Cooperative Extension as a Framework for Health Extension: The Michigan State University Model.
Dwyer, Jeffrey W; Contreras, Dawn; Eschbach, Cheryl L; Tiret, Holly; Newkirk, Cathy; Carter, Erin; Cronk, Linda
2017-10-01
The Affordable Care Act charged the Agency for Healthcare Research and Quality to create the Primary Care Extension Program, but did not fund this effort. The idea to work through health extension agents to support health care delivery systems was based on the nationally known Cooperative Extension System (CES). Instead of creating new infrastructure in health care, the CES is an ideal vehicle for increasing health-related research and primary care delivery. The CES, a long-standing component of the land-grant university system, features a sustained infrastructure for providing education to communities. The Michigan State University (MSU) Model of Health Extension offers another means of developing a National Primary Care Extension Program that is replicable in part because of the presence of the CES throughout the United States. A partnership between the MSU College of Human Medicine and MSU Extension formed in 2014, emphasizing the promotion and support of human health research. The MSU Model of Health Extension includes the following strategies: building partnerships, preparing MSU Extension educators for participation in research, increasing primary care patient referrals and enrollment in health programs, and exploring innovative funding. Since the formation of the MSU Model of Health Extension, researchers and extension professionals have made 200+ connections, and grants have afforded savings in salary costs. The MSU College of Human Medicine and MSU Extension partnership can serve as a model to promote health partnerships nationwide between CES services within land-grant universities and academic health centers or community-based medical schools.
Cooperative Extension as a Framework for Health Extension: The Michigan State University Model
Dwyer, Jeffrey W.; Contreras, Dawn; Tiret, Holly; Newkirk, Cathy; Carter, Erin; Cronk, Linda
2017-01-01
Problem The Affordable Care Act charged the Agency for Healthcare Research and Quality to create the Primary Care Extension Program, but did not fund this effort. The idea to work through health extension agents to support health care delivery systems was based on the nationally known Cooperative Extension System (CES). Instead of creating new infrastructure in health care, the CES is an ideal vehicle for increasing health-related research and primary care delivery. Approach The CES, a long-standing component of the land-grant university system, features a sustained infrastructure for providing education to communities. The Michigan State University (MSU) Model of Health Extension offers another means of developing a National Primary Care Extension Program that is replicable in part because of the presence of the CES throughout the United States. A partnership between the MSU College of Human Medicine and MSU Extension formed in 2014, emphasizing the promotion and support of human health research. The MSU Model of Health Extension includes the following strategies: building partnerships, preparing MSU Extension educators for participation in research, increasing primary care patient referrals and enrollment in health programs, and exploring innovative funding. Outcomes Since the formation of the MSU Model of Health Extension, researchers and extension professionals have made 200+ connections, and grants have afforded savings in salary costs. Next Steps The MSU College of Human Medicine and MSU Extension partnership can serve as a model to promote health partnerships nationwide between CES services within land-grant universities and academic health centers or community-based medical schools. PMID:28353501
ERIC Educational Resources Information Center
Taylor, Cayla; Miller, Greg
2016-01-01
As eXtension unveils its new membership model, Iowa State University Extension and Outreach must determine how best to support professionals and clientele using the technology. This article reports on a study that used the diffusion of innovations and disruptive innovation theories to assess Iowa Extension professionals' adoption and perceptions…
Jackson, Timothy J; Peterson, Alexander B; Akeda, Masaki; Estess, Allyson; McGarry, Michelle H; Adamson, Gregory J; Lee, Thay Q
2016-03-01
A capsular shift procedure has been described for the treatment of hip instability; however, the biomechanical effects of such a shift are unknown. To create a cadaveric model of hip capsule laxity and evaluate the biomechanical effects of a capsular shift used to treat hip instability on this model. Controlled laboratory study. Eight cadaveric hips with an average age of 58.5 years were tested with a custom hip testing system in 6 conditions: intact, vented, instability, capsulotomy, side-to-side repair, and capsular shift. To create the hip model, the capsule was stretched in extension under 35 N·m of torque for 1 hour in neutral rotation. Measurements included internal and external rotation with 1.5 N·m of torque at 5 positions: 5° of extension and 0°, 15°, 30°, and 45° of flexion for each of the above conditions. The degree of maximum extension with 5 N·m of torque and the amount of femoral distraction with 40 N and 80 N of force were measured. Statistical analysis was performed by use of repeated-measures analysis of variance with Tukey post hoc analysis. The instability state significantly increased internal rotation at all flexion angles and increased distraction compared with the intact state. The capsulotomy condition resulted in significantly increased external rotation and internal rotation at all positions, increased distraction, and maximum extension compared with the intact state. The side-to-side repair condition restored internal rotation back to the instability state but not to the intact state at 5° of extension and 0° of flexion. The capsular shift state significantly decreased internal rotation compared with the instability state at 5° of extension and 0° and 15° of flexion. The capsular shift and side-to-side repair conditions had similar effects on external rotation at all flexion-extension positions. The capsular shift state decreased distraction and maximum extension compared with the instability state, but the side-to-side repair state did not. The hip capsular instability model was shown to have significantly greater total range of motion, external rotation, and extension compared with the intact condition. The greatest effects of capsular shift are seen with internal rotation, maximum extension, and distraction, with minimal effect on external rotation compared with the side-to side repair state. The biomechanical effects of the capsular shift procedure indicate that it can be used to treat hip capsular laxity by decreasing extension and distraction with minimal effect on external rotation. © 2015 The Author(s).
Agriculture and Health Sectors Collaborate in Addressing Population Health
Kaufman, Arthur; Boren, Jon; Koukel, Sonja; Ronquillo, Francisco; Davies, Cindy; Nkouaga, Carolina
2017-01-01
PURPOSE Population health is of growing importance in the changing health care environment. The Cooperative Extension Service, housed in each state’s land grant university, has a major impact on population health through its many community-based efforts, including the Supplemental Nutrition Assistance Program – Education (SNAP-Ed) nutrition programs, 4-H youth engagement, health and wellness education, and community development. Can the agricultural and health sectors, which usually operate in parallel, mostly unknown to each other, collaborate to address population health? We set out to provide an overview of the collaboration between the Cooperative Extension Service and the health sector in various states and describe a case study of 1 model as it developed in New Mexico. METHODS We conducted a literature review and personally contacted states in which the Cooperative Extension Service is collaborating on a “Health Extension” model with academic health centers or their health systems. We surveyed 6 states in which Health Extension models are being piloted as to their different approaches. For a case study of collaboration in New Mexico, we drew on interviews with the leadership of New Mexico State University’s Cooperative Extension Service in the College of Agricultural, Consumer and Environmental Sciences; the University of New Mexico (UNM) Health Science Center’s Office for Community Health; and the personal experiences of frontline Cooperative Extension agents and UNM Health Extension officers who collaborated on community projects. RESULTS A growing number of states are linking the agricultural Cooperative Extension Service with academic health centers and with the health care system. In New Mexico, the UNM academic health center has created “Health Extension Rural Offices” based on principles of the Cooperative Extension model. Today, these 2 systems are working collaboratively to address unmet population health needs in their communities. Nationally, the Cooperative Extension Service has formed a steering committee to guide its movement into the health arena. CONCLUSION Resources of the agricultural and health sectors offer communities complementary expertise and resources to address adverse population health outcomes. The collaboration between Cooperative Extension and the health sector is 1 manifestation of this emerging collaboration model termed Health Extension. Initial skepticism and protection of funding sources and leadership roles can be overcome with shared funding from new sources, shared priority setting and decision making, and the initiation of practical, collaborative projects that build personal relationships and trust. PMID:28893819
Temporal BYY encoding, Markovian state spaces, and space dimension determination.
Xu, Lei
2004-09-01
As a complementary to those temporal coding approaches of the current major stream, this paper aims at the Markovian state space temporal models from the perspective of the temporal Bayesian Ying-Yang (BYY) learning with both new insights and new results on not only the discrete state featured Hidden Markov model and extensions but also the continuous state featured linear state spaces and extensions, especially with a new learning mechanism that makes selection of the state number or the dimension of state space either automatically during adaptive learning or subsequently after learning via model selection criteria obtained from this mechanism. Experiments are demonstrated to show how the proposed approach works.
Sun, Lifan; Ji, Baofeng; Lan, Jian; He, Zishu; Pu, Jiexin
2017-01-01
The key to successful maneuvering complex extended object tracking (MCEOT) using range extent measurements provided by high resolution sensors lies in accurate and effective modeling of both the extension dynamics and the centroid kinematics. During object maneuvers, the extension dynamics of an object with a complex shape is highly coupled with the centroid kinematics. However, this difficult but important problem is rarely considered and solved explicitly. In view of this, this paper proposes a general approach to modeling a maneuvering complex extended object based on Minkowski sum, so that the coupled turn maneuvers in both the centroid states and extensions can be described accurately. The new model has a concise and unified form, in which the complex extension dynamics can be simply and jointly characterized by multiple simple sub-objects’ extension dynamics based on Minkowski sum. The proposed maneuvering model fits range extent measurements very well due to its favorable properties. Based on this model, an MCEOT algorithm dealing with motion and extension maneuvers is also derived. Two different cases of the turn maneuvers with known/unknown turn rates are specifically considered. The proposed algorithm which jointly estimates the kinematic state and the object extension can also be easily implemented. Simulation results demonstrate the effectiveness of the proposed modeling and tracking approaches. PMID:28937629
76 FR 35344 - Airworthiness Directives; Costruzioni Aeronautiche Tecnam srl Model P2006T Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-17
... retraction/extension ground checks performed on the P2006T, a loose Seeger ring was found on the nose landing... specified products. The MCAI states: During Landing Gear retraction/extension ground checks performed on the... airworthiness information (MCAI) states: During Landing Gear retraction/extension ground checks performed on the...
The PNW Model: Lessons from Extension's Most Successful Regional Publishing Program
ERIC Educational Resources Information Center
Anderson-Wilk, Mark; Rollins, Dora; Ginsburg, Ariel; Noel, Diane
2014-01-01
The Extension services of Washington State University, Oregon State University, and the University of Idaho established Pacific Northwest Extension Publishing (PNW Publishing) in 1946 as a mechanism of regional cooperation and cost savings. Other regions followed suit in the decades that followed. Today, PNW Publishing is the last standing…
Extension: The Backbone Organization in Statewide Population Health Management
ERIC Educational Resources Information Center
Parisi, Michelle A.; Northcutt, Julie K.; McKendry, Jean E.; Sherrill, Windsor Westbrook; Dye, Cheryl J.; Snow, Jennifer Z.
2018-01-01
Clemson University Cooperative Extension Service has developed and is implementing a statewide population health management model aimed at leveraging key partnerships in South Carolina. The model delineates roles of key partners needed to operationalize statewide initiatives and drive the delivery of health extension in the state. Clemson…
Utilizing a State Level Volunteer Recognition Program at the County Level
ERIC Educational Resources Information Center
McCall, Fran Korthaus; Culp, Ken, III
2013-01-01
Volunteer recognition is an important component of Extension programs. Most land-grant universities have implemented a state volunteer recognition program. Extension professionals, however, are too overburdened with meetings, programs, and activities to effectively recognize volunteers locally. Utilizing a state model is an efficient means of…
Community Level Impact Assessment--Extension Applications.
ERIC Educational Resources Information Center
Woods, Mike D.; Doeksen, Gerald A.
Using the Oklahoma State University (OSU) computerized community simulation model, extension professionals can provide local decision makers with information derived from an impact model that is dynamic, community specific, and easy to adapt to different communities. The four main sections of the OSU model are an economic account, a capital…
Mixture Distribution Latent State-Trait Analysis: Basic Ideas and Applications
ERIC Educational Resources Information Center
Courvoisier, Delphine S.; Eid, Michael; Nussbeck, Fridtjof W.
2007-01-01
Extensions of latent state-trait models for continuous observed variables to mixture latent state-trait models with and without covariates of change are presented that can separate individuals differing in their occasion-specific variability. An empirical application to the repeated measurement of mood states (N = 501) revealed that a model with 2…
Projecting state-level air pollutant emissions using an integrated assessment model: GCAM-USA
The Global Change Assessment Model (GCAM) is an integrated assessment model that links representations of the economy, energy sector, land use, and climate within an integrated modeling environment. GCAM-USA, which is an extension of GCAM, provides U.S. state-level resolution wit...
ERIC Educational Resources Information Center
White, Alison J.; Teuteberg, Dan
2015-01-01
Washington's 4-H program is transitioning from a predominately single-county faculty model to a regional system. This article highlights survey results regarding the level of awareness and buy-in that Extension administration, faculty, and staff have concerning the regional model and how communication about the model took place. While most…
The Global Change Assessment Model (GCAM) is an integrated assessment model that links representations of the economy, energy sector, land use, and climate within an integrated modeling environment. GCAM-USA, which is an extension of GCAM, provides U.S. state-level resolution wit...
Estimation in a semi-Markov transformation model
Dabrowska, Dorota M.
2012-01-01
Multi-state models provide a common tool for analysis of longitudinal failure time data. In biomedical applications, models of this kind are often used to describe evolution of a disease and assume that patient may move among a finite number of states representing different phases in the disease progression. Several authors developed extensions of the proportional hazard model for analysis of multi-state models in the presence of covariates. In this paper, we consider a general class of censored semi-Markov and modulated renewal processes and propose the use of transformation models for their analysis. Special cases include modulated renewal processes with interarrival times specified using transformation models, and semi-Markov processes with with one-step transition probabilities defined using copula-transformation models. We discuss estimation of finite and infinite dimensional parameters of the model, and develop an extension of the Gaussian multiplier method for setting confidence bands for transition probabilities. A transplant outcome data set from the Center for International Blood and Marrow Transplant Research is used for illustrative purposes. PMID:22740583
Practical extension of a Lake States tree height model
Don C. Bragg
2008-01-01
By adapting data from national and state champion lists and the predictions of an existing height model, an exponential function was developed to improvetree height estimation. As a case study, comparisons between the original and redesigned model were made with eastern white pine (Pinus strobus L.). Forexample, the heights...
The Healthy Homes Partnership: A Cooperative Extension Model
ERIC Educational Resources Information Center
Booth, Laura B.; Peek, Gina G.
2013-01-01
This article highlights the accomplishments of the Healthy Homes Partnership, which recently celebrated its 10th anniversary. Since the program began in 1999, funds totaling $2.7 million have been distributed to 34 states and Virgin Islands Extension programs through a competitive process. Extension professionals have used the funds as seed grants…
A Proposal for Public and Private Partnership in Extension.
Krell, Rayda K; Fisher, Marc L; Steffey, Kevin L
2016-01-01
Public funding for Extension in the United States has been decreasing for many years, but farmers' need for robust information on which to make management decisions has not diminished. The current Extension funding challenges provide motivation to explore a different model for developing and delivering extension. The private sector has partnered with the public sector to fund and conduct agricultural research, but partnering on extension delivery has occurred far less frequently. The fundamental academic strength and established Extension network of the public sector combined with the ability of the private sector to encourage and deliver practical, implementable solutions has the potential to provide measurable benefits to farmers. This paper describes the current Extension climate, presents data from a survey about Extension and industry relationships, presents case studies of successful public- and private-sector extension partnerships, and proposes a framework for evaluating the state of effective partnerships. Synergistic public-private extension efforts could ensure that farmers receive the most current and balanced information available to help with their management decisions.
A Proposal for Public and Private Partnership in Extension
Krell, Rayda K.; Fisher, Marc L.; Steffey, Kevin L.
2016-01-01
Public funding for Extension in the United States has been decreasing for many years, but farmers’ need for robust information on which to make management decisions has not diminished. The current Extension funding challenges provide motivation to explore a different model for developing and delivering extension. The private sector has partnered with the public sector to fund and conduct agricultural research, but partnering on extension delivery has occurred far less frequently. The fundamental academic strength and established Extension network of the public sector combined with the ability of the private sector to encourage and deliver practical, implementable solutions has the potential to provide measurable benefits to farmers. This paper describes the current Extension climate, presents data from a survey about Extension and industry relationships, presents case studies of successful public- and private-sector extension partnerships, and proposes a framework for evaluating the state of effective partnerships. Synergistic public–private extension efforts could ensure that farmers receive the most current and balanced information available to help with their management decisions. PMID:26949567
Using the Logic Model to Plan Extension and Outreach Program Development and Scholarship
ERIC Educational Resources Information Center
Corbin, Marilyn; Kiernan, Nancy Ellen; Koble, Margaret A.; Watson, Jack; Jackson, Daney
2004-01-01
In searching for a process to help program teams of campus-based faculty and field-based educators develop five-year and annual statewide program plans, cooperative extension administrators and specialists in Penn State's College of Agricultural Sciences discovered that the use of the logic model process can influence the successful design of…
Edge states at the interface of non-Hermitian systems
NASA Astrophysics Data System (ADS)
Yuce, C.
2018-04-01
Topological edge states appear at the interface of two topologically distinct Hermitian insulators. We study the extension of this idea to non-Hermitian systems. We consider P T -symmetric and topologically distinct non-Hermitian insulators with real spectra and study topological edge states at the interface of them. We show that P T symmetry is spontaneously broken at the interface during the topological phase transition. Therefore, topological edge states with complex energy eigenvalues appear at the interface. We apply our idea to a complex extension of the Su-Schrieffer-Heeger model.
Modeling the Car Crash Crisis Management System Using HiLA
NASA Astrophysics Data System (ADS)
Hölzl, Matthias; Knapp, Alexander; Zhang, Gefei
An aspect-oriented modeling approach to the Car Crash Crisis Management System (CCCMS) using the High-Level Aspect (HiLA) language is described. HiLA is a language for expressing aspects for UML static structures and UML state machines. In particular, HiLA supports both a static graph transformational and a dynamic approach of applying aspects. Furthermore, it facilitates methodologically turning use case descriptions into state machines: for each main success scenario, a base state machine is developed; all extensions to this main success scenario are covered by aspects. Overall, the static structure of the CCCMS is modeled in 43 classes, the main success scenarios in 13 base machines, the use case extensions in 47 static and 31 dynamic aspects, most of which are instantiations of simple aspect templates.
Modeling species occurrence dynamics with multiple states and imperfect detection
MacKenzie, D.I.; Nichols, J.D.; Seamans, M.E.; Gutierrez, R.J.
2009-01-01
Recent extensions of occupancy modeling have focused not only on the distribution of species over space, but also on additional state variables (e.g., reproducing or not, with or without disease organisms, relative abundance categories) that provide extra information about occupied sites. These biologist-driven extensions are characterized by ambiguity in both species presence and correct state classification, caused by imperfect detection. We first show the relationships between independently published approaches to the modeling of multistate occupancy. We then extend the pattern-based modeling to the case of sampling over multiple seasons or years in order to estimate state transition probabilities associated with system dynamics. The methodology and its potential for addressing relevant ecological questions are demonstrated using both maximum likelihood (occupancy and successful reproduction dynamics of California Spotted Owl) and Markov chain Monte Carlo estimation approaches (changes in relative abundance of green frogs in Maryland). Just as multistate capture-recapture modeling has revolutionized the study of individual marked animals, we believe that multistate occupancy modeling will dramatically increase our ability to address interesting questions about ecological processes underlying population-level dynamics. ?? 2009 by the Ecological Society of America.
Dynamic models for problems of species occurrence with multiple states
MacKenzie, D.I.; Nichols, J.D.; Seamans, M.E.; Gutierrez, R.J.
2009-01-01
Recent extensions of occupancy modeling have focused not only on the distribution of species over space, but also on additional state variables (e.g., reproducing or not, with or without disease organisms, relative abundance categories) that provide extra information about occupied sites. These biologist-driven extensions are characterized by ambiguity in both species presence and correct state classification, caused by imperfect detection. We first show the relationships between independently published approaches to the modeling of multistate occupancy. We then extend the pattern-based modeling to the case of sampling over multiple seasons or years in order to estimate state transition probabilities associated with system dynamics. The methodology and its potential for addressing relevant ecological questions are demonstrated using both maximum likelihood (occupancy and successful reproduction dynamics of California Spotted Owl) and Markov chain Monte Carlo estimation approaches (changes in relative abundance of green frogs in Maryland). Just as multistate capture?recapture modeling has revolutionized the study of individual marked animals, we believe that multistate occupancy modeling will dramatically increase our ability to address interesting questions about ecological processes underlying population-level dynamics.
76 FR 18964 - Airworthiness Directives; Costruzioni Aeronautiche Tecnam srl Model P2006T Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-06
... Landing Gear retraction/extension ground checks performed on the P2006T, a loose Seeger ring was found on... condition for the specified products. The MCAI states: During Landing Gear retraction/extension ground... retraction/extension ground checks performed on the P2006T, a loose Seeger ring was found on the nose landing...
Voter model with arbitrary degree dependence: clout, confidence and irreversibility
NASA Astrophysics Data System (ADS)
Fotouhi, Babak; Rabbat, Michael G.
2014-03-01
The voter model is widely used to model opinion dynamics in society. In this paper, we propose three modifications to incorporate heterogeneity into the model. We address the corresponding oversimplifications of the conventional voter model which are unrealistic. We first consider the voter model with popularity bias. The influence of each node on its neighbors depends on its degree. We find the consensus probabilities and expected consensus times for each of the states. We also find the fixation probability, which is the probability that a single node whose state differs from every other node imposes its state on the entire system. In addition, we find the expected fixation time. Then two other extensions to the model are proposed and the motivations behind them are discussed. The first one is confidence, where in addition to the states of neighbors, nodes take their own state into account at each update. We repeat the calculations for the augmented model and investigate the effects of adding confidence to the model. The second proposed extension is irreversibility, where one of the states is given the property that once nodes adopt it, they cannot switch back. This is motivated by applications where, agents take an irreversible action such as seeing a movie, purchasing a music album online, or buying a new product. The dynamics of densities, fixation times and consensus times are obtained.
Fidelity study of the superconducting phase diagram in the two-dimensional single-band Hubbard model
NASA Astrophysics Data System (ADS)
Jia, C. J.; Moritz, B.; Chen, C.-C.; Shastry, B. Sriram; Devereaux, T. P.
2011-09-01
Extensive numerical studies have demonstrated that the two-dimensional single-band Hubbard model contains much of the key physics in cuprate high-temperature superconductors. However, there is no definitive proof that the Hubbard model truly possesses a superconducting ground state or, if it does, of how it depends on model parameters. To answer these longstanding questions, we study an extension of the Hubbard model including an infinite-range d-wave pair field term, which precipitates a superconducting state in the d-wave channel. Using exact diagonalization on 16-site square clusters, we study the evolution of the ground state as a function of the strength of the pairing term. This is achieved by monitoring the fidelity metric of the ground state, as well as determining the ratio between the two largest eigenvalues of the d-wave pair/spin/charge-density matrices. The calculations show a d-wave superconducting ground state in doped clusters bracketed by a strong antiferromagnetic state at half filling controlled by the Coulomb repulsion U and a weak short-range checkerboard charge ordered state at larger hole doping controlled by the next-nearest-neighbor hopping t'. We also demonstrate that negative t' plays an important role in facilitating d-wave superconductivity.
NASA Astrophysics Data System (ADS)
Nagothu, U. S.
2016-12-01
Agricultural extension services, among others, contribute to improving rural livelihoods and enhancing economic development. Knowledge development and transfer from the cognitive science point of view, is about, how farmers use and apply their experiential knowledge as well as acquired new knowledge to solve new problems. This depends on the models adopted, the way knowledge is generated and delivered. New extension models based on ICT platforms and smart phones are promising. Results from a 5-year project (www.climaadapt.org) in India shows that farmer led-on farm validations of technologies and knowledge exchange through ICT based platforms outperformed state operated linear extension programs. Innovation here depends on the connectivity, net-working between stakeholders that are involved in generating, transferring and using the knowledge. Key words: Smallholders, Knowledge, Extension, Innovation, India
Tests of local Lorentz invariance violation of gravity in the standard model extension with pulsars.
Shao, Lijing
2014-03-21
The standard model extension is an effective field theory introducing all possible Lorentz-violating (LV) operators to the standard model and general relativity (GR). In the pure-gravity sector of minimal standard model extension, nine coefficients describe dominant observable deviations from GR. We systematically implemented 27 tests from 13 pulsar systems to tightly constrain eight linear combinations of these coefficients with extensive Monte Carlo simulations. It constitutes the first detailed and systematic test of the pure-gravity sector of minimal standard model extension with the state-of-the-art pulsar observations. No deviation from GR was detected. The limits of LV coefficients are expressed in the canonical Sun-centered celestial-equatorial frame for the convenience of further studies. They are all improved by significant factors of tens to hundreds with existing ones. As a consequence, Einstein's equivalence principle is verified substantially further by pulsar experiments in terms of local Lorentz invariance in gravity.
Rural Free Universities: Extending the UFM Model. Final Report.
ERIC Educational Resources Information Center
Maes, Sue C.
Operating under a grant, the University for Man (UFM) in Manhattan, Kansas, tested the transferability of the UFM free university/community education model using four existing statewide delivery systems (public libraries, a private college consortium, a state cooperative extension service, an office of rural affairs) in five states: Kentucky,…
Money 2000: A Model Extension Program.
ERIC Educational Resources Information Center
Porter, Nancy M.; Christenbury, Joyce H.
1999-01-01
Money 2000 is a South Carolina program that educates participants in personal savings and debt reduction. It is marketed through state-local government agency collaboration, promotional items, and extensive media coverage. It targets a diversified audience, including youth, rural farm families, and families with limited resources. (SK)
NASA Astrophysics Data System (ADS)
Huerta, Audrey D.; Harry, Dennis L.
2007-03-01
Two distinct stages of extension are recognized in the West Antarctic Rift system (WARS). During the first stage, beginning in the Late Cretaceous, extension was broadly distributed throughout much of West Antarctica. A second stage of extension in the late Paleogene was focused primarily in the Victoria Land Basin, near the boundary with the East Antarctic craton. The transition to focused extension was roughly coeval with volcanic activity and strike-slip faulting in the adjacent Transantarctic Mountains. This spatial and temporal correspondence suggests that the transition in extensional style could be the result of a change in plate motions or impingement of a plume. Here we use finite element models to study the processes and conditions responsible for the two-stage evolution of rifting in the WARS. Model results indicate that the transition from a prolonged period of broadly distributed extension to a later period of focused rifting did not require a change in the regional stress regime (changes in plate motion), or deep mantle thermal state (impingement of a plume). Instead, we attribute the transition from diffuse to focused extension to an early stage dominated by the initially weak accreted lithosphere of West Antarctica, and a later stage that concentrated around a secondary weakness located at the boundary between the juvenile West Antarctica lithosphere and Precambrian East Antarctic craton. The modeled transition in extension from the initially weak West Antarctica region to the secondary weakness at the West Antarctic-East Antarctic boundary is precipitated by strengthening of the West Antarctica lithosphere during syn-extensional thinning and cooling. The modeled syn-extensional strengthening of the WARS lithosphere promotes a wide-rift mode of extension between 105 and ˜ 65 Ma. By ˜ 65 Ma most of the extending WARS region becomes stronger than the area immediately adjacent to the East Antarctic craton and extension becomes concentrated near the East Antarctic/West Antarctic boundary, forming the Victoria Land Basin region. Mantle necking in this region leads to syn-extensional weakening that promotes a narrow-rift mode of extension that becomes progressively more focused with time, resulting in formation of the Terror Rift in the western Victoria Land Basin. The geodynamic models demonstrate that the transition from diffuse to focused extension occurs only under a limited set of initial and boundary conditions, and is particularly sensitive to the pre-rift thermal state of the crust and upper mantle. Models that predict diffuse extension in West Antarctica followed by localization of rifting near the boundary between East and West Antarctica require upper mantle temperatures of 730 ± 50 °C and sufficient concentration of heat producing elements in the crust to account for ˜ 50% of the upper mantle temperature. Models with upper mantle temperatures < ca. 680 °C and/or less crustal heat production initially undergo diffuse extension in West Antarctica, and quickly develop a lithospheric neck at the model edge furthest from East Antarctica. Models with upper mantle temperatures > ca. 780 °C do not develop focused rifts, and predict indefinite diffuse extension in West Antarctica.
The algebra of the general Markov model on phylogenetic trees and networks.
Sumner, J G; Holland, B R; Jarvis, P D
2012-04-01
It is known that the Kimura 3ST model of sequence evolution on phylogenetic trees can be extended quite naturally to arbitrary split systems. However, this extension relies heavily on mathematical peculiarities of the associated Hadamard transformation, and providing an analogous augmentation of the general Markov model has thus far been elusive. In this paper, we rectify this shortcoming by showing how to extend the general Markov model on trees to include incompatible edges; and even further to more general network models. This is achieved by exploring the algebra of the generators of the continuous-time Markov chain together with the “splitting” operator that generates the branching process on phylogenetic trees. For simplicity, we proceed by discussing the two state case and then show that our results are easily extended to more states with little complication. Intriguingly, upon restriction of the two state general Markov model to the parameter space of the binary symmetric model, our extension is indistinguishable from the Hadamard approach only on trees; as soon as any incompatible splits are introduced the two approaches give rise to differing probability distributions with disparate structure. Through exploration of a simple example, we give an argument that our extension to more general networks has desirable properties that the previous approaches do not share. In particular, our construction allows for convergent evolution of previously divergent lineages; a property that is of significant interest for biological applications.
Full Monte-Carlo description of the Moscow State University Extensive Air Shower experiment
NASA Astrophysics Data System (ADS)
Fomin, Yu. A.; Kalmykov, N. N.; Karpikov, I. S.; Kulikov, G. V.; Kuznetsov, M. Yu.; Rubtsov, G. I.; Sulakov, V. P.; Troitsky, S. V.
2016-08-01
The Moscow State University Extensive Air Shower (EAS-MSU) array studied high-energy cosmic rays with primary energies ~ (1-500) PeV in the Northern hemisphere. The EAS-MSU data are being revisited following recently found indications to an excess of muonless showers, which may be interpreted as the first observation of cosmic gamma rays at ~ 100 PeV. In this paper, we present a complete Monte-Carlo model of the surface detector which results in a good agreement between data and simulations. The model allows us to study the performance of the detector and will be used to obtain physical results in further studies.
Linking knowledge and action through mental models of sustainable agriculture.
Hoffman, Matthew; Lubell, Mark; Hillis, Vicken
2014-09-09
Linking knowledge to action requires understanding how decision-makers conceptualize sustainability. This paper empirically analyzes farmer "mental models" of sustainability from three winegrape-growing regions of California where local extension programs have focused on sustainable agriculture. The mental models are represented as networks where sustainability concepts are nodes, and links are established when a farmer mentions two concepts in their stated definition of sustainability. The results suggest that winegrape grower mental models of sustainability are hierarchically structured, relatively similar across regions, and strongly linked to participation in extension programs and adoption of sustainable farm practices. We discuss the implications of our findings for the debate over the meaning of sustainability, and the role of local extension programs in managing knowledge systems.
Economic Concepts Guiding Minnesota Extension's New Regional and County Delivery Model
ERIC Educational Resources Information Center
Morse, George W.; Klein, Thomas K.
2006-01-01
In response to a state budget deficit, the University of Minnesota Extension restructured its field staff, establishing a new regional and county delivery system, shifting all supervision of field staff to campus faculty, and encouraging greater field staff specialization, program focus, and entrepreneurial efforts. Nine economic concepts and…
Campus Energy Model for Control and Performance Validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
2014-09-19
The core of the modeling platform is an extensible block library for the MATLAB/Simulink software suite. The platform enables true co-simulation (interaction at each simulation time step) with NREL's state-of-the-art modeling tools and other energy modeling software.
NASA Astrophysics Data System (ADS)
Abellán-Nebot, J. V.; Liu, J.; Romero, F.
2009-11-01
The State Space modelling approach has been recently proposed as an engineering-driven technique for part quality prediction in Multistage Machining Processes (MMP). Current State Space models incorporate fixture and datum variations in the multi-stage variation propagation, without explicitly considering common operation variations such as machine-tool thermal distortions, cutting-tool wear, cutting-tool deflections, etc. This paper shows the limitations of the current State Space model through an experimental case study where the effect of the spindle thermal expansion, cutting-tool flank wear and locator errors are introduced. The paper also discusses the extension of the current State Space model to include operation variations and its potential benefits.
Dynamics and rheology of finitely extensible polymer coils: An overview
NASA Astrophysics Data System (ADS)
Yao, Donggang
2017-05-01
One contemporary research issue in non-Newtonian fluid mechanics is to accurately and effectively model viscoelastic polymer flow of practical relevance. In the past several years, we have been working on the formulation of a finitely extensible coil model for polymer flow, particularly including these elements: (1) decoupled equations for kinematical and dynamical variables, (2) logarithmic relaxation at large deformation, (3) rotational retardation, (4) controllable straining, and (5) finite stretch. In this paper, we provide a constructive overview of this nonlinear coil formulation focusing on integration of these elements in a single, unified constitutive model with a minimal number of model parameters that are linked with corresponding physical processes. We also use this opportunity to share the rationale and thought process in the model development. In one particular implement of the general formulation, three parameters are used to tackle with the principal dynamics of a deforming polymer coil: one for finite stretch dictated by a ceiling stretch of the coil, the second one for rotational recovery/retardation, and the third one for adjusting stretch hardening of the rubbery coil. The new model, even in a single mode, is able to simultaneously predict practical material functions in simple shear and coaxial extension and to fit well to representative experimental data. Particularly in the steady-state (or quasi-steady state) flow case, a nearly closed-form stress to velocity gradient relationship can be derived with which shear thinning and elongational thickening can be simultaneously considered while computational advantages of a classical GNF model is retained. The model also fits reasonably well to representative experimental transient data for both shear and extension.
ERIC Educational Resources Information Center
Dixon, Mark R.; Belisle, Jordan; Munoz, Bridget E.; Stanley, Caleb R.; Rowsey, Kyle E.
2017-01-01
The study evaluated the efficacy of observational learning using the rival-model technique in teaching three children with autism to state metaphorical statements about emotions when provided a picture, as well as to intraverbally state an appropriate emotion when provided a scenario and corresponding metaphorical emotion. The results provide a…
An Ontology for State Analysis: Formalizing the Mapping to SysML
NASA Technical Reports Server (NTRS)
Wagner, David A.; Bennett, Matthew B.; Karban, Robert; Rouquette, Nicolas; Jenkins, Steven; Ingham, Michel
2012-01-01
State Analysis is a methodology developed over the last decade for architecting, designing and documenting complex control systems. Although it was originally conceived for designing robotic spacecraft, recent applications include the design of control systems for large ground-based telescopes. The European Southern Observatory (ESO) began a project to design the European Extremely Large Telescope (E-ELT), which will require coordinated control of over a thousand articulated mirror segments. The designers are using State Analysis as a methodology and the Systems Modeling Language (SysML) as a modeling and documentation language in this task. To effectively apply the State Analysis methodology in this context it became necessary to provide ontological definitions of the concepts and relations in State Analysis and greater flexibility through a mapping of State Analysis into a practical extension of SysML. The ontology provides the formal basis for verifying compliance with State Analysis semantics including architectural constraints. The SysML extension provides the practical basis for applying the State Analysis methodology with SysML tools. This paper will discuss the method used to develop these formalisms (the ontology), the formalisms themselves, the mapping to SysML and approach to using these formalisms to specify a control system and enforce architectural constraints in a SysML model.
NASA Astrophysics Data System (ADS)
Simon, E.; Bertino, L.; Samuelsen, A.
2011-12-01
Combined state-parameter estimation in ocean biogeochemical models with ensemble-based Kalman filters is a challenging task due to the non-linearity of the models, the constraints of positiveness that apply to the variables and parameters, and the non-Gaussian distribution of the variables in which they result. Furthermore, these models are sensitive to numerous parameters that are poorly known. Previous works [1] demonstrated that the Gaussian anamorphosis extensions of ensemble-based Kalman filters were relevant tools to perform combined state-parameter estimation in such non-Gaussian framework. In this study, we focus on the estimation of the grazing preferences parameters of zooplankton species. These parameters are introduced to model the diet of zooplankton species among phytoplankton species and detritus. They are positive values and their sum is equal to one. Because the sum-to-one constraint cannot be handled by ensemble-based Kalman filters, a reformulation of the parameterization is proposed. We investigate two types of changes of variables for the estimation of sum-to-one constrained parameters. The first one is based on Gelman [2] and leads to the estimation of normal distributed parameters. The second one is based on the representation of the unit sphere in spherical coordinates and leads to the estimation of parameters with bounded distributions (triangular or uniform). These formulations are illustrated and discussed in the framework of twin experiments realized in the 1D coupled model GOTM-NORWECOM with Gaussian anamorphosis extensions of the deterministic ensemble Kalman filter (DEnKF). [1] Simon E., Bertino L. : Gaussian anamorphosis extension of the DEnKF for combined state and parameter estimation : application to a 1D ocean ecosystem model. Journal of Marine Systems, 2011. doi :10.1016/j.jmarsys.2011.07.007 [2] Gelman A. : Method of Moments Using Monte Carlo Simulation. Journal of Computational and Graphical Statistics, 4, 1, 36-54, 1995.
Quantum-like dynamics applied to cognition: a consideration of available options
NASA Astrophysics Data System (ADS)
Broekaert, Jan; Basieva, Irina; Blasiak, Pawel; Pothos, Emmanuel M.
2017-10-01
Quantum probability theory (QPT) has provided a novel, rich mathematical framework for cognitive modelling, especially for situations which appear paradoxical from classical perspectives. This work concerns the dynamical aspects of QPT, as relevant to cognitive modelling. We aspire to shed light on how the mind's driving potentials (encoded in Hamiltonian and Lindbladian operators) impact the evolution of a mental state. Some existing QPT cognitive models do employ dynamical aspects when considering how a mental state changes with time, but it is often the case that several simplifying assumptions are introduced. What kind of modelling flexibility does QPT dynamics offer without any simplifying assumptions and is it likely that such flexibility will be relevant in cognitive modelling? We consider a series of nested QPT dynamical models, constructed with a view to accommodate results from a simple, hypothetical experimental paradigm on decision-making. We consider Hamiltonians more complex than the ones which have traditionally been employed with a view to explore the putative explanatory value of this additional complexity. We then proceed to compare simple models with extensions regarding both the initial state (e.g. a mixed state with a specific orthogonal decomposition; a general mixed state) and the dynamics (by introducing Hamiltonians which destroy the separability of the initial structure and by considering an open-system extension). We illustrate the relations between these models mathematically and numerically. This article is part of the themed issue `Second quantum revolution: foundational questions'.
The Past, Present and Future of Geodemographic Research in the United States and United Kingdom
Singleton, Alexander D.; Spielman, Seth E.
2014-01-01
This article presents an extensive comparative review of the emergence and application of geodemographics in both the United States and United Kingdom, situating them as an extension of earlier empirically driven models of urban socio-spatial structure. The empirical and theoretical basis for this generalization technique is also considered. Findings demonstrate critical differences in both the application and development of geodemographics between the United States and United Kingdom resulting from their diverging histories, variable data economies, and availability of academic or free classifications. Finally, current methodological research is reviewed, linking this discussion prospectively to the changing spatial data economy in both the United States and United Kingdom. PMID:25484455
Transition from coherence to bistability in a model of financial markets
NASA Astrophysics Data System (ADS)
D'Hulst, R.; Rodgers, G. J.
2001-04-01
We present a model describing the competition between information transmission and decision making in financial markets. The solution of this simple model is recalled, and possible variations discussed. It is shown numerically that despite its simplicity, it can mimic a size effect comparable to a crash localized in time. Two extensions of this model are presented that allow to simulate the demand process. One of these extensions has a coherent stable equilibrium and is self-organized, while the other has a bistable equilibrium, with a spontaneous segregation of the population of agents. A new model is introduced to generate a transition between those two equilibriums. We show that the coherent state is dominant up to an equal mixing of the two extensions. We focus our attention on the microscopic structure of the investment rate, which is the main parameter of the original model. A constant investment rate seems to be a very good approximation.
LHC benchmark scenarios for the real Higgs singlet extension of the standard model
Robens, Tania; Stefaniak, Tim
2016-05-13
Here, we present benchmark scenarios for searches for an additional Higgs state in the real Higgs singlet extension of the Standard Model in Run 2 of the LHC. The scenarios are selected such that they ful ll all relevant current theoretical and experimental constraints, but can potentially be discovered at the current LHC run. We take into account the results presented in earlier work and update the experimental constraints from relevant LHC Higgs searches and signal rate measurements. The benchmark scenarios are given separately for the low mass and high mass region, i.e. the mass range where the additional Higgsmore » state is lighter or heavier than the discovered Higgs state at around 125 GeV. They have also been presented in the framework of the LHC Higgs Cross Section Working Group.« less
Linking knowledge and action through mental models of sustainable agriculture
Hoffman, Matthew; Lubell, Mark; Hillis, Vicken
2014-01-01
Linking knowledge to action requires understanding how decision-makers conceptualize sustainability. This paper empirically analyzes farmer “mental models” of sustainability from three winegrape-growing regions of California where local extension programs have focused on sustainable agriculture. The mental models are represented as networks where sustainability concepts are nodes, and links are established when a farmer mentions two concepts in their stated definition of sustainability. The results suggest that winegrape grower mental models of sustainability are hierarchically structured, relatively similar across regions, and strongly linked to participation in extension programs and adoption of sustainable farm practices. We discuss the implications of our findings for the debate over the meaning of sustainability, and the role of local extension programs in managing knowledge systems. PMID:25157158
Massive gravity in three dimensions.
Bergshoeff, Eric A; Hohm, Olaf; Townsend, Paul K
2009-05-22
A particular higher-derivative extension of the Einstein-Hilbert action in three spacetime dimensions is shown to be equivalent at the linearized level to the (unitary) Pauli-Fierz action for a massive spin-2 field. A more general model, which also includes "topologically-massive" gravity as a special case, propagates the two spin-2 helicity states with different masses. We discuss the extension to massive N-extended supergravity, and we present a "cosmological" extension that admits an anti-de Sitter vacuum.
The Center for In-Service Education. Final Evaluation Report. Volume II. Part 1.
ERIC Educational Resources Information Center
Tennessee State Dept. of Education, Nashville.
This is an overview of the extensive in-service education inventory conducted as an integral portion of the planning contract for Models for In-Service Education supported by the Tennessee State Department of Education under Title III, Elementary and Secondary Education Act. The narrative descriptions are free of extensive statistical references…
Emergence of unusual coexistence states in cyclic game systems.
Park, Junpyo; Do, Younghae; Jang, Bongsoo; Lai, Ying-Cheng
2017-08-07
Evolutionary games of cyclic competitions have been extensively studied to gain insights into one of the most fundamental phenomena in nature: biodiversity that seems to be excluded by the principle of natural selection. The Rock-Paper-Scissors (RPS) game of three species and its extensions [e.g., the Rock-Paper-Scissors-Lizard-Spock (RPSLS) game] are paradigmatic models in this field. In all previous studies, the intrinsic symmetry associated with cyclic competitions imposes a limitation on the resulting coexistence states, leading to only selective types of such states. We investigate the effect of nonuniform intraspecific competitions on coexistence and find that a wider spectrum of coexistence states can emerge and persist. This surprising finding is substantiated using three classes of cyclic game models through stability analysis, Monte Carlo simulations and continuous spatiotemporal dynamical evolution from partial differential equations. Our finding indicates that intraspecific competitions or alternative symmetry-breaking mechanisms can promote biodiversity to a broader extent than previously thought.
NASA Astrophysics Data System (ADS)
Andersen, J. R.; Antipin, O.; Azuelos, G.; Del Debbio, L.; Del Nobile, E.; Di Chiara, S.; Hapola, T.; Järvinen, M.; Lowdon, P. J.; Maravin, Y.; Masina, I.; Nardecchia, M.; Pica, C.; Sannino, F.
2011-09-01
We provide a pedagogical introduction to extensions of the Standard Model in which the Higgs is composite. These extensions are known as models of dynamical electroweak symmetry breaking or, in brief, Technicolor. Material covered includes: motivations for Technicolor, the construction of underlying gauge theories leading to minimal models of Technicolor, the comparison with electroweak precision data, the low-energy effective theory, the spectrum of the states common to most of the Technicolor models, the decays of the composite particles and the experimental signals at the Large Hadron Collider. The level of the presentation is aimed at readers familiar with the Standard Model but who have little or no prior exposure to Technicolor. Several extensions of the Standard Model featuring a composite Higgs can be reduced to the effective Lagrangian introduced in the text. We establish the relevant experimental benchmarks for Vanilla, Running, Walking, and Custodial Technicolor, and a natural fourth family of leptons, by laying out the framework to discover these models at the Large Hadron Collider.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cirac, J. Ignacio; Sierra, German; Instituto de Fisica Teorica, UAM-CSIC, Madrid
We generalize the matrix product states method using the chiral vertex operators of conformal field theory and apply it to study the ground states of the XXZ spin chain, the J{sub 1}-J{sub 2} model and random Heisenberg models. We compute the overlap with the exact wave functions, spin-spin correlators, and the Renyi entropy, showing that critical systems can be described by this method. For rotational invariant ansatzs we construct an inhomogenous extension of the Haldane-Shastry model with long-range exchange interactions.
ERIC Educational Resources Information Center
Cochran, Graham Ralph
2009-01-01
The literature on competency-based human resource (HR) management provides a strong case for moving from a jobs-based to a competency-based approach to human resources. There is agreement in the literature (Dubois, Rothwell, Stern, & Kemp, 2004; Lucia & Lepsinger, 1999) on the benefits of using competencies throughout HR systems and impact…
The application of the Routh approximation method to turbofan engine models
NASA Technical Reports Server (NTRS)
Merrill, W. C.
1977-01-01
The Routh approximation technique is applied in the frequency domain to a 16th order state variable turbofan engine model. The results obtained motivate the extension of the frequency domain formulation of the Routh method to the time domain to handle the state variable formulation directly. The time domain formulation is derived, and a characterization, which specifies all possible Routh similarity transformations, is given. The characterization is computed by the solution of two eigenvalue eigenvector problems. The application of the time domain Routh technique to the state variable engine model is described, and some results are given.
An extensive collection of speciated PM2.5 measurements including organic tracers permitted a detailed examination of the emissions from residential wood combustion (RWC) in the southeastern United States over an entire year (2007). The Community Multiscale Air Quality model-base...
NASA Astrophysics Data System (ADS)
Yang, Shun-Chung; Zhang, Jing; Sohrin, Yoshiki; Ho, Tung-Yuan
2018-07-01
We measured dissolved and particulate Cd isotopic composition in the water column of a meridional transect across the Kuroshio-Oyashio Extension region in a Japanese GEOTRACES cruise to investigate the relative influence of physical and biogeochemical processes on Cd cycling in the Northwestern Pacific Ocean. Located at 30-50°N along 165°E, the transect across the extension region possesses dramatic hydrographic contrast. Cold surface water and a relatively narrow and shallow thermocline characterizes the Oyashio Extension region in contrast to a relatively warm and highly stratified surface water and thermocline in the Kuroshio Extension region. The contrasting hydrographic distinction at the study site provides us with an ideal platform to investigate the spatial variations of Cd isotope fractionation systems in the ocean. Particulate samples demonstrated biologically preferential uptake of light Cd isotopes, and the fractionation effect varied dramatically in the surface water of the two regions, with relatively large fractionation factors in the Oyashio region. Based on the relationship of dissolved Cd concentrations and isotopic composition, we found that a closed system fractionation model can reasonably explain the relationship in the Kuroshio region. However, using dissolved Cd isotopic data, either a closed system or steady-state open system fractionation model may explain the relationship in the surface water of the Oyashio region. Particulate δ114/110Cd data further supports that the surface water of the Oyashio region matches a steady-state open system model more closely. Contrary to the surface water, the distribution of potential density exhibits comparable patterns with Cd elemental and isotopic composition in the thermocline and deep water in the two extension regions, showing that physical processes are the dominant forcing controlling Cd cycling in the deep waters. The results demonstrate that Cd isotope fractionation can match either a closed or open system Rayleigh fractionation model, depending on the relative contribution of physical and biogeochemical processes on its cycling.
Klinkusch, Stefan; Saalfrank, Peter; Klamroth, Tillmann
2009-09-21
We report simulations of laser-pulse driven many-electron dynamics by means of a simple, heuristic extension of the time-dependent configuration interaction singles (TD-CIS) approach. The extension allows for the treatment of ionizing states as nonstationary states with a finite, energy-dependent lifetime to account for above-threshold ionization losses in laser-driven many-electron dynamics. The extended TD-CIS method is applied to the following specific examples: (i) state-to-state transitions in the LiCN molecule which correspond to intramolecular charge transfer, (ii) creation of electronic wave packets in LiCN including wave packet analysis by pump-probe spectroscopy, and, finally, (iii) the effect of ionization on the dynamic polarizability of H(2) when calculated nonperturbatively by TD-CIS.
NASA Astrophysics Data System (ADS)
Hobbs, J.; Turmon, M.; David, C. H.; Reager, J. T., II; Famiglietti, J. S.
2017-12-01
NASA's Western States Water Mission (WSWM) combines remote sensing of the terrestrial water cycle with hydrological models to provide high-resolution state estimates for multiple variables. The effort includes both land surface and river routing models that are subject to several sources of uncertainty, including errors in the model forcing and model structural uncertainty. Computational and storage constraints prohibit extensive ensemble simulations, so this work outlines efficient but flexible approaches for estimating and reporting uncertainty. Calibrated by remote sensing and in situ data where available, we illustrate the application of these techniques in producing state estimates with associated uncertainties at kilometer-scale resolution for key variables such as soil moisture, groundwater, and streamflow.
Fluctuating hyperfine interactions: an updated computational implementation
NASA Astrophysics Data System (ADS)
Zacate, M. O.; Evenson, W. E.
2015-04-01
The stochastic hyperfine interactions modeling library (SHIML) is a set of routines written in the C programming language designed to assist in the analysis of stochastic models of hyperfine interactions. The routines read a text-file description of the model, set up the Blume matrix, upon which the evolution operator of the quantum mechanical system depends, and calculate the eigenvalues and eigenvectors of the Blume matrix, from which theoretical spectra of experimental techniques can be calculated. The original version of SHIML constructs Blume matrices applicable for methods that measure hyperfine interactions with only a single nuclear spin state. In this paper, we report an extension of the library to provide support for methods such as Mössbauer spectroscopy and nuclear resonant scattering of synchrotron radiation, which are sensitive to interactions with two nuclear spin states. Examples will be presented that illustrate the use of this extension of SHIML to generate Mössbauer spectra for polycrystalline samples under a number of fluctuating hyperfine field models.
Late time cosmological dynamics with a nonminimal extension of the mimetic matter scenario
NASA Astrophysics Data System (ADS)
Hosseinkhan, N.; Nozari, K.
2018-02-01
We investigate an extension of mimetic gravity in which mimetic matter is nonminimally coupled to the Ricci scalar. We derive the background field equations and show that, as the minimal case, the nonminimal mimetic matter can behave as dark matter or dark energy. By adopting some well-known potentials, we study the dynamics of the scale factor and the equation of state parameter in detail. As the effective mimetic dark energy, this model explains the late time cosmic acceleration and its equation of state parameter crosses the phantom divide. We extend our analysis to the dynamical system approach and the phase space trajectories of the model. We obtain an attractor line which corresponds to the late time cosmic acceleration. By comparing this nonminimal mimetic matter scenario with observational data for the LCDM, we show that the confidence levels of this model overlap with those of Planck 2015 TT, TE, EE + Low P + Lensing + BAO data in the LCDM model.
ERIC Educational Resources Information Center
Cowett, F.D.; Bassuk, N.L.
2012-01-01
SWAT (Student Weekend Arborist Team) is a program affiliated with Cornell University and Extension founded to conduct street tree inventories in New York State communities with 10,000 residents or fewer, a group of communities underserved in community forestry planning. Between 2002 and 2010, SWAT conducted 40 inventories, and data from these…
The Impact of State Legislation and Model Policies on Bullying in Schools.
Terry, Amanda
2018-04-01
The purpose of this study was to determine the impact of the coverage of state legislation and the expansiveness ratings of state model policies on the state-level prevalence of bullying in schools. The state-level prevalence of bullying in schools was based on cross-sectional data from the 2013 High School Youth Risk Behavior Survey. Multiple regression was conducted to determine whether the coverage of state legislation and the expansiveness rating of a state model policy affected the state-level prevalence of bullying in schools. The purpose and definition category of components in state legislation and the expansiveness rating of a state model policy were statistically significant predictors of the state-level prevalence of bullying in schools. The other 3 categories of components in state legislation-District Policy Development and Review, District Policy Components, and Additional Components-were not statistically significant predictors in the model. Extensive coverage in the purpose and definition category of components in state legislation and a high expansiveness rating of a state model policy may be important in efforts to reduce bullying in schools. Improving these areas may reduce the state-level prevalence of bullying in schools. © 2018, American School Health Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casarini, L.; Bonometto, S.A.; Tessarotto, E.
2016-08-01
We discuss an extension of the Coyote emulator to predict non-linear matter power spectra of dark energy (DE) models with a scale factor dependent equation of state of the form w = w {sub 0}+(1- a ) w {sub a} . The extension is based on the mapping rule between non-linear spectra of DE models with constant equation of state and those with time varying one originally introduced in ref. [40]. Using a series of N-body simulations we show that the spectral equivalence is accurate to sub-percent level across the same range of modes and redshift covered by the Coyotemore » suite. Thus, the extended emulator provides a very efficient and accurate tool to predict non-linear power spectra for DE models with w {sub 0}- w {sub a} parametrization. According to the same criteria we have developed a numerical code that we have implemented in a dedicated module for the CAMB code, that can be used in combination with the Coyote Emulator in likelihood analyses of non-linear matter power spectrum measurements. All codes can be found at https://github.com/luciano-casarini/pkequal.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.
A search for supersymmetry or other new physics resulting in similar final states is presented using a data sample of 4.73 inverse femtobarns of pp collisions collected atmore » $$ \\sqrt{s}=7 $$ TeV with the CMS detector at the LHC. Fully hadronic final states are selected based on the variable MT2, an extension of the transverse mass in events with two invisible particles. Two complementary studies are performed. The first targets the region of parameter space with medium to high squark and gluino masses, in which the signal can be separated from the standard model backgrounds by a tight requirement on MT2. The second is optimized to be sensitive to events with a light gluino and heavy squarks. In this case, the MT2 requirement is relaxed, but a higher jet multiplicity and at least one b-tagged jet are required. No significant excess of events over the standard model expectations is observed. Exclusion limits are derived for the parameter space of the constrained minimal supersymmetric extension of the standard model, as well as on a variety of simplified model spectra.« less
NASA Astrophysics Data System (ADS)
Abel, Julianna; Luntz, Jonathan; Brei, Diann
2012-08-01
Active knits are a unique architectural approach to meeting emerging smart structure needs for distributed high strain actuation with simultaneous force generation. This paper presents an analytical state-based model for predicting the actuation response of a shape memory alloy (SMA) garter knit textile. Garter knits generate significant contraction against moderate to large loads when heated, due to the continuous interlocked network of loops of SMA wire. For this knit architecture, the states of operation are defined on the basis of the thermal and mechanical loading of the textile, the resulting phase change of the SMA, and the load path followed to that state. Transitions between these operational states induce either stick or slip frictional forces depending upon the state and path, which affect the actuation response. A load-extension model of the textile is derived for each operational state using elastica theory and Euler-Bernoulli beam bending for the large deformations within a loop of wire based on the stress-strain behavior of the SMA material. This provides kinematic and kinetic relations which scale to form analytical transcendental expressions for the net actuation motion against an external load. This model was validated experimentally for an SMA garter knit textile over a range of applied forces with good correlation for both the load-extension behavior in each state as well as the net motion produced during the actuation cycle (250% recoverable strain and over 50% actuation). The two-dimensional analytical model of the garter stitch active knit provides the ability to predict the kinetic actuation performance, providing the basis for the design and synthesis of large stroke, large force distributed actuators that employ this novel architecture.
Extra dimensions hypothesis in high energy physics
NASA Astrophysics Data System (ADS)
Volobuev, Igor; Boos, Eduard; Bunichev, Viacheslav; Perfilov, Maxim; Smolyakov, Mikhail
2017-10-01
We discuss the history of the extra dimensions hypothesis and the physics and phenomenology of models with large extra dimensions with an emphasis on the Randall- Sundrum (RS) model with two branes. We argue that the Standard Model extension based on the RS model with two branes is phenomenologically acceptable only if the inter-brane distance is stabilized. Within such an extension of the Standard Model, we study the influence of the infinite Kaluza-Klein (KK) towers of the bulk fields on collider processes. In particular, we discuss the modification of the scalar sector of the theory, the Higgs-radion mixing due to the coupling of the Higgs boson to the radion and its KK tower, and the experimental restrictions on the mass of the radion-dominated states.
2010-03-01
steady-state conditions, state forest rangers and DEC firefighters monitor seasonal weather conditions and provide open-source reports to several state...NYS Forest Rangers ; NYS Corrections), but the NYSP is the state’s largest direct policing and investigative agency. Given the extensive number of...hole before the spaceship falls close enough to be destroyed. Once mankind figures out how to travel through great distances around the galaxy , this
Survey of veterinary extension in the United States.
Sischo, W M; Floyd, J G; McKean, J D; Hueston, W D
1999-11-15
To assess veterinary extension in the United States as perceived by veterinary extension personnel. Cross-sectional survey. Extension veterinarians in the United States. 2 surveys were designed and mailed to extension veterinarians listed by the USDA and the American Association of Extension Veterinarians. 34 states had > or = 1 extension veterinarian. The majority (> 60%) of extension veterinarians did not commit time to resident education and were not involved in research activities. Paradoxically, 23% of responding extension veterinarians did not report extension work. Programs for food animal producers, horse owners, and companion animal owners were provided by 100, 63, and 37% of states, respectively. Continuing education (CE) programs were provided for food animal veterinarians, equine veterinarians, and companion animal veterinarians by 96, 63, and 52% of states, respectively. Challenges facing veterinary extension included limited recognition of veterinary extension activities by universities, lack of university personnel to support CE programs, and decreased support for companion animal extension programs. Extension veterinarians need to identify and clearly articulate the mission of veterinary extension, develop more collaborative programs across regions, and continue to serve as catalysts to bring diverse constituents together. Extension veterinarians must distinguish their mission not solely as information transfer, which can be accomplished in a variety of ways outside of extension, but as a coherent and consistent program of education and policy developed on a national level and distributed locally.
The south-central United States magnetic anomaly
NASA Technical Reports Server (NTRS)
Hinze, W. J.; Braile, L. W. (Principal Investigator); Starich, P. J.
1984-01-01
The South-Central United States Magnetic Anomaly is the most prominent positive feature in the MAGSAT scalar magnetic field over North America. The anomaly correlates with increased crustal thickness, above average crustal velocity, negative free air gravity anomalies and an extensive zone of Middle Proterozoic anorogenic felsic basement rocks. Spherical dipole source inversion of the MAGSAT scalar data and subsequent calculation of reduced to pole and derivative maps provide constraints for a crustal magnetic model which corresponds geographically to the extensive Middle Proterozoic felsic rocks trending northeasterly across the United States. These felsic rocks contain insufficient magnetization or volume to produce the anomaly, but are rather indicative of a crustal zone which was disturbed during a Middle Proterozoic thermal event which enriched magnetic material deep in the crust.
IT Workforce Development: A Family and Consumer Sciences Community Capacity Model
ERIC Educational Resources Information Center
Meszaros, Peggy S.; Kimbrell, Monica R.; Swenson, Andrea
2015-01-01
This article examines Extension professionals building community capacity in 10 counties across five Appalachian states in response to the talent crisis in the United States information technology (IT) workforce. The goal has been to transfer IT knowledge and create a supportive environment to foster interest in IT careers among underserved girls…
Theory of high-force DNA stretching and overstretching.
Storm, C; Nelson, P C
2003-05-01
Single-molecule experiments on single- and double-stranded DNA have sparked a renewed interest in the force versus extension of polymers. The extensible freely jointed chain (FJC) model is frequently invoked to explain the observed behavior of single-stranded DNA, but this model does not satisfactorily describe recent high-force stretching data. We instead propose a model (the discrete persistent chain) that borrows features from both the FJC and the wormlike chain, and show that it resembles the data more closely. We find that most of the high-force behavior previously attributed to stretch elasticity is really a feature of the corrected entropic elasticity; the true stretch compliance of single-stranded DNA is several times smaller than that found by previous authors. Next we elaborate our model to allow coexistence of two conformational states of DNA, each with its own stretch and bend elastic constants. Our model is computationally simple and gives an excellent fit through the entire overstretching transition of nicked, double-stranded DNA. The fit gives the first value for the bend stiffness of the overstretched state. In particular, we find the effective bend stiffness for DNA in this state to be about 12 nm k(B)T, a value quite different from either the B-form or single-stranded DNA.
NASA Astrophysics Data System (ADS)
Mao, Shuneng; Cheng, Lan; Liu, Wenjian; Mukherjee, Debashis
2012-01-01
We present in this paper a comprehensive formulation of a spin-adapted size-extensive state-specific multi-reference second-order perturbation theory (SA-SSMRPT2) as a tool for applications to molecular states of arbitrary complexity and generality. The perturbative theory emerges in the development as a result of a physically appealing quasi-linearization of a rigorously size-extensive state-specific multi-reference coupled cluster (SSMRCC) formalism [U. S. Mahapatra, B. Datta, and D. Mukherjee, J. Chem. Phys. 110, 6171 (1999), 10.1063/1.478523]. The formulation is intruder-free as long as the state-energy is energetically well-separated from the virtual functions. SA-SSMRPT2 works with a complete active space (CAS), and treats each of the model space functions on the same footing. This thus has the twin advantages of being capable of handling varying degrees of quasi-degeneracy and of ensuring size-extensivity. This strategy is attractive in terms of the applicability to bigger systems. A very desirable property of the parent SSMRCC theory is the explicit maintenance of size-extensivity under a variety of approximations of the working equations. We show how to generate both the Rayleigh-Schrödinger (RS) and the Brillouin-Wigner (BW) versions of SA-SSMRPT2. Unlike the traditional naive formulations, both the RS and the BW variants are manifestly size-extensive and both share the avoidance of intruders in the same manner as the parent SSMRCC. We discuss the various features of the RS as well as the BW version using several partitioning strategies of the hamiltonian. Unlike the other CAS based MRPTs, the SA-SSMRPT2 is intrinsically flexible in the sense that it is constructed in a manner that it can relax the coefficients of the reference function, or keep the coefficients frozen if we so desire. We delineate the issues pertaining to the spin-adaptation of the working equations of the SA-SSMRPT2, starting from SSMRCC, which would allow us to incorporate essentially any type open-shell configuration-state functions (CSF) within the CAS. The formalisms presented here will be applied extensively in a companion paper to assess their efficacy.
Hamiltonian derivation of the nonhydrostatic pressure-coordinate model
NASA Astrophysics Data System (ADS)
Salmon, Rick; Smith, Leslie M.
1994-07-01
In 1989, the Miller-Pearce (MP) model for nonhydrostatic fluid motion governed by equations written in pressure coordinates was extended by removing the prescribed reference temperature, T(sub s)(p), while retaining the conservation laws and other desirable properties. It was speculated that this extension of the MP model had a Hamiltonian structure and that a slick derivation of the Ertel property could be constructed if the relevant Hamiltonian were known. In this note, the extended equations are derived using Hamilton's principle. The potential vorticity law arises from the usual particle-relabeling symmetry of the Lagrangian, and even the absence of sound waves is anticipated from the fact that the pressure inside the free energy G(p, theta) in the derived equation is hydrostatic and thus G is insensitive to local pressure fluctuations. The model extension is analogous to the semigeostrophic equations for nearly geostrophic flow, which do not incorporate a prescribed reference state, while the earlier MP model is analogous to the quasigeostrophic equations, which become highly inaccurate when the flow wanders from a prescribed state with nearly flat isothermal surfaces.
Agricultural Extension: Farm Extension Services in Australia, Britain and the United States.
ERIC Educational Resources Information Center
Williams, Donald B.
By analyzing the scope and structure of agricultural extension services in Australia, Great Britain, and the United States, this work attempts to set guidelines for measuring progress and guiding extension efforts. Extension training, agricultural policy, and activities of national, international, state, and provincial bodies are examined. The…
A Model for Projection of Instructional Activity in a Multi-Campus University.
ERIC Educational Resources Information Center
Tallman, B. M.; Newton, R. D.
This report is concerned with the development of a model for projecting instructional activity and its application within The Pennsylvania State University. Inasmuch as models of this type have been developed at a number of institutions of higher education, the effort described in this report does not constitute an extension of fundamental…
Modeling the effects of study abroad programs on college students
Alvin H. Yu; Garry E. Chick; Duarte B. Morais; Chung-Hsien Lin
2009-01-01
This study explored the possibility of modeling the effects of a study abroad program on students from a university in the northeastern United States. A program effect model was proposed after conducting an extensive literature review and empirically examining a sample of 265 participants in 2005. Exploratory factor analysis (EFA), confirmatory factor analysis (CFA),...
Reanalysis of water and carbon cycle models at a critical zone observatory
USDA-ARS?s Scientific Manuscript database
The Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) is a forested, hill-slope catchment located in the temperate-climate of central Pennsylvania with an extensive network of ground-based instrumentation for model testing and development. In this paper we discuss the use of multi-state fi...
Temporal Specification and Verification of Real-Time Systems.
1991-08-30
of concrete real - time systems can be modeled adequately. Specification: We present two conservative extensions of temporal logic that allow for the...logic. We present both model-checking algorithms for the automatic verification of finite-state real - time systems and proof methods for the deductive verification of real - time systems .
MODELING WILDLIFE RESPONSE TO LANDSCAPE CHANGE IN OREGON'S WILLAMETTE RIVER BASIN
The PATCH simulation model was used to predict the response of 17 wildlife species to
three plausible scenarios of habitat change in Oregon's Willamette River Basin. This 30
thousand square-kilometer basin comprises about 12% of the state of Oregon, encompasses extensive f...
NASA Astrophysics Data System (ADS)
Nakamura, Kouji; Fujimoto, Masa-Katsu
2018-05-01
An extension of the input-output relation for a conventional Michelson interferometric gravitational-wave detector is carried out to treat an arbitrary coherent state for the injected optical beam. This extension is one of necessary researches toward the clarification of the relation between conventional gravitational-wave detectors and a simple model of a gravitational-wave detector inspired by weak-measurements in Nishizawa (2015). The derived input-output relation describes not only a conventional Michelson-interferometric gravitational-wave detector but also the situation of weak measurements. As a result, we may say that a conventional Michelson gravitational-wave detector already includes the essence of the weak-value amplification as the reduction of the quantum noise from the light source through the measurement at the dark port.
Extension of Hopfield’s Electron Transfer Model To Accommodate Site–Site Correlation
Newton, Marshall D.
2015-10-26
Extension of the Förster analogue for the ET rate constant (based on virtual intermediate electron detachment or attachment states) with inclusion of site–site correlation due to coulomb terms associated with solvent reorganization energy and the driving force, has been developed and illustrated for a simple three-state, two-mode model. Furthermore, the model is applicable to charge separation (CS), recombination (CR), and shift (CSh) ET processes, with or without an intervening bridge. The model provides a unified perspective on the role of virtual intermediate states in accounting for the thermal Franck–Condon weighted density of states (FCWD), the gaps controlling superexchange coupling, andmore » mean absolute redox potentials, with full accommodation of site–site coulomb interactions. We analyzed two types of correlation: aside from the site–site correlation due to coulomb interactions, we have emphasized the intrinsic “nonorthogonality” which generally pertains to reaction coordinates (RCs) for different ET processes involving multiple electronic states, as may be expressed by suitably defined direction cosines (cos(θ)). A pair of RCs may be nonorthogonal even when the site–site coulomb correlations are absent. While different RCs are linearly independent in the mathematical sense for all θ ≠ 0°, they are independent in the sense of being “uncorrelated” only in the limit of orthogonality (θ = 90°). There is application to more than two coordinates is straightforward and may include both discrete and continuum contributions.« less
Collider Aspects of Flavour Physics at High Q
DOE Office of Scientific and Technical Information (OSTI.GOV)
del Aguila, F.; Aguilar-Saavedra, J.A.; Allanach, B.C.
2008-03-07
This chapter of the report of the 'Flavour in the era of LHC' workshop discusses flavor related issues in the production and decays of heavy states at LHC, both from the experimental side and from the theoretical side. We review top quark physics and discuss flavor aspects of several extensions of the Standard Model, such as supersymmetry, little Higgs model or models with extra dimensions. This includes discovery aspects as well as measurement of several properties of these heavy states. We also present public available computational tools related to this topic.
Effect of microstructural damage on ply stresses in laminated composites
NASA Technical Reports Server (NTRS)
Allen, D. H.; Nottorf, E. W.; Harris, C. E.
1988-01-01
The mechanisms involved in damage and failure of laminated orthotropic composites are investigated theoretically. The continuum model developed accounts for both matrix cracks and interply delamination using second-order tensor-valued internal-state variables based on the locally averaged microcrack dynamics. The derivation of the model is given in detail, and numerical results for sample problems are presented in extensive graphs and tables. The model is shown to be effective in predicting stresses at the ply level, and significant damage-induced decreases in laminate stress states are found.
A Deep and Autoregressive Approach for Topic Modeling of Multimodal Data.
Zheng, Yin; Zhang, Yu-Jin; Larochelle, Hugo
2016-06-01
Topic modeling based on latent Dirichlet allocation (LDA) has been a framework of choice to deal with multimodal data, such as in image annotation tasks. Another popular approach to model the multimodal data is through deep neural networks, such as the deep Boltzmann machine (DBM). Recently, a new type of topic model called the Document Neural Autoregressive Distribution Estimator (DocNADE) was proposed and demonstrated state-of-the-art performance for text document modeling. In this work, we show how to successfully apply and extend this model to multimodal data, such as simultaneous image classification and annotation. First, we propose SupDocNADE, a supervised extension of DocNADE, that increases the discriminative power of the learned hidden topic features and show how to employ it to learn a joint representation from image visual words, annotation words and class label information. We test our model on the LabelMe and UIUC-Sports data sets and show that it compares favorably to other topic models. Second, we propose a deep extension of our model and provide an efficient way of training the deep model. Experimental results show that our deep model outperforms its shallow version and reaches state-of-the-art performance on the Multimedia Information Retrieval (MIR) Flickr data set.
Quantum state engineering in hybrid open quantum systems
NASA Astrophysics Data System (ADS)
Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.
2016-04-01
We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state displays light-matter entanglement, we also find that the full state is entangled. Furthermore, as a natural extension of the anisotropic Rabi model to an infinite spin subsystem, we next explored the NESS of the anisotropic Dicke model. The NESS of this linearized Dicke model is also an inseparable state of light and matter. With an aim to enrich the dynamics beyond the sustainable entanglement found for the NESS of these hybrid quantum systems, we also propose to combine an all-optical feedback strategy for quantum state protection and for establishing quantum control in these systems. Our present work further elucidates the relevance of such hybrid open quantum systems for potential applications in quantum architectures.
Impurity Effects in Highly Frustrated Diamond-Lattice Antiferromagnets
NASA Astrophysics Data System (ADS)
Savary, Lucile
2012-02-01
We consider the effects of local impurities in highly frustrated diamond lattice antiferromagnets, which exhibit large but non-extensive ground state degeneracies. Such models are appropriate to many A-site magnetic spinels. We argue very generally that sufficiently dilute impurities induce an ordered magnetic ground state, and provide a mechanism of degeneracy breaking. The states which are selected can be determined by a ``swiss cheese model'' analysis, which we demonstrate numerically for a particular impurity model in this case. Moreover, we present criteria for estimating the stability of the resulting ordered phase to a competing frozen (spin glass) one. The results may explain the contrasting finding of frozen and ordered ground states in CoAl2O4 and MnSc2S4, respectively.
Schainker, Lisa M.; Redmond, Cleve; Ralston, Ekaterina; Yeh, Hsiu-Chen; Perkins, Daniel F.
2015-01-01
An emerging literature highlights the potential for broader dissemination of evidence-based prevention programs in communities through existing state systems, such as the land grant university Extension outreach system and departments of public education and health (DOE– DPH). This exploratory study entailed surveying representatives of the national Extension system and DOE– DPH, to evaluate dissemination readiness factors, as part of a larger project on an evidence-based program delivery model called PROSPER. In addition to assessing systems’ readiness factors, differences among US regions and comparative levels of readiness between state systems were evaluated. The Extension web-based survey sample N was 958 and the DOE–DPH telephone survey N was 338, with response rates of 23 and 79 %, respectively. Extension survey results suggested only a moderate level of overall readiness nationally, with relatively higher perceived need for collaborative efforts and relatively lower perceived resource availability. There were significant regional differences on all factors, generally favoring the Northeast. Results from DOE–DPH surveys showed significantly higher levels for all readiness factors, compared with Extension systems. Overall, the findings present a mixed picture. Although there were clear challenges related to measuring readiness in complex systems, addressing currently limited dissemination resources, and devising strategies for optimizing readiness, all systems showed some readiness-related strengths. PMID:25791916
Becky K. Kerns; Bridgett J. Naylor; Michelle Buonopane; Catherine G. Parks; Brendan Rogers
2009-01-01
Tamarisk species are shrubs or small trees considered by some to be among the most aggressively invasive and potentially detrimental exotic plants in the United States. Although extensively studied in the southern and interior west, northwestern (Oregon, Washington, and Idaho) distribution and habitat information for tamarisk is either limited or lacking. We obtained...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-22
... range (or deciview), which is the greatest distance, in kilometers or miles, at which a dark object can... Comprehensive Air Quality Model with Extensions (CAMx) and Particulate Matter Source Apportionment Technology... air for NO X , wet flue gas desulfurization for SO 2 and the existing baghouse for particulate matter...
Multiporosity flow in fractured low-permeability rocks: Extension to shale hydrocarbon reservoirs
Kuhlman, Kristopher L.; Malama, Bwalya; Heath, Jason E.
2015-02-05
We presented a multiporosity extension of classical double and triple-porosity fractured rock flow models for slightly compressible fluids. The multiporosity model is an adaptation of the multirate solute transport model of Haggerty and Gorelick (1995) to viscous flow in fractured rock reservoirs. It is a generalization of both pseudo steady state and transient interporosity flow double-porosity models. The model includes a fracture continuum and an overlapping distribution of multiple rock matrix continua, whose fracture-matrix exchange coefficients are specified through a discrete probability mass function. Semianalytical cylindrically symmetric solutions to the multiporosity mathematical model are developed using the Laplace transform tomore » illustrate its behavior. Furthermore, the multiporosity model presented here is conceptually simple, yet flexible enough to simulate common conceptualizations of double and triple-porosity flow. This combination of generality and simplicity makes the multiporosity model a good choice for flow modelling in low-permeability fractured rocks.« less
NASA Astrophysics Data System (ADS)
Mathur, Rohit
2008-09-01
During the summer of 2004, extensive wildfires burned in Alaska and western Canada; the fires were the largest on record for Alaska. Smoke from these fires was observed over the continental United States in satellite images, and a variety of chemical tracers associated with the fires were sampled by aircrafts deployed during the International Consortium for Atmospheric Research on Transport and Transformation field experiment. Several recent studies have quantified the impacts of the long-range transport of pollution associated with these fires on tropospheric CO and O3 levels over the eastern United States. This study quantifies the episodic impact of this pollution transport event on surface-level fine particulate matter (PM2.5) concentrations over the eastern United States during mid-July 2004, through the complementary use of remotely sensed, aloft, and surface measurements, in conjunction with a comprehensive regional atmospheric chemistry-transport model. A methodology is developed to assimilate MODIS aerosol optical depths in the model to represent the impacts of the fires. The resultant model predictions of CO and PM2.5 distributions are compared extensively with corresponding surface and aloft measurements. On the basis of the model calculations, a 0.12Tg enhancement in tropospheric PM2.5 mass loading over the eastern United States is estimated on 19 July 2004 due to the fires. This amount is significantly larger (approximately a factor of 8) than the total daily anthropogenic fine particulate matter emissions for the continental United States. Analysis of measured and modeled PM2.5 surface-level concentrations suggests that the transport of particulate matter pollution associated with the fires resulted in a 24-42 % enhancement in median surface-level PM2.5 concentrations across the eastern United States during 19-23 July 2004.
Extension of the hole-drilling method to birefringent composites
NASA Technical Reports Server (NTRS)
Prabhakaran, R.
1982-01-01
A complete stress analysis and reliable failure criteria are essential for important structural applications of composites in order to fully utilize their unique properties. The inhomogeneity, anisotropy and inelasticity of many composites make the use of experimental methods indispensable. Among the experimental techniques, transmission photoelasticity has been extended to birefringent composites in recent years. The extension is not straight-forward, in view of the complex nature of the photoelastic response of such model materials. This paper very briefly reviews the important developments in the subject and then describes the theoretical basis for a new method of determining the individual values of principal stresses in composite models. The method consists in drilling very small holes at points where the state of stress has to be determined. Experiments are then described which verify the theoretical predictions. The limitations of the method are pointed out and it is concluded that valuable information concerning the state of stress in a composite model can be obtained through the suggested method.
Non-hydrostatic semi-elastic hybrid-coordinate SISL extension of HIRLAM. Part I: numerical scheme
NASA Astrophysics Data System (ADS)
Rõõm, Rein; Männik, Aarne; Luhamaa, Andres
2007-10-01
Two-time-level, semi-implicit, semi-Lagrangian (SISL) scheme is applied to the non-hydrostatic pressure coordinate equations, constituting a modified Miller-Pearce-White model, in hybrid-coordinate framework. Neutral background is subtracted in the initial continuous dynamics, yielding modified equations for geopotential, temperature and logarithmic surface pressure fluctuation. Implicit Lagrangian marching formulae for single time-step are derived. A disclosure scheme is presented, which results in an uncoupled diagnostic system, consisting of 3-D Poisson equation for omega velocity and 2-D Helmholtz equation for logarithmic pressure fluctuation. The model is discretized to create a non-hydrostatic extension to numerical weather prediction model HIRLAM. The discretization schemes, trajectory computation algorithms and interpolation routines, as well as the physical parametrization package are maintained from parent hydrostatic HIRLAM. For stability investigation, the derived SISL model is linearized with respect to the initial, thermally non-equilibrium resting state. Explicit residuals of the linear model prove to be sensitive to the relative departures of temperature and static stability from the reference state. Relayed on the stability study, the semi-implicit term in the vertical momentum equation is replaced to the implicit term, which results in stability increase of the model.
NASA Astrophysics Data System (ADS)
Li, Rui; Jing, Zhao; Chen, Zhaohui; Wu, Lixin
2017-04-01
In this study, responses of the Kuroshio Extension (KE) path state to near-term (2006-2035) global warming are investigated using a Kuroshio-resolving atmosphere-ocean coupled model. Under the representative concentration pathway 4.5 (RCP4.5) forcing, the KE system is intensified and its path state tends to move northward and becomes more stable. It is suggested that the local anticyclonic wind stress anomalies in the KE region favor the spin-up of the southern recirculation gyre, and the remote effect induced by the anticyclonic wind stress anomalies over the central and eastern midlatitude North Pacific also contributes to the stabilization of the KE system substantially. The dominant role of wind stress forcing on KE variability under near-term global warming is further confirmed by adopting a linear 1.5 layer reduced-gravity model forced by wind stress curl field from the present climate model. It is also found that the main contributing longitudinal band for KE index (KEI) moves westward in response to the warmed climate. This results from the northwestward expansion of the large-scale sea level pressure (SLP) field.
The ground state of the Frenkel-Kontorova model
NASA Astrophysics Data System (ADS)
Babushkin, A. Yu.; Abkaryan, A. K.; Dobronets, B. S.; Krasikov, V. S.; Filonov, A. N.
2016-09-01
The continual approximation of the ground state of the discrete Frenkel-Kontorova model is tested using a symmetric algorithm of numerical simulation. A "kaleidoscope effect" is found, which means that the curves representing the dependences of the relative extension of an N-atom chain vary periodically with increasing N. Stairs of structural transitions for N ≫ 1 are analyzed by the channel selection method with the approximation N = ∞. Images of commensurable and incommensurable structures are constructed. The commensurable-incommensurable phase transitions are stepwise.
ERIC Educational Resources Information Center
Martin, Kenneth E.; Knabel, Steve; Mendenhall, Von
1999-01-01
A survey showed states are adopting higher training and certification requirements for food-service workers. A train-the-trainer model was developed to prepare extension agents, health officers, and food-service managers to train others in food-safety procedures. (SK)
State-of-charge estimation in lithium-ion batteries: A particle filter approach
NASA Astrophysics Data System (ADS)
Tulsyan, Aditya; Tsai, Yiting; Gopaluni, R. Bhushan; Braatz, Richard D.
2016-11-01
The dynamics of lithium-ion batteries are complex and are often approximated by models consisting of partial differential equations (PDEs) relating the internal ionic concentrations and potentials. The Pseudo two-dimensional model (P2D) is one model that performs sufficiently accurately under various operating conditions and battery chemistries. Despite its widespread use for prediction, this model is too complex for standard estimation and control applications. This article presents an original algorithm for state-of-charge estimation using the P2D model. Partial differential equations are discretized using implicit stable algorithms and reformulated into a nonlinear state-space model. This discrete, high-dimensional model (consisting of tens to hundreds of states) contains implicit, nonlinear algebraic equations. The uncertainty in the model is characterized by additive Gaussian noise. By exploiting the special structure of the pseudo two-dimensional model, a novel particle filter algorithm that sweeps in time and spatial coordinates independently is developed. This algorithm circumvents the degeneracy problems associated with high-dimensional state estimation and avoids the repetitive solution of implicit equations by defining a 'tether' particle. The approach is illustrated through extensive simulations.
Perendeci, Altinay; Arslan, Sever; Tanyolaç, Abdurrahman; Celebi, Serdar S
2009-10-01
A conceptual neural fuzzy model based on adaptive-network based fuzzy inference system, ANFIS, was proposed using available input on-line and off-line operational variables for a sugar factory anaerobic wastewater treatment plant operating under unsteady state to estimate the effluent chemical oxygen demand, COD. The predictive power of the developed model was improved as a new approach by adding the phase vector and the recent values of COD up to 5-10 days, longer than overall retention time of wastewater in the system. History of last 10 days for COD effluent with two-valued phase vector in the input variable matrix including all parameters had more predictive power. History of 7 days with two-valued phase vector in the matrix comprised of only on-line variables yielded fairly well estimations. The developed ANFIS model with phase vector and history extension has been able to adequately represent the behavior of the treatment system.
Diversity of chimera-like patterns from a model of 2D arrays of neurons with nonlocal coupling
NASA Astrophysics Data System (ADS)
Tian, Chang-Hai; Zhang, Xi-Yun; Wang, Zhen-Hua; Liu, Zong-Hua
2017-06-01
Chimera states have been studied in 1D arrays, and a variety of different chimera states have been found using different models. Research has recently been extended to 2D arrays but only to phase models of them. Here, we extend it to a nonphase model of 2D arrays of neurons and focus on the influence of nonlocal coupling. Using extensive numerical simulations, we find, surprisingly, that this system can show most types of previously observed chimera states, in contrast to previous models, where only one or a few types of chimera states can be observed in each model. We also find that this model can show some special chimera-like patterns such as gridding and multicolumn patterns, which were previously observed only in phase models. Further, we present an effective approach, i.e., removing some of the coupling links, to generate heterogeneous coupling, which results in diverse chimera-like patterns and even induces transformations from one chimera-like pattern to another.
NASA Astrophysics Data System (ADS)
Murakami, Hiroki; Watanabe, Tsuneo; Fukuoka, Daisuke; Terabayashi, Nobuo; Hara, Takeshi; Muramatsu, Chisako; Fujita, Hiroshi
2016-04-01
The word "Locomotive syndrome" has been proposed to describe the state of requiring care by musculoskeletal disorders and its high-risk condition. Reduction of the knee extension strength is cited as one of the risk factors, and the accurate measurement of the strength is needed for the evaluation. The measurement of knee extension strength using a dynamometer is one of the most direct and quantitative methods. This study aims to develop a system for measuring the knee extension strength using the ultrasound images of the rectus femoris muscles obtained with non-invasive ultrasonic diagnostic equipment. First, we extract the muscle area from the ultrasound images and determine the image features, such as the thickness of the muscle. We combine these features and physical features, such as the patient's height, and build a regression model of the knee extension strength from training data. We have developed a system for estimating the knee extension strength by applying the regression model to the features obtained from test data. Using the test data of 168 cases, correlation coefficient value between the measured values and estimated values was 0.82. This result suggests that this system can estimate knee extension strength with high accuracy.
Transectional heat transfer in thermoregulating bigeye tuna (Thunnus obesus) - a 2D heat flux model.
Boye, Jess; Musyl, Michael; Brill, Richard; Malte, Hans
2009-11-01
We developed a 2D heat flux model to elucidate routes and rates of heat transfer within bigeye tuna Thunnus obesus Lowe 1839 in both steady-state and time-dependent settings. In modeling the former situation, we adjusted the efficiencies of heat conservation in the red and the white muscle so as to make the output of the model agree as closely as possible with observed cross-sectional isotherms. In modeling the latter situation, we applied the heat exchanger efficiencies from the steady-state model to predict the distribution of temperature and heat fluxes in bigeye tuna during their extensive daily vertical excursions. The simulations yielded a close match to the data recorded in free-swimming fish and strongly point to the importance of the heat-producing and heat-conserving properties of the white muscle. The best correspondence between model output and observed data was obtained when the countercurrent heat exchangers in the blood flow pathways to the red and white muscle retained 99% and 96% (respectively) of the heat produced in these tissues. Our model confirms that the ability of bigeye tuna to maintain elevated muscle temperatures during their extensive daily vertical movements depends on their ability to rapidly modulate heating and cooling rates. This study shows that the differential cooling and heating rates could be fully accounted for by a mechanism where blood flow to the swimming muscles is either exclusively through the heat exchangers or completely shunted around them, depending on the ambient temperature relative to the body temperature. Our results therefore strongly suggest that such a mechanism is involved in the extensive physiological thermoregulatory abilities of endothermic bigeye tuna.
Modeling the polydomain-monodomain transition of liquid crystal elastomers.
Whitmer, Jonathan K; Roberts, Tyler F; Shekhar, Raj; Abbott, Nicholas L; de Pablo, Juan J
2013-02-01
We study the mechanism of the polydomain-monodomain transition in liquid crystalline elastomers at the molecular scale. A coarse-grained model is proposed in which mesogens are described as ellipsoidal particles. Molecular dynamics simulations are used to examine the transition from a polydomain state to a monodomain state in the presence of uniaxial strain. Our model demonstrates soft elasticity, similar to that exhibited by side-chain elastomers in the literature. By analyzing the growth dynamics of nematic domains during uniaxial extension, we provide direct evidence that at a molecular level the polydomain-monodomain transition proceeds through cluster rotation and domain growth.
NASA Astrophysics Data System (ADS)
Regardt, Olle; Rönnbäck, Lars; Bergholtz, Maria; Johannesson, Paul; Wohed, Petia
Maintaining and evolving data warehouses is a complex, error prone, and time consuming activity. The main reason for this state of affairs is that the environment of a data warehouse is in constant change, while the warehouse itself needs to provide a stable and consistent interface to information spanning extended periods of time. In this paper, we propose a modeling technique for data warehousing, called anchor modeling, that offers non-destructive extensibility mechanisms, thereby enabling robust and flexible management of changes in source systems. A key benefit of anchor modeling is that changes in a data warehouse environment only require extensions, not modifications, to the data warehouse. This ensures that existing data warehouse applications will remain unaffected by the evolution of the data warehouse, i.e. existing views and functions will not have to be modified as a result of changes in the warehouse model.
Day Care in Vermont: An Evaluation of the Vermont Model FAP Child Care Service System.
ERIC Educational Resources Information Center
Siedman, Eileen
This book presents an extensive examination of the organization and operation of the Vermont model day care delivery system which was designed in the context of the proposed Family Assistance Plan (FAP). The model tested the ability of Federal and State employees to work together and share resources in designing a new approach to welfare reform.…
Coherent population transfer in multi-level Allen-Eberly models
NASA Astrophysics Data System (ADS)
Li, Wei; Cen, Li-Xiang
2018-04-01
We investigate the solvability of multi-level extensions of the Allen-Eberly model and the population transfer yielded by the corresponding dynamical evolution. We demonstrate that, under a matching condition of the frequency, the driven two-level system and its multi-level extensions possess a stationary-state solution in a canonical representation associated with a unitary transformation. As a consequence, we show that the resulting protocol is able to realize complete population transfer in a nonadiabatic manner. Moreover, we explore the imperfect pulsing process with truncation and display that the nonadiabatic effect in the evolution can lead to suppression to the cutoff error of the protocol.
Spatial extremes modeling applied to extreme precipitation data in the state of Paraná
NASA Astrophysics Data System (ADS)
Olinda, R. A.; Blanchet, J.; dos Santos, C. A. C.; Ozaki, V. A.; Ribeiro, P. J., Jr.
2014-11-01
Most of the mathematical models developed for rare events are based on probabilistic models for extremes. Although the tools for statistical modeling of univariate and multivariate extremes are well developed, the extension of these tools to model spatial extremes includes an area of very active research nowadays. A natural approach to such a modeling is the theory of extreme spatial and the max-stable process, characterized by the extension of infinite dimensions of multivariate extreme value theory, and making it possible then to incorporate the existing correlation functions in geostatistics and therefore verify the extremal dependence by means of the extreme coefficient and the Madogram. This work describes the application of such processes in modeling the spatial maximum dependence of maximum monthly rainfall from the state of Paraná, based on historical series observed in weather stations. The proposed models consider the Euclidean space and a transformation referred to as space weather, which may explain the presence of directional effects resulting from synoptic weather patterns. This method is based on the theorem proposed for de Haan and on the models of Smith and Schlather. The isotropic and anisotropic behavior of these models is also verified via Monte Carlo simulation. Estimates are made through pairwise likelihood maximum and the models are compared using the Takeuchi Information Criterion. By modeling the dependence of spatial maxima, applied to maximum monthly rainfall data from the state of Paraná, it was possible to identify directional effects resulting from meteorological phenomena, which, in turn, are important for proper management of risks and environmental disasters in countries with its economy heavily dependent on agribusiness.
Integrated Thermal Response Modeling System For Hypersonic Entry Vehicles
NASA Technical Reports Server (NTRS)
Chen, Y.-K.; Milos, F. S.; Partridge, Harry (Technical Monitor)
2000-01-01
We describe all extension of the Markov decision process model in which a continuous time dimension is included ill the state space. This allows for the representation and exact solution of a wide range of problems in which transitions or rewards vary over time. We examine problems based on route planning with public transportation and telescope observation scheduling.
Embedding EfS in Teacher Education through a Multi-Level Systems Approach: Lessons from Queensland
ERIC Educational Resources Information Center
Evans, Neus; Ferreira, Jo-Anne; Davis, Julie; Stevenson, Robert B.
2016-01-01
This article reports on the fourth stage of an evolving study to develop a systems model for embedding education for sustainability (EfS) into preservice teacher education. The fourth stage trialled the extension of the model to a comprehensive state-wide systems approach involving representatives from all eight Queensland teacher education…
Fuel treatment effects on modeled landscape level fire behavior in the northern Sierra Nevada
J.J. Moghaddas; B.M. Collins; K. Menning; E.E.Y. Moghaddas; S.L. Stephens
2010-01-01
Across the western United States, decades of fire exclusion combined with past management history have contributed to the current condition of extensive areas of high-density, shade-tolerant coniferous stands that are increasingly prone to high-severity fires. Here, we report the modeled effects of constructed defensible fuel profile zones and group selection...
Oscillations in Spurious States of the Associative Memory Model with Synaptic Depression
NASA Astrophysics Data System (ADS)
Murata, Shin; Otsubo, Yosuke; Nagata, Kenji; Okada, Masato
2014-12-01
The associative memory model is a typical neural network model that can store discretely distributed fixed-point attractors as memory patterns. When the network stores the memory patterns extensively, however, the model has other attractors besides the memory patterns. These attractors are called spurious memories. Both spurious states and memory states are in equilibrium, so there is little difference between their dynamics. Recent physiological experiments have shown that the short-term dynamic synapse called synaptic depression decreases its efficacy of transmission to postsynaptic neurons according to the activities of presynaptic neurons. Previous studies revealed that synaptic depression destabilizes the memory states when the number of memory patterns is finite. However, it is very difficult to study the dynamical properties of the spurious states if the number of memory patterns is proportional to the number of neurons. We investigate the effect of synaptic depression on spurious states by Monte Carlo simulation. The results demonstrate that synaptic depression does not affect the memory states but mainly destabilizes the spurious states and induces periodic oscillations.
Phase diagram of quantum critical system via local convertibility of ground state
Liu, Si-Yuan; Quan, Quan; Chen, Jin-Jun; Zhang, Yu-Ran; Yang, Wen-Li; Fan, Heng
2016-01-01
We investigate the relationship between two kinds of ground-state local convertibility and quantum phase transitions in XY model. The local operations and classical communications (LOCC) convertibility is examined by the majorization relations and the entanglement-assisted local operations and classical communications (ELOCC) via Rényi entropy interception. In the phase diagram of XY model, LOCC convertibility and ELOCC convertibility of ground-states are presented and compared. It is shown that different phases in the phase diagram of XY model can have different LOCC or ELOCC convertibility, which can be used to detect the quantum phase transition. This study will enlighten extensive studies of quantum phase transitions from the perspective of local convertibility, e.g., finite-temperature phase transitions and other quantum many-body models. PMID:27381284
Nonaxisymmetric modelling in BOUT++; toward global edge fluid turbulence in stellarators
NASA Astrophysics Data System (ADS)
Shanahan, Brendan; Hill, Peter; Dudson, Ben
2016-10-01
As Wendelstein 7-X has been optimized for neoclassical transport, turbulent transport could potentially become comparable to neoclassical losses. Furthermore, the imminent installation of an island divertor merits global edge modelling to determine heat flux profiles and the efficacy of the system. Currently, however, nonaxisymmetric edge plasma modelling is limited to either steady state (non-turbulent) transport modelling, or computationally expensive gyrokinetics. The implementation of the Flux Coordinate Independent (FCI) approach to parallel derivatives has allowed the extension of the BOUT++ edge fluid turbulence framework to nonaxisymmetric geometries. Here we first investigate the implementation of the FCI method in BOUT++ by modelling diffusion equations in nonaxisymmetric geometries with and without boundary interaction, and quantify the inherent error. We then present the results of non-turbulent transport modelling and compare with analytical theory. The ongoing extension of BOUT++ to nonaxisymmetric configurations, and the prospects of stellarator edge fluid turbulence simulations will be discussed.
Kwasniok, Frank; Lohmann, Gerrit
2009-12-01
A method for systematically deriving simple nonlinear dynamical models from ice-core data is proposed. It offers a tool to integrate models and theories with paleoclimatic data. The method is based on the unscented Kalman filter, a nonlinear extension of the conventional Kalman filter. Here, we adopt the abstract conceptual model of stochastically driven motion in a potential that allows for two distinctly different states. The parameters of the model-the shape of the potential and the noise level-are estimated from a North Greenland ice-core record. For the glacial period from 70 to 20 ky before present, a potential is derived that is asymmetric and almost degenerate. There is a deep well corresponding to a cold stadial state and a very shallow well corresponding to a warm interstadial state.
Lin, Milo M; Meinhold, Lars; Shorokhov, Dmitry; Zewail, Ahmed H
2008-08-07
A 2D free-energy landscape model is presented to describe the (un)folding transition of DNA/RNA hairpins, together with molecular dynamics simulations and experimental findings. The dependence of the (un)folding transition on the stem sequence and the loop length is shown in the enthalpic and entropic contributions to the free energy. Intermediate structures are well defined by the two coordinates of the landscape during (un)zipping. Both the free-energy landscape model and the extensive molecular dynamics simulations totaling over 10 mus predict the existence of temperature-dependent kinetic intermediate states during hairpin (un)zipping and provide the theoretical description of recent ultrafast temperature-jump studies which indicate that hairpin (un)zipping is, in general, not a two-state process. The model allows for lucid prediction of the collapsed state(s) in simple 2D space and we term it the kinetic intermediate structure (KIS) model.
Campbell, D A; Chkrebtii, O
2013-12-01
Statistical inference for biochemical models often faces a variety of characteristic challenges. In this paper we examine state and parameter estimation for the JAK-STAT intracellular signalling mechanism, which exemplifies the implementation intricacies common in many biochemical inference problems. We introduce an extension to the Generalized Smoothing approach for estimating delay differential equation models, addressing selection of complexity parameters, choice of the basis system, and appropriate optimization strategies. Motivated by the JAK-STAT system, we further extend the generalized smoothing approach to consider a nonlinear observation process with additional unknown parameters, and highlight how the approach handles unobserved states and unevenly spaced observations. The methodology developed is generally applicable to problems of estimation for differential equation models with delays, unobserved states, nonlinear observation processes, and partially observed histories. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
Multi-Million Atom Molecular Dynamics Simulations of Shocked Materials
2006-11-01
chose this system for two reasons: First, accurate and widely tested atomistic models are available (van Beest et. al., 1990; Yuan and Cormack...Surface (PES) We have identified a model of silica (van Beest et. al., 1990) that has been extensively tested and that predicts several polymorphic...states (Saika-Voivod et. al., 2004). This model, hereafter denoted as the BKS model after its authors (van Beest et. al., 1990), assumes that the
Plants & Crops | National Agricultural Library
Skip to main content Home National Agricultural Library United States Department of Agriculture Ag , tables, graphs), Agricultural Products html Useful to Usable: Developing usable climate science for climatology, crop modeling, agronomy, cyber-technology, agricultural economics, sociology, Extension and
Control of Wheel/Rail Noise and Vibration
DOT National Transportation Integrated Search
1982-04-01
An analytical model of the generation of wheel/rail noise has been developed and validated through an extensive series of field tests carried out at the Transportation Test Center using the State of the Art Car. A sensitivity analysis has been perfor...
Geometric model of topological insulators from the Maxwell algebra
NASA Astrophysics Data System (ADS)
Palumbo, Giandomenico
2017-11-01
We propose a novel geometric model of time-reversal-invariant topological insulators in three dimensions in presence of an external electromagnetic field. Their gapped boundary supports relativistic quantum Hall states and is described by a Chern-Simons theory, where the gauge connection takes values in the Maxwell algebra. This represents a non-central extension of the Poincaré algebra and takes into account both the Lorentz and magnetic-translation symmetries of the surface states. In this way, we derive a relativistic version of the Wen-Zee term and we show that the non-minimal coupling between the background geometry and the electromagnetic field in the model is in agreement with the main properties of the relativistic quantum Hall states in the flat space.
Pattern Formation in Keller-Segel Chemotaxis Models with Logistic Growth
NASA Astrophysics Data System (ADS)
Jin, Ling; Wang, Qi; Zhang, Zengyan
In this paper, we investigate pattern formation in Keller-Segel chemotaxis models over a multidimensional bounded domain subject to homogeneous Neumann boundary conditions. It is shown that the positive homogeneous steady state loses its stability as chemoattraction rate χ increases. Then using Crandall-Rabinowitz local theory with χ being the bifurcation parameter, we obtain the existence of nonhomogeneous steady states of the system which bifurcate from this homogeneous steady state. Stability of the bifurcating solutions is also established through rigorous and detailed calculations. Our results provide a selection mechanism of stable wavemode which states that the only stable bifurcation branch must have a wavemode number that minimizes the bifurcation value. Finally, we perform extensive numerical simulations on the formation of stable steady states with striking structures such as boundary spikes, interior spikes, stripes, etc. These nontrivial patterns can model cellular aggregation that develop through chemotactic movements in biological systems.
A Comparison of Agricultural Extension in Five States.
ERIC Educational Resources Information Center
Rogers, Everett M.
The nature of the Cooperative Extension Service in agriculture was examined to identify aspects that could be applied to the design of an educational extension service. To learn about the organization, programs, and priorities of Cooperative Extension, employees of the state extension services in California, Colorado, New Mexico, New York, and…
Jie Zhu; Ge Sun; Wenhong Li; Yu Zhang; Guofang Miao; Asko Noormets; Steve G. McNulty; John S. King; Mukesh Kumar; Xuan Wang
2017-01-01
The southeastern United States hosts extensive forested wetlands, providing ecosystem services including carbon sequestration, water quality improvement, ground- water recharge, and wildlife habitat. However, these wet- land ecosystems are dependent on local climate and hydrol- ogy, and are therefore at risk due to climate and land use change. This study develops site-...
Electronic structure of alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehrenreich, H.; Schwartz, L.M.
1976-01-01
The description of electronic properties of binary substitutional alloys within the single particle approximation is reviewed. Emphasis is placed on a didactic exposition of the equilibrium properties of the transport and magnetic properties of such alloys. Topics covered include: multiple scattering theory; the single band alloy; formal extensions of the theory; the alloy potential; realistic model state densities; the s-d model; and the muffin tin model. 43 figures, 3 tables, 151 references. (GHT)
Observation of a new high-spin isomer in {sup 94}Pd
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brock, T. S.; Nara Singh, B. S.; Wadsworth, R.
2010-12-15
A second {gamma}-decaying high-spin isomeric state, with a half-life of 197(22)ns, has been identified in the N=Z+2 nuclide {sup 94}Pd as part of a stopped-beam Rare Isotope Spectroscopic INvestigation at GSI (RISING) experiment. Weisskopf estimates were used to establish a tentative spin/parity of 19{sup -}, corresponding to the maximum possible spin of a negative parity state in the restricted (p{sub 1/2}, g{sub 9/2}) model space of empirical shell model calculations. The reproduction of the E3 decay properties of the isomer required an extension of the model space to include the f{sub 5/2} and p{sub 3/2} orbitals using the CD-Bonn potential.more » This is the first time that such an extension has been required for a high-spin isomer in the vicinity of {sup 100}Sn and reveals the importance of such orbits for understanding the decay properties of high-spin isomers in this region. However, despite the need for the extended model space for the E3 decay, the dominant configuration for the 19{sup -} state remains ({pi}p{sub 1/2}{sup -1}g{sub 9/2}{sup -3}){sub 11} x ({nu}g{sub 9/2}{sup -2}){sub 8}. The half-life of the known, 14{sup +}, isomer was remeasured and yielded a value of 499(13) ns.« less
Unlearning of Mixed States in the Hopfield Model —Extensive Loading Case—
NASA Astrophysics Data System (ADS)
Hayashi, Kao; Hashimoto, Chinami; Kimoto, Tomoyuki; Uezu, Tatsuya
2018-05-01
We study the unlearning of mixed states in the Hopfield model for the extensive loading case. Firstly, we focus on case I, where several embedded patterns are correlated with each other, whereas the rest are uncorrelated. Secondly, we study case II, where patterns are divided into clusters in such a way that patterns in any cluster are correlated but those in two different clusters are not correlated. By using the replica method, we derive the saddle point equations for order parameters under the ansatz of replica symmetry. The same equations are also derived by self-consistent signal-to-noise analysis in case I. In both cases I and II, we find that when the correlation between patterns is large, the network loses its ability to retrieve the embedded patterns and, depending on the parameters, a confused memory, which is a mixed state and/or spin glass state, emerges. By unlearning the mixed state, the network acquires the ability to retrieve the embedded patterns again in some parameter regions. We find that to delete the mixed state and to retrieve the embedded patterns, the coefficient of unlearning should be chosen appropriately. We perform Markov chain Monte Carlo simulations and find that the simulation and theoretical results agree reasonably well, except for the spin glass solution in a parameter region due to the replica symmetry breaking. Furthermore, we find that the existence of many correlated clusters reduces the stabilities of both embedded patterns and mixed states.
ERIC Educational Resources Information Center
Gerakis, Argyrios
A study was conducted to determine the attitudes of Ohio county extension agents toward satellite video teleconferencing. (Several county extension offices across the state participate in live satellite video teleconferences produced by The Ohio State University. Teleconferences cover a variety of extension education topics, from agriculture to…
NatureLinks: Protected areas, wilderness, and landscape connectivity in South Australia, Australia
Adrian Stokes; Greg Leaman
2007-01-01
The South Australian Government has recognized that, despite an extensive protected area system (26 percent of the State), Statewide ecological goals will not be achieved on protected areas alone. The NatureLinks model promotes protected areas acting as âecological coresâ in landscapes managed with conservation objectives. To implement this model, partnerships with...
NASA Technical Reports Server (NTRS)
Youngblut, C.
1984-01-01
Orography and geographically fixed heat sources which force a zonally asymmetric motion field are examined. An extensive space-time spectral analysis of the GLAS climate model (D130) response and observations are compared. An updated version of the model (D150) showed a remarkable improvement in the simulation of the standing waves. The main differences in the model code are an improved boundary layer flux computation and a more realistic specification of the global boundary conditions.
Transit and lifespan in neutrophil production: implications for drug intervention.
Câmara De Souza, Daniel; Craig, Morgan; Cassidy, Tyler; Li, Jun; Nekka, Fahima; Bélair, Jacques; Humphries, Antony R
2018-02-01
A comparison of the transit compartment ordinary differential equation modelling approach to distributed and discrete delay differential equation models is studied by focusing on Quartino's extension to the Friberg transit compartment model of myelosuppression, widely relied upon in the pharmaceutical sciences to predict the neutrophil response after chemotherapy, and on a QSP delay differential equation model of granulopoiesis. An extension to the Quartino model is provided by considering a general number of transit compartments and introducing an extra parameter that allows for the decoupling of the maturation time from the production rate of cells. An overview of the well established linear chain technique, used to reformulate transit compartment models with constant transit rates as distributed delay differential equations (DDEs), is then given. A state-dependent time rescaling of the Quartino model is performed to apply the linear chain technique and rewrite the Quartino model as a distributed DDE, yielding a discrete DDE model in a certain parameter limit. Next, stability and bifurcation analyses are undertaken in an effort to situate such studies in a mathematical pharmacology context. We show that both the original Friberg and the Quartino extension models incorrectly define the mean maturation time, essentially treating the proliferative pool as an additional maturation compartment. This misspecification can have far reaching consequences on the development of future models of myelosuppression in PK/PD.
Informational privacy and the public's health: the Model State Public Health Privacy Act.
Gostin, L O; Hodge, J G; Valdiserri, R O
2001-09-01
Protecting public health requires the acquisition, use, and storage of extensive health-related information about individuals. The electronic accumulation and exchange of personal data promises significant public health benefits but also threatens individual privacy; breaches of privacy can lead to individual discrimination in employment, insurance, and government programs. Individuals concerned about privacy invasions may avoid clinical or public health tests, treatments, or research. Although individual privacy protections are critical, comprehensive federal privacy protections do not adequately protect public health data, and existing state privacy laws are inconsistent and fragmented. The Model State Public Health Privacy Act provides strong privacy safeguards for public health data while preserving the ability of state and local public health departments to act for the common good.
Forecasting residential solar photovoltaic deployment in California
Dong, Changgui; Sigrin, Benjamin; Brinkman, Gregory
2016-12-06
Residential distributed photovoltaic (PV) deployment in the United States has experienced robust growth, and policy changes impacting the value of solar are likely to occur at the federal and state levels. To establish a credible baseline and evaluate impacts of potential new policies, this analysis employs multiple methods to forecast residential PV deployment in California, including a time-series forecasting model, a threshold heterogeneity diffusion model, a Bass diffusion model, and National Renewable Energy Laboratory's dSolar model. As a baseline, the residential PV market in California is modeled to peak in the early 2020s, with a peak annual installation of 1.5-2more » GW across models. We then use the baseline results from the dSolar model and the threshold model to gauge the impact of the recent federal investment tax credit (ITC) extension, the newly approved California net energy metering (NEM) policy, and a hypothetical value-of-solar (VOS) compensation scheme. We find that the recent ITC extension may increase annual PV installations by 12%-18% (roughly 500 MW, MW) for the California residential sector in 2019-2020. The new NEM policy only has a negligible effect in California due to the relatively small new charges (< 100 MW in 2019-2020). Moreover, impacts of the VOS compensation scheme (0.12 cents per kilowatt-hour) are larger, reducing annual PV adoption by 32% (or 900-1300 MW) in 2019-2020.« less
Forecasting residential solar photovoltaic deployment in California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Changgui; Sigrin, Benjamin; Brinkman, Gregory
Residential distributed photovoltaic (PV) deployment in the United States has experienced robust growth, and policy changes impacting the value of solar are likely to occur at the federal and state levels. To establish a credible baseline and evaluate impacts of potential new policies, this analysis employs multiple methods to forecast residential PV deployment in California, including a time-series forecasting model, a threshold heterogeneity diffusion model, a Bass diffusion model, and National Renewable Energy Laboratory's dSolar model. As a baseline, the residential PV market in California is modeled to peak in the early 2020s, with a peak annual installation of 1.5-2more » GW across models. We then use the baseline results from the dSolar model and the threshold model to gauge the impact of the recent federal investment tax credit (ITC) extension, the newly approved California net energy metering (NEM) policy, and a hypothetical value-of-solar (VOS) compensation scheme. We find that the recent ITC extension may increase annual PV installations by 12%-18% (roughly 500 MW, MW) for the California residential sector in 2019-2020. The new NEM policy only has a negligible effect in California due to the relatively small new charges (< 100 MW in 2019-2020). Moreover, impacts of the VOS compensation scheme (0.12 cents per kilowatt-hour) are larger, reducing annual PV adoption by 32% (or 900-1300 MW) in 2019-2020.« less
[Health councils, intergovernmental commissions, and interest groups in the Unified Health System
Ribeiro
1997-01-01
Health councils have developed in Brazil in keeping with arrangements under the 1988 Constitution, and the logic of their political consensus has expanded among interest groups relevant to public policy. Collegiate bodies, such as intergovernmental commissions, represent an extension of that logic to executive relationships and also express political intermediation by expertise, following the tradition of the European Welfare State. The state technical bureaucracy has thus developed a remarkable role in policy-making and in State-level modeling of interest groups. This article argues that such collegiate bodies should be analyzed through State action and defines two models for health councils. One, the vocal political model, is characterized by a prevalence of outspoken denunciation and an overload of demands on the political agenda. The other, the consensus model, expresses self-limitation amongst interest groups in drafting demands. These models are not hierarchically fixed and are usually linked to the political platforms of interest groups participating in the collegiate bodies.
Optimized Temporal Monitors for SystemC
NASA Technical Reports Server (NTRS)
Tabakov, Deian; Rozier, Kristin Y.; Vardi, Moshe Y.
2012-01-01
SystemC is a modeling language built as an extension of C++. Its growing popularity and the increasing complexity of designs have motivated research efforts aimed at the verification of SystemC models using assertion-based verification (ABV), where the designer asserts properties that capture the design intent in a formal language such as PSL or SVA. The model then can be verified against the properties using runtime or formal verification techniques. In this paper we focus on automated generation of runtime monitors from temporal properties. Our focus is on minimizing runtime overhead, rather than monitor size or monitor-generation time. We identify four issues in monitor generation: state minimization, alphabet representation, alphabet minimization, and monitor encoding. We conduct extensive experimentation and identify a combination of settings that offers the best performance in terms of runtime overhead.
Modelling, analyses and design of switching converters
NASA Technical Reports Server (NTRS)
Cuk, S. M.; Middlebrook, R. D.
1978-01-01
A state-space averaging method for modelling switching dc-to-dc converters for both continuous and discontinuous conduction mode is developed. In each case the starting point is the unified state-space representation, and the end result is a complete linear circuit model, for each conduction mode, which correctly represents all essential features, namely, the input, output, and transfer properties (static dc as well as dynamic ac small-signal). While the method is generally applicable to any switching converter, it is extensively illustrated for the three common power stages (buck, boost, and buck-boost). The results for these converters are then easily tabulated owing to the fixed equivalent circuit topology of their canonical circuit model. The insights that emerge from the general state-space modelling approach lead to the design of new converter topologies through the study of generic properties of the cascade connection of basic buck and boost converters.
NASA Technical Reports Server (NTRS)
Lee, F. C. Y.; Wilson, T. G.
1982-01-01
The present investigation is concerned with an important class of power conditioning networks, taking into account self-oscillating dc-to-square-wave transistor inverters. The considered circuits are widely used both as the principal power converting and processing means in many systems and as low-power analog-to-discrete-time converters for controlling the switching of the output-stage semiconductors in a variety of power conditioning systems. Aspects of piecewise-linear modeling are discussed, taking into consideration component models, and an equivalent-circuit model. Questions of singular point analysis and state plane representation are also investigated, giving attention to limit cycles, starting circuits, the region of attraction, a hard oscillator, and a soft oscillator.
Elenchezhiyan, M; Prakash, J
2015-09-01
In this work, state estimation schemes for non-linear hybrid dynamic systems subjected to stochastic state disturbances and random errors in measurements using interacting multiple-model (IMM) algorithms are formulated. In order to compute both discrete modes and continuous state estimates of a hybrid dynamic system either an IMM extended Kalman filter (IMM-EKF) or an IMM based derivative-free Kalman filters is proposed in this study. The efficacy of the proposed IMM based state estimation schemes is demonstrated by conducting Monte-Carlo simulation studies on the two-tank hybrid system and switched non-isothermal continuous stirred tank reactor system. Extensive simulation studies reveal that the proposed IMM based state estimation schemes are able to generate fairly accurate continuous state estimates and discrete modes. In the presence and absence of sensor bias, the simulation studies reveal that the proposed IMM unscented Kalman filter (IMM-UKF) based simultaneous state and parameter estimation scheme outperforms multiple-model UKF (MM-UKF) based simultaneous state and parameter estimation scheme. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Equilibrium and kinetics of DNA overstretching modeled with a quartic energy landscape.
Argudo, David; Purohit, Prashant K
2014-11-04
It is well known that the dsDNA molecule undergoes a phase transition from B-DNA into an overstretched state at high forces. For some time, the structure of the overstretched state remained unknown and highly debated, but recent advances in experimental techniques have presented evidence of more than one possible phase (or even a mixed phase) depending on ionic conditions, temperature, and basepair sequence. Here, we present a theoretical model to study the overstretching transition with the possibility that the overstretched state is a mixture of two phases: a structure with portions of inner strand separation (melted or M-DNA), and an extended phase that retains the basepair structure (S-DNA). We model the double-stranded DNA as a chain composed of n segments of length l, where the transition is studied by means of a Landau quartic potential with statistical fluctuations. The length l is a measure of cooperativity of the transition and is key to characterizing the overstretched phase. By analyzing the different values of l corresponding to a wide spectrum of experiments, we find that for a range of temperatures and ionic conditions, the overstretched form is likely to be a mix of M-DNA and S-DNA. For a transition close to a pure S-DNA state, where the change in extension is close to 1.7 times the original B-DNA length, we find l ? 25 basepairs regardless of temperature and ionic concentration. Our model is fully analytical, yet it accurately reproduces the force-extension curves, as well as the transient kinetic behavior, seen in DNA overstretching experiments.
During the summer of 2004, extensive wildfires burned in Alaska and western Canada; the fires were the largest on record for Alaska. Smoke from these fires was observed over the continental United States in satellite images. Recent studies have quantified the impacts of the long-...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkán-Kacsó, Sándor
2014-06-14
A theoretical method is proposed for the calculation of the photon counting probability distribution during a bin time. Two-state fluorescence and steady excitation are assumed. A key feature is a kinetic scheme that allows for an extensive class of stochastic waiting time distribution functions, including power laws, expanded as a sum of weighted decaying exponentials. The solution is analytic in certain conditions, and an exact and simple expression is found for the integral contribution of “bright” and “dark” states. As an application for power law kinetics, theoretical results are compared with experimental intensity histograms from a number of blinking CdSe/ZnSmore » quantum dots. The histograms are consistent with distributions of intensity states around a “bright” and a “dark” maximum. A gap of states is also revealed in the more-or-less flat inter-peak region. The slope and to some extent the flatness of the inter-peak feature are found to be sensitive to the power-law exponents. Possible models consistent with these findings are discussed, such as the combination of multiple charging and fluctuating non-radiative channels or the multiple recombination center model. A fitting of the latter to experiment provides constraints on the interaction parameter between the recombination centers. Further extensions and applications of the photon counting theory are also discussed.« less
Model for Vortex Ring State Influence on Rotorcraft Flight Dynamics
NASA Technical Reports Server (NTRS)
Johnson, Wayne
2005-01-01
The influence of vortex ring state (VRS) on rotorcraft flight dynamics is investigated, specifically the vertical velocity drop of helicopters and the roll-off of tiltrotors encountering VRS. The available wind tunnel and flight test data for rotors in vortex ring state are reviewed. Test data for axial flow, non-axial flow, two rotors, unsteadiness, and vortex ring state boundaries are described and discussed. Based on the available measured data, a VRS model is developed. The VRS model is a parametric extension of momentum theory for calculation of the mean inflow of a rotor, hence suitable for simple calculations and real-time simulations. This inflow model is primarily defined in terms of the stability boundary of the aircraft motion. Calculations of helicopter response during VRS encounter were performed, and good correlation is shown with the vertical velocity drop measured in flight tests. Calculations of tiltrotor response during VRS encounter were performed, showing the roll-off behavior characteristic of tiltrotors. Hence it is possible, using a model of the mean inflow of an isolated rotor, to explain the basic behavior of both helicopters and tiltrotors in vortex ring state.
Dynamic elementary mode modelling of non-steady state flux data.
Folch-Fortuny, Abel; Teusink, Bas; Hoefsloot, Huub C J; Smilde, Age K; Ferrer, Alberto
2018-06-18
A novel framework is proposed to analyse metabolic fluxes in non-steady state conditions, based on the new concept of dynamic elementary mode (dynEM): an elementary mode activated partially depending on the time point of the experiment. Two methods are introduced here: dynamic elementary mode analysis (dynEMA) and dynamic elementary mode regression discriminant analysis (dynEMR-DA). The former is an extension of the recently proposed principal elementary mode analysis (PEMA) method from steady state to non-steady state scenarios. The latter is a discriminant model that permits to identify which dynEMs behave strongly different depending on the experimental conditions. Two case studies of Saccharomyces cerevisiae, with fluxes derived from simulated and real concentration data sets, are presented to highlight the benefits of this dynamic modelling. This methodology permits to analyse metabolic fluxes at early stages with the aim of i) creating reduced dynamic models of flux data, ii) combining many experiments in a single biologically meaningful model, and iii) identifying the metabolic pathways that drive the organism from one state to another when changing the environmental conditions.
Modelling nuclear effects in neutrino scattering
NASA Astrophysics Data System (ADS)
Leitner, T.; Alvarez-Ruso, L.; Mosel, U.
2006-07-01
We have developed a model to describe the interactions of neutrinos with nucleons and nuclei via charged and neutral currents, focusing on the region of the quasielastic and Δ(1232) peaks. For νN collisions a fully relativistic formalism is used. The extension to finite nuclei has been done in the framework of a coupled-channel BUU transport model where we have studied exclusive channels taking into account in-medium effects and final state interactions.
Minorities Are Disproportionately Underrepresented in Special Education
ERIC Educational Resources Information Center
Morgan, Paul L.; Farkas, George; Hillemeier, Marianne M.; Mattison, Richard; Maczuga, Steve; Li, Hui; Cook, Michael
2015-01-01
We investigated whether minority children attending U.S. elementary and middle schools are disproportionately represented in special education. We did so using hazard modeling of multiyear longitudinal data and extensive covariate adjustment for potential child-, family-, and state-level confounds. Minority children were consistently less likely…
Liang, Zhibing; Liu, Fuxian; Gao, Jiale
2018-01-01
For non-ellipsoidal extended targets and group targets tracking (NETT and NGTT), using an ellipsoid to approximate the target extension may not be accurate enough because of the lack of shape and orientation information. In consideration of this, we model a non-ellipsoidal extended target or target group as a combination of multiple ellipsoidal sub-objects, each represented by a random matrix. Based on these models, an improved gamma Gaussian inverse Wishart probability hypothesis density (GGIW-PHD) filter is proposed to estimate the measurement rates, kinematic states, and extension states of the sub-objects for each extended target or target group. For maneuvering NETT and NGTT, a multi-model (MM) approach based GGIW-PHD (MM-GGIW-PHD) filter is proposed. The common and the individual dynamics of the sub-objects belonging to the same extended target or target group are described by means of the combination between the overall maneuver model and the sub-object models. For the merging of updating components, an improved merging criterion and a new merging method are derived. A specific implementation of prediction partition with pseudo-likelihood method is presented. Two scenarios for non-maneuvering and maneuvering NETT and NGTT are simulated. The results demonstrate the effectiveness of the proposed algorithms.
Liu, Fuxian; Gao, Jiale
2018-01-01
For non-ellipsoidal extended targets and group targets tracking (NETT and NGTT), using an ellipsoid to approximate the target extension may not be accurate enough because of the lack of shape and orientation information. In consideration of this, we model a non-ellipsoidal extended target or target group as a combination of multiple ellipsoidal sub-objects, each represented by a random matrix. Based on these models, an improved gamma Gaussian inverse Wishart probability hypothesis density (GGIW-PHD) filter is proposed to estimate the measurement rates, kinematic states, and extension states of the sub-objects for each extended target or target group. For maneuvering NETT and NGTT, a multi-model (MM) approach based GGIW-PHD (MM-GGIW-PHD) filter is proposed. The common and the individual dynamics of the sub-objects belonging to the same extended target or target group are described by means of the combination between the overall maneuver model and the sub-object models. For the merging of updating components, an improved merging criterion and a new merging method are derived. A specific implementation of prediction partition with pseudo-likelihood method is presented. Two scenarios for non-maneuvering and maneuvering NETT and NGTT are simulated. The results demonstrate the effectiveness of the proposed algorithms. PMID:29444144
Grant, Evan H. Campbell; Zipkin, Elise; Scott, Sillett T.; Chandler, Richard; Royle, J. Andrew
2014-01-01
Wildlife populations consist of individuals that contribute disproportionately to growth and viability. Understanding a population's spatial and temporal dynamics requires estimates of abundance and demographic rates that account for this heterogeneity. Estimating these quantities can be difficult, requiring years of intensive data collection. Often, this is accomplished through the capture and recapture of individual animals, which is generally only feasible at a limited number of locations. In contrast, N-mixture models allow for the estimation of abundance, and spatial variation in abundance, from count data alone. We extend recently developed multistate, open population N-mixture models, which can additionally estimate demographic rates based on an organism's life history characteristics. In our extension, we develop an approach to account for the case where not all individuals can be assigned to a state during sampling. Using only state-specific count data, we show how our model can be used to estimate local population abundance, as well as density-dependent recruitment rates and state-specific survival. We apply our model to a population of black-throated blue warblers (Setophaga caerulescens) that have been surveyed for 25 years on their breeding grounds at the Hubbard Brook Experimental Forest in New Hampshire, USA. The intensive data collection efforts allow us to compare our estimates to estimates derived from capture–recapture data. Our model performed well in estimating population abundance and density-dependent rates of annual recruitment/immigration. Estimates of local carrying capacity and per capita recruitment of yearlings were consistent with those published in other studies. However, our model moderately underestimated annual survival probability of yearling and adult females and severely underestimates survival probabilities for both of these male stages. The most accurate and precise estimates will necessarily require some amount of intensive data collection efforts (such as capture–recapture). Integrated population models that combine data from both intensive and extensive sources are likely to be the most efficient approach for estimating demographic rates at large spatial and temporal scales.
Strength of clean indoor air laws and smoking related outcomes in the USA
McMullen, K; Brownson, R; Luke, D; Chriqui, J
2005-01-01
Objectives: Environmental tobacco smoke (ETS) is often encountered in the workplace. There have been efforts to apply and enforce state laws limiting workplace smoking. There has been little study of the relative effectiveness of state and/or local laws in affecting both rates of workplace ETS exposure and adult smoking rates. This study investigates these hypotheses, as well as the effect of these laws on youth smoking. Design: This is a secondary data analysis using sources including the Current Population Survey (CPS), Behavioral Risk Factor Surveillance System (BRFSS), Youth Risk Behavior Survey (YRBS), and the National Household Survey of Drug Abuse (NHSDA) between the years of 1996 and 1999. Linear regression models were used to investigate the effect of a state's clean indoor air (CIA) law (using a measure of extensiveness) on the overall amount of people who reported working in a smoke-free environment, youth smoking rates and adult smoking rates. Results: The extensiveness of a state's CIA law was found to be a reliable predictor of the percentage of indoor workers who report a smoke-free work environment and the rates of youth smoking. State CIA laws were not conclusively associated with adult smoking rates. Conclusions: The extensiveness of a state's CIA law is strongly associated with a higher percentage of indoor workers reporting a smoke-free work environment. This study did not reveal a similar association between local laws and smoke-free work environments. Youth smoking rates, shown to be related to state CIA laws, may be further affected with more stringent CIA policy. PMID:15735299
Comparison of simulator fidelity model predictions with in-simulator evaluation data
NASA Technical Reports Server (NTRS)
Parrish, R. V.; Mckissick, B. T.; Ashworth, B. R.
1983-01-01
A full factorial in simulator experiment of a single axis, multiloop, compensatory pitch tracking task is described. The experiment was conducted to provide data to validate extensions to an analytic, closed loop model of a real time digital simulation facility. The results of the experiment encompassing various simulation fidelity factors, such as visual delay, digital integration algorithms, computer iteration rates, control loading bandwidths and proprioceptive cues, and g-seat kinesthetic cues, are compared with predictions obtained from the analytic model incorporating an optimal control model of the human pilot. The in-simulator results demonstrate more sensitivity to the g-seat and to the control loader conditions than were predicted by the model. However, the model predictions are generally upheld, although the predicted magnitudes of the states and of the error terms are sometimes off considerably. Of particular concern is the large sensitivity difference for one control loader condition, as well as the model/in-simulator mismatch in the magnitude of the plant states when the other states match.
Brian J. Clough; Matthew B. Russell; Grant M. Domke; Christopher W. Woodall; Philip J. Radtke
2016-01-01
tEstimation of live tree biomass is an important task for both forest carbon accounting and studies of nutri-ent dynamics in forest ecosystems. In this study, we took advantage of an extensive felled-tree database(with 2885 foliage biomass observations) to compare different models and grouping schemes based onphylogenetic and geographic variation for predicting foliage...
The Nature of Organizational Learning in a State Extension Organization
ERIC Educational Resources Information Center
Leuci, Mary Simon
2012-01-01
Our complex and rapidly changing world demands a more nimble, responsive, and flexible Extension organization. The findings from a study involving interviews across a state Cooperative Extension Service paint a picture of organizational learning in Extension. Four key dimensions of learning surfaced. Of particular importance are the application of…
Limit sets for natural extensions of Schelling’s segregation model
NASA Astrophysics Data System (ADS)
Singh, Abhinav; Vainchtein, Dmitri; Weiss, Howard
2011-07-01
Thomas Schelling developed an influential demographic model that illustrated how, even with relatively mild assumptions on each individual's nearest neighbor preferences, an integrated city would likely unravel to a segregated city, even if all individuals prefer integration. Individuals in Schelling's model cities are divided into two groups of equal number and each individual is "happy" or "unhappy" when the number of similar neighbors cross a simple threshold. In this manuscript we consider natural extensions of Schelling's original model to allow the two groups have different sizes and to allow different notions of happiness of an individual. We observe that differences in aggregation patterns of majority and minority groups are highly sensitive to the happiness threshold; for low threshold, the differences are small, and when the threshold is raised, striking new patterns emerge. We also observe that when individuals strongly prefer to live in integrated neighborhoods, the final states exhibit a new tessellated-like structure.
Secure Computer Systems: Extensions to the Bell-La Padula Model
2009-01-01
countable and n CX ℜ∈ ; V is a finite collection of input variables. We assume ( )CD VVV ∪= with DV countable and nCV ℜ∈ ; XInit ⊆ is a set of...assume ( )CD VVV ∪= with DV countable and nCV ℜ∈ ; XInit ⊆ is a set of initial states; CXVXf →×: is a vector field, assumed to be globally...built under the Eclipse Swordfish project. As indicated on the project web site,”The goal of the Swordfish project is to provide an extensible SOA
Dynamic all-red extension at signalized intersection : probabilistic modeling and algorithm.
DOT National Transportation Integrated Search
2011-01-01
Red light running has been a major cause of intersection injuries and fatalities in the United : States. In 2004 alone, there were 8,619 fatal crashes and 848,000 crashes with people injured, all : caused by RLR. Under the U.S. Department of Transpor...
Code of Federal Regulations, 2010 CFR
2010-01-01
... consisting of the Cooperative State Research, Education, and Extension Service, United States Department of.... Cooperative State Research, Education, and Extension Service, United States Department of Agriculture as used in this part means the Federal agency within the United States Department of Agriculture which...
Health Extension in New Mexico: An Academic Health Center and the Social Determinants of Disease
Kaufman, Arthur; Powell, Wayne; Alfero, Charles; Pacheco, Mario; Silverblatt, Helene; Anastasoff, Juliana; Ronquillo, Francisco; Lucero, Ken; Corriveau, Erin; Vanleit, Betsy; Alverson, Dale; Scott, Amy
2010-01-01
The Agricultural Cooperative Extension Service model offers academic health centers methodologies for community engagement that can address the social determinants of disease. The University of New Mexico Health Sciences Center developed Health Extension Rural Offices (HEROs) as a vehicle for its model of health extension. Health extension agents are located in rural communities across the state and are supported by regional coordinators and the Office of the Vice President for Community Health at the Health Sciences Center. The role of agents is to work with different sectors of the community in identifying high-priority health needs and linking those needs with university resources in education, clinical service and research. Community needs, interventions, and outcomes are monitored by county health report cards. The Health Sciences Center is a large and varied resource, the breadth and accessibility of which are mostly unknown to communities. Community health needs vary, and agents are able to tap into an array of existing health center resources to address those needs. Agents serve a broader purpose beyond immediate, strictly medical needs by addressing underlying social determinants of disease, such as school retention, food insecurity, and local economic development. Developing local capacity to address local needs has become an overriding concern. Community-based health extension agents can effectively bridge those needs with academic health center resources and extend those resources to address the underlying social determinants of disease. PMID:20065282
Phase transitions in a multistate majority-vote model on complex networks
NASA Astrophysics Data System (ADS)
Chen, Hanshuang; Li, Guofeng
2018-06-01
We generalize the original majority-vote (MV) model from two states to arbitrary p states and study the order-disorder phase transitions in such a p -state MV model on complex networks. By extensive Monte Carlo simulations and a mean-field theory, we show that for p ≥3 the order of phase transition is essentially different from a continuous second-order phase transition in the original two-state MV model. Instead, for p ≥3 the model displays a discontinuous first-order phase transition, which is manifested by the appearance of the hysteresis phenomenon near the phase transition. Within the hysteresis loop, the ordered phase and disordered phase are coexisting, and rare flips between the two phases can be observed due to the finite-size fluctuation. Moreover, we investigate the type of phase transition under a slightly modified dynamics [Melo et al., J. Stat. Mech. (2010) P11032, 10.1088/1742-5468/2010/11/P11032]. We find that the order of phase transition in the three-state MV model depends on the degree heterogeneity of networks. For p ≥4 , both dynamics produce the first-order phase transitions.
A quasi-current representation for information needs inspired by Two-State Vector Formalism
NASA Astrophysics Data System (ADS)
Wang, Panpan; Hou, Yuexian; Li, Jingfei; Zhang, Yazhou; Song, Dawei; Li, Wenjie
2017-09-01
Recently, a number of quantum theory (QT)-based information retrieval (IR) models have been proposed for modeling session search task that users issue queries continuously in order to describe their evolving information needs (IN). However, the standard formalism of QT cannot provide a complete description for users' current IN in a sense that it does not take the 'future' information into consideration. Therefore, to seek a more proper and complete representation for users' IN, we construct a representation of quasi-current IN inspired by an emerging Two-State Vector Formalism (TSVF). With the enlightenment of the completeness of TSVF, a "two-state vector" derived from the 'future' (the current query) and the 'history' (the previous query) is employed to describe users' quasi-current IN in a more complete way. Extensive experiments are conducted on the session tracks of TREC 2013 & 2014, and show that our model outperforms a series of compared IR models.
Expert decision-making strategies
NASA Technical Reports Server (NTRS)
Mosier, Kathleen L.
1991-01-01
A recognition-primed decisions (RPD) model is employed as a framework to investigate crew decision-making processes. The quality of information transfer, a critical component of the team RPD model and an indicator of the team's 'collective consciouness', is measured and analyzed with repect to crew performance. As indicated by the RPD model, timing and patterns of information search transfer were expected to reflect extensive and continual situation assessment, and serial evaluation of alternative states of the world or decision response options.
The Impacts of the Great Recession on State Natural Resource Extension Programs
ERIC Educational Resources Information Center
Serenari, Christopher; Peterson, M. Nils; Bardon, Robert E.; Brown, Robert D.
2013-01-01
The Great Recession contributed to major budget cuts for natural resource Extension programs in the United States. Despite the potentially large cuts, their impacts and how Extension has adapted their programs have not been evaluated. We begin addressing these needs with surveys of Association of Natural Resource Extension Professionals members…
Virtual sensor models for real-time applications
NASA Astrophysics Data System (ADS)
Hirsenkorn, Nils; Hanke, Timo; Rauch, Andreas; Dehlink, Bernhard; Rasshofer, Ralph; Biebl, Erwin
2016-09-01
Increased complexity and severity of future driver assistance systems demand extensive testing and validation. As supplement to road tests, driving simulations offer various benefits. For driver assistance functions the perception of the sensors is crucial. Therefore, sensors also have to be modeled. In this contribution, a statistical data-driven sensor-model, is described. The state-space based method is capable of modeling various types behavior. In this contribution, the modeling of the position estimation of an automotive radar system, including autocorrelations, is presented. For rendering real-time capability, an efficient implementation is presented.
Failure in Success; An Assessment of Agricultural Extension in the United States.
ERIC Educational Resources Information Center
Carlson, Robert A.
The United States formalized its cooperative national support program for agricultural extension in 1941. The hope was to increase agricultural production and to help maintain a rural way of life in the United States. The Cooperative Extension Service was unable to strike a balance between these two goals, emphasizing increased production to such…
Neoliberal Contradictions in Two Private Niches of Educational "Choice"
ERIC Educational Resources Information Center
Wilson, Marguerite Anne Fillion; Scarbrough, Burke
2018-01-01
This article brings together ethnographies of two privileged educational settings in the United States--a private school in California's Central Valley following the progressivist Sudbury model, and an affluent New England boarding school's summer enrichment program. Each of these institutions serves as an alternative to and/or extension of…
Adaptation of irrigation infrastructure on irrigation demands under future drought in the USA
USDA-ARS?s Scientific Manuscript database
More severe droughts in the United States will bring great challenges to irrigation water supply. Here, the authors assessed the potential adaptive effects of irrigation infrastructure under present and more extensive droughts. Based on data over 1985–2005, this study established a statistical model...
Building U.S. Economic Competitiveness: The Land-Grant Model.
ERIC Educational Resources Information Center
Jones, Russel C.; And Others
1990-01-01
There is a strong potential role for land-grant institutions, to provide technology education programs and outreach to industry. There is also a role for the federal government in stimulating, assisting, and coordinating a nationwide network of regional, state, and local programs for technology development and industrial extension. (MLW)
An Examination of Master's Student Retention & Completion
ERIC Educational Resources Information Center
Barry, Melissa; Mathies, Charles
2011-01-01
This study was conducted at a research-extensive public university in the southeastern United States. It examined the retention and completion of master's degree students across numerous disciplines. Results were derived from a series of descriptive statistics, T-tests, and a series of binary logistic regression models. The findings from binary…
Technology-Oriented Job Preparation. Final Report.
ERIC Educational Resources Information Center
One America, Inc., Washington, DC.
An extensive review of literature dealing with 263 technology-oriented vocational training programs was conducted to gather current information on the state of such training. Particular emphasis was placed on links between programs and government bodies or private sector entities and programs that could serve as models for those wishing to…
Higher Education and Employability: New Models for Integrating Study and Work
ERIC Educational Resources Information Center
Stokes, Peter J.
2015-01-01
"Higher Education and Employability" makes a crucial contribution to the current reassessment of higher education in the United States by focusing on how colleges and universities can collaborate with businesses in order to serve the educational and professional interests of their students. Drawing on his extensive experience with…
Optimizing Likelihood Models for Particle Trajectory Segmentation in Multi-State Systems.
Young, Dylan Christopher; Scrimgeour, Jan
2018-06-19
Particle tracking offers significant insight into the molecular mechanics that govern the behav- ior of living cells. The analysis of molecular trajectories that transition between different motive states, such as diffusive, driven and tethered modes, is of considerable importance, with even single trajectories containing significant amounts of information about a molecule's environment and its interactions with cellular structures. Hidden Markov models (HMM) have been widely adopted to perform the segmentation of such complex tracks. In this paper, we show that extensive analysis of hidden Markov model outputs using data derived from multi-state Brownian dynamics simulations can be used both for the optimization of the likelihood models used to describe the states of the system and for characterization of the technique's failure mechanisms. This analysis was made pos- sible by the implementation of parallelized adaptive direct search algorithm on a Nvidia graphics processing unit. This approach provides critical information for the visualization of HMM failure and successful design of particle tracking experiments where trajectories contain multiple mobile states. © 2018 IOP Publishing Ltd.
ERIC Educational Resources Information Center
Scheer, Scott D.; Cochran, Graham R.; Harder, Amy; Place, Nick T.
2011-01-01
The purpose of this study was to compare and contrast an academic extension education model with an Extension human resource management model. The academic model of 19 competencies was similar across the 22 competencies of the Extension human resource management model. There were seven unique competencies for the human resource management model.…
Deep Recurrent Neural Network-Based Autoencoders for Acoustic Novelty Detection
Vesperini, Fabio; Schuller, Björn
2017-01-01
In the emerging field of acoustic novelty detection, most research efforts are devoted to probabilistic approaches such as mixture models or state-space models. Only recent studies introduced (pseudo-)generative models for acoustic novelty detection with recurrent neural networks in the form of an autoencoder. In these approaches, auditory spectral features of the next short term frame are predicted from the previous frames by means of Long-Short Term Memory recurrent denoising autoencoders. The reconstruction error between the input and the output of the autoencoder is used as activation signal to detect novel events. There is no evidence of studies focused on comparing previous efforts to automatically recognize novel events from audio signals and giving a broad and in depth evaluation of recurrent neural network-based autoencoders. The present contribution aims to consistently evaluate our recent novel approaches to fill this white spot in the literature and provide insight by extensive evaluations carried out on three databases: A3Novelty, PASCAL CHiME, and PROMETHEUS. Besides providing an extensive analysis of novel and state-of-the-art methods, the article shows how RNN-based autoencoders outperform statistical approaches up to an absolute improvement of 16.4% average F-measure over the three databases. PMID:28182121
Development of a methodology for assessing the safety of embedded software systems
NASA Technical Reports Server (NTRS)
Garrett, C. J.; Guarro, S. B.; Apostolakis, G. E.
1993-01-01
A Dynamic Flowgraph Methodology (DFM) based on an integrated approach to modeling and analyzing the behavior of software-driven embedded systems for assessing and verifying reliability and safety is discussed. DFM is based on an extension of the Logic Flowgraph Methodology to incorporate state transition models. System models which express the logic of the system in terms of causal relationships between physical variables and temporal characteristics of software modules are analyzed to determine how a certain state can be reached. This is done by developing timed fault trees which take the form of logical combinations of static trees relating the system parameters at different point in time. The resulting information concerning the hardware and software states can be used to eliminate unsafe execution paths and identify testing criteria for safety critical software functions.
ERIC Educational Resources Information Center
Beeman, Carl E.; And Others
A study was conducted to identify and verify the professional competencies needed by extension agents in Florida. Closed form opinionnaires were used to survey 254 extension agents and fifteen state staff members concerning 158 competencies. Among the findings was that state staff members rated all competency categories higher than did incumbent…
NASA Astrophysics Data System (ADS)
Shair, Syazreen Niza; Yusof, Aida Yuzi; Asmuni, Nurin Haniah
2017-05-01
Coherent mortality forecasting models have recently received increasing attention particularly in their application to sub-populations. The advantage of coherent models over independent models is the ability to forecast a non-divergent mortality for two or more sub-populations. One of the coherent models was recently developed by [1] known as the product-ratio model. This model is an extension version of the functional independent model from [2]. The product-ratio model has been applied in a developed country, Australia [1] and has been extended in a developing nation, Malaysia [3]. While [3] accounted for coherency of mortality rates between gender and ethnic group, the coherency between states in Malaysia has never been explored. This paper will forecast the mortality rates of Malaysian sub-populations according to states using the product ratio coherent model and its independent version— the functional independent model. The forecast accuracies of two different models are evaluated using the out-of-sample error measurements— the mean absolute forecast error (MAFE) for age-specific death rates and the mean forecast error (MFE) for the life expectancy at birth. We employ Malaysian mortality time series data from 1991 to 2014, segregated by age, gender and states.
Nebraska NativeGEM (Geospatial Extension Model)
NASA Technical Reports Server (NTRS)
Bowen, Brent
2004-01-01
This proposal, Nebraska NativeGEM (Geospatial Extension Model) features a unique diversity component stemming from the exceptional reputation NNSGC has built by delivering geospatial science experiences to Nebraska s Native Americans. For 7 years, NNSGC has partner4 with the 2 tribal colleges and 4 reservation school districts in Nebraska to form the Nebraska Native American Outreach Program (NNAOP), a partnership among tribal community leaders, academia, tribal schools, and industry reaching close to 1,OOO Native American youth, over 1,200 community members (Lehrer & Zendajas, 2001).NativeGEM addresses all three key components of Cooperative State Research, Education, and Extension Service (CSREES) goals for advancing decision support, education, and workforce development through the GES. The existing long term commitments that the NNSGC and the GES have in these areas allow for the pursuit of a broad range of activities. NativeGEM builds upon these existing successful programs and collaborations. Outcomes and metrics for each proposed project are detailed in the Approach section of this document.
Centrifuge Modeling of Explosion-Induced Craters in Unsaturated Sand
1992-11-01
under the Air F.rce Palace Knight Program 12a. DISTRIBUTION ’AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for Public Release Distribution...This report was submitted as a thesis to Colorado State University. Funding was provided by the U.S. Air Force Palace Knight program and by the U.S...analysis is used to generate a list of pi terms. Dimensional analysis is an extension of the Buckingham pi theorem ( Buckingham , 1914) which states that given
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, David; Agarwal, Deborah A.; Sun, Xin
2011-09-01
The Carbon Capture Simulation Initiative is developing state-of-the-art computational modeling and simulation tools to accelerate the commercialization of carbon capture technology. The CCSI Toolset consists of an integrated multi-scale modeling and simulation framework, which includes extensive use of reduced order models (ROMs) and a comprehensive uncertainty quantification (UQ) methodology. This paper focuses on the interrelation among high performance computing, detailed device simulations, ROMs for scale-bridging, UQ and the integration framework.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, D.; Agarwal, D.; Sun, X.
2011-01-01
The Carbon Capture Simulation Initiative is developing state-of-the-art computational modeling and simulation tools to accelerate the commercialization of carbon capture technology. The CCSI Toolset consists of an integrated multi-scale modeling and simulation framework, which includes extensive use of reduced order models (ROMs) and a comprehensive uncertainty quantification (UQ) methodology. This paper focuses on the interrelation among high performance computing, detailed device simulations, ROMs for scale-bridging, UQ and the integration framework.
NASA Astrophysics Data System (ADS)
Bezzi, Michele; Celada, Franco; Ruffo, Stefano; Seiden, Philip E.
1997-02-01
In this paper we extend the Celada-Seiden (CS) model of the humoral immune response to include infections virus and killer T cells (cellular response). The model represents molecules and cells with bitstrings. The response of the system to virus involves a competition between the ability of the virus to kill the host cells and the host's ability to eliminate the virus. We find two basins of attraction in the dynamics of this system, one is identified with disease and the other with the immune state. There is also an oscillating state that exists on the border of these two stable states. Fluctuations in the population of virus or antibody can end the oscillation and drive the system into one of the stable states. The introduction of mechanisms of cross-regulation between the two responses can bias the system towards one of them. We also study a mean field model, based on coupled maps, to investigate virus-like infections. This simple model reproduces the attractors for average populations observed in the cellular automaton. All the dynamical behavior connected to spatial extension is lost, as is the oscillating feature. Thus the mean field approximation introduced with coupled maps destroys oscillations.
Variability simulations with a steady, linearized primitive equations model
NASA Technical Reports Server (NTRS)
Kinter, J. L., III; Nigam, S.
1985-01-01
Solutions of the steady, primitive equations on a sphere, linearized about a zonally symmetric basic state are computed for the purpose of simulating monthly mean variability in the troposphere. The basic states are observed, winter monthly mean, zonal means of zontal and meridional velocities, temperatures and surface pressures computed from the 15 year NMC time series. A least squares fit to a series of Legendre polynomials is used to compute the basic states between 20 H and the equator, and the hemispheres are assumed symmetric. The model is spectral in the zonal direction, and centered differences are employed in the meridional and vertical directions. Since the model is steady and linear, the solution is obtained by inversion of a block, pente-diagonal matrix. The model simulates the climatology of the GFDL nine level, spectral general circulation model quite closely, particularly in middle latitudes above the boundary layer. This experiment is an extension of that simulation to examine variability of the steady, linear solution.
Entanglement entropy from tensor network states for stabilizer codes
NASA Astrophysics Data System (ADS)
He, Huan; Zheng, Yunqin; Bernevig, B. Andrei; Regnault, Nicolas
2018-03-01
In this paper, we present the construction of tensor network states (TNS) for some of the degenerate ground states of three-dimensional (3D) stabilizer codes. We then use the TNS formalism to obtain the entanglement spectrum and entropy of these ground states for some special cuts. In particular, we work out examples of the 3D toric code, the X-cube model, and the Haah code. The latter two models belong to the category of "fracton" models proposed recently, while the first one belongs to the conventional topological phases. We mention the cases for which the entanglement entropy and spectrum can be calculated exactly: For these, the constructed TNS is a singular value decomposition (SVD) of the ground states with respect to particular entanglement cuts. Apart from the area law, the entanglement entropies also have constant and linear corrections for the fracton models, while the entanglement entropies for the toric code models only have constant corrections. For the cuts we consider, the entanglement spectra of these three models are completely flat. We also conjecture that the negative linear correction to the area law is a signature of extensive ground-state degeneracy. Moreover, the transfer matrices of these TNSs can be constructed. We show that the transfer matrices are projectors whose eigenvalues are either 1 or 0. The number of nonzero eigenvalues is tightly related to the ground-state degeneracy.
Towards a systems approach for chronic diseases, based on health state modeling
Rebhan, Michael
2017-01-01
Rising pressure from chronic diseases means that we need to learn how to deal with challenges at a different level, including the use of systems approaches that better connect across fragments, such as disciplines, stakeholders, institutions, and technologies. By learning from progress in leading areas of health innovation (including oncology and AIDS), as well as complementary indications (Alzheimer’s disease), I try to extract the most enabling innovation paradigms, and discuss their extension to additional areas of application within a systems approach. To facilitate such work, a Precision, P4 or Systems Medicine platform is proposed, which is centered on the representation of health states that enable the definition of time in the vision to provide the right intervention for the right patient at the right time and dose. Modeling of such health states should allow iterative optimization, as longitudinal human data accumulate. This platform is designed to facilitate the discovery of links between opportunities related to a) the modernization of diagnosis, including the increased use of omics profiling, b) patient-centric approaches enabled by technology convergence, including digital health and connected devices, c) increasing understanding of the pathobiological, clinical and health economic aspects of disease progression stages, d) design of new interventions, including therapies as well as preventive measures, including sequential intervention approaches. Probabilistic Markov models of health states, e.g. those used for health economic analysis, are discussed as a simple starting point for the platform. A path towards extension into other indications, data types and uses is discussed, with a focus on regenerative medicine and relevant pathobiology. PMID:28529704
Ringed Seal Search for Global Optimization via a Sensitive Search Model.
Saadi, Younes; Yanto, Iwan Tri Riyadi; Herawan, Tutut; Balakrishnan, Vimala; Chiroma, Haruna; Risnumawan, Anhar
2016-01-01
The efficiency of a metaheuristic algorithm for global optimization is based on its ability to search and find the global optimum. However, a good search often requires to be balanced between exploration and exploitation of the search space. In this paper, a new metaheuristic algorithm called Ringed Seal Search (RSS) is introduced. It is inspired by the natural behavior of the seal pup. This algorithm mimics the seal pup movement behavior and its ability to search and choose the best lair to escape predators. The scenario starts once the seal mother gives birth to a new pup in a birthing lair that is constructed for this purpose. The seal pup strategy consists of searching and selecting the best lair by performing a random walk to find a new lair. Affected by the sensitive nature of seals against external noise emitted by predators, the random walk of the seal pup takes two different search states, normal state and urgent state. In the normal state, the pup performs an intensive search between closely adjacent lairs; this movement is modeled via a Brownian walk. In an urgent state, the pup leaves the proximity area and performs an extensive search to find a new lair from sparse targets; this movement is modeled via a Levy walk. The switch between these two states is realized by the random noise emitted by predators. The algorithm keeps switching between normal and urgent states until the global optimum is reached. Tests and validations were performed using fifteen benchmark test functions to compare the performance of RSS with other baseline algorithms. The results show that RSS is more efficient than Genetic Algorithm, Particles Swarm Optimization and Cuckoo Search in terms of convergence rate to the global optimum. The RSS shows an improvement in terms of balance between exploration (extensive) and exploitation (intensive) of the search space. The RSS can efficiently mimic seal pups behavior to find best lair and provide a new algorithm to be used in global optimization problems.
Policy for equipment’s leasing period extension with minimum cost of maintenance
NASA Astrophysics Data System (ADS)
Lestari, C.; Kurniati, N.
2018-04-01
The cost structure for equipment investment including purchase cost and maintenance cost is getting more expensive. The company considers to lease the equipment instead of purchase it under a contractual agreement. Offering to extend the lease period, following to the base lease period, will provide more benefits for both the lessor (owner) and the lessee (user). Whenever the lease period extension offered at the beginning of the contract, there are some risks in finance e.g. uncertainty of the equipment performance and lessor responsibility. Therefore, this research attempts to model the optimal maintenance policy for lease period extension offered at the end of the contract. Minimal repair is performed to rectify a failed equipment, while imperfect preventive maintenance is conducted to improve the operational state of the equipment when reaches a certain control limit to avoid failures. The mathematical model is constructed to determine the optimal control limit, the number and degree of preventive maintenance, and the multiplication number of the lease period extension. Finally, numerical examples are given to illustrate the influences of the optimal length of the extended lease and the maintenance policy to minimize the maintenance cost.
Markov state models of protein misfolding
NASA Astrophysics Data System (ADS)
Sirur, Anshul; De Sancho, David; Best, Robert B.
2016-02-01
Markov state models (MSMs) are an extremely useful tool for understanding the conformational dynamics of macromolecules and for analyzing MD simulations in a quantitative fashion. They have been extensively used for peptide and protein folding, for small molecule binding, and for the study of native ensemble dynamics. Here, we adapt the MSM methodology to gain insight into the dynamics of misfolded states. To overcome possible flaws in root-mean-square deviation (RMSD)-based metrics, we introduce a novel discretization approach, based on coarse-grained contact maps. In addition, we extend the MSM methodology to include "sink" states in order to account for the irreversibility (on simulation time scales) of processes like protein misfolding. We apply this method to analyze the mechanism of misfolding of tandem repeats of titin domains, and how it is influenced by confinement in a chaperonin-like cavity.
Frequency Dependent Nudging of Hydrographic Data Into a Numerical Model of the North Atlantic
NASA Astrophysics Data System (ADS)
Thompson, K. R.; Wright, D. G.
2002-12-01
Nudging is one of the simplest ways of assimilating data into ocean models and it has been used for many years in studies of large-scale ocean circulation. One of its drawbacks is the suppression of eddies when nudging an eddy-permitting ocean model strongly toward an observed seasonal climatology. We propose a straightforward extension of nudging in which the model's climatology, rather than its instantaneous state, is nudged toward the observed seasonal climatology. In effect we propose nudging in specific frequency bands that are centered on the discrete frequencies evident in the observed climatology (e.g. 0, 1/12 and 1/6 cycles per month). This extension of conventional nudging allows the difference between the observed and modeled climatologies arbitrarily to be made small while allowing variations outside the selected frequency bands to evolve freely. We show how the method can be implemented efficiently in complex models using a Kalman filter and also discuss the benefits of spatially smoothing the nudges. We conclude with a demonstration of frequency dependent nudging using a 1/3 degree model of the North Atlantic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Jade; Nobrega, R. Paul; Schwantes, Christian
The dynamics of globular proteins can be described in terms of transitions between a folded native state and less-populated intermediates, or excited states, which can play critical roles in both protein folding and function. Excited states are by definition transient species, and therefore are difficult to characterize using current experimental techniques. We report an atomistic model of the excited state ensemble of a stabilized mutant of an extensively studied flavodoxin fold protein CheY. We employed a hybrid simulation and experimental approach in which an aggregate 42 milliseconds of all-atom molecular dynamics were used as an informative prior for the structuremore » of the excited state ensemble. The resulting prior was then refined against small-angle X-ray scattering (SAXS) data employing an established method (EROS). The most striking feature of the resulting excited state ensemble was an unstructured N-terminus stabilized by non-native contacts in a conformation that is topologically simpler than the native state. We then predict incisive single molecule FRET experiments, using these results, as a means of model validation. Our study demonstrates the paradigm of uniting simulation and experiment in a statistical model to study the structure of protein excited states and rationally design validating experiments.« less
New DICOM extensions for softcopy and hardcopy display consistency.
Eichelberg, M; Riesmeier, J; Kleber, K; Grönemeyer, D H; Oosterwijk, H; Jensch, P
2000-01-01
The DICOM standard defines in detail how medical images can be communicated. However, the rules on how to interpret the parameters contained in a DICOM image which deal with the image presentation were either lacking or not well defined. As a result, the same image frequently looks different when displayed on different workstations or printed on a film from various printers. Three new DICOM extensions attempt to close this gap by defining a comprehensive model for the display of images on softcopy and hardcopy devices: Grayscale Standard Display Function, Grayscale Softcopy Presentation State and Presentation Look Up Table.
Dark matter phenomenology of SM and enlarged Higgs sectors extended with vector-like leptons
NASA Astrophysics Data System (ADS)
Angelescu, Andrei; Arcadi, Giorgio
2017-07-01
We will investigate the scenario in which the Standard Model (SM) Higgs sector and its two-doublet extension (called the Two Higgs Doublet Model or 2HDM) are the "portal" for the interactions between the Standard Model and a fermionic Dark Matter (DM) candidate. The latter is the lightest stable neutral particle of a family of vector-like leptons (VLLs). We will provide an extensive overview of this scenario combining the constraints coming purely from DM phenomenology with more general constraints like Electroweak Precision Test (EWPT) as well as with collider searches. In the case that the new fermionic sector interacts with the SM Higgs sector, constraints from DM phenomenology force the new states to lie above the TeV scale. This requirement is relaxed in the case of 2HDM. Nevertheless, strong constraints coming from EWPTs and the Renormalization Group Equations (RGEs) limit the impact of VLFs on collider phenomenology.
Dark matter phenomenology of SM and enlarged Higgs sectors extended with vector-like leptons.
Angelescu, Andrei; Arcadi, Giorgio
2017-01-01
We will investigate the scenario in which the Standard Model (SM) Higgs sector and its two-doublet extension (called the Two Higgs Doublet Model or 2HDM) are the "portal" for the interactions between the Standard Model and a fermionic Dark Matter (DM) candidate. The latter is the lightest stable neutral particle of a family of vector-like leptons (VLLs). We will provide an extensive overview of this scenario combining the constraints coming purely from DM phenomenology with more general constraints like Electroweak Precision Test (EWPT) as well as with collider searches. In the case that the new fermionic sector interacts with the SM Higgs sector, constraints from DM phenomenology force the new states to lie above the TeV scale. This requirement is relaxed in the case of 2HDM. Nevertheless, strong constraints coming from EWPTs and the Renormalization Group Equations (RGEs) limit the impact of VLFs on collider phenomenology.
NASA Astrophysics Data System (ADS)
Randhir, Timothy O.; Raposa, Sarah
2014-11-01
Urbanization has a significant impact on water resources and requires a watershed-based approach to evaluate impacts of land use and urban development on watershed processes. This study uses a simulation with urban policy scenarios to model and strategize transferable recommendations for municipalities and cities to guide urban decisions using watershed ecohydrologic principles. The watershed simulation model is used to evaluation intensive (policy in existing built regions) and extensive (policy outside existing build regions) urban development scenarios with and without implementation of Best Management practices (BMPs). Water quantity and quality changes are simulated to assess effectiveness of five urban development scenarios. It is observed that optimal combination of intensive and extensive strategies can be used to sustain urban ecosystems. BMPs are found critical to reduce storm water and water quality impacts on urban development. Conservation zoning and incentives for voluntary adoption of BMPs can be used in sustaining urbanizing watersheds.
Variational optimization algorithms for uniform matrix product states
NASA Astrophysics Data System (ADS)
Zauner-Stauber, V.; Vanderstraeten, L.; Fishman, M. T.; Verstraete, F.; Haegeman, J.
2018-01-01
We combine the density matrix renormalization group (DMRG) with matrix product state tangent space concepts to construct a variational algorithm for finding ground states of one-dimensional quantum lattices in the thermodynamic limit. A careful comparison of this variational uniform matrix product state algorithm (VUMPS) with infinite density matrix renormalization group (IDMRG) and with infinite time evolving block decimation (ITEBD) reveals substantial gains in convergence speed and precision. We also demonstrate that VUMPS works very efficiently for Hamiltonians with long-range interactions and also for the simulation of two-dimensional models on infinite cylinders. The new algorithm can be conveniently implemented as an extension of an already existing DMRG implementation.
The "Learning Games Design Model": Immersion, Collaboration, and Outcomes-Driven Development
ERIC Educational Resources Information Center
Chamberlin, Barbara; Trespalacios, Jesús; Gallagher, Rachel
2012-01-01
Instructional designers in the Learning Games Lab at New Mexico State University have developed a specific approach for the creation of educational games, one that has been used successfully in over 20 instructional design projects and is extensible to other developers. Using this approach, game developers and content experts (a) work…
Use of FIA plot data in the LANDFIRE project
Chris Toney; Matthew Rollins; Karen Short; Tracey Frescino; Ronald Tymcio; Birgit Peterson
2007-01-01
LANDFIRE is an interagency project that will generate consistent maps and data describing vegetation, fire, and fuel characteristics across the United States within a 5-year timeframe. Modeling and mapping in LANDFIRE depend extensively on a large database of georeferenced field measurements describing vegetation, site characteristics, and fuel. The LANDFIRE Reference...
New Research Strengthens Home Visiting Field: The Pew Home Visiting Campaign
ERIC Educational Resources Information Center
Doggett, Libby
2013-01-01
Extensive research has shown that home visiting parental education programs improve child and family outcomes, and they save money for states and taxpayers. Now, the next generation of research is deepening understanding of those program elements that are essential to success, ways to improve existing models, and factors to consider in tailoring…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-13
... Forensic Science AGENCY: National Institute of Standards and Technology (NIST), United States Department of Commerce. ACTION: Notice, extension of comment period. SUMMARY: NIST is extending the deadline for... Guidance Groups for Forensic Science. Due to the lack of availability of information posted on the NIST Web...
Lotka-Volterra competition models for sessile organisms.
Spencer, Matthew; Tanner, Jason E
2008-04-01
Markov models are widely used to describe the dynamics of communities of sessile organisms, because they are easily fitted to field data and provide a rich set of analytical tools. In typical ecological applications, at any point in time, each point in space is in one of a finite set of states (e.g., species, empty space). The models aim to describe the probabilities of transitions between states. In most Markov models for communities, these transition probabilities are assumed to be independent of state abundances. This assumption is often suspected to be false and is rarely justified explicitly. Here, we start with simple assumptions about the interactions among sessile organisms and derive a model in which transition probabilities depend on the abundance of destination states. This model is formulated in continuous time and is equivalent to a Lotka-Volterra competition model. We fit this model and a variety of alternatives in which transition probabilities do not depend on state abundances to a long-term coral reef data set. The Lotka-Volterra model describes the data much better than all models we consider other than a saturated model (a model with a separate parameter for each transition at each time interval, which by definition fits the data perfectly). Our approach provides a basis for further development of stochastic models of sessile communities, and many of the methods we use are relevant to other types of community. We discuss possible extensions to spatially explicit models.
𝒩 = 2 supersymmetric Pais-Uhlenbeck oscillator
NASA Astrophysics Data System (ADS)
Masterov, Ivan
2015-06-01
We construct an 𝒩 = 2 supersymmetric extension of the Pais-Uhlenbeck oscillator for distinct frequencies of oscillation. A link to a set of decoupled 𝒩 = 2 supersymmetric harmonic oscillators with alternating sign in the Hamiltonian is introduced. Symmetries of the model are discussed in detail. The investigation of a quantum counterpart of the constructed model shows that the corresponding Fock space contains negative norm states and the energy spectrum of the system is unbounded from below.
Mounts, W M; Liebman, M N
1997-07-01
We have developed a method for representing biological pathways and simulating their behavior based on the use of stochastic activity networks (SANs). SANs, an extension of the original Petri net, have been used traditionally to model flow systems including data-communications networks and manufacturing processes. We apply the methodology to the blood coagulation cascade, a biological flow system, and present the representation method as well as results of simulation studies based on published experimental data. In addition to describing the dynamic model, we also present the results of its utilization to perform simulations of clinical states including hemophilia's A and B as well as sensitivity analysis of individual factors and their impact on thrombin production.
Chakraborty, Srirupa; Zheng, Wenjun
2015-01-27
We have employed molecular dynamics (MD) simulation to investigate, with atomic details, the structural dynamics and energetics of three major ATPase states (ADP, APO, and ATP state) of a human kinesin-1 monomer in complex with a tubulin dimer. Starting from a recently solved crystal structure of ATP-like kinesin-tubulin complex by the Knossow lab, we have used flexible fitting of cryo-electron-microscopy maps to construct new structural models of the kinesin-tubulin complex in APO and ATP state, and then conducted extensive MD simulations (total 400 ns for each state), followed by flexibility analysis, principal component analysis, hydrogen bond analysis, and binding free energy analysis. Our modeling and simulation have revealed key nucleotide-dependent changes in the structure and flexibility of the nucleotide-binding pocket (featuring a highly flexible and open switch I in APO state) and the tubulin-binding site, and allosterically coupled motions driving the APO to ATP transition. In addition, our binding free energy analysis has identified a set of key residues involved in kinesin-tubulin binding. On the basis of our simulation, we have attempted to address several outstanding issues in kinesin study, including the possible roles of β-sheet twist and neck linker docking in regulating nucleotide release and binding, the structural mechanism of ADP release, and possible extension and shortening of α4 helix during the ATPase cycle. This study has provided a comprehensive structural and dynamic picture of kinesin's major ATPase states, and offered promising targets for future mutational and functional studies to investigate the molecular mechanism of kinesin motors.
NASA Astrophysics Data System (ADS)
Choens, R. C., II; Chester, F. M.; Bauer, S. J.; Flint, G. M.
2014-12-01
Fluid-pressure assisted fracturing can produce mesh and other large, interconnected and complex networks consisting of both extension and shear fractures in various metamorphic, magmatic and tectonic systems. Presently, rock failure criteria for tensile and low-mean compressive stress conditions is poorly defined, although there is accumulating evidence that the transition from extension to shear fracture with increasing mean stress is continuous. We report on the results of experiments designed to document failure criteria, fracture mode, and localization phenomena for several rock types (sandstone, limestone, chalk and marble). Experiments were conducted in triaxial extension using a necked (dogbone) geometry to achieve mixed tension and compression stress states with local component-strain measurements in the failure region. The failure envelope for all rock types is similar, but are poorly described using Griffith or modified Griffith (Coulomb or other) failure criteria. Notably, the mode of fracture changes systematically from pure extension to shear with increase in compressive mean stress and display a continuous change in fracture orientation with respect to principal stress axes. Differential stress and inelastic strain show a systematic increase with increasing mean stress, whereas the axial stress decreases before increasing with increasing mean stress. The stress and strain data are used to analyze elastic and plastic strains leading to failure and compare the experimental results to predictions for localization using constitutive models incorporating on bifurcation theory. Although models are able to describe the stability behavior and onset of localization qualitatively, the models are unable to predict fracture type or orientation. Constitutive models using single or multiple yield surfaces are unable to predict the experimental results, reflecting the difficulty in capturing the changing micromechanisms from extension to shear failure. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Deopartment of Energy's National Security Administration under contract DE-AC04-94AL85000. SAND2014-16578A
Geometric Model of Topological Insulators from the Maxwell Algebra
NASA Astrophysics Data System (ADS)
Palumbo, Giandomenico
I propose a novel geometric model of time-reversal-invariant topological insulators in three dimensions in presence of an external electromagnetic field. Their gapped boundary supports relativistic quantum Hall states and is described by a Chern-Simons theory, where the gauge connection takes values in the Maxwell algebra. This represents a non-central extension of the Poincare' algebra and takes into account both the Lorentz and magnetic-translation symmetries of the surface states. In this way, I derive a relativistic version of the Wen-Zee term and I show that the non-minimal coupling between the background geometry and the electromagnetic field in the model is in agreement with the main properties of the relativistic quantum Hall states in the flat space. This work is part of the DITP consortium, a program of the Netherlands Organisation for Scientific Research (NWO) that is funded by the Dutch Ministry of Education, Culture and Science (OCW).
Simplified rotor load models and fatigue damage estimates for offshore wind turbines.
Muskulus, M
2015-02-28
The aim of rotor load models is to characterize and generate the thrust loads acting on an offshore wind turbine. Ideally, the rotor simulation can be replaced by time series from a model with a few parameters and state variables only. Such models are used extensively in control system design and, as a potentially new application area, structural optimization of support structures. Different rotor load models are here evaluated for a jacket support structure in terms of fatigue lifetimes of relevant structural variables. All models were found to be lacking in accuracy, with differences of more than 20% in fatigue load estimates. The most accurate models were the use of an effective thrust coefficient determined from a regression analysis of dynamic thrust loads, and a novel stochastic model in state-space form. The stochastic model explicitly models the quasi-periodic components obtained from rotational sampling of turbulent fluctuations. Its state variables follow a mean-reverting Ornstein-Uhlenbeck process. Although promising, more work is needed on how to determine the parameters of the stochastic model and before accurate lifetime predictions can be obtained without comprehensive rotor simulations. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
A flow paradigm in heavy-ion collisions
NASA Astrophysics Data System (ADS)
Yan, Li
2018-04-01
The success of hydrodynamics in high energy heavy-ion collisions leads to a flow paradigm, to understand the observed features of harmonic flow in terms of the medium collective expansion with respect to initial state geometrical properties. In this review, we present some essential ingredients in the flow paradigm, including the hydrodynamic modeling, the characterization of initial state geometry and the medium response relations. The extension of the flow paradigm to small colliding systems is also discussed. Supported by Natural Sciences and Engineering Research Council of Canada
Structural aspects of Lorentz-violating quantum field theory
NASA Astrophysics Data System (ADS)
Cambiaso, M.; Lehnert, R.; Potting, R.
2018-01-01
In the last couple of decades the Standard Model Extension has emerged as a fruitful framework to analyze the empirical and theoretical extent of the validity of cornerstones of modern particle physics, namely, of Special Relativity and of the discrete symmetries C, P and T (or some combinations of these). The Standard Model Extension allows to contrast high-precision experimental tests with posited alterations representing minute Lorentz and/or CPT violations. To date no violation of these symmetry principles has been observed in experiments, mostly prompted by the Standard-Model Extension. From the latter, bounds on the extent of departures from Lorentz and CPT symmetries can be obtained with ever increasing accuracy. These analyses have been mostly focused on tree-level processes. In this presentation I would like to comment on structural aspects of perturbative Lorentz violating quantum field theory. I will show that some insight coming from radiative corrections demands a careful reassessment of perturbation theory. Specifically I will argue that both the standard renormalization procedure as well as the Lehmann-Symanzik-Zimmermann reduction formalism need to be adapted given that the asymptotic single-particle states can receive quantum corrections from Lorentz-violating operators that are not present in the original Lagrangian.
Radar research at The Pennsylvania State University Radar and Communications Laboratory
NASA Astrophysics Data System (ADS)
Narayanan, Ram M.
2017-05-01
The Radar and Communications Laboratory (RCL) at The Pennsylvania State University is at the forefront of radar technology and is engaged in cutting edge research in all aspects of radar, including modeling and simulation studies of novel radar paradigms, design and development of new types of radar architectures, and extensive field measurements in realistic scenarios. This paper summarizes the research at The Pennsylvania State University's Radar and Communications Laboratory and relevant collaborative research with several groups over the past 15 years in the field of radar and related technologies, including communications, radio frequency identification (RFID), and spectrum sensing.
Ku, Wai Lim; Girvan, Michelle; Ott, Edward
2015-12-01
In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is "extensive" in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.
NASA Astrophysics Data System (ADS)
Ku, Wai Lim; Girvan, Michelle; Ott, Edward
2015-12-01
In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is "extensive" in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.
Genome-scale modelling of microbial metabolism with temporal and spatial resolution.
Henson, Michael A
2015-12-01
Most natural microbial systems have evolved to function in environments with temporal and spatial variations. A major limitation to understanding such complex systems is the lack of mathematical modelling frameworks that connect the genomes of individual species and temporal and spatial variations in the environment to system behaviour. The goal of this review is to introduce the emerging field of spatiotemporal metabolic modelling based on genome-scale reconstructions of microbial metabolism. The extension of flux balance analysis (FBA) to account for both temporal and spatial variations in the environment is termed spatiotemporal FBA (SFBA). Following a brief overview of FBA and its established dynamic extension, the SFBA problem is introduced and recent progress is described. Three case studies are reviewed to illustrate the current state-of-the-art and possible future research directions are outlined. The author posits that SFBA is the next frontier for microbial metabolic modelling and a rapid increase in methods development and system applications is anticipated. © 2015 Authors; published by Portland Press Limited.
Mannan, Ahmad A.; Toya, Yoshihiro; Shimizu, Kazuyuki; McFadden, Johnjoe; Kierzek, Andrzej M.; Rocco, Andrea
2015-01-01
An understanding of the dynamics of the metabolic profile of a bacterial cell is sought from a dynamical systems analysis of kinetic models. This modelling formalism relies on a deterministic mathematical description of enzyme kinetics and their metabolite regulation. However, it is severely impeded by the lack of available kinetic information, limiting the size of the system that can be modelled. Furthermore, the subsystem of the metabolic network whose dynamics can be modelled is faced with three problems: how to parameterize the model with mostly incomplete steady state data, how to close what is now an inherently open system, and how to account for the impact on growth. In this study we address these challenges of kinetic modelling by capitalizing on multi-‘omics’ steady state data and a genome-scale metabolic network model. We use these to generate parameters that integrate knowledge embedded in the genome-scale metabolic network model, into the most comprehensive kinetic model of the central carbon metabolism of E. coli realized to date. As an application, we performed a dynamical systems analysis of the resulting enriched model. This revealed bistability of the central carbon metabolism and thus its potential to express two distinct metabolic states. Furthermore, since our model-informing technique ensures both stable states are constrained by the same thermodynamically feasible steady state growth rate, the ensuing bistability represents a temporal coexistence of the two states, and by extension, reveals the emergence of a phenotypically heterogeneous population. PMID:26469081
NASA Astrophysics Data System (ADS)
Sadrzadeh, M.; Langari, A.
2018-06-01
We study the effect of quantum fluctuations by means of a transverse magnetic field (Γ) on the highly degenerate ground state of antiferromagnetic J1 -J2 Ising model on the square lattice, at the limit J2 /J1 = 0.5 . We show that harmonic quantum fluctuations based on single spin flips can not lift such degeneracy, however an-harmonic quantum fluctuations based on multi spin cluster flip excitations lift the degeneracy toward a unique ground state with string-valence bond solid (VBS) nature. A cluster operator formalism has been implemented to incorporate an-harmonic quantum fluctuations. We show that cluster-type excitations of the model lead not only to lower the excitation energy compared with a single-spin flip but also to lift the extensive degeneracy in favor of a string-VBS state, which breaks lattice rotational symmetry with only two fold degeneracy. The tendency toward the broken symmetry state is justified by numerical exact diagonalization. Moreover, we introduce a map to find the relation between the present model on the checkerboard and square lattices.
Sgourakis, Nikolaos G; Yau, Wai-Ming; Qiang, Wei
2015-01-06
Determining the structures of amyloid fibrils is an important first step toward understanding the molecular basis of neurodegenerative diseases. For β-amyloid (Aβ) fibrils, conventional solid-state NMR structure determination using uniform labeling is limited by extensive peak overlap. We describe the characterization of a distinct structural polymorph of Aβ using solid-state NMR, transmission electron microscopy (TEM), and Rosetta model building. First, the overall fibril arrangement is established using mass-per-length measurements from TEM. Then, the fibril backbone arrangement, stacking registry, and "steric zipper" core interactions are determined using a number of solid-state NMR techniques on sparsely (13)C-labeled samples. Finally, we perform Rosetta structure calculations with an explicitly symmetric representation of the system. We demonstrate the power of the hybrid Rosetta/NMR approach by modeling the in-register, parallel "Iowa" mutant (D23N) at high resolution (1.2Å backbone rmsd). The final models are validated using an independent set of NMR experiments that confirm key features. Copyright © 2015 Elsevier Ltd. All rights reserved.
Automatic labeling of MR brain images through extensible learning and atlas forests.
Xu, Lijun; Liu, Hong; Song, Enmin; Yan, Meng; Jin, Renchao; Hung, Chih-Cheng
2017-12-01
Multiatlas-based method is extensively used in MR brain images segmentation because of its simplicity and robustness. This method provides excellent accuracy although it is time consuming and limited in terms of obtaining information about new atlases. In this study, an automatic labeling of MR brain images through extensible learning and atlas forest is presented to address these limitations. We propose an extensible learning model which allows the multiatlas-based framework capable of managing the datasets with numerous atlases or dynamic atlas datasets and simultaneously ensure the accuracy of automatic labeling. Two new strategies are used to reduce the time and space complexity and improve the efficiency of the automatic labeling of brain MR images. First, atlases are encoded to atlas forests through random forest technology to reduce the time consumed for cross-registration between atlases and target image, and a scatter spatial vector is designed to eliminate errors caused by inaccurate registration. Second, an atlas selection method based on the extensible learning model is used to select atlases for target image without traversing the entire dataset and then obtain the accurate labeling. The labeling results of the proposed method were evaluated in three public datasets, namely, IBSR, LONI LPBA40, and ADNI. With the proposed method, the dice coefficient metric values on the three datasets were 84.17 ± 4.61%, 83.25 ± 4.29%, and 81.88 ± 4.53% which were 5% higher than those of the conventional method, respectively. The efficiency of the extensible learning model was evaluated by state-of-the-art methods for labeling of MR brain images. Experimental results showed that the proposed method could achieve accurate labeling for MR brain images without traversing the entire datasets. In the proposed multiatlas-based method, extensible learning and atlas forests were applied to control the automatic labeling of brain anatomies on large atlas datasets or dynamic atlas datasets and obtain accurate results. © 2017 American Association of Physicists in Medicine.
Tunnelling in asymmetric double-well potentials: varying initial states
NASA Astrophysics Data System (ADS)
Cordes, J. G.; Das, A. K.
2001-02-01
Tunnelling in a double-well potential has features which are not derivable through a mere extension of the concepts used in the context of a single potential barrier with no confining walls on either side. Furthermore, an asymmetric double-well potential, relevant in many contemporary areas of physics and chemistry, possesses certain distinctive aspects in contrast to the relatively simple case of a symmetric double-well potential. In this paper a self-contained numerical and analytical study of these features is reported, and a theoretical model is presented with special attention being given to a unified treatment of both the symmetric and asymmetric cases. The popularly used pair-state model is critically examined, and the important role of the initial state (which is rarely discussed in the literature) is highlighted with specific examples.
Extensive degeneracy, Coulomb phase and magnetic monopoles in artificial square ice.
Perrin, Yann; Canals, Benjamin; Rougemaille, Nicolas
2016-12-15
Artificial spin-ice systems are lithographically patterned arrangements of interacting magnetic nanostructures that were introduced as way of investigating the effects of geometric frustration in a controlled manner. This approach has enabled unconventional states of matter to be visualized directly in real space, and has triggered research at the frontier between nanomagnetism, statistical thermodynamics and condensed matter physics. Despite efforts to create an artificial realization of the square-ice model-a two-dimensional geometrically frustrated spin-ice system defined on a square lattice-no simple geometry based on arrays of nanomagnets has successfully captured the macroscopically degenerate ground-state manifold of the model. Instead, square lattices of nanomagnets are characterized by a magnetically ordered ground state that consists of local loop configurations with alternating chirality. Here we show that all of the characteristics of the square-ice model are observed in an artificial square-ice system that consists of two sublattices of nanomagnets that are vertically separated by a small distance. The spin configurations we image after demagnetizing our arrays reveal unambiguous signatures of a Coulomb phase and algebraic spin-spin correlations, which are characterized by the presence of 'pinch' points in the associated magnetic structure factor. Local excitations-the classical analogues of magnetic monopoles-are free to evolve in an extensively degenerate, divergence-free vacuum. We thus provide a protocol that could be used to investigate collective magnetic phenomena, including Coulomb phases and the physics of ice-like materials.
Language Model Combination and Adaptation Using Weighted Finite State Transducers
NASA Technical Reports Server (NTRS)
Liu, X.; Gales, M. J. F.; Hieronymus, J. L.; Woodland, P. C.
2010-01-01
In speech recognition systems language model (LMs) are often constructed by training and combining multiple n-gram models. They can be either used to represent different genres or tasks found in diverse text sources, or capture stochastic properties of different linguistic symbol sequences, for example, syllables and words. Unsupervised LM adaption may also be used to further improve robustness to varying styles or tasks. When using these techniques, extensive software changes are often required. In this paper an alternative and more general approach based on weighted finite state transducers (WFSTs) is investigated for LM combination and adaptation. As it is entirely based on well-defined WFST operations, minimum change to decoding tools is needed. A wide range of LM combination configurations can be flexibly supported. An efficient on-the-fly WFST decoding algorithm is also proposed. Significant error rate gains of 7.3% relative were obtained on a state-of-the-art broadcast audio recognition task using a history dependently adapted multi-level LM modelling both syllable and word sequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paricaud, P.
2015-07-28
A simple modification of the Boublík-Mansoori-Carnahan-Starling-Leland equation of state is proposed for an application to the metastable disordered region. The new model has a positive pole at the jamming limit and can accurately describe the molecular simulation data of pure hard in the stable fluid region and along the metastable branch. The new model has also been applied to binary mixtures hard spheres, and an excellent description of the fluid and metastable branches can be obtained by adjusting the jamming packing fraction. The new model for hard sphere mixtures can be used as the repulsive term of equations of statemore » for real fluids. In this case, the modified equations of state give very similar predictions of thermodynamic properties as the original models, and one can remove the multiple liquid density roots observed for some versions of the Statistical Associating Fluid Theory (SAFT) at low temperature without any modification of the dispersion term.« less
Recent Developments of the Florida Public Hurricane Loss Model
NASA Astrophysics Data System (ADS)
Cocke, S.; Shin, D. W.; Annane, B.
2016-12-01
Catastrophe models are used extensively by the insurance industry to estimate losses due to natural hazards such as hurricanes and earthquakes. In the state of Florida, primary insurers for hurricane damage to residential properties are required by law to use certified catastrophe models to establish their premiums and capital reserves. The Florida Public Hurricane Loss Model (FPHLM) is one of only five certified catastrophe models in Florida, and the only non-commercial model certified. The FPHLM has been funded through the Florida Legislature and is overseen by the Florida Office of Insurance Regulation (OIR). The model was developed by a consortium of universities and private consultants primary located in Florida, but includes some partners outside of the state. The FPHLM has met Florida requirements since 2006 and has undergone continuous evolution to maintain state-of-the-art capabilities and changes in state requirements established by the Florida Commission on Hurricane Loss Projection Methodology. Recently the model has been undergoing major enhancement to incorporate damage due to flooding, which not only includes hurricane floods but floods due to all potential natural hazards. This work is being done in anticipation of future changes in the National Flood Insurance Program (NFIP) that will bring private insurers to the flood market. The model will incorporate a surge model as well as an inland flood model. We will present progress on these recent enhancements along with additional progress of the model.
Anatomy of quantum critical wave functions in dissipative impurity problems
NASA Astrophysics Data System (ADS)
Blunden-Codd, Zach; Bera, Soumya; Bruognolo, Benedikt; Linden, Nils-Oliver; Chin, Alex W.; von Delft, Jan; Nazir, Ahsan; Florens, Serge
2017-02-01
Quantum phase transitions reflect singular changes taking place in a many-body ground state; however, computing and analyzing large-scale critical wave functions constitutes a formidable challenge. Physical insights into the sub-Ohmic spin-boson model are provided by the coherent-state expansion (CSE), which represents the wave function by a linear combination of classically displaced configurations. We find that the distribution of low-energy displacements displays an emergent symmetry in the absence of spontaneous symmetry breaking while experiencing strong fluctuations of the order parameter near the quantum critical point. Quantum criticality provides two strong fingerprints in critical low-energy modes: an algebraic decay of the average displacement and a constant universal average squeezing amplitude. These observations, confirmed by extensive variational matrix-product-state (VMPS) simulations and field theory arguments, offer precious clues into the microscopics of critical many-body states in quantum impurity models.
A synthesis of the basal thermal state of the Greenland Ice Sheet
MacGregor, Joseph A.; Fahnestock, Mark A.; Catania, Ginny A.; Aschwanden, Andy; Clow, Gary D.; Colgan, William T.; Gogineni, S. Prasad; Morlighem, Mathieu; Nowicki, Sophie M. J.; Paden, John D.; Price, Stephen F.; Seroussi, Hélène
2017-01-01
The basal thermal state of an ice sheet (frozen or thawed) is an important control upon its evolution, dynamics and response to external forcings. However, this state can only be observed directly within sparse boreholes or inferred conclusively from the presence of subglacial lakes. Here we synthesize spatially extensive inferences of the basal thermal state of the Greenland Ice Sheet to better constrain this state. Existing inferences include outputs from the eight thermomechanical ice-flow models included in the SeaRISE effort. New remote-sensing inferences of the basal thermal state are derived from Holocene radiostratigraphy, modern surface velocity and MODIS imagery. Both thermomechanical modeling and remote inferences generally agree that the Northeast Greenland Ice Stream and large portions of the southwestern ice-drainage systems are thawed at the bed, whereas the bed beneath the central ice divides, particularly their west-facing slopes, is frozen. Elsewhere, there is poor agreement regarding the basal thermal state. Both models and remote inferences rarely represent the borehole-observed basal thermal state accurately near NorthGRIP and DYE-3. This synthesis identifies a large portion of the Greenland Ice Sheet (about one third by area) where additional observations would most improve knowledge of its overall basal thermal state. PMID:28163988
A synthesis of the basal thermal state of the Greenland Ice Sheet.
MacGregor, Joseph A; Fahnestock, Mark A; Catania, Ginny A; Aschwanden, Andy; Clow, Gary D; Colgan, William T; Gogineni, S Prasad; Morlighem, Mathieu; Nowicki, Sophie M J; Paden, John D; Price, Stephen F; Seroussi, Hélène
2016-08-10
The basal thermal state of an ice sheet (frozen or thawed) is an important control upon its evolution, dynamics and response to external forcings. However, this state can only be observed directly within sparse boreholes or inferred conclusively from the presence of subglacial lakes. Here we synthesize spatially extensive inferences of the basal thermal state of the Greenland Ice Sheet to better constrain this state. Existing inferences include outputs from the eight thermomechanical ice-flow models included in the SeaRISE effort. New remote-sensing inferences of the basal thermal state are derived from Holocene radiostratigraphy, modern surface velocity and MODIS imagery. Both thermomechanical modeling and remote inferences generally agree that the Northeast Greenland Ice Stream and large portions of the southwestern ice-drainage systems are thawed at the bed, whereas the bed beneath the central ice divides, particularly their west-facing slopes, is frozen. Elsewhere, there is poor agreement regarding the basal thermal state. Both models and remote inferences rarely represent the borehole-observed basal thermal state accurately near NorthGRIP and DYE-3. This synthesis identifies a large portion of the Greenland Ice Sheet (about one third by area) where additional observations would most improve knowledge of its overall basal thermal state.
A synthesis of the basal thermal state of the Greenland Ice Sheet
MacGregor, Joseph A; Fahnestock, Mark A; Catania, Ginny A; Aschwanden, Andy; Clow, Gary D.; Colgan, William T.; Gogineni, Prasad S.; Morlighem, Mathieu; Nowicki, Sophie M .J.; Paden, John D; Price, Stephen F.; Seroussi, Helene
2016-01-01
The basal thermal state of an ice sheet (frozen or thawed) is an important control upon its evolution, dynamics and response to external forcings. However, this state can only be observed directly within sparse boreholes or inferred conclusively from the presence of subglacial lakes. Here we synthesize spatially extensive inferences of the basal thermal state of the Greenland Ice Sheet to better constrain this state. Existing inferences include outputs from the eight thermomechanical ice-flow models included in the SeaRISE effort. New remote-sensing inferences of the basal thermal state are derived from Holocene radiostratigraphy, modern surface velocity and MODIS imagery. Both thermomechanical modeling and remote inferences generally agree that the Northeast Greenland Ice Stream and large portions of the southwestern ice-drainage systems are thawed at the bed, whereas the bed beneath the central ice divides, particularly their west-facing slopes, is frozen. Elsewhere, there is poor agreement regarding the basal thermal state. Both models and remote inferences rarely represent the borehole-observed basal thermal state accurately near NorthGRIP and DYE-3. This synthesis identifies a large portion of the Greenland Ice Sheet (about one third by area) where additional observations would most improve knowledge of its overall basal thermal state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swesty, F. Douglas; Myra, Eric S.
It is now generally agreed that multidimensional, multigroup, neutrino-radiation hydrodynamics (RHD) is an indispensable element of any realistic model of stellar-core collapse, core-collapse supernovae, and proto-neutron star instabilities. We have developed a new, two-dimensional, multigroup algorithm that can model neutrino-RHD flows in core-collapse supernovae. Our algorithm uses an approach similar to the ZEUS family of algorithms, originally developed by Stone and Norman. However, this completely new implementation extends that previous work in three significant ways: first, we incorporate multispecies, multigroup RHD in a flux-limited-diffusion approximation. Our approach is capable of modeling pair-coupled neutrino-RHD, and includes effects of Pauli blocking inmore » the collision integrals. Blocking gives rise to nonlinearities in the discretized radiation-transport equations, which we evolve implicitly in time. We employ parallelized Newton-Krylov methods to obtain a solution of these nonlinear, implicit equations. Our second major extension to the ZEUS algorithm is the inclusion of an electron conservation equation that describes the evolution of electron-number density in the hydrodynamic flow. This permits calculating deleptonization of a stellar core. Our third extension modifies the hydrodynamics algorithm to accommodate realistic, complex equations of state, including those having nonconvex behavior. In this paper, we present a description of our complete algorithm, giving sufficient details to allow others to implement, reproduce, and extend our work. Finite-differencing details are presented in appendices. We also discuss implementation of this algorithm on state-of-the-art, parallel-computing architectures. Finally, we present results of verification tests that demonstrate the numerical accuracy of this algorithm on diverse hydrodynamic, gravitational, radiation-transport, and RHD sample problems. We believe our methods to be of general use in a variety of model settings where radiation transport or RHD is important. Extension of this work to three spatial dimensions is straightforward.« less
Nonequilibrium steady state of biochemical cycle kinetics under non-isothermal conditions
NASA Astrophysics Data System (ADS)
Jin, Xiao; Ge, Hao
2018-04-01
The nonequilibrium steady state of isothermal biochemical cycle kinetics has been extensively studied, but that under non-isothermal conditions has been much less extensively investigated. When the heat exchange between subsystems is slow, the isothermal assumption of the whole system breaks down, as is true for many types of living organisms. Here, starting with a four-state model of molecular transporter across the cell membrane, we generalize the nonequilibrium steady-state theory of isothermal biochemical cycle kinetics to the circumstances with non-uniform temperatures of subsystems in terms of general master equation models. We obtain a new thermodynamic relationship between the chemical reaction rates and thermodynamic potentials in non-isothermal circumstances, based on the overdamped dynamics along the continuous reaction coordinate. We show that the entropy production can vary up to 3% in real cells, even when the temperature difference across the cell membrane is only approximately 1 K. We then decompose the total thermodynamic driving force into its thermal and chemical components and predict that the net flux of molecules transported by the molecular transporter can potentially go against the temperature gradient in the absence of a chemical driving force. Furthermore, we demonstrate that the simple application of the isothermal transition-state rate formula for each chemical reaction in terms of only the reactant’ temperature is not thermodynamically consistent. Therefore, we mathematically derive several revised reaction rate formulas that are not only consistent with the new thermodynamic relationship but also approximate the exact reaction rate better than Kramers’ rate formula under isothermal conditions.
Blinov, Michael L.; Moraru, Ion I.
2011-01-01
Multi-state molecules and multi-component complexes are commonly involved in cellular signaling. Accounting for molecules that have multiple potential states, such as a protein that may be phosphorylated on multiple residues, and molecules that combine to form heterogeneous complexes located among multiple compartments, generates an effect of combinatorial complexity. Models involving relatively few signaling molecules can include thousands of distinct chemical species. Several software tools (StochSim, BioNetGen) are already available to deal with combinatorial complexity. Such tools need information standards if models are to be shared, jointly evaluated and developed. Here we discuss XML conventions that can be adopted for modeling biochemical reaction networks described by user-specified reaction rules. These could form a basis for possible future extensions of the Systems Biology Markup Language (SBML). PMID:21464833
A simple extension of Roe's scheme for real gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arabi, Sina, E-mail: sina.arabi@polymtl.ca; Trépanier, Jean-Yves; Camarero, Ricardo
The purpose of this paper is to develop a highly accurate numerical algorithm to model real gas flows in local thermodynamic equilibrium (LTE). The Euler equations are solved using a finite volume method based on Roe's flux difference splitting scheme including real gas effects. A novel algorithm is proposed to calculate the Jacobian matrix which satisfies the flux difference splitting exactly in the average state for a general equation of state. This algorithm increases the robustness and accuracy of the method, especially around the contact discontinuities and shock waves where the gas properties jump appreciably. The results are compared withmore » an exact solution of the Riemann problem for the shock tube which considers the real gas effects. In addition, the method is applied to a blunt cone to illustrate the capability of the proposed extension in solving two dimensional flows.« less
Modeling of marginal burning state of fire spread in live chaparral shrub fuel bed
X. Zhou; S. Mahalingam; D. Weise
2005-01-01
Prescribed burning in chaparral, currently used to manage wildland fuels and reduce wildfire hazard, is often conducted under marginal burning conditions. The relative importance of the fuel and environmental variables that determine fire spread success in chaparral fuels is not quantitatively understood. Based on extensive experimental study, a two-dimensional...
The Market Need for Off-Campus Cable-Based Higher Education.
ERIC Educational Resources Information Center
McBride, Jack
A study was made of the market need for cable television-based higher education from an off-campus and non-traditional point of view. State University of Nebraska (SUN) is such an endeavor. Reduced to its essence, SUN is three things: (1) an extensive investigation into non-traditional education; (2) a new exportable model for systematized design…
Exact Solutions to Time-dependent Mdps
NASA Technical Reports Server (NTRS)
Boyan, Justin A.; Littman, Michael L.
2000-01-01
We describe an extension of the Markov decision process model in which a continuous time dimension is included in the state space. This allows for the representation and exact solution of a wide range of problems in which transitions or rewards vary over time. We examine problems based on route planning with public transportation and telescope observation scheduling.
ERIC Educational Resources Information Center
Grunwald, Sandra K.; Krueger, Katherine J.
2008-01-01
Laboratory exercises, which utilize alkaline phosphatase as a model enzyme, have been developed and used extensively in undergraduate biochemistry courses to illustrate enzyme steady-state kinetics. A bioinformatics laboratory exercise for the biochemistry laboratory, which complements the traditional alkaline phosphatase kinetics exercise, was…
Photoacoustic and luminescence spectroscopy of benzil crystals
NASA Astrophysics Data System (ADS)
Bonno, B.; Laporte, J. L.; Rousset, Y.
1991-06-01
In the present work, both photoacoustic and luminescence techniques were employed to study molecular crystals. This paper presents an extension of the standard Rosencwaig-Gersho photoacoustic model to molecular crystals, which includes finite-deexcitation-time effects and excited-state populations. In the temperature range 100-300 K, the phosphorescence quantum yield and thermal diffusivity of benzil crystals were determined.
On the Validity of Student Evaluation of Teaching: The State of the Art
ERIC Educational Resources Information Center
Spooren, Pieter; Brockx, Bert; Mortelmans, Dimitri
2013-01-01
This article provides an extensive overview of the recent literature on student evaluation of teaching (SET) in higher education. The review is based on the SET meta-validation model, drawing upon research reports published in peer-reviewed journals since 2000. Through the lens of validity, we consider both the more traditional research themes in…
ERIC Educational Resources Information Center
Oloruntoba, Abayomi; Adegbite, Dorcas A.
2006-01-01
University outreach is an educational and research-based information source enabling farmers to make decisions that improve the quality of their lives. This paper explores how collaborative efforts between the university and farmers have directly impacted in albeit Striga ("noxious witch weed") ravaged maize farms in rainforest farming…
ERIC Educational Resources Information Center
Baughman, Sarah; Boyd, Heather H.; Kelsey, Kathleen D.
2012-01-01
The research reported here examined the impact of the Government Performance and Results Act on accountability and evaluation activities in two state Cooperative Extension Systems. Accountability was examined using five dimensions from Koppell's (2005) framework. Findings indicated both Extension systems transferred accountability activities to…
76 FR 57102 - Notice and Request for Comments: Two-Year Extension of Softwood Lumber Agreement
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-15
... additional two years. The United States is considering extending the SLA through October 12, 2015. Interested... additional 2 years.'' Without an extension, the Agreement will expire in October 12, 2013. USTR is... for Comments: Two-Year Extension of Softwood Lumber Agreement AGENCY: Office of the United States...
The pursuit of happiness measurement: a psychometric model based on psychophysiological correlates.
Pietro, Cipresso; Silvia, Serino; Giuseppe, Riva
2014-01-01
Everyone is interested in the pursuit of happiness, but the real problem for the researchers is how to measure it. Our aim was to deeply investigate happiness measurement through biomedical signals, using psychophysiological methods to objectify the happiness experiences measurements. The classic valence-arousal model of affective states to study happiness has been extensively used in psychophysiology. However, really few studies considered a real combination of these two dimensions and no study further investigated multidimensional models. More, most studies focused mainly on self-report to measure happiness and a deeper psychophysiological investigation on the dimensions of such an experience is still missing. A multidimensional model of happiness is presented and both the dimensions and the measures extracted within each dimension are comprehensively explained. This multidimensional model aims at being a milestone for future systematic study on psychophysiology of happiness and affective states.
Finite State Models of Manned Systems: Validation, Simplification, and Extension.
1979-11-01
model a time set is needed. A time set is some set T together with a binary relation defined on T which linearly orders the set. If "model time" is...discrete, so is T ; continuous time is represented by a set corresponding to a subset of the non-negative real numbers. In the following discussion time...defined as sequences, over time, of input and outIut values. The notion of sequences or trajectories is formalized as: AT = xx: T -- Al BT = tyIy: T -4BJ AT
Understanding medication compliance and persistence from an economics perspective.
Elliott, Rachel A; Shinogle, Judith A; Peele, Pamela; Bhosle, Monali; Hughes, Dyfrig A
2008-01-01
An increased understanding of the reasons for noncompliance and lack of persistence with prescribed medication is an important step to improve treatment effectiveness, and thus patient health. Explanations have been attempted from epidemiological, sociological, and psychological perspectives. Economic models (utility maximization, time preferences, health capital, bilateral bargaining, stated preference, and prospect theory) may contribute to the understanding of medication-taking behavior. Economic models are applied to medication noncompliance. Traditional consumer choice models under a budget constraint do apply to medication-taking behavior in that increased prices cause decreased utilization. Nevertheless, empiric evidence suggests that budget constraints are not the only factor affecting consumer choice around medicines. Examination of time preference models suggests that the intuitive association between time preference and medication compliance has not been investigated extensively, and has not been proven empirically. The health capital model has theoretical relevance, but has not been applied to compliance. Bilateral bargaining may present an alternative model to concordance of the patient-prescriber relationship, taking account of game-playing by either party. Nevertheless, there is limited empiric evidence to test its usefulness. Stated preference methods have been applied most extensively to medicines use. Evidence suggests that patients' preferences are consistently affected by side effects, and that preferences change over time, with age and experience. Prospect theory attempts to explain how new information changes risk perceptions and associated behavior but has not been applied empirically to medication use. Economic models of behavior may contribute to the understanding of medication use, but more empiric work is needed to assess their applicability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Thomas M.; Berndt, Markus; Baglietto, Emilio
The purpose of this report is to document a multi-year plan for enhancing turbulence modeling in Hydra-TH for the Consortium for Advanced Simulation of Light Water Reactors (CASL) program. Hydra-TH is being developed to the meet the high- fidelity, high-Reynolds number CFD based thermal hydraulic simulation needs of the program. This work is being conducted within the thermal hydraulics methods (THM) focus area. This report is an extension of THM CASL milestone L3:THM.CFD.P10.02 [33] (March, 2015) and picks up where it left off. It will also serve to meet the requirements of CASL THM level three milestone, L3:THM.CFD.P11.04, scheduled formore » completion September 30, 2015. The objectives of this plan will be met by: maturation of recently added turbulence models, strategic design/development of new models and systematic and rigorous testing of existing and new models and model extensions. While multi-phase turbulent flow simulations are important to the program, only single-phase modeling will be considered in this report. Large Eddy Simulation (LES) is also an important modeling methodology. However, at least in the first year, the focus is on steady-state Reynolds Averaged Navier-Stokes (RANS) turbulence modeling.« less
Development of hazard-compatible building fragility and vulnerability models
Karaca, E.; Luco, N.
2008-01-01
We present a methodology for transforming the structural and non-structural fragility functions in HAZUS into a format that is compatible with conventional seismic hazard analysis information. The methodology makes use of the building capacity (or pushover) curves and related building parameters provided in HAZUS. Instead of the capacity spectrum method applied in HAZUS, building response is estimated by inelastic response history analysis of corresponding single-degree-of-freedom systems under a large number of earthquake records. Statistics of the building response are used with the damage state definitions from HAZUS to derive fragility models conditioned on spectral acceleration values. Using the developed fragility models for structural and nonstructural building components, with corresponding damage state loss ratios from HAZUS, we also derive building vulnerability models relating spectral acceleration to repair costs. Whereas in HAZUS the structural and nonstructural damage states are treated as if they are independent, our vulnerability models are derived assuming "complete" nonstructural damage whenever the structural damage state is complete. We show the effects of considering this dependence on the final vulnerability models. The use of spectral acceleration (at selected vibration periods) as the ground motion intensity parameter, coupled with the careful treatment of uncertainty, makes the new fragility and vulnerability models compatible with conventional seismic hazard curves and hence useful for extensions to probabilistic damage and loss assessment.
NASA Technical Reports Server (NTRS)
Mullan, Dermott J.
1987-01-01
Theoretical work on the atmospheres of M dwarfs has progressed along lines parallel to those followed in the study of other classes of stars. Such models have become increasingly sophisticated as improvements in opacities, in the equation of state, and in the treatment of convection were incorporated during the last 15 to 20 years. As a result, spectrophotometric data on M dwarfs can now be fitted rather well by current models. The various attempts at modeling M dwarf photospheres in purely thermal terms are summarized. Some extensions of these models to include the effects of microturbulence and magnetic inhomogeneities are presented.
Groebner Basis Methods for Stationary Solutions of a Low-Dimensional Model for a Shear Flow
NASA Astrophysics Data System (ADS)
Pausch, Marina; Grossmann, Florian; Eckhardt, Bruno; Romanovski, Valery G.
2014-10-01
We use Groebner basis methods to extract all stationary solutions for the nine-mode shear flow model described in Moehlis et al. (New J Phys 6:56, 2004). Using rational approximations to irrational wave numbers and algebraic manipulation techniques we reduce the problem of determining all stationary states to finding roots of a polynomial of order 30. The coefficients differ by 30 powers of 10, so that algorithms for extended precision are needed to extract the roots reliably. We find that there are eight stationary solutions consisting of two distinct states, each of which appears in four symmetry-related phases. We discuss extensions of these results for other flows.
NASA Astrophysics Data System (ADS)
Krautschneider, W.; Wagemann, H. G.
1983-10-01
Kuhn's quasi-static C(V)-method has been extended to MOS transistors by considering the capacitances of the source and drain p-n junctions additionally to the MOS varactor circuit model. The width of the space charge layers w(phi sub s) is calculated as a function of the surface potential phi sub s and applied to the MOS capacitance as a function of the gate voltage. Capacitance behavior for different channel length is presented as a model and compared to measurement results and evaluations of energetic distributions of interface states Dit(phi sub s) for MOS transistor and MOS varactor on the same chip.
Fidelity study of superconductivity in extended Hubbard models
NASA Astrophysics Data System (ADS)
Plonka, N.; Jia, C. J.; Wang, Y.; Moritz, B.; Devereaux, T. P.
2015-07-01
The Hubbard model with local on-site repulsion is generally thought to possess a superconducting ground state for appropriate parameters, but the effects of more realistic long-range Coulomb interactions have not been studied extensively. We study the influence of these interactions on superconductivity by including nearest- and next-nearest-neighbor extended Hubbard interactions in addition to the usual on-site terms. Utilizing numerical exact diagonalization, we analyze the signatures of superconductivity in the ground states through the fidelity metric of quantum information theory. We find that nearest and next-nearest neighbor interactions have thresholds above which they destabilize superconductivity regardless of whether they are attractive or repulsive, seemingly due to competing charge fluctuations.
Order by disorder and gaugelike degeneracy in a quantum pyrochlore antiferromagnet.
Henley, Christopher L
2006-02-03
The (three-dimensional) pyrochlore lattice antiferromagnet with Heisenberg spins of large spin length S is a highly frustrated model with a macroscopic degeneracy of classical ground states. The zero-point energy of (harmonic-order) spin-wave fluctuations distinguishes a subset of these states. I derive an approximate but illuminating effective Hamiltonian, acting within the subspace of Ising spin configurations representing the collinear ground states. It consists of products of Ising spins around loops, i.e., has the form of a Z2 lattice gauge theory. The remaining ground-state entropy is still infinite but not extensive, being O(L) for system size O(L3). All these ground states have unit cells bigger than those considered previously.
Minimal scales from an extended Hilbert space
NASA Astrophysics Data System (ADS)
Kober, Martin; Nicolini, Piero
2010-12-01
We consider an extension of the conventional quantum Heisenberg algebra, assuming that coordinates as well as momenta fulfil nontrivial commutation relations. As a consequence, a minimal length and a minimal mass scale are implemented. Our commutators do not depend on positions and momenta and we provide an extension of the coordinate coherent state approach to noncommutative geometry. We explore, as a toy model, the corresponding quantum field theory in a (2+1)-dimensional spacetime. Then we investigate the more realistic case of a (3+1)-dimensional spacetime, foliated into noncommutative planes. As a result, we obtain propagators, which are finite in the ultraviolet as well as the infrared regime.
Multi-temperature state-dependent equivalent circuit discharge model for lithium-sulfur batteries
NASA Astrophysics Data System (ADS)
Propp, Karsten; Marinescu, Monica; Auger, Daniel J.; O'Neill, Laura; Fotouhi, Abbas; Somasundaram, Karthik; Offer, Gregory J.; Minton, Geraint; Longo, Stefano; Wild, Mark; Knap, Vaclav
2016-10-01
Lithium-sulfur (Li-S) batteries are described extensively in the literature, but existing computational models aimed at scientific understanding are too complex for use in applications such as battery management. Computationally simple models are vital for exploitation. This paper proposes a non-linear state-of-charge dependent Li-S equivalent circuit network (ECN) model for a Li-S cell under discharge. Li-S batteries are fundamentally different to Li-ion batteries, and require chemistry-specific models. A new Li-S model is obtained using a 'behavioural' interpretation of the ECN model; as Li-S exhibits a 'steep' open-circuit voltage (OCV) profile at high states-of-charge, identification methods are designed to take into account OCV changes during current pulses. The prediction-error minimization technique is used. The model is parameterized from laboratory experiments using a mixed-size current pulse profile at four temperatures from 10 °C to 50 °C, giving linearized ECN parameters for a range of states-of-charge, currents and temperatures. These are used to create a nonlinear polynomial-based battery model suitable for use in a battery management system. When the model is used to predict the behaviour of a validation data set representing an automotive NEDC driving cycle, the terminal voltage predictions are judged accurate with a root mean square error of 32 mV.
Free Fermions and the Classical Compact Groups
NASA Astrophysics Data System (ADS)
Cunden, Fabio Deelan; Mezzadri, Francesco; O'Connell, Neil
2018-06-01
There is a close connection between the ground state of non-interacting fermions in a box with classical (absorbing, reflecting, and periodic) boundary conditions and the eigenvalue statistics of the classical compact groups. The associated determinantal point processes can be extended in two natural directions: (i) we consider the full family of admissible quantum boundary conditions (i.e., self-adjoint extensions) for the Laplacian on a bounded interval, and the corresponding projection correlation kernels; (ii) we construct the grand canonical extensions at finite temperature of the projection kernels, interpolating from Poisson to random matrix eigenvalue statistics. The scaling limits in the bulk and at the edges are studied in a unified framework, and the question of universality is addressed. Whether the finite temperature determinantal processes correspond to the eigenvalue statistics of some matrix models is, a priori, not obvious. We complete the picture by constructing a finite temperature extension of the Haar measure on the classical compact groups. The eigenvalue statistics of the resulting grand canonical matrix models (of random size) corresponds exactly to the grand canonical measure of free fermions with classical boundary conditions.
NASA Astrophysics Data System (ADS)
Belich, H.; Bakke, K.
2015-07-01
We start by investigating the arising of a spin-orbit coupling and a Darwin-type term that stem from Lorentz symmetry breaking effects in the CPT-odd sector of the Standard Model Extension. Then, we establish a possible scenario of the violation of the Lorentz symmetry that gives rise to a linear confining potential and an effective electric field in which determines the spin-orbit coupling for a neutral particle analogous to the Rashba coupling [E. I. Rashba, Sov. Phys. Solid State 2, 1109 (1960)]. Finally, we confine the neutral particle to a quantum dot [W.-C. Tan and J. C. Inkson, Semicond. Sci. Technol. 11, 1635 (1996)] and analyze the influence of the linear confining potential and the spin-orbit coupling on the spectrum of energy.
Detecting Hidden Diversification Shifts in Models of Trait-Dependent Speciation and Extinction.
Beaulieu, Jeremy M; O'Meara, Brian C
2016-07-01
The distribution of diversity can vary considerably from clade to clade. Attempts to understand these patterns often employ state-dependent speciation and extinction models to determine whether the evolution of a particular novel trait has increased speciation rates and/or decreased extinction rates. It is still unclear, however, whether these models are uncovering important drivers of diversification, or whether they are simply pointing to more complex patterns involving many unmeasured and co-distributed factors. Here we describe an extension to the popular state-dependent speciation and extinction models that specifically accounts for the presence of unmeasured factors that could impact diversification rates estimated for the states of any observed trait, addressing at least one major criticism of BiSSE (Binary State Speciation and Extinction) methods. Specifically, our model, which we refer to as HiSSE (Hidden State Speciation and Extinction), assumes that related to each observed state in the model are "hidden" states that exhibit potentially distinct diversification dynamics and transition rates than the observed states in isolation. We also demonstrate how our model can be used as character-independent diversification models that allow for a complex diversification process that is independent of the evolution of a character. Under rigorous simulation tests and when applied to empirical data, we find that HiSSE performs reasonably well, and can at least detect net diversification rate differences between observed and hidden states and detect when diversification rate differences do not correlate with the observed states. We discuss the remaining issues with state-dependent speciation and extinction models in general, and the important ways in which HiSSE provides a more nuanced understanding of trait-dependent diversification. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Shi, Jade; Nobrega, R. Paul; Schwantes, Christian; ...
2017-03-08
The dynamics of globular proteins can be described in terms of transitions between a folded native state and less-populated intermediates, or excited states, which can play critical roles in both protein folding and function. Excited states are by definition transient species, and therefore are difficult to characterize using current experimental techniques. We report an atomistic model of the excited state ensemble of a stabilized mutant of an extensively studied flavodoxin fold protein CheY. We employed a hybrid simulation and experimental approach in which an aggregate 42 milliseconds of all-atom molecular dynamics were used as an informative prior for the structuremore » of the excited state ensemble. The resulting prior was then refined against small-angle X-ray scattering (SAXS) data employing an established method (EROS). The most striking feature of the resulting excited state ensemble was an unstructured N-terminus stabilized by non-native contacts in a conformation that is topologically simpler than the native state. We then predict incisive single molecule FRET experiments, using these results, as a means of model validation. Our study demonstrates the paradigm of uniting simulation and experiment in a statistical model to study the structure of protein excited states and rationally design validating experiments.« less
NASA Astrophysics Data System (ADS)
Shi, Jade; Nobrega, R. Paul; Schwantes, Christian; Kathuria, Sagar V.; Bilsel, Osman; Matthews, C. Robert; Lane, T. J.; Pande, Vijay S.
2017-03-01
The dynamics of globular proteins can be described in terms of transitions between a folded native state and less-populated intermediates, or excited states, which can play critical roles in both protein folding and function. Excited states are by definition transient species, and therefore are difficult to characterize using current experimental techniques. Here, we report an atomistic model of the excited state ensemble of a stabilized mutant of an extensively studied flavodoxin fold protein CheY. We employed a hybrid simulation and experimental approach in which an aggregate 42 milliseconds of all-atom molecular dynamics were used as an informative prior for the structure of the excited state ensemble. This prior was then refined against small-angle X-ray scattering (SAXS) data employing an established method (EROS). The most striking feature of the resulting excited state ensemble was an unstructured N-terminus stabilized by non-native contacts in a conformation that is topologically simpler than the native state. Using these results, we then predict incisive single molecule FRET experiments as a means of model validation. This study demonstrates the paradigm of uniting simulation and experiment in a statistical model to study the structure of protein excited states and rationally design validating experiments.
ERIC Educational Resources Information Center
Fabusoro, E.; Awotunde, J. A.; Sodiya, C. I.; Alarima, C. I.
2008-01-01
The field level extension agents (FLEAs) are the lifeline of the agricultural extension system in Nigeria. Their motivation and job performance are therefore important to achieving faster agricultural development in Nigeria. The study identified the factors motivating the FLEAs working with Ogun State Agricultural development programme (OGADEP)…
ERIC Educational Resources Information Center
Farm Foundation, Chicago, IL.
Sixteen essays pertaining to agricultural extension education were the basis of the 18th National Agricultural Policy Conference, held September 10-18, 1968, at Sequoyah State Park, Wagoner, Oklahoma. Individual topics of papers include leadership training, Iowa State welfare, low income area community development, an urban extension pilot…
ERIC Educational Resources Information Center
Villard, Judith A.; Earnest, Garee W.
2006-01-01
This descriptive-correlational study used a census of Ohio State University Extension county directors and a random sample of county staff throughout the State of Ohio. Data were collected utilizing Bar-On's Emotional Intelligence Quotient instrument (county directors) and Warner's job satisfaction instrument (county staff). The study examined the…
ERIC Educational Resources Information Center
Nummer, Brian A.; Guy, Stanley M.; Bentley, Joanne P. H.
2010-01-01
Food Safety Manager's Certification is offered through a state-local Extension partnership in Utah using an online course management system. Exams and course materials were created by an Extension Specialist at Utah State Univ. Extension Agents provide exam and curriculum facilitation in each county. This form of distance education enables access…
States and the politics of incrementalism: health policy in Wisconsin during the 1990s.
Sparer, Michael S
2004-04-01
Wisconsin officials during the 1990s seemed poised to enact innovative and comprehensive health care reform. During that era, an ambitious, popular, and reform-minded governor led the state. The state had an unusually professional legislature. The state's economy was strong. Even with these advantages, however, the report card on the state's efforts is mixed. The state enacted a fairly modest set of reforms that were financed largely by the federal government and subject to extensive federal oversight. The Wisconsin story thus seems to be about the politics of incrementalism. But while critics of incrementalist politics point out that the number of uninsured continues to grow, the catalytic federalism witnessed in Wisconsin in the 1990s may well be the best model for implementing health care reform.
Diagnosis of delay-deadline failures in real time discrete event models.
Biswas, Santosh; Sarkar, Dipankar; Bhowal, Prodip; Mukhopadhyay, Siddhartha
2007-10-01
In this paper a method for fault detection and diagnosis (FDD) of real time systems has been developed. A modeling framework termed as real time discrete event system (RTDES) model is presented and a mechanism for FDD of the same has been developed. The use of RTDES framework for FDD is an extension of the works reported in the discrete event system (DES) literature, which are based on finite state machines (FSM). FDD of RTDES models are suited for real time systems because of their capability of representing timing faults leading to failures in terms of erroneous delays and deadlines, which FSM-based ones cannot address. The concept of measurement restriction of variables is introduced for RTDES and the consequent equivalence of states and indistinguishability of transitions have been characterized. Faults are modeled in terms of an unmeasurable condition variable in the state map. Diagnosability is defined and the procedure of constructing a diagnoser is provided. A checkable property of the diagnoser is shown to be a necessary and sufficient condition for diagnosability. The methodology is illustrated with an example of a hydraulic cylinder.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-13
... Collection for Monitoring Implementation of Changes to State Unemployment Insurance (UI) Programs, Extension... to Scott Gibbons, Office of Unemployment Insurance, Employment and Training Administration, U.S... responsibility for ensuring that states implement the extension and modifications to the Emergency Unemployment...
75 FR 71072 - Extension of the Patent Application Backlog Reduction Stimulus Plan
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-22
... DEPARTMENT OF COMMERCE United States Patent and Trademark Office [Docket No.: PTO-P-2010-0087] Extension of the Patent Application Backlog Reduction Stimulus Plan AGENCY: United States Patent and Trademark Office, Commerce. ACTION: Notice. SUMMARY: The United States Patent and Trademark Office (USPTO...
The Blazar 3C 66A in 2003-2004: hadronic versus leptonic model fits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reimer, A.; Joshi, M.; Boettcher, M.
2008-12-24
The low-frequency peaked BL Lac object 3C 66A was the subject of an extensive multi-wavelength campaign from July 2003 till April 2004, which included quasi-simultaneous observations at optical, X-rays and very high energy gamma-rays. Here we apply the hadronic Synchrotron-Proton Blazar (SPB) model to the observed spectral energy distribution time-averaged over a flaring state, and compare the resulting model fits to those obtained from the application of the leptonic Synchrotron-Self-Compton (SSC) model. The results are used to identify diagnostic key predictions of the two blazar models for future multi-wavelength observations.
Quantum Darwinism in an Everyday Environment: Huge Redundancy in Scattered Photons
NASA Astrophysics Data System (ADS)
Riedel, C. Jess; Zurek, Wojciech H.
2010-07-01
We study quantum Darwinism—the redundant recording of information about the preferred states of a decohering system by its environment—for an object illuminated by a blackbody. In the cases of point-source and isotropic illumination, we calculate the quantum mutual information between the object and its photon environment. We demonstrate that this realistic model exhibits fast and extensive proliferation of information about the object into the environment and results in redundancies orders of magnitude larger than the exactly soluble models considered to date.
Quantum Darwinism in an everyday environment: huge redundancy in scattered photons.
Riedel, C Jess; Zurek, Wojciech H
2010-07-09
We study quantum Darwinism--the redundant recording of information about the preferred states of a decohering system by its environment--for an object illuminated by a blackbody. In the cases of point-source and isotropic illumination, we calculate the quantum mutual information between the object and its photon environment. We demonstrate that this realistic model exhibits fast and extensive proliferation of information about the object into the environment and results in redundancies orders of magnitude larger than the exactly soluble models considered to date.
Neutral gas sympathetic cooling of an ion in a Paul trap.
Chen, Kuang; Sullivan, Scott T; Hudson, Eric R
2014-04-11
A single ion immersed in a neutral buffer gas is studied. An analytical model is developed that gives a complete description of the dynamics and steady-state properties of the ions. An extension of this model, using techniques employed in the mathematics of economics and finance, is used to explain the recent observation of non-Maxwellian statistics for these systems. Taken together, these results offer an explanation of the long-standing issues associated with sympathetic cooling of an ion by a neutral buffer gas.
Neutral Gas Sympathetic Cooling of an Ion in a Paul Trap
NASA Astrophysics Data System (ADS)
Chen, Kuang; Sullivan, Scott T.; Hudson, Eric R.
2014-04-01
A single ion immersed in a neutral buffer gas is studied. An analytical model is developed that gives a complete description of the dynamics and steady-state properties of the ions. An extension of this model, using techniques employed in the mathematics of economics and finance, is used to explain the recent observation of non-Maxwellian statistics for these systems. Taken together, these results offer an explanation of the long-standing issues associated with sympathetic cooling of an ion by a neutral buffer gas.
NASA Technical Reports Server (NTRS)
Irwin, E. L.; Farnsworth, D. L.
1972-01-01
A long term investigation of thin film sensors, monolithic photo-field effect transistors, and epitaxially diffused phototransistors and photodiodes to meet requirements to produce acceptable all solid state, electronically scanned imaging system, led to the production of an advanced engineering model camera which employs a 200,000 element phototransistor array (organized in a matrix of 400 rows by 500 columns) to secure resolution comparable to commercial television. The full investigation is described for the period July 1962 through July 1972, and covers the following broad topics in detail: (1) sensor monoliths; (2) fabrication technology; (3) functional theory; (4) system methodology; and (5) deployment profile. A summary of the work and conclusions are given, along with extensive schematic diagrams of the final solid state imaging system product.
HyDE Framework for Stochastic and Hybrid Model-Based Diagnosis
NASA Technical Reports Server (NTRS)
Narasimhan, Sriram; Brownston, Lee
2012-01-01
Hybrid Diagnosis Engine (HyDE) is a general framework for stochastic and hybrid model-based diagnosis that offers flexibility to the diagnosis application designer. The HyDE architecture supports the use of multiple modeling paradigms at the component and system level. Several alternative algorithms are available for the various steps in diagnostic reasoning. This approach is extensible, with support for the addition of new modeling paradigms as well as diagnostic reasoning algorithms for existing or new modeling paradigms. HyDE is a general framework for stochastic hybrid model-based diagnosis of discrete faults; that is, spontaneous changes in operating modes of components. HyDE combines ideas from consistency-based and stochastic approaches to model- based diagnosis using discrete and continuous models to create a flexible and extensible architecture for stochastic and hybrid diagnosis. HyDE supports the use of multiple paradigms and is extensible to support new paradigms. HyDE generates candidate diagnoses and checks them for consistency with the observations. It uses hybrid models built by the users and sensor data from the system to deduce the state of the system over time, including changes in state indicative of faults. At each time step when observations are available, HyDE checks each existing candidate for continued consistency with the new observations. If the candidate is consistent, it continues to remain in the candidate set. If it is not consistent, then the information about the inconsistency is used to generate successor candidates while discarding the candidate that was inconsistent. The models used by HyDE are similar to simulation models. They describe the expected behavior of the system under nominal and fault conditions. The model can be constructed in modular and hierarchical fashion by building component/subsystem models (which may themselves contain component/ subsystem models) and linking them through shared variables/parameters. The component model is expressed as operating modes of the component and conditions for transitions between these various modes. Faults are modeled as transitions whose conditions for transitions are unknown (and have to be inferred through the reasoning process). Finally, the behavior of the components is expressed as a set of variables/ parameters and relations governing the interaction between the variables. The hybrid nature of the systems being modeled is captured by a combination of the above transitional model and behavioral model. Stochasticity is captured as probabilities associated with transitions (indicating the likelihood of that transition being taken), as well as noise on the sensed variables.
Energy spectra of vibron and cluster models in molecular and nuclear systems
NASA Astrophysics Data System (ADS)
Jalili Majarshin, A.; Sabri, H.; Jafarizadeh, M. A.
2018-03-01
The relation of the algebraic cluster model, i.e., of the vibron model and its extension, to the collective structure, is discussed. In the first section of the paper, we study the energy spectra of vibron model, for diatomic molecule then we derive the rotation-vibration spectrum of 2α, 3α and 4α configuration in the low-lying spectrum of 8Be, 12C and 16O nuclei. All vibrational and rotational states with ground and excited A, E and F states appear to have been observed, moreover the transitional descriptions of the vibron model and α-cluster model were considered by using an infinite-dimensional algebraic method based on the affine \\widehat{SU(1,1)} Lie algebra. The calculated energy spectra are compared with experimental data. Applications to the rotation-vibration spectrum for the diatomic molecule and many-body nuclear clusters indicate that there are solvable models and they can be approximated very well using the transitional theory.
Active control of the lifetime of excited resonance states by means of laser pulses.
García-Vela, A
2012-04-07
Quantum control of the lifetime of a system in an excited resonance state is investigated theoretically by creating coherent superpositions of overlapping resonances. This control scheme exploits the quantum interference occurring between the overlapping resonances, which can be controlled by varying the width of the laser pulse that creates the superposition state. The scheme is applied to a realistic model of the Br(2)(B)-Ne predissociation decay dynamics through a three-dimensional wave packet method. It is shown that extensive control of the system lifetime is achievable, both enhancing and damping it remarkably. An experimental realization of the control scheme is suggested.
Mitrani, Judith L
2011-02-01
The author suggests a number of technical extensions/clinical applications of Frances Tustin's work with autistic children, which are applicable to the psychoanalysis of neurotic, borderline and psychotic adults. These are especially relevant to those individuals in whom early uncontained happenings (Bion) have been silently encapsulated through the use of secretive autosensual maneuvers related to autistic objects and shapes. Although such encapsulations may constitute obstacles to emotional and intellectual development, are consequential in both the relational and vocational spheres for many analysands and present unending challenges for their analysts, the author demonstrates ways in which it may be possible to detect and to modify these in a transference-centered analysis. A detailed process of differential diagnosis between autistic states and neurotic/narcissistic (object-related) states in adults is outlined, along with several clinical demonstrations of the handling of a variety of elemental terrors, including the 'dread of dissolution.' The idiosyncratic and perverse use of the analytic setting and of the analyst and issues of the analysand's motivations are considered and illustrated. A new model related to 'objects in the periphery' is introduced as an alternative to the more classical Kleinian models regarding certain responses and/or non-responses to transference interpretation. Issues a propos the countertransference are also taken up throughout. Copyright © 2011 Institute of Psychoanalysis.
75 FR 36063 - Expansion and Extension of the Patent Application Backlog Reduction Stimulus Plan
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-24
... DEPARTMENT OF COMMERCE United States Patent and Trademark Office [Docket No.: PTO-P-2010-0048] Expansion and Extension of the Patent Application Backlog Reduction Stimulus Plan AGENCY: United States Patent and Trademark Office, Commerce. ACTION: Notice. SUMMARY: The United States Patent and Trademark...
Realization of localized Bohr-like wave packets.
Mestayer, J J; Wyker, B; Lancaster, J C; Dunning, F B; Reinhold, C O; Yoshida, S; Burgdörfer, J
2008-06-20
We demonstrate a protocol to create localized wave packets in very-high-n Rydberg states which travel in nearly circular orbits around the nucleus. Although these wave packets slowly dephase and eventually lose their localization, their motion can be monitored over several orbital periods. These wave packets represent the closest analog yet achieved to the original Bohr model of the hydrogen atom, i.e., an electron in a circular classical orbit around the nucleus. The possible extension of the approach to create "planetary atoms" in highly correlated stable multiply excited states is discussed.
On the State of Stress and Failure Prediction Near Planetary Surface Loads
NASA Astrophysics Data System (ADS)
Schultz, R. A.
1996-03-01
The state of stress surrounding planetary surface loads has been used extensively to predict failure of surface rocks and to invert this information for effective elastic thickness. As demonstrated previously, however, several factors can be important including an explicit comparison between model stresses and rock strength as well as the magnitude of calculated stress. As re-emphasized below, failure to take stress magnitudes into account can lead to erroneous predictions of near-surface faulting. This abstract results from discussions on graben formation at Fall 1995 AGU.
B.C. Wales; L.H. Suring; M.A. Hemstrom
2007-01-01
Thinning and prescribed fire are being used extensively across the interior Western United States to reduce the risk of large, severe wildfires. However, the full ecological consequences of implementing these management practices on the landscape have not been completely evaluated. We projected future vegetation trends resulting from four management scenarios and...
USDA-ARS?s Scientific Manuscript database
Interannual variation of forage quantity and quality driven by precipitation events influence beef livestock production systems within the Southern and Northern Plains and Pacific West which combined represents 60% (approximately 17.5 million) of total beef cows in the United States. The beef NRC is...
Estimation of critical behavior from the density of states in classical statistical models
NASA Astrophysics Data System (ADS)
Malakis, A.; Peratzakis, A.; Fytas, N. G.
2004-12-01
We present a simple and efficient approximation scheme which greatly facilitates the extension of Wang-Landau sampling (or similar techniques) in large systems for the estimation of critical behavior. The method, presented in an algorithmic approach, is based on a very simple idea, familiar in statistical mechanics from the notion of thermodynamic equivalence of ensembles and the central limit theorem. It is illustrated that we can predict with high accuracy the critical part of the energy space and by using this restricted part we can extend our simulations to larger systems and improve the accuracy of critical parameters. It is proposed that the extensions of the finite-size critical part of the energy space, determining the specific heat, satisfy a scaling law involving the thermal critical exponent. The method is applied successfully for the estimation of the scaling behavior of specific heat of both square and simple cubic Ising lattices. The proposed scaling law is verified by estimating the thermal critical exponent from the finite-size behavior of the critical part of the energy space. The density of states of the zero-field Ising model on these lattices is obtained via a multirange Wang-Landau sampling.
Complete Mie-Gruneisen Equation of State
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menikoff, Ralph
2012-06-28
The Mie-Gruneisen equation of state (EOS) is frequently used in hydro simulations to model solids at high pressure (up to a few Mb). It is an incomplete EOS characterized by a Gruneisen coefficient, {Lambda} = -V({partial_derivative}{sub e}P){sub V}, that is a function of only V. Expressions are derived for isentropes and isotherms. This enables the extension to a complete EOS. Thermodynamic consistency requires that the specific heat is a function of a single scaled temperature. A complete extension is uniquely determined by the temperature dependence of the specific heat at a fixed reference density. In addition we show that ifmore » the domain of the EOS extends to T = 0 and the specific heat vanishes on the zero isotherm then {Lambda} a function of only V is equivalent to a specific heat with a single temperature scale. If the EOS domain does not include the zero isotherm, then a specific heat with a single temperature scale leads to a generalization of the Mie-Gruneisen EOS in which the pressure is linear in both the specific energy and the temperature. Such an EOS has previously been used to model liquid nitromethane.« less
ERIC Educational Resources Information Center
Kelly, Tammy Denise
2015-01-01
The purpose of this study was to explore and describe succession plans and components of importance as perceived by the organizational leadership within the Southern Region of the Cooperative Extension System. Cooperative Extension Systems across the United States, continue to be faced with a reduction in force, primarily due to retirement, budget…
Rift migration explains continental margin asymmetry and crustal hyper-extension
Brune, Sascha; Heine, Christian; Pérez-Gussinyé, Marta; Sobolev, Stephan V.
2014-01-01
When continents break apart, continental crust and lithosphere are thinned until break-up is achieved and an oceanic basin is formed. The most remarkable and least understood structures associated with this process are up to 200 km wide areas of hyper-extended continental crust, which are partitioned between conjugate margins with pronounced asymmetry. Here we show, using high-resolution thermo-mechanical modelling, that hyper-extended crust and margin asymmetry are produced by steady state rift migration. We demonstrate that rift migration is accomplished by sequential, oceanward-younging, upper crustal faults, and is balanced through lower crustal flow. Constraining our model with a new South Atlantic plate reconstruction, we demonstrate that larger extension velocities may account for southward increasing width and asymmetry of these conjugate magma-poor margins. Our model challenges conventional ideas of rifted margin evolution, as it implies that during rift migration large amounts of material are transferred from one side of the rift zone to the other. PMID:24905463
Testing sterile neutrino extensions of the Standard Model at future lepton colliders
NASA Astrophysics Data System (ADS)
Antusch, Stefan; Fischer, Oliver
2015-05-01
Extending the Standard Model (SM) with sterile ("right-handed") neutrinos is one of the best motivated ways to account for the observed neutrino masses. We discuss the expected sensitivity of future lepton collider experiments for probing such extensions. An interesting testable scenario is given by "symmetry protected seesaw models", which theoretically allow for sterile neutrino masses around the electroweak scale with up to order one mixings with the light (SM) neutrinos. In addition to indirect tests, e.g. via electroweak precision observables, sterile neutrinos with masses around the electroweak scale can also be probed by direct searches, e.g. via sterile neutrino decays at the Z pole, deviations from the SM cross section for four lepton final states at and beyond the WW threshold and via Higgs boson decays. We study the present bounds on sterile neutrino properties from LEP and LHC as well as the expected sensitivities of possible future lepton colliders such as ILC, CEPC and FCC-ee (TLEP).
Kaufman, Joel D.; Spalt, Elizabeth W.; Curl, Cynthia L.; Hajat, Anjum; Jones, Miranda R.; Kim, Sun-Young; Vedal, Sverre; Szpiro, Adam A.; Gassett, Amanda; Sheppard, Lianne; Daviglus, Martha L.; Adar, Sara D.
2016-01-01
The Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) leveraged the platform of the MESA cohort into a prospective longitudinal study of relationships between air pollution and cardiovascular health. MESA Air researchers developed fine-scale, state-of-the-art air pollution exposure models for the MESA Air communities, creating individual exposure estimates for each participant. These models combine cohort-specific exposure monitoring, existing monitoring systems, and an extensive database of geographic and meteorological information. Together with extensive phenotyping in MESA—and adding participants and health measurements to the cohort—MESA Air investigated environmental exposures on a wide range of outcomes. Advances by the MESA Air team included not only a new approach to exposure modeling but also biostatistical advances in addressing exposure measurement error and temporal confounding. The MESA Air study advanced our understanding of the impact of air pollutants on cardiovascular disease and provided a research platform for advances in environmental epidemiology. PMID:27741981
Degenerate and chiral states in the extended Heisenberg model on the kagome lattice
NASA Astrophysics Data System (ADS)
Gómez Albarracín, F. A.; Pujol, P.
2018-03-01
We present a study of the low-temperature phases of the antiferromagnetic extended classical Heisenberg model on the kagome lattice, up to third-nearest neighbors. First, we focus on the degenerate lines in the boundaries of the well-known staggered chiral phases. These boundaries have either semiextensive or extensive degeneracy, and we discuss the partial selection of states by thermal fluctuations. Then, we study the model under an external magnetic field on these lines and in the staggered chiral phases. We pay particular attention to the highly frustrated point, where the three exchange couplings are equal. We show that this point can be mapped to a model with spin-liquid behavior and nonzero chirality. Finally, we explore the effect of Dzyaloshinskii-Moriya (DM) interactions in two ways: a homogeneous and a staggered DM interaction. In both cases, there is a rich low-temperature phase diagram, with different spontaneously broken symmetries and nontrivial chiral phases.
Hyperquarks and bosonic preon bound states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmid, Michael L.; Buchmann, Alfons J.
2009-11-01
In a model in which leptons, quarks, and the recently introduced hyperquarks are built up from two fundamental spin-(1/2) preons, the standard model weak gauge bosons emerge as preon bound states. In addition, the model predicts a host of new composite gauge bosons, in particular, those responsible for hyperquark and proton decay. Their presence entails a left-right symmetric extension of the standard model weak interactions and a scheme for a partial and grand unification of nongravitational interactions based on, respectively, the effective gauge groups SU(6){sub P} and SU(9){sub G}. This leads to a prediction of the Weinberg angle at lowmore » energies in good agreement with experiment. Furthermore, using evolution equations for the effective coupling strengths, we calculate the partial and grand unification scales, the hyperquark mass scale, as well as the mass and decay rate of the lightest hyperhadron.« less
Death wins against life in a spatially extended model of the caspase-3/8 feedback loop.
Daub, M; Waldherr, S; Allgöwer, F; Scheurich, P; Schneider, G
2012-01-01
Apoptosis is an important physiological process which enables organisms to remove unwanted or damaged cells. A mathematical model of the extrinsic pro-apoptotic signaling pathway has been introduced by Eissing et al. (2007) and a bistable behavior with a stable death state and a stable life state of the reaction system has been established. In this paper, we consider a spatial extension of the extrinsic pro-apoptotic signaling pathway incorporating diffusion terms and make a model-based, numerical analysis of the apoptotic switch in the spatial dimension. For the parameter regimes under consideration it turns out that for this model diffusion homogenizes rapidly the concentrations which afterward are governed by the original reaction system. The activation of effector-caspase 3 depends on the space averaged initial concentration of pro-caspase 8 and pro-caspase 3 at the beginning of the process. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Ringed Seal Search for Global Optimization via a Sensitive Search Model
Saadi, Younes; Yanto, Iwan Tri Riyadi; Herawan, Tutut; Balakrishnan, Vimala; Chiroma, Haruna; Risnumawan, Anhar
2016-01-01
The efficiency of a metaheuristic algorithm for global optimization is based on its ability to search and find the global optimum. However, a good search often requires to be balanced between exploration and exploitation of the search space. In this paper, a new metaheuristic algorithm called Ringed Seal Search (RSS) is introduced. It is inspired by the natural behavior of the seal pup. This algorithm mimics the seal pup movement behavior and its ability to search and choose the best lair to escape predators. The scenario starts once the seal mother gives birth to a new pup in a birthing lair that is constructed for this purpose. The seal pup strategy consists of searching and selecting the best lair by performing a random walk to find a new lair. Affected by the sensitive nature of seals against external noise emitted by predators, the random walk of the seal pup takes two different search states, normal state and urgent state. In the normal state, the pup performs an intensive search between closely adjacent lairs; this movement is modeled via a Brownian walk. In an urgent state, the pup leaves the proximity area and performs an extensive search to find a new lair from sparse targets; this movement is modeled via a Levy walk. The switch between these two states is realized by the random noise emitted by predators. The algorithm keeps switching between normal and urgent states until the global optimum is reached. Tests and validations were performed using fifteen benchmark test functions to compare the performance of RSS with other baseline algorithms. The results show that RSS is more efficient than Genetic Algorithm, Particles Swarm Optimization and Cuckoo Search in terms of convergence rate to the global optimum. The RSS shows an improvement in terms of balance between exploration (extensive) and exploitation (intensive) of the search space. The RSS can efficiently mimic seal pups behavior to find best lair and provide a new algorithm to be used in global optimization problems. PMID:26790131
Absorbing multicultural states in the Axelrod model
NASA Astrophysics Data System (ADS)
Vazquez, Federico; Redner, Sidney
2005-03-01
We determine the ultimate fate of a limit of the Axelrod model that consists of a population of leftists, centrists, and rightists. In an elemental interaction between agents, a centrist and a leftist can both become centrists or both become leftists with equal rates (similarly for a centrist and a rightist), but leftists and rightists do not interact. This interaction is applied repeatedly until the system can no longer evolve. The constraint between extremists can lead to a frustrated final state where the system consists of only leftists and rightists. In the mean field limit, we can view the evolution of the system as the motion of a random walk in the 3-dimensional space whose coordinates correspond to the density of each species. We find the exact final state probabilities and the time to reach consensus by solving for the first-passage probability of the random walk to the corresponding absorbing boundaries. The extension to a larger number of states will be discussed. This approach is a first step towards the analytic solution of Axelrod-like models.
Entanglement renormalization and gauge symmetry
NASA Astrophysics Data System (ADS)
Tagliacozzo, L.; Vidal, G.
2011-03-01
A lattice gauge theory is described by a redundantly large vector space that is subject to local constraints and can be regarded as the low-energy limit of an extended lattice model with a local symmetry. We propose a numerical coarse-graining scheme to produce low-energy, effective descriptions of lattice models with a local symmetry such that the local symmetry is exactly preserved during coarse-graining. Our approach results in a variational ansatz for the ground state(s) and low-energy excitations of such models and, by extension, of lattice gauge theories. This ansatz incorporates the local symmetry in its structure and exploits it to obtain a significant reduction of computational costs. We test the approach in the context of a Z2 lattice gauge theory formulated as the low-energy theory of a specific regime of the toric code with a magnetic field, for lattices with up to 16×16 sites (162×2=512 spins) on a torus. We reproduce the well-known ground-state phase diagram of the model, consisting of a deconfined and spin-polarized phases separated by a continuous quantum phase transition, and obtain accurate estimates of energy gaps, ground-state fidelities, Wilson loops, and several other quantities.
Stochastic Sznajd Model in Open Community
NASA Astrophysics Data System (ADS)
Emmert-Streib, Frank
We extend the Sznajd Model for opinion formation by introducing persuasion probabilities for opinions. Moreover, we couple the system to an environment which mimics the application of the opinion. This results in a feedback, representing single-state opinion transitions in opposite to the two-state opinion transitions for persuading other people. We call this model opinion formation in an open community (OFOC). It can be seen as a stochastic extension of the Sznajd model for an open community, because it allows for a special choice of parameters to recover the original Sznajd model. We demonstrate the effect of feedback in the OFOC model by applying it to a scenario in which, e.g., opinion B is worse then opinion A but easier explained to other people. Casually formulated we analyzed the question, how much better one has to be, in order to persuade other people, provided the opinion is worse. Our results reveal a linear relation between the transition probability for opinion B and the influence of the environment on B.
Active Tension Network model reveals an exotic mechanical state realized in epithelial tissues
NASA Astrophysics Data System (ADS)
Noll, Nicholas; Mani, Madhav; Heemskerk, Idse; Streicha, Sebastian; Shraiman, Boris
Mechanical interactions play a crucial role in epithelial morphogenesis, yet understanding the complex mechanisms through which stress and deformation affect cell behavior remains an open problem. Here we formulate and analyze the Active Tension Network (ATN) model, which assumes that mechanical balance of cells is dominated by cortical tension and introduces tension dependent active remodeling of the cortex. We find that ATNs exhibit unusual mechanical properties: i) ATN behaves as a fluid at short times, but at long times it supports external tension, like a solid; ii) its mechanical equilibrium state has extensive degeneracy associated with a discrete conformal - ''isogonal'' - deformation of cells. ATN model predicts a constraint on equilibrium cell geometry, which we demonstrate to hold in certain epithelial tissues. We further show that isogonal modes are observed in a fruit fly embryo, accounting for the striking variability of apical area of ventral cells and helping understand the early phase of gastrulation. Living matter realizes new and exotic mechanical states, understanding which helps understand biological phenomena.
Aad, G.; Abajyan, T.; Abbott, B.; ...
2013-03-27
A search for supersymmetric particles in final states with zero, one, and two leptons, with and without jets identified as originating from b-quarks, in 4.7 fb -1 of √s=7 TeV pp collisions produced by the Large Hadron Collider and recorded by the ATLAS detector is presented. The search uses a set of variables carrying information on the event kinematics transverse and parallel to the beam line that are sensitive to several topologies expected in supersymmetry. Mutually exclusive final states are defined, allowing a combination of all channels to increase the search sensitivity. No deviation from the Standard Model expectation ismore » observed. Upper limits at 95 % confidence level on visible cross-sections for the production of new particles are extracted. Results are interpreted in the context of the constrained minimal supersymmetric extension to the Standard Model and in supersymmetry-inspired models with diverse, high-multiplicity final states.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-12
... Traumatic Brain Injury State Implementation Partnership Grantees; Non-Competitive One-Year Extension Funds...). ACTION: Notice of Non-Competitive One-Year Extension Funds for Current Traumatic Brain Injury (TBI) State... initially authorized by the Traumatic Brain Injury Act of 1996 (Pub. L. 104-166) and was most recently...
The Use of Regulatory Air Quality Models to Develop Successful Ozone Attainment Strategies
NASA Astrophysics Data System (ADS)
Canty, T. P.; Salawitch, R. J.; Dickerson, R. R.; Ring, A.; Goldberg, D. L.; He, H.; Anderson, D. C.; Vinciguerra, T.
2015-12-01
The Environmental Protection Agency (EPA) recently proposed lowering the 8-hr ozone standard to between 65-70 ppb. Not all regions of the U.S. are in attainment of the current 75 ppb standard and it is expected that many regions currently in attainment will not meet the future, lower surface ozone standard. Ozone production is a nonlinear function of emissions, biological processes, and weather. Federal and state agencies rely on regulatory air quality models such as the Community Multi-Scale Air Quality (CMAQ) model and Comprehensive Air Quality Model with Extensions (CAMx) to test ozone precursor emission reduction strategies that will bring states into compliance with the National Ambient Air Quality Standards (NAAQS). We will describe various model scenarios that simulate how future limits on emission of ozone precursors (i.e. NOx and VOCs) from sources such as power plants and vehicles will affect air quality. These scenarios are currently being developed by states required to submit a State Implementation Plan to the EPA. Projections from these future case scenarios suggest that strategies intended to control local ozone may also bring upwind states into attainment of the new NAAQS. Ground based, aircraft, and satellite observations are used to ensure that air quality models accurately represent photochemical processes within the troposphere. We will highlight some of the improvements made to the CMAQ and CAMx model framework based on our analysis of NASA observations obtained by the OMI instrument on the Aura satellite and by the DISCOVER-AQ field campaign.
Reliable multicast protocol specifications protocol operations
NASA Technical Reports Server (NTRS)
Callahan, John R.; Montgomery, Todd; Whetten, Brian
1995-01-01
This appendix contains the complete state tables for Reliable Multicast Protocol (RMP) Normal Operation, Multi-RPC Extensions, Membership Change Extensions, and Reformation Extensions. First the event types are presented. Afterwards, each RMP operation state, normal and extended, is presented individually and its events shown. Events in the RMP specification are one of several things: (1) arriving packets, (2) expired alarms, (3) user events, (4) exceptional conditions.
ERIC Educational Resources Information Center
Woytanowitz, George M.
University extension arose in England during the late 1860s as an adult education movement providing university-style education for all people. In the United States in the 1880s, university extension was only the latest in a series of ventures in schooling for adults. Adult education had existed in the colonial period, but the first widespread…
Truncated Calogero-Sutherland models
NASA Astrophysics Data System (ADS)
Pittman, S. M.; Beau, M.; Olshanii, M.; del Campo, A.
2017-05-01
A one-dimensional quantum many-body system consisting of particles confined in a harmonic potential and subject to finite-range two-body and three-body inverse-square interactions is introduced. The range of the interactions is set by truncation beyond a number of neighbors and can be tuned to interpolate between the Calogero-Sutherland model and a system with nearest and next-nearest neighbors interactions discussed by Jain and Khare. The model also includes the Tonks-Girardeau gas describing impenetrable bosons as well as an extension with truncated interactions. While the ground state wave function takes a truncated Bijl-Jastrow form, collective modes of the system are found in terms of multivariable symmetric polynomials. We numerically compute the density profile, one-body reduced density matrix, and momentum distribution of the ground state as a function of the range r and the interaction strength.
NASA Astrophysics Data System (ADS)
Ross, G. G.
2014-05-01
Given that there is currently no direct evidence for supersymmetric particles at the LHC it is timely to re-evaluate the need for low scale supersymmetry and to ask whether it is likely to be discoverable by the LHC running at its full energy. We review the status of simple SUSY extensions of the Standard Model in the light of the Higgs discovery and the non-observation of evidence for SUSY at the LHC. The need for large radiative corrections to drive the Higgs mass up to 126 GeV and for the coloured SUSY states to be heavy to explain their non-observation introduces a little hierarchy problem and we discuss how to quantify the associated fine tuning. The requirement of low fine tuning requires non-minimal SUSY extensions and we discuss the nature and phenomenology of models which still have perfectly acceptable low fine tuning. A brief discussion of SUSY flavour-changing and CP-violation problems and their resolution is presented.
Using aircraft and satellite observations to improve regulatory air quality models
NASA Astrophysics Data System (ADS)
Canty, T. P.; Vinciguerra, T.; Anderson, D. C.; Carpenter, S. F.; Goldberg, D. L.; Hembeck, L.; Montgomery, L.; Liu, X.; Salawitch, R. J.; Dickerson, R. R.
2014-12-01
Federal and state agencies rely on EPA approved models to develop attainment strategies that will bring states into compliance with the National Ambient Air Quality Standards (NAAQS). We will describe modifications to the Community Multi-Scale Air Quality (CMAQ) model and Comprehensive Air Quality Model with Extensions (CAMx) frameworks motivated by analysis of NASA satellite and aircraft measurements. Observations of tropospheric column NO2 from OMI have already led to the identification of an important deficiency in the chemical mechanisms used by models; data collected during the DISCOVER-AQ field campaign has been instrumental in devising an improved representation of the chemistry of nitrogen species. Our recent work has focused on the use of: OMI observations of tropospheric O3 to assess and improve the representation of boundary conditions used by AQ models, OMI NO2 to derive a top down NOx emission inventory from commercial shipping vessels that affect air quality in the Eastern U.S., and OMI HCHO to assess the C5H8 emission inventories provided by bioegenic emissions models. We will describe how these OMI-driven model improvements are being incorporated into the State Implementation Plans (SIPs) being prepared for submission to EPA in summer 2015 and how future modeling efforts may be impacted by our findings.
Competing antiferromagnetism in a quasi-2D itinerant ferromagnet: Fe 3GeTe 2
Yi, Jieyu; Zhuang, Houlong; Zou, Qiang; ...
2016-11-15
Fe 3GeTe 2 is known as an air-stable layered metal with itinerant ferromagnetism with a transition temperature of about 220 K. From extensive dc and ac magnetic measurements, we have determined that the ferromagnetic layers of Fe 3GeTe 2 order antiferromagnetically along the c-axis blow 152 K. The antiferromagnetic state was further substantiated by theoretical calculation to be the ground state. A magnetic structure model was proposed to describe the antiferromagnetic ground state as well as competition between antiferromagnetic and ferromagnetic states. Furthermore, Fe 3GeTe 2 shares many common features with pnictide superconductors and may be a promising system inmore » which to search for unconventional superconductivity.« less
Atmospheric monitoring and model applications at the Pierre Auger Observatory
NASA Astrophysics Data System (ADS)
Keilhauer, Bianca
2015-03-01
The Pierre Auger Observatory detects high-energy cosmic rays with energies above ˜1017 eV. It is built as a multi-hybrid detector measuring extensive air showers with different techniques. For the reconstruction of extensive air showers, the atmospheric conditions at the site of the Observatory have to be known quite well. This is particularly true for reconstructions based on data obtained by the fluorescence technique. For these data, not only the weather conditions near ground are relevant, most important are altitude-dependent atmospheric profiles. The Pierre Auger Observatory has set up a dedicated atmospheric monitoring programme at the site in the Mendoza province, Argentina. Beyond this, exploratory studies were performed in Colorado, USA, for possible installations in the northern hemisphere. In recent years, the atmospheric monitoring programme at the Pierre Auger Observatory was supplemented by applying data from atmospheric models. Both GDAS and HYSPLIT are developments by the US weather department NOAA and the data are freely available. GDAS is a global model of the atmospheric state parameters on a 1 degree geographical grid, based on real-time measurements and numeric weather predictions, providing a full altitude-dependent data set every 3 hours. HYSPLIT is a powerful tool to track the movement of air masses at various heights, and with it the aerosols. Combining local measurements of the atmospheric state variables and aerosol scattering with the given model data, advanced studies about atmospheric conditions can be performed and high precision air shower reconstructions are achieved.
On a two-particle bound system on the half-line
NASA Astrophysics Data System (ADS)
Kerner, Joachim; Mühlenbruch, Tobias
2017-10-01
In this paper we provide an extension of the model discussed in [10] describing two singularly interacting particles on the half-line ℝ+. In this model, the particles are interacting only whenever at least one particle is situated at the origin. Stimulated by [11] we then provide a generalisation of this model in order to include additional interactions between the particles leading to a molecular-like state. We give a precise mathematical formulation of the Hamiltonian of the system and perform spectral analysis. In particular, we are interested in the effect of the singular two-particle interactions onto the molecule.
Final Report: System Reliability Model for Solid-State Lighting (SSL) Luminaires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, J. Lynn
2017-05-31
The primary objectives of this project was to develop and validate reliability models and accelerated stress testing (AST) methodologies for predicting the lifetime of integrated SSL luminaires. This study examined the likely failure modes for SSL luminaires including abrupt failure, excessive lumen depreciation, unacceptable color shifts, and increased power consumption. Data on the relative distribution of these failure modes were acquired through extensive accelerated stress tests and combined with industry data and other source of information on LED lighting. This data was compiled and utilized to build models of the aging behavior of key luminaire optical and electrical components.
Cornick, Matthew; Hunt, Brian; Ott, Edward; Kurtuldu, Huseyin; Schatz, Michael F
2009-03-01
Data assimilation refers to the process of estimating a system's state from a time series of measurements (which may be noisy or incomplete) in conjunction with a model for the system's time evolution. Here we demonstrate the applicability of a recently developed data assimilation method, the local ensemble transform Kalman filter, to nonlinear, high-dimensional, spatiotemporally chaotic flows in Rayleigh-Bénard convection experiments. Using this technique we are able to extract the full temperature and velocity fields from a time series of shadowgraph measurements. In addition, we describe extensions of the algorithm for estimating model parameters. Our results suggest the potential usefulness of our data assimilation technique to a broad class of experimental situations exhibiting spatiotemporal chaos.
Fidelity study of superconductivity in extended Hubbard models
Plonka, N.; Jia, C. J.; Wang, Y.; ...
2015-07-08
The Hubbard model with local on-site repulsion is generally thought to possess a superconducting ground state for appropriate parameters, but the effects of more realistic long-range Coulomb interactions have not been studied extensively. We study the influence of these interactions on superconductivity by including nearest- and next-nearest-neighbor extended Hubbard interactions in addition to the usual on-site terms. Utilizing numerical exact diagonalization, we analyze the signatures of superconductivity in the ground states through the fidelity metric of quantum information theory. Finally, we find that nearest and next-nearest neighbor interactions have thresholds above which they destabilize superconductivity regardless of whether they aremore » attractive or repulsive, seemingly due to competing charge fluctuations.« less
Three-body problem in d-dimensional space: Ground state, (quasi)-exact-solvability
NASA Astrophysics Data System (ADS)
Turbiner, Alexander V.; Miller, Willard; Escobar-Ruiz, M. A.
2018-02-01
As a straightforward generalization and extension of our previous paper [A. V. Turbiner et al., "Three-body problem in 3D space: Ground state, (quasi)-exact-solvability," J. Phys. A: Math. Theor. 50, 215201 (2017)], we study the aspects of the quantum and classical dynamics of a 3-body system with equal masses, each body with d degrees of freedom, with interaction depending only on mutual (relative) distances. The study is restricted to solutions in the space of relative motion which are functions of mutual (relative) distances only. It is shown that the ground state (and some other states) in the quantum case and the planar trajectories (which are in the interaction plane) in the classical case are of this type. The quantum (and classical) Hamiltonian for which these states are eigenfunctions is derived. It corresponds to a three-dimensional quantum particle moving in a curved space with special d-dimension-independent metric in a certain d-dependent singular potential, while at d = 1, it elegantly degenerates to a two-dimensional particle moving in flat space. It admits a description in terms of pure geometrical characteristics of the interaction triangle which is defined by the three relative distances. The kinetic energy of the system is d-independent; it has a hidden sl(4, R) Lie (Poisson) algebra structure, alternatively, the hidden algebra h(3) typical for the H3 Calogero model as in the d = 3 case. We find an exactly solvable three-body S3-permutationally invariant, generalized harmonic oscillator-type potential as well as a quasi-exactly solvable three-body sextic polynomial type potential with singular terms. For both models, an extra first order integral exists. For d = 1, the whole family of 3-body (two-dimensional) Calogero-Moser-Sutherland systems as well as the Tremblay-Turbiner-Winternitz model is reproduced. It is shown that a straightforward generalization of the 3-body (rational) Calogero model to d > 1 leads to two primitive quasi-exactly solvable problems. The extension to the case of non-equal masses is straightforward and is briefly discussed.
Regional-Scale Salt Tectonics Modelling: Bench-Scale Validation and Extension to Field-Scale
NASA Astrophysics Data System (ADS)
Crook, A. J. L.; Yu, J. G.; Thornton, D. A.
2010-05-01
The role of salt in the evolution of the West African continental margin, and in particular its impact on hydrocarbon migration and trap formation, is an important research topic. It has attracted many researchers who have based their research on bench-scale experiments, numerical models and seismic observations. This research has shown that the evolution is very complex. For example, regional analogue bench-scale models of the Angolan margin (Fort et al., 2004) indicate a complex system with an upslope extensional domain with sealed tilted blocks, growth fault and rollover systems and extensional diapers, and a downslope contractional domain with squeezed diapirs, polyharmonic folds and thrust faults, and late-stage folding and thrusting. Numerical models have the potential to provide additional insight into the evolution of these salt driven passive margins. The longer-term aim is to calibrate regional-scale evolution models, and then to evaluate the effect of the depositional history on the current day geomechanical and hydrogeologic state in potential target hydrocarbon reservoir formations adjacent to individual salt bodies. To achieve this goal the burial and deformational history of the sediment must be modelled from initial deposition to the current-day state, while also accounting for the reaction and transport processes occurring in the margin. Accurate forward modeling is, however complex, and necessitates advanced procedures for the prediction of fault formation and evolution, representation of the extreme deformations in the salt, and for coupling the geomechanical, fluid flow and temperature fields. The evolution of the sediment due to a combination of mechanical compaction, chemical compaction and creep relaxation must also be represented. In this paper ongoing research on a computational approach for forward modelling complex structural evolution, with particular reference to passive margins driven by salt tectonics is presented. The approach is an extension of a previously published approach (Crook et al., 2006a, 2006b) that focused on predictive modelling of structure evolution in 2-D sandbox experiments, and in particular two extensional sand box experiments that exhibit complex fault development including a series of superimposed crestal collapse graben systems (McClay, 1990) . The formulation adopts a finite strain Lagrangian method, complemented by advanced localization prediction algorithms and robust and efficient automated adaptive meshing techniques. The sediment is represented by an elasto-viscoplastic constitutive model based on extended critical state concepts, which enables representation of the combined effect of mechanical and chemical compaction. This is achieved by directly coupling the evolution of the material state boundary surface with both the mechanically and chemically driven porosity change. Using these procedures the evolution of the geological structures arises naturally from the imposed boundary conditions without the requirement of seeding using initial imperfections. Simulations are presented for regional bench-scale models based on the analogue experiments presented by Fort et al. (2004), together with additional insights provided by the numerical models. It is shown that the behaviour observed in both the extensional and compressional zones of these analogue models arises naturally in the finite element simulations. Extension of these models to the field-scale is then discussed and several simulations are presented to highlight important issues related to practical field-scale numerical modelling.
Dynamical influence processes on networks: general theory and applications to social contagion.
Harris, Kameron Decker; Danforth, Christopher M; Dodds, Peter Sheridan
2013-08-01
We study binary state dynamics on a network where each node acts in response to the average state of its neighborhood. By allowing varying amounts of stochasticity in both the network and node responses, we find different outcomes in random and deterministic versions of the model. In the limit of a large, dense network, however, we show that these dynamics coincide. We construct a general mean-field theory for random networks and show this predicts that the dynamics on the network is a smoothed version of the average response function dynamics. Thus, the behavior of the system can range from steady state to chaotic depending on the response functions, network connectivity, and update synchronicity. As a specific example, we model the competing tendencies of imitation and nonconformity by incorporating an off-threshold into standard threshold models of social contagion. In this way, we attempt to capture important aspects of fashions and societal trends. We compare our theory to extensive simulations of this "limited imitation contagion" model on Poisson random graphs, finding agreement between the mean-field theory and stochastic simulations.
NASA Astrophysics Data System (ADS)
Schliep, E. M.; Gelfand, A. E.; Holland, D. M.
2015-12-01
There is considerable demand for accurate air quality information in human health analyses. The sparsity of ground monitoring stations across the United States motivates the need for advanced statistical models to predict air quality metrics, such as PM2.5, at unobserved sites. Remote sensing technologies have the potential to expand our knowledge of PM2.5 spatial patterns beyond what we can predict from current PM2.5 monitoring networks. Data from satellites have an additional advantage in not requiring extensive emission inventories necessary for most atmospheric models that have been used in earlier data fusion models for air pollution. Statistical models combining monitoring station data with satellite-obtained aerosol optical thickness (AOT), also referred to as aerosol optical depth (AOD), have been proposed in the literature with varying levels of success in predicting PM2.5. The benefit of using AOT is that satellites provide complete gridded spatial coverage. However, the challenges involved with using it in fusion models are (1) the correlation between the two data sources varies both in time and in space, (2) the data sources are temporally and spatially misaligned, and (3) there is extensive missingness in the monitoring data and also in the satellite data due to cloud cover. We propose a hierarchical autoregressive spatially varying coefficients model to jointly model the two data sources, which addresses the foregoing challenges. Additionally, we offer formal model comparison for competing models in terms of model fit and out of sample prediction of PM2.5. The models are applied to daily observations of PM2.5 and AOT in the summer months of 2013 across the conterminous United States. Most notably, during this time period, we find small in-sample improvement incorporating AOT into our autoregressive model but little out-of-sample predictive improvement.
The promise of the state space approach to time series analysis for nursing research.
Levy, Janet A; Elser, Heather E; Knobel, Robin B
2012-01-01
Nursing research, particularly related to physiological development, often depends on the collection of time series data. The state space approach to time series analysis has great potential to answer exploratory questions relevant to physiological development but has not been used extensively in nursing. The aim of the study was to introduce the state space approach to time series analysis and demonstrate potential applicability to neonatal monitoring and physiology. We present a set of univariate state space models; each one describing a process that generates a variable of interest over time. Each model is presented algebraically and a realization of the process is presented graphically from simulated data. This is followed by a discussion of how the model has been or may be used in two nursing projects on neonatal physiological development. The defining feature of the state space approach is the decomposition of the series into components that are functions of time; specifically, slowly varying level, faster varying periodic, and irregular components. State space models potentially simulate developmental processes where a phenomenon emerges and disappears before stabilizing, where the periodic component may become more regular with time, or where the developmental trajectory of a phenomenon is irregular. The ultimate contribution of this approach to nursing science will require close collaboration and cross-disciplinary education between nurses and statisticians.
NASA Astrophysics Data System (ADS)
Bao, Weizhu; Jiang, Wei; Wang, Yan; Zhao, Quan
2017-02-01
We propose an efficient and accurate parametric finite element method (PFEM) for solving sharp-interface continuum models for solid-state dewetting of thin films with anisotropic surface energies. The governing equations of the sharp-interface models belong to a new type of high-order (4th- or 6th-order) geometric evolution partial differential equations about open curve/surface interface tracking problems which include anisotropic surface diffusion flow and contact line migration. Compared to the traditional methods (e.g., marker-particle methods), the proposed PFEM not only has very good accuracy, but also poses very mild restrictions on the numerical stability, and thus it has significant advantages for solving this type of open curve evolution problems with applications in the simulation of solid-state dewetting. Extensive numerical results are reported to demonstrate the accuracy and high efficiency of the proposed PFEM.
NASA Astrophysics Data System (ADS)
Giona, Massimiliano; Brasiello, Antonio; Crescitelli, Silvestro
2017-08-01
This third part extends the theory of Generalized Poisson-Kac (GPK) processes to nonlinear stochastic models and to a continuum of states. Nonlinearity is treated in two ways: (i) as a dependence of the parameters (intensity of the stochastic velocity, transition rates) of the stochastic perturbation on the state variable, similarly to the case of nonlinear Langevin equations, and (ii) as the dependence of the stochastic microdynamic equations of motion on the statistical description of the process itself (nonlinear Fokker-Planck-Kac models). Several numerical and physical examples illustrate the theory. Gathering nonlinearity and a continuum of states, GPK theory provides a stochastic derivation of the nonlinear Boltzmann equation, furnishing a positive answer to the Kac’s program in kinetic theory. The transition from stochastic microdynamics to transport theory within the framework of the GPK paradigm is also addressed.
The other half of the embodied mind.
Parisi, Domenico
2011-01-01
Embodied theories of mind tend to be theories of the cognitive half of the mind and to ignore its emotional half while a complete theory of the mind should account for both halves. Robots are a new way of expressing theories of the mind which are less ambiguous and more capable to generate specific and non-controversial predictions than verbally expressed theories. We outline a simple robotic model of emotional states as states of a sub-part of the neural network controlling the robot's behavior which has specific properties and which allows the robot to make faster and more correct motivational decisions, and we describe possible extensions of the model to account for social emotional states and for the expression of emotions that, unlike those of current "emotional" robots, are really "felt" by the robot in that they play a well-identified functional role in the robot's behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. D. Blackwell; K. W. Wisian; M. C. Richards
2000-04-01
Several activities related to geothermal resources in the western United States are described in this report. A database of geothermal site-specific thermal gradient and heat flow results from individual exploration wells in the western US has been assembled. Extensive temperature gradient and heat flow exploration data from the active exploration of the 1970's and 1980's were collected, compiled, and synthesized, emphasizing previously unavailable company data. Examples of the use and applications of the database are described. The database and results are available on the world wide web. In this report numerical models are used to establish basic qualitative relationships betweenmore » structure, heat input, and permeability distribution, and the resulting geothermal system. A series of steady state, two-dimensional numerical models evaluate the effect of permeability and structural variations on an idealized, generic Basin and Range geothermal system and the results are described.« less
The Other Half of the Embodied Mind
Parisi, Domenico
2011-01-01
Embodied theories of mind tend to be theories of the cognitive half of the mind and to ignore its emotional half while a complete theory of the mind should account for both halves. Robots are a new way of expressing theories of the mind which are less ambiguous and more capable to generate specific and non-controversial predictions than verbally expressed theories. We outline a simple robotic model of emotional states as states of a sub-part of the neural network controlling the robot's behavior which has specific properties and which allows the robot to make faster and more correct motivational decisions, and we describe possible extensions of the model to account for social emotional states and for the expression of emotions that, unlike those of current “emotional” robots, are really “felt” by the robot in that they play a well-identified functional role in the robot's behavior. PMID:21687441
Using a Network Model to Assess Risk of Forest Pest Spread via Recreational Travel
Koch, Frank H.; Yemshanov, Denys; Haack, Robert A.; Magarey, Roger D.
2014-01-01
Long-distance dispersal pathways, which frequently relate to human activities, facilitate the spread of alien species. One pathway of concern in North America is the possible spread of forest pests in firewood carried by visitors to campgrounds or recreational facilities. We present a network model depicting the movement of campers and, by extension, potentially infested firewood. We constructed the model from US National Recreation Reservation Service data documenting more than seven million visitor reservations (including visitors from Canada) at campgrounds nationwide. This bi-directional model can be used to identify likely origin and destination locations for a camper-transported pest. To support broad-scale decision making, we used the model to generate summary maps for 48 US states and seven Canadian provinces that depict the most likely origins of campers traveling from outside the target state or province. The maps generally showed one of two basic spatial patterns of out-of-state (or out-of-province) origin risk. In the eastern United States, the riskiest out-of-state origin locations were usually found in a localized region restricted to portions of adjacent states. In the western United States, the riskiest out-of-state origin locations were typically associated with major urban areas located far from the state of interest. A few states and the Canadian provinces showed characteristics of both patterns. These model outputs can guide deployment of resources for surveillance, firewood inspections, or other activities. Significantly, the contrasting map patterns indicate that no single response strategy is appropriate for all states and provinces. If most out-of-state campers are traveling from distant areas, it may be effective to deploy resources at key points along major roads (e.g., interstate highways), since these locations could effectively represent bottlenecks of camper movement. If most campers are from nearby areas, they may have many feasible travel routes, so a more widely distributed deployment may be necessary. PMID:25007186
Using a network model to assess risk of forest pest spread via recreational travel.
Koch, Frank H; Yemshanov, Denys; Haack, Robert A; Magarey, Roger D
2014-01-01
Long-distance dispersal pathways, which frequently relate to human activities, facilitate the spread of alien species. One pathway of concern in North America is the possible spread of forest pests in firewood carried by visitors to campgrounds or recreational facilities. We present a network model depicting the movement of campers and, by extension, potentially infested firewood. We constructed the model from US National Recreation Reservation Service data documenting more than seven million visitor reservations (including visitors from Canada) at campgrounds nationwide. This bi-directional model can be used to identify likely origin and destination locations for a camper-transported pest. To support broad-scale decision making, we used the model to generate summary maps for 48 US states and seven Canadian provinces that depict the most likely origins of campers traveling from outside the target state or province. The maps generally showed one of two basic spatial patterns of out-of-state (or out-of-province) origin risk. In the eastern United States, the riskiest out-of-state origin locations were usually found in a localized region restricted to portions of adjacent states. In the western United States, the riskiest out-of-state origin locations were typically associated with major urban areas located far from the state of interest. A few states and the Canadian provinces showed characteristics of both patterns. These model outputs can guide deployment of resources for surveillance, firewood inspections, or other activities. Significantly, the contrasting map patterns indicate that no single response strategy is appropriate for all states and provinces. If most out-of-state campers are traveling from distant areas, it may be effective to deploy resources at key points along major roads (e.g., interstate highways), since these locations could effectively represent bottlenecks of camper movement. If most campers are from nearby areas, they may have many feasible travel routes, so a more widely distributed deployment may be necessary.
A reinterpretation of the electronic spectrum of pyrrole: A quantum dynamics study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neville, S. P.; Worth, G. A., E-mail: g.a.worth@bham.ac.uk
The first band in the electronic spectrum of pyrrole is calculated from wavepacket propagations performed using the MCTDH method. To do so, two model Hamiltonians are constructed to describe seven low-lying excited electronic states of pyrrole. These Hamiltonians are based on the vibronic coupling model, and are parameterised via fitting to extensive CASPT2 and EOM-CCSD calculations. A detailed analysis of the structure of pyrrole's electronic spectrum in the range 5.5 to 6.5 eV is made. The role of intensity borrowing from transitions to ππ{sup *} states by lower-lying 3s and 3p Rydberg states is assessed, and reassignments of much ofmore » the spectrum are subsequently made which indicate that most of the states in the spectrum are predominantly Rydberg in character. The resulting conclusions drawn serve to highlight the limitations of assignments based on the matching of calculated vertical excitation energies and the positions of peak maxima observed in electronic spectra.« less
A hybrid method for classifying cognitive states from fMRI data.
Parida, S; Dehuri, S; Cho, S-B; Cacha, L A; Poznanski, R R
2015-09-01
Functional magnetic resonance imaging (fMRI) makes it possible to detect brain activities in order to elucidate cognitive-states. The complex nature of fMRI data requires under-standing of the analyses applied to produce possible avenues for developing models of cognitive state classification and improving brain activity prediction. While many models of classification task of fMRI data analysis have been developed, in this paper, we present a novel hybrid technique through combining the best attributes of genetic algorithms (GAs) and ensemble decision tree technique that consistently outperforms all other methods which are being used for cognitive-state classification. Specifically, this paper illustrates the combined effort of decision-trees ensemble and GAs for feature selection through an extensive simulation study and discusses the classification performance with respect to fMRI data. We have shown that our proposed method exhibits significant reduction of the number of features with clear edge classification accuracy over ensemble of decision-trees.
A Review of Extension Master Gardener Training Manuals from around the United States
ERIC Educational Resources Information Center
Moore, Kathleen; Bradley, Lucy K.
2015-01-01
Extension Master Gardener Volunteers (EMGVs) are recruited and trained to answer questions and diagnose gardening problems for the public. Most states have developed an EMGV Manual for use in the initial training. Thirty-two EMGV Training manuals from across the United States were reviewed for form and content. While many of the manuals have…
Zipkin, Elise F; Sillett, T Scott; Grant, Evan H Campbell; Chandler, Richard B; Royle, J Andrew
2014-01-01
Wildlife populations consist of individuals that contribute disproportionately to growth and viability. Understanding a population's spatial and temporal dynamics requires estimates of abundance and demographic rates that account for this heterogeneity. Estimating these quantities can be difficult, requiring years of intensive data collection. Often, this is accomplished through the capture and recapture of individual animals, which is generally only feasible at a limited number of locations. In contrast, N-mixture models allow for the estimation of abundance, and spatial variation in abundance, from count data alone. We extend recently developed multistate, open population N-mixture models, which can additionally estimate demographic rates based on an organism's life history characteristics. In our extension, we develop an approach to account for the case where not all individuals can be assigned to a state during sampling. Using only state-specific count data, we show how our model can be used to estimate local population abundance, as well as density-dependent recruitment rates and state-specific survival. We apply our model to a population of black-throated blue warblers (Setophaga caerulescens) that have been surveyed for 25 years on their breeding grounds at the Hubbard Brook Experimental Forest in New Hampshire, USA. The intensive data collection efforts allow us to compare our estimates to estimates derived from capture–recapture data. Our model performed well in estimating population abundance and density-dependent rates of annual recruitment/immigration. Estimates of local carrying capacity and per capita recruitment of yearlings were consistent with those published in other studies. However, our model moderately underestimated annual survival probability of yearling and adult females and severely underestimates survival probabilities for both of these male stages. The most accurate and precise estimates will necessarily require some amount of intensive data collection efforts (such as capture–recapture). Integrated population models that combine data from both intensive and extensive sources are likely to be the most efficient approach for estimating demographic rates at large spatial and temporal scales. PMID:24634726
Adaptive behaviour and multiple equilibrium states in a predator-prey model.
Pimenov, Alexander; Kelly, Thomas C; Korobeinikov, Andrei; O'Callaghan, Michael J A; Rachinskii, Dmitrii
2015-05-01
There is evidence that multiple stable equilibrium states are possible in real-life ecological systems. Phenomenological mathematical models which exhibit such properties can be constructed rather straightforwardly. For instance, for a predator-prey system this result can be achieved through the use of non-monotonic functional response for the predator. However, while formal formulation of such a model is not a problem, the biological justification for such functional responses and models is usually inconclusive. In this note, we explore a conjecture that a multitude of equilibrium states can be caused by an adaptation of animal behaviour to changes of environmental conditions. In order to verify this hypothesis, we consider a simple predator-prey model, which is a straightforward extension of the classic Lotka-Volterra predator-prey model. In this model, we made an intuitively transparent assumption that the prey can change a mode of behaviour in response to the pressure of predation, choosing either "safe" of "risky" (or "business as usual") behaviour. In order to avoid a situation where one of the modes gives an absolute advantage, we introduce the concept of the "cost of a policy" into the model. A simple conceptual two-dimensional predator-prey model, which is minimal with this property, and is not relying on odd functional responses, higher dimensionality or behaviour change for the predator, exhibits two stable co-existing equilibrium states with basins of attraction separated by a separatrix of a saddle point. Copyright © 2015 Elsevier Inc. All rights reserved.
Constraints Affecting ICT Utilization by Agricultural Extension Officers in the Niger Delta, Nigeria
ERIC Educational Resources Information Center
Akpabio, I. A.; Okon, D. P.; Inyang, E. B.
2007-01-01
The study focused on constraints affecting the utilization of Information and Communication Technologies (ICT) for agricultural extension activities by Agricultural Extension Officers in Nigeria's Niger Delta Region. Data were derived from 160 extension officers affiliated to both public and private extension organizations in four states of the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Wenjun, E-mail: wjzheng@buffalo.edu; Glenn, Paul
2015-01-21
The Bacteriophage T4 Lysozyme (T4L) is a prototype modular protein comprised of an N-terminal and a C-domain domain, which was extensively studied to understand the folding/unfolding mechanism of modular proteins. To offer detailed structural and dynamic insights to the folded-state stability and the mechanical unfolding behaviors of T4L, we have performed extensive equilibrium and steered molecular dynamics simulations of both the wild-type (WT) and a circular permutation (CP) variant of T4L using all-atom and coarse-grained force fields. Our all-atom and coarse-grained simulations of the folded state have consistently found greater stability of the C-domain than the N-domain in isolation, whichmore » is in agreement with past thermostatic studies of T4L. While the all-atom simulation cannot fully explain the mechanical unfolding behaviors of the WT and the CP variant observed in an optical tweezers study, the coarse-grained simulations based on the Go model or a modified elastic network model (mENM) are in qualitative agreement with the experimental finding of greater unfolding cooperativity in the WT than the CP variant. Interestingly, the two coarse-grained models predict different structural mechanisms for the observed change in cooperativity between the WT and the CP variant—while the Go model predicts minor modification of the unfolding pathways by circular permutation (i.e., preserving the general order that the N-domain unfolds before the C-domain), the mENM predicts a dramatic change in unfolding pathways (e.g., different order of N/C-domain unfolding in the WT and the CP variant). Based on our simulations, we have analyzed the limitations of and the key differences between these models and offered testable predictions for future experiments to resolve the structural mechanism for cooperative folding/unfolding of T4L.« less
The added value of remote sensing products in constraining hydrological models
NASA Astrophysics Data System (ADS)
Nijzink, Remko C.; Almeida, Susana; Pechlivanidis, Ilias; Capell, René; Gustafsson, David; Arheimer, Berit; Freer, Jim; Han, Dawei; Wagener, Thorsten; Sleziak, Patrik; Parajka, Juraj; Savenije, Hubert; Hrachowitz, Markus
2017-04-01
The calibration of a hydrological model still depends on the availability of streamflow data, even though more additional sources of information (i.e. remote sensed data products) have become more widely available. In this research, the model parameters of four different conceptual hydrological models (HYPE, HYMOD, TUW, FLEX) were constrained with remotely sensed products. The models were applied over 27 catchments across Europe to cover a wide range of climates, vegetation and landscapes. The fluxes and states of the models were correlated with the relevant products (e.g. MOD10A snow with modelled snow states), after which new a-posteriori parameter distributions were determined based on a weighting procedure using conditional probabilities. Briefly, each parameter was weighted with the coefficient of determination of the relevant regression between modelled states/fluxes and products. In this way, final feasible parameter sets were derived without the use of discharge time series. Initial results show that improvements in model performance, with regard to streamflow simulations, are obtained when the models are constrained with a set of remotely sensed products simultaneously. In addition, we present a more extensive analysis to assess a model's ability to reproduce a set of hydrological signatures, such as rising limb density or peak distribution. Eventually, this research will enhance our understanding and recommendations in the use of remotely sensed products for constraining conceptual hydrological modelling and improving predictive capability, especially for data sparse regions.
Hydrological Modeling in Alaska with WRF-Hydro
NASA Astrophysics Data System (ADS)
Elmer, N. J.; Zavodsky, B.; Molthan, A.
2017-12-01
The operational National Water Model (NWM), implemented in August 2016, is an instantiation of the Weather Research and Forecasting hydrological extension package (WRF-Hydro). Currently, the NWM only covers the contiguous United States, but will be expanded to include an Alaska domain in the future. It is well known that Alaska presents several hydrological modeling challenges, including unique arctic/sub-arctic hydrological processes not observed elsewhere in the United States and a severe lack of in-situ observations for model initialization. This project sets up an experimental version of WRF-Hydro in Alaska mimicking the NWM to gauge the ability of WRF-Hydro to represent hydrological processes in Alaska and identify model calibration challenges. Recent and upcoming launches of hydrology-focused NASA satellite missions such as the Soil Moisture Active Passive (SMAP) and Surface Water Ocean Topography (SWOT) expand the spatial and temporal coverage of observations in Alaska, so this study also lays the groundwork for assimilating these NASA datasets into WRF-Hydro in the future.
Implementing ADM1 for plant-wide benchmark simulations in Matlab/Simulink.
Rosen, C; Vrecko, D; Gernaey, K V; Pons, M N; Jeppsson, U
2006-01-01
The IWA Anaerobic Digestion Model No.1 (ADM1) was presented in 2002 and is expected to represent the state-of-the-art model within this field in the future. Due to its complexity the implementation of the model is not a simple task and several computational aspects need to be considered, in particular if the ADM1 is to be included in dynamic simulations of plant-wide or even integrated systems. In this paper, the experiences gained from a Matlab/Simulink implementation of ADM1 into the extended COST/IWA Benchmark Simulation Model (BSM2) are presented. Aspects related to system stiffness, model interfacing with the ASM family, mass balances, acid-base equilibrium and algebraic solvers for pH and other troublesome state variables, numerical solvers and simulation time are discussed. The main conclusion is that if implemented properly, the ADM1 will also produce high-quality results in dynamic plant-wide simulations including noise, discrete sub-systems, etc. without imposing any major restrictions due to extensive computational efforts.
Goldberg, Daniel L.; Vinciguerra, Timothy P.; Anderson, Daniel C.; Hembeck, Linda; Canty, Timothy P.; Ehrman, Sheryl H.; Martins, Douglas K.; Stauffer, Ryan M.; Thompson, Anne M.; Salawitch, Ross J.; Dickerson, Russell R.
2018-01-01
A Comprehensive Air-Quality Model with Extensions (CAMx) version 6.10 simulation was assessed through comparison with data acquired during NASA’s 2011 DISCOVER-AQ Maryland field campaign. Comparisons for the baseline simulation (CB05 chemistry, EPA 2011 National Emissions Inventory) show a model overestimate of NOy by +86.2% and an underestimate of HCHO by −28.3%. We present a new model framework (CB6r2 chemistry, MEGAN v2.1 biogenic emissions, 50% reduction in mobile NOx, enhanced representation of isoprene nitrates) that better matches observations. The new model framework attributes 31.4% more surface ozone in Maryland to electric generating units (EGUs) and 34.6% less ozone to on-road mobile sources. Surface ozone becomes more NOx-limited throughout the eastern United States compared to the baseline simulation. The baseline model therefore likely underestimates the effectiveness of anthropogenic NOx reductions as well as the current contribution of EGUs to surface ozone. PMID:29618849
Goldberg, Daniel L; Vinciguerra, Timothy P; Anderson, Daniel C; Hembeck, Linda; Canty, Timothy P; Ehrman, Sheryl H; Martins, Douglas K; Stauffer, Ryan M; Thompson, Anne M; Salawitch, Ross J; Dickerson, Russell R
2016-03-16
A Comprehensive Air-Quality Model with Extensions (CAMx) version 6.10 simulation was assessed through comparison with data acquired during NASA's 2011 DISCOVER-AQ Maryland field campaign. Comparisons for the baseline simulation (CB05 chemistry, EPA 2011 National Emissions Inventory) show a model overestimate of NO y by +86.2% and an underestimate of HCHO by -28.3%. We present a new model framework (CB6r2 chemistry, MEGAN v2.1 biogenic emissions, 50% reduction in mobile NO x , enhanced representation of isoprene nitrates) that better matches observations. The new model framework attributes 31.4% more surface ozone in Maryland to electric generating units (EGUs) and 34.6% less ozone to on-road mobile sources. Surface ozone becomes more NO x -limited throughout the eastern United States compared to the baseline simulation. The baseline model therefore likely underestimates the effectiveness of anthropogenic NO x reductions as well as the current contribution of EGUs to surface ozone.
NASA Astrophysics Data System (ADS)
Ng, John N.; de la Puente, Alejandro; Pan, Bob Wei-Ping
2015-12-01
In this study we explore the LHC's Run II potential to the discovery of heavy Majorana neutrinos, with luminosities between 30 and 3000 fb-1 in the l ± l ± j j final state. Given that there exist many models for neutrino mass generation, even within the Type I seesaw framework, we use a simplified model approach and study two simple extensions to the Standard Model, one with a single heavy Majorana neutrino, singlet under the Standard Model gauge group, and a limiting case of the left-right symmetric model. We then extend the analysis to a future hadron collider running at 100 TeV center of mass energies. This extrapolation in energy allows us to study the relative importance of the resonant production versus gauge boson fusion processes in the study of Majorana neutrinos at hadron colliders. We analyze and propose different search strategies designed to maximize the discovery potential in either the resonant production or the gauge boson fusion modes.
Radiative lifetimes and cooling functions for astrophysically important molecules
NASA Astrophysics Data System (ADS)
Tennyson, Jonathan; Hulme, Kelsey; Naim, Omree K.; Yurchenko, Sergei N.
2016-02-01
Extensive line lists generated as part of the ExoMol project are used to compute lifetimes for individual rotational, rovibrational and rovibronic excited states, and temperature-dependent cooling functions by summing over all dipole-allowed transitions for the states concerned. Results are presented for SiO, CaH, AlO, ScH, H2O and methane. The results for CH4 are particularly unusual with four excited states with no dipole-allowed decay route and several others, where these decays lead to exceptionally long lifetimes. These lifetime data should be useful in models of masers and estimates of critical densities, and can provide a link with laboratory measurements. Cooling functions are important in stellar and planet formation.
Afenya, Evans K; Ouifki, Rachid; Camara, Baba I; Mundle, Suneel D
2016-04-01
Stemming from current emerging paradigms related to the cancer stem cell hypothesis, an existing mathematical model is expanded and used to study cell interaction dynamics in the bone marrow and peripheral blood. The proposed mathematical model is described by a system of nonlinear differential equations with delay, to quantify the dynamics in abnormal hematopoiesis. The steady states of the model are analytically and numerically obtained. Some conditions for the local asymptotic stability of such states are investigated. Model analyses suggest that malignancy may be irreversible once it evolves from a nonmalignant state into a malignant one and no intervention takes place. This leads to the proposition that a great deal of emphasis be placed on cancer prevention. Nevertheless, should malignancy arise, treatment programs for its containment or curtailment may have to include a maximum and extensive level of effort to protect normal cells from eventual destruction. Further model analyses and simulations predict that in the untreated disease state, there is an evolution towards a situation in which malignant cells dominate the entire bone marrow - peripheral blood system. Arguments are then advanced regarding requirements for quantitatively understanding cancer stem cell behavior. Among the suggested requirements are, mathematical frameworks for describing the dynamics of cancer initiation and progression, the response to treatment, the evolution of resistance, and malignancy prevention dynamics within the bone marrow - peripheral blood architecture. Copyright © 2016 Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-04-01
...' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR TEMPORARY EMPLOYMENT OF FOREIGN WORKERS IN THE UNITED STATES Labor Certification Process for Temporary Agricultural Employment in the United States (H-2A Workers) Post Certification § 655.170 Extensions. An employer may apply for...
Code of Federal Regulations, 2010 CFR
2010-04-01
...' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR TEMPORARY EMPLOYMENT OF FOREIGN WORKERS IN THE UNITED STATES Labor Certification Process for Temporary Agricultural Employment in the United States (H-2A Workers) Post Certification § 655.170 Extensions. An employer may apply for...
7 CFR 3404.1 - General statement.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 15 2010-01-01 2010-01-01 false General statement. 3404.1 Section 3404.1 Agriculture Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION, AND EXTENSION... Cooperative State Research, Education, and Extension Service (CSREES) to the public. ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ku, Wai Lim; Girvan, Michelle; Ott, Edward
In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field ismore » chaotic. We argue that this second type of behavior is “extensive” in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.« less
Current state of aerosol nucleation parameterizations for air-quality and climate modeling
NASA Astrophysics Data System (ADS)
Semeniuk, Kirill; Dastoor, Ashu
2018-04-01
Aerosol nucleation parameterization models commonly used in 3-D air quality and climate models have serious limitations. This includes classical nucleation theory based variants, empirical models and other formulations. Recent work based on detailed and extensive laboratory measurements and improved quantum chemistry computation has substantially advanced the state of nucleation parameterizations. In terms of inorganic nucleation involving BHN and THN including ion effects these new models should be considered as worthwhile replacements for the old models. However, the contribution of organic species to nucleation remains poorly quantified. New particle formation consists of a distinct post-nucleation growth regime which is characterized by a strong Kelvin curvature effect and is thus dependent on availability of very low volatility organic species or sulfuric acid. There have been advances in the understanding of the multiphase chemistry of biogenic and anthropogenic organic compounds which facilitate to overcome the initial aerosol growth barrier. Implementation of processes influencing new particle formation is challenging in 3-D models and there is a lack of comprehensive parameterizations. This review considers the existing models and recent innovations.
Lu, Jun-Bo; Ma, Xue-Lu; Wang, Jia-Qi; Liu, Jin-Cheng; Xiao, Hai; Li, Jun
2018-05-10
Model systems of the FeMo cofactor of nitrogenase have been explored extensively in catalysis to gain insights into their ability for nitrogen fixation that is of vital importance to the human society. Here we investigate the trigonal pyramidal borane-ligand Fe complex by first-principles calculations, and find that the variation of oxidation state of Fe along the reaction path correlates with that of the reverse-dative Fe → B bonding. The redox-flexibility of the reverse-dative Fe → B bonding helps to provide an electron reservoir that buffers and stabilizes the evolution of Fe oxidation state, which is essential for forming the key intermediates of N 2 activation. Our work provides insights for understanding and optimizing homogeneous and surface single-atom catalysts with reverse-dative donating ligands for efficient dinitrogen fixation. The extension of this kind of molecular catalytic active center to heterogeneous catalysts with surface single-clusters is also discussed.
Summer stream water temperature models for Great Lakes streams: New York
Murphy, Marilyn K.; McKenna, James E.; Butryn, Ryan S.; McDonald, Richard P.
2010-01-01
Temperature is one of the most important environmental influences on aquatic organisms. It is a primary driver of physiological rates and many abiotic processes. However, despite extensive research and measurements, synoptic estimates of water temperature are not available for most regions, limiting our ability to make systemwide and large-scale assessments of aquatic resources or estimates of aquatic species abundance and biodiversity. We used subwatershed averaging of point temperature measurements and associated multiscale landscape habitat conditions from over 3,300 lotic sites throughout New York State to develop and train artificial neural network models. Separate models predicting water temperature (in cold, cool, and warm temperature classes) within small catchment–stream order groups were developed for four modeling units, which together encompassed the entire state. Water temperature predictions were then made for each stream segment in the state. All models explained more than 90% of data variation. Elevation, riparian forest cover, landscape slope, and growing degree-days were among the most important model predictors of water temperature classes. Geological influences varied among regions. Predicted temperature distributions within stream networks displayed patterns of generally increasing temperature downstream but were patchy due to the averaging of water temperatures within stream size-classes of small drainages. Models predicted coldwater streams to be most numerous and warmwater streams to be generally associated with the largest rivers and relatively flat agricultural areas and urban areas. Model predictions provide a complete, georeferenced map of summer daytime mean stream temperature potential throughout New York State that can be used for planning and assessment at spatial scales from the stream segment class to the entire state.
ASAS Centennial Paper: Future needs of research and extension in forage utilization.
Rouquette, F M; Redmon, L A; Aiken, G E; Hill, G M; Sollenberger, L E; Andrae, J
2009-01-01
Forage-animal production agriculture is implementing infrastructure changes and management strategies to adjust to increased energy-related costs of fuel, feed grains, fertilizers, and seeds. The primary objectives of this position paper are to assess future research and extension scientific needs in forage utilization, financial support for the discipline, and changing status and number of scientists. A survey questionnaire returned from 25 land-grant universities in the eastern half of the United States rated the top 4 research needs as 1) pasture systems and efficiency of production; 2) interfacing with energy concerns; 3) forage cultivar evaluations and persistence; and 4) environment impacts. Plant-animal future research needs at 11 USDA-ARS regional locations are targeted at sustainable management and improved livestock performance, ecophysiology and ecology of grasslands, environment impacts, and improved technologies for nutritive value assessments. Extension scientists from 17 southern and northeastern states listed the top 3 needs as forage persistence, soil fertility and nutrient management, and pasture systems and efficiency of production. Grant funds currently provide more than 40% of land-grant university research and extension efforts in forage utilization, and scientists estimate that this support base will increase to 55 to 60% of the funding total by 2013. Reduced allocation of state and federal funding has contributed to a reduction in the number of full-time equivalent (FTE) scientists engaged in forage utilization research and extension activities. The current 25 state FTE conducting research number about 2.8 per state. This includes 10 states with >3, 11 states with <2, and 3 states with <1 FTE. Increased interest in cellulosic energy, climate change, and environmental impact may offer new opportunities for these FTE to participate in integrated cross-discipline research Extension programming, and technology transfer methods will change to accommodate reduced funding but with increasing numbers of novice, recreation-oriented landowners.
A Study of Water Wave Wakes of Washington State Ferries
NASA Astrophysics Data System (ADS)
Perfect, Bradley; Riley, James; Thomson, Jim; Fay, Endicott
2015-11-01
Washington State Ferries (WSF) operates a ferry route that travels through a 600m-wide channel called Rich Passage. Concerns of shoreline erosion in Rich Passage have prompted this study of the generation and propagation of surface wave wakes caused by WSF vessels. The problem was addressed in three ways: analytically, using an extension of the Kelvin wake model by Darmon et al. (J. Fluid Mech., 738, 2014); computationally, employing a RANS Navier-Stokes model in the CFD code OpenFOAM which uses the Volume of Fluid method to treat the free surface; and with field data taken in Sept-Nov, 2014, using a suite of surface wave measuring buoys. This study represents one of the first times that model predictions of ferry boat-generated wakes can be tested against measurements in open waters. The results of the models and the field data are evaluated using direct comparison of predicted and measured surface wave height as well as other metrics. Furthermore, the model predictions and field measurements suggest differences in wake amplitudes for different class vessels. Finally, the relative strengths and weaknesses of each prediction method as well as of the field measurements will be discussed. Washington State Department of Transportation.
Cross-species transmission of CWD prions.
Kurt, Timothy D; Sigurdson, Christina J
2016-01-01
Prions cause fatal neurodegenerative diseases in humans and animals and can be transmitted zoonotically. Chronic wasting disease (CWD) is a highly transmissible prion disease of wild deer and elk that affects cervids over extensive regions of the United States and Canada. The risk of cross-species CWD transmission has been experimentally evaluated in a wide array of mammals, including non-human primates and mouse models expressing human cellular prion protein. Here we review the determinants of cross-species CWD transmission, and propose a model that may explain a structural barrier for CWD transmission to humans.
Bioterrorism, public health, and the law.
Bayer, Ronald; Colgrove, James
2002-01-01
The controversy over the Model State Emergency Health Powers Act has underscored the enduring tension in public health between guarding the common welfare and respecting individual liberty. The current version of the act, crafted in response to extensive public commentary, attempts to strike a balance between these values but has failed to allay the concerns of many civil libertarians and privacy advocates. Although the debates over the model act have been triggered by the threat of bioterrorism, they illustrate broader philosophical differences, with profound implications for all realms of public health policy.
Bourlieu, C; Guillard, V; Vallès-Pamiès, B; Guilbert, S; Gontard, N
2009-05-01
Control of moisture transfer inside composite food products or between food and its environment remains today a major challenge in food preservation. A wide rage of film-forming compounds is now available and facilitates tailoring moisture barriers with optimized functional properties. Despite these huge potentials, a realistic assessment of the film or coating efficacy is still critical. Due to nonlinear water sorption isotherms, water-dependent diffusivities, and variations of physical state, modelling transport phenomena through edible barriers is complex. Water vapor permeability can hardly be considered as an inherent property of films and only gives a relative indication of the barrier efficacy. The formal or mechanistic models reported in literature that describe the influence of testing conditions on the barrier properties of edible films are reviewed and discussed. Most of these models have been validated on a narrow range of conditions. Conversely, few original predictive models based on Fick's Second Law have been developed to assess shelf-life extension of food products including barriers. These models, assuming complex and realistic hypothesis, have been validated in various model foods. The development of nondestructive methods of moisture content measurement should speed up model validation and allow a better comprehension of moisture transfer through edible films.
Predicting county-level cancer incidence rates and counts in the United States
Yu, Binbing
2018-01-01
Many countries, including the United States, publish predicted numbers of cancer incidence and death in current and future years for the whole country. These predictions provide important information on the cancer burden for cancer control planners, policymakers and the general public. Based on evidence from several empirical studies, the joinpoint (segmented-line linear regression) model has been adopted by the American Cancer Society to estimate the number of new cancer cases in the United States and in individual states since 2007. Recently, cancer incidence in smaller geographic regions such as counties and FIPS code regions is of increasing interest by local policymakers. The natural extension is to directly apply the joinpoint model to county-level cancer incidence data. The direct application has several drawbacks and its performance has not been evaluated. To address the concerns, we developed a spatial random-effects joinpoint model for county-level cancer incidence data. The proposed model was used to predict both cancer incidence rates and counts at the county level. The standard joinpoint model and the proposed method were compared through a validation study. The proposed method out-performed the standard joinpoint model for almost all cancer sites, especially for moderate or rare cancer sites and for counties with small population sizes. As an application, we predicted county-level prostate cancer incidence rates and counts for the year 2011 in Connecticut. PMID:23670947
Kaufman, Arthur; Rhyne, Robert L; Anastasoff, Juliana; Ronquillo, Francisco; Nixon, Marnie; Mishra, Shiraz; Poola, Charlene; Page-Reeves, Janet; Nkouaga, Carolina; Cordova, Carla; Larson, Richard S
Health Extension Regional Officers (HEROs) through the University of New Mexico Health Sciences Center (UNMHSC) help to facilitate university-community engagement throughout New Mexico. HEROs, based in communities across the state, link priority community health needs with university resources in education, service, and research. Researchers' studies are usually aligned with federal funding priorities rather than with health priorities expressed by communities. To help overcome this misalignment, the UNM Clinical and Translational Science Center (CTSC) provides partial funding for HEROs to bridge the divide between research priorities of UNMHSC and health priorities of the state's communities. A bidirectional partnership between HEROs and CTSC researchers was established, which led to: 1) increased community engaged studies through the CTSC, 2) the HERO model itself as a subject of research, 3) a HERO-driven increase in local capacity in scholarship and grant writing, and 4) development of training modules for investigators and community stakeholders on community-engaged research. As a result, 5 grants were submitted, 4 of which were funded, totaling $7,409,002.00, and 3 research articles were published. Health extension can serve as a university-funded, community-based bridge between community health needs and Clinical and Translational Science Award (CTSA) research capacity, opening avenues for translational research. © Copyright 2017 by the American Board of Family Medicine.
NASA Astrophysics Data System (ADS)
Marzen, R. E.; Shillington, D. J.; Lizarralde, D.; Harder, S. H.
2016-12-01
The Southeastern United States is an ideal location to study the interactions between continental collision, extensive but short-lived magmatism, and continental rifting. Continental collision during the Alleghenian Orogeny ( 290 Ma) formed the supercontinent Pangea. Extension leading to the breakup of Pangea began 230 Ma, forming the South Georgia Basin and other rift basins. The extensive Central Atlantic Magmatic Province (CAMP) magmatism was emplaced at 200 Ma, and continental separation occurred afterwards. During these processes, part of the African continent was added to North America. Prior work has raised questions including (1) the location and geometry of the suture zone and implications for the style of collision (thin-skinned versus thick-skinned), (2) the role of pre-existing structures on later rifting, and (3) the distribution of magmatism, and possible relationships between magmatism and rifting. To address these questions, we present preliminary velocity models for the 400-km-long refraction seismic line from the SUwanee Suture and GA Rift basin experiment (SUGAR) Line 2. This line is central to CAMP magmatism, and crosses the South Georgia rift basin and two hypothesized locations for the ancient suture zone. The data were collected in August 2015 by a team of over 40 students and scientists. Fifteen shots spaced at 20-40 km were recorded by 1981 Texans spaced at 250 m. We observe refractions from the basin, crust, and upper mantle, and wide-angle reflections from the base of the sediments, within the crust, and from the Moho. Prominent mid crustal reflections may arise from the top of elevated lower crustal velocities and possible lower crustal layering. The starting velocity model and constraints on the upper sedimentary basin velocity structure are obtained through forward modeling, which show basin sediment thickness increasing to the South. We then invert for smooth 2D velocity structure using first arrivals (FAST) and a layered velocity model using refractions and reflections (RAYINVR) to evaluate the crust and upper mantle velocity structure. Model results will be compared to other geological and geophysical data, including the roughly parallel SUGAR Line 1, to examine along-strike changes in rift structure, suture structure, and evidence of magmatism.
The Application of Commercial Advertising Methods to University Extension. Bulletin, 1919, No. 51
ERIC Educational Resources Information Center
Orvis, Mary Burchard
1919-01-01
For many years, colleges, universities, and State departments of education have become more and more conscious of the importance of extension education, and of the obligation resting upon them to promote it in every way practicable. This is especially true of the State university, which, in many States, is now making an honest effort to extend the…
ERIC Educational Resources Information Center
Michigan State Univ., East Lansing.
The Second National Workshop in Community Resource Development (CRD) was planned to provide training for extension personnel; representatives came from Canada and Puerto Rico as well as from the United States. It emphasized the development of a comprehensive framework for CRD and operation materials for carrying out programs in the states and…
Paul V. Ellefson; Michael A. Kilgore; James E. Granskog
2006-01-01
In 2003, 276 state governmental agencies regulated forestry practices applied to nonfederal forests. Fifty-four percent of these agencies were moderately to extensively involved in such regulation, and 68% engaged in moderate to extensive regulatory coordination with a state's lead forestry agency. The agencies employed an estimates 1,047 full-time equivalents (...
X-56A MUTT: Aeroservoelastic Modeling
NASA Technical Reports Server (NTRS)
Ouellette, Jeffrey A.
2015-01-01
For the NASA X-56a Program, Armstrong Flight Research Center has been developing a set of linear states space models that integrate the flight dynamics and structural dynamics. These high order models are needed for the control design, control evaluation, and test input design. The current focus has been on developing stiff wing models to validate the current modeling approach. The extension of the modeling approach to the flexible wings requires only a change in the structural model. Individual subsystems models (actuators, inertial properties, etc.) have been validated by component level ground tests. Closed loop simulation of maneuvers designed to validate the flight dynamics of these models correlates very well flight test data. The open loop structural dynamics are also shown to correlate well to the flight test data.
NASA Astrophysics Data System (ADS)
Williams, C. Jason; Pierson, Frederick B.; Al-Hamdan, Osama Z.; Robichaud, Peter R.; Nearing, Mark A.; Hernandez, Mariano; Weltz, Mark A.; Spaeth, Kenneth E.; Goodrich, David C.
2017-04-01
Fire activity continues to increase in semi-arid regions around the globe. Private and governmental land management entities are challenged with predicting and mitigating post-fire hydrologic and erosion responses on these landscapes. For more than a decade, a team of scientists with the US Department of Agriculture has collaborated on extensive post-fire hydrologic field research and the application of field research to development of post-fire hydrology and erosion predictive technologies. Experiments funded through this research investigated the impacts of fire on vegetation and soils and the effects of these fire-induced changes on infiltration, runoff generation, erodibility, and soil erosion processes. The distribution of study sites spans diverse topography across grassland, shrubland, and woodland landscapes throughout the western United States. Knowledge gleaned from the extensive field experiments was applied to develop and enhance physically-based models for hillslope- to watershed-scale runoff and erosion prediction. Our field research and subsequent data syntheses have identified key knowledge gaps and challenges regarding post-fire hydrology and erosion modeling. Our presentation details some consistent trends across a diverse domain and varying landscape conditions based on our extensive field campaigns. We demonstrate how field data have advanced our understanding of post-fire hydrology and erosion for semi-arid landscapes and highlight remaining key knowledge gaps. Lastly, we briefly show how our well-replicated experimental methodologies have contributed to advancements in hydrologic and erosion model development for the post-fire environment.
Mathematical models of bipolar disorder
NASA Astrophysics Data System (ADS)
Daugherty, Darryl; Roque-Urrea, Tairi; Urrea-Roque, John; Troyer, Jessica; Wirkus, Stephen; Porter, Mason A.
2009-07-01
We use limit cycle oscillators to model bipolar II disorder, which is characterized by alternating hypomanic and depressive episodes and afflicts about 1% of the United States adult population. We consider two non-linear oscillator models of a single bipolar patient. In both frameworks, we begin with an untreated individual and examine the mathematical effects and resulting biological consequences of treatment. We also briefly consider the dynamics of interacting bipolar II individuals using weakly-coupled, weakly-damped harmonic oscillators. We discuss how the proposed models can be used as a framework for refined models that incorporate additional biological data. We conclude with a discussion of possible generalizations of our work, as there are several biologically-motivated extensions that can be readily incorporated into the series of models presented here.
Visual tracking using objectness-bounding box regression and correlation filters
NASA Astrophysics Data System (ADS)
Mbelwa, Jimmy T.; Zhao, Qingjie; Lu, Yao; Wang, Fasheng; Mbise, Mercy
2018-03-01
Visual tracking is a fundamental problem in computer vision with extensive application domains in surveillance and intelligent systems. Recently, correlation filter-based tracking methods have shown a great achievement in terms of robustness, accuracy, and speed. However, such methods have a problem of dealing with fast motion (FM), motion blur (MB), illumination variation (IV), and drifting caused by occlusion (OCC). To solve this problem, a tracking method that integrates objectness-bounding box regression (O-BBR) model and a scheme based on kernelized correlation filter (KCF) is proposed. The scheme based on KCF is used to improve the tracking performance of FM and MB. For handling drift problem caused by OCC and IV, we propose objectness proposals trained in bounding box regression as prior knowledge to provide candidates and background suppression. Finally, scheme KCF as a base tracker and O-BBR are fused to obtain a state of a target object. Extensive experimental comparisons of the developed tracking method with other state-of-the-art trackers are performed on some of the challenging video sequences. Experimental comparison results show that our proposed tracking method outperforms other state-of-the-art tracking methods in terms of effectiveness, accuracy, and robustness.
An interacting spin-flip model for one-dimensional proton conduction
NASA Astrophysics Data System (ADS)
Chou, Tom
2002-05-01
A discrete asymmetric exclusion process (ASEP) is developed to model proton conduction along one-dimensional water wires. Each lattice site represents a water molecule that can be in only one of three states; protonated, left-pointing and right-pointing. Only a right- (left-) pointing water can accept a proton from its left (). Results of asymptotic mean field analysis and Monte Carlo simulations for the three-species, open boundary exclusion model are presented and compared. The mean field results for the steady-state proton current suggest a number of regimes analogous to the low and maximal current phases found in the single-species ASEP (Derrida B 1998 Phys. Rep. 301 65-83). We find that the mean field results are accurate (compared with lattice Monte Carlo simulations) only in certain regimes. Refinements and extensions including more elaborate forces and pore defects are also discussed.
Xu, Zheng; Wang, Sheng; Li, Yeqing; Zhu, Feiyun; Huang, Junzhou
2018-02-08
The most recent history of parallel Magnetic Resonance Imaging (pMRI) has in large part been devoted to finding ways to reduce acquisition time. While joint total variation (JTV) regularized model has been demonstrated as a powerful tool in increasing sampling speed for pMRI, however, the major bottleneck is the inefficiency of the optimization method. While all present state-of-the-art optimizations for the JTV model could only reach a sublinear convergence rate, in this paper, we squeeze the performance by proposing a linear-convergent optimization method for the JTV model. The proposed method is based on the Iterative Reweighted Least Squares algorithm. Due to the complexity of the tangled JTV objective, we design a novel preconditioner to further accelerate the proposed method. Extensive experiments demonstrate the superior performance of the proposed algorithm for pMRI regarding both accuracy and efficiency compared with state-of-the-art methods.
Transferable Reactive Force Fields: Extensions of ReaxFF-lg to Nitromethane.
Larentzos, James P; Rice, Betsy M
2017-03-09
Transferable ReaxFF-lg models of nitromethane that predict a variety of material properties over a wide range of thermodynamic states are obtained by screening a library of ∼6600 potentials that were previously optimized through the Multiple Objective Evolutionary Strategies (MOES) approach using a training set that included information for other energetic materials composed of carbon, hydrogen, nitrogen, and oxygen. Models that best match experimental nitromethane lattice constants at 4.2 K and 1 atm are evaluated for transferability to high-pressure states at room temperature and are shown to better predict various liquid- and solid-phase structural, thermodynamic, and transport properties as compared to the existing ReaxFF and ReaxFF-lg parametrizations. Although demonstrated for an energetic material, the library of ReaxFF-lg models is supplied to the scientific community to enable new research explorations of complex reactive phenomena in a variety of materials research applications.
NASA Technical Reports Server (NTRS)
Tischler, M. B.; Barlow, J. B.
1980-01-01
The properties of the flat spin mode of a general aviation configuration have been studied through analysis of rotary balance data, numerical simulation, and analytical study of the equilibrium state. The equilibrium state is predicted well from rotary balance data. The variations of yawing moment and pitching moment as functions of sideslip have been shown to be of great importance in obtaining accurate modeling. These dependencies are not presently available with sufficient accuracy from previous tests or theories. The stability of the flat spin mode has been examined extensively using numerical linearization, classical perturbation methods, and reduced order modeling. The stability exhibited by the time histories and the eigenvalue analyses is shown to be strongly dependent on certain static cross derivatives and more so on the dynamic derivatives. Explicit stability criteria are obtained from the reduced order models.
NASA Astrophysics Data System (ADS)
Cheng, C. M.; Peng, Z. K.; Zhang, W. M.; Meng, G.
2017-03-01
Nonlinear problems have drawn great interest and extensive attention from engineers, physicists and mathematicians and many other scientists because most real systems are inherently nonlinear in nature. To model and analyze nonlinear systems, many mathematical theories and methods have been developed, including Volterra series. In this paper, the basic definition of the Volterra series is recapitulated, together with some frequency domain concepts which are derived from the Volterra series, including the general frequency response function (GFRF), the nonlinear output frequency response function (NOFRF), output frequency response function (OFRF) and associated frequency response function (AFRF). The relationship between the Volterra series and other nonlinear system models and nonlinear problem solving methods are discussed, including the Taylor series, Wiener series, NARMAX model, Hammerstein model, Wiener model, Wiener-Hammerstein model, harmonic balance method, perturbation method and Adomian decomposition. The challenging problems and their state of arts in the series convergence study and the kernel identification study are comprehensively introduced. In addition, a detailed review is then given on the applications of Volterra series in mechanical engineering, aeroelasticity problem, control engineering, electronic and electrical engineering.
NASA Technical Reports Server (NTRS)
Brat, Guillaume P.; Martinie, Celia; Palanque, Philippe
2013-01-01
During early phases of the development of an interactive system, future system properties are identified (through interaction with end users in the brainstorming and prototyping phase of the application, or by other stakehold-ers) imposing requirements on the final system. They can be specific to the application under development or generic to all applications such as usability principles. Instances of specific properties include visibility of the aircraft altitude, speed… in the cockpit and the continuous possibility of disengaging the autopilot in whatever state the aircraft is. Instances of generic properties include availability of undo (for undoable functions) and availability of a progression bar for functions lasting more than four seconds. While behavioral models of interactive systems using formal description techniques provide complete and unambiguous descriptions of states and state changes, it does not provide explicit representation of the absence or presence of properties. Assessing that the system that has been built is the right system remains a challenge usually met through extensive use and acceptance tests. By the explicit representation of properties and the availability of tools to support checking these properties, it becomes possible to provide developers with means for systematic exploration of the behavioral models and assessment of the presence or absence of these properties. This paper proposes the synergistic use two tools for checking both generic and specific properties of interactive applications: Petshop and Java PathFinder. Petshop is dedicated to the description of interactive system behavior. Java PathFinder is dedicated to the runtime verification of Java applications and as an extension dedicated to User Interfaces. This approach is exemplified on a safety critical application in the area of interactive cockpits for large civil aircrafts.
NASA Astrophysics Data System (ADS)
Zhan, Yan; Hou, Guiting; Kusky, Timothy; Gregg, Patricia M.
2016-03-01
The New Madrid Seismic Zone (NMSZ) in the Midwestern United States was the site of several major M 6.8-8 earthquakes in 1811-1812, and remains seismically active. Although this region has been investigated extensively, the ultimate controls on earthquake initiation and the duration of the seismicity remain unclear. In this study, we develop a finite element model for the Central United States to conduct a series of numerical experiments with the goal of determining the impact of heterogeneity in the upper crust, the lower crust, and the mantle on earthquake nucleation and rupture processes. Regional seismic tomography data (CITE) are utilized to infer the viscosity structure of the lithosphere which provide an important input to the numerical models. Results indicate that when differential stresses build in the Central United States, the stresses accumulating beneath the Reelfoot Rift in the NMSZ are highly concentrated, whereas the stresses below the geologically similar Midcontinent Rift System are comparatively low. The numerical observations coincide with the observed distribution of seismicity throughout the region. By comparing the numerical results with three reference models, we argue that an extensive mantle low velocity zone beneath the NMSZ produces differential stress localization in the layers above. Furthermore, the relatively strong crust in this region, exhibited by high seismic velocities, enables the elevated stress to extend to the base of the ancient rift system, reactivating fossil rifting faults and therefore triggering earthquakes. These results show that, if boundary displacements are significant, the NMSZ is able to localize tectonic stresses, which may be released when faults close to failure are triggered by external processes such as melting of the Laurentide ice sheet or rapid river incision.
Illuminating new electroweak states at hadron colliders
Ismail, Ahmed; Izaguirre, Eder; Shuve, Brian
2016-07-01
In this paper, we propose a novel powerful strategy to perform searches for new electroweak states. Uncolored electroweak states appear in generic extensions of the Standard Model (SM) and yet are challenging to discover at hadron colliders. This problem is particularly acute when the lightest state in the electroweak multiplet is neutral and all multiplet components are approximately degenerate. In this scenario, production of the charged fields of the multiplet is followed by decay into nearly invisible states; if this decay occurs promptly, the only way to infer the presence of the reaction is through its missing energy signature. Ourmore » proposal relies on emission of photon radiation from the new charged states as a means of discriminating the signal from SM backgrounds. Lastly, we demonstrate its broad applicability by studying two examples: a pure Higgsino doublet and an electroweak quintuplet field.« less
Illuminating new electroweak states at hadron colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ismail, Ahmed; Izaguirre, Eder; Shuve, Brian
In this paper, we propose a novel powerful strategy to perform searches for new electroweak states. Uncolored electroweak states appear in generic extensions of the Standard Model (SM) and yet are challenging to discover at hadron colliders. This problem is particularly acute when the lightest state in the electroweak multiplet is neutral and all multiplet components are approximately degenerate. In this scenario, production of the charged fields of the multiplet is followed by decay into nearly invisible states; if this decay occurs promptly, the only way to infer the presence of the reaction is through its missing energy signature. Ourmore » proposal relies on emission of photon radiation from the new charged states as a means of discriminating the signal from SM backgrounds. Lastly, we demonstrate its broad applicability by studying two examples: a pure Higgsino doublet and an electroweak quintuplet field.« less
Implementation of a High Explosive Equation of State into an Eulerian Hydrocode
NASA Astrophysics Data System (ADS)
Littlefield, David L.; Baker, Ernest L.
2004-07-01
The implementation of a high explosive equation of state into the Eulerian hydrocode CTH is described. The equation of state is an extension to JWL referred to as JWLB, and is intended to model the thermodynamic state of detonation products from a high explosive reaction. The EOS was originally cast in a form p = p(ρ, e), where p is the pressure, ρ is the density and e is the internal energy. However, the target application code requires an EOS of the form p = p(ρ, T), where T is the temperature, so it was necessary to reformulate the EOS in a thermodynamically consistent manner. A Helmholtz potential, developed from the original EOS, insures this consistency. Example calculations are shown that illustrate the veracity of this implementation.
Hierarchical folding free energy landscape of HP35 revealed by most probable path clustering.
Jain, Abhinav; Stock, Gerhard
2014-07-17
Adopting extensive molecular dynamics simulations of villin headpiece protein (HP35) by Shaw and co-workers, a detailed theoretical analysis of the folding of HP35 is presented. The approach is based on the recently proposed most probable path algorithm which identifies the metastable states of the system, combined with dynamical coring of these states in order to obtain a consistent Markov state model. The method facilitates the construction of a dendrogram associated with the folding free-energy landscape of HP35, which reveals a hierarchical funnel structure and shows that the native state is rather a kinetic trap than a network hub. The energy landscape of HP35 consists of the entropic unfolded basin U, where the prestructuring of the protein takes place, the intermediate basin I, which is connected to U via the rate-limiting U → I transition state reflecting the formation of helix-1, and the native basin N, containing a state close to the NMR structure and a native-like state that exhibits enhanced fluctuations of helix-3. The model is in line with recent experimental observations that the intermediate and native states differ mostly in their dynamics (locked vs unlocked states). Employing dihedral angle principal component analysis, subdiffusive motion on a multidimensional free-energy surface is found.
A study of how the particle spectra of SU(N) gauge theories with a fundamental Higgs emerge
NASA Astrophysics Data System (ADS)
Törek, Pascal; Maas, Axel; Sondenheimer, René
2018-03-01
In gauge theories, the physical, experimentally observable spectrum consists only of gauge-invariant states. In the standard model the Fröhlich-Morchio-Strocchi mechanism shows that these states can be adequately mapped to the gauge-dependent elementary W, Z, Higgs, and fermions. In theories with a more general gauge group and Higgs sector, appearing in various extensions of the standard model, this has not to be the case. In this work we determine analytically the physical spectrum of SU(N > 2) gauge theories with a Higgs field in the fundamental representation. We show that discrepancies between the spectrum predicted by perturbation theory and the observable physical spectrum arise. We confirm these analytic findings with lattice simulations for N = 3.
Ionomics: The functional genomics of elements.
Baxter, Ivan
2010-03-01
Ionomics is the study of elemental accumulation in living systems using high-throughput elemental profiling. This approach has been applied extensively in plants for forward and reverse genetics, screening diversity panels, and modeling of physiological states. In this review, I will discuss some of the advantages and limitations of the ionomics approach as well as the important parameters to consider when designing ionomics experiments, and how to evaluate ionomics data.
[Chest trauma: who, how and what?].
Molnár, F Tamás
2012-10-01
A chest-trauma management system, tagged as the "Pécs model" in a tertiary referral center is described with extensive references to the state of the art in thoracic trauma. Chest drainage has utmost importance in primary therapy as well as in surgical decision making (diagnosis). Thoracotomy is a general surgical competence, just as damage control is. Definitive treatment and management of sequelae, however, requires competence in thoracic surgery. Multidisciplinarity is underscored.
Prediction for a Four-Neutron Resonance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirokov, A. M.; Papadimitriou, G.; Mazur, A. I.
Here, we utilize various ab initio approaches to search for a low-lying resonance in the four-neutron (4n) system using the JISP16 realistic NN interaction. Our most accurate prediction is obtained using a J-matrix extension of the no-core shell model and suggests a 4n resonant state at an energy near E r = 0.8 MeV with a width of approximately Γ = 1.4 MeV.
Prediction for a Four-Neutron Resonance
Shirokov, A. M.; Papadimitriou, G.; Mazur, A. I.; ...
2016-10-28
Here, we utilize various ab initio approaches to search for a low-lying resonance in the four-neutron (4n) system using the JISP16 realistic NN interaction. Our most accurate prediction is obtained using a J-matrix extension of the no-core shell model and suggests a 4n resonant state at an energy near E r = 0.8 MeV with a width of approximately Γ = 1.4 MeV.
Don Hann
2006-01-01
The United States Forest Service is charged with managing extensive and varied ecosystems throughout the country. Under the rubric of âecosystem managementâ the goal has been to provide goods and services from Forest Service lands while maintaining ecological integrity. Recognizing that ecosystems are dynamic in nature, the concept of Historical Range of Variability (...
ERIC Educational Resources Information Center
Gansemer, Lawrence P.; Bealer, Robert C.
Using data generated from the records of 460 rural-reared Pennsylvania males contacted initially as sophomores in 1947 and again in 1957 and 1971, an effort was made to replicate the tradition of path analytic, causal modeling of status attainment in American society and to assess the empirical efficacy of certain family input variables not…
Jason M. Albert
2004-01-01
The Middle Rio Grande located in Central New Mexico is one of the most historically documented rivers in the United States. Since the early 20th century regulatory agencies have been interested and concerned with its management. A Hydraulic Modeling Analysis (HMA) of the Corrales reach, located 34 miles downstream of Cochiti Dam, was conducted. An extensive collection...
Chain of point-like potentials in Script R3 and infiniteness of the number of bound states
NASA Astrophysics Data System (ADS)
Boitsev, A. A.; Popov, I. Yu; Sokolov, O. V.
2014-10-01
Infinite chain of point-like potentials having the Hamiltonian with infinite number of eigenvalues below the continuous spectrum is constructed. The background of the model is the theory of self-adjoint extensions of symmetric operators in the Hilbert space. The analogous example of the Hamiltonian is obtained for the system of three-dimensional waveguides coupled through point-like windows.
Ron Tiller; Melissa Hughes; Gita Bodner
2013-01-01
Riparian grasslands dominated by Sporobolus wrightii (big sacaton) were once widely distributed in the intermountain basins of the Madrean Archipelago. These alluvial grasslands are still recognized as key resources for watershed function, livestock, and wildlife. The upper Cienega Creek watershed in SE Arizona is thought to harbor some of the regionâs most extensive...
A Cost Analysis Model for Army Sponsored Graduate Dental Education Programs.
1997-04-01
characteristics of a good measurement tool ? Cooper and Emory in their textbook, Business Research Methods, state there are three major criteria for evaluating...a measurement tool : validity, reliability, and practicality (Cooper and Emory 1995). Validity can be compartmentalized into internal and external...tremendous expense? The AEGD-1 year program is used extensively as a recruiting tool to encourage senior dental students to join the Army Dental Corps. The
Complete Mie-Gruneisen Equation of State (update)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menikoff, Ralph
2016-03-14
The Mie-Gruneisen equation of state (EOS) is frequently used in hydro simulations to model solids at high pressure (up to a few Mb). It is an incomplete EOS characterized by a Gr¨uneisen coefficient, = -V (@eP)V , that is a function of only V . Expressions are derived for isentropes and isotherms. This enables the extension to a complete EOS. Thermodynamic consistency requires that the specific heat is a function of a single scaled-temperature. A complete extension is uniquely determined by the temperature dependence of the specific heat at a fixed reference density. In addition we show that if themore » domain of the EOS extends to T = 0 and the specific heat vanishes on the zero isotherm then a function of only V is equivalent to a specific heat with a single temperature scale. If the EOS domain does not include the zero isotherm, then a specific heat with a single temperature scale leads to a generalization of the Mie-Gr¨uneisen EOS in which the pressure is linear in both the specific energy and the temperature. This corresponds to the limiting case of two temperature scales with one of the scales in the high temperature limit. Such an EOS has previously been used to model liquid nitromethane.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghanashyam Neupane; Earl D. Mattson; Travis L. McLing
2014-02-01
The U.S. Geological survey has estimated that there are up to 4,900 MWe of undiscovered geothermal resources and 92,000 MWe of enhanced geothermal potential within the state of Idaho. Of particular interest are the resources of the Eastern Snake River Plain (ESRP) which was formed by volcanic activity associated with the relative movement of the Yellowstone Hot Spot across the state of Idaho. This region is characterized by a high geothermal gradient and thermal springs occurring along the margins of the ESRP. Masking much of the deep thermal potential of the ESRP is a regionally extensive and productive cold-water aquifer.more » We have undertaken a study to infer the temperature of the geothermal system hidden beneath the cold-water aquifer of the ESRP. Our approach is to estimate reservoir temperatures from measured water compositions using an inverse modeling technique (RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. In the initial stages of this study, we apply the RTEst model to water compositions measured from a limited number of wells and thermal springs to estimate the regionally extensive geothermal system in the ESRP.« less
Well behaved anisotropic compact star models in general relativity
NASA Astrophysics Data System (ADS)
Jasim, M. K.; Maurya, S. K.; Gupta, Y. K.; Dayanandan, B.
2016-11-01
Anisotropic compact star models have been constructed by assuming a particular form of a metric function e^{λ}. We solved the Einstein field equations for determining the metric function e^{ν}. For this purpose we have assumed a physically valid expression of radial pressure (pr). The obtained anisotropic compact star model is representing the realistic compact objects such as PSR 1937 +21. We have done an extensive study about physical parameters for anisotropic models and found that these parameters are well behaved throughout inside the star. Along with these we have also determined the equation of state for compact star which gives the radial pressure is purely the function of density i.e. pr=f(ρ).
Kuritz, K; Stöhr, D; Pollak, N; Allgöwer, F
2017-02-07
Cyclic processes, in particular the cell cycle, are of great importance in cell biology. Continued improvement in cell population analysis methods like fluorescence microscopy, flow cytometry, CyTOF or single-cell omics made mathematical methods based on ergodic principles a powerful tool in studying these processes. In this paper, we establish the relationship between cell cycle analysis with ergodic principles and age structured population models. To this end, we describe the progression of a single cell through the cell cycle by a stochastic differential equation on a one dimensional manifold in the high dimensional dataspace of cell cycle markers. Given the assumption that the cell population is in a steady state, we derive transformation rules which transform the number density on the manifold to the steady state number density of age structured population models. Our theory facilitates the study of cell cycle dependent processes including local molecular events, cell death and cell division from high dimensional "snapshot" data. Ergodic analysis can in general be applied to every process that exhibits a steady state distribution. By combining ergodic analysis with age structured population models we furthermore provide the theoretic basis for extensions of ergodic principles to distribution that deviate from their steady state. Copyright © 2016 Elsevier Ltd. All rights reserved.
Host susceptibility hypothesis for shell disease in American lobsters.
Tlusty, Michael F; Smolowitz, Roxanna M; Halvorson, Harlyn O; DeVito, Simone E
2007-12-01
Epizootic shell disease (ESD) in American lobsters Homarus americanus is the bacterial degradation of the carapace resulting in extensive irregular, deep erosions. The disease is having a major impact on the health and mortality of some American lobster populations, and its effects are being transferred to the economics of the fishery. While the onset and progression of ESD in American lobsters is undoubtedly multifactorial, there is little understanding of the direct causality of this disease. The host susceptibility hypothesis developed here states that although numerous environmental and pathological factors may vary around a lobster, it is eventually the lobster's internal state that is permissive to or shields it from the final onset of the diseased state. To support the host susceptibility hypothesis, we conceptualized a model of shell disease onset and severity to allow further research on shell disease to progress from a structured model. The model states that shell disease onset will occur when the net cuticle degradation (bacterial degradation, decrease of host immune response to bacteria, natural wear, and resorption) is greater than the net deposition (growth, maintenance, and inflammatory response) of the shell. Furthermore, lesion severity depends on the extent to which cuticle degradation exceeds deposition. This model is consistent with natural observations of shell disease in American lobster.
A High Resolution Tropical Cyclone Power Outage Forecasting Model for the Continental United States
NASA Astrophysics Data System (ADS)
Pino, J. V.; Quiring, S. M.; Guikema, S.; Shashaani, S.; Linger, S.; Backhaus, S.
2017-12-01
Tropical cyclones cause extensive damage to the power infrastructure system throughout the United States. This damage can leave millions without power for extended periods of time, as most recently seen with Hurricane Matthew (2016). Accurate and timely prediction of power outages are essential for utility companies, emergency management agencies, and governmental organizations. Here we present a high-resolution (250 m x 250 m) hurricane power outage model for the United States. The model uses only publicly-available data to make predictions. It uses forecasts of storm variables such as maximum 3-second wind gust, duration of strong winds > 20 m s-2, soil moisture, and precipitation. It also incorporates static environmental variables such as elevation characteristics, land cover type, population density, tree species data, and root zone depth. A web tool was established for use by the Department of Energy (DOE) so that the model can be used for real-time outage forecasting or for synthetic tropical cyclones as an exercise in emergency management. This web tool provides DOE decision-makers with high impact analytic results and products that can be disseminated to federal, local, and state agencies. The results then aid utility companies in their pre- and post-storm activities, thus decreasing restoration times and lowering costs.
Reconstructing the hidden states in time course data of stochastic models.
Zimmer, Christoph
2015-11-01
Parameter estimation is central for analyzing models in Systems Biology. The relevance of stochastic modeling in the field is increasing. Therefore, the need for tailored parameter estimation techniques is increasing as well. Challenges for parameter estimation are partial observability, measurement noise, and the computational complexity arising from the dimension of the parameter space. This article extends the multiple shooting for stochastic systems' method, developed for inference in intrinsic stochastic systems. The treatment of extrinsic noise and the estimation of the unobserved states is improved, by taking into account the correlation between unobserved and observed species. This article demonstrates the power of the method on different scenarios of a Lotka-Volterra model, including cases in which the prey population dies out or explodes, and a Calcium oscillation system. Besides showing how the new extension improves the accuracy of the parameter estimates, this article analyzes the accuracy of the state estimates. In contrast to previous approaches, the new approach is well able to estimate states and parameters for all the scenarios. As it does not need stochastic simulations, it is of the same order of speed as conventional least squares parameter estimation methods with respect to computational time. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Thomas-Vaslin, Véronique; Six, Adrien; Ganascia, Jean-Gabriel; Bersini, Hugues
2013-01-01
Dynamic modeling of lymphocyte behavior has primarily been based on populations based differential equations or on cellular agents moving in space and interacting each other. The final steps of this modeling effort are expressed in a code written in a programing language. On account of the complete lack of standardization of the different steps to proceed, we have to deplore poor communication and sharing between experimentalists, theoreticians and programmers. The adoption of diagrammatic visual computer language should however greatly help the immunologists to better communicate, to more easily identify the models similarities and facilitate the reuse and extension of existing software models. Since immunologists often conceptualize the dynamical evolution of immune systems in terms of “state-transitions” of biological objects, we promote the use of unified modeling language (UML) state-transition diagram. To demonstrate the feasibility of this approach, we present a UML refactoring of two published models on thymocyte differentiation. Originally built with different modeling strategies, a mathematical ordinary differential equation-based model and a cellular automata model, the two models are now in the same visual formalism and can be compared. PMID:24101919
An isostatic model for the Tharsis province, Mars
NASA Technical Reports Server (NTRS)
Sleep, N. H.; Phillips, R. J.
1979-01-01
A crust-upper mantle configuration is proposed for the Tharsis province of Mars which is isostatic and satisfies the observed gravity data. The model is that of a low density upper mantle compensating loads at both the surface and crust-mantle boundary. Solutions are found for lithospheric thickness greater than about 300 km, for which the stress differences are less than 750 bars. This model for Tharsis is similar to the compensation mechanism under the Basin and Range province of the western United States. These provinces also compare favorably in the sense that they are both elevated regions of extensional tectonics and extensive volcanism.
The control of a manipulator by a computer model of the cerebellum.
NASA Technical Reports Server (NTRS)
Albus, J. S.
1973-01-01
Extension of previous work by Albus (1971, 1972) on the theory of cerebellar function to an application of a computer model of the cerebellum to manipulator control. Following a discussion of the cerebellar function and of a perceptron analogy of the cerebellum, particularly in regard to learning, an electromechanical model of the cerebellum is considered in the form of an IBM 1800 computer connected to a Rancho Los Amigos arm with seven degrees of freedom. It is shown that the computer memory makes it possible to train the arm on some representative sample of the universe of possible states and to achieve satisfactory performance.
NASA Astrophysics Data System (ADS)
Rudakov, A. M.; Sergievskii, V. V.
2008-05-01
Equations relating osmotic, mean ionic activity, and water activity coefficients to electrolyte concentrations in binary aqueous solutions were substantiated within the framework of cluster concepts. The model includes the contribution to solution nonideality of electrostatic interactions in terms of the Debye-Hückel theory along with hydration and association of salts via relations containing hydration and association numbers in the standard states. According to the description of data on 54 aqueous solutions of 1-1 electrolytes, this model should be given preference compared with the most extensively used NRTL, NRTL-NRF, Wilson, and Pitzer models.
NASA Astrophysics Data System (ADS)
Mon, K. K.
2018-05-01
In this paper, the virial series expansion and constant pressure Monte Carlo method are used to study the longitudinal pressure equation of state for hard spheres in narrow cylindrical pores. We invoke dimensional reduction and map the model into an effective one-dimensional fluid model with interacting internal degrees of freedom. The one-dimensional model is extensive. The Euler relation holds, and longitudinal pressure can be probed with the standard virial series expansion method. Virial coefficients B2 and B3 were obtained analytically, and numerical quadrature was used for B4. A range of narrow pore widths (2 Rp) , Rp<(√{3 }+2 ) /4 =0.9330 ... (in units of the hard sphere diameter) was used, corresponding to fluids in the important single-file formations. We have also computed the virial pressure series coefficients B2', B3', and B4' to compare a truncated virial pressure series equation of state with accurate constant pressure Monte Carlo data. We find very good agreement for a wide range of pressures for narrow pores. These results contribute toward increasing the rather limited understanding of virial coefficients and the equation of state of hard sphere fluids in narrow cylindrical pores.
Excitation and charge transfer in low-energy hydrogen atom collisions with neutral iron
NASA Astrophysics Data System (ADS)
Barklem, P. S.
2018-05-01
Data for inelastic processes due to hydrogen atom collisions with iron are needed for accurate modelling of the iron spectrum in late-type stars. Excitation and charge transfer in low-energy Fe+H collisions is studied theoretically using a previously presented method based on an asymptotic two-electron linear combination of atomic orbitals model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multi-channel Landau-Zener model. An extensive calculation including 166 covalent states and 25 ionic states is presented and rate coefficients are calculated for temperatures in the range 1000-20 000 K. The largest rates are found for charge transfer processes to and from two clusters of states around 6.3 and 6.6 eV excitation, corresponding in both cases to active 4d and 5p electrons undergoing transfer. Excitation and de-excitation processes among these two sets of states are also significant. Full Tables and rate coefficient data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A90
Pair production processes and flavor in gauge-invariant perturbation theory
NASA Astrophysics Data System (ADS)
Egger, Larissa; Maas, Axel; Sondenheimer, René
2017-12-01
Gauge-invariant perturbation theory is an extension of ordinary perturbation theory which describes strictly gauge-invariant states in theories with a Brout-Englert-Higgs effect. Such gauge-invariant states are composite operators which have necessarily only global quantum numbers. As a consequence, flavor is exchanged for custodial quantum numbers in the Standard Model, recreating the fermion spectrum in the process. Here, we study the implications of such a description, possibly also for the generation structure of the Standard Model. In particular, this implies that scattering processes are essentially bound-state-bound-state interactions, and require a suitable description. We analyze the implications for the pair-production process e+e-→f¯f at a linear collider to leading order. We show how ordinary perturbation theory is recovered as the leading contribution. Using a PDF-type language, we also assess the impact of sub-leading contributions. To lowest order, we find that the result is mainly influenced by how large the contribution of the Higgs at large x is. This gives an interesting, possibly experimentally testable, scenario for the formal field theory underlying the electroweak sector of the Standard Model.
Hybrid Teaching in Extension: Learning at the Crossroads
ERIC Educational Resources Information Center
Hino, Jeff; Kahn, Cub
2016-01-01
Extension clients' learning preferences are changing, with many increasingly going online for educational content. In response, Oregon State University Extension pilot tested a training program for Extension educators to explore hybrid teaching--a methodology that could provide more flexible access to a wider audience. Hybrid teaching offers a…
Exploring Extension Involvement in Farm to School Program Activities
ERIC Educational Resources Information Center
Benson, Matthew C.
2014-01-01
The study reported here examined Extension professionals' involvement in farm-to-school program activities. Results of an online survey distributed to eight state Extension systems indicate that on average, Extension professionals are involved with one farm to school program activity, with most supporting school or community garden programs.…
A Strategic Plan for Introducing, Implementing, Managing, and Monitoring an Urban Extension Platform
ERIC Educational Resources Information Center
Warner, Laura A.; Vavrina, Charlie S.; Campbell, Mary L.; Elliott, Monica L.; Northrop, Robert J.; Place, Nick T.
2017-01-01
Florida's Strategic Plan for Extension in Metropolitan Regions reflects an adaptive management approach to the state's urban Extension mission within the context of establishing essential elements, performance indicators, key outcomes, and suggested alternatives for action. Extension leadership has adopted the strategic plan, and implementation…
A National Perspective on the Current Evaluation Activities in Extension
ERIC Educational Resources Information Center
Lamm, Alexa J.; Israel, Glenn D.; Diehl, David
2013-01-01
In order to enhance Extension evaluation efforts it is important to understand current practices. The study reported here researched the evaluation behaviors of county-based Extension professionals. Extension professionals from eight states (n = 1,173) responded to a survey regarding their evaluation data collection, analysis, and reporting…
Universalities of thermodynamic signatures in topological phases
Kempkes, S. N.; Quelle, A.; Smith, C. Morais
2016-01-01
Topological insulators (superconductors) are materials that host symmetry-protected metallic edge states in an insulating (superconducting) bulk. Although they are well understood, a thermodynamic description of these materials remained elusive, firstly because the edges yield a non-extensive contribution to the thermodynamic potential, and secondly because topological field theories involve non-local order parameters, and cannot be captured by the Ginzburg-Landau formalism. Recently, this challenge has been overcome: by using Hill thermodynamics to describe the Bernevig-Hughes-Zhang model in two dimensions, it was shown that at the topological phase transition the thermodynamic potential does not scale extensively due to boundary effects. Here, we extend this approach to different topological models in various dimensions (the Kitaev chain and Su-Schrieffer-Heeger model in one dimension, the Kane-Mele model in two dimensions and the Bernevig-Hughes-Zhang model in three dimensions) at zero temperature. Surprisingly, all models exhibit the same universal behavior in the order of the topological-phase transition, depending on the dimension. Moreover, we derive the topological phase diagram at finite temperature using this thermodynamic description, and show that it displays a good agreement with the one calculated from the Uhlmann phase. Our work reveals unexpected universalities and opens the path to a thermodynamic description of systems with a non-local order parameter. PMID:27929041
Universalities of thermodynamic signatures in topological phases.
Kempkes, S N; Quelle, A; Smith, C Morais
2016-12-08
Topological insulators (superconductors) are materials that host symmetry-protected metallic edge states in an insulating (superconducting) bulk. Although they are well understood, a thermodynamic description of these materials remained elusive, firstly because the edges yield a non-extensive contribution to the thermodynamic potential, and secondly because topological field theories involve non-local order parameters, and cannot be captured by the Ginzburg-Landau formalism. Recently, this challenge has been overcome: by using Hill thermodynamics to describe the Bernevig-Hughes-Zhang model in two dimensions, it was shown that at the topological phase transition the thermodynamic potential does not scale extensively due to boundary effects. Here, we extend this approach to different topological models in various dimensions (the Kitaev chain and Su-Schrieffer-Heeger model in one dimension, the Kane-Mele model in two dimensions and the Bernevig-Hughes-Zhang model in three dimensions) at zero temperature. Surprisingly, all models exhibit the same universal behavior in the order of the topological-phase transition, depending on the dimension. Moreover, we derive the topological phase diagram at finite temperature using this thermodynamic description, and show that it displays a good agreement with the one calculated from the Uhlmann phase. Our work reveals unexpected universalities and opens the path to a thermodynamic description of systems with a non-local order parameter.
NASA Astrophysics Data System (ADS)
Cinquini, L.; Bell, G. M.; Williams, D.; Harney, J.
2012-12-01
The Earth System Grid Federation (ESGF) is a multi-agency, international collaboration that aims at developing state-of-the-art services for the management and access of Earth system data. ESGF is currently used to serve the totality of the model output used for the forthcoming IPCC 5th assessment report on climate change, as well as supporting observational and reanalysis datasets. Also, it is been adopted by several other projects that focus on global, regional and local climate modeling. The ESGF software stack is composed of several modular applications that cover related but disjoint areas of functionality: data publishing, data search and discovery, data access, user management, security, and federation. Overall, the ESGF infrastructure offers a configurable end-to-end solution to the problem of enabling web-based access to large amounts of geospatial data. This talk will present the architectural and configuration options that are available to a data provider leveraging ESGF to serve their data: which services to expose, how to scale to larger data collections, how to establish access control, how to customize the user interface, and others. Additionally, the framework provides extension points that allow each site to plug in custom functionality such as crawling of specific metadata repositories, exposing domain-specific analysis and visualization services, developing custom access clients that interact with the system APIs. These configuration and extension capabilities are based on simple but effective domain-specific object models, that underpin the software applications: the data model, the security model, and the federation model. The ESGF software stack is developed collaboratively by software engineers at many institutions around the world, and is made freely available to the community under an open source license to promote adoption, reuse, inspection and continuous improvement.
Electron distribution functions in electric field environments
NASA Technical Reports Server (NTRS)
Rudolph, Terence H.
1991-01-01
The amount of current carried by an electric discharge in its early stages of growth is strongly dependent on its geometrical shape. Discharges with a large number of branches, each funnelling current to a common stem, tend to carry more current than those with fewer branches. The fractal character of typical discharges was simulated using stochastic models based on solutions of the Laplace equation. Extension of these models requires the use of electron distribution functions to describe the behavior of electrons in the undisturbed medium ahead of the discharge. These electrons, interacting with the electric field, determine the propagation of branches in the discharge and the way in which further branching occurs. The first phase in the extension of the referenced models , the calculation of simple electron distribution functions in an air/electric field medium, is discussed. Two techniques are investigated: (1) the solution of the Boltzmann equation in homogeneous, steady state environments, and (2) the use of Monte Carlo simulations. Distribution functions calculated from both techniques are illustrated. Advantages and disadvantages of each technique are discussed.
NASA Astrophysics Data System (ADS)
Firestone, Gabriel; Bochinski, Jason; Meth, Jeffrey; Clarke, Laura
Understanding of the heat transfer characteristics of a polymer during processing is critical to predicting and controlling the resulting properties and has been studied extensively in injection molding. As new methodologies for polymer processing are developed, such as photothermal heating, it is important to build an understanding of how heat transfer properties change under these novel conditions. By combining theoretical and experimental approaches, the thermal properties of photothermally heated polymer films were measured. The key idea is that by measuring the steady state temperature profile of a spot heated polymer film via a fluorescence probe (the temperature versus distance from the heated region) and fitting to a theoretical model, heat transfer coefficients can be extracted. We apply this approach to three different polymer systems, crosslinked epoxy, poly(methyl methacrylate) and poly(ethylene oxide) thin films with a range of thicknesses, under different heating laser intensities and with different resultant temperatures. We will discuss the resultant trends and extension of the model beyond a simple spot heating configuration. Support from National Science Foundation CMMI-1069108 and CMMI-1462966.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Säkkinen, Niko; Peng, Yang; Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin-Dahlem
2015-12-21
We present a Kadanoff-Baym formalism to study time-dependent phenomena for systems of interacting electrons and phonons in the framework of many-body perturbation theory. The formalism takes correctly into account effects of the initial preparation of an equilibrium state and allows for an explicit time-dependence of both the electronic and phononic degrees of freedom. The method is applied to investigate the charge neutral and non-neutral excitation spectra of a homogeneous, two-site, two-electron Holstein model. This is an extension of a previous study of the ground state properties in the Hartree (H), partially self-consistent Born (Gd) and fully self-consistent Born (GD) approximationsmore » published in Säkkinen et al. [J. Chem. Phys. 143, 234101 (2015)]. Here, the homogeneous ground state solution is shown to become unstable for a sufficiently strong interaction while a symmetry-broken ground state solution is shown to be stable in the Hartree approximation. Signatures of this instability are observed for the partially self-consistent Born approximation but are not found for the fully self-consistent Born approximation. By understanding the stability properties, we are able to study the linear response regime by calculating the density-density response function by time-propagation. This amounts to a solution of the Bethe-Salpeter equation with a sophisticated kernel. The results indicate that none of the approximations is able to describe the response function during or beyond the bipolaronic crossover for the parameters investigated. Overall, we provide an extensive discussion on when the approximations are valid and how they fail to describe the studied exact properties of the chosen model system.« less
A New Extension Model: The Memorial Middle School Agricultural Extension and Education Center
ERIC Educational Resources Information Center
Skelton, Peter; Seevers, Brenda
2010-01-01
The Memorial Middle School Agricultural Extension and Education Center is a new model for Extension. The center applies the Cooperative Extension Service System philosophy and mission to developing public education-based programs. Programming primarily serves middle school students and teachers through agricultural and natural resource science…
Modelling microtubules in the brain as n-qudit quantum Hopfield network and beyond
NASA Astrophysics Data System (ADS)
Pyari Srivastava, Dayal; Sahni, Vishal; Saran Satsangi, Prem
2016-01-01
The scientific approach to understand the nature of consciousness revolves around the study of the human brain. Neurobiological studies that compare the nervous system of different species have accorded the highest place to humans on account of various factors that include a highly developed cortical area comprising of approximately 100 billion neurons, that are intrinsically connected to form a highly complex network. Quantum theories of consciousness are based on mathematical abstraction and the Penrose-Hameroff Orch-OR theory is one of the most promising ones. Inspired by the Penrose-Hameroff Orch-OR theory, Behrman et al. have simulated a quantum Hopfield neural network with the structure of a microtubule. They have used an extremely simplified model of the tubulin dimers with each dimer represented simply as a qubit, a single quantum two-state system. The extension of this model to n-dimensional quantum states or n-qudits presented in this work holds considerable promise for even higher mathematical abstraction in modelling consciousness systems.
Surface properties for α-cluster nuclear matter
NASA Astrophysics Data System (ADS)
Castro, J. J.; Soto, J. R.; Yépez, E.
2013-03-01
We introduce a new microscopic model for α-cluster matter, which simulates the properties of ordinary nuclear matter and α-clustering in a curved surface of a large but finite nucleus. The model is based on a nested icosahedral fullerene-like multiple-shell structure, where each vertex is occupied by a microscopic α-particle. The novel aspect of this model is that it allows a consistent description of nuclear surface properties from microscopic parameters to be made without using the leptodermous expansion. In particular, we show that the calculated surface energy is in excellent agreement with the corresponding coefficient of the Bethe-Weizäcker semi-empirical mass formula. We discuss the properties of the surface α-cluster state, which resembles an ultra cold bosonic quantum gas trapped in an optical lattice. By comparing the surface and interior states we are able to estimate the α preformation probability. Possible extensions of this model to study nuclear dynamics through surface vibrations and departures from approximate sphericity are mentioned.
Methods for compressible multiphase flows and their applications
NASA Astrophysics Data System (ADS)
Kim, H.; Choe, Y.; Kim, H.; Min, D.; Kim, C.
2018-06-01
This paper presents an efficient and robust numerical framework to deal with multiphase real-fluid flows and their broad spectrum of engineering applications. A homogeneous mixture model incorporated with a real-fluid equation of state and a phase change model is considered to calculate complex multiphase problems. As robust and accurate numerical methods to handle multiphase shocks and phase interfaces over a wide range of flow speeds, the AUSMPW+_N and RoeM_N schemes with a system preconditioning method are presented. These methods are assessed by extensive validation problems with various types of equation of state and phase change models. Representative realistic multiphase phenomena, including the flow inside a thermal vapor compressor, pressurization in a cryogenic tank, and unsteady cavitating flow around a wedge, are then investigated as application problems. With appropriate physical modeling followed by robust and accurate numerical treatments, compressible multiphase flow physics such as phase changes, shock discontinuities, and their interactions are well captured, confirming the suitability of the proposed numerical framework to wide engineering applications.
Raetrad model extensions for radon entry into multi-level buildings with basements or crawl spaces.
Nielson, K K; Rogers, V C; Rogers, V; Holt, R B
1997-10-01
The RAETRAD model was generalized to characterize radon generation and movement from soils and building materials into multi-level buildings with basements or crawl spaces. With the generalization, the model retains its original simplicity and ease of use. The model calculates radon entry rates that are consistent with measurements published for basement test structures at Colorado State University, confirming approximately equal contributions from diffusion and pressure-driven air flow at indoor-outdoor air pressure differences of deltaP(i-o) = -3.5 Pa. About one-fourth of the diffusive radon entry comes from concrete slabs and three-fourths comes from the surrounding soils. Calculated radon entry rates with and without a barrier over floor-wall shrinkage cracks generally agree with Colorado State University measurements when a sustained pressure of deltaP(i-o) = -2 Pa is used to represent calm wind (<1 m s(-1)) conditions. Calculated radon distributions in a 2-level house also are consistent with published measurements and equations.
2016-10-24
We are extending, until December 28, 2018, the expiration date of our disability examiner authority (DEA) rule, which authorizes State agency disability examiners to make fully favorable determinations without the approval of a State agency medical or psychological consultant in claims that we consider under our quick disability determination (QDD) and compassionate allowance (CAL) processes. This is our last extension of this rule because we will phase out the use of DEA during the extension period under section 832 of the Bipartisan Budget Act of 2015 (BBA). This extension provides us the time necessary to take all of the administrative actions we need to take in order to reinstate uniform use of medical and psychological consultants. The current rule will expire on November 11, 2016. In this final rule, we are changing the November 11, 2016 expiration or "sunset" date to December 28, 2018, extending the authority for 2 years and 1 month. This is the final extension of our DEA rule. On December 28, 2018, at the conclusion of this extension, the authority for this test will terminate. We are making no other changes.
Structural modeling of G-protein coupled receptors: An overview on automatic web-servers.
Busato, Mirko; Giorgetti, Alejandro
2016-08-01
Despite the significant efforts and discoveries during the last few years in G protein-coupled receptor (GPCR) expression and crystallization, the receptors with known structures to date are limited only to a small fraction of human GPCRs. The lack of experimental three-dimensional structures of the receptors represents a strong limitation that hampers a deep understanding of their function. Computational techniques are thus a valid alternative strategy to model three-dimensional structures. Indeed, recent advances in the field, together with extraordinary developments in crystallography, in particular due to its ability to capture GPCRs in different activation states, have led to encouraging results in the generation of accurate models. This, prompted the community of modelers to render their methods publicly available through dedicated databases and web-servers. Here, we present an extensive overview on these services, focusing on their advantages, drawbacks and their role in successful applications. Future challenges in the field of GPCR modeling, such as the predictions of long loop regions and the modeling of receptor activation states are presented as well. Copyright © 2016 Elsevier Ltd. All rights reserved.
Customizing WRF-Hydro for the Laurentian Great Lakes Basin
NASA Astrophysics Data System (ADS)
Gronewold, A.; Pei, L.; Gochis, D.; Mason, L.; Sampson, K. M.; Dugger, A. L.; Read, L.; McCreight, J. L.; Xiao, C.; Lofgren, B. M.; Anderson, E. J.; Chu, P. Y.
2017-12-01
To advance the state of the art in regional hydrological forecasting, and to align with operational deployment of the National Water Model, a team of scientists has been customizing WRF-Hydro (the Weather Research and Forecasting model - Hydrological modeling extension package) to the entirety (including binational land and lake surfaces) of the Laurentian Great Lakes basin. Objectives of this customization project include opererational simulation and forecasting of the Great Lakes water balance and, in the short-term, research-oriented insights into modeling one- and two-way coupled lake-atmosphere and near-shore processes. Initial steps in this project have focused on overcoming inconsistencies in land surface hydrographic datasets between the United States and Canada. Improvements in the model's current representation of lake physics and stream routing are also critical components of this effort. Here, we present an update on the status of this project, including a synthesis of offline tests with WRF-Hydro based on the newly developed Great Lakes hydrographic data, and an assessment of the model's ability to simulate seasonal and multi-decadal hydrological response across the Great Lakes.
WastePlan model implementation for New York State. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Visalli, J.R.; Blackman, D.A.
1995-07-01
WastePlan is a computer software tool that models solid waste quantities, costs, and other parameters on a regional basis. The software was developed by the Tellus Institute, a nonprofit research and consulting firm. The project`s objective was to provide local solid waste management planners in New York State responsible to develop and implement comprehensive solid waste management plans authorized by the Solid Waste Management Act of 1988, with a WastePlan model specifically tailored to fit the demographic and other characteristics of New York State and to provide training and technical support to the users. Two-day workshops were held in 1992more » to introduce planners to the existing versions; subsequently, extensive changes were made to the model and a second set of two-day workshops were held in 1993 to introduce planners to the enhanced version of WastePlan. Following user evaluations, WastePlan was further modified to allow users to model systems using a simplified version, and to incorporate report forms required by New York State. A post-project survey of trainees revealed limited regular use of software. Possible reasons include lack of synchronicity with NYSDEC planning process; lack of computer literacy and aptitude among trainees; hardware limitations; software user-friendliness; and the work environment of the trainees. A number of recommendations are made to encourage use of WastePlan by local solid waste management planners.« less
State-variable theories for nonelastic deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, C.Y.
The various concepts of mechanical equation of state for nonelastic deformation in crystalline solids, originally proposed for plastic deformation, have been recently extended to describe additional phenomena such as anelastic and microplastic deformation including the Bauschinger effect. It has been demonstrated that it is possible to predict, based on current state variables in a unified way, the mechanical response of a material under an arbitrary loading. Thus, if the evolution laws of the state variables are known, one can describe the behavior of a material for a thermal-mechanical path of interest, for example, during constant load (or stress) creep withoutmore » relying on specialized theories. Some of the existing theories of mechanical equation of state for nonelastic deformation are reviewed. The establishment of useful forms of mechanical equation of state has to depend on extensive experimentation in the same way as that involved in the development, for example, the ideal gas law. Recent experimental efforts are also reviewed. It has been possible to develop state-variable deformation models based on experimental findings and apply them to creep, cyclic deformation, and other time-dependent deformation. Attempts are being made to correlate the material parameters of the state-variable models with the microstructure of a material. 24 figures.« less
Simulation of active tectonic processes for a convecting mantle with moving continents
Trubitsyn, V.; Kaban, M.; Mooney, W.; Reigber, C.; Schwintzer, P.
2006-01-01
Numerical models are presented that simulate several active tectonic processes. These models include a continent that is thermally and mechanically coupled with viscous mantle flow. The assumption of rigid continents allows use of solid body equations to describe the continents' motion and to calculate their velocities. The starting point is a quasi-steady state model of mantle convection with temperature/ pressure-dependent viscosity. After placing a continent on top of the mantle, the convection pattern changes. The mantle flow subsequently passes through several stages, eventually resembling the mantle structure under present-day continents: (a) Extension tectonics and marginal basins form on boundary of a continent approaching to subduction zone, roll back of subduction takes place in front of moving continent; (b) The continent reaches the subduction zone, the extension regime at the continental edge is replaced by strong compression. The roll back of the subduction zone still continues after closure of the marginal basin and the continent moves towards the upwelling. As a result the ocean becomes non-symmetric and (c) The continent overrides the upwelling and subduction in its classical form stops. The third stage appears only in the upper mantle model with localized upwellings. ?? 2006 The Authors Journal compilation ?? 2006 RAS.
Mathematical Modeling and Nonlinear Dynamical Analysis of Cell Growth in Response to Antibiotics
NASA Astrophysics Data System (ADS)
Jin, Suoqin; Niu, Lili; Wang, Gang; Zou, Xiufen
2015-06-01
This study is devoted to the revelation of the dynamical mechanisms of cell growth in response to antibiotics. We establish a mathematical model of ordinary differential equations for an antibiotic-resistant growth system with one positive feedback loop. We perform a dynamical analysis of the behavior of this model system. We present adequate sets of conditions that can guarantee the existence and stability of biologically-reasonable steady states. Using bifurcation analysis and numerical simulation, we show that the relative growth rate, which is defined as the ratio of the cell growth rate to the basal cell growth rate in the absence of antibiotics, can exhibit bistable behavior in an extensive range of parameters that correspond to a growth state and a nongrowth state in biology. We discover that both antibiotic and antibiotic resistance genes can cooperatively enhance bistability, whereas the cooperative coefficient of feedback can contribute to the onset of bistability. These results would contribute to a better understanding of not only the evolution of antibiotics but also the emergence of drug resistance in other diseases.
Active tension network model suggests an exotic mechanical state realized in epithelial tissues
NASA Astrophysics Data System (ADS)
Noll, Nicholas; Mani, Madhav; Heemskerk, Idse; Streichan, Sebastian J.; Shraiman, Boris I.
2017-12-01
Mechanical interactions play a crucial role in epithelial morphogenesis, yet understanding the complex mechanisms through which stress and deformation affect cell behaviour remains an open problem. Here we formulate and analyse the active tension network (ATN) model, which assumes that the mechanical balance of cells within a tissue is dominated by cortical tension and introduces tension-dependent active remodelling of the cortex. We find that ATNs exhibit unusual mechanical properties. Specifically, an ATN behaves as a fluid at short times, but at long times supports external tension like a solid. Furthermore, an ATN has an extensively degenerate equilibrium mechanical state associated with a discrete conformal--`isogonal'--deformation of cells. The ATN model predicts a constraint on equilibrium cell geometries, which we demonstrate to approximately hold in certain epithelial tissues. We further show that isogonal modes are observed in the fruit fly embryo, accounting for the striking variability of apical areas of ventral cells and helping understand the early phase of gastrulation. Living matter realizes new and exotic mechanical states, the study of which helps to understand biological phenomena.
Three dimensional modelling of earthquake rupture cycles on frictional faults
NASA Astrophysics Data System (ADS)
Simpson, Guy; May, Dave
2017-04-01
We are developing an efficient MPI-parallel numerical method to simulate earthquake sequences on preexisting faults embedding within a three dimensional viscoelastic half-space. We solve the velocity form of the elasto(visco)dynamic equations using a continuous Galerkin Finite Element Method on an unstructured pentahedral mesh, which thus permits local spatial refinement in the vicinity of the fault. Friction sliding is coupled to the viscoelastic solid via rate- and state-dependent friction laws using the split-node technique. Our coupled formulation employs a picard-type non-linear solver with a fully implicit, first order accurate time integrator that utilises an adaptive time step that efficiently evolves the system through multiple seismic cycles. The implementation leverages advanced parallel solvers, preconditioners and linear algebra from the Portable Extensible Toolkit for Scientific Computing (PETSc) library. The model can treat heterogeneous frictional properties and stress states on the fault and surrounding solid as well as non-planar fault geometries. Preliminary tests show that the model successfully reproduces dynamic rupture on a vertical strike-slip fault in a half-space governed by rate-state friction with the ageing law.
Need for Methamphetamine Programming in Extension Education
ERIC Educational Resources Information Center
Beaudreault, Amy R.; Miller, Larry E.
2011-01-01
The study reported sought to identify the prevention education needs involving methamphetamine through survey methodology. The study focused on a random sample of U.S. states and the Extension Directors within each state, resulting in a 70% response rate (n = 134). Findings revealed that 11% reported they had received methamphetamine user…
Million Hearts: Key to Collaboration to Reduce Heart Disease
ERIC Educational Resources Information Center
Brinkman, Patricia
2016-01-01
Extension has taught successful classes to address heart disease, yet heart disease remains the number one killer in the United States. The U.S. government's Million Hearts initiative seeks collaboration among colleges, local and state health departments, Extension and other organizations, and medical providers in imparting a consistent message…
75 FR 5041 - Extension of the Patent Application Backlog Reduction Stimulus Plan
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-01
... DEPARTMENT OF COMMERCE Patent and Trademark Office [Docket No.: PTO-P-2010-0003] Extension of the Patent Application Backlog Reduction Stimulus Plan AGENCY: United States Patent and Trademark Office, Commerce. ACTION: Notice. SUMMARY: The United States Patent and Trademark Office (USPTO) published a notice...
NASA Astrophysics Data System (ADS)
El Gharamti, M.; Bethke, I.; Tjiputra, J.; Bertino, L.
2016-02-01
Given the recent strong international focus on developing new data assimilation systems for biological models, we present in this comparative study the application of newly developed state-parameters estimation tools to an ocean ecosystem model. It is quite known that the available physical models are still too simple compared to the complexity of the ocean biology. Furthermore, various biological parameters remain poorly unknown and hence wrong specifications of such parameters can lead to large model errors. Standard joint state-parameters augmentation technique using the ensemble Kalman filter (Stochastic EnKF) has been extensively tested in many geophysical applications. Some of these assimilation studies reported that jointly updating the state and the parameters might introduce significant inconsistency especially for strongly nonlinear models. This is usually the case for ecosystem models particularly during the period of the spring bloom. A better handling of the estimation problem is often carried out by separating the update of the state and the parameters using the so-called Dual EnKF. The dual filter is computationally more expensive than the Joint EnKF but is expected to perform more accurately. Using a similar separation strategy, we propose a new EnKF estimation algorithm in which we apply a one-step-ahead smoothing to the state. The new state-parameters estimation scheme is derived in a consistent Bayesian filtering framework and results in separate update steps for the state and the parameters. Unlike the classical filtering path, the new scheme starts with an update step and later a model propagation step is performed. We test the performance of the new smoothing-based schemes against the standard EnKF in a one-dimensional configuration of the Norwegian Earth System Model (NorESM) in the North Atlantic. We use nutrients profile (up to 2000 m deep) data and surface partial CO2 measurements from Mike weather station (66o N, 2o E) to estimate different biological parameters of phytoplanktons and zooplanktons. We analyze the performance of the filters in terms of complexity and accuracy of the state and parameters estimates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ni, Xiaotong; Van den Nest, Maarten; Buerschaper, Oliver
We propose a non-commutative extension of the Pauli stabilizer formalism. The aim is to describe a class of many-body quantum states which is richer than the standard Pauli stabilizer states. In our framework, stabilizer operators are tensor products of single-qubit operators drawn from the group 〈αI, X, S〉, where α = e{sup iπ/4} and S = diag(1, i). We provide techniques to efficiently compute various properties related to bipartite entanglement, expectation values of local observables, preparation by means of quantum circuits, parent Hamiltonians, etc. We also highlight significant differences compared to the Pauli stabilizer formalism. In particular, we give examplesmore » of states in our formalism which cannot arise in the Pauli stabilizer formalism, such as topological models that support non-Abelian anyons.« less
Force-extension behavior of DNA in the presence of DNA-bending nucleoid associated proteins
NASA Astrophysics Data System (ADS)
Dahlke, K.; Sing, C. E.
2018-02-01
Interactions between nucleoid associated proteins (NAPs) and DNA affect DNA polymer conformation, leading to phenomena such as concentration dependent force-extension behavior. These effects, in turn, also impact the local binding behavior of the protein, such as high forces causing proteins to unbind, or proteins binding favorably to locally bent DNA. We develop a coarse-grained NAP-DNA simulation model that incorporates both force- and concentration-dependent behaviors, in order to study the interplay between NAP binding and DNA conformation. This model system includes multi-state protein binding and unbinding, motivated by prior work, but is now dependent on the local structure of the DNA, which is related to external forces acting on the DNA strand. We observe the expected qualitative binding behavior, where more proteins are bound at lower forces than at higher forces. Our model also includes NAP-induced DNA bending, which affects DNA elasticity. We see semi-quantitative matching of our simulated force-extension behavior to the reported experimental data. By using a coarse-grained simulation, we are also able to look at non-equilibrium behaviors, such as dynamic extension of a DNA strand. We stretch a DNA strand at different rates and at different NAP concentrations to observe how the time scales of the system (such as pulling time and unbinding time) work in concert. When these time scales are similar, we observe measurable rate-dependent changes in the system, which include the number of proteins bound and the force required to extend the DNA molecule. This suggests that the relative time scales of different dynamic processes play an important role in the behavior of NAP-DNA systems.
Extension's Online Presence: Are Land-Grant Universities Promoting the Tripartite Mission?
ERIC Educational Resources Information Center
Arnold, Shannon; Hill, Alexandra; Bailey, Nikki; Meyers, Courtney
2012-01-01
Land-grant universities were established with a tripartite mission: education, research, and outreach through the Cooperative Extension Service. The purpose of the study reported here was to evaluate the online presence and technological adoptions of Extension on land-grant university, college of agriculture, and state Extension websites. Almost…
Utilizing Evaluation To Develop a Marketing Strategy in the Louisiana Cooperative Extension Service.
ERIC Educational Resources Information Center
Coreil, Paul D.; Verma, Satish
Marketing has become a popular strategic initiative among state extension services to meet the growing demand for program accountability. The Louisiana Cooperative Extension Service (LCES) began a formative evaluation of its marketing efforts as a step toward a comprehensive marketing plan. All extension faculty were surveyed to determine their…
Expansion of the Gaming Industry: Opportunities for Cooperative Extension.
ERIC Educational Resources Information Center
Borden, George W.; And Others
1997-01-01
All but two states have some form of legalized gaming. However, survey responses from 28 of 50 extension agents indicated that only 2 have extension programming on the economic, social, and moral issues involved in gambling. (SK)
NASA Astrophysics Data System (ADS)
da, Lin-Tai; Pardo-Avila, Fátima; Xu, Liang; Silva, Daniel-Adriano; Zhang, Lu; Gao, Xin; Wang, Dong; Huang, Xuhui
2016-04-01
The dynamics of the RNA polymerase II (Pol II) backtracking process is poorly understood. We built a Markov State Model from extensive molecular dynamics simulations to identify metastable intermediate states and the dynamics of backtracking at atomistic detail. Our results reveal that Pol II backtracking occurs in a stepwise mode where two intermediate states are involved. We find that the continuous bending motion of the Bridge helix (BH) serves as a critical checkpoint, using the highly conserved BH residue T831 as a sensing probe for the 3'-terminal base paring of RNA:DNA hybrid. If the base pair is mismatched, BH bending can promote the RNA 3'-end nucleotide into a frayed state that further leads to the backtracked state. These computational observations are validated by site-directed mutagenesis and transcript cleavage assays, and provide insights into the key factors that regulate the preferences of the backward translocation.
Solid-state diffusion in amorphous zirconolite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, C.; Dove, M. T.; Trachenko, K.
2014-11-14
We discuss how structural disorder and amorphization affect solid-state diffusion, and consider zirconolite as a currently important case study. By performing extensive molecular dynamics simulations, we disentangle the effects of amorphization and density, and show that a profound increase of solid-state diffusion takes place as a result of amorphization. Importantly, this can take place at the same density as in the crystal, representing an interesting general insight regarding solid-state diffusion. We find that decreasing the density in the amorphous system increases pre-factors of diffusion constants, but does not change the activation energy in the density range considered. We also findmore » that atomic species in zirconolite are affected differently by amorphization and density change. Our microscopic insights are relevant for understanding how solid-state diffusion changes due to disorder and for building predictive models of operation of materials to be used to encapsulate nuclear waste.« less
A Model of Human Variability in Viable Ship Design
2014-02-21
when an organization is in a state of change. For example, an alternative to screening out individuals for a new job role is the self -selection of...being done and group members little care what happens beyond their self -imposed borders. The proposed extension addresses team decay with regard to the...these, the paygrade of team members probably reflects qualities of most interest from the authors’ point of 22 view. Paygrade is highly
Intelligent Engine Systems: Acoustics
NASA Technical Reports Server (NTRS)
Wojno, John; Martens, Steve; Simpson, Benjamin
2008-01-01
An extensive study of new fan exhaust nozzle technologies was performed. Three new uniform chevron nozzles were designed, based on extensive CFD analysis. Two new azimuthally varying variants were defined. All five were tested, along with two existing nozzles, on a representative model-scale, medium BPR exhaust nozzle. Substantial acoustic benefits were obtained from the uniform chevron nozzle designs, the best benefit being provided by an existing design. However, one of the azimuthally varying nozzle designs exhibited even better performance than any of the uniform chevron nozzles. In addition to the fan chevron nozzles, a new technology was demonstrated, using devices that enhance mixing when applied to an exhaust nozzle. The acoustic benefits from these devices applied to medium BPR nozzles were similar, and in some cases superior to, those obtained from conventional uniform chevron nozzles. However, none of the low noise technologies provided equivalent acoustic benefits on a model-scale high BPR exhaust nozzle, similar to current large commercial applications. New technologies must be identified to improve the acoustics of state-of-the-art high BPR jet engines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ondrej Linda; Todd Vollmer; Jim Alves-Foss
2011-08-01
Resiliency and cyber security of modern critical infrastructures is becoming increasingly important with the growing number of threats in the cyber-environment. This paper proposes an extension to a previously developed fuzzy logic based anomaly detection network security cyber sensor via incorporating Type-2 Fuzzy Logic (T2 FL). In general, fuzzy logic provides a framework for system modeling in linguistic form capable of coping with imprecise and vague meanings of words. T2 FL is an extension of Type-1 FL which proved to be successful in modeling and minimizing the effects of various kinds of dynamic uncertainties. In this paper, T2 FL providesmore » a basis for robust anomaly detection and cyber security state awareness. In addition, the proposed algorithm was specifically developed to comply with the constrained computational requirements of low-cost embedded network security cyber sensors. The performance of the system was evaluated on a set of network data recorded from an experimental cyber-security test-bed.« less
Major advances in extension education programs in dairy production.
Chase, L E; Ely, L O; Hutjens, M F
2006-04-01
The dairy industry has seen structural changes in the last 25 yr that have an impact on extension programming. The number of cows in the United States has decreased by 17%, whereas the number of dairy farms has decreased by 74%. The average milk production per cow has increased from 5,394 to 8,599 kg/lactation. Even though there are fewer farms, dairy farm managers are asking for more specific and targeted information. The extension resources available have also decreased during this period. Because of these changes, shifts have taken place in extension programming and staffing. A key change has been a shift to subject matter-targeted programs and workshops. Extension has also incorporated and expanded use of the Internet. Discussion groups, subject matter courses, and searchable databases are examples of Internet use. There will be continuing shifts in the demographics of the US dairy industry that will influence future extension efforts. It is also probable that fewer extension professionals will be available to provide programming due to changes in funding sources at national, state, and local levels. Future shifts in extension programming will be needed to provide the information needs of the industry with a smaller number of extension workers.
NASA Astrophysics Data System (ADS)
Fang, Jun
Thermotropic liquid crystalline polymers (TLCPs) are a class of promising engineering materials for high-demanding structural applications. Their excellent mechanical properties are highly correlated to the underlying molecular orientation states, which may be affected by complex flow fields during melt processing. Thus, understanding and eventually predicting how processing flows impact molecular orientation is a critical step towards rational design work in order to achieve favorable, balanced physical properties in finished products. This thesis aims to develop deeper understanding of orientation development in commercial TLCPs during processing by coordinating extensive experimental measurements with numerical computations. In situ measurements of orientation development of LCPs during processing are a focal point of this thesis. An x-ray capable injection molding apparatus is enhanced and utilized for time-resolved measurements of orientation development in multiple commercial TLCPs during injection molding. Ex situ wide angle x-ray scattering is also employed for more thorough characterization of molecular orientation distributions in molded plaques. Incompletely injection molded plaques ("short shots") are studied to gain further insights into the intermediate orientation states during mold filling. Finally, two surface orientation characterization techniques, near edge x-ray absorption fine structure (NEXAFS) and infrared attenuated total reflectance (FTIR-ATR) are combined to investigate the surface orientation distribution of injection molded plaques. Surface orientation states are found to be vastly different from their bulk counterparts due to different kinematics involved in mold filling. In general, complex distributions of orientation in molded plaques reflect the spatially varying competition between shear and extension during mold filling. To complement these experimental measurements, numerical calculations based on the Larson-Doi polydomain model are performed. The implementation of the Larson-Doi in complex processing flows is performed using a commercial process modeling software suite (MOLDFLOWRTM), exploiting a nearly exact analogy between the Larson-Doi model and a fiber orientation model that has been widely used in composites processing simulations. The modeling scheme is first verified by predicting many qualitative and quantitative features of molecular orientation distributions in isothermal extrusion-fed channel flows. In coordination with experiments, the model predictions are found to capture many qualitative features observed in injection molded plaques (including short shots). The final, stringent test of Larson-Doi model performance is prediction of in situ transient orientation data collected during mold filling. The model yields satisfactory results, though certain numerical approximations limit performance near the mold front.
Step up to the bar: avoiding discrimination in professional licensure.
Appelbaum, Paul S
2015-04-01
In their efforts to protect the public from impaired professionals, licensure boards often have created special rules for applicants with mental disorders. The authorities in charge of admission to the Louisiana bar required extensive disclosure of mental health status, even if an applicant's professional functioning was not impaired. After the U.S. Department of Justice found that Louisiana's practices violated applicants' rights under the Americans with Disabilities Act, the state agreed to focus on applicants' functional impairment rather than on mental disorders. This settlement may provide a model for licensure boards in other states and for other professions, including the health professions.
Model reference tracking control of an aircraft: a robust adaptive approach
NASA Astrophysics Data System (ADS)
Tanyer, Ilker; Tatlicioglu, Enver; Zergeroglu, Erkan
2017-05-01
This work presents the design and the corresponding analysis of a nonlinear robust adaptive controller for model reference tracking of an aircraft that has parametric uncertainties in its system matrices and additive state- and/or time-dependent nonlinear disturbance-like terms in its dynamics. Specifically, robust integral of the sign of the error feedback term and an adaptive term is fused with a proportional integral controller. Lyapunov-based stability analysis techniques are utilised to prove global asymptotic convergence of the output tracking error. Extensive numerical simulations are presented to illustrate the performance of the proposed robust adaptive controller.
The PPP model of alternant cyclic polyenes with modified boundary conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bendazzoli, G.L.; Evangelisti, S.
1995-08-15
The extension of the PPP Hamiltonian for alternant cyclic polyenes to noninteger values of the pseudomomentum by imposing modified boundary conditions is discussed in detail. It is shown that a computer program for periodic boundary conditions can be easily adapted to the new boundary conditions. Full CI computations are carried out for some low-lying states of the PPP model of alternant cyclic polyenes (CH){sub N} (N even) at half-filling. The energy values obtained by using periodic (Bloch) and antiperiodic (Moebius) orbitals are used to perform energy extrapolations for N {yields} {infinity}. 38 refs., 2 figs., 5 tabs.
A maximum (non-extensive) entropy approach to equity options bid-ask spread
NASA Astrophysics Data System (ADS)
Tapiero, Oren J.
2013-07-01
The cross-section of options bid-ask spreads with their strikes are modelled by maximising the Kaniadakis entropy. A theoretical model results with the bid-ask spread depending explicitly on the implied volatility; the probability of expiring at-the-money and an asymmetric information parameter (κ). Considering AIG as a test case for the period between January 2006 and October 2008, we find that information flows uniquely from the trading activity in the underlying asset to its derivatives. Suggesting that κ is possibly an option implied measure of the current state of trading liquidity in the underlying asset.
Garcia, V; Jaffrès, H; George, J-M; Marangolo, M; Eddrief, M; Etgens, V H
2006-12-15
We propose an analytical model of spin-dependent resonant tunneling through a 3D assembly of localized states (spread out in energy and in space) in a barrier. An inhomogeneous distribution of localized states leads to resonant tunneling magnetoresistance inversion and asymmetric bias dependence as evidenced with a set of experiments with MnAs/GaAs(7-10 nm)/MnAs tunnel junctions. One of the key parameters of our theory is a dimensionless critical exponent beta scaling the typical extension of the localized states over the characteristic length scale of the spatial distribution function. Furthermore, we demonstrate, through experiments with localized states introduced preferentially in the middle of the barrier, the influence of an homogeneous distribution on the spin-dependent transport properties.
NASA Technical Reports Server (NTRS)
Wagner, William (Technical Monitor); Cranmer, Steven R.
2005-01-01
The paper discusses the following: 1. No-cost Extension. The no-cost extension is required to complete the work on the unified model codes (both hydrodynamic and kinetic Monte Carlo) as described in the initial proposal and previous annual reports. 2. Scientific Accomplishments during the Report Period. We completed a comprehensive model of Alfvtn wave reflection that spans the full distance from the photosphere to the distant heliosphere. 3. Comparison of Accomplishments with Proposed Goals. The proposal contained two specific objectives for Year 3: (1) to complete the unified model code, and (2) to apply it to various kinds of coronal holes (and polar plumes within coronal holes). Although the anticipated route toward these two final goals has changed (see accomplishments 2a and 2b above), they remain the major milestones for the extended period of performance. Accomplishments la and IC were necessary prerequisites for the derivation of "physically relevant transport and mode-coupling terms" for the unified model codes (as stated in the proposal Year 3 goals). We have fulfilled the proposed "core work" to study 4 general types of physical processes; in previous years we studied turbulence, mode coupling (Le., non-WKB reflection), and kinetic wave damping, and accomplishment lb provides the fourth topic: nonlinear steepening.
A Two-State Model for the Dynamics of the Pyrophosphate Ion Release in Bacterial RNA Polymerase
Da, Lin-Tai; Pardo Avila, Fátima; Wang, Dong; Huang, Xuhui
2013-01-01
The dynamics of the PPi release during the transcription elongation of bacterial RNA polymerase and its effects on the Trigger Loop (TL) opening motion are still elusive. Here, we built a Markov State Model (MSM) from extensive all-atom molecular dynamics (MD) simulations to investigate the mechanism of the PPi release. Our MSM has identified a simple two-state mechanism for the PPi release instead of a more complex four-state mechanism observed in RNA polymerase II (Pol II). We observed that the PPi release in bacterial RNA polymerase occurs at sub-microsecond timescale, which is ∼3-fold faster than that in Pol II. After escaping from the active site, the (Mg-PPi)2− group passes through a single elongated metastable region where several positively charged residues on the secondary channel provide favorable interactions. Surprisingly, we found that the PPi release is not coupled with the TL unfolding but correlates tightly with the side-chain rotation of the TL residue R1239. Our work sheds light on the dynamics underlying the transcription elongation of the bacterial RNA polymerase. PMID:23592966
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-19
... State and Tribal 2008 Ozone Designation Recommendations; Extension of Public Comment Period AGENCY... and tribal ozone designation recommendations for the 2008 Ozone National Ambient Air Quality Standards... designation determinations for the 2008 ozone standards in spring 2012. DATES: Comments must be received on or...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-07
...--XT99 [Docket No. 100120036-0038-01] Fisheries of the Northeastern United States; Black Sea Bass Fishery; 2010 Black Sea Bass Specifications; Emergency Rule Extension AGENCY: National Marine Fisheries Service...; emergency action extension. SUMMARY: NMFS is extending the emergency action to increase the 2010 black sea...
Research Use by Cooperative Extension Educators in New York State
ERIC Educational Resources Information Center
Hamilton, Stephen F.; Chen, Emily K.; Pillemer, Karl; Meador, Rhoda H.
2013-01-01
A Web-based survey of 388 off-campus Cornell Extension educators in New York State examined their attitudes toward research, sources of research-based information, knowledge and beliefs about evidence-based programs, and involvement in research activities. Strong consensus emerged that research is central and that educators are capable of reading…
Fundamental Dimensions and Essential Elements of Exemplary Local Extension Units
ERIC Educational Resources Information Center
Terry, Bryan D.; Osborne, Edward
2015-01-01
Collaborative efforts between federal, state, and local government agencies enable local Extension units to deliver a high level of educational opportunities to local citizens. These units represent land-grant institutions by delivering non-formal education that aim to address local, regional, and state concerns. The purpose of this study was to…
DRAFT one year extension of the short-term national product waiver for stainless steel nuts and bolts used in pipe couplings, restraints, joints, flanges and saddles for State Revolving Fund projects.
Extension Professionals' Strengths and Needs Related to Nutrition and Health Programs
ERIC Educational Resources Information Center
Peña-Purcell, Ninfa; Bowen, Elaine; Zoumenou, Virginie; Schuster, Ellen R.; Boggess, May; Manore, Melinda M.; Gerrior, Shirley A.
2012-01-01
We report results of a Web-based nationwide survey of nutrition and health Extension specialists representing 42 states. Survey items (n = 36) assessed five areas: curriculum review, nutrition and physical activity, professional training, communication, and evaluation. An internal curriculum review was common, but few states shared their criteria…
Timber products production in West Virginia 1965
Neal P. Kingsley; David R. Dickson
1968-01-01
This study was funded through the Appalachian Regional Development Act of 1965 and was conducted by the Forest Survey Project of the Northeastern Forest Experiment Station with the assistance of the State Forester and the Extension Forester of West Virginia, and the Monongahela Power Company. The State Forester's office and the Extension Forester provided lists of...
Absorbing states in a catalysis model with anti-Arrhenius behavior.
de Andrade, M F; Figueiredo, W
2012-04-28
We study a model of heterogeneous catalysis with competitive reactions between two monomers A and B. We assume that reactions are dependent on temperature and follow an anti-Arrhenius mechanism. In this model, a monomer A can react with a nearest neighbor monomer A or B, however, reactions between monomers of type B are not allowed. We assume attractive interactions between nearest neighbor monomers as well as between monomers and the catalyst. Through mean-field calculations, at the level of site and pair approximations, and extensive Monte Carlo simulations, we determine the phase diagram of the model in the plane y(A) versus temperature, where y(A) is the probability that a monomer A reaches the catalyst. The model exhibits absorbing and active phases separated by lines of continuous phase transitions. We calculate the static, dynamic, and spreading exponents of the model, and despite the absorbing state be represented by many different microscopic configurations, the model belongs to the directed percolation universality class in two dimensions. Both reaction mechanisms, Arrhenius and anti-Arrhenius, give the same set of critical exponents and do not change the nature of the universality class of the catalytic models.
Human-Robot Cooperation with Commands Embedded in Actions
NASA Astrophysics Data System (ADS)
Kobayashi, Kazuki; Yamada, Seiji
In this paper, we first propose a novel interaction model, CEA (Commands Embedded in Actions). It can explain the way how some existing systems reduce the work-load of their user. We next extend the CEA and build ECEA (Extended CEA) model. The ECEA enables robots to achieve more complicated tasks. On this extension, we employ ACS (Action Coding System) which can describe segmented human acts and clarifies the relationship between user's actions and robot's actions in a task. The ACS utilizes the CEA's strong point which enables a user to send a command to a robot by his/her natural action for the task. The instance of the ECEA led by using the ACS is a temporal extension which has the user keep a final state of a previous his/her action. We apply the temporal extension of the ECEA for a sweeping task. The high-level task, a cooperative task between the user and the robot can be realized. The robot with simple reactive behavior can sweep the region of under an object when the user picks up the object. In addition, we measure user's cognitive loads on the ECEA and a traditional method, DCM (Direct Commanding Method) in the sweeping task, and compare between them. The results show that the ECEA has a lower cognitive load than the DCM significantly.
The finite state projection approach to analyze dynamics of heterogeneous populations
NASA Astrophysics Data System (ADS)
Johnson, Rob; Munsky, Brian
2017-06-01
Population modeling aims to capture and predict the dynamics of cell populations in constant or fluctuating environments. At the elementary level, population growth proceeds through sequential divisions of individual cells. Due to stochastic effects, populations of cells are inherently heterogeneous in phenotype, and some phenotypic variables have an effect on division or survival rates, as can be seen in partial drug resistance. Therefore, when modeling population dynamics where the control of growth and division is phenotype dependent, the corresponding model must take account of the underlying cellular heterogeneity. The finite state projection (FSP) approach has often been used to analyze the statistics of independent cells. Here, we extend the FSP analysis to explore the coupling of cell dynamics and biomolecule dynamics within a population. This extension allows a general framework with which to model the state occupations of a heterogeneous, isogenic population of dividing and expiring cells. The method is demonstrated with a simple model of cell-cycle progression, which we use to explore possible dynamics of drug resistance phenotypes in dividing cells. We use this method to show how stochastic single-cell behaviors affect population level efficacy of drug treatments, and we illustrate how slight modifications to treatment regimens may have dramatic effects on drug efficacy.
A State Space Model for Spatial Updating of Remembered Visual Targets during Eye Movements
Mohsenzadeh, Yalda; Dash, Suryadeep; Crawford, J. Douglas
2016-01-01
In the oculomotor system, spatial updating is the ability to aim a saccade toward a remembered visual target position despite intervening eye movements. Although this has been the subject of extensive experimental investigation, there is still no unifying theoretical framework to explain the neural mechanism for this phenomenon, and how it influences visual signals in the brain. Here, we propose a unified state-space model (SSM) to account for the dynamics of spatial updating during two types of eye movement; saccades and smooth pursuit. Our proposed model is a non-linear SSM and implemented through a recurrent radial-basis-function neural network in a dual Extended Kalman filter (EKF) structure. The model parameters and internal states (remembered target position) are estimated sequentially using the EKF method. The proposed model replicates two fundamental experimental observations: continuous gaze-centered updating of visual memory-related activity during smooth pursuit, and predictive remapping of visual memory activity before and during saccades. Moreover, our model makes the new prediction that, when uncertainty of input signals is incorporated in the model, neural population activity and receptive fields expand just before and during saccades. These results suggest that visual remapping and motor updating are part of a common visuomotor mechanism, and that subjective perceptual constancy arises in part from training the visual system on motor tasks. PMID:27242452
NASA Astrophysics Data System (ADS)
Jones, D. B.; Cartwright, D. C.; Campbell, L.; Teubner, P. J. O.; Brunger, M. J.; Bottema, M. J.
2004-09-01
We report on the extension of our Statistical Equlibrium Code (SEC) to determine the electronic-vibrational behaviour of O2 in the thermosphere, under night-time auroral conditions. This work was necessitated by the inadequacies in previous studies where the electron-impact cross section data bases employed have been superceeded, and/or direct excitation of states via electron impact has been neglected. Here we use the latest electron-impact cross section data bases to present the first electron-impact excitation rates for the 8 lowest lying electronic states of O_2. We then use these rates in conjunction with the most accurately available Franck-Condon factors, transition probabilities and quenching rates to determine the excited state populations. Note that predissociation, which is important for O_2, is also included in our model. We present radiative rates for various transitions and compare these results with those from other models and experimental rocket measurements.
NASA Astrophysics Data System (ADS)
Hernández Vera, Mario; Yurtsever, Ersin; Wester, Roland; Gianturco, Franco A.
2018-05-01
We present an extensive range of accurate ab initio calculations, which map in detail the spatial electronic potential energy surface that describes the interaction between the molecular anion NH2 - (1A1) in its ground electronic state and the He atom. The time-independent close-coupling method is employed to generate the corresponding rotationally inelastic cross sections, and then the state-changing rates over a range of temperatures from 10 to 30 K, which is expected to realistically represent the experimental trapping conditions for this ion in a radio frequency ion trap filled with helium buffer gas. The overall evolutionary kinetics of the rotational level population involving the molecular anion in the cold trap is also modelled during a photodetachment experiment and analyzed using the computed rates. The present results clearly indicate the possibility of selectively detecting differences in behavior between the ortho- and para-anions undergoing photodetachment in the trap.
NASA Astrophysics Data System (ADS)
Krivoruchko, V. N.
2017-11-01
In spite of the fact that dynamical properties of magnets have been extensively studied over the past years, the longitudinal magnetization dynamics is still much less understood than transverse one even in the equilibrium state of a system. In this paper, we give a review of existing, based on quantum-mechanical approach, theoretical descriptions of the longitudinal magnetization dynamics for ferro-, ferri- and antiferromagnetic dielectrics. The aim is to reveal specific features of this type of magnetization vibrations under description a system within the framework of one of the basic model theory of magnetism—the Heisenberg model. Related experimental investigations as well as open questions are also briefly discussed. We hope that understanding of the longitudinal magnetization dynamics distinctive features in the equilibrium state have to be a reference point for a theory uncovering the physical mechanisms that govern ultrafast spin dynamics after femtosecond laser pulse demagnetization when a system is far beyond an equilibrium state.
Filatov, Michael; Liu, Fang; Martínez, Todd J.
2017-07-21
The state-averaged (SA) spin restricted ensemble referenced Kohn-Sham (REKS) method and its state interaction (SI) extension, SI-SA-REKS, enable one to describe correctly the shape of the ground and excited potential energy surfaces of molecules undergoing bond breaking/bond formation reactions including features such as conical intersections crucial for theoretical modeling of non-adiabatic reactions. Until recently, application of the SA-REKS and SI-SA-REKS methods to modeling the dynamics of such reactions was obstructed due to the lack of the analytical energy derivatives. Here, the analytical derivatives of the individual SA-REKS and SI-SA-REKS energies are derived. The final analytic gradient expressions are formulated entirelymore » in terms of traces of matrix products and are presented in the form convenient for implementation in the traditional quantum chemical codes employing basis set expansions of the molecular orbitals. Finally, we will describe the implementation and benchmarking of the derived formalism in a subsequent article of this series.« less
ERIC Educational Resources Information Center
Vandenberg, Lela; And Others
The Research-Practice Linkages Project sought to identify the knowledge base supporting community leadership development (CLD) programs of the Cooperative Extension Service and to determine linkages between Extension programs and CLD research. A mail questionnaire was completed by 492 Extension staff involved in CLD programs in 18 states and 42…
Using the Arts to Raise Awareness and Communicate Environmental Information in the Extension Context
ERIC Educational Resources Information Center
Curtis, David J.
2011-01-01
Extension services face an increasing challenge as the state of Australia's environment declines. It is, therefore, opportune to explore some innovations in the way extension is traditionally delivered. This paper introduces the concept of the visual and performing arts being useful in extension of natural resources management issues such as land…
Dynamics of entanglement in expanding quantum fields
NASA Astrophysics Data System (ADS)
Berges, Jürgen; Floerchinger, Stefan; Venugopalan, Raju
2018-04-01
We develop a functional real-time approach to computing the entanglement between spatial regions for Gaussian states in quantum field theory. The entanglement entropy is characterized in terms of local correlation functions on space-like Cauchy hypersurfaces. The framework is applied to explore an expanding light cone geometry in the particular case of the Schwinger model for quantum electrodynamics in 1+1 space-time dimensions. We observe that the entanglement entropy becomes extensive in rapidity at early times and that the corresponding local reduced density matrix is a thermal density matrix for excitations around a coherent field with a time dependent temperature. Since the Schwinger model successfully describes many features of multiparticle production in e + e - collisions, our results provide an attractive explanation in this framework for the apparent thermal nature of multiparticle production even in the absence of significant final state scattering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dou, Wenjie; Subotnik, Joseph E.; Nitzan, Abraham
2015-06-21
In a previous paper [Dou et al., J. Chem. Phys. 142, 084110 (2015)], we have introduced a surface hopping (SH) approach to deal with the Anderson-Holstein model. Here, we address some interesting aspects that have not been discussed previously, including transient phenomena and extensions to arbitrary impurity-bath couplings. In particular, in this paper we show that the SH approach captures phonon coherence beyond the secular approximation, and that SH rates agree with Marcus theory at steady state. Finally, we show that, in cases where the electronic tunneling rate depends on nuclear position, a straightforward use of Marcus theory rates yieldsmore » a useful starting point for capturing level broadening. For a simple such model, we find I-V curves that exhibit negative differential resistance.« less
Finite element method for optimal guidance of an advanced launch vehicle
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Bless, Robert R.; Calise, Anthony J.; Leung, Martin
1992-01-01
A temporal finite element based on a mixed form of Hamilton's weak principle is summarized for optimal control problems. The resulting weak Hamiltonian finite element method is extended to allow for discontinuities in the states and/or discontinuities in the system equations. An extension of the formulation to allow for control inequality constraints is also presented. The formulation does not require element quadrature, and it produces a sparse system of nonlinear algebraic equations. To evaluate its feasibility for real-time guidance applications, this approach is applied to the trajectory optimization of a four-state, two-stage model with inequality constraints for an advanced launch vehicle. Numerical results for this model are presented and compared to results from a multiple-shooting code. The results show the accuracy and computational efficiency of the finite element method.
Does the U.S. exercise contagion on Italy? A theoretical model and empirical evidence
NASA Astrophysics Data System (ADS)
Cerqueti, Roy; Fenga, Livio; Ventura, Marco
2018-06-01
This paper deals with the theme of contagion in financial markets. At this aim, we develop a model based on Mixed Poisson Processes to describe the abnormal returns of financial markets of two considered countries. In so doing, the article defines the theoretical conditions to be satisfied in order to state that one of them - the so-called leader - exercises contagion on the others - the followers. Specifically, we employ an invariant probabilistic result stating that a suitable transformation of a Mixed Poisson Process is still a Mixed Poisson Process. The theoretical claim is validated by implementing an extensive simulation analysis grounded on empirical data. The countries considered are the U.S. (as the leader) and Italy (as the follower) and the period under scrutiny is very large, ranging from 1970 to 2014.
A critical re-evaluation of the regression model specification in the US D1 EQ-5D value function
2012-01-01
Background The EQ-5D is a generic health-related quality of life instrument (five dimensions with three levels, 243 health states), used extensively in cost-utility/cost-effectiveness analyses. EQ-5D health states are assigned values on a scale anchored in perfect health (1) and death (0). The dominant procedure for defining values for EQ-5D health states involves regression modeling. These regression models have typically included a constant term, interpreted as the utility loss associated with any movement away from perfect health. The authors of the United States EQ-5D valuation study replaced this constant with a variable, D1, which corresponds to the number of impaired dimensions beyond the first. The aim of this study was to illustrate how the use of the D1 variable in place of a constant is problematic. Methods We compared the original D1 regression model with a mathematically equivalent model with a constant term. Comparisons included implications for the magnitude and statistical significance of the coefficients, multicollinearity (variance inflation factors, or VIFs), number of calculation steps needed to determine tariff values, and consequences for tariff interpretation. Results Using the D1 variable in place of a constant shifted all dummy variable coefficients away from zero by the value of the constant, greatly increased the multicollinearity of the model (maximum VIF of 113.2 vs. 21.2), and increased the mean number of calculation steps required to determine health state values. Discussion Using the D1 variable in place of a constant constitutes an unnecessary complication of the model, obscures the fact that at least two of the main effect dummy variables are statistically nonsignificant, and complicates and biases interpretation of the tariff algorithm. PMID:22244261
A critical re-evaluation of the regression model specification in the US D1 EQ-5D value function.
Rand-Hendriksen, Kim; Augestad, Liv A; Dahl, Fredrik A
2012-01-13
The EQ-5D is a generic health-related quality of life instrument (five dimensions with three levels, 243 health states), used extensively in cost-utility/cost-effectiveness analyses. EQ-5D health states are assigned values on a scale anchored in perfect health (1) and death (0).The dominant procedure for defining values for EQ-5D health states involves regression modeling. These regression models have typically included a constant term, interpreted as the utility loss associated with any movement away from perfect health. The authors of the United States EQ-5D valuation study replaced this constant with a variable, D1, which corresponds to the number of impaired dimensions beyond the first. The aim of this study was to illustrate how the use of the D1 variable in place of a constant is problematic. We compared the original D1 regression model with a mathematically equivalent model with a constant term. Comparisons included implications for the magnitude and statistical significance of the coefficients, multicollinearity (variance inflation factors, or VIFs), number of calculation steps needed to determine tariff values, and consequences for tariff interpretation. Using the D1 variable in place of a constant shifted all dummy variable coefficients away from zero by the value of the constant, greatly increased the multicollinearity of the model (maximum VIF of 113.2 vs. 21.2), and increased the mean number of calculation steps required to determine health state values. Using the D1 variable in place of a constant constitutes an unnecessary complication of the model, obscures the fact that at least two of the main effect dummy variables are statistically nonsignificant, and complicates and biases interpretation of the tariff algorithm.
The Pursuit of Happiness Measurement: A Psychometric Model Based on Psychophysiological Correlates
Pietro, Cipresso; Silvia, Serino; Giuseppe, Riva
2014-01-01
Everyone is interested in the pursuit of happiness, but the real problem for the researchers is how to measure it. Our aim was to deeply investigate happiness measurement through biomedical signals, using psychophysiological methods to objectify the happiness experiences measurements. The classic valence-arousal model of affective states to study happiness has been extensively used in psychophysiology. However, really few studies considered a real combination of these two dimensions and no study further investigated multidimensional models. More, most studies focused mainly on self-report to measure happiness and a deeper psychophysiological investigation on the dimensions of such an experience is still missing. A multidimensional model of happiness is presented and both the dimensions and the measures extracted within each dimension are comprehensively explained. This multidimensional model aims at being a milestone for future systematic study on psychophysiology of happiness and affective states. It seems everyone has a view on happiness. Joan Collins, theDalai Lama and over 100 others have released new titles on the subject since the beginning of 2001 Richard Tooth “The Psychology of Happiness (2nd Edition)”Michael Argyle, Routledge PMID:24955383
Kinematics of the New Madrid seismic zone, central United States, based on stepover models
Pratt, Thomas L.
2012-01-01
Seismicity in the New Madrid seismic zone (NMSZ) of the central United States is generally attributed to a stepover structure in which the Reelfoot thrust fault transfers slip between parallel strike-slip faults. However, some arms of the seismic zone do not fit this simple model. Comparison of the NMSZ with an analog sandbox model of a restraining stepover structure explains all of the arms of seismicity as only part of the extensive pattern of faults that characterizes stepover structures. Computer models show that the stepover structure may form because differences in the trends of lower crustal shearing and inherited upper crustal faults make a step between en echelon fault segments the easiest path for slip in the upper crust. The models predict that the modern seismicity occurs only on a subset of the faults in the New Madrid stepover structure, that only the southern part of the stepover structure ruptured in the A.D. 1811–1812 earthquakes, and that the stepover formed because the trends of older faults are not the same as the current direction of shearing.
Modeling to Evaluate Contribution of Oil and Gas Emissions to Air Pollution.
Thompson, Tammy M; Shepherd, Donald; Stacy, Andrea; Barna, Michael G; Schichtel, Bret A
2017-04-01
Oil and gas production in the Western United States has increased considerably over the past 10 years. While many of the still limited oil and gas impact assessments have focused on potential human health impacts, the typically remote locations of production in the Intermountain West suggests that the impacts of oil and gas production on national parks and wilderness areas (Class I and II areas) could also be important. To evaluate this, we utilize the Comprehensive Air quality Model with Extensions (CAMx) with a year-long modeling episode representing the best available representation of 2011 meteorology and emissions for the Western United States. The model inputs for the 2011 episodes were generated as part of the Three State Air Quality Study (3SAQS). The study includes a detailed assessment of oil and gas (O&G) emissions in Western States. The year-long modeling episode was run both with and without emissions from O&G production. The difference between these two runs provides an estimate of the contribution of the O&G production to air quality. These data were used to assess the contribution of O&G to the 8 hour average ozone concentrations, daily and annual fine particulate concentrations, annual nitrogen deposition totals and visibility in the modeling domain. We present the results for the Class I and II areas in the Western United States. Modeling results suggest that emissions from O&G activity are having a negative impact on air quality and ecosystem health in our National Parks and Class I areas. In this research, we use a modeling framework developed for oil and gas evaluation in the western United States to determine the modeled impacts of emissions associated with oil and gas production on air pollution metrics. We show that oil and gas production may have a significant negative impact on air quality and ecosystem health in some national parks and other Class I areas in the western United States. Our findings are of particular interest to federal land managers as well as regulators in states heavy in oil and gas production as they consider control strategies to reduce the impact of development.
Physiome-model-based state-space framework for cardiac deformation recovery.
Wong, Ken C L; Zhang, Heye; Liu, Huafeng; Shi, Pengcheng
2007-11-01
To more reliably recover cardiac information from noise-corrupted, patient-specific measurements, it is essential to employ meaningful constraining models and adopt appropriate optimization criteria to couple the models with the measurements. Although biomechanical models have been extensively used for myocardial motion recovery with encouraging results, the passive nature of such constraints limits their ability to fully count for the deformation caused by active forces of the myocytes. To overcome such limitations, we propose to adopt a cardiac physiome model as the prior constraint for cardiac motion analysis. The cardiac physiome model comprises an electric wave propagation model, an electromechanical coupling model, and a biomechanical model, which are connected through a cardiac system dynamics for a more complete description of the macroscopic cardiac physiology. Embedded within a multiframe state-space framework, the uncertainties of the model and the patient's measurements are systematically dealt with to arrive at optimal cardiac kinematic estimates and possibly beyond. Experiments have been conducted to compare our proposed cardiac-physiome-model-based framework with the solely biomechanical model-based framework. The results show that our proposed framework recovers more accurate cardiac deformation from synthetic data and obtains more sensible estimates from real magnetic resonance image sequences. With the active components introduced by the cardiac physiome model, cardiac deformations recovered from patient's medical images are more physiologically plausible.
Bayesian switching factor analysis for estimating time-varying functional connectivity in fMRI.
Taghia, Jalil; Ryali, Srikanth; Chen, Tianwen; Supekar, Kaustubh; Cai, Weidong; Menon, Vinod
2017-07-15
There is growing interest in understanding the dynamical properties of functional interactions between distributed brain regions. However, robust estimation of temporal dynamics from functional magnetic resonance imaging (fMRI) data remains challenging due to limitations in extant multivariate methods for modeling time-varying functional interactions between multiple brain areas. Here, we develop a Bayesian generative model for fMRI time-series within the framework of hidden Markov models (HMMs). The model is a dynamic variant of the static factor analysis model (Ghahramani and Beal, 2000). We refer to this model as Bayesian switching factor analysis (BSFA) as it integrates factor analysis into a generative HMM in a unified Bayesian framework. In BSFA, brain dynamic functional networks are represented by latent states which are learnt from the data. Crucially, BSFA is a generative model which estimates the temporal evolution of brain states and transition probabilities between states as a function of time. An attractive feature of BSFA is the automatic determination of the number of latent states via Bayesian model selection arising from penalization of excessively complex models. Key features of BSFA are validated using extensive simulations on carefully designed synthetic data. We further validate BSFA using fingerprint analysis of multisession resting-state fMRI data from the Human Connectome Project (HCP). Our results show that modeling temporal dependencies in the generative model of BSFA results in improved fingerprinting of individual participants. Finally, we apply BSFA to elucidate the dynamic functional organization of the salience, central-executive, and default mode networks-three core neurocognitive systems with central role in cognitive and affective information processing (Menon, 2011). Across two HCP sessions, we demonstrate a high level of dynamic interactions between these networks and determine that the salience network has the highest temporal flexibility among the three networks. Our proposed methods provide a novel and powerful generative model for investigating dynamic brain connectivity. Copyright © 2017 Elsevier Inc. All rights reserved.
Formulating Spatially Varying Performance in the Statistical Fusion Framework
Landman, Bennett A.
2012-01-01
To date, label fusion methods have primarily relied either on global (e.g. STAPLE, globally weighted vote) or voxelwise (e.g. locally weighted vote) performance models. Optimality of the statistical fusion framework hinges upon the validity of the stochastic model of how a rater errs (i.e., the labeling process model). Hitherto, approaches have tended to focus on the extremes of potential models. Herein, we propose an extension to the STAPLE approach to seamlessly account for spatially varying performance by extending the performance level parameters to account for a smooth, voxelwise performance level field that is unique to each rater. This approach, Spatial STAPLE, provides significant improvements over state-of-the-art label fusion algorithms in both simulated and empirical data sets. PMID:22438513
Model-based transcriptome engineering promotes a fermentative transcriptional state in yeast
Michael, Drew G.; Maier, Ezekiel J.; Brown, Holly; Gish, Stacey R.; Fiore, Christopher; Brown, Randall H.; Brent, Michael R.
2016-01-01
The ability to rationally manipulate the transcriptional states of cells would be of great use in medicine and bioengineering. We have developed an algorithm, NetSurgeon, which uses genome-wide gene-regulatory networks to identify interventions that force a cell toward a desired expression state. We first validated NetSurgeon extensively on existing datasets. Next, we used NetSurgeon to select transcription factor deletions aimed at improving ethanol production in Saccharomyces cerevisiae cultures that are catabolizing xylose. We reasoned that interventions that move the transcriptional state of cells using xylose toward that of cells producing large amounts of ethanol from glucose might improve xylose fermentation. Some of the interventions selected by NetSurgeon successfully promoted a fermentative transcriptional state in the absence of glucose, resulting in strains with a 2.7-fold increase in xylose import rates, a 4-fold improvement in xylose integration into central carbon metabolism, or a 1.3-fold increase in ethanol production rate. We conclude by presenting an integrated model of transcriptional regulation and metabolic flux that will enable future efforts aimed at improving xylose fermentation to prioritize functional regulators of central carbon metabolism. PMID:27810962
Extension Specialists: A Self-Analysis.
ERIC Educational Resources Information Center
Gerber, John M.
1985-01-01
To document perceived changes in the role of the extension horticulture specialist, a national survey of state horticulture specialists was conducted in 1983. Extension specialists in horticulture appear to be moving away from the traditional activities of farm visits and personal interaction with individual producers. (CT)
Code of Federal Regulations, 2013 CFR
2013-01-01
... OF COMMERCE NIST EXTRAMURAL PROGRAMS MANUFACTURING EXTENSION PARTNERSHIP; ENVIRONMENTAL PROJECTS... information, NIST manufacturing extension efforts, EPA regulation and guidance, and state requirements. The... addition, consultants providing services to those businesses, the NIST Manufacturing Extension Centers, and...
Code of Federal Regulations, 2012 CFR
2012-01-01
... OF COMMERCE NIST EXTRAMURAL PROGRAMS MANUFACTURING EXTENSION PARTNERSHIP; ENVIRONMENTAL PROJECTS... information, NIST manufacturing extension efforts, EPA regulation and guidance, and state requirements. The... addition, consultants providing services to those businesses, the NIST Manufacturing Extension Centers, and...
Code of Federal Regulations, 2014 CFR
2014-01-01
... OF COMMERCE NIST EXTRAMURAL PROGRAMS MANUFACTURING EXTENSION PARTNERSHIP; ENVIRONMENTAL PROJECTS... information, NIST manufacturing extension efforts, EPA regulation and guidance, and state requirements. The... addition, consultants providing services to those businesses, the NIST Manufacturing Extension Centers, and...
Daddy, Soumana; Zhan, Jiao; Jantaro, Saowarath; He, Chenliu; He, Qingfang; Wang, Qiang
2015-01-01
Synechocystis sp. PCC 6803 is a model cyanobacterium extensively used to study photosynthesis. Here we reveal a novel high light-inducible carotenoid-binding protein complex (HLCC) in the thylakoid membranes of Synechocystis PCC 6803 cells exposed to high intensity light. Zeaxanthin and myxoxanthophyll accounted for 29.8% and 54.8%, respectively, of the carotenoids bound to the complex. Using Blue-Native PAGE followed by 2D SDS-PAGE and mass spectrometry, we showed that the HLCC consisted of Slr1128, IsiA, PsaD, and HliA/B. We confirmed these findings by SEAD fluorescence cross-linking and anti-PsaD immuno-coprecipitation analyses. The expression of genes encoding the protein components of the HLCC was enhanced by high light illumination and artificial oxidative stress. Deletion of these proteins resulted in impaired state transition and increased sensitivity to oxidative and/or high light stress, as indicated by increased membrane peroxidation. Therefore, the HLCC protects thylakoid membranes from extensive photooxidative damage, likely via a mechanism involving state transition. PMID:25820628
Daddy, Soumana; Zhan, Jiao; Jantaro, Saowarath; He, Chenliu; He, Qingfang; Wang, Qiang
2015-03-30
Synechocystis sp. PCC 6803 is a model cyanobacterium extensively used to study photosynthesis. Here we reveal a novel high light-inducible carotenoid-binding protein complex (HLCC) in the thylakoid membranes of Synechocystis PCC 6803 cells exposed to high intensity light. Zeaxanthin and myxoxanthophyll accounted for 29.8% and 54.8%, respectively, of the carotenoids bound to the complex. Using Blue-Native PAGE followed by 2D SDS-PAGE and mass spectrometry, we showed that the HLCC consisted of Slr1128, IsiA, PsaD, and HliA/B. We confirmed these findings by SEAD fluorescence cross-linking and anti-PsaD immuno-coprecipitation analyses. The expression of genes encoding the protein components of the HLCC was enhanced by high light illumination and artificial oxidative stress. Deletion of these proteins resulted in impaired state transition and increased sensitivity to oxidative and/or high light stress, as indicated by increased membrane peroxidation. Therefore, the HLCC protects thylakoid membranes from extensive photooxidative damage, likely via a mechanism involving state transition.
Strong monogamy inequalities for four qubits
NASA Astrophysics Data System (ADS)
Regula, Bartosz; Osterloh, Andreas; Adesso, Gerardo
2016-05-01
We investigate possible generalizations of the Coffman-Kundu-Wootters monogamy inequality to four qubits, accounting for multipartite entanglement in addition to the bipartite terms. We show that the most natural extension of the inequality does not hold in general, and we describe the violations of this inequality in detail. We investigate alternative ways to extend the monogamy inequality to express a constraint on entanglement sharing valid for all four-qubit states, and perform an extensive numerical analysis of randomly generated four-qubit states to explore the properties of such extensions.
NASA Astrophysics Data System (ADS)
Günther, Uwe; Kuzhel, Sergii
2010-10-01
Gauged \\ {P}\\ {T} quantum mechanics (PTQM) and corresponding Krein space setups are studied. For models with constant non-Abelian gauge potentials and extended parity inversions compact and noncompact Lie group components are analyzed via Cartan decompositions. A Lie-triple structure is found and an interpretation as \\ {P}\\ {T}-symmetrically generalized Jaynes-Cummings model is possible with close relation to recently studied cavity QED setups with transmon states in multilevel artificial atoms. For models with Abelian gauge potentials a hidden Clifford algebra structure is found and used to obtain the fundamental symmetry of Krein space-related J-self-adjoint extensions for PTQM setups with ultra-localized potentials.
An extension of the OpenModelica compiler for using Modelica models in a discrete event simulation
Nutaro, James
2014-11-03
In this article, a new back-end and run-time system is described for the OpenModelica compiler. This new back-end transforms a Modelica model into a module for the adevs discrete event simulation package, thereby extending adevs to encompass complex, hybrid dynamical systems. The new run-time system that has been built within the adevs simulation package supports models with state-events and time-events and that comprise differential-algebraic systems with high index. Finally, although the procedure for effecting this transformation is based on adevs and the Discrete Event System Specification, it can be adapted to any discrete event simulation package.
NASA Astrophysics Data System (ADS)
Fourrate, K.; Loulidi, M.
2006-01-01
We suggest a disordered traffic flow model that captures many features of traffic flow. It is an extension of the Nagel-Schreckenberg (NaSch) stochastic cellular automata for single line vehicular traffic model. It incorporates random acceleration and deceleration terms that may be greater than one unit. Our model leads under its intrinsic dynamics, for high values of braking probability pr, to a constant flow at intermediate densities without introducing any spatial inhomogeneities. For a system of fast drivers pr→0, the model exhibits a density wave behavior that was observed in car following models with optimal velocity. The gap of the disordered model we present exhibits, for high values of pr and random deceleration, at a critical density, a power law distribution which is a hall mark of a self organized criticality phenomena.
NASA Astrophysics Data System (ADS)
Rebecca, Perry-Hill; Linda, Prokopy
2015-01-01
Although the number of small-scale farms is increasing in North America and Europe, few studies have been conducted to better understand environmental management in this sector. We investigate this issue by examining environmental management on horse farms from both the perspective of the "expert" extension educator and horse farm operator. We conducted a Delphi survey and follow-up interviews with extension educators in Indiana and Kentucky. We also conducted interviews and farm assessments with 15 horse farm operators in the two states. Our results suggest a disconnection between the perceptions of extension educators and horse farm operators. Extension educators believed that operators of small horse farms are unfamiliar with conservation practices and their environmental benefits and they found it difficult to target outreach to this audience. In the interviews with horse farm operators, we found that the majority were somewhat familiar with conservation practices like rotational grazing, soil testing, heavy use area protection, and manure composting. It was not common, however, for practices to be implemented to generally recognized standards. The horse farm respondents perceived these practices as interrelated parts of a system of farm management that has developed over time to best deal with the physical features of the property, needs of the horses, and available resources. Because conservation practices must be incorporated into a complex farm management system, traditional models of extension (i.e., diffusion of innovations) may be inappropriate for promoting better environmental management on horse farms.
Rebecca, Perry-Hill; Linda, Prokopy
2015-01-01
Although the number of small-scale farms is increasing in North America and Europe, few studies have been conducted to better understand environmental management in this sector. We investigate this issue by examining environmental management on horse farms from both the perspective of the "expert" extension educator and horse farm operator. We conducted a Delphi survey and follow-up interviews with extension educators in Indiana and Kentucky. We also conducted interviews and farm assessments with 15 horse farm operators in the two states. Our results suggest a disconnection between the perceptions of extension educators and horse farm operators. Extension educators believed that operators of small horse farms are unfamiliar with conservation practices and their environmental benefits and they found it difficult to target outreach to this audience. In the interviews with horse farm operators, we found that the majority were somewhat familiar with conservation practices like rotational grazing, soil testing, heavy use area protection, and manure composting. It was not common, however, for practices to be implemented to generally recognized standards. The horse farm respondents perceived these practices as interrelated parts of a system of farm management that has developed over time to best deal with the physical features of the property, needs of the horses, and available resources. Because conservation practices must be incorporated into a complex farm management system, traditional models of extension (i.e., diffusion of innovations) may be inappropriate for promoting better environmental management on horse farms.
Balmant, Wellington; Sugai-Guérios, Maura Harumi; Coradin, Juliana Hey; Krieger, Nadia; Furigo Junior, Agenor; Mitchell, David Alexander
2015-01-01
Current models that describe the extension of fungal hyphae and development of a mycelium either do not describe the role of vesicles in hyphal extension or do not correctly describe the experimentally observed profile for distribution of vesicles along the hypha. The present work uses the n-tanks-in-series approach to develop a model for hyphal extension that describes the intracellular transport of nutrient to a sub-apical zone where vesicles are formed and then transported to the tip, where tip extension occurs. The model was calibrated using experimental data from the literature for the extension of reproductive aerial hyphae of three different fungi, and was able to describe different profiles involving acceleration and deceleration of the extension rate. A sensitivity analysis showed that the supply of nutrient to the sub-apical vesicle-producing zone is a key factor influencing the rate of extension of the hypha. Although this model was used to describe the extension of a single reproductive aerial hypha, the use of the n-tanks-in-series approach to representing the hypha means that the model has the flexibility to be extended to describe the growth of other types of hyphae and the branching of hyphae to form a complete mycelium.
Rizzo, Antonio; Vahtras, Olav
2011-06-28
A computational approach to the calculation of excited state electronic circular dichroism (ESECD) spectra of chiral molecules is discussed. Frequency dependent quadratic response theory is employed to compute the rotatory strength for transitions between excited electronic states, by employing both a magnetic gauge dependent and a (velocity-based) magnetic gauge independent approach. Application is made to the lowest excited states of two prototypical chiral molecules, propylene oxide, also known as 1,2-epoxypropane or methyl oxirane, and R-(+)-1,1'-bi(2-naphthol), or BINOL. The dependence of the rotatory strength for transitions between the lowest three excited states of methyl oxirane upon the quality and extension of the basis set is analyzed, by employing a hierarchy of correlation consistent basis sets. Once established that basis sets of at least triple zeta quality, and at least doubly augmented, are sufficient to ensure sufficiently converged results, at least at the Hartree-Fock self-consistent field (HF-SCF) level, the rotatory strengths for all transitions between the lowest excited electronic states of methyl oxirane are computed and analyzed, employing HF-SCF, and density functional theory (DFT) electronic structure models. For DFT, both the popular B3LYP and its recently highly successful CAM-B3LYP extension are exploited. The strong dependence of the spectra upon electron correlation is highlighted. A HF-SCF and DFT study is carried out also for BINOL, a system where excited states show the typical pairing structure arising from the interaction of the two monomeric moieties, and whose conformational changes following photoexcitation were studied recently with via time-resolved CD.
Multiple model cardinalized probability hypothesis density filter
NASA Astrophysics Data System (ADS)
Georgescu, Ramona; Willett, Peter
2011-09-01
The Probability Hypothesis Density (PHD) filter propagates the first-moment approximation to the multi-target Bayesian posterior distribution while the Cardinalized PHD (CPHD) filter propagates both the posterior likelihood of (an unlabeled) target state and the posterior probability mass function of the number of targets. Extensions of the PHD filter to the multiple model (MM) framework have been published and were implemented either with a Sequential Monte Carlo or a Gaussian Mixture approach. In this work, we introduce the multiple model version of the more elaborate CPHD filter. We present the derivation of the prediction and update steps of the MMCPHD particularized for the case of two target motion models and proceed to show that in the case of a single model, the new MMCPHD equations reduce to the original CPHD equations.
Phase transition and monopole densities in a nearest neighbor two-dimensional spin ice model
NASA Astrophysics Data System (ADS)
Morais, C. W.; de Freitas, D. N.; Mota, A. L.; Bastone, E. C.
2017-12-01
In this work, we show that, due to the alternating orientation of the spins in the ground state of the artificial square spin ice, the influence of a set of spins at a certain distance of a reference spin decreases faster than the expected result for the long range dipolar interaction, justifying the use of the nearest neighbor two-dimensional square spin ice model as an effective model. Using an extension of the model presented in Y. L. Xie et al., Sci. Rep. 5, 15875 (2015), considering the influence of the eight nearest neighbors of each spin on the lattice, we analyze the thermodynamics of the model and study the dependence of monopoles and string densities as a function of the temperature.
Equations of state for hydrogen and deuterium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerley, Gerald Irwin
2003-12-01
This report describes the complete revision of a deuterium equation of state (EOS) model published in 1972. It uses the same general approach as the 1972 EOS, i.e., the so-called 'chemical model,' but incorporates a number of theoretical advances that have taken place during the past thirty years. Three phases are included: a molecular solid, an atomic solid, and a fluid phase consisting of both molecular and atomic species. Ionization and the insulator-metal transition are also included. The most important improvements are in the liquid perturbation theory, the treatment of molecular vibrations and rotations, and the ionization equilibrium and mixturemore » models. In addition, new experimental data and theoretical calculations are used to calibrate certain model parameters, notably the zero-Kelvin isotherms for the molecular and atomic solids, and the quantum corrections to the liquid phase. The report gives a general overview of the model, followed by detailed discussions of the most important theoretical issues and extensive comparisons with the many experimental data that have been obtained during the last thirty years. Questions about the validity of the chemical model are also considered. Implications for modeling the 'giant planets' are also discussed.« less
Implementation strategies for collaborative primary care-mental health models.
Franx, Gerdien; Dixon, Lisa; Wensing, Michel; Pincus, Harold
2013-09-01
Extensive research exists that collaborative primary care-mental health models can improve care and outcomes for patients. These programs are currently being implemented throughout the United States and beyond. The purpose of this study is to review the literature and to generate an overview of strategies currently used to implement such models in daily practice. Six overlapping strategies to implement collaborative primary care-mental health models were described in 18 selected studies. We identified interactive educational strategies, quality improvement change processes, technological support tools, stakeholder engagement in the design and execution of implementation plans, organizational changes in terms of expanding the task of nurses and financial strategies such as additional collaboration fees and pay for performance incentives. Considering the overwhelming evidence about the effectiveness of primary care-mental health models, there is a lack of good studies focusing on their implementation strategies. In practice, these strategies are multifaceted and locally defined, as a result of intensive and required stakeholder engagement. Although many barriers still exist, the implementation of collaborative models could have a chance to succeed in the United States, where new service delivery and payment models, such as the Patient-Centered Medical Home, the Health Home and the Accountable Care Organization, are being promoted.
A Luenberger observer for reaction-diffusion models with front position data
NASA Astrophysics Data System (ADS)
Collin, Annabelle; Chapelle, Dominique; Moireau, Philippe
2015-11-01
We propose a Luenberger observer for reaction-diffusion models with propagating front features, and for data associated with the location of the front over time. Such models are considered in various application fields, such as electrophysiology, wild-land fire propagation and tumor growth modeling. Drawing our inspiration from image processing methods, we start by proposing an observer for the eikonal-curvature equation that can be derived from the reaction-diffusion model by an asymptotic expansion. We then carry over this observer to the underlying reaction-diffusion equation by an ;inverse asymptotic analysis;, and we show that the associated correction in the dynamics has a stabilizing effect for the linearized estimation error. We also discuss the extension to joint state-parameter estimation by using the earlier-proposed ROUKF strategy. We then illustrate and assess our proposed observer method with test problems pertaining to electrophysiology modeling, including with a realistic model of cardiac atria. Our numerical trials show that state estimation is directly very effective with the proposed Luenberger observer, while specific strategies are needed to accurately perform parameter estimation - as is usual with Kalman filtering used in a nonlinear setting - and we demonstrate two such successful strategies.
Optimizing the learning rate for adaptive estimation of neural encoding models
2018-01-01
Closed-loop neurotechnologies often need to adaptively learn an encoding model that relates the neural activity to the brain state, and is used for brain state decoding. The speed and accuracy of adaptive learning algorithms are critically affected by the learning rate, which dictates how fast model parameters are updated based on new observations. Despite the importance of the learning rate, currently an analytical approach for its selection is largely lacking and existing signal processing methods vastly tune it empirically or heuristically. Here, we develop a novel analytical calibration algorithm for optimal selection of the learning rate in adaptive Bayesian filters. We formulate the problem through a fundamental trade-off that learning rate introduces between the steady-state error and the convergence time of the estimated model parameters. We derive explicit functions that predict the effect of learning rate on error and convergence time. Using these functions, our calibration algorithm can keep the steady-state parameter error covariance smaller than a desired upper-bound while minimizing the convergence time, or keep the convergence time faster than a desired value while minimizing the error. We derive the algorithm both for discrete-valued spikes modeled as point processes nonlinearly dependent on the brain state, and for continuous-valued neural recordings modeled as Gaussian processes linearly dependent on the brain state. Using extensive closed-loop simulations, we show that the analytical solution of the calibration algorithm accurately predicts the effect of learning rate on parameter error and convergence time. Moreover, the calibration algorithm allows for fast and accurate learning of the encoding model and for fast convergence of decoding to accurate performance. Finally, larger learning rates result in inaccurate encoding models and decoders, and smaller learning rates delay their convergence. The calibration algorithm provides a novel analytical approach to predictably achieve a desired level of error and convergence time in adaptive learning, with application to closed-loop neurotechnologies and other signal processing domains. PMID:29813069
Optimizing the learning rate for adaptive estimation of neural encoding models.
Hsieh, Han-Lin; Shanechi, Maryam M
2018-05-01
Closed-loop neurotechnologies often need to adaptively learn an encoding model that relates the neural activity to the brain state, and is used for brain state decoding. The speed and accuracy of adaptive learning algorithms are critically affected by the learning rate, which dictates how fast model parameters are updated based on new observations. Despite the importance of the learning rate, currently an analytical approach for its selection is largely lacking and existing signal processing methods vastly tune it empirically or heuristically. Here, we develop a novel analytical calibration algorithm for optimal selection of the learning rate in adaptive Bayesian filters. We formulate the problem through a fundamental trade-off that learning rate introduces between the steady-state error and the convergence time of the estimated model parameters. We derive explicit functions that predict the effect of learning rate on error and convergence time. Using these functions, our calibration algorithm can keep the steady-state parameter error covariance smaller than a desired upper-bound while minimizing the convergence time, or keep the convergence time faster than a desired value while minimizing the error. We derive the algorithm both for discrete-valued spikes modeled as point processes nonlinearly dependent on the brain state, and for continuous-valued neural recordings modeled as Gaussian processes linearly dependent on the brain state. Using extensive closed-loop simulations, we show that the analytical solution of the calibration algorithm accurately predicts the effect of learning rate on parameter error and convergence time. Moreover, the calibration algorithm allows for fast and accurate learning of the encoding model and for fast convergence of decoding to accurate performance. Finally, larger learning rates result in inaccurate encoding models and decoders, and smaller learning rates delay their convergence. The calibration algorithm provides a novel analytical approach to predictably achieve a desired level of error and convergence time in adaptive learning, with application to closed-loop neurotechnologies and other signal processing domains.
NASA Technical Reports Server (NTRS)
Deavours, Daniel D.; Qureshi, M. Akber; Sanders, William H.
1997-01-01
Modeling tools and technologies are important for aerospace development. At the University of Illinois, we have worked on advancing the state of the art in modeling by Markov reward models in two important areas: reducing the memory necessary to numerically solve systems represented as stochastic activity networks and other stochastic Petri net extensions while still obtaining solutions in a reasonable amount of time, and finding numerically stable and memory-efficient methods to solve for the reward accumulated during a finite mission time. A long standing problem when modeling with high level formalisms such as stochastic activity networks is the so-called state space explosion, where the number of states increases exponentially with size of the high level model. Thus, the corresponding Markov model becomes prohibitively large and solution is constrained by the the size of primary memory. To reduce the memory necessary to numerically solve complex systems, we propose new methods that can tolerate such large state spaces that do not require any special structure in the model (as many other techniques do). First, we develop methods that generate row and columns of the state transition-rate-matrix on-the-fly, eliminating the need to explicitly store the matrix at all. Next, we introduce a new iterative solution method, called modified adaptive Gauss-Seidel, that exhibits locality in its use of data from the state transition-rate-matrix, permitting us to cache portions of the matrix and hence reduce the solution time. Finally, we develop a new memory and computationally efficient technique for Gauss-Seidel based solvers that avoids the need for generating rows of A in order to solve Ax = b. This is a significant performance improvement for on-the-fly methods as well as other recent solution techniques based on Kronecker operators. Taken together, these new results show that one can solve very large models without any special structure.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-23
... Hatching Eggs for Export AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Extension of... hatching eggs from the United States. DATES: We will consider all comments that we receive on or before... and hatching eggs from the United States, contact Dr. Antonio Ramirez, Senior Staff Veterinarian, NCIE...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-10
... Extension of Public Comment Period for Water Quality Standards for the State of Florida's Lakes and Flowing... comment period. SUMMARY: On January 14, 2010, EPA signed a proposed rule entitled ``Water Quality.... Mail to: Water Docket, U.S. Environmental Protection Agency, Mail code: 2822T, 1200 Pennsylvania Avenue...
Virtual Training for Virtual Success: Michigan State University Extension's Virtual Conference
ERIC Educational Resources Information Center
Vandenberg, Lela; Reese, Luke
2011-01-01
Michigan State University Extension conducted its first virtual conference, attended by more than 600 staff, with a weeklong menu of over 100 online meetings and learning sessions. Providing multiple types of pre-conference hands-on training to small groups using Adobe Connect Pro was an important key to success. Other success factors were pre and…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-01
...] Notice of Request for Extension of Approval of an Information Collection; Pork and Poultry Products From... regulations for pork and poultry products from Mexico transiting the United States. DATES: We will consider... information on pork and poultry products from Mexico transiting the United States, contact Dr. Lynette...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Extensions of credit to foreign organizations held by insured state nonmember banks; shares of foreign organizations held in connection with debts previously contracted. 347.114 Section 347.114 Banks and Banking FEDERAL DEPOSIT INSURANCE CORPORATION...
7 CFR 276.7 - Administrative review process.
Code of Federal Regulations, 2010 CFR
2010-01-01
... case, the period runs until the end of the next day which is not a Saturday, Sunday or Federal or State... that irreparable injury will occur absent a stay and that the State agency is likely to prevail on the... for an extension shall be in writing. Filing a request for an extension stops the running of the...
ERIC Educational Resources Information Center
Hongu, Nobuko; Martinez, Cathy L.; Billias, Natalia N.; Wyatt, Melissa A.; Turner, Rachel J.; Manore, Melinda M.
2014-01-01
Nutrition professionals within the Cooperative Extension system use the USDA's interactive online tool SuperTracker, which is designed to help individuals track diet and physical activity (PA) to apply healthy eating patterns and improve PA. An investigation of all 50 states' Extension websites and interviews of Extension educators…
Comparing nutrition programs conducted by public health and Cooperative Extension personnel.
Brown, J L; Adams, P A; Kaltreider, D L; Sims, L S
1990-01-01
We surveyed 218 county extension agents, 75 state extension specialists, 163 public health nutritionists, and 87 public health administrators in 16 states to compare the nutrition program characteristics of extension personnel with public health personnel. Public health personnel were most strongly influenced by funding regulations--more than 80% of public health nutritionists cited infant/preschool nutrition and nutrition for pregnant/lactating women as program topics. About half of the extension agents listed food preservation and preparation as the dominant topics provided. Public health personnel most frequently designed programs for pregnant and lactating women and low-income clientele; 91% of the nutritionists ranked one-to-one counseling as one of their three most important delivery methods. Extension personnel designed programs more often for homemakers/adults and youth and ranked a combination of group and media delivery methods as most important. Public health personnel use anthropometric measures and food intake records to evaluate their programs; extension personnel use written questionnaires and program records. More than 50% of the nutritionists ranked improving the health of their clients as one of the three most important impacts of their programs; more than 50% of the extension agents ranked increasing knowledge and improving skills as their most important impacts.
Harnessing Homophily to Improve Climate Change Education
ERIC Educational Resources Information Center
Monroe, Martha C.; Plate, Richard R.; Adams, Damian C.; Wojcik, Deborah J.
2015-01-01
The Cooperative Extension Service (Extension) in the United States is well positioned to educate the public, particularly farmers and foresters, about climate change and to encourage responsible adoption of adaptation and mitigation strategies. However, the climate change attitudes and perceptions of Extension professionals have limited…
Modelling breast cancer tumour growth for a stable disease population.
Isheden, Gabriel; Humphreys, Keith
2017-01-01
Statistical models of breast cancer tumour progression have been used to further our knowledge of the natural history of breast cancer, to evaluate mammography screening in terms of mortality, to estimate overdiagnosis, and to estimate the impact of lead-time bias when comparing survival times between screen detected cancers and cancers found outside of screening programs. Multi-state Markov models have been widely used, but several research groups have proposed other modelling frameworks based on specifying an underlying biological continuous tumour growth process. These continuous models offer some advantages over multi-state models and have been used, for example, to quantify screening sensitivity in terms of mammographic density, and to quantify the effect of body size covariates on tumour growth and time to symptomatic detection. As of yet, however, the continuous tumour growth models are not sufficiently developed and require extensive computing to obtain parameter estimates. In this article, we provide a detailed description of the underlying assumptions of the continuous tumour growth model, derive new theoretical results for the model, and show how these results may help the development of this modelling framework. In illustrating the approach, we develop a model for mammography screening sensitivity, using a sample of 1901 post-menopausal women diagnosed with invasive breast cancer.
Sparse coding for flexible, robust 3D facial-expression synthesis.
Lin, Yuxu; Song, Mingli; Quynh, Dao Thi Phuong; He, Ying; Chen, Chun
2012-01-01
Computer animation researchers have been extensively investigating 3D facial-expression synthesis for decades. However, flexible, robust production of realistic 3D facial expressions is still technically challenging. A proposed modeling framework applies sparse coding to synthesize 3D expressive faces, using specified coefficients or expression examples. It also robustly recovers facial expressions from noisy and incomplete data. This approach can synthesize higher-quality expressions in less time than the state-of-the-art techniques.