Wu, Chin H; Das, Bibhuti B; Opella, Stanley J
2010-02-01
(13)C NMR of isotopically labeled methyl groups has the potential to combine spectroscopic simplicity with ease of labeling for protein NMR studies. However, in most high resolution separated local field experiments, such as polarization inversion spin exchange at the magic angle (PISEMA), that are used to measure (1)H-(13)C hetero-nuclear dipolar couplings, the four-spin system of the methyl group presents complications. In this study, the properties of the (1)H-(13)C hetero-nuclear dipolar interactions of (13)C-labeled methyl groups are revealed through solid-state NMR experiments on a range of samples, including single crystals, stationary powders, and magic angle spinning of powders, of (13)C(3) labeled alanine alone and incorporated into a protein. The spectral simplifications resulting from proton detected local field (PDLF) experiments are shown to enhance resolution and simplify the interpretation of results on single crystals, magnetically aligned samples, and powders. The complementarity of stationary sample and magic angle spinning (MAS) measurements of dipolar couplings is demonstrated by applying polarization inversion spin exchange at the magic angle and magic angle spinning (PISEMAMAS) to unoriented samples. Copyright 2009 Elsevier Inc. All rights reserved.
Setting the magic angle for fast magic-angle spinning probes.
Penzel, Susanne; Smith, Albert A; Ernst, Matthias; Meier, Beat H
2018-06-15
Fast magic-angle spinning, coupled with 1 H detection is a powerful method to improve spectral resolution and signal to noise in solid-state NMR spectra. Commercial probes now provide spinning frequencies in excess of 100 kHz. Then, one has sufficient resolution in the 1 H dimension to directly detect protons, which have a gyromagnetic ratio approximately four times larger than 13 C spins. However, the gains in sensitivity can quickly be lost if the rotation angle is not set precisely. The most common method of magic-angle calibration is to optimize the number of rotary echoes, or sideband intensity, observed on a sample of KBr. However, this typically uses relatively low spinning frequencies, where the spinning of fast-MAS probes is often unstable, and detection on the 13 C channel, for which fast-MAS probes are typically not optimized. Therefore, we compare the KBr-based optimization of the magic angle with two alternative approaches: optimization of the splitting observed in 13 C-labeled glycine-ethylester on the carbonyl due to the Cα-C' J-coupling, or optimization of the H-N J-coupling spin echo in the protein sample itself. The latter method has the particular advantage that no separate sample is necessary for the magic-angle optimization. Copyright © 2018. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, C.E.; Spencer, R.B.; Burger, V.T.
1984-01-01
Solid-state cross-polarization/magic-angle sample-spinning /sup 13/C NMR spectra have been recorded on chlorophyll a-water aggregates, methyl pyrochlorophyllide a, and methyl pyropheophorbide a. Spectra have also been collected under a decoupling regime in which resonances of certain hydrogen-bearing carbon atoms are suppressed. These observations are used to assign the solid-state spectra. 18 references, 2 figures, 1 table.
Schanda, Paul; Ernst, Matthias
2016-01-01
Magic-angle spinning solid-state NMR spectroscopy is an important technique to study molecular structure, dynamics and interactions, and is rapidly gaining importance in biomolecular sciences. Here we provide an overview of experimental approaches to study molecular dynamics by MAS solid-state NMR, with an emphasis on the underlying theoretical concepts and differences of MAS solid-state NMR compared to solution-state NMR. The theoretical foundations of nuclear spin relaxation are revisited, focusing on the particularities of spin relaxation in solid samples under magic-angle spinning. We discuss the range of validity of Redfield theory, as well as the inherent multi-exponential behavior of relaxation in solids. Experimental challenges for measuring relaxation parameters in MAS solid-state NMR and a few recently proposed relaxation approaches are discussed, which provide information about time scales and amplitudes of motions ranging from picoseconds to milliseconds. We also discuss the theoretical basis and experimental measurements of anisotropic interactions (chemical-shift anisotropies, dipolar and quadrupolar couplings), which give direct information about the amplitude of motions. The potential of combining relaxation data with such measurements of dynamically-averaged anisotropic interactions is discussed. Although the focus of this review is on the theoretical foundations of dynamics studies rather than their application, we close by discussing a small number of recent dynamics studies, where the dynamic properties of proteins in crystals are compared to those in solution. PMID:27110043
Tunable magic wavelengths for trapping with focused Laguerre-Gaussian beams
NASA Astrophysics Data System (ADS)
Bhowmik, Anal; Dutta, Narendra Nath; Majumder, Sonjoy
2018-02-01
We present in this paper a theory of dynamic polarizability for an atomic state due to an external field of nonparaxial Laguerre-Gaussian (LG) beam using the sum-over-states technique. A highly correlated relativistic coupled-cluster theory is used to evaluate the most important and correlation-sensitive parts of the sum. The theory is applied on Sr+ to determine the magic wavelengths for 5 s1 /2→4 d3 /2,4 d5 /2 transitions. Results show the variation of magic wavelengths with the choice of orbital and spin angular momenta of the incident LG beam. Also, the tunability of the magic wavelengths is studied by using the focusing angle of the LG beam and its efficiency in the near-infrared region is observed. Evaluations of the wide spectrum of magic wavelengths from infrared to ultraviolet have substantial importance to experimentalists for carrying out high-precision measurements in fundamental physics. These magic wavelengths can be used to confine the atom or ion at the dark central node or at the high-intensity ring of the LG beam.
Controlling soliton excitations in Heisenberg spin chains through the magic angle.
Lu, Jing; Zhou, Lan; Kuang, Le-Man; Sun, C P
2009-01-01
We study the nonlinear dynamics of collective excitation in an N -site XXZ quantum spin chain, which is manipulated by an oblique magnetic field. We show that, when the tilted field is applied along the magic angle, theta_{0}=+/-arccossqrt[13] , the anisotropic Heisenberg spin chain becomes isotropic and thus an freely propagating spin wave is stimulated. Also, in the regime of tilted angles larger and smaller than the magic angle, two types of nonlinear excitations appear: bright and dark solitons.
Hu, Jian Zhi; Sears, Jr., Jesse A.; Hoyt, David W.; Mehta, Hardeep S.; Peden, Charles H. F.
2015-11-24
A continuous-flow (CF) magic angle sample spinning (CF-MAS) NMR rotor and probe are described for investigating reaction dynamics, stable intermediates/transition states, and mechanisms of catalytic reactions in situ. The rotor includes a sample chamber of a flow-through design with a large sample volume that delivers a flow of reactants through a catalyst bed contained within the sample cell allowing in-situ investigations of reactants and products. Flow through the sample chamber improves diffusion of reactants and products through the catalyst. The large volume of the sample chamber enhances sensitivity permitting in situ .sup.13C CF-MAS studies at natural abundance.
Hu, Jian Zhi [Richland, WA; Sears, Jr., Jesse A.; Hoyt, David W [Richland, WA; Wind, Robert A [Kennewick, WA
2009-05-19
Described are a "Discrete Magic Angle Turning" (DMAT) system, devices, and processes that combine advantages of both magic angle turning (MAT) and magic angle hopping (MAH) suitable, e.g., for in situ magnetic resonance spectroscopy and/or imaging. In an exemplary system, device, and process, samples are rotated in a clockwise direction followed by an anticlockwise direction of exactly the same amount. Rotation proceeds through an angle that is typically greater than about 240 degrees but less than or equal to about 360 degrees at constant speed for a time applicable to the evolution dimension. Back and forth rotation can be synchronized and repeated with a special radio frequency (RF) pulse sequence to produce an isotropic-anisotropic shift 2D correlation spectrum. The design permits tubes to be inserted into the sample container without introducing plumbing interferences, further allowing control over such conditions as temperature, pressure, flow conditions, and feed compositions, thus permitting true in-situ investigations to be carried out.
Magic-Angle-Spinning NMR Magnet Development: Field Analysis and Prototypes
Voccio, John; Hahn, Seungyong; Park, Dong Keun; Ling, Jiayin; Kim, Youngjae; Bascuñán, Juan; Iwasa, Yukikazu
2013-01-01
We are currently working on a program to complete a 1.5 T/75 mm RT bore magic-angle-spinning nuclear magnetic resonance magnet. The magic-angle-spinning magnet comprises a z-axis 0.866-T solenoid and an x-axis 1.225-T dipole, each to be wound with NbTi wire and operated at 4.2 K in persistent mode. A combination of the fields creates a 1.5-T field pointed at 54.74 degrees (magic angle) from the rotation (z) axis. In the first year of this 3-year program, we have completed magnetic analysis and design of both coils. Also, using a winding machine of our own design and fabrication, we have wound several prototype dipole coils with NbTi wire. As part of this development, we have repeatedly made successful persistent NbTi-NbTi joints with this multifilamentary NbTi wire. PMID:24058275
Mandal, Abhishek; Boatz, Jennifer C.; Wheeler, Travis; van der Wel, Patrick C. A.
2017-01-01
A number of recent advances in the field of magic-angle-spinning (MAS) solid-state NMR have enabled its application to a range of biological systems of ever increasing complexity. To retain biological relevance, these samples are increasingly studied in a hydrated state. At the same time, experimental feasibility requires the sample preparation process to attain a high sample concentration within the final MAS rotor. We discuss these considerations, and how they have led to a number of different approaches to MAS NMR sample preparation. We describe our experience of how custom-made (or commercially available) ultracentrifugal devices can facilitate a simple, fast and reliable sample preparation process. A number of groups have since adopted such tools, in some cases to prepare samples for sedimentation-style MAS NMR experiments. Here we argue for a more widespread adoption of their use for routine MAS NMR sample preparation. PMID:28229262
Spinning angle optical calibration apparatus
Beer, Stephen K.; Pratt, II, Harold R.
1991-01-01
An optical calibration apparatus is provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting an accurate reproducing of spinning "magic angles" in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the "magic angle" of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to a graduation or graduations on a reticle in the magnifying scope is noted. Thereafter, the spinning "magic angle" of a test material having similar nuclear properties to the standard is attained by returning the sample holder back to the originally noted coordinate position.
Jurd, Andrew P S; Titman, Jeremy J
2009-08-28
Solid-state NMR experiments can be used to determine conformational parameters, such as interatomic distances and torsion angles. The latter can be obtained from measurements of the relative orientation of two chemical shift tensors, if the orientation of these with respect to the surrounding bonds is known. In this paper, a new rotor-synchronized magic angle spinning (MAS) dipolar correlation experiment is described which can be used in this way. Because the experiment requires slow MAS rates, a novel recoupling sequence, designed using symmetry principles, is incorporated into the mixing period. This recoupling sequence is based in turn on a new composite cyclic pulse referred to as COAST (for combined offset and anisotropy stabilization). The new COAST-C7(2)(1) sequence is shown to give good theoretical and experimental recoupling efficiency, even when the CSA far exceeds the MAS rate. In this regime, previous recoupling sequences, such as POST-C7(2)(1), exhibit poor recoupling performance. The effectiveness of the new method has been explored by a study of the dipeptide L-phenylalanyl-L-phenylalanine.
Spinning angle optical calibration apparatus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beer, S.K.; Pratt, H.R. II.
1989-09-12
An optical calibration apparatus is provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting and accurate reproducing of spinning magic angles in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the magic angle of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to a graduation ormore » graduations on a reticle in the magnifying scope is noted. Thereafter, the spinning magic angle of a test material having similar nuclear properties to the standard is attained by returning the sample holder back to the originally noted coordinate position. 2 figs.« less
Devices and process for high-pressure magic angle spinning nuclear magnetic resonance
Hoyt, David W; Sears, Jr., Jesse A; Turcu, Romulus V.F.; Rosso, Kevin M; Hu, Jian Zhi
2014-04-08
A high-pressure magic angle spinning (MAS) rotor is detailed that includes a high-pressure sample cell that maintains high pressures exceeding 150 bar. The sample cell design minimizes pressure losses due to penetration over an extended period of time.
Devices and process for high-pressure magic angle spinning nuclear magnetic resonance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoyt, David W.; Sears, Jesse A.; Turcu, Romulus V. F.
A high-pressure magic angle spinning (MAS) rotor is detailed that includes a high-pressure sample cell that maintains high pressures exceeding 150 bar. The sample cell design minimizes pressure losses due to penetration over an extended period of time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wind, Robert A.; Hu, Jian Zhi
2005-01-01
Proton NMR in Biological Objects Submitted to Magic Angle Spinning, In Encyclopedia of Analytical Science, Second Edition (Paul J. Worsfold, Alan Townshend and Colin F. Poole, eds.), Elsevier, Oxford 6:333-342. Published January 1, 2005. Proposal Number 10896.
Resolution enhancement in 13C and 15N magic-angle turning experiments with TPPM decoupling.
McGeorge, G; Alderman, D W; Grant, D M
1999-03-01
Many solid-state spectra have been shown to have problems related to the poor proton decoupling of carbon nuclei in methylene groups under conditions of slow magic-angle turning. Two-pulse phase-modulation (TPPM) decoupling during the 2D PHORMAT chemical shift separation experiment is shown to be more effective in comparison to that obtainable at much higher spin rates using conventional CW decoupling. TPPM decoupling can also alleviate similar inadequacies when observing the 15N nucleus, particularly with NH2 groups. This is demonstrated in the 15N resonances of fully labeled l-arginine hydrochloride, where a line narrowing of about a factor of two was observed at moderate rotation rates. This significant advantage was also obtained at turning frequencies as low as 500 Hz. Copyright 1999 Academic Press.
Method for high resolution magnetic resonance analysis using magic angle technique
Wind, Robert A.; Hu, Jian Zhi
2003-12-30
A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.
Method for high resolution magnetic resonance analysis using magic angle technique
Wind, Robert A.; Hu, Jian Zhi
2004-12-28
A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.
Roussey, Arthur; Gajan, David; Maishal, Tarun K; Mukerjee, Anhurada; Veyre, Laurent; Lesage, Anne; Emsley, Lyndon; Copéret, Christophe; Thieuleux, Chloé
2011-03-14
Highly ordered organic-inorganic mesostructured material containing regularly distributed phenols is synthesized by combining a direct synthesis of the functional material and a protection-deprotection strategy and characterized at a molecular level through ultra-fast magic angle spinning proton NMR spectroscopy.
NASA Astrophysics Data System (ADS)
Nielsen, N. C.; Bildsøe, H.; Jakobsen, H. J.; Levitt, M. H.
1994-08-01
We describe an efficient method for the recovery of homonuclear dipole-dipole interactions in magic-angle spinning NMR. Double-quantum homonuclear rotary resonance (2Q-HORROR) is established by fulfilling the condition ωr=2ω1, where ωr is the sample rotation frequency and ω1 is the nutation frequency around an applied resonant radio frequency (rf) field. This resonance can be used for double-quantum filtering and measurement of homonuclear dipolar interactions in the presence of magic-angle spinning. The spin dynamics depend only weakly on crystallite orientation allowing good performance for powder samples. Chemical shift effects are suppressed to zeroth order. The method is demonstrated for singly and doubly 13C labeled L-alanine.
NASA Astrophysics Data System (ADS)
Andronesi, Ovidiu C.; Mintzopoulos, Dionyssios; Struppe, Jochem; Black, Peter M.; Tzika, A. Aria
2008-08-01
We propose a solid-state NMR method that maximizes the advantages of high-resolution magic-angle-spinning (HRMAS) applied to intact biopsies when compared to more conventional liquid-state NMR approaches. Theoretical treatment, numerical simulations and experimental results on intact human brain biopsies are presented. Experimentally, it is proven that an optimized adiabatic TOBSY (TOtal through Bond correlation SpectroscopY) solid-state NMR pulse sequence for two-dimensional 1H- 1H homonuclear scalar-coupling longitudinal isotropic mixing provides a 20%-50% improvement in signal-to-noise ratio relative to its liquid-state analogue TOCSY (TOtal Correlation SpectroscopY). For this purpose we have refined the C9151 symmetry-based 13C TOBSY pulse sequence for 1H MRS use and compared it to MLEV-16 TOCSY sequence. Both sequences were rotor-synchronized and implemented using WURST-8 adiabatic inversion pulses. As discussed theoretically and shown in simulations, the improved magnetization-transfer comes from actively removing residual dipolar couplings from the average Hamiltonian. Importantly, the solid-state NMR techniques are tailored to perform measurements at low temperatures where sample degradation is reduced. This is the first demonstration of such a concept for HRMAS metabolic profiling of disease processes, including cancer, from biopsies requiring reduced sample degradation for further genomic analysis.
Garrido, L; Young, V L
1999-09-01
The amount of silicone (polydimethylsiloxane [PDMS]) in capsular tissue surgically removed from women with breast implants was measured by using (29)Si and (1)H magic-angle spinning solid-state NMR spectroscopy. Twelve women having smooth surface silicone gel-filled implants, including a subject with "low-bleed" double-lumen implants, had detectable levels of PDMS ranging from 0. 05 to 9.8% silicon in wet tissue (w/w). No silicon-containing compounds other than PDMS were detected. No correlation was found between the amount of PDMS measured in the capsular tissue and the length of implantation time (Pearson correlation coefficient, r = 0. 22). The results showed no relationship between higher amounts of PDMS and capsular contracture (p = 0.74) or other symptoms (p = 0. 53). Magn Reson Med 42:436-441, 1999. Copyright 1999 Wiley-Liss, Inc.
Magic-angle spinning NMR of intact bacteriophages: Insights into the capsid, DNA and their interface
NASA Astrophysics Data System (ADS)
Abramov, Gili; Morag, Omry; Goldbourt, Amir
2015-04-01
Bacteriophages are viruses that infect bacteria. They are complex macromolecular assemblies, which are composed of multiple protein subunits that protect genomic material and deliver it to specific hosts. Various biophysical techniques have been used to characterize their structure in order to unravel phage morphogenesis. Yet, most bacteriophages are non-crystalline and have very high molecular weights, in the order of tens of MegaDaltons. Therefore, complete atomic-resolution characterization on such systems that encompass both capsid and DNA is scarce. In this perspective article we demonstrate how magic-angle spinning solid-state NMR has and is used to characterize in detail bacteriophage viruses, including filamentous and icosahedral phage. We discuss the process of sample preparation, spectral assignment of both capsid and DNA and the use of chemical shifts and dipolar couplings to probe the capsid-DNA interface, describe capsid structure and dynamics and extract structural differences between viruses.
Cho, Herman M.; Washton, Nancy M.; Mueller, Karl T.; Sears, Jr., Jesse A.; Townsend, Mark R.; Ewing, James R.
2016-06-14
A magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) probe is described that includes double containment enclosures configured to seal and contain hazardous samples for analysis. The probe is of a modular design that ensures containment of hazardous samples during sample analysis while preserving spin speeds for superior NMR performance and convenience of operation.
NMR system and method having a permanent magnet providing a rotating magnetic field
Schlueter, Ross D [Berkeley, CA; Budinger, Thomas F [Berkeley, CA
2009-05-19
Disclosed herein are systems and methods for generating a rotating magnetic field. The rotating magnetic field can be used to obtain rotating-field NMR spectra, such as magic angle spinning spectra, without having to physically rotate the sample. This result allows magic angle spinning NMR to be conducted on biological samples such as live animals, including humans.
Wang, Ligong; Regatte, Ravinder R.
2014-01-01
Rationale and Objectives The objectives of this research study were to determine the magic-angle effect on different subregions of in vivo human femoral cartilage through the quantitative assessment of the effect of static magnetic field orientation (B0) on transverse (T2) relaxation time at 3.0 T. Materials and Methods Healthy volunteers (n = 5l; mean age, 36.4 years) and clinical patients (n = 5; mean age, 64 years) with early osteoarthritis (OA) were scanned at 3.0-T magnetic resonance using an 8-channel phased-array knee coil (transmit-receive). Results The T2 maps revealed significantly greater values in ventral than in dorsal regions. When the cartilage regions were oriented at 55° to B0 (magic angle), the longest T2 values were detected in comparison with the neighboring regions oriented 90° and 180° (0°) to B0. The subregions oriented 180° (0°) to B0 showed the lowest T2 values. Conclusions The differences in T2 values of different subregions suggest that magic-angle effect needs to be considered when interpreting cartilage abnormalities in OA patients. PMID:25481517
NASA Astrophysics Data System (ADS)
Thrippleton, Michael J.; Ball, Thomas J.; Wimperis, Stephen
2008-01-01
The satellite transitions acquired in real time by magic angle spinning (STARTMAS) NMR experiment combines a train of pulses with sample rotation at the magic angle to refocus the first- and second-order quadrupolar broadening of spin I =3/2 nuclei in a series of echoes, while allowing the isotropic chemical and quadrupolar shifts to evolve. The result is real-time isotropic NMR spectra at high spinning rates using conventional MAS equipment. In this paper we describe in detail how STARTMAS data can be acquired and processed with ease on commercial equipment. We also discuss the advantages and limitations of the approach and illustrate the discussion with numerical simulations and experimental data from four different powdered solids.
CP/MAS /sup 13/C NMR spectroscopic study of chlorophyll a in the solid state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, C.E.; Spencer, R.B.; Burger, V.T.
1983-09-01
Solid-state cross-polarization, magic-angle sample spinning carbon-13 nuclear magnetic resonance spectra have been recorded on chlorophyll a- water aggregates, methyl pyrochlorophyllide a and methyl pyropheophorbide a (derivatives that lack a phytyl chain). Spectra have also been collected under a decoupling regime in which resonances of certain hydrogen-bearing carbon atoms are suppressed. These observations are used to assign the solid state spectra.
Magic-angle spinning NMR of a class I filamentous bacteriophage virus.
Abramov, Gili; Morag, Omry; Goldbourt, Amir
2011-08-11
The fd bacteriophage is a filamentous virus that is widely used for bio- and nanotechnology applications ranging from phage display to battery materials. The possibility of obtaining a detailed description of its structural properties regardless of its state is therefore essential not only for understanding its physical arrangement and its bacterial infection process but also for many other applications. Here we present a study of the fd phage by magic-angle spinning solid-state NMR. While current structures rely on a Y21M mutant, experiments performed on a strain bearing a wild-type capsid report on high symmetry of the phage and lack of explicit subunit polymorphism. Chemical shift analysis confirmed that the coat protein mostly consists of a rigid right-handed curved α-helix (residues 6-47 of 50), preceded by a flexible loop-structured N-terminus. We were able to qualitatively assign the resonances belonging to the DNA, including the deoxyribose sugars and the thymine bases. These chemical shifts are consistent with base stacking and a C2'-endo/C3'-exo sugar pucker. © 2011 American Chemical Society
Indirect detection of infinite-speed MAS solid-state NMR spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perras, Frédéric A.; Venkatesh, Amrit; Hanrahan, Michael P.
Heavy spin-1/2 nuclides are known to possess very large chemical shift anisotropies that can challenge even the most advanced magic-angle-spinning (MAS) techniques. Wide manifolds of overlapping spinning sidebands and insufficient excitation bandwidths often obfuscate meaningful spectral information and force the use of static, low-resolution solid-state (SS)NMR methods for the characterization of materials. In order to address these issues, we have merged fast-magic-angle-turning (MAT) and dipolar heteronuclear multiple-quantum coherence (D-HMQC) experiments to obtain D-HMQC-MAT pulse sequences which enable the rapid acquisition of 2D SSNMR spectra that correlate isotropic 1H chemical shifts to the indirectly detected isotropic “infinite-MAS” spectra of heavy spin-1/2more » nuclides. Furthermore, for these nuclides, the combination of fast MAS and 1H detection provides a high sensitivity, which rivals the DNP-enhanced ultra-wideline SSNMR. The new pulse sequences were used to determine the Pt coordination environments in a complex mixture of decomposition products of transplatin and in a metal-organic framework with Pt ions coordinated to the linker ligands.« less
Indirect detection of infinite-speed MAS solid-state NMR spectra
Perras, Frédéric A.; Venkatesh, Amrit; Hanrahan, Michael P.; ...
2017-01-18
Heavy spin-1/2 nuclides are known to possess very large chemical shift anisotropies that can challenge even the most advanced magic-angle-spinning (MAS) techniques. Wide manifolds of overlapping spinning sidebands and insufficient excitation bandwidths often obfuscate meaningful spectral information and force the use of static, low-resolution solid-state (SS)NMR methods for the characterization of materials. In order to address these issues, we have merged fast-magic-angle-turning (MAT) and dipolar heteronuclear multiple-quantum coherence (D-HMQC) experiments to obtain D-HMQC-MAT pulse sequences which enable the rapid acquisition of 2D SSNMR spectra that correlate isotropic 1H chemical shifts to the indirectly detected isotropic “infinite-MAS” spectra of heavy spin-1/2more » nuclides. Furthermore, for these nuclides, the combination of fast MAS and 1H detection provides a high sensitivity, which rivals the DNP-enhanced ultra-wideline SSNMR. The new pulse sequences were used to determine the Pt coordination environments in a complex mixture of decomposition products of transplatin and in a metal-organic framework with Pt ions coordinated to the linker ligands.« less
A unified heteronuclear decoupling strategy for magic-angle-spinning solid-state NMR spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Equbal, Asif; Bjerring, Morten; Nielsen, Niels Chr., E-mail: madhu@tifr.res.in, E-mail: ncn@inano.au.dk
2015-05-14
A unified strategy of two-pulse based heteronuclear decoupling for solid-state magic-angle spinning nuclear magnetic resonance is presented. The analysis presented here shows that different decoupling sequences like two-pulse phase-modulation (TPPM), X-inverse-X (XiX), and finite pulse refocused continuous wave (rCW{sup A}) are basically specific solutions of a more generalized decoupling scheme which incorporates the concept of time-modulation along with phase-modulation. A plethora of other good decoupling conditions apart from the standard, TPPM, XiX, and rCW{sup A} decoupling conditions are available from the unified decoupling approach. The importance of combined time- and phase-modulation in order to achieve the best decoupling conditions ismore » delineated. The consequences of different indirect dipolar interactions arising from cross terms comprising of heteronuclear and homonuclear dipolar coupling terms and also those between heteronuclear dipolar coupling and chemical-shift anisotropy terms are presented in order to unfold the effects of anisotropic interactions under different decoupling conditions. Extensive numerical simulation results are corroborated with experiments on standard amino acids.« less
Thurber, Kent R.; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert
2012-01-01
We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20–25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier (Thurber et al., J. Magn. Reson. 2008) [1], but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized 13C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional 13C MAS NMR spectra of frozen solutions of uniformly 13C-labeled L-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly 13C-labeled amino acids. PMID:23238592
Vermathen, Martina; Marzorati, Mattia; Vermathen, Peter
2012-01-01
Classical liquid-state high-resolution (HR) NMR spectroscopy has proved a powerful tool in the metabonomic analysis of liquid food samples like fruit juices. In this paper the application of (1)H high-resolution magic angle spinning (HR-MAS) NMR spectroscopy to apple tissue is presented probing its potential for metabonomic studies. The (1)H HR-MAS NMR spectra are discussed in terms of the chemical composition of apple tissue and compared to liquid-state NMR spectra of apple juice. Differences indicate that specific metabolic changes are induced by juice preparation. The feasibility of HR-MAS NMR-based multivariate analysis is demonstrated by a study distinguishing three different apple cultivars by principal component analysis (PCA). Preliminary results are shown from subsequent studies comparing three different cultivation methods by means of PCA and partial least squares discriminant analysis (PLS-DA) of the HR-MAS NMR data. The compounds responsible for discriminating organically grown apples are discussed. Finally, an outlook of our ongoing work is given including a longitudinal study on apples.
NASA Astrophysics Data System (ADS)
Sharma, Kshama; Madhu, P. K.; Agarwal, Vipin
2016-09-01
The performance of heteronuclear spin decoupling sequences in solid-state NMR severely degrades when the proton radiofrequency (RF) nutation frequencies (ν1) are close to or at multiples of magic-angle spinning (MAS) frequency (νr) that are referred to as rotary-resonance recoupling conditions (ν1 = n · νr). Recently, two schemes, namely, PISSARRO and rCWApA, have been shown to be less affected by the problem of MAS and RF interference, specifically at the n = 2 rotary-resonance recoupling condition, especially in the fast MAS regime. Here, we systematically evaluate the loss in intensity of several heteronuclear spin decoupling sequences at the n = 1, 2 conditions compared to high-power decoupling in the fast-MAS regime. We propose that in the fast-MAS regime (above 40 kHz) the entire discussion about RF and MAS interference can be avoided by using appropriate low-power decoupling sequences which give comparable performance to decoupling sequences with high-power 1H irradiation of ca.195 kHz.
Indirect detection of infinite-speed MAS solid-state NMR spectra
NASA Astrophysics Data System (ADS)
Perras, Frédéric A.; Venkatesh, Amrit; Hanrahan, Michael P.; Goh, Tian Wei; Huang, Wenyu; Rossini, Aaron J.; Pruski, Marek
2017-03-01
Heavy spin-1/2 nuclides are known to possess very large chemical shift anisotropies that can challenge even the most advanced magic-angle-spinning (MAS) techniques. Wide manifolds of overlapping spinning sidebands and insufficient excitation bandwidths often obfuscate meaningful spectral information and force the use of static, low-resolution solid-state (SS)NMR methods for the characterization of materials. To address these issues, we have merged fast-magic-angle-turning (MAT) and dipolar heteronuclear multiple-quantum coherence (D-HMQC) experiments to obtain D-HMQC-MAT pulse sequences which enable the rapid acquisition of 2D SSNMR spectra that correlate isotropic 1H chemical shifts to the indirectly detected isotropic "infinite-MAS" spectra of heavy spin-1/2 nuclides. For these nuclides, the combination of fast MAS and 1H detection provides a high sensitivity, which rivals the DNP-enhanced ultra-wideline SSNMR. The new pulse sequences were used to determine the Pt coordination environments in a complex mixture of decomposition products of transplatin and in a metal-organic framework with Pt ions coordinated to the linker ligands.
Thurber, Kent R; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert
2013-01-01
We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20-25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier, but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized (13)C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional (13)C MAS NMR spectra of frozen solutions of uniformly (13)C-labeled l-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly (13)C-labeled amino acids. Published by Elsevier Inc.
Unconventional superconductivity in magic-angle graphene superlattices.
Cao, Yuan; Fatemi, Valla; Fang, Shiang; Watanabe, Kenji; Taniguchi, Takashi; Kaxiras, Efthimios; Jarillo-Herrero, Pablo
2018-04-05
The behaviour of strongly correlated materials, and in particular unconventional superconductors, has been studied extensively for decades, but is still not well understood. This lack of theoretical understanding has motivated the development of experimental techniques for studying such behaviour, such as using ultracold atom lattices to simulate quantum materials. Here we report the realization of intrinsic unconventional superconductivity-which cannot be explained by weak electron-phonon interactions-in a two-dimensional superlattice created by stacking two sheets of graphene that are twisted relative to each other by a small angle. For twist angles of about 1.1°-the first 'magic' angle-the electronic band structure of this 'twisted bilayer graphene' exhibits flat bands near zero Fermi energy, resulting in correlated insulating states at half-filling. Upon electrostatic doping of the material away from these correlated insulating states, we observe tunable zero-resistance states with a critical temperature of up to 1.7 kelvin. The temperature-carrier-density phase diagram of twisted bilayer graphene is similar to that of copper oxides (or cuprates), and includes dome-shaped regions that correspond to superconductivity. Moreover, quantum oscillations in the longitudinal resistance of the material indicate the presence of small Fermi surfaces near the correlated insulating states, in analogy with underdoped cuprates. The relatively high superconducting critical temperature of twisted bilayer graphene, given such a small Fermi surface (which corresponds to a carrier density of about 10 11 per square centimetre), puts it among the superconductors with the strongest pairing strength between electrons. Twisted bilayer graphene is a precisely tunable, purely carbon-based, two-dimensional superconductor. It is therefore an ideal material for investigations of strongly correlated phenomena, which could lead to insights into the physics of high-critical-temperature superconductors and quantum spin liquids.
Correlated insulator behaviour at half-filling in magic-angle graphene superlattices
NASA Astrophysics Data System (ADS)
Cao, Yuan; Fatemi, Valla; Demir, Ahmet; Fang, Shiang; Tomarken, Spencer L.; Luo, Jason Y.; Sanchez-Yamagishi, Javier D.; Watanabe, Kenji; Taniguchi, Takashi; Kaxiras, Efthimios; Ashoori, Ray C.; Jarillo-Herrero, Pablo
2018-04-01
A van der Waals heterostructure is a type of metamaterial that consists of vertically stacked two-dimensional building blocks held together by the van der Waals forces between the layers. This design means that the properties of van der Waals heterostructures can be engineered precisely, even more so than those of two-dimensional materials. One such property is the ‘twist’ angle between different layers in the heterostructure. This angle has a crucial role in the electronic properties of van der Waals heterostructures, but does not have a direct analogue in other types of heterostructure, such as semiconductors grown using molecular beam epitaxy. For small twist angles, the moiré pattern that is produced by the lattice misorientation between the two-dimensional layers creates long-range modulation of the stacking order. So far, studies of the effects of the twist angle in van der Waals heterostructures have concentrated mostly on heterostructures consisting of monolayer graphene on top of hexagonal boron nitride, which exhibit relatively weak interlayer interaction owing to the large bandgap in hexagonal boron nitride. Here we study a heterostructure consisting of bilayer graphene, in which the two graphene layers are twisted relative to each other by a certain angle. We show experimentally that, as predicted theoretically, when this angle is close to the ‘magic’ angle the electronic band structure near zero Fermi energy becomes flat, owing to strong interlayer coupling. These flat bands exhibit insulating states at half-filling, which are not expected in the absence of correlations between electrons. We show that these correlated states at half-filling are consistent with Mott-like insulator states, which can arise from electrons being localized in the superlattice that is induced by the moiré pattern. These properties of magic-angle-twisted bilayer graphene heterostructures suggest that these materials could be used to study other exotic many-body quantum phases in two dimensions in the absence of a magnetic field. The accessibility of the flat bands through electrical tunability and the bandwidth tunability through the twist angle could pave the way towards more exotic correlated systems, such as unconventional superconductors and quantum spin liquids.
Spinning angle optical calibration apparatus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beer, S.K.; Pratt, H.R.
1991-02-26
This patent describes an optical calibration apparatus provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting an accurate reproducing of spinning magic angles in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the magic angle of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to amore » graduation or graduations on a reticle in the magnifying scope is noted.« less
Abramov, Gili; Morag, Omry; Goldbourt, Amir
2015-04-01
Bacteriophages are viruses that infect bacteria. They are complex macromolecular assemblies, which are composed of multiple protein subunits that protect genomic material and deliver it to specific hosts. Various biophysical techniques have been used to characterize their structure in order to unravel phage morphogenesis. Yet, most bacteriophages are non-crystalline and have very high molecular weights, in the order of tens of MegaDaltons. Therefore, complete atomic-resolution characterization on such systems that encompass both capsid and DNA is scarce. In this perspective article we demonstrate how magic-angle spinning solid-state NMR has and is used to characterize in detail bacteriophage viruses, including filamentous and icosahedral phage. We discuss the process of sample preparation, spectral assignment of both capsid and DNA and the use of chemical shifts and dipolar couplings to probe the capsid-DNA interface, describe capsid structure and dynamics and extract structural differences between viruses. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, Todd M.; Liao, Zuolei; Nyman, May
Solid-state 1H magic-angle spinning (MAS) NMR was used to investigate local proton environments in anhydrous [UO 2(OH) 2] (α-UOH) and hydrated uranyl hydroxide [(UO 2) 4O(OH) 6·5H 2O (metaschoepite). For the metaschoepite material, proton resonances of the μ 2-OH hydroxyl and interlayer waters were resolved, with two-dimensional (2D) double-quantum (DQ) 1H– 1H NMR correlation experiments revealing strong dipolar interactions between these different proton species. The experimental NMR results were combined with first-principles CASTEP GIPAW (gauge including projector-augmented wave) chemical shift calculations to develop correlations between hydrogen-bond strength and observed 1H NMR chemical shifts. Furthermore, these NMR correlations allowed characterization ofmore » local hydrogen-bond environments in uranyl U 24 capsules and of changes in hydrogen bonding that occurred during thermal dehydration of metaschoepite.« less
Biomolecular solid state NMR with magic-angle spinning at 25K.
Thurber, Kent R; Tycko, Robert
2008-12-01
A magic-angle spinning (MAS) probe has been constructed which allows the sample to be cooled with helium, while the MAS bearing and drive gases are nitrogen. The sample can be cooled to 25K using roughly 3 L/h of liquid helium, while the 4-mm diameter rotor spins at 6.7 kHz with good stability (+/-5 Hz) for many hours. Proton decoupling fields up to at least 130 kHz can be applied. This helium-cooled MAS probe enables a variety of one-dimensional and two-dimensional NMR experiments on biomolecular solids and other materials at low temperatures, with signal-to-noise proportional to 1/T. We show examples of low-temperature (13)C NMR data for two biomolecular samples, namely the peptide Abeta(14-23) in the form of amyloid fibrils and the protein HP35 in frozen glycerol/water solution. Issues related to temperature calibration, spin-lattice relaxation at low temperatures, paramagnetic doping of frozen solutions, and (13)C MAS NMR linewidths are discussed.
Alam, Todd M.; Liao, Zuolei; Nyman, May; ...
2016-04-27
Solid-state 1H magic-angle spinning (MAS) NMR was used to investigate local proton environments in anhydrous [UO 2(OH) 2] (α-UOH) and hydrated uranyl hydroxide [(UO 2) 4O(OH) 6·5H 2O (metaschoepite). For the metaschoepite material, proton resonances of the μ 2-OH hydroxyl and interlayer waters were resolved, with two-dimensional (2D) double-quantum (DQ) 1H– 1H NMR correlation experiments revealing strong dipolar interactions between these different proton species. The experimental NMR results were combined with first-principles CASTEP GIPAW (gauge including projector-augmented wave) chemical shift calculations to develop correlations between hydrogen-bond strength and observed 1H NMR chemical shifts. Furthermore, these NMR correlations allowed characterization ofmore » local hydrogen-bond environments in uranyl U 24 capsules and of changes in hydrogen bonding that occurred during thermal dehydration of metaschoepite.« less
Gräsing, Daniel; Bielytskyi, Pavlo; Céspedes-Camacho, Isaac F; Alia, A; Marquardsen, Thorsten; Engelke, Frank; Matysik, Jörg
2017-09-21
Several parameters in NMR depend on the magnetic field strength. Field-cycling NMR is an elegant way to explore the field dependence of these properties. The technique is well developed for solution state and in relaxometry. Here, a shuttle system with magic-angle spinning (MAS) detection is presented to allow for field-dependent studies on solids. The function of this system is demonstrated by exploring the magnetic field dependence of the solid-state photochemically induced nuclear polarization (photo-CIDNP) effect. The effect allows for strong nuclear spin-hyperpolarization in light-induced spin-correlated radical pairs (SCRPs) under solid-state conditions. To this end, 13 C MAS NMR is applied to a photosynthetic reaction center (RC) of the purple bacterium Rhodobacter (R.) sphaeroides wildtype (WT). For induction of the effect in the stray field of the magnet and its subsequent observation at 9.4 T under MAS NMR conditions, the sample is shuttled by the use of an aerodynamically driven sample transfer technique. In the RC, we observe the effect down to 0.25 T allowing to determine the window for the occurrence of the effect to be between about 0.2 and 20 T.
A LOW-E MAGIC ANGLE SPINNING PROBE FOR BIOLOGICAL SOLID STATE NMR AT 750 MHz
McNeill, Seth A.; Gor’kov, Peter L.; Shetty, Kiran; Brey, William W.; Long, Joanna R.
2009-01-01
Crossed-coil NMR probes are a useful tool for reducing sample heating for biological solid state NMR. In a crossed-coil probe, the higher frequency 1H field, which is the primary source of sample heating in conventional probes, is produced by a separate low-inductance resonator. Because a smaller driving voltage is required, the electric field across the sample and the resultant heating is reduced. In this work we describe the development of a magic angle spinning (MAS) solid state NMR probe utilizing a dual resonator. This dual resonator approach, referred to as “Low-E,” was originally developed to reduce heating in samples of mechanically aligned membranes. The study of inherently dilute systems, such as proteins in lipid bilayers, via MAS techniques requires large sample volumes at high field to obtain spectra with adequate signal-to-noise ratio under physiologically relevant conditions. With the Low-E approach, we are able to obtain homogeneous and sufficiently strong radiofrequency fields for both 1H and 13C frequencies in a 4 mm probe with a 1H frequency of 750 MHz. The performance of the probe using windowless dipolar recoupling sequences is demonstrated on model compounds as well as membrane embedded peptides. PMID:19138870
NMR high-resolution magic angle spinning rotor design for quantification of metabolic concentrations
NASA Astrophysics Data System (ADS)
Holly, R.; Damyanovich, A.; Peemoeller, H.
2006-05-01
A new high-resolution magic angle spinning nuclear magnetic resonance technique is presented to obtain absolute metabolite concentrations of solutions. The magnetic resonance spectrum of the sample under investigation and an internal reference are acquired simultaneously, ensuring both spectra are obtained under the same experimental conditions. The robustness of the technique is demonstrated using a solution of creatine, and it is shown that the technique can obtain solution concentrations to within 7% or better.
Thurber, Kent; Tycko, Robert
2016-03-01
We describe novel instrumentation for low-temperature solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS), focusing on aspects of this instrumentation that have not been described in detail in previous publications. We characterize the performance of an extended interaction oscillator (EIO) microwave source, operating near 264 GHz with 1.5 W output power, which we use in conjunction with a quasi-optical microwave polarizing system and a MAS NMR probe that employs liquid helium for sample cooling and nitrogen gas for sample spinning. Enhancement factors for cross-polarized (13)C NMR signals in the 100-200 range are demonstrated with DNP at 25K. The dependences of signal amplitudes on sample temperature, as well as microwave power, polarization, and frequency, are presented. We show that sample temperatures below 30K can be achieved with helium consumption rates below 1.3 l/h. To illustrate potential applications of this instrumentation in structural studies of biochemical systems, we compare results from low-temperature DNP experiments on a calmodulin-binding peptide in its free and bound states. Published by Elsevier Inc.
Gopinath, T; Mote, Kaustubh R; Veglia, Gianluigi
2015-05-01
We present a new method called DAISY (Dual Acquisition orIented ssNMR spectroScopY) for the simultaneous acquisition of 2D and 3D oriented solid-state NMR experiments for membrane proteins reconstituted in mechanically or magnetically aligned lipid bilayers. DAISY utilizes dual acquisition of sine and cosine dipolar or chemical shift coherences and long living (15)N longitudinal polarization to obtain two multi-dimensional spectra, simultaneously. In these new experiments, the first acquisition gives the polarization inversion spin exchange at the magic angle (PISEMA) or heteronuclear correlation (HETCOR) spectra, the second acquisition gives PISEMA-mixing or HETCOR-mixing spectra, where the mixing element enables inter-residue correlations through (15)N-(15)N homonuclear polarization transfer. The analysis of the two 2D spectra (first and second acquisitions) enables one to distinguish (15)N-(15)N inter-residue correlations for sequential assignment of membrane proteins. DAISY can be implemented in 3D experiments that include the polarization inversion spin exchange at magic angle via I spin coherence (PISEMAI) sequence, as we show for the simultaneous acquisition of 3D PISEMAI-HETCOR and 3D PISEMAI-HETCOR-mixing experiments.
Application of a Resource Theory for Magic States to Fault-Tolerant Quantum Computing.
Howard, Mark; Campbell, Earl
2017-03-03
Motivated by their necessity for most fault-tolerant quantum computation schemes, we formulate a resource theory for magic states. First, we show that robustness of magic is a well-behaved magic monotone that operationally quantifies the classical simulation overhead for a Gottesman-Knill-type scheme using ancillary magic states. Our framework subsequently finds immediate application in the task of synthesizing non-Clifford gates using magic states. When magic states are interspersed with Clifford gates, Pauli measurements, and stabilizer ancillas-the most general synthesis scenario-then the class of synthesizable unitaries is hard to characterize. Our techniques can place nontrivial lower bounds on the number of magic states required for implementing a given target unitary. Guided by these results, we have found new and optimal examples of such synthesis.
Structural Biology of Supramolecular Assemblies by Magic Angle Spinning NMR Spectroscopy
Quinn, Caitlin M.; Polenova, Tatyana
2017-01-01
In recent years, exciting developments in instrument technology and experimental methodology have advanced the field of magic angle spinning (MAS) NMR to new heights. Contemporary MAS NMR yields atomic-level insights into structure and dynamics of an astounding range of biological systems, many of which cannot be studied by other methods. With the advent of fast magic angle spinning, proton detection, and novel pulse sequences, large supramolecular assemblies, such as cytoskeletal proteins and intact viruses, are now accessible for detailed analysis. In this review, we will discuss the current MAS NMR methodologies that enable characterization of complex biomolecular systems and will present examples of applications to several classes of assemblies comprising bacterial and mammalian cytoskeleton as well as HIV-1 and bacteriophage viruses. The body of work reviewed herein is representative of the recent advancements in the field, with respect to the complexity of the systems studied, the quality of the data, and the significance to the biology. PMID:28093096
Bound states for magic state distillation in fault-tolerant quantum computation.
Campbell, Earl T; Browne, Dan E
2010-01-22
Magic state distillation is an important primitive in fault-tolerant quantum computation. The magic states are pure nonstabilizer states which can be distilled from certain mixed nonstabilizer states via Clifford group operations alone. Because of the Gottesman-Knill theorem, mixtures of Pauli eigenstates are not expected to be magic state distillable, but it has been an open question whether all mixed states outside this set may be distilled. In this Letter we show that, when resources are finitely limited, nondistillable states exist outside the stabilizer octahedron. In analogy with the bound entangled states, which arise in entanglement theory, we call such states bound states for magic state distillation.
Multiple scattering calculations of relativistic electron energy loss spectra
NASA Astrophysics Data System (ADS)
Jorissen, K.; Rehr, J. J.; Verbeeck, J.
2010-04-01
A generalization of the real-space Green’s-function approach is presented for ab initio calculations of relativistic electron energy loss spectra (EELS) which are particularly important in anisotropic materials. The approach incorporates relativistic effects in terms of the transition tensor within the dipole-selection rule. In particular, the method accounts for relativistic corrections to the magic angle in orientation resolved EELS experiments. The approach is validated by a study of the graphite CK edge, for which we present an accurate magic angle measurement consistent with the predicted value.
Spin-locking and cross-polarization under magic-angle spinning of uniformly labeled solids.
Hung, Ivan; Gan, Zhehong
2015-07-01
Spin-locking and cross-polarization under magic-angle spinning are investigated for uniformly (13)C and (15)N labeled solids. In particular, the interferences from chemical shift anisotropy, and (1)H heteronuclear and (13)C homonuclear dipolar couplings are identified. The physical origin of these interferences provides guidelines for selecting the best (13)C and (15)N polarization transfer rf fields. Optimal settings for both the zero- and double-quantum cross-polarization transfer mechanisms are recommended. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Vijay Alagappan, A.; Narasimha Rao, K. V.; Krishna Kumar, R.
2015-02-01
Tyre models are a prerequisite for any vehicle dynamics simulation. Tyre models range from the simplest mathematical models that consider only the cornering stiffness to a complex set of formulae. Among all the steady-state tyre models that are in use today, the Magic Formula tyre model is unique and most popular. Though the Magic Formula tyre model is widely used, obtaining the model coefficients from either the experimental or the simulation data is not straightforward due to its nonlinear nature and the presence of a large number of coefficients. A common procedure used for this extraction is the least-squares minimisation that requires considerable experience for initial guesses. Various researchers have tried different algorithms, namely, gradient and Newton-based methods, differential evolution, artificial neural networks, etc. The issues involved in all these algorithms are setting bounds or constraints, sensitivity of the parameters, the features of the input data such as the number of points, noisy data, experimental procedure used such as slip angle sweep or tyre measurement (TIME) procedure, etc. The extracted Magic Formula coefficients are affected by these variants. This paper highlights the issues that are commonly encountered in obtaining these coefficients with different algorithms, namely, least-squares minimisation using trust region algorithms, Nelder-Mead simplex, pattern search, differential evolution, particle swarm optimisation, cuckoo search, etc. A key observation is that not all the algorithms give the same Magic Formula coefficients for a given data. The nature of the input data and the type of the algorithm decide the set of the Magic Formula tyre model coefficients.
Thurber, Kent R.; Tycko, Robert
2009-01-01
Accurate determination of sample temperatures in solid state nuclear magnetic resonance (NMR) with magic-angle spinning (MAS) can be problematic, particularly because frictional heating and heating by radio-frequency irradiation can make the internal sample temperature significantly different from the temperature outside the MAS rotor. This paper demonstrates the use of 79Br chemical shifts and spin-lattice relaxation rates in KBr powder as temperature-dependent parameters for the determination of internal sample temperatures. Advantages of this method include high signal-to-noise, proximity of the 79Br NMR frequency to that of 13C, applicability from 20 K to 320 K or higher, and simultaneity with adjustment of the MAS axis direction. We show that spin-lattice relaxation in KBr is driven by a quadrupolar mechanism. We demonstrate a simple approach to including KBr powder in hydrated samples, such as biological membrane samples, hydrated amyloid fibrils, and hydrated microcrystalline proteins, that allows direct assessment of the effects of frictional and radio-frequency heating under experimentally relevant conditions. PMID:18930418
Thurber, Kent R; Tycko, Robert
2009-01-01
Accurate determination of sample temperatures in solid state nuclear magnetic resonance (NMR) with magic-angle spinning (MAS) can be problematic, particularly because frictional heating and heating by radio-frequency irradiation can make the internal sample temperature significantly different from the temperature outside the MAS rotor. This paper demonstrates the use of (79)Br chemical shifts and spin-lattice relaxation rates in KBr powder as temperature-dependent parameters for the determination of internal sample temperatures. Advantages of this method include high signal-to-noise, proximity of the (79)Br NMR frequency to that of (13)C, applicability from 20 K to 320 K or higher, and simultaneity with adjustment of the MAS axis direction. We show that spin-lattice relaxation in KBr is driven by a quadrupolar mechanism. We demonstrate a simple approach to including KBr powder in hydrated samples, such as biological membrane samples, hydrated amyloid fibrils, and hydrated microcrystalline proteins, that allows direct assessment of the effects of frictional and radio-frequency heating under experimentally relevant conditions.
NASA Astrophysics Data System (ADS)
Guerry, Paul; Brown, Steven P.; Smith, Mark E.
2017-10-01
In the context of improving J coupling measurements in disordered solids, strong coupling effects have been investigated in the spin-echo and refocused INADEQUATE spin-echo (REINE) modulations of three- and four-spin systems under magic-angle-spinning (MAS), using density matrix simulations and solid-state NMR experiments on a cadmium phosphate glass. Analytical models are developed for the different modulation regimes, which are shown to be distinguishable in practice using Akaike's information criterion. REINE modulations are shown to be free of the damping that occurs for spin-echo modulations when the observed spin has the same isotropic chemical shift as its neighbour. Damping also occurs when the observed spin is bonded to a strongly-coupled pair. For mid-chain units, the presence of both direct and relayed damping makes both REINE and spin-echo modulations impossible to interpret quantitatively. We nonetheless outline how a qualitative comparison of the modulation curves can provide valuable information on disordered networks, possibly also pertaining to dynamic effects therein.
1H magic-angle spinning NMR evolves as a powerful new tool for membrane proteins
NASA Astrophysics Data System (ADS)
Schubeis, Tobias; Le Marchand, Tanguy; Andreas, Loren B.; Pintacuda, Guido
2018-02-01
Building on a decade of continuous advances of the community, the recent development of very fast (60 kHz and above) magic-angle spinning (MAS) probes has revolutionised the field of solid-state NMR. This new spinning regime reduces the 1H-1H dipolar couplings, so that direct detection of the larger magnetic moment available from 1H is now possible at high resolution, not only in deuterated molecules but also in fully-protonated substrates. Such capabilities allow rapid "fingerprinting" of samples with a ten-fold reduction of the required sample amounts with respect to conventional approaches, and permit extensive, robust and expeditious assignment of small-to-medium sized proteins (up to ca. 300 residues), and the determination of inter-nuclear proximities, relative orientations of secondary structural elements, protein-cofactor interactions, local and global dynamics. Fast MAS and 1H detection techniques have nowadays been shown to be applicable to membrane-bound systems. This paper reviews the strategies underlying this recent leap forward in sensitivity and resolution, describing its potential for the detailed characterization of membrane proteins.
Thurber, Kent R; Tycko, Robert
2014-05-14
We report solid state (13)C and (1)H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, (1)H and cross-polarized (13)C NMR signals from (15)N,(13)C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.
Mori, Tetsuya; Tsuboi, Yuuri; Ishida, Nobuhiro; Nishikubo, Nobuyuki; Demura, Taku; Kikuchi, Jun
2015-01-01
Lignocellulose, which includes mainly cellulose, hemicellulose, and lignin, is a potential resource for the production of chemicals and for other applications. For effective production of materials derived from biomass, it is important to characterize the metabolites and polymeric components of the biomass. Nuclear magnetic resonance (NMR) spectroscopy has been used to identify biomass components; however, the NMR spectra of metabolites and lignocellulose components are ambiguously assigned in many cases due to overlapping chemical shift peaks. Using our 13C-labeling technique in higher plants such as poplar samples, we demonstrated that overlapping peaks could be resolved by three-dimensional NMR experiments to more accurately assign chemical shifts compared with two-dimensional NMR measurements. Metabolites of the 13C-poplar were measured by high-resolution magic angle spinning NMR spectroscopy, which allows sample analysis without solvent extraction, while lignocellulose components of the 13C-poplar dissolved in dimethylsulfoxide/pyridine solvent were analyzed by solution-state NMR techniques. Using these methods, we were able to unambiguously assign chemical shifts of small and macromolecular components in 13C-poplar samples. Furthermore, using samples of less than 5 mg, we could differentiate between two kinds of genes that were overexpressed in poplar samples, which produced clearly modified plant cell wall components. PMID:26143886
Powder-XRD and (14) N magic angle-spinning solid-state NMR spectroscopy of some metal nitrides.
Kempgens, Pierre; Britton, Jonathan
2016-05-01
Some metal nitrides (TiN, ZrN, InN, GaN, Ca3 N2 , Mg3 N2 , and Ge3 N4 ) have been studied by powder X-ray diffraction (XRD) and (14) N magic angle-spinning (MAS) solid-state NMR spectroscopy. For Ca3 N2 , Mg3 N2 , and Ge3 N4 , no (14) N NMR signal was observed. Low speed (νr = 2 kHz for TiN, ZrN, and GaN; νr = 1 kHz for InN) and 'high speed' (νr = 15 kHz for TiN; νr = 5 kHz for ZrN; νr = 10 kHz for InN and GaN) MAS NMR experiments were performed. For TiN, ZrN, InN, and GaN, powder-XRD was used to identify the phases present in each sample. The number of peaks observed for each sample in their (14) N MAS solid-state NMR spectrum matches perfectly well with the number of nitrogen-containing phases identified by powder-XRD. The (14) N MAS solid-state NMR spectra are symmetric and dominated by the quadrupolar interaction. The envelopes of the spinning sidebands manifold are Lorentzian, and it is concluded that there is a distribution of the quadrupolar coupling constants Qcc 's arising from structural defects in the compounds studied. Copyright © 2015 John Wiley & Sons, Ltd.
Diamond-anvil cell for radial x-ray diffraction.
Chesnut, G N; Schiferl, D; Streetman, B D; Anderson, W W
2006-06-28
We have designed a new diamond-anvil cell capable of radial x-ray diffraction to pressures of a few hundred GPa. The diffraction geometry allows access to multiple angles of Ψ, which is the angle between each reciprocal lattice vector g(hkl) and the compression axis of the cell. At the 'magic angle', Ψ≈54.7°, the effects of deviatoric stresses on the interplanar spacings, d(hkl), are significantly reduced. Because the systematic errors, which are different for each d(hkl), are significantly reduced, the crystal structures and the derived equations of state can be determined reliably. At other values of Ψ, the effects of deviatoric stresses on the diffraction pattern could eventually be used to determine elastic constants.
Magic angle for barrier-controlled double quantum dots
NASA Astrophysics Data System (ADS)
Yang, Xu-Chen; Wang, Xin
2018-01-01
We show that the exchange interaction of a singlet-triplet spin qubit confined in double quantum dots, when being controlled by the barrier method, is insensitive to a charged impurity lying along certain directions away from the center of the double-dot system. These directions differ from the polar axis of the double dots by the magic angle, equaling arccos(1 /√{3 })≈54 .7∘ , a value previously found in atomic physics and nuclear magnetic resonance. This phenomenon can be understood from an expansion of the additional Coulomb interaction created by the impurity, but also relies on the fact that the exchange interaction solely depends on the tunnel coupling in the barrier-control scheme. Our results suggest that for a scaled-up qubit array, when all pairs of double dots rotate their respective polar axes from the same reference line by the magic angle, crosstalk between qubits can be eliminated, allowing clean single-qubit operations. While our model is a rather simplified version of actual experiments, our results suggest that it is possible to minimize unwanted couplings by judiciously designing the layout of the qubits.
NASA Astrophysics Data System (ADS)
Mananga, Eugene Stephane; Charpentier, Thibault
2015-04-01
In this paper we present a theoretical perturbative approach for describing the NMR spectrum of strongly dipolar-coupled spin systems under fast magic-angle spinning. Our treatment is based on two approaches: the Floquet approach and the Floquet-Magnus expansion. The Floquet approach is well known in the NMR community as a perturbative approach to get analytical approximations. Numerical procedures are based on step-by-step numerical integration of the corresponding differential equations. The Floquet-Magnus expansion is a perturbative approach of the Floquet theory. Furthermore, we address the " γ -encoding" effect using the Floquet-Magnus expansion approach. We show that the average over " γ " angle can be performed for any Hamiltonian with γ symmetry.
Method for high resolution magnetic resonance analysis using magic angle technique
Wind, Robert A.; Hu, Jian Zhi
2003-11-25
A method of performing a magnetic resonance analysis of a biological object that includes placing the biological object in a main magnetic field and in a radio frequency field, the main magnetic field having a static field direction; rotating the biological object at a rotational frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. According to another embodiment, the radio frequency is pulsed to provide a sequence capable of producing a spectrum that is substantially free of spinning sideband peaks.
Solid-state NMR and computational studies of 4-methyl-2-nitroacetanilide.
Harris, Robin K; Ghi, Phuong Y; Hammond, Robert B; Ma, Cai Yun; Roberts, Kevin J; Yates, Jonathan R; Pickard, Chris J
2006-03-01
Studies on the solid-state structure of two polymorphs of 4-methyl-2-nitroacetanilide (MNA) were conducted using magic-angle spinning (13)C, (15)N and (1)H NMR spectroscopy, together with first-principles computations of NMR shielding (including use of a program that takes explicit account of the translational symmetry inherent in crystalline structures). The effects on (13)C chemical shifts of side-chain rotations have been explored. Information derived from these studies was then incorporated within a systematic space-search methodology for elucidation of trial crystallographic structures from powder XRD.
13C CP MAS NMR and GIAO-CHF calculations of coumarins.
Zolek, Teresa; Paradowska, Katarzyna; Wawer, Iwona
2003-01-01
13C cross-polarization magic-angle spinning NMR spectra were recorded for a series of solid coumarins. Ab initio calculations of shielding constants were performed with the use of GIAO-CHF method. The combined CPMAS NMR and theoretical approach was successful in characterizing solid-state conformations of coumarins; a relationship sigma (ppm) = -1.032 xdelta + 205.28 (R(2) = 0.9845) can be used to obtain structural information for coumarins, for which solid-state NMR or crystal structure data are not available. Copyright 2002 Elsevier Science (USA)
Hu, Jian Zhi; Hu, Mary Y.; Townsend, Mark R.; Lercher, Johannes A.; Peden, Charles H. F.
2015-10-06
Re-usable ceramic magic angle spinning (MAS) NMR rotors constructed of high-mechanic strength ceramics are detailed that include a sample compartment that maintains high pressures up to at least about 200 atmospheres (atm) and high temperatures up to about least about 300.degree. C. during operation. The rotor designs minimize pressure losses stemming from penetration over an extended period of time. The present invention makes possible a variety of in-situ high pressure, high temperature MAS NMR experiments not previously achieved in the prior art.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilgrim, C. D.; Callahan, J. R.; Colla, C. A.
Here, one-dimensional 27Al, 23Na Magic-Angle-Spinning (MAS) NMR and 27Al Multiple-Quantum Magic-Angle-Spinning NMR (MQMAS) measurements are reported for the δ-isomer of the Al 13 Keggin structure at high spinning speed and 14.1 T field. Values for the CQ and η parameters are on the same scale as those seen in other isomers of the Al 13 structure. Density functional theory (DFT) calculations are performed for comparison to the experimental fits using the B3PW91/6-31+G* and PBE0/6-31+G* levels of theory, with the Polarizable Continuum Model (PCM).
The use of variable temperature and magic-angle sample spinning in studies of fulvic acids
Earl, W.L.; Wershaw, R. L.; Thorn, K.A.
1987-01-01
Intensity distortions and poor signal to noise in the cross-polarization magic-angle sample spinning NMR of fulvic acids were investigated and attributed to molecular mobility in these ostensibly "solid" materials. We have shown that inefficiencies in cross polarization can be overcome by lowering the sample temperature to about -60??C. These difficulties can be generalized to many other synthetic and natural products. The use of variable temperature and cross-polarization intensity as a function of contact time can yield valuable qualitative information which can aid in the characterization of many materials. ?? 1987.
NASA Astrophysics Data System (ADS)
Zhang, Zhengfeng; Li, Jianping; Chen, Yanke; Xie, Huayong; Yang, Jun
2017-12-01
In this letter, we propose a robust heteronuclear dipolar recoupling method for proteins in magic-angle spinning (MAS) solid-state NMR. This method is as simple, robust and efficient as the well-known TEDOR in the aspect of magnetization transfer between 15N and 13C. Deriving from our recent band-selective dual back-to-back pulses (DBP) (Zhang et al., 2016), this method uses new phase-cycling schemes to realize broadband DBP (Bro-DBP). For broadband 15N-13C magnetization transfer (simultaneous 15N → 13C‧ and 15N → 13Cα), Bro-DBP has almost the same 15N → 13Cα efficiency while offers 30-40% enhancement on 15N → 13C‧ transfer, compared to TEDOR. Besides, Bro-DBP can also be used as a carbonyl (13C‧)-selected method, whose 15N → 13C‧ efficiency is up to 1.7 times that of TEDOR and is also higher than that of band-selective DBP. The performance of Bro-DBP is demonstrated on the N-formyl-[U-13C,15N]-Met-Leu-Phe-OH (fMLF) peptide and the U-13C, 15N labeled β1 immunoglobulin binding domain of protein G (GB1) microcrystalline protein. Since Bro-DBP is as robust, simple and efficient as TEDOR, we believe it is very useful for protein studies in MAS solid-state NMR.
Magic tilt angle for stabilizing two-dimensional solitons by dipole-dipole interactions
NASA Astrophysics Data System (ADS)
Chen, Xing-You; Chuang, You-Lin; Lin, Chun-Yan; Wu, Chien-Ming; Li, Yongyao; Malomed, Boris A.; Lee, Ray-Kuang
2017-10-01
In the framework of the Gross-Pitaevskii equation, we study the formation and stability of effectively two-dimensional solitons in dipolar Bose-Einstein condensates (BECs), with dipole moments polarized at an arbitrary angle θ relative to the direction normal to the system's plane. Using numerical methods and the variational approximation, we demonstrate that unstable Townes solitons, created by the contact attractive interaction, may be completely stabilized (with an anisotropic shape) by the dipole-dipole interaction (DDI), in the interval θcr<θ ≤π /2 . The stability boundary θcr weakly depends on the relative strength of the DDI, remaining close to the magic angle θm=arccos(1 /√{3 }) . The results suggest that DDIs provide a generic mechanism for the creation of stable BEC solitons in higher dimensions.
Guo, Wen; Morrisett, Joel D.; DeBakey, Michael E.; Lawrie, Gerald M.; Hamilton, James A.
2010-01-01
Because of renewed interest in the progression, stabilization, and regression of atherosclerotic plaques, it has become important to develop methods for characterizing structural features of plaques in situ and noninvasively. We present a nondestructive method for ex vivo quantification of 2 solid-phase components of plaques: crystalline cholesterol and calcium phosphate salts. Magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of human carotid endarterectomy plaques revealed 13C resonances of crystalline cholesterol monohydrate and a 31P resonance of calcium phosphate hydroxyapatite (CPH). The spectra were obtained under conditions in which there was little or no interference from other chemical components and were suitable for quantification in situ of the crystalline cholesterol and CPH. Carotid atherosclerotic plaques showed a wide variation in their crystalline cholesterol content. The calculated molar ratio of liquid-crystalline cholesterol to phospholipid ranged from 1.1 to 1.7, demonstrating different capabilities of the phospholipids to reduce crystallization of cholesterol. The spectral properties of the phosphate groups in CPH in carotid plaques were identical to those of CPH in bone. 31P MAS NMR is a simple, rapid method for quantification of calcium phosphate salts in tissue without extraction and time-consuming chemical analysis. Crystalline phases in intact atherosclerotic plaques (ex vivo) can be quantified accurately by solid-state 13C and 31PMAS NMR spectroscopy. PMID:10845882
NASA Astrophysics Data System (ADS)
Gopinath, T.; Veglia, Gianluigi
2016-06-01
Conventional multidimensional magic angle spinning (MAS) solid-state NMR (ssNMR) experiments detect the signal arising from the decay of a single coherence transfer pathway (FID), resulting in one spectrum per acquisition time. Recently, we introduced two new strategies, namely DUMAS (DUal acquisition Magic Angle Spinning) and MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), that enable the simultaneous acquisitions of multidimensional ssNMR experiments using multiple coherence transfer pathways. Here, we combined the main elements of DUMAS and MEIOSIS to harness both orphan spin operators and residual polarization and increase the number of simultaneous acquisitions. We show that it is possible to acquire up to eight two-dimensional experiments using four acquisition periods per each scan. This new suite of pulse sequences, called MAeSTOSO for Multiple Acquisitions via Sequential Transfer of Orphan Spin pOlarization, relies on residual polarization of both 13C and 15N pathways and combines low- and high-sensitivity experiments into a single pulse sequence using one receiver and commercial ssNMR probes. The acquisition of multiple experiments does not affect the sensitivity of the main experiment; rather it recovers the lost coherences that are discarded, resulting in a significant gain in experimental time. Both merits and limitations of this approach are discussed.
NASA Astrophysics Data System (ADS)
Robertson, Aiden J.; Pandey, Manoj Kumar; Marsh, Andrew; Nishiyama, Yusuke; Brown, Steven P.
2015-11-01
A selective saturation pulse at fast magic angle spinning (MAS) frequencies (60+ kHz) suppresses t1 noise in the indirect dimension of two-dimensional 1H MAS NMR spectra. The method is applied to a synthetic nucleoside with an intense methyl 1H signal due to triisopropylsilyl (TIPS) protecting groups. Enhanced performance in terms of suppressing the methyl signal while minimising the loss of signal intensity of nearby resonances of interest relies on reducing spin diffusion - this is quantified by comparing two-dimensional 1H NOESY-like spin diffusion spectra recorded at 30-70 kHz MAS. For a saturation pulse centred at the methyl resonance, the effect of changing the nutation frequency at different MAS frequencies as well as the effect of changing the pulse duration is investigated. By applying a pulse of duration 30 ms and nutation frequency 725 Hz at 70 kHz MAS, a good compromise of significant suppression of the methyl resonance combined with the signal intensity of resonances greater than 5 ppm away from the methyl resonance being largely unaffected is achieved. The effectiveness of using a selective saturation pulse is demonstrated for both homonuclear 1H-1H double quantum (DQ)/single quantum (SQ) MAS and 14N-1H heteronuclear multiple quantum coherence (HMQC) two-dimensional solid-state NMR experiments.
Najdanova, Marija; Gräsing, Daniel; Alia, A; Matysik, Jörg
2018-01-01
The origin of the functional symmetry break in bacterial photosynthesis challenges since several decades. Although structurally very similar, the two branches of cofactors in the reaction center (RC) protein complex act very differently. Upon photochemical excitation, an electron is transported along one branch, while the other remains inactive. Photochemically induced dynamic nuclear polarization (photo-CIDNP) magic-angle spinning (MAS) 13 C NMR revealed that the two bacteriochlorophyll cofactors forming the "Special Pair" donor dimer are already well distinguished in the electronic ground state. These previous studies are relying solely on 13 C- 13 C correlation experiments as radio-frequency-driven recoupling (RFDR) and dipolar-assisted rotational resonance (DARR). Obviously, the chemical-shift assignment is difficult in a dimer of tetrapyrrole macrocycles, having eight pyrrole rings of similar chemical shifts. To overcome this problem, an INADEQUATE type of experiment using a POST C7 symmetry-based approach is applied to selectively isotope-labeled bacterial RC of Rhodobacter (R.) sphaeroides wild type (WT). We, therefore, were able to distinguish unresolved sites of the macromolecular dimer. The obtained chemical-shift pattern is in-line with a concentric assembly of negative charge within the common center of the Special Pair supermolecule in the electronic ground state. © 2017 The American Society of Photobiology.
27Al MQMAS of the δ-Al 13-Keggin
Pilgrim, C. D.; Callahan, J. R.; Colla, C. A.; ...
2017-01-20
Here, one-dimensional 27Al, 23Na Magic-Angle-Spinning (MAS) NMR and 27Al Multiple-Quantum Magic-Angle-Spinning NMR (MQMAS) measurements are reported for the δ-isomer of the Al 13 Keggin structure at high spinning speed and 14.1 T field. Values for the CQ and η parameters are on the same scale as those seen in other isomers of the Al 13 structure. Density functional theory (DFT) calculations are performed for comparison to the experimental fits using the B3PW91/6-31+G* and PBE0/6-31+G* levels of theory, with the Polarizable Continuum Model (PCM).
Magic Angle Spinning NMR of Viruses
Quinn, Caitlin; Lu, Manman; Suiter, Christopher L.; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana
2015-01-01
Viruses, relatively simple pathogens, are able to replicate in many living organisms and to adapt to various environments. Conventional atomic-resolution structural biology techniques, X-ray crystallography and solution NMR spectroscopy provided abundant information on the structures of individual proteins and nucleic acids comprising viruses; however, viral assemblies are not amenable to analysis by these techniques because of their large size, insolubility, and inherent lack of long-range order. In this article, we review the recent advances in magic angle spinning NMR spectroscopy that enabled atomic-resolution analysis of structure and dynamics of large viral systems and give examples of several exciting case studies. PMID:25919197
A high-resolution (13)C 3D CSA-CSA-CSA correlation experiment by means of magic angle turning.
Hu, J Z; Ye, C; Pugmire, R J; Grant, D M
2000-08-01
It is shown in this paper that a previously reported 90 degrees sample flipping (13)C 2D CSA-CSA correlation experiment may be carried out alternatively by employing constant slow sample rotation about the magic angle axis and by synchronizing the read pulse to 13 of the rotor cycle. A high-resolution 3D CSA-CSA-CSA correlation experiment based on the magic angle turning technique is reported in which the conventional 90 degrees 2D CSA-CSA powder pattern for each carbon in a system containing a number of inequivalent carbons may be separated according to the isotropic chemical shift value. The technique is demonstrated on 1,2,3-trimethoxybenzene in which all of the overlapping powder patterns that cannot be segregated by the 2D CSA-CSA experiment are resolved successfully by the 3D CSA-CSA-CSA experiment, including even the two methoxy groups (M(1) and M(3)) whose isotropic shifts, confirmed by high-speed MAS, are separated by only 1 ppm. A difference of 4 ppm in the principal value component (delta(33)) between M(1) and M(3) is readily obtained. Copyright 2000 Academic Press.
Magnetic resonance imaging of DNP enhancements in a rotor spinning at the magic angle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perras, Frederic A.; Kobayashi, Takeshi; Pruski, Marek
Simulations performed on model, static, samples have shown that the microwave power is non-uniformly distributed in the magic angle spinning (MAS) rotor when using conventional dynamic nuclear polarization (DNP) instrumentation. Here, we applied the stray-field magic angle spinning imaging (STRAFI–MAS) experiment to generate a spatial map of the DNP enhancements in a full rotor, which is spun at a low rate in a commercial DNP–MAS NMR system. Notably, we observed that the enhancement factors produced in the center of the rotor can be twice as large as those produced at the top of the rotor. Surprisingly, we observed that themore » largest enhancement factors are observed along the axis of the rotor as opposed to against its walls, which are most directly irradiated by the microwave beam. We lastly observed that the distribution of enhancement factors can be moderately improved by degassing the sample and increasing the microwave power. The inclusion of dielectric particles greatly amplifies the enhancement factors throughout the rotor. Furthermore, the STRAFI–MAS approach can provide useful guidance for optimizing the access of microwave power to the sample, and thereby lead to further increases in sensitivity of DNP–MAS NMR.« less
Magnetic resonance imaging of DNP enhancements in a rotor spinning at the magic angle
Perras, Frederic A.; Kobayashi, Takeshi; Pruski, Marek
2016-02-23
Simulations performed on model, static, samples have shown that the microwave power is non-uniformly distributed in the magic angle spinning (MAS) rotor when using conventional dynamic nuclear polarization (DNP) instrumentation. Here, we applied the stray-field magic angle spinning imaging (STRAFI–MAS) experiment to generate a spatial map of the DNP enhancements in a full rotor, which is spun at a low rate in a commercial DNP–MAS NMR system. Notably, we observed that the enhancement factors produced in the center of the rotor can be twice as large as those produced at the top of the rotor. Surprisingly, we observed that themore » largest enhancement factors are observed along the axis of the rotor as opposed to against its walls, which are most directly irradiated by the microwave beam. We lastly observed that the distribution of enhancement factors can be moderately improved by degassing the sample and increasing the microwave power. The inclusion of dielectric particles greatly amplifies the enhancement factors throughout the rotor. Furthermore, the STRAFI–MAS approach can provide useful guidance for optimizing the access of microwave power to the sample, and thereby lead to further increases in sensitivity of DNP–MAS NMR.« less
The NMR-Rosetta capsid model of M13 bacteriophage reveals a quadrupled hydrophobic packing epitope.
Morag, Omry; Sgourakis, Nikolaos G; Baker, David; Goldbourt, Amir
2015-01-27
Filamentous phage are elongated semiflexible ssDNA viruses that infect bacteria. The M13 phage, belonging to the family inoviridae, has a length of ∼1 μm and a diameter of ∼7 nm. Here we present a structural model for the capsid of intact M13 bacteriophage using Rosetta model building guided by structure restraints obtained from magic-angle spinning solid-state NMR experimental data. The C5 subunit symmetry observed in fiber diffraction studies was enforced during model building. The structure consists of stacked pentamers with largely alpha helical subunits containing an N-terminal type II β-turn; there is a rise of 16.6-16.7 Å and a tilt of 36.1-36.6° between consecutive pentamers. The packing of the subunits is stabilized by a repeating hydrophobic stacking pocket; each subunit participates in four pockets by contributing different hydrophobic residues, which are spread along the subunit sequence. Our study provides, to our knowledge, the first magic-angle spinning NMR structure of an intact filamentous virus capsid and further demonstrates the strength of this technique as a method of choice to study noncrystalline, high-molecular-weight molecular assemblies.
The NMR–Rosetta capsid model of M13 bacteriophage reveals a quadrupled hydrophobic packing epitope
Morag, Omry; Sgourakis, Nikolaos G.; Baker, David; Goldbourt, Amir
2015-01-01
Filamentous phage are elongated semiflexible ssDNA viruses that infect bacteria. The M13 phage, belonging to the family inoviridae, has a length of ∼1 μm and a diameter of ∼7 nm. Here we present a structural model for the capsid of intact M13 bacteriophage using Rosetta model building guided by structure restraints obtained from magic-angle spinning solid-state NMR experimental data. The C5 subunit symmetry observed in fiber diffraction studies was enforced during model building. The structure consists of stacked pentamers with largely alpha helical subunits containing an N-terminal type II β-turn; there is a rise of 16.6–16.7 Å and a tilt of 36.1–36.6° between consecutive pentamers. The packing of the subunits is stabilized by a repeating hydrophobic stacking pocket; each subunit participates in four pockets by contributing different hydrophobic residues, which are spread along the subunit sequence. Our study provides, to our knowledge, the first magic-angle spinning NMR structure of an intact filamentous virus capsid and further demonstrates the strength of this technique as a method of choice to study noncrystalline, high-molecular-weight molecular assemblies. PMID:25587134
Maximum nonlocality and minimum uncertainty using magic states
NASA Astrophysics Data System (ADS)
Howard, Mark
2015-04-01
We prove that magic states from the Clifford hierarchy give optimal solutions for tasks involving nonlocality and entropic uncertainty with respect to Pauli measurements. For both the nonlocality and uncertainty tasks, stabilizer states are the worst possible pure states, so our solutions have an operational interpretation as being highly nonstabilizer. The optimal strategy for a qudit version of the Clauser-Horne-Shimony-Holt game in prime dimensions is achieved by measuring maximally entangled states that are isomorphic to single-qudit magic states. These magic states have an appealingly simple form, and our proof shows that they are "balanced" with respect to all but one of the mutually unbiased stabilizer bases. Of all equatorial qudit states, magic states minimize the average entropic uncertainties for collision entropy and also, for small prime dimensions, min-entropy, a fact that may have implications for cryptography.
Solid-state NMR studies of form I of atorvastatin calcium.
Wang, Wei David; Gao, Xudong; Strohmeier, Mark; Wang, Wei; Bai, Shi; Dybowski, Cecil
2012-03-22
Solid-state (13)C, (19)F, and (15)N magic angle spinning NMR studies of Form I of atorvastatin calcium are reported, including chemical shift tensors of all resolvable carbon sites and fluorine sites. The complete (13)C and (19)F chemical shift assignments are given based on an extensive analysis of (13)C-(1)H HETCOR and (13)C-(19)F HETCOR results. The solid-state NMR data indicate that the asymmetric unit of this material contains two atorvastatin molecules. A possible structure of Form I of atorvastatin calcium (ATC-I), derived from solid-state NMR data and density functional theory calculations of various structures, is proposed for this important active pharmaceutical ingredient (API).
Structure of Ancient Glass by 29 Si Magic Angle Spinning NMR Spectroscopy.
Bradford, Henry; Ryder, Amy; Henderson, Julian; Titman, Jeremy J
2018-05-23
29 Si magic angle spinning (MAS) NMR spectroscopy has been applied for the first time to the structural analysis of ancient glass samples obtained from archaeological excavations. The results show that it is possible to establish the distribution of Si environments in ancient glass by 29 Si MAS NMR, so long as the concentrations of magnetic impurities, such as Mn and Fe oxides, are low. In general, good agreement has been obtained with compositions determined by means of electron probe microanalysis. In addition, the 29 Si MAS NMR data reveal structural differences between glasses manufactured at separate ancient sites. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Rongchun; Ramamoorthy, Ayyalusamy
2015-07-21
Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of (1)H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as (13)C or (15)N. In this method, after the initial preparation of proton magnetization and cross-polarization to (13)C nuclei, transverse magnetization of desired (13)C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific (13)C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of (1)H-(1)H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.
Advanced slow-magic angle spinning probe for magnetic resonance imaging and spectroscopy
Wind, Robert A.; Hu, Jian Zhi; Minard, Kevin R.; Rommereim, Donald N.
2006-01-24
The present invention relates to a probe and processes useful for magnetic resonance imaging and spectroscopy instruments. More particularly, the invention relates to a MR probe and processes for obtaining resolution enhancements of fluid objects, including live specimens, using an ultra-slow (magic angle) spinning (MAS) of the specimen combined with a modified phase-corrected magic angle turning (PHORMAT) pulse sequence. Proton NMR spectra were measured of the torso and the top part of the belly of a female BALBc mouse in a 2T field, while spinning the animal at a speed of 1.5 Hz. Results show that even in this relatively low field with PHORMAT, an isotropic spectrum is obtained with line widths that are a factor 4.6 smaller than those obtained in a stationary mouse. Resolution of 1H NMR metabolite spectra are thus significantly enhanced. Results indicate that PHORMAT has the potential to significantly increase the utility of 1H NMR spectroscopy for in vivo biochemical, biomedical and/or medical applications involving large-sized biological objects such as mice, rats and even humans within a hospital setting. For small-sized objects, including biological objects, such as excised tissues, organs, live bacterial cells, and biofilms, use of PASS at a spinning rate of 30 Hz and above is preferred.
Methods for magnetic resonance analysis using magic angle technique
Hu, Jian Zhi [Richland, WA; Wind, Robert A [Kennewick, WA; Minard, Kevin R [Kennewick, WA; Majors, Paul D [Kennewick, WA
2011-11-22
Methods of performing a magnetic resonance analysis of a biological object are disclosed that include placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. In particular embodiments the method includes pulsing the radio frequency to provide at least two of a spatially selective read pulse, a spatially selective phase pulse, and a spatially selective storage pulse. Further disclosed methods provide pulse sequences that provide extended imaging capabilities, such as chemical shift imaging or multiple-voxel data acquisition.
NASA Astrophysics Data System (ADS)
Challoner, Robin; Harris, Robin K.; Tossell, John A.
1997-05-01
An off-magic-angle spinning study of the nonassociated molecular solid, doubly15N-labeled 5-methyl-2-diazobenzenesulphonic acid hydrochloride (I) is reported. The validity of the off-magic-angle spinning approach under fast-spinning conditions is verified by average Hamiltonian theory. Ab initio SCF calculations were performed on the simpler molecule, C6H5N2+, to provide the shielding parameters, the dipolar coupling between the two nitrogen nuclei, and the electric field gradient existing at both the α-nitrogen and β-nitrogen sites. The calculated values are in good agreement with the shielding and effective dipolar coupling data elucidated in the present investigation, and with a previous study of the two singly15N-labeled isotopomers in which information concerning the electric field gradient at the α and β sites was deduced.
Robertson, Aiden J; Pandey, Manoj Kumar; Marsh, Andrew; Nishiyama, Yusuke; Brown, Steven P
2015-11-01
A selective saturation pulse at fast magic angle spinning (MAS) frequencies (60+kHz) suppresses t1 noise in the indirect dimension of two-dimensional (1)H MAS NMR spectra. The method is applied to a synthetic nucleoside with an intense methyl (1)H signal due to triisopropylsilyl (TIPS) protecting groups. Enhanced performance in terms of suppressing the methyl signal while minimising the loss of signal intensity of nearby resonances of interest relies on reducing spin diffusion--this is quantified by comparing two-dimensional (1)H NOESY-like spin diffusion spectra recorded at 30-70 kHz MAS. For a saturation pulse centred at the methyl resonance, the effect of changing the nutation frequency at different MAS frequencies as well as the effect of changing the pulse duration is investigated. By applying a pulse of duration 30 ms and nutation frequency 725 Hz at 70 kHz MAS, a good compromise of significant suppression of the methyl resonance combined with the signal intensity of resonances greater than 5 ppm away from the methyl resonance being largely unaffected is achieved. The effectiveness of using a selective saturation pulse is demonstrated for both homonuclear (1)H-(1)H double quantum (DQ)/single quantum (SQ) MAS and (14)N-(1)H heteronuclear multiple quantum coherence (HMQC) two-dimensional solid-state NMR experiments. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Preston, C M; Forrester, P D
2004-01-01
Phasing out beehive burners and rising costs for landfilling have increased the need to widen options for utilization of the smaller size fractions of woody wastes generated during log handling and sawmilling in British Columbia. We characterized several size classes of logyard fines up to 16 mm sampled from coastal and interior operations. Total C, total N, ash, and condensed tannin concentrations were consistent with properties derived largely from wood, with varying proportions of bark and mixing with mineral soil. Especially for < 3-mm fractions, the latter resulted in high ash contents that would make them unsuitable for fuel. Solid-state 13C cross-polarization magic-angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectra were consistent with the chemical data, with high O-alkyl intensity and similarity to naturally occurring woody forest floor; no samples were high in aromatic or phenolic C. Aqueous extracts of two < 16-mm fines, which accounted for only a small proportion of the total C, were enriched in alkyl C and had low or undetectable tannins. Application to forest sites might cause short-term immobilization of N, but also might include possible longer-term benefits from reduction of N loss after harvesting and restoration of soil organic matter in degraded sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Rongchun; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu
2015-07-21
Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of {sup 1}H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as {sup 13}C or {sup 15}N. In this method, after the initial preparation of proton magnetization and cross-polarization to {sup 13}C nuclei, transverse magnetization of desired {sup 13}C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferredmore » to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific {sup 13}C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of {sup 1}H-{sup 1}H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.« less
Field, Timothy R; Bain, Alex D
2014-01-01
For a nucleus with a half-integral spin and a strong quadrupole coupling, the central transition (from magnetic quantum number -1/2 to +1/2) in the spectrum shows a characteristic lineshape. By strong coupling, we mean an interaction strong enough so that second-order perturbation theory is needed, yet still sufficient. The spectrum of a static sample is well-known and the magic-angle-spinning (MAS spectrum) is different, but still can be calculated. The important features of both these spectra are singularities and steps in the lineshape, since these are the main tools in fitting the calculated spectrum to experimental data. A useful tool in this investigation is a plot of the frequency as a function of orientation over the surface of the unit sphere. These plots have maxima, minima and saddle points, and these correspond to the features of the spectrum. We used these plots to define both the positions and derive new formulae for the heights of the features and we now extend this to the magic-angle spinning case. For the first time, we identify the orientations corresponding to the features of the MAS spectra and derive formulae for the heights. We then compare the static and MAS cases and show the relationships between the features in the two spectra. Copyright © 2014 Elsevier Inc. All rights reserved.
Lim, Kwang Hun; Dasari, Anvesh K. R.; Hung, Ivan; ...
2016-03-21
Elucidation of structural changes involved in protein misfolding and amyloid formation is crucial for unraveling the molecular basis of amyloid formation. We report structural analyses of the amyloidogenic intermediate and amyloid aggregates of transthyretin using solution and solid-state nuclear magnetic resonance (NMR) spectroscopy. These NMR solution results show that one of the two main β-sheet structures (CBEF β-sheet) is maintained in the aggregation-competent intermediate, while the other DAGH β-sheet is more flexible on millisecond time scales. Magic-angle-spinning solid-state NMR revealed that AB loop regions interacting with strand A in the DAGH β-sheet undergo conformational changes, leading to the destabilized DAGHmore » β-sheet.« less
Distillation with Sublogarithmic Overhead.
Hastings, Matthew B; Haah, Jeongwan
2018-02-02
It has been conjectured that, for any distillation protocol for magic states for the T gate, the number of noisy input magic states required per output magic state at output error rate ε is Ω[log(1/ε)]. We show that this conjecture is false. We find a family of quantum error correcting codes of parameters ⟦∑[under i=w+1][over m](m/i),∑[under i=0][over w](m/i),∑[under i=w+1][over r+1](r+1/i)⟧ for any integers m>2r, r>w≥0, by puncturing quantum Reed-Muller codes. When m>νr, our code admits a transversal logical gate at the νth level of Clifford hierarchy. In a distillation protocol for magic states at the level ν=3 (T gate), the ratio of input to output magic states is O(log^{γ}(1/ε)), where γ=log(n/k)/log(d)<0.678 for some m, r, w. The smallest code in our family for which γ<1 is on ≈2^{58} qubits.
Middleton, David A; Hughes, Eleri; Madine, Jillian
2004-08-11
We describe an NMR approach for detecting the interactions between phospholipid membranes and proteins, peptides, or small molecules. First, 1H-13C dipolar coupling profiles are obtained from hydrated lipid samples at natural isotope abundance using cross-polarization magic-angle spinning NMR methods. Principal component analysis of dipolar coupling profiles for synthetic lipid membranes in the presence of a range of biologically active additives reveals clusters that relate to different modes of interaction of the additives with the lipid bilayer. Finally, by representing profiles from multiple samples in the form of contour plots, it is possible to reveal statistically significant changes in dipolar couplings, which reflect perturbations in the lipid molecules at the membrane surface or within the hydrophobic interior.
A novel dipolar dephasing method for the slow magic angle turning experiment.
Hu, J Z; Taylor, C M; Pugmire, R J; Grant, D M
2001-09-01
Complete suppression of the resonances from protonated carbons in a slow magic angle spinning experiment can be achieved using five dipolar dephasing (Five-DD) periods distributed in one rotor period. This produces a spectrum containing only the spinning sidebands (SSB) from the nonprotonated carbons. It is shown that the SSB patterns corresponding to the nonprotonated carbons are not distorted over a wide range of dipolar dephasing times. Hence, this method can be used to obtain reliable principal values of the chemical shift tensors for each nonprotonated carbon. The Five-DD method can be readily incorporated into isotropic-anisotropic 2D experiments such as FIREMAT and 2D-PASS to facilitate the measurement of the (13)C chemical shift tensors in complex systems. Copyright 2001 Academic Press.
NASA Astrophysics Data System (ADS)
Sarkar, Riddhiman; Concistrè, Maria; Johannessen, Ole G.; Beckett, Peter; Denning, Mark; Carravetta, Marina; al-Mosawi, Maitham; Beduz, Carlo; Yang, Yifeng; Levitt, Malcolm H.
2011-10-01
The accurate temperature measurement of solid samples under magic-angle spinning (MAS) is difficult in the cryogenic regime. It has been demonstrated by Thurber et al. (J. Magn. Reson., 196 (2009) 84-87) [10] that the temperature dependent spin-lattice relaxation time constant of 79Br in KBr powder can be useful for measuring sample temperature under MAS over a wide temperature range (20-296 K). However the value of T1 exceeds 3 min at temperatures below 20 K, which is inconveniently long. In this communication, we show that the spin-lattice relaxation time constant of 127I in CsI powder can be used to accurately measure sample temperature under MAS within a reasonable experimental time down to 10 K.
Non-Fermi-liquid magic angle effects in high magnetic fields
NASA Astrophysics Data System (ADS)
Lebed, A. G.
2016-07-01
We investigate a theoretical problem of electron-electron interactions in an inclined magnetic field in a quasi-one-dimensional (Q1D) conductor. We show that they result in strong non-Fermi-liquid corrections to a specific heat, provided that the direction of the magnetic field is far from the so-called Lebed's magic angles (LMAs). If magnetic field is directed close to one of the LMAs, the specific heat corrections become small and the Fermi-liquid picture restores. As a result, we predict Fermi-liquid-non-Fermi-liquid angular crossovers in the vicinities of the LMA directions of the field. We suggest to perform the corresponding experiment in the Q1D conductor (Per) 2Au (mnt) 2 under pressure in magnetic fields of the order of H ≃25 T .
Solid-state NMR studies of theophylline co-crystals with dicarboxylic acids.
Pindelska, Edyta; Sokal, Agnieszka; Szeleszczuk, Lukasz; Pisklak, Dariusz Maciej; Kolodziejski, Waclaw
2014-11-01
In this work, three polycrystalline materials containing co-crystals of theophylline with malonic, maleic, and glutaric acids were studied using (13)C, (15)N and (1)H solid-state NMR and FT-IR spectroscopy. The NMR assignments were supported by gauge including projector augmented waves (GIPAW) calculations of chemical shielding, performed using X-ray determined geometry. The experimental (13)C cross polarization/magic angle spinning (CP/MAS) NMR results and the calculated isotropic chemical shifts were in excellent agreement. A rapid and convenient method for theophylline co-crystals crystal structure analysis has been proposed for co-crystals, which are potentially new APIs. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Kanmi; Pruski, Marek
Two-dimensional through-bond {sup 1}H({sup 13}C) solid-state NMR experiments utilizing fast magic angle spinning (MAS) and homonuclear multipulse {sup 1}H decoupling are presented. Remarkable efficiency of polarization transfer can be achieved at MAS rates exceeding 40 kHz, which is instrumental in these measurements. Schemes utilizing direct and indirect detection of heteronuclei are compared in terms of resolution and sensitivity. A simple procedure for optimization of {sup 1}H homonuclear decoupling sequences under these conditions is proposed. The capabilities of these techniques were confirmed on two naturally abundant solids, tripeptide N-formyl-l-methionyl-l-leucyl-l-phenylalanine (f-MLF-OH) and brown coal.
NASA Astrophysics Data System (ADS)
Mao, Kanmi; Pruski, Marek
2009-12-01
Two-dimensional through-bond 1H{ 13C} solid-state NMR experiments utilizing fast magic angle spinning (MAS) and homonuclear multipulse 1H decoupling are presented. Remarkable efficiency of polarization transfer can be achieved at MAS rates exceeding 40 kHz, which is instrumental in these measurements. Schemes utilizing direct and indirect detection of heteronuclei are compared in terms of resolution and sensitivity. A simple procedure for optimization of 1H homonuclear decoupling sequences under these conditions is proposed. The capabilities of these techniques were confirmed on two naturally abundant solids, tripeptide N- formyl- L-methionyl- L-leucyl- L-phenylalanine (f-MLF-OH) and brown coal.
Yan, Si; Guo, Changmiao; Hou, Guangjin; Zhang, Huilan; Lu, Xingyu; Williams, John Charles; Polenova, Tatyana
2015-11-24
Microtubules and their associated proteins perform a broad array of essential physiological functions, including mitosis, polarization and differentiation, cell migration, and vesicle and organelle transport. As such, they have been extensively studied at multiple levels of resolution (e.g., from structural biology to cell biology). Despite these efforts, there remain significant gaps in our knowledge concerning how microtubule-binding proteins bind to microtubules, how dynamics connect different conformational states, and how these interactions and dynamics affect cellular processes. Structures of microtubule-associated proteins assembled on polymeric microtubules are not known at atomic resolution. Here, we report a structure of the cytoskeleton-associated protein glycine-rich (CAP-Gly) domain of dynactin motor on polymeric microtubules, solved by magic angle spinning NMR spectroscopy. We present the intermolecular interface of CAP-Gly with microtubules, derived by recording direct dipolar contacts between CAP-Gly and tubulin using double rotational echo double resonance (dREDOR)-filtered experiments. Our results indicate that the structure adopted by CAP-Gly varies, particularly around its loop regions, permitting its interaction with multiple binding partners and with the microtubules. To our knowledge, this study reports the first atomic-resolution structure of a microtubule-associated protein on polymeric microtubules. Our approach lays the foundation for atomic-resolution structural analysis of other microtubule-associated motors.
Martel, L; Somers, J; Berkmann, C; Koepp, F; Rothermel, A; Pauvert, O; Selfslag, C; Farnan, I
2013-05-01
A concept to integrate a commercial high-resolution, magic angle spinning nuclear magnetic resonance (MAS-NMR) probe capable of very rapid rotation rates (70 kHz) in a hermetically sealed enclosure for the study of highly radiotoxic materials has been developed and successfully demonstrated. The concept centres on a conventional wide bore (89 mm) solid-state NMR magnet operating with industry standard 54 mm diameter probes designed for narrow bore magnets. Rotor insertion and probe tuning take place within a hermetically enclosed glovebox, which extends into the bore of the magnet, in the space between the probe and the magnet shim system. Oxygen-17 MAS-NMR measurements demonstrate the possibility of obtaining high quality spectra from small sample masses (~10 mg) of highly radiotoxic material and the need for high spinning speeds to improve the spectral resolution when working with actinides. The large paramagnetic susceptibility arising from actinide paramagnetism in (Th(1-x)U(x))O2 solid solutions gives rise to extensive spinning sidebands and poor resolution at 15 kHz, which is dramatically improved at 55 kHz. The first (17)O MAS-NMR measurements on NpO(2+x) samples spinning at 55 kHz are also reported. The glovebox approach developed here for radiotoxic materials can be easily adapted to work with other hazardous or even air sensitive materials.
Step-by-step magic state encoding for efficient fault-tolerant quantum computation
Goto, Hayato
2014-01-01
Quantum error correction allows one to make quantum computers fault-tolerant against unavoidable errors due to decoherence and imperfect physical gate operations. However, the fault-tolerant quantum computation requires impractically large computational resources for useful applications. This is a current major obstacle to the realization of a quantum computer. In particular, magic state distillation, which is a standard approach to universality, consumes the most resources in fault-tolerant quantum computation. For the resource problem, here we propose step-by-step magic state encoding for concatenated quantum codes, where magic states are encoded step by step from the physical level to the logical one. To manage errors during the encoding, we carefully use error detection. Since the sizes of intermediate codes are small, it is expected that the resource overheads will become lower than previous approaches based on the distillation at the logical level. Our simulation results suggest that the resource requirements for a logical magic state will become comparable to those for a single logical controlled-NOT gate. Thus, the present method opens a new possibility for efficient fault-tolerant quantum computation. PMID:25511387
Step-by-step magic state encoding for efficient fault-tolerant quantum computation.
Goto, Hayato
2014-12-16
Quantum error correction allows one to make quantum computers fault-tolerant against unavoidable errors due to decoherence and imperfect physical gate operations. However, the fault-tolerant quantum computation requires impractically large computational resources for useful applications. This is a current major obstacle to the realization of a quantum computer. In particular, magic state distillation, which is a standard approach to universality, consumes the most resources in fault-tolerant quantum computation. For the resource problem, here we propose step-by-step magic state encoding for concatenated quantum codes, where magic states are encoded step by step from the physical level to the logical one. To manage errors during the encoding, we carefully use error detection. Since the sizes of intermediate codes are small, it is expected that the resource overheads will become lower than previous approaches based on the distillation at the logical level. Our simulation results suggest that the resource requirements for a logical magic state will become comparable to those for a single logical controlled-NOT gate. Thus, the present method opens a new possibility for efficient fault-tolerant quantum computation.
Quantum computation with realistic magic-state factories
NASA Astrophysics Data System (ADS)
O'Gorman, Joe; Campbell, Earl T.
2017-03-01
Leading approaches to fault-tolerant quantum computation dedicate a significant portion of the hardware to computational factories that churn out high-fidelity ancillas called magic states. Consequently, efficient and realistic factory design is of paramount importance. Here we present the most detailed resource assessment to date of magic-state factories within a surface code quantum computer, along the way introducing a number of techniques. We show that the block codes of Bravyi and Haah [Phys. Rev. A 86, 052329 (2012), 10.1103/PhysRevA.86.052329] have been systematically undervalued; we track correlated errors both numerically and analytically, providing fidelity estimates without appeal to the union bound. We also introduce a subsystem code realization of these protocols with constant time and low ancilla cost. Additionally, we confirm that magic-state factories have space-time costs that scale as a constant factor of surface code costs. We find that the magic-state factory required for postclassical factoring can be as small as 6.3 million data qubits, ignoring ancilla qubits, assuming 10-4 error gates and the availability of long-range interactions.
ERIC Educational Resources Information Center
Eperson, D. B.
1991-01-01
This section includes eight problems to which the journal invites readers to respond. Problem topics include angles in alternate segments, pentominoes, a new triangle of numbers, cricket scores, symmetrical pentagons, inequalities, a pythagorean dissection, and magic squares. (MDH)
Measurement of 13C chemical shift tensor principal values with a magic-angle turning experiment.
Hu, J Z; Orendt, A M; Alderman, D W; Pugmire, R J; Ye, C; Grant, D M
1994-08-01
The magic-angle turning (MAT) experiment introduced by Gan is developed into a powerful and routine method for measuring the principal values of 13C chemical shift tensors in powdered solids. A large-volume MAT probe with stable rotation frequencies down to 22 Hz is described. A triple-echo MAT pulse sequence is introduced to improve the quality of the two-dimensional baseplane. It is shown that measurements of the principal values of chemical shift tensors in complex compounds can be enhanced by using either short contact times or dipolar dephasing pulse sequences to isolate the powder patterns from protonated or non-protonated carbons, respectively. A model compound, 1,2,3-trimethoxybenzene, is used to demonstrate these techniques, and the 13C principal values in 2,3-dimethylnaphthalene and Pocahontas coal are reported as typical examples.
Sakellariou, Dimitris; Hugon, Cédric; Guiga, Angelo; Aubert, Guy; Cazaux, Sandrine; Hardy, Philippe
2010-12-01
We introduce a cylindrical permanent magnet design that generates a homogeneous and strong magnetic field having an arbitrary inclination with respect to the axis of the cylinder. The analytical theory of 3 D magnetostatics has been applied to this problem, and a hybrid magnet structure has been designed. This structure contains two magnets producing a longitudinal and transverse component for the magnetic field, whose amplitudes and homogeneities can be fully controlled by design. A simple prototype has been constructed using inexpensive small cube magnets, and its magnetic field has been mapped using Hall and NMR probe sensors. This magnet can, in principle, be used for magic angle field spinning NMR and MRI experiments allowing for metabolic chemical shift profiling in small living animals. Copyright © 2010 John Wiley & Sons, Ltd.
MAS NMR of HIV-1 protein assemblies
NASA Astrophysics Data System (ADS)
Suiter, Christopher L.; Quinn, Caitlin M.; Lu, Manman; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana
2015-04-01
The negative global impact of the AIDS pandemic is well known. In this perspective article, the utility of magic angle spinning (MAS) NMR spectroscopy to answer pressing questions related to the structure and dynamics of HIV-1 protein assemblies is examined. In recent years, MAS NMR has undergone major technological developments enabling studies of large viral assemblies. We discuss some of these evolving methods and technologies and provide a perspective on the current state of MAS NMR as applied to the investigations into structure and dynamics of HIV-1 assemblies of CA capsid protein and of Gag maturation intermediates.
Kennedy, Gordon J; Afeworki, Mobae; Calabro, David C; Chase, Clarence E; Smiley, Randolph J
2004-06-01
Distinct hydrogen species are present in important inorganic solids such as zeolites, silicoaluminophosphates (SAPOs), mesoporous materials, amorphous silicas, and aluminas. These H species include hydrogens associated with acidic sites such as Al(OH)Si, non-framework aluminum sites, silanols, and surface functionalities. Direct and quantitative methodology to identify, measure, and monitor these hydrogen species are key to monitoring catalyst activity, optimizing synthesis conditions, tracking post-synthesis structural modifications, and in the preparation of novel catalytic materials. Many workers have developed several techniques to address these issues, including 1H MAS NMR (magic-angle spinning nuclear magnetic resonance). 1H MAS NMR offers many potential advantages over other techniques, but care is needed in recognizing experimental limitations and developing sample handling and NMR methodology to obtain quantitatively reliable data. A simplified approach is described that permits vacuum dehydration of multiple samples simultaneously and directly in the MAS rotor without the need for epoxy, flame sealing, or extensive glovebox use. We have found that careful optimization of important NMR conditions, such as magnetic field homogeneity and magic angle setting are necessary to acquire quantitative, high-resolution spectra that accurately measure the concentrations of the different hydrogen species present. Details of this 1H MAS NMR methodology with representative applications to zeolites, SAPOs, M41S, and silicas as a function of synthesis conditions and post-synthesis treatments (i.e., steaming, thermal dehydroxylation, and functionalization) are presented.
NASA Astrophysics Data System (ADS)
Joers, James M.
The use of magic angle spinning to obtain high resolution solid state spectra has been well documented. This resolution occurs by coherently averaging the chemical shift anisotropy and dipolar interactions to zero over the period of a full rotation. While this allows for higher resolution, the structural information is seemingly lost to the spectrometer eye. Thus, high resolution spectra and structural information appear to be mutually exlusive. Recently, the push in solid state NMR is the development of recoupling techniques which afford both high resolution and structural information. The following dissertation demonstrates the feasibility of implementing such experiments in solving real world problems, and is centered on devising a method to recover homonuclear dipolar interactions in the high resolution regime.
Mote, Kaustubh R.; Gopinath, T.; Veglia, Gianluigi
2013-01-01
The low sensitivity inherent to both the static and magic angle spinning techniques of solid-state NMR (ssNMR) spectroscopy has thus far limited the routine application of multidimensional experiments to determine the structure of membrane proteins in lipid bilayers. Here, we demonstrate the advantage of using a recently developed class of experiments, polarization optimized experiments (POE), for both static and MAS spectroscopy to achieve higher sensitivity and substantial time-savings for 2D and 3D experiments. We used sarcolipin, a single pass membrane protein, reconstituted in oriented bicelles (for oriented ssNMR) and multilamellar vesicles (for MAS ssNMR) as a benchmark. The restraints derived by these experiments are then combined into a hybrid energy function to allow simultaneous determination of structure and topology. The resulting structural ensemble converged to a helical conformation with a backbone RMSD ∼ 0.44 Å, a tilt angle of 24° ± 1°, and an azimuthal angle of 55° ± 6°. This work represents a crucial first step toward obtaining high-resolution structures of large membrane proteins using combined multidimensional O-ssNMR and MAS-ssNMR. PMID:23963722
Monitoring Cocrystal Formation via In Situ Solid-State NMR.
Mandala, Venkata S; Loewus, Sarel J; Mehta, Manish A
2014-10-02
A detailed understanding of the mechanism of organic cocrystal formation remains elusive. Techniques that interrogate a reacting system in situ are preferred, though experimentally challenging. We report here the results of a solid-state in situ NMR study of the spontaneous formation of a cocrystal between a pharmaceutical mimic (caffeine) and a coformer (malonic acid). Using (13)C magic angle spinning NMR, we show that the formation of the cocrystal may be tracked in real time. We find no direct evidence for a short-lived, chemical shift-resolved amorphous solid intermediate. However, changes in the line width and line center of the malonic acid methylene resonance, in the course of the reaction, provide subtle clues to the mode of mass transfer that underlies cocrystal formation.
Utz, Marcel; Nandagopal, Magesh; Mathai, Mathew; Papadimitrakopoulos, Fotios
2006-01-21
Aluminum tris (quinoline-8-olate) (Alq3) is used as an electron-transport layer in organic light-emitting diodes. The material can be obtained in a wide range of different solid phases, both crystalline and amorphous, by deposition from the vapor phase or from solution under controlled conditions. While the structure of the crystalline polymorphs of Alq3 has been investigated thoroughly by x-ray diffraction as well as solid-state NMR, very little information is currently available on the amount of structural disorder in the amorphous forms of Alq3. In the present contribution, we report the use of 27Al NMR spectroscopy in the solid state under magic angle spinning to extract such information from amorphous vapor deposits of Alq3. The NMR spectra obtained from these samples exhibit different degrees of broadening, reflecting distributions of the electric-field gradient tensor at the site of the aluminum ion. These distributions can be obtained from the NMR spectra by solving the corresponding inverse problem. From these results, the magnitude of structural disorder in terms of molecular geometry has been estimated by density-functional theory calculations. It was found that the electric-field gradient anisotropy delta follows a bimodal distribution. Its majority component is centered around delta values comparable to the meridianal alpha crystal polymorph and has a width of about 10%, corresponding to distortions of the molecular geometry of a few degrees in the orientation of the ligands. Alq3 samples obtained at higher deposition rates exhibit higher degrees of disorder. The minor component, present at about 7%, has a much smaller anisotropy, suggesting that it may be due to the facial isomer of Alq3.
Reddy, G N Manjunatha; Malon, Michal; Marsh, Andrew; Nishiyama, Yusuke; Brown, Steven P
2016-12-06
A fast magic-angle spinning (MAS, 70 kHz) solid-state NMR experiment is presented that combines 1 H Double-Quantum (DQ) and 14 N- 1 H HMQC (Heteronuclear Multiple-Quantum Coherence) pulse-sequence elements, so as to simultaneously probe H-H and N-H proximities in molecular solids. The proposed experiment can be employed in both two-dimensional (2D) and three-dimensional (3D) versions: first, a 2D 14 N HMQC-filtered 1 H-DQ experiment provides specific DQ-SQ correlation peaks for proton pairs that are in close proximities to the nitrogen sites, thereby achieving spectral filtration. Second, a proton-detected three-dimensional (3D) 1 H(DQ)- 14 N(SQ)- 1 H(SQ) experiment correlates 1 H(DQ)- 1 H(SQ) chemical shifts with 14 N shifts such that longer range N···H-H correlations are observed between protons and nitrogen atoms with internuclear NH distances exceeding 3 Å. Both 2D and 3D versions of the proposed experiment are demonstrated for an amino acid hydrochloride salt, l-histidine·HCl·H 2 O, and a DNA nucleoside, guanosine·2H 2 O. In the latter case, the achieved spectral filtration ensures that DQ cross peaks are only observed for guanine NH and CH8 1 H resonances and not ribose and water 1 H resonances, thus providing insight into the changes in the solid-state structure of this hydrate that occur over time; significant changes are observed in the NH and NH 2 1 H chemical shifts as compared to the freshly recrystallized sample previously studied by Reddy et al., Cryst. Growth Des. 2015, 15, 5945.
Solid effect in magic angle spinning dynamic nuclear polarization
NASA Astrophysics Data System (ADS)
Corzilius, Björn; Smith, Albert A.; Griffin, Robert G.
2012-08-01
For over five decades, the solid effect (SE) has been heavily utilized as a mechanism for performing dynamic nuclear polarization (DNP). Nevertheless, it has not found widespread application in contemporary, high magnetic field DNP experiments because SE enhancements display an ω _0 ^{ - 2} field dependence. In particular, for nominally forbidden zero and double quantum SE transitions to be partially allowed, it is necessary for mixing of adjacent nuclear spin states to occur, and this leads to the observed field dependence. However, recently we have improved our instrumentation and report here an enhancement of ɛ = 91 obtained with the organic radical trityl (OX063) in magic angle spinning experiments performed at 5 T and 80 K. This is a factor of 6-7 higher than previous values in the literature under similar conditions. Because the solid effect depends strongly on the microwave field strength, we attribute this large enhancement to larger microwave field strengths inside the sample volume, achieved with more efficient coupling of the gyrotron to the sample chamber. In addition, we develop a theoretical model to explain the dependence of the buildup rate of enhanced nuclear polarization and the steady-state enhancement on the microwave power. Buildup times and enhancements were measured as a function of 1H concentration for both trityl and Gd-DOTA. Comparison of the results indicates that for trityl the initial polarization step is the slower, rate-determining step. However, for Gd-DOTA the spread of nuclear polarization via homonuclear 1H spin diffusion is rate-limiting. Finally, we discuss the applicability of the solid effect at fields > 5 T and the requirements to address the unfavorable field dependence of the solid effect.
Magic state distillation protocols with noisy Clifford gates
NASA Astrophysics Data System (ADS)
Brooks, Peter
2013-03-01
A promising approach to universal fault-tolerant quantum computation is to implement the non-universal group of Clifford gates, and to achieve universality by adding the ability to prepare high-fidelity copies of certain ``magic states''. By applying state distillation protocols, many noisy copies of a magic state ancilla can be purified into a smaller number of clean copies which are arbitrarily close to the perfect state, using only Clifford operations. In practice, the Clifford gates themselves will be noisy, which can limit the efficiency of state distillation and put a floor on the achievable fidelity with the desired state. Recently, a number of new state distillation protocols have been proposed that have the potential to reduce the required resource overhead. I analyze these protocols and explore the tradeoffs between these different approaches to magic state distillation when noisy Clifford gates are taken into account. Supported in part by IARPA under contract D11PC20165, by NSF under Grant No. PHY-0803371, by DOE under Grant No. DE-FG03-92-ER40701, and by NSA/ARO under Grant No. W911NF-09-1-0442.
Distillation with Sublogarithmic Overhead
NASA Astrophysics Data System (ADS)
Hastings, Matthew B.; Haah, Jeongwan
2018-02-01
It has been conjectured that, for any distillation protocol for magic states for the T gate, the number of noisy input magic states required per output magic state at output error rate ɛ is Ω [log (1 /ɛ )] . We show that this conjecture is false. We find a family of quantum error correcting codes of parameters ⟦ ∑ i =w +1 m (
Piotto, Martial; Moussallieh, François-Marie; Neuville, Agnès; Bellocq, Jean-Pierre; Elbayed, Karim; Namer, Izzie Jacques
2012-01-18
Providing information on cancerous tissue samples during a surgical operation can help surgeons delineate the limits of a tumoral invasion more reliably. Here, we describe the use of metabolic profiling of a colon biopsy specimen by high resolution magic angle spinning nuclear magnetic resonance spectroscopy to evaluate tumoral invasion during a simulated surgical operation. Biopsy specimens (n = 9) originating from the excised right colon of a 66-year-old Caucasian women with an adenocarcinoma were automatically analyzed using a previously built statistical model. Metabolic profiling results were in full agreement with those of a histopathological analysis. The time-response of the technique is sufficiently fast for it to be used effectively during a real operation (17 min/sample). Metabolic profiling has the potential to become a method to rapidly characterize cancerous biopsies in the operation theater.
Righi, Valeria; Parenti, Francesca; Tugnoli, Vitaliano; Schenetti, Luisa; Mucci, Adele
2015-09-30
Intact Crocus sativus petals were studied for the first time by high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy, revealing the presence of kinsenoside (2) and goodyeroside A (3), together with 3-hydroxy-γ-butyrolactone (4). These findings were confirmed by HR-NMR analysis of the ethanol extract of fresh petals and showed that, even though carried out rapidly, partial hydrolysis of glucopyranosyloxybutanolides occurs during extraction. On the other hand, kaempferol 3-O-sophoroside (1), which is "NMR-silent" in intact petals, is present in extracts. These results suggest to evaluate the utilization of saffron petals for phytopharmaceutical and nutraceutical purposes to exploit a waste product of massive production of commercial saffron and point to the application of HR-MAS NMR for monitoring bioactive compounds directly on intact petals, avoiding the extraction procedure and the consequent hydrolysis reaction.
Zhou, Iris Yuwen; Fuss, Taylor L; Igarashi, Takahiro; Jiang, Weiping; Zhou, Xin; Cheng, Leo L; Sun, Phillip Zhe
2016-11-01
Chemical exchange saturation transfer (CEST) provides sensitive magnetic resonance (MR) contrast for probing dilute compounds via exchangeable protons, serving as an emerging molecular imaging methodology. CEST Z-spectrum is often acquired by sweeping radiofrequency saturation around bulk water resonance, offset by offset, to detect CEST effects at characteristic chemical shift offsets, which requires prolonged acquisition time. Herein, combining high-resolution magic angle spinning (HRMAS) with concurrent application of gradient and rf saturation to achieve fast Z-spectral acquisition, we demonstrated the feasibility of fast quantitative HRMAS CEST Z-spectroscopy. The concept was validated with phantoms, which showed excellent agreement with results obtained from conventional HRMAS MR spectroscopy (MRS). We further utilized the HRMAS Z-spectroscopy for fast ex vivo quantification of ischemic injury with rodent brain tissues after ischemic stroke. This method allows rapid and quantitative CEST characterization of biological tissues and shows potential for a host of biomedical applications.
Griffin, J L; Walker, L; Shore, R F; Nicholson, J K
2001-06-01
1. High-resolution magic angle spinning (MAS) 1H-NMR spectroscopy was used to study renal metabolism and the toxicity of As3+, a common environmental contaminant, in the bank vole (Clethrionomys glareolus), a wild species of rodent. 2. Following a 14-day exposure to an environmentally relevant dose of As2O3 (28 mg kg(-1) feed), voles displayed tissue damage at autopsy. MAS 1H spectra indicated abnormal lipid profiles in these samples. 3. Tissue necrosis was also evident from measurements of the apparent diffusion coefficient of water in the intact tissue using MAS 1H diffusion-weighted spectroscopy, its first application to toxicology. 4. Comparison of renal tissue from the wood mouse (Apodemus sylvaticus) exposed to identical exposure levels of As3+ suggested that the bank vole is particularly vulnerable to As3+ toxicity.
NASA Astrophysics Data System (ADS)
Albert, Brice J.; Pahng, Seong Ho; Alaniva, Nicholas; Sesti, Erika L.; Rand, Peter W.; Saliba, Edward P.; Scott, Faith J.; Choi, Eric J.; Barnes, Alexander B.
2017-10-01
Cryogenic sample temperatures can enhance NMR sensitivity by extending spin relaxation times to improve dynamic nuclear polarization (DNP) and by increasing Boltzmann spin polarization. We have developed an efficient heat exchanger with a liquid nitrogen consumption rate of only 90 L per day to perform magic-angle spinning (MAS) DNP experiments below 85 K. In this heat exchanger implementation, cold exhaust gas from the NMR probe is returned to the outer portion of a counterflow coil within an intermediate cooling stage to improve cooling efficiency of the spinning and variable temperature gases. The heat exchange within the counterflow coil is calculated with computational fluid dynamics to optimize the heat transfer. Experimental results using the novel counterflow heat exchanger demonstrate MAS DNP signal enhancements of 328 ± 3 at 81 ± 2 K, and 276 ± 4 at 105 ± 2 K.
Magic informationally complete POVMs with permutations
NASA Astrophysics Data System (ADS)
Planat, Michel; Gedik, Zafer
2017-09-01
Eigenstates of permutation gates are either stabilizer states (for gates in the Pauli group) or magic states, thus allowing universal quantum computation (Planat, Rukhsan-Ul-Haq 2017 Adv. Math. Phys. 2017, 5287862 (doi:10.1155/2017/5287862)). We show in this paper that a subset of such magic states, when acting on the generalized Pauli group, define (asymmetric) informationally complete POVMs. Such informationally complete POVMs, investigated in dimensions 2-12, exhibit simple finite geometries in their projector products and, for dimensions 4 and 8 and 9, relate to two-qubit, three-qubit and two-qutrit contextuality.
Radiofrequency fields in MAS solid state NMR probes
NASA Astrophysics Data System (ADS)
Tošner, Zdeněk; Purea, Armin; Struppe, Jochem O.; Wegner, Sebastian; Engelke, Frank; Glaser, Steffen J.; Reif, Bernd
2017-11-01
We present a detailed analysis of the radiofrequency (RF) field over full volume of a rotor that is generated in a solenoid coil. On top of the usually considered static distribution of amplitudes along the coil axis we describe dynamic radial RF inhomogeneities induced by sample rotation. During magic angle spinning (MAS), the mechanical rotation of the sample about the magic angle, a spin packet travels through areas of different RF fields and experiences periodical modulations of both the RF amplitude and the phase. These modulations become particularly severe at the end regions of the coil where the relative RF amplitude varies up to ±25% and the RF phase changes within ±30°. Using extensive numerical simulations we demonstrate effects of RF inhomogeneity on pulse calibration and for the ramped CP experiment performed at a wide range of MAS rates. In addition, we review various methods to map RF fields using a B0 gradient along the sample (rotor axis) for imaging purposes. Under such a gradient, a nutation experiment provides directly the RF amplitude distribution, a cross polarization experiment images the correlation of the RF fields on the two channels according to the Hartmann-Hahn matching condition, while a spin-lock experiment allows to calibrate the RF amplitude employing the rotary resonance recoupling condition. Knowledge of the RF field distribution in a coil provides key to understand its effects on performance of a pulse sequence at the spectrometer and enables to set robustness requirements in the experimental design.
Thurber, Kent R; Tycko, Robert
2012-08-28
We present theoretical calculations of dynamic nuclear polarization (DNP) due to the cross effect in nuclear magnetic resonance under magic-angle spinning (MAS). Using a three-spin model (two electrons and one nucleus), cross effect DNP with MAS for electron spins with a large g-anisotropy can be seen as a series of spin transitions at avoided crossings of the energy levels, with varying degrees of adiabaticity. If the electron spin-lattice relaxation time T(1e) is large relative to the MAS rotation period, the cross effect can happen as two separate events: (i) partial saturation of one electron spin by the applied microwaves as one electron spin resonance (ESR) frequency crosses the microwave frequency and (ii) flip of all three spins, when the difference of the two ESR frequencies crosses the nuclear frequency, which transfers polarization to the nuclear spin if the two electron spins have different polarizations. In addition, adiabatic level crossings at which the two ESR frequencies become equal serve to maintain non-uniform saturation across the ESR line. We present analytical results based on the Landau-Zener theory of adiabatic transitions, as well as numerical quantum mechanical calculations for the evolution of the time-dependent three-spin system. These calculations provide insight into the dependence of cross effect DNP on various experimental parameters, including MAS frequency, microwave field strength, spin relaxation rates, hyperfine and electron-electron dipole coupling strengths, and the nature of the biradical dopants.
Asakura, Tetsuo; Endo, Masanori; Hirayama, Misaki; Arai, Hiroki; Aoki, Akihiro; Tasei, Yugo
2016-09-09
In order to improve the stiff and brittle characteristics of pure Bombyx mori (B. mori) silk fibroin (SF) film in the dry state, glycerin (Glyc) has been used as a plasticizer. However, there have been very limited studies on the structural characterization of the Glyc-blended SF film. In this study, (13)C Cross Polarization/Magic Angle Spinning nuclear magnetic resonance (CP/MAS NMR) was used to monitor the conformational changes in the films by changing the Glyc concentration. The presence of only 5 wt % Glyc in the film induced a significant conformational change in SF where Silk I* (repeated type II β-turn and no α-helix) newly appeared. Upon further increase in Glyc concentration, the percentage of Silk I* increased linearly up to 9 wt % Glyc and then tended to be almost constant (30%). This value (30%) was the same as the fraction of Ala residue within the Silk I* form out of all Ala residues of SF present in B. mori mature silkworm. The ¹H DQMAS NMR spectra of Glyc-blended SF films confirmed the appearance of Silk I* in the Glyc-blended SF film. A structural model of Glyc-SF complex including the Silk I* form was proposed with the guidance of the Molecular Dynamics (MD) simulation using ¹H-¹H distance constraints obtained from the ¹H Double-Quantum Magic Angle Spinning (DQMAS) NMR spectra.
NASA Astrophysics Data System (ADS)
Avadhut, Yamini S.; Weber, Johannes; Schmedt auf der Günne, Jörn
2017-09-01
An improved implementation of single-crystal magic-angle-spinning (MAS) NMR is presented which gives access to chemical shift tensors both in orientation (relative to the crystal axis system) and principal axis values. For mounting arbitrary crystals inside ordinary MAS rotors, a mounting tool is described which allows to relate the crystal orientation determined by diffraction techniques to the rotor coordinate system. The crystal is finally mounted into a MAS rotor equipped with a special insert which allows a defined reorientation of the single-crystal by 90°. The approach is based on the idea that the dispersive spectra, which are obtained when applying read-pulses at specific rotor-phases, not only yield the size of the eigenvalues but also encode the orientation of the different chemical shift (rank-2) tensors. For this purpose two 2D-data sets with orthogonal crystal orientation are fitted simultaneously. The presented analysis for chemical shift tensors is supported by an analytical formula which allows fast calculation of phase and amplitude of individual spinning side-bands and by a protocol which solves the problem of finding the correct reference phase of the spectrum. Different rotor-synchronized pulse-sequences are introduced for the same reason. Experiments are performed on L-alanine and O-phosphorylethanolamine and the observed errors are analyzed in detail. The experimental data are opposed to DFT-computed chemical shift tensors which have been obtained by the extended embedded ion method.
Scattering on a rectangular potential barrier in nodal-line Weyl semimetals
NASA Astrophysics Data System (ADS)
Khokhlov, D. A.; Rakhmanov, A. L.; Rozhkov, A. V.
2018-06-01
We investigate single-particle ballistic scattering on a rectangular barrier in the nodal-line Weyl semimetals. Since the system under study has a crystallographic anisotropy, the scattering properties are dependent on mutual orientation of the crystalline axis and the barrier. To account for the anisotropy, we examine two different barrier orientations. It is demonstrated that, for certain angles of incidence, the incoming particle passes through the barrier with probability of unity. This is a manifestation of the Klein tunneling, a familiar phenomenon in the context of graphene and semimetals with Weyl points. However, the Klein tunneling in the Weyl-ring systems is observed when the angle of incidence differs from 90∘, unlike the cases of graphene and Weyl-point semimetals. The reflectionless transmission also occurs for the so-called "magic angles." The values of the magic angles are determined by geometrical resonances between the barrier width and the de Broglie length of the scattered particle. In addition, we show that under certain conditions the wave function of the transmitted and reflected particles may be a superposition of two plane waves with unequal momenta. Such a feature is a consequence of the nontrivial structure of the isoenergy surfaces of the nodal-line semimetals. Conductance of the barrier is briefly discussed.
Gopinath, T; Veglia, Gianluigi
2018-01-01
Conventional NMR pulse sequences record one spectrum per experiment, while spending most of the time waiting for the spin system to return to the equilibrium. As a result, a full set of multidimensional NMR experiments for biological macromolecules may take up to several months to complete. Here, we present a practical guide for setting up a new class of MAS solid-state NMR experiments (POE or polarization optimized experiments) that enable the simultaneous acquisition of multiple spectra of proteins, accelerating data acquisition. POE exploit the long-lived 15 N polarization of isotopically labeled proteins and enable one to obtain up to eight spectra, by concatenating classical NMR pulse sequences. This new strategy propels data throughput of solid-state NMR spectroscopy of fibers, microcrystalline preparations, as well as membrane proteins.
Zhang, Rongchun; Duong, Nghia Tuan; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy
2017-06-22
Solid-state 1 H NMR spectroscopy has attracted much attention in the recent years due to the remarkable spectral resolution improvement by ultrafast magic-angle-spinning (MAS) as well as due to the sensitivity enhancement rendered by proton detection. Although these developments have enabled the investigation of a variety of challenging chemical and biological solids, the proton spectral resolution is still poor for many rigid solid systems owing to the presence of conformational heterogeneity and the unsuppressed residual proton-proton dipolar couplings even with the use of the highest currently feasible sample spinning speed of ∼130 kHz. Although a further increase in the spinning speed of the sample could be beneficial to some extent, there is a need for alternate approaches to enhance the spectral resolution. Herein, by fully utilizing the benefits of double-quantum (DQ) coherences, we propose a single radio frequency channel proton-based 3D pulse sequence that correlates double-quantum (DQ), DQ, and single-quantum (SQ) chemical shifts of protons. In addition to the two-spin homonuclear proximity information, the proposed 3D DQ/DQ/SQ experiment also enables the extraction of three-spin and four-spin proximities, which could be beneficial for revealing the dipolar coupled proton network in the solid state. Besides, the 2D DQ/DQ spectrum sliced at different isotropic SQ chemical shift values of the 3D DQ/DQ/SQ spectrum will also facilitate the identification of DQ correlation peaks and improve the spectral resolution, as it only provides the local homonuclear correlation information associated with the specific protons selected by the SQ chemical shift frequency. The 3D pulse sequence and its efficiency are demonstrated experimentally on small molecular compounds in the solid state. We expect that this approach would create avenues for further developments by suitably combining the benefits of partial deuteration of samples, selective excitation/decoupling pulses, heteronuclear spins for spectral editing, and nonuniform sampling.
Rezende, Carlos A; San Gil, Rosane A S; Borré, Leandro B; Pires, José Ricardo; Vaiss, Viviane S; Resende, Jackson A L C; Leitão, Alexandre A; De Alencastro, Ricardo B; Leal, Katia Z
2016-09-01
The experiments of carvedilol form II, form III, and hydrate by (13)C and (15)N cross-polarization magic-angle spinning (CP MAS) are reported. The GIPAW (gauge-including projector-augmented wave) method from DFT (density functional theory) calculations was used to simulate (13)C and (15)N chemical shifts. A very good agreement was found for the comparison between the global results of experimental and calculated nuclear magnetic resonance (NMR) chemical shifts for carvedilol polymorphs. This work aims a comprehensive understanding of carvedilol crystalline forms employing solution and solid-state NMR as well as DFT calculations. Copyright © 2016. Published by Elsevier Inc.
Erdoğan Alver, Burcu; Alver, Ozgür
2012-08-01
There is a great deal of interest in the building industry in burned clays for production of building materials. Therefore, the effect of heat treatment on natural bentonite from Turkey was investigated by Fourier transform infrared (FT-IR) between the region of 4000-400cm(-1) and (29)Si, (27)Al magic angle spinning nuclear magnetic resonance (MAS NMR) measurement techniques at various temperatures between 200 and 700°C for 2h. The structural changes were also investigated upon heat treatment. Copyright © 2012 Elsevier B.V. All rights reserved.
Near-Infrared (NIR) Spectroscopy of Synthetic Hydroxyapatites and Human Dental Tissues.
Kolmas, Joanna; Marek, Dariusz; Kolodziejski, Waclaw
2015-08-01
Near-infrared spectroscopy (NIR) was used to analyze synthetic hydroxyapatite calcined at various temperatures, synthetic carbonated hydroxyapatite, and human hard dental tissues (enamel and dentin). The NIR bands of those materials in the combination, first-overtone, and second-overtone spectral regions were assigned and evaluated for structural characterization. They were attributed to adsorbed and structural water, structural hydroxyl (OH) groups and surface P-OH groups. The NIR spectral features were quantitatively discussed in view of proton solid-state magic-angle spinning nuclear magnetic resonance ((1)H MAS NMR) results. We conclude that the NIR spectra of apatites are useful in the structural characterization of synthetic and biogenic apatites.
Shah, Syed Imran Hussain; Lim, Sungjoon
2017-11-20
In this paper, a novel dual band frequency reconfigurable antenna using an origami magic cube is proposed for wireless sensor network (WSN) applications. The proposed origami antenna consists of a meandered monopole folded onto three sides of the magic cube. A microstrip open-ended stub is loaded on the meandered monopole. The proposed origami magic cube can be mechanically folded and unfolded. The proposed antenna operates at 1.57 GHZ and 2.4 GHz in the folded state. In the unfolded state, the proposed antenna operates at 900 MHz and 2.3 GHz. The resonant frequency of the second band can be tunable by varying the length and position of the open stub. The origami magic cube is built on paper. Its performance is numerically and experimentally demonstrated from S-parameters and radiation patterns. The measured 10 dB impedance bandwidth of the proposed origami antenna is 18% (900-1120 MHz) and 15% (2.1-2.45 GHz) for the unfolded state and 20% (1.3-1.6 GHz) and 14% (2.3-2.5 GHz) for the folded state. The measured peak gain at 900 MHz and 2.3 GHz are 1.1 dBi and 2.32 dBi, respectively, in the unfolded state. The measured peak gain at 1.5 GHz and 2.4 GHz are 3.28 dBi and 1.98 dBi, respectively, in the folded state.
MAGIC gamma-ray telescopes hunting for neutrinos and their sources
NASA Astrophysics Data System (ADS)
Góra, D.; Bernardini, E.; Satalecka, K.; Noda, K.; Manganaro, M.; López, M.;
2017-09-01
The discovery of an astrophysical flux of high-energy neutrinos by the IceCube Collaboration marks a major breakthrough in the ongoing search for the origin of cosmic rays. Presumably, the neutrinos, together with gamma rays, result from pion decay, following hadronic interactions of protons accelerated in astrophysical objects to ultra-relativistic energies. So far, the neutrino sky map shows no significant indication of astrophysical sources. Here, we report first results from follow-up observations, of sky regions where IceCube has detected muon tracks from energetic neutrinos, using the MAGIC telescopes which are sensitive to gamma rays at TeV energies. Furthermore, we show that MAGIC has the potential to distinguish air showers induced by tau neutrinos from the background of hadronic showers in the PeV-EeV energy range, employing a novel analysis method to the data obtained with high-zenith angle observations.
A CMOS VLSI IC for Real-Time Opto-Electronic Two-Dimensional Histogram Generation
1993-12-01
large scale integration) design; MAGIC ; CMOS; optics; image processing; 93 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATiON 19...1. Sun SPARCstation ............. .............. 6 2. Magic .................. ................... 6 a. Peg ................. .................. 7 b...38 v APPENDIX B. MAGIC CELL LAYOUTS .... ............ .. 39 APPENDIX C: SIMULATION DATA ....... ............. .. 56 A. FINITE STATE MACHINE
Proton decoupling and recoupling under double-nutation irradiation in solid-state NMR
NASA Astrophysics Data System (ADS)
Takeda, Kazuyuki; Wakisaka, Asato; Takegoshi, K.
2014-12-01
The effect of 1H decoupling in magic-angle spinning solid-state NMR is studied under radiofrequency irradiation causing simultaneous nutations around a pair of orthogonal axes. Double-nutation with an arbitrary pair of nutation frequencies is implemented through modulation of the amplitude, phase, and frequency of the transmitting pulses. Similarity and difference of double-nutation decoupling and two-pulse phase-modulation decoupling schemes [A. E. Bennett, C. M. Rienstra, M. Auger, K. V. Lakshmi, and R. G. Griffin, J. Chem. Phys. 103, 6951-6958 (1995) and I. Scholz, P. Hodgkinson, B. H. Meier, and M. Ernst, J. Chem. Phys. 130, 114510 (2009)] are discussed. The structure of recoupling bands caused by interference of the 1H spin nutation with sample spinning is studied by both experiments and numerical simulations.
Hisao, Grant S; Harland, Michael A; Brown, Robert A; Berthold, Deborah A; Wilson, Thomas E; Rienstra, Chad M
2016-04-01
The study of mass-limited biological samples by magic angle spinning (MAS) solid-state NMR spectroscopy critically relies upon the high-yield transfer of material from a biological preparation into the MAS rotor. This issue is particularly important for maintaining biological activity and hydration of semi-solid samples such as membrane proteins in lipid bilayers, pharmaceutical formulations, microcrystalline proteins and protein fibrils. Here we present protocols and designs for rotor-packing devices specifically suited for packing hydrated samples into Pencil-style 1.6 mm, 3.2 mm standard, and 3.2 mm limited speed MAS rotors. The devices are modular and therefore readily adaptable to other rotor and/or ultracentrifugation tube geometries. Copyright © 2016 Elsevier Inc. All rights reserved.
Error rates and resource overheads of encoded three-qubit gates
NASA Astrophysics Data System (ADS)
Takagi, Ryuji; Yoder, Theodore J.; Chuang, Isaac L.
2017-10-01
A non-Clifford gate is required for universal quantum computation, and, typically, this is the most error-prone and resource-intensive logical operation on an error-correcting code. Small, single-qubit rotations are popular choices for this non-Clifford gate, but certain three-qubit gates, such as Toffoli or controlled-controlled-Z (ccz), are equivalent options that are also more suited for implementing some quantum algorithms, for instance, those with coherent classical subroutines. Here, we calculate error rates and resource overheads for implementing logical ccz with pieceable fault tolerance, a nontransversal method for implementing logical gates. We provide a comparison with a nonlocal magic-state scheme on a concatenated code and a local magic-state scheme on the surface code. We find the pieceable fault-tolerance scheme particularly advantaged over magic states on concatenated codes and in certain regimes over magic states on the surface code. Our results suggest that pieceable fault tolerance is a promising candidate for fault tolerance in a near-future quantum computer.
Two-dimensional nuclear magnetic resonance of quadrupolar systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shuanhu
1997-09-01
This dissertation describes two-dimensional nuclear magnetic resonance theory and experiments which have been developed to study quadruples in the solid state. The technique of multiple-quantum magic-angle spinning (MQMAS) is extensively reviewed and expanded upon in this thesis. Specifically, MQMAS is first compared with another technique, dynamic-angle spinning (DAS). The similarity between the two techniques allows us to extend much of the DAS work to the MQMAS case. Application of MQMAS to a series of aluminum containing materials is then presented. The superior resolution enhancement through MQMAS is exploited to detect the five- and six-coordinated aluminum in many aluminosilicate glasses. Combiningmore » the MQMAS method with other experiments, such as HETCOR, greatly expands the possibility of the use of MQMAS to study a large range of problems and is demonstrated in Chapter 5. Finally, the technique switching-angle spinning (SAS) is applied to quadrupolar nuclei to fully characterize a quadrupolar spin system in which all of the 8 NMR parameters are accurately determined. This dissertation is meant to demonstrate that with the combination of two-dimensional NMR concepts and new advanced spinning technologies, a series of multiple-dimensional NMR techniques can be designed to allow a detailed study of quadrupolar nuclei in the solid state.« less
The Magic Background of Pearl Harbor. Volume 1 (February 14, 1941 - May 12, 1941)
1977-01-01
1977 2. REPORT TYPE 3. DATES COVERED 00-00-1977 to 00-00-1977 4. TITLE AND SUBTITLE The ’ Magic ’ Background of Pearl Harbor. Volume 1: February...34 MAGIC " BACKGROUND OF PEARL HARBOR VOLUME I (February 14, 1941-May 12,1941) /- / DEPARTMENT OF DEFENSE UNITED STATES OF AMERICA For sale by the...The Department of Defense is releasing for public use and research this multi-volume study giving the " MAGIC " or communications intelligence background
Pulsed field gradient magic angle spinning NMR self-diffusion measurements in liquids
NASA Astrophysics Data System (ADS)
Viel, Stéphane; Ziarelli, Fabio; Pagès, Guilhem; Carrara, Caroline; Caldarelli, Stefano
2008-01-01
Several investigations have recently reported the combined use of pulsed field gradient (PFG) with magic angle spinning (MAS) for the analysis of molecular mobility in heterogeneous materials. In contrast, little attention has been devoted so far to delimiting the role of the extra force field induced by sample rotation on the significance and reliability of self-diffusivity measurements. The main purpose of this work is to examine this phenomenon by focusing on pure liquids for which its impact is expected to be largest. Specifically, we show that self-diffusion coefficients can be accurately determined by PFG MAS NMR diffusion measurements in liquids, provided that specific experimental conditions are met. First, the methodology to estimate the gradient uniformity and to properly calibrate its absolute strength is briefly reviewed and applied on a MAS probe equipped with a gradient coil aligned along the rotor spinning axis, the so-called 'magic angle gradient' coil. Second, the influence of MAS on the outcome of PFG MAS diffusion measurements in liquids is investigated for two distinct typical rotors of different active volumes, 12 and 50 μL. While the latter rotor led to totally unreliable results, especially for low viscosity compounds, the former allowed for the determination of accurate self-diffusion coefficients both for fast and slowly diffusing species. Potential implications of this work are the possibility to measure accurate self-diffusion coefficients of sample-limited mixtures or to avoid radiation damping interferences in NMR diffusion measurements. Overall, the outlined methodology should be of interest to anyone who strives to improve the reliability of MAS diffusion studies, both in homogeneous and heterogeneous media.
Spatial reorientation experiments for NMR of solids and partially oriented liquids.
Martin, Rachel W; Kelly, John E; Collier, Kelsey A
2015-11-01
Motional reorientation experiments are extensions of Magic Angle Spinning (MAS) where the rotor axis is changed in order to average out, reintroduce, or scale anisotropic interactions (e.g. dipolar couplings, quadrupolar interactions or chemical shift anisotropies). This review focuses on Variable Angle Spinning (VAS), Switched Angle Spinning (SAS), and Dynamic Angle Spinning (DAS), all of which involve spinning at two or more different angles sequentially, either in successive experiments or during a multidimensional experiment. In all of these experiments, anisotropic terms in the Hamiltonian are scaled by changing the orientation of the spinning sample relative to the static magnetic field. These experiments vary in experimental complexity and instrumentation requirements. In VAS, many one-dimensional spectra are collected as a function of spinning angle. In SAS, dipolar couplings and/or chemical shift anisotropies are reintroduced by switching the sample between two different angles, often 0° or 90° and the magic angle, yielding a two-dimensional isotropic-anisotropic correlation spectrum. Dynamic Angle Spinning (DAS) is a related experiment that is used to simultaneously average out the first- and second-order quadrupolar interactions, which cannot be accomplished by spinning at any unique rotor angle in physical space. Although motional reorientation experiments generally require specialized instrumentation and data analysis schemes, some are accessible with only minor modification of standard MAS probes. In this review, the mechanics of each type of experiment are described, with representative examples. Current and historical probe and coil designs are discussed from the standpoint of how each one accomplishes the particular objectives of the experiment(s) it was designed to perform. Finally, applications to inorganic materials and liquid crystals, which present very different experimental challenges, are discussed. The review concludes with perspectives on how motional reorientation experiments can be applied to current problems in chemistry, molecular biology, and materials science, given the many advances in high-field NMR magnets, fast spinning, and sample preparation realized in recent years. Copyright © 2015 Elsevier B.V. All rights reserved.
Solid-State NMR Studies Reveal Native-like β-Sheet Structures in Transthyretin Amyloid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Kwang Hun; Dasari, Anvesh K. R.; Hung, Ivan
Structural characterization of amyloid rich in cross-β structures is crucial for unraveling the molecular basis of protein misfolding and amyloid formation associated with a wide range of human disorders. Elucidation of the β-sheet structure in noncrystalline amyloid has, however, remained an enormous challenge. Here we report structural analyses of the β-sheet structure in a full-length transthyretin amyloid using solid-state NMR spectroscopy. Magic-angle-spinning (MAS) solid-state NMR was employed to investigate native-like β-sheet structures in the amyloid state using selective labeling schemes for more efficient solid-state NMR studies. Analyses of extensive long-range 13 C- 13 C correlation MAS spectra obtained with selectivelymore » 13 CO- and 13 Cα-labeled TTR reveal that the two main β-structures in the native state, the CBEF and DAGH β-sheets, remain intact after amyloid formation. The tertiary structural information would be of great use for examining the quaternary structure of TTR amyloid.« less
Solid-State NMR Studies Reveal Native-like β-Sheet Structures in Transthyretin Amyloid
Lim, Kwang Hun; Dasari, Anvesh K. R.; Hung, Ivan; ...
2016-09-02
Structural characterization of amyloid rich in cross-β structures is crucial for unraveling the molecular basis of protein misfolding and amyloid formation associated with a wide range of human disorders. Elucidation of the β-sheet structure in noncrystalline amyloid has, however, remained an enormous challenge. Here we report structural analyses of the β-sheet structure in a full-length transthyretin amyloid using solid-state NMR spectroscopy. Magic-angle-spinning (MAS) solid-state NMR was employed to investigate native-like β-sheet structures in the amyloid state using selective labeling schemes for more efficient solid-state NMR studies. Analyses of extensive long-range 13 C- 13 C correlation MAS spectra obtained with selectivelymore » 13 CO- and 13 Cα-labeled TTR reveal that the two main β-structures in the native state, the CBEF and DAGH β-sheets, remain intact after amyloid formation. The tertiary structural information would be of great use for examining the quaternary structure of TTR amyloid.« less
Kingdon, Bianca L; Egan, Sarah J; Rees, Clare S
2012-01-01
Magical thinking has been proposed to have an aetiological role in obsessive compulsive disorder (OCD). To address the limitations of existing measures of magical thinking we developed and validated a new 24-item measure of magical thinking, the Illusory Beliefs Inventory (IBI). The validation sample comprised a total of 1194 individuals across two samples recruited via an Internet based survey. Factor analysis identified three subscales representing domains relevant to the construct of magical thinking: Magical Beliefs, Spirituality, and Internal State and Thought Action Fusion. The scale had excellent internal consistency and evidence of convergent and discriminant validity. Evidence of criterion-related concurrent validity confirmed that magical thinking is a cognitive domain associated with OCD and is largely relevant to neutralizing, obsessing and hoarding symptoms. It is important for future studies to extend the evidence of the psychometric properties of the IBI in new populations and to conduct longitudinal studies to examine the aetiological role of magical thinking.
Qutrit Magic State Distillation Tight in Some Directions.
Dawkins, Hillary; Howard, Mark
2015-07-17
Magic state distillation is a crucial component in the leading approaches to implementing universal fault-tolerant quantum computation, with existing protocols for both qubit and higher dimensional systems. Early work focused on determining the region of distillable states for qubit protocols; yet comparatively little is known about which states can be distilled and with what distillable region for d>2. Here we focus on d=3 and present new four-qutrit distillation schemes that improve upon the known distillable region, and achieve distillation tight to the boundary of undistillable states for some classes of state. As a consequence of recent results, this implies that there is a family of quantum states that enable universality if and only if they exhibit contextuality with respect to stabilizer measurements. We also identify a new routine whose fixed point is a magic state with maximal sum negativity; i.e., it is maximally nonstablizer in a specific sense.
Experimental magic state distillation for fault-tolerant quantum computing.
Souza, Alexandre M; Zhang, Jingfu; Ryan, Colm A; Laflamme, Raymond
2011-01-25
Any physical quantum device for quantum information processing (QIP) is subject to errors in implementation. In order to be reliable and efficient, quantum computers will need error-correcting or error-avoiding methods. Fault-tolerance achieved through quantum error correction will be an integral part of quantum computers. Of the many methods that have been discovered to implement it, a highly successful approach has been to use transversal gates and specific initial states. A critical element for its implementation is the availability of high-fidelity initial states, such as |0〉 and the 'magic state'. Here, we report an experiment, performed in a nuclear magnetic resonance (NMR) quantum processor, showing sufficient quantum control to improve the fidelity of imperfect initial magic states by distilling five of them into one with higher fidelity.
Shah, Syed Imran Hussain
2017-01-01
In this paper, a novel dual band frequency reconfigurable antenna using an origami magic cube is proposed for wireless sensor network (WSN) applications. The proposed origami antenna consists of a meandered monopole folded onto three sides of the magic cube. A microstrip open-ended stub is loaded on the meandered monopole. The proposed origami magic cube can be mechanically folded and unfolded. The proposed antenna operates at 1.57 GHZ and 2.4 GHz in the folded state. In the unfolded state, the proposed antenna operates at 900 MHz and 2.3 GHz. The resonant frequency of the second band can be tunable by varying the length and position of the open stub. The origami magic cube is built on paper. Its performance is numerically and experimentally demonstrated from S-parameters and radiation patterns. The measured 10 dB impedance bandwidth of the proposed origami antenna is 18% (900–1120 MHz) and 15% (2.1–2.45 GHz) for the unfolded state and 20% (1.3–1.6 GHz) and 14% (2.3–2.5 GHz) for the folded state. The measured peak gain at 900 MHz and 2.3 GHz are 1.1 dBi and 2.32 dBi, respectively, in the unfolded state. The measured peak gain at 1.5 GHz and 2.4 GHz are 3.28 dBi and 1.98 dBi, respectively, in the folded state. PMID:29156654
2012-01-01
Introduction Providing information on cancerous tissue samples during a surgical operation can help surgeons delineate the limits of a tumoral invasion more reliably. Here, we describe the use of metabolic profiling of a colon biopsy specimen by high resolution magic angle spinning nuclear magnetic resonance spectroscopy to evaluate tumoral invasion during a simulated surgical operation. Case presentation Biopsy specimens (n = 9) originating from the excised right colon of a 66-year-old Caucasian women with an adenocarcinoma were automatically analyzed using a previously built statistical model. Conclusions Metabolic profiling results were in full agreement with those of a histopathological analysis. The time-response of the technique is sufficiently fast for it to be used effectively during a real operation (17 min/sample). Metabolic profiling has the potential to become a method to rapidly characterize cancerous biopsies in the operation theater. PMID:22257563
Sundekilde, Ulrik K; Rasmussen, Martin K; Young, Jette F; Bertram, Hanne Christine
2017-02-15
Increased incidences of pectoralis muscle dystrophy are observed in commercial chicken products, but the muscle physiological causes for the condition remain to be identified. In the present study a high-resolution magic angle spinning (HR-MAS) proton ((1)H) NMR spectroscopic examination of intact pectoralis muscle samples (n=77) were conducted to explore metabolite perturbations associated with the muscle dystrophy condition for the very first time. Both in chicken with an age of 21 and 31days, respectively, pectoralis muscle dystrophy was associated with a significantly lower content of anserine (p=0.034), carnosine (p=0.019) and creatine (p=0.049). These findings must be considered intriguing as they corroborate that characteristic muscle di-peptides composed of β-alanine and histidine derivatives such as anserine are extremely important in homeostasis of contractile muscles as a results of their role as buffering, anti-oxidative, and anti-glycation capacities. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cryogenic sample exchange NMR probe for magic angle spinning dynamic nuclear polarization
Barnes, Alexander B.; Mak-Jurkauskas, Melody L.; Matsuki, Yoh; Bajaj, Vikram S.; van der Wel, Patrick C. A.; DeRocher, Ronald; Bryant, Jeffrey; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Lugtenburg, Johan; Herzfeld, Judith; Griffin, Robert G.
2009-01-01
We describe a cryogenic sample exchange system that dramatically improves the efficiency of magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments by reducing the time required to change samples and by improving long-term instrument stability. Changing samples in conventional cryogenic MAS DNP/NMR experiments involves warming the probe to room temperature, detaching all cryogenic, RF, and microwave connections, removing the probe from the magnet, replacing the sample, and reversing all the previous steps, with the entire cycle requiring a few hours. The sample exchange system described here — which relies on an eject pipe attached to the front of the MAS stator and a vacuum jacketed dewar with a bellowed hole — circumvents these procedures. To demonstrate the excellent sensitivity, resolution, and stability achieved with this quadruple resonance sample exchange probe, we have performed high precision distance measurements on the active site of the membrane protein bacteriorhodopsin. We also include a spectrum of the tripeptide N-f-MLF-OH at 100 K which shows 30 Hz linewidths. PMID:19356957
Jaudzems, Kristaps; Bertarello, Andrea; Chaudhari, Sachin R; Pica, Andrea; Cala-De Paepe, Diane; Barbet-Massin, Emeline; Pell, Andrew J; Akopjana, Inara; Kotelovica, Svetlana; Gajan, David; Ouari, Olivier; Tars, Kaspars; Pintacuda, Guido; Lesage, Anne
2018-06-18
Dynamic nuclear polarization (DNP) is a powerful way to overcome the sensitivity limitation of magic-angle-spinning (MAS) NMR experiments. However, the resolution of the DNP NMR spectra of proteins is compromised by severe line broadening associated with the necessity to perform experiments at cryogenic temperatures and in the presence of paramagnetic radicals. High-quality DNP-enhanced NMR spectra of the Acinetobacter phage 205 (AP205) nucleocapsid can be obtained by combining high magnetic field (800 MHz) and fast MAS (40 kHz). These conditions yield enhanced resolution and long coherence lifetimes allowing the acquisition of resolved 2D correlation spectra and of previously unfeasible scalar-based experiments. This enables the assignment of aromatic resonances of the AP205 coat protein and its packaged RNA, as well as the detection of long-range contacts, which are not observed at room temperature, opening new possibilities for structure determination. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Diserens, Gaëlle; Vermathen, Martina; Gjuroski, Ilche; Eggimann, Sandra; Precht, Christina; Boesch, Chris; Vermathen, Peter
2016-08-01
The study aim was to unambiguously assign nucleotide sugars, mainly UDP-X that are known to be important in glycosylation processes as sugar donors, and glucose-phosphates that are important intermediate metabolites for storage and transfer of energy directly in spectra of intact cells, as well as in skeletal muscle biopsies by (1)H high-resolution magic-angle-spinning (HR-MAS) NMR. The results demonstrate that sugar phosphates can be determined quickly and non-destructively in cells and biopsies by HR-MAS, which may prove valuable considering the importance of phosphate sugars in cell metabolism for nucleic acid synthesis. As proof of principle, an example of phosphate-sugar reaction and degradation kinetics after unfreezing the sample is shown for a cardiac muscle, suggesting the possibility to follow by HR-MAS NMR some metabolic pathways. Graphical abstract Glucose-phosphate sugars (Glc-1P and Glc-6P) detected in muscle by 1H HR-MAS NMR.
Ramalhete, Susana M.; Nartowski, Karol P.; Sarathchandra, Nichola; Foster, Jamie S.; Round, Andrew N.; Angulo, Jesús
2017-01-01
Abstract Supramolecular hydrogels are composed of self‐assembled solid networks that restrict the flow of water. l‐Phenylalanine is the smallest molecule reported to date to form gel networks in water, and it is of particular interest due to its crystalline gel state. Single and multi‐component hydrogels of l‐phenylalanine are used herein as model materials to develop an NMR‐based analytical approach to gain insight into the mechanisms of supramolecular gelation. Structure and composition of the gel fibres were probed using PXRD, solid‐state NMR experiments and microscopic techniques. Solution‐state NMR studies probed the properties of free gelator molecules in an equilibrium with bound molecules. The dynamics of exchange at the gel/solution interfaces was investigated further using high‐resolution magic angle spinning (HR‐MAS) and saturation transfer difference (STD) NMR experiments. This approach allowed the identification of which additive molecules contributed in modifying the material properties. PMID:28401991
Physical aging in graphite/epoxy composites
NASA Technical Reports Server (NTRS)
Kong, E. S. W.
1983-01-01
Sub-Tg annealing has been found to affect the properties of graphite/epoxy composites. The network epoxy studied was based on the chemistry of tetraglycidyl 4,4'-diamino-diphenyl methane (TGDDM) crosslinked by 4,4'-diamino-diphenyl sulfone (DDS). Differential scanning calorimetry, thermal mechanical analysis, and solid-state cross-polarized magic-angle-spinning nuclear magnetic resonance spectroscopy have been utilized in order to characterize this process of recovery towards thermodynamic equilibrium. The volume and enthalpy recovery as well as the 'thermoreversibility' aspects of the physical aging are discussed. This nonequilibrium and time-dependent behavior of network epoxies are considered in view of the increasingly wide applications of TGDDM-DDS epoxies as matrix materials of structural composites in the aerospace industry.
The Influence of Chemical Modification on Linker Rotational Dynamics in Metal-Organic Frameworks.
Damron, Joshua T; Ma, Jialiu; Kurz, Ricardo; Saalwächter, Kay; Matzger, Adam J; Ramamoorthy, Ayyalusamy
2018-05-21
The robust synthetic flexibility of metal-organic frameworks (MOFs) offers a promising class of tailorable materials, for which the ability to tune specific physicochemical properties is highly desired. This is achievable only through a thorough description of the consequences for chemical manipulations both in structure and dynamics. Magic angle spinning solid-state NMR spectroscopy offers many modalities in this pursuit, particularly for dynamic studies. Herein, we employ a separated-local-field NMR approach to show how specific intraframework chemical modifications to MOF UiO-66 heavily modulate the dynamic evolution of the organic ring moiety over several orders of magnitude. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hierarchical SAPO‐34 Architectures with Tailored Acid Sites using Sustainable Sugar Templates
Miletto, Ivana; Ivaldi, Chiara; Paul, Geo; Chapman, Stephanie; Marchese, Leonardo; Raja, Robert
2018-01-01
Abstract In a distinct, bottom‐up synthetic methodology, monosaccharides (fructose and glucose) and disaccharides (sucrose) have been used as mesoporogens to template hierarchical SAPO‐34 catalysts. Detailed materials characterization, which includes solid‐state magic angle spinning NMR and probe‐based FTIR, reveals that, although the mesopore dimensions are modified by the identity of the sugar template, the desirable acid characteristics of the microporous framework are retained. When the activity of the hierarchical SAPO‐34 catalysts was evaluated in the industrially relevant Beckmann rearrangement, under liquid‐phase conditions, the enhanced mass‐transport properties of sucrose‐templated hierarchical SAPO‐34 were found to deliver a superior yield of ϵ‐caprolactam. PMID:29686961
Quadrupolar magic angle spinning NMR spectra fitted using the Pearson IV function.
Mironenko, Roman M; Belskaya, Olga B; Talsi, Valentin P; Likholobov, Vladimir A
2014-01-01
The Pearson IV function was used to fit the asymmetric solid-state (27)Al NMR spectra of alumina based catalysts. A high convergence (correlation coefficient is no less than 0.997) between experimental and simulated spectra was achieved. The decomposition of the (27)Al NMR spectra of zinc/aluminum mixed oxides with different Zn/Al molar ratio revealed an increased fraction (6-9%) of pentacoordinated aluminum atoms in these oxides as compared to γ-Al2O3. As the Zn/Al ratio is raised, the fraction of [AlO6] octahedral units decreases, while the fraction of [AlO4] tetrahedra increases. Copyright © 2014 Elsevier Inc. All rights reserved.
Heterogeneous data fusion for brain tumor classification.
Metsis, Vangelis; Huang, Heng; Andronesi, Ovidiu C; Makedon, Fillia; Tzika, Aria
2012-10-01
Current research in biomedical informatics involves analysis of multiple heterogeneous data sets. This includes patient demographics, clinical and pathology data, treatment history, patient outcomes as well as gene expression, DNA sequences and other information sources such as gene ontology. Analysis of these data sets could lead to better disease diagnosis, prognosis, treatment and drug discovery. In this report, we present a novel machine learning framework for brain tumor classification based on heterogeneous data fusion of metabolic and molecular datasets, including state-of-the-art high-resolution magic angle spinning (HRMAS) proton (1H) magnetic resonance spectroscopy and gene transcriptome profiling, obtained from intact brain tumor biopsies. Our experimental results show that our novel framework outperforms any analysis using individual dataset.
Access to aliphatic protons as reporters in non-deuterated proteins by solid-state NMR.
Vasa, Suresh Kumar; Rovó, Petra; Giller, Karin; Becker, Stefan; Linser, Rasmus
2016-03-28
Interactions within proteins, with their surrounding, and with other molecules are mediated mostly by hydrogen atoms. In fully protonated, inhomogeneous, or larger proteins, however, aliphatic proton shifts tend to show little dispersion despite fast Magic-Angle Spinning. 3D correlations dispersing aliphatic proton shifts by their better resolved amide N/H shifts can alleviate this problem. Using inverse second-order cross-polarization (iSOCP), we here introduce dedicated and improved means to sensitively link site-specific chemical shift information from aliphatic protons with a backbone amide resolution. Thus, even in cases where protein deuteration is impossible, this approach may enable access to various aspects of protein functions that are reported on by protons.
Radiofrequency fields in MAS solid state NMR probes.
Tošner, Zdeněk; Purea, Armin; Struppe, Jochem O; Wegner, Sebastian; Engelke, Frank; Glaser, Steffen J; Reif, Bernd
2017-11-01
We present a detailed analysis of the radiofrequency (RF) field over full volume of a rotor that is generated in a solenoid coil. On top of the usually considered static distribution of amplitudes along the coil axis we describe dynamic radial RF inhomogeneities induced by sample rotation. During magic angle spinning (MAS), the mechanical rotation of the sample about the magic angle, a spin packet travels through areas of different RF fields and experiences periodical modulations of both the RF amplitude and the phase. These modulations become particularly severe at the end regions of the coil where the relative RF amplitude varies up to ±25% and the RF phase changes within ±30°. Using extensive numerical simulations we demonstrate effects of RF inhomogeneity on pulse calibration and for the ramped CP experiment performed at a wide range of MAS rates. In addition, we review various methods to map RF fields using a B 0 gradient along the sample (rotor axis) for imaging purposes. Under such a gradient, a nutation experiment provides directly the RF amplitude distribution, a cross polarization experiment images the correlation of the RF fields on the two channels according to the Hartmann-Hahn matching condition, while a spin-lock experiment allows to calibrate the RF amplitude employing the rotary resonance recoupling condition. Knowledge of the RF field distribution in a coil provides key to understand its effects on performance of a pulse sequence at the spectrometer and enables to set robustness requirements in the experimental design. Copyright © 2017 Elsevier Inc. All rights reserved.
Unifying Gate Synthesis and Magic State Distillation.
Campbell, Earl T; Howard, Mark
2017-02-10
The leading paradigm for performing a computation on quantum memories can be encapsulated as distill-then-synthesize. Initially, one performs several rounds of distillation to create high-fidelity magic states that provide one good T gate, an essential quantum logic gate. Subsequently, gate synthesis intersperses many T gates with Clifford gates to realize a desired circuit. We introduce a unified framework that implements one round of distillation and multiquibit gate synthesis in a single step. Typically, our method uses the same number of T gates as conventional synthesis but with the added benefit of quadratic error suppression. Because of this, one less round of magic state distillation needs to be performed, leading to significant resource savings.
Multiwavelength observations of a VHE gamma-ray flare from PKS 1510-089 in 2015
NASA Astrophysics Data System (ADS)
Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Ishio, K.; Konno, Y.; Kubo, H.; Kushida, J.; Kuveždić, D.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Majumdar, P.; Makariev, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Toyama, T.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zarić, D.; Desiante, R.; Becerra González, J.; D'Ammando, F.; Larsson, S.; Raiteri, C. M.; Reinthal, R.; Lähteenmäki, A.; Järvelä, E.; Tornikoski, M.; Ramakrishnan, V.; Jorstad, S. G.; Marscher, A. P.; Bala, V.; MacDonald, N. R.; Kaur, N.; Sameer; Baliyan, K.; Acosta-Pulido, J. A.; Lazaro, C.; Martí-nez-Lombilla, C.; Grinon-Marin, A. B.; Pastor Yabar, A.; Protasio, C.; Carnerero, M. I.; Jermak, H.; Steele, I. A.; Larionov, V. M.; Borman, G. A.; Grishina, T. S.
2017-07-01
Context. PKS 1510-089 is one of only a few flat spectrum radio quasars detected in the very-high-energy (VHE, > 100 GeV) gamma-ray band. Aims: We study the broadband spectral and temporal properties of the PKS 1510-089 emission during a high gamma-ray state. Methods: We performed VHE gamma-ray observations of PKS 1510-089 with the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescopes during a long, high gamma-ray state in May 2015. In order to perform broadband modeling of the source, we have also gathered contemporaneous multiwavelength data in radio, IR, optical photometry and polarization, UV, X-ray, and GeV gamma-ray ranges. We construct a broadband spectral energy distribution (SED) in two periods, selected according to VHE gamma-ray state. Results: PKS 1510-089 was detected by MAGIC during a few day-long observations performed in the middle of a long, high optical and gamma-ray state, showing for the first time a significant VHE gamma-ray variability. Similarly to the optical and gamma-ray high state of the source detected in 2012, it was accompanied by a rotation of the optical polarization angle and the emission of a new jet component observed in radio. However, owing to large uncertainty on the knot separation time, the association with the VHE gamma-ray emission cannot be firmly established. The spectral shape in the VHE band during the flare is similar to those obtained during previous measurements of the source. The observed flux variability sets constraints for the first time on the size of the region from which VHE gamma rays are emitted. We model the broadband SED in the framework of the external Compton scenario and discuss the possible emission site in view of multiwavelength data and alternative emission models.
Natural abundance high-resolution solid state 2 H NMR spectroscopy
NASA Astrophysics Data System (ADS)
Aliev, Abil E.; Harris, Kenneth D. M.; Apperley, David C.
1994-08-01
We report for the first time an approach for natural abundance solid state 2 H NMR spectroscopy involving magic angle sample spinning (MAS), high-power 1 H decoupling (HPPD) and 1 H- 2 H cross polarization (CP). Taking tetrakis(trimethylsilyl)silane (TTMSS), adamantane, 1-chloroadamantane, hexamethylbenzene (HMB), 2,2-dimethyl-1,3-propanediol (DMPD) and 2-hydroxymethyl-2-methyl-1,3-propanediol (HMPD) as examples, it has been shown that the combination of HPPD and MAS can be applied readily to study rotator phase solids, allowing isotropic peaks arising from chemically inequivalent 2 H nuclei to be resolved. For natural abundance samples of TTMSS and chloroadamantane, it has been shown that 2 H CP/HPPD/MAS NMR experiments, involving polarization transfer from 1 H to 2 H, may provide considerable sensitivity enhancement in comparison with single pulse experiments.
Natural abundance high-resolution solid state 2 H NMR spectroscopy
NASA Astrophysics Data System (ADS)
Aliev, Abil E.; Harris, Kenneth D. M.; Apperley, David C.
1994-08-01
We report for the first time an approach for natural abundance solid state 2H NMR spectroscopy involving magic angle sample spinning (MAS), high-power 1H decoupling (HPPD) and 1H- 2H cross polarization (CP). Taking tetrakis(trimethylsilyl)silane (TTMSS), adamantane, 1-chloroadamantane, hexamethylbenzene (HMB), 2,2-dimethyl-1,3-propanediol (DMPD) and 2-hydroxymethyl-2-methyl-1,3-propanediol (HMPD) as examples, it has been shown that the combination of HPPD and MAS can be applied readily to study rotator phase solids, allowing isotropic peaks arising from chemically inequivalent 2H nuclei to be resolved. For natural abundance samples of TTMSS and chloroadamantane, it has been shown that 2H CP/HPPD/MAS NMR experiments, involving polarization transfer from 1H to 2H, may provide considerable sensitivity enhancement in comparison with single pulse experiments.
Proton decoupling and recoupling under double-nutation irradiation in solid-state NMR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeda, Kazuyuki, E-mail: takezo@kuchem.kyoto-u.ac.jp; Wakisaka, Asato; Takegoshi, K.
The effect of {sup 1}H decoupling in magic-angle spinning solid-state NMR is studied under radiofrequency irradiation causing simultaneous nutations around a pair of orthogonal axes. Double-nutation with an arbitrary pair of nutation frequencies is implemented through modulation of the amplitude, phase, and frequency of the transmitting pulses. Similarity and difference of double-nutation decoupling and two-pulse phase-modulation decoupling schemes [A. E. Bennett, C. M. Rienstra, M. Auger, K. V. Lakshmi, and R. G. Griffin, J. Chem. Phys. 103, 6951–6958 (1995) and I. Scholz, P. Hodgkinson, B. H. Meier, and M. Ernst, J. Chem. Phys. 130, 114510 (2009)] are discussed. The structuremore » of recoupling bands caused by interference of the {sup 1}H spin nutation with sample spinning is studied by both experiments and numerical simulations.« less
CapDEM TD - Modeling and Simulation (Role and Tools) State of the Art Report
2005-01-01
office/wcm1/ornclinfn/ciefilnlt rnsnx [55] http://www.idefine.com/Tutorial/TutOiial%20Sales%20Page.htm [56] Gartner , " Magic Quadrant for Business ...21 Figure 3-5: Gartner Magic Quadrant For BPA, 2004 (56...of January 2004 Niche Players Visionaries ------- Completeness of Vision ..., Figure 3-5: Gartner Magic Quadrant For BPA, 2004 [56] Gartner , Inc
Felipe G. Sanchez
2004-01-01
Changes in carbon chemistry (i.e., carbon compound classes such as aromatics, phenolics, etc.) of loblolly pine (Pinus taeda L.) litter were examined during three years of decomposition under factorial combinations of irrigation and fertilization treatments. Cross polarization magic angle spinning 13C nuclear magnetic resonance...
Nishiyama, Yusuke; Endo, Yuki; Nemoto, Takahiro; Yamauchi, Kazuo; Asakura, Tetsuo; Takeda, Mitsuhiro; Terauchi, Tsutomu; Kainosho, Masatsune; Ishii, Yoshitaka
2015-01-01
We present a general approach in 1H-detected 13C solid-state NMR (SSNMR) for side-chain signal assignments of 10-50 nmol quantities of proteins using a combination of a high magnetic field, ultra-fast magic-angle spinning (MAS) at ~80 kHz, and stereo-array-isotope-labeled (SAIL) proteins [Kainosho M. et al., Nature 440, 52–57, 2006]. First, we demonstrate that 1H indirect detection improves the sensitivity and resolution of 13C SSNMR of SAIL proteins for side-chain assignments in the ultra-fast MAS condition. 1H-detected SSNMR was performed for micro-crystalline ubiquitin (~55 nmol or ~0.5mg) that was SAIL-labeled at seven isoleucine (Ile) residues. Sensitivity was dramatically improved by 1H-detected 2D 1H/13C SSNMR by factors of 5.4-9.7 and 2.1-5.0, respectively, over 13C-detected 2D 1H/13C SSNMR and 1D 13C CPMAS, demonstrating that 2D 1H-detected SSNMR offers not only additional resolution but also sensitivity advantage over 1D 13C detection for the first time. High 1H resolution for the SAIL-labeled side-chain residues offered reasonable resolution even in the 2D data. A 1H-detected 3D 13C/13C/1H experiment on SAIL-ubiquitin provided nearly complete 1H and 13C assignments for seven Ile residues only within ~2.5 h. The results demonstrate the feasibility of side-chain signal assignment in this approach for as little as 10 nmol of a protein sample within ~3 days. The approach is likely applicable to a variety of proteins of biological interest without any requirements of highly efficient protein expression systems. PMID:25856081
Structure of Ni 78 from First-Principles Computations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagen, Gaute; Univ. of Tennessee, Knoxville, TN; Jansen, Gustav R.
Doubly magic nuclei have a simple structure and are the cornerstones for entire regions of the nuclear chart. Theoretical insights into the supposedly doubly magic 78Ni and its neighbors are challenging because of the extreme neutron-to-proton ratio and the proximity of the continuum. In this study, we predict the J π = 2more » $$+\\atop{1}$$ state in 78Ni from a correlation with the J π = 2$$+\\atop{1}$$ state in 48Ca using chiral nucleon-nucleon and three-nucleon interactions. Our results confirm that 78Ni is doubly magic, and the predicted low-lying states of 79,80Ni open the way for shell-model studies of many more rare isotopes.« less
Structure of Ni 78 from First-Principles Computations
Hagen, Gaute; Univ. of Tennessee, Knoxville, TN; Jansen, Gustav R.; ...
2016-10-17
Doubly magic nuclei have a simple structure and are the cornerstones for entire regions of the nuclear chart. Theoretical insights into the supposedly doubly magic 78Ni and its neighbors are challenging because of the extreme neutron-to-proton ratio and the proximity of the continuum. In this study, we predict the J π = 2more » $$+\\atop{1}$$ state in 78Ni from a correlation with the J π = 2$$+\\atop{1}$$ state in 48Ca using chiral nucleon-nucleon and three-nucleon interactions. Our results confirm that 78Ni is doubly magic, and the predicted low-lying states of 79,80Ni open the way for shell-model studies of many more rare isotopes.« less
(14)N overtone transition in double rotation solid-state NMR.
Haies, Ibraheem M; Jarvis, James A; Brown, Lynda J; Kuprov, Ilya; Williamson, Philip T F; Carravetta, Marina
2015-10-07
Solid-state NMR transitions involving outer energy levels of the spin-1 (14)N nucleus are immune, to first order in perturbation theory, to the broadening caused by the nuclear quadrupole interaction. The corresponding overtone spectra, when acquired in conjunction with magic-angle sample spinning, result in lines, which are just a few kHz wide, permitting the direct detection of nitrogen compounds without the need for labeling. Despite the success of this technique, "overtone" resonances are still broadened due to indirect, second order effects arising from the large quadrupolar interaction. Here we demonstrate that another order of magnitude in spectral resolution may be gained by using double rotation. This brings the width of the (14)N solid-state NMR lines much closer to the region commonly associated with high-resolution solid-state NMR spectroscopy of (15)N and demonstrates the improvements in resolution that may be possible through the development of pulsed methodologies to suppress these second order effects.
NASA Astrophysics Data System (ADS)
Gopinath, T.; Veglia, Gianluigi
2013-05-01
We propose a general method that enables the acquisition of multiple 2D and 3D solid-state NMR spectra for U-13C, 15N-labeled proteins. This method, called MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), makes it possible to detect four coherence transfer pathways simultaneously, utilizing orphan (i.e., neglected) spin operators of nuclear spin polarization generated during 15N-13C cross polarization (CP). In the MEIOSIS experiments, two phase-encoded free-induction decays are decoded into independent nuclear polarization pathways using Hadamard transformations. As a proof of principle, we show the acquisition of multiple 2D and 3D spectra of U-13C, 15N-labeled microcrystalline ubiquitin. Hadamard decoding of CP coherences into multiple independent spin operators is a new concept in solid-state NMR and is extendable to many other multidimensional experiments. The MEIOSIS method will increase the throughput of solid-state NMR techniques for microcrystalline proteins, membrane proteins, and protein fibrils.
Experimental evidence for non-Abelian gauge potentials in twisted graphene bilayers
NASA Astrophysics Data System (ADS)
Yin, Long-Jing; Qiao, Jia-Bin; Zuo, Wei-Jie; Li, Wen-Tian; He, Lin
2015-08-01
Non-Abelian gauge potentials are quite relevant in subatomic physics, but they are relatively rare in a condensed matter context. Here we report the experimental evidence for non-Abelian gauge potentials in twisted graphene bilayers by scanning tunneling microscopy and spectroscopy. At a magic twisted angle, θ ≈(1.11±0.05 ) ∘ , a pronounced sharp peak, which arises from the nondispersive flat bands at the charge neutrality point, is observed in the tunneling density of states due to the action of the non-Abelian gauge fields. Moreover, we observe confined electronic states in the twisted bilayer, as manifested by regularly spaced tunneling peaks with energy spacing δ E ≈vF/D ≈70 meV (here vF is the Fermi velocity of graphene and D is the period of the moiré patterns). This indicates that the non-Abelian gauge potentials in twisted graphene bilayers confine low-energy electrons into a triangular array of quantum dots following the modulation of the moiré patterns. Our results also directly demonstrate that the Fermi velocity in twisted bilayers can be tuned from about 106m /s to zero by simply reducing the twisted angle of about 2∘.
Theoretical aspects of Magic Angle Spinning - Dynamic Nuclear Polarization
NASA Astrophysics Data System (ADS)
Mentink-Vigier, Frederic; Akbey, Ümit; Oschkinat, Hartmut; Vega, Shimon; Feintuch, Akiva
2015-09-01
Magic Angle Spinning (MAS) combined with Dynamic Nuclear Polarization (DNP) has been proven in recent years to be a very powerful method for increasing solid-state NMR signals. Since the advent of biradicals such as TOTAPOL to increase the nuclear polarization new classes of radicals, with larger molecular weight and/or different spin properties have been developed. These have led to unprecedented signal gain, with varying results for different experimental parameters, in particular the microwave irradiation strength, the static field, and the spinning frequency. Recently it has been demonstrated that sample spinning imposes DNP enhancement processes that differ from the active DNP mechanism in static samples as upon sample spinning the DNP enhancements are the results of energy level anticrossings occurring periodically during each rotor cycle. In this work we present experimental results with regards to the MAS frequency dependence of the DNP enhancement profiles of four nitroxide-based radicals at two different sets of temperature, 110 and 160 K. In fact, different magnitudes of reduction in enhancement are observed with increasing spinning frequency. Our simulation code for calculating MAS-DNP powder enhancements of small model spin systems has been improved to extend our studies of the influence of the interaction and relaxation parameters on powder enhancements. To achieve a better understanding we simulated the spin dynamics of a single three-spin system {ea -eb - n } during its steady state rotor periods and used the Landau-Zener formula to characterize the influence of the different anti-crossings on the polarizations of the system and their necessary action for reaching steady state conditions together with spin relaxation processes. Based on these model calculations we demonstrate that the maximum steady state nuclear polarization cannot become larger than the maximum polarization difference between the two electrons during the steady state rotor cycle. This study also shows the complexity of the MAS-DNP process and therefore the necessity to rely on numerical simulations for understanding parametric dependencies of the enhancements. Finally an extension of the spin system up to five spins allowed us to probe the first steps of the transfer of polarization from the nuclei coupled to the electrons to further away nuclei, demonstrating a decrease in the spin-diffusion barrier under MAS conditions.
Theoretical aspects of Magic Angle Spinning - Dynamic Nuclear Polarization.
Mentink-Vigier, Frederic; Akbey, Ümit; Oschkinat, Hartmut; Vega, Shimon; Feintuch, Akiva
2015-09-01
Magic Angle Spinning (MAS) combined with Dynamic Nuclear Polarization (DNP) has been proven in recent years to be a very powerful method for increasing solid-state NMR signals. Since the advent of biradicals such as TOTAPOL to increase the nuclear polarization new classes of radicals, with larger molecular weight and/or different spin properties have been developed. These have led to unprecedented signal gain, with varying results for different experimental parameters, in particular the microwave irradiation strength, the static field, and the spinning frequency. Recently it has been demonstrated that sample spinning imposes DNP enhancement processes that differ from the active DNP mechanism in static samples as upon sample spinning the DNP enhancements are the results of energy level anticrossings occurring periodically during each rotor cycle. In this work we present experimental results with regards to the MAS frequency dependence of the DNP enhancement profiles of four nitroxide-based radicals at two different sets of temperature, 110 and 160K. In fact, different magnitudes of reduction in enhancement are observed with increasing spinning frequency. Our simulation code for calculating MAS-DNP powder enhancements of small model spin systems has been improved to extend our studies of the influence of the interaction and relaxation parameters on powder enhancements. To achieve a better understanding we simulated the spin dynamics of a single three-spin system {ea-eb-n} during its steady state rotor periods and used the Landau-Zener formula to characterize the influence of the different anti-crossings on the polarizations of the system and their necessary action for reaching steady state conditions together with spin relaxation processes. Based on these model calculations we demonstrate that the maximum steady state nuclear polarization cannot become larger than the maximum polarization difference between the two electrons during the steady state rotor cycle. This study also shows the complexity of the MAS-DNP process and therefore the necessity to rely on numerical simulations for understanding parametric dependencies of the enhancements. Finally an extension of the spin system up to five spins allowed us to probe the first steps of the transfer of polarization from the nuclei coupled to the electrons to further away nuclei, demonstrating a decrease in the spin-diffusion barrier under MAS conditions. Copyright © 2015 Elsevier Inc. All rights reserved.
Biopolymer nanocomposite films reinforced with nanocellulose whiskers
Amit Saxena; Marcus Foston; Mohamad Kassaee; Thomas J. Elder; Arthur J. Ragauskas
2011-01-01
A xylan nanocomposite film with improved strength and barrier properties was prepared by a solution casting using nanocellulose whiskers as a reinforcing agent. The 13C cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR) analysis of the spectral data obtained for the NCW/xylan nanocomposite films indicated the signal intensity originating...
Posset, Tobias; Blümel, Janet
2006-07-05
The title technique, high-resolution magic angle spinning NMR of suspensions, constitutes a powerful new tool for investigating the structures and mobilities of immobilized species and, thus, for optimizing heterobimetallic catalyst systems, such as the Sonogashira coupling of terminal alkynes and aryl halides.
Observation of shape isomers states in fission fragments
NASA Astrophysics Data System (ADS)
Kamanin, D. V.; Pyatkov, Yu V.; Alexandrov, A. A.; Alexandrova, I. A.; Mkaza, N.; Malaza, V.; Kuznetsova, E. A.; Strekalovsky, A. O.; Strekalovsky, O. V.; Zhuchko, V. E.
2017-06-01
We discuss the manifestations of a new original effect appeared at crossing of the metal foils by fission fragments. We have observed significant mass deficit in the total mass Ms of the fission fragments detected in coincidence with ions knocked out from the foil. It was shown that at the large angles of scattering of the knocked-out ions from the foil predominantly conventional elastic Rutherford scattering takes place. As the result Ms corresponds to the mean mass of the mother system after emission of fission neutrons (no missing mass). In contrast, in near frontal impacts fission fragment misses essential part of its mass. Residual nuclei at least for the fragments from the heavy mass peak show magic nucleon composition.
Fuss, Taylor L.; Cheng, Leo L.
2016-01-01
According to World Health Organization (WHO) estimates, cancer is responsible for more deaths than all coronary heart disease or stroke worldwide, serving as a major public health threat around the world. High resolution magic angle spinning (HRMAS) magnetic resonance spectroscopy (MRS) has demonstrated its usefulness in the identification of cancer metabolic markers with the potential to improve diagnosis and prognosis for the oncology clinic, due partially to its ability to preserve tissue architecture for subsequent histological and molecular pathology analysis. Capable of the quantification of individual metabolites, ratios of metabolites, and entire metabolomic profiles, HRMAS MRS is one of the major techniques now used in cancer metabolomic research. This article reviews and discusses literature reports of HRMAS MRS studies of cancer metabolomics published between 2010 and 2015 according to anatomical origins, including brain, breast, prostate, lung, gastrointestinal, and neuroendocrine cancers. These studies focused on improving diagnosis and understanding patient prognostication, monitoring treatment effects, as well as correlating with the use of in vivo MRS in cancer clinics. PMID:27011205
Mazzei, Pierluigi; Vinale, Francesco; Woo, Sheridan Lois; Pascale, Alberto; Lorito, Matteo; Piccolo, Alessandro
2016-05-11
Trichoderma fungi release 6-pentyl-2H-pyran-2-one (1) and harzianic acid (2) secondary metabolites to improve plant growth and health protection. We isolated metabolites 1 and 2 from Trichoderma strains, whose different concentrations were used to treat seeds of Solanum lycopersicum. The metabolic profile in the resulting 15 day old tomato leaves was studied by high-resolution magic-angle-spinning nuclear magnetic resonance (HRMAS NMR) spectroscopy directly on the whole samples without any preliminary extraction. Principal component analysis (PCA) of HRMAS NMR showed significantly enhanced acetylcholine and γ-aminobutyric acid (GABA) content accompanied by variable amount of amino acids in samples treated with both Trichoderma secondary metabolites. Seed germination rates, seedling fresh weight, and the metabolome of tomato leaves were also dependent upon doses of metabolites 1 and 2 treatments. HRMAS NMR spectroscopy was proven to represent a rapid and reliable technique for evaluating specific changes in the metabolome of plant leaves and calibrating the best concentration of bioactive compounds required to stimulate plant growth.
Vermathen, Martina; Marzorati, Mattia; Diserens, Gaëlle; Baumgartner, Daniel; Good, Claudia; Gasser, Franz; Vermathen, Peter
2017-10-15
Determination of metabolic alterations in apples induced by such processes as different crop protection strategies or storage, are of interest to assess correlations with fruit quality or fruit disorders. Preliminary results proposed the metabolic discrimination of apples from organic (BIO), integrated (IP) and low-input (LI) production. To determine contributions of temporal metabolic developments and to define the type of metabolic changes during storage, 1 H high resolution-magic angle spinning (HR-MAS) NMR spectroscopy of apple pulp was performed before and after two time points of controlled atmosphere storage. Statistical analysis revealed similar metabolic changes over time for IP-, LI- and BIO-samples, mainly decreasing lipid and sucrose, and increasing fructose, glucose and acetaldehyde levels, which are potential contributors to fruit aroma. Across the production systems, BIO apples had consistently higher levels of fructose and monomeric phenolic compounds but lower levels of condensed polyphenols than LI and IP apples, while the remaining metabolites assimilated. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tycko, Robert
2015-04-01
Twenty years ago, applications of solid state nuclear magnetic resonance (NMR) methods to real problems involving biological systems or biological materials were few and far between. Starting in the 1980s, a small number of research groups had begun to explore the possibility of obtaining structural and dynamical information about peptides, proteins, and other biopolymers from solid state NMR spectra. Progress was initially slow due to the relatively primitive state of solid state NMR probes, spectrometers, sample preparation methods, and pulse sequence techniques, coupled with the small number of people contributing to this research area. By the early 1990s, with the advent of new ideas about pulse sequence techniques such as dipolar recoupling, improvements in techniques for orienting membrane proteins and in technology for magic-angle spinning (MAS), improvements in the capabilities of commercial NMR spectrometers, and general developments in multidimensional spectroscopy, it began to appear that biomolecular solid state NMR might have a viable future. It was not until 1993 that the annual number of publications in this area crept above twenty.
High-field 95 Mo and 183 W static and MAS NMR study of polyoxometalates.
Haouas, Mohamed; Trébosc, Julien; Roch-Marchal, Catherine; Cadot, Emmanuel; Taulelle, Francis; Martineau-Corcos, Charlotte
2017-10-01
The potential of high-field NMR to measure solid-state 95 Mo and 183 W NMR in polyoxometalates (POMs) is explored using some archetypical structures like Lindqvist, Keggin and Dawson as model compounds that are well characterized in solution. NMR spectra in static and under magic angle spinning (MAS) were obtained, and their analysis allowed extraction of the NMR parameters, including chemical shift anisotropy and quadrupolar coupling parameters. Despite the inherent difficulties of measurement in solid state of these low-gamma NMR nuclei, due mainly to the low spectral resolution and poor signal-to-noise ratio, the observed global trends compare well with the solution-state NMR data. This would open an avenue for application of solid-state NMR to POMs, especially when liquid-state NMR is not possible, e.g., for poorly soluble or unstable compounds in solution, and for giant molecules with slow tumbling motion. This is the case of Keplerate where we provide here the first NMR characterization of this class of POMs in the solid state. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Sine-squared shifted pulses for recoupling interactions in solid-state NMR
NASA Astrophysics Data System (ADS)
Jain, Mukul G.; Rajalakshmi, G.; Equbal, Asif; Mote, Kaustubh R.; Agarwal, Vipin; Madhu, P. K.
2017-06-01
Rotational-Echo DOuble-Resonance (REDOR) is a versatile experiment for measuring internuclear distance between two heteronuclear spins in solid-state NMR. At slow to intermediate magic-angle spinning (MAS) frequencies, the measurement of distances between strongly coupled spins is challenging due to rapid dephasing of magnetisation. This problem can be remedied by employing the pulse-shifted version of REDOR known as Shifted-REDOR (S-REDOR) that scales down the recoupled dipolar coupling. In this study, we propose a new variant of the REDOR sequence where the positions of the π pulses are determined by a sine-squared function. This new variant has scaling properties similar to S-REDOR. We use theory, numerical simulations, and experiments to compare the dipolar recoupling efficiencies and the experimental robustness of the three REDOR schemes. The proposed variant has advantages in terms of radiofrequency field requirements at fast MAS frequencies.
Gamble, G R; Akin, D E; Makkar, H P; Becker, K
1996-01-01
Leaves of sericea lespedeza exhibit a high proportion of condensed tannin, resulting in poor forage quality. The white rot fungi Ceriporiopsis subvermispora and Cyathus sterocoreus are known to preferentially degrade lignin in a variety of plants and were evaluated for their ability to degrade condensed tannin from sericea leaves with the aim of improving digestibility. Relative levels of condensed tannin, cutin, pectin, and cellulose were monitored as a function of fungal treatment by solid-state cross-polarization and magic angle spinning 13C nuclear magnetic resonance spectroscopy. Total soluble phenolics, soluble tannins, and soluble and insoluble proanthocyanidin levels in fungus-treated and control samples were measured by established chemical techniques. Results indicate that both species of fungus preferentially degrade condensed tannin and that C. subvermispora is markedly superior to C. stercoreus in this capacity. PMID:8837414
A homonuclear spin-pair filter for solid-state NMR based on adiabatic-passage techniques
NASA Astrophysics Data System (ADS)
Verel, René; Baldus, Marc; Ernst, Matthias; Meier, Beat H.
1998-05-01
A filtering scheme for the selection of spin pairs (and larger spin clusters) under fast magic-angle spinning is proposed. The scheme exploits the avoided level crossing in spin pairs during an adiabatic amplitude sweep through the so-called HORROR recoupling condition. The advantages over presently used double-quantum filters are twofold. (i) The maximum theoretical filter efficiency is, due to the adiabatic variation, 100% instead of 73% as for transient methods. (ii) Since the filter does not rely on the phase-cycling properties of the double-quantum coherence, there is no need to obtain the full double-quantum intensity for all spins in the sample at one single point in time. The only important requirement is that all coupled spins pass through a two-spin state during the amplitude sweep. This makes the pulse scheme robust with respect to rf-amplitude missetting, rf-field inhomogeneity and chemical-shift offset.
Improved heteronuclear dipolar decoupling sequences for liquid-crystal NMR
NASA Astrophysics Data System (ADS)
Thakur, Rajendra Singh; Kurur, Narayanan D.; Madhu, P. K.
2007-04-01
Recently we introduced a radiofrequency pulse scheme for heteronuclear dipolar decoupling in solid-state nuclear magnetic resonance under magic-angle spinning [R.S. Thakur, N.D. Kurur, P.K. Madhu, Swept-frequency two-pulse phase modulation for heteronuclear dipolar decoupling in solid-state NMR, Chem. Phys. Lett. 426 (2006) 459-463]. Variants of this sequence, swept-frequency TPPM, employing frequency modulation of different types have been further tested to improve the efficiency of heteronuclear dipolar decoupling. Among these, certain sequences that were found to perform well at lower spinning speeds are demonstrated here on a liquid-crystal sample of MBBA for application in static samples. The new sequences are compared with the standard TPPM and SPINAL schemes and are shown to perform better than them. These modulated schemes perform well at low decoupler radiofrequency power levels and are easy to implement on standard spectrometers.
RNA Characterization by Solid-State NMR Spectroscopy.
Yang, Yufei; Wang, Shenlin
2018-06-21
The structures of RNAs, which play critical roles in various biological processes, provide important clues and insights into the biological functions of these molecules. However, RNA structure determination remains a challenging topic. In recent years, magic-angle-spinning solid-state NMR (MAS SSNMR) has emerged as an alternative technique for structural and dynamic characterization of RNA. MAS SSNMR has been successfully applied to provide atomic-level structural information about several RNA molecules and RNA-protein complexes. In this Minireview, we give an overview of recent progress in the field of MAS SSNMR based RNA structural characterization, and introduce sample preparation strategies and SSNMR spectroscopic techniques that have been incorporated to identify RNA structural elements. We also highlight a few impressive examples of RNAs that have been investigated extensively by SSNMR. Finally, we briefly discuss future technical trends in the use of MAS SSNMR to facilitate RNA structure determination. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Joseleau, J P; Ruel, K
1997-01-01
Noninvasive techniques were used for the study in situ of lignification in the maturing cell walls of the maize (Zea mays L.) stem. Within the longitudinal axis of a developing internode all of the stages of lignification can be found. The synthesis of the three types of lignins, p-hydroxyphenylpropane (H), guaiacyl (G), and syringyl (S), was investigated in situ by cross-polarization-magic angle spinning 13C-solid-state nuclear magnetic resonance, Fourier transform infrared spectroscopy, and immunocytochemical electron microscopy. The first lignin appearing in the parenchyma is of the G-type preceeding the incorporation of S nuclei in the later stages. However, in vascular bundles, typical absorption bands of S nuclei are visible in the Fourier transform infrared spectra at the earliest stage of lignification. Immunocytochemical determination of the three types of lignin in transmission electron microscopy was possible thanks to the use of antisera prepared against synthetic H, G, and the mixed GS dehydrogenative polymers (K. Ruel, O. Faix, J.P. Joseleau [1994] J Trace Microprobe Tech 12: 247-265). The specificity of the immunological probes demonstrated that there are differences in the relative temporal synthesis of the H, G, and GS lignins in the different tissues undergoing lignification. Considering the intermonomeric linkages predominating in the antigens used for the preparation of the immunological probes, the relative intensities of the labeling obtained provided, for the first time to our knowledge, information about the macromolecular nature of lignins (condensed versus noncondensed) in relation to their ultrastructural localization and development stage. PMID:9232887
UTE bi-component analysis of T2* relaxation in articular cartilage
Shao, H.; Chang, E.Y.; Pauli, C.; Zanganeh, S.; Bae, W.; Chung, C.B.; Tang, G.; Du, J.
2015-01-01
SUMMARY Objectives To determine T2* relaxation in articular cartilage using ultrashort echo time (UTE) imaging and bi-component analysis, with an emphasis on the deep radial and calcified cartilage. Methods Ten patellar samples were imaged using two-dimensional (2D) UTE and Car-Purcell-Meiboom-Gill (CPMG) sequences. UTE images were fitted with a bi-component model to calculate T2* and relative fractions. CPMG images were fitted with a single-component model to calculate T2. The high signal line above the subchondral bone was regarded as the deep radial and calcified cartilage. Depth and orientation dependence of T2*, fraction and T2 were analyzed with histopathology and polarized light microscopy (PLM), confirming normal regions of articular cartilage. An interleaved multi-echo UTE acquisition scheme was proposed for in vivo applications (n = 5). Results The short T2* values remained relatively constant across the cartilage depth while the long T2* values and long T2* fractions tended to increase from subchondral bone to the superficial cartilage. Long T2*s and T2s showed significant magic angle effect for all layers of cartilage from the medial to lateral facets, while the short T2* values and T2* fractions are insensitive to the magic angle effect. The deep radial and calcified cartilage showed a mean short T2* of 0.80 ± 0.05 ms and short T2* fraction of 39.93 ± 3.05% in vitro, and a mean short T2* of 0.93 ± 0.58 ms and short T2* fraction of 35.03 ± 4.09% in vivo. Conclusion UTE bi-component analysis can characterize the short and long T2* values and fractions across the cartilage depth, including the deep radial and calcified cartilage. The short T2* values and T2* fractions are magic angle insensitive. PMID:26382110
Magic Numbers in Small Iron Clusters: A First-Principles Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Eunja; Mohrland, Andrew B.; Weck, Philippe F.
2014-10-03
We perform ab initio spin-polarized density functional calculations of Fen aggregates with n ≤ 17 atoms to reveal the origin of the observed magic numbers, which indicate particularly high stability of clusters with 7, 13 and 15 atoms. Our results clarify the controversy regarding the ground state geometry of clusters such as Fe5and indicate that magnetism plays an important role in determining the stability and magic numbers in small iron clusters.
NASA Astrophysics Data System (ADS)
Jaroniec, Christopher P.; Macphee, Cait E.; Bajaj, Vikram S.; McMahon, Michael T.; Dobson, Christopher M.; Griffin, Robert G.
2004-01-01
Amyloid fibrils are self-assembled filamentous structures associated with protein deposition conditions including Alzheimer's disease and the transmissible spongiform encephalopathies. Despite the immense medical importance of amyloid fibrils, no atomic-resolution structures are available for these materials, because the intact fibrils are insoluble and do not form diffraction-quality 3D crystals. Here we report the high-resolution structure of a peptide fragment of the amyloidogenic protein transthyretin, TTR(105-115), in its fibrillar form, determined by magic angle spinning NMR spectroscopy. The structure resolves not only the backbone fold but also the precise conformation of the side chains. Nearly complete 13C and 15N resonance assignments for TTR(105-115) formed the basis for the extraction of a set of distance and dihedral angle restraints. A total of 76 self-consistent experimental measurements, including 41 restraints on 19 backbone dihedral angles and 35 13C-15N distances between 3 and 6 Å were obtained from 2D and 3D NMR spectra recorded on three fibril samples uniformly 13C, 15N-labeled in consecutive stretches of four amino acids and used to calculate an ensemble of peptide structures. Our results indicate that TTR(105-115) adopts an extended -strand conformation in the amyloid fibrils such that both the main- and side-chain torsion angles are close to their optimal values. Moreover, the structure of this peptide in the fibrillar form has a degree of long-range order that is generally associated only with crystalline materials. These findings provide an explanation of the unusual stability and characteristic properties of this form of polypeptide assembly.
Magical attachment: Children in magical relations with hospital clowns
2012-01-01
The aim of the present study was to achieve a theoretical understanding of several different-age children's experiences of magic relations with hospital clowns in the context of medical care, and to do so using psychological theory and a child perspective. The method used was qualitative and focused on nine children. The results showed that age was important to consider in better understanding how the children experienced the relation with the hospital clowns, how they described the magical aspects of the encounter and how they viewed the importance of clown encounters to their own well-being. The present theoretical interpretation characterized the encounter with hospital clowns as a magical safe area, an intermediate area between fantasy and reality. The discussion presented a line of reasoning concerning a magical attachment between the child and the hospital clowns, stating that this attachment: a) comprised a temporary relation; b) gave anonymity; c) entailed reversed roles; and d) created an emotional experience of boundary-transcending opportunities. PMID:22371813
Polymorphs of Theophylline Characterized by DNP Enhanced Solid-State NMR
2015-01-01
We show how dynamic nuclear polarization (DNP) enhanced solid-state NMR spectroscopy can be used to characterize polymorphs and solvates of organic solids. We applied DNP to three polymorphs and one hydrated form of the asthma drug molecule theophylline. For some forms of theophylline, sample grinding and impregnation with the radical-containing solution, which are necessary to prepare the samples for DNP, were found to induce polymorphic transitions or desolvation between some forms. We present protocols for sample preparation for solid-state magic-angle spinning (MAS) DNP experiments that avoid the polymorphic phase transitions in theophylline. These protocols include cryogrinding, grinding under inert atmosphere, and the appropriate choice of the impregnating liquid. By applying these procedures, we subsequently demonstrate that two-dimensional correlation experiments, such as 1H–13C and 1H–15N HETCOR or 13C–13C INADEQUATE, can be obtained at natural isotopic abundance in reasonable times, thus enabling more advanced structural characterization of polymorphs. PMID:26393368
Cahill, Lindsay S; Hanna, John V; Wong, Alan; Freitas, Jair C C; Yates, Jonathan R; Harris, Robin K; Smith, Mark E
2009-09-28
Solid-state (25)Mg magic angle spinning nuclear magnetic resonance (MAS NMR) data are reported from a range of organic and inorganic magnesium-oxyanion compounds at natural abundance. To constrain the determination of the NMR interaction parameters (delta(iso), chi(Q), eta(Q)) data have been collected at three external magnetic fields (11.7, 14.1 and 18.8 T). Corresponding NMR parameters have also been calculated by using density functional theory (DFT) methods using the GIPAW approach, with good correlations being established between experimental and calculated values of both chi(Q) and delta(iso). These correlations demonstrate that the (25)Mg NMR parameters are very sensitive to the structure, with small changes in the local Mg(2+) environment and the overall hydration state profoundly affecting the observed spectra. The observations suggest that (25)Mg NMR spectroscopy is a potentially potent probe for addressing some key problems in inorganic materials and of metal centres in biologically relevant molecules.
Graber, Zachary T; Kooijman, Edgar E
2013-01-01
Detailed knowledge of the degree of ionization of lipid titratable groups is important for the evaluation of protein-lipid and lipid-lipid interactions. The degree of ionization is commonly evaluated by acid-base titration, but for lipids localized in a multicomponent membrane interface this is not a suitable technique. For phosphomonoester-containing lipids such as the polyphosphoinositides, phosphatidic acid, and ceramide-1-phosphate, this is more conveniently accomplished by (31)P NMR. Here, we describe a solid-state (31)P NMR procedure to construct pH titration curves to determine the degree of ionization of phosphomonoester groups in polyphosphoinositides. This procedure can also be used, with suitable sample preparation conditions, for other important signaling lipids. Access to a solid-state, i.e., magic angle spinning, capable NMR spectrometer is assumed. The procedures described here are valid for a Bruker instrument, but can be adapted for other spectrometers as needed.
NASA Astrophysics Data System (ADS)
Hong, Mei
1999-08-01
We describe an approach to efficiently determine the backbone conformation of solid proteins that utilizes selective and extensive 13C labeling in conjunction with two-dimensional magic-angle-spinning NMR. The selective 13C labeling approach aims to reduce line broadening and other multispin complications encountered in solid-state NMR of uniformly labeled proteins while still enhancing the sensitivity of NMR spectra. It is achieved by using specifically labeled glucose or glycerol as the sole carbon source in the protein expression medium. For amino acids synthesized in the linear part of the biosynthetic pathways, [1-13C]glucose preferentially labels the ends of the side chains, while [2-13C]glycerol labels the Cα of these residues. Amino acids produced from the citric-acid cycle are labeled in a more complex manner. Information on the secondary structure of such a labeled protein was obtained by measuring multiple backbone torsion angles φ simultaneously, using an isotropic-anisotropic 2D correlation technique, the HNCH experiment. Initial experiments for resonance assignment of a selectively 13C labeled protein were performed using 15N-13C 2D correlation spectroscopy. From the time dependence of the 15N-13C dipolar coherence transfer, both intraresidue and interresidue connectivities can be observed, thus yielding partial sequential assignment. We demonstrate the selective 13C labeling and these 2D NMR experiments on a 8.5-kDa model protein, ubiquitin. This isotope-edited NMR approach is expected to facilitate the structure determination of proteins in the solid state.
Unconventional superconductivity in magic-angle graphene superlattices
NASA Astrophysics Data System (ADS)
Cao, Yuan; Fatemi, Valla; Fang, Shiang; Watanabe, Kenji; Taniguchi, Takashi; Kaxiras, Efthimios; Jarillo-Herrero, Pablo
2018-04-01
The behaviour of strongly correlated materials, and in particular unconventional superconductors, has been studied extensively for decades, but is still not well understood. This lack of theoretical understanding has motivated the development of experimental techniques for studying such behaviour, such as using ultracold atom lattices to simulate quantum materials. Here we report the realization of intrinsic unconventional superconductivity—which cannot be explained by weak electron–phonon interactions—in a two-dimensional superlattice created by stacking two sheets of graphene that are twisted relative to each other by a small angle. For twist angles of about 1.1°—the first ‘magic’ angle—the electronic band structure of this ‘twisted bilayer graphene’ exhibits flat bands near zero Fermi energy, resulting in correlated insulating states at half-filling. Upon electrostatic doping of the material away from these correlated insulating states, we observe tunable zero-resistance states with a critical temperature of up to 1.7 kelvin. The temperature–carrier-density phase diagram of twisted bilayer graphene is similar to that of copper oxides (or cuprates), and includes dome-shaped regions that correspond to superconductivity. Moreover, quantum oscillations in the longitudinal resistance of the material indicate the presence of small Fermi surfaces near the correlated insulating states, in analogy with underdoped cuprates. The relatively high superconducting critical temperature of twisted bilayer graphene, given such a small Fermi surface (which corresponds to a carrier density of about 1011 per square centimetre), puts it among the superconductors with the strongest pairing strength between electrons. Twisted bilayer graphene is a precisely tunable, purely carbon-based, two-dimensional superconductor. It is therefore an ideal material for investigations of strongly correlated phenomena, which could lead to insights into the physics of high-critical-temperature superconductors and quantum spin liquids.
Measurement and interpretation of electron angle at MABE beam stop
NASA Astrophysics Data System (ADS)
Sanford, T. W. L.; Coleman, P. D.; Poukey, J. W.
1985-02-01
The mean angle of incidence at the beam stop of a 60 kA, 7 MV annular electron beam, in the 20 kG guide field of the MABE accelerator, was determined. Radiation dose measured in TLD arrays mounted downstream of the stop is compared with the radiation dose expected using a CYLTRAN Monte Carlo simulation of the electron/photon transport in the stop as a function of incident angles and energies. All radiation profiles measured are well fit, if the electrons are assumed to be incident with a polar angle theta of 15(0) + or - 2(0). A comparison of theta with that expected from the Adler-Miller model, and a MAGIC code simulation of beam behavior at the stop enables the mean transverse beam velocity to be estimated.
Measurement of electron angle at MABE beam stop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanford, T.W.L.; Coleman, P.D.; Poukey, J.W.
1984-01-01
The mean angle of incidence at the beam stop of a 60 KA, 7 MV annular electron beam, in the 20 kg guide field of the MABE accelerator, is determined. Radiation measured in TLD arrays mounted downstream of the stop is compared with the radiation expected using a CYLTRAN Monte Carlo simulation of the electron/photon transport in the stop as a function of incident angles and energies. All radiation profiles measured are well fit, if the electrons are assumed to be incident with a polar angle theta of 15/sup 0/ +- 2/sup 0/. Comparing theta with that expected from themore » Adler-Miller model, and a MAGIC code simulation of beam behavior at the stop enables the mean transverse beam velocity to be estimated.« less
Quantum phases of quadrupolar Fermi gases in coupled one-dimensional systems
NASA Astrophysics Data System (ADS)
Huang, Wen-Min; Lahrz, M.; Mathey, L.
2014-01-01
Following the recent proposal to create quadrupolar gases [Bhongale et al., Phys. Rev. Lett. 110, 155301 (2013), 10.1103/PhysRevLett.110.155301], we investigate what quantum phases can be created in these systems in one dimension. We consider a geometry of two coupled one-dimensional (1D) systems, and derive the quantum phase diagram of ultracold fermionic atoms interacting via quadrupole-quadrupole interactions within a Tomonaga-Luttinger-liquid framework. We map out the phase diagram as a function of the distance between the two tubes and the angle between the direction of the tubes and the quadrupolar moments. The latter can be controlled by an external field. We show that there are two magic angles θB,1c and θB,2c between 0 and π /2, where the intratube quadrupolar interactions vanish and change signs. Adopting a pseudospin language with regard to the two 1D systems, the system undergoes a spin-gap transition and displays a zigzag density pattern, above θB,2c and below θB,1c. Between the two magic angles, we show that polarized triplet superfluidity and a planar spin-density-wave order compete with each other. The latter corresponds to a bond-order solid in higher dimensions. We demonstrate that this order can be further stabilized by applying a commensurate periodic potential along the tubes.
NASA Astrophysics Data System (ADS)
Tang, Zhi-Ming; Yu, Yan-Mei; Jiang, Jun; Dong, Chen-Zhong
2018-06-01
The static and dynamic electric dipole polarizabilities of the 6{s}2{}1{S}0 and 6s6p{}3{P}1o states of Yb are calculated by using the relativistic ab initio method. Focusing on the red detuning region to the 6{s}2{}1{S}0{--}6s6p{}3{P}1o transition, we find two magic wavelengths at 1035.7(2) and 612.9(2) nm for the 6{s}2{}1{S}0{--}6s6p{}3{P}1o,{M}J=0 transition and three magic wavelengths at 1517.68(6), 1036.0(3) and 858(12) nm for the 6{s}2{}1{S}0{--}6s6p{}3{P}1o,{M}J=+/- 1 transitions. Such magic wavelengths are of particular interest for attaining the state-insensitive cooling, trapping, and quantum manipulation of neutral Yb atom.
Fujiwara, T; Kobayashi, Y; Kyogoku, Y; Kataoka, K
1986-01-05
Silk fibroin with the alanyl carboxyl carbon enriched with 13C was obtained by giving a diet containing 13C-enriched alanine to the larvae of Bombyx mori and Antheraea pernyi at the fifth instar. Sericin-free fibroin fibers were prepared from cocoons, and gut was made from the liquid silk in the gland. The final 13C content was about 13%. Cross polarization/magic angle sample spinning spectra at 25 MHz and 75 MHz were measured for each sample at different orientations. Spectra were simulated using the principal values and orientations of the shielding tensor in the alanine crystal. The results indicate that the beta-structure of the fibroin may be a little more flattened than the typical pleated sheet beta-structure.
1H line width dependence on MAS speed in solid state NMR - Comparison of experiment and simulation
NASA Astrophysics Data System (ADS)
Sternberg, Ulrich; Witter, Raiker; Kuprov, Ilya; Lamley, Jonathan M.; Oss, Andres; Lewandowski, Józef R.; Samoson, Ago
2018-06-01
Recent developments in magic angle spinning (MAS) technology permit spinning frequencies of ≥100 kHz. We examine the effect of such fast MAS rates upon nuclear magnetic resonance proton line widths in the multi-spin system of β-Asp-Ala crystal. We perform powder pattern simulations employing Fokker-Plank approach with periodic boundary conditions and 1H-chemical shift tensors calculated using the bond polarization theory. The theoretical predictions mirror well the experimental results. Both approaches demonstrate that homogeneous broadening has a linear-quadratic dependency on the inverse of the MAS spinning frequency and that, at the faster end of the spinning frequencies, the residual spectral line broadening becomes dominated by chemical shift distributions and susceptibility effects even for crystalline systems.
Radiological properties of MAGIC normoxic polymer gel dosimetry
NASA Astrophysics Data System (ADS)
Aljamal, M.; Zakaria, A.; Shamsuddin, S.
2013-04-01
For a polymer gel dosimeter to be of use in radiation dosimetry, it should display water-equivalent radiological properties. In this study, the radiological properties of the MAGIC (Methacrylic and Ascorbic acid in Gelatin Initiated by Copper) normoxic polymer gels were investigated. The mass density (ρ) was determined based on Archimedes' principle. The weight fraction of elemental composition and the effective atomic number (Zeff) were calculated. The electron density was also measured with 90° scattering angle at room temperature. The linear attenuation coefficient (μ) of unirradiated gel, irradiated gel, and water were determined using Am-241 based on narrow beam geometry. Monte Carlo simulation was used to calculate the depth doses response of MAGIC gel and water for 6MV photon beam. The weight fractions of elements composition of MAGIC gel were close to that for water. The mass density was found to be 1027 ± 2 kg m-3, which is also very close to mass density of muscle tissue (1030 kg m-3) and 2.7% higher than that of water. The electron density (ρe) and atomic number (Zeff) were found to be 3.43 × 1029 e m-3 and 7.105, respectively. The electron density measured was 2.6% greater than that for water. The atomic number was very close to that for water. The prepared MAGIC gel was found to be water equivalent based on the study of element composition, mass density, electron density and atomic number. The linear attenuation coefficient of unirradiated gel was very close to that of water. The μ of irradiated gel was found to be linear with dose 2-40 Gy. The depth dose response for MAGIC gel from a 6 MV photon beam had a percentage dose difference to water of less than 1%. Therefore it satisfies the criteria to be a good polymer gel dosimeter for radiotherapy.
Detergent Optimized Membrane Protein Reconstitution in Liposomes for Solid State NMR
2015-01-01
For small helical membrane proteins, their structures are highly sensitive to their environment, and solid state NMR is a structural technique that can characterize these membrane proteins in native-like lipid bilayers and proteoliposomes. To date, a systematic method by which to evaluate the effect of the solubilizing detergent on proteoliposome preparations for solid state NMR of membrane proteins has not been presented in the literature. A set of experiments are presented aimed at determining the conditions most amenable to dialysis mediated reconstitution sample preparation. A membrane protein from M. tuberculosis is used to illustrate the method. The results show that a detergent that stabilizes the most protein is not always ideal and sometimes cannot be removed by dialysis. By focusing on the lipid and protein binding properties of the detergent, proteoliposome preparations can be readily produced, which provide double the signal-to-noise ratios for both the oriented sample and magic angle spinning solid state NMR. The method will allow more membrane protein drug targets to be structurally characterized in lipid bilayer environments. PMID:24665863
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Jian Zhi; Rommereim, Donald N.; Wind, Robert A.
2006-11-01
A simple approach is reported that yields high resolution, high sensitivity ¹H NMR spectra of biofluids with limited mass supply. This is achieved by spinning a capillary sample tube containing a biofluid at the magic angle at a frequency of about 80Hz. A 2D pulse sequence called ¹H PASS is then used to produce a high-resolution ¹H NMR spectrum that is free from magnetic susceptibility induced line broadening. With this new approach a high resolution ¹H NMR spectrum of biofluids with a volume less than 1.0 µl can be easily achieved at a magnetic field strength as low as 7.05T.more » Furthermore, the methodology facilitates easy sample handling, i.e., the samples can be directly collected into inexpensive and disposable capillary tubes at the site of collection and subsequently used for NMR measurements. In addition, slow magic angle spinning improves magnetic field shimming and is especially suitable for high throughput investigations. In this paper first results are shown obtained in a magnetic field of 7.05T on urine samples collected from mice using a modified commercial NMR probe.« less
Somashekar, B S; Amin, Anita G; Rithner, Christopher D; Troudt, JoLynn; Basaraba, Randall; Izzo, Angelo; Crick, Dean C; Chatterjee, Delphi
2011-09-02
A crucial and distinctive feature of tuberculosis infection is that Mycobacterium tuberculosis (Mtb) resides in granulomatous lesion at various stages of disease development and necrosis, an aspect that is little understood. We used a novel approach, applying high resolution magic angle spinning nuclear magnetic resonance spectroscopy (HRMAS NMR) directly to infected tissues, allowing us to study the development of tuberculosis granulomas in guinea pigs in an untargeted manner. Significant up-regulation of lactate, alanine, acetate, glutamate, oxidized and the reduced form of glutathione, aspartate, creatine, phosphocholine, glycerophosphocholine, betaine, trimethylamine N-oxide, myo-inositol, scyllo-inositol, and dihydroxyacetone was clearly visualized and was identified as the infection progressed. Concomitantly, phosphatidylcholine was down-regulated. Principal component analysis of NMR data revealed clear group separation between infected and uninfected tissues. These metabolites are suggestive of utilization of alternate energy sources by the infiltrating cells that generate much of the metabolites in the increasingly necrotic and hypoxic developing granuloma through the glycolytic, pentose phosphate, and tricarboxylic acid pathways. The most relevant changes seen are, surprisingly, very similar to metabolic changes seen in cancer during tumor development.
Q(n) species distribution in K2O.2SiO2 glass by 29Si magic angle flipping NMR.
Davis, Michael C; Kaseman, Derrick C; Parvani, Sahar M; Sanders, Kevin J; Grandinetti, Philip J; Massiot, Dominique; Florian, Pierre
2010-05-06
Two-dimensional magic angle flipping (MAF) was employed to measure the Q((n)) distribution in a (29)Si-enriched potassium disilicate glass (K(2)O.2SiO(2)). Relative concentrations of [Q((4))] = 7.2 +/- 0.3%, [Q((3))] = 82.9 +/- 0.1%, and [Q((2))] = 9.8 +/- 0.6% were obtained. Using the thermodynamic model for Q((n)) species disproportionation, these relative concentrations yield an equilibrium constant k(3) = 0.0103 +/- 0.0008, indicating, as expected, that the Q((n)) species distribution is close to binary in the potassium disilicate glass. A Gaussian distribution of isotropic chemical shifts was observed for each Q((n)) species with mean values of -82.74 +/- 0.03, -91.32 +/- 0.01, and -101.67 +/- 0.02 ppm and standard deviations of 3.27 +/- 0.03, 4.19 +/- 0.01, and 5.09 +/- 0.03 ppm for Q((2)), Q((3)), and Q((4)), respectively. Additionally, nuclear shielding anisotropy values of zeta =-85.0 +/- 1.3 ppm, eta = 0.48 +/- 0.02 for Q((2)) and zeta = -74.9 +/- 0.2 ppm, eta = 0.03 +/- 0.01 for Q((3)) were observed in the potassium disilicate glass.
NASA Astrophysics Data System (ADS)
Jaroniec, Christopher P.; Tounge, Brett A.; Rienstra, Chad M.; Herzfeld, Judith; Griffin, Robert G.
2000-09-01
Heteronuclear dipolar recoupling with rotational-echo double-resonance (REDOR) is investigated in the rapid magic-angle spinning regime, where radiofrequency irradiation occupies a significant fraction of the rotor period (10-60%). We demonstrate, in two model 13C-15N spin systems, [1-13C, 15N] and [2-13C, 15N]glycine, that REDOR ΔS/S0 curves acquired at high MAS rates and relatively low recoupling fields are nearly identical to the ΔS/S0 curve expected for REDOR with ideal δ-function pulses. The only noticeable effect of the finite π pulse length on the recoupling is a minor scaling of the dipolar oscillation frequency. Experimental results are explained using both numerical calculations and average Hamiltonian theory, which is used to derive analytical expressions for evolution under REDOR recoupling sequences with different π pulse phasing schemes. For xy-4 and extensions thereof, finite pulses scale only the dipolar oscillation frequency by a well-defined factor. For other phasing schemes (e.g., xx-4 and xx¯-4) both the frequency and amplitude of the oscillation are expected to change.
Luzgin, Mikhail V; Stepanov, Alexander G; Arzumanov, Sergei S; Rogov, Vladimir A; Parmon, Valentin N; Wang, Wei; Hunger, Michael; Freude, Dieter
2005-12-23
By using 13C MAS NMR spectroscopy (MAS = magic angle spinning), the conversion of selectively 13C-labeled n-butane on zeolite H-ZSM-5 at 430-470 K has been demonstrated to proceed through two pathways: 1) scrambling of the selective 13C-label in the n-butane molecule, and 2) oligomerization-cracking and conjunct polymerization. The latter processes (2) produce isobutane and propane simultaneously with alkyl-substituted cyclopentenyl cations and condensed aromatic compounds. In situ 13C MAS NMR and complementary ex situ GC-MS data provided evidence for a monomolecular mechanism of the 13C-label scrambling, whereas both isobutane and propane are formed through intermolecular pathways. According to 13C MAS NMR kinetic measurements, both pathways proceed with nearly the same activation energies (E(a) = 75 kJ mol(-1) for the scrambling and 71 kJ mol(-1) for isobutane and propane formation). This can be rationalized by considering the intermolecular hydride transfer between a primarily initiated carbenium ion and n-butane as being the rate-determining stage of the n-butane conversion on zeolite H-ZSM-5.
Kraus, Jodi; Gupta, Rupal; Yehl, Jenna; Lu, Manman; Case, David A; Gronenborn, Angela M; Akke, Mikael; Polenova, Tatyana
2018-03-22
Magic angle spinning NMR spectroscopy is uniquely suited to probe the structure and dynamics of insoluble proteins and protein assemblies at atomic resolution, with NMR chemical shifts containing rich information about biomolecular structure. Access to this information, however, is problematic, since accurate quantum mechanical calculation of chemical shifts in proteins remains challenging, particularly for 15 N H . Here we report on isotropic chemical shift predictions for the carbohydrate recognition domain of microcrystalline galectin-3, obtained from using hybrid quantum mechanics/molecular mechanics (QM/MM) calculations, implemented using an automated fragmentation approach, and using very high resolution (0.86 Å lactose-bound and 1.25 Å apo form) X-ray crystal structures. The resolution of the X-ray crystal structure used as an input into the AF-NMR program did not affect the accuracy of the chemical shift calculations to any significant extent. Excellent agreement between experimental and computed shifts is obtained for 13 C α , while larger scatter is observed for 15 N H chemical shifts, which are influenced to a greater extent by electrostatic interactions, hydrogen bonding, and solvation.
A permanent MRI magnet for magic angle imaging having its field parallel to the poles.
McGinley, John V M; Ristic, Mihailo; Young, Ian R
2016-10-01
A novel design of open permanent magnet is presented, in which the magnetic field is oriented parallel to the planes of its poles. The paper describes the methods whereby such a magnet can be designed with a field homogeneity suitable for Magnetic Resonance Imaging (MRI). Its primary purpose is to take advantage of the Magic Angle effect in MRI of human extremities, particularly the knee joint, by being capable of rotating the direction of the main magnetic field B0 about two orthogonal axes around a stationary subject and achieve all possible angulations. The magnet comprises a parallel pair of identical profiled arrays of permanent magnets backed by a flat steel yoke such that access in lateral directions is practical. The paper describes the detailed optimization procedure from a target 150mm DSV to the achievement of a measured uniform field over a 130mm DSV. Actual performance data of the manufactured magnet, including shimming and a sample image, is presented. The overall magnet system mounting mechanism is presented, including two orthogonal axes of rotation of the magnet about its isocentre. Copyright © 2016 Elsevier Inc. All rights reserved.
Sensitivity enhancement by multiple-contact cross-polarization under magic-angle spinning.
Raya, J; Hirschinger, J
2017-08-01
Multiple-contact cross-polarization (MC-CP) is applied to powder samples of ferrocene and l-alanine under magic-angle spinning (MAS) conditions. The method is described analytically through the density matrix formalism. The combination of a two-step memory function approach and the Anderson-Weiss approximation is found to be particularly useful to derive approximate analytical solutions for single-contact Hartmann-Hahn CP (HHCP) and MC-CP dynamics under MAS. We show that the MC-CP sequence requiring no pulse-shape optimization yields higher polarizations at short contact times than optimized adiabatic passage through the HH condition CP (APHH-CP) when the MAS frequency is comparable to the heteronuclear dipolar coupling, i.e., when APHH-CP through a single sideband matching condition is impossible or difficult to perform. It is also shown that the MC-CP sideband HH conditions are generally much broader than for single-contact HHCP and that efficient polarization transfer at the centerband HH condition can be reintroduced by rotor-asynchronous multiple equilibrations-re-equilibrations with the proton spin bath. Boundary conditions for the successful use of the MC-CP experiment when relying on spin-lattice relaxation for repolarization are also examined. Copyright © 2017 Elsevier Inc. All rights reserved.
Ucieklak, Karolina; Koj, Sabina; Pawelczyk, Damian; Niedziela, Tomasz
2017-11-29
The high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (HR-MAS NMR) analysis of Plesiomonas shigelloides 78/89 lipopolysaccharide directly on bacteria revealed the characteristic structural features of the O -acetylated polysaccharide in the NMR spectra. The O -antigen profiles were unique, yet the pattern of signals in the, spectra along with their ¹H, 13 C chemical shift values, resembled these of d-galactan I of Klebsiella pneumoniae . The isolated O- specific polysaccharide (O-PS) of P. shigelloides strain CNCTC 78/89 was investigated by ¹H and 13 C NMR spectroscopy, mass spectrometry and chemical methods. The analyses demonstrated that the P. shigelloides 78/89 O- PS is composed of →3)-α-d-Gal p -(1→3)-β-d-Gal f 2OAc-(1→ disaccharide repeating units. The O- acetylation was incomplete and resulted in a microheterogeneity of the O- antigen. This O- acetylation generates additional antigenic determinants within the O- antigen, forms a new chemotype, and contributes to the epitopes recognized by the O- serotype specific antibodies. The serological cross-reactivities further confirmed the inter-specific structural similarity of these O- antigens.
Rooney, O M; Troke, J; Nicholson, J K; Griffin, J L
2003-11-01
High-resolution magic angle spinning (HRMAS) (1)H NMR spectroscopy is ideal for monitoring the metabolic environment within tissues, particularly when spectra are weighted by physical properties such as T(1) and T(2) relaxation times and apparent diffusion coefficients (ADCs). In this study, spectral-editing using T(1) and T(2) relaxation times and ADCs at variable diffusion times was used in conjunction with HRMAS (1)H NMR spectroscopy at 14.1 T in liver tissue. To enhance the sensitivity of ADC measurements to low molecular weight metabolites a T(2) spin echo was included in a standard stimulated gradient spin-echo sequence. Fatty liver induced in rats by chronic orotic acid feeding was investigated using this modified sequence. An increase in the combined ADC for the co-resonant peaks glucose, betaine, and TMAO during fatty liver disease was detected (ADCs = 0.60 +/- 0.11 and 0.35 +/- 0.1 * 10(-9) m(2)s(-1) (n = 3) for rats fed with and without orotic acid), indicative of a reduction in glucose and betaine and an increase in TMAO. Copyright 2003 Wiley-Liss, Inc.
Nuclear relaxation and critical fluctuations in membranes containing cholesterol
NASA Astrophysics Data System (ADS)
McConnell, Harden
2009-04-01
Nuclear resonance frequencies in bilayer membranes depend on lipid composition. Our calculations describe the combined effects of composition fluctuations and diffusion on nuclear relaxation near a miscibility critical point. Both tracer and gradient diffusion are included. The calculations involve correlation functions and a correlation length ξ =ξ0T/(T -Tc), where T -Tc is temperature above the critical temperature and ξ0 is a parameter of molecular length. Several correlation functions are examined, each of which is related in some degree to the Ising model correlation function. These correlation functions are used in the calculation of transverse deuterium relaxation rates in magic angle spinning and quadrupole echo experiments. The calculations are compared with experiments that report maxima in deuterium and proton nuclear relaxation rates at the critical temperature [Veatch et al., Proc. Nat. Acad. Sci. U.S.A. 104, 17650 (2007)]. One Ising-model-related correlation function yields a maximum 1/T2 relaxation rate at the critical temperature for both magic angle spinning and quadrupole echo experiments. The calculated rates at the critical temperature are close to the experimental rates. The rate maxima involve relatively rapid tracer diffusion in a static composition gradient over distances of up to 10-100 nm.
Sensitivity enhancement by multiple-contact cross-polarization under magic-angle spinning
NASA Astrophysics Data System (ADS)
Raya, J.; Hirschinger, J.
2017-08-01
Multiple-contact cross-polarization (MC-CP) is applied to powder samples of ferrocene and L-alanine under magic-angle spinning (MAS) conditions. The method is described analytically through the density matrix formalism. The combination of a two-step memory function approach and the Anderson-Weiss approximation is found to be particularly useful to derive approximate analytical solutions for single-contact Hartmann-Hahn CP (HHCP) and MC-CP dynamics under MAS. We show that the MC-CP sequence requiring no pulse-shape optimization yields higher polarizations at short contact times than optimized adiabatic passage through the HH condition CP (APHH-CP) when the MAS frequency is comparable to the heteronuclear dipolar coupling, i.e., when APHH-CP through a single sideband matching condition is impossible or difficult to perform. It is also shown that the MC-CP sideband HH conditions are generally much broader than for single-contact HHCP and that efficient polarization transfer at the centerband HH condition can be reintroduced by rotor-asynchronous multiple equilibrations-re-equilibrations with the proton spin bath. Boundary conditions for the successful use of the MC-CP experiment when relying on spin-lattice relaxation for repolarization are also examined.
Hu, Jun; Fu, Riqiang; Cross, Timothy A
2007-07-01
The M(2) proton channel plays a vital role in the life cycle of the influenza A virus. His(37), the key residue in the M(2) transmembrane domain (M(2)-TMD), plays a central role in the proton conductance mechanism. The anti-influenza drug, amantadine, inhibits the channel activity through binding to the pore of the M(2) channel. The nuclear spin relaxation data and polarization inversion spin exchange at the magic angle spectra show that both the polypeptide backbone and His(37) side chain are more constrained in the presence of amantadine. Using (15)N cross polarization magic-angle spinning NMR spectroscopy, the protonation of His(37) of M(2)-TMD in lipid bilayers was monitored in the absence and presence of amantadine as a function of pH. Binding amantadine lowers the His(37) pK(a) values by approximately three orders of magnitude compared with the first pK(a) of histidine in amantadine-free M(2)-TMD. Amantadine's influence on the His(37) chemical properties suggests a novel mechanism by which amantadine may inhibit proton conductance.
Measurement and interpretation of electron angle at MABE beam stop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanford, T.W.L.; Coleman, P.D.; Poukey, J.W.
1985-02-01
The mean angle of incidence at the beam stop of a 60 kA, 7 MV annular electron beam, in the 20 kG guide field of the MABE accelerator, is determined. Radiation dose measured in TLD arrays mounted downstream of the stop is compared with the radiation dose expected using a CYLTRAN Monte Carlo simulation of the electron/photon transport in the stop as a function of incident angles and energies. All radiation profiles measured are well fit, if the electrons are assumed to be incident with a polar angle theta of 15/sup 0/ +- 2/sup 0/. Comparing this theta with thatmore » expected from the Adler-Miller model, and a MAGIC code simulation of beam behavior at the stop enables the mean transverse beam velocity to be estimated.« less
De Paëpe, Gaël; Lewandowski, Józef R; Griffin, Robert G
2008-03-28
We introduce a family of solid-state NMR pulse sequences that generalizes the concept of second averaging in the modulation frame and therefore provides a new approach to perform magic angle spinning dipolar recoupling experiments. Here, we focus on two particular recoupling mechanisms-cosine modulated rotary resonance (CMpRR) and cosine modulated recoupling with isotropic chemical shift reintroduction (COMICS). The first technique, CMpRR, is based on a cosine modulation of the rf phase and yields broadband double-quantum (DQ) (13)C recoupling using >70 kHz omega(1,C)/2pi rf field for the spinning frequency omega(r)/2=10-30 kHz and (1)H Larmor frequency omega(0,H)/2pi up to 900 MHz. Importantly, for p>or=5, CMpRR recouples efficiently in the absence of (1)H decoupling. Extension to lower p values (3.5
Characterization of lithium coordination sites with magic-angle spinning NMR
NASA Astrophysics Data System (ADS)
Haimovich, A.; Goldbourt, A.
2015-05-01
Lithium, in the form of lithium carbonate, is one of the most common drugs for bipolar disorder. Lithium is also considered to have an effect on many other cellular processes hence it possesses additional therapeutic as well as side effects. In order to quantitatively characterize the binding mode of lithium, it is required to identify the interacting species and measure their distances from the metal center. Here we use magic-angle spinning (MAS) solid-state NMR to study the binding site of lithium in complex with glycine and water (LiGlyW). Such a compound is a good enzyme mimetic since lithium is four-coordinated to one water molecule and three carboxylic groups. Distance measurements to carbons are performed using a 2D transferred echo double resonance (TEDOR) MAS solid-state NMR experiment, and water binding is probed by heteronuclear high-resolution proton-lithium and proton-carbon correlation (wPMLG-HETCOR) experiments. Both HETCOR experiments separate the main complex from impurities and non-specifically bound lithium species, demonstrating the sensitivity of the method to probe the species in the binding site. Optimizations of the TEDOR pulse scheme in the case of a quadrupolar nucleus with a small quadrupole coupling constant show that it is most efficient when pulses are positioned on the spin-1/2 (carbon-13) nucleus. Since the intensity of the TEDOR signal is not normalized, careful data analysis that considers both intensity and dipolar oscillations has to be performed. Nevertheless we show that accurate distances can be extracted for both carbons of the bound glycine and that these distances are consistent with the X-ray data and with lithium in a tetrahedral environment. The lithium environment in the complex is very similar to the binding site in inositol monophosphatase, an enzyme associated with bipolar disorder and the putative target for lithium therapy. A 2D TEDOR experiment applied to the bacterial SuhB gene product of this enzyme was designed to probe direct correlations between lithium, the enzyme inhibitor, and the closest carboxyl carbons of the binding site. At this point, the chemical shift of the bound carboxyl groups in this 29 kDa enzyme could be determined.
Wang, Nian; Kahn, David; Badar, Farid; Xia, Yang
2014-01-01
Purpose To investigate the molecular origin of an unusual low-intensity layer in the deep region of articular cartilage as seen in MRI when the tissue is imaged under compression and oriented at the magic angle. Materials and Methods Microscopic MRI (μMRI) T2 and T1ρ experiments were carried out for both native and degraded (treated with trypsin) 18 specimens. The glycosaminoglycan (GAG) concentrations in the specimens were quantified by both sodium ICP-OES and μMRI Gd(DTPA)2--contrast methods. The mechanical modulus of the specimens was also measured. Results Native tissue shows no load-induced layer, while the trypsin-degraded tissue shows clearly the low-intensity line at the deep part of tissue. The GAG reductions are confirmed by the sodium ICP-OES (from 81.7 ± 5.4 mg/ml to 9.2 ± 3.4 mg/ml), MRI GAG quantification (from 72.4 ± 6.7 mg/ml to 11.2 ± 2.9 mg/ml). The modulus reduction is confirmed by biomechanics (from 4.3 ± 0.7 MPa to 0.3 ± 0.1 MPa). Conclusion Both T2 and T1ρ profiles in native and degraded cartilage show strongly strain-, depth-, and angle-dependent using high resolution MRI. The GAG reduction is responsible for the visualization of a low-intensity layer in deep cartilage when it is loaded and orientated at 55°. PMID:24833266
Determination of magic wavelengths for the 7 s 1/2 2S -7 p 3/2, 1/2 2P transitions in Fr
NASA Astrophysics Data System (ADS)
Singh, Sukhjit; Sahoo, B. K.; Arora, Bindiya
2016-08-01
Magic wavelengths (λmagic) for the 7 S1 /2-7 P1 /2 ,3 /2 transitions (D lines) in Fr were reported by Dammalapati et al. [U. Dammalapati, K. Harada, and Y. Sakemi, Phys. Rev. A 93, 043407 (2016), 10.1103/PhysRevA.93.043407]. These λmagic were determined by plotting dynamic polarizabilities (α ) of the involved states with the above transitions against a desired range of wavelengths. Electric dipole (E1) matrix elements listed in [J. E. Sansonetti, J. Phys. Chem. Ref. Data 36, 497 (2007), 10.1063/1.2719251], from the measured lifetimes of the 7 P1 /2 ,3 /2 states and from the calculations considering core-polarization effects in the relativistic Hartree-Fock (HFR) method, were used to determine α . However, contributions from core correlation effects and from the E1 matrix elements of the 7 P -7 S , 7 P -8 S , and 7 P -6 D transitions to α of the 7 P states were ignored. In this work, we demonstrate importance of these contributions and improve accuracies of α further by replacing the E1 matrix elements taken from the HFR method by the values obtained employing relativistic coupled-cluster theory. Our static α are found to be in excellent agreement with the other available theoretical results, whereas substituting the E1 matrix elements used by Dammalapati et al. gives very small α values for the 7 P states. Owing to this, we find disagreement in λmagic reported by Dammalapati et al. for linearly polarized light, especially at wavelengths close to the D lines and in the infrared region. As a consequence, a λmagic reported at 797.75 nm which was seen supporting a blue detuned trap in their work is now estimated at 771.03 nm and is supporting a red detuned trap. Also, none of our results match with the earlier results for circularly polarized light. Moreover, our static values of α will be very useful for guiding experiments to carry out their measurements.
Magical thinking in narratives of adolescent cutters.
Gregory, Robert J; Mustata, Georgian T
2012-08-01
Adolescents sometimes cut themselves to relieve distress; however, the mechanism is unknown. Previous studies have linked self-injury to deficits in processing emotions symbolically through language. To investigate expressive language of adolescent cutters, the authors analyzed 100 narratives posted on the Internet. Most narratives (n = 66) displayed idiosyncratic use of language indicating poor differentiation between the real and the symbolic, such as blood substituting for negative emotions, which can then be released from the self; or emotional pain magically transforming into physical pain, which can then be managed. This kind of magical thinking correlated with cutting to relieve distress, to see blood, and to feel pain, but negatively correlated with complex representation of people, understanding social causality, and self-esteem. The results suggest that magical thinking represents a pre-symbolic mental state that processes and organizes distressing emotions through body schema. Magical thinking thus provides a plausible mechanism for why cutting works. Copyright © 2012 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
Contextuality and Wigner-function negativity in qubit quantum computation
NASA Astrophysics Data System (ADS)
Raussendorf, Robert; Browne, Dan E.; Delfosse, Nicolas; Okay, Cihan; Bermejo-Vega, Juan
2017-05-01
We describe schemes of quantum computation with magic states on qubits for which contextuality and negativity of the Wigner function are necessary resources possessed by the magic states. These schemes satisfy a constraint. Namely, the non-negativity of Wigner functions must be preserved under all available measurement operations. Furthermore, we identify stringent consistency conditions on such computational schemes, revealing the general structure by which negativity of Wigner functions, hardness of classical simulation of the computation, and contextuality are connected.
Transforming White Light into Rainbows: Segmentation Strategies for Successful School Tax Elections
ERIC Educational Resources Information Center
Senden, J. Bradford; Lifto, Don E.
2009-01-01
In the late 1600s, British physicist Sir Isaac Newton first demonstrated refraction and dispersion in a triangular prism. He discovered that a prism could decompose white light into a spectrum. Hold a prism up to the light at the correct angle and white light magically splits into vivid colors of the rainbow! So what do prisms and rainbows have to…
Equbal, Asif; Leskes, Michal; Nielsen, Niels Chr; Madhu, P K; Vega, Shimon
2016-02-01
We present a bimodal Floquet analysis of the recently introduced refocused continuous wave (rCW) solid-state NMR heteronuclear dipolar decoupling method and compare it with the similar looking X-inverse X (XiX) scheme. The description is formulated in the rf interaction frame and is valid for both finite and ideal π pulse rCW irradiation that forms the refocusing element in the rCW scheme. The effective heteronuclear dipolar coupling Hamiltonian up to first order is described. The analysis delineates the difference between the two sequences to different orders of their Hamiltonians for both diagonal and off-diagonal parts. All the resonance conditions observed in experiments and simulations have been characterised and their influence on residual line broadening is highlighted. The theoretical comparison substantiates the numerical simulations and experimental results to a large extent. Copyright © 2016 Elsevier Inc. All rights reserved.
Foston, Marcus; Katahira, Rui; Gjersing, Erica; Davis, Mark F; Ragauskas, Arthur J
2012-02-15
The average spatial dimensions between major biopolymers within the plant cell wall can be resolved using a solid-state NMR technique referred to as a (13)C cross-polarization (CP) SELDOM (selectively by destruction of magnetization) with a mixing time delay for spin diffusion. Selective excitation of specific aromatic lignin carbons indicates that lignin is in close proximity to hemicellulose followed by amorphous and finally crystalline cellulose. (13)C spin diffusion time constants (T(SD)) were extracted using a two-site spin diffusion theory developed for (13)C nuclei under magic angle spinning (MAS) conditions. These time constants were then used to calculate an average lower-limit spin diffusion length between chemical groups within the plant cell wall. The results on untreated (13)C enriched corn stover stem reveal that the lignin carbons are, on average, located at distances ∼0.7-2.0 nm from the carbons in hemicellulose and cellulose, whereas the pretreated material had larger separations.
Solid State NMR Studies of the Aluminum Hydride Phases
NASA Technical Reports Server (NTRS)
Hwang, Son-Jong; Bowman, R. C., Jr.; Graetz, Jason; Reilly, J. J.
2006-01-01
Several solid state NMR techniques including magic-angle-spinning (MAS) and multiple-quantum (MQ) MAS experiments have been used to characterize various AlH3 samples. MAS-NMR spectra for the 1H and 27Al nuclei have been obtained on a variety of AlH3 samples that include the (beta)- and (gamma)- phases as well as the most stable (alpha)-phase. While the dominant components in these NMR spectra correspond to the aluminum hydride phases, other species were found that include Al metal, molecular hydrogen (H2), as well as peaks that can be assigned to Al-O species in different configurations. The occurrence and concentration of these extraneous components are dependent upon the initial AlH3 phase composition and preparation procedures. Both the (beta)-AlH3 and (gamma)-AlH3 phases were found to generate substantial amounts of Al metal when the materials were stored at room temperature while the (alpha)-phase materials do not exhibit these changes.
Kobayashi, Takeshi; Perras, Frederic A.; Goh, Tian Wei; ...
2016-06-06
Ultrawideline dynamic nuclear polarization (DNP)-enhanced 195Pt solid-state NMR (SSNMR) spectroscopy and theoretical calculations are used to determine the coordination of atomic Pt species supported within the pores of metal–organic frameworks (MOFs). The 195Pt SSNMR spectra, with breadths reaching 10,000 ppm, were obtained by combining DNP with broadbanded cross-polarization and CPMG acquisition. Although the DNP enhancements in static samples are lower than those typically observed under magic-angle spinning conditions, the presented measurements would be very challenging using the conventional SSNMR methods. The DNP-enhanced ultrawideline NMR spectra served to separate signals from cis- and trans-coordinated atomic Pt 2+ species supported on themore » UiO-66-NH 2 MOF. Here, the data revealed a dominance of kinetic effects in the formation of Pt 2+ complexes and the thermodynamic effects in their reduction to nanoparticles. A single cis-coordinated Pt 2+ complex was confirmed in MOF-253.« less
Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR
NASA Astrophysics Data System (ADS)
Simmons, Thomas J.; Mortimer, Jenny C.; Bernardinelli, Oigres D.; Pöppler, Ann-Christin; Brown, Steven P.; Deazevedo, Eduardo R.; Dupree, Ray; Dupree, Paul
2016-12-01
Exploitation of plant lignocellulosic biomass is hampered by our ignorance of the molecular basis for its properties such as strength and digestibility. Xylan, the most prevalent non-cellulosic polysaccharide, binds to cellulose microfibrils. The nature of this interaction remains unclear, despite its importance. Here we show that the majority of xylan, which forms a threefold helical screw in solution, flattens into a twofold helical screw ribbon to bind intimately to cellulose microfibrils in the cell wall. 13C solid-state magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, supported by in silico predictions of chemical shifts, shows both two- and threefold screw xylan conformations are present in fresh Arabidopsis stems. The twofold screw xylan is spatially close to cellulose, and has similar rigidity to the cellulose microfibrils, but reverts to the threefold screw conformation in the cellulose-deficient irx3 mutant. The discovery that induced polysaccharide conformation underlies cell wall assembly provides new principles to understand biomass properties.
Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR.
Simmons, Thomas J; Mortimer, Jenny C; Bernardinelli, Oigres D; Pöppler, Ann-Christin; Brown, Steven P; deAzevedo, Eduardo R; Dupree, Ray; Dupree, Paul
2016-12-21
Exploitation of plant lignocellulosic biomass is hampered by our ignorance of the molecular basis for its properties such as strength and digestibility. Xylan, the most prevalent non-cellulosic polysaccharide, binds to cellulose microfibrils. The nature of this interaction remains unclear, despite its importance. Here we show that the majority of xylan, which forms a threefold helical screw in solution, flattens into a twofold helical screw ribbon to bind intimately to cellulose microfibrils in the cell wall. 13 C solid-state magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, supported by in silico predictions of chemical shifts, shows both two- and threefold screw xylan conformations are present in fresh Arabidopsis stems. The twofold screw xylan is spatially close to cellulose, and has similar rigidity to the cellulose microfibrils, but reverts to the threefold screw conformation in the cellulose-deficient irx3 mutant. The discovery that induced polysaccharide conformation underlies cell wall assembly provides new principles to understand biomass properties.
Zilka, Miri; Dudenko, Dmytro V; Hughes, Colan E; Williams, P Andrew; Sturniolo, Simone; Franks, W Trent; Pickard, Chris J; Yates, Jonathan R; Harris, Kenneth D M; Brown, Steven P
2017-10-04
This paper explores the capability of using the DFT-D ab initio random structure searching (AIRSS) method to generate crystal structures of organic molecular materials, focusing on a system (m-aminobenzoic acid; m-ABA) that is known from experimental studies to exhibit abundant polymorphism. Within the structural constraints selected for the AIRSS calculations (specifically, centrosymmetric structures with Z = 4 for zwitterionic m-ABA molecules), the method is shown to successfully generate the two known polymorphs of m-ABA (form III and form IV) that have these structural features. We highlight various issues that are encountered in comparing crystal structures generated by AIRSS to experimental powder X-ray diffraction (XRD) data and solid-state magic-angle spinning (MAS) NMR data, demonstrating successful fitting for some of the lowest energy structures from the AIRSS calculations against experimental low-temperature powder XRD data for known polymorphs of m-ABA, and showing that comparison of computed and experimental solid-state NMR parameters allows different hydrogen-bonding motifs to be discriminated.
Less Is More: "Good Management Begins with Good People"
ERIC Educational Resources Information Center
Vicars, Dennis
2012-01-01
In so many areas of early care and education, whether for profit, non profit, state agencies, or any number of other environments for young children, educators keep looking for the magical "one thing" that will make the difference. Surely there must be some secret sauce or magic formula. The "one thing" is simply this: early care and education…
Mineralization dynamics of metakaolin-based alkali-activated cements
Gevaudan, Juan Pablo; Campbell, Kate M.; Kane, Tyler; Shoemaker, Richard K.; Srubar, Wil V.
2017-01-01
This paper investigates the early-age dynamics of mineral formation in metakaolin-based alkali-activated cements. The effects of silica availability and alkali content on mineral formation were investigated via X-ray diffraction and solid-state 29Si magic-angle spinning nuclear magnetic resonance spectroscopy at 2, 7, 14, and 28 days. Silica availability was controlled by using either liquid- (immediate) or solid-based (gradual) sodium silicate supplements. Mineral (zeolitic) and amorphous microstructural characteristics were correlated with observed changes in bulk physical properties, namely shrinkage, density, and porosity. Results demonstrate that, while alkali content controls the mineralization in immediately available silica systems, alkali content controls the silica availability in gradually available silica systems. Immediate silica availability generally leads to a more favorable mineral formation as demonstrated by correlated improvements in bulk physical properties.
Al3+ environments in nanostructured ZnAl2O4 and their effects on the luminescence properties.
da Silva, Alison A; Gonçalves, Agnaldo S; Davolos, Marian R; Santagneli, Silvia H
2008-11-01
Single-phase zinc aluminate (ZnAl2O4) with the spinel structure was successfully obtained by the Pechini method at different calcining temperatures for 4 hours. The nanoparticles are highly crystalline with no impurities related to ZnO or Al2O3 residues. The microstructural environment of aluminium ions changes with heat treatment temperature, as observed by Fourier transform infrared spectroscopy. The spinel structure might present two different AlO6 sites as evidenced by 27Al solid-state magic-angle-spinning nuclear magnetic resonance spectra. Some AlO4 sites were also detected for samples calcined at a temperature lower than 900 degrees C. The photoluminescence spectra show that the emission can be tuned depending on the calcining temperature. This effect was discussed on the basis of symmetry and oxygen vacancies.
Revisiting HgCl 2: A solution- and solid-state 199Hg NMR and ZORA-DFT computational study
NASA Astrophysics Data System (ADS)
Taylor, R. E.; Carver, Colin T.; Larsen, Ross E.; Dmitrenko, Olga; Bai, Shi; Dybowski, C.
2009-07-01
The 199Hg chemical-shift tensor of solid HgCl 2 was determined from spectra of polycrystalline materials, using static and magic-angle spinning (MAS) techniques at multiple spinning frequencies and field strengths. The chemical-shift tensor of solid HgCl 2 is axially symmetric ( η = 0) within experimental error. The 199Hg chemical-shift anisotropy (CSA) of HgCl 2 in a frozen solution in dimethylsulfoxide (DMSO) is significantly smaller than that of the solid, implying that the local electronic structure in the solid is different from that of the material in solution. The experimental chemical-shift results (solution and solid state) are compared with those predicted by density functional theory (DFT) calculations using the zeroth-order regular approximation (ZORA) to account for relativistic effects. 199Hg spin-lattice relaxation of HgCl 2 dissolved in DMSO is dominated by a CSA mechanism, but a second contribution to relaxation arises from ligand exchange. Relaxation in the solid state is independent of temperature, suggesting relaxation by paramagnetic impurities or defects.
Magic wavelengths of the Ca+ ion for circularly polarized light
NASA Astrophysics Data System (ADS)
Jiang, Jun; Jiang, Li; Wang, Xia; Zhang, Deng-Hong; Xie, Lu-You; Dong, Chen-Zhong
2017-10-01
The dynamic dipole polarizabilities of low-lying states of Ca+ ions for circularly polarized light are calculated by using the relativistic configuration interaction plus core polarization approach. The magic wavelengths are determined for the magnetic sublevel transitions 4 s1/2 ,m→4 pj',m' and 4 s1/2 ,m→3 dj',m' with total angular momentum j' and its components m'. In contrast to the case of linearly polarized light, several additional magic wavelengths are found for these transitions. We suggest that accurate measurements on the magic wavelengths near 851 nm for the 4 s1/2 ,m→4 p3/2 ,m' transitions can be used to determine the ratio of the oscillator strengths for the 4 p3/2→3 d3/2 and 4 p3/2→3 d5/2 transitions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ok, Salim; Hoyt, David W.; Andersen, Amity
Characterization and modeling of the molecular-level behavior of simple hydrocarbon gases, such as methane, in the presence of both nonporous and nanoporous mineral matrices allows for predictive understanding of important processes in engineered and natural systems. In this study, we observed changes in local electromagnetic environments of the carbon atoms in methane under conditions of high pressure (up to 130 bar) and moderate temperature (up to 346 K) with 13C magic-angle spinning (MAS) NMR spectroscopy while the methane gas was mixed with two model solid substrates: a fumed nonporous, 12 nm particle size silica and a mesoporous silica with 200more » nm particle size and 4 nm average pore diameter. Examination of the interactions between methane and the silica systems over temperatures and pressures that include the supercritical regime was allowed by a novel high pressure MAS sample containment system, which provided high resolution spectra collected under in situ conditions. There was no significant thermal effects were found for the observed 13C chemical shifts at all pressures studied here (28.2, 32.6, 56.4, 65.1, 112.7, and 130.3 bar) for pure methane. However, the 13C chemical shifts of resonances arising from confined methane changed slightly with changes in temperature in mixtures with mesoporous silica. The chemical shift values of 13C nuclides in methane change measurably as a function of pressure both in the pure state and in mixtures with both silica matrices, with a more pronounced shift when meso-porous silica is present. Molecular-level simulations utilizing GCMC, MD, and DFT confirm qualitatively that the experimentally measured changes are attributed to interactions of methane with the hydroxylated silica surfaces as well as densification of methane within nanopores and on pore surfaces.« less
Ok, Salim; Hoyt, David W.; Andersen, Amity; ...
2017-01-18
Characterization and modeling of the molecular-level behavior of simple hydrocarbon gases, such as methane, in the presence of both nonporous and nanoporous mineral matrices allows for predictive understanding of important processes in engineered and natural systems. In this study, we observed changes in local electromagnetic environments of the carbon atoms in methane under conditions of high pressure (up to 130 bar) and moderate temperature (up to 346 K) with 13C magic-angle spinning (MAS) NMR spectroscopy while the methane gas was mixed with two model solid substrates: a fumed nonporous, 12 nm particle size silica and a mesoporous silica with 200more » nm particle size and 4 nm average pore diameter. Examination of the interactions between methane and the silica systems over temperatures and pressures that include the supercritical regime was allowed by a novel high pressure MAS sample containment system, which provided high resolution spectra collected under in situ conditions. There was no significant thermal effects were found for the observed 13C chemical shifts at all pressures studied here (28.2, 32.6, 56.4, 65.1, 112.7, and 130.3 bar) for pure methane. However, the 13C chemical shifts of resonances arising from confined methane changed slightly with changes in temperature in mixtures with mesoporous silica. The chemical shift values of 13C nuclides in methane change measurably as a function of pressure both in the pure state and in mixtures with both silica matrices, with a more pronounced shift when meso-porous silica is present. Molecular-level simulations utilizing GCMC, MD, and DFT confirm qualitatively that the experimentally measured changes are attributed to interactions of methane with the hydroxylated silica surfaces as well as densification of methane within nanopores and on pore surfaces.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ok, Salim; Hoyt, David W.; Andersen, Amity
Characterization and modeling of the molecular-level behavior of simple hydrocarbon gases, such as methane, in the presence of both nonporous and nano-porous mineral matrices allows for predictive understanding of important processes in engineered and natural systems. In this study, changes in local electromagnetic environments of the carbon atoms in methane under conditions of high pressure (up to 130 bar) and moderate temperature (up to 346 K) were observed with 13C magic-angle spinning (MAS) NMR spectroscopy while the methane gas was mixed with two model solid substrates: a fumed non-porous, 12 nm particle size silica and a mesoporous silica with 200more » nm particle size and 4 nm average pore diameter. Examination of the interactions between methane and the silica systems over temperatures and pressures that include the supercritical regime was allowed by a novel high pressure MAS sample containment system, which provided high resolution spectra collected under in situ conditions. For pure methane, no significant thermal effects were found for the observed 13C chemical shifts at all pressures studied here (28.2 bar, 32.6 bar, 56.4 bar, 65.1 bar, 112.7 bar, and 130.3 bar). However, the 13C chemical shifts of resonances arising from confined methane changed slightly with changes in temperature in mixtures with mesoporous silica. The chemical shift values of 13C nuclides in methane change measurably as a function of pressure both in the pure state and in mixtures with both silica matrices, with a more pronounced shift when meso-porous silica is present. Molecular-level simulations utilizing GCMC, MD and DFT confirm qualitatively that the experimentally measured changes are attributed to interactions of methane with the hydroxylated silica surfaces as well as densification of methane within nanopores and on pore surfaces.« less
NASA Astrophysics Data System (ADS)
Nagashima, Hiroki; Trébosc, Julien; Calvez, Laurent; Pourpoint, Frédérique; Mear, François; Lafon, Olivier; Amoureux, Jean-Paul
2017-09-01
We introduce two-dimensional (2D) 71Ga-77Se through-bond and through-space correlation experiments. Such correlations are achieved using (i) the J-mediated Refocused Insensitive Nuclei Enhanced by Polarization Transfer (J-RINEPT) method with 71Ga excitation and 77Se Carr-Purcell-Meiboon-Gill (CPMG) detection, as well as (ii) the J- or dipolar-mediated Hetero-nuclear Multiple-Quantum Correlation (J- or D-HMQC) schemes with 71Ga excitation and quadrupolar CPMG (QCPMG) detection. These methods are applied to the crystalline β-Ga2Se3 and the 0.2Ga2Se3-0.8GeSe2 glass. Such glass leads to a homogeneous and reproducible glass-ceramic, which is a good alternative to single-crystalline Ge and polycrystalline ZnSe materials for making lenses transparent in the IR range for thermal imaging applications. We show that 2D 71Ga-77Se correlation experiments allow resolving the 77Se signals of molecular units, which are not resolved in the 1D 77Se CPMG spectrum. Additionally, the build-up curves of the J-RINEPT and the J-HMQC experiments allow the estimate of the 71Ga-77Se J-couplings via one and three-bonds in the three-dimensional network of β-Ga2Se3. Furthermore, these build-up curves show that the one-bond 1J71Ga-77Se couplings in the 0.2Ga2Se3-0.8GeSe2 glass are similar to those measured for β-Ga2Se3. We also report 2D 71Ga Satellite Transition Magic-Angle Spinning (STMAS) spectrum of β-Ga2Se3 using QCPMG detection at high magnetic field and high Magic-Angle Spinning frequency using large radio frequency field. Such spectrum allows separating the signal of β-Ga2Se3 and that of an impurity.
Bathen, Tone F; Sitter, Beathe; Sjøbakk, Torill E; Tessem, May-Britt; Gribbestad, Ingrid S
2010-09-01
Personalized medicine is increasingly important in cancer treatment for its role in staging and its potential to improve stratification of patients. Different types of molecules, genes, proteins, and metabolites are being extensively explored as potential biomarkers. This review discusses the major findings and potential of tissue metabolites determined by high-resolution magic angle spinning magnetic resonance spectroscopy for cancer detection, characterization, and treatment monitoring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Ae Ran, E-mail: aeranlim@hanmail.net, E-mail: arlim@jj.ac.kr
The ferroelastic phase transition of tetraethylammonium compound [N(C{sub 2}H{sub 5}){sub 4}]{sub 2}ZnBr{sub 4} at the phase transition temperature (T{sub C}) = 283 K was characterized by magic-angle spinning (MAS) and static nuclear magnetic resonance (NMR), and confirmed by optical polarizing spectroscopy. The structural geometry near T{sub C} was studied in terms of the chemical shifts and the spin-lattice relaxation times T{sub 1ρ} in the rotating frame for {sup 1}H MAS NMR and {sup 13}C cross-polarization (CP)/MAS NMR. The two inequivalent ethyl groups were distinguishable in the {sup 13}C NMR spectrum, and the T{sub 1ρ} results indicate that they undergo tumblingmore » motion above T{sub C} in a coupled manner. From the {sup 14}N NMR results, the two nitrogen nuclei in the N(C{sub 2}H{sub 5}){sub 4}{sup +} ions were distinguishable above T{sub C}, and the splitting in the spectra below T{sub C} was related to the ferroelastic domains with different orientations.« less
Mazzei, Pierluigi; Cozzolino, Vincenza; Piccolo, Alessandro
2018-03-21
Both high-resolution magic-angle-spinning (HRMAS) and magnetic resonance imaging (MRI) NMR spectroscopies were applied here to identify the changes of metabolome, morphology, and structural properties induced in seeds (caryopses) of maize plants grown at field level under either mineral or compost fertilization in combination with the inoculation by arbuscular mycorrhizal fungi (AMF). The metabolome of intact caryopses was examined by HRMAS-NMR, while the morphological aspects, endosperm properties and seed water distribution were investigated by MRI. Principal component analysis (PCA) was applied to evaluate 1 H CPMG (Carr-Purcel-Meiboom-Gill) HRMAS spectra as well as several MRI-derived parameters ( T 1 , T 2 , and self-diffusion coefficients) of intact maize caryopses. PCA score-plots from spectral results indicated that both seeds metabolome and structural properties depended on the specific field treatment undergone by maize plants. Our findings show that a combination of multivariate statistical analyses with advanced and nondestructive NMR techniques, such as HRMAS and MRI, enables the evaluation of the effects induced on maize caryopses by different fertilization and management practices at field level. The spectroscopic approach adopted here may become useful for the objective appraisal of the quality of seeds produced under a sustainable agriculture.
Warner, Lisa; Gjersing, Erica; Follett, Shelby E; Elliott, K Wade; Dzyuba, Sergei V; Varga, Krisztina
2016-12-01
Ionic liquids have great potential in biological applications and biocatalysis, as some ionic liquids can stabilize proteins and enhance enzyme activity, while others have the opposite effect. However, on the molecular level, probing ionic liquid interactions with proteins, especially in solutions containing high concentration of ionic liquids, has been challenging. In the present work the 13 C, 15 N-enriched GB1 model protein was used to demonstrate applicability of high-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy to investigate ionic liquid - protein interactions. Effect of an ionic liquid (1-butyl-3-methylimidazolium bromide, [C 4 -mim]Br) on GB1was studied over a wide range of the ionic liquid concentrations (0.6 to 3.5 M, which corresponds to 10%-60% v/v). Interactions between GB1 and [C 4 -mim]Br were observed from changes in the chemical shifts of the protein backbone as well as the changes in 15 N ps-ns dynamics and rotational correlation times. Site-specific interactions between the protein and [C 4 -mim]Br were assigned using 3D methods under HR-MAS conditions. Thus, HR-MAS NMR is a viable tool that could aid in elucidation of the molecular mechanism of ionic liquid - protein interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shmyreva, Anna A.; Safdari, Majid; Furó, István
2016-06-14
Orders of magnitude decrease of {sup 207}Pb and {sup 199}Hg NMR longitudinal relaxation times T{sub 1} upon magic-angle-spinning (MAS) are observed and systematically investigated in solid lead and mercury halides MeX{sub 2} (Me = Pb, Hg and X = Cl, Br, I). In lead(II) halides, the most dramatic decrease of T{sub 1} relative to that in a static sample is in PbI{sub 2}, while it is smaller but still significant in PbBr{sub 2}, and not detectable in PbCl{sub 2}. The effect is magnetic-field dependent but independent of the spinning speed in the range 200–15 000 Hz. The observed relaxation enhancementmore » is explained by laboratory-frame heteronuclear polarization exchange due to crossing between energy levels of spin-1/2 metal nuclei and adjacent quadrupolar-spin halogen nuclei. The enhancement effect is also present in lead-containing organometal halide perovskites. Our results demonstrate that in affected samples, it is the relaxation data recorded under non-spinning conditions that characterize the local properties at the metal sites. A practical advantage of fast relaxation at slow MAS is that spectral shapes with orientational chemical shift anisotropy information well retained can be acquired within a shorter experimental time.« less
NASA Astrophysics Data System (ADS)
Carnevale, Diego; Ji, Xiao; Bodenhausen, Geoffrey
2017-11-01
Nitrogen-14 NMR spectra at fast magic-angle spinning rates can be acquired indirectly by means of two-dimensional techniques based on double cross polarization transfer 1H → 14N →1H. Experimental evidence is given for polycrystalline samples of glycine, l-histidine, and the dipeptide Ala-Gly. Either one-bond or long-range correlations can be favored by choosing the length of the cross polarization contact pulses. Longer contact pulses allow the detection of unprotonated nitrogen sites. In contrast to earlier methods that exploited second-order quadrupolar/dipolar cross-terms, cross polarization operates in the manner of the method of Hartmann and Hahn, even for 14N quadrupolar couplings up to 4 MHz. Simulations explain why amorphous samples tend to give rise to featureless spectra because the 14N quadrupolar interactions may vary dramatically with the lattice environment. The experiments are straightforward to set up and are shown to be effective for different nitrogen environments and robust with respect to the rf-field strengths and to the 14N carrier frequency during cross polarization. The efficiency of indirect detection of 14N nuclei by double cross polarization is shown to be similar to that of isotopically enriched 13C nuclei.
Ground-state properties of neutron magic nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saxena, G., E-mail: gauravphy@gmail.com; Kaushik, M.
2017-03-15
A systematic study of the ground-state properties of the entire chains of even–even neutron magic nuclei represented by isotones of traditional neutron magic numbers N = 8, 20, 40, 50, 82, and 126 has been carried out using relativistic mean-field plus Bardeen–Cooper–Schrieffer approach. Our present investigation includes deformation, binding energy, two-proton separation energy, single-particle energy, rms radii along with proton and neutron density profiles, etc. Several of these results are compared with the results calculated using nonrelativistic approach (Skyrme–Hartree–Fock method) along with available experimental data and indeed they are found with excellent agreement. In addition, the possible locations of themore » proton and neutron drip-lines, the (Z, N) values for the new shell closures, disappearance of traditional shell closures as suggested by the detailed analyzes of results are also discussed in detail.« less
Contextuality as a Resource for Models of Quantum Computation with Qubits
NASA Astrophysics Data System (ADS)
Bermejo-Vega, Juan; Delfosse, Nicolas; Browne, Dan E.; Okay, Cihan; Raussendorf, Robert
2017-09-01
A central question in quantum computation is to identify the resources that are responsible for quantum speed-up. Quantum contextuality has been recently shown to be a resource for quantum computation with magic states for odd-prime dimensional qudits and two-dimensional systems with real wave functions. The phenomenon of state-independent contextuality poses a priori an obstruction to characterizing the case of regular qubits, the fundamental building block of quantum computation. Here, we establish contextuality of magic states as a necessary resource for a large class of quantum computation schemes on qubits. We illustrate our result with a concrete scheme related to measurement-based quantum computation.
Timothy Sullivan; Bernard Cosby; William Jackson; Kai Snyder; Alan Herlihy
2011-01-01
This study applied the Model of Acidification of Groundwater in Catchments (MAGIC) to estimate the sensitivity of 66 watersheds in the Southern Blue Ridge Province of the Southern Appalachian Mountains, United States, to changes in atmospheric sulfur (S) deposition. MAGIC predicted that stream acid neutralizing capacity (ANC) values were above 20 μeq/L in all modeled...
Weitzel, Hans
2007-01-01
New mathematical hypotheses are postulated concerning the truncated rhombohedron in Dürer's engraving Melencolia.I as well as the relation of the rhombohedron to the magic square. The two free parameters of a truncated rhombohedron have to be chosen in a way that (i) its front orthogonal elevation is nearly quadratical and with the form of the magic square, and that (ii) it possesses approximately a circumscribed sphere. Both conditions result in a value of 79.2 degrees for the angle of the rhombohedron. Measuring two lengths of the rhombohedron of the engraving yields the same value. In the magic square, the numbers are positioned in a way that the connection lines between four numbers give the sum 34 for lines which are the projection lines of the edges of the rhombohedron. In the Nürnberg-Codex of Dürer's manuscripts, exists a page with some sketches of mostly archimedean solids. One sketch represents a pentagon with approximately the measures of the six lateral faces of the truncated rhombohedron. It has to be looked upon as a preliminary sketch for the solid of the engraving. In 1543 Augustin Hirschvogel from Nürnberg, as the next after Dürer, rediscovered a further archimedean solid; this rediscovering has been attributed to D. Barbaro until now.
Theoretical description of RESPIRATION-CP
NASA Astrophysics Data System (ADS)
Nielsen, Anders B.; Tan, Kong Ooi; Shankar, Ravi; Penzel, Susanne; Cadalbert, Riccardo; Samoson, Ago; Meier, Beat H.; Ernst, Matthias
2016-02-01
We present a quintuple-mode operator-based Floquet approach to describe arbitrary amplitude modulated cross polarization experiments under magic-angle spinning (MAS). The description is used to analyze variants of the RESPIRATION approach (RESPIRATIONCP) where recoupling conditions and the corresponding first-order effective Hamiltonians are calculated, validated numerically and compared to experimental results for 15N-13C coherence transfer in uniformly 13C,15N-labeled alanine and in uniformly 2H,13C,15N-labeled (deuterated and 100% back-exchanged) ubiquitin at spinning frequencies of 16.7 and 90.9 kHz. Similarities and differences between different implementations of the RESPIRATIONCP sequence using either CW irradiation or small flip-angle pulses are discussed.
RF waveguide phase-directed power combiners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nantista, Christopher D.; Dolgashev, Valery A.; Tantawi, Sami G.
2017-05-02
High power RF phase-directed power combiners include magic H hybrid and/or superhybrid circuits oriented in orthogonal H-planes and connected using E-plane bends and/or twists to produce compact 3D waveguide circuits, including 8.times.8 and 16.times.16 combiners. Using phase control at the input ports, RF power can be directed to a single output port, enabling fast switching between output ports for applications such as multi-angle radiation therapy.
Structural changes of TasA in biofilm formation of Bacillus subtilis.
Diehl, Anne; Roske, Yvette; Ball, Linda; Chowdhury, Anup; Hiller, Matthias; Molière, Noel; Kramer, Regina; Stöppler, Daniel; Worth, Catherine L; Schlegel, Brigitte; Leidert, Martina; Cremer, Nils; Erdmann, Natalja; Lopez, Daniel; Stephanowitz, Heike; Krause, Eberhard; van Rossum, Barth-Jan; Schmieder, Peter; Heinemann, Udo; Turgay, Kürşad; Akbey, Ümit; Oschkinat, Hartmut
2018-03-27
Microorganisms form surface-attached communities, termed biofilms, which can serve as protection against host immune reactions or antibiotics. Bacillus subtilis biofilms contain TasA as major proteinaceous component in addition to exopolysaccharides. In stark contrast to the initially unfolded biofilm proteins of other bacteria, TasA is a soluble, stably folded monomer, whose structure we have determined by X-ray crystallography. Subsequently, we characterized in vitro different oligomeric forms of TasA by NMR, EM, X-ray diffraction, and analytical ultracentrifugation (AUC) experiments. However, by magic-angle spinning (MAS) NMR on live biofilms, a swift structural change toward only one of these forms, consisting of homogeneous and protease-resistant, β-sheet-rich fibrils, was observed in vivo. Thereby, we characterize a structural change from a globular state to a fibrillar form in a functional prokaryotic system on the molecular level. Copyright © 2018 the Author(s). Published by PNAS.
Structural changes of TasA in biofilm formation of Bacillus subtilis
Diehl, Anne; Roske, Yvette; Ball, Linda; Chowdhury, Anup; Hiller, Matthias; Molière, Noel; Kramer, Regina; Stöppler, Daniel; Worth, Catherine L.; Schlegel, Brigitte; Leidert, Martina; Cremer, Nils; Erdmann, Natalja; Lopez, Daniel; Stephanowitz, Heike; Krause, Eberhard; Schmieder, Peter; Akbey, Ümit; Oschkinat, Hartmut
2018-01-01
Microorganisms form surface-attached communities, termed biofilms, which can serve as protection against host immune reactions or antibiotics. Bacillus subtilis biofilms contain TasA as major proteinaceous component in addition to exopolysaccharides. In stark contrast to the initially unfolded biofilm proteins of other bacteria, TasA is a soluble, stably folded monomer, whose structure we have determined by X-ray crystallography. Subsequently, we characterized in vitro different oligomeric forms of TasA by NMR, EM, X-ray diffraction, and analytical ultracentrifugation (AUC) experiments. However, by magic-angle spinning (MAS) NMR on live biofilms, a swift structural change toward only one of these forms, consisting of homogeneous and protease-resistant, β-sheet–rich fibrils, was observed in vivo. Thereby, we characterize a structural change from a globular state to a fibrillar form in a functional prokaryotic system on the molecular level. PMID:29531041
How to Obtain Accurate Equations-of-State by Eliminating the Effects of Deviatoric Stresses
NASA Astrophysics Data System (ADS)
Chesnut, Gary; Schiferl, David
2003-03-01
In the field of static high-pressure research, it is common to find disagreements in the data between individual experiments. For example, there are many disagreements about crystal structures and volume discontinuities at phase transitions. Of course, there are many causes that give rise to these problems. The intrinsic properties of some materials can be the source of the confusion. However, there is another source, which affects every static high-pressure experiment - deviatoric stress. This problem has been well defined in the last decade. In particular, A. K. Singh et al has derived the equations of the deviatoric stresses for all the crystallographic structures. However, it only takes a moment to realize the difficulty in solving these equations for all but the simplest structures. Fortunately, there is a way around the problem of deviatoric stress - Magic Angle X-ray Diffraction.
NASA Astrophysics Data System (ADS)
Bratkovsky, A. M.; Alexandrov, A. S.
2002-03-01
The semiclassical Lifshitz-Kosevich-type description is given for the angular dependence of quantum oscillations with combination frequencies in a multiband quasi-two-dimensional Fermi liquid with a constant number of electrons. The analytical expressions are found for the Dingle, thermal, spin, and amplitude (Yamaji) reduction factors of the novel combination harmonics, where the latter two strongly oscillate with the direction of the field [1]. At the magic angles those factors reduce to the purely two-dimensional expressions given earlier. The combination harmonics are suppressed in the presence of the nonquantized background states, and they decay exponentially faster with temperature and/or disorder compared to the standard harmonics, providing an additional tool for electronic structure determination. The theory is applied to Sr2RuO4. [1] A.M. Bratkovsky and A.S. Alexandrov, Phys. Rev. B 65, xxxx (2002); cond-mat/0104520.
Melanin from the Nitrogen-Fixing Bacterium Azotobacter chroococcum: A Spectroscopic Characterization
Banerjee, Raja
2014-01-01
Melanins, the ubiquitous hetero-polymer pigments found widely dispersed among various life forms, are usually dark brown/black in colour. Although melanins have variety of biological functions, including protection against ultraviolet radiation of sunlight and are used in medicine, cosmetics, extraction of melanin from the animal and plant kingdoms is not an easy task. Using complementary physicochemical techniques (i.e. MALDI-TOF, FTIR absorption and cross-polarization magic angle spinning solid-state 13C NMR), we report here the characterization of melanins extracted from the nitrogen-fixing non-virulent bacterium Azotobacter chroococcum, a safe viable source. Moreover, considering dihydroxyindole moiety as the main constituent, an effort is made to propose the putative molecular structure of the melanin hetero-polymer extracted from the bacterium. Characterization of the melanin obtained from Azotobacter chroococcum would provide an inspiration in extending research activities on these hetero-polymers and their use as protective agent against UV radiation. PMID:24416247
NASA Astrophysics Data System (ADS)
Topcu, Turker; Derevianko, Andrei
2014-05-01
Long range interactions between neutral Rydberg atoms has emerged as a potential means for implementing quantum logical gates. These experiments utilize hyperfine manifold of ground state atoms to act as a qubit basis, while exploiting the Rydberg blockade mechanism to mediate conditional quantum logic. The necessity for overcoming several sources of decoherence makes magic wavelength trapping in optical lattices an indispensable tool for gate experiments. The common wisdom is that atoms in Rydberg states see trapping potentials that are essentially that of a free electron, and can only be trapped at laser intensity minima. We show that although the polarizability of a Rydberg state is always negative, the optical potential can be both attractive or repulsive at long wavelengths (up to ~104 nm). This opens up the possibility of magic trapping Rydberg states with ground state atoms in optical lattices, thereby eliminating the necessity to turn off trapping fields during gate operations. Because the wavelengths are near the CO2 laser band, the photon scattering and the ensuing motional heating is also reduced compared to conventional traps near low lying resonances, alleviating an important source of decoherence. This work was supported by the National Science Foundation (NSF) Grant No. PHY-1212482.
Device-independent parallel self-testing of two singlets
NASA Astrophysics Data System (ADS)
Wu, Xingyao; Bancal, Jean-Daniel; McKague, Matthew; Scarani, Valerio
2016-06-01
Device-independent self-testing offers the possibility of certifying the quantum state and measurements, up to local isometries, using only the statistics observed by querying uncharacterized local devices. In this paper we study parallel self-testing of two maximally entangled pairs of qubits; in particular, the local tensor product structure is not assumed but derived. We prove two criteria that achieve the desired result: a double use of the Clauser-Horne-Shimony-Holt inequality and the 3 ×3 magic square game. This demonstrate that the magic square game can only be perfectly won by measuring a two-singlet state. The tolerance to noise is well within reach of state-of-the-art experiments.
Angle-dependent quantum Otto heat engine based on coherent dipole-dipole coupling
NASA Astrophysics Data System (ADS)
Su, Shan-He; Luo, Xiao-Qing; Chen, Jin-Can; Sun, Chang-Pu
2016-08-01
Electromagnetic interactions between molecules or within a molecule have been widely observed in biological systems and exhibit broad application for molecular structural studies. Quantum delocalization of molecular dipole moments has inspired researchers to explore new avenues to utilize this physical effect for energy harvesting devices. Herein, we propose a simple model of the angle-dependent quantum Otto heat engine which seeks to facilitate the conversion of heat to work. Unlike previous studies, the adiabatic processes are accomplished by varying only the directions of the magnetic field. We show that the heat engine continues to generate power when the angle relative to the vector r joining the centres of coupled dipoles departs from the magic angle θm where the static coupling vanishes. A significant improvement in the device performance has to be attributed to the presence of the quantum delocalized levels associated with the coherent dipole-dipole coupling. These results obtained may provide a promising model for the biomimetic design and fabrication of quantum energy generators.
NASA Astrophysics Data System (ADS)
Gopinath, T.; Nelson, Sarah E. D.; Veglia, Gianluigi
2017-12-01
Magic angle spinning (MAS) solid-state NMR (ssNMR) spectroscopy is emerging as a unique method for the atomic resolution structure determination of native membrane proteins in lipid bilayers. Although 13C-detected ssNMR experiments continue to play a major role, recent technological developments have made it possible to carry out 1H-detected experiments, boosting both sensitivity and resolution. Here, we describe a new set of 1H-detected hybrid pulse sequences that combine through-bond and through-space correlation elements into single experiments, enabling the simultaneous detection of rigid and dynamic domains of membrane proteins. As proof-of-principle, we applied these new pulse sequences to the membrane protein phospholamban (PLN) reconstituted in lipid bilayers under moderate MAS conditions. The cross-polarization (CP) based elements enabled the detection of the relatively immobile residues of PLN in the transmembrane domain using through-space correlations; whereas the most dynamic region, which is in equilibrium between folded and unfolded states, was mapped by through-bond INEPT-based elements. These new 1H-detected experiments will enable one to detect not only the most populated (ground) states of biomacromolecules, but also sparsely populated high-energy (excited) states for a complete characterization of protein free energy landscapes.
Nakazawa, Yasumoto; Asakura, Tetsuo
2003-06-18
Fibrous proteins unlike globular proteins, contain repetitive amino acid sequences, giving rise to very regular secondary protein structures. Silk fibroin from a wild silkworm, Samia cynthia ricini, consists of about 100 repeats of alternating polyalanine (poly-Ala) regions of 12-13 residues in length and Gly-rich regions. In this paper, the precise structure of the model peptide, GGAGGGYGGDGG(A)(12)GGAGDGYGAG, which is a typical repeated sequence of the silk fibroin, was determined using a combination of three kinds of solid-state NMR studies; a quantitative use of (13)C CP/MAS NMR chemical shift with conformation-dependent (13)C chemical shift contour plots, 2D spin diffusion (13)C solid-state NMR under off magic angle spinning and rotational echo double resonance. The structure of the model peptide corresponding to the silk fibroin structure before spinning was determined. The torsion angles of the central Ala residue, Ala(19), in the poly-Ala region were determined to be (phi, psi) = (-59 degrees, -48 degrees ) which are values typically associated with alpha-helical structures. However, the torsion angles of the Gly(25) residue adjacent to the C-terminal side of the poly-Ala chain were determined to be (phi, psi) = (-66 degrees, -22 degrees ) and those of Gly(12) and Ala(13) residues at the N-terminal of the poly-Ala chain to be (phi, psi) = (-70 degrees, -30 degrees ). In addition, REDOR experiments indicate that the torsion angles of the two C-terminal Ala residues, Ala(23) and Ala(24), are (phi, psi) = (-66 degrees, -22 degrees ) and those of N-terminal two Ala residues, Ala(13) and Ala(14) are (phi, psi) = (-70 degrees, -30 degrees ). Thus, the local structure of N-terminal and C-terminal residues, and also the neighboring residues of alpha-helical poly-Ala chain in the model peptide is a more strongly wound structure than found in typical alpha-helix structures.
NASA Astrophysics Data System (ADS)
Teymoori, Gholamhasan; Pahari, Bholanath; Viswanathan, Elumalai; Edén, Mattias
2017-03-01
The authors regret that an inappropriate NMR data processing, not known to all authors at the time of publication, was used to produce the multiple-quantum coherence (MQC) spin counting data presented in our article: this lead to artificially enhanced results, particularly concerning those obtained at long MQC excitation intervals (τexc). Here we reproduce Figs. 4-7 with correctly processed data.
Hexagonal ice in pure water and biological NMR samples.
Bauer, Thomas; Gath, Julia; Hunkeler, Andreas; Ernst, Matthias; Böckmann, Anja; Meier, Beat H
2017-01-01
Ice, in addition to "liquid" water and protein, is an important component of protein samples for NMR spectroscopy at subfreezing temperatures but it has rarely been observed spectroscopically in this context. We characterize its spectroscopic behavior in the temperature range from 100 to 273 K, and find that it behaves like pure water ice. The interference of magic-angle spinning (MAS) as well as rf multiple-pulse sequences with Bjerrum-defect motion greatly influences the ice spectra.
Observation of NMR noise from solid samples.
Schlagnitweit, Judith; Dumez, Jean-Nicolas; Nausner, Martin; Jerschow, Alexej; Elena-Herrmann, Bénédicte; Müller, Norbert
2010-11-01
We demonstrate that proton NMR noise signals, i.e. NMR spectra without excitation by radio frequency, can be obtained from solid samples. Experimental results are shown for static and magic-angle spinning conditions. In addition, a tuning procedure based on the probes' NMR noise characteristics and similar to the one described previously for liquids probes can also be used to optimize signal-to-noise ratios in ¹H-MAS experiments. Copyright © 2010 Elsevier Inc. All rights reserved.
Maria, Roberta M; Altei, Wanessa F; Andricopulo, Adriano D; Becceneri, Amanda B; Cominetti, Márcia R; Venâncio, Tiago; Colnago, Luiz A
2015-11-01
(1)H high-resolution magic angle spinning nuclear magnetic resonance ((1)H HR-MAS NMR) spectroscopy was used to analyze the metabolic profile of an intact non-tumor breast cell line (MCF-10A) and intact breast tumor cell lines (MCF-7 and MDA-MB-231). In the spectra of MCF-10A cells, six metabolites were assigned, with glucose and ethanol in higher concentrations. Fifteen metabolites were assigned in MCF-7 and MDA-MB-231 (1)H HR-MAS NMR spectra. They did not show glucose and ethanol, and the major component in both tumor cells was phosphocholine (higher in MDA-MB-231 than in MCF-7), which can be considered as a tumor biomarker of breast cancer malignant transformation. These tumor cells also show acetone signal that was higher in MDA-MB-231 cells than in MCF-7 cells. The high acetone level may be an indication of high demand for energy in MDA-MB-231 to maintain cell proliferation. The higher acetone and phosphocholine levels in MDA-MB-231 cells indicate the higher malignance of the cell line. Therefore, HR-MAS is a rapid reproducible method to study the metabolic profile of intact breast cells, with minimal sample preparation and contamination, which are critical in the analyses of slow-growth cells. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warner, Lisa; Gjersing, Erica; Follett, Shelby E.
Ionic liquids have great potential in biological applications and biocatalysis, as some ionic liquids can stabilize proteins and enhance enzyme activity, while others have the opposite effect. However, on the molecular level, probing ionic liquid interactions with proteins, especially in solutions containing high concentrations of ionic liquids, has been challenging. In the present work the 13C, 15N-enriched GB1 model protein was used to demonstrate applicability of high-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy to investigate ionic liquid-protein interactions. Effect of an ionic liquid (1-butyl-3-methylimidazolium bromide, [C 4-mim]Br) on GB1was studied over a wide range of the ionic liquid concentrations (0.6-3.5 M, whichmore » corresponds to 10-60% v/v). Interactions between GB1 and [C 4-mim]Br were observed from changes in the chemical shifts of the protein backbone as well as the changes in 15N ps-ns dynamics and rotational correlation times. Site-specific interactions between the protein and [C 4-mim]Br were assigned using 3D methods under HR-MAS conditions. Furthermore, HR-MAS NMR is a viable tool that could aid in elucidation of molecular mechanisms of ionic liquid-protein interactions.« less
Warner, Lisa; Gjersing, Erica; Follett, Shelby E.; ...
2016-08-11
Ionic liquids have great potential in biological applications and biocatalysis, as some ionic liquids can stabilize proteins and enhance enzyme activity, while others have the opposite effect. However, on the molecular level, probing ionic liquid interactions with proteins, especially in solutions containing high concentrations of ionic liquids, has been challenging. In the present work the 13C, 15N-enriched GB1 model protein was used to demonstrate applicability of high-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy to investigate ionic liquid-protein interactions. Effect of an ionic liquid (1-butyl-3-methylimidazolium bromide, [C 4-mim]Br) on GB1was studied over a wide range of the ionic liquid concentrations (0.6-3.5 M, whichmore » corresponds to 10-60% v/v). Interactions between GB1 and [C 4-mim]Br were observed from changes in the chemical shifts of the protein backbone as well as the changes in 15N ps-ns dynamics and rotational correlation times. Site-specific interactions between the protein and [C 4-mim]Br were assigned using 3D methods under HR-MAS conditions. Furthermore, HR-MAS NMR is a viable tool that could aid in elucidation of molecular mechanisms of ionic liquid-protein interactions.« less
NASA Astrophysics Data System (ADS)
Tambio, Sacris Jeru; Deschamps, Michaël; Sarou-Kanian, Vincent; Etiemble, Aurélien; Douillard, Thierry; Maire, Eric; Lestriez, Bernard
2017-09-01
Lithium-ion batteries are electrochemical storage devices using the electrochemical activity of the lithium ion in relation to intercalation compounds owing to mass transport phenomena through diffusion. Diffusion of the lithium ion in the electrode pores has been poorly understood due to the lack of experimental techniques for measuring its self-diffusion coefficient in porous media. Magic-Angle Spinning, Pulsed Field Gradient, Stimulated-Echo Nuclear Magnetic Resonance (MAS-PFG-STE NMR) was used here for the first time to measure the self-diffusion coefficients of the electrolyte species in the LP30 battery electrolyte (i.e. a 1 M solution of LiPF6 dissolved in 1:1 Ethylene Carbonate - Dimethyl Carbonate) in model composites. These composite electrodes were made of alumina, carbon black and PVdF-HFP. Alumina's magnetic susceptibility is close to the measured magnetic susceptibility of the LP30 electrolyte thereby limiting undesirable internal field gradients. Interestingly, the self-diffusion coefficient of lithium ions decreases with increasing carbon content. FIB-SEM was used to describe the 3D geometry of the samples. The comparison between the reduction of self-diffusion coefficients as measured by PFG-NMR and as geometrically derived from FIB/SEM tortuosity values highlights the contribution of specific interactions at the material/electrolyte interface on the lithium transport properties.
NASA Astrophysics Data System (ADS)
Sesti, Erika L.; Alaniva, Nicholas; Rand, Peter W.; Choi, Eric J.; Albert, Brice J.; Saliba, Edward P.; Scott, Faith J.; Barnes, Alexander B.
2018-01-01
We report magic angle spinning (MAS) up to 8.5 kHz with a sample temperature below 6 K using liquid helium as a variable temperature fluid. Cross polarization 13C NMR spectra exhibit exquisite sensitivity with a single transient. Remarkably, 1H saturation recovery experiments show a 1H T1 of 21 s with MAS below 6 K in the presence of trityl radicals in a glassy matrix. Leveraging the thermal spin polarization available at 4.2 K versus 298 K should result in 71 times higher signal intensity. Taking the 1H longitudinal relaxation into account, signal averaging times are therefore predicted to be expedited by a factor of >500. Computer assisted design (CAD) and finite element analysis were employed in both the design and diagnostic stages of this cryogenic MAS technology development. Computational fluid dynamics (CFD) models describing temperature gradients and fluid flow are presented. The CFD models bearing and drive gas maintained at 100 K, while a colder helium variable temperature fluid stream cools the center of a zirconia rotor. Results from the CFD were used to optimize the helium exhaust path and determine the sample temperature. This novel cryogenic experimental platform will be integrated with pulsed dynamic nuclear polarization and electron decoupling to interrogate biomolecular structure within intact human cells.
Evidence for prevalent Z = 6 magic number in neutron-rich carbon isotopes.
Tran, D T; Ong, H J; Hagen, G; Morris, T D; Aoi, N; Suzuki, T; Kanada-En'yo, Y; Geng, L S; Terashima, S; Tanihata, I; Nguyen, T T; Ayyad, Y; Chan, P Y; Fukuda, M; Geissel, H; Harakeh, M N; Hashimoto, T; Hoang, T H; Ideguchi, E; Inoue, A; Jansen, G R; Kanungo, R; Kawabata, T; Khiem, L H; Lin, W P; Matsuta, K; Mihara, M; Momota, S; Nagae, D; Nguyen, N D; Nishimura, D; Otsuka, T; Ozawa, A; Ren, P P; Sakaguchi, H; Scheidenberger, C; Tanaka, J; Takechi, M; Wada, R; Yamamoto, T
2018-04-23
The nuclear shell structure, which originates in the nearly independent motion of nucleons in an average potential, provides an important guide for our understanding of nuclear structure and the underlying nuclear forces. Its most remarkable fingerprint is the existence of the so-called magic numbers of protons and neutrons associated with extra stability. Although the introduction of a phenomenological spin-orbit (SO) coupling force in 1949 helped in explaining the magic numbers, its origins are still open questions. Here, we present experimental evidence for the smallest SO-originated magic number (subshell closure) at the proton number six in 13-20 C obtained from systematic analysis of point-proton distribution radii, electromagnetic transition rates and atomic masses of light nuclei. Performing ab initio calculations on 14,15 C, we show that the observed proton distribution radii and subshell closure can be explained by the state-of-the-art nuclear theory with chiral nucleon-nucleon and three-nucleon forces, which are rooted in the quantum chromodynamics.
Structural and interaction parameters of thermosensitive native α-elastin biohybrid microgel
NASA Astrophysics Data System (ADS)
Balaceanu, Andreea; Singh, Smriti; Demco, Dan E.; Möller, Martin
2014-09-01
The structural and water interaction parameters for native, α-elastin biohybrid microgel crosslinked with hydrophilic and hydrophobic crosslinkers are obtained from the volume phase transition temperature behaviour, 1H high-resolution magic-angle sample spinning transverse magnetization relaxation NMR, and modified Flory-Rehner swelling theory. Firstly, considering a homogeneous morphology the number of subchains in the biohybrid microgel, the residual water in deswollen state as a function of crosslink density and the temperature dependence of the Flory biopolymer-water interaction parameters are reported for the biohybrid microgels prepared with hydrophilic (PEG-DGE) and hydrophobic (BS3) crosslinkers. The Flory-Rehner classical approach is subsequently modified taking into account the heterogeneities observed by NMR transverse relaxation measurements. Two differently mobile regions are determined, a hydrophobic domain and a crosslinking domain with relative reduced mobility. For the first time, the influence of chain mobility on the Flory interaction parameter is investigated through a modified Flory state equation. The contributions of amino-acids located in the hydrophobic and crosslinking domains in the polypeptide sequence are separated while analyzing the biopolymer-water interaction.
Shaibat, Medhat A; Casabianca, Leah B; Siberio-Pérez, Diana Y; Matzger, Adam J; Ishii, Yoshitaka
2010-04-08
Cu(II)(phthalocyanine) (CuPc) is broadly utilized as an archetypal molecular semiconductor and is the most widely used blue printing pigment. CuPc crystallizes in six different forms; the chemical and physical properties are substantially modulated by its molecular packing among these polymorphs. Despite the growing importance of this system, spectroscopic identification of different polymorphs for CuPc has posed difficulties. This study presents the first example of spectroscopic distinction of alpha- and beta-forms of CuPc, the most widely used polymorphs, by solid-state NMR (SSNMR) and Raman spectroscopy. (13)C high-resolution SSNMR spectra of alpha- and beta-CuPc using very-fast magic angle spinning (VFMAS) at 20 kHz show that hyperfine shifts sensitively reflect polymorphs of CuPc. The experimental results were confirmed by ab initio chemical shift calculations. (13)C and (1)H SSNMR relaxation times of alpha- and beta-CuPc under VFMAS also showed marked differences, presumably because of the difference in electronic spin correlation times in the two forms. Raman spectroscopy also provided another reliable method of differentiation between the two polymorphs.
Spindler, Xanthe; Shimmon, Ronald; Roux, Claude; Lennard, Chris
2015-05-01
Most spectroscopic studies of the reaction products formed by ninhydrin, 1,2-indanedione-zinc (Ind-Zn) and 1,8-diazafluoren-9-one (DFO) when reacted with amino acids or latent fingermarks on paper substrates are focused on visible absorption or luminescence spectroscopy. In addition, structural elucidation studies are typically limited to solution-based mass spectrometry or liquid nuclear magnetic resonance (NMR) spectroscopy, which does not provide an accurate representation of the fingermark development process on common paper substrates. The research presented in this article demonstrates that solid-state carbon-13 magic angle spinning NMR ((13)C-MAS-NMR) is a technique that can not only be utilised for structural studies of fingermark enhancement reagents, but is a promising technique for characterising the effect of paper chemistry on fingermark deposition and enhancement. The latter opens up a research area that has been under-explored to date but has the potential to improve our understanding of how fingermark secretions and enhancement reagents interact with paper substrates. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Tatton, Andrew S; Pham, Tran N; Vogt, Frederick G; Iuga, Dinu; Edwards, Andrew J; Brown, Steven P
2013-03-04
Cocrystals and amorphous solid dispersions have generated interest in the pharmaceutical industry as an alternative to more established solid delivery forms. The identification of intermolecular hydrogen bonding interactions in a nicotinamide palmitic acid cocrystal and a 50% w/w acetaminophen-polyvinylpyrrolidone solid dispersion are reported using advanced solid-state magic-angle spinning (MAS) NMR methods. The application of a novel (14)N-(1)H HMQC experiment, where coherence transfer is achieved via through-space couplings, is shown to identify specific hydrogen bonding motifs. Additionally, (1)H isotropic chemical shifts and (14)N electric field gradient (EFG) parameters, both accessible from (14)N-(1)H HMQC experiments, are shown to be sensitive to changes in hydrogen bonding geometry. Numerous indicators of molecular association are accessible from this experiment, including NH cross-peaks occurring from intermolecular hydrogen bonds and changes in proton chemical shifts or electric field gradient parameters. First-principles calculations using the GIPAW approach that yield accurate estimates of isotropic chemical shifts, and EFG parameters were used to assist in assignment. It is envisaged that (14)N-(1)H HMQC solid state NMR experiments could become a valuable screening technique of solid delivery forms in the pharmaceutical industry.
Interplay of spherical closed shells and N /Z asymmetry in quasifission dynamics
NASA Astrophysics Data System (ADS)
Mohanto, G.; Hinde, D. J.; Banerjee, K.; Dasgupta, M.; Jeung, D. Y.; Simenel, C.; Simpson, E. C.; Wakhle, A.; Williams, E.; Carter, I. P.; Cook, K. J.; Luong, D. H.; Palshetkar, C. S.; Rafferty, D. C.
2018-05-01
Background: Quasifission (QF) has gained tremendous importance in heavy-ion nuclear physics research because of its strong influence on superheavy-element synthesis. Collisions involving closed-shell nuclei in the entrance channel are found to affect the QF reaction mechanism. Hence, it is important to improve the understanding of their effect on QF. Apart from that, some recent studies show that the difference in N /Z of reaction partners influences the reaction dynamics. Since heavier doubly magic nuclei have different N /Z than lighter doubly magic nuclei, it is important to understand the effect of N /Z mismatch as well as the effect of shell closures. Purpose: To investigate the effect of entrance-channel shell closures and N /Z asymmetry on QF. The reactions were chosen to decouple these effects from the contributions of other entrance-channel parameters. Method: Fission fragment mass-angle distributions were measured using the CUBE fission spectrometer, consisting of two large area position-sensitive multi-wire proportional counters (MWPCs), for five reactions, namely, 50Cr+208Pb , 52Cr+Pb,208206 , 54Cr+Pb,208204 . Result: Two components were observed in the measured fragment mass angle distribution, a fast mass-asymmetric quasifission and a slow mass-symmetric component having a less significant mass-angle correlation. The ratio of these components was found to depend on spherical closed shells in the entrance channel nuclei and the magnitude of the N /Z mismatch between the two reaction partners, as well as the beam energy. Conclusions: Entrance-channel spherical closed shells can enhance compound nucleus formation provided the N /Z asymmetry is small. Increase in the N /Z asymmetry is expected to destroy the effect of entrance-channel spherical closed shells, through nucleon transfer reactions.
NASA Astrophysics Data System (ADS)
Prelas, M. A.; Hora, H.; Miley, G. H.
2014-07-01
Evaluation of nuclear binding energies from theory close to available measurements of a very high number of superheavy elements (SHE) based on α-decay energies Qα, arrived at a closing shell with a significant neutron number 184. Within the option of several discussed magic numbers for protons of around 120, Bagge's numbers 126 and 184 fit well and are supported by the element generation measurements by low energy nuclear reactions (LENR) discovered in deuterium loaded host metals. These measurements were showing a Maruhn-Greiner maximum from fission of compound nuclei in an excited state with double magic numbers for mutual confirmation.
ERIC Educational Resources Information Center
Lyon, Betty Clayton
1990-01-01
One method of making magic squares using a prolongated square is illustrated. Discussed are third-order magic squares, fractional magic squares, fifth-order magic squares, decimal magic squares, and even magic squares. (CW)
Aleksić, J.; Alvarez, E. A.; Antonelli, L. A.; ...
2012-08-15
Here, we present the discovery of very high energy (VHE, E > 100 GeV) γ-ray emission from the BL Lac object 1ES 1215+303 by the MAGIC telescopes and simultaneous multi-wavelength data in a broad energy range from radio to γ-rays. We also study the VHE γ-ray emission from 1ES 1215+303 and its relation to the emissions in other wavelengths. Triggered by an optical outburst, MAGIC observed the source in 2011 January - February for 20.3 h. The target was monitored in the optical R-band by the KVA telescope that also performed optical polarization measurements. Furthermore, we triggered target of opportunitymore » observations with the Swift satellite and obtained simultaneous and quasi-simultaneous data from the Fermi Large Area Telescope and from the Metsähovi radio telescope. We also present the analysis of older MAGIC data taken in 2010. The MAGIC observations of 1ES 1215+303 carried out in 2011 January - February resulted in the first detection of the source at VHE with a statistical significance of 9.4σ. Simultaneously, the source was observed in a high optical and X-ray state. In 2010 the source was observed in a lower state in optical, X-ray, and VHE, while the GeV γ-ray flux and the radio flux were comparable in 2010 and 2011. The spectral energy distribution obtained with the 2011 data can be modeled with a simple one zone SSC model, but it requires extreme values for the Doppler factor or the electron energy distribution.« less
Ultrafast VHE Gamma-Ray Flares of IC 310
NASA Astrophysics Data System (ADS)
Barkov, Maxim V.; Aharonian, Felix; Khangulyan, Dmitriy V.
In 2012 November MAGIC detected a bright flare from IC 310. The flare consisted of two sharp peaks with a typical duration of ~ 5 min. The energy released during that event has been estimated to be at the level of 2 × 1044 erg s-1. In this work we derive an upper limit on the possible luminosity of flares generated in black hole (BH) magnetosphere, which depends very weakly on the mass of BH and is determined by disk magnetisation, viewing angle, and pair multiplicity. Since all these parameters are smaller than a unit, the luminosity 2 × 1043 erg s-1 can be taken as a strict upper limit for flare luminosity for several minutes variability time. This upper limit appears to be approximately an order of magnitude below the value measured with MAGIC. Thus, we conclude that it seems very unfeasible that the magnetospheric processes can be indeed behind the bright flaring activity recorded from IC 310.
NASA Astrophysics Data System (ADS)
Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Bhattacharyya, W.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; da Vela, P.; Dazzi, F.; de Angelis, A.; de Lotto, B.; de Oña Wilhelmi, E.; di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Ishio, K.; Konno, Y.; Kubo, H.; Kushida, J.; Kuveždić, D.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Maggio, C.; Majumdar, P.; Makariev, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Minev, M.; Mirzoyan, R.; Moralejo, A.; Moreno, V.; Moretti, E.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Ninci, D.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Righi, C.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Zarić, D.; MAGIC Collaboration; Bosch-Ramon, V.; Pooley, G. G.; Trushkin, S. A.; Zanin, R.
2017-12-01
The microquasar Cygnus X-1 displays the two typical soft and hard X-ray states of a black hole transient. During the latter, Cygnus X-1 shows a one-sided relativistic radio-jet. Recent detection of the system in the high energy (HE; E ≳ 60 MeV) gamma-ray range with Fermi-LAT associates this emission with the outflow. Former MAGIC observations revealed a hint of flaring activity in the very high-energy (VHE; E ≳ 100 GeV) regime during this X-ray state. We analyse ∼97 h of Cygnus X-1 data taken with the MAGIC telescopes between July 2007 and October 2014. To shed light on the correlation between hard X-ray and VHE gamma rays as previously suggested, we study each main X-ray state separately. We perform an orbital phase-folded analysis to look for variability in the VHE band. Additionally, to place this variability behaviour in a multiwavelength context, we compare our results with Fermi-LAT, AGILE, Swift-BAT, MAXI, RXTE-ASM, AMI and RATAN-600 data. We do not detect Cygnus X-1 in the VHE regime. We establish upper limits for each X-ray state, assuming a power-law distribution with photon index Γ = 3.2. For steady emission in the hard and soft X-ray states, we set integral upper limits at 95 per cent confidence level for energies above 200 GeV at 2.6 × 10-12 photons cm-2 s-1 and 1.0 × 10-11 photons cm-2 s-1, respectively. We rule out steady VHE gamma-ray emission above this energy range, at the level of the MAGIC sensitivity, originating in the interaction between the relativistic jet and the surrounding medium, while the emission above this flux level produced inside the binary still remains a valid possibility.
Yang, Jiaheng; He, Xiaodong; Guo, Ruijun; Xu, Peng; Wang, Kunpeng; Sheng, Cheng; Liu, Min; Wang, Jin; Derevianko, Andrei; Zhan, Mingsheng
2016-09-16
We demonstrate that the coherence of a single mobile atomic qubit can be well preserved during a transfer process among different optical dipole traps (ODTs). This is a prerequisite step in realizing a large-scale neutral atom quantum information processing platform. A qubit encoded in the hyperfine manifold of an ^{87}Rb atom is dynamically extracted from the static quantum register by an auxiliary moving ODT and reinserted into the static ODT. Previous experiments were limited by decoherences induced by the differential light shifts of qubit states. Here, we apply a magic-intensity trapping technique which mitigates the detrimental effects of light shifts and substantially enhances the coherence time to 225±21 ms. The experimentally demonstrated magic trapping technique relies on the previously neglected hyperpolarizability contribution to the light shifts, which makes the light shift dependence on the trapping laser intensity parabolic. Because of the parabolic dependence, at a certain "magic" intensity, the first order sensitivity to trapping light-intensity variations over ODT volume is eliminated. We experimentally demonstrate the utility of this approach and measure hyperpolarizability for the first time. Our results pave the way for constructing scalable quantum-computing architectures with single atoms trapped in an array of magic ODTs.
NASA Astrophysics Data System (ADS)
Yannouleas, Constantine; Landman, Uzi
2017-10-01
A constructive theoretical platform for the description of quantum space-time crystals uncovers for N interacting and ring-confined rotating particles the existence of low-lying states with proper space-time crystal behavior. The construction of the corresponding many-body trial wave functions proceeds first via symmetry breaking at the mean-field level followed by symmetry restoration using projection techniques. The ensuing correlated many-body wave functions are stationary states and preserve the rotational symmetries, and at the same time they reflect the point-group symmetries of the mean-field crystals. This behavior results in the emergence of sequences of select magic angular momenta Lm. For angular-momenta away from the magic values, the trial functions vanish. Symmetry breaking beyond the mean-field level can be induced by superpositions of such good-Lm many-body stationary states. We show that superposing a pair of adjacent magic angular momenta states leads to formation of special broken-symmetry states exhibiting quantum space-time-crystal behavior. In particular, the corresponding particle densities rotate around the ring, showing undamped and nondispersed periodic crystalline evolution in both space and time. The experimental synthesis of such quantum space-time-crystal wave packets is predicted to be favored in the vicinity of ground-state energy crossings of the Aharonov-Bohm-type spectra accessed via an externally applied, natural or synthetic, magnetic field. These results are illustrated here for Coulomb-repelling fermionic ions and for a lump of contact-interaction attracting bosons.
Dai, Weili; Wang, Chuanming; Yi, Xianfeng; Zheng, Anmin; Li, Landong; Wu, Guangjun; Guan, Naijia; Xie, Zaiku; Dyballa, Michael; Hunger, Michael
2015-07-20
Experimental evidence for the presence of tert-butyl cations, which are important intermediates in acid-catalyzed heterogeneous reactions, on solid acids has still not been provided to date. By combining density functional theory (DFT) calculations with (1)H/(13)C magic-angle-spinning NMR spectroscopy, the tert-butyl cation was successfully identified on zeolite H-ZSM-5 upon conversion of isobutene by capturing this intermediate with ammonia. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2015-11-01
Group Chemistry, 2010, 9, 205-219. 6 C. A. S. Brevett and K. B. Sumpter, “ Sulfur Mustard Degradation on Ambient and Moist Concrete ”, ECBC Technical...reactions of reagents including chemical weapons on materials like concrete , soil, and sand, as well as reactive polymers.3,4,5,6,7 There are...Sumpter, G. W. Wagner, “Degradation of Mustard on Concrete : GC/MSD and SSMAS,” ECBC Technical Report ECBC-TR-482, Edgewood Chemical Biological Center
CO₂ adsorption on amine-functionalized periodic mesoporous benzenesilicas.
Sim, Kyohyun; Lee, Nakwon; Kim, Joonseok; Cho, Eun-Bum; Gunathilake, Chamila; Jaroniec, Mietek
2015-04-01
CO2 adsorption was investigated on amine-functionalized mesoporous silica (SBA-15) and periodic mesoporous organosilica (PMO) samples. Hexagonally (p6mm) ordered mesoporous SBA-15 and benzene-PMO (BPMO) samples were prepared in the presence of Pluronic P123 block copolymer template under acidic conditions. Three kinds of amine-containing organosilanes and polyethylenimine were used to functionalize SBA-15 and BPMO. Small-angle X-ray scattering and nitrogen adsorption isotherms showed that these samples featured ordered mesostructure, high surface area, and narrow pore size distributions. Solid-state (13)C- and (29)Si cross-polarization magic-angle spinning NMR spectra showed chemical linkage between amine-containing modifiers and the surface of mesoporous materials. The chemically linked amine-containing modifiers were found to be on both the inner and outer surfaces. N-[3-(trimethoxysilyl)propyl]ethylenediamine-modified BPMO (A2-BPMO) sample exhibited the highest CO2 uptake (i.e., ∼3.03 mmol/g measured on a volumetric adsorption analyzer) and the fastest adsorption rate (i.e., ∼13 min to attain 90% of the maximum amount) among all the samples studied. Selectivity and reproducibility measurements for the A2-BPMO sample showed quite good performance in flowing N2 gas at 40 mL/min and CO2 gas of 60 mL/min at 25 °C.
Optimized multiple quantum MAS lineshape simulations in solid state NMR
NASA Astrophysics Data System (ADS)
Brouwer, William J.; Davis, Michael C.; Mueller, Karl T.
2009-10-01
The majority of nuclei available for study in solid state Nuclear Magnetic Resonance have half-integer spin I>1/2, with corresponding electric quadrupole moment. As such, they may couple with a surrounding electric field gradient. This effect introduces anisotropic line broadening to spectra, arising from distinct chemical species within polycrystalline solids. In Multiple Quantum Magic Angle Spinning (MQMAS) experiments, a second frequency dimension is created, devoid of quadrupolar anisotropy. As a result, the center of gravity of peaks in the high resolution dimension is a function of isotropic second order quadrupole and chemical shift alone. However, for complex materials, these parameters take on a stochastic nature due in turn to structural and chemical disorder. Lineshapes may still overlap in the isotropic dimension, complicating the task of assignment and interpretation. A distributed computational approach is presented here which permits simulation of the two-dimensional MQMAS spectrum, generated by random variates from model distributions of isotropic chemical and quadrupole shifts. Owing to the non-convex nature of the residual sum of squares (RSS) function between experimental and simulated spectra, simulated annealing is used to optimize the simulation parameters. In this manner, local chemical environments for disordered materials may be characterized, and via a re-sampling approach, error estimates for parameters produced. Program summaryProgram title: mqmasOPT Catalogue identifier: AEEC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3650 No. of bytes in distributed program, including test data, etc.: 73 853 Distribution format: tar.gz Programming language: C, OCTAVE Computer: UNIX/Linux Operating system: UNIX/Linux Has the code been vectorised or parallelized?: Yes RAM: Example: (1597 powder angles) × (200 Samples) × (81 F2 frequency pts) × (31 F1 frequency points) = 3.5M, SMP AMD opteron Classification: 2.3 External routines: OCTAVE ( http://www.gnu.org/software/octave/), GNU Scientific Library ( http://www.gnu.org/software/gsl/), OPENMP ( http://openmp.org/wp/) Nature of problem: The optimal simulation and modeling of multiple quantum magic angle spinning NMR spectra, for general systems, especially those with mild to significant disorder. The approach outlined and implemented in C and OCTAVE also produces model parameter error estimates. Solution method: A model for each distinct chemical site is first proposed, for the individual contribution of crystallite orientations to the spectrum. This model is averaged over all powder angles [1], as well as the (stochastic) parameters; isotropic chemical shift and quadrupole coupling constant. The latter is accomplished via sampling from a bi-variate Gaussian distribution, using the Box-Muller algorithm to transform Sobol (quasi) random numbers [2]. A simulated annealing optimization is performed, and finally the non-linear jackknife [3] is applied in developing model parameter error estimates. Additional comments: The distribution contains a script, mqmasOpt.m, which runs in the OCTAVE language workspace. Running time: Example: (1597 powder angles) × (200 Samples) × (81 F2 frequency pts) × (31 F1 frequency points) = 58.35 seconds, SMP AMD opteron. References:S.K. Zaremba, Annali di Matematica Pura ed Applicata 73 (1966) 293. H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, 1992. T. Fox, D. Hinkley, K. Larntz, Technometrics 22 (1980) 29.
31P Solid-state NMR based monitoring of permeation of cell penetrating peptides into skin
Desai, Pinaki R.; Cormier, Ashley R.; Shah, Punit P.; Patlolla, Ram R.; Paravastu, Anant K.; Singh, Mandip
2013-01-01
The main objective of the current study was to investigate penetration of cell penetrating peptides (CPPs: TAT, R8, R11 and YKA) through skin intercellular lipids using 31P magic angle spinning (MAS) solid-state NMR. In vitro skin permeation studies were performed on rat skin, sections (0–60, 61–120 and 121–180 µm) were collected and analyzed for 31P NMR signal. The concentration dependent shift of 0, 25, 50, 100 and 200 mg/ml of TAT on skin layers, diffusion of TAT, R8, R11 and YKA in the skin and time dependent permeation of R11 was measured on various skin sections using 31P solid-state NMR. Further, CPPs and CPP-tagged fluorescent dye encapsulate liposomes (FLip) in skin layers were tagged using confocal microscopy. The change in 31P NMR chemical shift was found to depend monotonically on the amount of CPP applied on skin, with saturation behavior above 100 mg/ml CPP concentration. R11 and TAT caused more shift in solid-state NMR peaks compared to other peptides. Furthermore, NMR spectra showed R11 penetration up to 180 µm within 30 min. The results of the solid-state NMR study were in agreement with confocal microscopy studies. Thus, 31P solid-state NMR can be used to track CPP penetration into different skin layers. PMID:23702274
Oligo-branched peptides for tumor targeting: from magic bullets to magic forks.
Falciani, Chiara; Pini, Alessandro; Bracci, Luisa
2009-02-01
Selective targeting of tumor cells is the final goal of research and drug discovery for cancer diagnosis, imaging and therapy. After the invention of hybridoma technology, the concept of magic bullet was introduced into the field of oncology, referring to selective killing of tumor cells, by specific antibodies. More recently, small molecules and peptides have also been proposed as selective targeting agents. We analyze the state of the art of tumor-selective agents that are presently available and tested in clinical settings. A novel approach based on 'armed' oligo-branched peptides as tumor targeting agents, is discussed and compared with existing tumor-selective therapies mediated by antibodies, small molecules or monomeric peptides. Oligo-branched peptides could be novel drugs that combine the advantages of antibodies and small molecules.
Proton-hole and core-excited states in the semi-magic nucleus 131In82
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taprogge, J.; Jungclaus, A.; Grawe, H.
2016-11-01
The decay of the N = 83 nucleus Cd-131 has been studied at the RIBF facility at the RIKEN Nishina Center. The main purpose of the study was to identify the position of the and proton-hole states and the energies of core-excited configurations in the semi-magic nucleus In-131. From the radiation emitted following the decay, a level scheme of In-131 was established and the feeding to each excited state determined. Similarities between the single-particle transitions observed in the decays of the N = 83 isotones In-132 and Cd-131 are discussed. Finally the excitation energies of several core-excited configurations in In-131more » are compared to QRPA and shell-model calculations.« less
Kong, Shiao Tong; Gün, Ozgül; Koch, Barbara; Deiseroth, Hans Jörg; Eckert, Hellmut; Reiner, Christof
2010-05-03
Li(7)PS(6) and Li(7)PSe(6) belong to a class of new solids that exhibit high Li(+) mobility. A series of quaternary solid solutions Li(7)PS(6-x)Se(x) (0 < or = x < or = 6) were characterised by X-ray crystallography and magic-angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopy. The high-temperature (HT) modifications were studied by single-crystal investigations (both F43m, Z=4, Li(7)PS(6): a=9.993(1) A, Li(7)PSe(6): a=10.475(1) A) and show the typical argyrodite structures with strongly disordered Li atoms. HT-Li(7)PS(6) and HT-Li(7)PSe(6) transform reversibly into low-temperature (LT) modifications with ordered Li atoms. X-ray powder diagrams show the structures of LT-Li(7)PS(6) and LT-Li(7)PSe(6) to be closely related to orthorhombic LT-alpha-Cu(7)PSe(6). Single crystals of the LT modifications are not available due to multiple twinning and formation of antiphase domains. The gradual substitution of S by Se shows characteristic site preferences closely connected to the functionalities of the different types of chalcogen atoms (S, Se). High-resolution solid-state (31)P NMR is a powerful method to differentiate quantitatively between the distinct (PS(4-n)Se(n))(3-) local environments. Their population distribution differs significantly from a statistical scenario, revealing a pronounced preference for P-S over P-Se bonding. This preference, shown for the series of LT samples, can be quantified in terms of an equilibrium constant specifying the melt reaction Se(P)+S(2-) <==>S(P)+Se(2-), prior to crystallisation. The (77)Se MAS-NMR spectra reveal that the chalcogen distributions in the second and third coordination sphere of the P atoms are essentially statistical. The number of crystallographically independent Li atoms in both LT modifications was analysed by means of (6)Li{(7)Li} cross polarisation magic angle spinning (CPMAS).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eliav, U., E-mail: amirgo@tau.ac.il, E-mail: eliav@tau.ac.il; Haimovich, A.; Goldbourt, A., E-mail: amirgo@tau.ac.il, E-mail: eliav@tau.ac.il
2016-01-14
We discuss and analyze four magic-angle spinning solid-state NMR methods that can be used to measure internuclear distances and to obtain correlation spectra between a spin I = 1/2 and a half-integer spin S > 1/2 having a small quadrupolar coupling constant. Three of the methods are based on the heteronuclear multiple-quantum and single-quantum correlation experiments, that is, high rank tensors that involve the half spin and the quadrupolar spin are generated. Here, both zero and single-quantum coherence of the half spins are allowed and various coherence orders of the quadrupolar spin are generated, and filtered, via active recoupling ofmore » the dipolar interaction. As a result of generating coherence orders larger than one, the spectral resolution for the quadrupolar nucleus increases linearly with the coherence order. Since the formation of high rank tensors is independent of the existence of a finite quadrupolar interaction, these experiments are also suitable to materials in which there is high symmetry around the quadrupolar spin. A fourth experiment is based on the initial quadrupolar-driven excitation of symmetric high order coherences (up to p = 2S, where S is the spin number) and subsequently generating by the heteronuclear dipolar interaction higher rank (l + 1 or higher) tensors that involve also the half spins. Due to the nature of this technique, it also provides information on the relative orientations of the quadrupolar and dipolar interaction tensors. For the ideal case in which the pulses are sufficiently strong with respect to other interactions, we derive analytical expressions for all experiments as well as for the transferred echo double resonance experiment involving a quadrupolar spin. We show by comparison of the fitting of simulations and the analytical expressions to experimental data that the analytical expressions are sufficiently accurate to provide experimental {sup 7}Li–{sup 13}C distances in a complex of lithium, glycine, and water. Discussion of the regime for which such an approach is valid is given.« less
Chen, WenXue; Lou, HaiYan; Zhang, HongPing; Nie, Xiu; Lan, WenXian; Yang, YongXia; Xiang, Yun; Qi, JianPin; Lei, Hao; Tang, HuiRu; Chen, FenEr; Deng, Feng
2011-07-01
Clinical data have shown that survival rates vary considerably among brain tumor patients, according to the type and grade of the tumor. Metabolite profiles of intact tumor tissues measured with high-resolution magic-angle spinning proton nuclear magnetic resonance spectroscopy (HRMAS (1)H NMRS) can provide important information on tumor biology and metabolism. These metabolic fingerprints can then be used for tumor classification and grading, with great potential value for tumor diagnosis. We studied the metabolic characteristics of 30 neuroepithelial tumor biopsies, including two astrocytomas (grade I), 12 astrocytomas (grade II), eight anaplastic astrocytomas (grade III), three glioblastomas (grade IV) and five medulloblastomas (grade IV) from 30 patients using HRMAS (1)H NMRS. The results were correlated with pathological features using multivariate data analysis, including principal component analysis (PCA). There were significant differences in the levels of N-acetyl-aspartate (NAA), creatine, myo-inositol, glycine and lactate between tumors of different grades (P<0.05). There were also significant differences in the ratios of NAA/creatine, lactate/creatine, myo-inositol/creatine, glycine/creatine, scyllo-inositol/creatine and alanine/creatine (P<0.05). A soft independent modeling of class analogy model produced a predictive accuracy of 87% for high-grade (grade III-IV) brain tumors with a sensitivity of 87% and a specificity of 93%. HRMAS (1)H NMR spectroscopy in conjunction with pattern recognition thus provides a potentially useful tool for the rapid and accurate classification of human brain tumor grades.
Pauling, Linus
1981-01-01
Values of R, the radius of rotation of the rotating cluster, are calculated from the observed values of the energy of the lowest 2+ states of the even isotopes of 48Cd, 50Sn, and 52Te with the assumption that the cluster is α, p2, and α, respectively. R shows a maximum at ≈N = 58, a minimum at ≈N = 62, and a second maximum at ≈N = 70. The increase to the first maximum is interpreted as resulting from the overcrowding of spherons (alphas and tritons) in the mantle (outer layer) of the nuclei, causing the cluster to change from rotating in the mantle to skimming over its surface; the decrease to the minimum results from the addition of three dineutrons to the core, expanding the mantle and permitting the rotating cluster to begin to drop back into it; and the increase to the second maximum results from the overcrowding of the larger mantle surrounding the core containing the semi-magic number 14 of neutrons rather than the magic number 8 for N = 50. The decrease after the second maximum results from the further increase in the number of core neutrons to 20, corresponding to the magic number 82. Some additional evidence for the change to an intermediate structure between N = 50 and N = 82 is also discussed. PMID:16593084
The Magnetics Information Consortium (MagIC)
NASA Astrophysics Data System (ADS)
Johnson, C.; Constable, C.; Tauxe, L.; Koppers, A.; Banerjee, S.; Jackson, M.; Solheid, P.
2003-12-01
The Magnetics Information Consortium (MagIC) is a multi-user facility to establish and maintain a state-of-the-art relational database and digital archive for rock and paleomagnetic data. The goal of MagIC is to make such data generally available and to provide an information technology infrastructure for these and other research-oriented databases run by the international community. As its name implies, MagIC will not be restricted to paleomagnetic or rock magnetic data only, although MagIC will focus on these kinds of information during its setup phase. MagIC will be hosted under EarthRef.org at http://earthref.org/MAGIC/ where two "integrated" web portals will be developed, one for paleomagnetism (currently functional as a prototype that can be explored via the http://earthref.org/databases/PMAG/ link) and one for rock magnetism. The MagIC database will store all measurements and their derived properties for studies of paleomagnetic directions (inclination, declination) and their intensities, and for rock magnetic experiments (hysteresis, remanence, susceptibility, anisotropy). Ultimately, this database will allow researchers to study "on the internet" and to download important data sets that display paleo-secular variations in the intensity of the Earth's magnetic field over geological time, or that display magnetic data in typical Zijderveld, hysteresis/FORC and various magnetization/remanence diagrams. The MagIC database is completely integrated in the EarthRef.org relational database structure and thus benefits significantly from already-existing common database components, such as the EarthRef Reference Database (ERR) and Address Book (ERAB). The ERR allows researchers to find complete sets of literature resources as used in GERM (Geochemical Earth Reference Model), REM (Reference Earth Model) and MagIC. The ERAB contains addresses for all contributors to the EarthRef.org databases, and also for those who participated in data collection, archiving and analysis in the magnetic studies. Integration with these existing components will guarantee direct traceability to the original sources of the MagIC data and metadata. The MagIC database design focuses around the general workflow that results in the determination of typical paleomagnetic and rock magnetic analyses. This ensures that individual data points can be traced between the actual measurements and their associated specimen, sample, site, rock formation and locality. This permits a distinction between original and derived data, where the actual measurements are performed at the specimen level, and data at the sample level and higher are then derived products in the database. These relations will also allow recalculation of derived properties, such as site means, when new data becomes available for a specific locality. Data contribution to the MagIC database is critical in achieving a useful research tool. We have developed a standard data and metadata template that can be used to provide all data at the same time as publication. Software tools are provided to facilitate easy population of these templates. The tools allow for the import/export of data files in a delimited text format, and they provide some advanced functionality to validate data and to check internal coherence of the data in the template. During and after publication these standardized MagIC templates will be stored in the ERR database of EarthRef.org from where they can be downloaded at all times. Finally, the contents of these template files will be automatically parsed into the online relational database.
Saïdi, Fadila; Taulelle, Francis; Martineau, Charlotte
2016-08-01
In this contribution, we present an analysis of the main parameters influencing the efficiency of the (1)H → (13)C multiple-contact cross-polarization nuclear magnetic resonance (NMR) experiment in the context of solid pharmaceutical materials. Using the optimum experimental conditions, quantitative (13)C NMR spectra are then obtained for porous metal-organic frameworks (potential drug carriers) and for components present in drug formulations (active principle ingredient and excipients, amorphous or crystalline). Finally, we show that mixtures of components can also be quantified with this method and, hence, that it represents an ideal tool for quantification of pharmaceutical formulations by (13)C cross-polarization under magic-angle spinning NMR in the industry as it is robust and easy to set up, much faster than direct (13)C polarization and is efficient for samples at natural abundance. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Katahira, Rui; Sluiter, Justin B; Schell, Daniel J; Davis, Mark F
2013-04-03
The lignin content measured after dilute sulfuric acid pretreatment of corn stover indicates more lignin than could be accounted for on the basis of the untreated corn stover lignin content. This phenomenon was investigated using a combination of (13)C cross-polarization/magic-angle spinning (CP/MAS) solid-state nuclear magnetic resonance (NMR) spectroscopy and lignin removal using acid chlorite bleaching. Only minimal contamination with carbohydrates and proteins was observed in the pretreated corn stover. Incorporating degradation products from sugars was also investigated using (13)C-labeled sugars. The results indicate that sugar degradation products are present in the pretreatment residue and may be intimately associated with the lignin. Studies comparing whole corn stover (CS) to extractives-free corn stover [CS(Ext)] clearly demonstrated that extractives are a key contributor to the high-lignin mass balance closure (MBC). Sugars and other low molecular weight compounds present in plant extractives polymerize and form solids during pretreatment, resulting in apparent Klason lignin measurements that are biased high.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keniry, M.A.; Rothgeb, T.M.; Smith, R.L.
1983-04-12
Deuterium (/sup 2/H) nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation times (T/sub 1/) were obtained of L-(epsilon-/sup 2/H/sub 3/)methionine, L-(epsilon-/sup 2/H/sub 3/)methionine in a D,L lattice, and (S-methyl-/sup 2/H/sub 3/)methionine in the crystalline solid state, as a function of temperature, in addition to obtaining /sup 2/H T/sub 1/ and line-width results as a function of temperature on (epsilon-/sup 2/H/sub 3/)methionine-labeled sperm whale (Physeter catodon) myoglobins by using the method of magnetic ordering. Also recorded were /sup 13/C cross-polarization ''magic-angle'' sample-spinning NMR spectra of (epsilon-/sup 13/C)methionine-labeled crystalline cyanoferrimyoglobin (at 37.7 MHz, corresponding to a magnetic field strength of 3.52 T)more » and of the same protein in aqueous solution. (JMT)« less
Dynamic Nuclear Polarization and other magnetic ideas at EPFL.
Bornet, Aurélien; Milani, Jonas; Wang, Shutao; Mammoli, Daniele; Buratto, Roberto; Salvi, Nicola; Segaw, Takuya F; Vitzthum, Veronika; Miéville, Pascal; Chinthalapalli, Srinivas; Perez-Linde, Angel J; Carnevale, Diego; Jannin, Sami; Caporinia, Marc; Ulzega, Simone; Rey, Martial; Bodenhausen, Geoffrey
2012-01-01
Although nuclear magnetic resonance (NMR) can provide a wealth of information, it often suffers from a lack of sensitivity. Dynamic Nuclear Polarization (DNP) provides a way to increase the polarization and hence the signal intensities in NMR spectra by transferring the favourable electron spin polarization of paramagnetic centres to the surrounding nuclear spins through appropriate microwave irradiation. In our group at EPFL, two complementary DNP techniques are under investigation: the combination of DNP with magic angle spinning at temperatures near 100 K ('MAS-DNP'), and the combination of DNP at 1.2 K with rapid heating followed by the transfer of the sample to a high-resolution magnet ('dissolution DNP'). Recent applications of MAS-DNP to surfaces, as well as new developments of magnetization transfer of (1)H to (13)C at 1.2 K prior to dissolution will illustrate the work performed in our group. A second part of the paper will give an overview of some 'non-enhanced' activities of our laboratory in liquid- and solid-state NMR.
Venâncio, Tiago; Oliveira, Lyege Magalhaes; Ellena, Javier; Boechat, Nubia; Brown, Steven P
2017-10-01
Fast magic-angle spinning (MAS) NMR is used to probe intermolecular interactions in a diethylcarbamazine salt, that is widely used as a treatment against adult worms of Wuchereria bancrofti which cause a common disease in tropical countries named filariasis. Specifically, a dihydrogen citrate salt that has improved thermal stability and solubility as compared to the free form is studied. One-dimensional 1 H, 13 C and 15 N and two-dimensional 1 H- 13 C and 14 N- 1 H heteronuclear correlation NMR experiments under moderate and fast MAS together with GIPAW (CASTEP) calculations enable the assignment of the 1 H, 13 C and 14 N/ 15 N resonances. A two-dimensional 1 H- 1 H double-quantum (DQ) -single-quantum (SQ) MAS spectrum recorded with BaBa recoupling at 60kHz MAS identifies specific proton-proton proximities associated with citrate-citrate and citrate-diethylcarbamazine intermolecular interactions. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loring, John S.; Schaef, Herbert T.; Turcu, Romulus VF
2012-04-25
The interaction of anhydrous supercritical CO2 (scCO2) with both kaolinite and ~1W (i.e. close to but less than one layer of hydration) calcium-saturated montmorillonite was investigated under conditions relevant to geologic carbon sequestration (50 °C and 90 bar). The CO2 molecular environment was probed in situ using a combination of three novel high-pressure techniques: X-ray diffraction, magic angle spinning nuclear magnetic resonance spectroscopy and attenuated total reflection infrared spectroscopy. We report the first direct evidence that the expansion of montmorillonite under scCO2 conditions is due to CO2 migration into the interlayer. Intercalated CO2 molecules are rotationally constrained and do notmore » appear to react with waters to form bicarbonate or carbonic acid. In contrast, CO2 does not intercalate into kaolinite. The findings show that predicting the seal integrity of caprock will have complex dependence on clay mineralogy and hydration state.« less
Lin, Hsiang-Kai; Boatz, Jennifer C.; Krabbendam, Inge E.; Kodali, Ravindra; Hou, Zhipeng; Wetzel, Ronald; Dolga, Amalia M.; Poirier, Michelle A.; van der Wel, Patrick C. A.
2017-01-01
Polyglutamine expansion in the huntingtin protein is the primary genetic cause of Huntington's disease (HD). Fragments coinciding with mutant huntingtin exon1 aggregate in vivo and induce HD-like pathology in mouse models. The resulting aggregates can have different structures that affect their biochemical behaviour and cytotoxic activity. Here we report our studies of the structure and functional characteristics of multiple mutant htt exon1 fibrils by complementary techniques, including infrared and solid-state NMR spectroscopies. Magic-angle-spinning NMR reveals that fibrillar exon1 has a partly mobile α-helix in its aggregation-accelerating N terminus, and semi-rigid polyproline II helices in the proline-rich flanking domain (PRD). The polyglutamine-proximal portions of these domains are immobilized and clustered, limiting access to aggregation-modulating antibodies. The polymorphic fibrils differ in their flanking domains rather than the polyglutamine amyloid structure. They are effective at seeding polyglutamine aggregation and exhibit cytotoxic effects when applied to neuronal cells. PMID:28537272
NASA Astrophysics Data System (ADS)
Lin, Hsiang-Kai; Boatz, Jennifer C.; Krabbendam, Inge E.; Kodali, Ravindra; Hou, Zhipeng; Wetzel, Ronald; Dolga, Amalia M.; Poirier, Michelle A.; van der Wel, Patrick C. A.
2017-05-01
Polyglutamine expansion in the huntingtin protein is the primary genetic cause of Huntington's disease (HD). Fragments coinciding with mutant huntingtin exon1 aggregate in vivo and induce HD-like pathology in mouse models. The resulting aggregates can have different structures that affect their biochemical behaviour and cytotoxic activity. Here we report our studies of the structure and functional characteristics of multiple mutant htt exon1 fibrils by complementary techniques, including infrared and solid-state NMR spectroscopies. Magic-angle-spinning NMR reveals that fibrillar exon1 has a partly mobile α-helix in its aggregation-accelerating N terminus, and semi-rigid polyproline II helices in the proline-rich flanking domain (PRD). The polyglutamine-proximal portions of these domains are immobilized and clustered, limiting access to aggregation-modulating antibodies. The polymorphic fibrils differ in their flanking domains rather than the polyglutamine amyloid structure. They are effective at seeding polyglutamine aggregation and exhibit cytotoxic effects when applied to neuronal cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dietrich, Christian; Sadowski, Marcel; Sicolo, Sabrina
Glassy, glass–ceramic, and crystalline lithium thiophosphates have attracted interest in their use as solid electrolytes in all-solid-state batteries. Despite similar structural motifs, including PS 4 3–, P 2S 6 4–, and P 2S 7 4– polyhedra, these materials exhibit a wide range of possible compositions, crystal structures, and ionic conductivities. Here, we present a combined approach of Bragg diffraction, pair distribution function analysis, Raman spectroscopy, and 31P magic angle spinning nuclear magnetic resonance spectroscopy to study the underlying crystal structure of Li 4P 2S 6. In this work, we show that the material crystallizes in a planar structural arrangement asmore » a glass ceramic composite, explaining the observed relatively low ionic conductivity, depending on the fraction of glass content. Calculations based on density functional theory provide an understanding of occurring diffusion pathways and ionic conductivity of this Li + ionic conductor.« less
Experimental Protein Structure Verification by Scoring with a Single, Unassigned NMR Spectrum.
Courtney, Joseph M; Ye, Qing; Nesbitt, Anna E; Tang, Ming; Tuttle, Marcus D; Watt, Eric D; Nuzzio, Kristin M; Sperling, Lindsay J; Comellas, Gemma; Peterson, Joseph R; Morrissey, James H; Rienstra, Chad M
2015-10-06
Standard methods for de novo protein structure determination by nuclear magnetic resonance (NMR) require time-consuming data collection and interpretation efforts. Here we present a qualitatively distinct and novel approach, called Comparative, Objective Measurement of Protein Architectures by Scoring Shifts (COMPASS), which identifies the best structures from a set of structural models by numerical comparison with a single, unassigned 2D (13)C-(13)C NMR spectrum containing backbone and side-chain aliphatic signals. COMPASS does not require resonance assignments. It is particularly well suited for interpretation of magic-angle spinning solid-state NMR spectra, but also applicable to solution NMR spectra. We demonstrate COMPASS with experimental data from four proteins--GB1, ubiquitin, DsbA, and the extracellular domain of human tissue factor--and with reconstructed spectra from 11 additional proteins. For all these proteins, with molecular mass up to 25 kDa, COMPASS distinguished the correct fold, most often within 1.5 Å root-mean-square deviation of the reference structure. Copyright © 2015 Elsevier Ltd. All rights reserved.
Synthesis of nanometer-sized sodalite without adding organic additives.
Fan, Wei; Morozumi, Kazumasa; Kimura, Riichiro; Yokoi, Toshiyuki; Okubo, Tatsuya
2008-06-01
Aggregates (80 nm) of sodalite nanocrystals with crystallite sizes ranging from 20 to 40 nm have been synthesized from a sodium aluminosilicate solution at low temperature, without adding any organic additives, while paying attention to the key factors for the synthesis of nanosized zeolite crystals. The physical properties of nanosized sodalite crystals were characterized by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, 29Si solid-state magic-angle spinning (MAS) NMR, and N2 adsorption. As expected, the external surface area of nanosized sodalite crystals is significantly increased compared with that of microsized sodalite crystals. The size of synthesized sodalite crystals can be controlled from 20 nm to 10 microm. It is found that the preparation of a homogeneous aluminosilicate solution followed by the formation of an aluminosilicate hard gel by adjusting the initial composition, for example, SiO2/Al2O3 and Na2O/H2O ratios, is critical for synthesis.
Experimental Protein Structure Verification by Scoring with a Single, Unassigned NMR Spectrum
Courtney, Joseph M.; Ye, Qing; Nesbitt, Anna E.; Tang, Ming; Tuttle, Marcus D.; Watt, Eric D.; Nuzzio, Kristin M.; Sperling, Lindsay J.; Comellas, Gemma; Peterson, Joseph R.; Morrissey, James H.; Rienstra, Chad M.
2016-01-01
Standard methods for de novo protein structure determination by nuclear magnetic resonance (NMR) require time-consuming data collection and interpretation efforts. Here we present a qualitatively distinct and novel approach, called Comparative, Objective Measurement of Protein Architectures by Scoring Shifts (COMPASS), which identifies the best structures from a set of structural models by numerical comparison with a single, unassigned 2D 13C-13C NMR spectrum containing backbone and side-chain aliphatic signals. COMPASS does not require resonance assignments. It is particularly well suited for interpretation of magic-angle spinning solid-state NMR spectra, but also applicable to solution NMR spectra. We demonstrate COMPASS with experimental data from four proteins—GB1, ubiquitin, DsbA, and the extracellular domain of human tissue factor—and with reconstructed spectra from 11 additional proteins. For all these proteins, with molecular mass up to 25 kDa, COMPASS distinguished the correct fold, most often within 1.5 Å root-mean-square deviation of the reference structure. PMID:26365800
Solid-state dynamic nuclear polarization at 263 GHz: spectrometer design and experimental results†
Rosay, Melanie; Tometich, Leo; Pawsey, Shane; Bader, Reto; Schauwecker, Robert; Blank, Monica; Borchard, Philipp M.; Cauffman, Stephen R.; Felch, Kevin L.; Weber, Ralph T.; Temkin, Richard J.; Griffin, Robert G.; Maas, Werner E.
2015-01-01
Dynamic Nuclear Polarization (DNP) experiments transfer polarization from electron spins to nuclear spins with microwave irradiation of the electron spins for enhanced sensitivity in nuclear magnetic resonance (NMR) spectroscopy. Design and testing of a spectrometer for magic angle spinning (MAS) DNP experiments at 263 GHz microwave frequency, 400 MHz 1H frequency is described. Microwaves are generated by a novel continuous-wave gyrotron, transmitted to the NMR probe via a transmission line, and irradiated on a 3.2 mm rotor for MAS DNP experiments. DNP signal enhancements of up to 80 have been measured at 95 K on urea and proline in water–glycerol with the biradical polarizing agent TOTAPOL. We characterize the experimental parameters affecting the DNP efficiency: the magnetic field dependence, temperature dependence and polarization build-up times, microwave power dependence, sample heating effects, and spinning frequency dependence of the DNP signal enhancement. Stable system operation, including DNP performance, is also demonstrated over a 36 h period. PMID:20449524
NASA Astrophysics Data System (ADS)
Vugmeyster, Liliya; Ostrovsky, Dmitry; Fu, Riqiang
2015-10-01
In this work, we assess the usefulness of static 15N NMR techniques for the determination of the 15N chemical shift anisotropy (CSA) tensor parameters and 15N-1H dipolar splittings in powder protein samples. By using five single labeled samples of the villin headpiece subdomain protein in a hydrated lyophilized powder state, we determine the backbone 15N CSA tensors at two temperatures, 22 and -35 °C, in order to get a snapshot of the variability across the residues and as a function of temperature. All sites probed belonged to the hydrophobic core and most of them were part of α-helical regions. The values of the anisotropy (which include the effect of the dynamics) varied between 130 and 156 ppm at 22 °C, while the values of the asymmetry were in the 0.32-0.082 range. The Leu-75 and Leu-61 backbone sites exhibited high mobility based on the values of their temperature-dependent anisotropy parameters. Under the assumption that most differences stem from dynamics, we obtained the values of the motional order parameters for the 15N backbone sites. While a simple one-dimensional line shape experiment was used for the determination of the 15N CSA parameters, a more advanced approach based on the ;magic sandwich; SAMMY pulse sequence (Nevzorov and Opella, 2003) was employed for the determination of the 15N-1H dipolar patterns, which yielded estimates of the dipolar couplings. Accordingly, the motional order parameters for the dipolar interaction were obtained. It was found that the order parameters from the CSA and dipolar measurements are highly correlated, validating that the variability between the residues is governed by the differences in dynamics. The values of the parameters obtained in this work can serve as reference values for developing more advanced magic-angle spinning recoupling techniques for multiple labeled samples.
Systematic study of α preformation probability of nuclear isomeric and ground states
NASA Astrophysics Data System (ADS)
Sun, Xiao-Dong; Wu, Xi-Jun; Zheng, Bo; Xiang, Dong; Guo, Ping; Li, Xiao-Hua
2017-01-01
In this paper, based on the two-potential approach combining with the isospin dependent nuclear potential, we systematically compare the α preformation probabilities of odd-A nuclei between nuclear isomeric states and ground states. The results indicate that during the process of α particle preforming, the low lying nuclear isomeric states are similar to ground states. Meanwhile, in the framework of single nucleon energy level structure, we find that for nuclei with nucleon number below the magic numbers, the α preformation probabilities of high-spin states seem to be larger than low ones. For nuclei with nucleon number above the magic numbers, the α preformation probabilities of isomeric states are larger than those of ground states. Supported by National Natural Science Foundation of China (11205083), Construct Program of Key Discipline in Hunan Province, Research Foundation of Education Bureau of Hunan Province, China (15A159), Natural Science Foundation of Hunan Province, China (2015JJ3103, 2015JJ2123), Innovation Group of Nuclear and Particle Physics in USC, Hunan Provincial Innovation Foundation for Postgraduate (CX2015B398)
Solid state NMR: The essential technology for helical membrane protein structural characterization
Cross, Timothy A.; Ekanayake, Vindana; Paulino, Joana; Wright, Anna
2014-01-01
NMR spectroscopy of helical membrane proteins has been very challenging on multiple fronts. The expression and purification of these proteins while maintaining functionality has consumed countless graduate student hours. Sample preparations have depended on whether solution or solid-state NMR spectroscopy was to be performed – neither have been easy. In recent years it has become increasingly apparent that membrane mimic environments influence the structural result. Indeed, in these recent years we have rediscovered that Nobel laureate, Christian Anfinsen, did not say that protein structure was exclusively dictated by the amino acid sequence, but rather by the sequence in a given environment (Anfinsen, 1973) [106]. The environment matters, molecular interactions with the membrane environment are significant and many examples of distorted, non-native membrane protein structures have recently been documented in the literature. However, solid-state NMR structures of helical membrane proteins in proteoliposomes and bilayers are proving to be native structures that permit a high resolution characterization of their functional states. Indeed, solid-state NMR is uniquely able to characterize helical membrane protein structures in lipid environments without detergents. Recent progress in expression, purification, reconstitution, sample preparation and in the solid-state NMR spectroscopy of both oriented samples and magic angle spinning samples has demonstrated that helical membrane protein structures can be achieved in a timely fashion. Indeed, this is a spectacular opportunity for the NMR community to have a major impact on biomedical research through the solid-state NMR spectroscopy of these proteins. PMID:24412099
Solid state NMR: The essential technology for helical membrane protein structural characterization
NASA Astrophysics Data System (ADS)
Cross, Timothy A.; Ekanayake, Vindana; Paulino, Joana; Wright, Anna
2014-02-01
NMR spectroscopy of helical membrane proteins has been very challenging on multiple fronts. The expression and purification of these proteins while maintaining functionality has consumed countless graduate student hours. Sample preparations have depended on whether solution or solid-state NMR spectroscopy was to be performed - neither have been easy. In recent years it has become increasingly apparent that membrane mimic environments influence the structural result. Indeed, in these recent years we have rediscovered that Nobel laureate, Christian Anfinsen, did not say that protein structure was exclusively dictated by the amino acid sequence, but rather by the sequence in a given environment (Anfinsen, 1973) [106]. The environment matters, molecular interactions with the membrane environment are significant and many examples of distorted, non-native membrane protein structures have recently been documented in the literature. However, solid-state NMR structures of helical membrane proteins in proteoliposomes and bilayers are proving to be native structures that permit a high resolution characterization of their functional states. Indeed, solid-state NMR is uniquely able to characterize helical membrane protein structures in lipid environments without detergents. Recent progress in expression, purification, reconstitution, sample preparation and in the solid-state NMR spectroscopy of both oriented samples and magic angle spinning samples has demonstrated that helical membrane protein structures can be achieved in a timely fashion. Indeed, this is a spectacular opportunity for the NMR community to have a major impact on biomedical research through the solid-state NMR spectroscopy of these proteins.
Birkefeld, Anja Britta; Bertermann, Rüdiger; Eckert, Hellmut; Pfleiderer, Bettina
2003-01-01
To investigate aging processes of silicone gel breast implants, which may include migration of free unreacted material from the gel and rubber to local (e.g. connective tissue capsule) or distant sites in the body, chemical alteration of the polymer and infiltration of body compounds, various approaches of multinuclear nuclear magnetic resonance (NMR) experiments (29Si, 13C, 1H) were evaluated. While 29Si, 13C, and 1H solid-state magic angle spinning (MAS) NMR techniques performed on virgin and explanted envelopes of silicone prostheses provided only limited information, high-resolution liquid-state NMR techniques of CDCl(3) extracts were highly sensitive analytical tools for the detection of aging related changes in the materials. Using 2D 1H, 1H correlation spectroscopy (COSY) and 29Si, 1H heteronuclear multiple bond coherence (HMBC) experiments with gradient selection, it was possible to detect lipids (mainly phospholipids) as well as silicone oligomer species in explanted envelopes and gels. Silicone oligomers were also found in connective tissue capsules, indicating that cyclic polysiloxanes can migrate from intact implants to adjacent and distant sites. Furthermore, lipids can permeate the implant and modify its chemical composition. Copyright 2002 Elsevier Science Ltd.
NASA Astrophysics Data System (ADS)
Manu, V. S.; Veglia, Gianluigi
2016-12-01
Identity operation in the form of π pulses is widely used in NMR spectroscopy. For an isolated single spin system, a sequence of even number of π pulses performs an identity operation, leaving the spin state essentially unaltered. For multi-spin systems, trains of π pulses with appropriate phases and time delays modulate the spin Hamiltonian to perform operations such as decoupling and recoupling. However, experimental imperfections often jeopardize the outcome, leading to severe losses in sensitivity. Here, we demonstrate that a newly designed Genetic Algorithm (GA) is able to optimize a train of π pulses, resulting in a robust identity operation. As proof-of-concept, we optimized the recoupling sequence in the transferred-echo double-resonance (TEDOR) pulse sequence, a key experiment in biological magic angle spinning (MAS) solid-state NMR for measuring multiple carbon-nitrogen distances. The GA modified TEDOR (GMO-TEDOR) experiment with improved recoupling efficiency results in a net gain of sensitivity up to 28% as tested on a uniformly 13C, 15N labeled microcrystalline ubiquitin sample. The robust identity operation achieved via GA paves the way for the optimization of several other pulse sequences used for both solid- and liquid-state NMR used for decoupling, recoupling, and relaxation experiments.
High zenith angle observations of PKS 2155-304 with the MAGIC-I telescope
NASA Astrophysics Data System (ADS)
Aleksić, J.; Alvarez, E. A.; Antonelli, L. A.; Antoranz, P.; Asensio, M.; Backes, M.; Barres de Almeida, U.; Barrio, J. A.; Bastieri, D.; Becerra González, J.; Bednarek, W.; Berdyugin, A.; Berger, K.; Bernardini, E.; Biland, A.; Blanch, O.; Bock, R. K.; Boller, A.; Bonnoli, G.; Borla Tridon, D.; Braun, I.; Bretz, T.; Cañellas, A.; Carmona, E.; Carosi, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Cossio, L.; Covino, S.; Dazzi, F.; De Angelis, A.; De Caneva, G.; De Cea del Pozo, E.; De Lotto, B.; Delgado Mendez, C.; Diago Ortega, A.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Eisenacher, D.; Elsaesser, D.; Ferenc, D.; Fonseca, M. V.; Font, L.; Fruck, C.; García López, R. J.; Garczarczyk, M.; Garrido, D.; Giavitto, G.; Godinović, N.; Gozzini, S. R.; Hadasch, D.; Häfner, D.; Herrero, A.; Hildebrand, D.; Höhne-Mönch, D.; Hose, J.; Hrupec, D.; Jogler, T.; Kellermann, H.; Klepser, S.; Krähenbühl, T.; Krause, J.; Kushida, J.; La Barbera, A.; Lelas, D.; Leonardo, E.; Lewandowska, N.; Lindfors, E.; Lombardi, S.; López, M.; López, R.; López-Oramas, A.; Lorenz, E.; Makariev, M.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Moldón, J.; Moralejo, A.; Munar-Adrover, P.; Niedzwiecki, A.; Nieto, D.; Nilsson, K.; Nowak, N.; Orito, R.; Paiano, S.; Paneque, D.; Paoletti, R.; Pardo, S.; Paredes, J. M.; Partini, S.; Perez-Torres, M. A.; Persic, M.; Peruzzo, L.; Pilia, M.; Pochon, J.; Prada, F.; Prada Moroni, P. G.; Prandini, E.; Puerto Gimenez, I.; Puljak, I.; Reichardt, I.; Reinthal, R.; Rhode, W.; Ribó, M.; Rico, J.; Rügamer, S.; Saggion, A.; Saito, K.; Saito, T. Y.; Salvati, M.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shayduk, M.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Spanier, F.; Spiro, S.; Stamatescu, V.; Stamerra, A.; Steinke, B.; Storz, J.; Strah, N.; Sun, S.; Surić, T.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Tibolla, O.; Torres, D. F.; Treves, A.; Uellenbeck, M.; Vankov, H.; Vogler, P.; Wagner, R. M.; Weitzel, Q.; Zabalza, V.; Zandanel, F.; Zanin, R.
2012-08-01
Context. The high frequency peaked BL Lac PKS 2155-304 with a redshift of z = 0.116 was discovered in 1997 in the very high energy (VHE, E > 100 GeV) γ-ray range by the University of Durham Mark VI γ-ray Cherenkov telescope in Australia with a flux corresponding to 20% of the Crab Nebula flux. It was later observed and detected with high significance by the southern Cherenkov observatory H.E.S.S. establishing this source as the best studied southern TeV blazar. Detection from the northern hemisphere is difficult due to challenging observation conditions under large zenith angles. In July 2006, the H.E.S.S. collaboration reported an extraordinary outburst of VHE γ-emission. During the outburst, the VHE γ-ray emission was found to be variable on the time scales of minutes and with a mean flux of ~7 times the flux observed from the Crab Nebula. Follow-up observations with the MAGIC-I standalone Cherenkov telescope were triggered by this extraordinary outburst and PKS 2155-304 was observed between 28 July to 2 August 2006 for 15 h at large zenith angles. Aims: We studied the behavior of the source after its extraordinary flare. Furthermore, we developed an analysis method in order to analyze these data taken under large zenith angles. Methods: Here we present an enhanced analysis method for data taken at high zenith angles. We developed improved methods for event selection that led to a better background suppression. Results: The quality of the results presented here is superior to the results presented previously for this data set: detection of the source on a higher significance level and a lower analysis threshold. The averaged energy spectrum we derived has a spectral index of (-3.5 ± 0.2) above 400 GeV, which is in good agreement with the spectral shape measured by H.E.S.S. during the major flare on MJD 53 944. Furthermore, we present the spectral energy distribution modeling of PKS 2155-304. With our observations we increased the duty cycle of the source extending the light curve derived by H.E.S.S. after the outburst. Finally, we find night-by-night variability with a maximal amplitude of a factor three to four and an intranight variability in one of the nights (MJD 53 945) with a similar amplitude.
[Medical practice, magic and religion - conjunction and development before and after Reformation].
Thorvardardottir, Olina Kjerulf
2017-12-01
The conjunction between medical practice, religion and magic becomes rather visible when one peers into old scripts and ancient literature. Before the foundation and diffusion of universities of the continent, the european convents and cloisters were the centers of medical knowl-edge and -practice for centuries. Alongside the scholarly development of medical science, driven from the roots of the eldest scholarly medicial practice, the practice of folk-medicin flourished and thrived all over Europe, not least the herbal-medicine which is the original form and foundation for modern pharmacy. This article deals with the conjunction of religion, magic and medical practice in ancient Icelandic sources such as the Old-Norse literature, medical-scripts from the 12th - 15th century Iceland, and not least the Icelandic magical-scripts (galdrakver) of the 17th century. The last mentioned documents were used as evidence in several witch-trials that led convicted witches to suffer executions at the stake once the wave of European witch-persecutions had rushed ashore in 17th century Iceland. These sources indicate a decline of medical knowledge and science in the 16th and 17th century Iceland, the medical practice being rather undeveloped at the time - in Iceland as in other parts of Europe - there-fore a rather unclear margin between "the learned and the laymen". While common people and folk-healers were convicted as witches to suffer at the stake for possession of magical scripts and healing-books, some scholars of the state of Danmark were practicing healing-methods that deserve to be compared to the activities of the former ones. That comparison raises an inevitable question of where to draw the line between the learned medical man and the magician of 17th century Iceland, that is between Magic and Science.
Structure of the Lightest Tin Isotopes
NASA Astrophysics Data System (ADS)
Morris, T. D.; Simonis, J.; Stroberg, S. R.; Stumpf, C.; Hagen, G.; Holt, J. D.; Jansen, G. R.; Papenbrock, T.; Roth, R.; Schwenk, A.
2018-04-01
We link the structure of nuclei around 100Sn, the heaviest doubly magic nucleus with equal neutron and proton numbers (N =Z =50 ), to nucleon-nucleon (N N ) and three-nucleon (N N N ) forces constrained by data of few-nucleon systems. Our results indicate that 100Sn is doubly magic, and we predict its quadrupole collectivity. We present precise computations of 101Sn based on three-particle-two-hole excitations of 100Sn, and we find that one interaction accurately reproduces the small splitting between the lowest Jπ=7 /2+ and 5 /2+ states.
Magic Angle Spinning NMR Metabolomics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhi Hu, Jian
Nuclear Magnetic Resonance (NMR) spectroscopy is a non-destructive, quantitative, reproducible, untargeted and unbiased method that requires no or minimal sample preparation, and is one of the leading analytical tools for metabonomics research [1-3]. The easy quantification and the no need of prior knowledge about compounds present in a sample associated with NMR are advantageous over other techniques [1,4]. 1H NMR is especially attractive because protons are present in virtually all metabolites and its NMR sensitivity is high, enabling the simultaneous identification and monitoring of a wide range of low molecular weight metabolites.
Reactions of CW Agents HD And GD with the Polymer Fabrics PVAM and CHEMCAT 41
2015-09-01
analyses of the rates of G agent decomposition were followed by the methods of solids NMR (high resolution magic angle spinning, HR-MAS). A P-31...molecular weight copolymer of 30-35 kDa. The Erkol copolymer forms a pH 12 solution in water and functions as Lewis base when hydrated .6 GD and DFP...Reactions The hydrated PVAm film, containing 20% glycerol, was found to completely deplete and decompose a two-fold excess of DFP vapor (peaks -8 and
Bates, A.L.; Hatcher, P.G.
1992-01-01
Isolated lignin with a low carbohydrate content was spiked with increasing amounts of alpha-cellulose, and then analysed by solid-state 13C nuclear magnetic resonance (NMR) using cross-polarization with magic angle spinning (CPMAS) and dipolar dephasing methods in order to assess the quantitative reliability of CPMAS measurement of carbohydrate content and to determine how increasingly intense resonances for carbohydrate carbons affect calculations of the degree of lignin's aromatic ring substitution and methoxyl carbon content. Comparisons were made of the carbohydrate content calculated by NMR with carbohydrate concentrations obtained by phenol-sulfuric acid assay and by the calculation from the known amounts of cellulose added. The NMR methods used in this study yield overestimates for carbohydrate carbons due to resonance area overlap from the aliphatic side chain carbons of lignin. When corrections are made for these overlapping resonance areas, the NMR results agree very well with results obtained by other methods. Neither the calculated methoxyl carbon content nor the degree of aromatic ring substitution in lignin, both calculated from dipolar dephasing spectra, change with cellulose content. Likewise, lignin methoxyl content does not correlate with cellulose abundance when measured by integration of CPMAS spectra. ?? 1992.
Loquet, Antoine; Tolchard, James; Berbon, Melanie; Martinez, Denis; Habenstein, Birgit
2017-09-17
Supramolecular protein assemblies play fundamental roles in biological processes ranging from host-pathogen interaction, viral infection to the propagation of neurodegenerative disorders. Such assemblies consist in multiple protein subunits organized in a non-covalent way to form large macromolecular objects that can execute a variety of cellular functions or cause detrimental consequences. Atomic insights into the assembly mechanisms and the functioning of those macromolecular assemblies remain often scarce since their inherent insolubility and non-crystallinity often drastically reduces the quality of the data obtained from most techniques used in structural biology, such as X-ray crystallography and solution Nuclear Magnetic Resonance (NMR). We here present magic-angle spinning solid-state NMR spectroscopy (SSNMR) as a powerful method to investigate structures of macromolecular assemblies at atomic resolution. SSNMR can reveal atomic details on the assembled complex without size and solubility limitations. The protocol presented here describes the essential steps from the production of 13 C/ 15 N isotope-labeled macromolecular protein assemblies to the acquisition of standard SSNMR spectra and their analysis and interpretation. As an example, we show the pipeline of a SSNMR structural analysis of a filamentous protein assembly.
Shaibat, Medhat A.; Casabianca, Leah B.; Siberio-Pérez, Diana Y.; Matzger, Adam J; Ishii, Yoshitaka
2010-01-01
Cu(II)(phthalocyanine) (CuPc) is broadly utilized as an archetypal molecular semiconductor and is the most widely used blue printing pigment. CuPc crystallizes in six different forms; the chemical and physical properties are substantially modulated by its molecular packing among these polymorphs. Despite the growing importance of this system, spectroscopic identification of different polymorphs for CuPc has posed difficulties. This study presents the first example of spectroscopic distinction of α- and β-forms of CuPc, the most widely used polymorphs, by solid-state NMR (SSNMR) and Raman spectroscopy. 13C high-resolution SSNMR spectra of α- and β-CuPc using very-fast magic angle spinning (VFMAS) at 20 kHz show that hyperfine shifts sensitively reflect polymorphs of CuPc. The experimental results were confirmed by ab initio chemical shift calculations. 13C and 1H SSNMR relaxation times of α- and β-CuPc under VFMAS also showed marked differences, presumably because of the difference in electronic spin correlation times in the two forms. Raman spectroscopy also provided another reliable method of differentiation between the two polymorphs. PMID:20225842
Effect of PEO molecular weight on the miscibility and dynamics in epoxy/PEO blends.
Lu, Shoudong; Zhang, Rongchun; Wang, Xiaoliang; Sun, Pingchuan; Lv, Weifeng; Liu, Qingjie; Jia, Ninghong
2015-11-01
In this work, the effect of poly(ethylene oxide) (PEO) molecular weight in blends of epoxy (ER) and PEO on the miscibility, inter-chain weak interactions and local dynamics were systematically investigated by multi-frequency temperature modulation DSC and solid-state NMR techniques. We found that the molecular weight (M(w)) of PEO was a crucial factor in controlling the miscibility, chain dynamics and hydrogen bonding interactions between PEO and ER. A critical PEO molecular weight (M(crit)) around 4.5k was found. PEO was well miscible with ER when the molecular weight was below M(crit), where the chain motion of PEO was restricted due to strong inter-chain hydrogen bonding interactions. However, for the blends with high molecular weight PEO (M(w) > M(crit)), the miscibility between PEO and ER was poor, and most of PEO chains were considerably mobile. Finally, polarization inversion spin exchange at magic angle (PISEMA) solid-state NMR experiment further revealed the different mobility of the PEO in ER/PEO blends with different molecular weight of PEO at molecular level. Based on the DSC and NMR results, a tentative model was proposed to illustrate the miscibility in ER/PEO blends.
Structure and backbone dynamics of a microcrystalline metalloprotein by solid-state NMR.
Knight, Michael J; Pell, Andrew J; Bertini, Ivano; Felli, Isabella C; Gonnelli, Leonardo; Pierattelli, Roberta; Herrmann, Torsten; Emsley, Lyndon; Pintacuda, Guido
2012-07-10
We introduce a new approach to improve structural and dynamical determination of large metalloproteins using solid-state nuclear magnetic resonance (NMR) with (1)H detection under ultrafast magic angle spinning (MAS). The approach is based on the rapid and sensitive acquisition of an extensive set of (15)N and (13)C nuclear relaxation rates. The system on which we demonstrate these methods is the enzyme Cu, Zn superoxide dismutase (SOD), which coordinates a Cu ion available either in Cu(+) (diamagnetic) or Cu(2+) (paramagnetic) form. Paramagnetic relaxation enhancements are obtained from the difference in rates measured in the two forms and are employed as structural constraints for the determination of the protein structure. When added to (1)H-(1)H distance restraints, they are shown to yield a twofold improvement of the precision of the structure. Site-specific order parameters and timescales of motion are obtained by a gaussian axial fluctuation (GAF) analysis of the relaxation rates of the diamagnetic molecule, and interpreted in relation to backbone structure and metal binding. Timescales for motion are found to be in the range of the overall correlation time in solution, where internal motions characterized here would not be observable.
Abraham, Anuji; Crull, George
2014-10-06
A simple and robust method for obtaining fluorine-carbon proximities was established using a (19)F-(13)C heteronuclear correlation (HETCOR) two-dimensional (2D) solid-state nuclear magnetic resonance (ssNMR) experiment under magic-angle spinning (MAS). The method was applied to study a crystalline active pharmaceutical ingredient (API), avagacestat, containing two types of fluorine atoms and its API-polymer composite drug product. These results provide insight into the molecular structure, aid with assigning the carbon resonances, and probe API-polymer proximities in amorphous spray dried dispersions (SDD). This method has an advantage over the commonly used (1)H-(13)C HETCOR because of the large chemical shift dispersion in the fluorine dimension. In the present study, fluorine-carbon distances up to 8 Å were probed, giving insight into the API structure, crystal packing, and assignments. Most importantly, the study demonstrates a method for probing an intimate molecular level contact between an amorphous API and a polymer in an SDD, giving insights into molecular association and understanding of the role of the polymer in API stability (such as recrystallization, degradation, etc.) in such novel composite drug products.
Abject Magic: Reasoning Madness in Justine Larbalestier's "Magic or Madness" Trilogy
ERIC Educational Resources Information Center
Potter, Troy
2013-01-01
This paper explores the representation of magic and madness in Justine Larbalestier's "Magic or Madness" trilogy (2005-2007). Throughout the series, magic is constructed as an abject and disabling force that threatens to disable magic-wielders, either through madness or death. Despite being represented as a ubiquitous force, the…
Origins of magic: review of genetic and epigenetic effects.
Ramagopalan, Sreeram V; Knight, Marian; Ebers, George C; Knight, Julian C
2007-12-22
To assess the evidence for a genetic basis to magic. Literature review. Harry Potter novels of J K Rowling. Muggles, witches, wizards, and squibs. Limited. Family and twin studies, magical ability, and specific magical skills. Magic shows strong evidence of heritability, with familial aggregation and concordance in twins. Evidence suggests magical ability to be a quantitative trait. Specific magical skills, notably being able to speak to snakes, predict the future, and change hair colour, all seem heritable. A multilocus model with a dominant gene for magic might exist, controlled epistatically by one or more loci, possibly recessive in nature. Magical enhancers regulating gene expressionmay be involved, combined with mutations at specific genes implicated in speech and hair colour such as FOXP2 and MCR1.
The Magic of Balanced Groups: Educational Applications of Magic Squares
ERIC Educational Resources Information Center
Bosse, Michael J.; Nandakumar, N. R.; Ore, Melanie L.
2007-01-01
This paper provides students with many interesting observations regarding the nature of magic squares, magic rectangles, and quasi-magic squares and provides tools for teachers to group students into ability-balanced cooperative learning groups.
NASA Astrophysics Data System (ADS)
Shiga, Y.; Yoneda, K.; Steppenbeck, D.; Aoi, N.; Doornenbal, P.; Lee, J.; Liu, H.; Matsushita, M.; Takeuchi, S.; Wang, H.; Baba, H.; Bednarczyk, P.; Dombradi, Zs.; Fulop, Zs.; Go, S.; Hashimoto, T.; Honma, M.; Ideguchi, E.; Ieki, K.; Kobayashi, K.; Kondo, Y.; Minakata, R.; Motobayashi, T.; Nishimura, D.; Otsuka, T.; Otsu, H.; Sakurai, H.; Shimizu, N.; Sohler, D.; Sun, Y.; Tamii, A.; Tanaka, R.; Tian, Z.; Tsunoda, Y.; Vajta, Zs.; Yamamoto, T.; Yang, X.; Yang, Z.; Ye, Y.; Yokoyama, R.; Zenihiro, J.
2016-02-01
The low-lying level structures of nuclei in the vicinity of 78Ni were investigated using in-beam γ -ray spectroscopy to clarify the nature of the nuclear magic numbers Z =28 and N =50 in systems close to the neutron drip line. Nucleon knockout reactions were employed to populate excited states in 80Zn and 82Zn. A candidate for the 41+ level in 80Zn was identified at 1979(30) keV, and the lifetime of this state was estimated to be 136-67+92 ps from a line-shape analysis. Moreover, the energy of the 21+ state in 82Zn is reported to lie at 621(11) keV. The large drop in the 21+ energy at 82Zn indicates the presence of a significant peak in the E (21+) systematics at N =50 . Furthermore, the E (41+) /E (21+) and B (E 2 ;41+→21+) /B (E 2 ;21+→0g.s . +) ratios in 80Zn were deduced to be 1.32 (3 ) and 1 .12-60+80 , respectively. These results imply that 80Zn can be described in terms of two-proton configurations with a 78Ni core and are consistent with a robust N =50 magic number along the Zn isotopic chain. These observations, therefore, indicate a persistent N =50 shell closure in nuclei far from the line of β stability, which in turn suggests a doubly magic structure for 78Ni.
Laser frequency stabilization by light shift of optical-magnetic double resonances
NASA Astrophysics Data System (ADS)
Zhan, Yuanzhi; Peng, Xiang; Lin, Zaisheng; Gong, Wei; Guo, Hong
2015-05-01
This work adopts the light shift of optical-magnetic double resonance frequency in metastable-state 4He atoms to lock the laser center frequency to the magic point. At this magic frequency, both the left-circularly and right-circularly optical pumping processes will give the same value of optical-magnetic double resonance. With this method and after locking, experimental results show that the laser frequency fluctuation is dramatically reduced to 2.79 MHz in 3600 seconds, comparing with 34.1 MHz drift in the free running mode. In application, with the locked magic laser frequency, the heading error for laser pumped 4He magnetometer can be eliminated much. The National Science Fund for Distinguished Young Scholars of China (Grant No. 61225003), the National Natural Science Foundation of China (Grant No. 61101081), and the National Hi-Tech Research and Development (863) Program.
Accurate quantum Z rotations with less magic
NASA Astrophysics Data System (ADS)
Landahl, Andrew; Cesare, Chris
2013-03-01
We present quantum protocols for executing arbitrarily accurate π /2k rotations of a qubit about its Z axis. Unlike reduced instruction set computing (RISC) protocols which use a two-step process of synthesizing high-fidelity ``magic'' states from which T = Z (π / 4) gates can be teleported and then compiling a sequence of adaptive stabilizer operations and T gates to approximate Z (π /2k) , our complex instruction set computing (CISC) protocol distills magic states for the Z (π /2k) gates directly. Replacing this two-step process with a single step results in substantial reductions in the number of gates needed. The key to our construction is a family of shortened quantum Reed-Muller codes of length 2 k + 2 - 1 , whose distillation threshold shrinks with k but is greater than 0.85% for k <= 6 . AJL and CC were supported in part by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Lupulescu, Adonis; Frydman, Lucio
2011-10-07
Recent years have witnessed efforts geared at increasing the sensitivity of NMR experiments, by relying on the suitable tailoring and exploitation of relaxation phenomena. These efforts have included the use of paramagnetic agents, enhanced (1)H-(1)H incoherent and coherent transfers processes in 2D liquid state spectroscopy, and homonuclear (13)C-(13)C spin diffusion effects in labeled solids. The present study examines some of the opportunities that could open when exploiting spontaneous (1)H-(1)H spin-diffusion processes, to enhance relaxation and to improve the sensitivity of dilute nuclei in solid state NMR measurements. It is shown that polarization transfer experiments executed under sufficiently fast magic-angle-spinning conditions, enable a selective polarization of the dilute low-γ spins by their immediate neighboring protons. Repolarization of the latter can then occur during the time involved in monitoring the signal emitted by the low-γ nuclei. The basic features involved in the resulting approach, and its potential to improve the effective sensitivity of solid state NMR measurements on dilute nuclei, are analyzed. Experimental tests witness the advantages that could reside from utilizing this kind of approach over conventional cross-polarization processes. These measurements also highlight a number of limitations that will have to be overcome for transforming selective polarization transfers of this kind into analytical methods of choice. © 2011 American Institute of Physics
Karlsson, Rose-Marie Pernilla; Larsson, Per Tomas; Yu, Shun; Pendergraph, Samuel Allen; Pettersson, Torbjörn; Hellwig, Johannes; Wågberg, Lars
2018-06-01
Macroscopic beads of water-based gels consisting of uncharged and partially charged β-(1,4)-d-glucan polymers were developed to be used as a novel model material for studying the water induced swelling of the delignified plant fiber walls. The gel beads were prepared by drop-wise precipitation of solutions of dissolving grade fibers carboxymethylated to different degrees. The internal structure was analyzed using Solid State Cross-Polarization Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance and Small Angle X-ray Scattering showing that the internal structure could be considered a homogeneous, non-crystalline and molecularly dispersed polymer network. When beads with different charge densities were equilibrated with aqueous solutions of different ionic strengths and/or pH, the change in water uptake followed the trends expected for weak polyelectrolyte gels and the trends found for cellulose-rich fibers. When dried and subsequently immersed in water the beads also showed an irreversible loss of swelling depending on the charge and type of counter-ion which is commonly also found for cellulose-rich fibers. Taken all these results together it is clear that the model cellulose-based beads constitute an excellent tool for studying the fundamentals of swelling of cellulose rich plant fibers, aiding in the elucidation of the different molecular and supramolecular contributions to the swelling. Copyright © 2018 Elsevier Inc. All rights reserved.
Expertise among professional magicians: an interview study.
Rissanen, Olli; Pitkänen, Petteri; Juvonen, Antti; Kuhn, Gustav; Hakkarainen, Kai
2014-01-01
The purpose of the present investigation was to analyse interviews of highly regarded Finnish magicians. Social network analysis (N = 120) was used to identify Finland's most highly regarded magicians (N = 16). The selected participants' careers in professional magic and various aspects of their professional conduct were examined by relying on semi-structured interviews. The results revealed that cultivation of professional level competence in magic usually requires an extensive period of time compared with other domains of expertise. Magic is a unique performing art and it differs from other professions focusing on deceiving the audience. A distinctive feature of magical expertise is that the process takes place entirely through informal training supported by communities of magical practitioners. Three interrelated aspects of magical activity were distinguished: magic tricks, performance, and audience. Although magic tricks constitute a central aspect of magic activity, the participants did not talk about their tricks extensively; this is in accordance with the secretive nature of magic culture. The interviews revealed that a core aspect of the magicians' activity is performance in front of an audience that repeatedly validates competence cultivated through years of practice. The interviewees reported investing a great deal of effort in planning, orchestrating, and reflecting on their performances. Close interaction with the audience plays an important role in most interviewees' activity. Many participants put a great deal of effort in developing novel magic tricks. It is common to borrow magic effects from fellow magicians and develop novel methods of implementation. Because magic tricks or programs are not copyrighted, many interviewees considered "stealing" an unacceptable and unethical aspect of magical activity. The interviewees highlighted the importance of personality and charisma in the successful pursuit of magic activity.
Expertise among professional magicians: an interview study
Rissanen, Olli; Pitkänen, Petteri; Juvonen, Antti; Kuhn, Gustav; Hakkarainen, Kai
2014-01-01
The purpose of the present investigation was to analyse interviews of highly regarded Finnish magicians. Social network analysis (N = 120) was used to identify Finland's most highly regarded magicians (N = 16). The selected participants' careers in professional magic and various aspects of their professional conduct were examined by relying on semi-structured interviews. The results revealed that cultivation of professional level competence in magic usually requires an extensive period of time compared with other domains of expertise. Magic is a unique performing art and it differs from other professions focusing on deceiving the audience. A distinctive feature of magical expertise is that the process takes place entirely through informal training supported by communities of magical practitioners. Three interrelated aspects of magical activity were distinguished: magic tricks, performance, and audience. Although magic tricks constitute a central aspect of magic activity, the participants did not talk about their tricks extensively; this is in accordance with the secretive nature of magic culture. The interviews revealed that a core aspect of the magicians' activity is performance in front of an audience that repeatedly validates competence cultivated through years of practice. The interviewees reported investing a great deal of effort in planning, orchestrating, and reflecting on their performances. Close interaction with the audience plays an important role in most interviewees' activity. Many participants put a great deal of effort in developing novel magic tricks. It is common to borrow magic effects from fellow magicians and develop novel methods of implementation. Because magic tricks or programs are not copyrighted, many interviewees considered “stealing” an unacceptable and unethical aspect of magical activity. The interviewees highlighted the importance of personality and charisma in the successful pursuit of magic activity. PMID:25566156
NASA Astrophysics Data System (ADS)
Sarkar, Gautam
Bioactive materials such as BioglassRTM 45S5 (45% SiO 2, 24.5% CaO, 24.5% Na2O, and 6% P2O5 by weight) are sodium-phosphosilicate glasses containing independent three-dimensional silicate and phosphate networks and Na+ and Ca2+ ions as modifying cations. Due to their bioactivity, these materials are currently used as implants and for other surgical and clinical applications. The bioactivity of BioglassesRTM is due to their unique capability to form chemical bonds to tissues through an octacalciumphosphate (OCP)- and/or hydroxyapatite-like (HA) "interfacial" matrix. The formation of OCP and/or HA is preceded by the formation of a silica-rich surface layer and the subsequent growth of an amorphous calcium phosphate (a-CP) layer. Structural characterization of a series of commercial and synthesized Bioglass materials 45S5 52S, 55S, 60S, and synthesized 17O-labelled "Bioglass materials 45S, 52S, 55S and 60S" have been obtained using solid-state single-pulse magic-angle spinning (SP/MAS) 17O, 23Na, 29Si and 31P NMR. The 17O NMR isotropic chemical shifts and estimates of the quadrupole coupling constants (Cq) [at fixed asymmetry parameter ( hQ ) values of zero] have been obtained from solid-state spin-echo 17O SP/MAS NMR spectra of 17O-labelled "Bioglasses". The simulation results of these spectra reveal the presence of both bridging-oxygens (BO, i.e. ≡ Si-17OSi ≡ ) and non-bridging oxygens (NBO, i.e. ≡ Si-17O-Na+/Ca2+ ) in the silicate networks in these materials. 17O NMR spectra of these Bioglass materials do not show any direct evidence for the presence of BO and NBO atoms in the phosphate units; however, they are expected to be present in small amounts. In vitro reactions of BioglassRTM 45S5, 60S and 77S powders have been used to study the "interfacial" surface chemistry of these materials in simulated body-fluid (SBF, Kyoto or K9 solution) and/or 17O-enriched tris-buffer solution. 29Si and 31P SP/MAS NMR have been used to identify and quantify the extent of formation of surface silica species and follow the formation of phosphate species, respectively, while cross-polarization magic-angle spinning (CP/MAS) 29Si and 31P NMR have provided information about low intensity NMR peaks due to various silicon- and phosphorus-species present in the vicinity of associated protons on the surface of in vitro reacted BioglassRTM materials. The solid-state NMR investigations of the "interfacial" surface reactions of BioglassRTM materials are discussed in the context of the structure of these materials and the influence of this structure on the kinetics and the mechanism of their "interfacial" surface chemistry. (Abstract shortened by UMI.) BioglassRTM, trademark, University of Florida, Gainesville, FL, 32611.
... the ovaries A tumor in the pituitary gland Turner syndrome , a genetic disorder ... child's growth: The MAGIC Foundation -- www.magicfoundation.org Turner Syndrome Society of the United States -- www.turnersyndrome.org
Magic angle spinning NMR with metallized rotors as cylindrical microwave resonators.
Scott, Faith J; Sesti, Erika L; Choi, Eric J; Laut, Alexander J; Sirigiri, Jagadishwar R; Barnes, Alexander B
2018-04-19
We introduce a novel design for millimeter wave electromagnetic structures within magic angle spinning (MAS) rotors. In this demonstration, a copper coating is vacuum deposited onto the outside surface of a sapphire rotor at a thickness of 50 nm. This thickness is sufficient to reflect 197-GHz microwaves, yet not too thick as to interfere with radiofrequency fields at 300 MHz or prevent sample spinning due to eddy currents. Electromagnetic simulations of an idealized rotor geometry show a microwave quality factor of 148. MAS experiments with sample rotation frequencies of ω r /2π = 5.4 kHz demonstrate that the drag force due to eddy currents within the copper does not prevent sample spinning. Spectra of sodium acetate show resolved 13 C J-couplings of 60 Hz and no appreciable broadening between coated and uncoated sapphire rotors, demonstrating that the copper coating does not prevent shimming and high-resolution nuclear magnetic resonance spectroscopy. Additionally, 13 C Rabi nutation curves of ω 1 /2π = 103 kHz for both coated and uncoated rotors indicate no detrimental impact of the copper coating on radio frequency coupling of the nuclear spins to the sample coil. We present this metal coated rotor as a first step towards an MAS resonator. MAS resonators are expected to have a significant impact on developments in electron decoupling, pulsed dynamic nuclear polarization (DNP), room temperature DNP, DNP with low-power microwave sources, and electron paramagnetic resonance detection. Copyright © 2018 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Teymoori, Gholamhasan; Pahari, Bholanath; Viswanathan, Elumalai; Edén, Mattias
2013-11-01
By using a symmetry-based R281R28-1 double-quantum (2Q) dipolar recoupling sequence, we demonstrate high-order multiple-quantum coherence (MQC) excitation at fast magic-angle spinning (MAS) frequencies up to 34 kHz. This scheme combines several attractive features, such as a relatively high dipolar scaling factor, good compensation to rf-errors, isotropic and anisotropic chemical shifts, as well as an ultra-low radio-frequency (rf) power requirement. The latter translates into nutation frequencies below 30 kHz for MAS rates up to 60 kHz, thereby permitting rf application for very long excitation periods without risk of damaging the NMR probehead or sample, while the compensation to chemical shifts improves as the MAS rate increases. 31P MQC spin counting is demonstrated on powders of calcium hydroxyapatite (Ca5(PO4)3OH) and anhydrous sodium diphosphate (Na4P2O7), from which all even coherence orders up to 30 and 14 were detected, respectively, over the respective MAS ranges of 15-24 kHz and 20-34 kHz. The amplitude distributions among the 31P MQC orders depend on the precise nutation frequency during recoupling, despite that the highest detected order was relatively insensitive to this parameter. An observed gradual transition from a Gaussian to exponential functionality of the MQC amplitude-profile is discussed in relation to the prevailing approach to derive spin-cluster sizes by fitting the MQC amplitude-distribution to a Gaussian decay, where minor systematic deviations between the model and experimental data are frequently reported.
NASA Astrophysics Data System (ADS)
Calabi, Luisella; Alfieri, Goffredo; Biondi, Luca; De Miranda, Mario; Paleari, Lino; Ghelli, Stefano
2002-06-01
A new method, based on proton high-resolution magic-angle spinning ( 1H HR-MAS) NMR spectroscopy, has been employed to study the cell uptake of magnetic resonance imaging contrast agents (MRI-CAs). The method was tested on human red blood cells (HRBC) and white blood cells (HWBC) by using three gadolinium complexes, widely used in diagnostics, Gd-BOPTA, Gd-DTPA, and Gd-DOTA, and the analogous complexes obtained by replacing Gd(III) with Dy(III), Nd(III), and Tb(III) (i.e., complexes isostructural to the ones of gadolinium but acting as shift agents). The method is based on the evaluation of the magnetic effects, line broadening, or induced lanthanide shift (LIS) caused by these complexes on NMR signals of intra- and extracellular water. Since magnetic effects are directly linked to permeability, this method is direct. In all the tests, these magnetic effects were detected for the extracellular water signal only, providing a direct proof that these complexes are not able to cross the cell membrane. Line broadening effects (i.e., the use of gadolinium complexes) only allow qualitative evaluations. On the contrary, LIS effects can be measured with high precision and they can be related to the concentration of the paramagnetic species in the cellular compartments. This is possible because the HR-MAS technique provides the complete elimination of bulk magnetic susceptibility (BMS) shift and the differentiation of extra- and intracellular water signals. Thus with this method, the rapid quantification of the MRI-CA amount inside and outside the cells is actually feasible.
Chen, Wenxue; Lu, Shaohua; Wang, Guifang; Chen, Fener; Bai, Chunxue
2017-10-01
High-resolution magic-angle spinning proton nuclear magnetic resonance (HRMAS 1 H NMR) spectroscopy technique was employed to analyze the metabonomic characterizations of lung cancer tissues in hope to identify potential diagnostic biomarkers for malignancy detection and staging research of lung tissues. HRMAS 1 H NMR spectroscopy technique can rapidly provide important information for accurate diagnosis and staging of cancer tissues owing to its noninvasive nature and limited requirement for the samples, and thus has been acknowledged as an excellent tool to investigate tissue metabolism and provide a more realistic insight into the metabonomics of tissues when combined with multivariate data analysis (MVDA) such as component analysis and orthogonal partial least squares-discriminant analysis in particular. HRMAS 1 H NMR spectra displayed the metabonomic differences of 32 lung cancer tissues at the different stages from 32 patients. The significant changes (P < 0.05) of some important metabolites such as lipids, aspartate and choline-containing compounds in cancer tissues at the different stages had been identified. Furthermore, the combination of HRMAS 1 H NMR spectroscopy and MVDA might potentially and precisely provided for a high sensitivity, specificity, prediction accuracy in the positive identification of the staging for the cancer tissues in contrast with the pathological data in clinic. This study highlighted the potential of metabonomics in clinical settings so that the techniques might be further exploited for the diagnosis and staging prediction of lung cancer in future. © 2016 John Wiley & Sons Australia, Ltd.
Presciutti, Federica; Capitani, Donatella; Sgamellotti, Antonio; Brunetti, Brunetto Giovanni; Costantino, Ferdinando; Viel, Stéphane; Segre, Annalaura
2005-12-01
The aim of this study is to clarify the structure of an iron-rich clay and the structural changes involved in the firing process as a preliminary step to get information on ancient ceramic technology. To this purpose, illite-rich clay samples fired at different temperatures were characterized using a multitechnique approach, i.e., by electron paramagnetic resonance, scanning electron microscopy with electron dispersion X-ray spectrometry, X-ray powder diffraction, magic angle spinning and multiple quantum magic angle spinning NMR. During firing, four main reaction processes occur: dehydration, dehydroxylation, structural breakdown, and recrystallization. When the results are combined from all characterization methods, the following conclusions could be obtained. Interlayer H2O is located close to aluminum in octahedral sites and is driven off at temperatures lower than 600 degrees C. Between 600 and 700 degrees C dehydroxylation occurs whereas, between 800 and 900 degrees C, the aluminum in octahedral sites disappears, due to the breakdown of the illite structure, and all iron present is oxidized to Fe3+. In samples fired at 1000 and 1100 degrees C iron clustering was observed as well as large single crystals of iron with the occurrence of ferro- or ferrimagnetic effects. Below 900 degrees C the aluminum in octahedral sites presents a continuous distribution of chemical shift, suggesting the presence of slightly distorted sites. Finally, over the whole temperature range, the presence of at least two tetrahedral aluminum sites was revealed, characterized by different values of the quadrupolar coupling constant.
MAGIC database and interfaces: an integrated package for gene discovery and expression.
Cordonnier-Pratt, Marie-Michèle; Liang, Chun; Wang, Haiming; Kolychev, Dmitri S; Sun, Feng; Freeman, Robert; Sullivan, Robert; Pratt, Lee H
2004-01-01
The rapidly increasing rate at which biological data is being produced requires a corresponding growth in relational databases and associated tools that can help laboratories contend with that data. With this need in mind, we describe here a Modular Approach to a Genomic, Integrated and Comprehensive (MAGIC) Database. This Oracle 9i database derives from an initial focus in our laboratory on gene discovery via production and analysis of expressed sequence tags (ESTs), and subsequently on gene expression as assessed by both EST clustering and microarrays. The MAGIC Gene Discovery portion of the database focuses on information derived from DNA sequences and on its biological relevance. In addition to MAGIC SEQ-LIMS, which is designed to support activities in the laboratory, it contains several additional subschemas. The latter include MAGIC Admin for database administration, MAGIC Sequence for sequence processing as well as sequence and clone attributes, MAGIC Cluster for the results of EST clustering, MAGIC Polymorphism in support of microsatellite and single-nucleotide-polymorphism discovery, and MAGIC Annotation for electronic annotation by BLAST and BLAT. The MAGIC Microarray portion is a MIAME-compliant database with two components at present. These are MAGIC Array-LIMS, which makes possible remote entry of all information into the database, and MAGIC Array Analysis, which provides data mining and visualization. Because all aspects of interaction with the MAGIC Database are via a web browser, it is ideally suited not only for individual research laboratories but also for core facilities that serve clients at any distance.
The nuclear shell model toward the drip lines
NASA Astrophysics Data System (ADS)
Poves, A.; Caurier, E.; Nowacki, F.; Sieja, K.
2012-10-01
We describe the 'islands of inversion' that occur when approaching the neutron drip line around the magic numbers N=20, N=28 and N=40 in the framework of the interacting shell model in very large valence spaces. We explain these configuration inversions (and the associated shape transitions) as the result of the competition between the spherical mean field (monopole) that favors magicity and the correlations (multipole) that favor deformed intruder states. We also show that the N=20 and N=28 islands are in reality a single one, which for the magnesium isotopes is limited by N=18 and N=32.
Magical realism: a cultural intervention for traumatized Hispanic children.
De Rios, M D
1997-01-01
A case study is presented of two Spanish-speaking immigrant children who were run over in an automobile accident and hospitalized, to describe a culturally congruent play-therapy technique. Drawing on the work of Pynoos and Nader, the author argues for an anthropological approach in play therapy to create hyperaroused states for the traumatized child and to use cultural super heroes-what is termed "magical realism." Such an approach can be used with Latin American traumatized children as well as with children from other Third World countries to provide a culturally appropriate intervention to treat the psychological sequelae of trauma.
Advances in Theory of Solid-State Nuclear Magnetic Resonance.
Mananga, Eugene S; Moghaddasi, Jalil; Sana, Ajaz; Akinmoladun, Andrew; Sadoqi, Mostafa
Recent advances in theory of solid state nuclear magnetic resonance (NMR) such as Floquet-Magnus expansion and Fer expansion, address alternative methods for solving a time-dependent linear differential equation which is a central problem in quantum physics in general and solid-state NMR in particular. The power and the salient features of these theoretical approaches that are helpful to describe the time evolution of the spin system at all times are presented. This review article presents a broad view of manipulations of spin systems in solid-state NMR, based on milestones theories including the average Hamiltonian theory and the Floquet theory, and the approaches currently developing such as the Floquet-Magnus expansion and the Fer expansion. All these approaches provide procedures to control and describe the spin dynamics in solid-state NMR. Applications of these theoretical methods to stroboscopic and synchronized manipulations, non-synchronized experiments, multiple incommensurated frequencies, magic-angle spinning samples, are illustrated. We also reviewed the propagators of these theories and discussed their convergences. Note that the FME is an extension of the popular Magnus Expansion and Average Hamiltonian Theory. It aims is to bridge the AHT to the Floquet Theorem but in a more concise and efficient formalism. Calculations can then be performed in a finite-dimensional Hilbert space instead of an infinite dimensional space within the so-called Floquet theory. We expected that the FME will provide means for more accurate and efficient spin dynamics simulation and for devising new RF pulse sequence.
Magic star puzzle for educational mathematics
NASA Astrophysics Data System (ADS)
Gan, Yee Siang; Fong, Wan Heng; Sarmin, Nor Haniza
2013-04-01
One of the interesting fields in recreational mathematics is the magic number arrangement. There are different kinds of arrays in the arrangement for a group of numbers. In particular, one of the arrays in magic number arrangement is called magic star. In fact, magic star involves combinatorics that contributes to geometrical analysis and number theory. Hence, magic star is suitable to be introduced as educational mathematics to cultivate interest in different area of mathematics. To obtain the solutions of normal magic stars of order six, the possible sets of numbers for every line in a magic star have been considered. Previously, the calculation for obtaining the solutions has been done manually which is time-consuming. Therefore, a programming code to generate all the fundamental solutions for normal magic star of order six without including the properties of rotation and reflection has been done. In this puzzle, a magic star puzzle is created by using Matlab software, which enables a user to verify the entries for the cells of magic star of order six. Moreover, it is also user-friendly as it provides interactive commands on the inputs given by the user, which enables the user to detect the incorrect inputs. In addition, user can also choose to view all the fundamental solutions as generated by the programming code.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-20
... Coordination (MAGIC) Team AGENCY: The Networking and Information Technology Research and Development (NITRD.... Dates/Location: The MAGIC Team meetings are held on the first Wednesday of each month, 2:00-4:00pm, at... participation is available for each meeting. Please reference the MAGIC Team Web site for updates. Magic Web...
78 FR 70076 - Large Scale Networking (LSN)-Middleware and Grid Interagency Coordination (MAGIC) Team
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-22
... Coordination (MAGIC) Team AGENCY: The Networking and Information Technology Research and Development (NITRD... MAGIC Team meetings are held on the first Wednesday of each month, 2:00-4:00 p.m., at the National... for each meeting. Please reference the MAGIC Team Web site for updates. Magic Web site: The agendas...
Emotional salience, emotional awareness, peculiar beliefs, and magical thinking.
Berenbaum, Howard; Boden, M Tyler; Baker, John P
2009-04-01
Two studies with college student participants (Ns = 271 and 185) tested whether peculiar beliefs and magical thinking were associated with (a) the emotional salience of the stimuli about which individuals may have peculiar beliefs or magical thinking, (b) attention to emotion, and (c) clarity of emotion. Study 1 examined belief that a baseball team was cursed. Study 2 measured magical thinking using a procedure developed by P. Rozin and C. Nemeroff (2002). In both studies, peculiar beliefs and magical thinking were associated with Salience x Attention x Clarity interactions. Among individuals for whom the objects of the belief-magical thinking were highly emotionally salient and who had high levels of attention to emotion, higher levels of emotional clarity were associated with increased peculiar beliefs-magical thinking. In contrast, among individuals for whom the objects of the belief-magical thinking were not emotionally salient and who had high levels of attention to emotion, higher levels of emotional clarity were associated with diminished peculiar beliefs-magical thinking. (c) 2009 APA, all rights reserved.
Fast REDOR with CPMG multiple-echo acquisition
NASA Astrophysics Data System (ADS)
Hung, Ivan; Gan, Zhehong
2014-01-01
Rotational-Echo Double Resonance (REDOR) is a widely used experiment for distance measurements in solids. The conventional REDOR experiment measures the signal dephasing from hetero-nuclear recoupling under magic-angle spinning (MAS) in a point by point manner. A modified Carr-Purcell Meiboom-Gill (CPMG) multiple-echo scheme is introduced for fast REDOR measurement. REDOR curves are measured from the CPMG echo amplitude modulation under dipolar recoupling. The real time CPMG-REDOR experiment can speed up the measurement by an order of magnitude. The effects from hetero-nuclear recoupling, the Bloch-Siegert shift and echo truncation to the signal acquisition are discussed and demonstrated.
[Magical thinking in healthy people and in schizophrenia].
Jarosz, M
1996-01-01
Different conditions of magical thinking have been analyzed. A formation of the proportion "realistic thinking - magical thinking" in paranoid schizophrenia has been discussed and the characteristic features of magical thinking in schizophrenia have been indicated.
Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; ...
2015-12-15
The flat-spectrum radio quasar PKS 1441+25 at a redshift of z = 0.940 is detected between 40 and 250 GeV with a significance of 25.5σ using the MAGIC telescopes. Together with the gravitationally lensed blazar QSO B0218+357 (z = 0.944), PKS 1441+25 is the most distant very high energy (VHE) blazar detected to date. The observations were triggered by an outburst in 2015 April seen at GeV energies with the Large Area Telescope on board Fermi. Multi-wavelength observations suggest a subdivision of the high state into two distinct flux states. In the band covered by MAGIC, the variability timescale ismore » estimated to be 6.4 ± 1.9 days. Modeling the broadband spectral energy distribution with an external Compton model, the location of the emitting region is understood as originating in the jet outside the broad-line region (BLR) during the period of high activity, while being partially within the BLR during the period of low (typical) activity. In conclusion, the observed VHE spectrum during the highest activity is used to probe the extragalactic background light at an unprecedented distance scale for ground-based gamma-ray astronomy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahnen, M. L.; Biland, A.; Ansoldi, S.
2015-12-20
The flat-spectrum radio quasar PKS 1441+25 at a redshift of z = 0.940 is detected between 40 and 250 GeV with a significance of 25.5σ using the MAGIC telescopes. Together with the gravitationally lensed blazar QSO B0218+357 (z = 0.944), PKS 1441+25 is the most distant very high energy (VHE) blazar detected to date. The observations were triggered by an outburst in 2015 April seen at GeV energies with the Large Area Telescope on board Fermi. Multi-wavelength observations suggest a subdivision of the high state into two distinct flux states. In the band covered by MAGIC, the variability timescale is estimated to bemore » 6.4 ± 1.9 days. Modeling the broadband spectral energy distribution with an external Compton model, the location of the emitting region is understood as originating in the jet outside the broad-line region (BLR) during the period of high activity, while being partially within the BLR during the period of low (typical) activity. The observed VHE spectrum during the highest activity is used to probe the extragalactic background light at an unprecedented distance scale for ground-based gamma-ray astronomy.« less
Probing membrane protein structure using water polarization transfer solid-state NMR.
Williams, Jonathan K; Hong, Mei
2014-10-01
Water plays an essential role in the structure and function of proteins, lipid membranes and other biological macromolecules. Solid-state NMR heteronuclear-detected (1)H polarization transfer from water to biomolecules is a versatile approach for studying water-protein, water-membrane, and water-carbohydrate interactions in biology. We review radiofrequency pulse sequences for measuring water polarization transfer to biomolecules, the mechanisms of polarization transfer, and the application of this method to various biological systems. Three polarization transfer mechanisms, chemical exchange, spin diffusion and NOE, manifest themselves at different temperatures, magic-angle-spinning frequencies, and pulse irradiations. Chemical exchange is ubiquitous in all systems examined so far, and spin diffusion plays the key role in polarization transfer within the macromolecule. Tightly bound water molecules with long residence times are rare in proteins at ambient temperature. The water polarization-transfer technique has been used to study the hydration of microcrystalline proteins, lipid membranes, and plant cell wall polysaccharides, and to derive atomic-resolution details of the kinetics and mechanism of ion conduction in channels and pumps. Using this approach, we have measured the water polarization transfer to the transmembrane domain of the influenza M2 protein to obtain information on the structure of this tetrameric proton channel. At short mixing times, the polarization transfer rates are site-specific and depend on the pH, labile protons, sidechain conformation, as well as the radial position of the residues in this four-helix bundle. Despite the multiple dependences, the initial transfer rates reflect the periodic nature of the residue positions from the water-filled pore, thus this technique provides a way of gleaning secondary structure information, helix tilt angle, and the oligomeric structure of membrane proteins. Copyright © 2014 Elsevier Inc. All rights reserved.
A Study of Multi-Λ Hypernuclei Within Spherical Relativistic Mean-Field Approach
NASA Astrophysics Data System (ADS)
Rather, Asloob A.; Ikram, M.; Usmani, A. A.; Kumar, B.; Patra, S. K.
2017-12-01
This research article is a follow up of an earlier work by M. Ikram et al., reported in Int. J. Mod. Phys. E 25, 1650103 (2016) where we searched for Λ magic numbers in experimentally confirmed doubly magic nucleonic cores in light to heavy mass region (i.e., 16 O-208 P b) by injecting Λ's into them. In the present manuscript, working within the state of the art relativistic mean field theory with the inclusion of Λ N and ΛΛ interaction in addition to nucleon-meson NL 3∗ effective force, we extend the search of lambda magic numbers in multi- Λ hypernuclei using the predicted doubly magic nucleonic cores 292120, 304120, 360132, 370132, 336138, 396138 of the elusive superheavy mass regime. In analogy to well established signatures of magicity in conventional nuclear theory, the prediction of hypernuclear magicities is made on the basis of one-, two- Λ separation energy ( S Λ, S 2Λ) and two lambda shell gaps ( δ 2Λ) in multi- Λ hypernuclei. The calculations suggest that the Λ numbers 92, 106, 126, 138, 184, 198, 240, and 258 might be the Λ shell closures after introducing the Λ's in the elusive superheavy nucleonic cores. The appearance of new lambda shell closures apart from the nucleonic ones predicted by various relativistic and non-relativistic theoretical investigations can be attributed to the relatively weak strength of the spin-orbit coupling in hypernuclei compared to normal nuclei. Further, the predictions made in multi- Λ hypernuclei under study resembles closely the magic numbers in conventional nuclear theory suggested by various relativistic and non-relativistic theoretical models. Moreover, in support of the Λ shell closure, the investigation of Λ pairing energy and effective Λ pairing gap has been made. We noticed a very close agreement of the predicted Λ shell closures with the survey made on the pretext of S Λ, S 2Λ, and δ 2Λ except for the appearance of magic numbers corresponding to Λ = 156 which manifest in Λ effective pairing gap and pairing energy. Also, the lambda single-particle spectrum is analyzed to mark the energy shell gap for further strengthening the predictions made on the basis of separation energies and shell gaps. Lambda and nucleon spin-orbit interactions are analyzed to confirm the reduction in magnitude of Λ spin-orbit interaction compared to the nucleonic case, however the interaction profile is similar in both the cases. Lambda and nucleon density distributions have been investigated to reveal the impurity effect of Λ hyperons which make the depression of central density of the core of superheavy doubly magic nuclei. Lambda skin structure is also seen.
Vinther, Joachim M; Nielsen, Anders B; Bjerring, Morten; van Eck, Ernst R H; Kentgens, Arno P M; Khaneja, Navin; Nielsen, Niels Chr
2012-12-07
A novel strategy for heteronuclear dipolar decoupling in magic-angle spinning solid-state nuclear magnetic resonance (NMR) spectroscopy is presented, which eliminates residual static high-order terms in the effective Hamiltonian originating from interactions between oscillating dipolar and anisotropic shielding tensors. The method, called refocused continuous-wave (rCW) decoupling, is systematically established by interleaving continuous wave decoupling with appropriately inserted rotor-synchronized high-power π refocusing pulses of alternating phases. The effect of the refocusing pulses in eliminating residual effects from dipolar coupling in heteronuclear spin systems is rationalized by effective Hamiltonian calculations to third order. In some variants the π pulse refocusing is supplemented by insertion of rotor-synchronized π/2 purging pulses to further reduce the residual dipolar coupling effects. Five different rCW decoupling sequences are presented and their performance is compared to state-of-the-art decoupling methods. The rCW decoupling sequences benefit from extreme broadbandedness, tolerance towards rf inhomogeneity, and improved potential for decoupling at relatively low average rf field strengths. In numerical simulations, the rCW schemes clearly reveal superior characteristics relative to the best decoupling schemes presented so far, which we to some extent also are capable of demonstrating experimentally. A major advantage of the rCW decoupling methods is that they are easy to set up and optimize experimentally.
Probing Silica-Biomolecule Interactions by Solid-State NMR and Molecular Dynamics Simulations.
Brückner, Stephan Ingmar; Donets, Sergii; Dianat, Arezoo; Bobeth, Manfred; Gutiérrez, Rafael; Cuniberti, Gianaurelio; Brunner, Eike
2016-11-08
Understanding the molecular interactions between inorganic phases such as silica and organic material is fundamental for chromatographic applications, for tailoring silica-enzyme interactions, and for elucidating the mechanisms of biomineralization. The formation, structure, and properties of the organic/inorganic interface is crucial in this context. Here, we investigate the interaction of selectively 13 C-labeled choline with 29 Si-labeled monosilicic acid/silica at the molecular level. Silica/choline nanocomposites were analyzed by solid-state NMR spectroscopy in combination with extended molecular dynamics (MD) simulations to understand the silica/organic interface. Cross-polarization magic angle spinning (CP MAS)-based NMR experiments like 1 H- 13 C CP-REDOR (rotational-echo double resonance), 1 H- 13 C HETCOR (heteronuclear correlation), and 1 H- 29 Si- 1 H double CP are employed to determine spatial parameters. The measurement of 29 Si- 13 C internuclear distances for selectively 13 C-labeled choline provides an experimental parameter that allows the direct verification of MD simulations. Atomistic modeling using classical MD methodologies is performed using the INTERFACE force field. The modeling results are in excellent agreement with the experimental data and reveal the relevant molecular conformations as well as the nature and interplay of the interactions between the choline cation and the silica surface. Electrostatic interactions and hydrogen bonding are both important and depend strongly on the hydration level as well as the charge state of the silica surface.
Insights into the Photoprotective Switch of the Major Light-harvesting Complex II (LHCII)
Sunku, Kiran; de Groot, Huub. J. M.; Pandit, Anjali
2013-01-01
Light-harvesting antennae of the LHC family form transmembrane three-helix bundles of which two helices are interlocked by conserved arginine-glutamate (Arg-Glu) ion pairs that form ligation sites for chlorophylls. The antenna proteins of photosystem II have an intriguing dual function. In excess light, they can switch their conformation from a light-harvesting into a photoprotective state, in which the excess and harmful excitation energies are safely dissipated as heat. Here we applied magic angle spinning NMR and selective Arg isotope enrichment as a noninvasive method to analyze the Arg structures of the major light-harvesting complex II (LHCII). The conformations of the Arg residues that interlock helix A and B appear to be preserved in the light-harvesting and photoprotective state. Several Arg residues have very downfield-shifted proton NMR responses, indicating that they stabilize the complex by strong hydrogen bonds. For the Arg Cα chemical shifts, differences are observed between LHCII in the active, light-harvesting and in the photoprotective, quenched state. These differences are attributed to a conformational change of the Arg residue in the stromal loop region. We conclude that the interlocked helices of LHCII form a rigid core. Consequently, the LHCII conformational switch does not involve changes in A/B helix tilting but likely involves rearrangements of the loops and helical segments close to the stromal and lumenal ends. PMID:23629658
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, Karl T.; Sanders, Rebecca L.; Washton, Nancy M.
2014-03-14
Clay minerals are important components of the environment and are involved or implicated in processes such as the uptake of pollutants and the release of nutrients and as potential platforms for a number of chemical reactions. Owing to their small particle sizes (typically, on the order of microns or smaller) and mixing with a variety of other minerals and soil components, advanced characterization methods are needed to study their structures, dynamics, and reactivities. In this article, we describe the use of solid-state NMR methods to characterize the structures and chemistries of clay minerals. Early one-pulse magic-angle spinning (MAS) NMR studiesmore » of 27Al and 29Si have now been enhanced and extended with new studies utilizing advanced methodologies (such as Multiple Quantum MAS) as well as studies of less-sensitive nuclei. In additional work, the issue of reactivity of clay minerals has been addressed, including studies of reactive surface area in the environment. Utilizations of NMR-sensitive nuclides within the clay minerals themselves, and in molecules that react with specific sites on the clay mineral surfaces, have aided in understanding the reactivity of these complex aluminosilicate systems.« less
NASA Technical Reports Server (NTRS)
Mcgrath, J. E.; Lyle, G. D.; Jurek, M. J.; Mohanty, D.; Hedrick, J. C.
1986-01-01
Amine functional poly(arylene ether) sulfones were previously reported. Herein, the chemistry was extended to amorphous poly(arylene ether) ketones because of their higher fracture toughness values, relative to the polysulfones. It was demonstrated that the amino functional oligomers undergo a self-crosslinking reaction at temperatures above about 220 C. This produces an insoluble, but ductile network that has excellent resistance. A ketamine structure hypothesis was proposed and verified using solid state magic angle NMR. In most cases, the water generated upon ketamine formation is too low to produce porosity and solid networks are obtained. The stability of the ketamine networks towards hydrolysis is excellent. The chemistry was further demonstrated to be able to crosslink preformed nonfunctional poly(arylene ether) ketones if a difunctional amine was utilized. This concept has the possibility of greatly improving the creep resistance of thermoplastics. Also, a new technique was developed for converting the amine functional oligomers cleanly into maleimide structures. This method involves reacting maleic anhydride with monomeric aminophenols in the presence of solvent mixtures.
15N photo-CIDNP MAS NMR analysis of reaction centers of Chloracidobacterium thermophilum.
Zill, Jeremias C; He, Zhihui; Tank, Marcus; Ferlez, Bryan H; Canniffe, Daniel P; Lahav, Yigal; Bellstedt, Peter; Alia, A; Schapiro, Igor; Golbeck, John H; Bryant, Donald A; Matysik, Jörg
2018-03-30
Photochemically induced dynamic nuclear polarization (photo-CIDNP) has been observed in the homodimeric, type-1 photochemical reaction centers (RCs) of the acidobacterium, Chloracidobacterium (Cab.) thermophilum, by 15 N magic-angle spinning (MAS) solid-state NMR under continuous white-light illumination. Three light-induced emissive (negative) signals are detected. In the RCs of Cab. thermophilum, three types of (bacterio)chlorophylls have previously been identified: bacteriochlorophyll a (BChl a), chlorophyll a (Chl a), and Zn-bacteriochlorophyll a' (Zn-BChl a') (Tsukatani et al. in J Biol Chem 287:5720-5732, 2012). Based upon experimental and quantum chemical 15 N NMR data, we assign the observed signals to a Chl a cofactor. We exclude Zn-BChl because of its measured spectroscopic properties. We conclude that Chl a is the primary electron acceptor, which implies that the primary donor is most likely Zn-BChl a'. Chl a and 8 1 -OH Chl a have been shown to be the primary electron acceptors in green sulfur bacteria and heliobacteria, respectively, and thus a Chl a molecule serves this role in all known homodimeric type-1 RCs.
NASA Astrophysics Data System (ADS)
Zhang, Juan; Chen, Minmin; Zhao, Xiqiu; Zhang, Min; Mao, Jinxiang; Cao, Xichuan; Zhang, Zhuoqi
2018-01-01
SBA-15 mesoporous silicate was synthesized and functionalized with 3-aminopropyl organic groups through a post-synthesis method. The materials were characterized consecutively by powder X-ray diffraction (XRD), N2 adsorption/desorption analysis and solid-state magic-angle spinning 29Si nuclear magnetic resonance (MAS NMR). Human c-myc anti-sense oligodeoxyneucleotide (AS-ODN) was selected as a model molecule to be loaded onto the surface of bare and functionalized SBA-15 via different loading conditions. It has been found that the amount of AS-ODN incorporated into the porous matrix is strongly dependent on the surface properties, pH of the loading solvent and AS-ODN concentration. The release behaviour of AS-ODN from modified SBA-15 materials was also investigated and depended on conditions chosen. Cellular uptake of the eluted AS-ODN into Hela cells was observed by fluorescent microscopy. The materials showed excellent cytocompatibility. The AS-ODN keeps full transfection and expression activities indicating its structural integrity. The functionalized SBA-15 is an excellent prospect as a biomedical material candidate for the future.
NASA Astrophysics Data System (ADS)
Pandey, Manoj Kumar; Nishiyama, Yusuke
2015-12-01
The extraction of chemical shift anisotropy (CSA) tensors of protons either directly bonded to 14N nuclei (I = 1) or lying in their vicinity using rotor-synchronous recoupling pulse sequence is always fraught with difficulty due to simultaneous recoupling of 14N-1H heteronuclear dipolar couplings and the lack of methods to efficiently decouple these interactions. This difficulty mainly arises from the presence of large 14N quadrupolar interactions in comparison to the rf field that can practically be achieved. In the present work it is demonstrated that the application of on-resonance 14N-1H decoupling with rf field strength ∼30 times weaker than the 14N quadrupolar coupling during 1H CSA recoupling under ultrafast MAS (90 kHz) results in CSA lineshapes that are free from any distortions from recoupled 14N-1H interactions. With the use of extensive numerical simulations we have shown the applicability of our proposed method on a naturally abundant L-Histidine HCl·H2O sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chagas, L.H., E-mail: lhchagas-prometro@inmetro.gov.br; Instituto Nacional de Metrologia Qualidade e Tecnologia, Divisão de Metrologia de Materiais, 25250-020 Duque de Caxias, RJ; De Carvalho, G.S.G.
Highlights: • We synthesized MgCoAl and NiCoAl LDHs by the urea hydrolysis method. • Aluminum rich and crystalline materials have been formed. • The calcination of the LDHs generated mixed oxides with high surface areas. - Abstract: Layered double hydroxides (LDHs) with Mg/Co/Al and Ni/Co/Al were synthesized for the first time by the urea hydrolysis method. The experimental conditions promoted aluminum rich and crystalline materials. The formation of LDHs was investigated by powder X-ray diffraction (XRD), chemical analysis, solid state nuclear magnetic resonance with magic angle spinning ({sup 27}Al-MAS-NMR), simultaneous thermogravimetric/differential thermal analysis (TGA/DTA), FTIR spectroscopy, scanning electron microscopy (SEM),more » and N{sub 2} adsorption–desorption experiments. A single phase corresponding to LDH could be obtained in all the investigated compositions. Thermal calcination of these LDHs at 500 °C resulted in the formation of solid solutions in which Al{sup 3+} was dissolved. All the calcined materials have rock-salt like structures and high surface areas.« less
Pang, Jinhui; Liu, Xin; Zhang, Xueming; Wu, Yuying; Sun, Runcang
2013-01-01
More and more attention has been paid to environmentally friendly bio-based renewable materials as the substitution of fossil-based materials, due to the increasing environmental concerns. In this study, regenerated cellulose films with enhanced mechanical property were prepared via incorporating different plasticizers using ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl) as the solvent. The characteristics of the cellulose films were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM), thermal analysis (TG), X-ray diffraction (XRD), 13C Solid-state cross-polarization/magic angle spinning nuclear magnetic resonance (CP/MAS NMR) and tensile testing. The results showed that the cellulose films exhibited a homogeneous and smooth surface structure. It was noted that the thermal stability of the regenerated cellulose film plasticized with glycerol was increased compared with other regenerated cellulose films. Furthermore, the incorporation of plasticizers dramatically strengthened the tensile strength and improved the hydrophobicity of cellulose films, as compared to the control sample. Therefore, these notable results exhibited the potential utilization in producing environmentally friendly cellulose films with high performance properties. PMID:28809209
Dynamic Nuclear Polarization NMR in Human Cells Using Fluorescent Polarizing Agents.
Albert, Brice J; Gao, Chukun; Sesti, Erika L; Saliba, Edward P; Alaniva, Nicholas; Scott, Faith J; Sigurdsson, Snorri Th; Barnes, Alexander B
2018-06-20
Solid-state nuclear magnetic resonance (NMR) enables atomic resolution characterization of molecular structure and dynamics within complex heterogeneous samples, but it is typically insensitive. Dynamic nuclear polarization (DNP) increases NMR signal intensity by orders of magnitude and can be performed in combination with magic angle spinning (MAS) for sensitive, high-resolution spectroscopy. Here we report MAS DNP experiments, for the first time, within intact human cells with >40-fold DNP enhancement and a sample temperature below 6 K. In addition to cryogenic MAS results below 6 K, we also show in-cell DNP enhancements of 57-fold at 90 K. In-cell DNP is demonstrated using biradicals and sterically-shielded monoradicals as polarizing agents. A novel trimodal polarizing agent is introduced for DNP, which contains a nitroxide biradical, a targeting peptide for cell penetration, and a fluorophore for subcellular localization with confocal microscopy. The fluorescent polarizing agent provides in-cell DNP enhancements of 63-fold at a concentration of 2.7 mM. These experiments pave the way for structural characterization of biomolecules in an endogenous cellular context.
DNP enhanced NMR with flip-back recovery
NASA Astrophysics Data System (ADS)
Björgvinsdóttir, Snædís; Walder, Brennan J.; Pinon, Arthur C.; Yarava, Jayasubba Reddy; Emsley, Lyndon
2018-03-01
DNP methods can provide significant sensitivity enhancements in magic angle spinning solid-state NMR, but in systems with long polarization build up times long recycling periods are required to optimize sensitivity. We show how the sensitivity of such experiments can be improved by the classic flip-back method to recover bulk proton magnetization following continuous wave proton heteronuclear decoupling. Experiments were performed on formulations with characteristic build-up times spanning two orders of magnitude: a bulk BDPA radical doped o-terphenyl glass and microcrystalline samples of theophylline, L-histidine monohydrochloride monohydrate, and salicylic acid impregnated by incipient wetness. For these systems, addition of flip-back is simple, improves the sensitivity beyond that provided by modern heteronuclear decoupling methods such as SPINAL-64, and provides optimal sensitivity at shorter recycle delays. We show how to acquire DNP enhanced 2D refocused CP-INADEQUATE spectra with flip-back recovery, and demonstrate that the flip-back recovery method is particularly useful in rapid recycling regimes. We also report Overhauser effect DNP enhancements of over 70 at 592.6 GHz/900 MHz.
Solvent signal suppression for high-resolution MAS-DNP
NASA Astrophysics Data System (ADS)
Lee, Daniel; Chaudhari, Sachin R.; De Paëpe, Gaël
2017-05-01
Dynamic nuclear polarization (DNP) has become a powerful tool to substantially increase the sensitivity of high-field magic angle spinning (MAS) solid-state NMR experiments. The addition of dissolved hyperpolarizing agents usually results in the presence of solvent signals that can overlap and obscure those of interest from the analyte. Here, two methods are proposed to suppress DNP solvent signals: a Forced Echo Dephasing experiment (FEDex) and TRAnsfer of Populations in DOuble Resonance Echo Dephasing (TRAPDORED) NMR. These methods reintroduce a heteronuclear dipolar interaction that is specific to the solvent, thereby forcing a dephasing of recoupled solvent spins and leaving acquired NMR spectra free of associated resonance overlap with the analyte. The potency of these methods is demonstrated on sample types common to MAS-DNP experiments, namely a frozen solution (of L-proline) and a powdered solid (progesterone), both containing deuterated glycerol as a DNP solvent. The proposed methods are efficient, simple to implement, compatible with other NMR experiments, and extendable past spectral editing for just DNP solvents. The sensitivity gains from MAS-DNP in conjunction with FEDex or TRAPDORED then permits rapid and uninterrupted sample analysis.
Nishiyama, Y.; Kobayashi, T.; Malon, M.; ...
2015-02-16
Two-dimensional 1H{ 13C} heteronuclear correlation solid-state NMR spectra of naturally abundant solid materials are presented, acquired using the 0.75-mm magic angle spinning (MAS) probe at spinning rates up to 100 kHz. In spite of the miniscule sample volume (290 nL), high-quality HSQC-type spectra of bulk samples as well as surface-bound molecules can be obtained within hours of experimental time. The experiments are compared with those carried out at 40 kHz MAS using a 1.6-mm probe, which offered higher overall sensitivity due to a larger rotor volume. The benefits of ultrafast MAS in such experiments include superior resolution in 1H dimensionmore » without resorting to 1H– 1H homonuclear RF decoupling, easy optimization, and applicability to mass-limited samples. As a result, the HMQC spectra of surface-bound species can be also acquired under 100 kHz MAS, although the dephasing of transverse magnetization has significant effect on the efficiency transfer under MAS alone.« less
2010-12-15
MAGIC 2010 – FINAL REPORT RASR TEAM - CONTRACT NO: FA2386-10-1-4021 December 15, 2010 Final Report for AOARD Grant FA23861014021 – MAGIC ... MAGIC 2010 Competition - Robotic Research Team (RASR) Abstract: The RASR team developed a system for the coordination of groups of unmanned...accomplish those missions. Our team goal was to develop a system that can provide long term value to the war-fighter, utilizing MAGIC 2010 as a stepping
Gyromagnetic ratios of excited states and nuclear structure near {sup 132}Sn
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stuchbery, Andrew E.
2014-11-11
Several g-factor measurements have been performed recently on nuclei near the neutron-rich, double-magic nucleus {sup 132}Sn. The focus here is on {sup 134}Te, the N = 82 isotone which has two protons added to {sup 132}Sn. The electromagnetic properties of {sup 134}Te are examined. Comparisons are made with other nuclei that have two protons outside a double-magic core. The extent to which {sup 132}Sn is an inert core is discussed based on these comparisons. The electromagnetic properties of the N = 82 isotones from {sup 132}Sn to {sup 146}Gd are also discussed.
NASA Astrophysics Data System (ADS)
Miura, Shinichi
2018-03-01
In this paper, the ground state of para-hydrogen clusters for size regime N ≤ 40 has been studied by our variational path integral molecular dynamics method. Long molecular dynamics calculations have been performed to accurately evaluate ground state properties. The chemical potential of the hydrogen molecule is found to have a zigzag size dependence, indicating the magic number stability for the clusters of the size N = 13, 26, 29, 34, and 39. One-body density of the hydrogen molecule is demonstrated to have a structured profile, not a melted one. The observed magic number stability is examined using the inherent structure analysis. We also have developed a novel method combining our variational path integral hybrid Monte Carlo method with the replica exchange technique. We introduce replicas of the original system bridging from the structured to the melted cluster, which is realized by scaling the potential energy of the system. Using the enhanced sampling method, the clusters are demonstrated to have the structured density profile in the ground state.
Miura, Shinichi
2018-03-14
In this paper, the ground state of para-hydrogen clusters for size regime N ≤ 40 has been studied by our variational path integral molecular dynamics method. Long molecular dynamics calculations have been performed to accurately evaluate ground state properties. The chemical potential of the hydrogen molecule is found to have a zigzag size dependence, indicating the magic number stability for the clusters of the size N = 13, 26, 29, 34, and 39. One-body density of the hydrogen molecule is demonstrated to have a structured profile, not a melted one. The observed magic number stability is examined using the inherent structure analysis. We also have developed a novel method combining our variational path integral hybrid Monte Carlo method with the replica exchange technique. We introduce replicas of the original system bridging from the structured to the melted cluster, which is realized by scaling the potential energy of the system. Using the enhanced sampling method, the clusters are demonstrated to have the structured density profile in the ground state.
Rosciano, Fabio; Pescarmona, Paolo P; Houthoofd, Kristof; Persoons, Andre; Bottke, Patrick; Wilkening, Martin
2013-04-28
Lithium ion batteries have conquered most of the portable electronics market and are now on the verge of deployment in large scale applications. To be competitive in the automotive and stationary sectors, however, they must be improved in the fields of safety and energy density (W h L(-1)). Solid-state batteries with a ceramic electrolyte offer the necessary advantages to significantly improve the current state-of-the-art technology. The major limit towards realizing a practical solid-state lithium-ion battery lies in the lack of viable ceramic ionic conductors. Only a few candidate materials are available, each carrying a difficult balance between advantages and drawbacks. Here we introduce a new class of possible solid-state lithium-ion conductors with the spinel structure. Such compounds could be coupled with spinel-type electrode materials to obtain a "lattice matching" solid device where low interfacial resistance could be achieved. Powders were prepared by wet chemistry, their structure was studied by means of diffraction techniques and magic angle spinning NMR, and Li(+) self-diffusion was estimated by static NMR line shape measurements. Profound differences in the Li(+) diffusion properties were observed depending on the composition, lithium content and cationic distribution. Local Li(+) hopping in the spinel materials is accompanied by a low activation energy of circa 0.35 eV being comparable with that of, e.g., LLZO-type garnets, which represent the current benchmark in this field. We propose these novel materials as a building block for a lattice-matching all-spinel solid-state battery with low interfacial resistance.
Multi-wavelength study of flaring activity in BL Lac object S5 0716+714 during the 2015 outburst
Chandra, Sunil; Zhang, Haocheng; Kushwaha, Pankaj; ...
2015-08-17
We present a detailed investigation of the flaring activity observed from a BL Lac object, S5 0716+714 , during its brightest ever optical state in the second half of 2015 January. Observed almost simultaneously in the optical, X-rays, and γ-rays, a significant change in the degree of optical polarization (PD) and a swing in the position angle (PA) of polarization were recorded. A TeV (VHE) detection was also reported by the MAGIC consortium during this flaring episode. Two prominent sub-flares, peaking about five days apart, were seen in almost all of the energy bands. The multi-wavelength light curves, spectral energymore » distribution, and polarization are modeled using the time-dependent code developed by Zhang et al. This model assumes a straight jet threaded by large-scale helical magnetic fields taking into account the light travel time effects, incorporating synchrotron flux and polarization in 3D geometry. Furthermore, the rapid variation in PD and rotation in PA are most likely due to reconnections happening in the emission region in the jet, as suggested by the change in the ratio of toroidal to poloidal components of the magnetic field during the quiescent and flaring states.« less
Yau, Wai-Ming; Thurber, Kent R.; Tycko, Robert
2014-01-01
We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25–30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2–6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92–128 for cross-polarized 13C NMR signals from 15N,13C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6–3.8 s for 1H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute 13C NMR signal amplitudes and build-up times, are approximately 2–4 times lower than with the best triradicals. PMID:24887201
NASA Astrophysics Data System (ADS)
Yau, Wai-Ming; Thurber, Kent R.; Tycko, Robert
2014-07-01
We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25-30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2-6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92-128 for cross-polarized 13C NMR signals from 15N,13C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6-3.8 s for 1H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute 13C NMR signal amplitudes and build-up times, are approximately 2-4 times lower than with the best triradicals.
Yau, Wai-Ming; Thurber, Kent R; Tycko, Robert
2014-07-01
We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25-30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2-6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92-128 for cross-polarized (13)C NMR signals from (15)N,(13)C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6-3.8s for (1)H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute (13)C NMR signal amplitudes and build-up times, are approximately 2-4 times lower than with the best triradicals. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
McElderry, John-David P.; Zhu, Peizhi; Mroue, Kamal H.; Xu, Jiadi; Pavan, Barbara; Fang, Ming; Zhao, Guisheng; McNerny, Erin; Kohn, David H.; Franceschi, Renny T.; Holl, Mark M. Banaszak; Tecklenburg, Mary M. J.; Ramamoorthy, Ayyalusamy; Morris, Michael D.
2013-10-01
Solid-state (magic-angle spinning) NMR spectroscopy is a useful tool for obtaining structural information on bone organic and mineral components and synthetic model minerals at the atomic-level. Raman and 31P NMR spectral parameters were investigated in a series of synthetic B-type carbonated apatites (CAps). Inverse 31P NMR linewidth and inverse Raman PO43-ν1 bandwidth were both correlated with powder XRD c-axis crystallinity over the 0.3-10.3 wt% CO32- range investigated. Comparison with bone powder crystallinities showed agreement with values predicted by NMR and Raman calibration curves. Carbonate content was divided into two domains by the 31P NMR chemical shift frequency and the Raman phosphate ν1 band position. These parameters remain stable except for an abrupt transition at 6.5 wt% carbonate, a composition which corresponds to an average of one carbonate per unit cell. This near-binary distribution of spectroscopic properties was also found in AFM-measured particle sizes and Ca/P molar ratios by elemental analysis. We propose that this transition differentiates between two charge-balancing ion-loss mechanisms as measured by Ca/P ratios. These results define a criterion for spectroscopic characterization of B-type carbonate substitution in apatitic minerals.
Saitô, Hazime
2004-11-01
We have compared site-directed 13C solid-state NMR spectra of [3-13C]Ala- and/or [1-13C]Val-labeled membrane proteins, including bacteriorhodopsin (bR), pharaonis phoborhodopin (ppR), its cognate transducer (pHtrII) and Escherichia coli diacylglycerol kinase (DGK), in two-dimensional (2D) crystal, lipid bilayers, and detergent. Restricted fluctuation motions of these membrane proteins due to oligomerization of bR by specific protein-protein interactions in the 2D crystalline lattice or protein complex between ppR and pHtrII provide the most favorable environment to yield well-resolved, fully visible 13C NMR signals for [3-13C]Ala-labeled proteins. In contrast, several signals from such membrane proteins were broadened or lost owing to interference of inherent fluctuation frequencies (10(4)-10(5)Hz) with frequency of either proton decoupling or magic angle spinning, if their 13C NMR spectra were recorded as a monomer in lipid bilayers at ambient temperature. The presence of such protein dynamics is essential for the respective proteins to achieve their own biological functions. Finally, spectral broadening found for bR and DGK in detergents were discussed.
Multi-wavelength study of flaring activity in BL Lac object S5 0716+714 during the 2015 outburst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandra, Sunil; Zhang, Haocheng; Kushwaha, Pankaj
We present a detailed investigation of the flaring activity observed from a BL Lac object, S5 0716+714 , during its brightest ever optical state in the second half of 2015 January. Observed almost simultaneously in the optical, X-rays, and γ-rays, a significant change in the degree of optical polarization (PD) and a swing in the position angle (PA) of polarization were recorded. A TeV (VHE) detection was also reported by the MAGIC consortium during this flaring episode. Two prominent sub-flares, peaking about five days apart, were seen in almost all of the energy bands. The multi-wavelength light curves, spectral energymore » distribution, and polarization are modeled using the time-dependent code developed by Zhang et al. This model assumes a straight jet threaded by large-scale helical magnetic fields taking into account the light travel time effects, incorporating synchrotron flux and polarization in 3D geometry. Furthermore, the rapid variation in PD and rotation in PA are most likely due to reconnections happening in the emission region in the jet, as suggested by the change in the ratio of toroidal to poloidal components of the magnetic field during the quiescent and flaring states.« less
MULTI-WAVELENGTH STUDY OF FLARING ACTIVITY IN BL Lac OBJECT S5 0716+714 DURING THE 2015 OUTBURST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandra, Sunil; Kushwaha, Pankaj; Singh, K. P.
We present a detailed investigation of the flaring activity observed from a BL Lac object, S5 0716+714 , during its brightest ever optical state in the second half of 2015 January. Observed almost simultaneously in the optical, X-rays, and γ-rays, a significant change in the degree of optical polarization (PD) and a swing in the position angle (PA) of polarization were recorded. A TeV (VHE) detection was also reported by the MAGIC consortium during this flaring episode. Two prominent sub-flares, peaking about five days apart, were seen in almost all of the energy bands. The multi-wavelength light curves, spectral energymore » distribution, and polarization are modeled using the time-dependent code developed by Zhang et al. This model assumes a straight jet threaded by large-scale helical magnetic fields taking into account the light travel time effects, incorporating synchrotron flux and polarization in 3D geometry. The rapid variation in PD and rotation in PA are most likely due to reconnections happening in the emission region in the jet, as suggested by the change in the ratio of toroidal to poloidal components of the magnetic field during the quiescent and flaring states.« less
Chatterjee, Subhasish; Prados-Rosales, Rafael; Frases, Susana; Itin, Boris; Casadevall, Arturo; Stark, Ruth E.
2012-01-01
Melanins are a class of natural pigments associated with a wide range of biological functions, including microbial virulence, energy transduction, and protection against solar radiation. Because of their insolubility and structural heterogeneity, solid-state nuclear magnetic resonance (NMR) spectroscopy provides an unprecedented means to define the molecular architecture of these enigmatic pigments. The requirement of obligatory catecholamines for melanization of the pathogenic fungus Cryptococcus neoformans also offers unique opportunities for investigating melanin development. In the current study, pigments produced with L-dopa, methyl-L-dopa, epinephrine, and norepinephrine precursors are compared structurally using 13C and 1H magic-angle spinning (MAS) NMR. Striking structural differences were observed for both aromatic and aliphatic molecular constituents of the mature fungal pigment assemblies, thus making it possible to redefine the molecular prerequisites for formation of the aromatic domains of insoluble indole-based biopolymers, to rationalize their distinctive physical characteristics, and to delineate the role of cellular constituents in assembly of the melanized macromolecules with polysaccharides and fatty acyl chain-containing moieties. By achieving an augmented understanding of the mechanisms of C. neoformans melanin biosynthesis and cellular assembly, such studies can guide future drug discovery efforts related to melanin-associated virulence, resistance to tumor therapy, and production of melanin mimetics under cell-free conditions. PMID:22765382
Wang, Min; You, Jinglin; Sobol, Alexander; Lu, Liming; Wang, Jian; Xie, Yingfang
2017-01-01
Recent interest in optimizing composition and synthesis conditions of functional crystals, and the further exploration of new possible candidates for tunable solid-state lasers, has led to significant research on compounds in this family MIMIII(MVIO4)2 (MI = alkali metal, MIII = Al, In, Sc, Fe, Bi, lanthanide; MVI = Mo, W). The vibrational modes, structure transformation, and Al coordination of crystalline, glassy, and molten states of KAl(MoO4)2 have been investigated by in-situ high temperature Raman scattering and 27Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy, together with first principles density functional simulation of room temperature Raman spectrum. The results showed that, under the present fast quenching conditions, Al is present predominantly in [AlO6] octahedra in both KAl(MoO4)2 glass and melt, with the tetrahedrally coordinated Al being minor at approximately 2.7%. The effect of K+, from ordered arrangement in the crystal to random distribution in the melt, on the local chemical environment of Al, was also revealed. The distribution and quantitative analysis of different Al coordination subspecies are final discussed and found to be dependent on the thermal history of the glass samples. PMID:28772669
Wang, Min; You, Jinglin; Sobol, Alexander; Lu, Liming; Wang, Jian; Xie, Yingfang
2017-03-17
Recent interest in optimizing composition and synthesis conditions of functional crystals, and the further exploration of new possible candidates for tunable solid-state lasers, has led to significant research on compounds in this family M I M III (M VI O₄)₂ (M I = alkali metal, M III = Al, In, Sc, Fe, Bi, lanthanide; M VI = Mo, W). The vibrational modes, structure transformation, and Al coordination of crystalline, glassy, and molten states of KAl(MoO₄)₂ have been investigated by in-situ high temperature Raman scattering and 27 Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy, together with first principles density functional simulation of room temperature Raman spectrum. The results showed that, under the present fast quenching conditions, Al is present predominantly in [AlO₆] octahedra in both KAl(MoO₄)₂ glass and melt, with the tetrahedrally coordinated Al being minor at approximately 2.7%. The effect of K⁺, from ordered arrangement in the crystal to random distribution in the melt, on the local chemical environment of Al, was also revealed. The distribution and quantitative analysis of different Al coordination subspecies are final discussed and found to be dependent on the thermal history of the glass samples.
Delgado-Goñi, Teresa; Campo, Sonia; Martín-Sitjar, Juana; Cabañas, Miquel E; San Segundo, Blanca; Arús, Carles
2013-08-01
In most plants, sucrose is the primary product of photosynthesis, the transport form of assimilated carbon, and also one of the main factors determining sweetness in fresh fruits. Traditional methods for sugar quantification (mainly sucrose, glucose and fructose) require obtaining crude plant extracts, which sometimes involve substantial sample manipulation, making the process time-consuming and increasing the risk of sample degradation. Here, we describe and validate a fast method to determine sugar content in intact plant tissue by using high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (HR-MAS NMR). The HR-MAS NMR method was used for quantifying sucrose, glucose and fructose in mesocarp tissues from melon fruits (Cucumis melo var. reticulatus and Cucumis melo var. cantalupensis). The resulting sugar content varied among individual melons, ranging from 1.4 to 7.3 g of sucrose, 0.4-2.5 g of glucose; and 0.73-2.83 g of fructose (values per 100 g fw). These values were in agreement with those described in the literature for melon fruit tissue, and no significant differences were found when comparing them with those obtained using the traditional, enzymatic procedure, on melon tissue extracts. The HR-MAS NMR method offers a fast (usually <30 min) and sensitive method for sugar quantification in intact plant tissues, it requires a small amount of tissue (typically 50 mg fw) and avoids the interferences and risks associated with obtaining plant extracts. Furthermore, this method might also allow the quantification of additional metabolites detectable in the plant tissue NMR spectrum.
Roy, Upasana; Jaja-Chimedza, Asha; Sanchez, Kristel; Matysik, Joerg
2016-01-01
Abstract Techniques based on nuclear magnetic resonance (NMR) for imaging and chemical analyses of in vivo, or otherwise intact, biological systems are rapidly emerging and finding diverse applications within a wide range of fields. Very recently, several NMR-based techniques have been developed for the zebrafish as a model animal system. In the current study, the novel application of high-resolution magic angle spinning (HR-MAS) NMR is presented as a means of metabolic profiling of intact zebrafish embryos. Toward investigating the utility of HR-MAS NMR as a toxicological tool, these studies specifically examined metabolic changes of embryos exposed to polymethoxy-1-alkenes (PMAs)—a recently identified family of teratogenic compounds from freshwater algae—as emerging environmental contaminants. One-dimensional and two-dimensional HR-MAS NMR analyses were able to effectively identify and quantify diverse metabolites in early-stage (≤36 h postfertilization) embryos. Subsequent comparison of the metabolic profiles between PMA-exposed and control embryos identified several statistically significant metabolic changes associated with subacute exposure to the teratogen, including (1) elevated inositol as a recognized component of signaling pathways involved in embryo development; (2) increases in several metabolites, including inositol, phosphoryl choline, fatty acids, and cholesterol, which are associated with lipid composition of cell membranes; (3) concomitant increase in glucose and decrease in lactate; and (4) decreases in several biochemically related metabolites associated with central nervous system development and function, including γ-aminobutyric acid, glycine, glutamate, and glutamine. A potentially unifying model/hypothesis of PMA teratogenicity based on the data is presented. These findings, taken together, demonstrate that HR-MAS NMR is a promising tool for metabolic profiling in the zebrafish embryo, including toxicological applications. PMID:27348393
ERIC Educational Resources Information Center
Wills, Herbert III
1989-01-01
Describes ways to make magic squares of 4 by 4 matrices. Presents two handouts: (1) Sets of 4 Numbers from 1 to 16 Whose Sum is 34; and (2) The Durer Square. Shows patterns which appeared in the magic squares, such as squares, chevrons, rhomboids, and trapezoids. (YP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Yanyan
This thesis describes application and development of advanced solid-state nuclear magnetic resonance techniques for complex materials, in particular organic-inorganic nanocomposites and thermoelectric tellurides. The apatite-collagen interface, essential for understanding the biomineralization process in bone and engineering the interface for controlled bio-mimetic synthesis and optimized mechanical properties, is buried within the nanocomposite of bone. We used multinuclear solid-state NMR to study the composition and structure of the interface. Citrate has been identified as the main organic molecule strongly bound to the apatite surface with a density of 1/(2 nm) 2, covering 1/6 of the total surface area in bovine bone. Citratemore » provides more carboxylate groups, one of the key functional groups found to affect apatite nucleation and growth, than all the non-collagenous proteins all together in bone; thus we propose that citrate stabilizes apatite crystals at a very small thickness of ~3 nm (4 unit cells) to increase bone fracture tolerance. The hypothesis has been confirmed in vitro by adding citrate in the bio-mimetic synthesis of polymerhydroxyapatite nanocomposites. The results have shown that the size of hydroxyapatite nanocrystals decreases as increasing citrate concentration. With citrate concentrations comparable to that in body fluids, similar-sized nanocrystals as in bone have been produced. Besides the dimensions of the apatite crystals, the composition of bone also affects its biofunctional and macroscopic mechanical properties; therefore, our team also extended its effort to enhance the inorganic portion in our bio-mimetic synthesis from originally 15 wt% to current 50 wt% compared to 65 wt% in bovine bone, by using Lysine-Leucine hydroxyapatite nucleating diblock co-polypeptide, which forms a gel at very low concentration. In this thesis, various advanced solid state NMR techniques have been employed to characterize nanocomposites. Meanwhile, we have developed new methods to achieve broadband high resolution NMR and improve the accuracy of inter-nuclear distance measurements involving quadrupolar spins. Broadband high resolution NMR of spin-1/2 nuclei has been accomplished by the adaptation of the magic angle turning (MAT) method to fast magic angle spinning, termed fast MAT, by solving technical problems such as off resonance effects. Fast MAT separates chemical shift anisotropy and isotropic chemical shifts over a spectral range of ~1.8 γB 1 without significant distortions. Fast MAT 125Te NMR has been applied to study technologically important telluride materials with spectra spreading up to 190 kHz. The signal-to-noise ratio of the spectra is significantly improved by using echo-matched Gaussian filtering in offline data processing. The accuracy of the measured distances between spin-1/2 and quadrupolar nuclei with methods such as SPIDER and REAPDOR has been improved by compensating for the fast longitudinal quadrupolar relaxation on the sub-millisecond with a modified S 0 pulse sequence. Also, the T1Q effect on the spin coherence and its spinning speed dependency has been explored and documented with analytical and numerical simulations as well as experimental measurements.« less
Manufacturing Magic and Computational Creativity
Williams, Howard; McOwan, Peter W.
2016-01-01
This paper describes techniques in computational creativity, blending mathematical modeling and psychological insight, to generate new magic tricks. The details of an explicit computational framework capable of creating new magic tricks are summarized, and evaluated against a range of contemporary theories about what constitutes a creative system. To allow further development of the proposed system we situate this approach to the generation of magic in the wider context of other areas of application in computational creativity in performance arts. We show how approaches in these domains could be incorporated to enhance future magic generation systems, and critically review possible future applications of such magic generating computers. PMID:27375533
Watching films with magical content facilitates creativity in children.
Subbotsky, Eugene; Hysted, Claire; Jones, Nicola
2010-08-01
Two experiments examined the possible link between magical thinking and creativity in preschool children. In Exp. 1, 4- and 6-yr.-old children were shown a film with either a magical or nonmagical theme. Results indicated that the mean scores of children shown the magical film was significantly higher than that of children watching the nonmagical film on the majority of subsequent creativity tests for both age groups. This trend was also found for 6-yr.-olds' drawings of impossible items. In Exp. 2, Exp. 1 was replicated successfully with 6- and 8-yr.-old children. Exposing children to a film with a magical theme did not affect their beliefs about magic. The results were interpreted to accentuate the role of magical thinking in children's cognitive development. Classroom implications of the results were also discussed.
Controlling the magic and normal sizes of white CdSe quantum dots
NASA Astrophysics Data System (ADS)
Su, Yu-Sheng; Chung, Shu-Ru
2017-08-01
In this study, we have demonstrated a facile chemical route to prepare CdSe QDs with white light emission, and the performance of white CdSe-based white light emitting diode (WLED) is also exploded. An organic oleic acid (OA) is used to form Cd-OA complex first and hexadecylamine (HDA) and 1-octadecene (ODE) is used as surfactants. Meanwhile, by varying the reaction time from 1 s to 60 min, CdSe QDs with white light can be obtained. The result shows that the luminescence spectra compose two obvious emission peaks and entire visible light from 400 to 700 nm, when the reaction time less than 10 min. The wide emission wavelength combine two particle sizes of CdSe, magic and normal, and the magic-CdSe has band-edge and surface-state emission, while normal size only possess band-edge emission. The TEM characterization shows that the two different sizes with diameter of 1.5 nm and 2.7 nm for magic and normal size CdSe QDs can be obtained when the reaction time is 4 min. We can find that the magic size of CdSe is produced when the reaction time is less than 3 min. In the time ranges from 3 to 10 min, two sizes of CdSe QDs are formed, and with QY from 20 to 60 %. Prolong the reaction time to 60 min, only normal size of CdSe QD can be observed due to the Ostwald repining, and its QYs is 8 %. Based on the results we can conclude that the two emission peaks are generated from the coexistence of magic size and normal size CdSe to form the white light QDs, and the QY and emission wavelength of CdSe QDs can be increased with prolonging reaction time. The sample reacts for 2 (QY 30 %), 4 (QY 32 %) and 60 min (QY 8 %) are choosing to mixes with transparent acrylic-based UV curable resin for WLED fabrication. The Commission International d'Eclairage (CIE) chromaticity, color rendering index (CRI), and luminous efficacy for magic, mix, and normal size CdSe are (0.49, 0.44), 81, 1.5 lm/W, (0.35, 0.30), 86, 1.9 lm/W, and (0.39, 0.25), 40, 0.3 lm/W, respectively.
NASA Astrophysics Data System (ADS)
Ishii, Yoshitaka
2001-05-01
A technique is presented to recouple homonuclear dipolar couplings between dilute spin pairs such as 13C-13C systems under very fast magic angle spinning (MAS) in solid-state nuclear magnetic resonance (NMR) spectroscopy. The presented technique, finite pulse rf driven recoupling (fpRFDR), restores homonuclear dipolar interactions based on constructive usage of finite pulse-width effects in a phase- and symmetry-cycled π-pulse train in which a rotor-synchronous π pulse is applied every rotation period. The restored effective dipolar interaction has the form of a zero-quantum dipolar Hamiltonian for static solids, whose symmetry in spin space is different from that obtained by conventional rf driven recoupling (RFDR) techniques. It is demonstrated that the efficiency of recoupling by fpRFDR is not strongly dependent on chemical shift differences or resonance offsets in contrast to previous recoupling methods under very fast MAS. To realize distance measurements without effects of spin relaxation, a constant-time version of fpRFDR (CT-fpRFDR) is introduced, in which the effective evolution period is varied by refocusing dipolar evolution with a rotor-synchronized solid echo while the total recoupling period is kept constant. From CT-fpRFDR experiments at a spinning speed of 30.3 kHz in a field of 17.6 T, the 13C-13C distance of [1-13C]Ala-[1-13C]Gly-Gly was determined to be 3.27 Å, which agrees well with the value of 3.20 Å obtained by x-ray diffraction. Also, two-dimensional (2D) 13C/13C chemical-shift correlation NMR spectrum in a field of 9.4 T was obtained with fpRFDR for fibrils of the segmentally 13C- and 15N-labeled Alzheimer's β-Amyloid fragments, Aβ16-22 (residues 16-22 taken from the 40-residue Aβ peptide) in which Leu-17 through Ala-21 are uniformly 13C- and 15N-labeled. Most 13C resonances for the main chain as well as for the side chains are assigned based on 2D 13C/13C chemical-shift correlation patterns specific to amino-acid types. Examination of the obtained 13C chemical shifts revealed the formation of β-strand across the entire molecule of Aβ16-22. Possibility of high throughput determination of global main-chain structures based on 13C shifts obtained from 2D 13C/13C chemical-shift correlation under very fast MAS is also discussed for uniformly/segmentally 13C-labeled protein/peptide samples.
Polar and singular value decomposition of 3×3 magic squares
NASA Astrophysics Data System (ADS)
Trenkler, Götz; Schmidt, Karsten; Trenkler, Dietrich
2013-07-01
In this note, we find polar as well as singular value decompositions of a 3×3 magic square, i.e. a 3×3 matrix M with real elements where each row, column and diagonal adds up to the magic sum s of the magic square.
The MAGIC (Manually Assisted Gaming of Integrated Combat) Model,
1982-05-01
IP -6 7 6 7 Zo - A O - ?G O 6 7 9 N L mhhhhh1h8I 1-I THE MAGIC (MANUALLY ASSISTED GAMING OF INTEGRATED COMBAT) MODEL Milton G. Weiner May 1982 L io...Corporation Santa Monica, California 90406 - - ~-. - - -i 77 THE MAGIC (MANUALLY ASSISTED GAMING OF INTEGRATED COMBAT) MODEL Milton G. Weiner May 1982 THE... MAGIC (MANUALLY ASSISTED GAMING OF INTEGRATED COMBAT) MODEL Milton G. Weiner The Rand Corporation, Santa Monica, California The MAGIC model isn’Vt
First-excited state g factor of Te 136 by the recoil in vacuum method
Stuchbery, A. E.; Allmond, J. M.; Danchev, M.; ...
2017-07-27
The g factor of the first 2 + state of radioactive 136Te with two valence protons and two valence neutrons beyond double-magic 132Sn has been measured by the recoil in vacuum (RIV) method. The lifetime of this state is an order of magnitude longer than the lifetimes of excited states recently measured by the RIV method in Sn and Te isotopes, requiring a new evaluation of the free-ion hyperfine interactions and methodology used to determine the g factor. In this paper, the calibration data are reported and the analysis procedures are described in detail. The resultant g factor has amore » similar magnitude to the g factors of other nuclei with an equal number of valence protons and neutrons in the major shell. However, an unexpected trend is found in the g factors of the N = 84 isotones, which decrease from 136Te to 144Nd. Finally, shell model calculations with interactions derived from the CD Bonn potential show good agreement with the g factors and E2 transition rates of 2 + states around 132Sn, confirming earlier indications that 132Sn is a good doubly magic core.« less
First-excited state g factor of Te 136 by the recoil in vacuum method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stuchbery, A. E.; Allmond, J. M.; Danchev, M.
The g factor of the first 2 + state of radioactive 136Te with two valence protons and two valence neutrons beyond double-magic 132Sn has been measured by the recoil in vacuum (RIV) method. The lifetime of this state is an order of magnitude longer than the lifetimes of excited states recently measured by the RIV method in Sn and Te isotopes, requiring a new evaluation of the free-ion hyperfine interactions and methodology used to determine the g factor. In this paper, the calibration data are reported and the analysis procedures are described in detail. The resultant g factor has amore » similar magnitude to the g factors of other nuclei with an equal number of valence protons and neutrons in the major shell. However, an unexpected trend is found in the g factors of the N = 84 isotones, which decrease from 136Te to 144Nd. Finally, shell model calculations with interactions derived from the CD Bonn potential show good agreement with the g factors and E2 transition rates of 2 + states around 132Sn, confirming earlier indications that 132Sn is a good doubly magic core.« less
Magical ideation is related to questionnaire but not behavioural measures of handedness.
Grimshaw, Gina M; Yelle, Serena K; Schoger, Jamie; Bright, Kathleen S
2008-01-01
Magical ideation has repeatedly been shown to be related to handedness, with mixed-handers exhibiting higher levels of magical thinking. However, most previous research has assessed hand preference with a questionnaire measure, leaving open the possibility that the correlation reflects some aspect of questionnaire-taking behaviour and not an underlying neuropsychological relationship. The present study addressed this issue by administering the Magical Ideation Scale (Eckblad & Chapman, 1983), the Waterloo Handedness Questionnaire-Revised (Elias, Bryden, & Bulman-Fleming, 1998), and a manual dot-filling task (Tapley & Bryden, 1985) as a behavioural measure of handedness to an undergraduate student sample. The expected relationship between magical ideation and handedness as assessed by the questionnaire was observed. However, magical ideation was not related to the behavioural measure of handedness. Results cast doubt on a neuropsychological interpretation of the relationship between handedness and magical ideation in sub-clinical populations.
On Super Edge-magic Total Labeling of Modified Watermill Graph
NASA Astrophysics Data System (ADS)
Nurdin; Ungko, T. S.; Gormantara, J.; Abdullah, A.; Aulyah, S.; Nikita
2018-03-01
An edge-magic total labeling on a graph G is one-to-one map from V(G) ∪ E(G) onto the set of integers 1,2, ...,ν + e, where ν = |V(G)| and e = |E(G)|, with the property that, given any edge uv, f(u) + f(u, ν}) + f(ν) = k for every u,v ∈ V(G), and k is called magic valuation. An edge-magic total labeling f is called super edge-magic total if f(v(G)) = {1,2 ...,|V(G)|} and f(E(G)) = {|V(G)| + 1, |V(G)| + 2,... |V(G) + E(G)|}. In this paper we investigate edge-magic total labeling of a new graph called modified Watermill graph. Furthermore, the magic valuation of the modified Watermill graph WM(n) is k=\\frac{1}{2}(21n+3), for n odd, n ≥ 3.
NASA Astrophysics Data System (ADS)
Patra, S. K.; Wu, Cheng-Li; Praharaj, C. R.; Gupta, Raj K.
1999-05-01
We have studied the structural properties of even-even, neutron deficient, Z = 114-126, superheavy nuclei in the mass region A ˜ 270-320, using an axially deformed relativistic mean field model. The calculations are performed with three parameter sets (NL1, TM1 and NL-SH), in order to see the dependence of the structural properties on the force used. The calculated ground state shapes are found to be parameter dependent. For some parameter sets, many of the nuclei are degenerate in their ground state configuration. Special attention is given to the investigation of the magic structures (spherical shell closures) in the superheavy region. We find that some known magic numbers are absent and new closed shells are predicted. Large shell gaps appear at Z = 80, 92, (114), 120 and 138, N = 138, (164), (172), 184, (198), (228) and 258, irrespective of the parameter sets used. The numbers in parenthesis are those which correspond to relatively smaller gaps. The existence of new magic numbers in the valley of superheavy elements is discussed. It is suggested that nuclei around Z = 114 and N = 164 ˜ 172 could be considered as candidates for the next search of superheavy nuclei. The existence of superheavy islands around Z = 120 and N = 172 or N = 184 double shell closure is also discussed.
78 FR 7464 - Large Scale Networking (LSN)-Middleware And Grid Interagency Coordination (MAGIC) Team
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-01
... Coordination (MAGIC) Team AGENCY: The Networking and Information Technology Research and Development (NITRD... (703) 292-4873. Date/Location: The MAGIC Team meetings are held on the first Wednesday of each month, 2... basis. WebEx participation is available for each meeting. Please reference the MAGIC Team Web site for...
NASA Astrophysics Data System (ADS)
Indira, P.; Selvam, B.; Thirusangu, K.
2018-04-01
Based on the works of Kotzig, Rosa and MacDougall et.al., we present algorithms and prove the existence of Z3-vertex magic total labeling and Z3-edge magic total labeling for the extended duplicate graph of quadrilateral snake.
Simonds, Laura M; Demetre, James D; Read, Cristina
2009-06-01
Despite the obvious phenomenological similarities between magical thinking and obsessive-compulsiveness, the relationship between them has been the subject of few empirical investigations in samples of children. The present study aimed to examine the relationship between a general epistemic stance towards magical causation and tendencies towards obsessive-compulsiveness in a non-clinical sample of schoolchildren. One-hundred and two children, aged between 5 and 10 years (48 boys and 54 girls), completed questionnaire measures designed to assess magical thinking, obsessive-compulsiveness, and other forms of anxiety. School teachers completed a measure of strengths and difficulties for each child. General belief in magical causation was correlated with all types of anxiety, not just obsessive-compulsiveness, with significant correlations shown for boys in the sample, but not girls. General belief in magical causation contributed little to the prediction of obsessive-compulsiveness beyond general anxiety. In this study, a general epistemic stance towards magical causation did not differentiate obsessive-compulsiveness from other anxiety dimensions. The findings are considered in the context of developmental theories of magical and scientific causal reasoning.
57Fe Mössbauer study of the asbestiform silicates balangeroite and carlosturanite
NASA Astrophysics Data System (ADS)
Deriu, Antonio; Ferraris, Giovanni; Belluso, Elena
1994-08-01
57FeMössbauer spectra of the two silicate minerals balangeroite (BAL) and carlosturanite (CST) have been collected at 80 and 295 K under normal and magic angle geometry. For both minerals the spectra have been fitted with two ferrous and two ferric doublets; Fe2+ accounts for 80 and 62% of Fetot in Bal and CST, respectively. The number of doublets used to fit the spectra supports the hypotheses that: (i) in the serpentine-like structure of CST iron occupies only octahedra which lie between the tetrahedral silicate strips; (ii) the octahedral framework of BAL (actually monoclinic) is satisfactorily described with an orthorhombic sub-cell.
In-pore exchange and diffusion of carbonate solvent mixtures in nanoporous carbon
Alam, Todd M.; Osborn Popp, Thomas M.
2016-06-04
High resolution magic angle spinning (HRMAS) 1H NMR spectroscopy has been used to resolve different surface and in-pore solvent environments of ethylene carbonate (EC) and dimethyl carbonate (DMC) mixtures absorbed within nanoporous carbon (NPC). Two dimensional (2D) 1H HRMAS NMR exchange measurements revealed that the inhomogeneous broadened in-pore resonances have pore-to-pore exchange rates on the millisecond timescale. Pulsed-field gradient (PFG) NMR diffusometry revealed the in-pore self-diffusion constants for both EC and DMC were reduced by up to a factor of five with respect to the diffusion in the non-absorbed solvent mixtures.
The Magic of Magic: The Effect of Magic Tricks on Subsequent Engagement with Lecture Material
ERIC Educational Resources Information Center
Moss, Simon A.; Irons, Melanie; Boland, Martin
2017-01-01
Background and aims: Lecturers often present entertaining videos, or organize a variety of amusing demonstrations, to foster student engagement or to encourage critical analysis. Magic tricks, in particular, have been shown to activate neural circuits that underpin motivation or problem-solving and, therefore, could be beneficial during lectures.…
Characterization of completely k-magic regular graphs
NASA Astrophysics Data System (ADS)
Eniego, A. A.; Garces, I. J. L.
2017-10-01
Let k ∈ ℕ and c ∈ ℤ k . A graph G is said to be c-sum k-magic if there is a labeling ℓ : E(G) → ℤ k {0} such that Σ u∈N(v) ℓ(uv) ≡ c (mod k) for every vertex v of G, where N(v) is the neighborhood of v in G. We say that G is completely k-magic whenever it is c-sum k-magic for every c ∈ ℤ k . In this paper, we characterize all completely k-magic regular graphs.
First multi-wavelength campaign on the gamma-ray-loud active galaxy IC 310
NASA Astrophysics Data System (ADS)
Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Ishio, K.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Nöthe, M.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Toyama, T.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Krauß, F.; Schulz, R.; Kadler, M.; Wilms, J.; Ros, E.; Bach, U.; Beuchert, T.; Langejahn, M.; Wendel, C.; Gehrels, N.; Baumgartner, W. H.; Markwardt, C. B.; Müller, C.; Grinberg, V.; Hovatta, T.; Magill, J.
2017-07-01
Context. The extragalactic very-high-energy gamma-ray sky is rich in blazars. These are jetted active galactic nuclei that are viewed at a small angle to the line-of-sight. Only a handful of objects viewed at a larger angle are so far known to emit above 100 GeV. Multi-wavelength studies of such objects up to the highest energies provide new insights into the particle and radiation processes of active galactic nuclei. Aims: We aim to report the results from the first multi-wavelength campaign observing the TeV detected nucleus of the active galaxy IC 310, whose jet is observed at a moderate viewing angle of 10°-20°. Methods: The multi-instrument campaign was conducted between 2012 November and 2013 January, and involved observations with MAGIC, Fermi, INTEGRAL, Swift, OVRO, MOJAVE and EVN. These observations were complemented with archival data from the AllWISE and 2MASS catalogs. A one-zone synchrotron self-Compton model was applied to describe the broadband spectral energy distribution. Results: IC 310 showed an extraordinary TeV flare at the beginning of the campaign, followed by a low, but still detectable TeV flux. Compared to previous measurements in this energy range, the spectral shape was found to be steeper during the low emission state. Simultaneous observations in the soft X-ray band showed an enhanced energy flux state and a harder-when-brighter spectral shape behavior. No strong correlated flux variability was found in other frequency regimes. The broadband spectral energy distribution obtained from these observations supports the hypothesis of a double-hump structure. Conclusions: The harder-when-brighter trend in the X-ray and VHE emission, observed for the first time during this campaign, is consistent with the behavior expected from a synchrotron self-Compton scenario. The contemporaneous broadband spectral energy distribution is well described with a one-zone synchrotron self-Compton model using parameters that are comparable to those found for other gamma-ray-emitting misaligned blazars.
Experimental Investigation of the Electronic Properties of Twisted Bilayer Graphene by STM and STS
NASA Astrophysics Data System (ADS)
Yin, Longjing; Qiao, Jiabin; Wang, Wenxiao; Zuo, Weijie; He, Lin
The electronic properties of graphene multilayers depend sensitively on their stacking order. A twisted angle is treated as a unique degree of freedom to tune the electronic properties of graphene system. Here we study electronic structures of the twisted bilayers by scanning tunneling microscopy (STM) and spectroscopy (STS). We demonstrate that the interlayer coupling strength affects both the Van Hove singularities and the Fermi velocity of twisted bilayers dramatically. This removes the discrepancy about the Fermi velocity renormalization in the twisted bilayers and provides a consistent interpretation of all current data. Moreover, we report the experimental evidence for non-Abelian gauge potentials in twisted graphene bilayers by STM and STS. At a magic twisted angle, about 1.11°, a pronounced sharp peak is observed in the tunnelling spectra due to the action of the non-Abelian gauge fields. Because of the effective non-Abelian gauge fields, the rotation angle could transfer the charge carriers in the twisted bilayers from massless Dirac fermions into well localized electrons, or vice versa, efficiently. This provides a new route to tune the electronic properties of graphene systems, which will be essential in future graphene nanoelectronics.
Sleightly Persuasive: Using Magic To Teach Principles of Persuasion.
ERIC Educational Resources Information Center
Frasier, C. Jay
Magic can be used in the communication classroom as a means for introducing and/or illustrating the subject of persuasion. A magical effect which fools the class can lead to an early discussion of the need to be a critical consumer of persuasive messages. Magic can also be used to introduce the subject of ethics in persuasion. Each student can be…
Science meets magic: photonic metamaterials
NASA Astrophysics Data System (ADS)
Ozbay, Ekmel
2012-05-01
The word "magic" is usually associated with movies, fiction, children stories, etc. but seldom with the natural sciences. Recent advances in metamaterials have changed this notion, in which we can now speak of "almost magical" properties that scientists could only dream about only a decade ago. In this article, we review some of the recent "almost magical" progress in the field of meta-materials.
Science meets magic: photonic metamaterials
NASA Astrophysics Data System (ADS)
Ozbay, Ekmel
2012-03-01
The word "magic" is usually associated with movies, fiction, children stories, etc. but seldom with the natural sciences. Recent advances in metamaterials have changed this notion, in which we can now speak of "almost magical" properties that scientists could only dream about only a decade ago. In this article, we review some of the recent "almost magical" progress in the field of meta-materials.
ERIC Educational Resources Information Center
Badzakova-Trajkov, Gjurgjica; Haberling, Isabelle S.; Corballis, Michael C.
2011-01-01
Magical ideation has been shown to be related to measures of hand preference, in which those with mixed handedness exhibit higher levels of magical ideation than those with either consistent left- or right-handedness. It is unclear whether the relation between magical ideation and hand preference is the result of a bias in questionnaire-taking…
Compact Magic-T using microstrip-slotline transitions
NASA Technical Reports Server (NTRS)
U-Yen, Kongpop (Inventor); Wollack, Edward J. (Inventor); Doiron, Terence (Inventor); Moseley, Samuel H. (Inventor)
2010-01-01
The design of a compact low-loss Magic-T is described. The planar Magic-T incorporates a compact microstrip-slotline tee junction and small microstrip-slotline transition area to reduce slotline radiation. The Magic-T produces broadband in-phase and out-of-phase power combiner/divider responses, has low in-band insertion loss, and small in-band phase and amplitude imbalance.
Canli, Derya; Ozdemir, Hatice; Kocak, Orhan Murat
2015-08-01
Studies provide evidence for impaired social cognition in schizotypy and its association with negative symptoms. Cognitive features related to magical ideation - a component of the positive dimension of schizotypy - have been less investigated. We aimed to assess social cognitive functioning among adolescents with high magical ideation scores, mainly focusing on face and emotion recognition. 22 subjects with magical ideation scale scores above the cut off level and 22 controls with lowest scores from among 250 students screened with this scale were included in the study. A face and emotion recognition n-back test, the empathy quotient, theory of mind tests and the Physical Anhedonia Scale were applied to both magical ideation and control groups. The magical ideation group performed significantly worse than controls on both face and emotion recognition tests. Emotion recognition performance was found to be affected by memory load, with sadness, among emotions, revealing a difference between the two groups. Empathy and theory of mind tests did not distinguish the magical ideation group from controls. Our findings provide evidence for a deficit in negative emotion recognition affected by memory load associated with magical ideation in adolescents. Copyright © 2015 Elsevier Inc. All rights reserved.
Badzakova-Trajkov, Gjurgjica; Häberling, Isabelle S; Corballis, Michael C
2011-08-01
Magical ideation has been shown to be related to measures of hand preference, in which those with mixed handedness exhibit higher levels of magical ideation than those with either consistent left- or right-handedness. It is unclear whether the relation between magical ideation and hand preference is the result of a bias in questionnaire-taking behaviour or of some neuropsychological concomitant of cerebral specialization. We sought to replicate this finding and further investigate how magical ideation is related to other measures of laterality, including handedness based on finger-tapping performance, and cerebral asymmetries for language, spatial judgment, and face processing as revealed by fMRI. Creative achievement was also assessed by questionnaire and correlated with magical ideation and the other measures. Magical ideation and creativity were positively correlated, and both were negatively correlated with absolute hand preference but not with hand performance or with any of the cerebral asymmetries being assessed. The results do not support the notion that the observed association between magical ideation, creativity and hand preference has a neuropsychological explanation based on reduced cerebral lateralization. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talmi, Igal
2008-11-11
The discovery of magic numbers led to the shell model. They indicated closure of major shells and are robust: proton magic numbers are rather independent of the occupation of neutron orbits and vice versa. Recently the magic property became less stringent and we hear a lot about the discovery of new magic numbers. These, however, indicate sub-shell closures and strongly depend on occupation numbers and hence, may be called quasi-magic numbers. Some of these have been known for many years and the mechanism for their appearance as well as disappearance, was well understood within the simple shell model. The situationmore » will be illustrated by a few examples which demonstrate the simple features of the shell model. Will this simplicity emerge from the complex computations of nuclear many-body theory?.« less
Swaminathan, Lakshmi; Flanders, Scott; Rogers, Mary; Calleja, Yvonne; Snyder, Ashley; Thyagarajan, Rama; Bercea, Priscila; Chopra, Vineet
2018-04-01
Although important in clinical care, reports of inappropriate peripherally inserted central catheter (PICC) use are growing. To test whether implementation of the Michigan Appropriateness Guide for Intravenous Catheters (MAGIC) can improve PICC use and patient outcomes. Quasi-experimental, interrupted time series design at one study site with nine contemporaneous external controls. Ten hospitals participating in a state-wide quality collaborative from 1 August 2014 to 31 July 2016. 963 hospitalised patients who received a PICC at the study site vs 6613 patients at nine control sites. A multimodal intervention (tool, training, electronic changes, education) derived from MAGIC. Appropriateness of PICC use and rates of PICC-associated complications. Segmented Poisson regression was used for analyses. Absolute rates of inappropriate PICC use decreased substantially at the study site versus controls (91.3% to 65.3% (-26.0%) vs 72.2% to 69.6% (-2.6%); P<0.001). After adjusting for underlying trends and patient characteristics, however, a marginally significant 13.8% decrease in inappropriate PICC use occurred at the study site (incidence rate ratio 0.86 (95% CI 0.74 to 0.99; P=0.048)); no change was observed at control sites. While the incidence of all PICC complications decreased to a greater extent at the study site, the absolute difference between controls and intervention was small (33.9% to 26.7% (-7.2%) vs 22.4% to 20.8% (-1.6%); P=0.036). Non-randomised design limits inference; the most effective component of the multimodal intervention is unknown; effects following implementation were modest. In a multihospital quality improvement project, implementation of MAGIC improved PICC appropriateness and reduced complications to a modest extent. Given the size and resources required for this study, future work should consider cost-to-benefit ratio of similar approaches. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
The magic words: Using computers to uncover mental associations for use in magic trick design.
Williams, Howard; McOwan, Peter W
2017-01-01
The use of computational systems to aid in the design of magic tricks has been previously explored. Here further steps are taken in this direction, introducing the use of computer technology as a natural language data sourcing and processing tool for magic trick design purposes. Crowd sourcing of psychological concepts is investigated; further, the role of human associative memory and its exploitation in magical effects is explored. A new trick is developed and evaluated: a physical card trick partially designed by a computational system configured to search for and explore conceptual spaces readily understood by spectators.
NASA Astrophysics Data System (ADS)
Grams, G.; Giraud, S.; Fantina, A. F.; Gulminelli, F.
2018-03-01
The aim of the present study is to calculate the nuclear distribution associated at finite temperature to any given equation of state of stellar matter based on the Wigner-Seitz approximation, for direct applications in core-collapse simulations. The Gibbs free energy of the different configurations is explicitly calculated, with special care devoted to the calculation of rearrangement terms, ensuring thermodynamic consistency. The formalism is illustrated with two different applications. First, we work out the nuclear statistical equilibrium cluster distribution for the Lattimer and Swesty equation of state, widely employed in supernova simulations. Secondly, we explore the effect of including shell structure, and consider realistic nuclear mass tables from the Brussels-Montreal Hartree-Fock-Bogoliubov model (specifically, HFB-24). We show that the whole collapse trajectory is dominated by magic nuclei, with extremely spread and even bimodal distributions of the cluster probability around magic numbers, demonstrating the importance of cluster distributions with realistic mass models in core-collapse simulations. Simple analytical expressions are given, allowing further applications of the method to any relativistic or nonrelativistic subsaturation equation of state.
NASA Astrophysics Data System (ADS)
Iguchi, Kazumoto
We discuss the statistical mechanical foundation for the two-state transition in the protein folding of small globular proteins. In the standard arguments of protein folding, the statistical search for the ground state is carried out from astronomically many conformations in the configuration space. This leads us to the famous Levinthal's paradox. To resolve the paradox, Gō first postulated that the two-state transition - all-or-none type transition - is very crucial for the protein folding of small globular proteins and used the Gō's lattice model to show the two-state transition nature. Recently, there have been accumulated many experimental results that support the two-state transition for small globular proteins. Stimulated by such recent experiments, Zwanzig has introduced a minimal statistical mechanical model that exhibits the two-state transition. Also, Finkelstein and coworkers have discussed the solution of the paradox by considering the sequential folding of a small globular protein. On the other hand, recently Iguchi have introduced a toy model of protein folding using the Rubik's magic snake model, in which all folded structures are exactly known and mathematically represented in terms of the four types of conformations: cis-, trans-, left and right gauche-configurations between the unit polyhedrons. In this paper, we study the relationship between the Gō's two-state transition, the Zwanzig's statistical mechanics model and the Finkelsteinapos;s sequential folding model by applying them to the Rubik's magic snake models. We show that the foundation of the Gō's two-state transition model relies on the search within the equienergy surface that is labeled by the contact order of the hydrophobic condensation. This idea reproduces the Zwanzig's statistical model as a special case, realizes the Finkelstein's sequential folding model and fits together to understand the nature of the two-state transition of a small globular protein by calculating the physical quantities such as the free energy, the contact order and the specific heat. We point out the similarity between the liquid-gas transition in statistical mechanics and the two-state transition of protein folding. We also study morphology of the Rubik's magic snake models to give a prototype model for understanding the differences between α-helices proteins and β-sheets proteins.
Polarization and photometric observations of the gamma-ray blazar PG 1553+113
NASA Astrophysics Data System (ADS)
Andruchow, I.; Combi, J. A.; Muñoz-Arjonilla, A. J.; Romero, G. E.; Cellone, S. A.; Martí, J.
2011-07-01
We present the results of an observational photo-polarimetry campaign of the blazar PG 1553+113 at optical wavelengths. The blazar was recently detected at very high energies (>100 GeV) by the HESS and MAGIC γ-ray Cherenkov telescopes. Our high-temporal resolution data show significant variations in the linear polarization percentage and position angle at inter-night time-scales, while at shorter (intra-night) time-scales both parameters varied less significantly, if at all. Changes in the polarization angle seem to be common in γ-ray emitting blazars. Simultaneous differential photometry (through the B and R bands) shows no significant variability in the total optical flux. We provide B and R magnitudes, along with a finding chart, for a set of field stars suitable for differential photometry. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).
Mathematical Construction of Magic Squares Utilizing Base-N Arithmetic
ERIC Educational Resources Information Center
O'Brien, Thomas D.
2006-01-01
Magic squares have been of interest as a source of recreation for over 4,500 years. A magic square consists of a square array of n[squared] positive and distinct integers arranged so that the sum of any column, row, or main diagonal is the same. In particular, an array of consecutive integers from 1 to n[squared] forming an nxn magic square is…
Huynh, Bao-Lam; Ehlers, Jeffrey D; Huang, Bevan Emma; Muñoz-Amatriaín, María; Lonardi, Stefano; Santos, Jansen R P; Ndeve, Arsenio; Batieno, Benoit J; Boukar, Ousmane; Cisse, Ndiaga; Drabo, Issa; Fatokun, Christian; Kusi, Francis; Agyare, Richard Y; Guo, Yi-Ning; Herniter, Ira; Lo, Sassoum; Wanamaker, Steve I; Xu, Shizhong; Close, Timothy J; Roberts, Philip A
2018-03-01
Multi-parent advanced generation inter-cross (MAGIC) populations are an emerging type of resource for dissecting the genetic structure of traits and improving breeding populations. We developed a MAGIC population for cowpea (Vigna unguiculata L. Walp.) from eight founder parents. These founders were genetically diverse and carried many abiotic and biotic stress resistance, seed quality and agronomic traits relevant to cowpea improvement in the United States and sub-Saharan Africa, where cowpea is vitally important in the human diet and local economies. The eight parents were inter-crossed using structured matings to ensure that the population would have balanced representation from each parent, followed by single-seed descent, resulting in 305 F 8 recombinant inbred lines each carrying a mosaic of genome blocks contributed by all founders. This was confirmed by single nucleotide polymorphism genotyping with the Illumina Cowpea Consortium Array. These lines were on average 99.74% homozygous but also diverse in agronomic traits across environments. Quantitative trait loci (QTLs) were identified for several parental traits. Loci with major effects on photoperiod sensitivity and seed size were also verified by biparental genetic mapping. The recombination events were concentrated in telomeric regions. Due to its broad genetic base, this cowpea MAGIC population promises breakthroughs in genetic gain, QTL and gene discovery, enhancement of breeding populations and, for some lines, direct releases as new varieties. © 2018 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.
Magical ideation -- defense mechanism or neuropathology? A study with multiple sclerosis patients.
te Wildt, Bert Theodor; Schultz-Venrath, Ulrich
2004-01-01
The major psychological stress factor in multiple sclerosis (MS) is loss of control of life. In MS patients with impaired cognition, magical ideation might be a characteristic way of thinking. Proof for this may be the high frequency of alternative treatments used by individuals with MS. The study investigates whether the level of magical ideation in MS patients is higher compared to healthy control subjects and, in case of positive confirmation, with which somatic and psychological features it is associated. Moreover, it is aimed to discuss the modalities of magical ideation in general. A German version of the Magical Ideation Scale was validated with a group of 69 healthy subjects. Ninety-four MS patients were additionally assessed with the Dissociative Experience Scale, the Symptom-Check-List-90-Revised and 5 neuropsychological tests. The Magical Ideation Scale did not reveal a significant difference between MS patients and healthy controls (p = 0.968). Among the MS patients, magical ideation shows a correlation neither with age nor with disability, but a positive correlation (p = 0.007; r = 0.329) with the grade of neuropsychological deficiency. Among the psychological parameters, the highest positive correlation with magical ideation was found in dissociation (p = 0.000; r = 0.520). Magical ideation, sharing common features with dissociation, can be viewed as an early defense mechanism when perceiving a loss of control of life, particularly in early stages of MS. In late stages, when developing neuropsychological deficits, it may occur as a substitute for cognitive coping. The data may encourage clinicians to identify magical ideation. In young and previously diagnosed patients, it is important to acknowledge helplessness and support a rather rational way of coping. Training cognitive skills could be crucial to prevent older patients from losing touch with reality. More generally, the occurrence of a significant amount of magical ideation is discussed both as a psychological and a neurophysiologic regression of thinking. Copyright 2004 S. Karger AG, Basel
Subbotsky, Eugene
2007-11-01
In Experiment 1, 6- and 9-year-old children and adults were asked to imagine various types of objects. The experimenter then attempted to change the image of those objects in participants' minds by either suggesting that the objects may change against the participants' will, or by asking participants to change the objects as a favor to the experimenter. Two types of suggestive causation were employed: Magical-suggestion (a magic spell was cast with the aim of changing the imagined objects) and ordinary-suggestion (participants were told that the objects in their minds could alter against their will). Ordinary-suggestion was as effective as magical-suggestion in changing the participants' imagined objects. For adults, a direct request for compliance produced a stronger effect than did magical suggestion. This effect was not found in children. In Experiment 2, the two types of suggestion were tested on an alternative type of imagined objects. Adult participants were asked to imagine their futures. It was then proposed that (a) a magic spell could be cast on their futures with the aim of changing them either for the worse or for the better (magical-suggestion), or (b) changing a numerical pattern on a computer screen could change their futures (ordinary-suggestion). All participants denied that changing a numerical pattern on a computer screen could affect their lives, yet in their actions they demonstrated an element of belief in this possibility. As in Experiment 1, in Experiment 2 ordinary suggestion was as effective as magical suggestion. The hypothesis of an historic contiguity between magical causality and ordinary suggestion is discussed.
"Emmerce" Immersion: The Emerging World of Electronic Commerce.
ERIC Educational Resources Information Center
Chuck, Lysbeth
1997-01-01
Discusses the effects of Web-based electronic commerce, or "emmerce," on online user. Defines "cookies" and Persistent Client State HTTP Cookies or "magic cookies" on Macintosh computers. Examines underlying technologies that make up "cashless" transactions; growing demand for micropayments; CyberCash,…
ERIC Educational Resources Information Center
Williams, Horace E.
1974-01-01
A method for generating 3x3 magic squares is developed. A series of questions relating to these magic squares is posed. An invesitgation using matrix methods is suggested with some questions for consideration. (LS)
ERIC Educational Resources Information Center
Watson, Gale A.
2003-01-01
Demonstrates the transformations that are possible to construct a variety of magic squares, including modifications to challenge students from elementary grades through algebra. Presents an example of using magic squares with students who have special needs. (YDS)
NASA Astrophysics Data System (ADS)
Wałejko, P.; Paradowska, K.; Szeleszczuk, Ł.; Wojtulewski, S.; Baj, A.
2018-03-01
Trolox C (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) is a water-soluble vitamin E analogue that is available in enantiomeric forms R or S. Enantiomerically pure Trolox 1, its derivatives 2, 3 (R and S enantiomers) and racemic forms 1-3 were studied using solid-state 13C cross-polarisation (CP) magic angle spinning (MAS) NMR (13C CPMAS NMR). Gauge-including projector-augmented wave density functional theory (GIPAW DFT) calculations of the shielding constants supported the assignment of 13C resonances in the solid-state NMR spectra. For the 13C CPMAS NMR spectra of 1, resonances of pure enantiomers were significantly broader than those of the racemic R/S form. In order to explain these effects, five of the available crystal structures were analysed (1R/S, 3R/S, 2S and the newly measured 2R/S and 3S). Cyclic dimers with one R and one S enantiomer linked by two OHsbnd Odbnd C2b hydrogen bonds were formed in 1R/S. Similar hydrogen-bonded dimers were present in 3S but not in 3R/S, in which interactions are water-mediated. A comparison of X-ray diffraction, CPMAS NMR data and the DFT GIPAW calculations of racemic forms and pure enantiomers was conducted for the first time. Our results, particularly the solid-state NMR data, were discussed in relation to Wallach's rule, that the racemic crystal appears as more ordered than its chiral counterpart.
Joint experimental and computational 17O solid state NMR study of Brownmillerite Ba2In2O5.
Dervişoğlu, Rıza; Middlemiss, Derek S; Blanc, Frédéric; Holmes, Lesley A; Lee, Yueh-Lin; Morgan, Dane; Grey, Clare P
2014-02-14
Structural characterization of Brownmillerite Ba2In2O5 was achieved by an approach combining experimental solid-state NMR spectroscopy, density functional theory (DFT) energetics, and GIPAW NMR calculations. While in the previous study of Ba2In2O5 by Adler et al. (S. B. Adler, J. A. Reimer, J. Baltisberger and U. Werner, J. Am. Chem. Soc., 1994, 116, 675-681), three oxygen resonances were observed in the (17)O NMR spectra and assigned to the three crystallographically unique O sites, the present high resolution (17)O NMR measurements under magic angle spinning (MAS) find only two resonances. The resonances have been assigned using first principles (17)O GIPAW NMR calculations to the combination of the O ions connecting the InO4 tetrahedra and the O ions in equatorial sites in octahedral InO6 coordination, and to the axial O ions linking the four- and six-fold coordinated In(3+) ions. Possible structural disorder was investigated in two ways: firstly, by inclusion of the high-energy structure also previously studied by Mohn et al. (C. E. Mohn, N. L. Allan, C. L. Freeman, P. Ravindran and S. Stølen, J. Solid State Chem., 2005, 178, 346-355), where the structural O vacancies are stacked rather than staggered as in Brownmillerite and, secondly, by exploring structures derived from the ground-state structure but with randomly perturbed atomic positions. There is no noticeable NMR evidence for any substantial occupancy of the high-energy structure at room temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oegetbil, O.
After reviewing the existing results we give an extensive analysis of the critical points of the potentials of the gauged N=2 Yang-Mills/Einstein supergravity theories coupled to tensor multiplets and hypermultiplets. Our analysis includes all the possible gaugings of all N=2 Maxwell-Einstein supergravity theories whose scalar manifolds are symmetric spaces. In general, the scalar potential gets contributions from R-symmetry gauging, tensor couplings, and hypercouplings. We show that the coupling of a hypermultiplet into a theory whose potential has a nonzero value at its critical point, and gauging a compact subgroup of the hyperscalar isometry group will only rescale the value ofmore » the potential at the critical point by a positive factor, and therefore will not change the nature of an existing critical point. However this is not the case for noncompact SO(1,1) gaugings. An SO(1,1) gauging of the hyperisometry will generally lead to de Sitter vacua, which is analogous to the ground states found by simultaneously gauging SO(1,1) symmetry of the real scalar manifold with U(1){sub R} in earlier literature. SO(m,1) gaugings with m>1, which give contributions to the scalar potential only in the magical Jordan family theories, on the other hand, do not lead to de Sitter vacua. Anti-de Sitter vacua are generically obtained when the U(1){sub R} symmetry is gauged. We also show that it is possible to embed certain generic Jordan family theories into the magical Jordan family preserving the nature of the ground states. However the magical Jordan family theories have additional ground states which are not found in the generic Jordan family theories.« less
Hsiao, Tzu-Hung; Chiu, Yu-Chiao; Hsu, Pei-Yin; Lu, Tzu-Pin; Lai, Liang-Chuan; Tsai, Mong-Hsun; Huang, Tim H.-M.; Chuang, Eric Y.; Chen, Yidong
2016-01-01
Several mutual information (MI)-based algorithms have been developed to identify dynamic gene-gene and function-function interactions governed by key modulators (genes, proteins, etc.). Due to intensive computation, however, these methods rely heavily on prior knowledge and are limited in genome-wide analysis. We present the modulated gene/gene set interaction (MAGIC) analysis to systematically identify genome-wide modulation of interaction networks. Based on a novel statistical test employing conjugate Fisher transformations of correlation coefficients, MAGIC features fast computation and adaption to variations of clinical cohorts. In simulated datasets MAGIC achieved greatly improved computation efficiency and overall superior performance than the MI-based method. We applied MAGIC to construct the estrogen receptor (ER) modulated gene and gene set (representing biological function) interaction networks in breast cancer. Several novel interaction hubs and functional interactions were discovered. ER+ dependent interaction between TGFβ and NFκB was further shown to be associated with patient survival. The findings were verified in independent datasets. Using MAGIC, we also assessed the essential roles of ER modulation in another hormonal cancer, ovarian cancer. Overall, MAGIC is a systematic framework for comprehensively identifying and constructing the modulated interaction networks in a whole-genome landscape. MATLAB implementation of MAGIC is available for academic uses at https://github.com/chiuyc/MAGIC. PMID:26972162
Is {sup 276}U a doubly magic nucleus?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liliani, N., E-mail: netta.liliani@gmail.com; Sulaksono, A.
2016-04-19
We investigate a possible new doubly magic heavy nucleus by using a relativistic mean-field (RMF) model with the addition of a cross interaction term of omega-rho mesons and an electromagnetic exchange term. We propose that {sup 276}U is a doubly magic nucleus. The evidence for {sup 276}U being a doubly magic nucleus is shown through the two-nucleon gaps, the single-particle energies, and the neutron skin thickness of the nucleus. We have also found that the prediction of {sup 276}U as a doubly magic nucleus by the RMF model is not affected by the inclusion of isoscalar-isovector and electromagnetic exchange couplings.
The magic words: Using computers to uncover mental associations for use in magic trick design
2017-01-01
The use of computational systems to aid in the design of magic tricks has been previously explored. Here further steps are taken in this direction, introducing the use of computer technology as a natural language data sourcing and processing tool for magic trick design purposes. Crowd sourcing of psychological concepts is investigated; further, the role of human associative memory and its exploitation in magical effects is explored. A new trick is developed and evaluated: a physical card trick partially designed by a computational system configured to search for and explore conceptual spaces readily understood by spectators. PMID:28792941
ERIC Educational Resources Information Center
Featonby, David
2010-01-01
This article examines several readily available "magic tricks" which base their "trickery" on physics principles, and questions the use of the word "magic" in the 21st century, both in popular children's science and in everyday language. (Contains 18 figures.)
Magical thinking and memory: distinctiveness effect for tv commercials with magical content.
Subbotsky, Eugene; Mathews, Jayne
2011-10-01
The aim of this study was to examine whether memorizing advertised products of television advertisements with magical effects (i.e., talking animals, inanimate objects which turn into humans, objects that appear from thin air or instantly turn into other objects) is easier than memorizing products of advertisements without such effects, by testing immediate and delayed retention. Adolescents and adults viewed two films containing television advertisements and were asked to recall and recognize the films' characters, events, and advertised products. Film 1 included magical effects, but Film 2 did not. On a free-recall test, no differences in the number of items recalled were noted for the two films. On the immediate recognition test, adolescents, but not adults, showed significantly better recognition for the magical than the nonmagical film. When this test was repeated two weeks later, results were reversed: adults, but not adolescents, recognized a significantly larger number of items from the magical film than the nonmagical one. These results are interpreted to accentuate the role of magical thinking in cognitive processes.
High-resolution NMR characterization of low abundance oligomers of amyloid-β without purification
NASA Astrophysics Data System (ADS)
Kotler, Samuel A.; Brender, Jeffrey R.; Vivekanandan, Subramanian; Suzuki, Yuta; Yamamoto, Kazutoshi; Monette, Martine; Krishnamoorthy, Janarthanan; Walsh, Patrick; Cauble, Meagan; Holl, Mark M. Banaszak; Marsh, E. Neil. G.; Ramamoorthy, Ayyalusamy
2015-07-01
Alzheimer’s disease is characterized by the misfolding and self-assembly of the amyloidogenic protein amyloid-β (Aβ). The aggregation of Aβ leads to diverse oligomeric states, each of which may be potential targets for intervention. Obtaining insight into Aβ oligomers at the atomic level has been a major challenge to most techniques. Here, we use magic angle spinning recoupling 1H-1H NMR experiments to overcome many of these limitations. Using 1H-1H dipolar couplings as a NMR spectral filter to remove both high and low molecular weight species, we provide atomic-level characterization of a non-fibrillar aggregation product of the Aβ1-40 peptide using non-frozen samples without isotopic labeling. Importantly, this spectral filter allows the detection of the specific oligomer signal without a separate purification procedure. In comparison to other solid-state NMR techniques, the experiment is extraordinarily selective and sensitive. A resolved 2D spectra could be acquired of a small population of oligomers (6 micrograms, 7% of the total) amongst a much larger population of monomers and fibers (93% of the total). By coupling real-time 1H-1H NMR experiments with other biophysical measurements, we show that a stable, primarily disordered Aβ1-40 oligomer 5-15 nm in diameter can form and coexist in parallel with the well-known cross-β-sheet fibrils.
Ooms, Kristopher J.; Bolte, Stephanie E.; Smee, Jason J.; Baruah, Bharat; Crans, Debbie C.; Polenova, Tatyana
2014-01-01
Using 51V magic angle spinning solid-state NMR, SSNMR, spectroscopy and quantum chemical DFT calculations we have characterized the chemical shift and quadrupolar coupling parameters of a series of 8 hydroxylamido vanadium(V) dipicolinate complexes of the general formula VO(dipic)(ONR1R2)(H2O) where R1 and R2 can be H, CH3, or CH2CH3. This class of vanadium compounds was chosen for investigation because of their seven coordinate vanadium atom, a geometry for which there is limited 51V SSNMR data. Furthermore, a systematic series of compounds with different electronic properties are available and allows for the effects of ligand substitution on the NMR parameters to be studied. The quadrupolar coupling constants, CQ, are small, 3.0 to 3.9 MHz, but exhibit variations as a function of the ligand substitution. The chemical shift tensors in the solid state are sensitive to changes in both the hydroxylamide substituent and the dipic ligand, a sensitivity which is not observed for isotropic chemical shifts in solution. The chemical shift tensors span approximately 1000 ppm, and are nearly axially symmetric. Based on DFT calculations of the chemical shift tensors, one of the largest contributors to the magnetic shielding anisotropy is an occupied molecular orbital with significant vanadium dz2 character along the V=O bond. PMID:17902653
In-situ molecular-level elucidation of organofluorine binding sites in a whole peat soil.
Longstaffe, James G; Courtier-Murias, Denis; Soong, Ronald; Simpson, Myrna J; Maas, Werner E; Fey, Michael; Hutchins, Howard; Krishnamurthy, Sridevi; Struppe, Jochem; Alaee, Mehran; Kumar, Rajeev; Monette, Martine; Stronks, Henry J; Simpson, André J
2012-10-02
The chemical nature of xenobiotic binding sites in soils is of vital importance to environmental biogeochemistry. Interactions between xenobiotics and the naturally occurring organic constituents of soils are strongly correlated to environmental persistence, bioaccessibility, and ecotoxicity. Nevertheless, because of the complex structural and chemical heterogeneity of soils, studies of these interactions are most commonly performed indirectly, using correlative methods, fractionation, or chemical modification. Here we identify the organic components of an unmodified peat soil where some organofluorine xenobiotic compounds interact using direct molecular-level methods. Using (19)F→(1)H cross-polarization magic angle spinning (CP-MAS) nuclear magnetic resonance (NMR) spectroscopy, the (19)F nuclei of organofluorine compounds are used to induce observable transverse magnetization in the (1)H nuclei of organic components of the soil with which they interact after sorption. The observed (19)F→(1)H CP-MAS spectra and dynamics are compared to those produced using model soil organic compounds, lignin and albumin. It is found that lignin-like components can account for the interactions observed in this soil for heptafluoronaphthol (HFNap) while protein structures can account for the interactions observed for perfluorooctanoic acid (PFOA). This study employs novel comprehensive multi-phase (CMP) NMR technology that permits the application of solution-, gel-, and solid-state NMR experiments on intact soil samples in their swollen state.
Williams, Linda A.; Guo, Neng; Motta, Alessandro; Delferro, Massimiliano; Fragalà, Ignazio L.; Miller, Jeffrey T.; Marks, Tobin J.
2013-01-01
Structural characterization of the catalytically significant sites on solid catalyst surfaces is frequently tenuous because their fraction, among all sites, typically is quite low. Here we report the combined application of solid-state 13C-cross-polarization magic angle spinning nuclear magnetic resonance (13C-CPMAS-NMR) spectroscopy, density functional theory (DFT), and Zr X-ray absorption spectroscopy (XAS) to characterize the adsorption products and surface chemistry of the precatalysts (η5-C5H5)2ZrR2 (R = H, CH3) and [η5-C5(CH3)5]Zr(CH3)3 adsorbed on Brønsted superacidic sulfated alumina (AlS). The latter complex is exceptionally active for benzene hydrogenation, with ∼100% of the Zr sites catalytically significant as determined by kinetic poisoning experiments. The 13C-CPMAS-NMR, DFT, and XAS data indicate formation of organozirconium cations having a largely electrostatic [η5-C5(CH3)5]Zr(CH3)2+···AlS− interaction with greatly elongated Zr···OAlS distances of ∼2.35(2) Å. The catalytic benzene hydrogenation cycle is stepwise understandable by DFT, and proceeds via turnover-limiting H2 delivery to surface [η5-C5(CH3)5]ZrH2(benzene)+···AlS− species, observable by solid-state NMR and XAS. PMID:23269836
High-resolution NMR characterization of low abundance oligomers of amyloid-β without purification
Kotler, Samuel A.; Brender, Jeffrey R.; Vivekanandan, Subramanian; Suzuki, Yuta; Yamamoto, Kazutoshi; Monette, Martine; Krishnamoorthy, Janarthanan; Walsh, Patrick; Cauble, Meagan; Holl, Mark M. Banaszak; Marsh, E. Neil. G.; Ramamoorthy, Ayyalusamy
2015-01-01
Alzheimer’s disease is characterized by the misfolding and self-assembly of the amyloidogenic protein amyloid-β (Aβ). The aggregation of Aβ leads to diverse oligomeric states, each of which may be potential targets for intervention. Obtaining insight into Aβ oligomers at the atomic level has been a major challenge to most techniques. Here, we use magic angle spinning recoupling 1H-1H NMR experiments to overcome many of these limitations. Using 1H-1H dipolar couplings as a NMR spectral filter to remove both high and low molecular weight species, we provide atomic-level characterization of a non-fibrillar aggregation product of the Aβ1-40 peptide using non-frozen samples without isotopic labeling. Importantly, this spectral filter allows the detection of the specific oligomer signal without a separate purification procedure. In comparison to other solid-state NMR techniques, the experiment is extraordinarily selective and sensitive. A resolved 2D spectra could be acquired of a small population of oligomers (6 micrograms, 7% of the total) amongst a much larger population of monomers and fibers (93% of the total). By coupling real-time 1H-1H NMR experiments with other biophysical measurements, we show that a stable, primarily disordered Aβ1-40 oligomer 5–15 nm in diameter can form and coexist in parallel with the well-known cross-β-sheet fibrils. PMID:26138908
High-resolution NMR characterization of low abundance oligomers of amyloid-β without purification.
Kotler, Samuel A; Brender, Jeffrey R; Vivekanandan, Subramanian; Suzuki, Yuta; Yamamoto, Kazutoshi; Monette, Martine; Krishnamoorthy, Janarthanan; Walsh, Patrick; Cauble, Meagan; Holl, Mark M Banaszak; Marsh, E Neil G; Ramamoorthy, Ayyalusamy
2015-07-03
Alzheimer's disease is characterized by the misfolding and self-assembly of the amyloidogenic protein amyloid-β (Aβ). The aggregation of Aβ leads to diverse oligomeric states, each of which may be potential targets for intervention. Obtaining insight into Aβ oligomers at the atomic level has been a major challenge to most techniques. Here, we use magic angle spinning recoupling (1)H-(1)H NMR experiments to overcome many of these limitations. Using (1)H-(1)H dipolar couplings as a NMR spectral filter to remove both high and low molecular weight species, we provide atomic-level characterization of a non-fibrillar aggregation product of the Aβ1-40 peptide using non-frozen samples without isotopic labeling. Importantly, this spectral filter allows the detection of the specific oligomer signal without a separate purification procedure. In comparison to other solid-state NMR techniques, the experiment is extraordinarily selective and sensitive. A resolved 2D spectra could be acquired of a small population of oligomers (6 micrograms, 7% of the total) amongst a much larger population of monomers and fibers (93% of the total). By coupling real-time (1)H-(1)H NMR experiments with other biophysical measurements, we show that a stable, primarily disordered Aβ1-40 oligomer 5-15 nm in diameter can form and coexist in parallel with the well-known cross-β-sheet fibrils.
Dawson, Daniel M; Jamieson, Lauren E; Mohideen, M Infas H; McKinlay, Alistair C; Smellie, Iain A; Cadou, Romain; Keddie, Neil S; Morris, Russell E; Ashbrook, Sharon E
2013-01-21
Solid-state (13)C magic-angle spinning (MAS) NMR spectroscopy is used to investigate the structure of the Cu(II)-based metal-organic frameworks (MOFs), HKUST-1 and STAM-1, and the structural changes occurring within these MOFs upon activation (dehydration). NMR spectroscopy is an attractive technique for the investigation of these materials, owing to its high sensitivity to local structure, without any requirement for longer-range order. However, interactions between nuclei and unpaired electrons in paramagnetic systems (e.g., Cu(II)-based MOFs) pose a considerable challenge, not only for spectral acquisition, but also in the assignment and interpretation of the spectral resonances. Here, we exploit the rapid T(1) relaxation of these materials to obtain (13)C NMR spectra using a spin-echo pulse sequence at natural abundance levels, and employ frequency-stepped acquisition to ensure uniform excitation of resonances over a wide frequency range. We then utilise selective (13)C isotopic labelling of the organic linker molecules to enable an unambiguous assignment of NMR spectra of both MOFs for the first time. We show that the monomethylated linker can be recovered from STAM-1 intact, demonstrating not only the interesting use of this MOF as a protecting group, but also the ability (for both STAM-1 and HKUST-1) to recover isotopically-enriched linkers, thereby reducing significantly the overall cost of the approach.
Gas-Phase Synthesis and Characterization of CH4-Loaded Hydroquinone Clathrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J.; Lee, Y; Takeya, S
2010-01-01
A CH{sub 4}-loaded hydroquinone (HQ) clathrate was synthesized via a gas-phase reaction using the {alpha}-form of crystalline HQ and CH{sub 4} gas at 12 MPa and room temperature. Solid-state {sup 13}C cross-polarization/magic angle spinning (CP/MAS) NMR and Raman spectroscopic measurements confirm the incorporation of CH{sub 4} molecules into the cages of the HQ clathrate framework. The chemical analysis indicates that about 69% of the cages are filled by CH{sub 4} molecules, that is, 0.69 CH{sub 4} per three HQ molecules. Rietveld refinement using synchrotron X-ray powder diffraction (XRD) data shows that the CH{sub 4}-loaded HQ clathrate adopts the {beta}-form ofmore » HQ clathrate in a hexagonal space group R3 with lattice parameters of a = 16.6191 {angstrom} and c = 5.5038 {angstrom}. Time-resolved synchrotron XRD and quadrupole mass spectroscopic measurements show that the CH{sub 4}-loaded HQ clathrate is stable up to 368 K and gradually transforms to the {alpha}-form by releasing the confined CH{sub 4} gases between 368-378 K. Using solid-state {sup 13}C CP/MAS NMR, the reaction kinetics between the {alpha}-form HQ and CH{sub 4} gas is qualitatively described in terms of the particle size of the crystalline HQ.« less
ERIC Educational Resources Information Center
Dale, Ralph Alan
Hypnosis is a state of mind which manifests a high degree of suggestibility. Advertising, political campaigning, and religious contemplation are all areas in which hypotism is employed, usually without knowledge on the part of either the "hypnotist" or the subject. Because of its association with entertainment, magic, manipulation, and…
Nonuniform code concatenation for universal fault-tolerant quantum computing
NASA Astrophysics Data System (ADS)
Nikahd, Eesa; Sedighi, Mehdi; Saheb Zamani, Morteza
2017-09-01
Using transversal gates is a straightforward and efficient technique for fault-tolerant quantum computing. Since transversal gates alone cannot be computationally universal, they must be combined with other approaches such as magic state distillation, code switching, or code concatenation to achieve universality. In this paper we propose an alternative approach for universal fault-tolerant quantum computing, mainly based on the code concatenation approach proposed in [T. Jochym-O'Connor and R. Laflamme, Phys. Rev. Lett. 112, 010505 (2014), 10.1103/PhysRevLett.112.010505], but in a nonuniform fashion. The proposed approach is described based on nonuniform concatenation of the 7-qubit Steane code with the 15-qubit Reed-Muller code, as well as the 5-qubit code with the 15-qubit Reed-Muller code, which lead to two 49-qubit and 47-qubit codes, respectively. These codes can correct any arbitrary single physical error with the ability to perform a universal set of fault-tolerant gates, without using magic state distillation.
MAGIC Computer Simulation. Volume 2: Analyst Manual, Part 1
1971-05-01
A review of the subject Magic Computer Simulation User and Analyst Manuals has been conducted based upon a request received from the US Army...1971 4. TITLE AND SUBTITLE MAGIC Computer Simulation Analyst Manual Part 1 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...14. ABSTRACT The MAGIC computer simulation generates target description data consisting of item-by-item listings of the target’s components and air
1989-07-31
40. NO NO ACCESSION NO N7 ?I TITLE (inWijuod Security Claisification) NTRFACE FOR MAGIC PERSONAL AUTHOR(S) N.T. GLADD PE OF REPORT T b TIME...the MAGIC Particle-in-Cell Simulation Code. 19 ABSTRACT (Contianue on reverse if nceary and d ntiy by block number) The NTRFACE system was developed...made concret by applying it to a specific application- a mature, highly complex plasma physics particle in cell simulation code name MAGIC . This
Evaluation of magical thinking: validation of the Illusory Beliefs Inventory.
Shihata, Sarah; Egan, Sarah J; Rees, Clare S
2014-01-01
Magical thinking has been related to obsessive-compulsive disorder; yet, little research has examined this construct in other anxiety disorders. The Illusory Beliefs Inventory (IBI) is a recently developed measure of magical thinking. The aim of this study was to investigate the psychometric properties of this new measure and to determine if magical thinking accounts for pathological worry beyond the well-researched constructs of intolerance of uncertainty (IU) and perfectionism. A sample of 502 participants completed an online survey. Confirmatory factor analysis identified a three-factor solution for the IBI, and the measure had good internal consistency (α = .92), test-retest reliability (r = .94) and discriminant validity. Magical thinking, IU, and perfectionism all predicted pathological worry; however, magical thinking accounted for less than 1% of unique variance in worry, suggesting that it is not strongly related to worry. Further investigation regarding the validity and clinical utility of the IBI is required.
De la Rosa, José Maria; Martin-Sanchez, Pedro M; Sanchez-Cortes, Santiago; Hermosin, Bernardo; Knicker, Heike; Saiz-Jimenez, Cesareo
2017-10-18
Two novel species of the fungal genus Ochroconis, O. lascauxensis and O. anomala have been isolated from the walls of the Lascaux Cave, France. The interest in these fungi and their melanins lies in the formation of black stains on the walls and rock art which threatens the integrity of the paintings. Here we report solid-state cross polarization magic-angle spinning 13 C and 15 N nuclear magnetic resonance (NMR) spectroscopy and surface-enhanced Raman spectroscopy (SERS) of the melanins extracted from the mycelia of O. lascauxensis and O. anomala in order to known their chemical structure. The melanins from these two species were compared with those from other fungi. The melanins from the Ochroconis species have similar SERS and 13 C and 15 N NMR spectra. Their chemical structures as suggested by the data are not related to 3,4-dihydroxyphenylalanine, 5,6-dihydroxyindole or 1,8-dihydroxynaphthalene precursors and likely the building blocks from the melanins have to be based on other phenols that react with the N-terminal amino acid of proteins. The analytical pyrolysis of the acid hydrolysed melanin from O. lascauxensis supports this assumption.
Mura, Carla; Valenti, Donatella; Floris, Costantino; Sanna, Roberta; De Luca, Maria Antonietta; Fadda, Anna Maria; Loy, Giuseppe
2011-09-01
The aim of the present study was to develop a colon targeted delivery system for metronidazole using polymeric prodrug formulation. Two chitosan amide conjugates of metronidazole were prepared by using two different spacers to covalently link the drug to the amino group of the chitosan glucosamine units. Glutaric and succinic hemiesters of metronidazole were thus prepared and then coupled to chitosan to obtain metronidazole-glutaryl- and metronidazole-succinyl-chitosan conjugates. Polymeric prodrugs were characterized by solid state NMR method, namely carbon 13 cross polarization magic angle spinning ((13)C NMR CPMAS). Prodrug stability study was carried out in acid (pH = 1.2) and in alkaline (pH = 7.4) buffers in a thermostatic bath at 37 °C. Drug release from the two prodrugs was studied by incubating each of them with 10% w/v cecal and colonic content of rats. Obtained results showed that both prodrugs were adequately stable in acid environment, while the succinyl conjugate was more stable than the glutaryl one in alkaline buffer. Both the prodrugs released the drug in cecal and colonic content, showing that the two systems could serve as colon specific delivery systems of metronidazole. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Küçükbenli, Emine; Sonkar, Kanchan; Sinha, Neeraj; de Gironcoli, Stefano
2012-04-12
We report here the first fully ab initio determination of (13)C NMR spectra for several crystal structures of cholesterol, observed in various biomaterials. We combine Gauge-Including Projector Augmented Waves (GIPAW) calculations at relaxed structures, fully including dispersion forces, with Magic Angle Spinning Solid State NMR experiments and spectral editing to achieve a detailed interpretation of the complex NMR spectra of cholesterol crystals. By introducing an environment-dependent secondary referencing scheme in our calculations, not only do we reproduce the characteristic spectral features of the different crystalline polymorphs, thus clearly discriminating among them, but also closely represent the spectrum in the region of several highly overlapping peaks. This, in combination with spectral editing, allows us to provide a complete peak assignment for monohydrate (ChM) and low-temperature anhydrous (ChAl) crystal polymorphs. Our results show that the synergy between ab initio calculations and refined experimental techniques can be exploited for an accurate and efficient NMR crystallography of complex systems of great interest for biomaterial studies. The method is general in nature and can be applied for studies of various complex biomaterials.
IN SITU MAGIC ANGLE SPINNING NMR FOR STUDYING GEOLOGICAL CO(2) SEQUESTRATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoyt, David W.; Turcu, Romulus VF; Sears, Jesse A.
2011-03-27
Geological carbon sequestration (GCS) is one of the most promising ways of mitigating atmospheric greenhouse gases (1-3). Mineral carbonation reactions are potentially important to the long-term sealing effectiveness of caprock but remain poorly predictable, particularly in low-water supercritical CO2 (scCO2)-dominated environments where the chemistry has not been adequately explored. In situ probes that provide molecular-level information is desirable for investigating mechanisms and rates of GCS mineral carbonation reactions. MAS-NMR is a powerful tool for obtaining detailed molecular structure and dynamics information of a system regardless whether the system is in a solid, a liquid, a gaseous, or a supercritical state,more » or a mixture thereof (4,5). However, MAS NMR under scCO2 conditions has never been realized due to the tremendous technical difficulties of achieving and maintaining high pressure within a fast spinning MAS rotor (6,7), where non-metal materials must be used. In this work, we report development of a unique high pressure MAS NMR capability, and its application to mineral carbonation chemistry in scCO2 under geologically relevant temperatures and pressures.« less
Evidence for cross-linking in tomato cutin using HR-MAS NMR spectroscopy.
Deshmukh, Ashish P; Simpson, André J; Hatcher, Patrick G
2003-11-01
Cutin is a polyester biopolymer component of plant leaf and fruit cuticles, most often associated with waxes and cuticular polysaccharides, and sometimes with another aliphatic biopolymer called cutan. Insolubility of these cuticular biopolymers has made it difficult to apply traditional analytical techniques for structure determination, because most techniques providing molecular level details require solubility. By using the relatively new technique of one and two-dimensional high-resolution magic angle spinning (HR-MAS) NMR spectroscopy, with added information from solid-state 13C NMR spectroscopy, detailed through-bond connectivities and assignments are made for cutin from Lycopersicon esculentum (tomato) fruit. Based on the data obtained, tomato cutin is found to be predominantly an aliphatic polyester with some olefinic and aromatic moieties, consistent with previous studies that employed various degradative approaches. Aside from esters, there are free primary and secondary alcohol groups, as well as free fatty acids. A significant finding is the presence of alpha-branched fatty acids/esters. Mid-chain hydroxyls appear to be generally unesterified, but esters of mid-chain hydroxyls have been identified. The alpha-branched fatty acids/esters and esters of mid-chain hydroxyls could point towards cross-linking.
Quasi-equilibria in reduced Liouville spaces.
Halse, Meghan E; Dumez, Jean-Nicolas; Emsley, Lyndon
2012-06-14
The quasi-equilibrium behaviour of isolated nuclear spin systems in full and reduced Liouville spaces is discussed. We focus in particular on the reduced Liouville spaces used in the low-order correlations in Liouville space (LCL) simulation method, a restricted-spin-space approach to efficiently modelling the dynamics of large networks of strongly coupled spins. General numerical methods for the calculation of quasi-equilibrium expectation values of observables in Liouville space are presented. In particular, we treat the cases of a time-independent Hamiltonian, a time-periodic Hamiltonian (with and without stroboscopic sampling) and powder averaging. These quasi-equilibrium calculation methods are applied to the example case of spin diffusion in solid-state nuclear magnetic resonance. We show that there are marked differences between the quasi-equilibrium behaviour of spin systems in the full and reduced spaces. These differences are particularly interesting in the time-periodic-Hamiltonian case, where simulations carried out in the reduced space demonstrate ergodic behaviour even for small spins systems (as few as five homonuclei). The implications of this ergodic property on the success of the LCL method in modelling the dynamics of spin diffusion in magic-angle spinning experiments of powders is discussed.
Genetic algorithm optimized triply compensated pulses in NMR spectroscopy
NASA Astrophysics Data System (ADS)
Manu, V. S.; Veglia, Gianluigi
2015-11-01
Sensitivity and resolution in NMR experiments are affected by magnetic field inhomogeneities (of both external and RF), errors in pulse calibration, and offset effects due to finite length of RF pulses. To remedy these problems, built-in compensation mechanisms for these experimental imperfections are often necessary. Here, we propose a new family of phase-modulated constant-amplitude broadband pulses with high compensation for RF inhomogeneity and heteronuclear coupling evolution. These pulses were optimized using a genetic algorithm (GA), which consists in a global optimization method inspired by Nature's evolutionary processes. The newly designed π and π / 2 pulses belong to the 'type A' (or general rotors) symmetric composite pulses. These GA-optimized pulses are relatively short compared to other general rotors and can be used for excitation and inversion, as well as refocusing pulses in spin-echo experiments. The performance of the GA-optimized pulses was assessed in Magic Angle Spinning (MAS) solid-state NMR experiments using a crystalline U-13C, 15N NAVL peptide as well as U-13C, 15N microcrystalline ubiquitin. GA optimization of NMR pulse sequences opens a window for improving current experiments and designing new robust pulse sequences.
Characterization of nicergoline polymorphs crystallized in several organic solvents.
Malaj, Ledjan; Censi, Roberta; Capsoni, Doretta; Pellegrino, Luca; Bini, Marcella; Ferrari, Stefania; Gobetto, Roberto; Massarotti, Vincenzo; Di Martino, Piera
2011-07-01
Nicergoline (NIC), a poorly water-soluble semisynthetic ergot derivative, was crystallized from several organic solvents, obtaining two different polymorphic forms, the triclinic form I and the orthorhombic form II. NIC samples were then characterized by several techniques such as (13)C cross-polarization magic angle spinning solid-state spectroscopy, room-temperature and high-temperature X-ray powder diffraction, differential scanning calorimetry, and by analysis of weight loss, solvent content, powder density, morphology, and particle size. Solubility and intrinsic dissolution rates determined for the two polymorphic forms in water and hydrochloride solutions (HCl 0.1 N) were always higher for form II than for form I, which is actually the form used for the industrial preparation of NIC medicinal products. Preformulation studies might encourage industry for the evaluation of polymorph II, as it is more suitable for pharmaceutical applications. Results in drug delivery, as well as those obtained by the above-mentioned techniques, and the application of Burger-Ramberger's rules make it possible to conclude that there is a thermodynamic relation of monotropy between the two polymorphs. This last assumption may help formulators in predicting the relative stability of the two forms. Copyright © 2011 Wiley-Liss, Inc. and the American Pharmacists Association
NASA Astrophysics Data System (ADS)
LaComb, M.; Stebbins, J. F.
2017-12-01
Solid state nuclear magnetic resonance (NMR) spectroscopy has often been utilized to determine network speciation in oxide glasses, typically using NMR-active nuclides such as 11B, 27Al and 17O. High field strength magnets allow for visible separation between bridging (BO) and non-bridging oxygens (NBO) in 17O magic-angle spinning (MAS) NMR spectra, but many questions remain due to limited ability to directly observe NBO associated with silicon, boron or aluminum in ternary glass systems with MAS NMR techniques. Recent studies have utilized the combination of 17O{27Al} and 17O{11B} TRAnsfer of Population in DOuble-Resonance (TRAPDOR) NMR to attempt to separate out resonances for these different bridging and non-bridging oxygen species in multicomponent calcium aluminosilicate and aluminoborosilicate glasses and rare-earth aluminoborosilicates. With improved technology and better resolution of spectral components we were able to expand this study to a wider range of calcium aluminosilicate, aluminoborate and aluminoborosilicate glasses and further separate out resonances for both bridging and non-bridging oxygens coordinated with aluminum, boron and/or silicon cations in these glasses.
Broadband MAS NMR spectroscopy in the low-power limit
NASA Astrophysics Data System (ADS)
Sanders, Kevin J.; Pell, Andrew J.; Wegner, Sebastian; Grey, Clare P.; Pintacuda, Guido
2018-04-01
We investigate the performance of broadband adiabatic inversion pulses in the high-power (short high-powered adiabatic pulse, SHAP) and low-power (single-sideband-selective adiabatic pulse, S3AP) RF regimes on a spin system subjected to large anisotropic interactions. We show by combined experimental results and spin dynamics simulations that when the magic-angle spinning rate exceeds 100 kHz S3APs begin outperforming SHAPs. This is especially true for low-gamma nuclei, such as 6 Li in paramagnetic Li-ion battery materials. Finally, we show how S3APs can be improved by combining multiple waveforms sweeping over multiple sidebands simultaneously, in order to produce inverted sideband profiles free from intensity biasing.
NMR of samples containing metal foils.
Xiong, J; Lock, H; Tao, T; Keeler, C; Maciel, G E
1999-07-01
By using spool configurations of a sample containing aluminum foil, in which the axis of the spool is collinear with the RF coil axis, one can obtain high-quality 13C NMR spectra of static samples of organic material attached to the aluminum foil. By combining such a spool configuration (or, alternatively, analogous samples containing equivalent amounts of fine aluminum powder) with the magic-angle hopping (MAH) technique, one can achieve a high degree of isotropic averaging of the 13C spectrum. This opens to NMR techniques the study of a variety of samples containing macroscopic pieces of metal foils, e.g., thin films deposited on metal foils and electrochemical systems with species adsorbed on metal-foil electrodes.
Ronzoni, Flavio; Ceccarelli, Gabriele; Perini, Ilaria; Benedetti, Laura; Galli, Daniela; Mulas, Francesca; Balli, Martina; Magenes, Giovanni; Bellazzi, Riccardo; De Angelis, Gabriella C; Sampaolesi, Maurilio
2017-01-01
Myogenic progenitor cells (activated satellite cells) are able to express both HGF and its receptor cMet. After muscle injury, HGF-Met stimulation promotes activation and primary division of satellite cells. MAGIC-F1 (Met-Activating Genetically Improved Chimeric Factor-1) is an engineered protein that contains two human Met-binding domains that promotes muscle hypertrophy. MAGIC-F1 protects myogenic precursors against apoptosis and increases their fusion ability enhancing muscle differentiation. Hemizygous and homozygous Magic-F1 transgenic mice displayed constitutive muscle hypertrophy. Here we describe microarray analysis on Magic-F1 myogenic progenitor cells showing an altered gene signatures on muscular hypertrophy and angiogenesis compared to wild-type cells. In addition, we performed a functional analysis on Magic-F1+/+ transgenic mice versus controls using treadmill test. We demonstrated that Magic-F1+/+ mice display an increase in muscle mass and cross-sectional area leading to an improvement in running performance. Moreover, the presence of MAGIC-F1 affected positively the vascular network, increasing the vessel number in fast twitch fibers. Finally, the gene expression profile analysis of Magic-F1+/+ satellite cells evidenced transcriptomic changes in genes involved in the control of muscle growth, development and vascularisation. We showed that MAGIC-F1-induced muscle hypertrophy affects positively vascular network, increasing vessel number in fast twitch fibers. This was due to unique features of mammalian skeletal muscle and its remarkable ability to adapt promptly to different physiological demands by modulating the gene expression profile in myogenic progenitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Finding All Solutions to the Magic Hexagram
ERIC Educational Resources Information Center
Holland, Jason; Karabegov, Alexander
2008-01-01
In this article, a systematic approach is given for solving a magic star puzzle that usually is accomplished by trial and error or "brute force." A connection is made to the symmetries of a cube, thus the name Magic Hexahedron.
First broadband characterization and redshift determination of the VHE blazar MAGIC J2001+439
Aleksić, J.; Ansoldi, S.; Antonelli, L. A.; ...
2014-12-09
We aim to characterize the broadband emission from 2FGL J2001.1+4352, which has been associated with the unknown-redshift blazar MG4 J200112+4352. Based on its gamma-ray spectral properties, it was identified as a potential very high energy (VHE; E> 100 GeV) gamma-ray emitter. We investigate whether this object is aVHE emitter, characterize its gamma-ray spectrum, and study the broadband emission within the one-zone synchrotron self-Compton (SSC) scenario, which is commonly used to describe the emission in blazars. Moreover, we also intend to determine the redshift of this object, which is a crucial parameter for its scientific interpretation. Here, the source was observedmore » with MAGIC first in 2009 and later in 2010 within a multi-instrument observation campaign. The MAGIC observations yielded 14.8 h of good quality stereoscopic data. Besides MAGIC, the campaign involved, observations with Fermi-LAT, Swift-XRT/UVOT, the optical telescopes KVA, Goddard Robotic Telescope, Galaxy View observatory, Crimean Astrophysical observatory, St. Petersburg observatory, and the Owens Valley Radio Observatory. The object was monitored at radio, optical and gamma-ray energies during the years 2010 and 2011. We characterize the radio to VHE spectral energy distribution and quantify the multiband variability and correlations over short (few days) and long (many months) timescales. We also organized deep imaging optical observations with the Nordic Optical Telescope in 2013 to determine the source redshift. As a result, the source, named MAGIC J2001+439, is detected for the first time at VHE with MAGIC at a statistical significance of 6.3σ (E > 70 GeV) during a 1.3 h long observation on 2010 July 16. The multi-instrument observations show variability in all energy bands with the highest amplitude of variability in the X-ray and VHE bands. Besides the variability on few-day timescales, the long-term monitoring of MAGIC J2001+439 shows that, the gamma-ray, optical, and radio emissions gradually decreased on few-month timescales from 2010 through 2011, indicating that at least some of the radio, optical and gamma-ray emission is produced in a single region by the same population of particles. We also determine for the first time the redshift of this BL Lac object through the measurement of its host galaxy during low blazar activity. Using the observational evidence that the luminosities of BL Lac host galaxies are confined to a relatively narrow range, we obtain z = 0.18 ± 0.04. In addition, we use the Fermi-LAT and MAGIC gamma-ray spectra to provide an independent redshift estimation, z = 0.17 ± 0.10. Finally, using the former (more accurate) redshift value, we adequately describe the broadband emission with a one-zone SSC model for different activity states and interpret the few-day timescale variability as produced by changes in the high-energy component of the electron energy distribution.« less
MAGIC Computer Simulation. Volume 1: User Manual
1970-07-01
vulnerability and MAGIC programs. A three-digit code is assigned to each component of the target, such as armor, gun tube; and a two-digit code is assigned to...A review of the subject Magic Computer Simulation User and Analyst Manuals has been conducted based upon a request received from the US Army...1970 4. TITLE AND SUBTITLE MAGIC Computer Simulation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT
An Overview of the MAGIC Project
1993-12-01
unlimnitedj_ _______ 13. ABSTRACT (Mxmwn WO0 words) This note provides an overview of the MAGIC project1 which is developing a high-speed, wide-area...298Rv.9 16. PRICE COASSDE 3.1 17. SEURITY18. SEURITY19. SEURITY2930.2BIA NO An Overview of the M 93B0000173 MAGIC Project December 1993 Barbara B...Intelligence Division ii ABSTRACT This note provides an overview of the MAGIC project, which is developing a high-speed, wide- area networking testbed
Secrets of the Chinese magic mirror replica
NASA Astrophysics Data System (ADS)
Mak, Se-yuen; Yip, Din-yan
2001-03-01
We examine the structure of five Chinese magic mirror replicas using a special imaging technique developed by the authors. All mirrors are found to have a two-layered structure. The reflecting surface that gives rise to a projected magic pattern on the screen is hidden under a polished half-reflecting top layer. An alternative method of making the magic mirror using ancient technology has been proposed. Finally, we suggest a simple method of reconstructing a mirror replica in the laboratory.
An fMRI investigation of expectation violation in magic tricks.
Danek, Amory H; Öllinger, Michael; Fraps, Thomas; Grothe, Benedikt; Flanagin, Virginia L
2015-01-01
Magic tricks violate the expected causal relationships that form an implicit belief system about what is possible in the world around us. Observing a magic effect seemingly invalidates our implicit assumptions about what action causes which outcome. We aimed at identifying the neural correlates of such expectation violations by contrasting 24 video clips of magic tricks with 24 control clips in which the expected action-outcome relationship is upheld. Using fMRI, we measured the brain activity of 25 normal volunteers while they watched the clips in the scanner. Additionally, we measured the professional magician who had performed the magic tricks under the assumption that, in contrast to naïve observers, the magician himself would not perceive his own magic tricks as an expectation violation. As the main effect of magic - control clips in the normal sample, we found higher activity for magic in the head of the caudate nucleus (CN) bilaterally, the left inferior frontal gyrus and the left anterior insula. As expected, the magician's brain activity substantially differed from these results, with mainly parietal areas (supramarginal gyrus bilaterally) activated, supporting our hypothesis that he did not experience any expectation violation. These findings are in accordance with previous research that has implicated the head of the CN in processing changes in the contingency between action and outcome, even in the absence of reward or feedback.
Magic in the machine: a computational magician's assistant.
Williams, Howard; McOwan, Peter W
2014-01-01
A human magician blends science, psychology, and performance to create a magical effect. In this paper we explore what can be achieved when that human intelligence is replaced or assisted by machine intelligence. Magical effects are all in some form based on hidden mathematical, scientific, or psychological principles; often the parameters controlling these underpinning techniques are hard for a magician to blend to maximize the magical effect required. The complexity is often caused by interacting and often conflicting physical and psychological constraints that need to be optimally balanced. Normally this tuning is done by trial and error, combined with human intuitions. Here we focus on applying Artificial Intelligence methods to the creation and optimization of magic tricks exploiting mathematical principles. We use experimentally derived data about particular perceptual and cognitive features, combined with a model of the underlying mathematical process to provide a psychologically valid metric to allow optimization of magical impact. In the paper we introduce our optimization methodology and describe how it can be flexibly applied to a range of different types of mathematics based tricks. We also provide two case studies as exemplars of the methodology at work: a magical jigsaw, and a mind reading card trick effect. We evaluate each trick created through testing in laboratory and public performances, and further demonstrate the real world efficacy of our approach for professional performers through sales of the tricks in a reputable magic shop in London.
NASA Astrophysics Data System (ADS)
Jarboe, N.; Minnett, R.; Koppers, A.; Constable, C.; Tauxe, L.; Jonestrask, L.
2017-12-01
The Magnetics Information Consortium (MagIC) supports an online database for the paleo, geo, and rock magnetic communities ( https://earthref.org/MagIC ). Researchers can upload data into the archive and download data as selected with a sophisticated search system. MagIC has completed the transition from an Oracle backed, Perl based, server oriented website to an ElasticSearch backed, Meteor based thick client website technology stack. Using JavaScript on both the sever and the client enables increased code reuse and allows easy offloading many computational operations to the client for faster response. On-the-fly data validation, column header suggestion, and spreadsheet online editing are some new features available with the new system. The 3.0 data model, method codes, and vocabulary lists can be browsed via the MagIC website and more easily updated. Source code for MagIC is publicly available on GitHub ( https://github.com/earthref/MagIC ). The MagIC file format is natively compatible with the PmagPy ( https://github.com/PmagPy/PmagPy) paleomagnetic analysis software. MagIC files can now be downloaded from the database and viewed and interpreted in the PmagPy GUI based tool, pmag_gui. Changes or interpretations of the data can then be saved by pmag_gui in the MagIC 3.0 data format and easily uploaded to the MagIC database. The rate of new contributions to the database has been increasing with many labs contributing measurement level data for the first time in the last year. Over a dozen file format conversion scripts are available for translating non-MagIC measurement data files into the MagIC format for easy uploading. We will continue to work with more labs until the whole community has a manageable workflow for contributing their measurement level data. MagIC will continue to provide a global repository for archiving and retrieving paleomagnetic and rock magnetic data and, with the new system in place, be able to more quickly respond to the community's requests for changes and improvements.
A Simple Parameterization of 3 x 3 Magic Squares
ERIC Educational Resources Information Center
Trenkler, Gotz; Schmidt, Karsten; Trenkler, Dietrich
2012-01-01
In this article a new parameterization of magic squares of order three is presented. This parameterization permits an easy computation of their inverses, eigenvalues, eigenvectors and adjoints. Some attention is paid to the Luoshu, one of the oldest magic squares.
Topological quantum distillation.
Bombin, H; Martin-Delgado, M A
2006-11-03
We construct a class of topological quantum codes to perform quantum entanglement distillation. These codes implement the whole Clifford group of unitary operations in a fully topological manner and without selective addressing of qubits. This allows us to extend their application also to quantum teleportation, dense coding, and computation with magic states.
How We Can Win the Long War: A New Interagency Approach to the GWOT
2009-04-01
Johann Wolfgang Von Goethe states, “Boldness has genius, power, and magic in it. Begin it now.” 17...Case for Strengthening the Department of State” 1 16 Schwarzkopf, Norman, “Famous Military Quotes”, 1 17 Goethe , Johan Wolfgang Van, Famous
Embracing Languages and Cultures in the Magic Preschool, Moscow
ERIC Educational Resources Information Center
Szecsi, Tunde
2005-01-01
In this article, the author presents the approaches and strategies for culturally and linguistically responsive early education in an international preschool in Moscow, Russia. This international preschool, enrolling children from Russia, the United States, Germany, Italy, Israel, Argentina, Brazil, Sweden, and Japan, provides a multilingual and…
Effect of science magic applied in interactive lecture demonstrations on conceptual understanding
NASA Astrophysics Data System (ADS)
Taufiq, Muhammad; Suhandi, Andi; Liliawati, Winny
2017-08-01
Research about the application of science magic-assisting Interactive Lecture Demonstrations (ILD) has been conducted. This research is aimed at providing description about the comparison of the improvement of the conceptual understanding of lesson on pressure between students who receive physics lesson through science magic-assisting ILD and students who receive physics lesson through ILD without science magic. This research used a quasi-experiment methods with Control Group Pretest-Posttest Design. The subject of the research is all students of class VIII in one of MTs (Islamic junior high school) in Pekalongan. Research samples were selected using random sampling technique. Data about students' conceptual understanding was collected using test instrument of conceptual understanding in the form of multiple choices. N-gain average calculation was performed in order to determine the improvement of students' conceptual understanding. The result of the research shows that conceptual understanding of students on lesson about pressure who received lesson with ILD using science magic <0.44> is higher than students who received lesson with ILD without science magic <0.25>. Therefore, the conclusion is that the application of science magic ILD is more effective to improve the conceptual understanding of lesson on pressure.
The role of magical thinking in hallucinations. Comparisons of clinical and non-clinical groups.
García-Montes, José M; Pérez-Álvarez, Marino; Odriozola-González, Paula; Vallina-Fernández, Oscar; Perona-Garcelán, Salvador
2014-11-01
Magical thinking consists of accepting the possibility that events that, according to the causal concepts of a culture, cannot have any causal relationship, but might somehow nevertheless have one. Magical thinking has been related to both obsessive-compulsive disorder and schizophrenia. The purpose of this study was to investigate the role of magical thinking in hallucinations of patients diagnosed with schizophrenia. Four groups were recruited for this purpose from a clinical population (hallucinating schizophrenic patients, patients diagnosed with psychoses who had never hallucinated, obsessive-compulsive disorder patients and a clinical control group) and a non-clinical control group, who were given the Magical Ideation Scale. The results show that magical ideation differentiates the group of schizophrenic patients with auditory hallucinations from the rest of the groups that participated in the design. Items related to "mind reading", to the presence of auditory illusions in response to sound stimuli, and to the sense of sometimes being accompanied by an evil presence are the most closely related to the presence of auditory hallucinations. Magical thinking, understood as beliefs in non-consensual modes of causation, is closely linked to auditory hallucinations in patients diagnosed with schizophrenia.
Early Childhood Corner: Take the Magic Out of Your Classroom!
ERIC Educational Resources Information Center
Andrews, Angela Giglio
1995-01-01
Students are often as mystified by mathematical procedures as they are by magic tricks. This article suggests ways of making the estimation of how many jelly beans in a jar and the 20-questions game less magical and more understandable. (MKR)
Magical thinking by inpatient staff members.
Pilette, W L
1983-01-01
Magical thinking is a primitive form of mental activity which, nevertheless, the author contends, is common among mental health professionals. Four examples of magical thinking by inpatient staff members are presented and briefly explored, in order to shed light on our work and ourselves.
[Further Distinctions between Magic, Reality, Religion, and Fiction. Commentaries.
ERIC Educational Resources Information Center
Boyer, Pascal; Taylor, Marjorie; Harris, Paul L.; Chandler, Michael; Johnson, Carl N.
1997-01-01
Contains the following commentaries: "Further Distinctions between Magic, Reality, Religion, and Fiction"; "The Role of Creative Control and Culture in Children's Fantasy/Reality Judgments"; "The Last of the Magicians? Children, Scientists, and the Invocation of Hidden Causal Powers"; "Rescuing Magical Thinking…
1984-08-01
COLLFCTIVF PAPTTCLE ACCELERATOR VIA NUMERICAL MODFLINC WITH THF MAGIC CODE Robert 1. Darker Auqust 19F4 Final Report for Period I April. qI84 - 30...NUMERICAL MODELING WITH THE MAGIC CODE Robert 3. Barker August 1984 Final Report for Period 1 April 1984 - 30 September 1984 Prepared for: Scientific...Collective Final Report Particle Accelerator VIA Numerical Modeling with April 1 - September-30, 1984 MAGIC Code. 6. PERFORMING ORG. REPORT NUMBER MRC/WDC-R
[Magical thinking and self development].
Resch, F
1994-01-01
Based on a historical survey of the term "magic thinking" structural aspects of primary process and prelogical thinking will be elucidated. Developmental necessities for the emergence of magic interpretations in children of pre-school age are proposed. The thesis will be formulated, that magic interpretations may help the developing self in the management of life-circumstances during a period of cognitive egocentrism: feelings of non-competence may be compensated, and the locus of control may be held in the face of experiences of inferiority.
NASA Astrophysics Data System (ADS)
Gambuzzi, Elisa; Pedone, Alfonso; Menziani, Maria Cristina; Angeli, Frédéric; Caurant, Daniel; Charpentier, Thibault
2014-01-01
Silicon and aluminium chemical environments in silicate and aluminosilicate glasses with compositions 60SiO2·20Na2O·20CaO (CSN), 60SiO2·20Al2O3·20CaO (CAS), 78SiO2·11Al2O3·11Na2O (NAS) and 60SiO2·10Al2O3·10Na2O·20CaO (CASN) have been investigated by 27Al and 29Si solid state magic angle spinning (MAS) and multiple quantum MAS (MQMAS) nuclear magnetic resonance (NMR) experiments. To interpret the NMR data, first-principles calculations using density functional theory were performed on structural models of these glasses. These models were generated by Shell-model molecular dynamics (MD) simulations. The theoretical NMR parameters and spectra were computed using the gauge including projected augmented wave (GIPAW) method and spin-effective Hamiltonians, respectively. This synergetic computational-experimental approach offers a clear structural characterization of these glasses, particularly in terms of network polymerization, chemical disorder (i.e. Si and Al distribution in second coordination sphere) and modifier cation distributions. The relationships between the local structural environments and the 29Si and 27Al NMR parameters are highlighted, and show that: (i) the isotropic chemical shift of both 29Si and 27Al increases of about +5 ppm for each Al added in the second sphere and (ii) both the 27Al and 29Si isotropic chemical shifts linearly decrease with the reduction of the average Si/Al-O-T bond angle. Conversely, 27Al and 29Si NMR parameters are much less sensitive to the connectivity with triple bridging oxygen atoms, precluding their indirect detection from 27Al and 29Si NMR.
Sá, Mario
2009-01-01
The article analyzes the role of healing agents played by practitioners of magic and witchcraft in Mato Grosso society during the 17th century. It observes that magic and witchcraft were developed as competitors, alternatives or associated with other forms of healing (official and lay). It points out how such roles contributed to the process of subjugating its practitioners, especially Africans, Indians and their descendents, and were appropriated as an opportunity for survival in the colonial slave society. The pastoral visit made by Bruno Pinna in 1785 to Cuiabá and nearby areas served as the principal source of knowledge regarding the practices and practitioners of magic and witchcraft.
ERIC Educational Resources Information Center
Goldstein, Karen
2001-01-01
Claims that religious messages in public school are not acceptable and are hurtful to kids who do not subscribe to the beliefs expressed in those messages. Describes the author's personal experience in helping a teacher transform the script for "Christmas Magic" into the more inclusive "Holiday Magic." (RS)
Jarosz, M; Pankiewicz, Z; Buczek, I; Poprawska, I; Rojek, J; Zaborowski, A
1993-01-01
Both magical thinking among healthy persons and magical and symbolic thinking in schizophrenia were discussed. The investigation covered 100 paranoid schizophrenics. They also underwent an examination in connection with the formation of the remaining 3 proportions. Both "realistic thinking and magical thinking" scales were used. An ability to think realistically was preserved, to a varying degree, in all patients, with 50% of those examined having shown an explicit or very explicit ability to follow realistic thinking. The above findings deviate from a simplified cognitive model within the discussed range. It was further confirmed that realistic thinking may coexist with magical thinking, and, in some cases, it concerns the same events. That type of disorders of the content of thinking are referred to as magical-realistic interpenetration. The results, and particularly high coefficient of negative correlation within the scales of the examined proportions, confirm the correctness of the assumption that the investigated modes of thinking form an antithetic bipolarity of proportions, aggregating antithetic values, therefore being also complementary.
The presence of magical thinking in obsessive compulsive disorder.
Einstein, Danielle A; Menzies, Ross G
2004-05-01
Two research groups have raised the possibility that magical ideation may be a fundamental feature of obsessive-compulsive disorder. It has been proposed to underlie thought action fusion and superstitious beliefs. In this study, the Magical Ideation scale, the Lucky Behaviours and Lucky Beliefs scales, the Thought Action Fusion-Revised scale, the Padua Inventory, and the Obsessive Compulsive Inventory-Short Version were completed by 60 obsessive compulsive patients at a hospital clinic. Of all the measures, the Magical Ideation (MI) scale was found to be the most strongly related to obsessive compulsive symptoms. Large and significant relationships between MI scores and the measures of OCD were obtained even when alternative constructs (Lucky Behaviours, Lucky Beliefs, Thought Action Fusion-Revised scales) were held constant. No other variable remained significantly related to the Obsessive Compulsive Inventory-Short Version when magical ideation scores were held constant. The findings suggest that a general magical thinking tendency may underpin previous observed links between superstitiousness, thought action fusion and OCD severity.
Park, Vivian Youngjean; Yoon, Dahye; Koo, Ja Seung; Kim, Eun-Kyung; Kim, Seung Il; Choi, Ji Soo; Park, Seho; Park, Hyung Seok; Kim, Suhkmann; Kim, Min Jung
2016-01-01
Abstract High-resolution magic angle spinning (HR-MAS) magnetic resonance (MR) spectroscopy data may serve as a biomarker for breast cancer, with only a small volume of tissue sample required for assessment. However, previous studies utilized only a single tissue sample from each patient. The aim of this study was to investigate whether intratumoral location and biospecimen type affected the metabolic characterization of breast cancer assessed by HR-MAS MR spectroscopy This prospective study was approved by the institutional review board and informed consent was obtained. Preoperative core-needle biopsies (CNBs), central, and peripheral surgical tumor specimens were prospectively collected under ultrasound (US) guidance in 31 patients with invasive breast cancer. Specimens were assessed with HR-MAS MR spectroscopy. The reliability of metabolite concentrations was evaluated and multivariate analysis was performed according to intratumoral location and biospecimen type. There was a moderate or higher agreement between the relative concentrations of 94.3% (33 of 35) of metabolites in the center and periphery, 80.0% (28 of 35) of metabolites in the CNB and central surgical specimens, and 82.9% (29 of 35) of metabolites between all 3 specimen types. However, there was no significant agreement between the concentrations of phosphocholine (PC) and phosphoethanolamine (PE) in the center and periphery. The concentrations of several metabolites (adipate, arginine, fumarate, glutamate, PC, and PE) had no significant agreement between the CNB and central surgical specimens. In conclusion, most HR-MAS MR spectroscopic data do not differ based on intratumoral location or biospecimen type. However, some metabolites may be affected by specimen-related variables, and caution is recommended in decision-making based solely on metabolite concentrations, particularly PC and PE. Further validation through future studies is needed for the clinical implementation of these biomarkers based on data from a single tissue sample. PMID:27082613
Hall Plateaus at magic angles in ultraquantum Bismuth
NASA Astrophysics Data System (ADS)
Benoît, Fauqué.
2009-03-01
The behaviour of a three-dimensional electron gas in the presence of a magnetic field strong enough to put all carriers in the first Landau level (i.e. beyond the quantum limit) is a longstanding question of theoretical condensed matter physics [1]. This issue has been recently explored by two high-field experiments on elemental semi-metal Bismuth. In a first study of transport coefficients (which are dominated by hole-like carriers), the Nernst coefficient presented three unexpected maxima that are concomitant with quasi-plateaux in the Hall coefficient [2]. In a second series of experiments, torque magnetometry (which mainly probes the three Dirac valley electron pockets) detected a field-induced phase transition [3]. The full understanding of the electron and hole behaviours above the quantum limit of pure Bi is therefore still under debate. In this talk, we will present our measurement of the Hall resistivity and torque magnetometry with magnetic field up to 31 T and rotating in the trigonal-bisectrix plane [4]. The Hall response is dominated by the hole pockets according to its sign as well as the period and the angular dependence of its quantum oscillations. In the vicinity of the quantum limit, it presents additional anomalies which are the fingerprints of the electron pockets. We found that for particular orientations of the magnetic field (namely ``magic angles''), the Hall response becomes field-independent within the experimental resolution around 20T. This drastic dependence of the plateaux on the field orientation provides strong constraints for theoretical scenarios. [4pt] [1] Bertrand I. Halperin, Japanese Journal of Applied Physics, 26, Supplement 26-3 (1987).[0pt] [2] Kamran Behnia, Luis Balicas, Yakov Kopelevich, Science, 317, 1729 (2008).[0pt] [3] Lu Li, J. G. Checkelsky, Y. S. Hor, C. Uher, A. F. Hebard, R. J. Cava, and N. P. Ong , Science, 321, 5888 (2008).[0pt] [4] Benoît Fauqu'e, Luis Balicas, Ilya Sheikin, Jean Paul Issi and Kamran Behnia, to be published