a high-speed photometer is supplemented by three fine-guidance sensors that can be used for astronomy as well as for star tracking. A widely reported spherical aberration in the primary mirror causes HST to produce images of much lower quality than intended. A space shuttle repair mission in late 1993 will install small corrective mirrors that will restore the full intended optical capability of the HST. The first servicing mission (FSM) will involve considerable extravehicular activity (EVA). It is proposed to design special EVA tools for the FSM. This report includes details of the data acquisition system being developed to test the performance of the various EVA tools in ambient as well as simulated space environment.
System Operations Studies : Feeder System Model. User's Manual.
DOT National Transportation Integrated Search
1982-11-01
The Feeder System Model (FSM) is one of the analytic models included in the System Operations Studies (SOS) software package developed for urban transit systems analysis. The objective of the model is to assign a proportion of the zone-to-zone travel...
Development of Displacement Gages Exposed to Solid Rocket Motor Internal Environments
NASA Technical Reports Server (NTRS)
Bolton, D. E.; Cook, D. J.
2003-01-01
The Space Shuttle Reusable Solid Rocket Motor (RSRM) has three non-vented segment-to-segment case field joints. These joints use an interference fit J-joint that is bonded at assembly with a Pressure Sensitive Adhesive (PSA) inboard of redundant O-ring seals. Full-scale motor and sub-scale test article experience has shown that the ability to preclude gas leakage past the J-joint is a function of PSA type, joint moisture from pre-assembly humidity exposure, and the magnitude of joint displacement during motor operation. To more accurately determine the axial displacements at the J-joints, two thermally durable displacement gages (one mechanical and one electrical) were designed and developed. The mechanical displacement gage concept was generated first as a non-electrical, self-contained gage to capture the maximum magnitude of the J-joint motion. When it became feasible, the electrical displacement gage concept was generated second as a real-time linear displacement gage. Both of these gages were refined in development testing that included hot internal solid rocket motor environments and simulated vibration environments. As a result of this gage development effort, joint motions have been measured in static fired RSRM J-joints where intentional venting was produced (Flight Support Motor #8, FSM-8) and nominal non-vented behavior occurred (FSM-9 and FSM-10). This data gives new insight into the nominal characteristics of the three case J-joint positions (forward, center and aft) and characteristics of some case J-joints that became vented during motor operation. The data supports previous structural model predictions. These gages will also be useful in evaluating J-joint motion differences in a five-segment Space Shuttle solid rocket motor.
Estimating small amplitude tremor sources
NASA Astrophysics Data System (ADS)
Katakami, S.; Ito, Y.; Ohta, K.
2017-12-01
Various types of slow earthquakes have been recently observed at both the updip and downdip edges of the coseismic slip areas [Obara and Kato, 2016]. Frequent occurrence of slow earthquakes may help us to reveal the physics underlying megathrust events as useful analogs. Maeda and Obara [2009] estimated spatiotemporal distribution of seismic energy radiation from low-frequency tremors. They applied their method to only the tremors, whose hypocenters had been decided with multiple station method. However, recently Katakami et al. (2016) identified a lot of continuous tremors with small amplitude that were not recorded multiple stations. These small events should be important to reveal the whole slow earthquake activity and to understand strain condition around a plate boundary in subduction zones. First, we apply the modified frequency scanning method (mFSM) at a single station to NIED Hi-net data in the southwestern Japan to understand whole tremor activity which were included weak signal tremors. Second, we developed a method to identify the tremor source area by using the difference of apparent tremor energy at each station by mFSM. We estimated the apparent source tremor energy after correcting both site amplification factor and geometrical spreading. Finally we calculate a tremor source area if the difference of apparent tremor energy between each pair of sites is the smallest. We checked a validity of this analysis by using only tremors which were already detected by envelope correlation method [Idehara et al., 2014]. We calculated the average amplitude as apparent tremor energy in 5 minutes window after occurring tremor at each station. Our results almost consistent to hypocenters which were determined the envelope correlation method. We successfully determined apparent tremor source areas of weak continuous tremors after estimating possible tremor occurrence time windows by using mFSM.
ERIC Educational Resources Information Center
Smith, Gregory C.; Palmieri, Patrick A.; Hancock, Gregory R.; Richardson, Rhonda A.
2008-01-01
An adaptation of the Family Stress Model (FSM) with hypothesized linkages between family contextual factors, custodial grandmothers' psychological distress, parenting practices, and grandchildren's adjustment was tested with structural equation modeling. Interview data from 733 custodial grandmothers of grandchildren between ages 4-17 revealed…
NASA Astrophysics Data System (ADS)
Guillemaut, C.; Metzger, C.; Moulton, D.; Heinola, K.; O’Mullane, M.; Balboa, I.; Boom, J.; Matthews, G. F.; Silburn, S.; Solano, E. R.; contributors, JET
2018-06-01
The design and operation of future fusion devices relying on H-mode plasmas requires reliable modelling of edge-localized modes (ELMs) for precise prediction of divertor target conditions. An extensive experimental validation of simple analytical predictions of the time evolution of target plasma loads during ELMs has been carried out here in more than 70 JET-ITER-like wall H-mode experiments with a wide range of conditions. Comparisons of these analytical predictions with diagnostic measurements of target ion flux density, power density, impact energy and electron temperature during ELMs are presented in this paper and show excellent agreement. The analytical predictions tested here are made with the ‘free-streaming’ kinetic model (FSM) which describes ELMs as a quasi-neutral plasma bunch expanding along the magnetic field lines into the Scrape-Off Layer without collisions. Consequences of the FSM on energy reflection and deposition on divertor targets during ELMs are also discussed.
Dhuique-Mayer, Claudie; Servent, Adrien; Descalzo, Adriana; Mouquet-Rivier, Claire; Amiot, Marie-Josèphe; Achir, Nawel
2016-11-01
This study was carried out to assess the impact of heat processing of a complex emulsion on the behavior of fat soluble micronutrients (FSM) in a traditional Tunisian dish. A simplified recipe involved, dried mucilage-rich jute leaves, tomato paste and olive oil, followed by a cooking treatment (150min). Hydrothermal pattern and viscosity were monitored along with the changes of FSM content and the bioaccessibility (called micellarization, using an in vitro digestion model). Partitioning of carotenoids differed according to their lipophilicity: lycopene, β-carotene and lutein diffused to the oil phase (100%, 70% and 10% respectively). In contrast with the poor carotenes/tocopherol bioaccessibility (0.9-1%), the highest micellarization was observed for lutein (57%) and it increased with heating time and viscosity change. Domestic culinary cooking practices probably increase the bioavailability of carotenes mainly by their diffusion to the oil phase, facilitating their in vivo transfer into micelles. Copyright © 2016 Elsevier Ltd. All rights reserved.
Development, Analysis and Testing of the High Speed Research Flexible Semispan Model
NASA Technical Reports Server (NTRS)
Schuster, David M.; Spain, Charles V.; Turnock, David L.; Rausch, Russ D.; Hamouda, M-Nabil; Vogler, William A.; Stockwell, Alan E.
1999-01-01
This report presents the work performed by Lockheed Martin Engineering and Sciences (LMES) in support of the High Speed Research (HSR) Flexible Semispan Model (FSM) wind-tunnel test. The test was conducted in order to assess the aerodynamic and aeroelastic character of a flexible high speed civil transport wing. Data was acquired for the purpose of code validation and trend evaluation for this type of wing. The report describes a number of activities in preparing for and conducting the wind-tunnel test. These included coordination of the design and fabrication, development of analytical models, analysis/hardware correlation, performance of laboratory tests, monitoring of model safety issues, and wind-tunnel data acquisition and reduction. Descriptions and relevant evaluations associated with the pretest data are given in sections 1 through 6, followed by pre- and post-test flutter analysis in section 7, and the results of the aerodynamics/loads test in section 8. Finally, section 9 provides some recommendations based on lessons learned throughout the FSM program.
Airborne optical tracking control system design study
NASA Astrophysics Data System (ADS)
1992-09-01
The Kestrel LOS Tracking Program involves the development of a computer and algorithms for use in passive tracking of airborne targets from a high altitude balloon platform. The computer receivers track error signals from a video tracker connected to one of the imaging sensors. In addition, an on-board IRU (gyro), accelerometers, a magnetometer, and a two-axis inclinometer provide inputs which are used for initial acquisitions and course and fine tracking. Signals received by the control processor from the video tracker, IRU, accelerometers, magnetometer, and inclinometer are utilized by the control processor to generate drive signals for the payload azimuth drive, the Gimballed Mirror System (GMS), and the Fast Steering Mirror (FSM). The hardware which will be procured under the LOS tracking activity is the Controls Processor (CP), the IRU, and the FSM. The performance specifications for the GMS and the payload canister azimuth driver are established by the LOS tracking design team in an effort to achieve a tracking jitter of less than 3 micro-rad, 1 sigma for one axis.
Effects of season, rainfall, and hydrogeomorphic setting on mangrove tree growth in Micronesia
Krauss, K.W.; Keeland, B.D.; Allen, J.A.; Ewel, K.C.; Johnson, Daniel J.
2007-01-01
Seasonal patterns of tree growth are often related to rainfall, temperature, and relative moisture regimes. We asked whether diameter growth of mangrove trees in Micronesia, where seasonal changes are minimal, is continuous throughout a year or conforms to an annual cycle. We installed dendrometer bands on Sonneratia alba and Bruguiera gymnorrhiza trees growing naturally within mangrove swamps on the islands of Kosrae, Federated States of Micronesia (FSM), Pohnpei, FSM, and Butaritari, Republic of Kiribati, in the eastern Caroline Islands of the western Pacific Ocean. Trees were remeasured monthly or quarterly for as long as 6 yr. Annual mean individual tree basal area increments ranged from 7.0 to 79.6 cm2/yr for all S. alba trees and from 4.8 to 27.4 cm2/yr for all B. gymnorrhiza trees from Micronesian high islands. Diameter increment for S. alba on Butaritari Atoll was lower at 7.8 cm 2/yr for the one year measured. Growth rates differed significantly by hydrogeomorphic zone. Riverine and interior zones maintained up to seven times the annual diameter growth rate of fringe forests, though not on Pohnpei, where basal area increments for both S. alba and B. gymnorrhiza were approximately 1.5 times greater in the fringe zone than in the interior zone. Time-series modeling indicated that there were no consistent and statistically significant annual diameter growth patterns. Although rainfall has some seasonality in some years on Kosrae and Pohnpei and overall growth of mangroves was sometimes related positively to quarterly rainfall depths, seasonal diameter growth patterns were not distinctive. A reduced chance of moisture-related stress in high-rainfall, wetland environments may serve to buffer growth of Micronesian mangroves from climatic extremes. ?? 2007 The Author(s) Journal compilation ?? 2007 by The Association for Tropical Biology and Conservation.
Implementation of Distance Support (DS) to Reduce Total Ownership Cost (R-TOC)
2012-02-01
ATIS ) for technical documentation, PMS Scheduling (SKED) Food Service Management (FSM3). For morale and welfare support, local web content...Development ( TD ) phase and use a systems engineering (SE) approach (similar to Figure 6 above) to help understand ramifications for deleting DS. For
Interventions to Increase Free School Meal Take-Up
ERIC Educational Resources Information Center
Woodward, Jenny; Sahota, Pinki; Pike, Jo; Molinari, Rosie
2015-01-01
Purpose: The purpose of this paper is to design and implement interventions to increase free school meal (FSM) uptake in pilot schools. This paper describes the interventions, reports on acceptability (as perceived by school working parties) and explores the process of implementing change. Design/Methodology/Approach: The research consisted of two…
Union List of Serials in Pacific Island Libraries.
ERIC Educational Resources Information Center
Cohen, Arlene G., Comp.; Yoshida, Patricia, Comp.
This union list contains the serial holdings from Pacific Island libraries, including the University of the South Pacific Library (Fiji), the University of Guam Robert F. Kennedy Library, Guam Public Library, College of Micronesia-FSM Library, College of the Marshall Islands Library, Micronesian Seminar Library, Palau Community College Library,…
Synthesis of energy-efficient FSMs implemented in PLD circuits
NASA Astrophysics Data System (ADS)
Nawrot, Radosław; Kulisz, Józef; Kania, Dariusz
2017-11-01
The paper presents an outline of a simple synthesis method of energy-efficient FSMs. The idea consists in using local clock gating to selectively block the clock signal, if no transition of a state of a memory element is required. The research was dedicated to logic circuits using Programmable Logic Devices as the implementation platform, but the conclusions can be applied to any synchronous circuit. The experimental section reports a comparison of three methods of implementing sequential circuits in PLDs with respect to clock distribution: the classical fully synchronous structure, the structure exploiting the Enable Clock inputs of memory elements, and the structure using clock gating. The results show that the approach based on clock gating is the most efficient one, and it leads to significant reduction of dynamic power consumed by the FSM.
Abstract quantum computing machines and quantum computational logics
NASA Astrophysics Data System (ADS)
Chiara, Maria Luisa Dalla; Giuntini, Roberto; Sergioli, Giuseppe; Leporini, Roberto
2016-06-01
Classical and quantum parallelism are deeply different, although it is sometimes claimed that quantum Turing machines are nothing but special examples of classical probabilistic machines. We introduce the concepts of deterministic state machine, classical probabilistic state machine and quantum state machine. On this basis, we discuss the question: To what extent can quantum state machines be simulated by classical probabilistic state machines? Each state machine is devoted to a single task determined by its program. Real computers, however, behave differently, being able to solve different kinds of problems. This capacity can be modeled, in the quantum case, by the mathematical notion of abstract quantum computing machine, whose different programs determine different quantum state machines. The computations of abstract quantum computing machines can be linguistically described by the formulas of a particular form of quantum logic, termed quantum computational logic.
Is Children's Free School Meal "Eligibility" a Good Proxy for Family Income?
ERIC Educational Resources Information Center
Hobbs, Graham; Vignoles, Anna
2010-01-01
Family income is an important factor associated with children's educational achievement. However, key areas of UK research (for example, on socially segregated schooling) and policy (for example, the allocation of funding to schools) rely on children's free school meal (FSM) "eligibility" to proxy family income. This article examines the…
Using Five Stage Model to Design of Collaborative Learning Environments in Second Life
ERIC Educational Resources Information Center
Orhan, Sevil; Karaman, M. Kemal
2014-01-01
Specifically Second Life (SL) among virtual worlds draws attention of researchers to form collaborative learning environments (Sutcliffe & Alrayes, 2012) since it could be used as a rich platform to simulate a real environment containing many collaborative learning characteristics and interaction tools within itself. Five Stage Model (FSM)…
Gupton, Stephanie L; Anderson, Karen L; Kole, Thomas P; Fischer, Robert S; Ponti, Aaron; Hitchcock-DeGregori, Sarah E; Danuser, Gaudenz; Fowler, Velia M; Wirtz, Denis; Hanein, Dorit; Waterman-Storer, Clare M
2005-02-14
The actin cytoskeleton is locally regulated for functional specializations for cell motility. Using quantitative fluorescent speckle microscopy (qFSM) of migrating epithelial cells, we previously defined two distinct F-actin networks based on their F-actin-binding proteins and distinct patterns of F-actin turnover and movement. The lamellipodium consists of a treadmilling F-actin array with rapid polymerization-dependent retrograde flow and contains high concentrations of Arp2/3 and ADF/cofilin, whereas the lamella exhibits spatially random punctae of F-actin assembly and disassembly with slow myosin-mediated retrograde flow and contains myosin II and tropomyosin (TM). In this paper, we microinjected skeletal muscle alphaTM into epithelial cells, and using qFSM, electron microscopy, and immunolocalization show that this inhibits functional lamellipodium formation. Cells with inhibited lamellipodia exhibit persistent leading edge protrusion and rapid cell migration. Inhibition of endogenous long TM isoforms alters protrusion persistence. Thus, cells can migrate with inhibited lamellipodia, and we suggest that TM is a major regulator of F-actin functional specialization in migrating cells.
Research on the Application of Fast-steering Mirror in Stellar Interferometer
NASA Astrophysics Data System (ADS)
Mei, R.; Hu, Z. W.; Xu, T.; Sun, C. S.
2017-07-01
For a stellar interferometer, the fast-steering mirror (FSM) is widely utilized to correct wavefront tilt caused by atmospheric turbulence and internal instrumental vibration due to its high resolution and fast response frequency. In this study, the non-coplanar error between the FSM and actuator deflection axis introduced by manufacture, assembly, and adjustment is analyzed. Via a numerical method, the additional optical path difference (OPD) caused by above factors is studied, and its effects on tracking accuracy of stellar interferometer are also discussed. On the other hand, the starlight parallelism between the beams of two arms is one of the main factors of the loss of fringe visibility. By analyzing the influence of wavefront tilt caused by the atmospheric turbulence on fringe visibility, a simple and efficient real-time correction scheme of starlight parallelism is proposed based on a single array detector. The feasibility of this scheme is demonstrated by laboratory experiment. The results show that starlight parallelism meets the requirement of stellar interferometer in wavefront tilt preliminarily after the correction of fast-steering mirror.
Rapid Ice Mass Loss: Does It Have an Influence on Earthquake Occurrence in Southern Alaska?
NASA Technical Reports Server (NTRS)
Sauber, Jeanne M.
2008-01-01
The glaciers of southern Alaska are extensive, and many of them have undergone gigatons of ice wastage on time scales on the order of the seismic cycle. Since the ice loss occurs directly above a shallow main thrust zone associated with subduction of the Pacific-Yakutat plate beneath continental Alaska, the region between the Malaspina and Bering Glaciers is an excellent test site for evaluating the importance of recent ice wastage on earthquake faulting potential. We demonstrate the influence of cumulative glacial mass loss following the 1899 Yakataga earthquake (M=8.1) by using a two dimensional finite element model with a simple representation of ice fluctuations to calculate the incremental stresses and change in the fault stability margin (FSM) along the main thrust zone (MTZ) and on the surface. Along the MTZ, our results indicate a decrease in FSM between 1899 and the 1979 St. Elias earthquake (M=7.4) of 0.2 - 1.2 MPa over an 80 km region between the coast and the 1979 aftershock zone; at the surface, the estimated FSM was larger but more localized to the lower reaches of glacial ablation zones. The ice-induced stresses were large enough, in theory, to promote the occurrence of shallow thrust earthquakes. To empirically test the influence of short-term ice fluctuations on fault stability, we compared the seismic rate from a reference background time period (1988-1992) against other time periods (1993-2006) with variable ice or tectonic change characteristics. We found that the frequency of small tectonic events in the Icy Bay region increased in 2002-2006 relative to the background seismic rate. We hypothesize that this was due to a significant increase in the rate of ice wastage in 2002-2006 instead of the M=7.9, 2002 Denali earthquake, located more than 100km away.
76 FR 50168 - Coconino and Kaibab National Forests, Arizona, Four-Forest Restoration Initiative
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-12
... disturbances such as insect and disease, fire and climate change (FSM 2020.5). This project is expected to put... changing climatic conditions (drought), fire, insect, and disease. Purpose and Need for Action In contrast... alternative, will be considered. The no-action alternative represents no change and serves as the baseline for...
Development and test of electromechanical actuators for thrust vector control
NASA Technical Reports Server (NTRS)
Weir, Rae A.; Cowan, John R.
1993-01-01
A road map of milestones toward the goal of a full scale Redesigned Solid Rocket Motor/Flight Support Motor (RSRM/FSM) hot fire test is discussed. These milestones include: component feasibility, full power system demonstration, SSME hot fire tests, and RSRM hot fire tests. The participation of the Marshall Space Flight Center is emphasized.
NASA Technical Reports Server (NTRS)
Burke, Gary R.; Taft, Stephanie
2004-01-01
State machines are commonly used to control sequential logic in FPGAs and ASKS. An errant state machine can cause considerable damage to the device it is controlling. For example in space applications, the FPGA might be controlling Pyros, which when fired at the wrong time will cause a mission failure. Even a well designed state machine can be subject to random errors us a result of SEUs from the radiation environment in space. There are various ways to encode the states of a state machine, and the type of encoding makes a large difference in the susceptibility of the state machine to radiation. In this paper we compare 4 methods of state machine encoding and find which method gives the best fault tolerance, as well as determining the resources needed for each method.
Revisiting Free School Meal Eligibility as a Proxy for Pupil Socio-Economic Deprivation
ERIC Educational Resources Information Center
Ilie, Sonia; Sutherland, Alex; Vignoles, Anna
2017-01-01
Whether someone has ever had free school meal (FSM) eligibility over a six-year period is the measure of socio-economic disadvantage currently used in the English school system. It is used to monitor the socio-economic gap in achievement in the education system, to identify particular children at risk of low achievement and to direct funding to…
ERIC Educational Resources Information Center
Karaman, M. Kemal; Özen, Sevil Orhan
2016-01-01
In this study, we aimed to design collaborative virtual learning (CVL) activities by using a five-stage model (FSM) and survey of students' experiences. The study group consisted of 14 voluntary students in the Turkish Teaching Department. In this case study, data were collected through observations, recordings in Second Life (SL) and interviews.…
Design and simulation of EVA tools for first servicing mission of HST
NASA Technical Reports Server (NTRS)
Naik, Dipak; Dehoff, P. H.
1994-01-01
The Hubble Space Telescope (HST) was launched into near-earth orbit by the Space Shuttle Discovery on April 24, 1990. The payload of two cameras, two spectrographs, and a high-speed photometer is supplemented by three fine-guidance sensors that can be used for astronomy as well as for star tracking. A widely reported spherical aberration in the primary mirror causes HST to produce images of much lower quality than intended. A Space Shuttle repair mission in January 1994 installed small corrective mirrors that restored the full intended optical capability of the HST. The First Servicing Mission (FSM) involved considerable Extra Vehicular Activity (EVA). Special EVA tools for the FSM were designed and developed for this specific purpose. In an earlier report, the details of the Data Acquisition System developed to test the performance of the various EVA tools in ambient as well as simulated space environment were presented. The general schematic of the test setup is reproduced in this report for continuity. Although the data acquisition system was used extensively to test a number of fasteners, only the results of one test each carried on various fasteners and the Power Ratchet Tool are included in this report.
Nanosatellite optical downlink experiment: design, simulation, and prototyping
NASA Astrophysics Data System (ADS)
Clements, Emily; Aniceto, Raichelle; Barnes, Derek; Caplan, David; Clark, James; Portillo, Iñigo del; Haughwout, Christian; Khatsenko, Maxim; Kingsbury, Ryan; Lee, Myron; Morgan, Rachel; Twichell, Jonathan; Riesing, Kathleen; Yoon, Hyosang; Ziegler, Caleb; Cahoy, Kerri
2016-11-01
The nanosatellite optical downlink experiment (NODE) implements a free-space optical communications (lasercom) capability on a CubeSat platform that can support low earth orbit (LEO) to ground downlink rates>10 Mbps. A primary goal of NODE is to leverage commercially available technologies to provide a scalable and cost-effective alternative to radio-frequency-based communications. The NODE transmitter uses a 200-mW 1550-nm master-oscillator power-amplifier design using power-efficient M-ary pulse position modulation. To facilitate pointing the 0.12-deg downlink beam, NODE augments spacecraft body pointing with a microelectromechanical fast steering mirror (FSM) and uses an 850-nm uplink beacon to an onboard CCD camera. The 30-cm aperture ground telescope uses an infrared camera and FSM for tracking to an avalanche photodiode detector-based receiver. Here, we describe our approach to transition prototype transmitter and receiver designs to a full end-to-end CubeSat-scale system. This includes link budget refinement, drive electronics miniaturization, packaging reduction, improvements to pointing and attitude estimation, implementation of modulation, coding, and interleaving, and ground station receiver design. We capture trades and technology development needs and outline plans for integrated system ground testing.
Zhong, Yunlei; Qiu, Xun; Chen, Dongyun; Li, Najun; Xu, Qingfeng; Li, Hua; He, Jinghui; Lu, Jianmei
2016-01-01
Biotreatment of hexavalent chromium has attracted widespread interest due to its cost effective and environmental friendliness. However, the difficult separation of biomass from aqueous solution and the slow hexavalent chromium bioreduction rate are bottlenecks for biotechnology application. In this approach, a core-shell structured functional polymer coated magnetic nanocomposite was prepared for enriching the hexavalent chromium. Then the nanocomposite was connected to the bacteria via amines on bacterial (Bacillus subtilis ATCC-6633) surface. Under optimal conditions, a series of experiments were launched to degrade hexavalent chromium from the aqueous solution using the as-prepared bionanocomposite. Results showed that B. subtilis@Fe3O4@mSiO2@MANHE (BFSM) can degrade hexavalent chromium from the water more effectively (a respectable degradation efficiency of about 94%) when compared with pristine B. subtilis and Fe3O4@mSiO2@MANHE (FSM). Moreover, the BFSM could be separated from the wastewater by magnetic separation technology conveniently due to the Fe3O4 core of FSM. These results indicate that the application of BFSM is a promising strategy for effective treating wastewater containing hexavalent chromium. PMID:27502074
NASA Astrophysics Data System (ADS)
Zhong, Yunlei; Qiu, Xun; Chen, Dongyun; Li, Najun; Xu, Qingfeng; Li, Hua; He, Jinghui; Lu, Jianmei
2016-08-01
Biotreatment of hexavalent chromium has attracted widespread interest due to its cost effective and environmental friendliness. However, the difficult separation of biomass from aqueous solution and the slow hexavalent chromium bioreduction rate are bottlenecks for biotechnology application. In this approach, a core-shell structured functional polymer coated magnetic nanocomposite was prepared for enriching the hexavalent chromium. Then the nanocomposite was connected to the bacteria via amines on bacterial (Bacillus subtilis ATCC-6633) surface. Under optimal conditions, a series of experiments were launched to degrade hexavalent chromium from the aqueous solution using the as-prepared bionanocomposite. Results showed that B. subtilis@Fe3O4@mSiO2@MANHE (BFSM) can degrade hexavalent chromium from the water more effectively (a respectable degradation efficiency of about 94%) when compared with pristine B. subtilis and Fe3O4@mSiO2@MANHE (FSM). Moreover, the BFSM could be separated from the wastewater by magnetic separation technology conveniently due to the Fe3O4 core of FSM. These results indicate that the application of BFSM is a promising strategy for effective treating wastewater containing hexavalent chromium.
An Experimental Study of Men's and Women's Personal Ads.
Strassberg, Donald S; English, Brittany L
2015-11-01
Personal ads have long served as a potentially rich source of information for social scientists regarding what women and men appear to be looking for in a partner and what they believe potential partners are looking for in them. Almost every study of this type has content analyzed existing personal ads in print media or, more recently, on the Internet. Many of the limits of this research approach were addressed in a study by Strassberg and Holty (2003) utilizing an experimental research design. Contrary to theory, prior research, and prediction, the most popular female seeking male (FSM) ad in that study was one in which the woman described herself as "financially independent, successful [and] ambitious," producing over 50 % more responses than the next most popular ad, describing the writer as "very attractive and slim." The present study replicated the Strassberg and Holty methodology, placing the same fictitious MSF and FSM personal ads using far more accessible Internet personal ad sites. Contrary to the previous finding, but consistent with evolutionary theories and social psychological experiments (e.g., Townsend & Wasserman, 1998), ads that presented the woman as attractive and the man as financially successful elicited the most interest.
Use of monitoring data to support conservation management and policy decisions in Micronesia.
Montambault, Jensen Reitz; Wongbusarakum, Supin; Leberer, Trina; Joseph, Eugene; Andrew, Wayne; Castro, Fran; Nevitt, Brooke; Golbuu, Yimnang; Oldiais, Noelle W; Groves, Craig R; Kostka, Willy; Houk, Peter
2015-10-01
Adaptive management implies a continuous knowledge-based decision-making process in conservation. Yet, the coupling of scientific monitoring and management frameworks remains rare in practice because formal and informal communication pathways are lacking. We examined 4 cases in Micronesia where conservation practitioners are using new knowledge in the form of monitoring data to advance marine conservation. These cases were drawn from projects in Micronesia Challenge jurisdictions that received funding for coupled monitoring-to-management frameworks and encompassed all segments of adaptive management. Monitoring in Helen Reef, Republic of Palau, was catalyzed by coral bleaching and revealed evidence of overfishing that led to increased enforcement and outreach. In Nimpal Channel, Yap, Federated States of Micronesia (FSM), monitoring the recovery of marine food resources after customary restrictions were put in place led to new, more effective enforcement approaches. Monitoring in Laolao Bay, Saipan, Commonwealth of the Northern Mariana Islands, was catalyzed by observable sediment loads from poor land-use practices and resulted in actions that reduced land-based threats, particularly littering and illegal burning, and revealed additional threats from overfishing. Pohnpei (FSM) began monitoring after observed declines in grouper spawning aggregations. This data led to adjusting marine conservation area boundaries and implementing market-based size class restrictions. Two themes emerged from these cases. First, in each case monitoring was conducted in a manner relevant to the social and ecological systems and integrated into the decision-making process. Second, conservation practitioners and scientists in these cases integrated culturally appropriate stakeholder engagement throughout all phases of the adaptive management cycle. More broadly, our study suggests, when describing adaptive management, providing more details on how monitoring and management activities are linked at similar spatial scales and across similar time frames can enhance the application of knowledge. © 2015 The Authors Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
On the decomposition of synchronous state mechines using sequence invariant state machines
NASA Technical Reports Server (NTRS)
Hebbalalu, K.; Whitaker, S.; Cameron, K.
1992-01-01
This paper presents a few techniques for the decomposition of Synchronous State Machines of medium to large sizes into smaller component machines. The methods are based on the nature of the transitions and sequences of states in the machine and on the number and variety of inputs to the machine. The results of the decomposition, and of using the Sequence Invariant State Machine (SISM) Design Technique for generating the component machines, include great ease and quickness in the design and implementation processes. Furthermore, there is increased flexibility in making modifications to the original design leading to negligible re-design time.
Line of Sight Stabilization of James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Meza, Luis; Tung, Frank; Anandakrishnan, Satya; Spector, Victor; Hyde, Tupper
2005-01-01
The James Webb Space Telescope (JWST) builds upon the successful flight experience of the Chandra Xray Telescope by incorporating an additional LOS pointing servo to meet the more stringent pointing requirements. The LOS pointing servo, referred to in JWST as the Fine Guidance Control System (FGCS), will utilize a Fine Guidance Sensor (FGS) as the sensor, and a Fine Steering Mirror (FSM) as the actuator. The FSM is a part of the Optical Telescope Element (OTE) and is in the optical path between the tertiary mirror and the instrument focal plane, while the FGS is part of the Integrated Science Instrument Module (ISIM). The basic Chandra spacecraft bus attitude control and determination architecture, utilizing gyros, star trackers/aspect camera, and reaction wheels, is retained for JWST. This system has achieved pointing stability of better than 0.5 arcseconds. To reach the JWST requirements of milli-arcsecond pointing stability with this ACS hardware, the local FGCS loop is added to the optical path. The FGCS bandwidth is about 2.0 Hz and will therefore attenuate much of the spacecraft ACS induced low frequency jitter. In order to attenuate the higher frequency (greatet than 2.0 Hz) disturbances associated with reaction wheel static and dynamic imbalances, as well as bearing run-out, JWST will employ a two-stage passive vibration isolation system consisting of (1) 7.0 Hz reaction wheel isolators between each reaction wheel and the spacecraft bus, and (2) a 1.0 Hz tower isolator between the spacecraft bus and the Optical Telescope Element (OTE). In order to sense and measure the LOS, the FGS behaves much like an autonomous star tracker that has a very small field of view and uses the optics of the telescope. It performs the functions of acquisition, identification and tracking of stars in its 2.5 x 2.5 arcminute field of view (FOV), and provides the centroid and magnitude of the selected star for use in LOS control. However, since only a single star is being tracked at any time within the FGS FOV there is only tip and tilt information; rotation about the FGS LOS will not be sensed. The FGCS uses the FSM to move the guide star within the FGS FOV and place the centroid of the guide star at any desired position within the FGS focal plane. Using this architecture allows the FGCS to correct the low frequency LOS jitter that is induced by the spacecraft ACS in pitch and yaw, and achieve the milli-arcsecond pointing stability required by JWST. The less stringent ISIM FOV roll performance will be provided solely by the ACS, using the spacecraft gyros and star trackers. Since the FSM is in the optical path, the pointing stabilrty of a science object in any of the instruments will be similar to that of the guide star LOS.
Ichiho, Henry M
2013-01-01
Non-communicable diseases (NCD) have been recognized as a major health threat in the US-affiliated Pacific Islands (USAPI) and health officials declared it an emergency.1 In an effort to address this emergent pandemic, the Pacific Chronic Disease Council (PCDC) conducted an assessment in all six USAPI jurisdictions which include American Samoa, Commonwealth of the Northern Mariana Islands (CNMI), Federated States of Micronesia (FSM), Guam, the Republic of the Marshall Islands (RMI) and the Republic of Palau to assess the capacity of the administrative, clinical, support, and data systems to address the problems of NCD. Findings reveal significant gaps in addressing NCDs across all jurisdictions and the negative impact of lifestyle behaviors, overweight, and obesity on the morbidity and mortality of the population. In addition, stakeholders from each site identified and prioritized administrative and clinical systems of service needs. PMID:23901369
Aitaoto, Nia; Ichiho, Henry M
2013-05-01
Non-communicable diseases (NCD) have been recognized as a major health threat in the US-affiliated Pacific Islands (USAPI) and health officials declared it an emergency.1 In an effort to address this emergent pandemic, the Pacific Chronic Disease Council (PCDC) conducted an assessment in all six USAPI jurisdictions which include American Samoa, Commonwealth of the Northern Mariana Islands (CNMI), Federated States of Micronesia (FSM), Guam, the Republic of the Marshall Islands (RMI) and the Republic of Palau to assess the capacity of the administrative, clinical, support, and data systems to address the problems of NCD. Findings reveal significant gaps in addressing NCDs across all jurisdictions and the negative impact of lifestyle behaviors, overweight, and obesity on the morbidity and mortality of the population. In addition, stakeholders from each site identified and prioritized administrative and clinical systems of service needs.
Fault-Tolerant Coding for State Machines
NASA Technical Reports Server (NTRS)
Naegle, Stephanie Taft; Burke, Gary; Newell, Michael
2008-01-01
Two reliable fault-tolerant coding schemes have been proposed for state machines that are used in field-programmable gate arrays and application-specific integrated circuits to implement sequential logic functions. The schemes apply to strings of bits in state registers, which are typically implemented in practice as assemblies of flip-flop circuits. If a single-event upset (SEU, a radiation-induced change in the bit in one flip-flop) occurs in a state register, the state machine that contains the register could go into an erroneous state or could hang, by which is meant that the machine could remain in undefined states indefinitely. The proposed fault-tolerant coding schemes are intended to prevent the state machine from going into an erroneous or hang state when an SEU occurs. To ensure reliability of the state machine, the coding scheme for bits in the state register must satisfy the following criteria: 1. All possible states are defined. 2. An SEU brings the state machine to a known state. 3. There is no possibility of a hang state. 4. No false state is entered. 5. An SEU exerts no effect on the state machine. Fault-tolerant coding schemes that have been commonly used include binary encoding and "one-hot" encoding. Binary encoding is the simplest state machine encoding and satisfies criteria 1 through 3 if all possible states are defined. Binary encoding is a binary count of the state machine number in sequence; the table represents an eight-state example. In one-hot encoding, N bits are used to represent N states: All except one of the bits in a string are 0, and the position of the 1 in the string represents the state. With proper circuit design, one-hot encoding can satisfy criteria 1 through 4. Unfortunately, the requirement to use N bits to represent N states makes one-hot coding inefficient.
ERIC Educational Resources Information Center
Gorard, Stephen
2012-01-01
This paper presents a description of the background characteristics and attainment profile of pupils eligible for free school meals (FSM) in England, and of those missing a value for this variable. Free school meal eligibility is a measure of low parental income, widely used in social policy research as an individual indicator of potential…
Two-qubit quantum cloning machine and quantum correlation broadcasting
NASA Astrophysics Data System (ADS)
Kheirollahi, Azam; Mohammadi, Hamidreza; Akhtarshenas, Seyed Javad
2016-11-01
Due to the axioms of quantum mechanics, perfect cloning of an unknown quantum state is impossible. But since imperfect cloning is still possible, a question arises: "Is there an optimal quantum cloning machine?" Buzek and Hillery answered this question and constructed their famous B-H quantum cloning machine. The B-H machine clones the state of an arbitrary single qubit in an optimal manner and hence it is universal. Generalizing this machine for a two-qubit system is straightforward, but during this procedure, except for product states, this machine loses its universality and becomes a state-dependent cloning machine. In this paper, we propose some classes of optimal universal local quantum state cloners for a particular class of two-qubit systems, more precisely, for a class of states with known Schmidt basis. We then extend our machine to the case that the Schmidt basis of the input state is deviated from the local computational basis of the machine. We show that more local quantum coherence existing in the input state corresponds to less fidelity between the input and output states. Also we present two classes of a state-dependent local quantum copying machine. Furthermore, we investigate local broadcasting of two aspects of quantum correlations, i.e., quantum entanglement and quantum discord, defined, respectively, within the entanglement-separability paradigm and from an information-theoretic perspective. The results show that although quantum correlation is, in general, very fragile during the broadcasting procedure, quantum discord is broadcasted more robustly than quantum entanglement.
NASA Astrophysics Data System (ADS)
Dimiduk, D.; Caylor, M.; Williamson, D.; Larson, L.
1995-01-01
The High Altitude Balloon Experiment demonstration of Acquisition, Tracking, and Pointing (HABE-ATP) is a system built around balloon-borne payload which is carried to a nominal 26-km altitude. The goal is laser tracking thrusting theater and strategic missiles, and then pointing a surrogate laser weapon beam, with performance levels end a timeline traceable to operational laser weapon system requirements. This goal leads to an experiment system design which combines hardware from many technology areas: an optical telescope and IR sensors; an advanced angular inertial reference; a flexible multi-level of actuation digital control system; digital tracking processors which incorporate real-time image analysis and a pulsed, diode-pumped solid state tracking laser. The system components have been selected to meet the overall experiment goals of tracking unmodified boosters at 50- 200 km range. The ATP system on HABE must stabilize and control a relative line of sight between the platform and the unmodified target booster to a 1 microrad accuracy. The angular pointing reference system supports both open loop and closed loop track modes; GPS provides absolute position reference. The control system which positions the line of sight for the ATP system must sequence through accepting a state vector handoff, closed-loop passive IR acquisition, passive IR intermediate fine track, active fine track, and then finally aimpoint determination and maintenance modes. Line of sight stabilization to fine accuracy levels is accomplished by actuating wide bandwidth fast steering mirrors (FSM's). These control loops off-load large-amplitude errors to the outer gimbal in order to remain within the limited angular throw of the FSM's. The SWIR acquisition and MWIR intermediate fine track sensors (both PtSi focal planes) image the signature of the rocket plume. After Hard Body Handover (HBHO), active fine tracking is conducted with a visible focal plane viewing the laser-illuminated target rocket body. The track and fire control performance must be developed to the point that an aimpoint can be selected, maintained, and then track performance scored with a low-power 'surrogate' weapon beam. Extensive instrumentation monitors not only the optical sensors and the video data, but all aspects of each of the experiment subsystems such as the control system, the experiment flight vehicle, and the tracker. Because the system is balloon-borne and recoverable, it is expected to fly many times during its development program.
Preliminary Electrical Designs for CTEX and AFIT Satellite Ground Station
2010-03-01
with additional IO High-Speed Piezo Tip/Tilt Platforms S-340 Platform Recommended Models Mirror Aluminum Aluminum S-340.Ax Invar Zerodur glass S-340...developed by RC Optics that uses internal steer- able mirrors that point the optics without slewing the entire instrument. The imaging system is composed of...Determination System Telescope Assembly CTEx Imaging System DCCU Camera Motor/Encoder Assemby FSM & Control Electronics Dwell Mirror w/ 2
Closed-Loop Adaptive Optics Control in Strong Atmospheric Turbulence
2008-09-01
115 7.1.1 Kalman estimation of anisoplanatic Zernike tilt . . . . 115 7.1.2 An improved temporally phase-shifted design . . . . . 115 7.1.3...5 7. Shack-Hartmann lenslet diagram [40] . . . . . . . . . . . . . . . . . . 9 8. Determining phase tilt from a S-H WFS [8...wavefront prior to it encountering the WFS. In this system a non- deformable mirror known as a fast-steering mirror (FSM) corrects the tilt (average phase
NASA Astrophysics Data System (ADS)
Zhang, Xiaowen; Chen, Bingfeng
2017-08-01
Based on the frequent sub-tree mining algorithm, this paper proposes a construction scheme of web page comment information extraction system based on frequent subtree mining, referred to as FSM system. The entire system architecture and the various modules to do a brief introduction, and then the core of the system to do a detailed description, and finally give the system prototype.
Using Pipelined XNOR Logic to Reduce SEU Risks in State Machines
NASA Technical Reports Server (NTRS)
Le, Martin; Zheng, Xin; Katanyoutant, Sunant
2008-01-01
Single-event upsets (SEUs) pose great threats to avionic systems state machine control logic, which are frequently used to control sequence of events and to qualify protocols. The risks of SEUs manifest in two ways: (a) the state machine s state information is changed, causing the state machine to unexpectedly transition to another state; (b) due to the asynchronous nature of SEU, the state machine's state registers become metastable, consequently causing any combinational logic associated with the metastable registers to malfunction temporarily. Effect (a) can be mitigated with methods such as triplemodular redundancy (TMR). However, effect (b) cannot be eliminated and can degrade the effectiveness of any mitigation method of effect (a). Although there is no way to completely eliminate the risk of SEU-induced errors, the risk can be made very small by use of a combination of very fast state-machine logic and error-detection logic. Therefore, one goal of two main elements of the present method is to design the fastest state-machine logic circuitry by basing it on the fastest generic state-machine design, which is that of a one-hot state machine. The other of the two main design elements is to design fast error-detection logic circuitry and to optimize it for implementation in a field-programmable gate array (FPGA) architecture: In the resulting design, the one-hot state machine is fitted with a multiple-input XNOR gate for detection of illegal states. The XNOR gate is implemented with lookup tables and with pipelines for high speed. In this method, the task of designing all the logic must be performed manually because no currently available logic synthesis software tool can produce optimal solutions of design problems of this type. However, some assistance is provided by a script, written for this purpose in the Python language (an object-oriented interpretive computer language) to automatically generate hardware description language (HDL) code from state-transition rules.
78 FR 53189 - Dorel Juvenile Group, Denial of Petition for Decision of Inconsequential Noncompliance
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-28
... Omega Elite 22187REM Alpha Omega Elite 22187REMA Alpha Omega Elite 22187SAR Alpha Omega Elite 22187SARA Alpha Omega Elite 22465FSM Alpha Omega Elite 22790CGT Deluxe 3 in 1 CC033BMT Alpha Omega Elite CC043ANK Alpha Omega Elite CC043ANL Alpha Omega Elite CC043AQS Alpha Omega Elite CC046AAI Deluxe 3 in 1 CC046AAU...
State machine analysis of sensor data from dynamic processes
Cook, William R.; Brabson, John M.; Deland, Sharon M.
2003-12-23
A state machine model analyzes sensor data from dynamic processes at a facility to identify the actual processes that were performed at the facility during a period of interest for the purpose of remote facility inspection. An inspector can further input the expected operations into the state machine model and compare the expected, or declared, processes to the actual processes to identify undeclared processes at the facility. The state machine analysis enables the generation of knowledge about the state of the facility at all levels, from location of physical objects to complex operational concepts. Therefore, the state machine method and apparatus may benefit any agency or business with sensored facilities that stores or manipulates expensive, dangerous, or controlled materials or information.
Health Care for Micronesians and Constitutional Rights
Shek, Dina
2011-01-01
Under the Compacts of Free Association (COFA), people from the Freely Associated States — the Republic of Palau (ROP), the Republic of the Marshall Islands (RMI), and the Federated States of Micronesia (FSM) — have been migrating to the United States in increasing numbers. In 1996, Congress passed broad welfare reform (Personal Responsibility and Work Opportunity Reconciliation Act) which limited certain federal benefits previously available to COFA migrants, including Medicaid benefits. Prior to July 2010, the State of Hawai‘i had continued to include COFA migrants under its state-funded Medicaid program. In the face of budget constraints, the State removed these people from its Medicaid rolls. A challenge on the legal basis of the denial of equal protection of the laws, ie, the Fourteenth Amendment to the US Constitution, was successful in reinstating health care to the COFA migrants in December 2010. From the health worker's perspective, regardless of various social justice arguments that may have been marshaled in favor of delivering health care to the people, it was an appeal to the judicial system that succeeded. From the attorney's perspective, the legal victories are potentially limited to the four walls of the courtroom without community involvement and related social justice movements. Together, the authors propose that in order to better address the issue of health care access for Micronesian peoples, we must work together, as health and legal advocates, to define a more robust vision of both systems that includes reconciliation and community engagement. PMID:22235150
Is it worth investing in online continuous education for healthcare staff?
Mazzoleni, M Cristina; Maugeri, Chiara; Rognoni, Carla; Cantoni, Alessio; Imbriani, Marcello
2012-01-01
Educational activities for hospital staff don't easily match with the congestive rhythm of healthcare personnel working life. Online learning could make it easier for healthcare personnel to attend courses, but there is still uncertainty about the feasibility of using distance learning to effectively meet education goals in healthcare institutions. Fondazione Salvatore Maugeri (FSM) started an online educational program, as pilot project, in October 2010. The present study hence is aimed at evaluating the impact of this initiative (in terms of extent and intensity of healthcare staff attendance; objective and subjective effectiveness) in order to take informed decisions for the future. In 15 months, 5 elearning courses have been provided to 2261 potential users of 14 FSM hospitals, in parallel with traditional education. 1099 users from all the hospital have intensively attended the courses (58% of nurses, 50% of therapists, 44%, of technicians, 25% of physicians) for a total of 27459 CME credits. Effectiveness in terms of knowledge gain is satisfactory and subjective evaluation is good (more than 95% of satisfied users). Elearning is not appropriate for all the educational needs and is not a panacea, but the reported results point out that it may be an effective and economically convenient mean to support massive educational interventions reaching results hardly attainable with traditional education. Users should be better educated about how to exploit online education at best.
Curvature Forces in Membrane Lipid-Protein Interactions
Brown, Michael F.
2012-01-01
Membrane biochemists are becoming increasingly aware of the role of lipid-protein interactions in diverse cellular functions. This review describes how conformational changes of membrane proteins—involving folding, stability, and membrane shape transitions—potentially involve elastic remodeling of the lipid bilayer. Evidence suggests that membrane lipids affect proteins through interactions of a relatively long-range nature, extending beyond a single annulus of next-neighbor boundary lipids. It is assumed the distance scale of the forces is large compared to the molecular range of action. Application of the theory of elasticity to flexible soft surfaces derives from classical physics, and explains the polymorphism of both detergents and membrane phospholipids. A flexible surface model (FSM) describes the balance of curvature and hydrophobic forces in lipid-protein interactions. Chemically nonspecific properties of the lipid bilayer modulate the conformational energetics of membrane proteins. The new biomembrane model challenges the standard model (the fluid mosaic model) found in biochemistry texts. The idea of a curvature force field based on data first introduced for rhodopsin gives a bridge between theory and experiment. Influences of bilayer thickness, nonlamellar-forming lipids, detergents, and osmotic stress are all explained by the FSM. An increased awareness of curvature forces suggests that research will accelerate as structural biology becomes more closely entwined with the physical chemistry of lipids in explaining membrane structure and function. PMID:23163284
Visceral and Somatic Disorders: Tissue Softening with Frequency-Specific Microcurrent
Oschman, James L.
2013-01-01
Abstract Frequency-specific microcurrent (FSM) is an emerging technique for treating many health conditions. Pairs of frequencies of microampere-level electrical stimulation are applied to particular places on the skin of a patient via combinations of conductive graphite gloves, moistened towels, or gel electrode patches. A consistent finding is a profound and palpable tissue softening and warming within seconds of applying frequencies appropriate for treating particular conditions. Similar phenomena are often observed with successful acupuncture, cranial-sacral, and other energy-based techniques. This article explores possible mechanisms involved in tissue softening. In the 1970s, neuroscientist and osteopathic researcher Irvin Korr developed a “γ-loop hypothesis” to explain the persistence of increased systemic muscle tone associated with various somatic dysfunctions. This article summarizes how physiologists, neuroscientists, osteopaths, chiropractors, and fascial researchers have expanded on Korr's ideas by exploring various mechanisms by which injury or disease increase local muscle tension or systemic muscle tone. Following on Korr's hypothesis, it is suggested that most patients actually present with elevated muscle tone or tense areas due to prior traumas or other disorders, and that tissue softening indicates that FSM or other methods are affecting the cause of their pathophysiology. The authors believe this concept and the research it has led to will be of interest to a wide range of energetic, bodywork, and movement therapists. PMID:22775307
Radiation tolerant combinational logic cell
NASA Technical Reports Server (NTRS)
Maki, Gary R. (Inventor); Whitaker, Sterling (Inventor); Gambles, Jody W. (Inventor)
2009-01-01
A system has a reduced sensitivity to Single Event Upset and/or Single Event Transient(s) compared to traditional logic devices. In a particular embodiment, the system includes an input, a logic block, a bias stage, a state machine, and an output. The logic block is coupled to the input. The logic block is for implementing a logic function, receiving a data set via the input, and generating a result f by applying the data set to the logic function. The bias stage is coupled to the logic block. The bias stage is for receiving the result from the logic block and presenting it to the state machine. The state machine is coupled to the bias stage. The state machine is for receiving, via the bias stage, the result generated by the logic block. The state machine is configured to retain a state value for the system. The state value is typically based on the result generated by the logic block. The output is coupled to the state machine. The output is for providing the value stored by the state machine. Some embodiments of the invention produce dual rail outputs Q and Q'. The logic block typically contains combinational logic and is similar, in size and transistor configuration, to a conventional CMOS combinational logic design. However, only a very small portion of the circuits of these embodiments, is sensitive to Single Event Upset and/or Single Event Transients.
Experimental Machine Learning of Quantum States
NASA Astrophysics Data System (ADS)
Gao, Jun; Qiao, Lu-Feng; Jiao, Zhi-Qiang; Ma, Yue-Chi; Hu, Cheng-Qiu; Ren, Ruo-Jing; Yang, Ai-Lin; Tang, Hao; Yung, Man-Hong; Jin, Xian-Min
2018-06-01
Quantum information technologies provide promising applications in communication and computation, while machine learning has become a powerful technique for extracting meaningful structures in "big data." A crossover between quantum information and machine learning represents a new interdisciplinary area stimulating progress in both fields. Traditionally, a quantum state is characterized by quantum-state tomography, which is a resource-consuming process when scaled up. Here we experimentally demonstrate a machine-learning approach to construct a quantum-state classifier for identifying the separability of quantum states. We show that it is possible to experimentally train an artificial neural network to efficiently learn and classify quantum states, without the need of obtaining the full information of the states. We also show how adding a hidden layer of neurons to the neural network can significantly boost the performance of the state classifier. These results shed new light on how classification of quantum states can be achieved with limited resources, and represent a step towards machine-learning-based applications in quantum information processing.
A control technology evaluation of state-of-the-art, perchloroethylene dry-cleaning machines.
Earnest, G Scott
2002-05-01
NIOSH researchers evaluated the ability of fifth-generation dry-cleaning machines to control occupational exposure to perchloroethylene (PERC). Use of these machines is mandated in some countries; however, less than 1 percent of all U.S. shops have them. A study was conducted at a U.S. dry-cleaning shop where two fifth-generation machines were used. Both machines had a refrigerated condenser as a primary control and a carbon adsorber as a secondary control to recover PERC vapors during the dry cycle. These machines were designed to lower the PERC concentration in the cylinder at the end of the dry cycle to below 290 ppm. A single-beam infrared photometer continuously monitors the PERC concentration in the machine cylinder, and a door interlock prevents opening until the concentration is below 290 ppm. Personal breathing zone air samples were measured for the machine operator and presser. The operator had time-weighted average (TWA) PERC exposures that were less than 2 ppm. Highest exposures occurred during loading and unloading the machine and when performing routine machine maintenance. All presser samples were below the limit of detection. Real-time video exposure monitoring showed that the operator had peak exposures near 160 ppm during loading and unloading the machine (below the OSHA maximum of 300 ppm). This exposure (160 ppm) is an order of magnitude lower than exposures with more traditional machines that are widely used in the United States. The evaluated machines were very effective at reducing TWA PERC exposures as well as peak exposures that occur during machine loading and unloading. State-of-the-art dry-cleaning machines equipped with refrigerated condensers, carbon adsorbers, drum monitors, and door interlocks can provide substantially better protection than more traditional machines that are widely used in the United States.
2010-02-01
multi-agent reputation management. State abstraction is a technique used to allow machine learning technologies to cope with problems that have large...state abstrac- tion process to enable reinforcement learning in domains with large state spaces. State abstraction is vital to machine learning ...across a collective of independent platforms. These individual elements, often referred to as agents in the machine learning community, should exhibit both
A Simple Universal Turing Machine for the Game of Life Turing Machine
NASA Astrophysics Data System (ADS)
Rendell, Paul
In this chapter we present a simple universal Turing machine which is small enough to fit into the design limits of the Turing machine build in Conway's Game of Life by the author. That limit is 8 symbols and 16 states. By way of comparison we also describe one of the smallest known universal Turing machines due to Rogozhin which has 6 symbols and 4 states.
NASA Astrophysics Data System (ADS)
Budi Harja, Herman; Prakosa, Tri; Raharno, Sri; Yuwana Martawirya, Yatna; Nurhadi, Indra; Setyo Nogroho, Alamsyah
2018-03-01
The production characteristic of job-shop industry at which products have wide variety but small amounts causes every machine tool will be shared to conduct production process with dynamic load. Its dynamic condition operation directly affects machine tools component reliability. Hence, determination of maintenance schedule for every component should be calculated based on actual usage of machine tools component. This paper describes study on development of monitoring system to obtaining information about each CNC machine tool component usage in real time approached by component grouping based on its operation phase. A special device has been developed for monitoring machine tool component usage by utilizing usage phase activity data taken from certain electronics components within CNC machine. The components are adaptor, servo driver and spindle driver, as well as some additional components such as microcontroller and relays. The obtained data are utilized for detecting machine utilization phases such as power on state, machine ready state or spindle running state. Experimental result have shown that the developed CNC machine tool monitoring system is capable of obtaining phase information of machine tool usage as well as its duration and displays the information at the user interface application.
Hardware support for software controlled fast multiplexing of performance counters
Salapura, Valentina; Wisniewski, Robert W
2013-10-01
Performance counters may be operable to collect one or more counts of one or more selected activities, and registers may be operable to store a set of performance counter configurations. A state machine may be operable to automatically select a register from the registers for reconfiguring the one or more performance counters in response to receiving a first signal. The state machine may be further operable to reconfigure the one or more performance counters based on a configuration specified in the selected register. The state machine yet further may be operable to copy data in selected one or more of the performance counters to a memory location, or to copy data from the memory location to the counters, in response to receiving a second signal. The state machine may be operable to store or restore the counter values and state machine configuration in response to a context switch event.
Hardware support for software controlled fast multiplexing of performance counters
Salapura, Valentina; Wisniewski, Robert W.
2013-01-01
Performance counters may be operable to collect one or more counts of one or more selected activities, and registers may be operable to store a set of performance counter configurations. A state machine may be operable to automatically select a register from the registers for reconfiguring the one or more performance counters in response to receiving a first signal. The state machine may be further operable to reconfigure the one or more performance counters based on a configuration specified in the selected register. The state machine yet further may be operable to copy data in selected one or more of the performance counters to a memory location, or to copy data from the memory location to the counters, in response to receiving a second signal. The state machine may be operable to store or restore the counter values and state machine configuration in response to a context switch event.
Allocating dissipation across a molecular machine cycle to maximize flux
Brown, Aidan I.; Sivak, David A.
2017-01-01
Biomolecular machines consume free energy to break symmetry and make directed progress. Nonequilibrium ATP concentrations are the typical free energy source, with one cycle of a molecular machine consuming a certain number of ATP, providing a fixed free energy budget. Since evolution is expected to favor rapid-turnover machines that operate efficiently, we investigate how this free energy budget can be allocated to maximize flux. Unconstrained optimization eliminates intermediate metastable states, indicating that flux is enhanced in molecular machines with fewer states. When maintaining a set number of states, we show that—in contrast to previous findings—the flux-maximizing allocation of dissipation is not even. This result is consistent with the coexistence of both “irreversible” and reversible transitions in molecular machine models that successfully describe experimental data, which suggests that, in evolved machines, different transitions differ significantly in their dissipation. PMID:29073016
Multicopy programmable discrimination of general qubit states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sentis, G.; Bagan, E.; Calsamiglia, J.
2010-10-15
Quantum state discrimination is a fundamental primitive in quantum statistics where one has to correctly identify the state of a system that is in one of two possible known states. A programmable discrimination machine performs this task when the pair of possible states is not a priori known but instead the two possible states are provided through two respective program ports. We study optimal programmable discrimination machines for general qubit states when several copies of states are available in the data or program ports. Two scenarios are considered: One in which the purity of the possible states is a priorimore » known, and the fully universal one where the machine operates over generic mixed states of unknown purity. We find analytical results for both the unambiguous and minimum error discrimination strategies. This allows us to calculate the asymptotic performance of programmable discrimination machines when a large number of copies are provided and to recover the standard state discrimination and state comparison values as different limiting cases.« less
Shimomura, Takeshi; Sumiya, Touru; Ono, Masatoshi; Ito, Tetsuji; Hanaoka, Taka-aki
2012-02-10
A novel amperometric biosensor for the measurement of L-lactate has been developed. The device comprises a screen-printed carbon electrode containing cobalt phthalocyanine (CoPC-SPCE), coated with lactate oxidase (LOD) that is immobilized in mesoporous silica (FSM8.0) using a polymer matrix of denatured polyvinyl alcohol; a Nafion layer on the electrode surface acts as a barrier to interferents. The sampling unit attached to the SPCE requires only a small sample volume of 100 μL for each measurement. The measurement of l-lactate is based on the signal produced by hydrogen peroxide, the product of the enzymatic reaction. The behavior of the biosensor, LOD-FSM8.0/Naf/CoPC-SPCE, was examined in terms of pH, applied potential, sensitivity and operational range, selectivity, and storage stability. The sensor showed an optimum response at a pH of 7.4 and an applied potential of +450 mV. The determination range and the response time for L-lactate were 18.3 μM to 1.5 mM and approximately 90s, respectively. In addition, the sensor exhibited high selectivity for L-lactate and was quite stable in storage, showing no noticeable change in its initial response after being stored for over 9 months. These results indicate that our method provides a simple, cost-effective, high-performance biosensor for l-lactate. Copyright © 2011 Elsevier B.V. All rights reserved.
Critical body temperature profile as indicator of heat stress vulnerability.
Nag, P K; Dutta, Priya; Nag, Anjali
2013-01-01
Extreme climatic heat is a major health concern among workers in different occupational pursuits. People in the regions of western India confront frequent heat emergencies, with great risk of mortality and morbidity. Taking account of informal occupational groups (foundry and sheet metal, FSM, N=587; ceramic and pottery, CP, N=426; stone quarry, SQ, N=934) in different seasons, the study examined the body temperature profiling as indicator of vulnerability to environmental warmth. About 3/4th of 1947 workers had habitual exposure at 30.1-35.5°C WBGT and ~10% of them were exposed to 38.2-41.6°C WBGT. The responses of FSM, CP and SQ workers indicated prevailing high heat load during summer and post-monsoon months. Local skin temperatures (T(sk)) varied significantly in different seasons, with consistently high level in summer, followed by post-monsoon and winter months. The mean difference of T(cr) and T(sk) was ~5.2°C up to 26.7°C WBGT, and ~2.5°C beyond 30°C WBGT. Nearly 90% of the workers had T(cr) within 38°C, suggesting their self-adjustment strategy in pacing work and regulating T(cr). In extreme heat, the limit of peripheral adjustability (35-36°C T(sk)) and the narrowing down of the difference between T(cr) and T(sk) might indicate the limit of one's ability to withstand heat exposure.
Fluorescent speckle microscopy of microtubules: how low can you go?
Waterman-Storer, C M; Salmon, E D
1999-12-01
Fluorescent speckle microscopy (FSM) is a new technique for visualizing the movement, assembly, and turnover of macromolecular assemblies like the cytoskeleton in living cells. In this method, contrast is created by coassembly of a small fraction of fluorescent subunits in a pool of unlabeled subunits. Random variation in association creates a nonuniform "fluorescent speckle" pattern. Fluorescent speckle movements in time-lapse recordings stand out to the eye and can be measured. Because fluorescent speckles represent fiduciary marks on the polymer lattice, FSM provides the opportunity for the first time to see the 2- and 3-dimensional trajectories of lattice movements within large arrays of polymers as well as identifying sites of assembly and disassembly of individual polymers. The technique works with either microinjection of fluorescently labeled subunits or expression of subunits ligated to green fluorescent protein (GFP). We have found for microtubules assembled in vitro that speckles containing one fluorophore can be detected and recorded using a conventional wide-field epi-fluorescence light microscope and digital imaging with a low noise cooled CCD camera. In living cells, optimal speckle contrast occurs at fractions of labeled tubulin of approximately 0.1-0.5% where the fluorescence of each speckle corresponds to one to seven fluorophores per resolvable unit (approximately 0.27 microm) in the microscope. This small fraction of labeled subunits significantly reduces out-of-focus fluorescence and greatly improves visibility of fluorescently labeled structures and their dynamics in thick regions of living cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Yinan; Shi Handuo; Xiong Zhaoxi
We present a unified universal quantum cloning machine, which combines several different existing universal cloning machines together, including the asymmetric case. In this unified framework, the identical pure states are projected equally into each copy initially constituted by input and one half of the maximally entangled states. We show explicitly that the output states of those universal cloning machines are the same. One importance of this unified cloning machine is that the cloning procession is always the symmetric projection, which reduces dramatically the difficulties for implementation. Also, it is found that this unified cloning machine can be directly modified tomore » the general asymmetric case. Besides the global fidelity and the single-copy fidelity, we also present all possible arbitrary-copy fidelities.« less
Simulating the Effect of Space Vehicle Environments on Directional Solidification of a Binary Alloy
NASA Technical Reports Server (NTRS)
Westra, D. G.; Heinrich, J. C.; Poirier, D. R.
2003-01-01
Space microgravity missions are designed to provide a microgravity environment for scientific experiments, but these missions cannot provide a perfect environment, due to vibrations caused by crew activity, on-board experiments, support systems (pumps, fans, etc.), periodic orbital maneuvers, and water dumps. Therefore, it is necessary to predict the impact of these vibrations on space experiments, prior to performing them. Simulations were conducted to study the effect of the vibrations on the directional solidification of a dendritic alloy. Finite element ca!cu!attie?ls were dme with a simd2titcr based on a continuum model of dendritic solidification, using the Fractional Step Method (FSM). The FSM splits the solution of the momentum equation into two steps: the viscous intermediate step, which does not enforce continuity; and the inviscid projection step, which calculates the pressure and enforces continuity. The FSM provides significant computational benefits for predicting flows in a directionally solidified alloy, compared to other methods presently employed, because of the efficiency gains in the uncoupled solution of velocity and pressure. finite differences, arises when the interdendritic liquid reaches the eutectic temperature and concentration. When a node reaches eutectic temperature, it is assumed that the solidification of the eutectic liquid continues at constant temperature until all the eutectic is solidified. With this approach, solidification is not achieved continuously across an element; rather, the element is not considered solidified until the eutectic isotherm overtakes the top nodes. For microgravity simulations, where the convection is driven by shrinkage, it introduces large variations in the fluid velocity. When the eutectic isotherm reaches a node, all the eutectic must be solidified in a short period, causing an abrupt increase in velocity. To overcome this difficulty, we employed a scheme to numerically predict a more accurate value for the rate of change of fraction of liquid as the liquid in an element solidifies. The new method enables us to contrast results of simulations in which the alloy is subjected to no gravity or a steady-state acceleration versus simulations when the alloy is subjected to vibration disturbances; therefore, the effect of vibration disturbances can be assessed more accurately. To assess the impact of these vibration-perturbations, transient accelerometer data from a space shuttle mission are used as inputs for the simulation model. These on-orbit acceleration data were obtained from the Microgravity Science Division at Glenn Research Center (GRC- MSD) and are applied to the buoyancy term of the momentum equation in a simulation of a Pb-5.8 wt. % Sb alloy that solidifies in a thermal gradient of 4000 K/m and a translation velocity of 3 p d s . Figure 2 shows the vertical velocity of a node that begins in the all-liquid region and subsequently solidifies; the vibrations are applied at 5000 seconds in this simulation. An important difficulty, common to all solidification models based on finite elements or 2 The magnitudes of the velocity oscillations that are vibration-induced are very small and acceptable. The biggest concern is whether the concentration of the liquid near the dendrite tips is distorted because of the vibration-induced perturbations. Results for this case show no concentration oscillations present in the all-liquid region.
2011-01-01
Background In rice, the major part of the post-embryonic root system is made of stem-derived roots named crown roots (CR). Among the few characterized rice mutants affected in root development, crown rootless1 mutant is unable to initiate crown root primordia. CROWN ROOTLESS1 (CRL1) is induced by auxin and encodes an AS2/LOB-domain transcription factor that acts upstream of the gene regulatory network controlling CR development. Results To identify genes involved in CR development, we compared global gene expression profile in stem bases of crl1 mutant and wild-type (WT) plants. Our analysis revealed that 250 and 236 genes are down- and up-regulated respectively in the crl1 mutant. Auxin induces CRL1 expression and consequently it is expected that auxin also alters the expression of genes that are early regulated by CRL1. To identify genes under the early control of CRL1, we monitored the expression kinetics of a selected subset of genes, mainly chosen among those exhibiting differential expression, in crl1 and WT following exogenous auxin treatment. This analysis revealed that most of these genes, mainly related to hormone, water and nutrient, development and homeostasis, were likely not regulated directly by CRL1. We hypothesized that the differential expression for these genes observed in the crl1 mutant is likely a consequence of the absence of CR formation. Otherwise, three CRL1-dependent auxin-responsive genes: FSM (FLATENNED SHOOT MERISTEM)/FAS1 (FASCIATA1), GTE4 (GENERAL TRANSCRIPTION FACTOR GROUP E4) and MAP (MICROTUBULE-ASSOCIATED PROTEIN) were identified. FSM/FAS1 and GTE4 are known in rice and Arabidopsis to be involved in the maintenance of root meristem through chromatin remodelling and cell cycle regulation respectively. Conclusion Our data showed that the differential regulation of most genes in crl1 versus WT may be an indirect consequence of CRL1 inactivation resulting from the absence of CR in the crl1 mutant. Nevertheless some genes, FAS1/FSM, GTE4 and MAP, require CRL1 to be induced by auxin suggesting that they are likely directly regulated by CRL1. These genes have a function related to polarized cell growth, cell cycle regulation or chromatin remodelling. This suggests that these genes are controlled by CRL1 and involved in CR initiation in rice. PMID:21806801
ERIC Educational Resources Information Center
BOLDT, MILTON; POKORNY, HARRY
THIRTY-THREE MACHINE SHOP INSTRUCTORS FROM 17 STATES PARTICIPATED IN AN 8-WEEK SEMINAR TO DEVELOP THE SKILLS AND KNOWLEDGE ESSENTIAL FOR TEACHING THE OPERATION OF NUMERICALLY CONTROLLED MACHINE TOOLS. THE SEMINAR WAS GIVEN FROM JUNE 20 TO AUGUST 12, 1966, WITH COLLEGE CREDIT AVAILABLE THROUGH STOUT STATE UNIVERSITY. THE PARTICIPANTS COMPLETED AN…
Towards a molecular logic machine
NASA Astrophysics Data System (ADS)
Remacle, F.; Levine, R. D.
2001-06-01
Finite state logic machines can be realized by pump-probe spectroscopic experiments on an isolated molecule. The most elaborate setup, a Turing machine, can be programmed to carry out a specific computation. We argue that a molecule can be similarly programmed, and provide examples using two photon spectroscopies. The states of the molecule serve as the possible states of the head of the Turing machine and the physics of the problem determines the possible instructions of the program. The tape is written in an alphabet that allows the listing of the different pump and probe signals that are applied in a given experiment. Different experiments using the same set of molecular levels correspond to different tapes that can be read and processed by the same head and program. The analogy to a Turing machine is not a mechanical one and is not completely molecular because the tape is not part of the molecular machine. We therefore also discuss molecular finite state machines, such as sequential devices, for which the tape is not part of the machine. Nonmolecular tapes allow for quite long input sequences with a rich alphabet (at the level of 7 bits) and laser pulse shaping experiments provide concrete examples. Single molecule spectroscopies show that a single molecule can be repeatedly cycled through a logical operation.
NASA Technical Reports Server (NTRS)
Mandra, Salvatore
2017-01-01
We study the performance of the D-Wave 2X quantum annealing machine on systems with well-controlled ground-state degeneracy. While obtaining the ground state of a spin-glass benchmark instance represents a difficult task, the gold standard for any optimization algorithm or machine is to sample all solutions that minimize the Hamiltonian with more or less equal probability. Our results show that while naive transverse-field quantum annealing on the D-Wave 2X device can find the ground-state energy of the problems, it is not well suited in identifying all degenerate ground-state configurations associated to a particular instance. Even worse, some states are exponentially suppressed, in agreement with previous studies on toy model problems [New J. Phys. 11, 073021 (2009)]. These results suggest that more complex driving Hamiltonians are needed in future quantum annealing machines to ensure a fair sampling of the ground-state manifold.
Machine Learning Applications to Resting-State Functional MR Imaging Analysis.
Billings, John M; Eder, Maxwell; Flood, William C; Dhami, Devendra Singh; Natarajan, Sriraam; Whitlow, Christopher T
2017-11-01
Machine learning is one of the most exciting and rapidly expanding fields within computer science. Academic and commercial research entities are investing in machine learning methods, especially in personalized medicine via patient-level classification. There is great promise that machine learning methods combined with resting state functional MR imaging will aid in diagnosis of disease and guide potential treatment for conditions thought to be impossible to identify based on imaging alone, such as psychiatric disorders. We discuss machine learning methods and explore recent advances. Copyright © 2017 Elsevier Inc. All rights reserved.
22 CFR 121.10 - Forgings, castings and machined bodies.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Forgings, castings and machined bodies. 121.10... STATES MUNITIONS LIST Enumeration of Articles § 121.10 Forgings, castings and machined bodies. Articles on the U.S. Munitions List include articles in a partially completed state (such as forgings...
Olaya-Castro, Alexandra; Johnson, Neil F; Quiroga, Luis
2005-03-25
We propose a physically realizable machine which can either generate multiparticle W-like states, or implement high-fidelity 1-->M (M=1,2,...infinity) anticloning of an arbitrary qubit state, in a single step. This universal machine acts as a catalyst in that it is unchanged after either procedure, effectively resetting itself for its next operation. It possesses an inherent immunity to decoherence. Most importantly in terms of practical multiparty quantum communication, the machine's robustness in the presence of decoherence actually increases as the number of qubits M increases.
Buden, Donald W.; Cianchini, Carlos; Taborosi, Danko; Fisher, Robert N.; Bauer, Aaron; Ineich, Ivan
2014-01-01
An interspecies mating between unisexual Lepidodactylus lugubris and a male of the bisexual Lepidodactylus moestus was photographed by Carlos Cianchini on Kosrae [Island], FSM, at 18:15 h on 22 August 2013 (Figure 1). The mating pair was on a window frame inside a house at Pukusruk Wan village (05°21'01" N, 163°00'41" E, elev. 28 m a.s.l.) on the northeastern side of the island. This is the first direct evidence of mating between these two species.
A multi-channel instrumentation system for biosignal recording.
Yu, Hong; Li, Pengfei; Xiao, Zhiming; Peng, Chung-Ching; Bashirullah, Rizwan
2008-01-01
This paper reports a highly integrated battery operated multi-channel instrumentation system intended for physiological signal recording. The mixed signal IC has been fabricated in standard 0.5microm 5V 3M-2P CMOS process and features 32 instrumentation amplifiers, four 8b SAR ADCs, a wireless power interface with Li-ion battery charger, low power bidirectional telemetry and FSM controller with power gating control for improved energy efficiency. The chip measures 3.2mm by 4.8mm and dissipates approximately 2.1mW when fully operational.
34 CFR 395.17 - Suspension of designation as State licensing agency.
Code of Federal Regulations, 2013 CFR
2013-07-01
... lapse of a reasonable time, the Secretary is of the opinion that such failure to comply still continues... protection of Federal property on which vending machines subject to the requirements of § 395.32 are located in the State. Upon the suspension of such designation, vending machine income from vending machines...
34 CFR 395.17 - Suspension of designation as State licensing agency.
Code of Federal Regulations, 2012 CFR
2012-07-01
... lapse of a reasonable time, the Secretary is of the opinion that such failure to comply still continues... protection of Federal property on which vending machines subject to the requirements of § 395.32 are located in the State. Upon the suspension of such designation, vending machine income from vending machines...
34 CFR 395.17 - Suspension of designation as State licensing agency.
Code of Federal Regulations, 2014 CFR
2014-07-01
... lapse of a reasonable time, the Secretary is of the opinion that such failure to comply still continues... protection of Federal property on which vending machines subject to the requirements of § 395.32 are located in the State. Upon the suspension of such designation, vending machine income from vending machines...
34 CFR 395.17 - Suspension of designation as State licensing agency.
Code of Federal Regulations, 2010 CFR
2010-07-01
... lapse of a reasonable time, the Secretary is of the opinion that such failure to comply still continues... protection of Federal property on which vending machines subject to the requirements of § 395.32 are located in the State. Upon the suspension of such designation, vending machine income from vending machines...
34 CFR 395.17 - Suspension of designation as State licensing agency.
Code of Federal Regulations, 2011 CFR
2011-07-01
... lapse of a reasonable time, the Secretary is of the opinion that such failure to comply still continues... protection of Federal property on which vending machines subject to the requirements of § 395.32 are located in the State. Upon the suspension of such designation, vending machine income from vending machines...
Solid-state resistor for pulsed power machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoltzfus, Brian; Savage, Mark E.; Hutsel, Brian Thomas
2016-12-06
A flexible solid-state resistor comprises a string of ceramic resistors that can be used to charge the capacitors of a linear transformer driver (LTD) used in a pulsed power machine. The solid-state resistor is able to absorb the energy of a switch prefire, thereby limiting LTD cavity damage, yet has a sufficiently low RC charge time to allow the capacitor to be recharged without disrupting the operation of the pulsed power machine.
Development of techniques to enhance man/machine communication
NASA Technical Reports Server (NTRS)
Targ, R.; Cole, P.; Puthoff, H.
1974-01-01
A four-state random stimulus generator, considered to function as an ESP teaching machine was used to investigate an approach to facilitating interactions between man and machines. A subject tries to guess in which of four states the machine is. The machine offers the user feedback and reinforcement as to the correctness of his choice. Using this machine, 148 volunteer subjects were screened under various protocols. Several whose learning slope and/or mean score departed significantly from chance expectation were identified. Direct physiological evidence of perception of remote stimuli not presented to any known sense of the percipient using electroencephalographic (EEG) output when a light was flashed in a distant room was also studied.
Method and system for controlling a synchronous machine over full operating range
Walters, James E.; Gunawan, Fani S.; Xue, Yanhong
2002-01-01
System and method for controlling a synchronous machine are provided. The method allows for calculating a stator voltage index. The method further allows for relating the magnitude of the stator voltage index against a threshold voltage value. An offset signal is generated based on the results of the relating step. A respective state of operation of the machine is determined. The offset signal is processed based on the respective state of the machine.
The Design of Finite State Machine for Asynchronous Replication Protocol
NASA Astrophysics Data System (ADS)
Wang, Yanlong; Li, Zhanhuai; Lin, Wei; Hei, Minglei; Hao, Jianhua
Data replication is a key way to design a disaster tolerance system and to achieve reliability and availability. It is difficult for a replication protocol to deal with the diverse and complex environment. This means that data is less well replicated than it ought to be. To reduce data loss and to optimize replication protocols, we (1) present a finite state machine, (2) run it to manage an asynchronous replication protocol and (3) report a simple evaluation of the asynchronous replication protocol based on our state machine. It's proved that our state machine is applicable to guarantee the asynchronous replication protocol running in the proper state to the largest extent in the event of various possible events. It also can helpful to build up replication-based disaster tolerance systems to ensure the business continuity.
State Machine Modeling of the Space Launch System Solid Rocket Boosters
NASA Technical Reports Server (NTRS)
Harris, Joshua A.; Patterson-Hine, Ann
2013-01-01
The Space Launch System is a Shuttle-derived heavy-lift vehicle currently in development to serve as NASA's premiere launch vehicle for space exploration. The Space Launch System is a multistage rocket with two Solid Rocket Boosters and multiple payloads, including the Multi-Purpose Crew Vehicle. Planned Space Launch System destinations include near-Earth asteroids, the Moon, Mars, and Lagrange points. The Space Launch System is a complex system with many subsystems, requiring considerable systems engineering and integration. To this end, state machine analysis offers a method to support engineering and operational e orts, identify and avert undesirable or potentially hazardous system states, and evaluate system requirements. Finite State Machines model a system as a finite number of states, with transitions between states controlled by state-based and event-based logic. State machines are a useful tool for understanding complex system behaviors and evaluating "what-if" scenarios. This work contributes to a state machine model of the Space Launch System developed at NASA Ames Research Center. The Space Launch System Solid Rocket Booster avionics and ignition subsystems are modeled using MATLAB/Stateflow software. This model is integrated into a larger model of Space Launch System avionics used for verification and validation of Space Launch System operating procedures and design requirements. This includes testing both nominal and o -nominal system states and command sequences.
Neural-Network Quantum States, String-Bond States, and Chiral Topological States
NASA Astrophysics Data System (ADS)
Glasser, Ivan; Pancotti, Nicola; August, Moritz; Rodriguez, Ivan D.; Cirac, J. Ignacio
2018-01-01
Neural-network quantum states have recently been introduced as an Ansatz for describing the wave function of quantum many-body systems. We show that there are strong connections between neural-network quantum states in the form of restricted Boltzmann machines and some classes of tensor-network states in arbitrary dimensions. In particular, we demonstrate that short-range restricted Boltzmann machines are entangled plaquette states, while fully connected restricted Boltzmann machines are string-bond states with a nonlocal geometry and low bond dimension. These results shed light on the underlying architecture of restricted Boltzmann machines and their efficiency at representing many-body quantum states. String-bond states also provide a generic way of enhancing the power of neural-network quantum states and a natural generalization to systems with larger local Hilbert space. We compare the advantages and drawbacks of these different classes of states and present a method to combine them together. This allows us to benefit from both the entanglement structure of tensor networks and the efficiency of neural-network quantum states into a single Ansatz capable of targeting the wave function of strongly correlated systems. While it remains a challenge to describe states with chiral topological order using traditional tensor networks, we show that, because of their nonlocal geometry, neural-network quantum states and their string-bond-state extension can describe a lattice fractional quantum Hall state exactly. In addition, we provide numerical evidence that neural-network quantum states can approximate a chiral spin liquid with better accuracy than entangled plaquette states and local string-bond states. Our results demonstrate the efficiency of neural networks to describe complex quantum wave functions and pave the way towards the use of string-bond states as a tool in more traditional machine-learning applications.
NASA Technical Reports Server (NTRS)
Riedel, Joseph E.; Grasso, Christopher A.
2012-01-01
VML (Virtual Machine Language) is an advanced computing environment that allows spacecraft to operate using mechanisms ranging from simple, time-oriented sequencing to advanced, multicomponent reactive systems. VML has developed in four evolutionary stages. VML 0 is a core execution capability providing multi-threaded command execution, integer data types, and rudimentary branching. VML 1 added named parameterized procedures, extensive polymorphism, data typing, branching, looping issuance of commands using run-time parameters, and named global variables. VML 2 added for loops, data verification, telemetry reaction, and an open flight adaptation architecture. VML 2.1 contains major advances in control flow capabilities for executable state machines. On the resource requirements front, VML 2.1 features a reduced memory footprint in order to fit more capability into modestly sized flight processors, and endian-neutral data access for compatibility with Intel little-endian processors. Sequence packaging has been improved with object-oriented programming constructs and the use of implicit (rather than explicit) time tags on statements. Sequence event detection has been significantly enhanced with multi-variable waiting, which allows a sequence to detect and react to conditions defined by complex expressions with multiple global variables. This multi-variable waiting serves as the basis for implementing parallel rule checking, which in turn, makes possible executable state machines. The new state machine feature in VML 2.1 allows the creation of sophisticated autonomous reactive systems without the need to develop expensive flight software. Users specify named states and transitions, along with the truth conditions required, before taking transitions. Transitions with the same signal name allow separate state machines to coordinate actions: the conditions distributed across all state machines necessary to arm a particular signal are evaluated, and once found true, that signal is raised. The selected signal then causes all identically named transitions in all present state machines to be taken simultaneously. VML 2.1 has relevance to all potential space missions, both manned and unmanned. It was under consideration for use on Orion.
CMOS cassette for digital upgrade of film-based mammography systems
NASA Astrophysics Data System (ADS)
Baysal, Mehmet A.; Toker, Emre
2006-03-01
While full-field digital mammography (FFDM) technology is gaining clinical acceptance, the overwhelming majority (96%) of the installed base of mammography systems are conventional film-screen (FSM) systems. A high performance, and economical digital cassette based product to conveniently upgrade FSM systems to FFDM would accelerate the adoption of FFDM, and make the clinical and technical advantages of FFDM available to a larger population of women. The planned FFDM cassette is based on our commercial Digital Radiography (DR) cassette for 10 cm x 10 cm field-of-view spot imaging and specimen radiography, utilizing a 150 micron columnar CsI(Tl) scintillator and 48 micron active-pixel CMOS sensor modules. Unlike a Computer Radiography (CR) cassette, which requires an external digitizer, our DR cassette transfers acquired images to a display workstation within approximately 5 seconds of exposure, greatly enhancing patient flow. We will present the physical performance of our prototype system against other FFDM systems in clinical use today, using established objective criteria such as the Modulation Transfer Function (MTF), Detective Quantum Efficiency (DQE), and subjective criteria, such as a contrast-detail (CD-MAM) observer performance study. Driven by the strong demand from the computer industry, CMOS technology is one of the lowest cost, and the most readily accessible technologies available for FFDM today. Recent popular use of CMOS imagers in high-end consumer cameras have also resulted in significant advances in the imaging performance of CMOS sensors against rivaling CCD sensors. This study promises to take advantage of these unique features to develop the first CMOS based FFDM upgrade cassette.
Odey, Emmanuel Alepu; Li, Zifu; Zhou, Xiaoqin; Kalakodio, Loissi
2017-10-01
The problems posed by fecal sludge (FS) are multidimensional because most cities rapidly urbanize, which results in the increase in population, urban settlement, and waste generation. Issues concerning health and waste treatment have continued to create alarming situations. These issues had indeed interfered with the proper steps in managing FS, which contaminates the environment. FS can be used in agriculture as fertilizer because it is an excellent source of nutrients. The recent decline in crop production due to loss of soil organic component, erosion, and nutrient runoff has generated interest in the recycling of FS into soil nutrients through stabilization and composting. However, human feces are considerably liable to spread microorganisms to other persons. Thus, sanitation, stabilization, and composting should be the main objectives of FS treatment to minimize the risk to public and environmental health. This review presents an improved FS management (FSM) and technology option for soil amendment that is grouped into three headings, namely, (1) collection, (2) treatment, and (3) composting. On the basis of the literature review, the main problems associated with the collection and treatment of FS, such as inadequate tools and improper treatment processes, are summarized, and the trends and challenges that concern the applicability of each of the technologies in developing urban centers are critically reviewed. Stabilization during pretreatment before composting is suggested as the best method to reduce pathogens in FS. Results are precisely intended to be used as a support for decisions on policies and strategies for FSM and investments for improved treatment facilities.
Stoll, Dwight R; Shoykhet, Konstantin; Petersson, Patrik; Buckenmaier, Stephan
2017-09-05
Two-dimensional liquid chromatography (2D-LC) is increasingly being viewed as a viable tool for solving difficult separation problems, ranging from targeted separations of structurally similar molecules to untargeted separations of highly complex mixtures. In spite of this performance potential, though, many users find method development challenging and most frequently cite the "incompatibility" between the solvent systems used in the first and second dimensions as a major obstacle. This solvent strength related incompatibility can lead to severe peak distortion and loss of resolution and sensitivity in the second dimension. In this paper, we describe a novel approach to address the incompatibility problem, which we refer to as Active Solvent Modulation (ASM). This valve-based approach enables dilution of 1 D effluent with weak solvent prior to transfer to the 2 D column but without the need for additional instrument hardware. ASM is related to the concept we refer to as Fixed Solvent Modulation (FSM), with the important difference being that ASM allows toggling of the diluent stream during each 2 D separation cycle. In this work, we show that ASM eliminates the major drawbacks of FSM including complex elution solvent profiles, baseline disturbances, and slow 2 D re-equilibration and demonstrate improvements in 2 D separation quality using both simple small molecule probes and degradants of heat-treated bovine insulin as case studies. We believe that ASM will significantly ease method development for 2D-LC, providing a path to practical methods that involve both highly complementary 1 D and 2 D separations and sensitive detection.
Quantum machine learning for quantum anomaly detection
NASA Astrophysics Data System (ADS)
Liu, Nana; Rebentrost, Patrick
2018-04-01
Anomaly detection is used for identifying data that deviate from "normal" data patterns. Its usage on classical data finds diverse applications in many important areas such as finance, fraud detection, medical diagnoses, data cleaning, and surveillance. With the advent of quantum technologies, anomaly detection of quantum data, in the form of quantum states, may become an important component of quantum applications. Machine-learning algorithms are playing pivotal roles in anomaly detection using classical data. Two widely used algorithms are the kernel principal component analysis and the one-class support vector machine. We find corresponding quantum algorithms to detect anomalies in quantum states. We show that these two quantum algorithms can be performed using resources that are logarithmic in the dimensionality of quantum states. For pure quantum states, these resources can also be logarithmic in the number of quantum states used for training the machine-learning algorithm. This makes these algorithms potentially applicable to big quantum data applications.
On some methods of discrete systems behaviour simulation
NASA Astrophysics Data System (ADS)
Sytnik, Alexander A.; Posohina, Natalia I.
1998-07-01
The project is solving one of the fundamental problems of mathematical cybernetics and discrete mathematics, the one connected with synthesis and analysis of managing systems, depending on the research of their functional opportunities and reliable behaviour. This work deals with the case of finite-state machine behaviour restoration when the structural redundancy is not available and the direct updating of current behaviour is impossible. The described below method, uses number theory to build a special model of finite-state machine, it is simulating the transition between the states of the finite-state machine using specially defined functions of exponential type with the help of several methods of number theory and algebra it is easy to determine, whether there is an opportunity to restore the behaviour (with the help of this method) in the given case or not and also derive the class of finite-state machines, admitting such restoration.
Sequence-invariant state machines
NASA Technical Reports Server (NTRS)
Whitaker, Sterling R.; Manjunath, Shamanna K.; Maki, Gary K.
1991-01-01
A synthesis method and an MOS VLSI architecture are presented to realize sequential circuits that have the ability to implement any state machine having N states and m inputs, regardless of the actual sequence specified in the flow table. The design method utilizes binary tree structured (BTS) logic to implement regular and dense circuits. The desired state sequence can be hardwired with power supply connections or can be dynamically reallocated if stored in a register. This allows programmable VLSI controllers to be designed with a compact size and performance approaching that of dedicated logic. Results of ICV implementations are reported and an example sequence-invariant state machine is contrasted with implementations based on traditional methods.
NASA Astrophysics Data System (ADS)
Palittapongarnpim, Pantita; Sanders, Barry C.
2018-05-01
Quantum tomography infers quantum states from measurement data, but it becomes infeasible for large systems. Machine learning enables tomography of highly entangled many-body states and suggests a new powerful approach to this problem.
Code of Federal Regulations, 2010 CFR
2010-07-01
... department, agency, or instrumentality of the United States, in accordance with established procedures of... each property managing department, agency or instrumentality of the United States, subject to the..., agencies, or instrumentalities of the United States, under which blind vendors or State licensing agencies...
Application of Numerical Simulation for the Analysis of the Processes of Rotary Ultrasonic Drilling
NASA Astrophysics Data System (ADS)
Naď, Milan; Čičmancová, Lenka; Hajdu, Štefan
2016-12-01
Rotary ultrasonic machining (RUM) is a hybrid process that combines diamond grinding with ultrasonic machining. It is most suitable to machine hard brittle materials such as ceramics and composites. Due to its excellent machining performance, RUM is very often applied for drilling of hard machinable materials. In the final phase of drilling, the edge deterioration of the drilled hole can occur, which results in a phenomenon called edge chipping. During hole drilling, a change in the thickness of the bottom of the drilled hole occurs. Consequently, the bottom of the hole as a plate structure is exposed to the transfer through the resonance state. This resonance state can be considered as one of the important aspects leading to edge chipping. Effects of changes in the bottom thickness and as well as the fillet radius between the wall and bottom of the borehole on the stress-strain states during RUM are analyzed.
34 CFR 395.8 - Distribution and use of income from vending machines on Federal property.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 34 Education 2 2012-07-01 2012-07-01 false Distribution and use of income from vending machines on... use of income from vending machines on Federal property. (a) Vending machine income from vending machines on Federal property which has been disbursed to the State licensing agency by a property managing...
34 CFR 395.8 - Distribution and use of income from vending machines on Federal property.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 34 Education 2 2013-07-01 2013-07-01 false Distribution and use of income from vending machines on... use of income from vending machines on Federal property. (a) Vending machine income from vending machines on Federal property which has been disbursed to the State licensing agency by a property managing...
34 CFR 395.8 - Distribution and use of income from vending machines on Federal property.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 34 Education 2 2014-07-01 2013-07-01 true Distribution and use of income from vending machines on... use of income from vending machines on Federal property. (a) Vending machine income from vending machines on Federal property which has been disbursed to the State licensing agency by a property managing...
Technical Report on Occupations in Numerically Controlled Metal-Cutting Machining.
ERIC Educational Resources Information Center
Manpower Administration (DOL), Washington, DC. U.S. Employment Service.
At the present time, only 5 percent of the short-run metal-cutting machining in the United States is done by numerically controlled machined tools, but within the next decade it is expected to increase by 50 percent. Numerically controlled machines use taped data which is changed into instructions and directs the machine to do certain steps…
NASA Astrophysics Data System (ADS)
Kaynak, Y.; Huang, B.; Karaca, H. E.; Jawahir, I. S.
2017-07-01
This experimental study focuses on the phase state and phase transformation response of the surface and subsurface of machined NiTi alloys. X-ray diffraction (XRD) analysis and differential scanning calorimeter techniques were utilized to measure the phase state and the transformation response of machined specimens, respectively. Specimens were machined under dry machining at ambient temperature, preheated conditions, and cryogenic cooling conditions at various cutting speeds. The findings from this research demonstrate that cryogenic machining substantially alters austenite finish temperature of martensitic NiTi alloy. Austenite finish ( A f) temperature shows more than 25 percent increase resulting from cryogenic machining compared with austenite finish temperature of as-received NiTi. Dry and preheated conditions do not substantially alter austenite finish temperature. XRD analysis shows that distinctive transformation from martensite to austenite occurs during machining process in all three conditions. Complete transformation from martensite to austenite is observed in dry cutting at all selected cutting speeds.
NASA Astrophysics Data System (ADS)
Abellán-Nebot, J. V.; Liu, J.; Romero, F.
2009-11-01
The State Space modelling approach has been recently proposed as an engineering-driven technique for part quality prediction in Multistage Machining Processes (MMP). Current State Space models incorporate fixture and datum variations in the multi-stage variation propagation, without explicitly considering common operation variations such as machine-tool thermal distortions, cutting-tool wear, cutting-tool deflections, etc. This paper shows the limitations of the current State Space model through an experimental case study where the effect of the spindle thermal expansion, cutting-tool flank wear and locator errors are introduced. The paper also discusses the extension of the current State Space model to include operation variations and its potential benefits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jimenez, O.; Roa, Luis; Delgado, A.
We study the probabilistic cloning of equidistant states. These states are such that the inner product between them is a complex constant or its conjugate. Thereby, it is possible to study their cloning in a simple way. In particular, we are interested in the behavior of the cloning probability as a function of the phase of the overlap among the involved states. We show that for certain families of equidistant states Duan and Guo's cloning machine leads to cloning probabilities lower than the optimal unambiguous discrimination probability of equidistant states. We propose an alternative cloning machine whose cloning probability ismore » higher than or equal to the optimal unambiguous discrimination probability for any family of equidistant states. Both machines achieve the same probability for equidistant states whose inner product is a positive real number.« less
Design and implementation of Skype USB user gateway software
NASA Astrophysics Data System (ADS)
Qi, Yang
2017-08-01
With the widespread application of VoIP, the client with private protocol becomes more and more popular. Skype is one of the representatives. How to connect Skype with PSTN just by Skype client has gradually become hot. This paper design and implement the software based on a kind of USB User Gateway. With the software Skype user can freely communicate with PSTN phone. FSM is designed as the core of the software, and Skype control is separated by the USB Gateway control. In this way, the communication becomes more flexible and efficient. In the actual user testing, the software obtains good results.
[Typology of the French medical learned societies. Survey of 129 organizations].
Maisonneuve, Hervé; Moreau, Nicolas; Steudler, François; Guérot, Claude; Durocher, Alain
2004-07-10
A study on the relationship between the ANDEM--Agence Nationale pour le Développement de l'Evaluation Médicale (French agency for the development of health technology assessment) and the learned societies showed that a definition of the role of these organisations and criteria to define learned societies were lacking. We conducted a survey among the learned societies in the field of medicine so as to elaborate a definition. We used the files of the learned societies of the Anaes--Agence Nationale d'Accréditation et d'Evaluation en Santé (French Agency for accreditation and evaluation in health) in 1998, which included 225 organisations. We sent a letter together with a single-page questionnaire and copies of the 2 publications on the relationship between the ANDEM and the learned societies. To analyse the suggestions for a definition, having read the replies, a segmentation of the population, the means and modalities of action and the aims and fields of action were used. A proposal for a definition was discussed during 2002/2003 with the board of the Fédération des Spécialités Médicales (FSM) (Federation of medical specialties) regrouping 33 medical and 12 surgical societies. Three meetings between a representative of the Anaes and the board of the FSM resulted in the proposition of so-called "validation" criteria for learned societies. A search on the French Internet listing such societies was made using a research motor (March 20, 2004). Out of the 225 organisations contacted, 129 (57%) replied. Among the latter, 115 considered themselves as a learned society and 14 did not. Among the 115 organisations defining themselves as a learned society, 97 proposed a definition, 16 made use of the definitions proposed in the questionnaire and 81 proposed their own definition. The analysis identified 6 important elements (reporting, knowledge, education, research, diffusion, promotion). The data analysed permitted the elaboration of a definition based on the proposals of the learned societies: "An organised group, within the framework of a given discipline, the members' aim of which is to report on their work, to improve knowledge on their discipline, to ensure education and research, to diffuse information on their work and research and to support and promote their discipline". Thirty-two of the 45 societies of the FSM accepted the 11 validation criteria proposed, some of which were commented on. Only one society abstained and 12 did not reply. No French Internet web site listing the learned societies specified a definition of criteria for inclusion in the lists. A definition of the learned societies and validation criteria, obtained through the participation of the principle actors, could serve as a basis for the recognition and identification of such societies.
Comparative study of state-of-the-art myoelectric controllers for multigrasp prosthetic hands.
Segil, Jacob L; Controzzi, Marco; Weir, Richard F ff; Cipriani, Christian
2014-01-01
A myoelectric controller should provide an intuitive and effective human-machine interface that deciphers user intent in real-time and is robust enough to operate in daily life. Many myoelectric control architectures have been developed, including pattern recognition systems, finite state machines, and more recently, postural control schemes. Here, we present a comparative study of two types of finite state machines and a postural control scheme using both virtual and physical assessment procedures with seven nondisabled subjects. The Southampton Hand Assessment Procedure (SHAP) was used in order to compare the effectiveness of the controllers during activities of daily living using a multigrasp artificial hand. Also, a virtual hand posture matching task was used to compare the controllers when reproducing six target postures. The performance when using the postural control scheme was significantly better (p < 0.05) than the finite state machines during the physical assessment when comparing within-subject averages using the SHAP percent difference metric. The virtual assessment results described significantly greater completion rates (97% and 99%) for the finite state machines, but the movement time tended to be faster (2.7 s) for the postural control scheme. Our results substantiate that postural control schemes rival other state-of-the-art myoelectric controllers.
Sequence invariant state machines
NASA Technical Reports Server (NTRS)
Whitaker, S.; Manjunath, S.
1990-01-01
A synthesis method and new VLSI architecture are introduced to realize sequential circuits that have the ability to implement any state machine having N states and m inputs, regardless of the actual sequence specified in the flow table. A design method is proposed that utilizes BTS logic to implement regular and dense circuits. A given state sequence can be programmed with power supply connections or dynamically reallocated if stored in a register. Arbitrary flow table sequences can be modified or programmed to dynamically alter the function of the machine. This allows VLSI controllers to be designed with the programmability of a general purpose processor but with the compact size and performance of dedicated logic.
Taber, Daniel R; Chriqui, Jamie F; Vuillaume, Renee; Kelder, Steven H; Chaloupka, Frank J
2015-07-27
Across the United States, many states have actively banned the sale of soda in high schools, and evidence suggests that students' in-school access to soda has declined as a result. However, schools may be substituting soda with other sugar-sweetened beverages (SSBs), and national trends indicate that adolescents are consuming more sports drinks and energy drinks. This study examined whether students consumed more non-soda SSBs in states that banned the sale of soda in school. Student data on consumption of various SSBs and in-school access to vending machines that sold SSBs were obtained from the National Youth Physical Activity and Nutrition Study (NYPANS), conducted in 2010. Student data were linked to state laws regarding the sale of soda in school in 2010. Students were cross-classified based on their access to vending machines and whether their state banned soda in school, creating 4 comparison groups. Zero-inflated negative binomial models were used to compare these 4 groups with respect to students’ self-reported consumption of diet soda, sports drinks, energy drinks, coffee/tea, or other SSBs. Students who had access to vending machines in a state that did not ban soda were the reference group. Models were adjusted for race/ethnicity, sex, grade, home food access, state median income, and U.S. Census region. Students consumed more servings of sports drinks, energy drinks, coffee/tea, and other SSBs if they resided in a state that banned soda in school but attended a school with vending machines that sold other SSBs. Similar results were observed where schools did not have vending machines but the state allowed soda to be sold in school. Intake was generally not elevated where both states and schools limited SSB availability – i.e., states banned soda and schools did not have SSB vending machines. State laws that ban soda but allow other SSBs may lead students to substitute other non-soda SSBs. Additional longitudinal research is needed to confirm this. Elevated SSB intake was not observed when both states and schools took steps to remove SSBs from school.
2015-01-01
Background Across the United States, many states have actively banned the sale of soda in high schools, and evidence suggests that students’ in-school access to soda has declined as a result. However, schools may be substituting soda with other sugar-sweetened beverages (SSBs), and national trends indicate that adolescents are consuming more sports drinks and energy drinks. This study examined whether students consumed more non-soda SSBs in states that banned the sale of soda in school. Methods Student data on consumption of various SSBs and in-school access to vending machines that sold SSBs were obtained from the National Youth Physical Activity and Nutrition Study (NYPANS), conducted in 2010. Student data were linked to state laws regarding the sale of soda in school in 2010. Students were cross-classified based on their access to vending machines and whether their state banned soda in school, creating 4 comparison groups. Zero-inflated negative binomial models were used to compare these 4 groups with respect to students’ self-reported consumption of diet soda, sports drinks, energy drinks, coffee/tea, or other SSBs. Students who had access to vending machines in a state that did not ban soda were the reference group. Models were adjusted for race/ethnicity, sex, grade, home food access, state median income, and U.S. Census region. Results Students consumed more servings of sports drinks, energy drinks, coffee/tea, and other SSBs if they resided in a state that banned soda in school but attended a school with vending machines that sold other SSBs. Similar results were observed where schools did not have vending machines but the state allowed soda to be sold in school. Intake was generally not elevated where both states and schools limited SSB availability – i.e., states banned soda and schools did not have SSB vending machines. Conclusion State laws that ban soda but allow other SSBs may lead students to substitute other non-soda SSBs. Additional longitudinal research is needed to confirm this. Elevated SSB intake was not observed when both states and schools took steps to remove SSBs from school. PMID:26221969
Quantifying matrix product state
NASA Astrophysics Data System (ADS)
Bhatia, Amandeep Singh; Kumar, Ajay
2018-03-01
Motivated by the concept of quantum finite-state machines, we have investigated their relation with matrix product state of quantum spin systems. Matrix product states play a crucial role in the context of quantum information processing and are considered as a valuable asset for quantum information and communication purpose. It is an effective way to represent states of entangled systems. In this paper, we have designed quantum finite-state machines of one-dimensional matrix product state representations for quantum spin systems.
Workshop on Fielded Applications of Machine Learning
1994-05-11
This report summaries the talks presented at the Workshop on Fielded Applications of Machine Learning , and draws some initial conclusions about the state of machine learning and its potential for solving real-world problems.
Research on intelligent machine self-perception method based on LSTM
NASA Astrophysics Data System (ADS)
Wang, Qiang; Cheng, Tao
2018-05-01
In this paper, we use the advantages of LSTM in feature extraction and processing high-dimensional and complex nonlinear data, and apply it to the autonomous perception of intelligent machines. Compared with the traditional multi-layer neural network, this model has memory, can handle time series information of any length. Since the multi-physical domain signals of processing machines have a certain timing relationship, and there is a contextual relationship between states and states, using this deep learning method to realize the self-perception of intelligent processing machines has strong versatility and adaptability. The experiment results show that the method proposed in this paper can obviously improve the sensing accuracy under various working conditions of the intelligent machine, and also shows that the algorithm can well support the intelligent processing machine to realize self-perception.
Tomography and generative training with quantum Boltzmann machines
NASA Astrophysics Data System (ADS)
Kieferová, Mária; Wiebe, Nathan
2017-12-01
The promise of quantum neural nets, which utilize quantum effects to model complex data sets, has made their development an aspirational goal for quantum machine learning and quantum computing in general. Here we provide methods of training quantum Boltzmann machines. Our work generalizes existing methods and provides additional approaches for training quantum neural networks that compare favorably to existing methods. We further demonstrate that quantum Boltzmann machines enable a form of partial quantum state tomography that further provides a generative model for the input quantum state. Classical Boltzmann machines are incapable of this. This verifies the long-conjectured connection between tomography and quantum machine learning. Finally, we prove that classical computers cannot simulate our training process in general unless BQP=BPP , provide lower bounds on the complexity of the training procedures and numerically investigate training for small nonstoquastic Hamiltonians.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olivares, Stefano
We investigate the performance of a selective cloning machine based on linear optical elements and Gaussian measurements, which allows one to clone at will one of the two incoming input states. This machine is a complete generalization of a 1{yields}2 cloning scheme demonstrated by Andersen et al. [Phys. Rev. Lett. 94, 240503 (2005)]. The input-output fidelity is studied for a generic Gaussian input state, and the effect of nonunit quantum efficiency is also taken into account. We show that, if the states to be cloned are squeezed states with known squeezing parameter, then the fidelity can be enhanced using amore » third suitable squeezed state during the final stage of the cloning process. A binary communication protocol based on the selective cloning machine is also discussed.« less
Modeling the Car Crash Crisis Management System Using HiLA
NASA Astrophysics Data System (ADS)
Hölzl, Matthias; Knapp, Alexander; Zhang, Gefei
An aspect-oriented modeling approach to the Car Crash Crisis Management System (CCCMS) using the High-Level Aspect (HiLA) language is described. HiLA is a language for expressing aspects for UML static structures and UML state machines. In particular, HiLA supports both a static graph transformational and a dynamic approach of applying aspects. Furthermore, it facilitates methodologically turning use case descriptions into state machines: for each main success scenario, a base state machine is developed; all extensions to this main success scenario are covered by aspects. Overall, the static structure of the CCCMS is modeled in 43 classes, the main success scenarios in 13 base machines, the use case extensions in 47 static and 31 dynamic aspects, most of which are instantiations of simple aspect templates.
Characterization and Design of Digital Pointing Subsystem for Optical Communication Demonstrator
NASA Technical Reports Server (NTRS)
Racho, C.; Portillo, A.
1998-01-01
The Optical Communications Demonstrator (OCD) is a laboratory-based lasercom demonstration terminal designed to validate several key technologies, including beacon acquisition, high bandwidth tracking, precision bearn pointing, and point-ahead compensation functions. It has been under active development over the past few years. The instrument uses a CCD array detector for both spatial acquisition and high-bandwidth tracking, and a fiber coupled laser transmitter. The array detector tracking concept provides wide field-of-view acquisition and permits effective platform jitter compensation and point-ahead control using only one steering mirror. This paper describes the detailed design and characterization of the digital control loop system which includes the Fast Steering Mirror (FSM), the CCD image tracker, and the associated electronics. The objective is to improve the overall system performance using laboratory measured data. The. design of the digital control loop is based on a linear time invariant open loop model. The closed loop performance is predicted using the theoretical model. With the digital filter programmed into the OCD control software, data is collected to verify the predictions. This paper presents the results of the, system modeling and performance analysis. It has been shown that measurement data closely matches theoretical predictions. An important part of the laser communication experiment is the ability of FSM to track the laser beacon within the. required tolerances. The pointing must be maintained to an accuracy that is much smaller than the transmit signal beamwidth. For an earth orbit distance, the system must be able to track the receiving station to within a few microradians. The failure. to do so will result in a severely degraded system performance.
Littlecott, Hannah J; Long, Sara; Hawkins, Jemma; Murphy, Simon; Hewitt, Gillian; Eccles, Gemma; Fletcher, Adam; Moore, Graham F
2018-01-01
Implementing health improvement is often perceived as diverting resource away from schools' core business, reflecting an assumption of a "zero-sum game" between health and education. There is some evidence that health behaviors may affect young people's educational outcomes. However, associations between implementation of school health improvement and educational outcomes remains underinvestigated. The study linked school-level data on free school meal (FSM) entitlement, educational outcomes, and school attendance, obtained from government websites, with data from the School Environment Questionnaire (SEQ) on health improvement activity collected in Wales (2015/2016). Spearman's rank correlation coefficients and linear regression models tested the extent of association between health improvement activity and attendance and educational outcomes. SEQ data were provided by 100/115 network schools (87%), of whom data on educational performance were obtained from 97. The percentage of pupils entitled to FSM predicted most of the between-school variance in achievement and attendance. Linear regression models demonstrated significant positive associations of all measures of health improvement activity with attainment at Key Stage (KS) 3, apart from mental health education in the curriculum and organizational commitment to health. Student and parent involvement in planning health activities were associated with improved school attendance. There were no significant associations between health improvement and KS4 attainment. Implementing health improvement activity does not have a detrimental effect on schools' educational performance. There is tentative evidence of the reverse, with better educational outcomes in schools with more extensive health improvement policies and practices. Further research should investigate processes by which this occurs and variations by socioeconomic status.
Monitoring Forage Production of California Rangeland Using Remote Sensing Observations
NASA Astrophysics Data System (ADS)
Liu, H.; Jin, Y.; Dahlgren, R. A.; O'Geen, A. T.; Roche, L. M.; Smith, A. M.; Flavell, D.
2016-12-01
Pastures and rangeland cover more than 10 million hectares in California's coastal and inland foothill regions, providing feeds to livestock and important ecosystem services. Forage production in California has a large year-to-year variation due to large inter-annual and seasonal variabilities in precipitation and temperature. It also varies spatially due to the variability in climate and soils. Our goal is to develop a robust and cost-effective tool to map the near-real-time and historical forage productivity in California using remote sensing observations from Landsat and MODIS satellites. We used a Monteith's eco-physiological plant growth theory: the aboveground net primary production (ANPP) is determined by (i) the absorbed photosynthetically active radiation (APAR) and the (ii) light use efficiency (LUE): ANPP = APAR * LUEmax * f(T) * f(SM), where LUEmax is the maximum LUE, and f(T) and f(SM) are the temperature and soil moisture constrains on LUE. APAR was estimated with Landsat and MODIS vegetation index (VI), and LUE was calibrated with a statewide point dataset of peak forage production measurements at 75 annual rangeland sites. A non-linear optimization was performed to derive maximum LUE and the parameters for temperature and soil moisture regulation on LUE by minimizing the differences between the estimated and measured ANPP. Our results showed the satellite-derived annual forage production estimates correlated well withcontemporaneous in-situ forage measurements and captured both the spatial and temporal productivity patterns of forage productivity well. This remote sensing algorithm can be further improved as new field measurements become available. This tool will have a great importance in maintaining a sustainable range industry by providing key knowledge for ranchers and the stakeholders to make managerial decisions.
Tracking quasi-stationary flow of weak fluorescent signals by adaptive multi-frame correlation.
Ji, L; Danuser, G
2005-12-01
We have developed a novel cross-correlation technique to probe quasi-stationary flow of fluorescent signals in live cells at a spatial resolution that is close to single particle tracking. By correlating image blocks between pairs of consecutive frames and integrating their correlation scores over multiple frame pairs, uncertainty in identifying a globally significant maximum in the correlation score function has been greatly reduced as compared with conventional correlation-based tracking using the signal of only two consecutive frames. This approach proves robust and very effective in analysing images with a weak, noise-perturbed signal contrast where texture characteristics cannot be matched between only a pair of frames. It can also be applied to images that lack prominent features that could be utilized for particle tracking or feature-based template matching. Furthermore, owing to the integration of correlation scores over multiple frames, the method can handle signals with substantial frame-to-frame intensity variation where conventional correlation-based tracking fails. We tested the performance of the method by tracking polymer flow in actin and microtubule cytoskeleton structures labelled at various fluorophore densities providing imagery with a broad range of signal modulation and noise. In applications to fluorescent speckle microscopy (FSM), where the fluorophore density is sufficiently low to reveal patterns of discrete fluorescent marks referred to as speckles, we combined the multi-frame correlation approach proposed above with particle tracking. This hybrid approach allowed us to follow single speckles robustly in areas of high speckle density and fast flow, where previously published FSM analysis methods were unsuccessful. Thus, we can now probe cytoskeleton polymer dynamics in living cells at an entirely new level of complexity and with unprecedented detail.
Augmentation of machine structure to improve its diagnosability
NASA Technical Reports Server (NTRS)
Hsieh, L.
1973-01-01
Two methods of augmenting the structure of a sequential machine so that it is diagnosable are presented. The checkable (checking sequences) and repeated symbol distinguishing sequences (RDS) are discussed. It was found that as few as twice the number of outputs of the given machine is sufficient for constructing a state-output augmentation with RDS. Techniques for minimizing the number of states in resolving convergences and in resolving equivalent and nonreduced cycles are developed.
Calculating utilization rates for rubber tired grapple skidders in the Southern United States
Jason D. Thompson
2001-01-01
Utilization rate is an important factor in calculating machine rates for forest harvesting machines. Machine rates allow an evaluation of harvesting system costs and facilitate comparisons between different systems and machines. There are many factors that affect utilization rate. These include mechanical delays, non-mechanical delays, operational lost time, and...
Modelling machine ensembles with discrete event dynamical system theory
NASA Technical Reports Server (NTRS)
Hunter, Dan
1990-01-01
Discrete Event Dynamical System (DEDS) theory can be utilized as a control strategy for future complex machine ensembles that will be required for in-space construction. The control strategy involves orchestrating a set of interactive submachines to perform a set of tasks for a given set of constraints such as minimum time, minimum energy, or maximum machine utilization. Machine ensembles can be hierarchically modeled as a global model that combines the operations of the individual submachines. These submachines are represented in the global model as local models. Local models, from the perspective of DEDS theory , are described by the following: a set of system and transition states, an event alphabet that portrays actions that takes a submachine from one state to another, an initial system state, a partial function that maps the current state and event alphabet to the next state, and the time required for the event to occur. Each submachine in the machine ensemble is presented by a unique local model. The global model combines the local models such that the local models can operate in parallel under the additional logistic and physical constraints due to submachine interactions. The global model is constructed from the states, events, event functions, and timing requirements of the local models. Supervisory control can be implemented in the global model by various methods such as task scheduling (open-loop control) or implementing a feedback DEDS controller (closed-loop control).
NASA Astrophysics Data System (ADS)
Kislyakov, M. A.; Chernov, V. A.; Maksimkin, V. L.; Bozhin, Yu. M.
2017-12-01
The article deals with modern methods of monitoring the state and predicting the life of electric machines. In 50% of the cases of failure in the performance of electric machines is associated with insulation damage. As promising, nondestructive methods of control, methods based on the investigation of the processes of polarization occurring in insulating materials are proposed. To improve the accuracy of determining the state of insulation, a multiparametric approach is considered, which is a basis for the development of an expert system for estimating the state of health.
Control of discrete event systems modeled as hierarchical state machines
NASA Technical Reports Server (NTRS)
Brave, Y.; Heymann, M.
1991-01-01
The authors examine a class of discrete event systems (DESs) modeled as asynchronous hierarchical state machines (AHSMs). For this class of DESs, they provide an efficient method for testing reachability, which is an essential step in many control synthesis procedures. This method utilizes the asynchronous nature and hierarchical structure of AHSMs, thereby illustrating the advantage of the AHSM representation as compared with its equivalent (flat) state machine representation. An application of the method is presented where an online minimally restrictive solution is proposed for the problem of maintaining a controlled AHSM within prescribed legal bounds.
Programmable Pulse-Position-Modulation Encoder
NASA Technical Reports Server (NTRS)
Zhu, David; Farr, William
2006-01-01
A programmable pulse-position-modulation (PPM) encoder has been designed for use in testing an optical communication link. The encoder includes a programmable state machine and an electronic code book that can be updated to accommodate different PPM coding schemes. The encoder includes a field-programmable gate array (FPGA) that is programmed to step through the stored state machine and code book and that drives a custom high-speed serializer circuit board that is capable of generating subnanosecond pulses. The stored state machine and code book can be updated by means of a simple text interface through the serial port of a personal computer.
High speed operation of permanent magnet machines
NASA Astrophysics Data System (ADS)
El-Refaie, Ayman M.
This work proposes methods to extend the high-speed operating capabilities of both the interior PM (IPM) and surface PM (SPM) machines. For interior PM machines, this research has developed and presented the first thorough analysis of how a new bi-state magnetic material can be usefully applied to the design of IPM machines. Key elements of this contribution include identifying how the unique properties of the bi-state magnetic material can be applied most effectively in the rotor design of an IPM machine by "unmagnetizing" the magnet cavity center posts rather than the outer bridges. The importance of elevated rotor speed in making the best use of the bi-state magnetic material while recognizing its limitations has been identified. For surface PM machines, this research has provided, for the first time, a clear explanation of how fractional-slot concentrated windings can be applied to SPM machines in order to achieve the necessary conditions for optimal flux weakening. A closed-form analytical procedure for analyzing SPM machines designed with concentrated windings has been developed. Guidelines for designing SPM machines using concentrated windings in order to achieve optimum flux weakening are provided. Analytical and numerical finite element analysis (FEA) results have provided promising evidence of the scalability of the concentrated winding technique with respect to the number of poles, machine aspect ratio, and output power rating. Useful comparisons between the predicted performance characteristics of SPM machines equipped with concentrated windings and both SPM and IPM machines designed with distributed windings are included. Analytical techniques have been used to evaluate the impact of the high pole number on various converter performance metrics. Both analytical techniques and FEA have been used for evaluating the eddy-current losses in the surface magnets due to the stator winding subharmonics. Techniques for reducing these losses have been investigated. A 6kW, 36slot/30pole prototype SPM machine has been designed and built. Experimental measurements have been used to verify the analytical and FEA results. These test results have demonstrated that wide constant-power speed range can be achieved. Other important machine features such as the near-sinusoidal back-emf, high efficiency, and low cogging torque have also been demonstrated.
Kostanyan, Artak E; Shishilov, Oleg N
2018-06-01
Multiple dual mode counter-current chromatography (MDM CCC) separation processes with semi-continuous large sample loading consist of a succession of two counter-current steps: with "x" phase (first step) and "y" phase (second step) flow periods. A feed mixture dissolved in the "x" phase is continuously loaded into a CCC machine at the beginning of the first step of each cycle over a constant time with the volumetric rate equal to the flow rate of the pure "x" phase. An easy-to-use calculating machine is developed to simulate the chromatograms and the amounts of solutes eluted with the phases at each cycle for steady-state (the duration of the flow periods of the phases is kept constant for all the cycles) and non-steady-state (with variable duration of alternating phase elution steps) separations. Using the calculating machine, the separation of mixtures containing up to five components can be simulated and designed. Examples of the application of the calculating machine for the simulation of MDM CCC processes are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
Method of Individual Forecasting of Technical State of Logging Machines
NASA Astrophysics Data System (ADS)
Kozlov, V. G.; Gulevsky, V. A.; Skrypnikov, A. V.; Logoyda, V. S.; Menzhulova, A. S.
2018-03-01
Development of the model that evaluates the possibility of failure requires the knowledge of changes’ regularities of technical condition parameters of the machines in use. To study the regularities, the need to develop stochastic models that take into account physical essence of the processes of destruction of structural elements of the machines, the technology of their production, degradation and the stochastic properties of the parameters of the technical state and the conditions and modes of operation arose.
NASA Astrophysics Data System (ADS)
Yu, Jianbo
2017-01-01
This study proposes an adaptive-learning-based method for machine faulty detection and health degradation monitoring. The kernel of the proposed method is an "evolving" model that uses an unsupervised online learning scheme, in which an adaptive hidden Markov model (AHMM) is used for online learning the dynamic health changes of machines in their full life. A statistical index is developed for recognizing the new health states in the machines. Those new health states are then described online by adding of new hidden states in AHMM. Furthermore, the health degradations in machines are quantified online by an AHMM-based health index (HI) that measures the similarity between two density distributions that describe the historic and current health states, respectively. When necessary, the proposed method characterizes the distinct operating modes of the machine and can learn online both abrupt as well as gradual health changes. Our method overcomes some drawbacks of the HIs (e.g., relatively low comprehensibility and applicability) based on fixed monitoring models constructed in the offline phase. Results from its application in a bearing life test reveal that the proposed method is effective in online detection and adaptive assessment of machine health degradation. This study provides a useful guide for developing a condition-based maintenance (CBM) system that uses an online learning method without considerable human intervention.
Ahmed, Yassmin Seid; Fox-Rabinovich, German; Paiva, Jose Mario; Wagg, Terry; Veldhuis, Stephen Clarence
2017-10-25
During machining of stainless steels at low cutting -speeds, workpiece material tends to adhere to the cutting tool at the tool-chip interface, forming built-up edge (BUE). BUE has a great importance in machining processes; it can significantly modify the phenomenon in the cutting zone, directly affecting the workpiece surface integrity, cutting tool forces, and chip formation. The American Iron and Steel Institute (AISI) 304 stainless steel has a high tendency to form an unstable BUE, leading to deterioration of the surface quality. Therefore, it is necessary to understand the nature of the surface integrity induced during machining operations. Although many reports have been published on the effect of tool wear during machining of AISI 304 stainless steel on surface integrity, studies on the influence of the BUE phenomenon in the stable state of wear have not been investigated so far. The main goal of the present work is to investigate the close link between the BUE formation, surface integrity and cutting forces in the stable sate of wear for uncoated cutting tool during the cutting tests of AISI 304 stainless steel. The cutting parameters were chosen to induce BUE formation during machining. X-ray diffraction (XRD) method was used for measuring superficial residual stresses of the machined surface through the stable state of wear in the cutting and feed directions. In addition, surface roughness of the machined surface was investigated using the Alicona microscope and Scanning Electron Microscopy (SEM) was used to reveal the surface distortions created during the cutting process, combined with chip undersurface analyses. The investigated BUE formation during the stable state of wear showed that the BUE can cause a significant improvement in the surface integrity and cutting forces. Moreover, it can be used to compensate for tool wear through changing the tool geometry, leading to the protection of the cutting tool from wear.
Fox-Rabinovich, German; Wagg, Terry
2017-01-01
During machining of stainless steels at low cutting -speeds, workpiece material tends to adhere to the cutting tool at the tool–chip interface, forming built-up edge (BUE). BUE has a great importance in machining processes; it can significantly modify the phenomenon in the cutting zone, directly affecting the workpiece surface integrity, cutting tool forces, and chip formation. The American Iron and Steel Institute (AISI) 304 stainless steel has a high tendency to form an unstable BUE, leading to deterioration of the surface quality. Therefore, it is necessary to understand the nature of the surface integrity induced during machining operations. Although many reports have been published on the effect of tool wear during machining of AISI 304 stainless steel on surface integrity, studies on the influence of the BUE phenomenon in the stable state of wear have not been investigated so far. The main goal of the present work is to investigate the close link between the BUE formation, surface integrity and cutting forces in the stable sate of wear for uncoated cutting tool during the cutting tests of AISI 304 stainless steel. The cutting parameters were chosen to induce BUE formation during machining. X-ray diffraction (XRD) method was used for measuring superficial residual stresses of the machined surface through the stable state of wear in the cutting and feed directions. In addition, surface roughness of the machined surface was investigated using the Alicona microscope and Scanning Electron Microscopy (SEM) was used to reveal the surface distortions created during the cutting process, combined with chip undersurface analyses. The investigated BUE formation during the stable state of wear showed that the BUE can cause a significant improvement in the surface integrity and cutting forces. Moreover, it can be used to compensate for tool wear through changing the tool geometry, leading to the protection of the cutting tool from wear. PMID:29068405
High-throughput state-machine replication using software transactional memory.
Zhao, Wenbing; Yang, William; Zhang, Honglei; Yang, Jack; Luo, Xiong; Zhu, Yueqin; Yang, Mary; Luo, Chaomin
2016-11-01
State-machine replication is a common way of constructing general purpose fault tolerance systems. To ensure replica consistency, requests must be executed sequentially according to some total order at all non-faulty replicas. Unfortunately, this could severely limit the system throughput. This issue has been partially addressed by identifying non-conflicting requests based on application semantics and executing these requests concurrently. However, identifying and tracking non-conflicting requests require intimate knowledge of application design and implementation, and a custom fault tolerance solution developed for one application cannot be easily adopted by other applications. Software transactional memory offers a new way of constructing concurrent programs. In this article, we present the mechanisms needed to retrofit existing concurrency control algorithms designed for software transactional memory for state-machine replication. The main benefit for using software transactional memory in state-machine replication is that general purpose concurrency control mechanisms can be designed without deep knowledge of application semantics. As such, new fault tolerance systems based on state-machine replications with excellent throughput can be easily designed and maintained. In this article, we introduce three different concurrency control mechanisms for state-machine replication using software transactional memory, namely, ordered strong strict two-phase locking, conventional timestamp-based multiversion concurrency control, and speculative timestamp-based multiversion concurrency control. Our experiments show that speculative timestamp-based multiversion concurrency control mechanism has the best performance in all types of workload, the conventional timestamp-based multiversion concurrency control offers the worst performance due to high abort rate in the presence of even moderate contention between transactions. The ordered strong strict two-phase locking mechanism offers the simplest solution with excellent performance in low contention workload, and fairly good performance in high contention workload.
High-throughput state-machine replication using software transactional memory
Yang, William; Zhang, Honglei; Yang, Jack; Luo, Xiong; Zhu, Yueqin; Yang, Mary; Luo, Chaomin
2017-01-01
State-machine replication is a common way of constructing general purpose fault tolerance systems. To ensure replica consistency, requests must be executed sequentially according to some total order at all non-faulty replicas. Unfortunately, this could severely limit the system throughput. This issue has been partially addressed by identifying non-conflicting requests based on application semantics and executing these requests concurrently. However, identifying and tracking non-conflicting requests require intimate knowledge of application design and implementation, and a custom fault tolerance solution developed for one application cannot be easily adopted by other applications. Software transactional memory offers a new way of constructing concurrent programs. In this article, we present the mechanisms needed to retrofit existing concurrency control algorithms designed for software transactional memory for state-machine replication. The main benefit for using software transactional memory in state-machine replication is that general purpose concurrency control mechanisms can be designed without deep knowledge of application semantics. As such, new fault tolerance systems based on state-machine replications with excellent throughput can be easily designed and maintained. In this article, we introduce three different concurrency control mechanisms for state-machine replication using software transactional memory, namely, ordered strong strict two-phase locking, conventional timestamp-based multiversion concurrency control, and speculative timestamp-based multiversion concurrency control. Our experiments show that speculative timestamp-based multiversion concurrency control mechanism has the best performance in all types of workload, the conventional timestamp-based multiversion concurrency control offers the worst performance due to high abort rate in the presence of even moderate contention between transactions. The ordered strong strict two-phase locking mechanism offers the simplest solution with excellent performance in low contention workload, and fairly good performance in high contention workload. PMID:29075049
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-18
... Halogenated Solvent Cleaning Machines: State of Rhode Island Department of Environmental Management AGENCY... machines in Rhode Island, except for continuous web cleaning machines. This approval would grant RI DEM the... Halogenated Solvent NESHAP for organic solvent cleaning machines and would make the Rhode Island Department of...
Technology of machine tools. Volume 4. Machine tool controls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-10-01
The Machine Tool Task Force (MTTF) was formed to characterize the state of the art of machine tool technology and to identify promising future directions of this technology. This volume is one of a five-volume series that presents the MTTF findings; reports on various areas of the technology were contributed by experts in those areas.
Technology of machine tools. Volume 3. Machine tool mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tlusty, J.
1980-10-01
The Machine Tool Task Force (MTTF) was formed to characterize the state of the art of machine tool technology and to identify promising future directions of this technology. This volume is one of a five-volume series that presents the MTTF findings; reports on various areas of the technology were contributed by experts in those areas.
Technology of machine tools. Volume 5. Machine tool accuracy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hocken, R.J.
1980-10-01
The Machine Tool Task Force (MTTF) was formed to characterize the state of the art of machine tool technology and to identify promising future directions of this technology. This volume is one of a five-volume series that presents the MTTF findings; reports on various areas of the technology were contributed by experts in those areas.
Machine learning phases of matter
NASA Astrophysics Data System (ADS)
Carrasquilla, Juan; Melko, Roger G.
2017-02-01
Condensed-matter physics is the study of the collective behaviour of infinitely complex assemblies of electrons, nuclei, magnetic moments, atoms or qubits. This complexity is reflected in the size of the state space, which grows exponentially with the number of particles, reminiscent of the `curse of dimensionality' commonly encountered in machine learning. Despite this curse, the machine learning community has developed techniques with remarkable abilities to recognize, classify, and characterize complex sets of data. Here, we show that modern machine learning architectures, such as fully connected and convolutional neural networks, can identify phases and phase transitions in a variety of condensed-matter Hamiltonians. Readily programmable through modern software libraries, neural networks can be trained to detect multiple types of order parameter, as well as highly non-trivial states with no conventional order, directly from raw state configurations sampled with Monte Carlo.
Astumian, R. Dean
2015-01-01
A simple model for a chemically driven molecular walker shows that the elastic energy stored by the molecule and released during the conformational change known as the power-stroke (i.e., the free-energy difference between the pre- and post-power-stroke states) is irrelevant for determining the directionality, stopping force, and efficiency of the motor. Further, the apportionment of the dependence on the externally applied force between the forward and reverse rate constants of the power-stroke (or indeed among all rate constants) is irrelevant for determining the directionality, stopping force, and efficiency of the motor. Arguments based on the principle of microscopic reversibility demonstrate that this result is general for all chemically driven molecular machines, and even more broadly that the relative energies of the states of the motor have no role in determining the directionality, stopping force, or optimal efficiency of the machine. Instead, the directionality, stopping force, and optimal efficiency are determined solely by the relative heights of the energy barriers between the states. Molecular recognition—the ability of a molecular machine to discriminate between substrate and product depending on the state of the machine—is far more important for determining the intrinsic directionality and thermodynamics of chemo-mechanical coupling than are the details of the internal mechanical conformational motions of the machine. In contrast to the conclusions for chemical driving, a power-stroke is very important for the directionality and efficiency of light-driven molecular machines and for molecular machines driven by external modulation of thermodynamic parameters. PMID:25606678
NASA Astrophysics Data System (ADS)
Qiu, Mo; Yu, Simin; Wen, Yuqiong; Lü, Jinhu; He, Jianbin; Lin, Zhuosheng
In this paper, a novel design methodology and its FPGA hardware implementation for a universal chaotic signal generator is proposed via the Verilog HDL fixed-point algorithm and state machine control. According to continuous-time or discrete-time chaotic equations, a Verilog HDL fixed-point algorithm and its corresponding digital system are first designed. In the FPGA hardware platform, each operation step of Verilog HDL fixed-point algorithm is then controlled by a state machine. The generality of this method is that, for any given chaotic equation, it can be decomposed into four basic operation procedures, i.e. nonlinear function calculation, iterative sequence operation, iterative values right shifting and ceiling, and chaotic iterative sequences output, each of which corresponds to only a state via state machine control. Compared with the Verilog HDL floating-point algorithm, the Verilog HDL fixed-point algorithm can save the FPGA hardware resources and improve the operation efficiency. FPGA-based hardware experimental results validate the feasibility and reliability of the proposed approach.
NASA Astrophysics Data System (ADS)
Matsunaga, Y.; Sugita, Y.
2018-06-01
A data-driven modeling scheme is proposed for conformational dynamics of biomolecules based on molecular dynamics (MD) simulations and experimental measurements. In this scheme, an initial Markov State Model (MSM) is constructed from MD simulation trajectories, and then, the MSM parameters are refined using experimental measurements through machine learning techniques. The second step can reduce the bias of MD simulation results due to inaccurate force-field parameters. Either time-series trajectories or ensemble-averaged data are available as a training data set in the scheme. Using a coarse-grained model of a dye-labeled polyproline-20, we compare the performance of machine learning estimations from the two types of training data sets. Machine learning from time-series data could provide the equilibrium populations of conformational states as well as their transition probabilities. It estimates hidden conformational states in more robust ways compared to that from ensemble-averaged data although there are limitations in estimating the transition probabilities between minor states. We discuss how to use the machine learning scheme for various experimental measurements including single-molecule time-series trajectories.
Identification of Tool Wear when Machining of Austenitic Steels and Titatium by Miniature Machining
NASA Astrophysics Data System (ADS)
Pilc, Jozef; Kameník, Roman; Varga, Daniel; Martinček, Juraj; Sadilek, Marek
2016-12-01
Application of miniature machining is currently rapidly increasing mainly in biomedical industry and machining of hard-to-machine materials. Machinability of materials with increased level of toughness depends on factors that are important in the final state of surface integrity. Because of this, it is necessary to achieve high precision (varying in microns) in miniature machining. If we want to guarantee machining high precision, it is necessary to analyse tool wear intensity in direct interaction with given machined materials. During long-term cutting process, different cutting wedge deformations occur, leading in most cases to a rapid wear and destruction of the cutting wedge. This article deal with experimental monitoring of tool wear intensity during miniature machining.
Distributed state machine supervision for long-baseline gravitational-wave detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rollins, Jameson Graef, E-mail: jameson.rollins@ligo.org
The Laser Interferometer Gravitational-wave Observatory (LIGO) consists of two identical yet independent, widely separated, long-baseline gravitational-wave detectors. Each Advanced LIGO detector consists of complex optical-mechanical systems isolated from the ground by multiple layers of active seismic isolation, all controlled by hundreds of fast, digital, feedback control systems. This article describes a novel state machine-based automation platform developed to handle the automation and supervisory control challenges of these detectors. The platform, called Guardian, consists of distributed, independent, state machine automaton nodes organized hierarchically for full detector control. User code is written in standard Python and the platform is designed to facilitatemore » the fast-paced development process associated with commissioning the complicated Advanced LIGO instruments. While developed specifically for the Advanced LIGO detectors, Guardian is a generic state machine automation platform that is useful for experimental control at all levels, from simple table-top setups to large-scale multi-million dollar facilities.« less
NASA Technical Reports Server (NTRS)
Hedgeland, Randy J.; Hansen, Patricia A.
1993-01-01
A Scientific Instrument Protective Enclosure (SIPE) was designed to accommodate second generation science instruments (SIs) for the Hubble Space Telescope (HST) First Servicing Mission (FSM). One of the main design drivers for the SIPE is to provide a protective environment for the SIs against particulate and molecular contaminants that pose a viable threat to the SI performance. The focus of this paper will detail the methodology incorporated in the design of the SIPE to provide a controlled environment for SI protection at the launch site, during pre-launch/launch activities, and during on-orbit operations in the Shuttle bay.
1993-11-01
6.36 5.94 6.39 5.99 GMo (ft) 5.07 4.68 4.83 4.60 FSM (ft-lbs) .00 1232.00 1232.00 1232.00 FSC (ft) .00 .02 .02 .02 GMt (ft) 5.07 4.66 4.81 4.58 LCG (ft...mechanical plant , the 502001 can certainly get underway for an emergency response in less than ten minutes of notification, assuming that all crew members are...of the well deck and the stern ramp permit the crew to deploy pollution control booms from the boat. The stern ramp is also useful as a platform and
On the Stability of Jump-Linear Systems Driven by Finite-State Machines with Markovian Inputs
NASA Technical Reports Server (NTRS)
Patilkulkarni, Sudarshan; Herencia-Zapana, Heber; Gray, W. Steven; Gonzalez, Oscar R.
2004-01-01
This paper presents two mean-square stability tests for a jump-linear system driven by a finite-state machine with a first-order Markovian input process. The first test is based on conventional Markov jump-linear theory and avoids the use of any higher-order statistics. The second test is developed directly using the higher-order statistics of the machine s output process. The two approaches are illustrated with a simple model for a recoverable computer control system.
A rule-based approach to model checking of UML state machines
NASA Astrophysics Data System (ADS)
Grobelna, Iwona; Grobelny, Michał; Stefanowicz, Łukasz
2016-12-01
In the paper a new approach to formal verification of control process specification expressed by means of UML state machines in version 2.x is proposed. In contrast to other approaches from the literature, we use the abstract and universal rule-based logical model suitable both for model checking (using the nuXmv model checker), but also for logical synthesis in form of rapid prototyping. Hence, a prototype implementation in hardware description language VHDL can be obtained that fully reflects the primary, already formally verified specification in form of UML state machines. Presented approach allows to increase the assurance that implemented system meets the user-defined requirements.
Optimum and Heuristic Algorithms for Finite State Machine Decomposition and Partitioning
1989-09-01
Heuristic Algorithms for Finite State Machine Decomposition and Partitioning Pravnav Ashar, Srinivas Devadas , and A. Richard Newton , T E’,’ .,jpf~s’!i3...94720. Devadas : Department of Electrical Engineering and Computer Science, Room 36-848, MIT, Cambridge, MA 02139. (617) 253-0454. Copyright* 1989 MIT...and reduction, A finite state miachinie is represenutedl by its State Transition Graphi itodlitied froini two-level B ~oolean imiinimizers. Ilist
Nanowire nanocomputer as a finite-state machine.
Yao, Jun; Yan, Hao; Das, Shamik; Klemic, James F; Ellenbogen, James C; Lieber, Charles M
2014-02-18
Implementation of complex computer circuits assembled from the bottom up and integrated on the nanometer scale has long been a goal of electronics research. It requires a design and fabrication strategy that can address individual nanometer-scale electronic devices, while enabling large-scale assembly of those devices into highly organized, integrated computational circuits. We describe how such a strategy has led to the design, construction, and demonstration of a nanoelectronic finite-state machine. The system was fabricated using a design-oriented approach enabled by a deterministic, bottom-up assembly process that does not require individual nanowire registration. This methodology allowed construction of the nanoelectronic finite-state machine through modular design using a multitile architecture. Each tile/module consists of two interconnected crossbar nanowire arrays, with each cross-point consisting of a programmable nanowire transistor node. The nanoelectronic finite-state machine integrates 180 programmable nanowire transistor nodes in three tiles or six total crossbar arrays, and incorporates both sequential and arithmetic logic, with extensive intertile and intratile communication that exhibits rigorous input/output matching. Our system realizes the complete 2-bit logic flow and clocked control over state registration that are required for a finite-state machine or computer. The programmable multitile circuit was also reprogrammed to a functionally distinct 2-bit full adder with 32-set matched and complete logic output. These steps forward and the ability of our unique design-oriented deterministic methodology to yield more extensive multitile systems suggest that proposed general-purpose nanocomputers can be realized in the near future.
Nanowire nanocomputer as a finite-state machine
Yao, Jun; Yan, Hao; Das, Shamik; Klemic, James F.; Ellenbogen, James C.; Lieber, Charles M.
2014-01-01
Implementation of complex computer circuits assembled from the bottom up and integrated on the nanometer scale has long been a goal of electronics research. It requires a design and fabrication strategy that can address individual nanometer-scale electronic devices, while enabling large-scale assembly of those devices into highly organized, integrated computational circuits. We describe how such a strategy has led to the design, construction, and demonstration of a nanoelectronic finite-state machine. The system was fabricated using a design-oriented approach enabled by a deterministic, bottom–up assembly process that does not require individual nanowire registration. This methodology allowed construction of the nanoelectronic finite-state machine through modular design using a multitile architecture. Each tile/module consists of two interconnected crossbar nanowire arrays, with each cross-point consisting of a programmable nanowire transistor node. The nanoelectronic finite-state machine integrates 180 programmable nanowire transistor nodes in three tiles or six total crossbar arrays, and incorporates both sequential and arithmetic logic, with extensive intertile and intratile communication that exhibits rigorous input/output matching. Our system realizes the complete 2-bit logic flow and clocked control over state registration that are required for a finite-state machine or computer. The programmable multitile circuit was also reprogrammed to a functionally distinct 2-bit full adder with 32-set matched and complete logic output. These steps forward and the ability of our unique design-oriented deterministic methodology to yield more extensive multitile systems suggest that proposed general-purpose nanocomputers can be realized in the near future. PMID:24469812
Technology of machine tools. Volume 2. Machine tool systems management and utilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomson, A.R.
1980-10-01
The Machine Tool Task Force (MTTF) was formed to characterize the state of the art of machine tool technology and to identify promising future directions of this technology. This volume is one of a five-volume series that presents the MTTF findings; reports on various areas of the technology were contributed by experts in those areas.
Code of Federal Regulations, 2010 CFR
2010-07-01
... vending facilities, including vending machines, on property controlled by the Department of the Treasury... States. Treasury bureaus shall ensure that the collection and distribution of vending machine income from vending machines on Treasury-controlled property shall be in compliance with the regulations set forth in...
Taber, Daniel R; Chriqui, Jamie F; Vuillaume, Renee; Chaloupka, Frank J
2014-01-01
Sodas are widely sold in vending machines and other school venues in the United States, particularly in high school. Research suggests that policy changes have reduced soda access, but the impact of reduced access on consumption is unclear. This study was designed to identify student, environmental, or policy characteristics that modify the associations between school vending machines and student dietary behaviors. Data on school vending machine access and student diet were obtained as part of the National Youth Physical Activity and Nutrition Study (NYPANS) and linked to state-level data on soda taxes, restaurant taxes, and state laws governing the sale of soda in schools. Regression models were used to: 1) estimate associations between vending machine access and soda consumption, fast food consumption, and lunch source, and 2) determine if associations were modified by state soda taxes, restaurant taxes, laws banning in-school soda sales, or student characteristics (race/ethnicity, sex, home food access, weight loss behaviors.). Contrary to the hypothesis, students tended to consume 0.53 fewer servings of soda/week (95% CI: -1.17, 0.11) and consume fast food on 0.24 fewer days/week (95% CI: -0.44, -0.05) if they had in-school access to vending machines. They were also less likely to consume soda daily (23.9% vs. 27.9%, average difference = -4.02, 95% CI: -7.28, -0.76). However, these inverse associations were observed primarily among states with lower soda and restaurant tax rates (relative to general food tax rates) and states that did not ban in-school soda sales. Associations did not vary by any student characteristics except for weight loss behaviors. Isolated changes to the school food environment may have unintended consequences unless policymakers incorporate other initiatives designed to discourage overall soda consumption.
Taber, Daniel R.; Chriqui, Jamie F.; Vuillaume, Renee; Chaloupka, Frank J.
2014-01-01
Background Sodas are widely sold in vending machines and other school venues in the United States, particularly in high school. Research suggests that policy changes have reduced soda access, but the impact of reduced access on consumption is unclear. This study was designed to identify student, environmental, or policy characteristics that modify the associations between school vending machines and student dietary behaviors. Methods Data on school vending machine access and student diet were obtained as part of the National Youth Physical Activity and Nutrition Study (NYPANS) and linked to state-level data on soda taxes, restaurant taxes, and state laws governing the sale of soda in schools. Regression models were used to: 1) estimate associations between vending machine access and soda consumption, fast food consumption, and lunch source, and 2) determine if associations were modified by state soda taxes, restaurant taxes, laws banning in-school soda sales, or student characteristics (race/ethnicity, sex, home food access, weight loss behaviors.) Results Contrary to the hypothesis, students tended to consume 0.53 fewer servings of soda/week (95% CI: -1.17, 0.11) and consume fast food on 0.24 fewer days/week (95% CI: -0.44, -0.05) if they had in-school access to vending machines. They were also less likely to consume soda daily (23.9% vs. 27.9%, average difference = -4.02, 95% CI: -7.28, -0.76). However, these inverse associations were observed primarily among states with lower soda and restaurant tax rates (relative to general food tax rates) and states that did not ban in-school soda sales. Associations did not vary by any student characteristics except for weight loss behaviors. Conclusion Isolated changes to the school food environment may have unintended consequences unless policymakers incorporate other initiatives designed to discourage overall soda consumption. PMID:25083906
Gambling with stimulus payments: feeding gaming machines with federal dollars.
Lye, Jenny; Hirschberg, Joe
2014-09-01
In late 2008 and early 2009 the Australian Federal Government introduced a series of economic stimulus packages designed to maintain consumer spending in the early days of the Great Recession. When these packages were initiated the media suggested that the wide-spread availability of electronic gaming machines (EGMs, e.g. slot machines, poker machines, video lottery terminals) in Australia would result in stimulating the EGMs. Using state level monthly data we estimate that the stimulus packages led to an increase of 26 % in EGM revenues. This also resulted in over $60 million in additional tax revenue for State Governments. We also estimate a short-run aggregate income demand elasticity for EGMs to be approximately 2.
NASA Astrophysics Data System (ADS)
Zhu, Meng-Zheng; Ye, Liu
2015-04-01
An efficient scheme is proposed to implement a quantum cloning machine in separate cavities based on a hybrid interaction between electron-spin systems placed in the cavities and an optical coherent pulse. The coefficient of the output state for the present cloning machine is just the direct product of two trigonometric functions, which ensures that different types of quantum cloning machine can be achieved readily in the same framework by appropriately adjusting the rotated angles. The present scheme can implement optimal one-to-two symmetric (asymmetric) universal quantum cloning, optimal symmetric (asymmetric) phase-covariant cloning, optimal symmetric (asymmetric) real-state cloning, optimal one-to-three symmetric economical real-state cloning, and optimal symmetric cloning of qubits given by an arbitrary axisymmetric distribution. In addition, photon loss of the qubus beams during the transmission and decoherence effects caused by such a photon loss are investigated.
A Framework to Guide the Assessment of Human-Machine Systems.
Stowers, Kimberly; Oglesby, James; Sonesh, Shirley; Leyva, Kevin; Iwig, Chelsea; Salas, Eduardo
2017-03-01
We have developed a framework for guiding measurement in human-machine systems. The assessment of safety and performance in human-machine systems often relies on direct measurement, such as tracking reaction time and accidents. However, safety and performance emerge from the combination of several variables. The assessment of precursors to safety and performance are thus an important part of predicting and improving outcomes in human-machine systems. As part of an in-depth literature analysis involving peer-reviewed, empirical articles, we located and classified variables important to human-machine systems, giving a snapshot of the state of science on human-machine system safety and performance. Using this information, we created a framework of safety and performance in human-machine systems. This framework details several inputs and processes that collectively influence safety and performance. Inputs are divided according to human, machine, and environmental inputs. Processes are divided into attitudes, behaviors, and cognitive variables. Each class of inputs influences the processes and, subsequently, outcomes that emerge in human-machine systems. This framework offers a useful starting point for understanding the current state of the science and measuring many of the complex variables relating to safety and performance in human-machine systems. This framework can be applied to the design, development, and implementation of automated machines in spaceflight, military, and health care settings. We present a hypothetical example in our write-up of how it can be used to aid in project success.
Energy: Machines, Science (Experimental): 5311.03.
ERIC Educational Resources Information Center
Castaldi, June P.
This unit of instruction was designed as an introductory course in energy involving six simple machines, electricity, magnetism, and motion. The booklet lists the relevant state-adopted texts and states the performance objectives for the unit. It provides an outline of the course content and suggests experiments, demonstrations, field trips, and…
22 CFR 121.10 - Forgings, castings and machined bodies.
Code of Federal Regulations, 2013 CFR
2013-04-01
... STATES MUNITIONS LIST Enumeration of Articles § 121.10 Forgings, castings and machined bodies. Articles on the U.S. Munitions List include articles in a partially completed state (such as forgings... identifiable as defense articles. If the end-item is an article on the U.S. Munitions List (including...
22 CFR 121.10 - Forgings, castings and machined bodies.
Code of Federal Regulations, 2011 CFR
2011-04-01
... STATES MUNITIONS LIST Enumeration of Articles § 121.10 Forgings, castings and machined bodies. Articles on the U.S. Munitions List include articles in a partially completed state (such as forgings... identifiable as defense articles. If the end-item is an article on the U.S. Munitions List (including...
22 CFR 121.10 - Forgings, castings and machined bodies.
Code of Federal Regulations, 2012 CFR
2012-04-01
... STATES MUNITIONS LIST Enumeration of Articles § 121.10 Forgings, castings and machined bodies. Articles on the U.S. Munitions List include articles in a partially completed state (such as forgings... identifiable as defense articles. If the end-item is an article on the U.S. Munitions List (including...
High-speed machining of Space Shuttle External Tank (ET) panels
NASA Technical Reports Server (NTRS)
Miller, J. A.
1983-01-01
Potential production rates and project cost savings achieved by converting the conventional machining process in manufacturing shuttle external tank panels to high speed machining (HSM) techniques were studied. Savings were projected from the comparison of current production rates with HSM rates and with rates attainable on new conventional machines. The HSM estimates were also based on rates attainable by retrofitting existing conventional equipment with high speed spindle motors and rates attainable using new state of the art machines designed and built for HSM.
Overview of the Machine-Tool Task Force
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, G.P.
1981-06-08
The Machine Tool Task Force, (MTTF) surveyed the state of the art of machine tool technology for material removal for two and one-half years. This overview gives a brief summary of the approach, specific subjects covered, principal conclusions and some of the key recommendations aimed at improving the technology and advancing the productivity of machine tools. The Task Force consisted of 123 experts from the US and other countries. Their findings are documented in a five-volume report, Technology of Machine Tools.
VML 3.0 Reactive Sequencing Objects and Matrix Math Operations for Attitude Profiling
NASA Technical Reports Server (NTRS)
Grasso, Christopher A.; Riedel, Joseph E.
2012-01-01
VML (Virtual Machine Language) has been used as the sequencing flight software on over a dozen JPL deep-space missions, most recently flying on GRAIL and JUNO. In conjunction with the NASA SBIR entitled "Reactive Rendezvous and Docking Sequencer", VML version 3.0 has been enhanced to include object-oriented element organization, built-in queuing operations, and sophisticated matrix / vector operations. These improvements allow VML scripts to easily perform much of the work that formerly would have required a great deal of expensive flight software development to realize. Autonomous turning and tracking makes considerable use of new VML features. Profiles generated by flight software are managed using object-oriented VML data constructs executed in discrete time by the VML flight software. VML vector and matrix operations provide the ability to calculate and supply quaternions to the attitude controller flight software which produces torque requests. Using VML-based attitude planning components eliminates flight software development effort, and reduces corresponding costs. In addition, the direct management of the quaternions allows turning and tracking to be tied in with sophisticated high-level VML state machines. These state machines provide autonomous management of spacecraft operations during critical tasks like a hypothetic Mars sample return rendezvous and docking. State machines created for autonomous science observations can also use this sort of attitude planning system, allowing heightened autonomy levels to reduce operations costs. VML state machines cannot be considered merely sequences - they are reactive logic constructs capable of autonomous decision making within a well-defined domain. The state machine approach enabled by VML 3.0 is progressing toward flight capability with a wide array of applicable mission activities.
NASA Astrophysics Data System (ADS)
Robert-Perron, Etienne; Blais, Carl; Pelletier, Sylvain; Thomas, Yannig
2007-06-01
The green machining process is an interesting approach for solving the mediocre machining behavior of high-performance powder metallurgy (PM) steels. This process appears as a promising method for extending tool life and reducing machining costs. Recent improvements in binder/lubricant technologies have led to high green strength systems that enable green machining. So far, tool wear has been considered negligible when characterizing the machinability of green PM specimens. This inaccurate assumption may lead to the selection of suboptimum cutting conditions. The first part of this study involves the optimization of the machining parameters to minimize the effects of tool wear on the machinability in turning of green PM components. The second part of our work compares the sintered mechanical properties of components machined in green state with other machined after sintering.
Runtime Verification of C Programs
NASA Technical Reports Server (NTRS)
Havelund, Klaus
2008-01-01
We present in this paper a framework, RMOR, for monitoring the execution of C programs against state machines, expressed in a textual (nongraphical) format in files separate from the program. The state machine language has been inspired by a graphical state machine language RCAT recently developed at the Jet Propulsion Laboratory, as an alternative to using Linear Temporal Logic (LTL) for requirements capture. Transitions between states are labeled with abstract event names and Boolean expressions over such. The abstract events are connected to code fragments using an aspect-oriented pointcut language similar to ASPECTJ's or ASPECTC's pointcut language. The system is implemented in the C analysis and transformation package CIL, and is programmed in OCAML, the implementation language of CIL. The work is closely related to the notion of stateful aspects within aspect-oriented programming, where pointcut languages are extended with temporal assertions over the execution trace.
Multi-category micro-milling tool wear monitoring with continuous hidden Markov models
NASA Astrophysics Data System (ADS)
Zhu, Kunpeng; Wong, Yoke San; Hong, Geok Soon
2009-02-01
In-process monitoring of tool conditions is important in micro-machining due to the high precision requirement and high tool wear rate. Tool condition monitoring in micro-machining poses new challenges compared to conventional machining. In this paper, a multi-category classification approach is proposed for tool flank wear state identification in micro-milling. Continuous Hidden Markov models (HMMs) are adapted for modeling of the tool wear process in micro-milling, and estimation of the tool wear state given the cutting force features. For a noise-robust approach, the HMM outputs are connected via a medium filter to minimize the tool state before entry into the next state due to high noise level. A detailed study on the selection of HMM structures for tool condition monitoring (TCM) is presented. Case studies on the tool state estimation in the micro-milling of pure copper and steel demonstrate the effectiveness and potential of these methods.
Chriqui, Jamie F; Eidson, Shelby S; Bates, Hannalori; Kowalczyk, Shelly; Chaloupka, Frank J
2008-07-01
Junk food consumption is associated with rising obesity rates in the United States. While a "junk food" specific tax is a potential public health intervention, a majority of states already impose sales taxes on certain junk food and soft drinks. This study reviews the state sales tax variance for soft drinks and selected snack products sold through grocery stores and vending machines as of January 2007. Sales taxes vary by state, intended retail location (grocery store vs. vending machine), and product. Vended snacks and soft drinks are taxed at a higher rate than grocery items and other food products, generally, indicative of a "disfavored" tax status attributed to vended items. Soft drinks, candy, and gum are taxed at higher rates than are other items examined. Similar tax schemes in other countries and the potential implications of these findings relative to the relationship between price and consumption are discussed.
Research Results Of Stress-Strain State Of Cutting Tool When Aviation Materials Turning
NASA Astrophysics Data System (ADS)
Serebrennikova, A. G.; Nikolaeva, E. P.; Savilov, A. V.; Timofeev, S. A.; Pyatykh, A. S.
2018-01-01
Titanium alloys and stainless steels are hard-to-machine of all the machining types. Cutting edge state of turning tool after machining titanium and high-strength aluminium alloys and corrosion-resistant high-alloy steel has been studied. Cutting forces and chip contact arears with the rake surface of cutter has been measured. The relationship of cutting forces and residual stresses are shown. Cutting forces and residual stresses vs value of cutting tool rake angle relation were obtained. Measurements of residual stresses were performed by x-ray diffraction.
Tricker, Christopher; Rock, Adam J; Clark, Gavin I
2016-06-01
In order to enhance our understanding of the nature of poker-machine problem-gambling, a community sample of 37 poker-machine gamblers (M age = 32 years, M PGSI = 5; PGSI = Problem Gambling Severity Index) were assessed for urge to gamble (responses on a visual analogue scale) and altered state of consciousness (assessed by the Altered State of Awareness dimension of the Phenomenology of Consciousness Inventory) at baseline, after a neutral cue, and after a gambling cue. It was found that (a) problem-gambling severity (PGSI score) predicted increase in urge (from neutral cue to gambling cue, controlling for baseline; sr (2) = .19, p = .006) and increase in altered state of consciousness (from neutral cue to gambling cue, controlling for baseline; sr (2) = .57, p < .001), and (b) increase in altered state of consciousness (from neutral cue to gambling cue) mediated the relationship between problem-gambling severity and increase in urge (from neutral cue to gambling cue; κ(2) = .40, 99 % CI [.08, .71]). These findings suggest that cue-reactive altered state of consciousness is an important component of cue-reactive urge in poker-machine problem-gamblers.
Acceleration of saddle-point searches with machine learning.
Peterson, Andrew A
2016-08-21
In atomistic simulations, the location of the saddle point on the potential-energy surface (PES) gives important information on transitions between local minima, for example, via transition-state theory. However, the search for saddle points often involves hundreds or thousands of ab initio force calls, which are typically all done at full accuracy. This results in the vast majority of the computational effort being spent calculating the electronic structure of states not important to the researcher, and very little time performing the calculation of the saddle point state itself. In this work, we describe how machine learning (ML) can reduce the number of intermediate ab initio calculations needed to locate saddle points. Since machine-learning models can learn from, and thus mimic, atomistic simulations, the saddle-point search can be conducted rapidly in the machine-learning representation. The saddle-point prediction can then be verified by an ab initio calculation; if it is incorrect, this strategically has identified regions of the PES where the machine-learning representation has insufficient training data. When these training data are used to improve the machine-learning model, the estimates greatly improve. This approach can be systematized, and in two simple example problems we demonstrate a dramatic reduction in the number of ab initio force calls. We expect that this approach and future refinements will greatly accelerate searches for saddle points, as well as other searches on the potential energy surface, as machine-learning methods see greater adoption by the atomistics community.
Acceleration of saddle-point searches with machine learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Andrew A., E-mail: andrew-peterson@brown.edu
In atomistic simulations, the location of the saddle point on the potential-energy surface (PES) gives important information on transitions between local minima, for example, via transition-state theory. However, the search for saddle points often involves hundreds or thousands of ab initio force calls, which are typically all done at full accuracy. This results in the vast majority of the computational effort being spent calculating the electronic structure of states not important to the researcher, and very little time performing the calculation of the saddle point state itself. In this work, we describe how machine learning (ML) can reduce the numbermore » of intermediate ab initio calculations needed to locate saddle points. Since machine-learning models can learn from, and thus mimic, atomistic simulations, the saddle-point search can be conducted rapidly in the machine-learning representation. The saddle-point prediction can then be verified by an ab initio calculation; if it is incorrect, this strategically has identified regions of the PES where the machine-learning representation has insufficient training data. When these training data are used to improve the machine-learning model, the estimates greatly improve. This approach can be systematized, and in two simple example problems we demonstrate a dramatic reduction in the number of ab initio force calls. We expect that this approach and future refinements will greatly accelerate searches for saddle points, as well as other searches on the potential energy surface, as machine-learning methods see greater adoption by the atomistics community.« less
NASA Technical Reports Server (NTRS)
Greer, Lawrence (Inventor)
2017-01-01
An apparatus and a computer-implemented method for generating pulses synchronized to a rising edge of a tachometer signal from rotating machinery are disclosed. For example, in one embodiment, a pulse state machine may be configured to generate a plurality of pulses, and a period state machine may be configured to determine a period for each of the plurality of pulses.
TRS-80 at the Maine State Library.
ERIC Educational Resources Information Center
Wismer, Donald
This report describes the applications and work flow of a TRS-80 microcomputer at the Maine State Library, and provides sample computer-generated records and programs used with the TRS-80. The machine was chosen for its price, availability, and compatibility with machines already in Maine's schools. It is used for mailing list management (with…
NASA Technical Reports Server (NTRS)
Berg, Melanie D.; Label, Kenneth A.; Kim, Hak; Phan, Anthony; Seidleck, Christina
2014-01-01
Finite state-machines (FSMs) are used to control operational flow in application specific integrated circuits (ASICs) and field programmable gate array (FPGA) devices. Because of their ease of interpretation, FSMs simplify the design and verification process and consequently are significant components in a synchronous design.
14 CFR 382.3 - What do the terms in this rule mean?
Code of Federal Regulations, 2014 CFR
2014-01-01
... devices and medications. Automated airport kiosk means a self-service transaction machine that a carrier... machine means a continuous positive airway pressure machine. Department or DOT means the United States..., emotional or mental illness, and specific learning disabilities. The term physical or mental impairment...
Behavioral Profiling of Scada Network Traffic Using Machine Learning Algorithms
2014-03-27
BEHAVIORAL PROFILING OF SCADA NETWORK TRAFFIC USING MACHINE LEARNING ALGORITHMS THESIS Jessica R. Werling, Captain, USAF AFIT-ENG-14-M-81 DEPARTMENT...subject to copyright protection in the United States. AFIT-ENG-14-M-81 BEHAVIORAL PROFILING OF SCADA NETWORK TRAFFIC USING MACHINE LEARNING ...AFIT-ENG-14-M-81 BEHAVIORAL PROFILING OF SCADA NETWORK TRAFFIC USING MACHINE LEARNING ALGORITHMS Jessica R. Werling, B.S.C.S. Captain, USAF Approved
Vending machine policies and practices in Delaware.
Gemmill, Erin; Cotugna, Nancy
2005-04-01
Overweight has reached alarming proportions among America's youth. Although the cause of the rise in overweight rates in children and adolescents is certainly the result of the interaction of a variety of factors, the presence of vending machines in schools is one issue that has recently come to the forefront. Many states have passed or proposed legislation that limits student access to vending machines in schools or require that vending machines in schools offer healthier choices. The purposes of this study were (a) to assess the food and beverage vending machine offerings in the public school districts in the state of Delaware and (b) to determine whether there are any district vending policies in place other than the current U.S. Department of Agriculture regulations. The results of this study indicate the most commonly sold food and drink items in school vending machines are of minimal nutritional value. School administrators are most frequently in charge of the vending contract, as well as setting and enforcing vending machine policies. Suggestions are offered to assist school nurses, often the only health professional in the school, in becoming advocates for changes in school vending practices and policies that promote the health and well-being of children and adolescents.
A state-based approach to trend recognition and failure prediction for the Space Station Freedom
NASA Technical Reports Server (NTRS)
Nelson, Kyle S.; Hadden, George D.
1992-01-01
A state-based reasoning approach to trend recognition and failure prediction for the Altitude Determination, and Control System (ADCS) of the Space Station Freedom (SSF) is described. The problem domain is characterized by features (e.g., trends and impending failures) that develop over a variety of time spans, anywhere from several minutes to several years. Our state-based reasoning approach, coupled with intelligent data screening, allows features to be tracked as they develop in a time-dependent manner. That is, each state machine has the ability to encode a time frame for the feature it detects. As features are detected, they are recorded and can be used as input to other state machines, creating a hierarchical feature recognition scheme. Furthermore, each machine can operate independently of the others, allowing simultaneous tracking of features. State-based reasoning was implemented in the trend recognition and the prognostic modules of a prototype Space Station Freedom Maintenance and Diagnostic System (SSFMDS) developed at Honeywell's Systems and Research Center.
Fast steering mirror for laser communication
NASA Astrophysics Data System (ADS)
Langenbach, Harald; Schmid, Manfred
2005-07-01
Future multimedia satellites require communication at large bandwidth which can be achieved by means of optical communication links. TESAT Spacecom is currently developing a Laser Communication Terminal (LCT) for such applications under DLR contract. EADS Astrium is developing and building the mechanisms for Pointing, Acquisition and Tracking (PAT) of the laser beam between two Laser Communication Terminals. Based on this development work the development of mechanism H/W to be flown on TerraSar X is currently under way. After a short description of the general arrangement of the Mechanisms inside the LCT, the paper describes the design of the fast steering mirrors (FSM) reflecting the critical requirements and the solutions how to achieve them.
A Web-Based Visualization and Animation Platform for Digital Logic Design
ERIC Educational Resources Information Center
Shoufan, Abdulhadi; Lu, Zheng; Huss, Sorin A.
2015-01-01
This paper presents a web-based education platform for the visualization and animation of the digital logic design process. This includes the design of combinatorial circuits using logic gates, multiplexers, decoders, and look-up-tables as well as the design of finite state machines. Various configurations of finite state machines can be selected…
Classifying Black Hole States with Machine Learning
NASA Astrophysics Data System (ADS)
Huppenkothen, Daniela
2018-01-01
Galactic black hole binaries are known to go through different states with apparent signatures in both X-ray light curves and spectra, leading to important implications for accretion physics as well as our knowledge of General Relativity. Existing frameworks of classification are usually based on human interpretation of low-dimensional representations of the data, and generally only apply to fairly small data sets. Machine learning, in contrast, allows for rapid classification of large, high-dimensional data sets. In this talk, I will report on advances made in classification of states observed in Black Hole X-ray Binaries, focusing on the two sources GRS 1915+105 and Cygnus X-1, and show both the successes and limitations of using machine learning to derive physical constraints on these systems.
2011-05-26
Machine Gun 24 12.7mm NATO Nominated Weapon United States – General Dynamics M2 Heavy Barrel Machine Gun 25...Explosively-Clad Refractory Barrel Liners for Small Caliber Machine Guns , Dr. Douglas Taylor, TPL, Inc. 12299 - The HAMR Project, Mr. Xavier Gavage, FN Herstal... Barrel Liners for Small Caliber Machine Guns Dr. Douglas Taylor, TPL, Inc. 12330 - 40mm Low Velocity Air-Burst Munitions System Mr.
Human Machine Learning Symbiosis
ERIC Educational Resources Information Center
Walsh, Kenneth R.; Hoque, Md Tamjidul; Williams, Kim H.
2017-01-01
Human Machine Learning Symbiosis is a cooperative system where both the human learner and the machine learner learn from each other to create an effective and efficient learning environment adapted to the needs of the human learner. Such a system can be used in online learning modules so that the modules adapt to each learner's learning state both…
The War in Man; Media and Machines.
ERIC Educational Resources Information Center
Wilhelmsen, Frederick D.; Bret, Jane
The authors present a picture of contemporary man torn by conflicting forces, caught in a psychic house divided against itself, a victim of war between media and machines. Machines, they state, represent the rationalistic tradition which has brought man to the brink of psychic and social disaster. The media they see as offering hope--true…
6 CFR 37.19 - Machine readable technology on the driver's license or identification card.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., States must use the ISO/IEC 15438:2006(E) Information Technology—Automatic identification and data... 6 Domestic Security 1 2011-01-01 2011-01-01 false Machine readable technology on the driver's..., Verification, and Card Issuance Requirements § 37.19 Machine readable technology on the driver's license or...
6 CFR 37.19 - Machine readable technology on the driver's license or identification card.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., States must use the ISO/IEC 15438:2006(E) Information Technology—Automatic identification and data... 6 Domestic Security 1 2010-01-01 2010-01-01 false Machine readable technology on the driver's..., Verification, and Card Issuance Requirements § 37.19 Machine readable technology on the driver's license or...
Gelcasting compositions having improved drying characteristics and machinability
Janney, Mark A.; Walls, Claudia A. H.
2001-01-01
A gelcasting composition has improved drying behavior, machinability and shelf life in the dried and unfired state. The composition includes an inorganic powder, solvent, monomer system soluble in the solvent, an initiator system for polymerizing the monomer system, and a plasticizer soluble in the solvent. Dispersants and other processing aides to control slurry properties can be added. The plasticizer imparts an ability to dry thick section parts, to store samples in the dried state without cracking under conditions of varying relative humidity, and to machine dry gelcast parts without cracking or chipping. A method of making gelcast parts is also disclosed.
Sequential behavior and its inherent tolerance to memory faults.
NASA Technical Reports Server (NTRS)
Meyer, J. F.
1972-01-01
Representation of a memory fault of a sequential machine M by a function mu on the states of M and the result of the fault by an appropriately determined machine M(mu). Given some sequential behavior B, its inherent tolerance to memory faults can then be measured in terms of the minimum memory redundancy required to realize B with a state-assigned machine having fault tolerance type tau and fault tolerance level t. A behavior having maximum inherent tolerance is exhibited, and it is shown that behaviors of the same size can have different inherent tolerance.
Kawano, Tomonori; Bouteau, François; Mancuso, Stefano
2012-11-01
The automata theory is the mathematical study of abstract machines commonly studied in the theoretical computer science and highly interdisciplinary fields that combine the natural sciences and the theoretical computer science. In the present review article, as the chemical and biological basis for natural computing or informatics, some plants, plant cells or plant-derived molecules involved in signaling are listed and classified as natural sequential machines (namely, the Mealy machines or Moore machines) or finite state automata. By defining the actions (states and transition functions) of these natural automata, the similarity between the computational data processing and plant decision-making processes became obvious. Finally, their putative roles as the parts for plant-based computing or robotic systems are discussed.
Kawano, Tomonori; Bouteau, François; Mancuso, Stefano
2012-01-01
The automata theory is the mathematical study of abstract machines commonly studied in the theoretical computer science and highly interdisciplinary fields that combine the natural sciences and the theoretical computer science. In the present review article, as the chemical and biological basis for natural computing or informatics, some plants, plant cells or plant-derived molecules involved in signaling are listed and classified as natural sequential machines (namely, the Mealy machines or Moore machines) or finite state automata. By defining the actions (states and transition functions) of these natural automata, the similarity between the computational data processing and plant decision-making processes became obvious. Finally, their putative roles as the parts for plant-based computing or robotic systems are discussed. PMID:23336016
Snack food as a modulator of human resting-state functional connectivity.
Mendez-Torrijos, Andrea; Kreitz, Silke; Ivan, Claudiu; Konerth, Laura; Rösch, Julie; Pischetsrieder, Monika; Moll, Gunther; Kratz, Oliver; Dörfler, Arnd; Horndasch, Stefanie; Hess, Andreas
2018-04-04
To elucidate the mechanisms of how snack foods may induce non-homeostatic food intake, we used resting state functional magnetic resonance imaging (fMRI), as resting state networks can individually adapt to experience after short time exposures. In addition, we used graph theoretical analysis together with machine learning techniques (support vector machine) to identifying biomarkers that can categorize between high-caloric (potato chips) vs. low-caloric (zucchini) food stimulation. Seventeen healthy human subjects with body mass index (BMI) 19 to 27 underwent 2 different fMRI sessions where an initial resting state scan was acquired, followed by visual presentation of different images of potato chips and zucchini. There was then a 5-minute pause to ingest food (day 1=potato chips, day 3=zucchini), followed by a second resting state scan. fMRI data were further analyzed using graph theory analysis and support vector machine techniques. Potato chips vs. zucchini stimulation led to significant connectivity changes. The support vector machine was able to accurately categorize the 2 types of food stimuli with 100% accuracy. Visual, auditory, and somatosensory structures, as well as thalamus, insula, and basal ganglia were found to be important for food classification. After potato chips consumption, the BMI was associated with the path length and degree in nucleus accumbens, middle temporal gyrus, and thalamus. The results suggest that high vs. low caloric food stimulation in healthy individuals can induce significant changes in resting state networks. These changes can be detected using graph theory measures in conjunction with support vector machine. Additionally, we found that the BMI affects the response of the nucleus accumbens when high caloric food is consumed.
Optical realization of optimal symmetric real state quantum cloning machine
NASA Astrophysics Data System (ADS)
Hu, Gui-Yu; Zhang, Wen-Hai; Ye, Liu
2010-01-01
We present an experimentally uniform linear optical scheme to implement the optimal 1→2 symmetric and optimal 1→3 symmetric economical real state quantum cloning machine of the polarization state of the single photon. This scheme requires single-photon sources and two-photon polarization entangled state as input states. It also involves linear optical elements and three-photon coincidence. Then we consider the realistic realization of the scheme by using the parametric down-conversion as photon resources. It is shown that under certain condition, the scheme is feasible by current experimental technology.
Conformational Fluctuations in G-Protein-Coupled Receptors
NASA Astrophysics Data System (ADS)
Brown, Michael F.
2014-03-01
G-protein-coupled receptors (GPCRs) comprise almost 50% of pharmaceutical drug targets, where rhodopsin is an important prototype and occurs naturally in a lipid membrane. Rhodopsin photoactivation entails 11-cis to all-trans isomerization of the retinal cofactor, yielding an equilibrium between inactive Meta-I and active Meta-II states. Two important questions are: (1) Is rhodopsin is a simple two-state switch? Or (2) does isomerization of retinal unlock an activated conformational ensemble? For an ensemble-based activation mechanism (EAM) a role for conformational fluctuations is clearly indicated. Solid-state NMR data together with theoretical molecular dynamics (MD) simulations detect increased local mobility of retinal after light activation. Resultant changes in local dynamics of the cofactor initiate large-scale fluctuations of transmembrane helices that expose recognition sites for the signal-transducing G-protein. Time-resolved FTIR studies and electronic spectroscopy further show the conformational ensemble is strongly biased by the membrane lipid composition, as well as pH and osmotic pressure. A new flexible surface model (FSM) describes how the curvature stress field of the membrane governs the energetics of active rhodopsin, due to the spontaneous monolayer curvature of the lipids. Furthermore, influences of osmotic pressure dictate that a large number of bulk water molecules are implicated in rhodopsin activation. Around 60 bulk water molecules activate rhodopsin, which is much larger than the number of structural waters seen in X-ray crystallography, or inferred from studies of bulk hydrostatic pressure. Conformational selection and promoting vibrational motions of rhodopsin lead to activation of the G-protein (transducin). Our biophysical data give a paradigm shift in understanding GPCR activation. The new view is: dynamics and conformational fluctuations involve an ensemble of substates that activate the cognate G-protein in the amplified visual response.
Laser assisted machining: a state of art review
NASA Astrophysics Data System (ADS)
Punugupati, Gurabvaiah; Kandi, Kishore Kumar; Bose, P. S. C.; Rao, C. S. P.
2016-09-01
Difficult-to-cut materials have increasing demand in aerospace and automobile industries due to their high yield stress, high strength to weight ratio, high toughness, high wear resistance, high creep, high corrosion resistivity, ability to retain high strength at high temperature, etc. The machinability of these advanced materials, using conventional methods of machining is typical due to the high temperature and pressure at the cutting zone and tool and properties such as low thermal conductivity, high cutting forces and cutting temperatures makes the materials difficult to machine. Laser assisted machining (LAM) is a new and innovative technique for machining the difficult-to-cut materials. This paper deals with a review on the advances in lasers, tools and the mechanism of machining using LAM and their effects.
Machine Tool Advanced Skills Technology Program (MAST). Overview and Methodology.
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
The Machine Tool Advanced Skills Technology Program (MAST) is a geographical partnership of six of the nation's best two-year colleges located in the six states that have about one-third of the density of metals-related industries in the United States. The purpose of the MAST grant is to develop and implement a national training model to overcome…
ERIC Educational Resources Information Center
Hancock, Thomas E.; And Others
1995-01-01
In machine-mediated learning environments, there is a need for more reliable methods of calculating the probability that a learner's response will be correct in future trials. A combination of domain-independent response-state measures of cognition along with two instructional variables for maximum predictive ability are demonstrated. (Author/LRW)
Parameterizing Phrase Based Statistical Machine Translation Models: An Analytic Study
ERIC Educational Resources Information Center
Cer, Daniel
2011-01-01
The goal of this dissertation is to determine the best way to train a statistical machine translation system. I first develop a state-of-the-art machine translation system called Phrasal and then use it to examine a wide variety of potential learning algorithms and optimization criteria and arrive at two very surprising results. First, despite the…
Contrasting State-of-the-Art in the Machine Scoring of Short-Form Constructed Responses
ERIC Educational Resources Information Center
Shermis, Mark D.
2015-01-01
This study compared short-form constructed responses evaluated by both human raters and machine scoring algorithms. The context was a public competition on which both public competitors and commercial vendors vied to develop machine scoring algorithms that would match or exceed the performance of operational human raters in a summative high-stakes…
The Machine Scoring of Writing
ERIC Educational Resources Information Center
McCurry, Doug
2010-01-01
This article provides an introduction to the kind of computer software that is used to score student writing in some high stakes testing programs, and that is being promoted as a teaching and learning tool to schools. It sketches the state of play with machines for the scoring of writing, and describes how these machines work and what they do.…
Technology of machine tools. Volume 1. Executive summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, G.P.
1980-10-01
The Machine Tool Task Force (MTTF) was formed to characterize the state of the art of machine tool technology and to identify promising future directions of this technology. This volume is one of a five-volume series that presents the MTTF findings; reports on various areas of the technology were contributed by experts in those areas.
Reversibility in Quantum Models of Stochastic Processes
NASA Astrophysics Data System (ADS)
Gier, David; Crutchfield, James; Mahoney, John; James, Ryan
Natural phenomena such as time series of neural firing, orientation of layers in crystal stacking and successive measurements in spin-systems are inherently probabilistic. The provably minimal classical models of such stochastic processes are ɛ-machines, which consist of internal states, transition probabilities between states and output values. The topological properties of the ɛ-machine for a given process characterize the structure, memory and patterns of that process. However ɛ-machines are often not ideal because their statistical complexity (Cμ) is demonstrably greater than the excess entropy (E) of the processes they represent. Quantum models (q-machines) of the same processes can do better in that their statistical complexity (Cq) obeys the relation Cμ >= Cq >= E. q-machines can be constructed to consider longer lengths of strings, resulting in greater compression. With code-words of sufficiently long length, the statistical complexity becomes time-symmetric - a feature apparently novel to this quantum representation. This result has ramifications for compression of classical information in quantum computing and quantum communication technology.
Kubik, Martha Y; Wall, Melanie; Shen, Lijuan; Nanney, Marilyn S; Nelson, Toben F; Laska, Melissa N; Story, Mary
2010-07-01
Policy that targets the school food environment has been advanced as one way to increase the availability of healthy food at schools and healthy food choice by students. Although both state- and district-level policy initiatives have focused on school nutrition standards, it remains to be seen whether these policies translate into healthy food practices at the school level, where student behavior will be impacted. To examine whether state- and district-level nutrition policies addressing junk food in school vending machines and school stores were associated with less junk food in school vending machines and school stores. Junk food was defined as foods and beverages with low nutrient density that provide calories primarily through fats and added sugars. A cross-sectional study design was used to assess self-report data collected by computer-assisted telephone interviews or self-administered mail questionnaires from state-, district-, and school-level respondents participating in the School Health Policies and Programs Study 2006. The School Health Policies and Programs Study, administered every 6 years since 1994 by the Centers for Disease Control and Prevention, is considered the largest, most comprehensive assessment of school health policies and programs in the United States. A nationally representative sample (n=563) of public elementary, middle, and high schools was studied. Logistic regression adjusted for school characteristics, sampling weights, and clustering was used to analyze data. Policies were assessed for strength (required, recommended, neither required nor recommended prohibiting junk food) and whether strength was similar for school vending machines and school stores. School vending machines and school stores were more prevalent in high schools (93%) than middle (84%) and elementary (30%) schools. For state policies, elementary schools that required prohibiting junk food in school vending machines and school stores offered less junk food than elementary schools that neither required nor recommended prohibiting junk food (13% vs 37%; P=0.006). Middle schools that required prohibiting junk food in vending machines and school stores offered less junk food than middle schools that recommended prohibiting junk food (71% vs 87%; P=0.07). Similar associations were not evident for district-level polices or high schools. Policy may be an effective tool to decrease junk food in schools, particularly in elementary and middle schools. Copyright 2010 American Dietetic Association. Published by Elsevier Inc. All rights reserved.
KUBIK, MARTHA Y.; WALL, MELANIE; SHEN, LIJUAN; NANNEY, MARILYN S.; NELSON, TOBEN F.; LASKA, MELISSA N.; STORY, MARY
2012-01-01
Background Policy that targets the school food environment has been advanced as one way to increase the availability of healthy food at schools and healthy food choice by students. Although both state- and district-level policy initiatives have focused on school nutrition standards, it remains to be seen whether these policies translate into healthy food practices at the school level, where student behavior will be impacted. Objective To examine whether state- and district-level nutrition policies addressing junk food in school vending machines and school stores were associated with less junk food in school vending machines and school stores. Junk food was defined as foods and beverages with low nutrient density that provide calories primarily through fats and added sugars. Design A cross-sectional study design was used to assess self-report data collected by computer-assisted telephone interviews or self-administered mail questionnaires from state-, district-, and school-level respondents participating in the School Health Policies and Programs Study 2006. The School Health Policies and Programs Study, administered every 6 years since 1994 by the Centers for Disease Control and Prevention, is considered the largest, most comprehensive assessment of school health policies and programs in the United States. Subjects/setting A nationally representative sample (n = 563) of public elementary, middle, and high schools was studied. Statistical analysis Logistic regression adjusted for school characteristics, sampling weights, and clustering was used to analyze data. Policies were assessed for strength (required, recommended, neither required nor recommended prohibiting junk food) and whether strength was similar for school vending machines and school stores. Results School vending machines and school stores were more prevalent in high schools (93%) than middle (84%) and elementary (30%) schools. For state policies, elementary schools that required prohibiting junk food in school vending machines and school stores offered less junk food than elementary schools that neither required nor recommended prohibiting junk food (13% vs 37%; P = 0.006). Middle schools that required prohibiting junk food in vending machines and school stores offered less junk food than middle schools that recommended prohibiting junk food (71% vs 87%; P = 0.07). Similar associations were not evident for district-level polices or high schools. Conclusions Policy may be an effective tool to decrease junk food in schools, particularly in elementary and middle schools. PMID:20630161
1992-10-01
Manager , Advanced Transport Operating Systems Program Office Langley Research Center Mail Stop 265 Hampton, VA 23665-5225 United States Programme Committee...J.H.Lind, and C.G.Burge Advanced Cockpit - Mission and Image Management 4 by J. Struck Aircrew Acceptance of Automation in the Cockpit 5 by M. Hicks and I...DESIGN CONCEPTS AND TOOLS A Systems Approach to the Advanced Aircraft Man-Machine Interface 23 by F. Armogida Management of Avionics Data in the Cockpit
Scrutinio, Domenico; Ammirati, Enrico; Guida, Pietro; Passantino, Andrea; Raimondo, Rosa; Guida, Valentina; Sarzi Braga, Simona; Canova, Paolo; Mastropasqua, Filippo; Frigerio, Maria; Lagioia, Rocco; Oliva, Fabrizio
2014-04-01
The acute decompensated heart failure/N-terminal pro-B-type natriuretic peptide (ADHF/NT-proBNP) score is a validated risk scoring system that predicts mortality in hospitalized heart failure patients with a wide range of left ventricular ejection fractions (LVEFs). We sought to assess discrimination and calibration of the score when applied to patients with advanced decompensated heart failure (AHF). We studied 445 patients hospitalized for AHF, defined by the presence of severe symptoms of worsening HF at admission, severely depressed LVEF, and the need for intravenous diuretic and/or inotropic drugs. The primary outcome was cumulative (in-hospital and post-discharge) mortality and post-discharge 1-year mortality. Separate analyses were performed for patients aged ≤ 70 years. A Seattle Heart Failure Score (SHFS) was calculated for each patient discharged alive. During follow-up, 144 patients (32.4%) died, and 69 (15.5%) underwent heart transplantation (HT) or ventricular assist device (VAD) implantation. After accounting for the competing events (VAD/HT), the ADHF/NT-proBNP score's C-statistic for cumulative mortality was 0.738 in the overall cohort and 0.771 in patients aged ≤ 70 years. The C-statistic for post-discharge mortality was 0.741 and 0.751, respectively. Adding prior (≤6 months) hospitalizations for HF to the score increased the C-statistic for post-discharge mortality to 0.759 in the overall cohort and to 0.774 in patients aged ≤ 70 years. Predicted and observed mortality rates by quartiles of score were highly correlated. The SHFS demonstrated adequate discrimination but underestimated the risk. The ADHF/NT-proBNP risk calculator is available at http://www.fsm.it/fsm/file/NTproBNPscore.zip. Our data suggest that the ADHF/NT-proBNP score may efficiently predict mortality in patients hospitalized with AHF. Copyright © 2014 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartkiewicz, Karol; Miranowicz, Adam
We find an optimal quantum cloning machine, which clones qubits of arbitrary symmetrical distribution around the Bloch vector with the highest fidelity. The process is referred to as phase-independent cloning in contrast to the standard phase-covariant cloning for which an input qubit state is a priori better known. We assume that the information about the input state is encoded in an arbitrary axisymmetric distribution (phase function) on the Bloch sphere of the cloned qubits. We find analytical expressions describing the optimal cloning transformation and fidelity of the clones. As an illustration, we analyze cloning of qubit state described by themore » von Mises-Fisher and Brosseau distributions. Moreover, we show that the optimal phase-independent cloning machine can be implemented by modifying the mirror phase-covariant cloning machine for which quantum circuits are known.« less
International Business Machines (IBM) Corporation Interim Agreement EPA Case No. 08-0113-00
On March 27, 2008, the United States Environmental Protection Agency (EPA), suspended International Business Machines (IBM) from receiving Federal Contracts, approved subcontracts, assistance, loans and other benefits.
122. BENCH SHOP, SOUTHWEST CORNER SHOWING WOOD BORING MACHINE. DOOR ...
122. BENCH SHOP, SOUTHWEST CORNER SHOWING WOOD BORING MACHINE. DOOR TO WOODSHOP ON RIGHT. - Gruber Wagon Works, Pennsylvania Route 183 & State Hill Road at Red Bridge Park, Bernville, Berks County, PA
22 CFR 121.10 - Forgings, castings, and machined bodies.
Code of Federal Regulations, 2014 CFR
2014-04-01
... STATES MUNITIONS LIST Enumeration of Articles § 121.10 Forgings, castings, and machined bodies. The U.S. Munitions List controls as defense articles those forgings, castings, and other unfinished products, such as...
Liu, Xunying; Zhang, Chao; Woodland, Phil; Fonteneau, Elisabeth
2017-01-01
There is widespread interest in the relationship between the neurobiological systems supporting human cognition and emerging computational systems capable of emulating these capacities. Human speech comprehension, poorly understood as a neurobiological process, is an important case in point. Automatic Speech Recognition (ASR) systems with near-human levels of performance are now available, which provide a computationally explicit solution for the recognition of words in continuous speech. This research aims to bridge the gap between speech recognition processes in humans and machines, using novel multivariate techniques to compare incremental ‘machine states’, generated as the ASR analysis progresses over time, to the incremental ‘brain states’, measured using combined electro- and magneto-encephalography (EMEG), generated as the same inputs are heard by human listeners. This direct comparison of dynamic human and machine internal states, as they respond to the same incrementally delivered sensory input, revealed a significant correspondence between neural response patterns in human superior temporal cortex and the structural properties of ASR-derived phonetic models. Spatially coherent patches in human temporal cortex responded selectively to individual phonetic features defined on the basis of machine-extracted regularities in the speech to lexicon mapping process. These results demonstrate the feasibility of relating human and ASR solutions to the problem of speech recognition, and suggest the potential for further studies relating complex neural computations in human speech comprehension to the rapidly evolving ASR systems that address the same problem domain. PMID:28945744
NASA Astrophysics Data System (ADS)
Furfaro, R.; Linares, R.; Gaylor, D.; Jah, M.; Walls, R.
2016-09-01
In this paper, we present an end-to-end approach that employs machine learning techniques and Ontology-based Bayesian Networks (BN) to characterize the behavior of resident space objects. State-of-the-Art machine learning architectures (e.g. Extreme Learning Machines, Convolutional Deep Networks) are trained on physical models to learn the Resident Space Object (RSO) features in the vectorized energy and momentum states and parameters. The mapping from measurements to vectorized energy and momentum states and parameters enables behavior characterization via clustering in the features space and subsequent RSO classification. Additionally, Space Object Behavioral Ontologies (SOBO) are employed to define and capture the domain knowledge-base (KB) and BNs are constructed from the SOBO in a semi-automatic fashion to execute probabilistic reasoning over conclusions drawn from trained classifiers and/or directly from processed data. Such an approach enables integrating machine learning classifiers and probabilistic reasoning to support higher-level decision making for space domain awareness applications. The innovation here is to use these methods (which have enjoyed great success in other domains) in synergy so that it enables a "from data to discovery" paradigm by facilitating the linkage and fusion of large and disparate sources of information via a Big Data Science and Analytics framework.
Machine learning for science: state of the art and future prospects.
Mjolsness, E; DeCoste, D
2001-09-14
Recent advances in machine learning methods, along with successful applications across a wide variety of fields such as planetary science and bioinformatics, promise powerful new tools for practicing scientists. This viewpoint highlights some useful characteristics of modern machine learning methods and their relevance to scientific applications. We conclude with some speculations on near-term progress and promising directions.
ERIC Educational Resources Information Center
Ahl, Richard E.; Keil, Frank C.
2017-01-01
Four studies explored the abilities of 80 adults and 180 children (4-9 years), from predominantly middle-class families in the Northeastern United States, to use information about machines' observable functional capacities to infer their internal, "hidden" mechanistic complexity. Children as young as 4 and 5 years old used machines'…
1989-01-30
absolutely forbid the dealing of retaliatory blows to those of the masses who give their opinions. Fifth, on the basis of their analyses they pass on...Timber Artificial Board Cement Plate Glass Power Equipment Machine Tool Precision Machine Tool Large Machine Tool Automobile Truck Tractor Small...the State Bureau of Building Materials Industry said that the industry must manufacture more varieties of high quality cement, glass , pottery, and
Rosen's (M,R) system as an X-machine.
Palmer, Michael L; Williams, Richard A; Gatherer, Derek
2016-11-07
Robert Rosen's (M,R) system is an abstract biological network architecture that is allegedly both irreducible to sub-models of its component states and non-computable on a Turing machine. (M,R) stands as an obstacle to both reductionist and mechanistic presentations of systems biology, principally due to its self-referential structure. If (M,R) has the properties claimed for it, computational systems biology will not be possible, or at best will be a science of approximate simulations rather than accurate models. Several attempts have been made, at both empirical and theoretical levels, to disprove this assertion by instantiating (M,R) in software architectures. So far, these efforts have been inconclusive. In this paper, we attempt to demonstrate why - by showing how both finite state machine and stream X-machine formal architectures fail to capture the self-referential requirements of (M,R). We then show that a solution may be found in communicating X-machines, which remove self-reference using parallel computation, and then synthesise such machine architectures with object-orientation to create a formal basis for future software instantiations of (M,R) systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Plan for conducting an international machine tool task force
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, G.P.; McClure, E.R.; Schuman, J.F.
1978-08-28
The basic objectives of the Machine Tool Task Force (MTTF) are to characterize and summarize the state of the art of cutting machine tool technology and to identify promising areas of future R and D. These goals will be accomplished with a series of multidisciplinary teams of prominent experts and individuals experienced in the specialized technologies of machine tools or in the management of machine tool operations. Experts will be drawn from all areas of the machine tool community: machine tool users or buyer organizations, builders, and R and D establishments including universities and government laboratories, both domestic and foreign.more » A plan for accomplishing this task is presented. The area of machine tool technology has been divided into about two dozen technology subjects on which teams of one or more experts will work. These teams are, in turn, organized into four principal working groups dealing, respectively, with machine tool accuracy, mechanics, control, and management systems/utilization. Details are presented on specific subjects to be covered, the organization of the Task Force and its four working groups, and the basic approach to determining the state of the art of technology and the future directions of this technology. The planned review procedure, the potential benefits, our management approach, and the schedule, as well as the key participating personnel and their background are discussed. The initial meeting of MTTF members will be held at a plenary session on October 16 and 17, 1978, in Scottsdale, AZ. The MTTF study will culminate in a conference on September 1, 1980, in Chicago, IL, immediately preceeding the 1980 International Machine Tool Show. At this time, our results will be released to the public; a series of reports will be published in late 1980.« less
NASA Astrophysics Data System (ADS)
Vogelsberg, Cortnie Sue
Amphidynamic crystals are an extremely promising platform for the development of artificial molecular machines and stimuli-responsive materials. In analogy to skeletal muscle, their function will rely upon the collective operation of many densely packed molecular machines (i.e. actin-bound myosin) that are self-assembled in a highly organized anisotropic medium. By choosing lattice-forming elements and moving "parts" with specific functionalities, individual molecular machines may be synthesized and self-assembled in order to carry out desirable functions. In recent years, efforts in the design of amphidynamic materials based on molecular gyroscopes and compasses have shown that a certain amount of free volume is essential to facilitate internal rotation and reorientation within a crystal. In order to further establish structure/function relationships to advance the development of increasingly complex molecular machinery, molecular rotors and a molecular "spinning" top were synthesized and incorporated into a variety of solid-state architectures with different degrees of periodicity, dimensionality, and free volume. Specifically, lamellar molecular crystals, hierarchically ordered periodic mesoporous organosilicas, and metal-organic frameworks were targeted for the development of solid-state molecular machines. Using an array of solid-state nuclear magnetic resonance spectroscopy techniques, the dynamic properties of these novel molecular machine assemblies were determined and correlated with their corresponding structural features. It was found that architecture type has a profound influence on functional dynamics. The study of layered molecular crystals, composed of either molecular rotors or "spinning" tops, probed functional dynamics within dense, highly organized environments. From their study, it was discovered that: 1) crystallographically distinct sites may be utilized to differentiate machine function, 2) halogen bonding interactions are sufficiently strong to direct an assembly of molecular machines, 3) the relative flexibility of the crystal environment proximate to a dynamic component may have a significant effect on its function, and, 4) molecular machines, which possess both solid-state photochemical reactivity and dynamics may show complex reaction kinetics if the correlation time of the dynamic process and the lifetime of the excited state occur on the same time scale and the dynamic moiety inherently participates as a reaction intermediate. The study of periodic mesoporous organosilica with hierarchical order probed molecular dynamics within 2D layers of molecular rotors, organized in only one dimension and with ca. 50% exposed to the mesopore free volume. From their study, it was discovered that: 1) molecular rotors, which comprise the layers of the mesopore walls, form a 2D rotational glass, 2) rotator dynamics within the 2D rotational glass undergo a transition to a 2D rotational fluid, and, 3) a 2D rotational glass transition may be exploited to develop hyper-sensitive thermally activated molecular machines. The study of a metal-organic framework assembled from molecular rotors probed dynamics in a periodic three-dimensional free-volume environment, without the presence of close contacts. From the study of this solid-state material, it was determined that: 1) the intrinsic electronic barrier is one of the few factors, which may affect functional dynamics in a true free-volume environment, and, 2) molecular machines with dynamic barriers <
NASA Astrophysics Data System (ADS)
Yuldashev, M. N.; Vlasov, A. I.; Novikov, A. N.
2018-05-01
This paper focuses on the development of an energy-efficient algorithm for classification of states of a wireless sensor network using machine learning methods. The proposed algorithm reduces energy consumption by: 1) elimination of monitoring of parameters that do not affect the state of the sensor network, 2) reduction of communication sessions over the network (the data are transmitted only if their values can affect the state of the sensor network). The studies of the proposed algorithm have shown that at classification accuracy close to 100%, the number of communication sessions can be reduced by 80%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, G.P.
1980-10-22
The Machine Tool Task Force (MTTF) is a multidisciplined team of international experts, whose mission was to investigate the state of the art of machine tool technology, to identify promising future directions of that technology for both the US government and private industry, and to disseminate the findings of its research in a conference and through the publication of a final report. MTTF was a two and one-half year effort that involved the participation of 122 experts in the specialized technologies of machine tools and in the management of machine tool operations. The scope of the MTTF was limited tomore » cutting-type or material-removal-type machine tools, because they represent the major share and value of all machine tools now installed or being built. The activities of the MTTF and the technical, commercial and economic signifiance of recommended activities for improving machine tool technology are discussed. (LCL)« less
Quantum Entanglement in Neural Network States
NASA Astrophysics Data System (ADS)
Deng, Dong-Ling; Li, Xiaopeng; Das Sarma, S.
2017-04-01
Machine learning, one of today's most rapidly growing interdisciplinary fields, promises an unprecedented perspective for solving intricate quantum many-body problems. Understanding the physical aspects of the representative artificial neural-network states has recently become highly desirable in the applications of machine-learning techniques to quantum many-body physics. In this paper, we explore the data structures that encode the physical features in the network states by studying the quantum entanglement properties, with a focus on the restricted-Boltzmann-machine (RBM) architecture. We prove that the entanglement entropy of all short-range RBM states satisfies an area law for arbitrary dimensions and bipartition geometry. For long-range RBM states, we show by using an exact construction that such states could exhibit volume-law entanglement, implying a notable capability of RBM in representing quantum states with massive entanglement. Strikingly, the neural-network representation for these states is remarkably efficient, in the sense that the number of nonzero parameters scales only linearly with the system size. We further examine the entanglement properties of generic RBM states by randomly sampling the weight parameters of the RBM. We find that their averaged entanglement entropy obeys volume-law scaling, and the meantime strongly deviates from the Page entropy of the completely random pure states. We show that their entanglement spectrum has no universal part associated with random matrix theory and bears a Poisson-type level statistics. Using reinforcement learning, we demonstrate that RBM is capable of finding the ground state (with power-law entanglement) of a model Hamiltonian with a long-range interaction. In addition, we show, through a concrete example of the one-dimensional symmetry-protected topological cluster states, that the RBM representation may also be used as a tool to analytically compute the entanglement spectrum. Our results uncover the unparalleled power of artificial neural networks in representing quantum many-body states regardless of how much entanglement they possess, which paves a novel way to bridge computer-science-based machine-learning techniques to outstanding quantum condensed-matter physics problems.
Modeling and Composing Scenario-Based Requirements with Aspects
NASA Technical Reports Server (NTRS)
Araujo, Joao; Whittle, Jon; Ki, Dae-Kyoo
2004-01-01
There has been significant recent interest, within the Aspect-Oriented Software Development (AOSD) community, in representing crosscutting concerns at various stages of the software lifecycle. However, most of these efforts have concentrated on the design and implementation phases. We focus in this paper on representing aspects during use case modeling. In particular, we focus on scenario-based requirements and show how to compose aspectual and non-aspectual scenarios so that they can be simulated as a whole. Non-aspectual scenarios are modeled as UML sequence diagram. Aspectual scenarios are modeled as Interaction Pattern Specifications (IPS). In order to simulate them, the scenarios are transformed into a set of executable state machines using an existing state machine synthesis algorithm. Previous work composed aspectual and non-aspectual scenarios at the sequence diagram level. In this paper, the composition is done at the state machine level.
Consciousness and the Invention of Morel
Perogamvros, Lampros
2013-01-01
A scientific study of consciousness should take into consideration both objective and subjective measures of conscious experiences. To this date, very few studies have tried to integrate third-person data, or data about the neurophysiological correlates of conscious states, with first-person data, or data about subjective experience. Inspired by Morel's invention (Casares, 1940), a literary machine capable of reproducing sensory-dependent external reality, this article suggests that combination of virtual reality techniques and brain reading technologies, that is, decoding of conscious states by brain activity alone, can offer this integration. It is also proposed that the multimodal, simulating, and integrative capacities of the dreaming brain render it an “endogenous” Morel's machine, which can potentially be used in studying consciousness, but not always in a reliable way. Both the literary machine and dreaming could contribute to a better understanding of conscious states. PMID:23467765
SEFRE: Semiexoskeleton Rehabilitation System.
Chonnaparamutt, Winai; Supsi, Witsarut
2016-01-01
SEFRE (Shoulder-Elbow-Forearm Robotics Economic) rehabilitation system is presented in this paper. SEFRE Rehab System is composed of a robotic manipulator and an exoskeleton, so-called Forearm Supportive Mechanism (FSM). The controller of the system is developed as the Master PC consisting of five modules, that is, Intelligent Control (IC), Patient Communication (PC), Training with Game (TG), Progress Monitoring (PM), and Patient Supervision (PS). These modules support a patient to exercise with SEFRE in six modes, that is, Passive, Passive Stretching, Passive Guiding, Initiating Active, Active Assisted, and Active Resisted. To validate the advantages of the system, the preclinical trial was carried out at a national rehabilitation center. Here, the implement of the system and the preclinical results are presented as the verifications of SEFRE.
Trends of Occupational Fatalities Involving Machines, United States, 1992–2010
Marsh, Suzanne M.; Fosbroke, David E.
2016-01-01
Background This paper describes trends of occupational machine-related fatalities from 1992–2010. We examine temporal patterns by worker demographics, machine types (e.g., stationary, mobile), and industries. Methods We analyzed fatalities from Census of Fatal Occupational Injuries data provided by the Bureau of Labor Statistics to the National Institute for Occupational Safety and Health. We used injury source to identify machine-related incidents and Poisson regression to assess trends over the 19-year period. Results There was an average annual decrease of 2.8% in overall machine-related fatality rates from 1992 through 2010. Mobile machine-related fatality rates decreased an average of 2.6% annually and stationary machine-related rates decreased an average of 3.5% annually. Groups that continued to be at high risk included older workers; self-employed; and workers in agriculture/forestry/fishing, construction, and mining. Conclusion Addressing dangers posed by tractors, excavators, and other mobile machines needs to continue. High-risk worker groups should receive targeted information on machine safety. PMID:26358658
Efficacy evaluation of an anti-caries varnish: protocol for a phase II randomised controlled trial
Tut, Ohnmar; Rothen, Marilynn; Mancl, Lloyd; Gallen, Marcelle; Tanzer, Jason M
2017-01-01
Introduction Dental caries (tooth decay) is a common disease in which the products of sugar metabolism by certain bacteria that populate the tooth surface induce the development and progression of lesions (cavities). This is a phase II single-centre randomised, double-blind, active-controlled, parallel-group trial to assess the efficacy of a combination povidone iodine and sodium fluoride dental varnish to determine if it is superior to a varnish containing only sodium fluoride in the prevention of new caries lesions. The objective of this report is to describe the rationale and protocol for the trial. Methods and analysis The study site is Pohnpei State, Federated States of Micronesia. The study population is 284 children 48–84 months old. The primary outcome will be the surface-level primary molar caries increment (d2-3mfs/DMFS) at 2 years post baseline. The incremental dental caries at 1 year will also be compared between the two interventions. The secondary outcome is the Facial Image Scale after the initial treatment and after the fifth treatment at 1 year that gauges the child’s response to the treatment. Ethics and dissemination The Western Institutional Review Board (designated IRB) and the Institutional Review Board of the College of Micronesia-FSM approved all study procedures. The US Food and Drug Administration (FDA) has issued IND 128835 covering this study. The study results will be published and submitted to the FDA in support of a new drug application. Trialregistration number NCT03082196. PMID:28667230
ERIC Educational Resources Information Center
ManTech Technical Services Corp., Fairfax, VA.
This report presents the results of a management study of audio playback equipment operations conducted by the National Library Service, Library of Congress, its associated network of state and local machine lending agencies (MLA), and other parties that play a role in current operations. The objectives were to document current operations,…
Predicting Market Impact Costs Using Nonparametric Machine Learning Models.
Park, Saerom; Lee, Jaewook; Son, Youngdoo
2016-01-01
Market impact cost is the most significant portion of implicit transaction costs that can reduce the overall transaction cost, although it cannot be measured directly. In this paper, we employed the state-of-the-art nonparametric machine learning models: neural networks, Bayesian neural network, Gaussian process, and support vector regression, to predict market impact cost accurately and to provide the predictive model that is versatile in the number of variables. We collected a large amount of real single transaction data of US stock market from Bloomberg Terminal and generated three independent input variables. As a result, most nonparametric machine learning models outperformed a-state-of-the-art benchmark parametric model such as I-star model in four error measures. Although these models encounter certain difficulties in separating the permanent and temporary cost directly, nonparametric machine learning models can be good alternatives in reducing transaction costs by considerably improving in prediction performance.
Predicting Market Impact Costs Using Nonparametric Machine Learning Models
Park, Saerom; Lee, Jaewook; Son, Youngdoo
2016-01-01
Market impact cost is the most significant portion of implicit transaction costs that can reduce the overall transaction cost, although it cannot be measured directly. In this paper, we employed the state-of-the-art nonparametric machine learning models: neural networks, Bayesian neural network, Gaussian process, and support vector regression, to predict market impact cost accurately and to provide the predictive model that is versatile in the number of variables. We collected a large amount of real single transaction data of US stock market from Bloomberg Terminal and generated three independent input variables. As a result, most nonparametric machine learning models outperformed a-state-of-the-art benchmark parametric model such as I-star model in four error measures. Although these models encounter certain difficulties in separating the permanent and temporary cost directly, nonparametric machine learning models can be good alternatives in reducing transaction costs by considerably improving in prediction performance. PMID:26926235
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cernoch, Antonin; Soubusta, Jan; Celechovska, Lucie
We report on experimental implementation of the optimal universal asymmetric 1->2 quantum cloning machine for qubits encoded into polarization states of single photons. Our linear-optical machine performs asymmetric cloning by partially symmetrizing the input polarization state of signal photon and a blank copy idler photon prepared in a maximally mixed state. We show that the employed method of measurement of mean clone fidelities exhibits strong resilience to imperfect calibration of the relative efficiencies of single-photon detectors used in the experiment. Reliable characterization of the quantum cloner is thus possible even when precise detector calibration is difficult to achieve.
Satellite antenna management system and method
NASA Technical Reports Server (NTRS)
Leath, Timothy T (Inventor); Azzolini, John D (Inventor)
1999-01-01
The antenna management system and method allow a satellite to communicate with a ground station either directly or by an intermediary of a second satellite, thus permitting communication even when the satellite is not within range of the ground station. The system and method employ five major software components, which are the control and initialization module, the command and telemetry handler module, the contact schedule processor module, the contact state machining module, and the telemetry state machine module. The control and initialization module initializes the system and operates the main control cycle, in which the other modules are called. The command and telemetry handler module handles communication to and from the ground station. The contact scheduler processor module handles the contact entry schedules to allow scheduling of contacts with the second satellite. The contact and telemetry state machine modules handle the various states of the satellite in beginning, maintaining and ending contact with the second satellite and in beginning, maintaining and ending communication with the satellite.
Torque shudder protection device and method
King, Robert D.; De Doncker, Rik W. A. A.; Szczesny, Paul M.
1997-01-01
A torque shudder protection device for an induction machine includes a flux command generator for supplying a steady state flux command and a torque shudder detector for supplying a status including a negative status to indicate a lack of torque shudder and a positive status to indicate a presence of torque shudder. A flux adapter uses the steady state flux command and the status to supply a present flux command identical to the steady state flux command for a negative status and different from the steady state flux command for a positive status. A limiter can receive the present flux command, prevent the present flux command from exceeding a predetermined maximum flux command magnitude, and supply the present flux command to a field oriented controller. After determining a critical electrical excitation frequency at which a torque shudder occurs for the induction machine, a flux adjuster can monitor the electrical excitation frequency of the induction machine and adjust a flux command to prevent the monitored electrical excitation frequency from reaching the critical electrical excitation frequency.
Torque shudder protection device and method
King, R.D.; Doncker, R.W.A.A. De.; Szczesny, P.M.
1997-03-11
A torque shudder protection device for an induction machine includes a flux command generator for supplying a steady state flux command and a torque shudder detector for supplying a status including a negative status to indicate a lack of torque shudder and a positive status to indicate a presence of torque shudder. A flux adapter uses the steady state flux command and the status to supply a present flux command identical to the steady state flux command for a negative status and different from the steady state flux command for a positive status. A limiter can receive the present flux command, prevent the present flux command from exceeding a predetermined maximum flux command magnitude, and supply the present flux command to a field oriented controller. After determining a critical electrical excitation frequency at which a torque shudder occurs for the induction machine, a flux adjuster can monitor the electrical excitation frequency of the induction machine and adjust a flux command to prevent the monitored electrical excitation frequency from reaching the critical electrical excitation frequency. 5 figs.
An integrated condition-monitoring method for a milling process using reduced decomposition features
NASA Astrophysics Data System (ADS)
Liu, Jie; Wu, Bo; Wang, Yan; Hu, Youmin
2017-08-01
Complex and non-stationary cutting chatter affects productivity and quality in the milling process. Developing an effective condition-monitoring approach is critical to accurately identify cutting chatter. In this paper, an integrated condition-monitoring method is proposed, where reduced features are used to efficiently recognize and classify machine states in the milling process. In the proposed method, vibration signals are decomposed into multiple modes with variational mode decomposition, and Shannon power spectral entropy is calculated to extract features from the decomposed signals. Principal component analysis is adopted to reduce feature size and computational cost. With the extracted feature information, the probabilistic neural network model is used to recognize and classify the machine states, including stable, transition, and chatter states. Experimental studies are conducted, and results show that the proposed method can effectively detect cutting chatter during different milling operation conditions. This monitoring method is also efficient enough to satisfy fast machine state recognition and classification.
Physical property and electronic structure characterization of bulk superconducting Bi3Ni
NASA Astrophysics Data System (ADS)
Kumar, Jagdish; Kumar, Anuj; Vajpayee, Arpita; Gahtori, Bhasker; Sharma, Devina; Ahluwalia, P. K.; Auluck, S.; Awana, V. P. S.
2011-07-01
We report the experimental and theoretical study of the magnetic nature of the Bi3Ni system. The structure is found to be orthorhombic (Pnma) with lattice parameters a = 8.879 Å, b = 4.0998 Å and c = 4.099 Å. The title compound is synthesized via a solid state reaction route by quartz vacuum encapsulation of 5 N purity stoichiometric ingredients of Ni and Bi. The superconducting transition temperature is found to be 4.1 K as confirmed from magnetization and specific heat measurements. The lower critical field (Hc1) and irreversibility field (Hirr) are around 150 and 3000 Oe respectively at 2 K. Upper critical field (Hc2), as determined from in-field (up to 4 T) ac susceptibility, is found to be around 2 T at 2 K. The normal state specific heat is fitted using the Sommerfeld-Debye equation C(T) = γT + βT3 + δT5 and the parameters obtained are γ = 11.08 mJ mol - 1 K - 2, β = 3.73 mJ mol - 1 K - 4 and δ = 0.0140 mJ mol - 1 K - 6. The calculated electronic density of states (DOS) at the Fermi level N(EF) and Debye temperature ΘD are 4.697 states/eV/f.u. and 127.7 K respectively. We also estimated the value of the electron-phonon coupling constant (λ) to be 1.23, which when substituted in the MacMillan equation gives Tc = 4.5 K. Density functional theory (DFT) based calculations for experimentally determined lattice parameters show that Ni in this compound is non-magnetic and ferromagnetic interactions seem to play no role. The Stoner condition IN(EF) = 0.136 per Ni atom also indicates that the system cannot have any ferromagnetism. The fixed spin moment (FSM) calculations, by fixing total magnetic moment on the unit cell, also suggested that this system does not exhibit any signatures of ferromagnetism.
Tippins, Ashley; Murthy, Neil; Meghani, Mehreen; Solsman, Amy; Apaisam, Carter; Basilius, Merlyn; Eckert, Maribeth; Judicpa, Peter; Masunu, Yolanda; Pistotnik, Kelsey; Pedro, Daisy; Sasamoto, Jeremy; Underwood, J Michael
2018-05-25
Vaccine-preventable diseases (VPDs) cause substantial morbidity and mortality in the United States Affiliated Pacific Islands (USAPI).* CDC collaborates with USAPI immunization programs to monitor vaccination coverage. In 2016, † USAPI immunization programs and CDC piloted a method for estimating up-to-date status among children aged 2 years using medical record abstraction to ascertain regional vaccination coverage. This was the first concurrent assessment of childhood vaccination coverage across five USAPI jurisdictions (American Samoa; Chuuk State, Federated States of Micronesia [FSM]; Commonwealth of the Northern Mariana Islands [CNMI]; Republic of the Marshall Islands [RMI]; and Republic of Palau). § Differences in vaccination coverage between main and outer islands ¶ were assessed for two jurisdictions where data were adequate.** Series coverage in this report includes the following doses of vaccines: ≥4 doses of diphtheria and tetanus toxoids and acellular pertussis vaccine (DTaP); ≥3 doses of inactivated poliovirus vaccine (IPV); ≥1 dose of measles, mumps, and rubella vaccine (MMR); ≥3 doses of Haemophilus influenzae type B (Hib) vaccine; ≥3 doses of hepatitis B (HepB) vaccine; and ≥4 doses of pneumococcal conjugate vaccine (PCV); i.e., 4:3:1:3:3:4. Coverage with ≥3 doses of rotavirus vaccine was also assessed. Completion of the recommended series of each of these vaccines †† was <90% in all jurisdictions except Palau. Coverage with the full recommended six-vaccine series (4:3:1:3:3:4) ranged from 19.5% (Chuuk) to 69.1% (Palau). In RMI and Chuuk, coverage was lower in the outer islands than in the main islands for most vaccines, with differences ranging from 0.9 to 66.8 percentage points. Medical record abstraction enabled rapid vaccination coverage assessment and timely dissemination of results to guide programmatic decision-making. Effectively monitoring vaccination coverage, coupled with implementation of data-driven interventions, is essential to maintain protection from VPD outbreaks in the region and the mainland United States.
Seizure Forecasting and the Preictal State in Canine Epilepsy.
Varatharajah, Yogatheesan; Iyer, Ravishankar K; Berry, Brent M; Worrell, Gregory A; Brinkmann, Benjamin H
2017-02-01
The ability to predict seizures may enable patients with epilepsy to better manage their medications and activities, potentially reducing side effects and improving quality of life. Forecasting epileptic seizures remains a challenging problem, but machine learning methods using intracranial electroencephalographic (iEEG) measures have shown promise. A machine-learning-based pipeline was developed to process iEEG recordings and generate seizure warnings. Results support the ability to forecast seizures at rates greater than a Poisson random predictor for all feature sets and machine learning algorithms tested. In addition, subject-specific neurophysiological changes in multiple features are reported preceding lead seizures, providing evidence supporting the existence of a distinct and identifiable preictal state.
SEIZURE FORECASTING AND THE PREICTAL STATE IN CANINE EPILEPSY
Varatharajah, Yogatheesan; Iyer, Ravishankar K.; Berry, Brent M.; Worrell, Gregory A.; Brinkmann, Benjamin H.
2017-01-01
The ability to predict seizures may enable patients with epilepsy to better manage their medications and activities, potentially reducing side effects and improving quality of life. Forecasting epileptic seizures remains a challenging problem, but machine learning methods using intracranial electroencephalographic (iEEG) measures have shown promise. A machine-learning-based pipeline was developed to process iEEG recordings and generate seizure warnings. Results support the ability to forecast seizures at rates greater than a Poisson random predictor for all feature sets and machine learning algorithms tested. In addition, subject-specific neurophysiological changes in multiple features are reported preceding lead seizures, providing evidence supporting the existence of a distinct and identifiable preictal state. PMID:27464854
Machine intelligence and robotics: Report of the NASA study group. Executive summary
NASA Technical Reports Server (NTRS)
1979-01-01
A brief overview of applications of machine intelligence and robotics in the space program is given. These space exploration robots, global service robots to collect data for public service use on soil conditions, sea states, global crop conditions, weather, geology, disasters, etc., from Earth orbit, space industrialization and processing technologies, and construction of large structures in space. Program options for research, advanced development, and implementation of machine intelligence and robot technology for use in program planning are discussed. A vigorous and long-range program to incorporate and keep pace with state of the art developments in computer technology, both in spaceborne and ground-based computer systems is recommended.
Use of Advanced Machine-Learning Techniques for Non-Invasive Monitoring of Hemorrhage
2010-04-01
that state-of-the-art machine learning techniques when integrated with novel non-invasive monitoring technologies could detect subtle, physiological...decompensation. Continuous, non-invasively measured hemodynamic signals (e.g., ECG, blood pressures, stroke volume) were used for the development of machine ... learning algorithms. Accuracy estimates were obtained by building models using 27 subjects and testing on the 28th. This process was repeated 28 times
Optimal design method to minimize users' thinking mapping load in human-machine interactions.
Huang, Yanqun; Li, Xu; Zhang, Jie
2015-01-01
The discrepancy between human cognition and machine requirements/behaviors usually results in serious mental thinking mapping loads or even disasters in product operating. It is important to help people avoid human-machine interaction confusions and difficulties in today's mental work mastered society. Improving the usability of a product and minimizing user's thinking mapping and interpreting load in human-machine interactions. An optimal human-machine interface design method is introduced, which is based on the purpose of minimizing the mental load in thinking mapping process between users' intentions and affordance of product interface states. By analyzing the users' thinking mapping problem, an operating action model is constructed. According to human natural instincts and acquired knowledge, an expected ideal design with minimized thinking loads is uniquely determined at first. Then, creative alternatives, in terms of the way human obtains operational information, are provided as digital interface states datasets. In the last, using the cluster analysis method, an optimum solution is picked out from alternatives, by calculating the distances between two datasets. Considering multiple factors to minimize users' thinking mapping loads, a solution nearest to the ideal value is found in the human-car interaction design case. The clustering results show its effectiveness in finding an optimum solution to the mental load minimizing problems in human-machine interaction design.
Self-replicating machines in continuous space with virtual physics.
Smith, Arnold; Turney, Peter; Ewaschuk, Robert
2003-01-01
JohnnyVon is an implementation of self-replicating machines in continuous two-dimensional space. Two types of particles drift about in a virtual liquid. The particles are automata with discrete internal states but continuous external relationships. Their internal states are governed by finite state machines, but their external relationships are governed by a simulated physics that includes Brownian motion, viscosity, and springlike attractive and repulsive forces. The particles can be assembled into patterns that can encode arbitrary strings of bits. We demonstrate that, if an arbitrary seed pattern is put in a soup of separate individual particles, the pattern will replicate by assembling the individual particles into copies of itself. We also show that, given sufficient time, a soup of separate individual particles will eventually spontaneously form self-replicating patterns. We discuss the implications of JohnnyVon for research in nanotechnology, theoretical biology, and artificial life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Junjian; Sun, Kai; Wang, Jianhui
In this paper, in order to enhance the numerical stability of the unscented Kalman filter (UKF) used for power system dynamic state estimation, a new UKF with guaranteed positive semidifinite estimation error covariance (UKFGPS) is proposed and compared with five existing approaches, including UKFschol, UKF-kappa, UKFmodified, UKF-Delta Q, and the squareroot UKF (SRUKF). These methods and the extended Kalman filter (EKF) are tested by performing dynamic state estimation on WSCC 3-machine 9-bus system and NPCC 48-machine 140-bus system. For WSCC system, all methods obtain good estimates. However, for NPCC system, both EKF and the classic UKF fail. It is foundmore » that UKFschol, UKF-kappa, and UKF-Delta Q do not work well in some estimations while UKFGPS works well in most cases. UKFmodified and SRUKF can always work well, indicating their better scalability mainly due to the enhanced numerical stability.« less
Investigation of automated task learning, decomposition and scheduling
NASA Technical Reports Server (NTRS)
Livingston, David L.; Serpen, Gursel; Masti, Chandrashekar L.
1990-01-01
The details and results of research conducted in the application of neural networks to task planning and decomposition are presented. Task planning and decomposition are operations that humans perform in a reasonably efficient manner. Without the use of good heuristics and usually much human interaction, automatic planners and decomposers generally do not perform well due to the intractable nature of the problems under consideration. The human-like performance of neural networks has shown promise for generating acceptable solutions to intractable problems such as planning and decomposition. This was the primary reasoning behind attempting the study. The basis for the work is the use of state machines to model tasks. State machine models provide a useful means for examining the structure of tasks since many formal techniques have been developed for their analysis and synthesis. It is the approach to integrate the strong algebraic foundations of state machines with the heretofore trial-and-error approach to neural network synthesis.
Effect of focusing flow on stationary spot machining properties in elastic emission machining
2013-01-01
Ultraprecise optical elements are applied in advanced optical apparatus. Elastic emission machining (EEM) is one of the ultraprecision machining methods used to fabricate shapes with 0.1-nm accuracy. In this study, we proposed and experimentally tested the control of the shape of a stationary spot profile by introducing a focusing-flow state between the nozzle outlet and the workpiece surface in EEM. The simulation results indicate that the focusing-flow nozzle sharpens the distribution of the velocity on the workpiece surface. The results of machining experiments verified those of the simulation. The obtained stationary spot conditions will be useful for surface processing with a high spatial resolution. PMID:23680043
Optimal Control of Induction Machines to Minimize Transient Energy Losses
NASA Astrophysics Data System (ADS)
Plathottam, Siby Jose
Induction machines are electromechanical energy conversion devices comprised of a stator and a rotor. Torque is generated due to the interaction between the rotating magnetic field from the stator, and the current induced in the rotor conductors. Their speed and torque output can be precisely controlled by manipulating the magnitude, frequency, and phase of the three input sinusoidal voltage waveforms. Their ruggedness, low cost, and high efficiency have made them ubiquitous component of nearly every industrial application. Thus, even a small improvement in their energy efficient tend to give a large amount of electrical energy savings over the lifetime of the machine. Hence, increasing energy efficiency (reducing energy losses) in induction machines is a constrained optimization problem that has attracted attention from researchers. The energy conversion efficiency of induction machines depends on both the speed-torque operating point, as well as the input voltage waveform. It also depends on whether the machine is in the transient or steady state. Maximizing energy efficiency during steady state is a Static Optimization problem, that has been extensively studied, with commercial solutions available. On the other hand, improving energy efficiency during transients is a Dynamic Optimization problem that is sparsely studied. This dissertation exclusively focuses on improving energy efficiency during transients. This dissertation treats the transient energy loss minimization problem as an optimal control problem which consists of a dynamic model of the machine, and a cost functional. The rotor field oriented current fed model of the induction machine is selected as the dynamic model. The rotor speed and rotor d-axis flux are the state variables in the dynamic model. The stator currents referred to as d-and q-axis currents are the control inputs. A cost functional is proposed that assigns a cost to both the energy losses in the induction machine, as well as the deviations from desired speed-torque-magnetic flux setpoints. Using Pontryagin's minimum principle, a set of necessary conditions that must be satisfied by the optimal control trajectories are derived. The conditions are in the form a two-point boundary value problem, that can be solved numerically. The conjugate gradient method that was modified using the Hestenes-Stiefel formula was used to obtain the numerical solution of both the control and state trajectories. Using the distinctive shape of the numerical trajectories as inspiration, analytical expressions were derived for the state, and control trajectories. It was shown that the trajectory could be fully described by finding the solution of a one-dimensional optimization problem. The sensitivity of both the optimal trajectory and the optimal energy efficiency to different induction machine parameters were analyzed. A non-iterative solution that can use feedback for generating optimal control trajectories in real time was explored. It was found that an artificial neural network could be trained using the numerical solutions and made to emulate the optimal control trajectories with a high degree of accuracy. Hence a neural network along with a supervisory logic was implemented and used in a real-time simulation to control the Finite Element Method model of the induction machine. The results were compared with three other control regimes and the optimal control system was found to have the highest energy efficiency for the same drive cycle.
73. INTERIOR VIEW OF MACHINE SHOP LOOKING EAST, NOTE THE ...
73. INTERIOR VIEW OF MACHINE SHOP LOOKING EAST, NOTE THE MAIN DRIVE SHAFT ON THE CEILING AND DRIVE BELTS TO THE MACHINERY. MAY 8, 1919. - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL
Efficiency of autonomous soft nanomachines at maximum power.
Seifert, Udo
2011-01-14
We consider nanosized artificial or biological machines working in steady state enforced by imposing nonequilibrium concentrations of solutes or by applying external forces, torques, or electric fields. For unicyclic and strongly coupled multicyclic machines, efficiency at maximum power is not bounded by the linear response value 1/2. For strong driving, it can even approach the thermodynamic limit 1. Quite generally, such machines fall into three different classes characterized, respectively, as "strong and efficient," "strong and inefficient," and "balanced." For weakly coupled multicyclic machines, efficiency at maximum power has lost any universality even in the linear response regime.
Probabilistic machine learning and artificial intelligence.
Ghahramani, Zoubin
2015-05-28
How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.
Probabilistic machine learning and artificial intelligence
NASA Astrophysics Data System (ADS)
Ghahramani, Zoubin
2015-05-01
How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.
5 CFR 841.1005 - State responsibilities.
Code of Federal Regulations, 2011 CFR
2011-01-01
....1005 State responsibilities. The State will, in performance of this agreement: (a) Accept requests and...) Convert these requests on a monthly basis to a machine-readable magnetic tape using specifications...
5 CFR 841.1005 - State responsibilities.
Code of Federal Regulations, 2010 CFR
2010-01-01
....1005 State responsibilities. The State will, in performance of this agreement: (a) Accept requests and...) Convert these requests on a monthly basis to a machine-readable magnetic tape using specifications...
Generation of Custom DSP Transform IP Cores: Case Study Walsh-Hadamard Transform
2002-09-01
mathematics and hardware design What I know: Finite state machine Pipelining Systolic array … What I know: Linear algebra Digital signal processing...state machine Pipelining Systolic array … What I know: Linear algebra Digital signal processing Adaptive filter theory … A math guy A hardware engineer...Synthesis Technology Libary Bit-width (8) HF factor (1,2,3,6) VF factor (1,2,4, ... 32) Xilinx FPGA Place&Route Xilinx FPGA Place&Route Performance
A Fully Distributed Approach to the Design of a KBIT/SEC VHF Packet Radio Network,
1984-02-01
topological change and consequent out-modea routing data. Algorithm development has been aided by computer simulation using a finite state machine technique...development has been aided by computer simulation using a finite state machine technique to model a realistic network of up to fifty nodes. This is...use of computer based equipments in weapons systems and their associated sensors and command and control elements and the trend from voice to data
Quantum cloning disturbed by thermal Davies environment
NASA Astrophysics Data System (ADS)
Dajka, Jerzy; Łuczka, Jerzy
2016-06-01
A network of quantum gates designed to implement universal quantum cloning machine is studied. We analyze how thermal environment coupled to auxiliary qubits, `blank paper' and `toner' required at the preparation stage of copying, modifies an output fidelity of the cloner. Thermal environment is described in terms of the Markovian Davies theory. We show that such a cloning machine is not universal any more but its output is independent of at least a part of parameters of the environment. As a case study, we consider cloning of states in a six-state cryptography's protocol. We also briefly discuss cloning of arbitrary input states.
Solving a Higgs optimization problem with quantum annealing for machine learning.
Mott, Alex; Job, Joshua; Vlimant, Jean-Roch; Lidar, Daniel; Spiropulu, Maria
2017-10-18
The discovery of Higgs-boson decays in a background of standard-model processes was assisted by machine learning methods. The classifiers used to separate signals such as these from background are trained using highly unerring but not completely perfect simulations of the physical processes involved, often resulting in incorrect labelling of background processes or signals (label noise) and systematic errors. Here we use quantum and classical annealing (probabilistic techniques for approximating the global maximum or minimum of a given function) to solve a Higgs-signal-versus-background machine learning optimization problem, mapped to a problem of finding the ground state of a corresponding Ising spin model. We build a set of weak classifiers based on the kinematic observables of the Higgs decay photons, which we then use to construct a strong classifier. This strong classifier is highly resilient against overtraining and against errors in the correlations of the physical observables in the training data. We show that the resulting quantum and classical annealing-based classifier systems perform comparably to the state-of-the-art machine learning methods that are currently used in particle physics. However, in contrast to these methods, the annealing-based classifiers are simple functions of directly interpretable experimental parameters with clear physical meaning. The annealer-trained classifiers use the excited states in the vicinity of the ground state and demonstrate some advantage over traditional machine learning methods for small training datasets. Given the relative simplicity of the algorithm and its robustness to error, this technique may find application in other areas of experimental particle physics, such as real-time decision making in event-selection problems and classification in neutrino physics.
Solving a Higgs optimization problem with quantum annealing for machine learning
NASA Astrophysics Data System (ADS)
Mott, Alex; Job, Joshua; Vlimant, Jean-Roch; Lidar, Daniel; Spiropulu, Maria
2017-10-01
The discovery of Higgs-boson decays in a background of standard-model processes was assisted by machine learning methods. The classifiers used to separate signals such as these from background are trained using highly unerring but not completely perfect simulations of the physical processes involved, often resulting in incorrect labelling of background processes or signals (label noise) and systematic errors. Here we use quantum and classical annealing (probabilistic techniques for approximating the global maximum or minimum of a given function) to solve a Higgs-signal-versus-background machine learning optimization problem, mapped to a problem of finding the ground state of a corresponding Ising spin model. We build a set of weak classifiers based on the kinematic observables of the Higgs decay photons, which we then use to construct a strong classifier. This strong classifier is highly resilient against overtraining and against errors in the correlations of the physical observables in the training data. We show that the resulting quantum and classical annealing-based classifier systems perform comparably to the state-of-the-art machine learning methods that are currently used in particle physics. However, in contrast to these methods, the annealing-based classifiers are simple functions of directly interpretable experimental parameters with clear physical meaning. The annealer-trained classifiers use the excited states in the vicinity of the ground state and demonstrate some advantage over traditional machine learning methods for small training datasets. Given the relative simplicity of the algorithm and its robustness to error, this technique may find application in other areas of experimental particle physics, such as real-time decision making in event-selection problems and classification in neutrino physics.
Code of Federal Regulations, 2010 CFR
2010-10-01
... cranes, steam shovels, pile drivers, and machines of similar construction, and maintenance machines built prior to September 21, 1945. (3) Export, industrial, and other cars not owned by a railroad which are... shipper, stating that such movement is being made under the authority of this paragraph. (4) Industrial...
Asnuntuck Community College's Machine Technology Certificate and Degree Programs.
ERIC Educational Resources Information Center
Irlen, Harvey S.; Gulluni, Frank D.
2002-01-01
States that although manufacturing remains a viable sector in Connecticut, it is experiencing skills shortages in the workforce. Describes the machine technology program's purpose, the development of the Asnuntuck Community College's (Connecticut) partnership with private sector manufacturers, the curriculum, the outcomes, and benefits of…
ERIC Educational Resources Information Center
Vail, Kathleen
1999-01-01
Despite federal and state regulations prohibiting the sale of nonnutritious foods in competition with school lunch programs, powerful market forces are keeping vending machines in schools. In 1997, schools generated $750 million for the vending machine market. Soft-drink companies are offering million-dollar contracts to some schools. Student…
Convergence of Cardinal Series.
1985-06-01
2Supported by International Business Machines Corporation and National Science Foundation Grant No. DMS-8351187. 3Supported by NSERC Canada through Grant...S,, iff suppf C fl. (1) Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. (2) Supported by International Business Machines
The management of building fire safety towards the sustainability of Malaysian public universities
NASA Astrophysics Data System (ADS)
Ebenehi, I. Y.; Mohamed, S.; Sarpin, N.; Masrom, M. A. N.; Zainal, R.; Azmi, M. A. Mohd
2017-11-01
Recently, there had been reduction in annual budgetary allocations to public universities in Malaysia due to some economic tensions. This situation had left many institutions in question with the options of scaling down their expenses as well as sourcing for other means of meeting up with the shortfalls in allocated funds. Hence, it affects the sustainability of the building itself. This paper is an attempt to look at the possibility of reducing incidents that could lead to expending unbudgeted fund to rehabilitating property unfortunately destroyed by fire on campus, in addition to limiting risk to life and interruption of academic and business activities. Several research had been conducted on FSM, nevertheless very few consider Higher Education Institutions (HEI)s holistically. Hence this research intends to fill that gap.
Internal corrosion monitoring of subsea oil and gas production equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joosten, M.W.; Fischer, K.P.; Strommen, R.
1995-04-01
Nonintrusive techniques will dominate subsea corrosion monitoring compared with the intrusive methods because such methods do not interfere with pipeline operations. The long-term reliability of the nonintrusive techniques in general is considered to be much better than that of intrusive-type probes. The nonintrusive techniques based on radioactive tracers (TLA, NA) and FSM and UT are expected to be the main types of subsea corrosion monitoring equipment in the coming years. Available techniques that could be developed specifically for subsea applications are: electrochemical noise, corrosion potentials (using new types of reference electrodes), multiprobe system for electrochemical measurements, and video camera inspectionmore » (mini-video camera with light source). The following innovative techniques have potential but need further development: ion selective electrodes, radioactive tracers, and Raman spectroscopy.« less
Instability-related delamination growth in thermoset and thermoplastic composites
NASA Technical Reports Server (NTRS)
Gillespie, John W., Jr.; Carlsson, Leif A.; Rothschilds, Robert J.
1988-01-01
Mixed-mode crack propagation in compressively loaded thermoset and thermoplastic composite columns with an imbedded through-width delamination is investigated. Beam theory is used to analyze the geometrically nonlinear load-deformation relationship of the delaminated subregion. The elastic restraint model (ERM), combined with existing FSM modeling of the crack-tip region, yields expressions for the Mode I and Mode II components of the strain energy release rate G(I) and G(II) to predict the critical load at the onset of delamination growth. Experimental data were generated for geometries yielding a wide range of G(I)/G(II) ratios at the onset of crack growth. A linear mixed-mode crack growth criterion in conjunctuion with the ERM provides good agreement between predicted and measured critical loads for both materials studied.
Active learning machine learns to create new quantum experiments.
Melnikov, Alexey A; Poulsen Nautrup, Hendrik; Krenn, Mario; Dunjko, Vedran; Tiersch, Markus; Zeilinger, Anton; Briegel, Hans J
2018-02-06
How useful can machine learning be in a quantum laboratory? Here we raise the question of the potential of intelligent machines in the context of scientific research. A major motivation for the present work is the unknown reachability of various entanglement classes in quantum experiments. We investigate this question by using the projective simulation model, a physics-oriented approach to artificial intelligence. In our approach, the projective simulation system is challenged to design complex photonic quantum experiments that produce high-dimensional entangled multiphoton states, which are of high interest in modern quantum experiments. The artificial intelligence system learns to create a variety of entangled states and improves the efficiency of their realization. In the process, the system autonomously (re)discovers experimental techniques which are only now becoming standard in modern quantum optical experiments-a trait which was not explicitly demanded from the system but emerged through the process of learning. Such features highlight the possibility that machines could have a significantly more creative role in future research.
Using machine learning to explore the long-term evolution of GRS 1915+105
NASA Astrophysics Data System (ADS)
Huppenkothen, Daniela; Heil, Lucy M.; Hogg, David W.; Mueller, Andreas
2017-04-01
Among the population of known Galactic black hole X-ray binaries, GRS 1915+105 stands out in multiple ways. It has been in continuous outburst since 1992, and has shown a wide range of different states that can be distinguished by their timing and spectral properties. These states, also observed in IGR J17091-3624, have in the past been linked to accretion dynamics. Here, we present the first comprehensive study into the long-term evolution of GRS 1915+105, using the entire data set observed with Rossi X-ray Timing Explorer over its 16-yr lifetime. We develop a set of descriptive features allowing for automatic separation of states, and show that supervised machine learning in the form of logistic regression and random forests can be used to efficiently classify the entire data set. For the first time, we explore the duty cycle and time evolution of states over the entire 16-yr time span, and find that the temporal distribution of states has likely changed over the span of the observations. We connect the machine classification with physical interpretations of the phenomenology in terms of chaotic and stochastic processes.
Zhang, A; Critchley, S; Monsour, P A
2016-12-01
The aim of the present study was to assess the current adoption of cone beam computed tomography (CBCT) and panoramic radiography (PR) machines across Australia. Information regarding registered CBCT and PR machines was obtained from radiation regulators across Australia. The number of X-ray machines was correlated with the population size, the number of dentists, and the gross state product (GSP) per capita, to determine the best fitting regression model(s). In 2014, there were 232 CBCT and 1681 PR machines registered in Australia. Based on absolute counts, Queensland had the largest number of CBCT and PR machines whereas the Northern Territory had the smallest number. However, when based on accessibility in terms of the population size and the number of dentists, the Australian Capital Territory had the most CBCT machines and Western Australia had the most PR machines. The number of X-ray machines correlated strongly with both the population size and the number of dentists, but not with the GSP per capita. In 2014, the ratio of PR to CBCT machines was approximately 7:1. Projected increases in either the population size or the number of dentists could positively impact on the adoption of PR and CBCT machines in Australia. © 2016 Australian Dental Association.
PLA realizations for VLSI state machines
NASA Technical Reports Server (NTRS)
Gopalakrishnan, S.; Whitaker, S.; Maki, G.; Liu, K.
1990-01-01
A major problem associated with state assignment procedures for VLSI controllers is obtaining an assignment that produces minimal or near minimal logic. The key item in Programmable Logic Array (PLA) area minimization is the number of unique product terms required by the design equations. This paper presents a state assignment algorithm for minimizing the number of product terms required to implement a finite state machine using a PLA. Partition algebra with predecessor state information is used to derive a near optimal state assignment. A maximum bound on the number of product terms required can be obtained by inspecting the predecessor state information. The state assignment algorithm presented is much simpler than existing procedures and leads to the same number of product terms or less. An area-efficient PLA structure implemented in a 1.0 micron CMOS process is presented along with a summary of the performance for a controller implemented using this design procedure.
McKeith, Charles F A; Rock, Adam J; Clark, Gavin I
2017-06-01
In Australia, poker-machine gamblers represent a disproportionate number of problem gamblers. To cultivate a greater understanding of the psychological mechanisms involved in poker-machine gambling, a repeated measures cue-reactivity protocol was administered. A community sample of 38 poker-machine gamblers was assessed for problem-gambling severity and trait mindfulness. Participants were also assessed regarding altered state of awareness (ASA) and urge to gamble at baseline, following a neutral cue, and following a gambling cue. Results indicated that: (a) urge to gamble significantly increased from neutral cue to gambling cue, while controlling for baseline urge; (b) cue-reactive ASA did not significantly mediate the relationship between problem-gambling severity and cue-reactive urge (from neutral cue to gambling cue); (c) trait mindfulness was significantly negatively associated with both problem-gambling severity and cue-reactive urge (i.e., from neutral cue to gambling cue, while controlling for baseline urge); and (d) trait mindfulness did not significantly moderate the effect of problem-gambling severity on cue-reactive urge (from neutral cue to gambling cue). This is the first study to demonstrate a negative association between trait mindfulness and cue-reactive urge to gamble in a population of poker-machine gamblers. Thus, this association merits further evaluation both in relation to poker-machine gambling and other gambling modalities.
Fast implementation of the 1\\rightarrow3 orbital state quantum cloning machine
NASA Astrophysics Data System (ADS)
Lin, Jin-Zhong
2018-05-01
We present a scheme to implement a 1→3 orbital state quantum cloning machine assisted by quantum Zeno dynamics. By constructing shortcuts to adiabatic passage with transitionless quantum driving, we can complete this scheme effectively and quickly in one step. The effects of decoherence, including spontaneous emission and the decay of the cavity, are also discussed. The numerical simulation results show that high fidelity can be obtained and the feasibility analysis indicates that this can also be realized in experiments.
Multispectral Image Processing for Plants
NASA Technical Reports Server (NTRS)
Miles, Gaines E.
1991-01-01
The development of a machine vision system to monitor plant growth and health is one of three essential steps towards establishing an intelligent system capable of accurately assessing the state of a controlled ecological life support system for long-term space travel. Besides a network of sensors, simulators are needed to predict plant features, and artificial intelligence algorithms are needed to determine the state of a plant based life support system. Multispectral machine vision and image processing can be used to sense plant features, including health and nutritional status.
Identifying saltcedar with hyperspectral data and support vector machines
USDA-ARS?s Scientific Manuscript database
Saltcedar (Tamarix spp.) are a group of dense phreatophytic shrubs and trees that are invasive to riparian areas throughout the United States. This study determined the feasibility of using hyperspectral data and a support vector machine (SVM) classifier to discriminate saltcedar from other cover t...
Koshka, Yaroslav; Perera, Dilina; Hall, Spencer; Novotny, M A
2017-07-01
The possibility of using a quantum computer D-Wave 2X with more than 1000 qubits to determine the global minimum of the energy landscape of trained restricted Boltzmann machines is investigated. In order to overcome the problem of limited interconnectivity in the D-Wave architecture, the proposed RBM embedding combines multiple qubits to represent a particular RBM unit. The results for the lowest-energy (the ground state) and some of the higher-energy states found by the D-Wave 2X were compared with those of the classical simulated annealing (SA) algorithm. In many cases, the D-Wave machine successfully found the same RBM lowest-energy state as that found by SA. In some examples, the D-Wave machine returned a state corresponding to one of the higher-energy local minima found by SA. The inherently nonperfect embedding of the RBM into the Chimera lattice explored in this work (i.e., multiple qubits combined into a single RBM unit were found not to be guaranteed to be all aligned) and the existence of small, persistent biases in the D-Wave hardware may cause a discrepancy between the D-Wave and the SA results. In some of the investigated cases, introduction of a small bias field into the energy function or optimization of the chain-strength parameter in the D-Wave embedding successfully addressed difficulties of the particular RBM embedding. With further development of the D-Wave hardware, the approach will be suitable for much larger numbers of RBM units.
Machine learning for neuroimaging with scikit-learn.
Abraham, Alexandre; Pedregosa, Fabian; Eickenberg, Michael; Gervais, Philippe; Mueller, Andreas; Kossaifi, Jean; Gramfort, Alexandre; Thirion, Bertrand; Varoquaux, Gaël
2014-01-01
Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.
Machine learning for neuroimaging with scikit-learn
Abraham, Alexandre; Pedregosa, Fabian; Eickenberg, Michael; Gervais, Philippe; Mueller, Andreas; Kossaifi, Jean; Gramfort, Alexandre; Thirion, Bertrand; Varoquaux, Gaël
2014-01-01
Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain. PMID:24600388
NASA Astrophysics Data System (ADS)
Zhou, Ming; Wu, Jianyang; Xu, Xiaoyi; Mu, Xin; Dou, Yunping
2018-02-01
In order to obtain improved electrical discharge machining (EDM) performance, we have dedicated more than a decade to correcting one essential EDM defect, the weak stability of the machining, by developing adaptive control systems. The instabilities of machining are mainly caused by complicated disturbances in discharging. To counteract the effects from the disturbances on machining, we theoretically developed three control laws from minimum variance (MV) control law to minimum variance and pole placements coupled (MVPPC) control law and then to a two-step-ahead prediction (TP) control law. Based on real-time estimation of EDM process model parameters and measured ratio of arcing pulses which is also called gap state, electrode discharging cycle was directly and adaptively tuned so that a stable machining could be achieved. To this end, we not only theoretically provide three proved control laws for a developed EDM adaptive control system, but also practically proved the TP control law to be the best in dealing with machining instability and machining efficiency though the MVPPC control law provided much better EDM performance than the MV control law. It was also shown that the TP control law also provided a burn free machining.
Analysis of acoustic emission signals and monitoring of machining processes
Govekar; Gradisek; Grabec
2000-03-01
Monitoring of a machining process on the basis of sensor signals requires a selection of informative inputs in order to reliably characterize and model the process. In this article, a system for selection of informative characteristics from signals of multiple sensors is presented. For signal analysis, methods of spectral analysis and methods of nonlinear time series analysis are used. With the aim of modeling relationships between signal characteristics and the corresponding process state, an adaptive empirical modeler is applied. The application of the system is demonstrated by characterization of different parameters defining the states of a turning machining process, such as: chip form, tool wear, and onset of chatter vibration. The results show that, in spite of the complexity of the turning process, the state of the process can be well characterized by just a few proper characteristics extracted from a representative sensor signal. The process characterization can be further improved by joining characteristics from multiple sensors and by application of chaotic characteristics.
Automatic spin-chain learning to explore the quantum speed limit
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Ming; Cui, Zi-Wei; Wang, Xin; Yung, Man-Hong
2018-05-01
One of the ambitious goals of artificial intelligence is to build a machine that outperforms human intelligence, even if limited knowledge and data are provided. Reinforcement learning (RL) provides one such possibility to reach this goal. In this work, we consider a specific task from quantum physics, i.e., quantum state transfer in a one-dimensional spin chain. The mission for the machine is to find transfer schemes with the fastest speeds while maintaining high transfer fidelities. The first scenario we consider is when the Hamiltonian is time independent. We update the coupling strength by minimizing a loss function dependent on both the fidelity and the speed. Compared with a scheme proven to be at the quantum speed limit for the perfect state transfer, the scheme provided by RL is faster while maintaining the infidelity below 5 ×10-4 . In the second scenario where a time-dependent external field is introduced, we convert the state transfer process into a Markov decision process that can be understood by the machine. We solve it with the deep Q-learning algorithm. After training, the machine successfully finds transfer schemes with high fidelities and speeds, which are faster than previously known ones. These results show that reinforcement learning can be a powerful tool for quantum control problems.
14 CFR 382.3 - What do the terms in this rule mean?
Code of Federal Regulations, 2011 CFR
2011-01-01
... and places between which those flights are performed. CPAP machine means a continuous positive airway pressure machine. Department or DOT means the United States Department of Transportation. Direct threat... learning disabilities. The term physical or mental impairment includes, but is not limited to, such...
DOT National Transportation Integrated Search
1982-08-01
This study summarizes extensive information collected over a two-year period (October 1978 to October 1980) on suppliers of parts and components, materials, and machine tools to the automotive industry in the United States. The objective of the study...
Availability of Vending Machines and School Stores in California Schools
ERIC Educational Resources Information Center
Cisse-Egbuonye, Nafissatou; Liles, Sandy; Schmitz, Katharine E.; Kassem, Nada; Irvin, Veronica L.; Hovell, Melbourne F.
2016-01-01
Background: This study examined the availability of foods sold in vending machines and school stores in United States public and private schools, and associations of availability with students' food purchases and consumption. Methods: Descriptive analyses, chi-square tests, and Spearman product-moment correlations were conducted on data collected…
Experimental Investigation of Superconducting Synchronous Machines
The report details the design and testing of a synchronous motor with superconducting field and armature windings. Data are furnished on the...as a generator with its armature in LN2 and in the superconducting state are given. Data are given on the machine operated as a synchronous motor. The
How to Clear a Block: A Theory of Plans
1986-12-01
International Business Machines Corporation. Pre1h:o.inary versions of parts of this paper were presented at the Eighth lnterna~ tiona/ Conference on Automated...84-C-0706, by United States Army Research under Contract DAJA-45-84-C-0040, and by a contract from the International Business Machines Corporation
14 CFR 382.3 - What do the terms in this rule mean?
Code of Federal Regulations, 2012 CFR
2012-01-01
... and places between which those flights are performed. CPAP machine means a continuous positive airway pressure machine. Department or DOT means the United States Department of Transportation. Direct threat... learning disabilities. The term physical or mental impairment includes, but is not limited to, such...
14 CFR 382.3 - What do the terms in this rule mean?
Code of Federal Regulations, 2013 CFR
2013-01-01
... and places between which those flights are performed. CPAP machine means a continuous positive airway pressure machine. Department or DOT means the United States Department of Transportation. Direct threat... learning disabilities. The term physical or mental impairment includes, but is not limited to, such...
Unorganized machines for seasonal streamflow series forecasting.
Siqueira, Hugo; Boccato, Levy; Attux, Romis; Lyra, Christiano
2014-05-01
Modern unorganized machines--extreme learning machines and echo state networks--provide an elegant balance between processing capability and mathematical simplicity, circumventing the difficulties associated with the conventional training approaches of feedforward/recurrent neural networks (FNNs/RNNs). This work performs a detailed investigation of the applicability of unorganized architectures to the problem of seasonal streamflow series forecasting, considering scenarios associated with four Brazilian hydroelectric plants and four distinct prediction horizons. Experimental results indicate the pertinence of these models to the focused task.
2017-03-01
neuro ICP care beyond trauma care. 15. SUBJECT TERMS Advanced machine learning techniques, intracranial pressure, vital signs, monitoring...death and disability in combat casualties [1,2]. Approximately 2 million head injuries occur annually in the United States, resulting in more than...editor. Machine learning and data mining in pattern recognition. Proceedings of the 8th International Workshop on Machine Learning and Data Mining in
Industrial Inspection with Open Eyes: Advance with Machine Vision Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zheng; Ukida, H.; Niel, Kurt
Machine vision systems have evolved significantly with the technology advances to tackle the challenges from modern manufacturing industry. A wide range of industrial inspection applications for quality control are benefiting from visual information captured by different types of cameras variously configured in a machine vision system. This chapter screens the state of the art in machine vision technologies in the light of hardware, software tools, and major algorithm advances for industrial inspection. The inspection beyond visual spectrum offers a significant complementary to the visual inspection. The combination with multiple technologies makes it possible for the inspection to achieve a bettermore » performance and efficiency in varied applications. The diversity of the applications demonstrates the great potential of machine vision systems for industry.« less
Washing machine related injuries in children: a continuing threat
Warner, B; Kenney, B; Rice, M
2003-01-01
Objective: To describe washing machine related injuries in children in the United States. Methods: Injury data for 496 washing machine related injuries documented by the Consumer Product Safety Commission's National Electronic Injury Surveillance System and death certificate data files were analyzed. Gender, age, diagnosis, body part injured, disposition, location and mechanism of injury were considered in the analysis of data. Results: The upper extremities were most frequently injured in washing machine related injuries, especially with wringer machines. Fewer than 10% of patients required admission, but automatic washers accounted for most of these and for both of the deaths. Automatic washer injuries involved a wider range of injury mechanism, including 23 children who fell from the machines while in baby seats. Conclusions: Though most injuries associated with washing machines are minor, some are severe and devastating. Many of the injuries could be avoided with improvements in machine design while others suggest a need for increased education of potential dangers and better supervision of children if they are allowed access to areas where washing machines are operating. Furthermore, washing machines should only be used for their intended purpose. Given the limitations of educational efforts to prevent injuries, health professionals should have a major role in public education regarding these seemingly benign household appliances. PMID:14693900
Kozyrev, A; Mitrofanov, I; Owens, A; Quarati, F; Benkhoff, J; Bakhtin, B; Fedosov, F; Golovin, D; Litvak, M; Malakhov, A; Mokrousov, M; Nuzhdin, I; Sanin, A; Tretyakov, V; Vostrukhin, A; Timoshenko, G; Shvetsov, V; Granja, C; Slavicek, T; Pospisil, S
2016-08-01
The recent availability of large volume cerium bromide crystals raises the possibility of substantially improving gamma-ray spectrometer limiting flux sensitivities over current systems based on the lanthanum tri-halides, e.g., lanthanum bromide and lanthanum chloride, especially for remote sensing, low-level counting applications or any type of measurement characterized by poor signal to noise ratios. The Russian Space Research Institute has developed and manufactured a highly sensitive gamma-ray spectrometer for remote sensing observations of the planet Mercury from the Mercury Polar Orbiter (MPO), which forms part of ESA's BepiColombo mission. The Flight Model (FM) gamma-ray spectrometer is based on a 3-in. single crystal of LaBr3(Ce(3+)) produced in a separate crystal development programme specifically for this mission. During the spectrometers development, manufacturing, and qualification phases, large crystals of CeBr3 became available in a subsequent phase of the same crystal development programme. Consequently, the Flight Spare Model (FSM) gamma-ray spectrometer was retrofitted with a 3-in. CeBr3 crystal and qualified for space. Except for the crystals, the two systems are essentially identical. In this paper, we report on a comparative assessment of the two systems, in terms of their respective spectral properties, as well as their suitability for use in planetary mission with respect to radiation tolerance and their propensity for activation. We also contrast their performance with a Ge detector representative of that flown on MESSENGER and show that: (a) both LaBr3(Ce(3+)) and CeBr3 provide superior detection systems over HPGe in the context of minimally resourced spacecraft and (b) CeBr3 is a more attractive system than LaBr3(Ce(3+)) in terms of sensitivities at lower gamma fluxes. Based on the tests, the FM has now been replaced by the FSM on the BepiColombo spacecraft. Thus, CeBr3 now forms the central gamma-ray detection element on the MPO spacecraft.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozyrev, A., E-mail: kozyrev@mx.iki.rssi.ru; Mitrofanov, I.; Bakhtin, B.
The recent availability of large volume cerium bromide crystals raises the possibility of substantially improving gamma-ray spectrometer limiting flux sensitivities over current systems based on the lanthanum tri-halides, e.g., lanthanum bromide and lanthanum chloride, especially for remote sensing, low-level counting applications or any type of measurement characterized by poor signal to noise ratios. The Russian Space Research Institute has developed and manufactured a highly sensitive gamma-ray spectrometer for remote sensing observations of the planet Mercury from the Mercury Polar Orbiter (MPO), which forms part of ESA’s BepiColombo mission. The Flight Model (FM) gamma-ray spectrometer is based on a 3-in. singlemore » crystal of LaBr{sub 3}(Ce{sup 3+}) produced in a separate crystal development programme specifically for this mission. During the spectrometers development, manufacturing, and qualification phases, large crystals of CeBr{sub 3} became available in a subsequent phase of the same crystal development programme. Consequently, the Flight Spare Model (FSM) gamma-ray spectrometer was retrofitted with a 3-in. CeBr{sub 3} crystal and qualified for space. Except for the crystals, the two systems are essentially identical. In this paper, we report on a comparative assessment of the two systems, in terms of their respective spectral properties, as well as their suitability for use in planetary mission with respect to radiation tolerance and their propensity for activation. We also contrast their performance with a Ge detector representative of that flown on MESSENGER and show that: (a) both LaBr{sub 3}(Ce{sup 3+}) and CeBr{sub 3} provide superior detection systems over HPGe in the context of minimally resourced spacecraft and (b) CeBr{sub 3} is a more attractive system than LaBr{sub 3}(Ce{sup 3+}) in terms of sensitivities at lower gamma fluxes. Based on the tests, the FM has now been replaced by the FSM on the BepiColombo spacecraft. Thus, CeBr{sub 3} now forms the central gamma-ray detection element on the MPO spacecraft.« less
Fluorescent supramolecular micelles for imaging-guided cancer therapy
NASA Astrophysics Data System (ADS)
Sun, Mengmeng; Yin, Wenyan; Dong, Xinghua; Yang, Wantai; Zhao, Yuliang; Yin, Meizhen
2016-02-01
A novel smart fluorescent drug delivery system composed of a perylene diimide (PDI) core and block copolymer poly(d,l-lactide)-b-poly(ethyl ethylene phosphate) is developed and named as PDI-star-(PLA-b-PEEP)8. The biodegradable PDI-star-(PLA-b-PEEP)8 is a unimolecular micelle and can self-assemble into supramolecular micelles, called as fluorescent supramolecular micelles (FSMs), in aqueous media. An insoluble drug camptothecin (CPT) can be effectively loaded into the FSMs and exhibits pH-responsive release. Moreover, the FSMs with good biocompatibility can also be employed as a remarkable fluorescent probe for cell labelling because the maximum emission of PDI is beneficial for bio-imaging. The flow cytometry and confocal laser scanning microscopy analysis demonstrate that the micelles are easily endocytosed by cancer cells. In vitro and in vivo tumor growth-inhibitory studies reveal a better therapeutic effect of FSMs after CPT encapsulation when compared with the free CPT drug. The multifunctional FSM nanomedicine platform as a nanovehicle has great potential for fluorescence imaging-guided cancer therapy.A novel smart fluorescent drug delivery system composed of a perylene diimide (PDI) core and block copolymer poly(d,l-lactide)-b-poly(ethyl ethylene phosphate) is developed and named as PDI-star-(PLA-b-PEEP)8. The biodegradable PDI-star-(PLA-b-PEEP)8 is a unimolecular micelle and can self-assemble into supramolecular micelles, called as fluorescent supramolecular micelles (FSMs), in aqueous media. An insoluble drug camptothecin (CPT) can be effectively loaded into the FSMs and exhibits pH-responsive release. Moreover, the FSMs with good biocompatibility can also be employed as a remarkable fluorescent probe for cell labelling because the maximum emission of PDI is beneficial for bio-imaging. The flow cytometry and confocal laser scanning microscopy analysis demonstrate that the micelles are easily endocytosed by cancer cells. In vitro and in vivo tumor growth-inhibitory studies reveal a better therapeutic effect of FSMs after CPT encapsulation when compared with the free CPT drug. The multifunctional FSM nanomedicine platform as a nanovehicle has great potential for fluorescence imaging-guided cancer therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00450d
Wells, J E; Berry, E D; Guerini, M N; Varel, V H
2015-02-01
To evaluate natural terpene compounds for antimicrobial activities and determine whether these compounds could be used to control microbial activities and pathogens in production animal facilities. Thymol, geraniol, glydox, linalool, pine oil, plinol and terpineol were tested in laboratory studies for ability to control the production of odorous volatile fatty acid compounds and reduce pathogen levels in manure slurry preparations. Thymol is a terpene phenolic compound and was most effective for reducing fermentation products and pathogen levels (P < 0.05), followed by the extracts linalool, pine oil and terpineol, which are terpene alcohols. Select compounds thymol, linalool and pine oil were further evaluated in two separate studies by applying the agents to feedlot surfaces in cattle pens. Feedlot surface material (FSM; manure and soil) was collected and analysed for fermentation products, levels of coliforms and total Escherichia coli, and the presence of E. coli O157:H7, Campylobacter, Salmonella, Listeria and L. monocytogenes. The reduction in fermentation products but not pathogens was dependent on the moisture present in the FSM. Treatment with 2000 ppm thymol reduced the prevalence of E. coli O157:H7 but not Listeria. In a separate study, treatment with 4000 ppm pine oil reduced E. coli O157:H7, Listeria and Campylobacter (P < 0.05). Linalool was tested at two levels (2000 and 4000 ppm) and did not affect pathogen levels at either concentration. Natural compounds bearing terpenes can control pathogenic bacteria in treated manures and when applied to the feedlot surface in production cattle systems. Pine oil is a cheaper alternative to thymol and may be a useful treatment for controlling pathogens. The control of bacterial pathogens in animal productions systems is an important step in preharvest food safety. Waste products, such as pine oil extract, from the pulp wood industry may have application for treating feedlot pens and manures to reduce the pathogen load. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Ross, L J; Mitchell, L J; Williams, L T
2017-10-01
Student confidence is an important contributor to a successful professional placement experience. The present study aimed to evaluate a placement preparation program for student dietitians and to assess the impact on self-rated confidence with respect to commencing placements. The present study is part of a design-based research approach that involves students in a cyclic enquiry to evaluate and improve curricula. Nutrition and Dietetics students at an Australian university participated in a 1-week mandatory workshop - Pre-Placement week (PrePW), N = 98 students: in 2015 (n = 54) and 2016 (n = 44). An online survey was conducted before and after PrePW using a five-point Likert scale (1 = not confident; 5 = very confident) to assess self-rated confidence to commence placements. Mean (SD) scores were calculated. Paired and independent t-tests evaluated within- and between-group differences, respectively. Before PrePW, the mean (SD) for student confidence to commence placements overall (in all areas of practise) was 'somewhat confident' [2.9 (0.6) in 2015 and 3.0 (0.7) in 2016]. Students were least confident to commence Clinical Practice [2015: 2.5 (0.6); 2016: 2.8 (0.6)] compared to Food Service Management (FSM) [2015: 3.2 (0.9); 2016: 3.1 (0.9)] and Community and Public Health Nutrition (CPHN) [2015: 3.3 (0.9); 2016: 3.2 (0.8)]. Student feedback from PrePW 2015 was used to change the curriculum and PrePW program. The 2016 students reported significantly greater confidence within all areas of practice: Clinical Practice [3.4 (0.6)], FSM [3.7 (0.6)] and CPHN [3.8 (0.6)], including confidence to commence placements overall [3.6 (0.6)] (P < 0.05). Design-based research provides a useful framework for improvement to curricula and, in this case, was successful in enhancing student confidence in preparation for professional placement. © 2017 Commonwealth of Australia. Journal of Human Nutrition and Dietetics © 2017 The British Dietetic Association Ltd.
U.S. Visa Waiver Program Changes
NASA Astrophysics Data System (ADS)
The U.S. State Department has just announced that a change to a new rule affecting citizens from visa waiver program countries. The rule, scheduled to go into effect on 1 October 2003, requires visitors from these countries to obtain non-immigrant visas to enter the United States if they do not have machine-readable passports. The change announced is that a visa waiver country can petition the U.S. government to delay the rule by one year. The State Department recommends that citizens of visa waiver program countries who are contemplating visiting the United States, and do not have machine-readable passports, contact the nearest U.S. embassy or consulate to find out if implementation of the rule has been temporarily waived for their countries.
Tuarob, Suppawong; Tucker, Conrad S; Kumara, Soundar; Giles, C Lee; Pincus, Aaron L; Conroy, David E; Ram, Nilam
2017-04-01
It is believed that anomalous mental states such as stress and anxiety not only cause suffering for the individuals, but also lead to tragedies in some extreme cases. The ability to predict the mental state of an individual at both current and future time periods could prove critical to healthcare practitioners. Currently, the practical way to predict an individual's mental state is through mental examinations that involve psychological experts performing the evaluations. However, such methods can be time and resource consuming, mitigating their broad applicability to a wide population. Furthermore, some individuals may also be unaware of their mental states or may feel uncomfortable to express themselves during the evaluations. Hence, their anomalous mental states could remain undetected for a prolonged period of time. The objective of this work is to demonstrate the ability of using advanced machine learning based approaches to generate mathematical models that predict current and future mental states of an individual. The problem of mental state prediction is transformed into the time series forecasting problem, where an individual is represented as a multivariate time series stream of monitored physical and behavioral attributes. A personalized mathematical model is then automatically generated to capture the dependencies among these attributes, which is used for prediction of mental states for each individual. In particular, we first illustrate the drawbacks of traditional multivariate time series forecasting methodologies such as vector autoregression. Then, we show that such issues could be mitigated by using machine learning regression techniques which are modified for capturing temporal dependencies in time series data. A case study using the data from 150 human participants illustrates that the proposed machine learning based forecasting methods are more suitable for high-dimensional psychological data than the traditional vector autoregressive model in terms of both magnitude of error and directional accuracy. These results not only present a successful usage of machine learning techniques in psychological studies, but also serve as a building block for multiple medical applications that could rely on an automated system to gauge individuals' mental states. Copyright © 2017 Elsevier Inc. All rights reserved.
Fundamental aspects of steady-state conversion of heat to work at the nanoscale
NASA Astrophysics Data System (ADS)
Benenti, Giuliano; Casati, Giulio; Saito, Keiji; Whitney, Robert S.
2017-06-01
In recent years, the study of heat to work conversion has been re-invigorated by nanotechnology. Steady-state devices do this conversion without any macroscopic moving parts, through steady-state flows of microscopic particles such as electrons, photons, phonons, etc. This review aims to introduce some of the theories used to describe these steady-state flows in a variety of mesoscopic or nanoscale systems. These theories are introduced in the context of idealized machines which convert heat into electrical power (heat-engines) or convert electrical power into a heat flow (refrigerators). In this sense, the machines could be categorized as thermoelectrics, although this should be understood to include photovoltaics when the heat source is the sun. As quantum mechanics is important for most such machines, they fall into the field of quantum thermodynamics. In many cases, the machines we consider have few degrees of freedom, however the reservoirs of heat and work that they interact with are assumed to be macroscopic. This review discusses different theories which can take into account different aspects of mesoscopic and nanoscale physics, such as coherent quantum transport, magnetic-field induced effects (including topological ones such as the quantum Hall effect), and single electron charging effects. It discusses the efficiency of thermoelectric conversion, and the thermoelectric figure of merit. More specifically, the theories presented are (i) linear response theory with or without magnetic fields, (ii) Landauer scattering theory in the linear response regime and far from equilibrium, (iii) Green-Kubo formula for strongly interacting systems within the linear response regime, (iv) rate equation analysis for small quantum machines with or without interaction effects, (v) stochastic thermodynamic for fluctuating small systems. In all cases, we place particular emphasis on the fundamental questions about the bounds on ideal machines. Can magnetic-fields change the bounds on power or efficiency? What is the relationship between quantum theories of transport and the laws of thermodynamics? Does quantum mechanics place fundamental bounds on heat to work conversion which are absent in the thermodynamics of classical systems?
Machine learning topological states
NASA Astrophysics Data System (ADS)
Deng, Dong-Ling; Li, Xiaopeng; Das Sarma, S.
2017-11-01
Artificial neural networks and machine learning have now reached a new era after several decades of improvement where applications are to explode in many fields of science, industry, and technology. Here, we use artificial neural networks to study an intriguing phenomenon in quantum physics—the topological phases of matter. We find that certain topological states, either symmetry-protected or with intrinsic topological order, can be represented with classical artificial neural networks. This is demonstrated by using three concrete spin systems, the one-dimensional (1D) symmetry-protected topological cluster state and the 2D and 3D toric code states with intrinsic topological orders. For all three cases, we show rigorously that the topological ground states can be represented by short-range neural networks in an exact and efficient fashion—the required number of hidden neurons is as small as the number of physical spins and the number of parameters scales only linearly with the system size. For the 2D toric-code model, we find that the proposed short-range neural networks can describe the excited states with Abelian anyons and their nontrivial mutual statistics as well. In addition, by using reinforcement learning we show that neural networks are capable of finding the topological ground states of nonintegrable Hamiltonians with strong interactions and studying their topological phase transitions. Our results demonstrate explicitly the exceptional power of neural networks in describing topological quantum states, and at the same time provide valuable guidance to machine learning of topological phases in generic lattice models.
Control system and method for a hybrid electric vehicle
Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava
2001-01-01
A vehicle system controller (20) is presented for a LSR parallel hybrid electric vehicle having an engine (10), a motor (12), wheels (14), a transmission (16) and a battery (18). The vehicle system controller (20) has a state machine having a plurality of predefined states (22-32) that represent operating modes for the vehicle. A set of rules is defined for controlling the transition between any two states in the state machine. The states (22-32) are prioritized according to driver demands, energy management concerns and system fault occurrences. The vehicle system controller (20) controls the transitions from a lower priority state to a higher priority state based on the set of rules. In addition, the vehicle system controller (20) will control a transition to a lower state from a higher state when the conditions no longer warrant staying in the current state. A unique set of output commands is defined for each state for the purpose of controlling lower level subsystem controllers. These commands serve to achieve the desire vehicle functionality within each state and insure smooth transitions between states.
Automated Verification of Specifications with Typestates and Access Permissions
NASA Technical Reports Server (NTRS)
Siminiceanu, Radu I.; Catano, Nestor
2011-01-01
We propose an approach to formally verify Plural specifications based on access permissions and typestates, by model-checking automatically generated abstract state-machines. Our exhaustive approach captures all the possible behaviors of abstract concurrent programs implementing the specification. We describe the formal methodology employed by our technique and provide an example as proof of concept for the state-machine construction rules. The implementation of a fully automated algorithm to generate and verify models, currently underway, provides model checking support for the Plural tool, which currently supports only program verification via data flow analysis (DFA).
Advanced Telecommunications Technologies in Rural Communities: Factors Affecting Use.
ERIC Educational Resources Information Center
Leistritz, F. Larry; Allen, John C.; Johnson, Bruce B.; Olsen, Duane; Sell, Randy
1997-01-01
A survey of 2,000 rural residents in 6 states (36% response) found that 56% used answering machines, 48% fax machines, 46% personal computers, 27% cell phones, and 25% modems. Higher use was associated with higher income and education. Distance from the nearest metropolitan statistical area increased use. A large majority believed…
ERIC Educational Resources Information Center
Center for Education Statistics (ED/OERI), Washington, DC.
The Financial Statistics machine-readable data file (MRDF) is a subfile of the larger Higher Education General Information Survey (HEGIS). It contains basic financial statistics for over 3,000 institutions of higher education in the United States and its territories. The data are arranged sequentially by institution, with institutional…
Research in the Automation of Teaching. Technical Report.
ERIC Educational Resources Information Center
Zuckerman, Carl B.; And Others
An experiment was designed to compare the value of the Skinner Teaching Machine with more traditional teaching methods and to compare various means of presenting material via the teaching machine. Material from the United States Navy Basic Electricity course was programed into three series of items: one completion, one multiple choice, and one…
Team Machine: A Decision Support System for Team Formation
ERIC Educational Resources Information Center
Bergey, Paul; King, Mark
2014-01-01
This paper reports on the cross-disciplinary research that resulted in a decision-support tool, Team Machine (TM), which was designed to create maximally diverse student teams. TM was used at a large United States university between 2004 and 2012, and resulted in significant improvement in the performance of student teams, superior overall balance…
Elementary and Secondary School Civil Rights Survey, 1984 [machine-readable data file].
ERIC Educational Resources Information Center
DBS Corp., Arlington, VA.
The "Elementary and Secondary School Civil Rights Survey" machine-readable data file (MRDF) contains data on the characteristics of student populations enrolled in public schools throughout the United States. The emphasis is on data by race/ethnicity and sex in the following areas: stereotyping in courses, special education, vocational education,…
39. July 1974. WOOD SHOP, VIEW LOOKING NORTHWEST, SHOWING (LEFTTORIGHT): ...
39. July 1974. WOOD SHOP, VIEW LOOKING NORTHWEST, SHOWING (LEFT-TO-RIGHT): GRUBER-BUILT HUB-BORING MACHINE, MORTISING MACHINE, AND GRUBER-BUILT BELT-SANDER: ALL ARE POWERED FROM LINESHAFTING IN THE BLACKSMITH SHOP. - Gruber Wagon Works, Pennsylvania Route 183 & State Hill Road at Red Bridge Park, Bernville, Berks County, PA
Vending Machine Policies and Practices in Delaware
ERIC Educational Resources Information Center
Gemmill, Erin; Cotugna, Nancy
2005-01-01
Overweight has reached alarming proportions among America's youth. Although the cause of the rise in overweight rates in children and adolescents is certainly the result of the interaction of a variety of factors, the presence of vending machines in schools is one issue that has recently come to the forefront. Many states have passed or proposed…
27 CFR 447.22 - Forgings, castings, and machined bodies.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Forgings, castings, and... IMPLEMENTS OF WAR The U.S. Munitions Import List § 447.22 Forgings, castings, and machined bodies. Articles on the U.S. Munitions Import List include articles in a partially completed state (such as forgings...
ERIC Educational Resources Information Center
Gorman, Nathan; Parker, Ronald; Lurie, Charles; Maples, Thomas
2005-01-01
Secondary vocational-technical education programs in Mississippi are faced with many challenges resulting from sweeping educational reforms at the national and state levels. Schools and teachers are increasingly being held accountable for providing true learning activities to every student in the classroom. This accountability is measured through…
Precision Machining Technology. Technical Committee Report.
ERIC Educational Resources Information Center
Idaho State Dept. of Education, Boise. Div. of Vocational Education.
This Technical Committee Report prepared by industry representatives in Idaho lists the skills currently necessary for an employee in that state to obtain a job in precision machining technology, retain a job once hired, and advance in that occupational field. (Task lists are grouped according to duty areas generally used in industry settings, and…
Cell-cycle research with synchronous cultures: an evaluation
NASA Technical Reports Server (NTRS)
Helmstetter, C. E.; Thornton, M.; Grover, N. B.
2001-01-01
The baby-machine system, which produces new-born Escherichia coli cells from cultures immobilized on a membrane, was developed many years ago in an attempt to attain optimal synchrony with minimal disturbance of steady-state growth. In the present article, we put forward a model to describe the behaviour of cells produced by this method, and provide quantitative evaluation of the parameters involved, at each of four different growth rates. Considering the high level of selection achievable with this technique and the natural dispersion in interdivision times, we believe that the output of the baby machine is probably close to optimal in terms of both quality and persistence of synchrony. We show that considerable information on events in the cell cycle can be obtained from populations with age distributions very much broader than those achieved with the baby machine and differing only modestly from steady state. The data presented here, together with the long and fruitful history of findings employing the baby-machine technique, suggest that minimisation of stress on cells is the single most important factor for successful cell-cycle analysis.
Improving the reliability of inverter-based welding machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiedermayer, M.
1997-02-01
Although inverter-based welding power sources have been available since the late 1980s, many people hesitated to purchase them because of reliability issues. Unfortunately, their hesitancy had a basis, until now. Recent improvements give some inverters a reliability level that approaches that of traditional, transformer-based industrial welding machines, which have a failure rate of about 1%. Acceptance of inverter-based welding machines is important because, for many welding applications, they provide capabilities that solid-state, transformer-based machines cannot deliver. These advantages include enhanced pulsed gas metal arc welding (GMAW-P), lightweight portability, an ultrastable arc, and energy efficiency--all while producing highly aesthetic weld beadsmore » and delivering multiprocess capabilities.« less
Pre-use anesthesia machine check; certified anesthesia technician based quality improvement audit.
Al Suhaibani, Mazen; Al Malki, Assaf; Al Dosary, Saad; Al Barmawi, Hanan; Pogoku, Mahdhav
2014-01-01
Quality assurance of providing a work ready machine in multiple theatre operating rooms in a tertiary modern medical center in Riyadh. The aim of the following study is to keep high quality environment for workers and patients in surgical operating rooms. Technicians based audit by using key performance indicators to assure inspection, passing test of machine worthiness for use daily and in between cases and in case of unexpected failure to provide quick replacement by ready to use another anesthetic machine. The anesthetic machines in all operating rooms are daily and continuously inspected and passed as ready by technicians and verified by anesthesiologist consultant or assistant consultant. The daily records of each machines were collected then inspected for data analysis by quality improvement committee department for descriptive analysis and report the degree of staff compliance to daily inspection as "met" items. Replaced machine during use and overall compliance. Distractive statistic using Microsoft Excel 2003 tables and graphs of sums and percentages of item studied in this audit. Audit obtained highest compliance percentage and low rate of replacement of machine which indicate unexpected machine state of use and quick machine switch. The authors are able to conclude that following regular inspection and running self-check recommended by the manufacturers can contribute to abort any possibility of hazard of anesthesia machine failure during operation. Furthermore in case of unexpected reason to replace the anesthesia machine in quick maneuver contributes to high assured operative utilization of man machine inter-phase in modern surgical operating rooms.
NASA Astrophysics Data System (ADS)
Sizov, Gennadi Y.
In this dissertation, a model-based multi-objective optimal design of permanent magnet ac machines, supplied by sine-wave current regulated drives, is developed and implemented. The design procedure uses an efficient electromagnetic finite element-based solver to accurately model nonlinear material properties and complex geometric shapes associated with magnetic circuit design. Application of an electromagnetic finite element-based solver allows for accurate computation of intricate performance parameters and characteristics. The first contribution of this dissertation is the development of a rapid computational method that allows accurate and efficient exploration of large multi-dimensional design spaces in search of optimum design(s). The computationally efficient finite element-based approach developed in this work provides a framework of tools that allow rapid analysis of synchronous electric machines operating under steady-state conditions. In the developed modeling approach, major steady-state performance parameters such as, winding flux linkages and voltages, average, cogging and ripple torques, stator core flux densities, core losses, efficiencies and saturated machine winding inductances, are calculated with minimum computational effort. In addition, the method includes means for rapid estimation of distributed stator forces and three-dimensional effects of stator and/or rotor skew on the performance of the machine. The second contribution of this dissertation is the development of the design synthesis and optimization method based on a differential evolution algorithm. The approach relies on the developed finite element-based modeling method for electromagnetic analysis and is able to tackle large-scale multi-objective design problems using modest computational resources. Overall, computational time savings of up to two orders of magnitude are achievable, when compared to current and prevalent state-of-the-art methods. These computational savings allow one to expand the optimization problem to achieve more complex and comprehensive design objectives. The method is used in the design process of several interior permanent magnet industrial motors. The presented case studies demonstrate that the developed finite element-based approach practically eliminates the need for using less accurate analytical and lumped parameter equivalent circuit models for electric machine design optimization. The design process and experimental validation of the case-study machines are detailed in the dissertation.
Machine-Learning Algorithms to Code Public Health Spending Accounts
Leider, Jonathon P.; Resnick, Beth A.; Alfonso, Y. Natalia; Bishai, David
2017-01-01
Objectives: Government public health expenditure data sets require time- and labor-intensive manipulation to summarize results that public health policy makers can use. Our objective was to compare the performances of machine-learning algorithms with manual classification of public health expenditures to determine if machines could provide a faster, cheaper alternative to manual classification. Methods: We used machine-learning algorithms to replicate the process of manually classifying state public health expenditures, using the standardized public health spending categories from the Foundational Public Health Services model and a large data set from the US Census Bureau. We obtained a data set of 1.9 million individual expenditure items from 2000 to 2013. We collapsed these data into 147 280 summary expenditure records, and we followed a standardized method of manually classifying each expenditure record as public health, maybe public health, or not public health. We then trained 9 machine-learning algorithms to replicate the manual process. We calculated recall, precision, and coverage rates to measure the performance of individual and ensembled algorithms. Results: Compared with manual classification, the machine-learning random forests algorithm produced 84% recall and 91% precision. With algorithm ensembling, we achieved our target criterion of 90% recall by using a consensus ensemble of ≥6 algorithms while still retaining 93% coverage, leaving only 7% of the summary expenditure records unclassified. Conclusions: Machine learning can be a time- and cost-saving tool for estimating public health spending in the United States. It can be used with standardized public health spending categories based on the Foundational Public Health Services model to help parse public health expenditure information from other types of health-related spending, provide data that are more comparable across public health organizations, and evaluate the impact of evidence-based public health resource allocation. PMID:28363034
Machine-Learning Algorithms to Code Public Health Spending Accounts.
Brady, Eoghan S; Leider, Jonathon P; Resnick, Beth A; Alfonso, Y Natalia; Bishai, David
Government public health expenditure data sets require time- and labor-intensive manipulation to summarize results that public health policy makers can use. Our objective was to compare the performances of machine-learning algorithms with manual classification of public health expenditures to determine if machines could provide a faster, cheaper alternative to manual classification. We used machine-learning algorithms to replicate the process of manually classifying state public health expenditures, using the standardized public health spending categories from the Foundational Public Health Services model and a large data set from the US Census Bureau. We obtained a data set of 1.9 million individual expenditure items from 2000 to 2013. We collapsed these data into 147 280 summary expenditure records, and we followed a standardized method of manually classifying each expenditure record as public health, maybe public health, or not public health. We then trained 9 machine-learning algorithms to replicate the manual process. We calculated recall, precision, and coverage rates to measure the performance of individual and ensembled algorithms. Compared with manual classification, the machine-learning random forests algorithm produced 84% recall and 91% precision. With algorithm ensembling, we achieved our target criterion of 90% recall by using a consensus ensemble of ≥6 algorithms while still retaining 93% coverage, leaving only 7% of the summary expenditure records unclassified. Machine learning can be a time- and cost-saving tool for estimating public health spending in the United States. It can be used with standardized public health spending categories based on the Foundational Public Health Services model to help parse public health expenditure information from other types of health-related spending, provide data that are more comparable across public health organizations, and evaluate the impact of evidence-based public health resource allocation.
AvantGuard: An Instrument to Explore Autonomy
2007-11-01
Machinexii (FSM) concept was long ago borrowed from process control engineering by workers in the field of artificial intelligence . The FSM proposes that...UAVs and their human supervisors are in high demand as the mission of the Armed Services adapts to the challenges of asymmetric conflict. Intelligence ...system records intelligence . Some is historic, some is automatic and most is the result of the human and UAVs cooperating in the mission. Time A
Design of optical axis jitter control system for multi beam lasers based on FPGA
NASA Astrophysics Data System (ADS)
Ou, Long; Li, Guohui; Xie, Chuanlin; Zhou, Zhiqiang
2018-02-01
A design of optical axis closed-loop control system for multi beam lasers coherent combining based on FPGA was introduced. The system uses piezoelectric ceramics Fast Steering Mirrors (FSM) as actuator, the Fairfield spot detection of multi beam lasers by the high speed CMOS camera for optical detecting, a control system based on FPGA for real-time optical axis jitter suppression. The algorithm for optical axis centroid detecting and PID of anti-Integral saturation were realized by FPGA. Optimize the structure of logic circuit by reuse resource and pipeline, as a result of reducing logic resource but reduced the delay time, and the closed-loop bandwidth increases to 100Hz. The jitter of laser less than 40Hz was reduced 40dB. The cost of the system is low but it works stably.
Humanizing machines: Anthropomorphization of slot machines increases gambling.
Riva, Paolo; Sacchi, Simona; Brambilla, Marco
2015-12-01
Do people gamble more on slot machines if they think that they are playing against humanlike minds rather than mathematical algorithms? Research has shown that people have a strong cognitive tendency to imbue humanlike mental states to nonhuman entities (i.e., anthropomorphism). The present research tested whether anthropomorphizing slot machines would increase gambling. Four studies manipulated slot machine anthropomorphization and found that exposing people to an anthropomorphized description of a slot machine increased gambling behavior and reduced gambling outcomes. Such findings emerged using tasks that focused on gambling behavior (Studies 1 to 3) as well as in experimental paradigms that included gambling outcomes (Studies 2 to 4). We found that gambling outcomes decrease because participants primed with the anthropomorphic slot machine gambled more (Study 4). Furthermore, we found that high-arousal positive emotions (e.g., feeling excited) played a role in the effect of anthropomorphism on gambling behavior (Studies 3 and 4). Our research indicates that the psychological process of gambling-machine anthropomorphism can be advantageous for the gaming industry; however, this may come at great expense for gamblers' (and their families') economic resources and psychological well-being. (c) 2015 APA, all rights reserved).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Liang; Yang, Yi; Harley, Ronald Gordon
A system is for a plurality of different electric load types. The system includes a plurality of sensors structured to sense a voltage signal and a current signal for each of the different electric loads; and a processor. The processor acquires a voltage and current waveform from the sensors for a corresponding one of the different electric load types; calculates a power or current RMS profile of the waveform; quantizes the power or current RMS profile into a set of quantized state-values; evaluates a state-duration for each of the quantized state-values; evaluates a plurality of state-types based on the powermore » or current RMS profile and the quantized state-values; generates a state-sequence that describes a corresponding finite state machine model of a generalized load start-up or transient profile for the corresponding electric load type; and identifies the corresponding electric load type.« less
Zeng, Xueqiang; Luo, Gang
2017-12-01
Machine learning is broadly used for clinical data analysis. Before training a model, a machine learning algorithm must be selected. Also, the values of one or more model parameters termed hyper-parameters must be set. Selecting algorithms and hyper-parameter values requires advanced machine learning knowledge and many labor-intensive manual iterations. To lower the bar to machine learning, miscellaneous automatic selection methods for algorithms and/or hyper-parameter values have been proposed. Existing automatic selection methods are inefficient on large data sets. This poses a challenge for using machine learning in the clinical big data era. To address the challenge, this paper presents progressive sampling-based Bayesian optimization, an efficient and automatic selection method for both algorithms and hyper-parameter values. We report an implementation of the method. We show that compared to a state of the art automatic selection method, our method can significantly reduce search time, classification error rate, and standard deviation of error rate due to randomization. This is major progress towards enabling fast turnaround in identifying high-quality solutions required by many machine learning-based clinical data analysis tasks.
Human evolution in the age of the intelligent machine
NASA Technical Reports Server (NTRS)
Mclaughlin, W. I.
1983-01-01
A systems analysis of the future evolution of man can be conducted by analyzing the biological material of the galaxy into three subsystems: man, intelligent machines, and intelligent extraterrestrial organisms. A binomial interpretation is applied to this system wherein each of the subsystems is assigned a designation of success or failure. For man the two alternatives are, respectively, 'decline' or 'flourish', for machine they are 'become intelligent' or 'stay dumb', while for extraterrestrial intelligence the dichotomy is that of 'existence' or 'nonexistence'. The choices for each of three subsystems yield a total of eight possible states for the system. The relative lack of integration between brain components makes man a weak evolutionary contestant compared to machines. It is judged that machines should become dominant on earth within 100 years, probably by means of continuing development of existing man-machine systems. Advanced forms of extraterrestrial intelligence may exist but are too difficult to observe. The prospects for communication with extraterrestrial intelligence are reviewed.
Human evolution in the age of the intelligent machine
NASA Astrophysics Data System (ADS)
McLaughlin, W. I.
A systems analysis of the future evolution of man can be conducted by analyzing the biological material of the galaxy into three subsystems: man, intelligent machines, and intelligent extraterrestrial organisms. A binomial interpretation is applied to this system wherein each of the subsystems is assigned a designation of success or failure. For man the two alternatives are, respectively, 'decline' or 'flourish', for machine they are 'become intelligent' or 'stay dumb', while for extraterrestrial intelligence the dichotomy is that of 'existence' or 'nonexistence'. The choices for each of three subsystems yield a total of eight possible states for the system. The relative lack of integration between brain components makes man a weak evolutionary contestant compared to machines. It is judged that machines should become dominant on earth within 100 years, probably by means of continuing development of existing man-machine systems. Advanced forms of extraterrestrial intelligence may exist but are too difficult to observe. The prospects for communication with extraterrestrial intelligence are reviewed.
Electric vehicle traction motors - The development of an advanced motor concept
NASA Technical Reports Server (NTRS)
Campbell, P.
1980-01-01
An axial-field permanent magnet traction motor is described, similar to several advanced motors that are being developed in the United States. This type of machine has several advantages over conventional dc motors, particularly in the electric vehicle application. The rapidly changing cost of magnetic materials, particularly cobalt, makes it important to study the utilization of permanent magnet materials in such machines. The impact of different magnets on machine design is evaluated, and the advantages of using iron powder composites in the armature are assessed.
SIGPROC: Pulsar Signal Processing Programs
NASA Astrophysics Data System (ADS)
Lorimer, D. R.
2011-07-01
SIGPROC is a package designed to standardize the initial analysis of the many types of fast-sampled pulsar data. Currently recognized machines are the Wide Band Arecibo Pulsar Processor (WAPP), the Penn State Pulsar Machine (PSPM), the Arecibo Observatory Fourier Transform Machine (AOFTM), the Berkeley Pulsar Processors (BPP), the Parkes/Jodrell 1-bit filterbanks (SCAMP) and the filterbank at the Ooty radio telescope (OOTY). The SIGPROC tools should help users look at their data quickly, without the need to write (yet) another routine to read data or worry about big/little endian compatibility (byte swapping is handled automatically).
NASA Astrophysics Data System (ADS)
Yu, Jianbo
2015-12-01
Prognostics is much efficient to achieve zero-downtime performance, maximum productivity and proactive maintenance of machines. Prognostics intends to assess and predict the time evolution of machine health degradation so that machine failures can be predicted and prevented. A novel prognostics system is developed based on the data-model-fusion scheme using the Bayesian inference-based self-organizing map (SOM) and an integration of logistic regression (LR) and high-order particle filtering (HOPF). In this prognostics system, a baseline SOM is constructed to model the data distribution space of healthy machine under an assumption that predictable fault patterns are not available. Bayesian inference-based probability (BIP) derived from the baseline SOM is developed as a quantification indication of machine health degradation. BIP is capable of offering failure probability for the monitored machine, which has intuitionist explanation related to health degradation state. Based on those historic BIPs, the constructed LR and its modeling noise constitute a high-order Markov process (HOMP) to describe machine health propagation. HOPF is used to solve the HOMP estimation to predict the evolution of the machine health in the form of a probability density function (PDF). An on-line model update scheme is developed to adapt the Markov process changes to machine health dynamics quickly. The experimental results on a bearing test-bed illustrate the potential applications of the proposed system as an effective and simple tool for machine health prognostics.
32 CFR 655.10 - Use of radiation sources by non-Army entities on Army land (AR 385-11).
Code of Federal Regulations, 2010 CFR
2010-07-01
... radioisotope; or (5) A machine-produced ionizing-radiation source capable of producing an area, accessible to... NARM and machine-produced ionizing radiation sources, the applicant has an appropriate State... 32 National Defense 4 2010-07-01 2010-07-01 true Use of radiation sources by non-Army entities on...
12. BUILDING 621, INTERIOR, GROUND FLOOR, LOOKING NORTHWEST AT SCREENING ...
12. BUILDING 621, INTERIOR, GROUND FLOOR, LOOKING NORTHWEST AT SCREENING MACHINE THAT REMOVES SHELL FRAGMENTS. METALLIC DUST REMOVED BY MAGNETIC SEPERATOR UNDERNEATH SCREEN. SAWDUST IS RETURNED TO SAWDUST HOPPER BY ELEVATOR. HOODS OVER SCREENING MACHINE AT WORKBENCH REMOVE FINE SAWDUST. - Picatinny Arsenal, 600 Area, Test Areas District, State Route 15 near I-80, Dover, Morris County, NJ
Migrant Student Record Transfer System (MSRTS) [machine-readable data file].
ERIC Educational Resources Information Center
Arkansas State Dept. of Education, Little Rock. General Education Div.
The Migrant Student Record Transfer System (MSRTS) machine-readable data file (MRDF) is a collection of education and health data on more than 750,000 migrant children in grades K-12 in the United States (except Hawaii), the District of Columbia, and the outlying territories of Puerto Rico and the Mariana and Marshall Islands. The active file…
ERIC Educational Resources Information Center
Kafafian, Haig
Teaching instructions, lesson plans, and exercises are provided for severely physically and/or neurologically handicapped persons learning to use the Cybertype electric writing machine with a tongue-body keyboard. The keyboard, which has eight double-throw toggle switches and a three-position state-selector switch, is designed to be used by…
Machine learning techniques for fault isolation and sensor placement
NASA Technical Reports Server (NTRS)
Carnes, James R.; Fisher, Douglas H.
1993-01-01
Fault isolation and sensor placement are vital for monitoring and diagnosis. A sensor conveys information about a system's state that guides troubleshooting if problems arise. We are using machine learning methods to uncover behavioral patterns over snapshots of system simulations that will aid fault isolation and sensor placement, with an eye towards minimality, fault coverage, and noise tolerance.
Rempe, Michael J; Clegern, William C; Wisor, Jonathan P
2015-01-01
Introduction Rodent sleep research uses electroencephalography (EEG) and electromyography (EMG) to determine the sleep state of an animal at any given time. EEG and EMG signals, typically sampled at >100 Hz, are segmented arbitrarily into epochs of equal duration (usually 2–10 seconds), and each epoch is scored as wake, slow-wave sleep (SWS), or rapid-eye-movement sleep (REMS), on the basis of visual inspection. Automated state scoring can minimize the burden associated with state and thereby facilitate the use of shorter epoch durations. Methods We developed a semiautomated state-scoring procedure that uses a combination of principal component analysis and naïve Bayes classification, with the EEG and EMG as inputs. We validated this algorithm against human-scored sleep-state scoring of data from C57BL/6J and BALB/CJ mice. We then applied a general homeostatic model to characterize the state-dependent dynamics of sleep slow-wave activity and cerebral glycolytic flux, measured as lactate concentration. Results More than 89% of epochs scored as wake or SWS by the human were scored as the same state by the machine, whether scoring in 2-second or 10-second epochs. The majority of epochs scored as REMS by the human were also scored as REMS by the machine. However, of epochs scored as REMS by the human, more than 10% were scored as SWS by the machine and 18 (10-second epochs) to 28% (2-second epochs) were scored as wake. These biases were not strain-specific, as strain differences in sleep-state timing relative to the light/dark cycle, EEG power spectral profiles, and the homeostatic dynamics of both slow waves and lactate were detected equally effectively with the automated method or the manual scoring method. Error associated with mathematical modeling of temporal dynamics of both EEG slow-wave activity and cerebral lactate either did not differ significantly when state scoring was done with automated versus visual scoring, or was reduced with automated state scoring relative to manual classification. Conclusions Machine scoring is as effective as human scoring in detecting experimental effects in rodent sleep studies. Automated scoring is an efficient alternative to visual inspection in studies of strain differences in sleep and the temporal dynamics of sleep-related physiological parameters. PMID:26366107
Application of Machine Learning to Rotorcraft Health Monitoring
NASA Technical Reports Server (NTRS)
Cody, Tyler; Dempsey, Paula J.
2017-01-01
Machine learning is a powerful tool for data exploration and model building with large data sets. This project aimed to use machine learning techniques to explore the inherent structure of data from rotorcraft gear tests, relationships between features and damage states, and to build a system for predicting gear health for future rotorcraft transmission applications. Classical machine learning techniques are difficult, if not irresponsible to apply to time series data because many make the assumption of independence between samples. To overcome this, Hidden Markov Models were used to create a binary classifier for identifying scuffing transitions and Recurrent Neural Networks were used to leverage long distance relationships in predicting discrete damage states. When combined in a workflow, where the binary classifier acted as a filter for the fatigue monitor, the system was able to demonstrate accuracy in damage state prediction and scuffing identification. The time dependent nature of the data restricted data exploration to collecting and analyzing data from the model selection process. The limited amount of available data was unable to give useful information, and the division of training and testing sets tended to heavily influence the scores of the models across combinations of features and hyper-parameters. This work built a framework for tracking scuffing and fatigue on streaming data and demonstrates that machine learning has much to offer rotorcraft health monitoring by using Bayesian learning and deep learning methods to capture the time dependent nature of the data. Suggested future work is to implement the framework developed in this project using a larger variety of data sets to test the generalization capabilities of the models and allow for data exploration.
Wojcicki, Janet M
2014-01-01
While childhood obesity is a global problem, the extent and severity of the problem in United States, has resulted in a number of new initiatives, including recent hospital initiatives to limit the sale of sweetened beverages and other high calorie drinks in hospital vending machines and cafeterias. These proposed policy changes are not unique to United States, but are more comprehensive in the number of proposed hospitals that they will impact. Meanwhile, however, it is advised, that these initiatives should focus on banning sugar sweetened beverages, including sodas, 100% fruit juice and sports drinks, from hospital cafeterias and vending machines instead of limiting their presence, so as to ensure the success of these programs in reducing the prevalence of childhood obesity. If US hospitals comprehensively remove sugar sweetened beverages from their cafeterias and vending machines, these programs could subsequently become a model for efforts to address childhood obesity in other areas of the world. Conclusion Hospitals should be a model for health care reform in their communities and removing sugar sweetened beverages is a necessary first step. PMID:23445326
Sun, Lei; Jia, Yun-xian; Cai, Li-ying; Lin, Guo-yu; Zhao, Jin-song
2013-09-01
The spectrometric oil analysis(SOA) is an important technique for machine state monitoring, fault diagnosis and prognosis, and SOA based remaining useful life(RUL) prediction has an advantage of finding out the optimal maintenance strategy for machine system. Because the complexity of machine system, its health state degradation process can't be simply characterized by linear model, while particle filtering(PF) possesses obvious advantages over traditional Kalman filtering for dealing nonlinear and non-Gaussian system, the PF approach was applied to state forecasting by SOA, and the RUL prediction technique based on SOA and PF algorithm is proposed. In the prediction model, according to the estimating result of system's posterior probability, its prior probability distribution is realized, and the multi-step ahead prediction model based on PF algorithm is established. Finally, the practical SOA data of some engine was analyzed and forecasted by the above method, and the forecasting result was compared with that of traditional Kalman filtering method. The result fully shows the superiority and effectivity of the
The Photon Shell Game and the Quantum von Neumann Architecture with Superconducting Circuits
NASA Astrophysics Data System (ADS)
Mariantoni, Matteo
2012-02-01
Superconducting quantum circuits have made significant advances over the past decade, allowing more complex and integrated circuits that perform with good fidelity. We have recently implemented a machine comprising seven quantum channels, with three superconducting resonators, two phase qubits, and two zeroing registers. I will explain the design and operation of this machine, first showing how a single microwave photon | 1 > can be prepared in one resonator and coherently transferred between the three resonators. I will also show how more exotic states such as double photon states | 2 > and superposition states | 0 >+ | 1 > can be shuffled among the resonators as well [1]. I will then demonstrate how this machine can be used as the quantum-mechanical analog of the von Neumann computer architecture, which for a classical computer comprises a central processing unit and a memory holding both instructions and data. The quantum version comprises a quantum central processing unit (quCPU) that exchanges data with a quantum random-access memory (quRAM) integrated on one chip, with instructions stored on a classical computer. I will also present a proof-of-concept demonstration of a code that involves all seven quantum elements: (1), Preparing an entangled state in the quCPU, (2), writing it to the quRAM, (3), preparing a second state in the quCPU, (4), zeroing it, and, (5), reading out the first state stored in the quRAM [2]. Finally, I will demonstrate that the quantum von Neumann machine provides one unit cell of a two-dimensional qubit-resonator array that can be used for surface code quantum computing. This will allow the realization of a scalable, fault-tolerant quantum processor with the most forgiving error rates to date. [4pt] [1] M. Mariantoni et al., Nature Physics 7, 287-293 (2011.)[0pt] [2] M. Mariantoni et al., Science 334, 61-65 (2011).
On Intelligent Design and Planning Method of Process Route Based on Gun Breech Machining Process
NASA Astrophysics Data System (ADS)
Hongzhi, Zhao; Jian, Zhang
2018-03-01
The paper states an approach of intelligent design and planning of process route based on gun breech machining process, against several problems, such as complex machining process of gun breech, tedious route design and long period of its traditional unmanageable process route. Based on gun breech machining process, intelligent design and planning system of process route are developed by virtue of DEST and VC++. The system includes two functional modules--process route intelligent design and its planning. The process route intelligent design module, through the analysis of gun breech machining process, summarizes breech process knowledge so as to complete the design of knowledge base and inference engine. And then gun breech process route intelligently output. On the basis of intelligent route design module, the final process route is made, edited and managed in the process route planning module.
Friction Laws Derived From the Acoustic Emissions of a Laboratory Fault by Machine Learning
NASA Astrophysics Data System (ADS)
Rouet-Leduc, B.; Hulbert, C.; Ren, C. X.; Bolton, D. C.; Marone, C.; Johnson, P. A.
2017-12-01
Fault friction controls nearly all aspects of fault rupture, yet it is only possible to measure in the laboratory. Here we describe laboratory experiments where acoustic emissions are recorded from the fault. We find that by applying a machine learning approach known as "extreme gradient boosting trees" to the continuous acoustical signal, the fault friction can be directly inferred, showing that instantaneous characteristics of the acoustic signal are a fingerprint of the frictional state. This machine learning-based inference leads to a simple law that links the acoustic signal to the friction state, and holds for every stress cycle the laboratory fault goes through. The approach does not use any other measured parameter than instantaneous statistics of the acoustic signal. This finding may have importance for inferring frictional characteristics from seismic waves in Earth where fault friction cannot be measured.
Network of time-multiplexed optical parametric oscillators as a coherent Ising machine
NASA Astrophysics Data System (ADS)
Marandi, Alireza; Wang, Zhe; Takata, Kenta; Byer, Robert L.; Yamamoto, Yoshihisa
2014-12-01
Finding the ground states of the Ising Hamiltonian maps to various combinatorial optimization problems in biology, medicine, wireless communications, artificial intelligence and social network. So far, no efficient classical and quantum algorithm is known for these problems and intensive research is focused on creating physical systems—Ising machines—capable of finding the absolute or approximate ground states of the Ising Hamiltonian. Here, we report an Ising machine using a network of degenerate optical parametric oscillators (OPOs). Spins are represented with above-threshold binary phases of the OPOs and the Ising couplings are realized by mutual injections. The network is implemented in a single OPO ring cavity with multiple trains of femtosecond pulses and configurable mutual couplings, and operates at room temperature. We programmed a small non-deterministic polynomial time-hard problem on a 4-OPO Ising machine and in 1,000 runs no computational error was detected.
Integration of passive driver-assistance systems with on-board vehicle systems
NASA Astrophysics Data System (ADS)
Savchenko, V. V.; Poddubko, S. N.
2018-02-01
Implementation in OIAS such functions as driver’s state monitoring and high-precision calculation of the current navigation coordinates of the vehicle, modularity of the OIAS construction and the possible increase in the functionality through integration with other onboard systems has a promising development future. The development of intelligent transport systems and their components allows setting and solving fundamentally new tasks for the safety of human-to-machine transport systems, and the automatic analysis of heterogeneous information flows provides a synergistic effect. The analysis of cross-modal information exchange in human-machine transport systems, from uniform methodological points of view, will allow us, with an accuracy acceptable for solving applied problems, to form in real time an integrated assessment of the state of the basic components of the human-to-machine system and the dynamics in changing situation-centered environment, including the external environment, in their interrelations.
Evaluation and recognition of skin images with aging by support vector machine
NASA Astrophysics Data System (ADS)
Hu, Liangjun; Wu, Shulian; Li, Hui
2016-10-01
Aging is a very important issue not only in dermatology, but also cosmetic science. Cutaneous aging involves both chronological and photoaging aging process. The evaluation and classification of aging is an important issue with the medical cosmetology workers nowadays. The purpose of this study is to assess chronological-age-related and photo-age-related of human skin. The texture features of skin surface skin, such as coarseness, contrast were analyzed by Fourier transform and Tamura. And the aim of it is to detect the object hidden in the skin texture in difference aging skin. Then, Support vector machine was applied to train the texture feature. The different age's states were distinguished by the support vector machine (SVM) classifier. The results help us to further understand the mechanism of different aging skin from texture feature and help us to distinguish the different aging states.
Tool Wear Monitoring Using Time Series Analysis
NASA Astrophysics Data System (ADS)
Song, Dong Yeul; Ohara, Yasuhiro; Tamaki, Haruo; Suga, Masanobu
A tool wear monitoring approach considering the nonlinear behavior of cutting mechanism caused by tool wear and/or localized chipping is proposed, and its effectiveness is verified through the cutting experiment and actual turning machining. Moreover, the variation in the surface roughness of the machined workpiece is also discussed using this approach. In this approach, the residual error between the actually measured vibration signal and the estimated signal obtained from the time series model corresponding to dynamic model of cutting is introduced as the feature of diagnosis. Consequently, it is found that the early tool wear state (i.e. flank wear under 40µm) can be monitored, and also the optimal tool exchange time and the tool wear state for actual turning machining can be judged by this change in the residual error. Moreover, the variation of surface roughness Pz in the range of 3 to 8µm can be estimated by the monitoring of the residual error.
Castellini, Claudio; Artemiadis, Panagiotis; Wininger, Michael; Ajoudani, Arash; Alimusaj, Merkur; Bicchi, Antonio; Caputo, Barbara; Craelius, William; Dosen, Strahinja; Englehart, Kevin; Farina, Dario; Gijsberts, Arjan; Godfrey, Sasha B.; Hargrove, Levi; Ison, Mark; Kuiken, Todd; Marković, Marko; Pilarski, Patrick M.; Rupp, Rüdiger; Scheme, Erik
2014-01-01
One of the hottest topics in rehabilitation robotics is that of proper control of prosthetic devices. Despite decades of research, the state of the art is dramatically behind the expectations. To shed light on this issue, in June, 2013 the first international workshop on Present and future of non-invasive peripheral nervous system (PNS)–Machine Interfaces (MI; PMI) was convened, hosted by the International Conference on Rehabilitation Robotics. The keyword PMI has been selected to denote human–machine interfaces targeted at the limb-deficient, mainly upper-limb amputees, dealing with signals gathered from the PNS in a non-invasive way, that is, from the surface of the residuum. The workshop was intended to provide an overview of the state of the art and future perspectives of such interfaces; this paper represents is a collection of opinions expressed by each and every researcher/group involved in it. PMID:25177292
Machining and grinding: High rate deformation in practice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follansbee, P.S.
1993-04-01
Machining and grinding are well-established material-working operations involving highly non-uniform deformation and failure processes. A typical machining operation is characterized by uncertain boundary conditions (e.g.,surface interactions), three-dimensional stress states, large strains, high strain rates, non-uniform temperatures, highly localized deformations, and failure by both nominally ductile and brittle mechanisms. While machining and grinding are thought to be dominated by empiricism, even a cursory inspection leads one to the conclusion that this results more from necessity arising out of the complicated and highly interdisciplinary nature of the processes than from the lack thereof. With these conditions in mind, the purpose of thismore » paper is to outline the current understanding of strain rate effects in metals.« less
Machining and grinding: High rate deformation in practice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follansbee, P.S.
1993-01-01
Machining and grinding are well-established material-working operations involving highly non-uniform deformation and failure processes. A typical machining operation is characterized by uncertain boundary conditions (e.g.,surface interactions), three-dimensional stress states, large strains, high strain rates, non-uniform temperatures, highly localized deformations, and failure by both nominally ductile and brittle mechanisms. While machining and grinding are thought to be dominated by empiricism, even a cursory inspection leads one to the conclusion that this results more from necessity arising out of the complicated and highly interdisciplinary nature of the processes than from the lack thereof. With these conditions in mind, the purpose of thismore » paper is to outline the current understanding of strain rate effects in metals.« less
Analysis of spectrally resolved autofluorescence images by support vector machines
NASA Astrophysics Data System (ADS)
Mateasik, A.; Chorvat, D.; Chorvatova, A.
2013-02-01
Spectral analysis of the autofluorescence images of isolated cardiac cells was performed to evaluate and to classify the metabolic state of the cells in respect to the responses to metabolic modulators. The classification was done using machine learning approach based on support vector machine with the set of the automatically calculated features from recorded spectral profile of spectral autofluorescence images. This classification method was compared with the classical approach where the individual spectral components contributing to cell autofluorescence were estimated by spectral analysis, namely by blind source separation using non-negative matrix factorization. Comparison of both methods showed that machine learning can effectively classify the spectrally resolved autofluorescence images without the need of detailed knowledge about the sources of autofluorescence and their spectral properties.
SPATTER! SPATTER! SPATTER! Workers' health and the spray machine debate.
Frounfelker, Rochelle L
2006-02-01
A conflict between industrialization and worker health developed in the painting industry during the early 1900s with the introduction of the spray machine. This technological innovation allowed the application of paint at greater speed and lower cost than hand painting and increased the rate at which painters were exposed to lead and other toxins contained in paint. From roughly 1919 to 1931, the painters' trade union clashed with employers, paint manufacturers, and legislatures over the impact of the spray machine on the health of workers and the need to enact legislation to regulate its use. While painters made gains on local, state, and national levels during the 1920s to prevent the use of the spray machine, their efforts ultimately failed.
NASA Technical Reports Server (NTRS)
Demerdash, N. A.; Wang, R.; Secunde, R.
1992-01-01
A 3D finite element (FE) approach was developed and implemented for computation of global magnetic fields in a 14.3 kVA modified Lundell alternator. The essence of the new method is the combined use of magnetic vector and scalar potential formulations in 3D FEs. This approach makes it practical, using state of the art supercomputer resources, to globally analyze magnetic fields and operating performances of rotating machines which have truly 3D magnetic flux patterns. The 3D FE-computed fields and machine inductances as well as various machine performance simulations of the 14.3 kVA machine are presented in this paper and its two companion papers.
Review on the progress of ultra-precision machining technologies
NASA Astrophysics Data System (ADS)
Yuan, Julong; Lyu, Binghai; Hang, Wei; Deng, Qianfa
2017-06-01
Ultra-precision machining technologies are the essential methods, to obtain the highest form accuracy and surface quality. As more research findings are published, such technologies now involve complicated systems engineering and been widely used in the production of components in various aerospace, national defense, optics, mechanics, electronics, and other high-tech applications. The conception, applications and history of ultra-precision machining are introduced in this article, and the developments of ultra-precision machining technologies, especially ultra-precision grinding, ultra-precision cutting and polishing are also reviewed. The current state and problems of this field in China are analyzed. Finally, the development trends of this field and the coping strategies employed in China to keep up with the trends are discussed.
Bekteshi, Venera; Kang, Sung-Wan
2018-05-23
This systematic review of the literature informed of (a) the relationship between acculturation and acculturative stress, (b) examined the determinants of acculturative stress among Latino immigrants in the U.S., and (c) provided a conceptual framework that can be used to specify the interactive effect of various factors on acculturative stress. Using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), this review synthesized the results of thirty studies published between 2000 and 2015 that investigated the influence of several socio-demographic and cultural contexts on acculturative stress among Latino immigrants categorized using Family Stress Management (FSM) theory as a framework. Studied highlighted several protectors from and risks to acculturative stress. Historical context protective factors included having a choice over the decision to migrate and social support; risks included discrimination, family left abroad, and fear of deportation. Economic context protective factors included higher income. The development context protective factors included English skills, years in the U.S., and being married; risks included being female. Cultural context protective factors included being culturally competent and acculturation; risks included family-cultural conflict and ethnic enclave pressures. Internal context protectors included post-immigration religious coping, church attendance, and family values. The results highlighted incorporating cultural aspects (i.e. family values and social support) in mental health practice with Latino immigrants. A less stressful integration experience can be achieved if age-related stressors and experiences of discrimination are acknowledged and the need for social support and harmonious family dynamics was prioritized in service plans.
Industrial machine systems risk assessment: a critical review of concepts and methods.
Etherton, John R
2007-02-01
Reducing the risk of work-related death and injury to machine operators and maintenance personnel poses a continuing occupational safety challenge. The risk of injury from machinery in U.S. workplaces is high. Between 1992 and 2001, there were, on average, 520 fatalities per year involving machines and, on average, 3.8 cases per 10,000 workers of nonfatal caught-in-running-machine injuries involving lost workdays. A U.S. task group recently developed a technical reference guideline, ANSI B11 TR3, "A Guide to Estimate, Evaluate, & Reduce Risks Associated with Machine Tools," that is intended to bring machine tool risk assessment practice in the United States up to or above the level now required by the international standard, ISO 14121. The ANSI guideline emphasizes identifying tasks and hazards not previously considered, particularly those associated with maintenance; and it further emphasizes teamwork among line workers, engineers, and safety professionals. The value of this critical review of concepts and methods resides in (1) its linking current risk theory to machine system risk assessment and (2) its exploration of how various risk estimation tools translate into risk-informed decisions on industrial machine system design and use. The review was undertaken to set the stage for a field evaluation study on machine risk assessment among users of the ANSI B11 TR3 method.
Mimicking Nonequilibrium Steady States with Time-Periodic Driving
NASA Astrophysics Data System (ADS)
Raz, O.; Subaşı, Y.; Jarzynski, C.
2016-04-01
Under static conditions, a system satisfying detailed balance generically relaxes to an equilibrium state in which there are no currents. To generate persistent currents, either detailed balance must be broken or the system must be driven in a time-dependent manner. A stationary system that violates detailed balance evolves to a nonequilibrium steady state (NESS) characterized by fixed currents. Conversely, a system that satisfies instantaneous detailed balance but is driven by the time-periodic variation of external parameters—also known as a stochastic pump (SP)—reaches a periodic state with nonvanishing currents. In both cases, these currents are maintained at the cost of entropy production. Are these two paradigmatic scenarios effectively equivalent? For discrete-state systems, we establish a mapping between nonequilibrium stationary states and stochastic pumps. Given a NESS characterized by a particular set of stationary probabilities, currents, and entropy production rates, we show how to construct a SP with exactly the same (time-averaged) values. The mapping works in the opposite direction as well. These results establish a proof of principle: They show that stochastic pumps are able to mimic the behavior of nonequilibrium steady states, and vice versa, within the theoretical framework of discrete-state stochastic thermodynamics. Nonequilibrium steady states and stochastic pumps are often used to model, respectively, biomolecular motors driven by chemical reactions and artificial molecular machines steered by the variation of external, macroscopic parameters. Our results loosely suggest that anything a biomolecular machine can do, an artificial molecular machine can do equally well. We illustrate this principle by showing that kinetic proofreading, a NESS mechanism that explains the low error rates in biochemical reactions, can be effectively mimicked by a constrained periodic driving.
Wu, Dung-Sheng
2018-01-01
Spark-assisted chemical engraving (SACE) is a non-traditional machining technology that is used to machine electrically non-conducting materials including glass, ceramics, and quartz. The processing accuracy, machining efficiency, and reproducibility are the key factors in the SACE process. In the present study, a machine vision method is applied to monitor and estimate the status of a SACE-drilled hole in quartz glass. During the machining of quartz glass, the spring-fed tool electrode was pre-pressured on the quartz glass surface to feed the electrode that was in contact with the machining surface of the quartz glass. In situ image acquisition and analysis of the SACE drilling processes were used to analyze the captured image of the state of the spark discharge at the tip and sidewall of the electrode. The results indicated an association between the accumulative size of the SACE-induced spark area and deepness of the hole. The results indicated that the evaluated depths of the SACE-machined holes were a proportional function of the accumulative spark size with a high degree of correlation. The study proposes an innovative computer vision-based method to estimate the deepness and status of SACE-drilled holes in real time. PMID:29565303
Ho, Chao-Ching; Wu, Dung-Sheng
2018-03-22
Spark-assisted chemical engraving (SACE) is a non-traditional machining technology that is used to machine electrically non-conducting materials including glass, ceramics, and quartz. The processing accuracy, machining efficiency, and reproducibility are the key factors in the SACE process. In the present study, a machine vision method is applied to monitor and estimate the status of a SACE-drilled hole in quartz glass. During the machining of quartz glass, the spring-fed tool electrode was pre-pressured on the quartz glass surface to feed the electrode that was in contact with the machining surface of the quartz glass. In situ image acquisition and analysis of the SACE drilling processes were used to analyze the captured image of the state of the spark discharge at the tip and sidewall of the electrode. The results indicated an association between the accumulative size of the SACE-induced spark area and deepness of the hole. The results indicated that the evaluated depths of the SACE-machined holes were a proportional function of the accumulative spark size with a high degree of correlation. The study proposes an innovative computer vision-based method to estimate the deepness and status of SACE-drilled holes in real time.
Wickramasekaran, Ranjana N; Robles, Brenda; Dewey, George; Kuo, Tony
Healthy vending machine policies are viewed as a promising strategy for combating the growing obesity epidemic in the United States. Few studies have evaluated the short- and intermediate-term outcomes of healthy vending policies, especially for interventions that require 100% healthy products to be stocked. To evaluate the potential impact of a 100% healthy vending machine nutrition policy. The vendor's quarterly revenue, product sales records, and nutritional information data from 359 unique vending machines were used to conduct a baseline and follow-up policy analysis. County of Los Angeles facilities, 2013-2015. Vending machines in facilities located across Los Angeles County. A healthy vending machine policy executed in 2013 that required 100% of all products sold in contracted machines meet specified nutrition standards. Policy adherence; average number of calories, sugar, and sodium in food products sold; revenue change. Policy adherence increased for snacks and beverages sold by the vending machines by 89% and 98%, respectively. Average snack and beverage revenues decreased by 37% and 34%, respectively, during the sampled period. Although a 100% healthy vending policy represents a promising strategy for encouraging purchases of healthier foods, steps should be taken to counteract potential revenue changes when planning its implementation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-06-01
Following a planning period during which the Lawrence Livermore Laboratory and the Department of Defense managing sponsor, the USAF Materials Laboratory, agreed on work statements, the Department of Defense Tri-Service Precision Machine-Tool Program began in February 1978. Milestones scheduled for the first quarter have been met. Tasks and manpower requirements for two basic projects, precision-machining commercialization (PMC) and a machine-tool task force (MTTF), were defined. Progress by PMC includes: (1) documentation of existing precision machine-tool technology by initiation and compilation of a bibliography containing several hundred entries: (2) identification of the problems and needs of precision turning-machine builders and ofmore » precision turning-machine users interested in developing high-precision machining capability; and (3) organization of the schedule and content of the first seminar, to be held in October 1978, which will bring together representatives from the machine-tool and optics communities to address the problems and begin the process of high-precision machining commercialization. Progress by MTTF includes: (1) planning for the organization of a team effort of approximately 60 to 80 international experts to contribute in various ways to project objectives, namely, to summarize state-of-the-art cutting-machine-tool technology and to identify areas where future R and D should prove technically and economically profitable; (2) preparation of a comprehensive plan to achieve those objectives; and (3) preliminary arrangements for a plenary session, also in October, when the task force will meet to formalize the details for implementing the plan.« less
Ultrashort pulse laser machining of metals and alloys
Perry, Michael D.; Stuart, Brent C.
2003-09-16
The invention consists of a method for high precision machining (cutting, drilling, sculpting) of metals and alloys. By using pulses of a duration in the range of 10 femtoseconds to 100 picoseconds, extremely precise machining can be achieved with essentially no heat or shock affected zone. Because the pulses are so short, there is negligible thermal conduction beyond the region removed resulting in negligible thermal stress or shock to the material beyond approximately 0.1-1 micron (dependent upon the particular material) from the laser machined surface. Due to the short duration, the high intensity (>10.sup.12 W/cm.sup.2) associated with the interaction converts the material directly from the solid-state into an ionized plasma. Hydrodynamic expansion of the plasma eliminates the need for any ancillary techniques to remove material and produces extremely high quality machined surfaces with negligible redeposition either within the kerf or on the surface. Since there is negligible heating beyond the depth of material removed, the composition of the remaining material is unaffected by the laser machining process. This enables high precision machining of alloys and even pure metals with no change in grain structure.
ERIC Educational Resources Information Center
Matthews, Joseph R.
This study recommends a variety of actions to create and maintain a Montana union catalog (MONCAT) for more effective usage of in-state resources and library funds. Specifically, it advocates (1) merger of existing COM, machine readable bibliographic records, and OCLC tapes into a single microform catalog; (2) acceptance of only machine readable…
ERIC Educational Resources Information Center
Michelsen, Robert F.
This instructor's manual and student learning activity guide comprise a kit for a graphic arts activity on offset press operator/duplicating machine. Purpose stated for the activity is to provide the student with an understanding of the basic operation involved in the production of printed matter in the graphic communications industry through the…
Automatic microseismic event picking via unsupervised machine learning
NASA Astrophysics Data System (ADS)
Chen, Yangkang
2018-01-01
Effective and efficient arrival picking plays an important role in microseismic and earthquake data processing and imaging. Widely used short-term-average long-term-average ratio (STA/LTA) based arrival picking algorithms suffer from the sensitivity to moderate-to-strong random ambient noise. To make the state-of-the-art arrival picking approaches effective, microseismic data need to be first pre-processed, for example, removing sufficient amount of noise, and second analysed by arrival pickers. To conquer the noise issue in arrival picking for weak microseismic or earthquake event, I leverage the machine learning techniques to help recognizing seismic waveforms in microseismic or earthquake data. Because of the dependency of supervised machine learning algorithm on large volume of well-designed training data, I utilize an unsupervised machine learning algorithm to help cluster the time samples into two groups, that is, waveform points and non-waveform points. The fuzzy clustering algorithm has been demonstrated to be effective for such purpose. A group of synthetic, real microseismic and earthquake data sets with different levels of complexity show that the proposed method is much more robust than the state-of-the-art STA/LTA method in picking microseismic events, even in the case of moderately strong background noise.
Resting-State Functional Connectivity Underlying Costly Punishment: A Machine-Learning Approach.
Feng, Chunliang; Zhu, Zhiyuan; Gu, Ruolei; Wu, Xia; Luo, Yue-Jia; Krueger, Frank
2018-06-08
A large number of studies have demonstrated costly punishment to unfair events across human societies. However, individuals exhibit a large heterogeneity in costly punishment decisions, whereas the neuropsychological substrates underlying the heterogeneity remain poorly understood. Here, we addressed this issue by applying a multivariate machine-learning approach to compare topological properties of resting-state brain networks as a potential neuromarker between individuals exhibiting different punishment propensities. A linear support vector machine classifier obtained an accuracy of 74.19% employing the features derived from resting-state brain networks to distinguish two groups of individuals with different punishment tendencies. Importantly, the most discriminative features that contributed to the classification were those regions frequently implicated in costly punishment decisions, including dorsal anterior cingulate cortex (dACC) and putamen (salience network), dorsomedial prefrontal cortex (dmPFC) and temporoparietal junction (mentalizing network), and lateral prefrontal cortex (central-executive network). These networks are previously implicated in encoding norm violation and intentions of others and integrating this information for punishment decisions. Our findings thus demonstrated that resting-state functional connectivity (RSFC) provides a promising neuromarker of social preferences, and bolster the assertion that human costly punishment behaviors emerge from interactions among multiple neural systems. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
2011-01-01
Background Machine learning has a vast range of applications. In particular, advanced machine learning methods are routinely and increasingly used in quantitative structure activity relationship (QSAR) modeling. QSAR data sets often encompass tens of thousands of compounds and the size of proprietary, as well as public data sets, is rapidly growing. Hence, there is a demand for computationally efficient machine learning algorithms, easily available to researchers without extensive machine learning knowledge. In granting the scientific principles of transparency and reproducibility, Open Source solutions are increasingly acknowledged by regulatory authorities. Thus, an Open Source state-of-the-art high performance machine learning platform, interfacing multiple, customized machine learning algorithms for both graphical programming and scripting, to be used for large scale development of QSAR models of regulatory quality, is of great value to the QSAR community. Results This paper describes the implementation of the Open Source machine learning package AZOrange. AZOrange is specially developed to support batch generation of QSAR models in providing the full work flow of QSAR modeling, from descriptor calculation to automated model building, validation and selection. The automated work flow relies upon the customization of the machine learning algorithms and a generalized, automated model hyper-parameter selection process. Several high performance machine learning algorithms are interfaced for efficient data set specific selection of the statistical method, promoting model accuracy. Using the high performance machine learning algorithms of AZOrange does not require programming knowledge as flexible applications can be created, not only at a scripting level, but also in a graphical programming environment. Conclusions AZOrange is a step towards meeting the needs for an Open Source high performance machine learning platform, supporting the efficient development of highly accurate QSAR models fulfilling regulatory requirements. PMID:21798025
Stålring, Jonna C; Carlsson, Lars A; Almeida, Pedro; Boyer, Scott
2011-07-28
Machine learning has a vast range of applications. In particular, advanced machine learning methods are routinely and increasingly used in quantitative structure activity relationship (QSAR) modeling. QSAR data sets often encompass tens of thousands of compounds and the size of proprietary, as well as public data sets, is rapidly growing. Hence, there is a demand for computationally efficient machine learning algorithms, easily available to researchers without extensive machine learning knowledge. In granting the scientific principles of transparency and reproducibility, Open Source solutions are increasingly acknowledged by regulatory authorities. Thus, an Open Source state-of-the-art high performance machine learning platform, interfacing multiple, customized machine learning algorithms for both graphical programming and scripting, to be used for large scale development of QSAR models of regulatory quality, is of great value to the QSAR community. This paper describes the implementation of the Open Source machine learning package AZOrange. AZOrange is specially developed to support batch generation of QSAR models in providing the full work flow of QSAR modeling, from descriptor calculation to automated model building, validation and selection. The automated work flow relies upon the customization of the machine learning algorithms and a generalized, automated model hyper-parameter selection process. Several high performance machine learning algorithms are interfaced for efficient data set specific selection of the statistical method, promoting model accuracy. Using the high performance machine learning algorithms of AZOrange does not require programming knowledge as flexible applications can be created, not only at a scripting level, but also in a graphical programming environment. AZOrange is a step towards meeting the needs for an Open Source high performance machine learning platform, supporting the efficient development of highly accurate QSAR models fulfilling regulatory requirements.
Machine learning for many-body physics: The case of the Anderson impurity model
Arsenault, Louis-François; Lopez-Bezanilla, Alejandro; von Lilienfeld, O. Anatole; ...
2014-10-31
We applied machine learning methods in order to find the Green's function of the Anderson impurity model, a basic model system of quantum many-body condensed-matter physics. Furthermore, different methods of parametrizing the Green's function are investigated; a representation in terms of Legendre polynomials is found to be superior due to its limited number of coefficients and its applicability to state of the art methods of solution. The dependence of the errors on the size of the training set is determined. Our results indicate that a machine learning approach to dynamical mean-field theory may be feasible.
Machine learning for many-body physics: The case of the Anderson impurity model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arsenault, Louis-François; Lopez-Bezanilla, Alejandro; von Lilienfeld, O. Anatole
We applied machine learning methods in order to find the Green's function of the Anderson impurity model, a basic model system of quantum many-body condensed-matter physics. Furthermore, different methods of parametrizing the Green's function are investigated; a representation in terms of Legendre polynomials is found to be superior due to its limited number of coefficients and its applicability to state of the art methods of solution. The dependence of the errors on the size of the training set is determined. Our results indicate that a machine learning approach to dynamical mean-field theory may be feasible.
Magnet management in electric machines
Reddy, Patel Bhageerath; El-Refaie, Ayman Mohamed Fawzi; Huh, Kum Kang
2017-03-21
A magnet management method of controlling a ferrite-type permanent magnet electrical machine includes receiving and/or estimating the temperature permanent magnets; determining if that temperature is below a predetermined temperature; and if so, then: selectively heating the magnets in order to prevent demagnetization and/or derating the machine. A similar method provides for controlling magnetization level by analyzing flux or magnetization level. Controllers that employ various methods are disclosed. The present invention has been described in terms of specific embodiment(s), and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.
Merla, Arcangelo
2014-01-01
The evaluation of the psychophysiological state of the interlocutor is an important element of interpersonal relationships and communication. Thermal infrared (IR) imaging has proved to be a reliable tool for non-invasive and contact-less evaluation of vital signs, psychophysiological responses, and emotional states. This technique is quickly spreading in many fields, from psychometrics to social and developmental psychology; and from the touch-less monitoring of vital signs and stress, up to the human–machine interaction. In particular, thermal IR imaging promises to be of use for gathering information about affective states in social situations. This paper presents the state of the art of thermal IR imaging in psychophysiology and in the assessment of affective states. The goal is to provide insights about its potentialities and limits for its use in human–artificial agent interaction in order to contribute to a major issue in the field: the perception by an artificial agent of human psychophysiological and affective states. PMID:25101046
Design of rapid prototype of UAV line-of-sight stabilized control system
NASA Astrophysics Data System (ADS)
Huang, Gang; Zhao, Liting; Li, Yinlong; Yu, Fei; Lin, Zhe
2018-01-01
The line-of-sight (LOS) stable platform is the most important technology of UAV (unmanned aerial vehicle), which can reduce the effect to imaging quality from vibration and maneuvering of the aircraft. According to the requirement of LOS stability system (inertial and optical-mechanical combined method) and UAV's structure, a rapid prototype is designed using based on industrial computer using Peripheral Component Interconnect (PCI) and Windows RTX to exchange information. The paper shows the control structure, and circuit system including the inertial stability control circuit with gyro and voice coil motor driven circuit, the optical-mechanical stability control circuit with fast-steering-mirror (FSM) driven circuit and image-deviation-obtained system, outer frame rotary follower, and information-exchange system on PC. Test results show the stability accuracy reaches 5μrad, and prove the effectiveness of the combined line-of-sight stabilization control system, and the real-time rapid prototype runs stable.
Template for preparation of papers for IEEE sponsored conferences & symposia.
Sacchi, L; Dagliati, A; Tibollo, V; Leporati, P; De Cata, P; Cerra, C; Chiovato, L; Bellazzi, R
2015-01-01
To improve the access to medical information is necessary to design and implement integrated informatics techniques aimed to gather data from different and heterogeneous sources. This paper describes the technologies used to integrate data coming from the electronic medical record of the IRCCS Fondazione Maugeri (FSM) hospital of Pavia, Italy, and combines them with administrative, pharmacy drugs purchase coming from the local healthcare agency (ASL) of the Pavia area and environmental open data of the same region. The integration process is focused on data coming from a cohort of one thousand patients diagnosed with Type 2 Diabetes Mellitus (T2DM). Data analysis and temporal data mining techniques have been integrated to enhance the initial dataset allowing the possibility to stratify patients using further information coming from the mined data like behavioral patterns of prescription-related drug purchases and other frequent clinical temporal patterns, through the use of an intuitive dashboard controlled system.
Assessing Continuous Operator Workload With a Hybrid Scaffolded Neuroergonomic Modeling Approach.
Borghetti, Brett J; Giametta, Joseph J; Rusnock, Christina F
2017-02-01
We aimed to predict operator workload from neurological data using statistical learning methods to fit neurological-to-state-assessment models. Adaptive systems require real-time mental workload assessment to perform dynamic task allocations or operator augmentation as workload issues arise. Neuroergonomic measures have great potential for informing adaptive systems, and we combine these measures with models of task demand as well as information about critical events and performance to clarify the inherent ambiguity of interpretation. We use machine learning algorithms on electroencephalogram (EEG) input to infer operator workload based upon Improved Performance Research Integration Tool workload model estimates. Cross-participant models predict workload of other participants, statistically distinguishing between 62% of the workload changes. Machine learning models trained from Monte Carlo resampled workload profiles can be used in place of deterministic workload profiles for cross-participant modeling without incurring a significant decrease in machine learning model performance, suggesting that stochastic models can be used when limited training data are available. We employed a novel temporary scaffold of simulation-generated workload profile truth data during the model-fitting process. A continuous workload profile serves as the target to train our statistical machine learning models. Once trained, the workload profile scaffolding is removed and the trained model is used directly on neurophysiological data in future operator state assessments. These modeling techniques demonstrate how to use neuroergonomic methods to develop operator state assessments, which can be employed in adaptive systems.
The value of prior knowledge in machine learning of complex network systems.
Ferranti, Dana; Krane, David; Craft, David
2017-11-15
Our overall goal is to develop machine-learning approaches based on genomics and other relevant accessible information for use in predicting how a patient will respond to a given proposed drug or treatment. Given the complexity of this problem, we begin by developing, testing and analyzing learning methods using data from simulated systems, which allows us access to a known ground truth. We examine the benefits of using prior system knowledge and investigate how learning accuracy depends on various system parameters as well as the amount of training data available. The simulations are based on Boolean networks-directed graphs with 0/1 node states and logical node update rules-which are the simplest computational systems that can mimic the dynamic behavior of cellular systems. Boolean networks can be generated and simulated at scale, have complex yet cyclical dynamics and as such provide a useful framework for developing machine-learning algorithms for modular and hierarchical networks such as biological systems in general and cancer in particular. We demonstrate that utilizing prior knowledge (in the form of network connectivity information), without detailed state equations, greatly increases the power of machine-learning algorithms to predict network steady-state node values ('phenotypes') and perturbation responses ('drug effects'). Links to codes and datasets here: https://gray.mgh.harvard.edu/people-directory/71-david-craft-phd. dcraft@broadinstitute.org. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curry, Bennett
The Arizona Commerce Authority (ACA) conducted an Innovation in Advanced Manufacturing Grant Competition to support and grow southern and central Arizona’s Aerospace and Defense (A&D) industry and its supply chain. The problem statement for this grant challenge was that many A&D machining processes utilize older generation CNC machine tool technologies that can result an inefficient use of resources – energy, time and materials – compared to the latest state-of-the-art CNC machines. Competitive awards funded projects to develop innovative new tools and technologies that reduce energy consumption for older generation machine tools and foster working relationships between industry small to medium-sizedmore » manufacturing enterprises and third-party solution providers. During the 42-month term of this grant, 12 competitive awards were made. Final reports have been included with this submission.« less
Stability Analysis of Radial Turning Process for Superalloys
NASA Astrophysics Data System (ADS)
Jiménez, Alberto; Boto, Fernando; Irigoien, Itziar; Sierra, Basilio; Suarez, Alfredo
2017-09-01
Stability detection in machining processes is an essential component for the design of efficient machining processes. Automatic methods are able to determine when instability is happening and prevent possible machine failures. In this work a variety of methods are proposed for detecting stability anomalies based on the measured forces in the radial turning process of superalloys. Two different methods are proposed to determine instabilities. Each one is tested on real data obtained in the machining of Waspalloy, Haynes 282 and Inconel 718. Experimental data, in both Conventional and High Pressure Coolant (HPC) environments, are set in four different states depending on materials grain size and Hardness (LGA, LGS, SGA and SGS). Results reveal that PCA method is useful for visualization of the process and detection of anomalies in online processes.
Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies.
Hansen, Katja; Montavon, Grégoire; Biegler, Franziska; Fazli, Siamac; Rupp, Matthias; Scheffler, Matthias; von Lilienfeld, O Anatole; Tkatchenko, Alexandre; Müller, Klaus-Robert
2013-08-13
The accurate and reliable prediction of properties of molecules typically requires computationally intensive quantum-chemical calculations. Recently, machine learning techniques applied to ab initio calculations have been proposed as an efficient approach for describing the energies of molecules in their given ground-state structure throughout chemical compound space (Rupp et al. Phys. Rev. Lett. 2012, 108, 058301). In this paper we outline a number of established machine learning techniques and investigate the influence of the molecular representation on the methods performance. The best methods achieve prediction errors of 3 kcal/mol for the atomization energies of a wide variety of molecules. Rationales for this performance improvement are given together with pitfalls and challenges when applying machine learning approaches to the prediction of quantum-mechanical observables.
NASA Astrophysics Data System (ADS)
Yang, G.; Lin, Y.; Bhattacharya, P.
2007-12-01
To achieve an effective and safe operation on the machine system where the human interacts with the machine mutually, there is a need for the machine to understand the human state, especially cognitive state, when the human's operation task demands an intensive cognitive activity. Due to a well-known fact with the human being, a highly uncertain cognitive state and behavior as well as expressions or cues, the recent trend to infer the human state is to consider multimodality features of the human operator. In this paper, we present a method for multimodality inferring of human cognitive states by integrating neuro-fuzzy network and information fusion techniques. To demonstrate the effectiveness of this method, we take the driver fatigue detection as an example. The proposed method has, in particular, the following new features. First, human expressions are classified into four categories: (i) casual or contextual feature, (ii) contact feature, (iii) contactless feature, and (iv) performance feature. Second, the fuzzy neural network technique, in particular Takagi-Sugeno-Kang (TSK) model, is employed to cope with uncertain behaviors. Third, the sensor fusion technique, in particular ordered weighted aggregation (OWA), is integrated with the TSK model in such a way that cues are taken as inputs to the TSK model, and then the outputs of the TSK are fused by the OWA which gives outputs corresponding to particular cognitive states under interest (e.g., fatigue). We call this method TSK-OWA. Validation of the TSK-OWA, performed in the Northeastern University vehicle drive simulator, has shown that the proposed method is promising to be a general tool for human cognitive state inferring and a special tool for the driver fatigue detection.