Sample records for state monitoring based

  1. Urban forest health monitoring: large-scale assessments in the United States

    Treesearch

    Anne Buckelew Cumming; Daniel B. Twardus; David J. Nowak

    2008-01-01

    The U.S. Department of Agriculture, Forest Service (USFS), together with state partners, developed methods to monitor urban forest structure, function, and health at a large statewide scale. Pilot studies have been established in five states using protocols based on USFS Forest Inventory and Analysis and Forest Health Monitoring program data collection standards....

  2. 75 FR 31811 - Endangered and Threatened Wildlife and Plants; Post-Delisting Monitoring Plan for Bald Eagle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-04

    ... Species Act (ESA) requires that we implement a system, in cooperation with the States, to monitor... cooperation with the States, to effectively monitor for not less than 5 years the status of all species that... stratified sampling based on density of identified bald eagle nest sites. Our Bald Eagle Monitoring Team will...

  3. Roles and strategies of state organizations related to school-based physical education and physical activity policies.

    PubMed

    Cradock, Angie L; Barrett, Jessica L; Carnoske, Cheryl; Chriqui, Jamie F; Evenson, Kelly R; Gustat, Jeanette; Healy, Isobel B; Heinrich, Katie M; Lemon, Stephenie C; Tompkins, Nancy Oʼhara; Reed, Hannah L; Zieff, Susan G

    2013-01-01

    School-based physical education (PE) and physical activity (PA) policies can improve PA levels of students and promote health. Studies of policy implementation, communication, monitoring, enforcement, and evaluation are lacking. To describe how states implement, communicate, monitor, enforce, and evaluate key school-based PE and PA policies, researchers interviewed 24 key informants from state-level organizations in 9 states, including representatives from state departments of health and education, state boards of education, and advocacy/professional organizations. These states educate 27% of the US student population. Key informants described their organizations' roles in addressing 14 school-based PE and PA state laws and regulations identified by the Bridging the Gap research program and the National Cancer Institute's Classification of Laws Associated with School Students (C.L.A.S.S.) system. On average, states had 4 of 14 school-based PE and PA laws and regulations, and more than one-half of respondents reported different policies in practice besides the "on the books" laws. Respondents more often reported roles implementing and communicating policies compared with monitoring, enforcing, and evaluating them. Implementation and communication strategies used included training, technical assistance, and written communication of policy to local education agency administrators and teachers. State-level organizations have varying roles in addressing school-based PE and PA policies. Opportunities exist to focus state-level efforts on compliance with existing laws and regulations and evaluation of their impact.

  4. An Uncertainty Quantification Framework for Prognostics and Condition-Based Monitoring

    NASA Technical Reports Server (NTRS)

    Sankararaman, Shankar; Goebel, Kai

    2014-01-01

    This paper presents a computational framework for uncertainty quantification in prognostics in the context of condition-based monitoring of aerospace systems. The different sources of uncertainty and the various uncertainty quantification activities in condition-based prognostics are outlined in detail, and it is demonstrated that the Bayesian subjective approach is suitable for interpreting uncertainty in online monitoring. A state-space model-based framework for prognostics, that can rigorously account for the various sources of uncertainty, is presented. Prognostics consists of two important steps. First, the state of the system is estimated using Bayesian tracking, and then, the future states of the system are predicted until failure, thereby computing the remaining useful life of the system. The proposed framework is illustrated using the power system of a planetary rover test-bed, which is being developed and studied at NASA Ames Research Center.

  5. Health Monitoring of a Planetary Rover Using Hybrid Particle Petri Nets

    NASA Technical Reports Server (NTRS)

    Gaudel, Quentin; Ribot, Pauline; Chanthery, Elodie; Daigle, Matthew J.

    2016-01-01

    This paper focuses on the application of a Petri Net-based diagnosis method on a planetary rover prototype.The diagnosis is performed by using a model-based method in the context of health management of hybrid systems.In system health management, the diagnosis task aims at determining the current health state of a system and the fault occurrences that lead to this state. The Hybrid Particle Petri Nets (HPPN) formalism is used to model hybrid systems behavior and degradation, and to define the generation of diagnosers to monitor the health states of such systems under uncertainty. At any time, the HPPN-based diagnoser provides the current diagnosis represented by a distribution of beliefs over the health states. The health monitoring methodology is demonstrated on the K11 rover. A hybrid model of the K11 is proposed and experimental results show that the approach is robust to real system data and constraints.

  6. Securing quantum key distribution systems using fewer states

    NASA Astrophysics Data System (ADS)

    Islam, Nurul T.; Lim, Charles Ci Wen; Cahall, Clinton; Kim, Jungsang; Gauthier, Daniel J.

    2018-04-01

    Quantum key distribution (QKD) allows two remote users to establish a secret key in the presence of an eavesdropper. The users share quantum states prepared in two mutually unbiased bases: one to generate the key while the other monitors the presence of the eavesdropper. Here, we show that a general d -dimension QKD system can be secured by transmitting only a subset of the monitoring states. In particular, we find that there is no loss in the secure key rate when dropping one of the monitoring states. Furthermore, it is possible to use only a single monitoring state if the quantum bit error rates are low enough. We apply our formalism to an experimental d =4 time-phase QKD system, where only one monitoring state is transmitted, and obtain a secret key rate of 17.4 ±2.8 Mbits/s at a 4 dB channel loss and with a quantum bit error rate of 0.045 ±0.001 and 0.037 ±0.001 in time and phase bases, respectively, which is 58.4% of the secret key rate that can be achieved with the full setup. This ratio can be increased, potentially up to 100%, if the error rates in time and phase basis are reduced. Our results demonstrate that it is possible to substantially simplify the design of high-dimensional QKD systems, including those that use the spatial or temporal degrees of freedom of the photon, and still outperform qubit-based (d =2 ) protocols.

  7. Development of a Repeatable Regional Protocol for Performance-Based Monitoring of Forestry Best Management Practices

    Treesearch

    Roger Ryder; Pamela J. Edwards; Pamela J. Edwards

    2005-01-01

    There has been a long-standing interest in improving Best Management Practice (BMP) monitoring within and among states. States monitoring the implementation and effectiveness of BMPs for forest operations take a variety of approaches. This creates inconsistencies in data collection and how results are reported. Since 1990 attempts have been made to develop a consistent...

  8. Evaluation for Bearing Wear States Based on Online Oil Multi-Parameters Monitoring

    PubMed Central

    Hu, Hai-Feng

    2018-01-01

    As bearings are critical components of a mechanical system, it is important to characterize their wear states and evaluate health conditions. In this paper, a novel approach for analyzing the relationship between online oil multi-parameter monitoring samples and bearing wear states has been proposed based on an improved gray k-means clustering model (G-KCM). First, an online monitoring system with multiple sensors for bearings is established, obtaining oil multi-parameter data and vibration signals for bearings through the whole lifetime. Secondly, a gray correlation degree distance matrix is generated using a gray correlation model (GCM) to express the relationship of oil monitoring samples at different times and then a KCM is applied to cluster the matrix. Analysis and experimental results show that there is an obvious correspondence that state changing coincides basically in time between the lubricants’ multi-parameters and the bearings’ wear states. It also has shown that online oil samples with multi-parameters have early wear failure prediction ability for bearings superior to vibration signals. It is expected to realize online oil monitoring and evaluation for bearing health condition and to provide a novel approach for early identification of bearing-related failure modes. PMID:29621175

  9. Evaluation for Bearing Wear States Based on Online Oil Multi-Parameters Monitoring.

    PubMed

    Wang, Si-Yuan; Yang, Ding-Xin; Hu, Hai-Feng

    2018-04-05

    As bearings are critical components of a mechanical system, it is important to characterize their wear states and evaluate health conditions. In this paper, a novel approach for analyzing the relationship between online oil multi-parameter monitoring samples and bearing wear states has been proposed based on an improved gray k-means clustering model (G-KCM). First, an online monitoring system with multiple sensors for bearings is established, obtaining oil multi-parameter data and vibration signals for bearings through the whole lifetime. Secondly, a gray correlation degree distance matrix is generated using a gray correlation model (GCM) to express the relationship of oil monitoring samples at different times and then a KCM is applied to cluster the matrix. Analysis and experimental results show that there is an obvious correspondence that state changing coincides basically in time between the lubricants' multi-parameters and the bearings' wear states. It also has shown that online oil samples with multi-parameters have early wear failure prediction ability for bearings superior to vibration signals. It is expected to realize online oil monitoring and evaluation for bearing health condition and to provide a novel approach for early identification of bearing-related failure modes.

  10. Rule-Based Runtime Verification

    NASA Technical Reports Server (NTRS)

    Barringer, Howard; Goldberg, Allen; Havelund, Klaus; Sen, Koushik

    2003-01-01

    We present a rule-based framework for defining and implementing finite trace monitoring logics, including future and past time temporal logic, extended regular expressions, real-time logics, interval logics, forms of quantified temporal logics, and so on. Our logic, EAGLE, is implemented as a Java library and involves novel techniques for rule definition, manipulation and execution. Monitoring is done on a state-by-state basis, without storing the execution trace.

  11. RISMA: A Rule-based Interval State Machine Algorithm for Alerts Generation, Performance Analysis and Monitoring Real-Time Data Processing

    NASA Astrophysics Data System (ADS)

    Laban, Shaban; El-Desouky, Aly

    2013-04-01

    The monitoring of real-time systems is a challenging and complicated process. So, there is a continuous need to improve the monitoring process through the use of new intelligent techniques and algorithms for detecting exceptions, anomalous behaviours and generating the necessary alerts during the workflow monitoring of such systems. The interval-based or period-based theorems have been discussed, analysed, and used by many researches in Artificial Intelligence (AI), philosophy, and linguistics. As explained by Allen, there are 13 relations between any two intervals. Also, there have also been many studies of interval-based temporal reasoning and logics over the past decades. Interval-based theorems can be used for monitoring real-time interval-based data processing. However, increasing the number of processed intervals makes the implementation of such theorems a complex and time consuming process as the relationships between such intervals are increasing exponentially. To overcome the previous problem, this paper presents a Rule-based Interval State Machine Algorithm (RISMA) for processing, monitoring, and analysing the behaviour of interval-based data, received from real-time sensors. The proposed intelligent algorithm uses the Interval State Machine (ISM) approach to model any number of interval-based data into well-defined states as well as inferring them. An interval-based state transition model and methodology are presented to identify the relationships between the different states of the proposed algorithm. By using such model, the unlimited number of relationships between similar large numbers of intervals can be reduced to only 18 direct relationships using the proposed well-defined states. For testing the proposed algorithm, necessary inference rules and code have been designed and applied to the continuous data received in near real-time from the stations of International Monitoring System (IMS) by the International Data Centre (IDC) of the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). The CLIPS expert system shell has been used as the main rule engine for implementing the algorithm rules. Python programming language and the module "PyCLIPS" are used for building the necessary code for algorithm implementation. More than 1.7 million intervals constitute the Concise List of Frames (CLF) from 20 different seismic stations have been used for evaluating the proposed algorithm and evaluating stations behaviour and performance. The initial results showed that proposed algorithm can help in better understanding of the operation and performance of those stations. Different important information, such as alerts and some station performance parameters, can be derived from the proposed algorithm. For IMS interval-based data and at any period of time it is possible to analyze station behavior, determine the missing data, generate necessary alerts, and to measure some of station performance attributes. The details of the proposed algorithm, methodology, implementation, experimental results, advantages, and limitations of this research are presented. Finally, future directions and recommendations are discussed.

  12. EAGLE Monitors by Collecting Facts and Generating Obligations

    NASA Technical Reports Server (NTRS)

    Barrnger, Howard; Goldberg, Allen; Havelund, Klaus; Sen, Koushik

    2003-01-01

    We present a rule-based framework, called EAGLE, that has been shown to be capable of defining and implementing a range of finite trace monitoring logics, including future and past time temporal logic, extended regular expressions, real-time and metric temporal logics, interval logics, forms of quantified temporal logics, and so on. A monitor for an EAGLE formula checks if a finite trace of states satisfies the given formula. We present, in details, an algorithm for the synthesis of monitors for EAGLE. The algorithm is implemented as a Java application and involves novel techniques for rule definition, manipulation and execution. Monitoring is achieved on a state-by-state basis avoiding any need to store the input trace of states. Our initial experiments have been successful as EAGLE detected a previously unknown bug while testing a planetary rover controller.

  13. Alberta Biodiversity Monitoring Program - monitoring effectiveness of sustainable forest management planning

    Treesearch

    J. John Stadt; Jim Schieck; Harry Stelfox

    2006-01-01

    The Alberta Biodiversity Monitoring Program is a rigorous science-based initiative that is being developed to monitor and report on biodiversity status and trends throughout the province of Alberta, Canada. Forest management plans in Alberta are required to monitor and report on the achievement of stated sustainable forest management objectives; however, the...

  14. Monitoring is not enough: on the need for a model-based approach to migratory bird management

    USGS Publications Warehouse

    Nichols, J.D.; Bonney, Rick; Pashley, David N.; Cooper, Robert; Niles, Larry

    2000-01-01

    Informed management requires information about system state and about effects of potential management actions on system state. Population monitoring can provide the needed information about system state, as well as information that can be used to investigate effects of management actions. Three methods for investigating effects of management on bird populations are (1) retrospective analysis, (2) formal experimentation and constrained-design studies, and (3) adaptive management. Retrospective analyses provide weak inferences, regardless of the quality of the monitoring data. The active use of monitoring data in experimental or constrained-design studies or in adaptive management is recommended. Under both approaches, learning occurs via the comparison of estimates from the monitoring program with predictions from competing management models.

  15. Education technology with continuous real time monitoring of the current functional and emotional students' states

    NASA Astrophysics Data System (ADS)

    Alyushin, M. V.; Kolobashkina, L. V.

    2017-01-01

    The education technology with continuous monitoring of the current functional and emotional students' states is suggested. The application of this technology allows one to increase the effectiveness of practice through informed planning of the training load. For monitoring the current functional and emotional students' states non-contact remote technologies of person bioparameters registration are encouraged to use. These technologies are based on recording and processing in real time the main person bioparameters in a purely passive mode. Experimental testing of this technology has confirmed its effectiveness.

  16. Damage Assessment of Aerospace Structural Components by Impedance Based Health Monitoring

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Martin, Richard E.; Sawicki, Jerzy T.; Baaklini, George Y.

    2005-01-01

    This paper addresses recent efforts at the NASA Glenn Research Center at Lewis Field relating to the set-up and assessment of electro-mechanical (E/M) impedance based structural health monitoring. The overall aim is the application of the impedance based technique to aeronautic and space based structural components. As initial steps, a laboratory was created, software written, and experiments conducted on aluminum plates in undamaged and damaged states. A simulated crack, in the form of a narrow notch at various locations, was analyzed using piezoelectric-ceramic (PZT: lead, zirconate, titarate) patches as impedance measuring transducers. Descriptions of the impedance quantifying hardware and software are provided as well as experimental results. In summary, an impedance based health monitoring system was assembled and tested. The preliminary data showed that the impedance based technique was successful in recognizing the damage state of notched aluminum plates.

  17. Implementation of a Battery Health Monitor and Vertical Lift Aircraft Testbed for the Application of an Electrochemisty-Based State of Charge Estimator

    NASA Technical Reports Server (NTRS)

    Potteiger, Timothy R.; Eure, Kenneth W.; Levenstein, David

    2017-01-01

    Prediction methods concerning remaining charge in lithium-ion batteries that power unmanned aerial vehicles are of critical concern for the safe fulfillment of mission objectives. In recent years, lithium-ion batteries have been the power source for both fixed wing and vertical lift electric vehicles. The purpose of this document is to describe in detail the implementation of a battery health monitor for estimating the state of charge of a lithium-ion battery and a lithium-ion polymer battery that is used to power a vertical lift aircraft test-bed. It will be demonstrated that an electro-chemistry based state of charge estimator effectively tracks battery discharge characteristics and may be employed as a useful tool in monitoring battery health.

  18. Monitoring with Data Automata

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus

    2014-01-01

    We present a form of automaton, referred to as data automata, suited for monitoring sequences of data-carrying events, for example emitted by an executing software system. This form of automata allows states to be parameterized with data, forming named records, which are stored in an efficiently indexed data structure, a form of database. This very explicit approach differs from other automaton-based monitoring approaches. Data automata are also characterized by allowing transition conditions to refer to other parameterized states, and by allowing transitions sequences. The presented automaton concept is inspired by rule-based systems, especially the Rete algorithm, which is one of the well-established algorithms for executing rule-based systems. We present an optimized external DSL for data automata, as well as a comparable unoptimized internal DSL (API) in the Scala programming language, in order to compare the two solutions. An evaluation compares these two solutions to several other monitoring systems.

  19. 40 CFR 96.76 - Additional requirements to provide heat input data for allocations purposes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Monitoring and Reporting § 96.76 Additional requirements... to monitor and report NOX Mass emissions using a NOX concentration system and a flow system shall... chapter for any source located in a state developing source allocations based upon heat input. (b) The...

  20. The surface water register: an empirically improved sample frame for monitoring the rivers and streams of Kansas

    EPA Science Inventory

    State-wide monitoring based on probability survey designs requires a spatially explicit representation of all streams and rivers of interest within a state, i.e., a sample frame. The sample frame should be the best available map representation of the resource. Many stream progr...

  1. Optically powered remote gas monitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubaniewicz, T.H. Jr.; Chilton, J.E.

    1995-12-31

    Many mines rely on toxic gas sensors to help maintain a safe and healthy work environment. This report describes a prototype monitoring system developed by the US Bureau of Mines (USBM) that uses light to power and communicate with several remote toxic gas sensors. The design is based on state-of-art optical-to-electrical power converters, solid-state diode lasers, and fiber optics. This design overcomes several problems associated with conventional wire-based systems by providing complete electrical isolation between the remote sensors and the central monitor. The prototype performed well during a 2-week field trial in the USBM Pittsburgh Research Center Safety Research Coalmore » Mine.« less

  2. A New Corrosion Sensor to Determine the Start and Development of Embedded Rebar Corrosion Process at Coastal Concrete

    PubMed Central

    Xu, Chen; Li, Zhiyuan; Jin, Weiliang

    2013-01-01

    The corrosion of reinforcements induced by chloride has resulted to be one of the most frequent causes of their premature damage. Most corrosion sensors were designed to monitor corrosion state in concrete, such as Anode-Ladder-System and Corrowatch System, which are widely used to monitor chloride ingress in marine concrete. However, the monitoring principle of these corrosion sensors is based on the macro-cell test method, so erroneous information may be obtained, especially from concrete under drying or saturated conditions due to concrete resistance taking control in macro-cell corrosion. In this paper, a fast weak polarization method to test corrosion state of reinforcements based on electrochemical polarization dynamics was proposed. Furthermore, a new corrosion sensor for monitoring the corrosion state of concrete cover was developed based on the proposed test method. The sensor was tested in cement mortar, with dry-wet cycle tests to accelerate the chloride ingress rate. The results show that the corrosion sensor can effectively monitor chloride penetration into concrete with little influence of the relative humidity in the concrete. With a reasonable corrosion sensor electrode arrangement, it seems the Ohm-drop effect measured by EIS can be ignored, which makes the tested electrochemical parameters more accurate. PMID:24084117

  3. A new corrosion sensor to determine the start and development of embedded rebar corrosion process at coastal concrete.

    PubMed

    Xu, Chen; Li, Zhiyuan; Jin, Weiliang

    2013-09-30

    The corrosion of reinforcements induced by chloride has resulted to be one of the most frequent causes of their premature damage. Most corrosion sensors were designed to monitor corrosion state in concrete, such as Anode-Ladder-System and Corrowatch System, which are widely used to monitor chloride ingress in marine concrete. However, the monitoring principle of these corrosion sensors is based on the macro-cell test method, so erroneous information may be obtained, especially from concrete under drying or saturated conditions due to concrete resistance taking control in macro-cell corrosion. In this paper, a fast weak polarization method to test corrosion state of reinforcements based on electrochemical polarization dynamics was proposed. Furthermore, a new corrosion sensor for monitoring the corrosion state of concrete cover was developed based on the proposed test method. The sensor was tested in cement mortar, with dry-wet cycle tests to accelerate the chloride ingress rate. The results show that the corrosion sensor can effectively monitor chloride penetration into concrete with little influence of the relative humidity in the concrete. With a reasonable corrosion sensor electrode arrangement, it seems the Ohm-drop effect measured by EIS can be ignored, which makes the tested electrochemical parameters more accurate.

  4. Monitoring Method and Apparatus Using Asynchronous, One-Way Transmission from Sensor to Base Station

    NASA Technical Reports Server (NTRS)

    Drouant, George J. (Inventor); Jensen, Scott L. (Inventor)

    2013-01-01

    A monitoring system is disclosed, which includes a base station and at least one sensor unit that is separate from the base station. The at least one sensor unit resides in a dormant state until it is awakened by the triggering of a vibration-sensitive switch. Once awakened, the sensor may take a measurement, and then transmit to the base station the measurement. Once data is transmitted from the sensor to the base station, the sensor may return to its dormant state. There may be various sensors for each base station and the various sensors may optionally measure different quantities, such as current, voltage, single-axis and/or three-axis magnetic fields.

  5. SCIENCE RESULTS INTEGRATION. BRINGING MOLECULAR BIOLOGY TECHNIQUES TO REGIONAL WATER MONITORING PROGRAMS

    EPA Science Inventory

    EPA's Office of Research and Development (ORD) develops innovative methods for use in environmental monitoring and assessment by scientists in Regions, states, and Tribes. Molecular-biology-based methods are not yet established in the environmental monitoring "tool box". SRI (Sci...

  6. Exploring Hardware-Based Primitives to Enhance Parallel Security Monitoring in a Novel Computing Architecture

    DTIC Science & Technology

    2007-03-01

    software level retrieve state information that can inherently contain more contextual information . As a result, such mechanisms can be applied in more...ease by which state information can be gathered for monitoring purposes. For example, we consider soft security to allow for easier state retrieval ...files are to be checked and what parameters are to be verified. The independent auditor periodically retrieves information pertaining to the files in

  7. Ballast Water Self Monitoring

    DTIC Science & Technology

    2011-11-01

    Analytical Methods .........................................................22  7 Estimated Capital Cost for Vessels Needing Additional Ballast Water...streams; narrative water-quality based effluent limits; inspection, monitoring, recordkeeping, and reporting requirements; and additional requirements...decline of several pelagic fish species in the Sacramento-San Joaquin River Delta by reducing the plankton food base of the ecosystem (California State

  8. Hardware Specific Integration Strategy for Impedance-Based Structural Health Monitoring of Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Owen, Robert B.; Gyekenyesi, Andrew L.; Inman, Daniel J.; Ha, Dong S.

    2011-01-01

    The Integrated Vehicle Health Management (IVHM) Project, sponsored by NASA's Aeronautics Research Mission Directorate, is conducting research to advance the state of highly integrated and complex flight-critical health management technologies and systems. An effective IVHM system requires Structural Health Monitoring (SHM). The impedance method is one such SHM technique for detection and monitoring complex structures for damage. This position paper on the impedance method presents the current state of the art, future directions, applications and possible flight test demonstrations.

  9. Program on State Agency Remote Sensing Data Management (SARSDM). [missouri

    NASA Technical Reports Server (NTRS)

    Eastwood, L. F., Jr.; Gotway, E. O.

    1978-01-01

    A planning study for developing a Missouri natural resources information system (NRIS) that combines satellite-derived data and other information to assist in carrying out key state tasks was conducted. Four focal applications -- dam safety, ground water supply monitoring, municipal water supply monitoring, and Missouri River basin modeling were identified. Major contributions of the study are: (1) a systematic choice and analysis of a high priority application (water resources) for a Missouri, LANDSAT-based information system; (2) a system design and implementation plan, based on Missouri, but useful for many other states; (3) an analysis of system costs, component and personnel requirements, and scheduling; and (4) an assessment of deterrents to successful technological innovation of this type in state government, and a system management plan, based on this assessment, for overcoming these obstacles in Missouri.

  10. Method and System for Controlling a Dexterous Robot Execution Sequence Using State Classification

    NASA Technical Reports Server (NTRS)

    Sanders, Adam M. (Inventor); Quillin, Nathaniel (Inventor); Platt, Robert J., Jr. (Inventor); Pfeiffer, Joseph (Inventor); Permenter, Frank Noble (Inventor)

    2014-01-01

    A robotic system includes a dexterous robot and a controller. The robot includes a plurality of robotic joints, actuators for moving the joints, and sensors for measuring a characteristic of the joints, and for transmitting the characteristics as sensor signals. The controller receives the sensor signals, and is configured for executing instructions from memory, classifying the sensor signals into distinct classes via the state classification module, monitoring a system state of the robot using the classes, and controlling the robot in the execution of alternative work tasks based on the system state. A method for controlling the robot in the above system includes receiving the signals via the controller, classifying the signals using the state classification module, monitoring the present system state of the robot using the classes, and controlling the robot in the execution of alternative work tasks based on the present system state.

  11. The role of ecological monitoring in managing wilderness

    Treesearch

    Peter B. Landres

    1995-01-01

    Good management requires good information. Monitoring provides this information when it is structured into the process of management, well designed and executed. As federal and state agencies strive to implement a management paradigm based on sustaining ecosystems, ecological information becomes a vital part of managing natural resources. Inventory and monitoring...

  12. Peeking Network States with Clustered Patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jinoh; Sim, Alex

    2015-10-20

    Network traffic monitoring has long been a core element for effec- tive network management and security. However, it is still a chal- lenging task with a high degree of complexity for comprehensive analysis when considering multiple variables and ever-increasing traffic volumes to monitor. For example, one of the widely con- sidered approaches is to scrutinize probabilistic distributions, but it poses a scalability concern and multivariate analysis is not gen- erally supported due to the exponential increase of the complexity. In this work, we propose a novel method for network traffic moni- toring based on clustering, one of the powerful deep-learningmore » tech- niques. We show that the new approach enables us to recognize clustered results as patterns representing the network states, which can then be utilized to evaluate “similarity” of network states over time. In addition, we define a new quantitative measure for the similarity between two compared network states observed in dif- ferent time windows, as a supportive means for intuitive analysis. Finally, we demonstrate the clustering-based network monitoring with public traffic traces, and show that the proposed approach us- ing the clustering method has a great opportunity for feasible, cost- effective network monitoring.« less

  13. Helmet-based physiological signal monitoring system.

    PubMed

    Kim, Youn Sung; Baek, Hyun Jae; Kim, Jung Soo; Lee, Haet Bit; Choi, Jong Min; Park, Kwang Suk

    2009-02-01

    A helmet-based system that was able to monitor the drowsiness of a soldier was developed. The helmet system monitored the electrocardiogram, electrooculogram and electroencephalogram (alpha waves) without constraints. Six dry electrodes were mounted at five locations on the helmet: both temporal sides, forehead region and upper and lower jaw strips. The electrodes were connected to an amplifier that transferred signals to a laptop computer via Bluetooth wireless communication. The system was validated by comparing the signal quality with conventional recording methods. Data were acquired from three healthy male volunteers for 12 min twice a day whilst they were sitting in a chair wearing the sensor-installed helmet. Experimental results showed that physiological signals for the helmet user were measured with acceptable quality without any intrusions on physical activities. The helmet system discriminated between the alert and drowsiness states by detecting blinking and heart rate variability (HRV) parameters extracted from ECG. Blinking duration and eye reopening time were increased during the sleepiness state compared to the alert state. Also, positive peak values of the sleepiness state were much higher, and the negative peaks were much lower than that of the alert state. The LF/HF ratio also decreased during drowsiness. This study shows the feasibility for using this helmet system: the subjects' health status and mental states could be monitored without constraints whilst they were working.

  14. An approach to online network monitoring using clustered patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jinoh; Sim, Alex; Suh, Sang C.

    Network traffic monitoring is a core element in network operations and management for various purposes such as anomaly detection, change detection, and fault/failure detection. In this study, we introduce a new approach to online monitoring using a pattern-based representation of the network traffic. Unlike the past online techniques limited to a single variable to summarize (e.g., sketch), the focus of this study is on capturing the network state from the multivariate attributes under consideration. To this end, we employ clustering with its benefit of the aggregation of multidimensional variables. The clustered result represents the state of the network with regardmore » to the monitored variables, which can also be compared with the previously observed patterns visually and quantitatively. Finally, we demonstrate the proposed method with two popular use cases, one for estimating state changes and the other for identifying anomalous states, to confirm its feasibility.« less

  15. An approach to online network monitoring using clustered patterns

    DOE PAGES

    Kim, Jinoh; Sim, Alex; Suh, Sang C.; ...

    2017-03-13

    Network traffic monitoring is a core element in network operations and management for various purposes such as anomaly detection, change detection, and fault/failure detection. In this study, we introduce a new approach to online monitoring using a pattern-based representation of the network traffic. Unlike the past online techniques limited to a single variable to summarize (e.g., sketch), the focus of this study is on capturing the network state from the multivariate attributes under consideration. To this end, we employ clustering with its benefit of the aggregation of multidimensional variables. The clustered result represents the state of the network with regardmore » to the monitored variables, which can also be compared with the previously observed patterns visually and quantitatively. Finally, we demonstrate the proposed method with two popular use cases, one for estimating state changes and the other for identifying anomalous states, to confirm its feasibility.« less

  16. Applications of MODIS satellite data and products for monitoring air quality in the state of Texas

    NASA Astrophysics Data System (ADS)

    Hutchison, Keith D.

    The Center for Space Research (CSR), in conjunction with the Monitoring Operations Division (MOD) of the Texas Commission on Environmental Quality (TCEQ), is evaluating the use of remotely sensed satellite data to assist in monitoring and predicting air quality in Texas. The challenges of meeting air quality standards established by the US Environmental Protection Agency (US EPA) are impacted by the transport of pollution into Texas that originates from outside our borders and are cumulative with those generated by local sources. In an attempt to quantify the concentrations of all pollution sources, MOD has installed ground-based monitoring stations in rural regions along the Texas geographic boundaries including the Gulf coast, as well as urban regions that are the predominant sources of domestic pollution. However, analysis of time-lapse GOES satellite imagery at MOD, clearly demonstrates the shortcomings of using only ground-based observations for monitoring air quality across Texas. These shortcomings include the vastness of State borders, that can only be monitored with a large number of ground-based sensors, and gradients in pollution concentration that depend upon the location of the point source, the meteorology governing its transport to Texas, and its diffusion across the region. With the launch of NASA's MODerate resolution Imaging Spectroradiometer (MODIS), the transport of aerosol-borne pollutants can now be monitored over land and ocean surfaces. Thus, CSR and MOD personnel have applied MODIS data to several classes of pollution that routinely impact Texas air quality. Results demonstrate MODIS data and products can detect and track the migration of pollutants. This paper presents one case study in which continental haze from the northeast moved into the region and subsequently required health advisories to be issued for 150 counties in Texas. It is concluded that MODIS provides the basis for developing advanced data products that will, when used in conjunction with ground-based observations, create a cost-effective and accurate pollution monitoring system for the entire state of Texas.

  17. Evaluation of targeted and untargeted effects-based monitoring tools to assess impacts of contaminants of emerging concern on fish in the South Platte River, CO

    EPA Science Inventory

    Rivers in the arid Western United States face increasing influences from anthropogenic contaminants due to population growth, urbanization, and drought. To better understand and more effectively track the impacts of these contaminants, biologically-based monitoring tools are incr...

  18. Statewide water-quality network for Massachusetts

    USGS Publications Warehouse

    Desimone, Leslie A.; Steeves, Peter A.; Zimmerman, Marc James

    2001-01-01

    A water-quality monitoring program is proposed that would provide data to meet multiple information needs of Massachusetts agencies and other users concerned with the condition of the State's water resources. The program was designed by the U.S. Geological Survey and the Massachusetts Department of Environmental Protection, Division of Watershed Management, with input from many organizations involved in water-quality monitoring in the State, and focuses on inland surface waters (streams and lakes). The proposed monitoring program consists of several components, or tiers, which are defined in terms of specific monitoring objectives, and is intended to complement the Massachusetts Watershed Initiative (MWI) basin assessments. Several components were developed using the Neponset River Basin in eastern Massachusetts as a pilot area, or otherwise make use of data from and sampling approaches used in that basin as part of a MWI pilot assessment in 1994. To guide development of the monitoring program, reviews were conducted of general principles of network design, including monitoring objectives and approaches, and of ongoing monitoring activities of Massachusetts State agencies.Network tiers described in this report are primarily (1) a statewide, basin-based assessment of existing surface-water-quality conditions, and (2) a fixed-station network for determining contaminant loads carried by major rivers. Other components, including (3) targeted programs for hot-spot monitoring and other objectives, and (4) compliance monitoring, also are discussed. Monitoring programs for the development of Total Maximum Daily Loads for specific water bodies, which would constitute another tier of the network, are being developed separately and are not described in this report. The basin-based assessment of existing conditions is designed to provide information on the status of surface waters with respect to State water-quality standards and designated uses in accordance with the reporting requirements [Section 305(b)] of the Clean Water Act (CWA). Geographic Information System (GIS)-based procedures were developed to inventory streams and lakes in a basin for these purposes. Several monitoring approaches for this tier and their associated resource requirements were investigated. Analysis of the Neponset Basin for this purpose demonstrated that the large number of sites needed in order for all the small streams in a basin to be sampled (about half of stream miles in the basin were headwater or first-order streams) pose substantial resource-based problems for a comprehensive assessment of existing conditions. The many lakes pose similar problems. Thus, a design is presented in which probabilistic monitoring of small streams is combined with deterministic or targeted monitoring of large streams and lakes to meet CWA requirements and to provide data for other information needs of Massachusetts regulatory agencies and MWI teams.The fixed-station network is designed to permit the determination of contaminant loads carried by the State's major rivers to sensitive inland and coastal receiving waters and across State boundaries. Sampling at 19 proposed sites in 17 of the 27 major basins in Massachusetts would provide information on contaminant loads from 67 percent of the total land area of the State; unsampled areas are primarily coastal areas drained by many small streams that would be impossible to sample within realistic resource limitations. Strategies for hot-spot monitoring, a targeted monitoring program focused on identifying contaminant sources, are described with reference to an analysis of the bacteria sampling program of the 1994 Neponset Basin assessment. Finally, major discharge sites permitted under the National Pollutant Discharge Elimination System (NPDES) were evaluated as a basis for ambient water-quality monitoring. The discharge sites are well distributed geographically among basins, but are primarily on large rivers (two-thirds or more

  19. Smartphone-Based Monitoring of Objective and Subjective Data in Affective Disorders: Where Are We and Where Are We Going? Systematic Review

    PubMed Central

    Dogan, Ezgi; Wagner, Xenija; Hegerl, Ulrich; Kohls, Elisabeth

    2017-01-01

    Background Electronic mental health interventions for mood disorders have increased rapidly over the past decade, most recently in the form of various systems and apps that are delivered via smartphones. Objective We aim to provide an overview of studies on smartphone-based systems that combine subjective ratings with objectively measured data for longitudinal monitoring of patients with affective disorders. Specifically, we aim to examine current knowledge on: (1) the feasibility of, and adherence to, such systems; (2) the association of monitored data with mood status; and (3) the effects of monitoring on clinical outcomes. Methods We systematically searched PubMed, Web of Science, PsycINFO, and the Cochrane Central Register of Controlled Trials for relevant articles published in the last ten years (2007-2017) by applying Boolean search operators with an iterative combination of search terms, which was conducted in February 2017. Additional articles were identified via pearling, author correspondence, selected reference lists, and trial protocols. Results A total of 3463 unique records were identified. Twenty-nine studies met the inclusion criteria and were included in the review. The majority of articles represented feasibility studies (n=27); two articles reported results from one randomized controlled trial (RCT). In total, six different self-monitoring systems for affective disorders that used subjective mood ratings and objective measurements were included. These objective parameters included physiological data (heart rate variability), behavioral data (phone usage, physical activity, voice features), and context/environmental information (light exposure and location). The included articles contained results regarding feasibility of such systems in affective disorders, showed reasonable accuracy in predicting mood status and mood fluctuations based on the objectively monitored data, and reported observations about the impact of monitoring on clinical state and adherence of patients to the system usage. Conclusions The included observational studies and RCT substantiate the value of smartphone-based approaches for gathering long-term objective data (aside from self-ratings to monitor clinical symptoms) to predict changes in clinical states, and to investigate causal inferences about state changes in patients with affective disorders. Although promising, a much larger evidence-base is necessary to fully assess the potential and the risks of these approaches. Methodological limitations of the available studies (eg, small sample sizes, variations in the number of observations or monitoring duration, lack of RCT, and heterogeneity of methods) restrict the interpretability of the results. However, a number of study protocols stated ambitions to expand and intensify research in this emerging and promising field. PMID:28739561

  20. Public Health Practice of Population-Based Birth Defects Surveillance Programs in the United States.

    PubMed

    Mai, Cara T; Kirby, Russell S; Correa, Adolfo; Rosenberg, Deborah; Petros, Michael; Fagen, Michael C

    2016-01-01

    Birth defects remain a leading cause of infant mortality in the United States and contribute substantially to health care costs and lifelong disabilities. State population-based surveillance systems have been established to monitor birth defects, yet no recent systematic examination of their efforts in the United States has been conducted. To understand the current population-based birth defects surveillance practices in the United States. The National Birth Defects Prevention Network conducted a survey of US population-based birth defects activities that included questions about operational status, case ascertainment methodology, program infrastructure, data collection and utilization, as well as priorities and challenges for surveillance programs. Birth defects contacts in the United States, including District of Columbia and Puerto Rico, received the survey via e-mail; follow-up reminders via e-mails and telephone were used to ensure a 100% response rate. Forty-three states perform population-based surveillance for birth defects, covering approximately 80% of the live births in the United States. Seventeen primarily use an active case-finding approach and 26 use a passive case-finding approach. These programs all monitor major structural malformations; however, passive case-finding programs more often monitor a broader list of conditions, including developmental conditions and newborn screening conditions. Active case-finding programs more often use clinical reviewers, cover broader pregnancy outcomes, and collect more extensive information, such as family history. More than half of the programs (24 of 43) reported an ability to conduct follow-up studies of children with birth defects. The breadth and depth of information collected at a population level by birth defects surveillance programs in the United States serve as an important data source to guide public health action. Collaborative efforts at the state and national levels can help harmonize data collection and increase utility of birth defects programs.

  1. Accountability for the human right to health through treaty monitoring: Human rights treaty bodies and the influence of concluding observations.

    PubMed

    Meier, Benjamin Mason; De Milliano, Marlous; Chakrabarti, Averi; Kim, Yuna

    2017-11-04

    Employing novel coding methods to evaluate human rights monitoring, this article examines the influence of United Nations (UN) treaty bodies on national implementation of the human right to health. The advancement of the right to health in the UN human rights system has shifted over the past 20 years from the development of norms under international law to the implementation of those norms through national policy. Facilitating accountability for this rights-based policy implementation under the right to health, the UN Committee on Economic, Social and Cultural Rights (CESCR) monitors state implementation by reviewing periodic reports from state parties, engaging in formal sessions of 'constructive dialogue' with state representatives, and issuing concluding observations for state response. These concluding observations recognise the positive steps taken by states and highlight the principal areas of CESCR concern, providing recommendations for implementing human rights and detailing issues to be addressed in the next state report. Through analytic coding of the normative indicators of the right to health in both state reports and concluding observations, this article provides an empirical basis to understand the policy effects of the CESCR monitoring process on state implementation of the right to health.

  2. Adaptive hidden Markov model-based online learning framework for bearing faulty detection and performance degradation monitoring

    NASA Astrophysics Data System (ADS)

    Yu, Jianbo

    2017-01-01

    This study proposes an adaptive-learning-based method for machine faulty detection and health degradation monitoring. The kernel of the proposed method is an "evolving" model that uses an unsupervised online learning scheme, in which an adaptive hidden Markov model (AHMM) is used for online learning the dynamic health changes of machines in their full life. A statistical index is developed for recognizing the new health states in the machines. Those new health states are then described online by adding of new hidden states in AHMM. Furthermore, the health degradations in machines are quantified online by an AHMM-based health index (HI) that measures the similarity between two density distributions that describe the historic and current health states, respectively. When necessary, the proposed method characterizes the distinct operating modes of the machine and can learn online both abrupt as well as gradual health changes. Our method overcomes some drawbacks of the HIs (e.g., relatively low comprehensibility and applicability) based on fixed monitoring models constructed in the offline phase. Results from its application in a bearing life test reveal that the proposed method is effective in online detection and adaptive assessment of machine health degradation. This study provides a useful guide for developing a condition-based maintenance (CBM) system that uses an online learning method without considerable human intervention.

  3. Volunteer Watershed Health Monitoring by Local Stakeholders: New Mexico Watershed Watch

    ERIC Educational Resources Information Center

    Fleming, William

    2003-01-01

    Volunteers monitor watershed health in more than 700 programs in the US, involving over 400,000 local stakeholders. New Mexico Watershed Watch is a student-based watershed monitoring program sponsored by the state's Department of Game and Fish which provides high school teachers and students with instruction on methods for water quality…

  4. Use of a Progress Monitoring System to Enable Teachers to Differentiate Mathematics Instruction

    ERIC Educational Resources Information Center

    Ysseldyke, Jim; Tardrew, Steve

    2007-01-01

    We explored how a progress monitoring and instructional management system can be used to help educators differentiate instruction and meet the wide-ranging learning needs of their increasingly diverse classrooms. We compared classrooms in 24 states that used a curriculum-based progress monitoring and instructional management system, Accelerated…

  5. In Situ Solid-State Reactions Monitored by X-ray Absorption Spectroscopy: Temperature-Induced Proton Transfer Leads to Chemical Shifts.

    PubMed

    Stevens, Joanna S; Walczak, Monika; Jaye, Cherno; Fischer, Daniel A

    2016-10-24

    The dramatic colour and phase alteration with the solid-state, temperature-dependent reaction between squaric acid and 4,4'-bipyridine has been probed in situ with X-ray absorption spectroscopy. The electronic and chemical sensitivity to the local atomic environment through chemical shifts in the near-edge X-ray absorption fine structure (NEXAFS) revealed proton transfer from the acid to the bipyridine base through the change in nitrogen protonation state in the high-temperature form. Direct detection of proton transfer coupled with structural analysis elucidates the nature of the solid-state process, with intermolecular proton transfer occurring along an acid-base chain followed by a domino effect to the subsequent acid-base chains, leading to the rapid migration along the length of the crystal. NEXAFS thereby conveys the ability to monitor the nature of solid-state chemical reactions in situ, without the need for a priori information or long-range order. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Anomaly Monitoring Method for Key Components of Satellite

    PubMed Central

    Fan, Linjun; Xiao, Weidong; Tang, Jun

    2014-01-01

    This paper presented a fault diagnosis method for key components of satellite, called Anomaly Monitoring Method (AMM), which is made up of state estimation based on Multivariate State Estimation Techniques (MSET) and anomaly detection based on Sequential Probability Ratio Test (SPRT). On the basis of analysis failure of lithium-ion batteries (LIBs), we divided the failure of LIBs into internal failure, external failure, and thermal runaway and selected electrolyte resistance (R e) and the charge transfer resistance (R ct) as the key parameters of state estimation. Then, through the actual in-orbit telemetry data of the key parameters of LIBs, we obtained the actual residual value (R X) and healthy residual value (R L) of LIBs based on the state estimation of MSET, and then, through the residual values (R X and R L) of LIBs, we detected the anomaly states based on the anomaly detection of SPRT. Lastly, we conducted an example of AMM for LIBs, and, according to the results of AMM, we validated the feasibility and effectiveness of AMM by comparing it with the results of threshold detective method (TDM). PMID:24587703

  7. Tracking Electroencephalographic Changes Using Distributions of Linear Models: Application to Propofol-Based Depth of Anesthesia Monitoring.

    PubMed

    Kuhlmann, Levin; Manton, Jonathan H; Heyse, Bjorn; Vereecke, Hugo E M; Lipping, Tarmo; Struys, Michel M R F; Liley, David T J

    2017-04-01

    Tracking brain states with electrophysiological measurements often relies on short-term averages of extracted features and this may not adequately capture the variability of brain dynamics. The objective is to assess the hypotheses that this can be overcome by tracking distributions of linear models using anesthesia data, and that anesthetic brain state tracking performance of linear models is comparable to that of a high performing depth of anesthesia monitoring feature. Individuals' brain states are classified by comparing the distribution of linear (auto-regressive moving average-ARMA) model parameters estimated from electroencephalographic (EEG) data obtained with a sliding window to distributions of linear model parameters for each brain state. The method is applied to frontal EEG data from 15 subjects undergoing propofol anesthesia and classified by the observers assessment of alertness/sedation (OAA/S) scale. Classification of the OAA/S score was performed using distributions of either ARMA parameters or the benchmark feature, Higuchi fractal dimension. The highest average testing sensitivity of 59% (chance sensitivity: 17%) was found for ARMA (2,1) models and Higuchi fractal dimension achieved 52%, however, no statistical difference was observed. For the same ARMA case, there was no statistical difference if medians are used instead of distributions (sensitivity: 56%). The model-based distribution approach is not necessarily more effective than a median/short-term average approach, however, it performs well compared with a distribution approach based on a high performing anesthesia monitoring measure. These techniques hold potential for anesthesia monitoring and may be generally applicable for tracking brain states.

  8. Health State Utilities Associated with Glucose Monitoring Devices.

    PubMed

    Matza, Louis S; Stewart, Katie D; Davies, Evan W; Hellmund, Richard; Polonsky, William H; Kerr, David

    2017-03-01

    Glucose monitoring is important for patients with diabetes treated with insulin. Conventional glucose monitoring requires a blood sample, typically obtained by pricking the finger. A new sensor-based system called "flash glucose monitoring" monitors glucose levels with a sensor worn on the arm, without requiring blood samples. To estimate the utility difference between these two glucose monitoring approaches for use in cost-utility models. In time trade-off interviews, general population participants in the United Kingdom (London and Edinburgh) valued health states that were drafted and refined on the basis of literature, clinician input, and a pilot study. The health states had identical descriptions of diabetes and insulin treatment, differing only in glucose monitoring approach. A total of 209 participants completed the interviews (51.7% women; mean age = 42.1 years). Mean utilities were 0.851 ± 0.140 for conventional monitoring and 0.882 ± 0.121 for flash monitoring (significant difference between the mean utilities; t = 8.3; P < 0.0001). Of the 209 participants, 78 (37.3%) had a higher utility for flash monitoring, 2 (1.0%) had a higher utility for conventional monitoring, and 129 (61.7%) had the same utility for both health states. The flash glucose monitoring system was associated with a significantly greater utility than the conventional monitoring system. This difference may be useful in cost-utility models comparing the value of glucose monitoring devices for patients with diabetes. This study adds to the literature on treatment process utilities, suggesting that time trade-off methods may be used to quantify preferences among medical devices. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  9. Fiber optic based multiprobe system for intraoperative monitoring of brain functions

    NASA Astrophysics Data System (ADS)

    Mayevsky, Avraham; Flamm, E. S.; Pennie, William; Chance, Britton

    1991-05-01

    Monitoring of brain functions during neurosurgical conditions have been made by various groups of investigators. Attempts were made to monitor EEG or evoked potentials, cerebral blood flow, mitochondrial redox state during various neurosurgical procedures. In order to monitor various functions of the brain we have developed a new multiprobe (MPA) assembly, based on fiber optic probes and ion selective electrodes, enabling the assessment of relative CBF, mitochondrial redox state (NADH fluorescence) and ion homeostasis in real-time, intraoperatively. The base features of the multiprobe assembly were described previously (A. Mayevsky, J. Appl. Physiol. 54, 740-748, 1983). The multiprobe holder (made of Delarin) contained a bundle of fibers transmitting light to and from the brain as well as 3 ion selective electrodes (K+%/, Ca(superscript 2+, Na+) combined with DC steady potential electrodes (Ag/AgCl). The common part of the light guide contained 2 groups of fibers. For the Laser Doppler flowmetry one input fiber and two output fibers were glued in a triangular shape and connected to the standard commercial plug of the Laser Doppler flowmeter. For the monitoring of NADH redox state 10 excitation and 10 emission fibers were randomly mixed between and around the fibers used for the Laser Doppler flowmetry. This configuration of the fibers enabled us to monitor CBF and NADH redox state from about the same tissue volume. The ion selective electrodes were connected to an Ag/AgCl electrode holders and the entire MPA was protected by a Plexiglass sleeve. Animal experiments were used for the verification of the methods and recording of typical responses to various pathological situations. The entire multiprobe assembly was sterilized by the standard gas sterilization routine and was checked for electrodes integrity and calibration inside the operation room 24 hours later. The MPA was located on the exposed human cortex using a micromanipulator and data collection started immediately after, using a micro computer based data acquisition system. After recording of baseline levels of CBF, NADH redox state and extracellular ion levels, the responses to CBF decrease (occlusions of a blood vessel) were recorded followed by the recovery period. A significant correlation between the CBF and NADH redox state changes was recorded. This approach enabled us to correlate this change in energy supply, to those of extracellular ion concentration. The preliminary results obtained suggest that the usage of the MPA in the operating room may have a significant contribution to the neurosurgeon as a routine diagnostic tool. It seems to us that a simplified MPA which will enable to monitor only the relative CBF, NADH redox state as well as extracellular K+ is more appropriate for future usage.

  10. Effects of Online Synchronous Instruction with an Attention Monitoring and Alarm Mechanism on Sustained Attention and Learning Performance

    ERIC Educational Resources Information Center

    Chen, Chih-Ming; Wang, Jung-Ying

    2018-01-01

    Many studies have shown that learners' sustained attention strongly affects e-learning performance, particularly during online synchronous instruction. This work thus develops a novel attention monitoring and alarm mechanism (AMAM) based on brainwave signals to improve learning performance via monitoring the attention state of individual learners…

  11. Surveillance for human Salmonella infections in the United States.

    PubMed

    Swaminathan, Bala; Barrett, Timothy J; Fields, Patricia

    2006-01-01

    Surveillance for human Salmonella infections plays a critical role in understanding and controlling foodborne illness due to Salmonella. Along with its public health partners, the Centers for Disease Control and Prevention (CDC) has several surveillance systems that collect information on Salmonella infections in the United States. The National Salmonella Surveillance System, begun in 1962, receives reports of laboratory-confirmed Salmonella infections through state public health laboratories. Salmonella outbreaks are reported by state and local health departments through the Foodborne Disease Outbreak Reporting System, which became a Web-based, electronic system (eFORS) in 2001. PulseNet facilitates the detection of clusters of Salmonella infections through standardized molecular subtyping (DNA "fingerprinting") of isolates and maintenance of "fingerprint" databases. The National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS) monitors antimicrobial resistance in Salmonella by susceptibility testing of every 20th Salmonella isolate received by state and local public health laboratories. FootNet is an active surveillance system that monitors Salmonella infections in sentinel areas, providing population-based estimates of infection rates. Efforts are underway to electronically link all of the Salmonella surveillance systems at CDC to facilitate optimum use of available data and minimize duplication.

  12. Comparison of geostatistical interpolation and remote sensing techniques for estimating long-term exposure to ambient PM2.5 concentrations across the continental United States.

    PubMed

    Lee, Seung-Jae; Serre, Marc L; van Donkelaar, Aaron; Martin, Randall V; Burnett, Richard T; Jerrett, Michael

    2012-12-01

    A better understanding of the adverse health effects of chronic exposure to fine particulate matter (PM2.5) requires accurate estimates of PM2.5 variation at fine spatial scales. Remote sensing has emerged as an important means of estimating PM2.5 exposures, but relatively few studies have compared remote-sensing estimates to those derived from monitor-based data. We evaluated and compared the predictive capabilities of remote sensing and geostatistical interpolation. We developed a space-time geostatistical kriging model to predict PM2.5 over the continental United States and compared resulting predictions to estimates derived from satellite retrievals. The kriging estimate was more accurate for locations that were about 100 km from a monitoring station, whereas the remote sensing estimate was more accurate for locations that were > 100 km from a monitoring station. Based on this finding, we developed a hybrid map that combines the kriging and satellite-based PM2.5 estimates. We found that for most of the populated areas of the continental United States, geostatistical interpolation produced more accurate estimates than remote sensing. The differences between the estimates resulting from the two methods, however, were relatively small. In areas with extensive monitoring networks, the interpolation may provide more accurate estimates, but in the many areas of the world without such monitoring, remote sensing can provide useful exposure estimates that perform nearly as well.

  13. Heterogeneous recurrence monitoring and control of nonlinear stochastic processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Hui, E-mail: huiyang@usf.edu; Chen, Yun

    Recurrence is one of the most common phenomena in natural and engineering systems. Process monitoring of dynamic transitions in nonlinear and nonstationary systems is more concerned with aperiodic recurrences and recurrence variations. However, little has been done to investigate the heterogeneous recurrence variations and link with the objectives of process monitoring and anomaly detection. Notably, nonlinear recurrence methodologies are based on homogeneous recurrences, which treat all recurrence states in the same way as black dots, and non-recurrence is white in recurrence plots. Heterogeneous recurrences are more concerned about the variations of recurrence states in terms of state properties (e.g., valuesmore » and relative locations) and the evolving dynamics (e.g., sequential state transitions). This paper presents a novel approach of heterogeneous recurrence analysis that utilizes a new fractal representation to delineate heterogeneous recurrence states in multiple scales, including the recurrences of both single states and multi-state sequences. Further, we developed a new set of heterogeneous recurrence quantifiers that are extracted from fractal representation in the transformed space. To that end, we integrated multivariate statistical control charts with heterogeneous recurrence analysis to simultaneously monitor two or more related quantifiers. Experimental results on nonlinear stochastic processes show that the proposed approach not only captures heterogeneous recurrence patterns in the fractal representation but also effectively monitors the changes in the dynamics of a complex system.« less

  14. Improving the effectiveness of traffic monitoring based on wireless location technology.

    DOT National Transportation Integrated Search

    2004-01-01

    A fundamental requirement for effectively monitoring and operating transportation facilities is reliable, accurate data on traffic flow. The current state of the practice is to use networks of point detectors to gather information on traffic flow at ...

  15. Colorado Water Watch: real-time groundwater monitoring for possible contamination from oil and gas activities.

    PubMed

    Son, Ji-Hee; Hanif, Asma; Dhanasekar, Ashwin; Carlson, Kenneth H

    2018-02-13

    Currently, only a few states in the USA (e.g., Colorado and Ohio) require mandatory baseline groundwater sampling from nearby groundwater wells prior to drilling a new oil or gas well. Colorado is the first state to regulate groundwater testing before and after drilling, which requires one pre-drilling sample and two additional post-drilling samples within 6-12 months and 5-6 years of drilling. However, the monitoring method is limited to the state's regulatory agency and to ex situ sampling, which offers only a snapshot in time. To overcome the limitations and increase monitoring performance, a new groundwater monitoring system, Colorado Water Watch (CWW), was introduced as a decision-making tool to support the state's regulatory agency and also to provide real-time groundwater quality data to both the industry and the public. The CWW uses simple in situ water quality sensors based on the surrogate sensing technology that employs an event detection system to screen the incoming data in near real-time.

  16. Deformation integrity monitoring for GNSS positioning services including local, regional and large scale hazard monitoring - the Karlsruhe approach and software(MONIKA)

    NASA Astrophysics Data System (ADS)

    Jaeger, R.

    2007-05-01

    GNSS-positioning services like SAPOS/ascos in Germany and many others in Europe, America and worldwide, usually yield in a short time their interdisciplinary and country-wide use for precise geo-referencing, replacing traditional low order geodetic networks. So it becomes necessary that possible changes of the reference stations' coordinates are detected ad hoc. The GNSS-reference-station MONitoring by the KArlsruhe approach and software (MONIKA) are designed for that task. The developments at Karlsruhe University of Applied Sciences in cooperation with the State Survey of Baden-Württemberg are further motivated by a the official resolution of the German state survey departments' association (Arbeitsgemeinschaft der Vermessungsverwaltungen Deutschland (AdV)) 2006 on coordinate monitoring as a quality-control duty of the GNSS-positioning service provider. The presented approach can - besides the coordinate control of GNSS-positioning services - also be used to set up any GNSS-service for the tasks of an area-wide geodynamical and natural disaster-prevention service. The mathematical model of approach, which enables a multivariate and multi-epochal design approach, is based on the GNSS-observations input of the RINEX-data of the GNSS service, followed by fully automatic processing of baselines and/or session, and a near-online setting up of epoch-state vectors and their covariance-matrices in a rigorous 3D network adjustment. In case of large scale and long-term monitoring situations, geodynamical standard trends (datum-drift, plate-movements etc.) are accordingly considered and included in the mathematical model of MONIKA. The coordinate-based deformation monitoring approach, as third step of the stepwise adjustments, is based on the above epoch-state vectors, and - splitting off geodynamics trends - hereby on a multivariate and multi-epochal congruency testing. So far, that no other information exists, all points are assumed as being stable and congruent reference points. Stations, which a priori assumed as moving - in that way local monitoring areas can be included- are to be monitored and analyzed in reference to the stable reference points. In that way, a high sensitivity for the detection of GNSS station displacements, both for assumed stable points, as well as for a priori moving points, can be achieved. The results for the concept are shown at the example of a monitoring using the MONINKA-software in the 300 x 300 km area of the state of Baden-Württemberg, Germany.

  17. The Ocean State Report of the Copernicus Marine Environment Monitoring Service

    NASA Astrophysics Data System (ADS)

    von Schuckmann, Karina

    2017-04-01

    COPERNICUS is the European Earth observation and monitoring programme, which aims to give the European Union autonomous and operational capability in space-based observation facilities (see the Sentinel missions) and in situ (measurements in the atmosphere, in the ocean and on the ground), and to operate six interlinked environmental monitoring services for the oceans, the atmosphere, territorial development, emergency situations, security and climate change. In this context, the Copernicus Marine Environment Monitoring Service provides an open and free access to regular and systematic information about the physical state and dynamics of the ocean and marine ecosystems for the global ocean and six European regional seas. Mercator Ocean, the French center of global ocean analysis and forecast has been entrusted by the EU to implement and operate the Copernicus Marine Service. The first Ocean State Report Copernicus Marine Environment Monitoring Service has been prepared, and is planned to appear at an annual basis (fall each year) as a unique reference for ocean state reporting. This report contains a state-of-the-art value-added synthesis of the ocean state for the global ocean and the European regional seas from the Copernicus Marine Environment Monitoring Service data products and expert analysis. This activity is aiming to reach a wide audience -from the scientific community, over climate and environmental service and agencies, environmental reporting and bodies to the general public. We will give here an overview on the report, highlight main outcomes, and introduce future plans and developments.

  18. The Ocean State Report of the Copernicus Marine Environment Monitoring Service

    NASA Astrophysics Data System (ADS)

    von Schuckmann, K.

    2016-12-01

    COPERNICUS is the European Earth observation and monitoring programme, which aims to give the European Union autonomous and operational capability in space-based observation facilities (see the Sentinel missions) and in situ (measurements in the atmosphere, in the ocean and on the ground), and to operate six interlinked environmental monitoring services for the oceans, the atmosphere, territorial development, emergency situations, security and climate change. In this context, the Copernicus Marine Environment Monitoring Service provides an open and free access to regular and systematic information about the physical state and dynamics of the ocean and marine ecosystems for the global ocean and six European regional seas. Mercator Ocean, the French center of global ocean analysis and forecast has been entrusted by the EU to implement and operate the Copernicus Marine Service. In fall 2016, the first Ocean State Report Copernicus Marine Environment Monitoring Service will be published, and is planned to appear at an annual basis (June each year) as a unique reference for ocean state reporting. This report contains a state-of-the-art value-added synthesis of the ocean state for the global ocean and the European regional seas from the Copernicus Marine Environment Monitoring Service data products and expert analysis. This activity is aiming to reach a wide audience -from the scientific community, over climate and environmental service and agencies, environmental reporting and bodies to the general public. We will give here an overview on the report, highlight main outcomes, and introduce future plans and developments.

  19. Application of confocal laser microscopy for monitoring mesh implants in herniology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakharov, V P; Belokonev, V I; Bratchenko, I A

    2011-04-30

    The state of the surface of mesh implants and their encapsulation region in herniology is investigated by laser confocal microscopy. A correlation between the probability of developing relapses and the size and density of implant microdefects is experimentally shown. The applicability limits of differential reverse scattering for monitoring the post-operation state of implant and adjacent tissues are established based on model numerical experiments. (optical technologies in biophysics and medicine)

  20. Smartphone-Based Monitoring of Objective and Subjective Data in Affective Disorders: Where Are We and Where Are We Going? Systematic Review.

    PubMed

    Dogan, Ezgi; Sander, Christian; Wagner, Xenija; Hegerl, Ulrich; Kohls, Elisabeth

    2017-07-24

    Electronic mental health interventions for mood disorders have increased rapidly over the past decade, most recently in the form of various systems and apps that are delivered via smartphones. We aim to provide an overview of studies on smartphone-based systems that combine subjective ratings with objectively measured data for longitudinal monitoring of patients with affective disorders. Specifically, we aim to examine current knowledge on: (1) the feasibility of, and adherence to, such systems; (2) the association of monitored data with mood status; and (3) the effects of monitoring on clinical outcomes. We systematically searched PubMed, Web of Science, PsycINFO, and the Cochrane Central Register of Controlled Trials for relevant articles published in the last ten years (2007-2017) by applying Boolean search operators with an iterative combination of search terms, which was conducted in February 2017. Additional articles were identified via pearling, author correspondence, selected reference lists, and trial protocols. A total of 3463 unique records were identified. Twenty-nine studies met the inclusion criteria and were included in the review. The majority of articles represented feasibility studies (n=27); two articles reported results from one randomized controlled trial (RCT). In total, six different self-monitoring systems for affective disorders that used subjective mood ratings and objective measurements were included. These objective parameters included physiological data (heart rate variability), behavioral data (phone usage, physical activity, voice features), and context/environmental information (light exposure and location). The included articles contained results regarding feasibility of such systems in affective disorders, showed reasonable accuracy in predicting mood status and mood fluctuations based on the objectively monitored data, and reported observations about the impact of monitoring on clinical state and adherence of patients to the system usage. The included observational studies and RCT substantiate the value of smartphone-based approaches for gathering long-term objective data (aside from self-ratings to monitor clinical symptoms) to predict changes in clinical states, and to investigate causal inferences about state changes in patients with affective disorders. Although promising, a much larger evidence-base is necessary to fully assess the potential and the risks of these approaches. Methodological limitations of the available studies (eg, small sample sizes, variations in the number of observations or monitoring duration, lack of RCT, and heterogeneity of methods) restrict the interpretability of the results. However, a number of study protocols stated ambitions to expand and intensify research in this emerging and promising field. ©Ezgi Dogan, Christian Sander, Xenija Wagner, Ulrich Hegerl, Elisabeth Kohls. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 24.07.2017.

  1. A Dynamic Programming Model for Optimizing Frequency of Time-Lapse Seismic Monitoring in Geological CO2 Storage

    NASA Astrophysics Data System (ADS)

    Bhattacharjya, D.; Mukerji, T.; Mascarenhas, O.; Weyant, J.

    2005-12-01

    Designing a cost-effective and reliable monitoring program is crucial to the success of any geological CO2 storage project. Effective design entails determining both, the optimal measurement modality, as well as the frequency of monitoring the site. Time-lapse seismic provides the best spatial coverage and resolution for reservoir monitoring. Initial results from Sleipner (Norway) have demonstrated effective monitoring of CO2 plume movement. However, time-lapse seismic is an expensive monitoring technique especially over the long term life of a storage project and should be used judiciously. We present a mathematical model based on dynamic programming that can be used to estimate site-specific optimal frequency of time-lapse surveys. The dynamics of the CO2 sequestration process are simplified and modeled as a four state Markov process with transition probabilities. The states are M: injected CO2 safely migrating within the target zone; L: leakage from the target zone to the adjacent geosphere; R: safe migration after recovery from leakage state; and S: seepage from geosphere to the biosphere. The states are observed only when a monitoring survey is performed. We assume that the system may go to state S only from state L. We also assume that once observed to be in state L, remedial measures are always taken to bring it back to state R. Remediation benefits are captured by calculating the expected penalty if CO2 seeped into the biosphere. There is a trade-off between the conflicting objectives of minimum discounted costs of performing the next time-lapse survey and minimum risk of seepage and its associated costly consequences. A survey performed earlier would spot the leakage earlier. Remediation methods would have been utilized earlier, resulting in savings in costs attributed to excessive seepage. On the other hand, there are also costs for the survey and remedial measures. The problem is solved numerically using Bellman's optimality principal of dynamic programming to optimize over the entire finite time horizon. We use a Monte Carlo approach to explore trade-offs between survey costs, remediation costs, and survey frequency and to analyze the sensitivity to leakage probabilities, and carbon tax. The model can be useful in determining a monitoring regime appropriate to a specific site's risk and set of remediation options, rather than a generic one based on a maximum downside risk threshold for CO2 storage as a whole. This may have implications on the overall costs associated with deploying Carbon capture and storage on a large scale.

  2. EEG-based "serious" games and monitoring tools for pain management.

    PubMed

    Sourina, Olga; Wang, Qiang; Nguyen, Minh Khoa

    2011-01-01

    EEG-based "serious games" for medical applications attracted recently more attention from the research community and industry as wireless EEG reading devices became easily available on the market. EEG-based technology has been applied in anesthesiology, psychology, etc. In this paper, we proposed and developed EEG-based "serious" games and doctor's monitoring tools that could be used for pain management. As EEG signal is considered to have a fractal nature, we proposed and develop a novel spatio-temporal fractal based algorithm for brain state quantification. The algorithm is implemented with blobby visualization tools for patient monitoring and in EEG-based "serious" games. Such games could be used by patient even at home convenience for pain management as an alternative to traditional drug treatment.

  3. 78 FR 27898 - Approval and Promulgation of State Implementation Plan Revisions; Infrastructure Requirements for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-13

    ... arithmetic mean PM 2.5 concentration from single or multiple community- oriented monitors, and 65 [mu]g/m\\3...-oriented monitor within an area. In addition, the 24-hour PM 10 standard was revised to be based on the...): Stationary source monitoring and reporting. 110(a)(2)(G): Emergency powers. 110(a)(2)(H): Future SIP...

  4. Predicting US Drought Monitor (USDM) states using precipitation, soil moisture, and evapotranspiration anomalies, Part I: Development of a non-discrete USDM index

    USDA-ARS?s Scientific Manuscript database

    The U.S. Drought Monitor (USDM) classifies drought into five discrete dryness/drought categories based on expert synthesis of numerous data sources. In this study, an empirical methodology is presented for creating a non-discrete U.S. Drought Monitor (USDM) index that simultaneously 1) represents th...

  5. Spatially explicit power analysis for occupancy-based monitoring of wolverine populations in the U.S

    Treesearch

    Martha M. Ellis; Jacob S. Ivan; Michael K. Schwartz

    2014-01-01

    Conservation scientists and resource managers often have to design monitoring programs for species that are rare or patchily distributed across large landscapes. Such programs are frequently expensive and seldom can be conducted by one entity. It is essential that a prospective power analysis be undertaken to ensure stated monitoring goals are feasible. We developed a...

  6. Force Sensor Based Tool Condition Monitoring Using a Heterogeneous Ensemble Learning Model

    PubMed Central

    Wang, Guofeng; Yang, Yinwei; Li, Zhimeng

    2014-01-01

    Tool condition monitoring (TCM) plays an important role in improving machining efficiency and guaranteeing workpiece quality. In order to realize reliable recognition of the tool condition, a robust classifier needs to be constructed to depict the relationship between tool wear states and sensory information. However, because of the complexity of the machining process and the uncertainty of the tool wear evolution, it is hard for a single classifier to fit all the collected samples without sacrificing generalization ability. In this paper, heterogeneous ensemble learning is proposed to realize tool condition monitoring in which the support vector machine (SVM), hidden Markov model (HMM) and radius basis function (RBF) are selected as base classifiers and a stacking ensemble strategy is further used to reflect the relationship between the outputs of these base classifiers and tool wear states. Based on the heterogeneous ensemble learning classifier, an online monitoring system is constructed in which the harmonic features are extracted from force signals and a minimal redundancy and maximal relevance (mRMR) algorithm is utilized to select the most prominent features. To verify the effectiveness of the proposed method, a titanium alloy milling experiment was carried out and samples with different tool wear states were collected to build the proposed heterogeneous ensemble learning classifier. Moreover, the homogeneous ensemble learning model and majority voting strategy are also adopted to make a comparison. The analysis and comparison results show that the proposed heterogeneous ensemble learning classifier performs better in both classification accuracy and stability. PMID:25405514

  7. Force sensor based tool condition monitoring using a heterogeneous ensemble learning model.

    PubMed

    Wang, Guofeng; Yang, Yinwei; Li, Zhimeng

    2014-11-14

    Tool condition monitoring (TCM) plays an important role in improving machining efficiency and guaranteeing workpiece quality. In order to realize reliable recognition of the tool condition, a robust classifier needs to be constructed to depict the relationship between tool wear states and sensory information. However, because of the complexity of the machining process and the uncertainty of the tool wear evolution, it is hard for a single classifier to fit all the collected samples without sacrificing generalization ability. In this paper, heterogeneous ensemble learning is proposed to realize tool condition monitoring in which the support vector machine (SVM), hidden Markov model (HMM) and radius basis function (RBF) are selected as base classifiers and a stacking ensemble strategy is further used to reflect the relationship between the outputs of these base classifiers and tool wear states. Based on the heterogeneous ensemble learning classifier, an online monitoring system is constructed in which the harmonic features are extracted from force signals and a minimal redundancy and maximal relevance (mRMR) algorithm is utilized to select the most prominent features. To verify the effectiveness of the proposed method, a titanium alloy milling experiment was carried out and samples with different tool wear states were collected to build the proposed heterogeneous ensemble learning classifier. Moreover, the homogeneous ensemble learning model and majority voting strategy are also adopted to make a comparison. The analysis and comparison results show that the proposed heterogeneous ensemble learning classifier performs better in both classification accuracy and stability.

  8. Amphibian Research and Monitoring Initiative (ARMI): A successful start to a national program in the United States

    USGS Publications Warehouse

    Muths, Erin; Jung, Robin E.; Bailey, Larissa L.; Adams, Michael J.; Corn, P. Stephen; Dodd, C. Kenneth; Fellers, Gary M.; Sadinski, Walter J.; Schwalbe, Cecil R.; Walls, Susan C.; Fisher, Robert N.; Gallant, Alisa L.; Battaglin, William A.; Green, D. Earl

    2005-01-01

    Most research to assess amphibian declines has focused on local-scale projects on one or a few species. The Amphibian Research and Monitoring Initiative (ARMI) is a national program in the United States mandated by congressional directive and implemented by the U.S. Department of the Interior (specifically the U.S. Geological Survey, USGS). Program goals are to monitor changes in populations of amphibians across U.S. Department of the Interior lands and to address research questions related to amphibian declines using a hierarchical framework of base-, mid- and apex-level monitoring sites. ARMI is currently monitoring 83 amphibian species (29% of species in the U.S.) at mid- and apex-level areas. We chart the progress of this 5-year-old program and provide an example of mid-level monitoring from 1 of the 7 ARMI regions.

  9. On-line adaptive battery impedance parameter and state estimation considering physical principles in reduced order equivalent circuit battery models part 2. Parameter and state estimation

    NASA Astrophysics Data System (ADS)

    Fleischer, Christian; Waag, Wladislaw; Heyn, Hans-Martin; Sauer, Dirk Uwe

    2014-09-01

    Lithium-ion battery systems employed in high power demanding systems such as electric vehicles require a sophisticated monitoring system to ensure safe and reliable operation. Three major states of the battery are of special interest and need to be constantly monitored. These include: battery state of charge (SoC), battery state of health (capacity fade determination, SoH), and state of function (power fade determination, SoF). The second paper concludes the series by presenting a multi-stage online parameter identification technique based on a weighted recursive least quadratic squares parameter estimator to determine the parameters of the proposed battery model from the first paper during operation. A novel mutation based algorithm is developed to determine the nonlinear current dependency of the charge-transfer resistance. The influence of diffusion is determined by an on-line identification technique and verified on several batteries at different operation conditions. This method guarantees a short response time and, together with its fully recursive structure, assures a long-term stable monitoring of the battery parameters. The relative dynamic voltage prediction error of the algorithm is reduced to 2%. The changes of parameters are used to determine the states of the battery. The algorithm is real-time capable and can be implemented on embedded systems.

  10. On predicting monitoring system effectiveness

    NASA Astrophysics Data System (ADS)

    Cappello, Carlo; Sigurdardottir, Dorotea; Glisic, Branko; Zonta, Daniele; Pozzi, Matteo

    2015-03-01

    While the objective of structural design is to achieve stability with an appropriate level of reliability, the design of systems for structural health monitoring is performed to identify a configuration that enables acquisition of data with an appropriate level of accuracy in order to understand the performance of a structure or its condition state. However, a rational standardized approach for monitoring system design is not fully available. Hence, when engineers design a monitoring system, their approach is often heuristic with performance evaluation based on experience, rather than on quantitative analysis. In this contribution, we propose a probabilistic model for the estimation of monitoring system effectiveness based on information available in prior condition, i.e. before acquiring empirical data. The presented model is developed considering the analogy between structural design and monitoring system design. We assume that the effectiveness can be evaluated based on the prediction of the posterior variance or covariance matrix of the state parameters, which we assume to be defined in a continuous space. Since the empirical measurements are not available in prior condition, the estimation of the posterior variance or covariance matrix is performed considering the measurements as a stochastic variable. Moreover, the model takes into account the effects of nuisance parameters, which are stochastic parameters that affect the observations but cannot be estimated using monitoring data. Finally, we present an application of the proposed model to a real structure. The results show how the model enables engineers to predict whether a sensor configuration satisfies the required performance.

  11. Development and application of remote video monitoring system for combine harvester based on embedded Linux

    NASA Astrophysics Data System (ADS)

    Chen, Jin; Wang, Yifan; Wang, Xuelei; Wang, Yuehong; Hu, Rui

    2017-01-01

    Combine harvester usually works in sparsely populated areas with harsh environment. In order to achieve the remote real-time video monitoring of the working state of combine harvester. A remote video monitoring system based on ARM11 and embedded Linux is developed. The system uses USB camera for capturing working state video data of the main parts of combine harvester, including the granary, threshing drum, cab and cut table. Using JPEG image compression standard to compress video data then transferring monitoring screen to remote monitoring center over the network for long-range monitoring and management. At the beginning of this paper it describes the necessity of the design of the system. Then it introduces realization methods of hardware and software briefly. And then it describes detailedly the configuration and compilation of embedded Linux operating system and the compiling and transplanting of video server program are elaborated. At the end of the paper, we carried out equipment installation and commissioning on combine harvester and then tested the system and showed the test results. In the experiment testing, the remote video monitoring system for combine harvester can achieve 30fps with the resolution of 800x600, and the response delay in the public network is about 40ms.

  12. PSE Aysis of Crossflow Instability on HifIre-5B Flight Test

    DTIC Science & Technology

    2017-06-05

    AIR FORCE RESEARCH LABORATORY AEROSPACE SYSTEMS DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7542 AIR FORCE MATERIEL COMMAND UNITED...Air Force Research Laboratory, Aerospace Systems Directorate Wright-Patterson Air Force Base, OH 45433-7542 Air Force Materiel Command, United...States Air Force 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING Air Force Research Laboratory Aerospace Systems

  13. Air Pollution Monitoring and Use of Nanotechnology Based Solid State Gas Sensors in Greater Cairo Area, Egypt

    NASA Astrophysics Data System (ADS)

    Ramadan, A. B. A.

    Air pollution is a serious problem in thickly populated and industrialized areas in Egypt, especially in greater Cairo area. Economic growth and industrialization are proceeding at a rapid pace, accompanied by increasing emissions of air polluting sources. Furthermore, though the variety and quantities of polluting sources have increased dramatically, the development of a suitable method for monitoring the pollution causing sources has not followed at the same pace. Environmental impacts of air pollutants have impact on public health, vegetation, material deterioration etc. To prevent or minimize the damage caused by atmospheric pollution, suitable monitoring systems are urgently needed that can rapidly and reliably detect and quantify polluting sources for monitoring by regulating authorities in order to prevent further deterioration of the current pollution levels. Consequently, it is important that the current real-time air quality monitoring system, controlled by the Egyptian Environmental Affairs Agency (EEAA), should be adapted or extended to aid in alleviating this problem. Nanotechnology has been applied to several industrial and domestic fields, for example, applications for gas monitoring systems, gas leak detectors in factories, fire and toxic gas detectors, ventilation control, breath alcohol detectors, and the like. Here we report an application example of studying air quality monitoring based on nanotechnology `solid state gas sensors'. So as to carry out air pollution monitoring over an extensive area, a combination of ground measurements through inexpensive sensors and wireless GIS will be used for this purpose. This portable device, comprising solid state gas sensors integrated to a Personal Digital Assistant (PDA) linked through Bluetooth communication tools and Global Positioning System (GPS), will allow rapid dissemination of information on pollution levels at multiple sites simultaneously.

  14. General Purpose Data-Driven Online System Health Monitoring with Applications to Space Operations

    NASA Technical Reports Server (NTRS)

    Iverson, David L.; Spirkovska, Lilly; Schwabacher, Mark

    2010-01-01

    Modern space transportation and ground support system designs are becoming increasingly sophisticated and complex. Determining the health state of these systems using traditional parameter limit checking, or model-based or rule-based methods is becoming more difficult as the number of sensors and component interactions grows. Data-driven monitoring techniques have been developed to address these issues by analyzing system operations data to automatically characterize normal system behavior. System health can be monitored by comparing real-time operating data with these nominal characterizations, providing detection of anomalous data signatures indicative of system faults, failures, or precursors of significant failures. The Inductive Monitoring System (IMS) is a general purpose, data-driven system health monitoring software tool that has been successfully applied to several aerospace applications and is under evaluation for anomaly detection in vehicle and ground equipment for next generation launch systems. After an introduction to IMS application development, we discuss these NASA online monitoring applications, including the integration of IMS with complementary model-based and rule-based methods. Although the examples presented in this paper are from space operations applications, IMS is a general-purpose health-monitoring tool that is also applicable to power generation and transmission system monitoring.

  15. Combining mapped and statistical data in forest ecological inventory and monitoring - supplementing an existing system

    Treesearch

    H. T. Schreuder; R. Czaplewski; R. G. Bailey

    1999-01-01

     forest ecological inventory and monitoring system combining information derived from maps and samples is proposed based on ecosystem regions (Bailey, 1994). The system extends the design of the USDA Forest Service Region 6 Inventory and Monitoring System (R6IMS) in the Pacific Northwest of the United States. The key uses of the information are briefly discussed and...

  16. R & D of smart FRP-OFBG-based steel strand and its application in monitoring of prestressing loss for RC

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi; Zhou, Hui; Huang, Ying; Ou, Jinping

    2008-03-01

    The long-term monitoring and performance evaluation techniques for the steel strand based pre-stressed structures are still not mature yet, especially for the prestressing loss monitoring and prediction. The main problem of this issue is lack of reliable monitoring techniques. To resolve this problem, in this paper, a new kind of quasi-distributed smart steel strand based on FRP-OFBG(Fiber Reinforced Polymer-Optical Fiber Bragg Grating) has been developed and its pre-stress monitoring principle has been also given. The test of the post-tension pre-stressed concrete beam with bonded tendons and its tensioning experiments have been conducted. And the prestressing loss of the steel strands has been monitored using the FBG in it. Researches results indicate that this kind of smart steel strand can monitor both instant loss and permanent loss of the prestressing successfully, and it can preferably describe the pre-stress loss state of the pre-stressed structure. Compared with the traditional monitoring instrument, this kind of smart steel strand owns distinct advantages and broad application foregrounds.

  17. The changes of cerebral hemodynamics during ketamine induced anesthesia in a rat model.

    PubMed

    Bae, Jayyoung; Shin, Teo J; Kim, Seonghyun; Choi, Dong-Hyuk; Cho, Dongrae; Ham, Jinsil; Manca, Marco; Jeong, Seongwook; Lee, Boreom; Kim, Jae G

    2018-05-25

    Current electroencephalogram (EEG) based-consciousness monitoring technique is vulnerable to specific clinical conditions (eg, epilepsy and dementia). However, hemodynamics is the most fundamental and well-preserved parameter to evaluate, even under severe clinical situations. In this study, we applied near-infrared spectroscopy (NIRS) system to monitor hemodynamic change during ketamine-induced anesthesia to find its correlation with the level of consciousness. Oxy-hemoglobin (OHb) and deoxy-hemoglobin concentration levels were continuously acquired throughout the experiment, and the reflectance ratio between 730 and 850 nm was calculated to quantify the hemodynamic changes. The results showed double peaks of OHb concentration change during ketamine anesthesia, which seems to be closely related to the consciousness state of the rat. This finding suggests the possibility of NIRS based-hemodynamic monitoring as a supplementary parameter for consciousness monitoring, compensating drawbacks of EEG signal based monitoring. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Dynamic state estimation assisted power system monitoring and protection

    NASA Astrophysics Data System (ADS)

    Cui, Yinan

    The advent of phasor measurement units (PMUs) has unlocked several novel methods to monitor, control, and protect bulk electric power systems. This thesis introduces the concept of "Dynamic State Estimation" (DSE), aided by PMUs, for wide-area monitoring and protection of power systems. Unlike traditional State Estimation where algebraic variables are estimated from system measurements, DSE refers to a process to estimate the dynamic states associated with synchronous generators. This thesis first establishes the viability of using particle filtering as a technique to perform DSE in power systems. The utility of DSE for protection and wide-area monitoring are then shown as potential novel applications. The work is presented as a collection of several journal and conference papers. In the first paper, we present a particle filtering approach to dynamically estimate the states of a synchronous generator in a multi-machine setting considering the excitation and prime mover control systems. The second paper proposes an improved out-of-step detection method for generators by means of angular difference. The generator's rotor angle is estimated with a particle filter-based dynamic state estimator and the angular separation is then calculated by combining the raw local phasor measurements with this estimate. The third paper introduces a particle filter-based dual estimation method for tracking the dynamic states of a synchronous generator. It considers the situation where the field voltage measurements are not readily available. The particle filter is modified to treat the field voltage as an unknown input which is sequentially estimated along with the other dynamic states. The fourth paper proposes a novel framework for event detection based on energy functions. The key idea is that any event in the system will leave a signature in WAMS data-sets. It is shown that signatures for four broad classes of disturbance events are buried in the components that constitute the energy function for the system. This establishes a direct correspondence (or mapping) between an event and certain component(s) of the energy function. The last paper considers the dynamic latency effect when the measurements and estimated dynamics are transmitted from remote ends to a centralized location through the networks.

  19. The strategy for improving water-quality monitoring in the United States; final report of the Intergovernmental Task Force on Monitoring Water Quality; technical appendices

    USGS Publications Warehouse

    ,

    1995-01-01

    The Intergovernmental Task Force on Monitoring Water Quality (ITFM) prepared this report in collaboration with representatives of all levels of government and the private sector. The report recommends a strategy for nationwide water-quality monitoring and technical monitoring improvements to support sound water-quality decisionmaking. The strategy is intended to achieve a better return on public and private investments in monitoring, environmental protection, and natural resources management. It is also designed to expand the base of information useful to a variety of users at multiple geographic scales. Institutional and technical changes are needed to improve water-quality monitoring and to meet the full range of monitoring requirements. Monitoring must be incorporated as a critical element of program planning, implementation, and evaluation. The strategy includes recommendations in many key elements, such as the development of goal-oriented monitoring and indicators, institutional collaboration, and methods comparability. Initial actions have been taken to implement the strategy. Several Federal agencies have jointly purchased and shared remotely sensed land-cover information needed for water assessment. Major agency data systems are using common data-element names and reference tables that will ensure easy sharing of data. A number of States have held meetings with collectors of water information to initiate statewide monitoring strategies. New monitoring guidance has been developed for Federal water-quality grants to States. Many State offices have changed monitoring programs to place emphasis on priority watersheds and to improve assessment of water quality. As the competition increases for adequate supplies of clean water, concerns about public health and the environment escalate, and more demands are placed on the water information infrastructure. To meet these demands, the collaborative approach has already produced benefits, which will continue to grow as the recommendations are implemented

  20. The Pennsylvania defoliation application pilot test

    NASA Technical Reports Server (NTRS)

    Mcleod, R. G.; Zobrist, A. L.; Bryant, N. A.

    1983-01-01

    Satellite imagery for the State of Pennsylvania was digitally mosaicked to provide the seed data base for monitoring defoliation of hardwood trees by the gypsy moth. Two separate mosaics for the state were prepared, one before defoliation and one after defoliation, to determine the extent, direction, and impact of gypsy moth activity in the state. The digital mosaic technology used to construct the data base was transferred to Pennsylvania State University to permit periodic updates to the data base and to assist in planning and abatement activities. Participating agencies or institutions included Goddard Space Flight Center and the Pennsylvania State University Office for Remote Sensing of Earth Resources.

  1. An American knowledge base in England - Alternate implementations of an expert system flight status monitor

    NASA Technical Reports Server (NTRS)

    Butler, G. F.; Graves, A. T.; Disbrow, J. D.; Duke, E. L.

    1989-01-01

    A joint activity between the Dryden Flight Research Facility of the NASA Ames Research Center (Ames-Dryden) and the Royal Aerospace Establishment (RAE) on knowledge-based systems has been agreed. Under the agreement, a flight status monitor knowledge base developed at Ames-Dryden has been implemented using the real-time AI (artificial intelligence) toolkit MUSE, which was developed in the UK. Here, the background to the cooperation is described and the details of the flight status monitor and a prototype MUSE implementation are presented. It is noted that the capabilities of the expert-system flight status monitor to monitor data downlinked from the flight test aircraft and to generate information on the state and health of the system for the test engineers provides increased safety during flight testing of new systems. Furthermore, the expert-system flight status monitor provides the systems engineers with ready access to the large amount of information required to describe a complex aircraft system.

  2. Long period fiber grating transverse load effect-based sensor for the omnidirectional monitoring of rebar corrosion in concrete.

    PubMed

    Liu, Hong-yue; Liang, Da-kai; Han, Xiao-lin; Zeng, Jie

    2013-05-10

    From the angle of sensitivity of the long period fiber grating (LPFG) resonant transmission spectrum, we demonstrate the sensitivity of LPFG resonance peak amplitude changing with transverse loads. The design of a resonant peak modulation-based LPFG rebar corrosion sensor is described by combining the spectral characteristics of LPFG with the expansion state monitoring of rebar corrosion. LPFG spectrum curves corresponding with different rebar corrosion status of the environment under test are captured by the monitoring technique of LPFG transmission spectra, and the relationship between the resonance peak amplitude change and the state of rebar corrosion is obtained, that is, the variation of LPFG resonance peak amplitude increases with the intensifying of the degree of rebar corrosion. The experimental results numerically show that the sensor response has good regularity for a wide range of travel.

  3. Preliminary Development of Real Time Usage-Phase Monitoring System for CNC Machine Tools with a Case Study on CNC Machine VMC 250

    NASA Astrophysics Data System (ADS)

    Budi Harja, Herman; Prakosa, Tri; Raharno, Sri; Yuwana Martawirya, Yatna; Nurhadi, Indra; Setyo Nogroho, Alamsyah

    2018-03-01

    The production characteristic of job-shop industry at which products have wide variety but small amounts causes every machine tool will be shared to conduct production process with dynamic load. Its dynamic condition operation directly affects machine tools component reliability. Hence, determination of maintenance schedule for every component should be calculated based on actual usage of machine tools component. This paper describes study on development of monitoring system to obtaining information about each CNC machine tool component usage in real time approached by component grouping based on its operation phase. A special device has been developed for monitoring machine tool component usage by utilizing usage phase activity data taken from certain electronics components within CNC machine. The components are adaptor, servo driver and spindle driver, as well as some additional components such as microcontroller and relays. The obtained data are utilized for detecting machine utilization phases such as power on state, machine ready state or spindle running state. Experimental result have shown that the developed CNC machine tool monitoring system is capable of obtaining phase information of machine tool usage as well as its duration and displays the information at the user interface application.

  4. Satellite gravity measurement monitoring terrestrial water storage change and drought in the continental United States.

    PubMed

    Yi, Hang; Wen, Lianxing

    2016-01-27

    We use satellite gravity measurements in the Gravity Recovery and Climate Experiment (GRACE) to estimate terrestrial water storage (TWS) change in the continental United States (US) from 2003 to 2012, and establish a GRACE-based Hydrological Drought Index (GHDI) for drought monitoring. GRACE-inferred TWS exhibits opposite patterns between north and south of the continental US from 2003 to 2012, with the equivalent water thickness increasing from -4.0 to 9.4 cm in the north and decreasing from 4.1 to -6.7 cm in the south. The equivalent water thickness also decreases by -5.1 cm in the middle south in 2006. GHDI is established to represent the extent of GRACE-inferred TWS anomaly departing from its historical average and is calibrated to resemble traditional Palmer Hydrological Drought Index (PHDI) in the continental US. GHDI exhibits good correlations with PHDI in the continental US, indicating its feasibility for drought monitoring. Since GHDI is GRACE-based and has minimal dependence of hydrological parameters on the ground, it can be extended for global drought monitoring, particularly useful for the countries that lack sufficient hydrological monitoring infrastructures on the ground.

  5. State-of-the-art lab chip sensors for environmental water monitoring

    NASA Astrophysics Data System (ADS)

    Jang, Am; Zou, Zhiwei; Kug Lee, Kang; Ahn, Chong H.; Bishop, Paul L.

    2011-03-01

    As a result of increased water demand and water pollution, both surface water and groundwater quantity and quality are of major concern worldwide. In particular, the presence of nutrients and heavy metals in water is a serious threat to human health. The initial step for the effective management of surface waters and groundwater requires regular, continuous monitoring of water quality in terms of contaminant distribution and source identification. Because of this, there is a need for screening and monitoring measurements of these compounds at contaminated areas. However, traditional monitoring techniques are typically still based on laboratory analyses of representative field-collected samples; this necessitates considerable effort and expense, and the sample may change before analysis. Furthermore, currently available equipment is so large that it cannot usually be made portable. Alternatively, lab chip and electrochemical sensing-based portable monitoring systems appear well suited to complement standard analytical methods for a number of environmental monitoring applications. In addition, this type of portable system could save tremendous amounts of time, reagent, and sample if it is installed at contaminated sites such as Superfund sites (the USA's worst toxic waste sites) and Resource Conservation and Recovery Act (RCRA) facilities or in rivers and lakes. Accordingly, state-of-the-art monitoring equipment is necessary for accurate assessments of water quality. This article reviews details on our development of these lab-on-a-chip (LOC) sensors.

  6. Radionuclide Sensors and Systems for Monitoring Technetium-99 and Strontium-90 in Groundwater at the Hanford Site

    NASA Astrophysics Data System (ADS)

    Grate, J. W.; O'Hara, M. J.; Egorov, O. B.; Burge, S. R.

    2009-12-01

    We have developed automated sensor and analyzer devices for detection and monitoring of trace radionuclides in water, using preconcentrating columns and radiometric detection. The preconcentrating minicolumn sensor concept combines selective capture and detection in a single functional unit, where the column contains tens to hundreds of milligrams of selectively sorbent material, and the entire column content is monitored with a radiometric detector. Compared to thin film sensors with a few microgram of sorbent, this approach achieves tremendous preconcentration with efficient mass transport via pumping. Furthermore, in an equilibration-based mode of operation, the preconcentration by the sensor is maximized while eliminating the need for consumable reagents to regenerate the column; it can simply be re-equilibrated. We have demonstrated quantification of radionuclides such as technetium-99 to levels below drinking water standards in an equilibration-based process that produces steady state signals, signal proportional to concentration, and easy re-equilibration to new concentration levels. Alternatively, analyzers can be developed with separate separation and detection units that are fluidically linked. We have demonstrated detection of strontium-90 to levels below drinking water standards by this approach. We are developing autonomous systems for at-site monitoring on the Hanford Site in Washington State, using the fluidic sensor and analyzer methods, with the aim of monitoring natural and accelerated attenuation processes, remediation and barrier performance, and contaminant fluxes in the environment. Figure 1. The strontium-90 monitoring method deployed as part of the Burge Environmental Universal Sensor Platform, shown on the shores of the Columbia River on the Hanford site in Washington State.

  7. [The concept of the development of the state of chemical-analytical environmental monitoring].

    PubMed

    Rakhmanin, Iu A; Malysheva, A G

    2013-01-01

    Chemical and analytical monitoring of the quality of environment is based on the accounting of the trace amount of substances. Considering the multicomponent composition of the environment and running processes of transformation of substances in it, in determination of the danger of the exposure to the chemical pollution of environment on population health there is necessary evaluation based on the simultaneous account of complex of substances really contained in the environment and supplying from different sources. Therefore, in the analytical monitoring of the quality and safety of the environment there is a necessary conversion from the orientation, based on the investigation of specific target substances, to estimation of real complex of compounds.

  8. Checkpoint triggering in a computer system

    DOEpatents

    Cher, Chen-Yong

    2016-09-06

    According to an aspect, a method for triggering creation of a checkpoint in a computer system includes executing a task in a processing node of the computer system and determining whether it is time to read a monitor associated with a metric of the task. The monitor is read to determine a value of the metric based on determining that it is time to read the monitor. A threshold for triggering creation of the checkpoint is determined based on the value of the metric. Based on determining that the value of the metric has crossed the threshold, the checkpoint including state data of the task is created to enable restarting execution of the task upon a restart operation.

  9. Characterization of Sleep Using Bispectral Analysis

    DTIC Science & Technology

    2001-10-25

    approved the Bispectral Index (BIS) - developed by Aspect Medical Systems (Natick, MA) - as a tool for monitoring the depth of anesthesia based on...on the brain [2]. The A-1000 BIS monitor quantifies the level of hypnosis based on frequency, amplitude, and coherence of the EEG. The BIS index...on a scale of 0-100 (100 reflecting the fully conscious or awake state), is a single-number indicator of the level of induced hypnosis . Furthermore

  10. Adaptive video-based vehicle classification technique for monitoring traffic : [executive summary].

    DOT National Transportation Integrated Search

    2015-08-01

    Federal Highway Administration (FHWA) recommends axle-based classification standards to map : passenger vehicles, single unit trucks, and multi-unit trucks, at Automatic Traffic Recorder (ATR) stations : statewide. Many state Departments of Transport...

  11. Review on State-of-the-art in Polymer Based pH Sensors

    PubMed Central

    Korostynska, Olga; Arshak, Khalil; Gill, Edric; Arshak, Arousian

    2007-01-01

    This paper reviews current state-of-the-art methods of measuring pH levels that are based on polymer materials. These include polymer-coated fibre optic sensors, devices with electrodes modified with pH-sensitive polymers, fluorescent pH indicators, potentiometric pH sensors as well as sensors that use combinatory approach for ion concentration monitoring. PMID:28903277

  12. A Pilot System for Environmental Monitoring Through Domestic Animals

    NASA Technical Reports Server (NTRS)

    Schwabe, Calvin W.; Sawyer, John; Martin, Wayne

    1971-01-01

    A pilot system for environmental monitoring is in its early phases of development in Northern California. It is based upon the existing nation wide Federal-State Market Cattle Testing (14CT) program for brucellosis in cattle. This latter program depends upon the collection of blood program at the time of identified cattle. As the cattle Population of California is broadly distributed throughout the state, we intend to utilize these blood samples to biologically monitor the distribution and intensity of selected environmental pollutants. In a 2-year preliminary trial, the feasibility of retrieving, utilizing for a purpose similar to this, and tracing back to their geographic areas of origin of MCT samples have been demonstrated.

  13. Best Practices for the Application of Functional Near Infrared Spectroscopy to Operator State Sensing

    NASA Technical Reports Server (NTRS)

    Harrivel, Angela R.; Hylton, Alan G.; Hearn, Tristan A.

    2012-01-01

    Functional Near Infrared Spectroscopy (fNIRS) is an emerging neuronal measurement technique with many advantages for application in operational and training contexts. Instrumentation and protocol improvements, however, are required to obtain useful signals and produce expeditiously self-applicable, comfortable and unobtrusive headgear. Approaches for improving the validity and reliability of fNIRS data for the purpose of sensing the mental state of commercial aircraft operators are identified, and an exemplary system design for attentional state monitoring is outlined. Intelligent flight decks of the future can be responsive to state changes to optimally support human performance. Thus, the identification of cognitive performance decrement, such as lapses in operator attention, may be used to predict and avoid error-prone states. We propose that attentional performance may be monitored with fNIRS through the quantification of hemodynamic activations in cortical regions which are part of functionally-connected attention and resting state networks. Activations in these regions have been shown to correlate with behavioral performance and task engagement. These regions lie beneath superficial tissue in head regions beyond the forehead. Headgear development is key to reliably and robustly accessing locations beyond the hair line to measure functionally-connected networks across the whole head. Human subject trials using both fNIRS and functional Magnetic Resonance Imaging (fMRI) will be used to test this system. Data processing employs Support Vector Machines for state classification based on the fNIRS signals. If accurate state classification is achieved based on sensed activation patterns, fNIRS will be shown to be useful for monitoring attentional performance.

  14. Electronic Monitoring of Sex Offenders: Identifying Unanticipated Consequences and Implications

    ERIC Educational Resources Information Center

    Demichele, Matthew; Payne, Brian K.; Button, Deeanna M.

    2008-01-01

    In recent years, increased legislative attention has been given to strategies to supervise sex offenders in the community. Among other policies, several states have passed laws calling for the use of electronic monitoring technologies to supervise sex offenders in the community. When initially developed, this community-based sanction was designed…

  15. Status and future of the forest health indicators program of the USA

    Treesearch

    Christopher William Woodall; Michael C. Amacher; William A. Bechtold; John W. Coulston; Sarah Jovan; Charles H. Perry; KaDonna C. Randolph; Beth K. Schulz; Gretchen C. Smith; Susan Will-Wolf

    2011-01-01

    For two decades, the US Department of Agriculture, Forest Service, has been charged with implementing a nationwide field-based forest health monitoring effort. Given its extensive nature, the monitoring program has been gradually implemented across forest health indicators and inventoried states. Currently, the Forest Service's Forest Inventory and Analysis...

  16. Children's Ability to Distinguish between Memories from Multiple Sources: Implications for the Quality and Accuracy of Eyewitness Statements.

    ERIC Educational Resources Information Center

    Roberts, Kim P.

    2002-01-01

    Outlines five perspectives addressing alternate aspects of the development of children's source monitoring: source-monitoring theory, fuzzy-trace theory, schema theory, person-based perspective, and mental-state reasoning model. Discusses research areas with relation to forensic developmental psychology: agent identity, prospective processing,…

  17. Evaluation of corn genotypes for drought and heat stress tolerance using physiological measurements and a microcontroller-based monitoring system

    USDA-ARS?s Scientific Manuscript database

    Moisture deficit accompanied by high temperature are major abiotic stress factors that affect corn production in the southern United States, particularly during the reproductive stage of the plant. In evaluating plants for environmental stress tolerance, it is important to monitor changes in their ...

  18. Determination of moisture deficit and heat stress tolerance in corn using physiological measurements and a low-cost microcontroller-based monitoring system

    USDA-ARS?s Scientific Manuscript database

    In the southern United States, corn production encounters moisture deficit coupled with high temperature stress, particularly during the reproductive stage of the plant. In evaluating plants for environmental stress tolerance, it is important to monitor changes in their physical environment under na...

  19. On-line Monitoring for Cutting Tool Wear Condition Based on the Parameters

    NASA Astrophysics Data System (ADS)

    Han, Fenghua; Xie, Feng

    2017-07-01

    In the process of cutting tools, it is very important to monitor the working state of the tools. On the basis of acceleration signal acquisition under the constant speed, time domain and frequency domain analysis of relevant indicators monitor the online of tool wear condition. The analysis results show that the method can effectively judge the tool wear condition in the process of machining. It has certain application value.

  20. Post-licensure rapid immunization safety monitoring program (PRISM) data characterization.

    PubMed

    Baker, Meghan A; Nguyen, Michael; Cole, David V; Lee, Grace M; Lieu, Tracy A

    2013-12-30

    The Post-Licensure Rapid Immunization Safety Monitoring (PRISM) program is the immunization safety monitoring component of FDA's Mini-Sentinel project, a program to actively monitor the safety of medical products using electronic health information. FDA sought to assess the surveillance capabilities of this large claims-based distributed database for vaccine safety surveillance by characterizing the underlying data. We characterized data available on vaccine exposures in PRISM, estimated how much additional data was gained by matching with select state and local immunization registries, and compared vaccination coverage estimates based on PRISM data with other available data sources. We generated rates of computerized codes representing potential health outcomes relevant to vaccine safety monitoring. Standardized algorithms including ICD-9 codes, number of codes required, exclusion criteria and location of the encounter were used to obtain the background rates. The majority of the vaccines routinely administered to infants, children, adolescents and adults were well captured by claims data. Immunization registry data in up to seven states comprised between 5% and 9% of data for all vaccine categories with the exception of 10% for hepatitis B and 3% and 4% for rotavirus and zoster respectively. Vaccination coverage estimates based on PRISM's computerized data were similar to but lower than coverage estimates from the National Immunization Survey and Healthcare Effectiveness Data and Information Set. For the 25 health outcomes of interest studied, the rates of potential outcomes based on ICD-9 codes were generally higher than rates described in the literature, which are typically clinically confirmed cases. PRISM program's data on vaccine exposures and health outcomes appear complete enough to support robust safety monitoring. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Damage/fault diagnosis in an operating wind turbine under uncertainty via a vibration response Gaussian mixture random coefficient model based framework

    NASA Astrophysics Data System (ADS)

    Avendaño-Valencia, Luis David; Fassois, Spilios D.

    2017-07-01

    The study focuses on vibration response based health monitoring for an operating wind turbine, which features time-dependent dynamics under environmental and operational uncertainty. A Gaussian Mixture Model Random Coefficient (GMM-RC) model based Structural Health Monitoring framework postulated in a companion paper is adopted and assessed. The assessment is based on vibration response signals obtained from a simulated offshore 5 MW wind turbine. The non-stationarity in the vibration signals originates from the continually evolving, due to blade rotation, inertial properties, as well as the wind characteristics, while uncertainty is introduced by random variations of the wind speed within the range of 10-20 m/s. Monte Carlo simulations are performed using six distinct structural states, including the healthy state and five types of damage/fault in the tower, the blades, and the transmission, with each one of them characterized by four distinct levels. Random vibration response modeling and damage diagnosis are illustrated, along with pertinent comparisons with state-of-the-art diagnosis methods. The results demonstrate consistently good performance of the GMM-RC model based framework, offering significant performance improvements over state-of-the-art methods. Most damage types and levels are shown to be properly diagnosed using a single vibration sensor.

  2. A wearable physiological sensor suite for unobtrusive monitoring of physiological and cognitive state.

    PubMed

    Matthews, Robert; McDonald, Neil J; Hervieux, Paul; Turner, Peter J; Steindorf, Martin A

    2007-01-01

    This paper describes an integrated Physiological Sensor Suite (PSS) based upon QUASAR's innovative non-invasive bioelectric sensor technologies that will provide, for the first time, a fully integrated, noninvasive methodology for physiological sensing. The PSS currently under development at QUASAR is a state-of-the-art multimodal array of sensors that, along with an ultra-low power personal area wireless network, form a comprehensive body-worn system for real-time monitoring of subject physiology and cognitive status. Applications of the PSS extend from monitoring of military personnel to long-term monitoring of patients diagnosed with cardiac or neurological conditions. Results for side-by-side comparisons between QUASAR's biosensor technology and conventional wet electrodes are presented. The signal fidelity for bioelectric measurements using QUASAR's biosensors is comparable to that for wet electrodes.

  3. In-line mixing states monitoring of suspensions using ultrasonic reflection technique.

    PubMed

    Zhan, Xiaobin; Yang, Yili; Liang, Jian; Zou, Dajun; Zhang, Jiaqi; Feng, Luyi; Shi, Tielin; Li, Xiwen

    2016-02-01

    Based on the measurement of echo signal changes caused by different concentration distributions in the mixing process, a simple ultrasonic reflection technique is proposed for in-line monitoring of the mixing states of suspensions in an agitated tank in this study. The relation between the echo signals and the concentration of suspensions is studied, and the mixing process of suspensions is tracked by in-line measurement of ultrasonic echo signals using two ultrasonic sensors. Through the analysis of echo signals over time, the mixing states of suspensions are obtained, and the homogeneity of suspensions is quantified. With the proposed technique, the effects of impeller diameter and agitation speed on the mixing process are studied, and the optimal agitation speed and the minimum mixing time to achieve the maximum homogeneity are acquired under different operating conditions and design parameters. The proposed technique is stable and feasible and shows great potential for in-line monitoring of mixing states of suspensions. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. State of the Art and Challenges of Radio Spectrum Monitoring in China

    NASA Astrophysics Data System (ADS)

    Lu, Q. N.; Yang, J. J.; Jin, Z. Y.; Chen, D. Z.; Huang, M.

    2017-10-01

    This paper provides an overview of radio spectrum monitoring in China. First, research background, the motivation is described and then train of thought, the prototype system, and the accomplishments are presented. Current radio spectrum monitoring systems are man-machine communication systems, which are unable to detect and process the radio interference automatically. In order to realize intelligent radio monitoring and spectrum management, we proposed an Internet of Things-based spectrum sensing approach using information system architecture and implemented a pilot program; then some very interesting results were obtained.

  5. Machine-vision-based roadway health monitoring and assessment : development of a shape-based pavement-crack-detection approach.

    DOT National Transportation Integrated Search

    2016-01-01

    State highway agencies (SHAs) routinely employ semi-automated and automated image-based methods for network-level : pavement-cracking data collection, and there are different types of pavement-cracking data collected by SHAs for reporting and : manag...

  6. State medicaid coverage for tobacco cessation treatments and barriers to coverage - United States, 2008-2014.

    PubMed

    Singleterry, Jennifer; Jump, Zach; Lancet, Elizabeth; Babb, Stephen; MacNeil, Allison; Zhang, Lei

    2014-03-28

    Medicaid enrollees have a higher smoking prevalence than the general population (30.1% of adult Medicaid enrollees aged <65 years smoke, compared with 18.1% of U.S. adults of all ages), and smoking-related disease is a major contributor to increasing Medicaid costs. Evidence-based cessation treatments exist, including individual, group, and telephone counseling and seven Food and Drug Administration (FDA)-approved medications. A Healthy People 2020 objective (TU-8) calls for all state Medicaid programs to adopt comprehensive coverage of these treatments. However, most states do not provide such coverage. To monitor trends in state Medicaid cessation coverage, the American Lung Association collected data on coverage of all evidence-based cessation treatments except telephone counseling by state Medicaid programs (for a total of nine treatments), as well as data on barriers to accessing these treatments (such as charging copayments or limiting the number of covered quit attempts) from December 31, 2008, to January 31, 2014. As of 2014, all 50 states and the District of Columbia cover some cessation treatments for at least some Medicaid enrollees, but only seven states cover all nine treatments for all enrollees. Common barriers in 2014 include duration limits (40 states for at least some populations or plans), annual limits (37 states), prior authorization requirements (36 states), and copayments (35 states). Comparing 2008 with 2014, 33 states added treatments to coverage, and 22 states removed treatments from coverage; 26 states removed barriers to accessing treatments, and 29 states added new barriers. The evidence from previous analyses suggests that states could reduce smoking-related morbidity and health-care costs among Medicaid enrollees by providing Medicaid coverage for all evidence-based cessation treatments, removing all barriers to accessing these treatments, promoting the coverage, and monitoring its use.

  7. Fast online simultaneous monitoring of PMD and chromatic dispersion with reduced polarization dependent gain

    NASA Astrophysics Data System (ADS)

    Ning, G.; Shum, P.; Aditya, S.; Gong, Yandong

    2006-09-01

    We use the expression relating the output state of polarization and PMD vector. Based on this expression we get the power fading including first-order PMD and chromatic dispersion, which is dependent on the angle of precession of output state of polarization around the PMD vector. From the expression for power fading, we get the average power penalty for chromatic dispersion and PMD. We propose a novel and fast PMD and chromatic dispersion monitoring technology. Measured results agree well with theoretical analysis.

  8. The Monitoring System of the Operating State of the Gear Wheels of the Torque Multiplier of the Desalination Plant Steam Generator

    NASA Astrophysics Data System (ADS)

    Danilin, A. I.; Neverov, V. V.; Danilin, S. A.; Shimanov, A. A.; Tsapkova, A. B.

    2018-01-01

    The article describes a noncontact operational control method based on the processing of a microwave signal reflected from the controlled teeth of the wheel. In this paper describes the influence of wear patterns on the characteristic information parameters of the analyzed signals. The block diagram in section 3 shows the experimental system for monitoring the operating state of the gear wheels of the steam compressor torque multiplier. The design of the primary converter is briefly described.

  9. Southeast regional and state trends in anuran occupancy from calling survey data (2001-2013) from the North American Amphibian Monitoring Program

    USGS Publications Warehouse

    Villena Carpio, Oswaldo; Royle, J. Andrew; Weir, Linda; Foreman, Tasha M.; Gazenski, Kimberly D.; Campbell Grant, Evan H.

    2016-01-01

    We present the first regional trends in anuran occupancy for eight states of the southeastern United States, based on 13 y (2001–2013) of North American Amphibian Monitoring Program (NAAMP) data. The NAAMP is a longterm monitoring program in which observers collect anuran calling observation data at fixed locations along random roadside routes. We assessed occupancy trends for 14 species. We found weak evidence for a general regional pattern of decline in calling anurans within breeding habitats along roads in the southeastern USA over the last 13 y. Two species had positive regional trends with 95% posterior intervals that did not include zero (Hyla cinerea and Pseudacris crucifer). Five other species also showed an increasing trend, while eight species showed a declining trend, although 95% posterior intervals included zero. We also assessed state level trends for 107 species/state combinations. Of these, 14 showed a significant decline and 12 showed a significant increase in occupancy (i.e., credible intervals did not include zero for these 26 trends).

  10. A Hybrid Generalized Hidden Markov Model-Based Condition Monitoring Approach for Rolling Bearings

    PubMed Central

    Liu, Jie; Hu, Youmin; Wu, Bo; Wang, Yan; Xie, Fengyun

    2017-01-01

    The operating condition of rolling bearings affects productivity and quality in the rotating machine process. Developing an effective rolling bearing condition monitoring approach is critical to accurately identify the operating condition. In this paper, a hybrid generalized hidden Markov model-based condition monitoring approach for rolling bearings is proposed, where interval valued features are used to efficiently recognize and classify machine states in the machine process. In the proposed method, vibration signals are decomposed into multiple modes with variational mode decomposition (VMD). Parameters of the VMD, in the form of generalized intervals, provide a concise representation for aleatory and epistemic uncertainty and improve the robustness of identification. The multi-scale permutation entropy method is applied to extract state features from the decomposed signals in different operating conditions. Traditional principal component analysis is adopted to reduce feature size and computational cost. With the extracted features’ information, the generalized hidden Markov model, based on generalized interval probability, is used to recognize and classify the fault types and fault severity levels. Finally, the experiment results show that the proposed method is effective at recognizing and classifying the fault types and fault severity levels of rolling bearings. This monitoring method is also efficient enough to quantify the two uncertainty components. PMID:28524088

  11. Functionality of empirical model-based predictive analytics for the early detection of hemodynamic instabilty.

    PubMed

    Summers, Richard L; Pipke, Matt; Wegerich, Stephan; Conkright, Gary; Isom, Kristen C

    2014-01-01

    Background. Monitoring cardiovascular hemodynamics in the modern clinical setting is a major challenge. Increasing amounts of physiologic data must be analyzed and interpreted in the context of the individual patient’s pathology and inherent biologic variability. Certain data-driven analytical methods are currently being explored for smart monitoring of data streams from patients as a first tier automated detection system for clinical deterioration. As a prelude to human clinical trials, an empirical multivariate machine learning method called Similarity-Based Modeling (“SBM”), was tested in an In Silico experiment using data generated with the aid of a detailed computer simulator of human physiology (Quantitative Circulatory Physiology or “QCP”) which contains complex control systems with realistic integrated feedback loops. Methods. SBM is a kernel-based, multivariate machine learning method that that uses monitored clinical information to generate an empirical model of a patient’s physiologic state. This platform allows for the use of predictive analytic techniques to identify early changes in a patient’s condition that are indicative of a state of deterioration or instability. The integrity of the technique was tested through an In Silico experiment using QCP in which the output of computer simulations of a slowly evolving cardiac tamponade resulted in progressive state of cardiovascular decompensation. Simulator outputs for the variables under consideration were generated at a 2-min data rate (0.083Hz) with the tamponade introduced at a point 420 minutes into the simulation sequence. The functionality of the SBM predictive analytics methodology to identify clinical deterioration was compared to the thresholds used by conventional monitoring methods. Results. The SBM modeling method was found to closely track the normal physiologic variation as simulated by QCP. With the slow development of the tamponade, the SBM model are seen to disagree while the simulated biosignals in the early stages of physiologic deterioration and while the variables are still within normal ranges. Thus, the SBM system was found to identify pathophysiologic conditions in a timeframe that would not have been detected in a usual clinical monitoring scenario. Conclusion. In this study the functionality of a multivariate machine learning predictive methodology that that incorporates commonly monitored clinical information was tested using a computer model of human physiology. SBM and predictive analytics were able to differentiate a state of decompensation while the monitored variables were still within normal clinical ranges. This finding suggests that the SBM could provide for early identification of a clinical deterioration using predictive analytic techniques. predictive analytics, hemodynamic, monitoring.

  12. Clinical Electroencephalography for Anesthesiologists Part I: Background and Basic Signatures

    PubMed Central

    Purdon, Patrick L.; Sampson, Aaron; Pavone, Kara J.; Brown, Emery N.

    2015-01-01

    The widely used electroencephalogram-based indices for depth-of-anesthesia monitoring assume that the same index value defines the same level of unconsciousness for all anesthetics. In contrast, we show that different anesthetics act at different molecular targets and neural circuits to produce distinct brain states that are readily visible in the electroencephalogram. We present a two-part review to educate anesthesiologists on use of the unprocessed electroencephalogram and its spectrogram to track the brain states of patients receiving anesthesia care. Here in Part I, we review the biophysics of the electroencephalogram, and the neurophysiology of the electroencephalogram signatures of three intravenous anesthetics: propofol, dexmedetomidine and ketamine; and four inhaled anesthetics: sevoflurane, isoflurane, desflurane and nitrous oxide. Later in Part II, we discuss patient management using these electroencephalogram signatures. Use of these electroencephalogram signatures suggests a neurophysiologically-based paradigm for brain-state monitoring of patients receiving anesthesia care. PMID:26275092

  13. Advances in on-line drinking water quality monitoring and early warning systems.

    PubMed

    Storey, Michael V; van der Gaag, Bram; Burns, Brendan P

    2011-01-01

    Significant advances have been made in recent years in technologies to monitor drinking water quality for source water protection, treatment operations, and distribution system management, in the event of accidental (or deliberate) contamination. Reports prepared through the Global Water Research Coalition (GWRC) and United States Environment Protection Agency (USEPA) agree that while many emerging technologies show promise, they are still some years from being deployed on a large scale. Further underpinning their viability is a need to interpret data in real time and implement a management strategy in response. This review presents the findings of an international study into the state of the art in this field. These results are based on visits to leading water utilities, research organisations and technology providers throughout Europe, the United States and Singapore involved in the development and deployment of on-line monitoring technology for the detection of contaminants in water. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Smoothing-based compressed state Kalman filter for joint state-parameter estimation: Applications in reservoir characterization and CO2 storage monitoring

    NASA Astrophysics Data System (ADS)

    Li, Y. J.; Kokkinaki, Amalia; Darve, Eric F.; Kitanidis, Peter K.

    2017-08-01

    The operation of most engineered hydrogeological systems relies on simulating physical processes using numerical models with uncertain parameters and initial conditions. Predictions by such uncertain models can be greatly improved by Kalman-filter techniques that sequentially assimilate monitoring data. Each assimilation constitutes a nonlinear optimization, which is solved by linearizing an objective function about the model prediction and applying a linear correction to this prediction. However, if model parameters and initial conditions are uncertain, the optimization problem becomes strongly nonlinear and a linear correction may yield unphysical results. In this paper, we investigate the utility of one-step ahead smoothing, a variant of the traditional filtering process, to eliminate nonphysical results and reduce estimation artifacts caused by nonlinearities. We present the smoothing-based compressed state Kalman filter (sCSKF), an algorithm that combines one step ahead smoothing, in which current observations are used to correct the state and parameters one step back in time, with a nonensemble covariance compression scheme, that reduces the computational cost by efficiently exploring the high-dimensional state and parameter space. Numerical experiments show that when model parameters are uncertain and the states exhibit hyperbolic behavior with sharp fronts, as in CO2 storage applications, one-step ahead smoothing reduces overshooting errors and, by design, gives physically consistent state and parameter estimates. We compared sCSKF with commonly used data assimilation methods and showed that for the same computational cost, combining one step ahead smoothing and nonensemble compression is advantageous for real-time characterization and monitoring of large-scale hydrogeological systems with sharp moving fronts.

  15. Interagency Collaborators Develop and Implement ForWarn, a National, Near Real Time Forest Monitoring Tool

    NASA Technical Reports Server (NTRS)

    Underwood, Lauren

    2013-01-01

    ForWarn is a satellite-based forest monitoring tool that is being used to detect and monitor disturbances to forest conditions and forest health. It has been developed through the synergistic efforts, capabilities and contributions of four federal agencies, including the US Forest Service Eastern Forest and Western Wildland Environmental Threat Assessment Centers, NASA Stennis Space Center (SSC), Department of Energy's (DOE) Oak Ridge National Laboratory (ORNL) and US Geological Survey Earth (USGS) Earth Research Observation System (EROS), as well as university partners, including the University of North Carolina Asheville's National Environmental Modeling and Analysis Center (NEMAC). This multi-organizational partnership is key in producing a unique, path finding near real-time forest monitoring system that is now used by many federal, state and local government end-users. Such a system could not have been produced so effectively by any of these groups on their own. The forests of the United States provide many societal values and benefits, ranging from ecological, economic, cultural, to recreational. Therefore, providing a reliable and dependable forest and other wildland monitoring system is important to ensure the continued health, productivity, sustainability and prudent use of our Nation's forests and forest resources. ForWarn does this by producing current health indicator maps of our nation's forests based on satellite data from NASA's MODIS (Moderate Resolution Imaging Spectroradiometer) sensors. Such a capability can provide noteworthy value, cost savings and significant impact at state and local government levels because at those levels of government, once disturbances are evident and cause negative impacts, a response must be carried out. The observations that a monitoring system like ForWarn provide, can also contribute to a much broader-scale understanding of vegetation disturbances.

  16. The Department of Defense Critical Technologies Plan for the Committees on Armed Services United States Congress

    DTIC Science & Technology

    1991-05-01

    health monitoring , and detection avoidance. Similar to the im!proved ca abi!ities of electr,-.ics with the introduction of the integrated circuit...Sensors not needing to emit signals to detect targets, monitor the environment, or determine 1he status or condition of equipment. 9 Signal & Image... monitoring , and detection avoidance. Photonics R &D will significantly affect the high-speed computing defense iadustrial base through the development of

  17. Classical Methods for Frequency-Based Equations of State

    DTIC Science & Technology

    2007-03-01

    AH80 5e. TASK NUMBER 6. AUTHOR( S ) Steven B. Segletes 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) U.S. Army...SPONSOR/MONITOR’S ACRONYM( S ) 9. SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 11. SPONSOR/MONITOR’S REPORT NUMBER( S ) 12...which relates changes in pressure p and energy E at constant volume V [eqn (1)], and specific heat, which relates chang~ s in energy and temperature

  18. EMIR: a configurable hierarchical system for event monitoring and incident response

    NASA Astrophysics Data System (ADS)

    Deich, William T. S.

    2014-07-01

    The Event Monitor and Incident Response system (emir) is a flexible, general-purpose system for monitoring and responding to all aspects of instrument, telescope, and general facility operations, and has been in use at the Automated Planet Finder telescope for two years. Responses to problems can include both passive actions (e.g. generating alerts) and active actions (e.g. modifying system settings). Emir includes a monitor-and-response daemon, plus graphical user interfaces and text-based clients that automatically configure themselves from data supplied at runtime by the daemon. The daemon is driven by a configuration file that describes each condition to be monitored, the actions to take when the condition is triggered, and how the conditions are aggregated into hierarchical groups of conditions. Emir has been implemented for the Keck Task Library (KTL) keyword-based systems used at Keck and Lick Observatories, but can be readily adapted to many event-driven architectures. This paper discusses the design and implementation of Emir , and the challenges in balancing the competing demands for simplicity, flexibility, power, and extensibility. Emir 's design lends itself well to multiple purposes, and in addition to its core monitor and response functions, it provides an effective framework for computing running statistics, aggregate values, and summary state values from the primitive state data generated by other subsystems, and even for creating quick-and-dirty control loops for simple systems.

  19. The review of dynamic monitoring technology for crop growth

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-wei; Chen, Huai-liang; Zou, Chun-hui; Yu, Wei-dong

    2010-10-01

    In this paper, crop growth monitoring methods are described elaborately. The crop growth models, Netherlands-Wageningen model system, the United States-GOSSYM model and CERES models, Australia APSIM model and CCSODS model system in China, are introduced here more focus on the theories of mechanism, applications, etc. The methods and application of remote sensing monitoring methods, which based on leaf area index (LAI) and biomass were proposed by different scholars at home and abroad, are highly stressed in the paper. The monitoring methods of remote sensing coupling with crop growth models are talked out at large, including the method of "forced law" which using remote sensing retrieval state parameters as the crop growth model parameters input, and then to enhance the dynamic simulation accuracy of crop growth model and the method of "assimilation of Law" which by reducing the gap difference between the value of remote sensing retrieval and the simulated values of crop growth model and thus to estimate the initial value or parameter values to increasing the simulation accuracy. At last, the developing trend of monitoring methods are proposed based on the advantages and shortcomings in previous studies, it is assured that the combination of remote sensing with moderate resolution data of FY-3A, MODIS, etc., crop growth model, "3S" system and observation in situ are the main methods in refinement of dynamic monitoring and quantitative assessment techniques for crop growth in future.

  20. An integrated study of earth resources in the State of California based on Skylab and supporting aircraft data. [environmental monitoring, tectonics, ecology, and forest management in California

    NASA Technical Reports Server (NTRS)

    Colwell, R. N. (Principal Investigator)

    1974-01-01

    Skylab data has been used: (1) as an aid to resource management in Northern California; (2) to assess and monitor change in the Southern California environment; and (3) for resource inventory and analysis of The California Desert Program.

  1. A distributed cloud-based cyberinfrastructure framework for integrated bridge monitoring

    NASA Astrophysics Data System (ADS)

    Jeong, Seongwoon; Hou, Rui; Lynch, Jerome P.; Sohn, Hoon; Law, Kincho H.

    2017-04-01

    This paper describes a cloud-based cyberinfrastructure framework for the management of the diverse data involved in bridge monitoring. Bridge monitoring involves various hardware systems, software tools and laborious activities that include, for examples, a structural health monitoring (SHM), sensor network, engineering analysis programs and visual inspection. Very often, these monitoring systems, tools and activities are not coordinated, and the collected information are not shared. A well-designed integrated data management framework can support the effective use of the data and, thereby, enhance bridge management and maintenance operations. The cloud-based cyberinfrastructure framework presented herein is designed to manage not only sensor measurement data acquired from the SHM system, but also other relevant information, such as bridge engineering model and traffic videos, in an integrated manner. For the scalability and flexibility, cloud computing services and distributed database systems are employed. The information stored can be accessed through standard web interfaces. For demonstration, the cyberinfrastructure system is implemented for the monitoring of the bridges located along the I-275 Corridor in the state of Michigan.

  2. The Rendezvous Monitoring Display Capabilities of the Rendezvous and Proximity Operations Program

    NASA Technical Reports Server (NTRS)

    Brazzel, Jack; Spehar, Pete; Clark, Fred; Foster, Chris; Eldridge, Erin

    2013-01-01

    The Rendezvous and Proximity Operations Program (RPOP) is a laptop computer- based relative navigation tool and piloting aid that was developed during the Space Shuttle program. RPOP displays a graphical representation of the relative motion between the target and chaser vehicles in a rendezvous, proximity operations and capture scenario. After being used in over 60 Shuttle rendezvous missions, some of the RPOP display concepts have become recognized as a minimum standard for cockpit displays for monitoring the rendezvous task. To support International Space Station (ISS) based crews in monitoring incoming visiting vehicles, RPOP has been modified to allow crews to compare the Cygnus visiting vehicle s onboard navigated state to processed range measurements from an ISS-based, crew-operated Hand Held Lidar sensor. This paper will discuss the display concepts of RPOP that have proven useful in performing and monitoring rendezvous and proximity operations.

  3. Quantification of mammalian tumor cell state plasticity with digital holographic cytometry

    NASA Astrophysics Data System (ADS)

    Hejna, Miroslav; Jorapur, Aparna; Zhang, Yuntian; Song, Jun S.; Judson, Robert L.

    2018-02-01

    Individual cells within isogenic tumor populations can exhibit distinct cellular morphologies, behaviors, and molecular profiles. Cell state plasticity refers to the propensity of a cell to transition between these different morphologies and behaviors. Elevation of cell state plasticity is thought to contribute to critical stages in tumor evolution, including metastatic dissemination and acquisition of therapeutic resistance. However, methods for quantifying general plasticity in mammalian cells remain limited. Working with a HoloMonitor M4 digital holographic cytometry platform, we have established a machine learning-based pipeline for high accuracy and label-free classification of adherent cells. We use twenty-six morphological and optical density-derived features for label-free identification of cell state in heterogeneous cultures. The system is housed completely within a mammalian cell incubator, permitting the monitoring of changes in cell state over time. Here we present an application of our approach for studying cell state plasticity. Human melanoma cell lines of known metastatic potential were monitored in standard growth conditions. The rate of feature change was quantified for each individual cell in the populations. We observed that cells of higher metastatic potential exhibited more rapid fluctuation of cell state in homeostatic conditions. The approach we demonstrate will be advantageous for further investigations into the factors that influence cell state plasticity.

  4. State resource management and role of remote sensing. [California

    NASA Technical Reports Server (NTRS)

    Johnson, H. D.

    1981-01-01

    Remote sensing by satellite can provide valuable information to state officials when making decisions regarding resources management. Portions of California's investment for Prosperity program which seem likely candidates for remote sensing include: (1) surveying vegetation type, age, and density in forests and wildlife habitats; (2) controlling fires through chaparal management; (3) monitoring wetlands and measuring ocean biomass; (4) eliminating ground water overdraught; (5) locating crops in overdraught areas, assessing soil erosion and the areas of poorly drained soils and those affected by salt; (6) monitoring coastal lands and resources; (7) changes in landscapes for recreational purposes; (8) inventorying irrigated lands; (9) classifying ground cover; (10) monitoring farmland conversion; and (11) supplying data for a statewide computerized farmlands data base.

  5. Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter

    NASA Astrophysics Data System (ADS)

    Dong, Hancheng; Jin, Xiaoning; Lou, Yangbing; Wang, Changhong

    2014-12-01

    Lithium-ion batteries are used as the main power source in many electronic and electrical devices. In particular, with the growth in battery-powered electric vehicle development, the lithium-ion battery plays a critical role in the reliability of vehicle systems. In order to provide timely maintenance and replacement of battery systems, it is necessary to develop a reliable and accurate battery health diagnostic that takes a prognostic approach. Therefore, this paper focuses on two main methods to determine a battery's health: (1) Battery State-of-Health (SOH) monitoring and (2) Remaining Useful Life (RUL) prediction. Both of these are calculated by using a filter algorithm known as the Support Vector Regression-Particle Filter (SVR-PF). Models for battery SOH monitoring based on SVR-PF are developed with novel capacity degradation parameters introduced to determine battery health in real time. Moreover, the RUL prediction model is proposed, which is able to provide the RUL value and update the RUL probability distribution to the End-of-Life cycle. Results for both methods are presented, showing that the proposed SOH monitoring and RUL prediction methods have good performance and that the SVR-PF has better monitoring and prediction capability than the standard particle filter (PF).

  6. A portable battery-powered flow injection monitor for the in situ analysis of nitrate in natural waters

    PubMed Central

    Blundell, N. J.; Hopkins, A.; Worsfold, P. J.; Casey, H.

    1993-01-01

    The design and performance of a portable, automated flow injection (FI)-based photometric monitor are described. The system is controlled by an in-house microcomputer system that enables the monitor (including a solid state detector) to operate from a 12 V battery supply. The monitor uses the cadmium reduction/diazotization method to analyse for nitrate with a linear range of 0 to 12 mg l-1 and a limit of detection of 0.05 mg l-1 (NO3-N). The hardware and software design, monitor performance and results obtained during unattended operation are presented. PMID:18924971

  7. Indoor location-aware medical systems for smart homecare and telehealth monitoring: state-of-the-art.

    PubMed

    Santoso, Fendy; Redmond, Stephen J

    2015-10-01

    This paper presents a comprehensive literature review of current progress in the application of state-of-the-art indoor positioning systems for telecare and telehealth monitoring. This review is the first in the literature that provides a comprehensive discussion on how existing wireless indoor positioning systems can benefit the development of home-based care systems. More specifically, this review provides an in-depth comparative study of how both system users and medical practitioners can get benefit from indoor positioning technologies; e.g. for real-time monitoring of patients suffering chronic cardiovascular conditions, general monitoring of activities of daily living (ADLs), fall detection systems for the elderly as well as indoor navigation systems for those suffering from visual impairments. Furthermore, it also details various aspects worth considering when choosing a certain technology for a specific healthcare application; e.g. the spatial precision demanded by the application, trade-offs between unobtrusiveness and complexity, and issues surrounding compliance and adherence with the use of wearable tags. Beyond the current state-of-the-art, this review also rigorously discusses several research opportunities and the challenges associated with each.

  8. Monitoring the Impact of Testing and Evaluation Innovations Project: State Activity and Interest Concerning Performance-Based Assessment.

    ERIC Educational Resources Information Center

    Center for Research on Evaluation, Standards, and Student Testing, Los Angeles, CA.

    Information was gathered about current state interest, activity, and concerns related to performance assessment for students. The Center for Research on Evaluation, Standards, and Student Testing of the University of California (Los Angeles) conducted telephone interviews with directors of testing in each of the 50 states in the spring of 1990.…

  9. Statistical strategy for inventorying and monitoring the ecosystem resources of the Mexican States of Jalisco and Colima at multiple scales and resolution levels

    Treesearch

    H. T. Schreuder; M. S. Williams; C. Aguirre-Bravo; P. L. Patterson

    2003-01-01

    The sampling strategy is presented for the initial phase of the natural resources pilot project in the Mexican States of Jalisco and Colima. The sampling design used is ground-based cluster sampling with poststratification based on Landsat Thematic Mapper imagery. The data collected will serve as a basis for additional data collection, mapping, and spatial modeling...

  10. 42 CFR 488.422 - State monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false State monitoring. 488.422 Section 488.422 Public... Long-Term Care Facilities with Deficiencies § 488.422 State monitoring. (a) A State monitor— (1... deficiencies on the last 3 consecutive standard surveys. (c) State monitoring is discontinued when— (1) The...

  11. Entrepreneurship Development and Business Climate of Kazakhstan

    ERIC Educational Resources Information Center

    Kydyrova, Zhamilya Sh.; Satymbekova, Katira B.; Kerimbek, Galymzhan E.; Imanbayev?, Zauresh O.; Saparbayev?, Saule S.; Nurgalieva, Ainash A.; Ilyas, Akylbek A.; Zhalbinova, Saule K.; Jrauovai, Kuralay S.; Kanafina, Ainura T.

    2016-01-01

    The goal is to explore the state of development of entrepreneurship and business climate for the formation of a clear mechanism of state support for small and average business in conditions of economy modernization. A special science-based methodology was developed to monitor the condition of entrepreneurship development and business climate in…

  12. Least mean square fourth based microgrid state estimation algorithm using the internet of things technology.

    PubMed

    Rana, Md Masud

    2017-01-01

    This paper proposes an innovative internet of things (IoT) based communication framework for monitoring microgrid under the condition of packet dropouts in measurements. First of all, the microgrid incorporating the renewable distributed energy resources is represented by a state-space model. The IoT embedded wireless sensor network is adopted to sense the system states. Afterwards, the information is transmitted to the energy management system using the communication network. Finally, the least mean square fourth algorithm is explored for estimating the system states. The effectiveness of the developed approach is verified through numerical simulations.

  13. School closure as an influenza mitigation strategy: how variations in legal authority and plan criteria can alter the impact.

    PubMed

    Potter, Margaret A; Brown, Shawn T; Cooley, Phillip C; Sweeney, Patricia M; Hershey, Tina B; Gleason, Sherrianne M; Lee, Bruce Y; Keane, Christopher R; Grefenstette, John; Burke, Donald S

    2012-11-14

    States' pandemic influenza plans and school closure statutes are intended to guide state and local officials, but most faced a great deal of uncertainty during the 2009 influenza H1N1 epidemic. Questions remained about whether, when, and for how long to close schools and about which agencies and officials had legal authority over school closures. This study began with analysis of states' school-closure statutes and pandemic influenza plans to identify the variations among them. An agent-based model of one state was used to represent as constants a population's demographics, commuting patterns, work and school attendance, and community mixing patterns while repeated simulations explored the effects of variations in school closure authority, duration, closure thresholds, and reopening criteria. The results show no basis on which to justify statewide rather than school-specific or community-specific authority for school closures. Nor do these simulations offer evidence to require school closures promptly at the earliest stage of an epidemic. More important are criteria based on monitoring of local case incidence and on authority to sustain closure periods sufficiently to achieve epidemic mitigation. This agent-based simulation suggests several ways to improve statutes and influenza plans. First, school closure should remain available to state and local authorities as an influenza mitigation strategy. Second, influenza plans need not necessarily specify the threshold for school closures but should clearly define provisions for early and ongoing local monitoring. Finally, school closure authority may be exercised at the statewide or local level, so long as decisions are informed by monitoring incidence in local communities and schools.

  14. Monitoring technique for a hybrid PS/WDM-PON by using a tunable OTDR and FBGs

    NASA Astrophysics Data System (ADS)

    Hann, Swook; Yoo, Jun-sang; Park, Chang-Soo

    2006-05-01

    A monitoring technique for hybrid passive optical networks (PON) is presented. The technique is based on the remote sensing of fibre Bragg gratings (FBGs) using a tunable optical time domain reflectometer (OTDR). The FBG would help discern an individual event during the monitoring of the hybrid PON in collaboration with the information provided by the Rayleigh backscattered power. The hybrid architecture of passive splitter-PON and WDM-PON can be analysed by the monitoring method by using the tunable OTDR and FBGs at the central office under the in-service state of PON.

  15. Vibration monitoring of Kraftwerk Union pressurized water reactors - Review, present status, and further development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolben, H.; Wehling, H.J.

    Incipient damage to mechanical structure may be detected early in time by deviations from normal dynamic behavior. For vibration monitoring of coupled systems, only a small number of transducers are necessary, in general. On the basis, Kraftwerk Union has been involved in the development and construction of vibration monitoring systems for pressurized water reactors over the last 20 yr. The current state of the art permits vibration monitoring during normal operation by reactor personnel without expert assistance. The new SUS-86 microprocessor-based system allows further expansion toward an expert system.

  16. Progress Monitoring Change in Children's Social, Emotional, and Behavioral Functioning: Advancing the State of the Science

    ERIC Educational Resources Information Center

    Owens, Julie Sarno; Evans, Steven W.

    2018-01-01

    The studies in this special series examine the effectiveness of direct behavior ratings (DBRs) for use as a progress monitoring tool. In this article, we comment on the findings of the studies in the context of the broader school-based assessment movement and discuss areas for future inquiry within this line of research.

  17. Recent Changes in State Special Education Part B Monitoring Systems.

    ERIC Educational Resources Information Center

    Tschantz, Jennifer

    The document reports the changes states have made in their monitoring of the provision of special education services by local education agencies from 1997 to 2001. It includes a brief background on the federal monitoring process and an outline of the federal requirements for state monitoring. Changes in state monitoring systems are discussed,…

  18. FN-DFE: Fuzzy-Neural Data Fusion Engine for Enhanced State-Awareness of Resilient Hybrid Energy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ondrej Linda; Dumidu Wijayasekara; Milos Manic

    Resiliency and improved state-awareness of modern critical infrastructures, such as energy production and industrial systems, is becoming increasingly important. As control systems become increasingly complex, the number of inputs and outputs increase. Therefore, in order to maintain sufficient levels of state-awareness, a robust system state monitoring must be implemented that correctly identifies system behavior even when one or more sensors are faulty. Furthermore, as intelligent cyber adversaries become more capable, incorrect values may be fed to the operators. To address these needs, this paper proposes a Fuzzy-Neural Data Fusion Engine (FN-DFE) for resilient state-awareness of control systems. The designed FN-DFEmore » is composed of a three-layered system consisting of: 1) traditional threshold based alarms, 2) anomalous behavior detector using self-organizing fuzzy logic system, and 3) artificial neural network based system modeling and prediction. The improved control system state-awareness is achieved via fusing input data from multiple sources and combining them into robust anomaly indicators. In addition, the neural network based signal predictions are used to augment the resiliency of the system and provide coherent state-awareness despite temporary unavailability of sensory data. The proposed system was integrated and tested with a model of the Idaho National Laboratory’s (INL) hybrid energy system facility know as HYTEST. Experimental results demonstrate that the proposed FN-DFE provides timely plant performance monitoring and anomaly detection capabilities. It was shown that the system is capable of identifying intrusive behavior significantly earlier than conventional threshold based alarm systems.« less

  19. A Review of Indicators of Estuarine Tidal Wetland Condition

    EPA Science Inventory

    This review critically evaluates indicators of tidal wetland condition based on 36 indicator development studies and indicators developed as part of U.S. state tidal wetland monitoring programs. Individual metrics were evaluated based on relative scores on two sets of evaluation ...

  20. 34 CFR 300.600 - State monitoring and enforcement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... environment. (2) State exercise of general supervision, including child find, effective monitoring, the use of... CHILDREN WITH DISABILITIES Monitoring, Enforcement, Confidentiality, and Program Information Monitoring...) The primary focus of the State's monitoring activities must be on— (1) Improving educational results...

  1. Volcano-Monitoring Instrumentation in the United States, 2008

    USGS Publications Warehouse

    Guffanti, Marianne; Diefenbach, Angela K.; Ewert, John W.; Ramsey, David W.; Cervelli, Peter F.; Schilling, Steven P.

    2010-01-01

    The United States is one of the most volcanically active countries in the world. According to the global volcanism database of the Smithsonian Institution, the United States (including its Commonwealth of the Northern Mariana Islands) is home to about 170 volcanoes that are in an eruptive phase, have erupted in historical time, or have not erupted recently but are young enough (eruptions within the past 10,000 years) to be capable of reawakening. From 1980 through 2008, 30 of these volcanoes erupted, several repeatedly. Volcano monitoring in the United States is carried out by the U.S. Geological Survey (USGS) Volcano Hazards Program, which operates a system of five volcano observatories-Alaska Volcano Observatory (AVO), Cascades Volcano Observatory (CVO), Hawaiian Volcano Observatory (HVO), Long Valley Observatory (LVO), and Yellowstone Volcano Observatory (YVO). The observatories issue public alerts about conditions and hazards at U.S. volcanoes in support of the USGS mandate under P.L. 93-288 (Stafford Act) to provide timely warnings of potential volcanic disasters to the affected populace and civil authorities. To make efficient use of the Nation's scientific resources, the volcano observatories operate in partnership with universities and other governmental agencies through various formal agreements. The Consortium of U.S. Volcano Observatories (CUSVO) was established in 2001 to promote scientific cooperation among the Federal, academic, and State agencies involved in observatory operations. Other groups also contribute to volcano monitoring by sponsoring long-term installation of geophysical instruments at some volcanoes for specific research projects. This report describes a database of information about permanently installed ground-based instruments used by the U.S. volcano observatories to monitor volcanic activity (unrest and eruptions). The purposes of this Volcano-Monitoring Instrumentation Database (VMID) are to (1) document the Nation's existing, ground-based, volcano-monitoring capabilities, (2) answer queries within a geospatial framework about the nature of the instrumentation, and (3) provide a benchmark for planning future monitoring improvements. The VMID is not an archive of the data collected by monitoring instruments, nor is it intended to keep track of whether a station is temporarily unavailable due to telemetry or equipment problems. Instead, it is a compilation of basic information about each instrument such as location, type, and sponsoring agency. Typically, instruments installed expressly for volcano monitoring are emplaced within about 20 kilometers (km) of a volcanic center; however, some more distant instruments (as far away as 100 km) can be used under certain circumstances and therefore are included in the database. Not included is information about satellite-based and airborne sensors and temporarily deployed instrument arrays, which also are used for volcano monitoring but do not lend themselves to inclusion in a geospatially organized compilation of sensor networks. This Open-File Report is provided in two parts: (1) an Excel spreadsheet (http://pubs.usgs.gov/of/2009/1165/) containing the version of the Volcano-Monitoring Instrumentation Database current through 31 December 2008 and (2) this text (in Adobe PDF format), which serves as metadata for the VMID. The disclaimer for the VMID is in appendix 1 of the text. Updated versions of the VMID will be posted on the Web sites of the Consortium of U.S. Volcano Observatories (http://www.cusvo.org/) and the USGS Volcano Hazards Program http://volcanoes.usgs.gov/activity/data/index.php.

  2. A Novel Chronic Opioid Monitoring Tool to Assess Prescription Drug Steady State Levels in Oral Fluid.

    PubMed

    Shaparin, Naum; Mehta, Neel; Kunkel, Frank; Stripp, Richard; Borg, Damon; Kolb, Elizabeth

    2017-11-01

    Interpretation limitations of urine drug testing and the invasiveness of blood toxicology have motivated the desire for the development of simpler methods to assess biologically active drug levels on an individualized patient basis. Oral fluid is a matrix well-suited for the challenge because collections are based on simple noninvasive procedures and drug concentrations better correlate to blood drug levels as oral fluid is a filtrate of the blood. Well-established pharmacokinetic models were utilized to generate oral fluid steady state concentration ranges to assess the interpretive value of the alternative matrix to monitor steady state plasma oxycodone levels. Paired oral fluid and plasma samples were collected from patients chronically prescribed oxycodone and quantitatively analyzed by liquid chromatography tandem mass spectrometry. Steady state plasma concentration ranges were calculated for each donor and converted to an equivalent range in oral fluid. Measured plasma and oral fluid oxycodone concentrations were compared with respective matrix-matched steady state ranges, using each plasma steady state classification as the control. A high degree of correlation was observed between matrices when classifying donors according to expected steady state oxycodone concentration. Agreement between plasma and oral fluid steady state classifications was observed in 75.6% of paired samples. This study supports novel application of basic pharmacokinetic knowledge to the pain management industry, simplifying and improving individualized drug monitoring and risk assessment through the use of oral fluid drug testing. Many benefits of established therapeutic drug monitoring in plasma can be realized in oral fluid for patients chronically prescribed oxycodone at steady state. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  3. Propofol and non-propofol based sedation for outpatient colonoscopy-prospective comparison of depth of sedation using an EEG based SEDLine monitor.

    PubMed

    Goudra, Basavana; Singh, Preet Mohinder; Gouda, Gowri; Borle, Anuradha; Carlin, Augustus; Yadwad, Avantika

    2016-10-01

    Propofol is a popular anesthetic sedative employed in colonoscopy. It is known to increase the patient satisfaction and improve throughput. However, there are concerns among the clinicians with regard to the depth of sedation, as a deeper degree of sedation is known to increase the incidence of aspiration and other adverse events. So we planned to compare the depth of sedation between propofol and non-propofol based sedation in patients undergoing outpatient colonoscopy, as measured by an electroencephalogram (EEG) based monitor SEDLine monitor (SedlineInc., San Diego, CA). The non-randomized prospective observational study was performed in the outpatient gastroenterology suite of the Hospital of the University of Pennsylvania, Philadelphia. Patients included ASA class I-III aged more than 18 years scheduled for colonoscopy under Propofol or non-propofol based sedation. After an institutional review board approval, a written consent was obtained from prospective patients. Sedation (propofol or non-propofol based) was administered by either a certified nurse anesthetist under the supervision of an anesthesiologist (propofol) or a registered endoscopy nurse under the guidance of the endoscopist performing the procedure (non-propofol sedation). Depth of sedation was measured with an EEG based SEDLine monitor. The sedation providers were blinded to the patient state index-the indicator of depth of sedation. PSI (patient state index-SEDLine reading) was documented at colonoscope insertion, removal and at the return of verbal responsiveness after colonoscope withdrawal. Sedation spectrum was retrieved from the data stored on the SEDLine monitor. Patients sedated with propofol experience significantly deeper degrees of sedation at all times during the procedure. Additionally, during significant part of the procedure, they are at PSI levels associated with deep general anesthesia. The group that received propofol was more deeply sedated and had lower PSI values. Lighter propofol titration protocols may lead to improved patient care such as lowering risk of aspiration and hypotension. The role of processed EEG monitors such as the SEDLine monitor to improve sedation protocols remains to be determined. Trial registration We obtained an ethical clearance from the Institute. No trial registration was mandated, as no interventional drug or investigational device were used during the study.

  4. An extended multivariate framework for drought monitoring in Mexico

    NASA Astrophysics Data System (ADS)

    Real-Rangel, Roberto; Pedrozo-Acuña, Adrián; Breña-Naranjo, Agustín; Alcocer-Yamanaka, Víctor

    2017-04-01

    Around the world, monitoring natural hazards, such as droughts, represents a critical task in risk assessment and management plans. A reliable drought monitoring system allows to identify regions affected by these phenomena so that early response measures can be implemented. In Mexico, this activity is performed using Mexico's Drought Monitor, which is based on a similar methodology as the United States Drought Monitor and the North American Drought Monitor. The main feature of these monitoring systems is the combination of ground-based and remote sensing observations that is ultimately validated by local experts. However, in Mexico in situ records of variables such as precipitation and streamflow are often scarce, or even null, in many regions of the country. Another issue that adds uncertainty in drought monitoring is the arbitrary weight given to each analyzed variable. This study aims at providing an operational framework for drought monitoring in Mexico, based on univariate and multivariate nonparametric standardized indexes proposed in recent studies. Furthermore, the framework has been extended by taking into account the Enhanced Vegetation Index (EVI) for the drought severity assessment. The analyzed variables used for computing the drought indexes are mainly derived from remote sensing (MODIS) and land surface models datasets (NASA MERRA-2). A qualitative evaluation of the results shows that the indexes used are capable of adequately describes the intensity and spatial distribution of past drought documented events.

  5. Trends in the nutrient enrichment of U.S. rivers during the late 20th century and their relation to changes in probable stream trophic conditions

    USGS Publications Warehouse

    Alexander, R.B.; Smith, R.A.

    2006-01-01

    We estimated trends in concentrations of total phosphorus (TP) and total nitrogen (TN) and the related change in the probabilities of trophic conditions from 1975 to 1994 at 250 nationally representative riverine monitoring locations in the U.S. with drainage areas larger than about 1,000 km2. Statistically significant (p < 0.05) declines were detected in TP and TN concentrations at 44% and 37% of the monitoring sites, and significant increases were detected at 3% and 9% of the sites, respectively. We used a statistical model to assess changes in the probable trophic-state classification of the sites after adjusting for climate-related variability in nutrient concentrations. The probabilistic assessment accounts for current knowledge of the trophic response of streams to nutrient enrichment, based on a recently proposed definition of "eutrophic," "mesotrophic," and "oligotrophic" conditions in relation to total nutrient concentrations. Based on these trophic definitions, we found that the trophic state improved at 25% of the monitoring sites and worsened at fewer than 5% of the sites; about 70% of the sites were unchanged. Improvements in trophic-state related to declines in TP were more common in predominantly forested and shrub-grassland watersheds, whereas the trophic state of predominantly agricultural sites was unchanged. Despite the declines in TP concentrations at many sites, about 50% of all monitoring sites, and more than 60% of the sites in predominantly agricultural and urban watersheds, were classified as eutrophic in 1994 based on TP concentrations. Contemporaneous reductions in major nutrient sources to streams, related to wastewater treatment upgrades, phosphate detergent bans, and declines in some agricultural sources, may have contributed to the declines in riverine nutrient concentrations and associated improvements in trophic conditions. ?? 2006, by the American Society of Limnology and Oceanography, Inc.

  6. Revision of Viable Environmental Monitoring in a Development Pilot Plant Based on Quality Risk Assessment: A Case Study.

    PubMed

    Ziegler, Ildikó; Borbély-Jakab, Judit; Sugó, Lilla; Kovács, Réka J

    2017-01-01

    In this case study, the principles of quality risk management were applied to review sampling points and monitoring frequencies in the hormonal tableting unit of a formulation development pilot plant. In the cleanroom area, premises of different functions are located. Therefore a general method was established for risk evaluation based on the Hazard Analysis and Critical Control Points (HACCP) method to evaluate these premises (i.e., production area itself and ancillary clean areas) from the point of view of microbial load and state in order to observe whether the existing monitoring program met the emerged advanced monitoring practice. LAY ABSTRACT: In pharmaceutical production, cleanrooms are needed for the manufacturing of final dosage forms of drugs-intended for human or veterinary use-in order to protect the patient's weakened body from further infections. Cleanrooms are premises with a controlled level of contamination that is specified by the number of particles per cubic meter at a specified particle size or number of microorganisms (i.e. microbial count) per surface area. To ensure a low microbial count over time, microorganisms are detected and counted by environmental monitoring methods regularly. It is reasonable to find the easily infected places by risk analysis to make sure the obtained results really represent the state of the whole room. This paper presents a risk analysis method for the optimization of environmental monitoring and verification of the suitability of the method. © PDA, Inc. 2017.

  7. Prediction of gas/particle partitioning of polybrominated diphenyl ethers (PBDEs) in global air: A theoretical study

    NASA Astrophysics Data System (ADS)

    Li, Y.-F.; Ma, W.-L.; Yang, M.

    2015-02-01

    Gas/particle (G/P) partitioning of semi-volatile organic compounds (SVOCs) is an important process that primarily governs their atmospheric fate, long-range atmospheric transport, and their routes of entering the human body. All previous studies on this issue are hypothetically based on equilibrium conditions, the results of which do not predict results from monitoring studies well in most cases. In this study, a steady-state model instead of an equilibrium-state model for the investigation of the G/P partitioning behavior of polybrominated diphenyl ethers (PBDEs) was established, and an equation for calculating the partition coefficients under steady state (KPS) of PBDEs (log KPS = log KPE + logα) was developed in which an equilibrium term (log KPE = log KOA + logfOM -11.91 where fOM is organic matter content of the particles) and a non-equilibrium term (log α, caused by dry and wet depositions of particles), both being functions of log KOA (octanol-air partition coefficient), are included. It was found that the equilibrium is a special case of steady state when the non-equilibrium term equals zero. A criterion to classify the equilibrium and non-equilibrium status of PBDEs was also established using two threshold values of log KOA, log KOA1, and log KOA2, which divide the range of log KOA into three domains: equilibrium, non-equilibrium, and maximum partition domain. Accordingly, two threshold values of temperature t, tTH1 when log KOA = log KOA1 and tTH2 when log KOA = log KOA2, were identified, which divide the range of temperature also into the same three domains for each PBDE congener. We predicted the existence of the maximum partition domain (the values of log KPS reach a maximum constant of -1.53) that every PBDE congener can reach when log KOA ≥ log KOA2, or t ≤ tTH2. The novel equation developed in this study was applied to predict the G/P partition coefficients of PBDEs for our Chinese persistent organic pollutants (POPs) Soil and Air Monitoring Program, Phase 2 (China-SAMP-II) program and other monitoring programs worldwide, including in Asia, Europe, North America, and the Arctic, and the results matched well with all the monitoring data, except those obtained at e-waste sites due to the unpredictable PBDE emissions at these sites. This study provided evidence that the newly developed steady-state-based equation is superior to the equilibrium-state-based equation that has been used in describing the G/P partitioning behavior over decades. We suggest that the investigation on G/P partitioning behavior for PBDEs should be based onsteady-state, not equilibrium state, and equilibrium is just a special case of steady-state when non-equilibrium factors can be ignored. We also believe that our new equation provides a useful tool for environmental scientists in both monitoring and modeling research on G/P partitioning of PBDEs and can be extended to predict G/P partitioning behavior for other SVOCs as well.

  8. EEMD-Based Steady-State Indexes and Their Applications to Condition Monitoring and Fault Diagnosis of Railway Axle Bearings

    PubMed Central

    Fan, Wei; Tsui, Kwok-Leung; Lin, Jianhui

    2018-01-01

    Railway axle bearings are one of the most important components used in vehicles and their failures probably result in unexpected accidents and economic losses. To realize a condition monitoring and fault diagnosis scheme of railway axle bearings, three dimensionless steadiness indexes in a time domain, a frequency domain, and a shape domain are respectively proposed to measure the steady states of bearing vibration signals. Firstly, vibration data collected from some designed experiments are pre-processed by using ensemble empirical mode decomposition (EEMD). Then, the coefficient of variation is introduced to construct two steady-state indexes from pre-processed vibration data in a time domain and a frequency domain, respectively. A shape function is used to construct a steady-state index in a shape domain. At last, to distinguish normal and abnormal bearing health states, some guideline thresholds are proposed. Further, to identify axle bearings with outer race defects, a pin roller defect, a cage defect, and coupling defects, the boundaries of all steadiness indexes are experimentally established. Experimental results showed that the proposed condition monitoring and fault diagnosis scheme is effective in identifying different bearing health conditions. PMID:29495446

  9. Breastfeeding protection, promotion, and support in the United States: a time to nudge, a time to measure.

    PubMed

    Pérez-Escamilla, Rafael; Chapman, Donna J

    2012-05-01

    Strong evidence-based advocacy efforts have now translated into high level political support and concrete goals for improving breastfeeding outcomes among women in the United States. In spite of this, major challenge remain for promoting, supporting and especially for protecting breastfeeding in the country. The goals of this commentary are to argue in favor of: A) Changes in the default social and environmental systems, that would allow women to implement their right to breastfeed their infants, B) A multi-level and comprehensive monitoring system to measure process and outcomes indicators in the country. Evidence-based commentary. Breastfeeding rates in the United States can improve based on a well coordinated social marketing framework. This approach calls for innovative promotion through mass media, appropriate facility based and community based support (e.g., Baby Friendly Hospital Initiative, WIC-coordinated community based peer counseling), and adequate protection for working women (e.g., longer paid maternity leave, breastfeeding or breast milk extraction breaks during the working day) and women at large by adhering and enforcing the WHO ethics Code for the Marketing of Breast Milk Substitutes. Sound infant feeding practices monitoring systems, which include WIC administrative food package data, are needed. Given the current high level of political support to improve breastfeeding in the United States, a window of opportunity has been opened. Establishing breastfeeding as the social norm in the USA will take time, but the global experience indicates that it can be done.

  10. Dynamic virtual machine allocation policy in cloud computing complying with service level agreement using CloudSim

    NASA Astrophysics Data System (ADS)

    Aneri, Parikh; Sumathy, S.

    2017-11-01

    Cloud computing provides services over the internet and provides application resources and data to the users based on their demand. Base of the Cloud Computing is consumer provider model. Cloud provider provides resources which consumer can access using cloud computing model in order to build their application based on their demand. Cloud data center is a bulk of resources on shared pool architecture for cloud user to access. Virtualization is the heart of the Cloud computing model, it provides virtual machine as per application specific configuration and those applications are free to choose their own configuration. On one hand, there is huge number of resources and on other hand it has to serve huge number of requests effectively. Therefore, resource allocation policy and scheduling policy play very important role in allocation and managing resources in this cloud computing model. This paper proposes the load balancing policy using Hungarian algorithm. Hungarian Algorithm provides dynamic load balancing policy with a monitor component. Monitor component helps to increase cloud resource utilization by managing the Hungarian algorithm by monitoring its state and altering its state based on artificial intelligent. CloudSim used in this proposal is an extensible toolkit and it simulates cloud computing environment.

  11. A nanometallic nickel-coated, glass-fibre-based structural health monitoring system for polymer composites

    NASA Astrophysics Data System (ADS)

    Balaji, R.; Sasikumar, M.

    2017-09-01

    Glass-fibre-reinforced polymer matrix composites are widely used in various industries because of their unique high strength to weight ratio. Unlike metals, strain-induced and damage states of composites are complicated to predict under real-time loading due to their anisotropic nature. With that focus, a piezoresistive nanomaterial-based structural health monitoring system for laminated polymer composites is proposed to measure the strain induced in the composite under real-time loading. Nanometallic nickel-coated glass fibres are embedded into the polymer composites to monitor the strain and damage induced in them. The nanometallic nickel is coated over the glass fibre by a dip coating technique using epoxy as the binding agent. A microcontroller-based electrical resistance measurement system is used to measure the piezoresistive variation in the coated glass fibre under real-time loading. Using the piezoresistance variation of the embedded nanometallic nickel-coated glass fibre, the real-time strain and damage induced in the composite can be correlated. The piezoresistive response of the coated glass fibre is descibed in two phases, the deformation phase and the failure phase, which clearly show the various states of strain and damage induced in the composites.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemp, H. T.

    The Inventory has resulted in establishment of a series of data bases containing biological monitoring information of varying types, namely, directory of investigators, record of projects received from mail questionnaire, detailed description of selected biomonitoring projects, and bibliographic citations supporting the projects received. This report contains detailed descriptions of selected biomonitoring projects organized on a state-by-state basis and with appropriate indices.

  13. Shining light on the antenna chromophore in lanthanide based dyes.

    PubMed

    Junker, Anne Kathrine R; Hill, Leila R; Thompson, Amber L; Faulkner, Stephen; Sørensen, Thomas Just

    2018-04-03

    Lanthanide based dyes and assays exploit the antenna effect, where a sensitiser-chromophore is used as a light harvesting antenna and subsequent excited state energy transfer populates the emitting lanthanide centred excited state. A rudimentary understanding of the design criteria for designing efficient dyes and assays based on the antenna effect is in place. By preparing kinetically inert lanthanide complexes based on the DO3A scaffold, we are able to study the excited state energy transfer from a 7-methoxy-coumarin antenna chromophore to europium(iii) and terbium(iii) centred excited states. By contrasting the photophysical properties of complexes of metal centres with and without accessible excited states, we are able to separate the contributions from the heavy atom effect, photoinduced electron transfer quenching, excited state energy transfer and molecular conformations. Furthermore, by studying the photophysical properties of the antenna chromophore, we can directly monitor the solution structure and are able to conclude that excited state energy transfer from the chromophore singlet state to the lanthanide centre does occur.

  14. Noninvasive Real-Time Assessment of Cell Viability in a Three-Dimensional Tissue.

    PubMed

    Mahfouzi, Seyed Hossein; Amoabediny, Ghassem; Doryab, Ali; Safiabadi-Tali, Seyed Hamid; Ghanei, Mostafa

    2018-04-01

    Maintaining cell viability within 3D tissue engineering scaffolds is an essential step toward a functional tissue or organ. Assessment of cell viability in 3D scaffolds is necessary to control and optimize tissue culture process. Monitoring systems based on respiration activity of cells (e.g., oxygen consumption) have been used in various cell cultures. In this research, an online monitoring system based on respiration activity was developed to monitor cell viability within acellular lung scaffolds. First, acellular lung scaffolds were recellularized with human umbilical cord vein endothelial cells, and then, cell viability was monitored during a 5-day period. The real-time monitoring system generated a cell growth profile representing invaluable information on cell viability and proliferative states during the culture period. The cell growth profile obtained by the monitoring system was consistent with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide analysis and glucose consumption measurement. This system provided a means for noninvasive, real-time, and repetitive investigation of cell viability. Also, we showed the applicability of this monitoring system by introducing shaking as an operating parameter in a long-term culture.

  15. State Recognition of High Voltage Isolation Switch Based on Background Difference and Iterative Search

    NASA Astrophysics Data System (ADS)

    Xu, Jiayuan; Yu, Chengtao; Bo, Bin; Xue, Yu; Xu, Changfu; Chaminda, P. R. Dushantha; Hu, Chengbo; Peng, Kai

    2018-03-01

    The automatic recognition of the high voltage isolation switch by remote video monitoring is an effective means to ensure the safety of the personnel and the equipment. The existing methods mainly include two ways: improving monitoring accuracy and adopting target detection technology through equipment transformation. Such a method is often applied to specific scenarios, with limited application scope and high cost. To solve this problem, a high voltage isolation switch state recognition method based on background difference and iterative search is proposed in this paper. The initial position of the switch is detected in real time through the background difference method. When the switch starts to open and close, the target tracking algorithm is used to track the motion trajectory of the switch. The opening and closing state of the switch is determined according to the angle variation of the switch tracking point and the center line. The effectiveness of the method is verified by experiments on different switched video frames of switching states. Compared with the traditional methods, this method is more robust and effective.

  16. Research on a Lamb Wave and Particle Filter-Based On-Line Crack Propagation Prognosis Method.

    PubMed

    Chen, Jian; Yuan, Shenfang; Qiu, Lei; Cai, Jian; Yang, Weibo

    2016-03-03

    Prognostics and health management techniques have drawn widespread attention due to their ability to facilitate maintenance activities based on need. On-line prognosis of fatigue crack propagation can offer information for optimizing operation and maintenance strategies in real-time. This paper proposes a Lamb wave-particle filter (LW-PF)-based method for on-line prognosis of fatigue crack propagation which takes advantages of the possibility of on-line monitoring to evaluate the actual crack length and uses a particle filter to deal with the crack evolution and monitoring uncertainties. The piezoelectric transducers (PZTs)-based active Lamb wave method is adopted for on-line crack monitoring. The state space model relating to crack propagation is established by the data-driven and finite element methods. Fatigue experiments performed on hole-edge crack specimens have validated the advantages of the proposed method.

  17. The Critical Role of State Agencies in the Age of Evidence-Based Approaches: The Challenge of New Expectations.

    PubMed

    Van Dyke, Melissa K; Naoom, Sandra F

    2016-01-01

    Evidence-based approaches only benefit individuals when fully and effectively implemented. Since funding and monitoring alone will not ensure the full and effective implementation of effective strategies, state agencies have the opportunity to assess and modify current roles, functions, and policies to align with the requirements of evidence-based strategies. Based on a growing body of knowledge to guide effective implementation processes, state agencies, or designated partner organizations, can develop the capacity, mechanisms, and infrastructure to effectively implement evidence-based strategies. This article describes a framework that can guide this process. Informed by the literature and shaped by "real-world experience," the Active Implementation Frameworks provide a stage-matched approach to purposeful, active, and effective implementation.

  18. Mood recognition in bipolar patients through the PSYCHE platform: preliminary evaluations and perspectives.

    PubMed

    Valenza, Gaetano; Gentili, Claudio; Lanatà, Antonio; Scilingo, Enzo Pasquale

    2013-01-01

    Bipolar disorders are characterized by a series of both depressive and manic or hypomanic episodes. Although common and expensive to treat, the clinical assessment of bipolar disorder is still ill-defined. In the current literature several correlations between mood disorders and dysfunctions involving the autonomic nervous system (ANS) can be found. The objective of this work is to develop a novel mood recognition system based on a pervasive, wearable and personalized monitoring system using ANS-related biosignals. The monitoring platform used in this study is the core sensing system of the personalized monitoring systems for care in mental health (PSYCHE) European project. It is comprised of a comfortable sensorized t-shirt that can acquire the inter-beat interval time series, the heart rate, and the respiratory dynamics for long-term monitoring during the day and overnight. In this study, three bipolar patients were followed for a period of 90 days during which up to six monitoring sessions and psychophysical evaluations were performed for each patient. Specific signal processing techniques and artificial intelligence algorithms were applied to analyze more than 120 h of data. Experimental results are expressed in terms of confusion matrices and an exhaustive descriptive statistics of the most relevant features is reported as well. A classification accuracy of about 97% is achieved for the intra-subject analysis. Such an accuracy was found in distinguishing relatively good affective balance state (euthymia) from severe clinical states (severe depression and mixed state) and is lower in distinguishing euthymia from the milder states (accuracy up to 88%). The PSYCHE platform could provide a viable decision support system in order to improve mood assessment in patient care. Evidences about the correlation between mood disorders and ANS dysfunctions were found and the obtained results are promising for an effective biosignal-based mood recognition. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Opportunities for Nondestructive Evaluation: Quantitative Characterization (Postprint)

    DTIC Science & Technology

    2017-07-01

    between the design and the as- manufactured and, ultimately, the as-maintained state. As this occurs with the article of interest being placed in...TESTING (STINFO COPY) AIR FORCE RESEARCH LABORATORY MATERIALS AND MANUFACTURING DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7750 AIR FORCE...MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY ACRONYM(S) Air Force Research Laboratory Materials and Manufacturing

  20. Improving estimates of forest disturbance by combining observations from Landsat time series with U.S

    Treesearch

    Todd A. Schroeder; Sean P. Healey; Gretchen G. Moisen; Tracey S. Frescino; Warren B. Cohen; Chengquan Huang; Robert E. Kennedy; Zhiqiang Yang

    2014-01-01

    With earth's surface temperature and human population both on the rise a new emphasis has been placed on monitoring changes to forested ecosystems the world over. In the United States the U.S. Forest Service Forest Inventory and Analysis (FIA) program monitors the forested land base with field data collected over a permanent network of sample plots. Although these...

  1. 78 FR 54828 - Promulgation of State Implementation Plan Revisions; Infrastructure Requirements for the 1997 and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-06

    ...- oriented monitors, and 65 [mu]g/m\\3\\, based on the three-year average of the 98th percentile of 24-hour PM 2.5 concentrations at each population-oriented monitor within an area (62 FR 38652). On October 17...)(2)(G): Emergency powers. 110(a)(2)(H): Future SIP revisions. 110(a)(2)(J): Consultation with...

  2. A Niche-Based Framework to Assess Current Monitoring of European Forest Birds and Guide Indicator Species' Selection

    PubMed Central

    Wade, Amy S. I.; Barov, Boris; Burfield, Ian J.; Gregory, Richard D.; Norris, Ken; Vorisek, Petr; Wu, Taoyang; Butler, Simon J.

    2014-01-01

    Concern that European forest biodiversity is depleted and declining has provoked widespread efforts to improve management practices. To gauge the success of these actions, appropriate monitoring of forest ecosystems is paramount. Multi-species indicators are frequently used to assess the state of biodiversity and its response to implemented management, but generally applicable and objective methodologies for species' selection are lacking. Here we use a niche-based approach, underpinned by coarse quantification of species' resource use, to objectively select species for inclusion in a pan-European forest bird indicator. We identify both the minimum number of species required to deliver full resource coverage and the most sensitive species' combination, and explore the trade-off between two key characteristics, sensitivity and redundancy, associated with indicators comprising different numbers of species. We compare our indicator to an existing forest bird indicator selected on the basis of expert opinion and show it is more representative of the wider community. We also present alternative indicators for regional and forest type specific monitoring and show that species' choice can have a significant impact on the indicator and consequent projections about the state of the biodiversity it represents. Furthermore, by comparing indicator sets drawn from currently monitored species and the full forest bird community, we identify gaps in the coverage of the current monitoring scheme. We believe that adopting this niche-based framework for species' selection supports the objective development of multi-species indicators and that it has good potential to be extended to a range of habitats and taxa. PMID:24819734

  3. US EPA's UV Disinfection Technologies Demonstration Study - States Briefing

    EPA Science Inventory

    EPA report and anticipated Journal articles will provide recommendations & guidance based on lessons learned for subsequent UV technology testing and monitoring/control applications of virus inactivation in drinking water.

  4. Stocking of Offsite Waters for Hungry Horse Dam Mitigation; Creston National Fish Hatchery, 2001-2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maskill, Mark

    2003-03-01

    Mitigation Objective 1: Produce Native Westslope Cutthroat Trout at Creston NFH--Task: Acquire eggs and rear up to 100,000 Westslope Cutthroat trout annually for offsite mitigation stocking. Accomplishments: A total of 150,000 westslope cutthroat eggs (M012 strain) were acquired from the State of Montana Washoe Park State Fish Hatchery in July 2001 for this objective. Another 120,000 westslope cutthroat eggs were taken from feral fish at Rogers Lake in May of 2001 by the Creston Hatchery crew. The fish were reared using approved fish culture techniques as defined in the U.S. Department of the Interior Fish Hatchery Management guidelines. Post releasemore » survival and angler success is monitored annually by Montana Fish Wildlife and Parks (MFWP) and the Confederated Salish and Kootenai Tribe (CSKT). Stocking numbers and locations may vary yearly based on results of biological monitoring. Mitigation Objective 2: Produce Rainbow Trout at Creston NFH--Task: Acquire and rear up to 100,000 Rainbow trout annually for offsite mitigation in closed basin waters. Accomplishments: A total of 50,500 rainbow trout eggs (Arlee strain) were acquired from the State of Montana Arlee State Fish Hatchery in December 2001 for this objective. The fish were reared using approved fish culture techniques as defined in the U.S. Department of the Interior Fish Hatchery Management guidelines. Arlee rainbow trout are being used for this objective because the stocking locations are terminal basin reservoirs and habitat conditions and returns to creel are unsuitable for native cutthroat. Post release survival and angler success is monitored annually by the Confederated Salish and Kootenai Tribe (CSKT). Stocking numbers and locations may vary yearly based on results of biological monitoring.« less

  5. Field strategies for the calibration and validation of high-resolution forest carbon maps: Scaling from plots to a three state region MD, DE, & PA, USA.

    NASA Astrophysics Data System (ADS)

    Dolan, K. A.; Huang, W.; Johnson, K. D.; Birdsey, R.; Finley, A. O.; Dubayah, R.; Hurtt, G. C.

    2016-12-01

    In 2010 Congress directed NASA to initiate research towards the development of Carbon Monitoring Systems (CMS). In response, our team has worked to develop a robust, replicable framework to quantify and map aboveground forest biomass at high spatial resolutions. Crucial to this framework has been the collection of field-based estimates of aboveground tree biomass, combined with remotely detected canopy and structural attributes, for calibration and validation. Here we evaluate the field- based calibration and validation strategies within this carbon monitoring framework and discuss the implications on local to national monitoring systems. Through project development, the domain of this research has expanded from two counties in MD (2,181 km2), to the entire state of MD (32,133 km2), and most recently the tri-state region of MD, PA, and DE (157,868 km2) and covers forests in four major USDA ecological providences. While there are approximately 1000 Forest Inventory and Analysis (FIA) plots distributed across the state of MD, 60% fell in areas considered non-forest or had conditions that precluded them from being measured in the last forest inventory. Across the two pilot counties, where population and landuse competition is high, that proportion rose to 70% Thus, during the initial phases of this project 850 independent field plots were established for model calibration following a random stratified design to insure the adequate representation of height and vegetation classes found across the state, while FIA data were used as an independent data source for validation. As the project expanded to cover the larger spatial tri-state domain, the strategy was flipped to base calibration on more than 3,300 measured FIA plots, as they provide a standardized, consistent and available data source across the nation. An additional 350 stratified random plots were deployed in the Northern Mixed forests of PA and the Coastal Plains forests of DE for validation.

  6. Monitoring and Modeling Crop Health and Water Use via in-situ, Airborne and Space-based Platforms

    NASA Astrophysics Data System (ADS)

    McCabe, M. F.

    2014-12-01

    The accurate retrieval of plant water use, health and function together with soil state and condition, represent key objectives in the management and monitoring of large-scale agricultural production. In regions of water shortage or stress, understanding the sustainable use of available water supplies is critical. Unfortunately, this need is all too often limited by a lack of reliable observations. Techniques that balance the demand for reliable ground-based data with the rapid retrieval of spatially distributed crop characteristics represent a needed line of research. Data from in-situ monitoring coupled with advances in satellite retrievals of key land surface variables, provide the information necessary to characterize many crop health and water use features, including evaporation, leaf-chlorophyll and other common vegetation indices. With developments in UAV and quadcopter solutions, the opportunity to bridge the spatio-temporal gap between satellite and ground based sensing now exists, along with the capacity for customized retrievals of crop information. While there remain challenges in the routine application of autonomous airborne systems, the state of current technology and sensor developments provide the capacity to explore the operational potential. While this presentation will focus on the multi-scale estimation of crop-water use and crop-health characteristics from satellite-based sensors, the retrieval of high resolution spatially distributed information from near-surface airborne and ground-based systems will also be examined.

  7. System and method of self-properties for an autonomous and automatic computer environment

    NASA Technical Reports Server (NTRS)

    Sterritt, Roy (Inventor); Hinchey, Michael G. (Inventor)

    2010-01-01

    Systems, methods and apparatus are provided through which in some embodiments self health/urgency data and environment health/urgency data may be transmitted externally from an autonomic element. Other embodiments may include transmitting the self health/urgency data and environment health/urgency data together on a regular basis similar to the lub-dub of a heartbeat. Yet other embodiments may include a method for managing a system based on the functioning state and operating status of the system, wherein the method may include processing received signals from the system indicative of the functioning state and the operating status to obtain an analysis of the condition of the system, generating one or more stay alive signals based on the functioning status and the operating state of the system, transmitting the stay-alive signal, transmitting self health/urgency data, and transmitting environment health/urgency data. Still other embodiments may include an autonomic element that includes a self monitor, a self adjuster, an environment monitor, and an autonomic manager.

  8. Characterization of cement-based materials using a reusable piezoelectric impedance-based sensor

    NASA Astrophysics Data System (ADS)

    Tawie, R.; Lee, H. K.

    2011-08-01

    This paper proposes a reusable sensor, which employs a piezoceramic (PZT) plate as an active sensing transducer, for non-destructive monitoring of cement-based materials based on the electromechanical impedance (EMI) sensing technique. The advantage of the sensor design is that the PZT can be easily removed from the set-up and re-used for repetitive tests. The applicability of the sensor was demonstrated for monitoring of the setting of cement mortar. EMI measurements were performed using an impedance analyzer and the transformation of the specimen from the plastic to solid state was monitored by automatically measuring the changes in the PZT conductance spectra with respect to curing time using the root mean square deviation (RMSD) algorithm. In another experiment, drying-induced moisture loss of a hardened mortar specimen at saturated surface dry (SSD) condition was measured, and monitored using the reusable sensor to establish a correlation between the RMSD values and moisture loss rate. The reusable sensor was also demonstrated for detecting progressive damages imparted on a mortar specimen attached with the sensor under several loading levels before allowing it to load to failure. Overall, the reusable sensor is an effective and efficient monitoring device that could possibly be used for field application in characterization of cement-based materials.

  9. Least mean square fourth based microgrid state estimation algorithm using the internet of things technology

    PubMed Central

    2017-01-01

    This paper proposes an innovative internet of things (IoT) based communication framework for monitoring microgrid under the condition of packet dropouts in measurements. First of all, the microgrid incorporating the renewable distributed energy resources is represented by a state-space model. The IoT embedded wireless sensor network is adopted to sense the system states. Afterwards, the information is transmitted to the energy management system using the communication network. Finally, the least mean square fourth algorithm is explored for estimating the system states. The effectiveness of the developed approach is verified through numerical simulations. PMID:28459848

  10. The Implementation Internet of Things(IoT) Technology in Real Time Monitoring of Electrical Quantities

    NASA Astrophysics Data System (ADS)

    Despa, D.; Nama, G. F.; Muhammad, M. A.; Anwar, K.

    2018-04-01

    Electrical quantities such as Voltage, Current, Power, Power Factor, Energy, and Frequency in electrical power system tends to fluctuate, as a result of load changes, disturbances, or other abnormal states. The change-state in electrical quantities should be identify immediately, otherwise it can lead to serious problem for whole system. Therefore a necessity is required to determine the condition of electricity change-state quickly and appropriately in order to make effective decisions. Online monitoring of power distribution system based on Internet of Things (IoT) technology was deploy and implemented on Department of Mechanical Engineering University of Lampung (Unila), especially at three-phase main distribution panel H-building. The measurement system involve multiple sensors such current sensors and voltage sensors, while data processing conducted by Arduino, the measurement data stored in to the database server and shown in a real-time through a web-based application. This measurement system has several important features especially for realtime monitoring, robust data acquisition and logging, system reporting, so it will produce an important information that can be used for various purposes of future power analysis such estimation and planning. The result of this research shown that the condition of electrical power system at H-building performed unbalanced load, which often leads to drop-voltage condition

  11. 40 CFR 122.48 - Requirements for recording and reporting of monitoring results (applicable to State programs, see...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... representative of the monitored activity including, when appropriate, continuous monitoring; (c) Applicable... reporting of monitoring results (applicable to State programs, see § 123.25). 122.48 Section 122.48... recording and reporting of monitoring results (applicable to State programs, see § 123.25). All permits...

  12. 40 CFR 122.48 - Requirements for recording and reporting of monitoring results (applicable to State programs, see...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... representative of the monitored activity including, when appropriate, continuous monitoring; (c) Applicable... reporting of monitoring results (applicable to State programs, see § 123.25). 122.48 Section 122.48... recording and reporting of monitoring results (applicable to State programs, see § 123.25). All permits...

  13. 40 CFR 122.48 - Requirements for recording and reporting of monitoring results (applicable to State programs, see...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... representative of the monitored activity including, when appropriate, continuous monitoring; (c) Applicable... reporting of monitoring results (applicable to State programs, see § 123.25). 122.48 Section 122.48... recording and reporting of monitoring results (applicable to State programs, see § 123.25). All permits...

  14. 40 CFR 122.48 - Requirements for recording and reporting of monitoring results (applicable to State programs, see...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... representative of the monitored activity including, when appropriate, continuous monitoring; (c) Applicable... reporting of monitoring results (applicable to State programs, see § 123.25). 122.48 Section 122.48... recording and reporting of monitoring results (applicable to State programs, see § 123.25). All permits...

  15. 40 CFR 122.48 - Requirements for recording and reporting of monitoring results (applicable to State programs, see...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... representative of the monitored activity including, when appropriate, continuous monitoring; (c) Applicable... reporting of monitoring results (applicable to State programs, see § 123.25). 122.48 Section 122.48... recording and reporting of monitoring results (applicable to State programs, see § 123.25). All permits...

  16. Workshop on Satellite and In situ Observations for Climate Prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acker, J.G.; Busalacchi, A.

    1995-02-01

    Participants in this workshop, which convened in Venice, Italy, 6-8 May 1993, met to consider the current state of climate monitoring programs and instrumentation for the purpose of climatological prediction on short-term (seasonal to interannual) timescales. Data quality and coverage requirements for definition of oceanographic heat and momentum fluxes, scales of inter- and intra-annual variability, and land-ocean-atmosphere exchange processes were examined. Advantages and disadvantages of earth-based and spaceborne monitoring systems were considered, as were the structures for future monitoring networks, research programs, and modeling studies.

  17. Workshop on Satellite and In situ Observations for Climate Prediction

    NASA Technical Reports Server (NTRS)

    Acker, James G.; Busalacchi, Antonio

    1995-01-01

    Participants in this workshop, which convened in Venice, Italy, 6-8 May 1993, met to consider the current state of climate monitoring programs and instrumentation for the purpose of climatological prediction on short-term (seasonal to interannual) timescales. Data quality and coverage requirements for definition of oceanographic heat and momentum fluxes, scales of inter- and intra-annual variability, and land-ocean-atmosphere exchange processes were examined. Advantages and disadvantages of earth-based and spaceborne monitoring systems were considered, as were the structures for future monitoring networks, research programs, and modeling studies.

  18. Automated identification of sleep states from EEG signals by means of ensemble empirical mode decomposition and random under sampling boosting.

    PubMed

    Hassan, Ahnaf Rashik; Bhuiyan, Mohammed Imamul Hassan

    2017-03-01

    Automatic sleep staging is essential for alleviating the burden of the physicians of analyzing a large volume of data by visual inspection. It is also a precondition for making an automated sleep monitoring system feasible. Further, computerized sleep scoring will expedite large-scale data analysis in sleep research. Nevertheless, most of the existing works on sleep staging are either multichannel or multiple physiological signal based which are uncomfortable for the user and hinder the feasibility of an in-home sleep monitoring device. So, a successful and reliable computer-assisted sleep staging scheme is yet to emerge. In this work, we propose a single channel EEG based algorithm for computerized sleep scoring. In the proposed algorithm, we decompose EEG signal segments using Ensemble Empirical Mode Decomposition (EEMD) and extract various statistical moment based features. The effectiveness of EEMD and statistical features are investigated. Statistical analysis is performed for feature selection. A newly proposed classification technique, namely - Random under sampling boosting (RUSBoost) is introduced for sleep stage classification. This is the first implementation of EEMD in conjunction with RUSBoost to the best of the authors' knowledge. The proposed feature extraction scheme's performance is investigated for various choices of classification models. The algorithmic performance of our scheme is evaluated against contemporary works in the literature. The performance of the proposed method is comparable or better than that of the state-of-the-art ones. The proposed algorithm gives 88.07%, 83.49%, 92.66%, 94.23%, and 98.15% for 6-state to 2-state classification of sleep stages on Sleep-EDF database. Our experimental outcomes reveal that RUSBoost outperforms other classification models for the feature extraction framework presented in this work. Besides, the algorithm proposed in this work demonstrates high detection accuracy for the sleep states S1 and REM. Statistical moment based features in the EEMD domain distinguish the sleep states successfully and efficaciously. The automated sleep scoring scheme propounded herein can eradicate the onus of the clinicians, contribute to the device implementation of a sleep monitoring system, and benefit sleep research. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Remote monitoring of cardiovascular implanted electronic devices: a paradigm shift for the 21st century.

    PubMed

    Cronin, Edmond M; Varma, Niraj

    2012-07-01

    Traditional follow-up of cardiac implantable electronic devices involves the intermittent download of largely nonactionable data. Remote monitoring represents a paradigm shift from episodic office-based follow-up to continuous monitoring of device performance and patient and disease state. This lessens device clinical burden and may also lead to cost savings, although data on economic impact are only beginning to emerge. Remote monitoring technology has the potential to improve the outcomes through earlier detection of arrhythmias and compromised device integrity, and possibly predict heart failure hospitalizations through integration of heart failure diagnostics and hemodynamic monitors. Remote monitoring platforms are also huge databases of patients and devices, offering unprecedented opportunities to investigate real-world outcomes. Here, the current status of the field is described and future directions are predicted.

  20. Optimized Temporal Monitors for SystemC

    NASA Technical Reports Server (NTRS)

    Tabakov, Deian; Rozier, Kristin Y.; Vardi, Moshe Y.

    2012-01-01

    SystemC is a modeling language built as an extension of C++. Its growing popularity and the increasing complexity of designs have motivated research efforts aimed at the verification of SystemC models using assertion-based verification (ABV), where the designer asserts properties that capture the design intent in a formal language such as PSL or SVA. The model then can be verified against the properties using runtime or formal verification techniques. In this paper we focus on automated generation of runtime monitors from temporal properties. Our focus is on minimizing runtime overhead, rather than monitor size or monitor-generation time. We identify four issues in monitor generation: state minimization, alphabet representation, alphabet minimization, and monitor encoding. We conduct extensive experimentation and identify a combination of settings that offers the best performance in terms of runtime overhead.

  1. Designing hydrologic monitoring networks to maximize predictability of hydrologic conditions in a data assimilation system: a case study from South Florida, U.S.A

    NASA Astrophysics Data System (ADS)

    Flores, A. N.; Pathak, C. S.; Senarath, S. U.; Bras, R. L.

    2009-12-01

    Robust hydrologic monitoring networks represent a critical element of decision support systems for effective water resource planning and management. Moreover, process representation within hydrologic simulation models is steadily improving, while at the same time computational costs are decreasing due to, for instance, readily available high performance computing resources. The ability to leverage these increasingly complex models together with the data from these monitoring networks to provide accurate and timely estimates of relevant hydrologic variables within a multiple-use, managed water resources system would substantially enhance the information available to resource decision makers. Numerical data assimilation techniques provide mathematical frameworks through which uncertain model predictions can be constrained to observational data to compensate for uncertainties in the model forcings and parameters. In ensemble-based data assimilation techniques such as the ensemble Kalman Filter (EnKF), information in observed variables such as canal, marsh and groundwater stages are propagated back to the model states in a manner related to: (1) the degree of certainty in the model state estimates and observations, and (2) the cross-correlation between the model states and the observable outputs of the model. However, the ultimate degree to which hydrologic conditions can be accurately predicted in an area of interest is controlled, in part, by the configuration of the monitoring network itself. In this proof-of-concept study we developed an approach by which the design of an existing hydrologic monitoring network is adapted to iteratively improve the predictions of hydrologic conditions within an area of the South Florida Water Management District (SFWMD). The objective of the network design is to minimize prediction errors of key hydrologic states and fluxes produced by the spatially distributed Regional Simulation Model (RSM), developed specifically to simulate the hydrologic conditions in several intensively managed and hydrologically complex watersheds within the SFWMD system. In a series of synthetic experiments RSM is used to generate the notionally true hydrologic state and the relevant observational data. The EnKF is then used as the mechanism to fuse RSM hydrologic estimates with data from the candidate network. The performance of the candidate network is measured by the prediction errors of the EnKF estimates of hydrologic states, relative to the notionally true scenario. The candidate network is then adapted by relocating existing observational sites to unobserved areas where predictions of local hydrologic conditions are most uncertain and the EnKF procedure repeated. Iteration of the monitoring network continues until further improvements in EnKF-based predictions of hydrologic conditions are negligible.

  2. The Real-Time Monitoring Service Platform for Land Supervision Based on Cloud Integration

    NASA Astrophysics Data System (ADS)

    Sun, J.; Mao, M.; Xiang, H.; Wang, G.; Liang, Y.

    2018-04-01

    Remote sensing monitoring has become the important means for land and resources departments to strengthen supervision. Aiming at the problems of low monitoring frequency and poor data currency in current remote sensing monitoring, this paper researched and developed the cloud-integrated real-time monitoring service platform for land supervision which enhanced the monitoring frequency by acquiring the domestic satellite image data overall and accelerated the remote sensing image data processing efficiency by exploiting the intelligent dynamic processing technology of multi-source images. Through the pilot application in Jinan Bureau of State Land Supervision, it has been proved that the real-time monitoring technical method for land supervision is feasible. In addition, the functions of real-time monitoring and early warning are carried out on illegal land use, permanent basic farmland protection and boundary breakthrough in urban development. The application has achieved remarkable results.

  3. 77 FR 54902 - Proposed Information Collection; Comment Request; Input From Hawaii's Boat-based Anglers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    ... Collection; Comment Request; Input From Hawaii's Boat-based Anglers AGENCY: National Oceanic and Atmospheric... Marine Recreational Information Program's National Data Standards. The State of Hawaii is developing a... (monitoring) survey of fishing catch and effort derived from Hawaii's private boaters--a required component of...

  4. Integrated active sensor system for real time vibration monitoring.

    PubMed

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-11-05

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0-60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems.

  5. Gamma Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The project has progressed successfully during this period of performance. The highlights of the Gamma Ray Astronomy teams efforts are: (1) Support daily BATSE data operations, including receipt, archival and dissemination of data, quick-look science analysis, rapid gamma-ray burst and transient monitoring and response efforts, instrument state-of-health monitoring, and instrument commanding and configuration; (2) On-going scientific analysis, including production and maintenance of gamma-ray burst, pulsed source and occultation source catalogs, gamma-ray burst spectroscopy, studies of the properties of pulsars and black holes, and long-term monitoring of hard x-ray sources; (3) Maintenance and continuous improvement of BATSE instrument response and calibration data bases; (4) Investigation of the use of solid state detectors for eventual application and instrument to perform all sky monitoring of X-Ray and Gamma sources with high sensitivity; and (5) Support of BATSE outreach activities, including seminars, colloquia and World Wide Web pages. The highlights of this efforts can be summarized in the publications and presentation list.

  6. Integrated active sensor system for real time vibration monitoring

    PubMed Central

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-01-01

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0–60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems. PMID:26538293

  7. 42 CFR 488.68 - State Agency responsibilities for OASIS collection and data base requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... operating the OASIS system: (a) Establish and maintain an OASIS database. The State agency or other entity designated by CMS must— (1) Use a standard system developed or approved by CMS to collect, store, and analyze..., system back-up, and monitoring the status of the database; and (3) Obtain CMS approval before modifying...

  8. Early warning system for Douglas-fir tussock moth outbreaks in the Western United States.

    Treesearch

    Gary E. Daterman; John M. Wenz; Katharine A. Sheehan

    2004-01-01

    The Early Warning System is a pheromone-based trapping system used to detect outbreaks of Douglas-fir tussock moth (DFTM, Orgyia pseudotsugata) in the western United States. Millions of acres are susceptible to DFTM defoliation, but Early Warning System monitoring focuses attention only on the relatively limited areas where outbreaks may be...

  9. Citizens under Suspicion: Responsive Research with Community under Surveillance

    ERIC Educational Resources Information Center

    Ali, Arshad Imitaz

    2016-01-01

    In the 14 years since the 9/11 events, this nation as a whole, and New York City in particular, has escalated its state-sanctioned surveillance in the lives and activities of Muslims in the United States. This qualitative study examines the ramifications of police infiltration and monitoring of Muslim student and community-based organizations.…

  10. Low Frequencies of Interference to EPA Quantitative Polymerase Chain Reaction (qPCR) Methods for Microbial Water Quality Monitoring in U.S. Rivers and Streams and Coastal Waters

    EPA Science Inventory

    In collaboration with U.S States and Tribes, the United States Environmental Protection Agency (EPA) conducts periodic and rotating, statistically based surveys of U.S. rivers and streams (National Rivers and Streams Assessment, NRSA), estuarine and Great Lakes nearshore coastal ...

  11. Flexible architecture of data acquisition firmware based on multi-behaviors finite state machine

    NASA Astrophysics Data System (ADS)

    Arpaia, Pasquale; Cimmino, Pasquale

    2016-11-01

    A flexible firmware architecture for different kinds of data acquisition systems, ranging from high-precision bench instruments to low-cost wireless transducers networks, is presented. The key component is a multi-behaviors finite state machine, easily configurable to both low- and high-performance requirements, to diverse operating systems, as well as to on-line and batch measurement algorithms. The proposed solution was validated experimentally on three case studies with data acquisition architectures: (i) concentrated, in a high-precision instrument for magnetic measurements at CERN, (ii) decentralized, for telemedicine remote monitoring of patients at home, and (iii) distributed, for remote monitoring of building's energy loss.

  12. Efficient species-level monitoring at the landscape scale.

    PubMed

    Noon, Barry R; Bailey, Larissa L; Sisk, Thomas D; McKelvey, Kevin S

    2012-06-01

    Monitoring the population trends of multiple animal species at a landscape scale is prohibitively expensive. However, advances in survey design, statistical methods, and the ability to estimate species presence on the basis of detection-nondetection data have greatly increased the feasibility of species-level monitoring. For example, recent advances in monitoring make use of detection-nondetection data that are relatively inexpensive to acquire, historical survey data, and new techniques in genetic evaluation. The ability to use indirect measures of presence for some species greatly increases monitoring efficiency and reduces survey costs. After adjusting for false absences, the proportion of sample units in a landscape where a species is detected (occupancy) is a logical state variable to monitor. Occupancy monitoring can be based on real-time observation of a species at a survey site or on evidence that the species was at the survey location sometime in the recent past. Temporal and spatial patterns in occupancy data are related to changes in animal abundance and provide insights into the probability of a species' persistence. However, even with the efficiencies gained when occupancy is the monitored state variable, the task of species-level monitoring remains daunting due to the large number of species. We propose that a small number of species be monitored on the basis of specific management objectives, their functional role in an ecosystem, their sensitivity to environmental changes likely to occur in the area, or their conservation importance. ©2012 Society for Conservation Biology.

  13. Screening tool to evaluate the vulnerability of down-gradient receptors to groundwater contaminants from uncapped landfills

    USGS Publications Warehouse

    Baker, Ronald J.; Reilly, Timothy J.; Lopez, Anthony R.; Romanok, Kristin M.; Wengrowski, Edward W

    2015-01-01

    A screening tool for quantifying levels of concern for contaminants detected in monitoring wells on or near landfills to down-gradient receptors (streams, wetlands and residential lots) was developed and evaluated. The tool uses Quick Domenico Multi-scenario (QDM), a spreadsheet implementation of Domenico-based solute transport, to estimate concentrations of contaminants reaching receptors under steady-state conditions from a constant-strength source. Unlike most other available Domenico-based model applications, QDM calculates the time for down-gradient contaminant concentrations to approach steady state and appropriate dispersivity values, and allows for up to fifty simulations on a single spreadsheet. Sensitivity of QDM solutions to critical model parameters was quantified. The screening tool uses QDM results to categorize landfills as having high, moderate and low levels of concern, based on contaminant concentrations reaching receptors relative to regulatory concentrations. The application of this tool was demonstrated by assessing levels of concern (as defined by the New Jersey Pinelands Commission) for thirty closed, uncapped landfills in the New Jersey Pinelands National Reserve, using historic water-quality data from monitoring wells on and near landfills and hydraulic parameters from regional flow models. Twelve of these landfills are categorized as having high levels of concern, indicating a need for further assessment. This tool is not a replacement for conventional numerically-based transport model or other available Domenico-based applications, but is suitable for quickly assessing the level of concern posed by a landfill or other contaminant point source before expensive and lengthy monitoring or remediation measures are taken. In addition to quantifying the level of concern using historic groundwater-monitoring data, the tool allows for archiving model scenarios and adding refinements as new data become available.

  14. INTEGRATED STATE-FEDERAL PARTNERSHIP FOR AQUATIC RESOURCE MONITORING

    EPA Science Inventory

    Fifteen federal agencies, 50 states, cities, counties, and 800-1000 volunteer organizations conduct aquatic resource monitoring in the United States. Most aquatic monitoring is project-specific focusing on individual locations or watersheds. The Clean Water Act requires states ...

  15. Agile Metrics: Progress Monitoring of Agile Contractors

    DTIC Science & Technology

    2014-01-01

    epic. The short timeframe is usually called an itera- tion or, in Scrum -based teams, a sprint; multiple iterations make up a release [Lapham 2011...9769 [Rawsthorne 2012] Rawsthorne, Dan. Monitoring Scrum Projects with AgileEVM and Earned Business Value Metrics (EBV). 2012. http...AgileEVM – Earned Value Manage- ment in Scrum Projects.” Presented at Agile2006, 23-28 July 2006. [USAF 2008] United States Air Force. United

  16. Final Environmental Assessment (EA), Long-Term Integrated Management of Mission-Generated Solid Waste, Edwards Air Force Base, California

    DTIC Science & Technology

    2016-11-28

    infrastructure typically include energy, water, wastewater, electricity, natural gas , liquid fuel distribution systems, communication lines (e.g...with state off-road regulations would further reduce air quality and greenhouse gas emissions. Cultural Resources. The waste footprint as well as...maintenance of the prescriptive final cover and erosion control, landfill gas monitoring and well maintenance, groundwater monitoring and well maintenance

  17. VizieR Online Data Catalog: X-ray monitoring of M31 novae (Henze+, 2014)

    NASA Astrophysics Data System (ADS)

    Henze, M.; Pietsch, W.; Haberl, F.; Della Valle, M.; Sala, G.; Hatzidimitriou, D.; Hofmann, F.; Hernanz, M.; Hartmann, D. H.; Greiner, J.

    2014-02-01

    This work is based on XMM-Newton and Chandra observations 30.0 of the central area of M 31 that were dedicated to the monitoring of SSS states of novae (PI: W. Pietsch). We report on the analysis of three observation campaigns carried out during Nov 2009 to Feb 2010, Nov 2010 to Mar 2011, and Nov 2011 to Mar 2012. (10 data files).

  18. Self-Healable Sensors Based Nanoparticles for Detecting Physiological Markers via Skin and Breath: Toward Disease Prevention via Wearable Devices.

    PubMed

    Jin, Han; Huynh, Tan-Phat; Haick, Hossam

    2016-07-13

    Flexible and wearable electronic sensors are useful for the early diagnosis and monitoring of an individual's health state. Sampling of volatile organic compounds (VOCs) derived from human breath/skin or monitoring abrupt changes in heart-beat/breath rate should allow noninvasive monitoring of disease states at an early stage. Nevertheless, for many reported wearable sensing devices, interaction with the human body leads incidentally to unavoidable scratches and/or mechanical cuts and bring about malfunction of these devices. We now offer proof-of-concept of nanoparticle-based flexible sensor arrays with fascinating self-healing abilities. By integrating a self-healable polymer substrate with 5 kinds of functionalized gold nanoparticle films, a sensor array gives a fast self-healing (<3 h) and attractive healing efficiency in both the substrate and sensing films. The proposed platform was used in sensing pressure variation and 11 kinds of VOCs. The sensor array had satisfactory sensitivity, a low detection limit, and promising discrimination features in monitoring both of VOCs and pressure variation, even after full healing. These results presage a new type of smart sensing device, with a desirable performance in the possible detection and/or clinical application for a number of different purposes.

  19. DynAMo: A Modular Platform for Monitoring Process, Outcome, and Algorithm-Based Treatment Planning in Psychotherapy

    PubMed Central

    Laireiter, Anton Rupert

    2017-01-01

    Background In recent years, the assessment of mental disorders has become more and more personalized. Modern advancements such as Internet-enabled mobile phones and increased computing capacity make it possible to tap sources of information that have long been unavailable to mental health practitioners. Objective Software packages that combine algorithm-based treatment planning, process monitoring, and outcome monitoring are scarce. The objective of this study was to assess whether the DynAMo Web application can fill this gap by providing a software solution that can be used by both researchers to conduct state-of-the-art psychotherapy process research and clinicians to plan treatments and monitor psychotherapeutic processes. Methods In this paper, we report on the current state of a Web application that can be used for assessing the temporal structure of mental disorders using information on their temporal and synchronous associations. A treatment planning algorithm automatically interprets the data and delivers priority scores of symptoms to practitioners. The application is also capable of monitoring psychotherapeutic processes during therapy and of monitoring treatment outcomes. This application was developed using the R programming language (R Core Team, Vienna) and the Shiny Web application framework (RStudio, Inc, Boston). It is made entirely from open-source software packages and thus is easily extensible. Results The capabilities of the proposed application are demonstrated. Case illustrations are provided to exemplify its usefulness in clinical practice. Conclusions With the broad availability of Internet-enabled mobile phones and similar devices, collecting data on psychopathology and psychotherapeutic processes has become easier than ever. The proposed application is a valuable tool for capturing, processing, and visualizing these data. The combination of dynamic assessment and process- and outcome monitoring has the potential to improve the efficacy and effectiveness of psychotherapy. PMID:28729233

  20. Sinabro: A Smartphone-Integrated Opportunistic Electrocardiogram Monitoring System

    PubMed Central

    Kwon, Sungjun; Lee, Dongseok; Kim, Jeehoon; Lee, Youngki; Kang, Seungwoo; Seo, Sangwon; Park, Kwangsuk

    2016-01-01

    In our preliminary study, we proposed a smartphone-integrated, unobtrusive electrocardiogram (ECG) monitoring system, Sinabro, which monitors a user’s ECG opportunistically during daily smartphone use without explicit user intervention. The proposed system also monitors ECG-derived features, such as heart rate (HR) and heart rate variability (HRV), to support the pervasive healthcare apps for smartphones based on the user’s high-level contexts, such as stress and affective state levels. In this study, we have extended the Sinabro system by: (1) upgrading the sensor device; (2) improving the feature extraction process; and (3) evaluating extensions of the system. We evaluated these extensions with a good set of algorithm parameters that were suggested based on empirical analyses. The results showed that the system could capture ECG reliably and extract highly accurate ECG-derived features with a reasonable rate of data drop during the user’s daily smartphone use. PMID:26978364

  1. Identifying species from the air: UAVs and the very high resolution challenge for plant conservation.

    PubMed

    Baena, Susana; Moat, Justin; Whaley, Oliver; Boyd, Doreen S

    2017-01-01

    The Pacific Equatorial dry forest of Northern Peru is recognised for its unique endemic biodiversity. Although highly threatened the forest provides livelihoods and ecosystem services to local communities. As agro-industrial expansion and climatic variation transform the region, close ecosystem monitoring is essential for viable adaptation strategies. UAVs offer an affordable alternative to satellites in obtaining both colour and near infrared imagery to meet the specific requirements of spatial and temporal resolution of a monitoring system. Combining this with their capacity to produce three dimensional models of the environment provides an invaluable tool for species level monitoring. Here we demonstrate that object-based image analysis of very high resolution UAV images can identify and quantify keystone tree species and their health across wide heterogeneous landscapes. The analysis exposes the state of the vegetation and serves as a baseline for monitoring and adaptive implementation of community based conservation and restoration in the area.

  2. Sinabro: A Smartphone-Integrated Opportunistic Electrocardiogram Monitoring System.

    PubMed

    Kwon, Sungjun; Lee, Dongseok; Kim, Jeehoon; Lee, Youngki; Kang, Seungwoo; Seo, Sangwon; Park, Kwangsuk

    2016-03-11

    In our preliminary study, we proposed a smartphone-integrated, unobtrusive electrocardiogram (ECG) monitoring system, Sinabro, which monitors a user's ECG opportunistically during daily smartphone use without explicit user intervention. The proposed system also monitors ECG-derived features, such as heart rate (HR) and heart rate variability (HRV), to support the pervasive healthcare apps for smartphones based on the user's high-level contexts, such as stress and affective state levels. In this study, we have extended the Sinabro system by: (1) upgrading the sensor device; (2) improving the feature extraction process; and (3) evaluating extensions of the system. We evaluated these extensions with a good set of algorithm parameters that were suggested based on empirical analyses. The results showed that the system could capture ECG reliably and extract highly accurate ECG-derived features with a reasonable rate of data drop during the user's daily smartphone use.

  3. SPARROW MODELING - Enhancing Understanding of the Nation's Water Quality

    USGS Publications Warehouse

    Preston, Stephen D.; Alexander, Richard B.; Woodside, Michael D.; Hamilton, Pixie A.

    2009-01-01

    The information provided here is intended to assist water-resources managers with interpretation of the U.S. Geological Survey (USGS) SPARROW model and its products. SPARROW models can be used to explain spatial patterns in monitored stream-water quality in relation to human activities and natural processes as defined by detailed geospatial information. Previous SPARROW applications have identified the sources and transport of nutrients in the Mississippi River basin, Chesapeake Bay watershed, and other major drainages of the United States. New SPARROW models with improved accuracy and interpretability are now being developed by the USGS National Water Quality Assessment (NAWQA) Program for six major regions of the conterminous United States. These new SPARROW models are based on updated geospatial data and stream-monitoring records from local, State, and other federal agencies.

  4. Systemic Case Formulation, Individualized Process Monitoring, and State Dynamics in a Case of Dissociative Identity Disorder.

    PubMed

    Schiepek, Günter K; Stöger-Schmidinger, Barbara; Aichhorn, Wolfgang; Schöller, Helmut; Aas, Benjamin

    2016-01-01

    Objective: The aim of this case report is to demonstrate the feasibility of a systemic procedure (synergetic process management) including modeling of the idiographic psychological system and continuous high-frequency monitoring of change dynamics in a case of dissociative identity disorder. The psychotherapy was realized in a day treatment center with a female client diagnosed with borderline personality disorder (BPD) and dissociative identity disorder. Methods: A three hour long co-creative session at the beginning of the treatment period allowed for modeling the systemic network of the client's dynamics of cognitions, emotions, and behavior. The components (variables) of this idiographic system model (ISM) were used to create items for an individualized process questionnaire for the client. The questionnaire was administered daily through an internet-based monitoring tool (Synergetic Navigation System, SNS), to capture the client's individual change process continuously throughout the therapy and after-care period. The resulting time series were reflected by therapist and client in therapeutic feedback sessions. Results: For the client it was important to see how the personality states dominating her daily life were represented by her idiographic system model and how the transitions between each state could be explained and understood by the activating and inhibiting relations between the cognitive-emotional components of that system. Continuous monitoring of her cognitions, emotions, and behavior via SNS allowed for identification of important triggers, dynamic patterns, and psychological mechanisms behind seemingly erratic state fluctuations. These insights enabled a change in management of the dynamics and an intensified trauma-focused therapy. Conclusion: By making use of the systemic case formulation technique and subsequent daily online monitoring, client and therapist continuously refer to detailed visualizations of the mental and behavioral network and its dynamics (e.g., order transitions). Effects on self-related information processing, on identity development, and toward a more pronounced autonomy in life (instead of feeling helpless against the chaoticity of state dynamics) were evident in the presented case and documented by the monitoring system.

  5. Expert Systems for Real-Time Volcano Monitoring

    NASA Astrophysics Data System (ADS)

    Cassisi, C.; Cannavo, F.; Montalto, P.; Motta, P.; Schembra, G.; Aliotta, M. A.; Cannata, A.; Patanè, D.; Prestifilippo, M.

    2014-12-01

    In the last decade, the capability to monitor and quickly respond to remote detection of volcanic activity has been greatly improved through use of advanced techniques and semi-automatic software applications installed in most of the 24h control rooms devoted to volcanic surveillance. Ability to monitor volcanoes is being advanced by new technology, such as broad-band seismology, microphone networks mainly recording in the infrasonic frequency band, satellite observations of ground deformation, high quality video surveillance systems, also in infrared band, improved sensors for volcanic gas measurements, and advances in computer power and speed, leading to improvements in data transmission, data analysis and modeling techniques. One of the most critical point in the real-time monitoring chain is the evaluation of the volcano state from all the measurements. At the present, most of this task is delegated to one or more human experts in volcanology. Unfortunately, the volcano state assessment becomes harder if we observe that, due to the coupling of highly non-linear and complex volcanic dynamic processes, the measurable effects can show a rich range of different behaviors. Moreover, due to intrinsic uncertainties and possible failures in some recorded data, precise state assessment is usually not achievable. Hence, the volcano state needs to be expressed in probabilistic terms that take account of uncertainties. In the framework of the project PON SIGMA (Integrated Cloud-Sensor System for Advanced Multirisk Management) work, we have developed an expert system approach to estimate the ongoing volcano state from all the available measurements and with minimal human interaction. The approach is based on hidden markov model and deals with uncertainties and probabilities. We tested the proposed approach on data coming from the Mt. Etna (Italy) continuous monitoring networks for the period 2011-2013. Results show that this approach can be a valuable tool to aid the operator in volcano real-time monitoring.

  6. Global Space Weather Observational Network: Challenges and China's Contribution

    NASA Astrophysics Data System (ADS)

    Wang, C.

    2017-12-01

    To understand space weather physical processes and predict space weather accurately, global space-borne and ground-based space weather observational network, making simultaneous observations from the Sun to geo-space (magnetosphere, ionosphere and atmosphere), plays an essential role. In this talk, we will present the advances of the Chinese space weather science missions, including the ASO-S (Advanced Space-borne Solar Observatory), MIT (Magnetosphere - Ionosphere- Thermosphere Coupling Exploration), and the ESA-China joint space weather science mission SMILE (Solar wind - Magnetosphere - Ionosphere Link Explore), a new mission to image the magnetosphere. Compared to satellites, ground-based monitors are cheap, convenient, and provide continuous real-time data. We will also introduce the Chinese Meridian Project (CMP), a ground-based program fully utilizing the geographic location of the Chinese landmass to monitor the geo-space environment. CMP is just one arm of a larger program that Chinese scientists are proposing to the international community. The International Meridian Circle Program (IMCP) for space weather hopes to connect chains of ground-based monitors at the longitudinal meridians 120 deg E and 60 deg W. IMCP takes advantage of the fact that these meridians already have the most monitors of any on Earth, with monitors in Russia, Australia, Brazil, the United States, Canada, and other countries. This data will greatly enhance the ability of scientists to monitor and predict the space weather worldwide.

  7. Aggregate gradation control program, Virginia.

    DOT National Transportation Integrated Search

    1985-01-01

    In 1983, Virginia implemented a specification for the acceptance of aggregate base and bituminous concrete in which the producer undertook the acceptance testing and state personnel did much reduced testing as a monitoring program. Although some peop...

  8. Comparision of photogrammetric point clouds with BIM building elements for construction progress monitoring

    NASA Astrophysics Data System (ADS)

    Tuttas, S.; Braun, A.; Borrmann, A.; Stilla, U.

    2014-08-01

    For construction progress monitoring a planned state of the construction at a certain time (as-planed) has to be compared to the actual state (as-built). The as-planed state is derived from a building information model (BIM), which contains the geometry of the building and the construction schedule. In this paper we introduce an approach for the generation of an as-built point cloud by photogrammetry. It is regarded that that images on a construction cannot be taken from everywhere it seems to be necessary. Because of this we use a combination of structure from motion process together with control points to create a scaled point cloud in a consistent coordinate system. Subsequently this point cloud is used for an as-built - as-planed comparison. For that voxels of an octree are marked as occupied, free or unknown by raycasting based on the triangulated points and the camera positions. This allows to identify not existing building parts. For the verification of the existence of building parts a second test based on the points in front and behind the as-planed model planes is performed. The proposed procedure is tested based on an inner city construction site under real conditions.

  9. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis.

    PubMed

    Gao, Wei; Emaminejad, Sam; Nyein, Hnin Yin Yin; Challa, Samyuktha; Chen, Kevin; Peck, Austin; Fahad, Hossain M; Ota, Hiroki; Shiraki, Hiroshi; Kiriya, Daisuke; Lien, Der-Hsien; Brooks, George A; Davis, Ronald W; Javey, Ali

    2016-01-28

    Wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual's state of health. Sampling human sweat, which is rich in physiological information, could enable non-invasive monitoring. Previously reported sweat-based and other non-invasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanically flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plastic-based sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing. This application could not have been realized using either of these technologies alone owing to their respective inherent limitations. The wearable system is used to measure the detailed sweat profile of human subjects engaged in prolonged indoor and outdoor physical activities, and to make a real-time assessment of the physiological state of the subjects. This platform enables a wide range of personalized diagnostic and physiological monitoring applications.

  10. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Emaminejad, Sam; Nyein, Hnin Yin Yin; Challa, Samyuktha; Chen, Kevin; Peck, Austin; Fahad, Hossain M.; Ota, Hiroki; Shiraki, Hiroshi; Kiriya, Daisuke; Lien, Der-Hsien; Brooks, George A.; Davis, Ronald W.; Javey, Ali

    2016-01-01

    Wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual’s state of health. Sampling human sweat, which is rich in physiological information, could enable non-invasive monitoring. Previously reported sweat-based and other non-invasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanically flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plastic-based sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing. This application could not have been realized using either of these technologies alone owing to their respective inherent limitations. The wearable system is used to measure the detailed sweat profile of human subjects engaged in prolonged indoor and outdoor physical activities, and to make a real-time assessment of the physiological state of the subjects. This platform enables a wide range of personalized diagnostic and physiological monitoring applications.

  11. Note: Real time optical sensing of alpha-radiation emitting radioactive aerosols based on solid state nuclear track detector.

    PubMed

    Kulkarni, A; Ha, S; Joshirao, P; Manchanda, V; Bak, M S; Kim, T

    2015-06-01

    A sensitive radioactive aerosols sensor has been designed and developed. Its design guidance is based on the need for a low operational cost and reliable measurements to provide daily aerosol monitoring. The exposure of diethylene-glycol bis (allylcarbonate) to radiation causes modification of its physico-chemical properties like surface roughness and reflectance. In the present study, optical sensor based on the reflectance measurement has been developed with an aim to monitor real time presence of alpha radioactive aerosols emitted from thorium nitrate hydrate. The results shows that the fabricated sensor can detect 0.0157 kBq to 0.1572 kBq of radio activity by radioactive aerosols generated from (Th(NO3)4 ⋅ 5H2O) at 0.1 ml/min flow rate. The proposed instrument will be helpful to monitor radioactive aerosols in/around a nuclear facility, building construction sites, mines, and granite polishing factories.

  12. Change in refractive index of muscle tissue during laser-induced interstitial thermotherapy.

    PubMed

    Chen, Na; Chen, Meimei; Liu, Shupeng; Guo, Qiang; Chen, Zhenyi; Wang, Tingyun

    2014-01-01

    This paper presents a long-period fiber-grating (LPG) based Michelson interferometric refractometry to monitor the change in refractive index of porcine muscle during laser-induced interstitial thermotherapy (LITT). As the wavelength of RI interferometer alters with the change in refractive index around the probe, the LPG based refractometry is combined with LITT system to measure the change in refractive index of porcine muscle when irradiated by laser. The experimental results show the denaturation of tissue alters the refractive index significantly and the LPG sensor can be applied to monitor the tissue state during the LITT.

  13. A Web-based geographic information system for monitoring animal welfare during long journeys.

    PubMed

    Ippoliti, Carla; Di Pasquale, Adriano; Fiore, Gianluca; Savini, Lara; Conte, Annamaria; Di Gianvito, Federica; Di Francesco, Cesare

    2007-01-01

    Animal welfare protection during long journeys is mandatory according to European Union regulations designed to ensure that animals are transported in accordance with animal welfare requirements and to provide control bodies with a regulatory tool to react promptly in cases of non-compliance and to ensure a safe network between products, animals and farms. Regulation 1/2005/EC foresees recourse to a system of traceability within European Union member states. The Joint Research Centre of the European Commission (JRC) has developed a prototype system fulfilling the requirements of the Regulation which is able to monitor compliance with animal welfare requirements during transportation, register electronic identification of transported animals and store data in a central database shared with the other member states through a Web-based application. Test equipment has recently been installed on a vehicle that records data on vehicle position (geographic coordinates, date/time) and animal welfare conditions (measurements of internal temperature of the vehicle, etc.). The information is recorded at fixed intervals and transmitted to the central database. The authors describe the Web-based geographic information system, through which authorised users can visualise instantly the real-time position of the vehicle, monitor the sensor-recorded data and follow the time-space path of the truck during journeys.

  14. Monitoring of Batch Industrial Crystallization with Growth, Nucleation, and Agglomeration. Part 2: Structure Design for State Estimation with Secondary Measurements

    PubMed Central

    2017-01-01

    This work investigates the design of alternative monitoring tools based on state estimators for industrial crystallization systems with nucleation, growth, and agglomeration kinetics. The estimation problem is regarded as a structure design problem where the estimation model and the set of innovated states have to be chosen; the estimator is driven by the available measurements of secondary variables. On the basis of Robust Exponential estimability arguments, it is found that the concentration is distinguishable with temperature and solid fraction measurements while the crystal size distribution (CSD) is not. Accordingly, a state estimator structure is selected such that (i) the concentration (and other distinguishable states) are innovated by means of the secondary measurements processed with the geometric estimator (GE), and (ii) the CSD is estimated by means of a rigorous model in open loop mode. The proposed estimator has been tested through simulations showing good performance in the case of mismatch in the initial conditions, parametric plant-model mismatch, and noisy measurements. PMID:28890604

  15. Monitoring of Batch Industrial Crystallization with Growth, Nucleation, and Agglomeration. Part 2: Structure Design for State Estimation with Secondary Measurements.

    PubMed

    Porru, Marcella; Özkan, Leyla

    2017-08-30

    This work investigates the design of alternative monitoring tools based on state estimators for industrial crystallization systems with nucleation, growth, and agglomeration kinetics. The estimation problem is regarded as a structure design problem where the estimation model and the set of innovated states have to be chosen; the estimator is driven by the available measurements of secondary variables. On the basis of Robust Exponential estimability arguments, it is found that the concentration is distinguishable with temperature and solid fraction measurements while the crystal size distribution (CSD) is not. Accordingly, a state estimator structure is selected such that (i) the concentration (and other distinguishable states) are innovated by means of the secondary measurements processed with the geometric estimator (GE), and (ii) the CSD is estimated by means of a rigorous model in open loop mode. The proposed estimator has been tested through simulations showing good performance in the case of mismatch in the initial conditions, parametric plant-model mismatch, and noisy measurements.

  16. An Embedded Wireless Sensor Network with Wireless Power Transmission Capability for the Structural Health Monitoring of Reinforced Concrete Structures.

    PubMed

    Gallucci, Luca; Menna, Costantino; Angrisani, Leopoldo; Asprone, Domenico; Moriello, Rosario Schiano Lo; Bonavolontà, Francesco; Fabbrocino, Francesco

    2017-11-07

    Maintenance strategies based on structural health monitoring can provide effective support in the optimization of scheduled repair of existing structures, thus enabling their lifetime to be extended. With specific regard to reinforced concrete (RC) structures, the state of the art seems to still be lacking an efficient and cost-effective technique capable of monitoring material properties continuously over the lifetime of a structure. Current solutions can typically only measure the required mechanical variables in an indirect, but economic, manner, or directly, but expensively. Moreover, most of the proposed solutions can only be implemented by means of manual activation, making the monitoring very inefficient and then poorly supported. This paper proposes a structural health monitoring system based on a wireless sensor network (WSN) that enables the automatic monitoring of a complete structure. The network includes wireless distributed sensors embedded in the structure itself, and follows the monitoring-based maintenance (MBM) approach, with its ABCDE paradigm, namely: accuracy, benefit, compactness, durability, and easiness of operations. The system is structured in a node level and has a network architecture that enables all the node data to converge in a central unit. Human control is completely unnecessary until the periodic evaluation of the collected data. Several tests are conducted in order to characterize the system from a metrological point of view and assess its performance and effectiveness in real RC conditions.

  17. Effects of Performance Versus Game-Based Mobile Applications on Response to Exercise.

    PubMed

    Gillman, Arielle S; Bryan, Angela D

    2016-02-01

    Given the popularity of mobile applications (apps) designed to increase exercise participation, it is important to understand their effects on psychological predictors of exercise behavior. This study tested a performance feedback-based app compared to a game-based app to examine their effects on aspects of immediate response to an exercise bout. Twenty-eight participants completed a 30-min treadmill run while using one of two randomly assigned mobile running apps: Nike + Running, a performance-monitoring app which theoretically induces an associative, goal-driven state, or Zombies Run!, an app which turns the experience of running into a virtual reality game, theoretically inducing dissociation from primary exercise goals. The two conditions did not differ on primary motivational state outcomes; however, participants reported more associative attentional focus in the performance-monitoring app condition compared to more dissociative focus in the game-based app condition. Game-based and performance-tracking running apps may not have differential effects on goal motivation during exercise. However, game-based apps may help recreational exercisers dissociate from exercise more readily. Increasing the enjoyment of an exercise bout through the development of new and innovative mobile technologies is an important avenue for future research.

  18. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetovsky, Marvin A; Patterson, Eileen F

    These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, asmore » well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  19. Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetovsky, Marvin A.; Patterson, Eileen F.; Sandoval, Marisa N.

    These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is tomore » provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  20. The Imperial County Community Air Monitoring Network: A Model for Community-based Environmental Monitoring for Public Health Action

    PubMed Central

    Olmedo, Luis; Bejarano, Ester; Lugo, Humberto; Murillo, Eduardo; Seto, Edmund; Wong, Michelle; King, Galatea; Wilkie, Alexa; Meltzer, Dan; Carvlin, Graeme; Jerrett, Michael; Northcross, Amanda

    2017-01-01

    Summary: The Imperial County Community Air Monitoring Network (the Network) is a collaborative group of community, academic, nongovernmental, and government partners designed to fill the need for more detailed data on particulate matter in an area that often exceeds air quality standards. The Network employs a community-based environmental monitoring process in which the community and researchers have specific, well-defined roles as part of an equitable partnership that also includes shared decision-making to determine study direction, plan research protocols, and conduct project activities. The Network is currently producing real-time particulate matter data from 40 low-cost sensors throughout Imperial County, one of the largest community-based air networks in the United States. Establishment of a community-led air network involves engaging community members to be citizen-scientists in the monitoring, siting, and data collection process. Attention to technical issues regarding instrument calibration and validation and electronic transfer and storage of data is also essential. Finally, continued community health improvements will be predicated on facilitating community ownership and sustainability of the network after research funds have been expended. https://doi.org/10.1289/EHP1772 PMID:28886604

  1. Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoringmore » agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  2. Event-Driven Messaging for Offline Data Quality Monitoring at ATLAS

    NASA Astrophysics Data System (ADS)

    Onyisi, Peter

    2015-12-01

    During LHC Run 1, the information flow through the offline data quality monitoring in ATLAS relied heavily on chains of processes polling each other's outputs for handshaking purposes. This resulted in a fragile architecture with many possible points of failure and an inability to monitor the overall state of the distributed system. We report on the status of a project undertaken during the LHC shutdown to replace the ad hoc synchronization methods with a uniform message queue system. This enables the use of standard protocols to connect processes on multiple hosts; reliable transmission of messages between possibly unreliable programs; easy monitoring of the information flow; and the removal of inefficient polling-based communication.

  3. Monitoring service for the Gran Telescopio Canarias control system

    NASA Astrophysics Data System (ADS)

    Huertas, Manuel; Molgo, Jordi; Macías, Rosa; Ramos, Francisco

    2016-07-01

    The Monitoring Service collects, persists and propagates the Telescope and Instrument telemetry, for the Gran Telescopio CANARIAS (GTC), an optical-infrared 10-meter segmented mirror telescope at the ORM observatory in Canary Islands (Spain). A new version of the Monitoring Service has been developed in order to improve performance, provide high availability, guarantee fault tolerance and scalability to cope with high volume of data. The architecture is based on a distributed in-memory data store with a Product/Consumer pattern design. The producer generates the data samples. The consumers either persists the samples to a database for further analysis or propagates them to the consoles in the control room to monitorize the state of the whole system.

  4. Evaluation of Acquisition Strategies for Image-Based Construction Site Monitoring

    NASA Astrophysics Data System (ADS)

    Tuttas, S.; Braun, A.; Borrmann, A.; Stilla, U.

    2016-06-01

    Construction site monitoring is an essential task for keeping track of the ongoing construction work and providing up-to-date information for a Building Information Model (BIM). The BIM contains the as-planned states (geometry, schedule, costs, ...) of a construction project. For updating, the as-built state has to be acquired repeatedly and compared to the as-planned state. In the approach presented here, a 3D representation of the as-built state is calculated from photogrammetric images using multi-view stereo reconstruction. On construction sites one has to cope with several difficulties like security aspects, limited accessibility, occlusions or construction activity. Different acquisition strategies and techniques, namely (i) terrestrial acquisition with a hand-held camera, (ii) aerial acquisition using a Unmanned Aerial Vehicle (UAV) and (iii) acquisition using a fixed stereo camera pair at the boom of the crane, are tested on three test sites. They are assessed considering the special needs for the monitoring tasks and limitations on construction sites. The three scenarios are evaluated based on the ability of automation, the required effort for acquisition, the necessary equipment and its maintaining, disturbance of the construction works, and on the accuracy and completeness of the resulting point clouds. Based on the experiences during the test cases the following conclusions can be drawn: Terrestrial acquisition has the lowest requirements on the device setup but lacks on automation and coverage. The crane camera shows the lowest flexibility but the highest grade of automation. The UAV approach can provide the best coverage by combining nadir and oblique views, but can be limited by obstacles and security aspects. The accuracy of the point clouds is evaluated based on plane fitting of selected building parts. The RMS errors of the fitted parts range from 1 to a few cm for the UAV and the hand-held scenario. First results show that the crane camera approach has the potential to reach the same accuracy level.

  5. The Alliance for Innovation in Maternal Health Care: A Way Forward.

    PubMed

    Mahoney, Jeanne

    2018-06-01

    The Alliance for Innovation in Maternal Health is a program supported by the Health Services Resource Administration to reduce maternal mortality and severe maternal morbidity in the United States. This program develops bundles of evidence based action steps for birth facilities to adapt. Progress is monitored at the facility, state and national levels to foster data-driven quality improvement efforts.

  6. Youth Risk Behavior Survey 2003: Commonwealth of the Northern Mariana Islands, Republic of the Marshall Islands, Republic of Palau

    ERIC Educational Resources Information Center

    Balling, Allison; Grunbaum, Jo Anne; Speicher, Nancy; McManus, Tim; Kann, Laura

    2005-01-01

    To monitor priority health-risk behaviors among youth and young adults, the Centers for Disease Control and Prevention developed the Youth Risk Behavior Surveillance System (YRBSS). The YRBSS includes national, state, territory, and local school-based surveys of high school students in grades 9-12. In addition, some states, territories, and cities…

  7. Youth Risk Behavior Survey 2005: Commonwealth of the Northern Mariana Islands, Republic of Palau, Commonwealth of Puerto Rico

    ERIC Educational Resources Information Center

    Lippe, Jaclynn; Brener, Nancy D.; McManus, Tim; Kann, Laura; Speicher, Nancy

    2008-01-01

    To monitor priority health-risk behaviors among youth and young adults, the Centers for Disease Control and Prevention (CDC) developed the Youth Risk Behavior Surveillance System (YRBSS). The YRBSS includes national, state, territorial, and local school-based surveys of high school students in grades 9-12. In addition, some states, territories,…

  8. Youth Risk Behavior Surveillance--United States, 2013. Morbidity and Mortality Weekly Report (MMWR). Surveillance Summaries. Volume 63, Number SS-4

    ERIC Educational Resources Information Center

    Kann, Laura; Kinchen, Steve; Shanklin, Shari L.; Flint, Katherine H.; Hawkins, Joseph; Harris, William A.; Lowry, Richard; Olsen, Emily O'Malley; McManus, Tim; Chyen, David; Whittle, Lisa; Taylor, Eboni; Demissie, Zewditu; Brener, Nancy; Thornton, Jemekia; Moore, John; Zaza, Stephanie

    2014-01-01

    Problem: Priority health-risk behaviors contribute to the leading causes of morbidity and mortality among youth and adults. Population-based data on these behaviors at the national, state, and local levels can help monitor the effectiveness of public health interventions designed to protect and promote the health of youth nationwide. Reporting…

  9. Youth Risk Behavior Surveillance--United States, 2015. Morbidity and Mortality Weekly Report. Surveillance Summaries. Volume 65, Number 6

    ERIC Educational Resources Information Center

    Kann, Laura; McManus, Tim; Harris, William A.; Shanklin, Shari L.; Flint, Katherine H.; Hawkins, Joseph; Queen, Barbara; Lowry, Richard; Olsen, Emily O'Malley; Chyen, David; Whittle, Lisa; Thornton, Jemekia; Lim, Connie; Yamakawa, Yoshimi; Brener, Nancy; Zaza, Stephanie

    2016-01-01

    Problem: Priority health-risk behaviors contribute to the leading causes of morbidity and mortality among youth and adults. Population-based data on these behaviors at the national, state, and local levels can help monitor the effectiveness of public health interventions designed to protect and promote the health of youth nationwide. Reporting…

  10. Improving estimates of forest disturbance by combining observations from Landsat time series with U.S. Forest Service Forest Inventory and Analysis data

    Treesearch

    Todd A. Schroeder; Sean P. Healey; Gretchen G. Moisen; Tracey S. Frescino; Warren B. Cohen; Chengquan Huang; Robert E. Kennedy; Zhiqiang Yang

    2014-01-01

    With earth's surface temperature and human population both on the rise a new emphasis has been placed on monitoring changes to forested ecosystems the world over. In the United States the U.S. Forest Service Forest Inventory and Analysis (FIA) program monitors the forested land base with field data collected over a permanent network of sample plots. Although these...

  11. Estimating Cleanup Times Associated With Combining Source-Area Remediation With Monitored Natural Attenuation

    DTIC Science & Technology

    2008-02-01

    1994, Chiou and Kile (USGS, 2000) 3.2.2 Source Characteristics The source area was based on estimates of the locations where contaminants were...values for Koc and solubility for some of the SVOC’s appear in published literature (Chiou and Kile , 2000), which suggests a larger range of...Monitored Natural Attenuation. United States Geological Survey Water Resources Investigations Report 03-4057. Chiou, C.T. and Kile , D.E., 2000

  12. Teacher Education under Audit: Value-Added Measures,TVAAS, EdTPA and Evidence-Based Theory

    ERIC Educational Resources Information Center

    Price, Todd Alan

    2014-01-01

    This article describes how evidence-based theory fuels an audit culture for teacher education in the USA, placing faculty under monitoring and surveillance, and severely constraining judgment, discretion, and professional decision-making. The national education reform efforts, Race to the Top and Common Core State Standards, demand fealty to…

  13. Making Evidence Locally: Rethinking Education Research under the Every Student Succeeds Act

    ERIC Educational Resources Information Center

    Kane, Thomas J.

    2017-01-01

    The new federal education law, the Every Student Succeeds Act (ESSA), envisions a powerful role for states in managing the evidence base behind school improvement efforts. Not only must they certify that interventions meet the "evidence-based" requirements spelled out in the law, they also must monitor and evaluate federally funded…

  14. 12 CFR Appendix A to Part 208 - Capital Adequacy Guidelines for State Member Banks: Risk-Based Measure

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Practices (Basle Supervisors' Committee) and endorsed by the Group of Ten Central Bank Governors. The... risk equivalent assets, and calculate risk-based capital ratios adjusted for market risk. The risk... and investment policies; and management's overall ability to monitor and control financial and...

  15. A Comparison of Satellite Data-Based Drought Indicators in Detecting the 2012 Drought in the Southeastern US

    NASA Technical Reports Server (NTRS)

    Yagci, Ali Levent; Santanello, Joseph A.; Rodell, Matthew; Deng, Meixia; Di, Liping

    2018-01-01

    The drought of 2012 in the North America devastated agricultural crops and pastures, further damaging agriculture and livestock industries and leading to great losses in the economy. The drought maps of the United States Drought Monitor (USDM) and various drought monitoring techniques based on the data collected by the satellites orbiting in space such as the Gravity Recovery and Climate Experiment (GRACE) and the Moderate Resolution Imaging Spectroradiometer (MODIS) are inter-compared during the 2012 drought conditions in the southeastern United States. The results indicated that spatial extent of drought reported by USDM were in general agreement with those reported by the MODIS-based drought maps. GRACE-based drought maps suggested that the southeastern US experienced widespread decline in surface and root-zone soil moisture and groundwater resources. Disagreements among all drought indicators were observed over irrigated areas, especially in Lower Mississippi region where agriculture is mainly irrigated. Besides, we demonstrated that time lag of vegetation response to changes in soil moisture and groundwater partly contributed to these disagreements, as well.

  16. Monitoring highway assets using remote sensing technology : research spotlight.

    DOT National Transportation Integrated Search

    2014-04-01

    Collecting inventory data about roadway assets is a critical part of : MDOTs asset management efforts, which help the department operate, : maintain and upgrade these assets cost-effectively. Federal law requires : that states develop a risk-based...

  17. Optimization-based methods for road image registration

    DOT National Transportation Integrated Search

    2008-02-01

    A number of transportation agencies are now relying on direct imaging for monitoring and cataloguing the state of their roadway systems. Images provide objective information to characterize the pavement as well as roadside hardware. The tasks of proc...

  18. Contribution of Near Real Time MODIS-Based Forest Disturbance Detection Products to a National Forest Threat Early Warning System

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Hargrove, William; Gasser, Gerald; Smoot, James; Kuper, Philip

    2011-01-01

    U.S. forests occupy approx. 751 million acres (approx. 1/3 of total land). These forests are exposed to multiple biotic and abiotic threats that collectively damage extensive acreages each year. Hazardous forest disturbances can threaten human life and property, bio-diversity and water supplies. Timely regional forest monitoring products are needed to aid forest management and decision making by the US Forest Service and its state and private partners. Daily MODIS data products provide a means to monitor regional forest disturbances on a weekly basis. In response, we began work in 2006 to develop a Near Real Time (NRT) forest monitoring capability, based on MODIS NDVI data, as part of a national forest threat early warning system (EWS)

  19. Availability analysis of mechanical systems with condition-based maintenance using semi-Markov and evaluation of optimal condition monitoring interval

    NASA Astrophysics Data System (ADS)

    Kumar, Girish; Jain, Vipul; Gandhi, O. P.

    2018-03-01

    Maintenance helps to extend equipment life by improving its condition and avoiding catastrophic failures. Appropriate model or mechanism is, thus, needed to quantify system availability vis-a-vis a given maintenance strategy, which will assist in decision-making for optimal utilization of maintenance resources. This paper deals with semi-Markov process (SMP) modeling for steady state availability analysis of mechanical systems that follow condition-based maintenance (CBM) and evaluation of optimal condition monitoring interval. The developed SMP model is solved using two-stage analytical approach for steady-state availability analysis of the system. Also, CBM interval is decided for maximizing system availability using Genetic Algorithm approach. The main contribution of the paper is in the form of a predictive tool for system availability that will help in deciding the optimum CBM policy. The proposed methodology is demonstrated for a centrifugal pump.

  20. The adaptive safety analysis and monitoring system

    NASA Astrophysics Data System (ADS)

    Tu, Haiying; Allanach, Jeffrey; Singh, Satnam; Pattipati, Krishna R.; Willett, Peter

    2004-09-01

    The Adaptive Safety Analysis and Monitoring (ASAM) system is a hybrid model-based software tool for assisting intelligence analysts to identify terrorist threats, to predict possible evolution of the terrorist activities, and to suggest strategies for countering terrorism. The ASAM system provides a distributed processing structure for gathering, sharing, understanding, and using information to assess and predict terrorist network states. In combination with counter-terrorist network models, it can also suggest feasible actions to inhibit potential terrorist threats. In this paper, we will introduce the architecture of the ASAM system, and discuss the hybrid modeling approach embedded in it, viz., Hidden Markov Models (HMMs) to detect and provide soft evidence on the states of terrorist network nodes based on partial and imperfect observations, and Bayesian networks (BNs) to integrate soft evidence from multiple HMMs. The functionality of the ASAM system is illustrated by way of application to the Indian Airlines Hijacking, as modeled from open sources.

  1. Groundwater monitoring of hydraulic fracturing in California: Recommendations for permit-required monitoring

    NASA Astrophysics Data System (ADS)

    Esser, B. K.; Beller, H. R.; Carroll, S.; Cherry, J. A.; Jackson, R. B.; Jordan, P. D.; Madrid, V.; Morris, J.; Parker, B. L.; Stringfellow, W. T.; Varadharajan, C.; Vengosh, A.

    2015-12-01

    California recently passed legislation mandating dedicated groundwater quality monitoring for new well stimulation operations. The authors provided the State with expert advice on the design of such monitoring networks. Factors that must be considered in designing a new and unique groundwater monitoring program include: Program design: The design of a monitoring program is contingent on its purpose, which can range from detection of individual well leakage to demonstration of regional impact. The regulatory goals for permit-required monitoring conducted by operators on a well-by-well basis will differ from the scientific goals of a regional monitoring program conducted by the State. Vulnerability assessment: Identifying factors that increase the probability of transport of fluids from the hydrocarbon target zone to a protected groundwater zone enables the intensity of permit-required monitoring to be tiered by risk and also enables prioritization of regional monitoring of groundwater basins based on vulnerability. Risk factors include well integrity; proximity to existing wellbores and geologic features; wastewater disposal; vertical separation between the hydrocarbon and groundwater zones; and site-specific hydrogeology. Analyte choice: The choice of chemical analytes in a regulatory monitoring program is guided by the goals of detecting impact, assuring public safety, preventing resource degradation, and minimizing cost. Balancing these goals may be best served by tiered approach in which targeted analysis of specific chemical additives is triggered by significant changes in relevant but more easily analyzed constituents. Such an approach requires characterization of baseline conditions, especially in areas with long histories of oil and gas development. Monitoring technology: Monitoring a deep subsurface process or a long wellbore is more challenging than monitoring a surface industrial source. The requirement for monitoring multiple groundwater aquifers across a range of depths and of monitoring at deeper depths than is typical for regulatory monitoring programs requires consideration of monitoring technology, which can range from clusters of wells to multiple wells in a single wellbore to multi-level systems in a single cased wellbore.

  2. Non-Traditional Displays for Mission Monitoring

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Schutte, Paul C.

    1999-01-01

    Advances in automation capability and reliability have changed the role of humans from operating and controlling processes to simply monitoring them for anomalies. However, humans are traditionally bad monitors of highly reliable systems over time. Thus, the human is assigned a task for which he is ill equipped. We believe that this has led to the dominance of human error in process control activities such as operating transportation systems (aircraft and trains), monitoring patient health in the medical industry, and controlling plant operations. Research has shown, though, that an automated monitor can assist humans in recognizing and dealing with failures. One possible solution to this predicament is to use a polar-star display that will show deviations from normal states based on parameters that are most indicative of mission health.

  3. Monitoring apparatus and method for battery power supply

    DOEpatents

    Martin, Harry L.; Goodson, Raymond E.

    1983-01-01

    A monitoring apparatus and method are disclosed for monitoring and/or indicating energy that a battery power source has then remaining and/or can deliver for utilization purposes as, for example, to an electric vehicle. A battery mathematical model forms the basis for monitoring with a capacity prediction determined from measurement of the discharge current rate and stored battery parameters. The predicted capacity is used to provide a state-of-charge indication. Self-calibration over the life of the battery power supply is enacted through use of a feedback voltage based upon the difference between predicted and measured voltages to correct the battery mathematical model. Through use of a microprocessor with central information storage of temperature, current and voltage, system behavior is monitored, and system flexibility is enhanced.

  4. Novel texture-based descriptors for tool wear condition monitoring

    NASA Astrophysics Data System (ADS)

    Antić, Aco; Popović, Branislav; Krstanović, Lidija; Obradović, Ratko; Milošević, Mijodrag

    2018-01-01

    All state-of-the-art tool condition monitoring systems (TCM) in the tool wear recognition task, especially those that use vibration sensors, heavily depend on the choice of descriptors containing information about the tool wear state which are extracted from the particular sensor signals. All other post-processing techniques do not manage to increase the recognition precision if those descriptors are not discriminative enough. In this work, we propose a tool wear monitoring strategy which relies on the novel texture based descriptors. We consider the module of the Short Term Discrete Fourier Transform (STDFT) spectra obtained from the particular vibration sensors signal utterance as the 2D textured image. This is done by identifying the time scale of STDFT as the first dimension, and the frequency scale as the second dimension of the particular textured image. The obtained textured image is then divided into particular 2D texture patches, covering a part of the frequency range of interest. After applying the appropriate filter bank, 2D textons are extracted for each predefined frequency band. By averaging in time, we extract from the textons for each band of interest the information regarding the Probability Density Function (PDF) in the form of lower order moments, thus obtaining robust tool wear state descriptors. We validate the proposed features by the experiments conducted on the real TCM system, obtaining the high recognition accuracy.

  5. Space weather monitoring by ground-based means carried out in Polar Geophysical Center at Arctic and Antarctic Research Institute

    NASA Astrophysics Data System (ADS)

    Janzhura, Alexander

    A real-time information on geophysical processes in polar regions is very important for goals of Space Weather monitoring by the ground-based means. The modern communication systems and computer technology makes it possible to collect and process the data from remote sites without significant delays. A new acquisition equipment based on microprocessor modules and reliable in hush climatic conditions was deployed at the Roshydromet networks of geophysical observations in Arctic and is deployed at observatories in Antarctic. A contemporary system for on-line collecting and transmitting the geophysical data from the Arctic and Antarctic stations to AARI has been realized and the Polar Geophysical Center (PGC) arranged at AARI ensures the near-real time processing and analyzing the geophysical information from 11 stations in Arctic and 5 stations in Antarctic. The space weather monitoring by the ground based means is one of the main tasks standing before the Polar Geophysical Center. As studies by Troshichev and Janzhura, [2012] showed, the PC index characterizing the polar cap magnetic activity appeared to be an adequate indicator of the solar wind energy that entered into the magnetosphere and the energy that is accumulating in the magnetosphere. A great advantage of the PC index application over other methods based on satellite data is a permanent on-line availability of information about magnetic activity in both northern and southern polar caps. A special procedure agreed between Arctic and Antarctic Research Institute (AARI) and Space Institute of the Danish Technical University (DTUSpace) ensures calculation of the unified PC index in quasi-real time by magnetic data from the Thule and Vostok stations (see public site: http://pc-index.org). The method for estimation of AL and Dst indices (as indicators of state of the disturbed magnetosphere) based on data on foregoing PC indices has been elaborated and testified in the Polar Geophysical Center. It is demonstrated that the PC index can be successfully used to monitor the state of the magnetosphere (space weather monitoring) and the readiness of the magnetosphere to producing substorm or storm (space weather nowcasting).

  6. Multimethod, multistate Bayesian hierarchical modeling approach for use in regional monitoring of wolves.

    PubMed

    Jiménez, José; García, Emilio J; Llaneza, Luis; Palacios, Vicente; González, Luis Mariano; García-Domínguez, Francisco; Múñoz-Igualada, Jaime; López-Bao, José Vicente

    2016-08-01

    In many cases, the first step in large-carnivore management is to obtain objective, reliable, and cost-effective estimates of population parameters through procedures that are reproducible over time. However, monitoring predators over large areas is difficult, and the data have a high level of uncertainty. We devised a practical multimethod and multistate modeling approach based on Bayesian hierarchical-site-occupancy models that combined multiple survey methods to estimate different population states for use in monitoring large predators at a regional scale. We used wolves (Canis lupus) as our model species and generated reliable estimates of the number of sites with wolf reproduction (presence of pups). We used 2 wolf data sets from Spain (Western Galicia in 2013 and Asturias in 2004) to test the approach. Based on howling surveys, the naïve estimation (i.e., estimate based only on observations) of the number of sites with reproduction was 9 and 25 sites in Western Galicia and Asturias, respectively. Our model showed 33.4 (SD 9.6) and 34.4 (3.9) sites with wolf reproduction, respectively. The number of occupied sites with wolf reproduction was 0.67 (SD 0.19) and 0.76 (0.11), respectively. This approach can be used to design more cost-effective monitoring programs (i.e., to define the sampling effort needed per site). Our approach should inspire well-coordinated surveys across multiple administrative borders and populations and lead to improved decision making for management of large carnivores on a landscape level. The use of this Bayesian framework provides a simple way to visualize the degree of uncertainty around population-parameter estimates and thus provides managers and stakeholders an intuitive approach to interpreting monitoring results. Our approach can be widely applied to large spatial scales in wildlife monitoring where detection probabilities differ between population states and where several methods are being used to estimate different population parameters. © 2016 Society for Conservation Biology.

  7. On-line adaptive battery impedance parameter and state estimation considering physical principles in reduced order equivalent circuit battery models. Part 1. Requirements, critical review of methods and modeling

    NASA Astrophysics Data System (ADS)

    Fleischer, Christian; Waag, Wladislaw; Heyn, Hans-Martin; Sauer, Dirk Uwe

    2014-08-01

    Lithium-ion battery systems employed in high power demanding systems such as electric vehicles require a sophisticated monitoring system to ensure safe and reliable operation. Three major states of the battery are of special interest and need to be constantly monitored, these include: battery state of charge (SoC), battery state of health (capcity fade determination, SoH), and state of function (power fade determination, SoF). In a series of two papers, we propose a system of algorithms based on a weighted recursive least quadratic squares parameter estimator, that is able to determine the battery impedance and diffusion parameters for accurate state estimation. The functionality was proven on different battery chemistries with different aging conditions. The first paper investigates the general requirements on BMS for HEV/EV applications. In parallel, the commonly used methods for battery monitoring are reviewed to elaborate their strength and weaknesses in terms of the identified requirements for on-line applications. Special emphasis will be placed on real-time capability and memory optimized code for cost-sensitive industrial or automotive applications in which low-cost microcontrollers must be used. Therefore, a battery model is presented which includes the influence of the Butler-Volmer kinetics on the charge-transfer process. Lastly, the mass transport process inside the battery is modeled in a novel state-space representation.

  8. Lessons from the polybrominated diphenyl ethers (PBDEs): precautionary principle, primary prevention, and the value of community-based body-burden monitoring using breast milk.

    PubMed

    Hooper, Kim; She, Jianwen

    2003-01-01

    Levels of chemicals in humans (body burdens) are useful indicators of environmental quality and of community health. Chemical body burdens are easily monitored using breast milk samples collected from first-time mothers (primiparae) with infants 2-8 weeks of age. Currently, there is no body-burden monitoring program using breast milk in the United States, although ad hoc systems operate successfully in several European countries. In this article we describe the value of such monitoring and important considerations of how it might be accomplished, drawing from our experiences with pilot monitoring projects. Breast milk has several advantages as a sampling matrix: It is simple and noninvasive, with samples collected by the mother. It monitors body burdens in reproductive-age women and it estimates in utero and nursing-infant exposures, all important to community health. Time-trend data from breast milk monitoring serve as a warning system that identifies chemicals whose body burdens and human exposures are increasing. Time trends also serve as a report card on how well past regulatory actions have reduced environmental chemical exposures. Body-burden monitoring using breast milk should include educational programs that encourage breast-feeding. Finally, and most important, clean breast milk matters to people and leads to primary prevention--the limiting of chemical exposures. We illustrate these advantages with polybrominated diphenyl ethers (PBDEs), a formerly obscure group of brominated flame retardants that rose to prominence and were regulated in Sweden when residue levels were found to be rapidly increasing in breast milk. A community-based body-burden monitoring program using breast milk could be set up in the United States in collaboration with the Special Supplemental Nutrition Program for Women, Infants, and Children (WIC). WIC has a large number of lactating first-time mothers: It has 6,000 clinics nationwide and serves almost half (47%) the infants born in the United States. Educational programs (e.g., those run by WIC) are needed that encourage breast-feeding, especially in lower-income communities where breast-feeding rates are low and where breast-feeding may help protect the infant from the effects of environmental chemical exposures. Education is also needed about reducing chemical body burdens. A body-burden monitoring program would provide valuable data on time trends, background levels, and community hot spots in need of mitigation and follow-up health studies; develop analytic methods for new chemicals of concern; and archive breast milk samples for future analyses of other agents.

  9. Advanced Environmental Monitoring and Control Program: Technology Development Requirements

    NASA Technical Reports Server (NTRS)

    Jan, Darrell (Editor); Seshan, Panchalam (Editor); Ganapathi, Gani (Editor); Schmidt, Gregory (Editor); Doarn, Charles (Editor)

    1996-01-01

    Human missions in space, from the International Space Station on towards potential human exploration of the moon, Mars and beyond into the solar system, will require advanced systems to maintain an environment that supports human life. These systems will have to recycle air and water for many months or years at a time, and avoid harmful chemical or microbial contamination. NASA's Advanced Environmental Monitoring and Control program has the mission of providing future spacecraft with advanced, integrated networks of microminiaturized sensors to accurately determine and control the physical, chemical and biological environment of the crew living areas. This document sets out the current state of knowledge for requirements for monitoring the crew environment, based on (1) crew health, and (2) life support monitoring systems. Both areas are updated continuously through research and space mission experience. The technologies developed must meet the needs of future life support systems and of crew health monitoring. These technologies must be inexpensive and lightweight, and use few resources. Using these requirements to continue to push the state of the art in miniaturized sensor and control systems will produce revolutionary technologies to enable detailed knowledge of the crew environment.

  10. Nonlinear stability of traffic models and the use of Lyapunov vectors for estimating the traffic state

    NASA Astrophysics Data System (ADS)

    Palatella, Luigi; Trevisan, Anna; Rambaldi, Sandro

    2013-08-01

    Valuable information for estimating the traffic flow is obtained with current GPS technology by monitoring position and velocity of vehicles. In this paper, we present a proof of concept study that shows how the traffic state can be estimated using only partial and noisy data by assimilating them in a dynamical model. Our approach is based on a data assimilation algorithm, developed by the authors for chaotic geophysical models, designed to be equivalent but computationally much less demanding than the traditional extended Kalman filter. Here we show that the algorithm is even more efficient if the system is not chaotic and demonstrate by numerical experiments that an accurate reconstruction of the complete traffic state can be obtained at a very low computational cost by monitoring only a small percentage of vehicles.

  11. A Biological Signal-Based Stress Monitoring Framework for Children Using Wearable Devices.

    PubMed

    Choi, Yerim; Jeon, Yu-Mi; Wang, Lin; Kim, Kwanho

    2017-08-23

    The safety of children has always been an important issue, and several studies have been conducted to determine the stress state of a child to ensure the safety. Audio signals and biological signals including heart rate are known to be effective for stress state detection. However, collecting those data requires specialized equipment, which is not appropriate for the constant monitoring of children, and advanced data analysis is required for accurate detection. In this regard, we propose a stress state detection framework which utilizes both audio signal and heart rate collected from wearable devices, and adopted machine learning methods for the detection. Experiments using real-world data were conducted to compare detection performances across various machine learning methods and noise levels of audio signal. Adopting the proposed framework in the real-world will contribute to the enhancement of child safety.

  12. An integrated study of earth resources in the state of California based on ERTS-1 and supporting aircraft data

    NASA Technical Reports Server (NTRS)

    Colwell, R. N.; Thorley, G. A.; Burgy, R. H.; Schubert, G.; Estes, J. E.; Bowden, L. W.; Algazi, V. R.; Wildman, W. E.; Huntington, G. L. (Principal Investigator)

    1972-01-01

    There are no author-identified significant results in this report. Results of an integrated study of earth resources in the state of California using ERTS-1 and supporting aircraft data are presented. Areas of investigation cover (1) regional agricultural surveys; (2) solving water resource management problems; (3) resource management in Northern California using ERTS-1 data; (4) analysis of river meanders; (5) assessment and monitoring change in west side of the San Joaquin Valley and central coastal zone of state; (6) assessment and monitoring of changes in Southern California environment; (7) digital handling and processing of ERTS-1 data; (8) use of ERTS-1 data in educational and applied research programs of the Agricultural Extension Service; and (9) identification, classification, and mapping of salt affected soils.

  13. Geostatistics-based groundwater-level monitoring network design and its application to the Upper Floridan aquifer, USA.

    PubMed

    Bhat, Shirish; Motz, Louis H; Pathak, Chandra; Kuebler, Laura

    2015-01-01

    A geostatistical method was applied to optimize an existing groundwater-level monitoring network in the Upper Floridan aquifer for the South Florida Water Management District in the southeastern United States. Analyses were performed to determine suitable numbers and locations of monitoring wells that will provide equivalent or better quality groundwater-level data compared to an existing monitoring network. Ambient, unadjusted groundwater heads were expressed as salinity-adjusted heads based on the density of freshwater, well screen elevations, and temperature-dependent saline groundwater density. The optimization of the numbers and locations of monitoring wells is based on a pre-defined groundwater-level prediction error. The newly developed network combines an existing network with the addition of new wells that will result in a spatial distribution of groundwater monitoring wells that better defines the regional potentiometric surface of the Upper Floridan aquifer in the study area. The network yields groundwater-level predictions that differ significantly from those produced using the existing network. The newly designed network will reduce the mean prediction standard error by 43% compared to the existing network. The adoption of a hexagonal grid network for the South Florida Water Management District is recommended to achieve both a uniform level of information about groundwater levels and the minimum required accuracy. It is customary to install more monitoring wells for observing groundwater levels and groundwater quality as groundwater development progresses. However, budget constraints often force water managers to implement cost-effective monitoring networks. In this regard, this study provides guidelines to water managers concerned with groundwater planning and monitoring.

  14. Combination of process and vibration data for improved condition monitoring of industrial systems working under variable operating conditions

    NASA Astrophysics Data System (ADS)

    Ruiz-Cárcel, C.; Jaramillo, V. H.; Mba, D.; Ottewill, J. R.; Cao, Y.

    2016-01-01

    The detection and diagnosis of faults in industrial processes is a very active field of research due to the reduction in maintenance costs achieved by the implementation of process monitoring algorithms such as Principal Component Analysis, Partial Least Squares or more recently Canonical Variate Analysis (CVA). Typically the condition of rotating machinery is monitored separately using vibration analysis or other specific techniques. Conventional vibration-based condition monitoring techniques are based on the tracking of key features observed in the measured signal. Typically steady-state loading conditions are required to ensure consistency between measurements. In this paper, a technique based on merging process and vibration data is proposed with the objective of improving the detection of mechanical faults in industrial systems working under variable operating conditions. The capabilities of CVA for detection and diagnosis of faults were tested using experimental data acquired from a compressor test rig where different process faults were introduced. Results suggest that the combination of process and vibration data can effectively improve the detectability of mechanical faults in systems working under variable operating conditions.

  15. Auditory decision aiding in supervisory control of multiple unmanned aerial vehicles.

    PubMed

    Donmez, Birsen; Cummings, M L; Graham, Hudson D

    2009-10-01

    This article is an investigation of the effectiveness of sonifications, which are continuous auditory alerts mapped to the state of a monitored task, in supporting unmanned aerial vehicle (UAV) supervisory control. UAV supervisory control requires monitoring a UAV across multiple tasks (e.g., course maintenance) via a predominantly visual display, which currently is supported with discrete auditory alerts. Sonification has been shown to enhance monitoring performance in domains such as anesthesiology by allowing an operator to immediately determine an entity's (e.g., patient) current and projected states, and is a promising alternative to discrete alerts in UAV control. However, minimal research compares sonification to discrete alerts, and no research assesses the effectiveness of sonification for monitoring multiple entities (e.g., multiple UAVs). The authors conducted an experiment with 39 military personnel, using a simulated setup. Participants controlled single and multiple UAVs and received sonifications or discrete alerts based on UAV course deviations and late target arrivals. Regardless of the number of UAVs supervised, the course deviation sonification resulted in reactions to course deviations that were 1.9 s faster, a 19% enhancement, compared with discrete alerts. However, course deviation sonifications interfered with the effectiveness of discrete late arrival alerts in general and with operator responses to late arrivals when supervising multiple vehicles. Sonifications can outperform discrete alerts when designed to aid operators to predict future states of monitored tasks. However, sonifications may mask other auditory alerts and interfere with other monitoring tasks that require divided attention. This research has implications for supervisory control display design.

  16. Forest health monitoring in the United States: focus on national reports

    Treesearch

    Kurt Riitters; Kevin Potter

    2013-01-01

    The health and sustainability of United States forests have been monitored for many years from several different perspectives. The national Forest Health Monitoring (FHM) Program was established in 1990 by Federal and State agencies to develop a national system for monitoring and reporting on the status and trends of forest ecosystem health. We describe and illustrate...

  17. Monitoring alert and drowsy states by modeling EEG source nonstationarity

    NASA Astrophysics Data System (ADS)

    Hsu, Sheng-Hsiou; Jung, Tzyy-Ping

    2017-10-01

    Objective. As a human brain performs various cognitive functions within ever-changing environments, states of the brain characterized by recorded brain activities such as electroencephalogram (EEG) are inevitably nonstationary. The challenges of analyzing the nonstationary EEG signals include finding neurocognitive sources that underlie different brain states and using EEG data to quantitatively assess the state changes. Approach. This study hypothesizes that brain activities under different states, e.g. levels of alertness, can be modeled as distinct compositions of statistically independent sources using independent component analysis (ICA). This study presents a framework to quantitatively assess the EEG source nonstationarity and estimate levels of alertness. The framework was tested against EEG data collected from 10 subjects performing a sustained-attention task in a driving simulator. Main results. Empirical results illustrate that EEG signals under alert versus drowsy states, indexed by reaction speeds to driving challenges, can be characterized by distinct ICA models. By quantifying the goodness-of-fit of each ICA model to the EEG data using the model deviation index (MDI), we found that MDIs were significantly correlated with the reaction speeds (r  =  -0.390 with alertness models and r  =  0.449 with drowsiness models) and the opposite correlations indicated that the two models accounted for sources in the alert and drowsy states, respectively. Based on the observed source nonstationarity, this study also proposes an online framework using a subject-specific ICA model trained with an initial (alert) state to track the level of alertness. For classification of alert against drowsy states, the proposed online framework achieved an averaged area-under-curve of 0.745 and compared favorably with a classic power-based approach. Significance. This ICA-based framework provides a new way to study changes of brain states and can be applied to monitoring cognitive or mental states of human operators in attention-critical settings or in passive brain-computer interfaces.

  18. Synthetic Control of Exciton Behavior in Colloidal Quantum Dots.

    PubMed

    Pu, Chaodan; Qin, Haiyan; Gao, Yuan; Zhou, Jianhai; Wang, Peng; Peng, Xiaogang

    2017-03-08

    Colloidal quantum dots are promising optical and optoelectronic materials for various applications, whose performance is dominated by their excited-state properties. This article illustrates synthetic control of their excited states. Description of the excited states of quantum-dot emitters can be centered around exciton. We shall discuss that, different from conventional molecular emitters, ground-state structures of quantum dots are not necessarily correlated with their excited states. Synthetic control of exciton behavior heavily relies on convenient and affordable monitoring tools. For synthetic development of ideal optical and optoelectronic emitters, the key process is decay of band-edge excitons, which renders transient photoluminescence as important monitoring tool. On the basis of extensive synthetic developments in the past 20-30 years, synthetic control of exciton behavior implies surface engineering of quantum dots, including surface cation/anion stoichiometry, organic ligands, inorganic epitaxial shells, etc. For phosphors based on quantum dots doped with transition metal ions, concentration and location of the dopant ions within a nanocrystal lattice are found to be as important as control of the surface states in order to obtain bright dopant emission with monoexponential yet tunable photoluminescence decay dynamics.

  19. Assessing the Value of Enhancing AirNow Data with NASA Satellite Data

    NASA Astrophysics Data System (ADS)

    Pasch, A. N.; Burke, B.; Huang, S.; Dye, T.; Dawes, S. S.; DeWinter, J. L.; Zahn, P. H.; Haderman, M.; Szykman, J.; White, J. E.; Dickerson, P.; van Donkelaar, A.; Martin, R.

    2013-12-01

    We will describe the methodology and findings from a study that addressed how satellite-enhanced air quality information provided through the U.S. Environmental Protection Agency's (EPA) AirNow Satellite Data Processor (ASDP) program could contribute to greater socioeconomic benefits. This study was funded by the National Aeronautics and Space Administration (NASA) and conducted, in partnership with the EPA, by the Center for Technology in Government at the University at Albany (CTG) and Sonoma Technology, Inc. (STI). AirNow is the national repository of real-time air quality data and forecasts for the United States. While mainly a public outreach and awareness tool, AirNow relies on the same network of ground-based air quality monitors that is used by federal, state, local, and tribal governments throughout the United States. Extensive as the monitoring network is, considerable gaps exist in certain parts of the United States. Even areas with monitors considered adequate for regulatory purposes can lack information needed to resolve localized air quality issues or give forecasters sufficient confidence about the potential air quality impact of specific events. Monitors are expensive to deploy and maintain; thus, EPA is seeking other ways to improve coverage and detail. Satellite-estimated data can provide information for many places where ground monitors do not exist, and supplement ground monitors, providing additional information for use in analysis and forecasting. ASDP uses satellite-derived estimates for fine-particle pollution (PM2.5) and provides coverage for a small window of time during the day. As satellite capabilities improve in terms of different types of sensors and increased coverage throughout the day, the ASDP program is prepared to extend its scope to additional pollutants and provide greater enhancements to the ground-based networks. In this study, CTG assessed the socioeconomic benefits of air quality data at a community level through three case studies in the Denver, Atlanta, and Kansas City regions by interviewing people at EPA regional offices, state environmental and public health agencies, local public health authorities, regional planning and non-profit outreach organizations, and universities. The interviews focused on the existing uses of air quality information and the potential value of incorporating NASA satellite-enhanced AirNow data to support and enhance the missions of the organizations interviewed. STI analyzed the economic benefit of using satellite data to fill in gaps in the current air quality monitoring network used to provide information to the public. This presentation will discuss how the findings can be used to improve estimation of the socioeconomic benefits derived from Earth observation science in policy and management decisions.

  20. Region 7 States Air Quality Monitoring Plans - Iowa

    EPA Pesticide Factsheets

    National Ambient Air Quality Standard (NAAQS) - Iowa, Kansas, Missouri, and Nebraska; Annual Monitoring Network Plans, Five-Year Monitoring Network Assessments, and approval documentation. Each year, states are required to submit an annual monitoring netwo

  1. Region 7 States Air Quality Monitoring Plans - Missouri

    EPA Pesticide Factsheets

    National Ambient Air Quality Standard (NAAQS) - Iowa, Kansas, Missouri, and Nebraska; Annual Monitoring Network Plans, Five-Year Monitoring Network Assessments, and approval documentation. Each year, states are required to submit an annual monitoring netwo

  2. Region 7 States Air Quality Monitoring Plans - Nebraska

    EPA Pesticide Factsheets

    National Ambient Air Quality Standard (NAAQS) - Iowa, Kansas, Missouri, and Nebraska; Annual Monitoring Network Plans, Five-Year Monitoring Network Assessments, and approval documentation. Each year, states are required to submit an annual monitoring netwo

  3. Region 7 States Air Quality Monitoring Plans - Kansas

    EPA Pesticide Factsheets

    National Ambient Air Quality Standard (NAAQS) - Iowa, Kansas, Missouri, and Nebraska; Annual Monitoring Network Plans, Five-Year Monitoring Network Assessments, and approval documentation. Each year, states are required to submit an annual monitoring netwo

  4. Site Assessment of a New State-Wide Seismic Network in Texas (TexNet)

    NASA Astrophysics Data System (ADS)

    Savvaidis, A.; Young, B.; Mukherjee, T.; Hennings, P.; Rathje, E.; Zalachoris, G.; Young, M.; Walter, J. I.; DeShon, H. R.; Frohlich, C.

    2016-12-01

    Earthquake activity has recently increased in the southern mid-continent of the U.S., including Texas. To monitor seismicity activity in the state of Texas, a new seismicity monitoring program known as TexNet, was funded by the Texas State Legislature in 2015. TexNet consists of 22 new permanent broadband (120s post-hole) seismic stations that will complement the 17 stations currently operating in the State. These permanent stations will provide the baseline seismicity of the state. In addition, 36 portable stations (incorporating both a 20s post-hole seismometer and a post-hole accelerometer) will be used to densify the network in specific areas, of the State, depending on measured seismicity level, proximity to infrastructure, or other scientific investigations. One goal for TexNet is to provide authenticated data needed to evaluate the location, and frequency of earthquakes. To minimize the uncertainties in earthquake locations and increase detectability of the network, an extensive site assessment survey was conducted. The initial station positions were chosen based on Earthscope, Transportable Array (TA) site positions, while ensuring that the stations were relatively evenly-spaced across the State. We then analyzed the noise and earthquake data from the TA seismometers, and added new locations based on geology, topography, and absence of nearby human activities. A 30-min noise test was conducted at each site to identify the site amplification using HVSR information. A 24-hr survey then followed, where the noise level during day and night was identified, analyzed using power spectral density and compared to the NHNM and NLNM (Peterson, 1993; USGS Open File Report, 322). Based on these survey results nearby alternative sites were evaluated to improve final site position. Full deployment and data streaming is expected by December 2016, and will be discussed during this presentation.

  5. Site Assessment of a New State-Wide Seismic Network in Texas (TexNet), USA.

    NASA Astrophysics Data System (ADS)

    Savvaidis, Alexandros; Young, Bissett; Hennings, Peter; Rathje, Ellen; Zalachoris, George; Young, Michael H.; Walter, Jacob I.; DeShon, Heather R.; Frohlich, Cliff

    2017-04-01

    Earthquake activity has recently increased in the southern mid-continent of the U.S., including Texas. To monitor seismicity activity in the state of Texas, a new seismicity monitoring program known as TexNet, was funded by the Texas State Legislature in 2015. TexNet consists of 22 new permanent broadband (120s post-hole) seismic stations that will complement the 17 stations currently operating in the State. These permanent stations will provide the baseline seismicity of the state. In addition, 36 portable stations (incorporating both a 20s post-hole seismometer and a post-hole accelerometer) will be used to densify the network in specific areas, of the State, depending on measured seismicity level, proximity to infrastructure, or other scientific investigations. One goal for TexNet is to provide authenticated data needed to evaluate the location, and frequency of earthquakes. To minimize the uncertainties in earthquake locations and increase detectability of the network, an extensive site assessment survey was conducted. The initial station positions were chosen based on Earthscope, Transportable Array (TA) site positions, while ensuring that the stations were relatively evenly-spaced across the State. We then analyzed the noise and earthquake data from the TA seismometers, and added new locations based on geology, topography, and absence of nearby human activities. A 30-min noise test was conducted at each site to identify the site amplification using HVSR information. A 24-hr survey then followed, where the noise level during day and night was identified, analyzed using power spectral density and compared to the NHNM and NLNM (Peterson, 1993; USGS Open File Report, 322). Based on these survey results nearby alternative sites were evaluated to improve final site position. Deployment and data streaming started on September 2016, and will be discussed during this presentation.

  6. The knowledge-based framework for a nuclear power plant operator advisor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, D.W.; Hajek, B.K.

    1989-01-01

    An important facet in the design, development, and evaluation of aids for complex systems is the identification of the tasks performed by the operator. Operator aids utilizing artificial intelligence, or more specifically knowledge-based systems, require identification of these tasks in the context of a knowledge-based framework. In this context, the operator responses to the plant behavior are to monitor and comprehend the state of the plant, identify normal and abnormal plant conditions, diagnose abnormal plant conditions, predict plant response to specific control actions, and select the best available control action, implement a feasible control action, monitor system response to themore » control action, and correct for any inappropriate responses. These tasks have been identified to formulate a knowledge-based framework for an operator advisor under development at Ohio State University that utilizes the generic task methodology proposed by Chandrasekaran. The paper lays the foundation to identify the responses as a knowledge-based set of tasks in accordance with the expected human operator responses during an event. Initial evaluation of the expert system indicates the potential for an operator aid that will improve the operator's ability to respond to both anticipated and unanticipated events.« less

  7. Off-line and real-time monitoring of acetaminophen photodegradation by an electrochemical sensor.

    PubMed

    Berto, Silvia; Carena, Luca; Chiavazza, Enrico; Marletti, Matteo; Fin, Andrea; Giacomino, Agnese; Malandrino, Mery; Barolo, Claudia; Prenesti, Enrico; Vione, Davide

    2018-08-01

    The photochemistry of N-acetyl-para-aminophenol (acetaminophen, APAP) is here investigated by using differential pulse voltammetry (DPV) analysis to monitor APAP photodegradation upon steady-state irradiation. The purpose of this work is to assess the applicability of DPV to monitor the photochemical behaviour of xenobiotics, along with the development of an electrochemical set-up for the real-time monitoring of APAP photodegradation. We here investigated the APAP photoreactivity towards the main photogenerated reactive transients species occurring in sunlit surface waters (hydroxyl radical HO, carbonate radical CO 3 - , excited triplet state of anthraquinone-2-sulfonate used as proxy of the chromophoric DOM, and singlet oxygen 1 O 2 ), and determined relevant kinetic parameters. A standard procedure based on UV detection coupled with liquid chromatography (HPLC-UV) was used under identical experimental conditions to compare and verify the DPV-based results. The latter were in agreement with HPLC data, with the exception of the triplet-sensitized processes. In the other cases, DPV could be used as an alternative to the well-tested but more costly and time-consuming HPLC-UV technique. We have also assessed the reaction rate constant between APAP and HO by real-time DPV, which allowed for the monitoring of APAP photodegradation inside the irradiation chamber. Unfortunately, real-time DPV measurements are likely to be affected by temperature variations of the irradiated samples. Overall, DPV appeared as a fast, cheap and reasonably reliable technique when used for the off-line monitoring of APAP photodegradation. When a suitable real-time procedure is developed, it could become a very straightforward method to study the photochemical behaviour of electroactive xenobiotics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. A new multi-sensor integrated index for drought monitoring

    NASA Astrophysics Data System (ADS)

    Jiao, W.; Wang, L.; Tian, C.

    2017-12-01

    Drought is perceived as one of the most expensive and least understood natural disasters. The remote-sensing-based integrated drought indices, which integrate multiple variables, could reflect the drought conditions more comprehensively than single drought indices. However, most of current remote-sensing-based integrated drought indices focus on agricultural drought (i.e., deficit in soil moisture), their application in monitoring meteorological drought (i.e., deficit in precipitation) was limited. More importantly, most of the remote-sensing-based integrated drought indices did not take into consideration of the spatially non-stationary nature of the related variables, so such indices may lose essential local details when integrating multiple variables. In this regard, we proposed a new mathematical framework for generating integrated drought index for meteorological drought monitoring. The geographically weighted regression (GWR) model and principal component analysis were used to composite Moderate-resolution Imaging Spectroradiometer (MODIS) based temperature condition index (TCI), the Vegetation Index based on the Universal Pattern Decomposition method (VIUPD) based vegetation condition index (VCI), tropical rainfall measuring mission (TRMM) based Precipitation Condition Index (PCI) and Advanced Microwave Scanning Radiometer-EOS (AMSR-E) based soil moisture condition index (SMCI). We called the new remote-sensing-based integrated drought index geographical-location-based integrated drought index (GLIDI). We examined the utility of the GLIDI for drought monitoring in various climate divisions across the continental United States (CONUS). GLIDI showed high correlations with in-situ drought indices and outperformed most other existing drought indices. The results also indicate that the performance of GLIDI is not affected by environmental factors such as land cover, precipitation, temperature and soil conditions. As such, the GLIDI has considerable potential for drought monitoring across various environmental conditions.

  9. 29 CFR 1954.2 - Monitoring system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 9 2014-07-01 2014-07-01 false Monitoring system. 1954.2 Section 1954.2 Labor Regulations...) PROCEDURES FOR THE EVALUATION AND MONITORING OF APPROVED STATE PLANS General § 1954.2 Monitoring system. (a... Act, the Assistant Secretary has established a State Program Performance Monitoring System. Evaluation...

  10. 29 CFR 1954.2 - Monitoring system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 9 2013-07-01 2013-07-01 false Monitoring system. 1954.2 Section 1954.2 Labor Regulations...) PROCEDURES FOR THE EVALUATION AND MONITORING OF APPROVED STATE PLANS General § 1954.2 Monitoring system. (a... Act, the Assistant Secretary has established a State Program Performance Monitoring System. Evaluation...

  11. 29 CFR 1954.2 - Monitoring system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 9 2012-07-01 2012-07-01 false Monitoring system. 1954.2 Section 1954.2 Labor Regulations...) PROCEDURES FOR THE EVALUATION AND MONITORING OF APPROVED STATE PLANS General § 1954.2 Monitoring system. (a... Act, the Assistant Secretary has established a State Program Performance Monitoring System. Evaluation...

  12. 29 CFR 1954.2 - Monitoring system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Monitoring system. 1954.2 Section 1954.2 Labor Regulations...) PROCEDURES FOR THE EVALUATION AND MONITORING OF APPROVED STATE PLANS General § 1954.2 Monitoring system. (a... Act, the Assistant Secretary has established a State Program Performance Monitoring System. Evaluation...

  13. 29 CFR 1954.2 - Monitoring system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 9 2011-07-01 2011-07-01 false Monitoring system. 1954.2 Section 1954.2 Labor Regulations...) PROCEDURES FOR THE EVALUATION AND MONITORING OF APPROVED STATE PLANS General § 1954.2 Monitoring system. (a... Act, the Assistant Secretary has established a State Program Performance Monitoring System. Evaluation...

  14. Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring.

    PubMed

    Bandodkar, Amay J; Molinnus, Denise; Mirza, Omar; Guinovart, Tomás; Windmiller, Joshua R; Valdés-Ramírez, Gabriela; Andrade, Francisco J; Schöning, Michael J; Wang, Joseph

    2014-04-15

    This article describes the fabrication, characterization and application of an epidermal temporary-transfer tattoo-based potentiometric sensor, coupled with a miniaturized wearable wireless transceiver, for real-time monitoring of sodium in the human perspiration. Sodium excreted during perspiration is an excellent marker for electrolyte imbalance and provides valuable information regarding an individual's physical and mental wellbeing. The realization of the new skin-worn non-invasive tattoo-like sensing device has been realized by amalgamating several state-of-the-art thick film, laser printing, solid-state potentiometry, fluidics and wireless technologies. The resulting tattoo-based potentiometric sodium sensor displays a rapid near-Nernstian response with negligible carryover effects, and good resiliency against various mechanical deformations experienced by the human epidermis. On-body testing of the tattoo sensor coupled to a wireless transceiver during exercise activity demonstrated its ability to continuously monitor sweat sodium dynamics. The real-time sweat sodium concentration was transmitted wirelessly via a body-worn transceiver from the sodium tattoo sensor to a notebook while the subjects perspired on a stationary cycle. The favorable analytical performance along with the wearable nature of the wireless transceiver makes the new epidermal potentiometric sensing system attractive for continuous monitoring the sodium dynamics in human perspiration during diverse activities relevant to the healthcare, fitness, military, healthcare and skin-care domains. © 2013 Published by Elsevier B.V.

  15. A Current Sensor Based on the Giant Magnetoresistance Effect: Design and Potential Smart Grid Applications

    PubMed Central

    Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X.

    2012-01-01

    Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A−1, linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C−1 with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids. PMID:23202221

  16. A current sensor based on the giant magnetoresistance effect: design and potential smart grid applications.

    PubMed

    Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X

    2012-11-09

    Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A(-1), linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C(-1) with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids.

  17. Real-time monitoring of capacity loss for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Wei, Zhongbao; Bhattarai, Arjun; Zou, Changfu; Meng, Shujuan; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2018-06-01

    The long-term operation of the vanadium redox flow battery is accompanied by ion diffusion across the separator and side reactions, which can lead to electrolyte imbalance and capacity loss. The accurate online monitoring of capacity loss is therefore valuable for the reliable and efficient operation of vanadium redox flow battery system. In this paper, a model-based online monitoring method is proposed to detect capacity loss in the vanadium redox flow battery in real time. A first-order equivalent circuit model is built to capture the dynamics of the vanadium redox flow battery. The model parameters are online identified from the onboard measureable signals with the recursive least squares, in seeking to keep a high modeling accuracy and robustness under a wide range of working scenarios. Based on the online adapted model, an observer is designed with the extended Kalman Filter to keep tracking both the capacity and state of charge of the battery in real time. Experiments are conducted on a lab-scale battery system. Results suggest that the online adapted model is able to simulate the battery behavior with high accuracy. The capacity loss as well as the state of charge can be estimated accurately in a real-time manner.

  18. A Study of States' Monitoring and Improvement Practices under the Individuals with Disabilities Education Act. NCSER 2011-3001

    ERIC Educational Resources Information Center

    Bollmer, Julie; Cronin, Roberta; Brauen, Marsha; Howell, Bethany; Fletcher, Philip; Gonin, Rene; Jenkins, Frank

    2010-01-01

    The Study of Monitoring and Improvement Practices under the Individuals with Disabilities Education Act (IDEA) examined how states monitored the implementation of IDEA by local special education and early intervention services programs. State monitoring and improvement practices in 2004-05 and 2006-07 were the focus of the study. Prior to the…

  19. System and Method for Monitoring Distributed Asset Data

    NASA Technical Reports Server (NTRS)

    Gorinevsky, Dimitry (Inventor)

    2015-01-01

    A computer-based monitoring system and monitoring method implemented in computer software for detecting, estimating, and reporting the condition states, their changes, and anomalies for many assets. The assets are of same type, are operated over a period of time, and outfitted with data collection systems. The proposed monitoring method accounts for variability of working conditions for each asset by using regression model that characterizes asset performance. The assets are of the same type but not identical. The proposed monitoring method accounts for asset-to-asset variability; it also accounts for drifts and trends in the asset condition and data. The proposed monitoring system can perform distributed processing of massive amounts of historical data without discarding any useful information where moving all the asset data into one central computing system might be infeasible. The overall processing is includes distributed preprocessing data records from each asset to produce compressed data.

  20. Developments in seismic monitoring for risk reduction

    USGS Publications Warehouse

    Celebi, M.

    2007-01-01

    This paper presents recent state-of-the-art developments to obtain displacements and drift ratios for seismic monitoring and damage assessment of buildings. In most cases, decisions on safety of buildings following seismic events are based on visual inspections of the structures. Real-time instrumental measurements using GPS or double integration of accelerations, however, offer a viable alternative. Relevant parameters, such as the type of connections and structural characteristics (including storey geometry), can be estimated to compute drifts corresponding to several pre-selected threshold stages of damage. Drift ratios determined from real-time monitoring can then be compared to these thresholds in order to estimate damage conditions drift ratios. This approach is demonstrated in three steel frame buildings in San Francisco, California. Recently recorded data of strong shaking from these buildings indicate that the monitoring system can be a useful tool in rapid assessment of buildings and other structures following an earthquake. Such systems can also be used for risk monitoring, as a method to assess performance-based design and analysis procedures, for long-term assessment of structural characteristics of a building, and as a possible long-term damage detection tool.

  1. Comparing Computer Adaptive and Curriculum-Based Measures of Math in Progress Monitoring

    ERIC Educational Resources Information Center

    Shapiro, Edward S.; Dennis, Minyi Shih; Fu, Qiong

    2015-01-01

    The purpose of the study was to compare the use of a Computer Adaptive Test and Curriculum-Based Measurement in the assessment of mathematics. This study also investigated the degree to which slope or rate of change predicted student outcomes on the annual state assessment of mathematics above and beyond scores of single point screening…

  2. Error analysis and algorithm implementation for an improved optical-electric tracking device based on MEMS

    NASA Astrophysics Data System (ADS)

    Sun, Hong; Wu, Qian-zhong

    2013-09-01

    In order to improve the precision of optical-electric tracking device, proposing a kind of improved optical-electric tracking device based on MEMS, in allusion to the tracking error of gyroscope senor and the random drift, According to the principles of time series analysis of random sequence, establish AR model of gyro random error based on Kalman filter algorithm, then the output signals of gyro are multiple filtered with Kalman filter. And use ARM as micro controller servo motor is controlled by fuzzy PID full closed loop control algorithm, and add advanced correction and feed-forward links to improve response lag of angle input, Free-forward can make output perfectly follow input. The function of lead compensation link is to shorten the response of input signals, so as to reduce errors. Use the wireless video monitor module and remote monitoring software (Visual Basic 6.0) to monitor servo motor state in real time, the video monitor module gathers video signals, and the wireless video module will sent these signals to upper computer, so that show the motor running state in the window of Visual Basic 6.0. At the same time, take a detailed analysis to the main error source. Through the quantitative analysis of the errors from bandwidth and gyro sensor, it makes the proportion of each error in the whole error more intuitive, consequently, decrease the error of the system. Through the simulation and experiment results shows the system has good following characteristic, and it is very valuable for engineering application.

  3. Using indoor air quality monitoring in 6 counties to change policy in North Carolina.

    PubMed

    Proescholdbell, Scott; Steiner, Julea; Goldstein, Adam O; Malek, Sally Herndon

    2009-07-01

    Indoor air quality monitoring has become a valuable tool for states wanting to assess levels of particulate matter before and after smoke-free policies are implemented. However, many states face barriers in passing comprehensive smoke-free legislation, making such study comparisons unlikely. We used indoor air monitoring data to educate decision makers about the value of comprehensive smoke-free laws in a state with strong historical ties to tobacco. We trained teams in 6 counties in North Carolina to monitor air quality in hospitality venues with 1 of 3 possible smoking policy designations: 1) smoke-free, 2) separate smoking and nonsmoking sections (mixed), or 3) smoking allowed in all areas. Teams monitored 152 venues for respirable suspended particles that were less than 2.5 microm in diameter and collected information on venue characteristics. The data were combined and analyzed by venue policy and by county. Our findings were presented to key decision makers, and we then collected information on media publicity about these analyses. Overall, smoke-free venues had the lowest particulate matter levels (15 microg/m3), well below established Environmental Protection Agency standards. Venues with mixed policies and venues that permitted smoking in all areas had particulate matter levels that are considered unhealthy by Environmental Protection Agency standards. The media coverage of our findings included newspaper, radio, and television reports. Findings were also discussed with local health directors, state legislators, and public health advocates. Study data have been used to quantify particulate matter levels, raise awareness about the dangers of secondhand smoke, build support for evidence-based policies, and promote smoke-free policies among policy makers. The next task is to turn this effort into meaningful policy change that will protect everyone from the harms of secondhand smoke.

  4. GB-InSAR monitoring and observational method for landslide emergency management: the Montaguto earthflow (AV, Italy)

    NASA Astrophysics Data System (ADS)

    Ferrigno, Federica; Gigli, Giovanni; Fanti, Riccardo; Intrieri, Emanuele; Casagli, Nicola

    2017-06-01

    On 10 March 2010, because of the heavy rainfall in the preceding days, the Montaguto landslide (Southern Italy) reactivated, affecting both state road 90 Delle Puglie and the Rome-Bari railway. A similar event occurred on May 2005 and on September 2009. As a result, the National Civil Protection Department (DPC) started an accurate monitoring and analysis program. A monitoring project using the GB-InSAR (ground-based interferometric synthetic aperture radar) system was emplaced to investigate the landslide kinematics, plan urgent safety measures for risk mitigation and design long-term stabilization work.Here, we present the GB-InSAR monitoring system results and its applications in the observational method (OM) approach. GB-InSAR is an established instrument for long-term campaigns aimed at early warning and monitoring during construction works. Our paper further develops these aspects in that it highlights how the OM based on the GB-InSAR technique can produce savings in terms of cost and time in engineering projects without compromising safety. This study focuses on the key role played by the monitoring activities during the design and planning activities, with special reference to the emergency phase.

  5. A Device for Fetal Monitoring by Means of Control Over Cardiovascular Parameters Based on Acoustic Data

    NASA Astrophysics Data System (ADS)

    Khokhlova, L. A.; Seleznev, A. I.; Zhdanov, D. S.; Zemlyakov, I. Yu; Kiseleva, E. Yu

    2016-01-01

    The problem of monitoring fetal health is topical at the moment taking into account a reduction in the level of fertile-age women's health and changes in the concept of perinatal medicine with reconsideration of live birth criteria. Fetal heart rate monitoring is a valuable means of assessing fetal health during pregnancy. The routine clinical measurements are usually carried out by the means of ultrasound cardiotocography. Although the cardiotocography monitoring provides valuable information on the fetal health status, the high quality ultrasound devices are expensive, they are not available for home care use. The recommended number of measurement is also limited. The passive and fully non-invasive acoustic recording provides an alternative low-cost measurement method. The article describes a device for fetal and maternal health monitoring by analyzing the frequency and periodicity of heart beats by means of acoustic signal received on the maternal abdomen. Based on the usage of this device a phonocardiographic fetal telemedicine system, which will allow to reduce the antenatal fetal mortality rate significantly due to continuous monitoring over the state of fetus regardless of mother's location, can be built.

  6. Borehole temperature variability at Hoher Sonnblick, Austria

    NASA Astrophysics Data System (ADS)

    Heinrich, Georg; Schöner, Wolfgang; Prinz, Rainer; Pfeiler, Stefan; Reisenhofer, Stefan; Riedl, Claudia

    2016-04-01

    The overarching aim of the project 'Atmosphere - permafrost relationship in the Austrian Alps - atmospheric extreme events and their relevance for the mean state of the active layer (ATMOperm)' is to improve the understanding of the impacts of atmospheric extreme events on the thermal state of the active layer using a combined measurement and modeling approach as the basis for a long-term monitoring strategy. For this purpose, the Sonnblick Observatory at the summit of Hoher Sonnblick (3106 m.a.s.l) is particularly well-suited due to its comprehensive long-term atmospheric and permafrost monitoring network (i.a. three 20 m deep boreholes since 2007). In ATMOperm, a robust and accurate permanent monitoring of active layer thickness at Hoher Sonnblick will be set up using innovative monitoring approaches by automated electrical resistivity tomography (ERT). The ERT monitoring is further supplemented by additional geophysical measurements such as ground penetrating radar, refraction seismic, electromagnetic induction and transient electromagnetics in order to optimally complement the gained ERT information. On the other hand, atmospheric energy fluxes over permafrost ground and their impact on the thermal state of permafrost and active layer thickness with a particular focus on atmospheric extreme events will be investigated based on physically-based permafrost modeling. For model evaluation, the borehole temperature records will play a key role and, therefore, an in-depth quality control of the borehole temperatures is an important prerequisite. In this study we will show preliminary results regarding the borehole temperature variability at Hoher Sonnblick with focus on the active layer. The borehole temperatures will be related to specific atmospheric conditions using the rich data set of atmospheric measurements of the site in order to detect potential errors in the borehole temperature measurements. Furthermore, we will evaluate the potential of filling gaps in the time series by cross checking all available information of the three boreholes. Furthermore, the already available ERT profiles will serve as additional information source improving the quality of the measured borehole temperatures.

  7. Collection of Data on Race, Ethnicity, Language, and Nativity by US Public Health Surveillance and Monitoring Systems: Gaps and Opportunities.

    PubMed

    Rodriguez-Lainz, Alfonso; McDonald, Mariana; Fonseca-Ford, Maureen; Penman-Aguilar, Ana; Waterman, Stephen H; Truman, Benedict I; Cetron, Martin S; Richards, Chesley L

    Despite increasing diversity in the US population, substantial gaps in collecting data on race, ethnicity, primary language, and nativity indicators persist in public health surveillance and monitoring systems. In addition, few systems provide questionnaires in foreign languages for inclusion of non-English speakers. We assessed (1) the extent of data collected on race, ethnicity, primary language, and nativity indicators (ie, place of birth, immigration status, and years in the United States) and (2) the use of data-collection instruments in non-English languages among Centers for Disease Control and Prevention (CDC)-supported public health surveillance and monitoring systems in the United States. We identified CDC-supported surveillance and health monitoring systems in place from 2010 through 2013 by searching CDC websites and other federal websites. For each system, we assessed its website, documentation, and publications for evidence of the variables of interest and use of data-collection instruments in non-English languages. We requested missing information from CDC program officials, as needed. Of 125 data systems, 100 (80%) collected data on race and ethnicity, 2 more collected data on ethnicity but not race, 26 (21%) collected data on racial/ethnic subcategories, 40 (32%) collected data on place of birth, 21 (17%) collected data on years in the United States, 14 (11%) collected data on immigration status, 13 (10%) collected data on primary language, and 29 (23%) used non-English data-collection instruments. Population-based surveys and disease registries more often collected data on detailed variables than did case-based, administrative, and multiple-source systems. More complete and accurate data on race, ethnicity, primary language, and nativity can improve the quality, representativeness, and usefulness of public health surveillance and monitoring systems to plan and evaluate targeted public health interventions to eliminate health disparities.

  8. Evaluation of targeted and untargeted effects-based monitoring tools to assess impacts of contaminants of emerging concern on fish in the South Platte River, CO.

    PubMed

    Ekman, Drew R; Keteles, Kristen; Beihoffer, Jon; Cavallin, Jenna E; Dahlin, Kenneth; Davis, John M; Jastrow, Aaron; Lazorchak, James M; Mills, Marc A; Murphy, Mark; Nguyen, David; Vajda, Alan M; Villeneuve, Daniel L; Winkelman, Dana L; Collette, Timothy W

    2018-08-01

    Rivers in the arid Western United States face increasing influences from anthropogenic contaminants due to population growth, urbanization, and drought. To better understand and more effectively track the impacts of these contaminants, biologically-based monitoring tools are increasingly being used to complement routine chemical monitoring. This study was initiated to assess the ability of both targeted and untargeted biologically-based monitoring tools to discriminate impacts of two adjacent wastewater treatment plants (WWTPs) on Colorado's South Platte River. A cell-based estrogen assay (in vitro, targeted) determined that water samples collected downstream of the larger of the two WWTPs displayed considerable estrogenic activity in its two separate effluent streams. Hepatic vitellogenin mRNA expression (in vivo, targeted) and NMR-based metabolomic analyses (in vivo, untargeted) from caged male fathead minnows also suggested estrogenic activity downstream of the larger WWTP, but detected significant differences in responses from its two effluent streams. The metabolomic results suggested that these differences were associated with oxidative stress levels. Finally, partial least squares regression was used to explore linkages between the metabolomics responses and the chemical contaminants that were detected at the sites. This analysis, along with univariate statistical approaches, identified significant covariance between the biological endpoints and estrone concentrations, suggesting the importance of this contaminant and recommending increased focus on its presence in the environment. These results underscore the benefits of a combined targeted and untargeted biologically-based monitoring strategy when used alongside contaminant monitoring to more effectively assess ecological impacts of exposures to complex mixtures in surface waters. Published by Elsevier Ltd.

  9. Monitoring real-time navigation processes using the automated reasoning tool (ART)

    NASA Technical Reports Server (NTRS)

    Maletz, M. C.; Culbert, C. J.

    1985-01-01

    An expert system is described for monitoring and controlling navigation processes in real-time. The ART-based system features data-driven computation, accommodation of synchronous and asynchronous data, temporal modeling for individual time intervals and chains of time intervals, and hypothetical reasoning capabilities that consider alternative interpretations of the state of navigation processes. The concept is illustrated in terms of the NAVEX system for monitoring and controlling the high speed ground navigation console for Mission Control at Johnson Space Center. The reasoning processes are outlined, including techniques used to consider alternative data interpretations. Installation of the system has permitted using a single operator, instead of three, to monitor the ascent and entry phases of a Shuttle mission.

  10. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis

    PubMed Central

    Nyein, Hnin Yin Yin; Challa, Samyuktha; Chen, Kevin; Peck, Austin; Fahad, Hossain M.; Ota, Hiroki; Shiraki, Hiroshi; Kiriya, Daisuke; Lien, Der-Hsien; Brooks, George A.; Davis, Ronald W.; Javey, Ali

    2016-01-01

    Wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual's state of health1–12. Sampling human sweat, which is rich in physiological information13, could enable non-invasive monitoring. Previously reported sweat-based and other non-invasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state14–18. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanically flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plastic-based sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing. This application could not have been realized using either of these technologies alone owing to their respective inherent limitations. The wearable system is used to measure the detailed sweat profile of human subjects engaged in prolonged indoor and outdoor physical activities, and to make a real-time assessment of the physiological state of the subjects. This platform enables a wide range of personalized diagnostic and physiological monitoring applications. PMID:26819044

  11. Taking the pulse of a river system: first 20 years

    USGS Publications Warehouse

    Leake, Linda; Johnson, Barry

    2006-01-01

    Your doctor would not base decisions for your health care today on one physical examination when you were age three! You would reasonably expect decisions to be based on records from over your lifetime. Likewise, those responsible for monitoring the health of the Upper Mississippi River System want a more comprehensive way to diagnose problems and find treatment options. To begin developing a comprehensive view of the river, the five neighboring states of the Upper Mississippi River System and several Federal agencies formed a partnership in 1986 to monitor river conditions and long-term trends in the Upper Mississippi and Illinois Rivers.

  12. EPA perspective - exposure and effects prediction and monitoring

    EPA Science Inventory

    Risk-based decisions for environmental chemicals often rely on estimates of human exposure and biological response. Biomarkers have proven a useful empirical tool for evaluating exposure and hazard predictions. In the United States, the Centers for Disease Control and Preventio...

  13. ASCS online fault detection and isolation based on an improved MPCA

    NASA Astrophysics Data System (ADS)

    Peng, Jianxin; Liu, Haiou; Hu, Yuhui; Xi, Junqiang; Chen, Huiyan

    2014-09-01

    Multi-way principal component analysis (MPCA) has received considerable attention and been widely used in process monitoring. A traditional MPCA algorithm unfolds multiple batches of historical data into a two-dimensional matrix and cut the matrix along the time axis to form subspaces. However, low efficiency of subspaces and difficult fault isolation are the common disadvantages for the principal component model. This paper presents a new subspace construction method based on kernel density estimation function that can effectively reduce the storage amount of the subspace information. The MPCA model and the knowledge base are built based on the new subspace. Then, fault detection and isolation with the squared prediction error (SPE) statistic and the Hotelling ( T 2) statistic are also realized in process monitoring. When a fault occurs, fault isolation based on the SPE statistic is achieved by residual contribution analysis of different variables. For fault isolation of subspace based on the T 2 statistic, the relationship between the statistic indicator and state variables is constructed, and the constraint conditions are presented to check the validity of fault isolation. Then, to improve the robustness of fault isolation to unexpected disturbances, the statistic method is adopted to set the relation between single subspace and multiple subspaces to increase the corrective rate of fault isolation. Finally fault detection and isolation based on the improved MPCA is used to monitor the automatic shift control system (ASCS) to prove the correctness and effectiveness of the algorithm. The research proposes a new subspace construction method to reduce the required storage capacity and to prove the robustness of the principal component model, and sets the relationship between the state variables and fault detection indicators for fault isolation.

  14. An Embedded Wireless Sensor Network with Wireless Power Transmission Capability for the Structural Health Monitoring of Reinforced Concrete Structures

    PubMed Central

    Gallucci, Luca; Menna, Costantino; Angrisani, Leopoldo; Asprone, Domenico

    2017-01-01

    Maintenance strategies based on structural health monitoring can provide effective support in the optimization of scheduled repair of existing structures, thus enabling their lifetime to be extended. With specific regard to reinforced concrete (RC) structures, the state of the art seems to still be lacking an efficient and cost-effective technique capable of monitoring material properties continuously over the lifetime of a structure. Current solutions can typically only measure the required mechanical variables in an indirect, but economic, manner, or directly, but expensively. Moreover, most of the proposed solutions can only be implemented by means of manual activation, making the monitoring very inefficient and then poorly supported. This paper proposes a structural health monitoring system based on a wireless sensor network (WSN) that enables the automatic monitoring of a complete structure. The network includes wireless distributed sensors embedded in the structure itself, and follows the monitoring-based maintenance (MBM) approach, with its ABCDE paradigm, namely: accuracy, benefit, compactness, durability, and easiness of operations. The system is structured in a node level and has a network architecture that enables all the node data to converge in a central unit. Human control is completely unnecessary until the periodic evaluation of the collected data. Several tests are conducted in order to characterize the system from a metrological point of view and assess its performance and effectiveness in real RC conditions. PMID:29112128

  15. On the efficiency of driver state monitoring systems

    NASA Astrophysics Data System (ADS)

    Dementienko, V. V.; Dorokhov, V. B.; Gerus, S. V.; Markov, A. G.; Shakhnarovich, V. M.

    2007-06-01

    Statistical data on road traffic and the results of laboratory studies are used to construct a mathematical model of a driver-driver state monitor-automobile-traffic system. In terms of the model, the probability of an accident resulting from the drowsy state of the driver is determined both in the absence and presence of a monitor. The model takes into account the efficiency and safety level provided by different monitoring systems, as well as psychological factors associated with the excessive reliance of drivers upon monitoring.

  16. Monitoring the CMS strip tracker readout system

    NASA Astrophysics Data System (ADS)

    Mersi, S.; Bainbridge, R.; Baulieu, G.; Bel, S.; Cole, J.; Cripps, N.; Delaere, C.; Drouhin, F.; Fulcher, J.; Giassi, A.; Gross, L.; Hahn, K.; Mirabito, L.; Nikolic, M.; Tkaczyk, S.; Wingham, M.

    2008-07-01

    The CMS Silicon Strip Tracker at the LHC comprises a sensitive area of approximately 200 m2 and 10 million readout channels. Its data acquisition system is based around a custom analogue front-end chip. Both the control and the readout of the front-end electronics are performed by off-detector VME boards in the counting room, which digitise the raw event data and perform zero-suppression and formatting. The data acquisition system uses the CMS online software framework to configure, control and monitor the hardware components and steer the data acquisition. The first data analysis is performed online within the official CMS reconstruction framework, which provides many services, such as distributed analysis, access to geometry and conditions data, and a Data Quality Monitoring tool based on the online physics reconstruction. The data acquisition monitoring of the Strip Tracker uses both the data acquisition and the reconstruction software frameworks in order to provide real-time feedback to shifters on the operational state of the detector, archiving for later analysis and possibly trigger automatic recovery actions in case of errors. Here we review the proposed architecture of the monitoring system and we describe its software components, which are already in place, the various monitoring streams available, and our experiences of operating and monitoring a large-scale system.

  17. The critical role of volcano monitoring in risk reduction

    USGS Publications Warehouse

    Tilling, R.I.

    2008-01-01

    Data from volcano-monitoring studies constitute the only scientifically valid basis for short-term forecasts of a future eruption, or of possible changes during an ongoing eruption. Thus, in any effective hazards-mitigation program, a basic strategy in reducing volcano risk is the initiation or augmentation of volcano monitoring at historically active volcanoes and also at geologically young, but presently dormant, volcanoes with potential for reactivation. Beginning with the 1980s, substantial progress in volcano-monitoring techniques and networks - ground-based as well space-based - has been achieved. Although some geochemical monitoring techniques (e.g., remote measurement of volcanic gas emissions) are being increasingly applied and show considerable promise, seismic and geodetic methods to date remain the techniques of choice and are the most widely used. Availability of comprehensive volcano-monitoring data was a decisive factor in the successful scientific and governmental responses to the reawakening of Mount St. Helens (Washington, USA) in 1980 and, more recently, to the powerful explosive eruptions at Mount Pinatubo (Luzon, Philippines) in 1991. However, even with the ever-improving state-ofthe-art in volcano monitoring and predictive capability, the Mount St. Helens and Pinatubo case histories unfortunately still represent the exceptions, rather than the rule, in successfully forecasting the most likely outcome of volcano unrest.

  18. Identifying species from the air: UAVs and the very high resolution challenge for plant conservation

    PubMed Central

    Moat, Justin; Whaley, Oliver; Boyd, Doreen S.

    2017-01-01

    The Pacific Equatorial dry forest of Northern Peru is recognised for its unique endemic biodiversity. Although highly threatened the forest provides livelihoods and ecosystem services to local communities. As agro-industrial expansion and climatic variation transform the region, close ecosystem monitoring is essential for viable adaptation strategies. UAVs offer an affordable alternative to satellites in obtaining both colour and near infrared imagery to meet the specific requirements of spatial and temporal resolution of a monitoring system. Combining this with their capacity to produce three dimensional models of the environment provides an invaluable tool for species level monitoring. Here we demonstrate that object-based image analysis of very high resolution UAV images can identify and quantify keystone tree species and their health across wide heterogeneous landscapes. The analysis exposes the state of the vegetation and serves as a baseline for monitoring and adaptive implementation of community based conservation and restoration in the area. PMID:29176860

  19. An adaptive, comprehensive monitoring strategy for chemicals of emerging concern (CECs) in California's Aquatic Ecosystems.

    PubMed

    Maruya, Keith A; Schlenk, Daniel; Anderson, Paul D; Denslow, Nancy D; Drewes, Jörg E; Olivieri, Adam W; Scott, Geoffrey I; Snyder, Shane A

    2014-01-01

    A scientific advisory panel was convened by the State of California to recommend monitoring for chemicals of emerging concern (CECs) in aquatic systems that receive discharge of municipal wastewater treatment plant (WWTP) effluent and stormwater runoff. The panel developed a risk-based screening framework that considered environmental sources and fate of CECs observed in receiving waters across the State. Using existing occurrence and risk threshold data in water, sediment, and biological tissue, the panel applied the framework to identify a priority list of CECs for initial monitoring in three representative receiving water scenarios. The initial screening list of 16 CECs identified by the panel included consumer and commercial chemicals, flame retardants, pesticides, pharmaceuticals and personal care products, and natural hormones. The panel designed an iterative, phased strategy with interpretive guidelines that direct and update management actions commensurate with potential risk identified using the risk-based framework and monitoring data. Because of the ever-changing nature of chemical use, technology, and management practices, the panel offered recommendations to improve CEC monitoring, including development of bioanalytical screening methods whose responses integrate exposure to complex mixtures and that can be linked to higher-order effects; development or refinement of models that predict the input, fate, and effects of future chemicals; and filling of key data gaps on CEC occurrence and toxicity. Finally, the panel stressed the need for adaptive management, allowing for future review of, and if warranted, modifications to the strategy to incorporate the latest science available to the water resources community. © 2013 SETAC.

  20. Monitoring and evaluating civil structures using measured vibration

    NASA Astrophysics Data System (ADS)

    Straser, Erik G.; Kiremidjian, Anne S.

    1996-04-01

    The need for a rapid assessment of the state of critical and conventional civil structures, such as bridges, control centers, airports, and hospitals, among many, has been amply demonstrated during recent natural disasters. Research is underway at Stanford University to develop a state-of-the-art automated damage monitoring system for long term and extreme event monitoring based on both ambient and forced response measurements. Such research requires a multi-disciplinary approach harnessing the talents and expertise of civil, electrical, and mechanical engineering to arrive at a novel hardware and software solution. Recent advances in silicon micro-machining and microprocessor design allow for the economical integration of sensing, processing, and communication components. Coupling these technological advances with parameter identification algorithms allows for the realization of extreme event damage monitoring systems for civil structures. This paper addresses the first steps toward the development of a near real-time damage diagnostic and monitoring system based on structural response to extreme events. Specifically, micro-electro-mechanical- structures (MEMS) and microcontroller embedded systems (MES) are demonstrated to be an effective platform for the measurement and analysis of civil structures. Experimental laboratory tests with small scale model specimens and a preliminary sensor module are used to evaluate hardware and obtain structural response data from input accelerograms. A multi-step analysis procedure employing ordinary least squares (OLS), extended Kalman filtering (EKF), and a substructuring approach is conducted to extract system characteristics of the model. Results from experimental tests and system identification (SI) procedures as well as fundamental system design issues are presented.

  1. On-Line Modal State Monitoring of Slowly Time-Varying Structures

    NASA Technical Reports Server (NTRS)

    Johnson, Erik A.; Bergman, Lawrence A.; Voulgaris, Petros G.

    1997-01-01

    Monitoring the dynamic response of structures is often performed for a variety of reasons. These reasons include condition-based maintenance, health monitoring, performance improvements, and control. In many cases the data analysis that is performed is part of a repetitive decision-making process, and in these cases the development of effective on-line monitoring schemes help to speed the decision-making process and reduce the risk of erroneous decisions. This report investigates the use of spatial modal filters for tracking the dynamics of slowly time-varying linear structures. The report includes an overview of modal filter theory followed by an overview of several structural system identification methods. Included in this discussion and comparison are H-infinity, eigensystem realization, and several time-domain least squares approaches. Finally, a two-stage adaptive on-line monitoring scheme is developed and evaluated.

  2. Integrating Out-Of-Office Blood Pressure in the Diagnosis and Management of Hypertension

    PubMed Central

    Cohen, Jordana B.; Cohen, Debbie L.

    2016-01-01

    Guidelines for the diagnosis and monitoring of hypertension were historically based on in-office blood pressure measurements. However, the United States Preventive Services Task Force recently expanded their recommendations on screening for hypertension to include out-of-office blood pressure measurements to confirm the diagnosis of hypertension. Out-of-office blood pressure monitoring, including ambulatory blood pressure monitoring and home blood pressure monitoring, are important tools in distinguishing between normotension, masked hypertension, white-coat hypertension, and sustained (including uncontrolled or drug-resistant) hypertension. Compared to in-office readings, out-of-office blood pressures are a greater predictor of renal and cardiac morbidity and mortality. There are multiple barriers to the implementation of out-of-office blood pressure monitoring which need to be overcome in order to promote more widespread use of these modalities. PMID:27677895

  3. A National Crop Progress Monitoring and Decision Support System Based on NASA Earth Science Results

    NASA Astrophysics Data System (ADS)

    di, L.; Yang, Z.

    2009-12-01

    Timely and accurate information on weekly crop progress and development is essential to a dynamic agricultural industry in the U. S. and the world. By law, the National Agricultural Statistics Service (NASS) of the U. S. Department of Agriculture’s (USDA) is responsible for monitoring and assessing U.S. agricultural production. Currently NASS compiles and issues weekly state and national crop progress and development reports based on reports from knowledgeable state and county agricultural officials and farmers. Such survey-based reports are subjectively estimated for an entire county, lack spatial coverage, and are labor intensive. There has been limited use of remote sensing data to assess crop conditions. NASS produces weekly 1-km resolution un-calibrated AVHRR-based NDVI static images to represent national vegetation conditions but there is no quantitative crop progress information. This presentation discusses the early result for developing a National Crop Progress Monitoring and Decision Support System. The system will overcome the shortcomings of the existing systems by integrating NASA satellite and model-based land surface and weather products, NASS’ wealth of internal crop progress and condition data and Cropland Data Layers (CDL), and the Farm Service Agency’s (FSA) Common Land Units (CLU). The system, using service-oriented architecture and web service technologies, will automatically produce and disseminate quantitative national crop progress maps and associated decision support data at 250-m resolution, as well as summary reports to support NASS and worldwide users in their decision-making. It will provide overall and specific crop progress for individual crops from the state level down to CLU field level to meet different users’ needs on all known croplands. This will greatly enhance the effectiveness and accuracy of the NASS aggregated crop condition data and charts of and provides objective and scientific evidence and guidance for the adjustment of NASS survey data. This presentation will discuss the architecture, Earth observation data, and the crop progress model used in the decision support system.

  4. Optimizing an estuarine water quality monitoring program through an entropy-based hierarchical spatiotemporal Bayesian framework

    NASA Astrophysics Data System (ADS)

    Alameddine, Ibrahim; Karmakar, Subhankar; Qian, Song S.; Paerl, Hans W.; Reckhow, Kenneth H.

    2013-10-01

    The total maximum daily load program aims to monitor more than 40,000 standard violations in around 20,000 impaired water bodies across the United States. Given resource limitations, future monitoring efforts have to be hedged against the uncertainties in the monitored system, while taking into account existing knowledge. In that respect, we have developed a hierarchical spatiotemporal Bayesian model that can be used to optimize an existing monitoring network by retaining stations that provide the maximum amount of information, while identifying locations that would benefit from the addition of new stations. The model assumes the water quality parameters are adequately described by a joint matrix normal distribution. The adopted approach allows for a reduction in redundancies, while emphasizing information richness rather than data richness. The developed approach incorporates the concept of entropy to account for the associated uncertainties. Three different entropy-based criteria are adopted: total system entropy, chlorophyll-a standard violation entropy, and dissolved oxygen standard violation entropy. A multiple attribute decision making framework is adopted to integrate the competing design criteria and to generate a single optimal design. The approach is implemented on the water quality monitoring system of the Neuse River Estuary in North Carolina, USA. The model results indicate that the high priority monitoring areas identified by the total system entropy and the dissolved oxygen violation entropy criteria are largely coincident. The monitoring design based on the chlorophyll-a standard violation entropy proved to be less informative, given the low probabilities of violating the water quality standard in the estuary.

  5. uSOP: A Microprocessor-Based Service-Oriented Platform for Control and Monitoring

    NASA Astrophysics Data System (ADS)

    Aloisio, Alberto; Ameli, Fabrizio; Anastasio, Antonio; Branchini, Paolo; Di Capua, Francesco; Giordano, Raffaele; Izzo, Vincenzo; Tortone, Gennaro

    2017-06-01

    uSOP is a general purpose single-board computer designed for deep embedded applications in control and monitoring of detectors, sensors, and complex laboratory equipment. In this paper, we present and discuss the main aspects of the hardware and software designs and the expandable peripheral architecture built around serial busses. We show the tests done with state-of-the-art ΔΣ 24-b ADC acquisition modules, in order to assess the achievable noise floor in a typical application. Eventually, we report on the deployment of uSOP in the monitoring system framework of the Belle2 experiment, presently under construction at the KEK Laboratory (Tsukuba, Japan).

  6. Development and evaluation of a technique for in vivo monitoring of 60Co in human lungs

    NASA Astrophysics Data System (ADS)

    de Mello, J. Q.; Lucena, E. A.; Dantas, A. L. A.; Dantas, B. M.

    2016-07-01

    60Co is a fission product of 235U and represents a risk of internal exposure of workers in nuclear power plants, especially those involved in the maintenance of potentially contaminated parts and equipment. The control of 60Co intake by inhalation can be performed through in vivo monitoring. This work describes the evaluation of a technique through the minimum detectable activity and the corresponding minimum detectable effective doses, based on biokinetic and dosimetric models of 60Co in the human body. The results allow to state that the technique is suitable either for monitoring of occupational exposures or evaluation of accidental intake.

  7. Development and evaluation of a technique for in vivo monitoring of 60Co in human liver

    NASA Astrophysics Data System (ADS)

    Gomes, GH; Silva, MC; Mello, JQ; Dantas, ALA; Dantas, BM

    2018-03-01

    60Co is an artificial radioactive metal produced by activation of iron with neutrons. It decays by beta particles and gamma radiation and represents a risk of internal exposure of workers involved in the maintenance of nuclear power reactors. Intakes can be quantified through in vivo monitoring. This work describes the development of a technique for the quantification of 60Co in human liver. The sensitivity of the method is evaluated based on the minimum detectable effective doses. The results allow to state that the technique is suitable either for monitoring of occupational exposures or evaluation of accidental intakes.

  8. Application of process monitoring to anomaly detection in nuclear material processing systems via system-centric event interpretation of data from multiple sensors of varying reliability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Humberto E.; Simpson, Michael F.; Lin, Wen-Chiao

    In this paper, we apply an advanced safeguards approach and associated methods for process monitoring to a hypothetical nuclear material processing system. The assessment regarding the state of the processing facility is conducted at a systemcentric level formulated in a hybrid framework. This utilizes architecture for integrating both time- and event-driven data and analysis for decision making. While the time-driven layers of the proposed architecture encompass more traditional process monitoring methods based on time series data and analysis, the event-driven layers encompass operation monitoring methods based on discrete event data and analysis. By integrating process- and operation-related information and methodologiesmore » within a unified framework, the task of anomaly detection is greatly improved. This is because decision-making can benefit from not only known time-series relationships among measured signals but also from known event sequence relationships among generated events. This available knowledge at both time series and discrete event layers can then be effectively used to synthesize observation solutions that optimally balance sensor and data processing requirements. The application of the proposed approach is then implemented on an illustrative monitored system based on pyroprocessing and results are discussed.« less

  9. Wyoming groundwater-quality monitoring network

    USGS Publications Warehouse

    Boughton, Gregory K.

    2011-01-01

    A wide variety of human activities have the potential to contaminate groundwater. In addition, naturally occurring constituents can limit the suitability of groundwater for some uses. The State of Wyoming has established rules and programs to evaluate and protect groundwater quality based on identified uses. The Wyoming Groundwater-Quality Monitoring Network (WGQMN) is a cooperative program between the U.S. Geological Survey (USGS) and the Wyoming Department of Environmental Quality (WDEQ) and was implemented in 2009 to evaluate the water-quality characteristics of the State's groundwater. Representatives from USGS, WDEQ, U.S. Environmental Protection Agency (USEPA), Wyoming Water Development Office, and Wyoming State Engineer's Office formed a steering committee, which meets periodically to evaluate progress and consider modifications to strengthen program objectives. The purpose of this fact sheet is to describe the WGQMN design and objectives, field procedures, and water-quality analyses. USGS groundwater activities in the Greater Green River Basin also are described.

  10. A Hybrid Approach to Composite Damage and Failure Analysis Combining Synergistic Damage Mechanics and Peridynamics

    DTIC Science & Technology

    2017-09-30

    Model Assembly of the RYE The size of the embedding composite region was determined based on Hill ’ s criterion, which states that uniform displacement ...traction at the boundary where displacement was applied was monitored. The results are as shown in Figure 2. The studies show that the size of the...EFFECTIVE OMPO !TE MATRIX Under transverse displacement at the boundary of the model assembly, the response of the inner RYE was monitored. The

  11. Web technologies for rapid assessment of pollution of the atmosphere of the industrial city

    NASA Astrophysics Data System (ADS)

    Shaparev, N.; Tokarev, A.; Yakubailik, O.; Soldatov, A.

    2018-05-01

    The functionality, architectural features, the user interface of the geoinformation web-system of environmental monitoring of Krasnoyarsk is discussed. This system is created in service-oriented architecture. Data collection from the automated stations to monitor the state of atmospheric air has been implemented. An original device to measure the level of contamination of the atmosphere by fine dust PM2.5 has developed. Assessment of the level of air pollution is based on the quality index AQI atmosphere.

  12. State-of-the-art practices in farmland biodiversity monitoring for North America and Europe.

    PubMed

    Herzog, Felix; Franklin, Janet

    2016-12-01

    Policy makers and farmers need to know the status of farmland biodiversity in order to meet conservation goals and evaluate management options. Based on a review of 11 monitoring programs in Europe and North America and on related literature, we identify the design choices or attributes of a program that balance monitoring costs and usefulness for stakeholders. A useful program monitors habitats, vascular plants, and possibly faunal groups (ecosystem service providers, charismatic species) using a stratified random sample of the agricultural landscape, including marginal and intensive regions. The size of landscape samples varies with the grain of the agricultural landscape; for example, samples are smaller in Europe and larger in North America. Raw data are collected in a rolling survey, which distributes sampling over several years. Sufficient practical experience is now available to implement broad monitoring schemes on both continents. Technological developments in remote sensing, metagenomics, and social media may offer new opportunities for affordable farmland biodiversity monitoring and help to lower the overall costs of monitoring programs.

  13. Prediction of gas/particle partitioning of polybrominated diphenyl ethers (PBDEs) in global air: a theoretical study

    NASA Astrophysics Data System (ADS)

    Li, Y.-F.; Ma, W.-L.; Yang, M.

    2014-09-01

    Gas/particle (G / P) partitioning for most semivolatile organic compounds (SVOCs) is an important process that primarily governs their atmospheric fate, long-range atmospheric transport potential, and their routs to enter human body. All previous studies on this issue have been hypothetically derived from equilibrium conditions, the results of which do not predict results from monitoring studies well in most cases. In this study, a steady-state model instead of an equilibrium-state model for the investigation of the G / P partitioning behavior for polybrominated diphenyl ethers (PBDEs) was established, and an equation for calculating the partition coefficients under steady state (KPS) for PBDE congeners (log KPS = log KPE + logα) was developed, in which an equilibrium term (log KPE = log KOA + logfOM -11.91, where fOM is organic matter content of the particles) and a nonequilibrium term (logα, mainly caused by dry and wet depositions of particles), both being functions of log KOA (octanol-air partition coefficient), are included, and the equilibrium is a special case of steady state when the nonequilibrium term equals to zero. A criterion to classify the equilibrium and nonequilibrium status for PBDEs was also established using two threshold values of log KOA, log KOA1 and log KOA2, which divide the range of log KOA into 3 domains: equilibrium, nonequilibrium, and maximum partition domains; and accordingly, two threshold values of temperature t, tTH1 when log KOA = log KOA1 and tTH2 when log KOA = log KOA2, were identified, which divide the range of temperature also into the same 3 domains for each BDE congener. We predicted the existence of the maximum partition domain (the values of log KPS reach a maximum constant of -1.53) that every PBDE congener can reach when log KOA ≥ log KOA2, or t ≤ tTH2. The novel equation developed in this study was applied to predict the G / P partition coefficients of PBDEs for the published monitoring data worldwide, including Asia, Europe, North America, and the Arctic, and the results matched well with all the monitoring data, except those obtained at e-waste sites due to the unpredictable PBDE emissions at these sites. This study provided evidence that, the new developed steady-state-based equation is superior to the equilibrium-state-based equation that has been used in describing the G / P partitioning behavior in decades. We suggest that, the investigation on G / P partitioning behavior for PBDEs should be based on steady state, not equilibrium state, and equilibrium is just a special case of steady state when nonequilibrium factors can be ignored. We also believe that our new equation provides a useful tool for environmental scientists in both monitoring and modeling research on G / P partitioning for PBDEs and can be extended to predict G / P partitioning behavior for other SVOCs as well.

  14. Expert Systems for United States Navy Shore Facilities Utility Operations.

    DTIC Science & Technology

    1988-03-01

    of expertise when assessing the applicability of an expert system. Each of the tasks as similarly ranked to reflect subjective judgement on the...United States Navy Shore Facilities Utility Operations ABSTRACT A technology assessment of expert systems as they might be used in Navy utility...of these applications include design, fault diagnoses, training, data base management, and real-time monitoring. An assessment is given of each

  15. Employment Service. Improved Leadership Needed for Better Performance. Report to the Chairman, Subcommittee on Employment Opportunities, Committee on Education and Labor, House of Representatives.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC. Div. of Human Resources.

    A study examined local U.S. Employment Service (ES) office placement performance and the role of the U.S. Department of Labor (DOL) in guiding and monitoring state and local ES program performance. Regression and other statistical methods were used to analyze state and local program performance based on the following: placement data for…

  16. Microwave-Based Oxidation State and Soot Loading Determination on Gasoline Particulate Filters with Three-Way Catalyst Coating for Homogenously Operated Gasoline Engines.

    PubMed

    Dietrich, Markus; Jahn, Christoph; Lanzerath, Peter; Moos, Ralf

    2015-09-02

    Recently, a novel method emerged to determine the oxygen storage degree of three way catalysts (TWC) by a microwave-based method. Up to now, this method has been investigated only in lab-scale reactors or under steady state conditions. This work expands those initial studies. A TWC-coated gasoline particulate filter was investigated in a dynamic engine test bench simulating a typical European driving cycle (NEDC). It could be shown that both the oxygen storage degree and the soot loading can be monitored directly, but not simultaneously due to their competitive effects. Under normal driving conditions, no soot accumulation was observed, related to the low raw emissions and the catalytic coating of the filter. For the first time, the quality factor of the cavity resonator in addition to the resonance frequency was used, with the benefit of less cross sensitivity to inconstant temperature and water. Therefore, a temperature dependent calibration of the microwave signal was created and applied to monitor the oxidation state in transient driving cycles. The microwave measurement mirrors the oxidation state determined by lambda probes and can be highly beneficial in start-stop phases (where lambda-probes do not work) and to determine the oxygen storage capacity (OSC) without unnecessary emissions.

  17. Microwave-Based Oxidation State and Soot Loading Determination on Gasoline Particulate Filters with Three-Way Catalyst Coating for Homogenously Operated Gasoline Engines

    PubMed Central

    Dietrich, Markus; Jahn, Christoph; Lanzerath, Peter; Moos, Ralf

    2015-01-01

    Recently, a novel method emerged to determine the oxygen storage degree of three way catalysts (TWC) by a microwave-based method. Up to now, this method has been investigated only in lab-scale reactors or under steady state conditions. This work expands those initial studies. A TWC-coated gasoline particulate filter was investigated in a dynamic engine test bench simulating a typical European driving cycle (NEDC). It could be shown that both the oxygen storage degree and the soot loading can be monitored directly, but not simultaneously due to their competitive effects. Under normal driving conditions, no soot accumulation was observed, related to the low raw emissions and the catalytic coating of the filter. For the first time, the quality factor of the cavity resonator in addition to the resonance frequency was used, with the benefit of less cross sensitivity to inconstant temperature and water. Therefore, a temperature dependent calibration of the microwave signal was created and applied to monitor the oxidation state in transient driving cycles. The microwave measurement mirrors the oxidation state determined by lambda probes and can be highly beneficial in start-stop phases (where lambda-probes do not work) and to determine the oxygen storage capacity (OSC) without unnecessary emissions. PMID:26340629

  18. State-and-transition models for heterogeneous landscapes: A strategy for development and application

    USDA-ARS?s Scientific Manuscript database

    Interpretation of assessment and monitoring data requires information about reference conditions and ecological resilience. Reference conditions used as benchmarks can be specified via potential-based land classifications (e.g., ecological sites) that describe the plant communities potentially obser...

  19. NATIONAL COASTAL ASSESSMENT

    EPA Science Inventory

    The purpose of the National Coastal Assessment (NCA) is to estimate the status and trends of the condition of the nation's coastal resources on a state, regional and national basis. Based on NCA monitoring from 1999-2001, 100% of the nation's estuarine waters (at over 2500 locati...

  20. 40 CFR 142.18 - EPA review of State monitoring determinations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false EPA review of State monitoring determinations. 142.18 Section 142.18 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER... Responsibility § 142.18 EPA review of State monitoring determinations. (a) A Regional Administrator may annul a...

  1. DynAMo: A Modular Platform for Monitoring Process, Outcome, and Algorithm-Based Treatment Planning in Psychotherapy.

    PubMed

    Kaiser, Tim; Laireiter, Anton Rupert

    2017-07-20

    In recent years, the assessment of mental disorders has become more and more personalized. Modern advancements such as Internet-enabled mobile phones and increased computing capacity make it possible to tap sources of information that have long been unavailable to mental health practitioners. Software packages that combine algorithm-based treatment planning, process monitoring, and outcome monitoring are scarce. The objective of this study was to assess whether the DynAMo Web application can fill this gap by providing a software solution that can be used by both researchers to conduct state-of-the-art psychotherapy process research and clinicians to plan treatments and monitor psychotherapeutic processes. In this paper, we report on the current state of a Web application that can be used for assessing the temporal structure of mental disorders using information on their temporal and synchronous associations. A treatment planning algorithm automatically interprets the data and delivers priority scores of symptoms to practitioners. The application is also capable of monitoring psychotherapeutic processes during therapy and of monitoring treatment outcomes. This application was developed using the R programming language (R Core Team, Vienna) and the Shiny Web application framework (RStudio, Inc, Boston). It is made entirely from open-source software packages and thus is easily extensible. The capabilities of the proposed application are demonstrated. Case illustrations are provided to exemplify its usefulness in clinical practice. With the broad availability of Internet-enabled mobile phones and similar devices, collecting data on psychopathology and psychotherapeutic processes has become easier than ever. The proposed application is a valuable tool for capturing, processing, and visualizing these data. The combination of dynamic assessment and process- and outcome monitoring has the potential to improve the efficacy and effectiveness of psychotherapy. ©Tim Kaiser, Anton Rupert Laireiter. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 20.07.2017.

  2. Completing fishing monitoring with spaceborne Vessel Detection System (VDS) and Automatic Identification System (AIS) to assess illegal fishing in Indonesia.

    PubMed

    Longépé, Nicolas; Hajduch, Guillaume; Ardianto, Romy; Joux, Romain de; Nhunfat, Béatrice; Marzuki, Marza I; Fablet, Ronan; Hermawan, Indra; Germain, Olivier; Subki, Berny A; Farhan, Riza; Muttaqin, Ahmad Deni; Gaspar, Philippe

    2017-10-26

    The Indonesian fisheries management system is now equipped with the state-of-the-art technologies to deter and combat Illegal, Unreported and Unregulated (IUU) fishing. Since October 2014, non-cooperative fishing vessels can be detected from spaceborne Vessel Detection System (VDS) based on high resolution radar imagery, which directly benefits to coordinated patrol vessels in operation context. This study attempts to monitor the amount of illegal fishing in the Arafura Sea based on this new source of information. It is analyzed together with Vessel Monitoring System (VMS) and satellite-based Automatic Identification System (Sat-AIS) data, taking into account their own particularities. From October 2014 to March 2015, i.e. just after the establishment of a new moratorium by the Indonesian authorities, the estimated share of fishing vessels not carrying VMS, thus being illegal, ranges from 42 to 47%. One year later in January 2016, this proportion decreases and ranges from 32 to 42%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Temporal abstraction for the analysis of intensive care information

    NASA Astrophysics Data System (ADS)

    Hadad, Alejandro J.; Evin, Diego A.; Drozdowicz, Bartolomé; Chiotti, Omar

    2007-11-01

    This paper proposes a scheme for the analysis of time-stamped series data from multiple monitoring devices of intensive care units, using Temporal Abstraction concepts. This scheme is oriented to obtain a description of the patient state evolution in an unsupervised way. The case of study is based on a dataset clinically classified with Pulmonary Edema. For this dataset a trends based Temporal Abstraction mechanism is proposed, by means of a Behaviours Base of time-stamped series and then used in a classification step. Combining this approach with the introduction of expert knowledge, using Fuzzy Logic, and multivariate analysis by means of Self-Organizing Maps, a states characterization model is obtained. This model is feasible of being extended to different patients groups and states. The proposed scheme allows to obtain intermediate states descriptions through which it is passing the patient and that could be used to anticipate alert situations.

  4. REVIEW OF THE RADNET AIR MONITORING NETWORK ...

    EPA Pesticide Factsheets

    RadNet, formerly known as ERAMS, has been operating since the 1970's, monitoring environmental radiation across the country, supporting responses to radiological emergencies, and providing important information on background levels of radiation in the environment. The original purpose of the system was to monitor fallout from weapons testing. Even though upgrades to and reconfiguration of the system have been planned for some time, the events of 9/11/01 gave impetus to a thorough upgrade of RadNet, primarily directed at providing more timely data and covering a larger portion of the nation's population. Moreover, the demands upon RadNet are now based upon homeland security support in addition to existing EPA monitoring responsibilities. Beginning in FY05 and continuing into FY13 up to135 near real-time air monitors will be put into operation across the country to provide decision making-data to EPA officials. Data will be transmitted from the monitors in all 50 states to a central database at the National Air and Radiation Environmental Laboratory (NAREL) in Montgomery, Alabama. The data will then be assessed and verified and made available to federal and state officials and, eventually, the public. A data flow model is being constructed to provide the most effective and efficient use of verified data obtained from the new radNet system The objective of the near-real time air monitoring component of RadNet is to provide verified decision-making data to fed

  5. Multiparametric monitoring of tissue vitality in clinical situations

    NASA Astrophysics Data System (ADS)

    Mayevsky, Avraham; Manor, Tamar; Meilin, Sigal; Razon, Nisim; Ouknine, George E.; Ornstein, Eugene

    2001-05-01

    The monitoring of various tissue's physiological and biochemical parameters is one of the tools used by the clinicians to improve diagnosis capacity. As of today, the very few devices developed for real time clinical monitoring of tissue vitality are based on a single parameter measurement. Tissue energy balance could be defined as the ratio between oxygen or energy supply and demand. In order to determine the vitality of the brain, for example, it is necessary to measure at least the following 3 parameters: Energy Demand--potassium ion homeostasis; Energy Supply-- cerebral blood flow; Energy Balance--mitochondrial NADH redox state. For other tissues one can measure various energy demand processes specific to the tested organ. We have developed a unique multiparametric monitoring system tested in various experimental and clinical applications. The multiprobe assembly (MPA) consists of a fiber optic probe for measurement of tissue blood flow and mitochondrial NADH redox state, ion selective electrodes (K+, Ca2+, H+), electrodes for electrical activities (ECoG or ECG and DC potential), temperature probe and for monitoring the brain - Intra Cranial Pressure probe (ICP). The computerized monitoring system was used in the neurological intensive care unit to monitor comatose patients for a period of 24-48 hours. Also, a simplified MPA was used in the neurosurgical operating room or during organ transplantation procedure. It was found that the MPA could be used in clinical situations and that the data collected has a significant diagnosis value for the medical team.

  6. 40 CFR 52.346 - Air quality monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Air quality monitoring requirements. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Colorado § 52.346 Air quality monitoring... VIII Administrator, the State submitted a revised Air Quality Monitoring State Implementation Plan. The...

  7. 40 CFR 52.346 - Air quality monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Air quality monitoring requirements. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Colorado § 52.346 Air quality monitoring... VIII Administrator, the State submitted a revised Air Quality Monitoring State Implementation Plan. The...

  8. 40 CFR 52.346 - Air quality monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Air quality monitoring requirements. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Colorado § 52.346 Air quality monitoring... VIII Administrator, the State submitted a revised Air Quality Monitoring State Implementation Plan. The...

  9. 40 CFR 52.346 - Air quality monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Air quality monitoring requirements. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Colorado § 52.346 Air quality monitoring... VIII Administrator, the State submitted a revised Air Quality Monitoring State Implementation Plan. The...

  10. 40 CFR 52.346 - Air quality monitoring requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Air quality monitoring requirements. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Colorado § 52.346 Air quality monitoring... VIII Administrator, the State submitted a revised Air Quality Monitoring State Implementation Plan. The...

  11. Initial Evaluation of Signal-Based Bayesian Monitoring

    NASA Astrophysics Data System (ADS)

    Moore, D.; Russell, S.

    2016-12-01

    We present SIGVISA (Signal-based Vertically Integrated Seismic Analysis), a next-generation system for global seismic monitoring through Bayesian inference on seismic signals. Traditional seismic monitoring systems rely on discrete detections produced by station processing software, discarding significant information present in the original recorded signal. By modeling signals directly, our forward model is able to incorporate a rich representation of the physics underlying the signal generation process, including source mechanisms, wave propagation, and station response. This allows inference in the model to recover the qualitative behavior of geophysical methods including waveform matching and double-differencing, all as part of a unified Bayesian monitoring system that simultaneously detects and locates events from a network of stations. We report results from an evaluation of SIGVISA monitoring the western United States for a two-week period following the magnitude 6.0 event in Wells, NV in February 2008. During this period, SIGVISA detects more than twice as many events as NETVISA, and three times as many as SEL3, while operating at the same precision; at lower precisions it detects up to five times as many events as SEL3. At the same time, signal-based monitoring reduces mean location errors by a factor of four relative to detection-based systems. We provide evidence that, given only IMS data, SIGVISA detects events that are missed by regional monitoring networks, indicating that our evaluations may even underestimate its performance. Finally, SIGVISA matches or exceeds the detection rates of existing systems for de novo events - events with no nearby historical seismicity - and detects through automated processing a number of such events missed even by the human analysts generating the LEB.

  12. Region-wide monitoring of exotic pest plants in southeastern forests by Forest Service and State Partners

    Treesearch

    James H. Miller

    2001-01-01

    The USDA Forest Service Research in partnership with State forestry agencies has initiated monitoring of 32 exotic plant tasa invading forests in the 13 southeastern States. The monitoring is on all forestlands, all ownerships, and is a recent addition to the National Forest Resources Inventory, ongoing since the 1930's. This is the first multi-state survey of...

  13. High-efficient Unmanned Aircraft System Operations for Ecosystem Assessment

    NASA Astrophysics Data System (ADS)

    Xu, H.; Zhang, H.

    2016-02-01

    Diverse national and international agencies support the idea that incorporating Unmanned Aircraft Systems (UAS) into ecosystem assessment will improve the operations efficiency and accuracy. In this paper, a UAS will be designed to monitor the Gulf of Mexico's coastal area ecosystems intelligently and routinely. UAS onboard sensors will capture information that can be utilized to detect and geo-locate areas affected by invasive grasses. Moreover, practical ecosystem will be better assessed by analyzing the collected information. Compared with human-based/satellite-based surveillance, the proposed strategy is more efficient and accurate, and eliminates limitations and risks associated with human factors. State of the art UAS onboard sensors (e.g. high-resolution electro optical camera, night vision camera, thermal sensor etc.) will be used for monitoring coastal ecosystems. Once detected the potential risk in ecosystem, the onboard GPS data will be used to geo-locate and to store the exact coordinates of the affected area. Moreover, the UAS sensors will be used to observe and to record the daily evolution of coastal ecosystems. Further, benefitting from the data collected by the UAS, an intelligent big data processing scheme will be created to assess the ecosystem evolution effectively. Meanwhile, a cost-efficient intelligent autonomous navigation strategy will be implemented into the UAS, in order to guarantee that the UAS can fly over designated areas, and collect significant data in a safe and effective way. Furthermore, the proposed UAS-based ecosystem surveillance and assessment methodologies can be utilized for natural resources conservation. Flying UAS with multiple state of the art sensors will monitor and report the actual state of high importance natural resources frequently. Using the collected data, the ecosystem conservation strategy can be performed effectively and intelligently.

  14. A Comprehensive Study on Technologies of Tyre Monitoring Systems and Possible Energy Solutions

    PubMed Central

    Kubba, Ali E.; Jiang, Kyle

    2014-01-01

    This article presents an overview on the state of the art of Tyre Pressure Monitoring System related technologies. This includes examining the latest pressure sensing methods and comparing different types of pressure transducers, particularly their power consumption and measuring range. Having the aim of this research to investigate possible means to obtain a tyre condition monitoring system (TCMS) powered by energy harvesting, various approaches of energy harvesting techniques were evaluated to determine which approach is the most applicable for generating energy within the pneumatic tyre domain and under rolling tyre dynamic conditions. This article starts with an historical review of pneumatic tyre development and demonstrates the reasons and explains the need for using a tyre condition monitoring system. Following this, different tyre pressure measurement approaches are compared in order to determine what type of pressure sensor is best to consider in the research proposal plan. Then possible energy harvesting means inside land vehicle pneumatic tyres are reviewed. Following this, state of the art battery-less tyre pressure monitoring systems developed by individual researchers or by world leading tyre manufacturers are presented. Finally conclusions are drawn based on the reviewed documents cited in this article and a research proposal plan is presented. PMID:24922457

  15. Revised ground-water monitoring compliance plan for the 300 area process trenches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schalla, R.; Aaberg, R.L.; Bates, D.J.

    1988-09-01

    This document contains ground-water monitoring plans for process-water disposal trenches located on the Hanford Site. These trenches, designated the 300 Area Process Trenches, have been used since 1973 for disposal of water that contains small quantities of both chemicals and radionuclides. The ground-water monitoring plans contained herein represent revision and expansion of an effort initiated in June 1985. At that time, a facility-specific monitoring program was implemented at the 300 Area Process Trenches as part of a regulatory compliance effort for hazardous chemicals being conducted on the Hanford Site. This monitoring program was based on the ground-water monitoring requirements formore » interim-status facilities, which are those facilities that do not yet have final permits, but are authorized to continue interim operations while engaged in the permitting process. The applicable monitoring requirements are described in the Resource Conservation and Recovery Act (RCRA), 40 CFR 265.90 of the federal regulations, and in WAC 173-303-400 of Washington State's regulations (Washington State Department of Ecology 1986). The program implemented for the process trenches was designed to be an alternate program, which is required instead of the standard detection program when a facility is known or suspected to have contaminated the ground water in the uppermost aquifer. The plans for the program, contained in a document prepared by the US Department of Energy (USDOE) in 1985, called for monthly sampling of 14 of the 37 existing monitoring wells at the 300 Area plus the installation and sampling of 2 new wells. 27 refs., 25 figs., 15 tabs.« less

  16. Designing an in-situ ultrasonic nondestructive evaluation system for ultrasonic additive manufacturing

    NASA Astrophysics Data System (ADS)

    Nadimpalli, Venkata K.; Nagy, Peter B.

    2018-04-01

    Ultrasonic Additive Manufacturing (UAM) is a solid-state layer by layer manufacturing process that utilizes vibration induced plastic deformation to form a metallurgical bond between a thin layer and an existing base structure. Due to the vibration based bonding mechanism, the quality of components at each layer depends on the geometry of the structure. In-situ monitoring during and between UAM manufacturing steps offers the potential for closed-loop control to optimize process parameters and to repair existing defects. One interface that is most prone to delamination is the base/build interface and often UAM component height and quality are limited by failure at the base/build interface. Low manufacturing temperatures and favorable orientation of typical interface defects in UAM make ultrasonic NDE an attractive candidate for online monitoring. Two approaches for in-situ NDE are discussed and the design of the monitoring system optimized so that the quality of UAM components is not affected by the addition of the NDE setup. Preliminary results from in-situ ultrasonic NDE indicate the potential to be utilized for online qualification, closed-loop control and offline certification of UAM components.

  17. Comparison and cost analysis of drinking water quality monitoring requirements versus practice in seven developing countries.

    PubMed

    Crocker, Jonny; Bartram, Jamie

    2014-07-18

    Drinking water quality monitoring programs aim to support provision of safe drinking water by informing water quality management. Little evidence or guidance exists on best monitoring practices for low resource settings. Lack of financial, human, and technological resources reduce a country's ability to monitor water supply. Monitoring activities were characterized in Cambodia, Colombia, India (three states), Jordan, Peru, South Africa, and Uganda according to water sector responsibilities, monitoring approaches, and marginal cost. The seven study countries were selected to represent a range of low resource settings. The focus was on monitoring of microbiological parameters, such as E. coli, coliforms, and H2S-producing microorganisms. Data collection involved qualitative and quantitative methods. Across seven study countries, few distinct approaches to monitoring were observed, and in all but one country all monitoring relied on fixed laboratories for sample analysis. Compliance with monitoring requirements was highest for operational monitoring of large water supplies in urban areas. Sample transport and labor for sample collection and analysis together constitute approximately 75% of marginal costs, which exclude capital costs. There is potential for substantive optimization of monitoring programs by considering field-based testing and by fundamentally reconsidering monitoring approaches for non-piped supplies. This is the first study to look quantitatively at water quality monitoring practices in multiple developing countries.

  18. Mathematical Modeling in Systems for Operational Evaluation of the Stress-Strain State of the Arch-Gravity Dam at the Sayano-Shushenskaya Hydroelectric Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellendir, E. N.; Gordon, L. A., E-mail: lev-gordon@mail.ru; Khrapkov, A. A.

    Current studies of the stress-strain state of the dam at the Sayano-Shushenskaya Hydroelectric Power Plant at VNIIG based on mathematical modeling including full scale and experimental data are described. Applications and programs intended for automatic operational evaluation of the stress-strain state of the dam for optimizing control of the upper race level in the course of the annual filling-drawdown cycle and during seismic events are examined. Improvements in systems for monitoring the stress-strain state of concrete dams are proposed.

  19. New measures of mental state and behavior based on data collected from sensors, smartphones, and the Internet.

    PubMed

    Glenn, Tasha; Monteith, Scott

    2014-12-01

    With the rapid and ubiquitous acceptance of new technologies, algorithms will be used to estimate new measures of mental state and behavior based on digital data. The algorithms will analyze data collected from sensors in smartphones and wearable technology, and data collected from Internet and smartphone usage and activities. In the future, new medical measures that assist with the screening, diagnosis, and monitoring of psychiatric disorders will be available despite unresolved reliability, usability, and privacy issues. At the same time, similar non-medical commercial measures of mental state are being developed primarily for targeted advertising. There are societal and ethical implications related to the use of these measures of mental state and behavior for both medical and non-medical purposes.

  20. Speckle-correlation monitoring of the internal micro-vascular flow

    NASA Astrophysics Data System (ADS)

    Zimnyakov, D. A.; Khmara, M. B.; Vilensky, M. A.; Kozlov, V. V.; Gorfinkel, I. V.; Zdrajevsky, R. A.

    2009-10-01

    The results of experimental study of possibility to monitor the micro-vascular blood flow in superficial tissues of various organs with the use of endoscope-based full-field speckle correlometer are presented. The blood microcirculation monitoring was carried out in the course of the laparotomy of abdominal cavity of laboratory animals (rats). Transfer of laser light to the area of interest and scattered radiation from the probed zone to the detector (CMOS camera) was carried out via fiber-optic bundles of endoscopic system. Microscopic hemodynamics was analyzed for small intestine, liver, spleen, kidney, and pancreas under different conditions (normal state, provocated peritonitis and ischemia, administration of vasodilative agents such as papaverine, lidocaine). The prospects and problems of internal monitoring of microvascular flow in laboratory and clinical conditions are discussed.

  1. Jeagle: a JAVA Runtime Verification Tool

    NASA Technical Reports Server (NTRS)

    DAmorim, Marcelo; Havelund, Klaus

    2005-01-01

    We introduce the temporal logic Jeagle and its supporting tool for runtime verification of Java programs. A monitor for an Jeagle formula checks if a finite trace of program events satisfies the formula. Jeagle is a programming oriented extension of the rule-based powerful Eagle logic that has been shown to be capable of defining and implementing a range of finite trace monitoring logics, including future and past time temporal logic, real-time and metric temporal logics, interval logics, forms of quantified temporal logics, and so on. Monitoring is achieved on a state-by-state basis avoiding any need to store the input trace. Jeagle extends Eagle with constructs for capturing parameterized program events such as method calls and method returns. Parameters can be the objects that methods are called upon, arguments to methods, and return values. Jeagle allows one to refer to these in formulas. The tool performs automated program instrumentation using AspectJ. We show the transformational semantics of Jeagle.

  2. Study of water dynamics in the soaking, steaming, and solid-state fermentation of glutinous rice by LF-NMR: a novel monitoring approach.

    PubMed

    Li, Teng; Tu, Chuanhai; Rui, Xin; Gao, Yangwen; Li, Wei; Wang, Kun; Xiao, Yu; Dong, Mingsheng

    2015-04-01

    Solid-state fermentation (SSF) of starchy grain is a traditional technique for food and alcoholic beverage production in East Asia. In the present study, low-field nuclear magnetic resonance (LF-NMR) was introduced for the elucidation of water dynamics and microstructure alternations during the soaking, steaming, and SSF of glutinous rice as a rapid real-time monitoring method. Three different proton fractions with different mobilities were identified based on the degree of interaction between biopolymers and water. Soaking and steaming significantly changed the proton distribution of the sample. The different phases of SSF were reflected by the T2 parameters. In addition, the variations in the T2 parameters were explained by the microstructure changes of rice induced by SSF. The fermentation time and T2 parameters were sigmoidally correlated. Thus, LF-NMR may be an effective real-time monitoring method for SSF in starch systems.

  3. Application of cabin atmosphere monitors to rapid screening of breath samples for the early detection of disease states

    NASA Technical Reports Server (NTRS)

    Valentine, J. L.; Bryant, P. J.

    1975-01-01

    Analysis of human breath is a nonintrusive method to monitor both endogenous and exogenous chemicals found in the body. Several technologies were investigated and developed which are applicable to monitoring some organic molecules important in both physiological and pathological states. Two methods were developed for enriching the organic molecules exhaled in the breath of humans. One device is based on a respiratory face mask fitted with a polyethylene foam wafer; while the other device is a cryogenic trap utilizing an organic solvent. Using laboratory workers as controls, two organic molecules which occurred in the enriched breath of all subjects were tentatively identified as lactic acid and contisol. Both of these substances occurred in breath in sufficient amounts that the conventional method of gas-liquid chromatography was adequate for detection and quantification. To detect and quantitate trace amounts of chemicals in breath, another type of technology was developed in which analysis was conducted using high pressure liquid chromatography and mass spectrometry.

  4. RECONSTRUCTING POPULATION EXPOSURES FROM DOSE BIOMARKERS: INHALATION OF TRICHLOROETHYLENE (TCE) AS A CASE STUDY

    EPA Science Inventory

    Physiologically based pharmacokinetic (PBPK) modeling is a well-established toxicological tool designed to relate exposure to a target tissue dose. The emergence of federal and state programs for environmental health tracking and the availability of exposure monitoring through bi...

  5. Storing Data and Video on One Tape

    NASA Technical Reports Server (NTRS)

    Nixon, J. H.; Cater, J. P.

    1985-01-01

    Microprocessor-based system originally developed for anthropometric research merges digital data with video images for storage on video cassette recorder. Combined signals later retrieved and displayed simultaneously on television monitor. System also extracts digital portion of stored information and transfers it to solid-state memory.

  6. Amperometric Carbon Fiber Nitrite Microsensor for In Situ Biofilm Monitoring

    EPA Science Inventory

    A highly selective needle type solid state amperometric nitrite microsensor based on direct nitrite oxidation on carbon fiber was developed using a simplified fabrication method. The microsensor’s tip diameter was approximately 7 µm, providing a high spatial resolution of at lea...

  7. 40 CFR 52.743 - Continuous monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the right to deem an operating permit not federally enforceable. Such a determination will be made... 28, 1989) and will be based upon either; the permit, permit approval procedures or state or local permit requirements which do not conform with the operating permit program requirements or the...

  8. NATIONAL COASTAL ASSESSMENT: MONITORING AND MODELING IN SUPPORT OF TMDL CALCULATIONS

    EPA Science Inventory

    The National Coastal Assessment (NCA) has three major goals: 1) assess ecological condition of the nation's estuarine resources based on comparable data of know quality; 2) determine reference conditions, 3) help build infrastructure in states and EPA Regions. Much of the init...

  9. Meditate to Create: The Impact of Focused-Attention and Open-Monitoring Training on Convergent and Divergent Thinking

    PubMed Central

    Colzato, Lorenza S.; Ozturk, Ayca; Hommel, Bernhard

    2012-01-01

    The practice of meditation has seen a tremendous increase in the western world since the 60s. Scientific interest in meditation has also significantly grown in the past years; however, so far, it has neglected the idea that different type of meditations may drive specific cognitive-control states. In this study we investigate the possible impact of meditation based on focused-attention (FA) and meditation based on open-monitoring (OM) on creativity tasks tapping into convergent and divergent thinking. We show that FA meditation and OM meditation exert specific effect on creativity. First, OM meditation induces a control state that promotes divergent thinking, a style of thinking that allows many new ideas of being generated. Second, FA meditation does not sustain convergent thinking, the process of generating one possible solution to a particular problem. We suggest that the enhancement of positive mood induced by meditating has boosted the effect in the first case and counteracted in the second case. PMID:22529832

  10. Determination of Insulator-to-Semiconductor Transition in Sol-Gel Oxide Semiconductors Using Derivative Spectroscopy.

    PubMed

    Lee, Woobin; Choi, Seungbeom; Kim, Kyung Tae; Kang, Jingu; Park, Sung Kyu; Kim, Yong-Hoon

    2015-12-23

    We report a derivative spectroscopic method for determining insulator-to-semiconductor transition during sol-gel metal-oxide semiconductor formation. When an as-spun sol-gel precursor film is photochemically activated and changes to semiconducting state, the light absorption characteristics of the metal-oxide film is considerable changed particularly in the ultraviolet region. As a result, a peak is generated in the first-order derivatives of light absorption ( A' ) vs. wavelength (λ) plots, and by tracing the peak center shift and peak intensity, transition from insulating-to-semiconducting state of the film can be monitored. The peak generation and peak center shift are described based on photon-energy-dependent absorption coefficient of metal-oxide films. We discuss detailed analysis method for metal-oxide semiconductor films and its application in thin-film transistor fabrication. We believe this derivative spectroscopy based determination can be beneficial for a non-destructive and a rapid monitoring of the insulator-to-semiconductor transition in sol-gel oxide semiconductor formation.

  11. Space-Based Sensorweb Monitoring of Wildfires in Thailand

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Doubleday, Joshua; Mclaren, David; Davies, Ashley; Tran, Daniel; Tanpipat, Veerachai; Akaakara, Siri; Ratanasuwan, Anuchit; Mandl, Daniel

    2011-01-01

    We describe efforts to apply sensorweb technologies to the monitoring of forest fires in Thailand. In this approach, satellite data and ground reports are assimilated to assess the current state of the forest system in terms of forest fire risk, active fires, and likely progression of fires and smoke plumes. This current and projected assessment can then be used to actively direct sensors and assets to best acquire further information. This process operates continually with new data updating models of fire activity leading to further sensing and updating of models. As the fire activity is tracked, products such as active fire maps, burn scar severity maps, and alerts are automatically delivered to relevant parties.We describe the current state of the Thailand Fire Sensorweb which utilizes the MODIS-based FIRMS system to track active fires and trigger Earth Observing One / Advanced Land Imager to acquire imagery and produce active fire maps, burn scar severity maps, and alerts. We describe ongoing work to integrate additional sensor sources and generate additional products.

  12. Bee guide to complying with the Safe Drinking Water Act. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garland, J.G.; Acker, A.M.

    This report provides current information on the Safe Drinking Water Act and recent amendments. The report describes the evolution of the Safe Drinking Water Act and the responsibilities of base personnel involved in compliance with the Act. It also describes the monitoring requirements, analytical requirements, best available technology for controlling contaminants, and public notification requirements for regulated contaminants. The appendixes include proposed contaminants and state water quality agencies. Each Air Force public water distribution system (PWDS) must comply with the SDWA, and the National Primary Drinking Water Regulations (NPDWRs). In the United States and its territories, the provisions of themore » SDWA and the NPDWRs are enforced by the states except in the few instances in which the state has not been delegated primary enforcement responsibility (primacy) by the EPA. States that have primacy may establish drinking water regulations, monitoring schedules, and reporting requirements more stringent than, or in addition to, those in the NPDWRs. Air Force public water systems in these states are required to comply with these additional requirements as well as federal enforcement actions as carried out by the EPA Regional Office.« less

  13. Evaluation of Assimilated SMOS Soil Moisture Data for US Cropland Soil Moisture Monitoring

    NASA Technical Reports Server (NTRS)

    Yang, Zhengwei; Sherstha, Ranjay; Crow, Wade; Bolten, John; Mladenova, Iva; Yu, Genong; Di, Liping

    2016-01-01

    Remotely sensed soil moisture data can provide timely, objective and quantitative crop soil moisture information with broad geospatial coverage and sufficiently high resolution observations collected throughout the growing season. This paper evaluates the feasibility of using the assimilated ESA Soil Moisture Ocean Salinity (SMOS)Mission L-band passive microwave data for operational US cropland soil surface moisture monitoring. The assimilated SMOS soil moisture data are first categorized to match with the United States Department of Agriculture (USDA)National Agricultural Statistics Service (NASS) survey based weekly soil moisture observation data, which are ordinal. The categorized assimilated SMOS soil moisture data are compared with NASSs survey-based weekly soil moisture data for consistency and robustness using visual assessment and rank correlation. Preliminary results indicate that the assimilated SMOS soil moisture data highly co-vary with NASS field observations across a large geographic area. Therefore, SMOS data have great potential for US operational cropland soil moisture monitoring.

  14. Oak Ridge Reservation annual site environmental report summary for 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-01

    The US Department of Energy (DOE) requires an annual site environmental report from each of the sites operating under its authority. The reports present the results from the various environmental monitoring and surveillance programs carried out during the year. In addition to meeting the DOE requirement, the reports also document compliance with various state and federal laws and regulations. This report was published to fulfill those requirements for the Oak Ridge Reservation (ORR) for calendar year 1995. The report is based on thousands of environmental samples collected on and around the ORR and analyzed during the year. The data onmore » which the report is based are published in Environmental Monitoring and Surveillance on the Oak Ridge Reservation: 1995 Data (ES/ESH-71). Both documents are highly detailed. This summary report is meant for readers who are interested in the monitoring results but who do not need to review the details.« less

  15. Stretchable and Photocatalytically Renewable Electrochemical Sensor Based on Sandwich Nanonetworks for Real-Time Monitoring of Cells.

    PubMed

    Wang, Ya-Wen; Liu, Yan-Ling; Xu, Jia-Quan; Qin, Yu; Huang, Wei-Hua

    2018-05-15

    Stretchable electrochemical (EC) sensors have broad prospects in real-time monitoring of living cells and tissues owing to their excellent elasticity and deformability. However, the redox reaction products and cell secretions are easily adsorbed on the electrode, resulting in sensor fouling and passivation. Herein, we developed a stretchable and photocatalytically renewable EC sensor based on Au nanotubes (NTs) and TiO 2 nanowires (NWs) sandwich nanonetworks. The external Au NTs are used for EC sensing, and internal TiO 2 NWs provide photocatalytic performance to degrade contaminants, which endows the sensor with excellent EC performance, high photocatalytic activity, and favorable mechanical tensile property. This allows highly sensitive recycling monitoring of NO released from endothelial cells and 5-HT released from mast cells under their stretching states in real time, therefore providing a promising tool to unravel elastic and mechanically sensitive cells, tissues, and organs.

  16. Learned Compact Local Feature Descriptor for Tls-Based Geodetic Monitoring of Natural Outdoor Scenes

    NASA Astrophysics Data System (ADS)

    Gojcic, Z.; Zhou, C.; Wieser, A.

    2018-05-01

    The advantages of terrestrial laser scanning (TLS) for geodetic monitoring of man-made and natural objects are not yet fully exploited. Herein we address one of the open challenges by proposing feature-based methods for identification of corresponding points in point clouds of two or more epochs. We propose a learned compact feature descriptor tailored for point clouds of natural outdoor scenes obtained using TLS. We evaluate our method both on a benchmark data set and on a specially acquired outdoor dataset resembling a simplified monitoring scenario where we successfully estimate 3D displacement vectors of a rock that has been displaced between the scans. We show that the proposed descriptor has the capacity to generalize to unseen data and achieves state-of-the-art performance while being time efficient at the matching step due the low dimension.

  17. Monitoring of continuous-variable quantum key distribution system in real environment.

    PubMed

    Liu, Weiqi; Peng, Jinye; Huang, Peng; Huang, Duan; Zeng, Guihua

    2017-08-07

    How to guarantee the practical security of continuous-variable quantum key distribution (CVQKD) system has been an important issue in the quantum cryptography applications. In contrast to the previous practical security strategies, which focus on the intercept-resend attack or the Gaussian attack, we investigate the practical security strategy based on a general attack, i.e., an arbitrated individual attack or collective attack on the system by Eve in this paper. The low bound of intensity disturbance of the local oscillator signal for eavesdropper successfully concealing herself is obtained, considering all noises can be used by Eve in the practical environment. Furthermore, we obtain an optimal monitoring condition for the practical CVQKD system so that legitimate communicators can monitor the general attack in real-time. As examples, practical security of two special systems, i.e., the Gaussian modulated coherent state CVQKD system and the middle-based CVQKD system, are investigated under the intercept-resend attacks.

  18. EMF Monitoring—Concepts, Activities, Gaps and Options

    PubMed Central

    Dürrenberger, Gregor; Fröhlich, Jürg; Röösli, Martin; Mattsson, Mats-Olof

    2014-01-01

    Exposure to electromagnetic fields (EMF) is a cause of concern for many people. The topic will likely remain for the foreseeable future on the scientific and political agenda, since emissions continue to change in characteristics and levels due to new infrastructure deployments, smart environments and novel wireless devices. Until now, systematic and coordinated efforts to monitor EMF exposure are rare. Furthermore, virtually nothing is known about personal exposure levels. This lack of knowledge is detrimental for any evidence-based risk, exposure and health policy, management and communication. The main objective of the paper is to review the current state of EMF exposure monitoring activities in Europe, to comment on the scientific challenges and deficiencies, and to describe appropriate strategies and tools for EMF exposure assessment and monitoring to be used to support epidemiological health research and to help policy makers, administrators, industry and consumer representatives to base their decisions and communication activities on facts and data. PMID:25216256

  19. Resident Load Influence Analysis Method for Price Based on Non-intrusive Load Monitoring and Decomposition Data

    NASA Astrophysics Data System (ADS)

    Jiang, Wenqian; Zeng, Bo; Yang, Zhou; Li, Gang

    2018-01-01

    In the non-invasive load monitoring mode, the load decomposition can reflect the running state of each load, which will help the user reduce unnecessary energy costs. With the demand side management measures of time of using price, a resident load influence analysis method for time of using price (TOU) based on non-intrusive load monitoring data are proposed in the paper. Relying on the current signal of the resident load classification, the user equipment type, and different time series of self-elasticity and cross-elasticity of the situation could be obtained. Through the actual household load data test with the impact of TOU, part of the equipment will be transferred to the working hours, and users in the peak price of electricity has been reduced, and in the electricity at the time of the increase Electrical equipment, with a certain regularity.

  20. WSN-Based Space Charge Density Measurement System

    PubMed Central

    Deng, Dawei; Yuan, Haiwen; Lv, Jianxun; Ju, Yong

    2017-01-01

    It is generally acknowledged that high voltage direct current (HVDC) transmission line endures the drawback of large area, because of which the utilization of cable for space charge density monitoring system is of inconvenience. Compared with the traditional communication network, wireless sensor network (WSN) shows advantages in small volume, high flexibility and strong self-organization, thereby presenting great potential in solving the problem. Additionally, WSN is more suitable for the construction of distributed space charge density monitoring system as it has longer distance and higher mobility. A distributed wireless system is designed for collecting and monitoring the space charge density under HVDC transmission lines, which has been widely applied in both Chinese state grid HVDC test base and power transmission projects. Experimental results of the measuring system demonstrated its adaptability in the complex electromagnetic environment under the transmission lines and the ability in realizing accurate, flexible, and stable demands for the measurement of space charge density. PMID:28052105

  1. WSN-Based Space Charge Density Measurement System.

    PubMed

    Deng, Dawei; Yuan, Haiwen; Lv, Jianxun; Ju, Yong

    2017-01-01

    It is generally acknowledged that high voltage direct current (HVDC) transmission line endures the drawback of large area, because of which the utilization of cable for space charge density monitoring system is of inconvenience. Compared with the traditional communication network, wireless sensor network (WSN) shows advantages in small volume, high flexibility and strong self-organization, thereby presenting great potential in solving the problem. Additionally, WSN is more suitable for the construction of distributed space charge density monitoring system as it has longer distance and higher mobility. A distributed wireless system is designed for collecting and monitoring the space charge density under HVDC transmission lines, which has been widely applied in both Chinese state grid HVDC test base and power transmission projects. Experimental results of the measuring system demonstrated its adaptability in the complex electromagnetic environment under the transmission lines and the ability in realizing accurate, flexible, and stable demands for the measurement of space charge density.

  2. Distributed FBG sensors apply in spacecraft health monitoring

    NASA Astrophysics Data System (ADS)

    Huang, Xiujun; Zhang, Cuicui; Shi, Dele; Shen, Jingshi

    2017-10-01

    At present, Spacecraft manufacturing face with high adventure for its complicate structure, serious space environment and not maintained on orbit. When something wrong with spacecraft, monitoring its health state, supply health data in real time would assure quickly locate error and save more time to rescue it. For FBG sensor can distributed test several parameters such as temperature, strain, vibration and easily construct net. At same time, it has more advantages such as ant-radiate, anti-jamming, rodent-resistant and with long lifetime, which more fit for applying in space. In this paper, a spacecraft health monitor system based on FBG sensors is present, Firstly, spacecraft health monitor system and its development are introduced. Then a four channels FBG demodulator is design. At last, Temperature and strain detecting experiment is done. The result shows that the demodulator fully satisfied the need of spacecraft health monitor system.

  3. 40 CFR 239.7 - Requirements for compliance monitoring authority.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Requirements for compliance monitoring... Programs § 239.7 Requirements for compliance monitoring authority. (a) The state must have the authority to... with the state requirements; (2) Conduct monitoring or testing to ensure that owners and operators are...

  4. 40 CFR 239.7 - Requirements for compliance monitoring authority.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Requirements for compliance monitoring... Programs § 239.7 Requirements for compliance monitoring authority. (a) The state must have the authority to... with the state requirements; (2) Conduct monitoring or testing to ensure that owners and operators are...

  5. 20 CFR 631.31 - Monitoring and oversight.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... TITLE III OF THE JOB TRAINING PARTNERSHIP ACT State Administration § 631.31 Monitoring and oversight. The Governor is responsible for monitoring and oversight of all State and substate grantee activities... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Monitoring and oversight. 631.31 Section 631...

  6. 20 CFR 631.31 - Monitoring and oversight.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... TITLE III OF THE JOB TRAINING PARTNERSHIP ACT State Administration § 631.31 Monitoring and oversight. The Governor is responsible for monitoring and oversight of all State and substate grantee activities... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Monitoring and oversight. 631.31 Section 631...

  7. 20 CFR 631.31 - Monitoring and oversight.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... TITLE III OF THE JOB TRAINING PARTNERSHIP ACT State Administration § 631.31 Monitoring and oversight. The Governor is responsible for monitoring and oversight of all State and substate grantee activities... 20 Employees' Benefits 3 2012-04-01 2012-04-01 false Monitoring and oversight. 631.31 Section 631...

  8. Preparation of regional shorebird monitoring plans

    Treesearch

    Jonathan Bart; Ann Manning; Susan Thomas; Catherine Wightman

    2005-01-01

    Shorebird monitoring programs in Canada and the United States are being developed under the auspices of PRISM, the Program for Regional and International Shorebird Monitoring. PRISM provides a single blueprint for implementing the monitoring proposals in the shorebird conservation plans prepared recently in Canada and the United States. It includes four segments:...

  9. A western state perspective on monitoring and managing neotropical migratory birds

    Treesearch

    Frank Howe

    1993-01-01

    Neotropical migratory bird monitoring programs can contribute greatly to a more holistic and proactive management approach for state agencies. It is, however, imperative that these monitoring programs be scientifically designed and clearly communicated to managers. Information from monitoring programs can be used to develop multiple-species habitat management...

  10. Develop an piezoelectric sensing based on SHM system for nuclear dry storage system

    NASA Astrophysics Data System (ADS)

    Ma, Linlin; Lin, Bin; Sun, Xiaoyi; Howden, Stephen; Yu, Lingyu

    2016-04-01

    In US, there are over 1482 dry cask storage system (DCSS) in use storing 57,807 fuel assemblies. Monitoring is necessary to determine and predict the degradation state of the systems and structures. Therefore, nondestructive monitoring is in urgent need and must be integrated into the fuel cycle to quantify the "state of health" for the safe operation of nuclear power plants (NPP) and radioactive waste storage systems (RWSS). Innovative approaches are desired to evaluate the degradation and damage of used fuel containers under extended storage. Structural health monitoring (SHM) is an emerging technology that uses in-situ sensory system to perform rapid nondestructive detection of structural damage as well as long-term integrity monitoring. It has been extensively studied in aerospace engineering over the past two decades. This paper presents the development of a SHM and damage detection methodology based on piezoelectric sensors technologies for steel canisters in nuclear dry cask storage system. Durability and survivability of piezoelectric sensors under temperature influence are first investigated in this work by evaluating sensor capacitance and electromechanical admittance. Toward damage detection, the PES are configured in pitch catch setup to transmit and receive guided waves in plate-like structures. When the inspected structure has damage such as a surface defect, the incident guided waves will be reflected or scattered resulting in changes in the wave measurements. Sparse array algorithm is developed and implemented using multiple sensors to image the structure. The sparse array algorithm is also evaluated at elevated temperature.

  11. Diagnosis, Epidemiology, and Management of Hypertension in Children.

    PubMed

    Rao, Goutham

    2016-08-01

    National guidelines for the diagnosis and management of hypertension in children have been available for nearly 40 years. Unfortunately, knowledge and recognition of the problem by clinicians remain poor. Prevalence estimates are highly variable because of differing standards, populations, and blood pressure (BP) measurement techniques. Estimates in the United States range from 0.3% to 4.5%. Risk factors for primary hypertension include overweight and obesity, male sex, older age, high sodium intake, and African American or Latino ancestry. Data relating hypertension in childhood to later cardiovascular events is currently lacking. It is known that BP in childhood is highly predictive of BP in adulthood. Compelling data about target organ damage is available, including the association of hypertension with left ventricular hypertrophy, carotid-intima media thickness, and microalbuminuria. Guidelines from both the United States and Europe include detailed recommendations for diagnosis and management. Diagnostic standards are based on clinic readings, ambulatory BP monitoring is useful in confirming diagnosis of hypertension and identifying white-coat hypertension, masked hypertension, and secondary hypertension, as well as monitoring response to therapy. Research priorities include the need for reliable prevalence estimates based on diverse populations and data about the long-term impact of childhood hypertension on cardiovascular morbidity and mortality. Priorities to improve clinical practice include more education among clinicians about diagnosis and management, clinical decision support to aid in diagnosis, and routine use of ambulatory BP monitoring to aid in diagnosis and to monitor response to treatment. Copyright © 2016 by the American Academy of Pediatrics.

  12. Generating visual flickers for eliciting robust steady-state visual evoked potentials at flexible frequencies using monitor refresh rate.

    PubMed

    Nakanishi, Masaki; Wang, Yijun; Wang, Yu-Te; Mitsukura, Yasue; Jung, Tzyy-Ping

    2014-01-01

    In the study of steady-state visual evoked potentials (SSVEPs), it remains a challenge to present visual flickers at flexible frequencies using monitor refresh rate. For example, in an SSVEP-based brain-computer interface (BCI), it is difficult to present a large number of visual flickers simultaneously on a monitor. This study aims to explore whether or how a newly proposed frequency approximation approach changes signal characteristics of SSVEPs. At 10 Hz and 12 Hz, the SSVEPs elicited using two refresh rates (75 Hz and 120 Hz) were measured separately to represent the approximation and constant-period approaches. This study compared amplitude, signal-to-noise ratio (SNR), phase, latency, scalp distribution, and frequency detection accuracy of SSVEPs elicited using the two approaches. To further prove the efficacy of the approximation approach, this study implemented an eight-target BCI using frequencies from 8-15 Hz. The SSVEPs elicited by the two approaches were found comparable with regard to all parameters except amplitude and SNR of SSVEPs at 12 Hz. The BCI obtained an averaged information transfer rate (ITR) of 95.0 bits/min across 10 subjects with a maximum ITR of 120 bits/min on two subjects, the highest ITR reported in the SSVEP-based BCIs. This study clearly showed that the frequency approximation approach can elicit robust SSVEPs at flexible frequencies using monitor refresh rate and thereby can largely facilitate various SSVEP-related studies in neural engineering and visual neuroscience.

  13. Monitoring driver fatigue using a single-channel electroencephalographic device: A validation study by gaze-based, driving performance, and subjective data.

    PubMed

    Morales, José M; Díaz-Piedra, Carolina; Rieiro, Héctor; Roca-González, Joaquín; Romero, Samuel; Catena, Andrés; Fuentes, Luis J; Di Stasi, Leandro L

    2017-12-01

    Driver fatigue can impair performance as much as alcohol does. It is the most important road safety concern, causing thousands of accidents and fatalities every year. Thanks to technological developments, wearable, single-channel EEG devices are now getting considerable attention as fatigue monitors, as they could help drivers to assess their own levels of fatigue and, therefore, prevent the deterioration of performance. However, the few studies that have used single-channel EEG devices to investigate the physiological effects of driver fatigue have had inconsistent results, and the question of whether we can monitor driver fatigue reliably with these EEG devices remains open. Here, we assessed the validity of a single-channel EEG device (TGAM-based chip) to monitor changes in mental state (from alertness to fatigue). Fifteen drivers performed a 2-h simulated driving task while we recorded, simultaneously, their prefrontal brain activity and saccadic velocity. We used saccadic velocity as the reference index of fatigue. We also collected subjective ratings of alertness and fatigue, as well as driving performance. We found that the power spectra of the delta EEG band showed an inverted U-shaped quadratic trend (EEG power spectra increased for the first hour and half, and decreased during the last thirty minutes), while the power spectra of the beta band linearly increased as the driving session progressed. Coherently, saccadic velocity linearly decreased and speeding time increased, suggesting a clear effect of fatigue. Subjective data corroborated these conclusions. Overall, our results suggest that the TGAM-based chip EEG device is able to detect changes in mental state while performing a complex and dynamic everyday task as driving. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Prognostics and Health Monitoring: Application to Electric Vehicles

    NASA Technical Reports Server (NTRS)

    Kulkarni, Chetan S.

    2017-01-01

    As more and more autonomous electric vehicles emerge in our daily operation progressively, a very critical challenge lies in accurate prediction of remaining useful life of the systemssubsystems, specifically the electrical powertrain. In case of electric aircrafts, computing remaining flying time is safety-critical, since an aircraft that runs out of power (battery charge) while in the air will eventually lose control leading to catastrophe. In order to tackle and solve the prediction problem, it is essential to have awareness of the current state and health of the system, especially since it is necessary to perform condition-based predictions. To be able to predict the future state of the system, it is also required to possess knowledge of the current and future operations of the vehicle.Our research approach is to develop a system level health monitoring safety indicator either to the pilotautopilot for the electric vehicles which runs estimation and prediction algorithms to estimate remaining useful life of the vehicle e.g. determine state-of-charge in batteries. Given models of the current and future system behavior, a general approach of model-based prognostics can be employed as a solution to the prediction problem and further for decision making.

  15. Occupational exposure monitoring data collection, storage, and use among state-based and private workers' compensation insurers.

    PubMed

    Shockey, Taylor M; Babik, Kelsey R; Wurzelbacher, Steven J; Moore, Libby L; Bisesi, Michael S

    2018-06-01

    Despite substantial financial and personnel resources being devoted to occupational exposure monitoring (OEM) by employers, workers' compensation insurers, and other organizations, the United States (U.S.) lacks comprehensive occupational exposure databases to use for research and surveillance activities. OEM data are necessary for determining the levels of workers' exposures; compliance with regulations; developing control measures; establishing worker exposure profiles; and improving preventive and responsive exposure surveillance and policy efforts. Workers' compensation insurers as a group may have particular potential for understanding exposures in various industries, especially among small employers. This is the first study to determine how selected state-based and private workers' compensation insurers collect, store, and use OEM data related specifically to air and noise sampling.  Of 50 insurers contacted to participate in this study, 28 completed an online survey. All of the responding private and the majority of state-based insurers offered industrial hygiene (IH) services to policyholders and employed 1 to 3 certified industrial hygienists on average. Many, but not all, insurers used standardized forms for data collection, but the data were not commonly stored in centralized databases. Data were most often used to provide recommendations for improvement to policyholders. Although not representative of all insurers, the survey was completed by insurers that cover a substantial number of employers and workers. The 20 participating state-based insurers on average provided 48% of the workers' compensation insurance benefits in their respective states or provinces. These results provide insight into potential next steps for improving the access to and usability of existing data as well as ways researchers can help organizations improve data collection strategies. This effort represents an opportunity for collaboration among insurers, researchers, and others that can help insurers and employers while advancing the exposure assessment field in the U.S.

  16. Review on pressure sensors for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Sikarwar, Samiksha; Satyendra; Singh, Shakti; Yadav, Bal Chandra

    2017-12-01

    This paper reports the state of art in a variety of pressure and the detailed study of various matrix based pressure sensors. The performances of the bridges, buildings, etc. are threatened by earthquakes, material degradations, and other environmental effects. Structural health monitoring (SHM) is crucial to protect the people and also for assets planning. This study is a contribution in developing the knowledge about self-sensing smart materials and structures for the construction industry. It deals with the study of self-sensing as well as mechanical and electrical properties of different matrices based on pressure sensors. The relationships among the compression, tensile strain, and crack length with electrical resistance change are also reviewed.

  17. Utilization of wireless structural health monitoring as decision making tools for a condition and reliability-based assessment of railroad bridges

    NASA Astrophysics Data System (ADS)

    Flanigan, Katherine A.; Johnson, Nephi R.; Hou, Rui; Ettouney, Mohammed; Lynch, Jerome P.

    2017-04-01

    The ability to quantitatively assess the condition of railroad bridges facilitates objective evaluation of their robustness in the face of hazard events. Of particular importance is the need to assess the condition of railroad bridges in networks that are exposed to multiple hazards. Data collected from structural health monitoring (SHM) can be used to better maintain a structure by prompting preventative (rather than reactive) maintenance strategies and supplying quantitative information to aid in recovery. To that end, a wireless monitoring system is validated and installed on the Harahan Bridge which is a hundred-year-old long-span railroad truss bridge that crosses the Mississippi River near Memphis, TN. This bridge is exposed to multiple hazards including scour, vehicle/barge impact, seismic activity, and aging. The instrumented sensing system targets non-redundant structural components and areas of the truss and floor system that bridge managers are most concerned about based on previous inspections and structural analysis. This paper details the monitoring system and the analytical method for the assessment of bridge condition based on automated data-driven analyses. Two primary objectives of monitoring the system performance are discussed: 1) monitoring fatigue accumulation in critical tensile truss elements; and 2) monitoring the reliability index values associated with sub-system limit states of these members. Moreover, since the reliability index is a scalar indicator of the safety of components, quantifiable condition assessment can be used as an objective metric so that bridge owners can make informed damage mitigation strategies and optimize resource management on single bridge or network levels.

  18. A Systems Architecture and Advanced Sensors Application for Real-Time Aircraft Structural Health Monitoring

    DTIC Science & Technology

    2011-03-01

    DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio APPROVED FOR PUBLIC RELEASE...position of the United States Air Force, Department of Defense, or the United States Government. This material is declared a work of the United...Management Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In

  19. DCF(Registered)-A JAUS and TENA Compliant Agent-Based Framework for Test and Evaluation of Unmanned Vehicles

    DTIC Science & Technology

    2011-03-01

    functions of the vignette editor include visualizing the state of the UAS team, creating T&E scenarios, monitoring the UAS team performance, and...These behaviors are then executed by the robot sequentially (Figure 2). A state machine mission editor allows mission builders to use behaviors from the...include control, robotics, distributed applications, multimedia applications, databases, design patterns, and software engineering. Mr. Lenzi is the

  20. Characteristics and applications of small, portable gaseous air pollution monitors.

    PubMed

    McKercher, Grant R; Salmond, Jennifer A; Vanos, Jennifer K

    2017-04-01

    Traditional approaches for measuring air quality based on fixed measurements are inadequate for personal exposure monitoring. To combat this issue, the use of small, portable gas-sensing air pollution monitoring technologies is increasing, with researchers and individuals employing portable and mobile methods to obtain more spatially and temporally representative air pollution data. However, many commercially available options are built for various applications and based on different technologies, assumptions, and limitations. A review of the monitor characteristics of small, gaseous monitors is missing from current scientific literature. A state-of-the-art review of small, portable monitors that measure ambient gaseous outdoor pollutants was developed to address broad trends during the last 5-10 years, and to help future experimenters interested in studying gaseous air pollutants choose monitors appropriate for their application and sampling needs. Trends in small, portable gaseous air pollution monitor uses and technologies were first identified and discussed in a review of literature. Next, searches of online databases were performed for articles containing specific information related to performance, characteristics, and use of such monitors that measure one or more of three criteria gaseous air pollutants: ozone, nitrogen dioxide, and carbon monoxide. All data were summarized into reference tables for comparison between applications, physical features, sensing capabilities, and costs of the devices. Recent portable monitoring trends are strongly related to associated applications and audiences. Fundamental research requires monitors with the best individual performance, and thus the highest cost technology. Monitor networking favors real-time capabilities and moderate cost for greater reproduction. Citizen science and crowdsourcing applications allow for lower-cost components; however important strengths and limitations for each application must be addressed or acknowledged for the given use. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Study of Water Pollution Early Warning Framework Based on Internet of Things

    NASA Astrophysics Data System (ADS)

    Chengfang, H.; Xiao, X.; Dingtao, S.; Bo, C.; Xiongfei, W.

    2016-06-01

    In recent years, with the increasing world environmental pollution happening, sudden water pollution incident has become more and more frequently in China. It has posed a serious threat to water safety of the people living in the water source area. Conventional water pollution monitoring method is manual periodic testing, it maybe miss the best time to find that pollution incident. This paper proposes a water pollution warning framework to change this state. On the basis of the Internet of things, we uses automatic water quality monitoring technology to realize monitoring. We calculate the monitoring data with water pollution model to judge whether the water pollution incident is happen or not. Water pollution warning framework is divided into three layers: terminal as the sensing layer, it with the deployment of the automatic water quality pollution monitoring sensor. The middle layer is the transfer network layer, data information implementation is based on GPRS wireless network transmission. The upper one is the application layer. With these application systems, early warning information of water pollution will realize the high-speed transmission between grassroots units and superior units. The paper finally gives an example that applying this pollution warning framework to water quality monitoring of Beijing, China, it greatly improves the speed of the pollution warning responding of Beijing.

  2. Medical smart textiles based on fiber optic technology: an overview.

    PubMed

    Massaroni, Carlo; Saccomandi, Paola; Schena, Emiliano

    2015-04-13

    The growing interest in the development of smart textiles for medical applications is driven by the aim to increase the mobility of patients who need a continuous monitoring of such physiological parameters. At the same time, the use of fiber optic sensors (FOSs) is gaining large acceptance as an alternative to traditional electrical and mechanical sensors for the monitoring of thermal and mechanical parameters. The potential impact of FOSs is related to their good metrological properties, their small size and their flexibility, as well as to their immunity from electromagnetic field. Their main advantage is the possibility to use textile based on fiber optic in a magnetic resonance imaging environment, where standard electronic sensors cannot be employed. This last feature makes FOSs suitable for monitoring biological parameters (e.g., respiratory and heartbeat monitoring) during magnetic resonance procedures. Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing. In this review we provide an overview of the state-of-the-art of textiles, which use FOSs for monitoring of mechanical parameters of physiological interest. In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages. Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest.

  3. Medical Smart Textiles Based on Fiber Optic Technology: An Overview

    PubMed Central

    Massaroni, Carlo; Saccomandi, Paola; Schena, Emiliano

    2015-01-01

    The growing interest in the development of smart textiles for medical applications is driven by the aim to increase the mobility of patients who need a continuous monitoring of such physiological parameters. At the same time, the use of fiber optic sensors (FOSs) is gaining large acceptance as an alternative to traditional electrical and mechanical sensors for the monitoring of thermal and mechanical parameters. The potential impact of FOSs is related to their good metrological properties, their small size and their flexibility, as well as to their immunity from electromagnetic field. Their main advantage is the possibility to use textile based on fiber optic in a magnetic resonance imaging environment, where standard electronic sensors cannot be employed. This last feature makes FOSs suitable for monitoring biological parameters (e.g., respiratory and heartbeat monitoring) during magnetic resonance procedures. Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing. In this review we provide an overview of the state-of-the-art of textiles, which use FOSs for monitoring of mechanical parameters of physiological interest. In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages. Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest. PMID:25871010

  4. Design of integrated ship monitoring system using SAR, RADAR, and AIS

    NASA Astrophysics Data System (ADS)

    Yang, Chan-Su; Kim, Tae-Ho; Hong, Danbee; Ahn, Hyung-Wook

    2013-06-01

    When we talk about for the ship detection, identification and its classification, we need to go for the wide area of monitoring and it may be possible only through satellite based monitoring approach which monitors and covers coastal as well as the oceanic zone. Synthetic aperture radar (SAR) has been widely used to detect targets of interest with the advantage of the operating capability in all weather and luminance free condition (Margarit and Tabasco, 2011). In EU waters, EMSA(European Maritime Safety Agency) is operating the SafeSeaNet and CleanSeaNet systems which provide the current positions of all ships and oil spill monitoring information in and around EU waters in a single picture to Member States using AIS, LRIT and SAR images. In many countries, a similar system has been developed and the key of the matter is to integrate all available data. This abstract describes the preliminary design concept for an integration system of RADAR, AIS and SAR data for vessel traffic monitoring. SAR sensors are used to acquire image data over large coverage area either through the space borne or airborne platforms in UTC. AIS reports should be also obtained on the same date as of the SAR acquisition for the purpose to perform integration test. Land-based RADAR can provide ships positions detected and tracked in near real time. In general, SAR are used to acquire image data over large coverage area, AIS reports are obtained from ship based transmitter, and RADAR can monitor continuously ships for a limited area. In this study, we developed individual ship monitoring algorithms using RADAR(FMCW and Pulse X-band), AIS and SAR(RADARSAT-2 Full-pol Mode). We conducted field experiments two times for displaying the RADAR, AIS and SAR integration over the Pyeongtaek Port, South Korea.

  5. A suite of microplate reader-based colorimetric methods to quantify ammonium, nitrate, orthophosphate and silicate concentrations for aquatic nutrient monitoring.

    PubMed

    Ringuet, Stephanie; Sassano, Lara; Johnson, Zackary I

    2011-02-01

    A sensitive, accurate and rapid analysis of major nutrients in aquatic systems is essential for monitoring and maintaining healthy aquatic environments. In particular, monitoring ammonium (NH(4)(+)) concentrations is necessary for maintenance of many fish stocks, while accurate monitoring and regulation of ammonium, orthophosphate (PO(4)(3-)), silicate (Si(OH)(4)) and nitrate (NO(3)(-)) concentrations are required for regulating algae production. Monitoring of wastewater streams is also required for many aquaculture, municipal and industrial wastewater facilities to comply with local, state or federal water quality effluent regulations. Traditional methods for quantifying these nutrient concentrations often require laborious techniques or expensive specialized equipment making these analyses difficult. Here we present four alternative microcolorimetric assays that are based on a standard 96-well microplate format and microplate reader that simplify the quantification of each of these nutrients. Each method uses small sample volumes (200 µL), has a detection limit ≤ 1 µM in freshwater and ≤ 2 µM in saltwater, precision of at least 8% and compares favorably with standard analytical procedures. Routine use of these techniques in the laboratory and at an aquaculture facility to monitor nutrient concentrations associated with microalgae growth demonstrates that they are rapid, accurate and highly reproducible among different users. These techniques offer an alternative to standard nutrient analyses and because they are based on the standard 96-well format, they significantly decrease the cost and time of processing while maintaining high precision and sensitivity.

  6. Dreams, reality and memory: confabulations in lucid dreamers implicate reality-monitoring dysfunction in dream consciousness.

    PubMed

    Corlett, P R; Canavan, S V; Nahum, L; Appah, F; Morgan, P T

    2014-01-01

    Dreams might represent a window on altered states of consciousness with relevance to psychotic experiences, where reality monitoring is impaired. We examined reality monitoring in healthy, non-psychotic individuals with varying degrees of dream awareness using a task designed to assess confabulatory memory errors - a confusion regarding reality whereby information from the past feels falsely familiar and does not constrain current perception appropriately. Confabulatory errors are common following damage to the ventromedial prefrontal cortex (vmPFC). Ventromedial function has previously been implicated in dreaming and dream awareness. In a hospital research setting, physically and mentally healthy individuals with high (n = 18) and low (n = 13) self-reported dream awareness completed a computerised cognitive task that involved reality monitoring based on familiarity across a series of task runs. Signal detection theory analysis revealed a more liberal acceptance bias in those with high dream awareness, consistent with the notion of overlap in the perception of dreams, imagination and reality. We discuss the implications of these results for models of reality monitoring and psychosis with a particular focus on the role of vmPFC in default-mode brain function, model-based reinforcement learning and the phenomenology of dreaming and waking consciousness.

  7. A data management infrastructure for bridge monitoring

    NASA Astrophysics Data System (ADS)

    Jeong, Seongwoon; Byun, Jaewook; Kim, Daeyoung; Sohn, Hoon; Bae, In Hwan; Law, Kincho H.

    2015-04-01

    This paper discusses a data management infrastructure framework for bridge monitoring applications. As sensor technologies mature and become economically affordable, their deployment for bridge monitoring will continue to grow. Data management becomes a critical issue not only for storing the sensor data but also for integrating with the bridge model to support other functions, such as management, maintenance and inspection. The focus of this study is on the effective data management of bridge information and sensor data, which is crucial to structural health monitoring and life cycle management of bridge structures. We review the state-of-the-art of bridge information modeling and sensor data management, and propose a data management framework for bridge monitoring based on NoSQL database technologies that have been shown useful in handling high volume, time-series data and to flexibly deal with unstructured data schema. Specifically, Apache Cassandra and Mongo DB are deployed for the prototype implementation of the framework. This paper describes the database design for an XML-based Bridge Information Modeling (BrIM) schema, and the representation of sensor data using Sensor Model Language (SensorML). The proposed prototype data management framework is validated using data collected from the Yeongjong Bridge in Incheon, Korea.

  8. Vision-based method for detecting driver drowsiness and distraction in driver monitoring system

    NASA Astrophysics Data System (ADS)

    Jo, Jaeik; Lee, Sung Joo; Jung, Ho Gi; Park, Kang Ryoung; Kim, Jaihie

    2011-12-01

    Most driver-monitoring systems have attempted to detect either driver drowsiness or distraction, although both factors should be considered for accident prevention. Therefore, we propose a new driver-monitoring method considering both factors. We make the following contributions. First, if the driver is looking ahead, drowsiness detection is performed; otherwise, distraction detection is performed. Thus, the computational cost and eye-detection error can be reduced. Second, we propose a new eye-detection algorithm that combines adaptive boosting, adaptive template matching, and blob detection with eye validation, thereby reducing the eye-detection error and processing time significantly, which is hardly achievable using a single method. Third, to enhance eye-detection accuracy, eye validation is applied after initial eye detection, using a support vector machine based on appearance features obtained by principal component analysis (PCA) and linear discriminant analysis (LDA). Fourth, we propose a novel eye state-detection algorithm that combines appearance features obtained using PCA and LDA, with statistical features such as the sparseness and kurtosis of the histogram from the horizontal edge image of the eye. Experimental results showed that the detection accuracies of the eye region and eye states were 99 and 97%, respectively. Both driver drowsiness and distraction were detected with a success rate of 98%.

  9. On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis H. LeMieux

    2004-10-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land -based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCsmore » have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems; a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization.« less

  10. Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general.

    PubMed

    Zander, Thorsten O; Kothe, Christian

    2011-04-01

    Cognitive monitoring is an approach utilizing realtime brain signal decoding (RBSD) for gaining information on the ongoing cognitive user state. In recent decades this approach has brought valuable insight into the cognition of an interacting human. Automated RBSD can be used to set up a brain-computer interface (BCI) providing a novel input modality for technical systems solely based on brain activity. In BCIs the user usually sends voluntary and directed commands to control the connected computer system or to communicate through it. In this paper we propose an extension of this approach by fusing BCI technology with cognitive monitoring, providing valuable information about the users' intentions, situational interpretations and emotional states to the technical system. We call this approach passive BCI. In the following we give an overview of studies which utilize passive BCI, as well as other novel types of applications resulting from BCI technology. We especially focus on applications for healthy users, and the specific requirements and demands of this user group. Since the presented approach of combining cognitive monitoring with BCI technology is very similar to the concept of BCIs itself we propose a unifying categorization of BCI-based applications, including the novel approach of passive BCI.

  11. Long term variability of Cygnus X-1. V. State definitions with all sky monitors

    NASA Astrophysics Data System (ADS)

    Grinberg, V.; Hell, N.; Pottschmidt, K.; Böck, M.; Nowak, M. A.; Rodriguez, J.; Bodaghee, A.; Cadolle Bel, M.; Case, G. L.; Hanke, M.; Kühnel, M.; Markoff, S. B.; Pooley, G. G.; Rothschild, R. E.; Tomsick, J. A.; Wilson-Hodge, C. A.; Wilms, J.

    2013-06-01

    We present a scheme for determining the spectral state of the canonical black hole Cyg X-1 using data from previous and current X-ray all sky monitors (RXTE-ASM, Swift-BAT, MAXI, and Fermi-GBM). Determinations of the hard/intermediate and soft state agree to better than 10% between different monitors, facilitating the determination of the state and its context for any observation of the source, potentially over the lifetimes of different individual monitors. A separation of the hard and the intermediate states, which strongly differ in their spectral shape and short-term timing behavior, is only possible when data in the soft X-rays (<5 keV) are available. A statistical analysis of the states confirms the different activity patterns of the source (e.g., month- to year-long hard-state periods or phases during which numerous transitions occur). It also shows that the hard and soft states are stable, with the probability of Cyg X-1 remaining in a given state for at least one week to be larger than 85% in the hard state and larger than 75% in the soft state. Intermediate states are short lived, with a 50% probability that the source leaves the intermediate state within three days. Reliable detection of these potentially short-lived events is only possible with monitor data that have a time resolution better than 1 d.

  12. Structural Health Monitoring of Nuclear Spent Fuel Storage Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Lingyu

    Interim storage of spent nuclear fuel from reactor sites has gained additional importance and urgency for resolving waste-management-related technical issues. To ensure that nuclear power remains clean energy, monitoring has been identified by DOE as a high priority cross-cutting need, necessary to determine and predict the degradation state of the systems, structures, and components (SSCs) important to safety (ITS). Therefore, nondestructive structural condition monitoring becomes a need to be installed on existing or to be integrated into future storage system to quantify the state of health or to guarantee the safe operation of nuclear power plants (NPPs) during their extendedmore » life span. In this project, the lead university and the collaborating national laboratory teamed to develop a nuclear structural health monitoring (n-SHM) system based on in-situ piezoelectric sensing technologies that can monitor structural degradation and aging for nuclear spent fuel DCSS and similar structures. We also aimed to identify and quantify possible influences of nuclear spent fuel environment (temperature and radiation) to the piezoelectric sensor system and come up with adequate solutions and guidelines therefore. We have therefore developed analytical model for piezoelectric based n-SHM methods, with considerations of temperature and irradiation influence on the model of sensing and algorithms in acoustic emission (AE), guided ultrasonic waves (GUW), and electromechanical impedance spectroscopy (EMIS). On the other side, experimentally the temperature and irradiation influence on the piezoelectric sensors and sensing capabilities were investigated. Both short-term and long-term irradiation investigation with our collaborating national laboratory were performed. Moreover, we developed multi-modal sensing, validated in laboratory setup, and conducted the testing on the We performed multi-modal sensing development, verification and validation tests on very complex structures including a medium-scale vacuum drying chamber and a small-scale mockup canister available for the desired testing. Our work developed the potential candidate for long term structural health monitoring of spent fuel canister through piezoelectric wafer sensors and provided the sensing methodologies based on AE and GUW methodologies. It overall provides an innovative system and methodology for enhancing the safe operation of nuclear power plant. All major accomplishments planned in the original proposal were successfully achieved.« less

  13. Condition Monitoring of Large-Scale Facilities

    NASA Technical Reports Server (NTRS)

    Hall, David L.

    1999-01-01

    This document provides a summary of the research conducted for the NASA Ames Research Center under grant NAG2-1182 (Condition-Based Monitoring of Large-Scale Facilities). The information includes copies of view graphs presented at NASA Ames in the final Workshop (held during December of 1998), as well as a copy of a technical report provided to the COTR (Dr. Anne Patterson-Hine) subsequent to the workshop. The material describes the experimental design, collection of data, and analysis results associated with monitoring the health of large-scale facilities. In addition to this material, a copy of the Pennsylvania State University Applied Research Laboratory data fusion visual programming tool kit was also provided to NASA Ames researchers.

  14. Spectral entropy in monitoring anesthetic depth.

    PubMed

    Escontrela Rodríguez, B; Gago Martínez, A; Merino Julián, I; Martínez Ruiz, A

    2016-10-01

    Monitoring the brain response to hypnotics in general anesthesia, with the nociceptive and hemodynamic stimulus interaction, has been a subject of intense investigation for many years. Nowadays, monitors of depth of anesthesia are based in processed electroencephalogram by different algorithms, some of them unknown, to obtain a simplified numeric parameter approximate to brain activity state in each moment. In this review we evaluate if spectral entropy suitably reflects the brain electric behavior in response to hypnotics and the different intensity nociceptive stimulus effect during a surgical procedure. Copyright © 2015 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Monitoring stress changes in a concrete bridge with coda wave interferometry.

    PubMed

    Stähler, Simon Christian; Sens-Schönfelder, Christoph; Niederleithinger, Ernst

    2011-04-01

    Coda wave interferometry is a recent analysis method now widely used in seismology. It uses the increased sensitivity of multiply scattered elastic waves with long travel-times for monitoring weak changes in a medium. While its application for structural monitoring has been shown to work under laboratory conditions, the usability on a real structure with known material changes had yet to be proven. This article presents experiments on a concrete bridge during construction. The results show that small velocity perturbations induced by a changing stress state in the structure can be determined even under adverse conditions. Theoretical estimations based on the stress calculations by the structural engineers are in good agreement with the measured velocity variations.

  16. Feelings of helplessness increase ERN amplitudes in healthyindividuals

    PubMed Central

    Pfabigan, D.M.; Pintzinger, N.M.; Siedek, D.R.; Lamm, C.; Derntl, B.; Sailer, U.

    2013-01-01

    Experiencing feelings of helplessness has repeatedly been reported to contribute to depressive symptoms and negative affect. In turn, depression and negative affective states are associated, among others, with impairments in performance monitoring. Thus, the question arises whether performance monitoring is also affected by feelings of helplessness. To this end, after the induction of feelings of helplessness via an unsolvable reasoning task, 37 participants (20 females) performed a modified version of a Flanker task. Based on a previously validated questionnaire, 17 participants were classified as helpless and 20 as not-helpless. Behavioral measures revealed no differences between helpless and not-helpless individuals. However, we observed enhanced Error-Related Negativity (ERN) amplitude differences between erroneous and correct responses in the helpless compared to the not-helpless group. Furthermore, correlational analysis revealed that higher scores of helplessness were associated with increased ERN difference scores. No influence of feelings of helplessness on later stages of performance monitoring was observed as indicated by Error-Positivity (Pe) amplitude. The present study is the first to demonstrate that feelings of helplessness modulate the neuronal correlates of performance monitoring. Thus, even a short-lasting subjective state manipulation can lead to ERN amplitude variation, probably via modulation of mesencephalic dopamine activity. PMID:23267824

  17. Near infrared spectroscopy based monitoring of extraction processes of raw material with the help of dynamic predictive modeling

    NASA Astrophysics Data System (ADS)

    Wang, Haixia; Suo, Tongchuan; Wu, Xiaolin; Zhang, Yue; Wang, Chunhua; Yu, Heshui; Li, Zheng

    2018-03-01

    The control of batch-to-batch quality variations remains a challenging task for pharmaceutical industries, e.g., traditional Chinese medicine (TCM) manufacturing. One difficult problem is to produce pharmaceutical products with consistent quality from raw material of large quality variations. In this paper, an integrated methodology combining the near infrared spectroscopy (NIRS) and dynamic predictive modeling is developed for the monitoring and control of the batch extraction process of licorice. With the spectra data in hand, the initial state of the process is firstly estimated with a state-space model to construct a process monitoring strategy for the early detection of variations induced by the initial process inputs such as raw materials. Secondly, the quality property of the end product is predicted at the mid-course during the extraction process with a partial least squares (PLS) model. The batch-end-time (BET) is then adjusted accordingly to minimize the quality variations. In conclusion, our study shows that with the help of the dynamic predictive modeling, NIRS can offer the past and future information of the process, which enables more accurate monitoring and control of process performance and product quality.

  18. Time-lapse electrical geophysical monitoring of amendment-based biostimulation

    USGS Publications Warehouse

    Johnson, Timothy C.; Versteeg, Roelof J.; Day-Lewis, Frederick D.; Major, William; Lane, John W.

    2015-01-01

    Biostimulation is increasingly used to accelerate microbial remediation of recalcitrant groundwater contaminants. Effective application of biostimulation requires successful emplacement of amendment in the contaminant target zone. Verification of remediation performance requires postemplacement assessment and contaminant monitoring. Sampling-based approaches are expensive and provide low-density spatial and temporal information. Time-lapse electrical resistivity tomography (ERT) is an effective geophysical method for determining temporal changes in subsurface electrical conductivity. Because remedial amendments and biostimulation-related biogeochemical processes often change subsurface electrical conductivity, ERT can complement and enhance sampling-based approaches for assessing emplacement and monitoring biostimulation-based remediation.Field studies demonstrating the ability of time-lapse ERT to monitor amendment emplacement and behavior were performed during a biostimulation remediation effort conducted at the Department of Defense Reutilization and Marketing Office (DRMO) Yard, in Brandywine, Maryland, United States. Geochemical fluid sampling was used to calibrate a petrophysical relation in order to predict groundwater indicators of amendment distribution. The petrophysical relations were field validated by comparing predictions to sequestered fluid sample results, thus demonstrating the potential of electrical geophysics for quantitative assessment of amendment-related geochemical properties. Crosshole radar zero-offset profile and borehole geophysical logging were also performed to augment the data set and validate interpretation.In addition to delineating amendment transport in the first 10 months after emplacement, the time-lapse ERT results show later changes in bulk electrical properties interpreted as mineral precipitation. Results support the use of more cost-effective surface-based ERT in conjunction with limited field sampling to improve spatial and temporal monitoring of amendment emplacement and remediation performance.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Physical device safety is typically implemented locally using embedded controllers, while operations safety is primarily performed in control centers. Safe operations can be enhanced by correct design of device-level control algorithms, and protocols, procedures and operator training at the control-room level, but all can fail. Moreover, these elements exchange data and issue commands via vulnerable communication layers. In order to secure these gaps and enhance operational safety, we believe monitoring of command sequences must be combined with an awareness of physical device limitations and automata models that capture safety mechanisms. One way of doing this is by leveraging specification-based intrusionmore » detection to monitor for physical constraint violations. The method can also verify that physical infrastructure state is consistent with monitoring information and control commands exchanged between field devices and control centers. This additional security layer enhances protection from both outsider attacks and insider mistakes. We implemented specification-based SCADA command analyzers using physical constraint algorithms directly in the Bro framework and Broccoli APIs for three separate scenarios: a water heater, an automated distribution system, and an over-current protection scheme. To accomplish this, we added low-level analyzers capable of examining control system-specific protocol packets for both Modbus TCP and DNP3, and also higher-level analyzers able to interpret device command and data streams within the context of each device's physical capabilities and present operational state. Thus the software that we are making available includes the Bro/Broccoli scripts for these three scenarios, as well as simulators, written in C, of those scenarios that generate sample traffic that is monitored by the Bro/Broccoli scripts. In addition, we have also implemented systems to directly pull cyber-physical information from the OSIsoft PI historian system. We have included the Python scripts used to perform that monitoring.« less

  20. A Comparison of Multiscale Permutation Entropy Measures in On-Line Depth of Anesthesia Monitoring

    PubMed Central

    Li, Xiaoli; Li, Duan; Li, Yongwang; Ursino, Mauro

    2016-01-01

    Objective Multiscale permutation entropy (MSPE) is becoming an interesting tool to explore neurophysiological mechanisms in recent years. In this study, six MSPE measures were proposed for on-line depth of anesthesia (DoA) monitoring to quantify the anesthetic effect on the real-time EEG recordings. The performance of these measures in describing the transient characters of simulated neural populations and clinical anesthesia EEG were evaluated and compared. Methods Six MSPE algorithms—derived from Shannon permutation entropy (SPE), Renyi permutation entropy (RPE) and Tsallis permutation entropy (TPE) combined with the decomposition procedures of coarse-graining (CG) method and moving average (MA) analysis—were studied. A thalamo-cortical neural mass model (TCNMM) was used to generate noise-free EEG under anesthesia to quantitatively assess the robustness of each MSPE measure against noise. Then, the clinical anesthesia EEG recordings from 20 patients were analyzed with these measures. To validate their effectiveness, the ability of six measures were compared in terms of tracking the dynamical changes in EEG data and the performance in state discrimination. The Pearson correlation coefficient (R) was used to assess the relationship among MSPE measures. Results CG-based MSPEs failed in on-line DoA monitoring at multiscale analysis. In on-line EEG analysis, the MA-based MSPE measures at 5 decomposed scales could track the transient changes of EEG recordings and statistically distinguish the awake state, unconsciousness and recovery of consciousness (RoC) state significantly. Compared to single-scale SPE and RPE, MSPEs had better anti-noise ability and MA-RPE at scale 5 performed best in this aspect. MA-TPE outperformed other measures with faster tracking speed of the loss of unconsciousness. Conclusions MA-based multiscale permutation entropies have the potential for on-line anesthesia EEG analysis with its simple computation and sensitivity to drug effect changes. CG-based multiscale permutation entropies may fail to describe the characteristics of EEG at high decomposition scales. PMID:27723803

  1. Air concentrations of volatile compounds near oil and gas production: a community-based exploratory study.

    PubMed

    Macey, Gregg P; Breech, Ruth; Chernaik, Mark; Cox, Caroline; Larson, Denny; Thomas, Deb; Carpenter, David O

    2014-10-30

    Horizontal drilling, hydraulic fracturing, and other drilling and well stimulation technologies are now used widely in the United States and increasingly in other countries. They enable increases in oil and gas production, but there has been inadequate attention to human health impacts. Air quality near oil and gas operations is an underexplored human health concern for five reasons: (1) prior focus on threats to water quality; (2) an evolving understanding of contributions of certain oil and gas production processes to air quality; (3) limited state air quality monitoring networks; (4) significant variability in air emissions and concentrations; and (5) air quality research that misses impacts important to residents. Preliminary research suggests that volatile compounds, including hazardous air pollutants, are of potential concern. This study differs from prior research in its use of a community-based process to identify sampling locations. Through this approach, we determine concentrations of volatile compounds in air near operations that reflect community concerns and point to the need for more fine-grained and frequent monitoring at points along the production life cycle. Grab and passive air samples were collected by trained volunteers at locations identified through systematic observation of industrial operations and air impacts over the course of resident daily routines. A total of 75 volatile organics were measured using EPA Method TO-15 or TO-3 by gas chromatography/mass spectrometry. Formaldehyde levels were determined using UMEx 100 Passive Samplers. Levels of eight volatile chemicals exceeded federal guidelines under several operational circumstances. Benzene, formaldehyde, and hydrogen sulfide were the most common compounds to exceed acute and other health-based risk levels. Air concentrations of potentially dangerous compounds and chemical mixtures are frequently present near oil and gas production sites. Community-based research can provide an important supplement to state air quality monitoring programs.

  2. A Comparison of Multiscale Permutation Entropy Measures in On-Line Depth of Anesthesia Monitoring.

    PubMed

    Su, Cui; Liang, Zhenhu; Li, Xiaoli; Li, Duan; Li, Yongwang; Ursino, Mauro

    2016-01-01

    Multiscale permutation entropy (MSPE) is becoming an interesting tool to explore neurophysiological mechanisms in recent years. In this study, six MSPE measures were proposed for on-line depth of anesthesia (DoA) monitoring to quantify the anesthetic effect on the real-time EEG recordings. The performance of these measures in describing the transient characters of simulated neural populations and clinical anesthesia EEG were evaluated and compared. Six MSPE algorithms-derived from Shannon permutation entropy (SPE), Renyi permutation entropy (RPE) and Tsallis permutation entropy (TPE) combined with the decomposition procedures of coarse-graining (CG) method and moving average (MA) analysis-were studied. A thalamo-cortical neural mass model (TCNMM) was used to generate noise-free EEG under anesthesia to quantitatively assess the robustness of each MSPE measure against noise. Then, the clinical anesthesia EEG recordings from 20 patients were analyzed with these measures. To validate their effectiveness, the ability of six measures were compared in terms of tracking the dynamical changes in EEG data and the performance in state discrimination. The Pearson correlation coefficient (R) was used to assess the relationship among MSPE measures. CG-based MSPEs failed in on-line DoA monitoring at multiscale analysis. In on-line EEG analysis, the MA-based MSPE measures at 5 decomposed scales could track the transient changes of EEG recordings and statistically distinguish the awake state, unconsciousness and recovery of consciousness (RoC) state significantly. Compared to single-scale SPE and RPE, MSPEs had better anti-noise ability and MA-RPE at scale 5 performed best in this aspect. MA-TPE outperformed other measures with faster tracking speed of the loss of unconsciousness. MA-based multiscale permutation entropies have the potential for on-line anesthesia EEG analysis with its simple computation and sensitivity to drug effect changes. CG-based multiscale permutation entropies may fail to describe the characteristics of EEG at high decomposition scales.

  3. Rock Slide Monitoring by Using TDR Inclinometers

    NASA Astrophysics Data System (ADS)

    Drusa, Marián; Bulko, Roman

    2016-12-01

    The geotechnical monitoring of the slope deformations is widespread at present time. In many geological localities and civil engineering construction areas, monitoring is a unique tool for controlling of negative factors and processes, also inform us about actual state of rock environment or interacting structures. It is necessary for risk assessment. In our case, geotechnical monitoring is controlling rockslide activity around in the future part of motorway. The construction of new highway route D1 from Bratislava to Košice crosses the territory which is affected by a massive rockslide close to Kraľovany village. There was a need to monitor the activity of a large unstable rockslide with deep shear planes. In this case of underground movement activity, the Department of Geotechnics of the University of Žilina installed inclinometers at the unstable area which worked on Time Domain Reflectometry (TDR) principle. Based on provided measurements, effectivity and suitability of TDR inclinometers for monitoring of deep underground movement activity is demonstrated.

  4. Satellite Data Aid Monitoring of Nation's Forests

    NASA Technical Reports Server (NTRS)

    2014-01-01

    The USDA Forest Service’s Asheville, North Carolina-based Eastern Forest Environmental Threat Assessment Center and Prineville, Oregon-based Western Wildlands Environmental Threat Assessment Center partnered with Stennis Space Center and other agencies to create an early warning system to identify, characterize, and track disturbances from potential forest threats. The result was ForWarn, which is now being used by federal and state forest and natural resource managers.

  5. Exploring Nontraditional Participation as an Approach to Make Water Quality Trading Markets More Effective

    EPA Science Inventory

    Water quality trading (WQT) under the Clean Water Act is a compliance option for water quality based effluent limitations in a National Pollutant Discharge Elimination System (NPDES) permit (i.e., the requirements for discharging, monitoring, and reporting). States that have enac...

  6. RANGE AND DENSITY OF ALIEN FISH IN WESTERN STREAMS AND RIVERS, US

    EPA Science Inventory

    Alien fish have become increasingly prevalent in Western U.S. waters. The EPA Environmental Monitoring and Assessment Program's Western Pilot (12 western states), which is based upon a probabilistic design, provides an opportunity to make inferences about the range and density of...

  7. EPA Technology Available for Licensing: Viral-Based Real-Time Quantitative PCR Test for Human Fecal Contamination

    EPA Pesticide Factsheets

    Human fecal contamination of clean water sources is a major contributor to the spread of disease worldwide. To monitor and manage this threat, the United States Environmental Protection Agency (EPA), World Health Organization, and European Union rely on ba

  8. Lessons learned from the USEPA Environmental Monitoring and Assessment Program for Great River Ecosystems

    EPA Science Inventory

    We assessed the North American mid-continent great rivers (Upper Mississippi, Missouri, and Ohio). We estimated the extent of each river in most (MDC) or least-disturbed condition (LDC) based on multiple biological response indicators (fish and macroinvertebrates, trophic state ...

  9. DEVELOPMENT OF REAL-TIME FLARE COMBUSTION EFFICIENCY MONITOR - PHASE I

    EPA Science Inventory

    There are approximately 7,000 flares in operation at industrial facilities across the United States. Flares are one of the largest Volatile Organic Compounds (VOCs) and air toxics emissions sources. Based on a special emission inventory required by the Texas Commission on E...

  10. 40 CFR 75.74 - Annual and ozone season monitoring and reporting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... owner or operator of an affected unit subject both to an Acid Rain emission limitation and to a State or... State or federal NOX mass reduction program that adopts the provisions of this part and that requires...-diluent monitoring system, each flow rate monitoring system, each moisture monitoring system and each...

  11. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air Part 1: Sorbent-based air monitoring options.

    PubMed

    Woolfenden, Elizabeth

    2010-04-16

    Sorbent tubes/traps are widely used in combination with gas chromatographic (GC) analytical methods to monitor the vapour-phase fraction of organic compounds in air. Target compounds range in volatility from acetylene and freons to phthalates and PCBs and include apolar, polar and reactive species. Airborne vapour concentrations will vary depending on the nature of the location, nearby pollution sources, weather conditions, etc. Levels can range from low percent concentrations in stack and vent emissions to low part per trillion (ppt) levels in ultra-clean outdoor locations. Hundreds, even thousands of different compounds may be present in any given atmosphere. GC is commonly used in combination with mass spectrometry (MS) detection especially for environmental monitoring or for screening uncharacterised workplace atmospheres. Given the complexity and variability of organic vapours in air, no one sampling approach suits every monitoring scenario. A variety of different sampling strategies and sorbent media have been developed to address specific applications. Key sorbent-based examples include: active (pumped) sampling onto tubes packed with one or more sorbents held at ambient temperature; diffusive (passive) sampling onto sorbent tubes/cartridges; on-line sampling of air/gas streams into cooled sorbent traps; and transfer of air samples from containers (canisters, Tedlar) bags, etc.) into cooled sorbent focusing traps. Whichever sampling approach is selected, subsequent analysis almost always involves either solvent extraction or thermal desorption (TD) prior to GC(/MS) analysis. The overall performance of the air monitoring method will depend heavily on appropriate selection of key sampling and analytical parameters. This comprehensive review of air monitoring using sorbent tubes/traps is divided into 2 parts. (1) Sorbent-based air sampling option. (2) Sorbent selection and other aspects of optimizing sorbent-based air monitoring methods. The paper presents current state-of-the-art and recent developments in relevant areas such as sorbent research, sampler design, enhanced approaches to analytical quality assurance and on-tube derivatisation. Copyright 2009 Elsevier B.V. All rights reserved.

  12. ENVIRONMENTAL CHEMICAL MONITORING IN THE U.S.

    EPA Science Inventory

    Chemical monitoring of the environment is performed in the United States by Federal and State agencies, local governments, industries, organizations, and private individuals. The major reasons for monitoring are for compliance with laws and regulations, investigation of suspec...

  13. The use of remote sensing for monitoring environmental indicators: The case of the Incomati estuary, Mozambique

    NASA Astrophysics Data System (ADS)

    LeMarie, Margarita; van der Zaag, Pieter; Menting, Geert; Baquete, Evaristo; Schotanus, Daniel

    The Incomati river basin is a transboundary basin shared by three countries: South Africa, Mozambique and Swaziland. To assess the water requirements of the environment, as stated in the Tripartite Interim Agreement (TIA) signed by the three riparian countries in Johannesburg in 2002, Mozambique needs to monitor the ecological state of the river, including the estuary. A monitoring system has to be established that can evaluate the environmental fresh water requirements based on appropriate indicators that reflect the health of the Incomati estuary. The estuary of the Incomati has important ecological functions but it also is an important socio-economic resource. Local communities depend on the estuary’s natural resources. Modifications of the river flow regime by upstream developments impact on the productivity of the estuary, diminishing fish and shrimp production, reducing biomass of natural vegetation such as grasses, reeds and mangroves and increasing salt intrusion. A decrease in estuary productivity consequently affects the incomes and living conditions of these communities. Based on an understanding of the effects of different pressures on the estuary ecosystem some indicators for monitoring the environmental state of the estuary are suggested, including the extent and vitality of mangrove forests. This latter indicator is further elaborated in the paper. Remote sensing techniques were used to identify and quantify mangrove forests in two selected areas of the estuary (Xefina Pequeña Island and Benguelene Island). Five satellite images covering a period of 20 years (1984-2003) showed that the area covered by non-degraded mangroves significantly decreased on both islands, by 25% in Xefina Pequeña Island and 40% in Benguelene Island. Moreover, the study of biomass reflection using NDVI also showed a significant decline in biomass densities over the last 20 years. Possible causes of these changes are reviewed: natural rainfall trends, modifications of the river flow regime, and increasing harvesting levels of mangrove woods. The findings presented in this paper show that mangrove forests are relevant indicators of the state of the estuary, which can be assessed by means of remote sensing techniques. Follow-up research is required that will establish the relative importance of the causal factors on the vitality of the estuarine mangrove forests. It is concluded that remotely sensed images may provide important data for an environmental monitoring system.

  14. Essays on remote monitoring as an emerging tool for centralized management of decentralized wastewater systems

    NASA Astrophysics Data System (ADS)

    Solomon, Clement

    According to the United States Environmental Protections Agency (USEPA), nearly one in four households in the United States depends on an individual septic system (commonly referred as an onsite system or a decentralized wastewater system) to treat and disperse wastewater. More than half of these systems are over 30 years old, and surveys indicate at least 10 to 20% might not be functioning properly. The USEPA concluded in its 1997 report to Congress that adequately managed decentralized wastewater systems (DWS) are a cost-effective and long-term option for meeting public health and water quality goals, particularly in less densely populated areas. The major challenge however is the absence of a guiding national regulatory framework based on consistent performance-based standards and lack of proper management of DWS. These inconsistencies pose a significant threat to our water resources, local economies, and public health. This dissertation addresses key policy and regulatory strategies needed in response to the new realities confronting decentralized wastewater management. The two core objectives of this research are to demonstrate the centralized management of DWS paradigm and to present a scientific methodology to develop performance-based standards (a regulatory shift from prescriptive methods) using remote monitoring. The underlying remote monitoring architecture for centralized DWS management and the value of science-based policy making are presented. Traditionally, prescriptive standards using conventional grab sampling data are the norm by which most standards are set. Three case studies that support the potential of remote monitoring as a tool for standards development and system management are presented. The results revealed a vital role for remote monitoring in the development of standardized protocols, policies and procedures that are greatly lacking in this field. This centralized management and remote monitoring paradigm fits well and complements current USEPA policy (13 elements of management); meets the growing need for qualitative data (objective and numerical); has better time efficiencies as real-time events are sampled and translated into machine-readable signals in a short period of time; allows cost saving rapid response to system recovery and operation; produces labor and economic efficiencies through targeted responses; and, improves the quality and operational costs of any management program. This project was funded by the USEPA grant # C-82878001 as part of the National Onsite Demonstration Project (NODP), West Virginia University.

  15. Optimization of a Coastal Environmental Monitoring Network Based on the Kriging Method: A Case Study of Quanzhou Bay, China

    PubMed Central

    Chen, Kai; Ni, Minjie; Wang, Jun; Huang, Dongren; Chen, Huorong; Wang, Xiao; Liu, Mengyang

    2016-01-01

    Environmental monitoring is fundamental in assessing environmental quality and to fulfill protection and management measures with permit conditions. However, coastal environmental monitoring work faces many problems and challenges, including the fact that monitoring information cannot be linked up with evaluation, monitoring data cannot well reflect the current coastal environmental condition, and monitoring activities are limited by cost constraints. For these reasons, protection and management measures cannot be developed and implemented well by policy makers who intend to solve this issue. In this paper, Quanzhou Bay in southeastern China was selected as a case study; and the Kriging method and a geographic information system were employed to evaluate and optimize the existing monitoring network in a semienclosed bay. This study used coastal environmental monitoring data from 15 sites (including COD, DIN, and PO4-P) to adequately analyze the water quality from 2009 to 2012 by applying the Trophic State Index. The monitoring network in Quanzhou Bay was evaluated and optimized, with the number of sites increased from 15 to 24, and the monitoring precision improved by 32.9%. The results demonstrated that the proposed advanced monitoring network optimization was appropriate for environmental monitoring in Quanzhou Bay. It might provide technical support for coastal management and pollutant reduction in similar areas. PMID:27777951

  16. Optimization of a Coastal Environmental Monitoring Network Based on the Kriging Method: A Case Study of Quanzhou Bay, China.

    PubMed

    Chen, Kai; Ni, Minjie; Cai, Minggang; Wang, Jun; Huang, Dongren; Chen, Huorong; Wang, Xiao; Liu, Mengyang

    2016-01-01

    Environmental monitoring is fundamental in assessing environmental quality and to fulfill protection and management measures with permit conditions. However, coastal environmental monitoring work faces many problems and challenges, including the fact that monitoring information cannot be linked up with evaluation, monitoring data cannot well reflect the current coastal environmental condition, and monitoring activities are limited by cost constraints. For these reasons, protection and management measures cannot be developed and implemented well by policy makers who intend to solve this issue. In this paper, Quanzhou Bay in southeastern China was selected as a case study; and the Kriging method and a geographic information system were employed to evaluate and optimize the existing monitoring network in a semienclosed bay. This study used coastal environmental monitoring data from 15 sites (including COD, DIN, and PO 4 -P) to adequately analyze the water quality from 2009 to 2012 by applying the Trophic State Index. The monitoring network in Quanzhou Bay was evaluated and optimized, with the number of sites increased from 15 to 24, and the monitoring precision improved by 32.9%. The results demonstrated that the proposed advanced monitoring network optimization was appropriate for environmental monitoring in Quanzhou Bay. It might provide technical support for coastal management and pollutant reduction in similar areas.

  17. A mathematical method for verifying the validity of measured information about the flows of energy resources based on the state estimation theory

    NASA Astrophysics Data System (ADS)

    Pazderin, A. V.; Sof'in, V. V.; Samoylenko, V. O.

    2015-11-01

    Efforts aimed at improving energy efficiency in all branches of the fuel and energy complex shall be commenced with setting up a high-tech automated system for monitoring and accounting energy resources. Malfunctions and failures in the measurement and information parts of this system may distort commercial measurements of energy resources and lead to financial risks for power supplying organizations. In addition, measurement errors may be connected with intentional distortion of measurements for reducing payment for using energy resources on the consumer's side, which leads to commercial loss of energy resource. The article presents a universal mathematical method for verifying the validity of measurement information in networks for transporting energy resources, such as electricity and heat, petroleum, gas, etc., based on the state estimation theory. The energy resource transportation network is represented by a graph the nodes of which correspond to producers and consumers, and its branches stand for transportation mains (power lines, pipelines, and heat network elements). The main idea of state estimation is connected with obtaining the calculated analogs of energy resources for all available measurements. Unlike "raw" measurements, which contain inaccuracies, the calculated flows of energy resources, called estimates, will fully satisfy the suitability condition for all state equations describing the energy resource transportation network. The state equations written in terms of calculated estimates will be already free from residuals. The difference between a measurement and its calculated analog (estimate) is called in the estimation theory an estimation remainder. The obtained large values of estimation remainders are an indicator of high errors of particular energy resource measurements. By using the presented method it is possible to improve the validity of energy resource measurements, to estimate the transportation network observability, to eliminate the energy resource flows measurement imbalances, and to filter invalid measurements at the data acquisition and processing stage in performing monitoring of an automated energy resource monitoring and accounting system.

  18. Kalman filter with a linear state model for PDR+WLAN positioning and its application to assisting a particle filter

    NASA Astrophysics Data System (ADS)

    Raitoharju, Matti; Nurminen, Henri; Piché, Robert

    2015-12-01

    Indoor positioning based on wireless local area network (WLAN) signals is often enhanced using pedestrian dead reckoning (PDR) based on an inertial measurement unit. The state evolution model in PDR is usually nonlinear. We present a new linear state evolution model for PDR. In simulated-data and real-data tests of tightly coupled WLAN-PDR positioning, the positioning accuracy with this linear model is better than with the traditional models when the initial heading is not known, which is a common situation. The proposed method is computationally light and is also suitable for smoothing. Furthermore, we present modifications to WLAN positioning based on Gaussian coverage areas and show how a Kalman filter using the proposed model can be used for integrity monitoring and (re)initialization of a particle filter.

  19. Development of river sediment monitoring in Croatia

    NASA Astrophysics Data System (ADS)

    Frančišković-Bilinski, Stanislav; Bilinski, Halka; Mlakar, Marina; Maldini, Krešimir

    2017-04-01

    Establishment of regular river sediment monitoring, in addition to water monitoring, is very important. Unlike water, which represents the current state of a particular watercourse, sediment represents a sort of record of the state of pollution in the long run. Sediment monitoring is crucial to gain a real insight into the status of pollution of particular watercourses and to determine trends over a longer period of time. First scientific investigations of river sediment geochemistry in Croatia started 1989 in the Krka River estuary [1], while first systematic research of a river basin in Croatia was performed 2005 in Kupa River drainage basin [2]. Up to now, several detailed studies of both toxic metals and organic pollutants have been conducted in this drainage basin and some other rivers, also Croatian scientists participated in river sediment research in other countries. In 2008 Croatian water authorities (Hrvatske Vode) started preliminary sediment monitoring program, what was successfully conducted. In the first year of preliminary program only 14 stations existed, while in 2014 number of stations increased to 21. Number of monitored watercourses and of analysed parameters also increased. Current plan is to establish permanent monitoring network of river sediments throughout the state. The goal is to set up about 80 stations, which will cover all most important and most contaminated watercourses in all parts of the country [3]. Until the end of the year 2016, regular monitoring was conducted at 31 stations throughout the country. Currently the second phase of sediment monitoring program is in progress. At the moment parameters being determined on particular stations are not uniform. From inorganic compounds it is aimed to determine Cd, Pb, Ni, Hg, Cu, Cr, Zn and As on all stations. The ratio of natural concentrations of those elements vs. anthropogenic influence is being evaluated on all stations. It was found that worse situation is with Ni, Hg and Cr, who have significant anthropogenic concentrations on several locations. With other studied elements situation is much better and anthropogenic influence is not so significant. Based on own research and experience and comparing them with existing sediment quality criteria worldwide, within the current phase of monitoring program it is aimed to propose threshold values for mentioned elements, what would be base for Croatian National legislative on sediment quality. [1] Prohić, E. and Juračić, M. (1989): Heavy metals in sediments - Problems concerning determination of the anthropogenic influence. Study in the Krka River Estuary, Eastern Adriatic Coast, Yugoslavia. Environmental Geology Water Science, 13(2), 145-151. [2] Franči\\vsković-Bilinski, S. (2005): Geochemistry of stream sediments in Kupa River drainage basin [In Croatian] / Doctoral thesis. University of Zagreb, Croatia. [3] Franči\\vsković-Bilinski, S., Bilinski, H., Maldini, K. (2015): Establishing of monitoring of river sediments in Croatia. Contaminated sediments: Environmental Chemistry, Ecotoxicology and Engineering - Program and Abstract Book, Congressi Stefano Franscini, Ascona, Switzerland, 73-73.

  20. Report from the NOAA workshops to standardize protocols for monitoring toxic Pfiesteria species and associated environmental conditions.

    PubMed

    Luttenberg, D; Turgeon, D; Higgins, J

    2001-10-01

    Long-term monitoring of water quality, fish health, and plankton communities in susceptible bodies of water is crucial to identify the environmental factors that contribute to outbreaks of toxic Pfiesteria complex (TPC) species. In the aftermath of the 1997 toxic Pfiesteria outbreaks in North Carolina and Maryland, federal and several state agencies agreed that there was a need to standardize monitoring protocols. The National Oceanic & Atmospheric Administration convened two workshops that brought together state, federal, and academic resource managers and scientific experts to a) seek consensus on responding to and monitoring potential toxic Pfiesteria outbreaks; b) recommend standard parameters and protocols to characterize water quality, fish health, and plankton at historical event sites and potentially susceptible sites; and c) discuss options for integrating monitoring data sets from different states into regional and national assessments. Workshop recommendations included the development of a three-tiered TPC monitoring strategy: Tier 1, rapid event response; Tier 2, comprehensive assessment; and Tier 3, routine monitoring. These tiers correspond to varying levels of water quality, fish health, and plankton monitoring frequency and intensity. Under the strategy, sites are prioritized, depending upon their history and susceptibility to TPC events, and assigned an appropriate level of monitoring activity. Participants also agreed upon a suite of water quality parameters that should be monitored. These recommendations provide guidance to state and federal agencies conducting rapid-response and assessment activities at sites of suspected toxic Pfiesteria outbreaks, as well as to states that are developing such monitoring programs for the first time.

  1. Use of monitoring data to support conservation management and policy decisions in Micronesia.

    PubMed

    Montambault, Jensen Reitz; Wongbusarakum, Supin; Leberer, Trina; Joseph, Eugene; Andrew, Wayne; Castro, Fran; Nevitt, Brooke; Golbuu, Yimnang; Oldiais, Noelle W; Groves, Craig R; Kostka, Willy; Houk, Peter

    2015-10-01

    Adaptive management implies a continuous knowledge-based decision-making process in conservation. Yet, the coupling of scientific monitoring and management frameworks remains rare in practice because formal and informal communication pathways are lacking. We examined 4 cases in Micronesia where conservation practitioners are using new knowledge in the form of monitoring data to advance marine conservation. These cases were drawn from projects in Micronesia Challenge jurisdictions that received funding for coupled monitoring-to-management frameworks and encompassed all segments of adaptive management. Monitoring in Helen Reef, Republic of Palau, was catalyzed by coral bleaching and revealed evidence of overfishing that led to increased enforcement and outreach. In Nimpal Channel, Yap, Federated States of Micronesia (FSM), monitoring the recovery of marine food resources after customary restrictions were put in place led to new, more effective enforcement approaches. Monitoring in Laolao Bay, Saipan, Commonwealth of the Northern Mariana Islands, was catalyzed by observable sediment loads from poor land-use practices and resulted in actions that reduced land-based threats, particularly littering and illegal burning, and revealed additional threats from overfishing. Pohnpei (FSM) began monitoring after observed declines in grouper spawning aggregations. This data led to adjusting marine conservation area boundaries and implementing market-based size class restrictions. Two themes emerged from these cases. First, in each case monitoring was conducted in a manner relevant to the social and ecological systems and integrated into the decision-making process. Second, conservation practitioners and scientists in these cases integrated culturally appropriate stakeholder engagement throughout all phases of the adaptive management cycle. More broadly, our study suggests, when describing adaptive management, providing more details on how monitoring and management activities are linked at similar spatial scales and across similar time frames can enhance the application of knowledge. © 2015 The Authors Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  2. Framework for a ground-water quality monitoring and assessment program for California

    USGS Publications Warehouse

    Belitz, Kenneth; Dubrovsky, Neil M.; Burow, Karen; Jurgens, Bryant C.; John, Tyler

    2003-01-01

    The State of California uses more ground water than any other State in the Nation. With a population of over 30 million people, an agricultural economy based on intensive irrigation, large urban industrial areas, and naturally elevated concentrations of some trace elements, there is a wide range of contaminant sources that have the potential to contaminate ground water and limit its beneficial uses. In response to the many-and different-potential sources of ground-water contamination, the State of California has evolved an extensive set of rules and programs to protect ground-water quality, and agencies to implement the rules and programs. These programs have in common a focus on compliance with regulations governing chemical use and (or) ground-water quality. Although appropriate for, and successful at, their specific missions, these programs do not at present provide a comprehensive view of ground-water quality in the State of California. In October 2001, The California Assembly passed a bill, AB 599, establishing the Ground-Water- Quality Monitoring Act of 2001.' The goal of AB 599 is to improve Statewide comprehensive ground-water monitoring and increase availability of information about ground-water quality to the public. AB 599 requires the State Water Resources Control Board (SWRCB), in collaboration with an interagency task force (ITF) and a public advisory committee (PAC), to develop a plan for a comprehensive ground-water monitoring program. AB 599 specifies that the comprehensive program should be capable of assessing each ground-water basin in the State through direct and other statistically reliable sampling approaches, and that the program should integrate existing monitoring programs and design new program elements, as necessary. AB 599 also stresses the importance of prioritizing ground-water basins that provide drinking water. The United States Geological Survey (USGS), in cooperation with the SWRCB, and in coordination with the ITF and PAC, has developed a framework for a comprehensive ground-water-quality monitoring and assessment program for California. The proposed framework relies extensively on previous work conducted by the USGS through its National Water-Quality Assessment (NAWQA) program. In particular, the NAWQA program defines three types of ground-water assessment: (1) status, the assessment of the current quality of the ground-water resource; (2) trends, the detection of changes in water quality, and (3) understanding, assessing the human and natural factors that affect ground-water quality. A Statewide, comprehensive ground-water quality-monitoring and assessment program is most efficiently accomplished by applying uniform and consistent study-design and data-collection protocols to the entire State. At the same time, a comprehensive program should be relevant at a variety of scales, and therefore needs to retain flexibility to address regional and local issues. Consequently, many of the program components include a predominant element that will be consistently applied in all basins, and a secondary element that may be applied in specific basins where local conditions warrant attention.

  3. Algal bioassessment metrics for wadeable streams and rivers of Maine, USA

    USGS Publications Warehouse

    Danielson, Thomas J.; Loftin, Cynthia S.; Tsomides, Leonidas; DiFranco, Jeanne L.; Connors, Beth

    2011-01-01

    Many state water-quality agencies use biological assessment methods based on lotic fish and macroinvertebrate communities, but relatively few states have incorporated algal multimetric indices into monitoring programs. Algae are good indicators for monitoring water quality because they are sensitive to many environmental stressors. We evaluated benthic algal community attributes along a landuse gradient affecting wadeable streams and rivers in Maine, USA, to identify potential bioassessment metrics. We collected epilithic algal samples from 193 locations across the state. We computed weighted-average optima for common taxa for total P, total N, specific conductance, % impervious cover, and % developed watershed, which included all land use that is no longer forest or wetland. We assigned Maine stream tolerance values and categories (sensitive, intermediate, tolerant) to taxa based on their optima and responses to watershed disturbance. We evaluated performance of algal community metrics used in multimetric indices from other regions and novel metrics based on Maine data. Metrics specific to Maine data, such as the relative richness of species characterized as being sensitive in Maine, were more correlated with % developed watershed than most metrics used in other regions. Few community-structure attributes (e.g., species richness) were useful metrics in Maine. Performance of algal bioassessment models would be improved if metrics were evaluated with attributes of local data before inclusion in multimetric indices or statistical models. ?? 2011 by The North American Benthological Society.

  4. 30 CFR 1227.800 - How will ONRR monitor a State's performance of delegated functions?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false How will ONRR monitor a State's performance of delegated functions? 1227.800 Section 1227.800 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR Natural Resources Revenue DELEGATION TO STATES Performance Review § 1227.800 How will ONRR monitor a...

  5. Towards equation of state of dark energy from quasar monitoring: Reverberation strategy

    NASA Astrophysics Data System (ADS)

    Czerny, B.; Hryniewicz, K.; Maity, I.; Schwarzenberg-Czerny, A.; Życki, P. T.; Bilicki, M.

    2013-08-01

    Context. High-redshift quasars can be used to constrain the equation of state of dark energy. They can serve as a complementary tool to supernovae Type Ia, especially at z > 1. Aims: The method is based on the determination of the size of the broad line region (BLR) from the emission line delay, the determination of the absolute monochromatic luminosity either from the observed statistical relation or from a model of the formation of the BLR, and the determination of the observed monochromatic flux from photometry. This allows the luminosity distance to a quasar to be obtained, independently from its redshift. The accuracy of the measurements is, however, a key issue. Methods: We modeled the expected accuracy of the measurements by creating artificial quasar monochromatic lightcurves and responses from the BLR under various assumptions about the variability of a quasar, BLR extension, distribution of the measurements in time, accuracy of the measurements, and the intrinsic line variability. Results: We show that the five-year monitoring of a single quasar based on the Mg II line should give an accuracy of 0.06-0.32 mag in the distance modulus which will allow new constraints to be put on the expansion rate of the Universe at high redshifts. Successful monitoring of higher redshift quasars based on C IV lines requires proper selection of the objects to avoid sources with much higher levels of the intrinsic variability of C IV compared to Mg II.

  6. Preliminary flight prototype silver ion monitoring system

    NASA Technical Reports Server (NTRS)

    Brady, J.

    1974-01-01

    The design, fabrication, and testing of a preliminary flight prototype silver ion monitoring system based on potentiometric principles and utilizing a solid-state silver sulfide electrode paired with a pressurized double-junction reference electrode housing a replaceable electrolyte reservoir is described. The design provides automatic electronic calibration utilizing saturated silver bromide solution as a silver ion standard. The problem of loss of silver ion from recirculating fluid, its cause, and corrective procedures are reported. The instability of the silver sulfide electrode is discussed as well as difficulties met in implementing the autocalibration procedure.

  7. Sensitivity Analysis of Genetic Algorithm Parameters for Optimal Groundwater Monitoring Network Design

    NASA Astrophysics Data System (ADS)

    Abdeh-Kolahchi, A.; Satish, M.; Datta, B.

    2004-05-01

    A state art groundwater monitoring network design is introduced. The method combines groundwater flow and transport results with optimization Genetic Algorithm (GA) to identify optimal monitoring well locations. Optimization theory uses different techniques to find a set of parameter values that minimize or maximize objective functions. The suggested groundwater optimal monitoring network design is based on the objective of maximizing the probability of tracking a transient contamination plume by determining sequential monitoring locations. The MODFLOW and MT3DMS models included as separate modules within the Groundwater Modeling System (GMS) are used to develop three dimensional groundwater flow and contamination transport simulation. The groundwater flow and contamination simulation results are introduced as input to the optimization model, using Genetic Algorithm (GA) to identify the groundwater optimal monitoring network design, based on several candidate monitoring locations. The groundwater monitoring network design model is used Genetic Algorithms with binary variables representing potential monitoring location. As the number of decision variables and constraints increase, the non-linearity of the objective function also increases which make difficulty to obtain optimal solutions. The genetic algorithm is an evolutionary global optimization technique, which is capable of finding the optimal solution for many complex problems. In this study, the GA approach capable of finding the global optimal solution to a groundwater monitoring network design problem involving 18.4X 1018 feasible solutions will be discussed. However, to ensure the efficiency of the solution process and global optimality of the solution obtained using GA, it is necessary that appropriate GA parameter values be specified. The sensitivity analysis of genetic algorithms parameters such as random number, crossover probability, mutation probability, and elitism are discussed for solution of monitoring network design.

  8. Screening tool to evaluate the vulnerability of down-gradient receptors to groundwater contaminants from uncapped landfills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Ronald J.; Reilly, Timothy J.; Lopez, Anthony

    2015-09-15

    Highlights: • A spreadsheet-based risk screening tool for groundwater affected by landfills is presented. • Domenico solute transport equations are used to estimate downgradient contaminant concentrations. • Landfills are categorized as presenting high, moderate or low risks. • Analysis of parameter sensitivity and examples of the method’s application are given. • The method has value to regulators and those considering redeveloping closed landfills. - Abstract: A screening tool for quantifying levels of concern for contaminants detected in monitoring wells on or near landfills to down-gradient receptors (streams, wetlands and residential lots) was developed and evaluated. The tool uses Quick Domenicomore » Multi-scenario (QDM), a spreadsheet implementation of Domenico-based solute transport, to estimate concentrations of contaminants reaching receptors under steady-state conditions from a constant-strength source. Unlike most other available Domenico-based model applications, QDM calculates the time for down-gradient contaminant concentrations to approach steady state and appropriate dispersivity values, and allows for up to fifty simulations on a single spreadsheet. Sensitivity of QDM solutions to critical model parameters was quantified. The screening tool uses QDM results to categorize landfills as having high, moderate and low levels of concern, based on contaminant concentrations reaching receptors relative to regulatory concentrations. The application of this tool was demonstrated by assessing levels of concern (as defined by the New Jersey Pinelands Commission) for thirty closed, uncapped landfills in the New Jersey Pinelands National Reserve, using historic water-quality data from monitoring wells on and near landfills and hydraulic parameters from regional flow models. Twelve of these landfills are categorized as having high levels of concern, indicating a need for further assessment. This tool is not a replacement for conventional numerically-based transport model or other available Domenico-based applications, but is suitable for quickly assessing the level of concern posed by a landfill or other contaminant point source before expensive and lengthy monitoring or remediation measures are taken. In addition to quantifying the level of concern using historic groundwater-monitoring data, the tool allows for archiving model scenarios and adding refinements as new data become available.« less

  9. Applications of wireless sensor networks in marine environment monitoring: a survey.

    PubMed

    Xu, Guobao; Shen, Weiming; Wang, Xianbin

    2014-09-11

    With the rapid development of society and the economy, an increasing number of human activities have gradually destroyed the marine environment. Marine environment monitoring is a vital problem and has increasingly attracted a great deal of research and development attention. During the past decade, various marine environment monitoring systems have been developed. The traditional marine environment monitoring system using an oceanographic research vessel is expensive and time-consuming and has a low resolution both in time and space. Wireless Sensor Networks (WSNs) have recently been considered as potentially promising alternatives for monitoring marine environments since they have a number of advantages such as unmanned operation, easy deployment, real-time monitoring, and relatively low cost. This paper provides a comprehensive review of the state-of-the-art technologies in the field of marine environment monitoring using wireless sensor networks. It first describes application areas, a common architecture of WSN-based oceanographic monitoring systems, a general architecture of an oceanographic sensor node, sensing parameters and sensors, and wireless communication technologies. Then, it presents a detailed review of some related projects, systems, techniques, approaches and algorithms. It also discusses challenges and opportunities in the research, development, and deployment of wireless sensor networks for marine environment monitoring.

  10. Summary of the stakeholders workshop to develop a National Volcano Early Warning System (NVEWS)

    USGS Publications Warehouse

    Guffanti, Marianne; Scott, William E.; Driedger, Carolyn L.; Ewert, John W.

    2006-01-01

    The importance of investing in monitoring, mitigation, and preparedness before natural hazards occur has been amply demonstrated by recent disasters such as the Indian Ocean Tsunami in December 2004 and Hurricane Katrina in August 2005. Playing catch-up with hazardous natural phenomena such as these limits our ability to work with public officials and the public to lessen adverse impacts. With respect to volcanic activity, the starting point of effective pre-event mitigation is monitoring capability sufficient to detect and diagnose precursory unrest so that communities at risk have reliable information and sufficient time to respond to hazards with which they may be confronted. Recognizing that many potentially dangerous U.S. volcanoes have inadequate or no ground-based monitoring, the U.S Geological Survey (USGS) Volcano Hazards Program (VHP) and partners recently evaluated U.S. volcano-monitoring capabilities and published 'An Assessment of Volcanic Threat and Monitoring Capabilities in the United States: Framework for a National Volcano Early Warning System (NVEWS).' Results of the NVEWS volcanic threat and monitoring assessment are being used to guide long-term improvements to the national volcano-monitoring infrastructure operated by the USGS and affiliated groups. The NVEWS report identified the need to convene a workshop of a broad group of stakeholders--such as representatives of emergency- and land-management agencies at the Federal, State, and local levels and the aviation sector--to solicit input about implementation of NVEWS and their specific information requirements. Accordingly, an NVEWS Stakeholders Workshop was held in Portland, Oregon, on 22-23 February 2006. A summary of the workshop is presented in this document.

  11. The CritiView: a new fiber optic based optical device for the assessment of tissue vitality

    NASA Astrophysics Data System (ADS)

    Mayevsky, Avraham; Blum, Yoram; Dekel, Nava; Deutsch, Assaf; Halfon, Rafael; Kremer, Shlomi; Pewzner, Eliyahu; Sherman, Efrat; Barnea, Ofer

    2006-02-01

    The most important parameter that reflects the balance between oxygen supply and demand in tissues is the mitochondrial NADH redox state that could be monitored In vivo. Nevertheless single parameter monitoring is limited in the interpretation capacity of the very complicated pathophysiological events, therefore three more parameters were added to the NADH and the multiparametric monitoring system was used in experimental and clinical studies. In our previous paper1 we described the CritiView (CRV1) including a fiber optic probe that monitor four physiological parameters in real time. In the new model (CRV3) several factors such as UV safety, size and price of the device were improved significantly. The CRV3 enable to monitor the various parameters in three different locations in the tissue thus increasing the reliability of the data due to the better statistics. The connection between the device and the monitored tissue could be done by various types of probes. The main probe that was tested also in clinical studies was a special 3 points probe that includes 9 optical fibers (3 in each point) that was embedded in a three way Foley catheter. This catheter enabled the monitoring of urethral wall vitality as an indicator of the development of body metabolic emergency state. The three point probe was tested in the brain exposed to the lack of oxygen (Anoxia, Hypoxia or Ischemia). A decrease in blood oxygenation and a large increase in mitochondrial NADH fluorescence were recorded. The microcirculatory blood flow increased during anoxia and hypoxia and decreased significantly under ischemia.

  12. Dynamics behind the scale up of evidence-based obesity prevention: protocol for a multi-site case study of an electronic implementation monitoring system in health promotion practice.

    PubMed

    Conte, Kathleen P; Groen, Sisse; Loblay, Victoria; Green, Amanda; Milat, Andrew; Persson, Lina; Innes-Hughes, Christine; Mitchell, Jo; Thackway, Sarah; Williams, Mandy; Hawe, Penelope

    2017-12-06

    The effectiveness of many interventions to promote health and prevent disease has been well established. The imperative has therefore shifted from amassing evidence about efficacy to scale-up to maximise population-level health gains. Electronic implementation monitoring, or 'e-monitoring', systems have been designed to assist and track the delivery of preventive policies and programs. However, there is little evidence on whether e-monitoring systems improve the dissemination, adoption, and ongoing delivery of evidence-based preventive programs. Also, given considerable difficulties with e-monitoring systems in the clinical sector, scholars have called for a more sophisticated re-examination of e-monitoring's role in enhancing implementation. In the state of New South Wales (NSW), Australia, the Population Health Information Management System (PHIMS) was created to support the dissemination of obesity prevention programs to 6000 childcare centres and elementary schools across all 15 local health districts. We have established a three-way university-policymaker-practice research partnership to investigate the impact of PHIMS on practice, how PHIMS is used, and how achievement of key performance indicators of program adoption may be associated with local contextual factors. Our methods encompass ethnographic observation, key informant interviews and participatory workshops for data interpretation at a state and local level. We use an on-line social network analysis of the collaborative relationships across local health district health promotion teams to explore the relationship between PHIMS use and the organisational structure of practice. Insights will be sensitised by institutional theory, practice theory and complex adaptive system thinking, among other theories which make sense of socio-technical action. Our working hypothesis is that the science of getting evidence-based programs into practice rests on an in-depth understanding of the role they play in the on-going system of local relationships and multiple accountabilities. Data will be synthesised to produce a typology to characterise local context, PHIMS use and key performance indicator achievement (of program implementation) across the 15 local health districts. Results could be used to continuously align e-monitoring technologies within quality improvement processes to ensure that such technologies enhance practice and innovation. A partnership approach to knowledge production increases the likelihood that findings will be put into practice.

  13. Quantitative Monitoring of Subcellular Redox Dynamics in Living Mammalian Cells Using RoGFP2-Based Probes.

    PubMed

    Lismont, Celien; Walton, Paul A; Fransen, Marc

    2017-01-01

    To gain additional insight into how specific cell organelles may participate in redox signaling, it is essential to have access to tools and methodologies that are suitable to monitor spatiotemporal differences in the levels of different reactive oxygen species (ROS) and the oxidation state of specific redox couples. Over the years, the use of genetically encoded fluorescent redox indicators with a ratiometric readout has constantly gained in popularity because they can easily be targeted to various subcellular compartments and monitored in real time in single cells. Here we provide step-by-step protocols and tips for the successful use of roGFP2, a redox-sensitive variant of the enhanced green fluorescent protein, to monitor changes in glutathione redox balance and hydrogen peroxide homeostasis in the cytosol, peroxisomes, and mitochondria of mammalian cells.

  14. On the use of high-frequency SCADA data for improved wind turbine performance monitoring

    NASA Astrophysics Data System (ADS)

    Gonzalez, E.; Stephen, B.; Infield, D.; Melero, J. J.

    2017-11-01

    SCADA-based condition monitoring of wind turbines facilitates the move from costly corrective repairs towards more proactive maintenance strategies. In this work, we advocate the use of high-frequency SCADA data and quantile regression to build a cost effective performance monitoring tool. The benefits of the approach are demonstrated through the comparison between state-of-the-art deterministic power curve modelling techniques and the suggested probabilistic model. Detection capabilities are compared for low and high-frequency SCADA data, providing evidence for monitoring at higher resolutions. Operational data from healthy and faulty turbines are used to provide a practical example of usage with the proposed tool, effectively achieving the detection of an incipient gearbox malfunction at a time horizon of more than one month prior to the actual occurrence of the failure.

  15. IoT-based flood embankments monitoring system

    NASA Astrophysics Data System (ADS)

    Michta, E.; Szulim, R.; Sojka-Piotrowska, A.; Piotrowski, K.

    2017-08-01

    In the paper a concept of flood embankments monitoring system based on using Internet of Things approach and Cloud Computing technologies will be presented. The proposed system consists of sensors, IoT nodes, Gateways and Cloud based services. Nodes communicates with the sensors measuring certain physical parameters describing the state of the embankments and communicates with the Gateways. Gateways are specialized active devices responsible for direct communication with the nodes, collecting sensor data, preprocess the data, applying local rules and communicate with the Cloud Services using communication API delivered by cloud services providers. Architecture of all of the system components will be proposed consisting IoT devices functionalities description, their communication model, software modules and services bases on using a public cloud computing platform like Microsoft Azure will be proposed. The most important aspects of maintaining the communication in a secure way will be shown.

  16. Trophic Status, Ecological Condition and Cyanobacteria Risk of New England Lakes and Ponds Based on Aircraft Remote Sensing.

    EPA Science Inventory

    Aircraft remote sensing of freshwater ecosystems offers federal and state monitoring agencies an ability to meet their assessment requirements by rapidly acquiring information on ecosystem responses to environmental change for water bodies that are below the resolution of space...

  17. 42 CFR 403.320 - CMS review and monitoring of State systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Section 403.320 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... apply. (v) Any allowance for anticipated growth in the amount of services from the base year (if applicable, the allowance must be presented in separate estimates for population increases or for increases...

  18. 42 CFR 403.320 - CMS review and monitoring of State systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Section 403.320 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... apply. (v) Any allowance for anticipated growth in the amount of services from the base year (if applicable, the allowance must be presented in separate estimates for population increases or for increases...

  19. Longitudinal Mercury Monitoring Within the Japanese and Korean Communities (United States): Implications for Exposure Determination and Public Health Protection

    EPA Science Inventory

    Background: Estimates of exposure to toxicants are predominantly obtained from single timepoint data. Fishconsumption guidance based on these data may be incomplete as recommendations are unlikely to consider impact from factors such as intraindividual variability, seasonal dif...

  20. A new landscape classification system for monitoring and assessment of pastures

    USDA-ARS?s Scientific Manuscript database

    Pasturelands in the United States span a broad range of climate, soils, physical sites, and management. Rather than treat each site as a unique entity, this diversity must be classified into basic units for research and management purposes. A similar system based on ecological principles is needed f...

  1. Phase II : correlation between experimental and finite element analysis : Alaska bridge 255-Chulitna River bridge.

    DOT National Transportation Integrated Search

    2014-09-01

    In this study, we will monitor the behavior of the Alaska Chulitna Bridge for the specific purpose of assisting the DOT in performing an accurate : condition assessment of this bridge. : Based on the state-of-the-art SHM knowledge and technologies wi...

  2. Developing Public Education Policy through Policy-Impact Analysis.

    ERIC Educational Resources Information Center

    Hackett, E. Raymond; And Others

    A model for analyzing policy impacts is presented that will assist state-level policy makers in education. The model comprises four stages: (1) monitoring, which includes the identification of relevant trends and issues and the development of a data base; (2) forecasting, which uses quantitative and qualitative techniques developed in futures…

  3. Response to Intervention Implementation Guide: The South Dakota Model

    ERIC Educational Resources Information Center

    South Dakota Department of Education, 2012

    2012-01-01

    The National Association of State Directors of Special Education (NASDSE, 2005) defines response to intervention (RTI) as the practice of providing high-quality instruction and intervention based on a student's needs, changing instruction and/or goals through frequent monitoring of progress, and applying the student response data to important…

  4. TRANSFERRING TECHNOLOGIES, TOOLS AND TECHNIQUES: THE NATIONAL COASTAL ASSESSMENT

    EPA Science Inventory

    The purpose of the National Coastal Assessment (NCA) is to estimate the status and trends of the condition of the nation's coastal resources on a state, regional and national basis. Based on NCA monitoring from 1999-2001, 100% of the nation's estuarine waters (at over 2500 locati...

  5. Foreword: Contributions of Arctic PRISM to monitoring western hemispheric shorebirds

    USGS Publications Warehouse

    Skagen, Susan K.; Smith, Paul A.; Andres, Brad A.; Donaldson, Garry; Brown, Stephen; Bart, Jonathan R.; Johnston, Victoria H.

    2012-01-01

    Long-term monitoring of populations is of paramount importance to understanding responses of organisms to global environmental change and to evaluating whether conservation practices are yielding intended results through time (Wiens 2009). The population status of many shorebird species, the focus of this volume, remain poorly known. Long-distance migrant shorebirds have proven particularly difficult to monitor, in part because of their highly inaccessible regions. As migrant shorebirds travel the length of the hemisphere, the congregate and disperse in ways that vary among species, locations, and years, presenting serious challenges to designing and implementing monitoring programs. Rigorous field and quantitative methods that estimate population size and monitor trends are vitally needed to direct and evaluate effective conservation measures. Many management efforts depend on unbiased population size estimates; for examples, the shorebird conservation plans for both Canada and the United States seek to restore populations to levels calculated for the 1970s based on the best information available from existing surveys. Further, federal wildlife agencies within the United States and Canada have mandates to understand the state of their nations' resources under various conventions for the protection of migratory birds. Accurate estimates of population size are vital statistics for a variety of conservation activities, such as prioritizing species for conservation action and setting management targets. Areas of essential habitat, such as those designated under the Western Hemisphere Shorebird Reserve Network, the Important Bird Areas program of BirdLife Internationals and the National Audubon Society, or Canada's National Wildlife Areas program, are all evaluated on the basis of proportions of species' populations which they contain. The size, and trends in size, of a species' population are considered key information for assessing its vulnerability and subsequent listing under the U.S. Endangered Species Act and the Canadian Species at Risk Act. To meet the need for information on population size and trends, shorebird biologists from Canada and the United States proposed a shared blueprint for shorebird monitoring across the Western Hemisphere in the late 1990s; this effort was undertaken in concert with the development of the Canadian and the U.S. Shorebird Conservation Plans. Soon thereafter, partners in the monitoring effort adopted the name "Program for Regional and International Shorebird Monitoring" (PRISM). Among the primary objectives of PRISM were to estimate the population sizes and trends of breeding North American shorebirds and describe their distributions. PRISM members evaluated ongoing and potential monitoring approached to address 74 taxa (including subspecies) and proposed a combination of arctic and boreal breeding surveys, temperate breeding and non-breeding surveys, and neotropical surveys.

  6. Resonant power processors. II - Methods of control

    NASA Technical Reports Server (NTRS)

    Oruganti, R.; Lee, F. C.

    1984-01-01

    The nature of resonant converter control is discussed. Employing the state-portrait, different control methods for series resonant converter are identified and their performance evaluated based on their stability, response to control and load changes and range of operation. A new control method, optimal-trajectory control, is proposed which, by utilizing the state trajectories as control laws, continuously monitors the energy level of the resonant tank. The method is shown to have superior control properties especially under transient operation.

  7. Statistical Strategy for Inventorying and Monitoring the Ecosystem Resources of the State of Jalisco at Multiple Scales and Resolution Levels

    Treesearch

    Robin M. Reich; Hans T. Schreuder

    2006-01-01

    The sampling strategy involving both statistical and in-place inventory information is presented for the natural resources project of the Green Belt area (Centuron Verde) in the Mexican state of Jalisco. The sampling designs used were a grid based ground sample of a 90x90 m plot and a two-stage stratified sample of 30 x 30 m plots. The data collected were used to...

  8. Scientific Framework for Stormwater Monitoring by the Washington State Department of Transportation

    USGS Publications Warehouse

    Sheibley, R.W.; Kelly, V.J.; Wagner, R.J.

    2009-01-01

    The Washington State Department of Transportation municipal stormwater monitoring program, in operation for about 8 years, never has received an external, objective assessment. In addition, the Washington State Department of Transportation would like to identify the standard operating procedures and quality assurance protocols that must be adopted so that their monitoring program will meet the requirements of the new National Pollutant Discharge Elimination System municipal stormwater permit. As a result, in March 2009, the Washington State Department of Transportation asked the U.S. Geological Survey to assess their pre-2009 municipal stormwater monitoring program. This report presents guidelines developed for the Washington State Department of Transportation to meet new permit requirements and regional/national stormwater monitoring standards to ensure that adequate processes and procedures are identified to collect high-quality, scientifically defensible municipal stormwater monitoring data. These include: (1) development of coherent vision and cooperation among all elements of the program; (2) a comprehensive approach for site selection; (3) an effective quality assurance program for field, laboratory, and data management; and (4) an adequate database and data management system.

  9. Comparison and Cost Analysis of Drinking Water Quality Monitoring Requirements versus Practice in Seven Developing Countries

    PubMed Central

    Crocker, Jonny; Bartram, Jamie

    2014-01-01

    Drinking water quality monitoring programs aim to support provision of safe drinking water by informing water quality management. Little evidence or guidance exists on best monitoring practices for low resource settings. Lack of financial, human, and technological resources reduce a country’s ability to monitor water supply. Monitoring activities were characterized in Cambodia, Colombia, India (three states), Jordan, Peru, South Africa, and Uganda according to water sector responsibilities, monitoring approaches, and marginal cost. The seven study countries were selected to represent a range of low resource settings. The focus was on monitoring of microbiological parameters, such as E. coli, coliforms, and H2S-producing microorganisms. Data collection involved qualitative and quantitative methods. Across seven study countries, few distinct approaches to monitoring were observed, and in all but one country all monitoring relied on fixed laboratories for sample analysis. Compliance with monitoring requirements was highest for operational monitoring of large water supplies in urban areas. Sample transport and labor for sample collection and analysis together constitute approximately 75% of marginal costs, which exclude capital costs. There is potential for substantive optimization of monitoring programs by considering field-based testing and by fundamentally reconsidering monitoring approaches for non-piped supplies. This is the first study to look quantitatively at water quality monitoring practices in multiple developing countries. PMID:25046632

  10. New Mexico state traffic monitoring standards, calendar year 2009-2010

    DOT National Transportation Integrated Search

    2010-01-01

    What follows are New Mexico's State Traffic Monitoring Standards : (NMSTMS) to be used for all New Mexico Traffic Monitoring activities. : The standards were first implemented on October 1, 1988. They : continue to be reviewed and refined on a three-...

  11. The discriminatory value of cardiorespiratory interactions in distinguishing awake from anaesthetised states: a randomised observational study.

    PubMed

    Kenwright, D A; Bernjak, A; Draegni, T; Dzeroski, S; Entwistle, M; Horvat, M; Kvandal, P; Landsverk, S A; McClintock, P V E; Musizza, B; Petrovčič, J; Raeder, J; Sheppard, L W; Smith, A F; Stankovski, T; Stefanovska, A

    2015-12-01

    Depth of anaesthesia monitors usually analyse cerebral function with or without other physiological signals; non-invasive monitoring of the measured cardiorespiratory signals alone would offer a simple, practical alternative. We aimed to investigate whether such signals, analysed with novel, non-linear dynamic methods, would distinguish between the awake and anaesthetised states. We recorded ECG, respiration, skin temperature, pulse and skin conductivity before and during general anaesthesia in 27 subjects in good cardiovascular health, randomly allocated to receive propofol or sevoflurane. Mean values, variability and dynamic interactions were determined. Respiratory rate (p = 0.0002), skin conductivity (p = 0.03) and skin temperature (p = 0.00006) changed with sevoflurane, and skin temperature (p = 0.0005) with propofol. Pulse transit time increased by 17% with sevoflurane (p = 0.02) and 11% with propofol (p = 0.007). Sevoflurane reduced the wavelet energy of heart (p = 0.0004) and respiratory (p = 0.02) rate variability at all frequencies, whereas propofol decreased only the heart rate variability below 0.021 Hz (p < 0.05). The phase coherence was reduced by both agents at frequencies below 0.145 Hz (p < 0.05), whereas the cardiorespiratory synchronisation time was increased (p < 0.05). A classification analysis based on an optimal set of discriminatory parameters distinguished with 95% success between the awake and anaesthetised states. We suggest that these results can contribute to the design of new monitors of anaesthetic depth based on cardiovascular signals alone. © 2015 The Authors. Anaesthesia published by John Wiley & Sons Ltd on behalf of Association of Anaesthetists of Great Britain and Ireland.

  12. State Recognition and Visualization of Hoisting Motor of Quayside Container Crane Based on SOFM

    NASA Astrophysics Data System (ADS)

    Yang, Z. Q.; He, P.; Tang, G.; Hu, X.

    2017-07-01

    The neural network structure and algorithm of self-organizing feature map (SOFM) are researched and analysed. The method is applied to state recognition and visualization of the quayside container crane hoisting motor. By using SOFM, the clustering and visualization of attribute reduction of data are carried out, and three kinds motor states are obtained with Root Mean Square(RMS), Impulse Index and Margin Index, and the simulation visualization interface is realized by MATLAB. Through the processing of the sample data, it can realize the accurate identification of the motor state, thus provide better monitoring of the quayside container crane hoisting motor and a new way for the mechanical state recognition.

  13. MEDNET: A Multi-State Policymaker/Researcher Collaboration to Improve Prescribing Practices

    PubMed Central

    Finnerty, Molly; Neese-Todd, Sheree; Bilder, Scott; Olfson, Mark; Crystal, Stephen

    2015-01-01

    States face new federal requirements to monitor psychotropic prescribing practices for children and adults in Medicaid. Effective use of quality measurement and quality improvement strategies hold the promise of improved outcomes for public mental health systems. The Medicaid/Mental Health Network for Evidence Based Treatment (MEDNET) is an AHRQ funded multi-state Medicaid quality collaborative with the Rutgers University Center for Health Services Research on Pharmacotherapy, Chronic Disease Management, and Outcomes. We review the development, infrastructure, challenges, and early evidence of success of this public-academic partnership, the first multi-state Medicaid quality improvement collaborative to focus on psychotropic medications. PMID:25756882

  14. Application of a mechanistic model as a tool for on-line monitoring of pilot scale filamentous fungal fermentation processes-The importance of evaporation effects.

    PubMed

    Mears, Lisa; Stocks, Stuart M; Albaek, Mads O; Sin, Gürkan; Gernaey, Krist V

    2017-03-01

    A mechanistic model-based soft sensor is developed and validated for 550L filamentous fungus fermentations operated at Novozymes A/S. The soft sensor is comprised of a parameter estimation block based on a stoichiometric balance, coupled to a dynamic process model. The on-line parameter estimation block models the changing rates of formation of product, biomass, and water, and the rate of consumption of feed using standard, available on-line measurements. This parameter estimation block, is coupled to a mechanistic process model, which solves the current states of biomass, product, substrate, dissolved oxygen and mass, as well as other process parameters including k L a, viscosity and partial pressure of CO 2 . State estimation at this scale requires a robust mass model including evaporation, which is a factor not often considered at smaller scales of operation. The model is developed using a historical data set of 11 batches from the fermentation pilot plant (550L) at Novozymes A/S. The model is then implemented on-line in 550L fermentation processes operated at Novozymes A/S in order to validate the state estimator model on 14 new batches utilizing a new strain. The product concentration in the validation batches was predicted with an average root mean sum of squared error (RMSSE) of 16.6%. In addition, calculation of the Janus coefficient for the validation batches shows a suitably calibrated model. The robustness of the model prediction is assessed with respect to the accuracy of the input data. Parameter estimation uncertainty is also carried out. The application of this on-line state estimator allows for on-line monitoring of pilot scale batches, including real-time estimates of multiple parameters which are not able to be monitored on-line. With successful application of a soft sensor at this scale, this allows for improved process monitoring, as well as opening up further possibilities for on-line control algorithms, utilizing these on-line model outputs. Biotechnol. Bioeng. 2017;114: 589-599. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Check and Report Ebola (CARE) Hotline: The User Perspective of an Innovative Tool for Postarrival Monitoring of Ebola in the United States.

    PubMed

    McCarthy, Ilana Olin; Wojno, Abbey E; Joseph, Heather A; Teesdale, Scott

    2017-11-14

    The response to the 2014-2016 Ebola epidemic included an unprecedented effort from federal, state, and local public health authorities to monitor the health of travelers entering the United States from countries with Ebola outbreaks. The Check and Report Ebola (CARE) Hotline, a novel approach to monitoring, was designed to enable travelers to report their health status daily to an interactive voice recognition (IVR) system. The system was tested with 70 Centers for Disease Control and Prevention (CDC) federal employees returning from deployments in outbreak countries. The objective of this study was to describe the development of the CARE Hotline as a tool for postarrival monitoring and examine the usage characteristics and user experience of the tool during a public health emergency. Data were obtained from two sources. First, the CARE Hotline system produced a call log which summarized the usage characteristics of all 70 users' daily health reports. Second, we surveyed federal employees (n=70) who used the CARE Hotline to engage in monitoring. A total of 21 (21/70, 30%) respondents were included in the survey analytic sample. While the CARE Hotline was used for monitoring, 70 users completed a total of 1313 calls. We found that 94.06% (1235/1313) of calls were successful, and the average call time significantly decreased from the beginning of the monitoring period to the end by 32 seconds (Z score=-6.52, P<.001). CARE Hotline call log data were confirmed by user feedback; survey results indicated that users became more familiar with the system and found the system easier to use, from the beginning to the end of their monitoring period. The majority of the users were highly satisfied (90%, 19/21) with the system, indicating ease of use and convenience as primary reasons, and would recommend it for future monitoring efforts (90%, 19/21). The CARE Hotline garnered high user satisfaction, required minimal reporting time from users, and was an easily learned tool for monitoring. This phone-based technology can be modified for future public health emergencies. ©Ilana Olin McCarthy, Abbey E Wojno, Heather A Joseph, Scott Teesdale. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 14.11.2017.

  16. Application of Terrestrial Microwave Remote Sensing to Agricultural Drought Monitoring

    NASA Astrophysics Data System (ADS)

    Crow, W. T.; Bolten, J. D.

    2014-12-01

    Root-zone soil moisture information is a valuable diagnostic for detecting the onset and severity of agricultural drought. Current attempts to globally monitor root-zone soil moisture are generally based on the application of soil water balance models driven by observed meteorological variables. Such systems, however, are prone to random error associated with: incorrect process model physics, poor parameter choices and noisy meteorological inputs. The presentation will describe attempts to remediate these sources of error via the assimilation of remotely-sensed surface soil moisture retrievals from satellite-based passive microwave sensors into a global soil water balance model. Results demonstrate the ability of satellite-based soil moisture retrieval products to significantly improve the global characterization of root-zone soil moisture - particularly in data-poor regions lacking adequate ground-based rain gage instrumentation. This success has lead to an on-going effort to implement an operational land data assimilation system at the United States Department of Agriculture's Foreign Agricultural Service (USDA FAS) to globally monitor variations in root-zone soil moisture availability via the integration of satellite-based precipitation and soil moisture information. Prospects for improving the performance of the USDA FAS system via the simultaneous assimilation of both passive and active-based soil moisture retrievals derived from the upcoming NASA Soil Moisture Active/Passive mission will also be discussed.

  17. A high-speed brain speller using steady-state visual evoked potentials.

    PubMed

    Nakanishi, Masaki; Wang, Yijun; Wang, Yu-Te; Mitsukura, Yasue; Jung, Tzyy-Ping

    2014-09-01

    Implementing a complex spelling program using a steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) remains a challenge due to difficulties in stimulus presentation and target identification. This study aims to explore the feasibility of mixed frequency and phase coding in building a high-speed SSVEP speller with a computer monitor. A frequency and phase approximation approach was developed to eliminate the limitation of the number of targets caused by the monitor refresh rate, resulting in a speller comprising 32 flickers specified by eight frequencies (8-15 Hz with a 1 Hz interval) and four phases (0°, 90°, 180°, and 270°). A multi-channel approach incorporating Canonical Correlation Analysis (CCA) and SSVEP training data was proposed for target identification. In a simulated online experiment, at a spelling rate of 40 characters per minute, the system obtained an averaged information transfer rate (ITR) of 166.91 bits/min across 13 subjects with a maximum individual ITR of 192.26 bits/min, the highest ITR ever reported in electroencephalogram (EEG)-based BCIs. The results of this study demonstrate great potential of a high-speed SSVEP-based BCI in real-life applications.

  18. Monitoring Drought Conditions in the Navajo Nation Using NASA Earth Observations

    NASA Technical Reports Server (NTRS)

    Ly, Vickie; Gao, Michael; Cary, Cheryl; Turnbull-Appell, Sophie; Surunis, Anton

    2016-01-01

    The Navajo Nation, a 65,700 sq km Native American territory located in the southwestern United States, has been increasingly impacted by severe drought events and changes in climate. These events are coupled with a lack of domestic water infrastructure and economic resources, leaving approximately one-third of the population without access to potable water in their homes. Current methods of monitoring drought are dependent on state-based monthly Standardized Precipitation Index value maps calculated by the Western Regional Climate Center. However, these maps do not provide the spatial resolution needed to illustrate differences in drought severity across the vast Nation. To better understand and monitor drought events and drought regime changes in the Navajo Nation, this project created a geodatabase of historical climate information specific to the area, and a decision support tool to calculate average Standardized Precipitation Index values for user-specified areas. The tool and geodatabase use Tropical Rainfall Monitoring Mission (TRMM) and Global Precipitation Monitor (GPM) observed precipitation data and Parameter-elevation Relationships on Independent Slopes Model modeled historical precipitation data, as well as NASA's modeled Land Data Assimilation Systems deep soil moisture, evaporation, and transpiration data products. The geodatabase and decision support tool will allow resource managers in the Navajo Nation to utilize current and future NASA Earth observation data for increased decision-making capacity regarding future climate change impact on water resources.

  19. Physicians' Perspectives Regarding Prescription Drug Monitoring Program Use Within the Department of Veterans Affairs: a Multi-State Qualitative Study.

    PubMed

    Radomski, Thomas R; Bixler, Felicia R; Zickmund, Susan L; Roman, KatieLynn M; Thorpe, Carolyn T; Hale, Jennifer A; Sileanu, Florentina E; Hausmann, Leslie R M; Thorpe, Joshua M; Suda, Katie J; Stroupe, Kevin T; Gordon, Adam J; Good, Chester B; Fine, Michael J; Gellad, Walid F

    2018-03-08

    The Department of Veterans Affairs (VA) has implemented robust strategies to monitor prescription opioid dispensing, but these strategies have not accounted for opioids prescribed by non-VA providers. State-based prescription drug monitoring programs (PDMPs) are a potential tool to identify VA patients' receipt of opioids from non-VA prescribers, and recent legislation requires their use within VA. To evaluate VA physicians' perspectives and experiences regarding use of PDMPs to monitor Veterans' receipt of opioids from non-VA prescribers. Qualitative study using semi-structured interviews. Forty-two VA primary care physicians who prescribed opioids to 15 or more Veterans in 2015. We sampled physicians from two states with PDMPs (Massachusetts and Illinois) and one without prescriber access to a PDMP at the time of the interviews (Pennsylvania). From February to August 2016, we conducted semi-structured telephone interviews that addressed the following topics regarding PDMPs: overall experiences, barriers to optimal use, and facilitators to improve use. VA physicians broadly supported use of PDMPs or desired access to one, while exhibiting varying patterns of PDMP use dictated by state laws and their clinical judgment. Physicians noted administrative burdens and incomplete or unavailable prescribing data as key barriers to PDMP use. To facilitate use, physicians endorsed (1) linking PDMPs with the VA electronic health record, (2) using templated notes to document PDMP use, and (3) delegating routine PDMP queries to ancillary staff. Despite the time and administrative burdens associated with their use, VA physicians in our study broadly supported PDMPs. The application of our findings to ongoing PDMP implementation efforts may strengthen PDMP use both within and outside VA and improve the safe prescribing of opioids.

  20. Data Analyses and Modelling for Risk Based Monitoring of Mycotoxins in Animal Feed

    PubMed Central

    van der Fels-Klerx, H.J. (Ine); Adamse, Paulien; Punt, Ans; van Asselt, Esther D.

    2018-01-01

    Following legislation, European Member States should have multi-annual control programs for contaminants, such as for mycotoxins, in feed and food. These programs need to be risk based implying the checks are regular and proportional to the estimated risk for animal and human health. This study aimed to prioritize feed products in the Netherlands for deoxynivalenol and aflatoxin B1 monitoring. Historical mycotoxin monitoring results from the period 2007–2016 were combined with data from other sources. Based on occurrence, groundnuts had high priority for aflatoxin B1 monitoring; some feed materials (maize and maize products and several oil seed products) and complete/complementary feed excluding dairy cattle and young animals had medium priority; and all other animal feeds and feed materials had low priority. For deoxynivalenol, maize by-products had a high priority, complete and complementary feed for pigs had a medium priority and all other feed and feed materials a low priority. Also including health consequence estimations showed that feed materials that ranked highest for aflatoxin B1 included sunflower seed and palmkernel expeller/extracts and maize. For deoxynivalenol, maize products were ranked highest, followed by various small grain cereals (products); all other feed materials were of lower concern. Results of this study have proven to be useful in setting up the annual risk based control program for mycotoxins in animal feed and feed materials. PMID:29373559

  1. The State of Stress Beyond the Borehole

    NASA Astrophysics Data System (ADS)

    Johnson, P. A.; Coblentz, D. D.; Maceira, M.; Delorey, A. A.; Guyer, R. A.

    2015-12-01

    The state of stress controls all in-situ reservoir activities and yet we lack the quantitative means to measure it. This problem is important in light of the fact that the subsurface provides more than 80 percent of the energy used in the United States and serves as a reservoir for geological carbon sequestration, used fuel disposition, and nuclear waste storage. Adaptive control of subsurface fractures and fluid flow is a crosscutting challenge being addressed by the new Department of Energy SubTER Initiative that has the potential to transform subsurface energy production and waste storage strategies. Our methodology to address the above mentioned matter is based on a novel Advance Multi-Physics Tomographic (AMT) approach for determining the state of stress, thereby facilitating our ability to monitor and control subsurface geomechanical processes. We developed the AMT algorithm for deriving state-of-stress from integrated density and seismic velocity models and demonstrate the feasibility by applying the AMT approach to synthetic data sets to assess accuracy and resolution of the method as a function of the quality and type of geophysical data. With this method we can produce regional- to basin-scale maps of the background state of stress and identify regions where stresses are changing. Our approach is based on our major advances in the joint inversion of gravity and seismic data to obtain the elastic properties for the subsurface; and coupling afterwards the output from this joint-inversion with theoretical model such that strain (and subsequently) stress can be computed. Ultimately we will obtain the differential state of stress over time to identify and monitor critically stressed faults and evolving regions within the reservoir, and relate them to anthropogenic activities such as fluid/gas injection.

  2. Condition monitoring of 3G cellular networks through competitive neural models.

    PubMed

    Barreto, Guilherme A; Mota, João C M; Souza, Luis G M; Frota, Rewbenio A; Aguayo, Leonardo

    2005-09-01

    We develop an unsupervised approach to condition monitoring of cellular networks using competitive neural algorithms. Training is carried out with state vectors representing the normal functioning of a simulated CDMA2000 network. Once training is completed, global and local normality profiles (NPs) are built from the distribution of quantization errors of the training state vectors and their components, respectively. The global NP is used to evaluate the overall condition of the cellular system. If abnormal behavior is detected, local NPs are used in a component-wise fashion to find abnormal state variables. Anomaly detection tests are performed via percentile-based confidence intervals computed over the global and local NPs. We compared the performance of four competitive algorithms [winner-take-all (WTA), frequency-sensitive competitive learning (FSCL), self-organizing map (SOM), and neural-gas algorithm (NGA)] and the results suggest that the joint use of global and local NPs is more efficient and more robust than current single-threshold methods.

  3. Inspection of Piezoceramic Transducers Used for Structural Health Monitoring

    PubMed Central

    Mueller, Inka; Fritzen, Claus-Peter

    2017-01-01

    The use of piezoelectric wafer active sensors (PWAS) for structural health monitoring (SHM) purposes is state of the art for acousto-ultrasonic-based methods. For system reliability, detailed information about the PWAS itself is necessary. This paper gives an overview on frequent PWAS faults and presents the effects of these faults on the wave propagation, used for active acousto-ultrasonics-based SHM. The analysis of the wave field is based on velocity measurements using a laser Doppler vibrometer (LDV). New and established methods of PWAS inspection are explained in detail, listing advantages and disadvantages. The electro-mechanical impedance spectrum as basis for these methods is discussed for different sensor faults. This way this contribution focuses on a detailed analysis of PWAS and the need of their inspection for an increased reliability of SHM systems. PMID:28772431

  4. Status and trends monitoring of riparian and aquatic habitat in the Olympic Experimental State Forest: Monitoring protocols

    Treesearch

    Teodora Minkova; Alex D. Foster

    2017-01-01

    Presented here are the monitoring protocols for the Status and Trends Monitoring of Riparian and Aquatic Habitats project in the Olympic Experimental State Forest (OESF). The procedures yield the empirical data needed to address key uncertainties regarding the integration of timber production and habitat conservation across landscapes and assess progress toward...

  5. Fault detection and diagnosis for gas turbines based on a kernelized information entropy model.

    PubMed

    Wang, Weiying; Xu, Zhiqiang; Tang, Rui; Li, Shuying; Wu, Wei

    2014-01-01

    Gas turbines are considered as one kind of the most important devices in power engineering and have been widely used in power generation, airplanes, and naval ships and also in oil drilling platforms. However, they are monitored without man on duty in the most cases. It is highly desirable to develop techniques and systems to remotely monitor their conditions and analyze their faults. In this work, we introduce a remote system for online condition monitoring and fault diagnosis of gas turbine on offshore oil well drilling platforms based on a kernelized information entropy model. Shannon information entropy is generalized for measuring the uniformity of exhaust temperatures, which reflect the overall states of the gas paths of gas turbine. In addition, we also extend the entropy to compute the information quantity of features in kernel spaces, which help to select the informative features for a certain recognition task. Finally, we introduce the information entropy based decision tree algorithm to extract rules from fault samples. The experiments on some real-world data show the effectiveness of the proposed algorithms.

  6. Development and implementation of a web-based system to study children with malnutrition.

    PubMed

    Syed-Mohamad, Sharifah-Mastura

    2009-01-01

    To develop and implement a collective web-based system to monitor child growth in order to study children with malnutrition. The system was developed using prototyping system development methodology. The implementation was carried out using open-source technologies that include Apache Web Server, PHP scripting, and MySQL database management system. There were four datasets collected by the system: demographic data, measurement data, parent data, and food program data. The system was designed to be used by two groups of users, the clinics and the researchers. The Growth Monitor System was successfully developed and used for the study, "Geoinformation System (GIS) and Remote Sensing in Mapping of Children with Malnutrition." Data collection was implemented in public clinics from two districts in the state of Kelantan, Malaysia. The development of an integrated web-based system, Growth Monitor, for the study of children with malnutrition has been achieved. This system can be expanded to new partners who are involved in the study of children with malnutrition in other parts of Malaysia as well as other countries.

  7. Anticipatory Monitoring and Control of Complex Systems using a Fuzzy based Fusion of Support Vector Regressors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miltiadis Alamaniotis; Vivek Agarwal

    This paper places itself in the realm of anticipatory systems and envisions monitoring and control methods being capable of making predictions over system critical parameters. Anticipatory systems allow intelligent control of complex systems by predicting their future state. In the current work, an intelligent model aimed at implementing anticipatory monitoring and control in energy industry is presented and tested. More particularly, a set of support vector regressors (SVRs) are trained using both historical and observed data. The trained SVRs are used to predict the future value of the system based on current operational system parameter. The predicted values are thenmore » inputted to a fuzzy logic based module where the values are fused to obtain a single value, i.e., final system output prediction. The methodology is tested on real turbine degradation datasets. The outcome of the approach presented in this paper highlights the superiority over single support vector regressors. In addition, it is shown that appropriate selection of fuzzy sets and fuzzy rules plays an important role in improving system performance.« less

  8. Prediction of dynamic strains on a monopile offshore wind turbine using virtual sensors

    NASA Astrophysics Data System (ADS)

    Iliopoulos, A. N.; Weijtjens, W.; Van Hemelrijck, D.; Devriendt, C.

    2015-07-01

    The monitoring of the condition of the offshore wind turbine during its operational states offers the possibility of performing accurate assessments of the remaining life-time as well as supporting maintenance decisions during its entire life. The efficacy of structural monitoring in the case of the offshore wind turbine, though, is undermined by the practical limitations connected to the measurement system in terms of cost, weight and feasibility of sensor mounting (e.g. at muddline level 30m below the water level). This limitation is overcome by reconstructing the full-field response of the structure based on the limited number of measured accelerations and a calibrated Finite Element Model of the system. A modal decomposition and expansion approach is used for reconstructing the responses at all degrees of freedom of the finite element model. The paper will demonstrate the possibility to predict dynamic strains from acceleration measurements based on the aforementioned methodology. These virtual dynamic strains will then be evaluated and validated based on actual strain measurements obtained from a monitoring campaign on an offshore Vestas V90 3 MW wind turbine on a monopile foundation.

  9. Fault Detection and Diagnosis for Gas Turbines Based on a Kernelized Information Entropy Model

    PubMed Central

    Wang, Weiying; Xu, Zhiqiang; Tang, Rui; Li, Shuying; Wu, Wei

    2014-01-01

    Gas turbines are considered as one kind of the most important devices in power engineering and have been widely used in power generation, airplanes, and naval ships and also in oil drilling platforms. However, they are monitored without man on duty in the most cases. It is highly desirable to develop techniques and systems to remotely monitor their conditions and analyze their faults. In this work, we introduce a remote system for online condition monitoring and fault diagnosis of gas turbine on offshore oil well drilling platforms based on a kernelized information entropy model. Shannon information entropy is generalized for measuring the uniformity of exhaust temperatures, which reflect the overall states of the gas paths of gas turbine. In addition, we also extend the entropy to compute the information quantity of features in kernel spaces, which help to select the informative features for a certain recognition task. Finally, we introduce the information entropy based decision tree algorithm to extract rules from fault samples. The experiments on some real-world data show the effectiveness of the proposed algorithms. PMID:25258726

  10. Dense-HOG-based drift-reduced 3D face tracking for infant pain monitoring

    NASA Astrophysics Data System (ADS)

    Saeijs, Ronald W. J. J.; Tjon A Ten, Walther E.; de With, Peter H. N.

    2017-03-01

    This paper presents a new algorithm for 3D face tracking intended for clinical infant pain monitoring. The algorithm uses a cylinder head model and 3D head pose recovery by alignment of dynamically extracted templates based on dense-HOG features. The algorithm includes extensions for drift reduction, using re-registration in combination with multi-pose state estimation by means of a square-root unscented Kalman filter. The paper reports experimental results on videos of moving infants in hospital who are relaxed or in pain. Results show good tracking behavior for poses up to 50 degrees from upright-frontal. In terms of eye location error relative to inter-ocular distance, the mean tracking error is below 9%.

  11. SME2EM: Smart mobile end-to-end monitoring architecture for life-long diseases.

    PubMed

    Serhani, Mohamed Adel; Menshawy, Mohamed El; Benharref, Abdelghani

    2016-01-01

    Monitoring life-long diseases requires continuous measurements and recording of physical vital signs. Most of these diseases are manifested through unexpected and non-uniform occurrences and behaviors. It is impractical to keep patients in hospitals, health-care institutions, or even at home for long periods of time. Monitoring solutions based on smartphones combined with mobile sensors and wireless communication technologies are a potential candidate to support complete mobility-freedom, not only for patients, but also for physicians. However, existing monitoring architectures based on smartphones and modern communication technologies are not suitable to address some challenging issues, such as intensive and big data, resource constraints, data integration, and context awareness in an integrated framework. This manuscript provides a novel mobile-based end-to-end architecture for live monitoring and visualization of life-long diseases. The proposed architecture provides smartness features to cope with continuous monitoring, data explosion, dynamic adaptation, unlimited mobility, and constrained devices resources. The integration of the architecture׳s components provides information about diseases׳ recurrences as soon as they occur to expedite taking necessary actions, and thus prevent severe consequences. Our architecture system is formally model-checked to automatically verify its correctness against designers׳ desirable properties at design time. Its components are fully implemented as Web services with respect to the SOA architecture to be easy to deploy and integrate, and supported by Cloud infrastructure and services to allow high scalability, availability of processes and data being stored and exchanged. The architecture׳s applicability is evaluated through concrete experimental scenarios on monitoring and visualizing states of epileptic diseases. The obtained theoretical and experimental results are very promising and efficiently satisfy the proposed architecture׳s objectives, including resource awareness, smart data integration and visualization, cost reduction, and performance guarantee. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Monitoring-induced disruption in skilled typewriting.

    PubMed

    Snyder, Kristy M; Logan, Gordon D

    2013-10-01

    It is often disruptive to attend to the details of one's expert performance. The current work presents four experiments that utilized a monitor to report protocol to evaluate the sufficiency of three accounts of monitoring-induced disruption. The inhibition hypothesis states that disruption results from costs associated with preparing to withhold inappropriate responses. The dual-task hypothesis states that disruption results from maintaining monitored information in working memory. The implicit-explicit hypothesis states that disruption results from explicitly monitoring details of performance that are normally implicit. The findings suggest that all three hypotheses are sufficient to produce disruption, but inhibition and dual-task costs are not necessary. Experiment 1 showed that monitoring to report was disruptive even when there was no requirement to inhibit. Experiment 2 showed that maintaining information in working memory caused some disruption but much less than monitoring to report. Experiment 4 showed that monitoring to inhibit was more disruptive than monitoring to report, suggesting that monitoring is more disruptive when it is combined with other task requirements, such as inhibition. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  13. Spatial structure and scaling of macropores in hydrological process at small catchment scale

    NASA Astrophysics Data System (ADS)

    Silasari, Rasmiaditya; Broer, Martine; Blöschl, Günter

    2013-04-01

    During rainfall events, the formation of overland flow can occur under the circumstances of saturation excess and/or infiltration excess. These conditions are affected by the soil moisture state which represents the soil water content in micropores and macropores. Macropores act as pathway for the preferential flows and have been widely studied locally. However, very little is known about their spatial structure and conductivity of macropores and other flow characteristic at the catchment scale. This study will analyze these characteristics to better understand its importance in hydrological processes. The research will be conducted in Petzenkirchen Hydrological Open Air Laboratory (HOAL), a 64 ha catchment located 100 km west of Vienna. The land use is divided between arable land (87%), pasture (5%), forest (6%) and paved surfaces (2%). Video cameras will be installed on an agricultural field to monitor the overland flow pattern during rainfall events. A wireless soil moisture network is also installed within the monitored area. These field data will be combined to analyze the soil moisture state and the responding surface runoff occurrence. The variability of the macropores spatial structure of the observed area (field scale) then will be assessed based on the topography and soil data. Soil characteristics will be supported with laboratory experiments on soil matrix flow to obtain proper definitions of the spatial structure of macropores and its variability. A coupled physically based distributed model of surface and subsurface flow will be used to simulate the variability of macropores spatial structure and its effect on the flow behaviour. This model will be validated by simulating the observed rainfall events. Upscaling from field scale to catchment scale will be done to understand the effect of macropores variability on larger scales by applying spatial stochastic methods. The first phase in this study is the installation and monitoring configuration of video cameras and soil moisture monitoring equipment to obtain the initial data of overland flow occurrence and soil moisture state relationships.

  14. Nonintrusive Load Monitoring Based on Advanced Deep Learning and Novel Signature.

    PubMed

    Kim, Jihyun; Le, Thi-Thu-Huong; Kim, Howon

    2017-01-01

    Monitoring electricity consumption in the home is an important way to help reduce energy usage. Nonintrusive Load Monitoring (NILM) is existing technique which helps us monitor electricity consumption effectively and costly. NILM is a promising approach to obtain estimates of the electrical power consumption of individual appliances from aggregate measurements of voltage and/or current in the distribution system. Among the previous studies, Hidden Markov Model (HMM) based models have been studied very much. However, increasing appliances, multistate of appliances, and similar power consumption of appliances are three big issues in NILM recently. In this paper, we address these problems through providing our contributions as follows. First, we proposed state-of-the-art energy disaggregation based on Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) model and additional advanced deep learning. Second, we proposed a novel signature to improve classification performance of the proposed model in multistate appliance case. We applied the proposed model on two datasets such as UK-DALE and REDD. Via our experimental results, we have confirmed that our model outperforms the advanced model. Thus, we show that our combination between advanced deep learning and novel signature can be a robust solution to overcome NILM's issues and improve the performance of load identification.

  15. Nonintrusive Load Monitoring Based on Advanced Deep Learning and Novel Signature

    PubMed Central

    Le, Thi-Thu-Huong; Kim, Howon

    2017-01-01

    Monitoring electricity consumption in the home is an important way to help reduce energy usage. Nonintrusive Load Monitoring (NILM) is existing technique which helps us monitor electricity consumption effectively and costly. NILM is a promising approach to obtain estimates of the electrical power consumption of individual appliances from aggregate measurements of voltage and/or current in the distribution system. Among the previous studies, Hidden Markov Model (HMM) based models have been studied very much. However, increasing appliances, multistate of appliances, and similar power consumption of appliances are three big issues in NILM recently. In this paper, we address these problems through providing our contributions as follows. First, we proposed state-of-the-art energy disaggregation based on Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) model and additional advanced deep learning. Second, we proposed a novel signature to improve classification performance of the proposed model in multistate appliance case. We applied the proposed model on two datasets such as UK-DALE and REDD. Via our experimental results, we have confirmed that our model outperforms the advanced model. Thus, we show that our combination between advanced deep learning and novel signature can be a robust solution to overcome NILM's issues and improve the performance of load identification. PMID:29118809

  16. City plants as ecological indicator of environment quality in St. Petersburg

    NASA Astrophysics Data System (ADS)

    Sapunov, Valentin; Glazyrina, Tatyana

    2017-04-01

    Under increase of natural hazard activity and anthropogenic pressure the effective and cheep monitoring methods become necessary. Majority of modern methods of monitoring, such as space and air, needs significant foundation. The simplest monitoring method is biological indication, basing on essay of variability, sex ration and sexual dimorphism. Such a method does not need long time efforts and may be realized by short observation. Urban plants are natural indicators of ecological pressure. Check or their state may give us significant information on area pollution by use of principles of phenogenic indication. Genetic and phenotypic variability of different organism have general principles and constants. The per cent of abnormal organisms and coefficient of variability are stable for majority of species under favorable state and increase under unfavorable conditions. The basis for indication is both state of adult trees and morphological variability of pollen grains. The part of dried threes and threes infected by parasites-xylophagous is correlated with toxic pollution. Float asymmetry of lives is measure of mutagenic pollution. Abnormal form of three (dichotomy, curved) is criteria of teratogenic pollution. Importance of such an indication is increased by such incidents as Chernobyl, Fucusima and so on. Algorithm for analyze of such a data is considered. The map of ecological pressure of St. Petersburg is presented.

  17. Global inorganic nitrogen dry deposition inferred from ground- and space-based measurements.

    PubMed

    Jia, Yanlong; Yu, Guirui; Gao, Yanni; He, Nianpeng; Wang, Qiufeng; Jiao, Cuicui; Zuo, Yao

    2016-01-27

    Atmospheric nitrogen (N) dry deposition is an important component in total N deposition. However, uncertainty exists in the assessment of global dry deposition. Here, we develop empirical models for estimating ground N concentrations using NO2 satellite measurements from the Ozone Monitoring Instrument (OMI) and ground measurements from 555 monitoring sites. Global patterns and trends in the fluxes of NO2, HNO3, NH4(+), and NO3(-) were assessed for 2005-2014. Moreover, we estimated global NH3 dry deposition directly using data from 267 monitoring sites. Our results showed that East Asia, the United States, and Europe were important regions of N deposition, and the total annual amount of global inorganic N deposition was 34.26 Tg N. The dry deposition fluxes were low in Africa and South America, but because of their large area, the total amounts in these regions were comparable to those in Europe and North America. In the past decade, the western United States and Eurasia, particularly eastern China, experienced the largest increases in dry deposition, whereas the eastern United States, Western Europe, and Japan experienced clear decreases through control of NOx and NH3 emissions. These findings provide a scientific background for policy-makers and future research into global changes.

  18. Global inorganic nitrogen dry deposition inferred from ground- and space-based measurements

    PubMed Central

    Jia, Yanlong; Yu, Guirui; Gao, Yanni; He, Nianpeng; Wang, Qiufeng; Jiao, Cuicui; Zuo, Yao

    2016-01-01

    Atmospheric nitrogen (N) dry deposition is an important component in total N deposition. However, uncertainty exists in the assessment of global dry deposition. Here, we develop empirical models for estimating ground N concentrations using NO2 satellite measurements from the Ozone Monitoring Instrument (OMI) and ground measurements from 555 monitoring sites. Global patterns and trends in the fluxes of NO2, HNO3, NH4+, and NO3− were assessed for 2005–2014. Moreover, we estimated global NH3 dry deposition directly using data from 267 monitoring sites. Our results showed that East Asia, the United States, and Europe were important regions of N deposition, and the total annual amount of global inorganic N deposition was 34.26 Tg N. The dry deposition fluxes were low in Africa and South America, but because of their large area, the total amounts in these regions were comparable to those in Europe and North America. In the past decade, the western United States and Eurasia, particularly eastern China, experienced the largest increases in dry deposition, whereas the eastern United States, Western Europe, and Japan experienced clear decreases through control of NOx and NH3 emissions. These findings provide a scientific background for policy-makers and future research into global changes. PMID:26813440

  19. Noninvasive monitoring of cerebral oxygenation in preterm infants: preliminary observations.

    PubMed

    Brazy, J E; Lewis, D V; Mitnick, M H; Jöbsis vander Vliet, F F

    1985-02-01

    A noninvasive optical method for bedside monitoring of cerebral oxygenation in small preterm infants was evaluated. Through differential absorbance of near infrared light, changes in the oxidation-reduction level of cytochrome aa3, in the oxygenation state of hemoglobin and in tissue blood volume were assessed in the transilluminated anterior cerebral field. Overall, cerebral oxygenated hemoglobin correlated significantly with transcutaneous oxygen, r = .44 p less than .0001; however, correlation was best in the absence of cardiorespiratory disease. Hypoxia with or without bradycardia led to hemoglobin deoxygenation and a shift in cytochrome aa3 to a more reduced state. When hypoxic episodes came in series or were prolonged, aa3 reduction occurred simultaneous with hemoglobin deoxygenation but its recovery to base-line values sometimes lagged behind the return of hemoglobin oxygenation. In one infant with a large patent ductus arteriosus, even brief episodes of mild bradycardia caused precipitous reduction of cytochrome aa3 before any shift to greater hemoglobin deoxygenation. This response disappeared after ductal ligation. In general, the antecedent state of cerebral oxygenation, the severity and duration of deoxygenation, and the presence or absence of circulatory abnormalities all influenced the aa3 response to hypoxia. Continuous noninvasive near infrared monitoring of cerebral oxygenation can be performed on sick preterm infants at the bedside.

  20. An Online Banking System Based on Quantum Cryptography Communication

    NASA Astrophysics Data System (ADS)

    Zhou, Ri-gui; Li, Wei; Huan, Tian-tian; Shen, Chen-yi; Li, Hai-sheng

    2014-07-01

    In this paper, an online banking system has been built. Based on quantum cryptography communication, this system is proved unconditional secure. Two sets of GHZ states are applied, which can ensure the safety of purchase and payment, respectively. In another word, three trading participants in each triplet state group form an interdependent and interactive relationship. In the meantime, trading authorization and blind signature is introduced by means of controllable quantum teleportation. Thus, an effective monitor is practiced on the premise that the privacy of trading partners is guaranteed. If there is a dispute or deceptive behavior, the system will find out the deceiver immediately according to the relationship mentioned above.

  1. Smart FBG-based FRP anchor

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi; Zhang, Zhichun; Wang, Chuan; Ou, Jinping

    2006-03-01

    FRP ( Fiber Reinforced Polymer ) has become the popular material to alternate steel in civil engineering under harsh corrosion environment. But due to its low shear strength ability, the anchor for FRP is most important for its practical application. However, the strain state of the surface between FRP and anchor is not fully understood due to that there is no proper sensor to monitor the inner strain in the anchor by traditional method. In this paper, a new smart FBG-based FRP anchor is brought forward, and the inner strain distribution of FRP anchor has been monitored using FRP-OFBG sensors, a smart FBG-embedded FRP rebar, which is pre-embedded in the FRP rod and cast in the anchor. Based on the strain distribution information the bonding shear stress on the surface of FRP rod along the anchor can also be obtained. This method can supply important information for FRP anchor design and can also monitor the anchorage system, which is useful for the application of FRP in civil engineering. The experimental results also show that the smart FBG-based FRP anchor can give direct information of the load and damage of the FRP anchor.

  2. A Tensor-Based Structural Damage Identification and Severity Assessment

    PubMed Central

    Anaissi, Ali; Makki Alamdari, Mehrisadat; Rakotoarivelo, Thierry; Khoa, Nguyen Lu Dang

    2018-01-01

    Early damage detection is critical for a large set of global ageing infrastructure. Structural Health Monitoring systems provide a sensor-based quantitative and objective approach to continuously monitor these structures, as opposed to traditional engineering visual inspection. Analysing these sensed data is one of the major Structural Health Monitoring (SHM) challenges. This paper presents a novel algorithm to detect and assess damage in structures such as bridges. This method applies tensor analysis for data fusion and feature extraction, and further uses one-class support vector machine on this feature to detect anomalies, i.e., structural damage. To evaluate this approach, we collected acceleration data from a sensor-based SHM system, which we deployed on a real bridge and on a laboratory specimen. The results show that our tensor method outperforms a state-of-the-art approach using the wavelet energy spectrum of the measured data. In the specimen case, our approach succeeded in detecting 92.5% of induced damage cases, as opposed to 61.1% for the wavelet-based approach. While our method was applied to bridges, its algorithm and computation can be used on other structures or sensor-data analysis problems, which involve large series of correlated data from multiple sensors. PMID:29301314

  3. A miniature batteryless health and usage monitoring system based on hybrid energy harvesting

    NASA Astrophysics Data System (ADS)

    Huang, Chenling; Chakrabartty, Shantanu

    2011-04-01

    The cost and size of the state-of-the-art health and usage monitoring systems (HUMS) are determined by capacity of on-board energy storage which limits their large scale deployment. In this paper, we present a miniature low-cost mechanical HUMS integrated circuit (IC) based on the concept of hybrid energy harvesting where continuous monitoring is achieved by self-powering, where as the programming, localization and communication with the sensor is achieved using remote RF powering. The self-powered component of the proposed HUMS is based on our previous result which used a controllable hot electron injection on floatinggate transistor as an ultra-low power signal processor. We show that the HUMS IC can seamlessly switch between different energy harvesting modes based on the availability of ambient RF power and that the configuration, programming and communication functions can be remotely performed without physically accessing the HUMS device. All the measured results presented in this paper have been obtained from prototypes fabricated in a 0.5 micron standard CMOS process and the entire system has been successfully integrated on a 1.5cm x 1.5cm package.

  4. Improving effectiveness of protection efforts in tiger source sites: Developing a framework for law enforcement monitoring using MIST.

    PubMed

    Stokes, Emma J

    2010-12-01

    Wild tigers are in a critical state with an estimated population decline of more than 95% over the past century. Improving the capacity and effectiveness of law enforcement in reducing poaching of tigers is an immediate priority to secure remaining wild populations in source sites. From 2008-2010, standardized patrol-based law enforcement monitoring (LEM) was established under the Tigers Forever Program across 8 key tiger sites in order to improve and evaluate law enforcement interventions. Patrol-based monitoring has the distinct advantage of providing regular and rapid information on illegal activities and ranger performance, although, until recently, it has received relatively little scrutiny from the conservation community. The present paper outlines a framework for implementation of LEM in tiger source sites using MIST, a computerized management information system for ranger-based data collection. The framework addresses many of the technical, practical and institutional challenges involved in the design, implementation, sustainability and evaluation of LEM. Adoption of such a framework for LEM is a cost-effective strategy to improve the efficiency of law enforcement efforts, to increase the motivation of enforcement staff and to promote the accountability of law enforcement agencies in addressing threats to tigers. When combined with independent, systematic and science-based monitoring of tigers and their prey, LEM has great potential for evaluating the effectiveness of protection-based conservation investments. © 2010 ISZS, Blackwell Publishing and IOZ/CAS.

  5. Monitoring complex detectors: the uSOP approach in the Belle II experiment

    NASA Astrophysics Data System (ADS)

    Di Capua, F.; Aloisio, A.; Ameli, F.; Anastasio, A.; Branchini, P.; Giordano, R.; Izzo, V.; Tortone, G.

    2017-08-01

    uSOP is a general purpose single board computer designed for deep embedded applications in control and monitoring of detectors, sensors and complex laboratory equipments. It is based on the AM3358 (1 GHz ARM Cortex A8 processor), equipped with USB and Ethernet interfaces. On-board RAM and solid state storage allows hosting a full LINUX distribution. In this paper we discuss the main aspects of the hardware and software design and the expandable peripheral architecture built around field busses. We report on several applications of uSOP system in the Belle II experiment, presently under construction at KEK (Tsukuba, Japan). In particular we will report the deployment of uSOP in the monitoring system framework of the endcap electromagnetic calorimeter.

  6. Genetically encoded probes for NAD+/NADH monitoring.

    PubMed

    Bilan, Dmitry S; Belousov, Vsevolod V

    2016-11-01

    NAD + and NADH participate in many metabolic reactions. The NAD + /NADH ratio is an important parameter reflecting the general metabolic and redox state of different types of cells. For a long time, in situ and in vivo NAD + /NADH monitoring has been hampered by the lack of suitable tools. The recent development of genetically encoded indicators based on fluorescent proteins linked to specific nucleotide-binding domains has already helped to address this monitoring problem. In this review, we will focus on four available indicators: Peredox, Frex family probes, RexYFP and SoNar. Each indicator has advantages and limitations. We will also discuss the most important points that should be considered when selecting a suitable indicator for certain experimental conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. 9 CFR 56.10 - Initial State response and containment plan.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .../H7 LOW PATHOGENIC AVIAN INFLUENZA § 56.10 Initial State response and containment plan. (a) In order... and education programs regarding avian influenza. (b) If a State is designated a U.S. Avian Influenza Monitored State, Layers under § 146.24(a) of this chapter or a U.S. Avian Influenza Monitored State, Turkeys...

  8. 9 CFR 56.10 - Initial State response and containment plan.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .../H7 LOW PATHOGENIC AVIAN INFLUENZA § 56.10 Initial State response and containment plan. (a) In order... and education programs regarding avian influenza. (b) If a State is designated a U.S. Avian Influenza Monitored State, Layers under § 146.24(a) of this chapter or a U.S. Avian Influenza Monitored State, Turkeys...

  9. 9 CFR 56.10 - Initial State response and containment plan.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .../H7 LOW PATHOGENIC AVIAN INFLUENZA § 56.10 Initial State response and containment plan. (a) In order... and education programs regarding avian influenza. (b) If a State is designated a U.S. Avian Influenza Monitored State, Layers under § 146.24(a) of this chapter or a U.S. Avian Influenza Monitored State, Turkeys...

  10. 9 CFR 56.10 - Initial State response and containment plan.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .../H7 LOW PATHOGENIC AVIAN INFLUENZA § 56.10 Initial State response and containment plan. (a) In order... and education programs regarding avian influenza. (b) If a State is designated a U.S. Avian Influenza Monitored State, Layers under § 146.24(a) of this chapter or a U.S. Avian Influenza Monitored State, Turkeys...

  11. Community Air Monitoring for Pesticide Drift Using Pesticide Action Network's (PAN) Drift Catcher

    NASA Astrophysics Data System (ADS)

    Marquez, E.

    2016-12-01

    Community air monitoring projects for pesticides in the air have been conducted by PAN in collaboration with community members and locally based groups engaged around pesticide issues. PAN is part of an international network working to promote a just, thriving food system and replace the use of hazardous pesticides with ecologically sound alternatives. The Drift Catcher is an air-monitoring device with a design based on the California Air Resource Board's air monitoring equipment, and has been used in community-based projects in 11 states. Observations of pesticide drift made by community members cannot always be confirmed by regulatory agencies—if an inspection is made hours or days after a drift incident, the evidence may no longer be present. The Drift Catcher makes it possible to collect scientific evidence of pesticide drift in areas where people live, work, and play. One of the most recent Drift Catcher projects was done in California, in partnership with the Safe Strawberry Coalition and led by the statewide coalition Californians for Pesticide Reform. The data were used to support a call for stronger mitigation rules for the fumigant chloropicrin and to support a campaign asking for stronger pesticide rules to protect children attending school in close proximity to agricultural fields. The Drift Catcher data are used by organizers and community members to engage policymakers with the intention of making policy change on a local and/or statewide level. On the national level, PAN's Drift Catcher data has helped win regulatory recognition of volatilization drift for pesticides other than fumigants. Lessons learned from conducting community-based research projects will also be discussed. PAN is also currently assessing other community-based monitoring tools, such as community surveys and drift questionnaires that may allow communities to collect data that can also support the campaign work.

  12. Assessment of continuous acoustic respiratory rate monitoring as an addition to a pulse oximetry-based patient surveillance system.

    PubMed

    McGrath, Susan P; Pyke, Joshua; Taenzer, Andreas H

    2017-06-01

    Technology advances make it possible to consider continuous acoustic respiratory rate monitoring as an integral component of physiologic surveillance systems. This study explores technical and logistical aspects of augmenting pulse oximetry-based patient surveillance systems with continuous respiratory rate monitoring and offers some insight into the impact on patient deterioration detection that may result. Acoustic respiratory rate sensors were introduced to a general care pulse oximetry-based surveillance system with respiratory rate alarms deactivated. Simulation was used after 4324 patient days to determine appropriate alarm thresholds for respiratory rate, which were then activated. Data were collected for an additional 4382 patient days. Physiologic parameters, alarm data, sensor utilization and patient/staff feedback were collected throughout the study and analyzed. No notable technical or workflow issues were observed. Sensor utilization was 57 %, with patient refusal leading reasons for nonuse (22.7 %). With respiratory rate alarm thresholds set to 6 and 40 breaths/min., the majority of nurse pager clinical notifications were triggered by low oxygen saturation values (43 %), followed by low respiratory rate values (21 %) and low pulse rate values (13 %). Mean respiratory rate collected was 16.6 ± 3.8 breaths/min. The vast majority (82 %) of low oxygen saturation states coincided with normal respiration rates of 12-20 breaths/min. Continuous respiratory rate monitoring can be successfully added to a pulse oximetry-based surveillance system without significant technical, logistical or workflow issues and is moderately well-tolerated by patients. Respiratory rate sensor alarms did not significantly impact overall system alarm burden. Respiratory rate and oxygen saturation distributions suggest adding continuous respiratory rate monitoring to a pulse oximetry-based surveillance system may not significantly improve patient deterioration detection.

  13. Time-Lapse Electrical Geophysical Monitoring of Amendment-Based Biostimulation.

    PubMed

    Johnson, Timothy C; Versteeg, Roelof J; Day-Lewis, Frederick D; Major, William; Lane, John W

    2015-01-01

    Biostimulation is increasingly used to accelerate microbial remediation of recalcitrant groundwater contaminants. Effective application of biostimulation requires successful emplacement of amendment in the contaminant target zone. Verification of remediation performance requires postemplacement assessment and contaminant monitoring. Sampling-based approaches are expensive and provide low-density spatial and temporal information. Time-lapse electrical resistivity tomography (ERT) is an effective geophysical method for determining temporal changes in subsurface electrical conductivity. Because remedial amendments and biostimulation-related biogeochemical processes often change subsurface electrical conductivity, ERT can complement and enhance sampling-based approaches for assessing emplacement and monitoring biostimulation-based remediation. Field studies demonstrating the ability of time-lapse ERT to monitor amendment emplacement and behavior were performed during a biostimulation remediation effort conducted at the Department of Defense Reutilization and Marketing Office (DRMO) Yard, in Brandywine, Maryland, United States. Geochemical fluid sampling was used to calibrate a petrophysical relation in order to predict groundwater indicators of amendment distribution. The petrophysical relations were field validated by comparing predictions to sequestered fluid sample results, thus demonstrating the potential of electrical geophysics for quantitative assessment of amendment-related geochemical properties. Crosshole radar zero-offset profile and borehole geophysical logging were also performed to augment the data set and validate interpretation. In addition to delineating amendment transport in the first 10 months after emplacement, the time-lapse ERT results show later changes in bulk electrical properties interpreted as mineral precipitation. Results support the use of more cost-effective surface-based ERT in conjunction with limited field sampling to improve spatial and temporal monitoring of amendment emplacement and remediation performance. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  14. The Accuracy and Validity of iOS-Based Heart Rate Apps During Moderate to High Intensity Exercise.

    PubMed

    Bouts, Alexa M; Brackman, Lauren; Martin, Elizabeth; Subasic, Adam M; Potkanowicz, Edward S

    2018-01-01

    People use their smartphones for everything from web browsing to tracking fitness metrics. However, it is unclear whether smartphone-based apps that use photoplethysmography to measure heart rate are an accurate or valid measure of exercise intensity. Purpose was to determine the accuracy and validity of two iOS-based heart rate monitors, Runtastic Heart Rate Monitor and Pulse Tracker PRO by Runtastic (Runtastic) and Instant Heart Rate+: Heart Rate and Pulse Monitor by Azumio (Instant Heart Rate), when compared to the electrocardiogram (ECG) and Polar® T31 uncoded heart rate monitor from moderate to vigorous intensity exercise. Participants were 15 male and female regularly active college students. Pre-exercise heart rate and blood pressure were recorded and then participants exercised on a stationary bike at a pedal rate of between 50-60 rpms. After completing a warm-up stage at 40% of age estimated maximum heart rate (AEMHR), exercise intensity progressed from 50% of AEMHR through to 85% of AEMHR in eight, 5-minute stages. At the end of each stage, and having achieved steady-state, heart rates were recorded from each apparatus. After completing the final stage, participants completed a cooldown at 40% of their AEMHR. Post-exercise heart rate and blood pressure were also recorded to ensure full recovery to baseline. There was a strong positive correlation between the Polar® monitor and the ECG during all stages. However, there were not strong correlations for either of the smartphone-based apps at any time point. Although there were weak correlations between the smartphone-based apps and ECG and Polar®, further studies need to be conducted to determine if inaccuracy is due to user error (finger placement, finger temperature, etc.) or the technology behind the apps.

  15. The Accuracy and Validity of iOS-Based Heart Rate Apps During Moderate to High Intensity Exercise

    PubMed Central

    BOUTS, ALEXA M.; BRACKMAN, LAUREN; MARTIN, ELIZABETH; SUBASIC, ADAM M.; POTKANOWICZ, EDWARD S.

    2018-01-01

    People use their smartphones for everything from web browsing to tracking fitness metrics. However, it is unclear whether smartphone-based apps that use photoplethysmography to measure heart rate are an accurate or valid measure of exercise intensity. Purpose was to determine the accuracy and validity of two iOS-based heart rate monitors, Runtastic Heart Rate Monitor and Pulse Tracker PRO by Runtastic (Runtastic) and Instant Heart Rate+: Heart Rate and Pulse Monitor by Azumio (Instant Heart Rate), when compared to the electrocardiogram (ECG) and Polar® T31 uncoded heart rate monitor from moderate to vigorous intensity exercise. Participants were 15 male and female regularly active college students. Pre-exercise heart rate and blood pressure were recorded and then participants exercised on a stationary bike at a pedal rate of between 50–60 rpms. After completing a warm-up stage at 40% of age estimated maximum heart rate (AEMHR), exercise intensity progressed from 50% of AEMHR through to 85% of AEMHR in eight, 5-minute stages. At the end of each stage, and having achieved steady-state, heart rates were recorded from each apparatus. After completing the final stage, participants completed a cooldown at 40% of their AEMHR. Post-exercise heart rate and blood pressure were also recorded to ensure full recovery to baseline. There was a strong positive correlation between the Polar® monitor and the ECG during all stages. However, there were not strong correlations for either of the smartphone-based apps at any time point. Although there were weak correlations between the smartphone-based apps and ECG and Polar®, further studies need to be conducted to determine if inaccuracy is due to user error (finger placement, finger temperature, etc.) or the technology behind the apps. PMID:29541341

  16. Time-Lapse Electrical Geophysical Monitoring of Amendment-Based Biostimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Timothy C.; Versteeg, Roelof; Day-Lewis, Frederick D.

    Biostimulation is increasingly used to accelerate microbial remediation of recalcitrant groundwater contaminants. Effective application of biostimulation requires successful emplacement of amendment in the contaminant target zone. Verification of remediation performance requires postemplacement assessment and contaminant monitoring. Sampling based approaches are expensive and provide low-density spatial and temporal information. Time-lapse electrical resistivity tomography (ERT) is an effective geophysical method for determining temporal changes in subsurface electrical conductivity. Because remedial amendments and biostimulation-related biogeochemical processes often change subsurface electrical conductivity, ERT can complement and enhance sampling-based approaches for assessing emplacement and monitoring biostimulation-based remediation. Field studies demonstrating the ability of time-lapse ERTmore » to monitor amendment emplacement and behavior were performed during a biostimulation remediation effort conducted at the Department of Defense Reutilization and Marketing Office (DRMO) Yard, in Brandywine, Maryland, United States. Geochemical fluid sampling was used to calibrate a petrophysical relation in order to predict groundwater indicators of amendment distribution. The petrophysical relations were field validated by comparing predictions to sequestered fluid sample results, thus demonstrating the potential of electrical geophysics for quantitative assessment of amendment-related geochemical properties. Crosshole radar zero-offset profile and borehole geophysical logging were also performed to augment the data set and validate interpretation. In addition to delineating amendment transport in the first 10 months after emplacement, the time-lapse ERT results show later changes in bulk electrical properties interpreted as mineral precipitation. Results support the use of more cost-effective surfacebased ERT in conjunction with limited field sampling to improve spatial and temporal monitoring of amendment emplacement and remediation performance.« less

  17. Logic operations based on magnetic-vortex-state networks.

    PubMed

    Jung, Hyunsung; Choi, Youn-Seok; Lee, Ki-Suk; Han, Dong-Soo; Yu, Young-Sang; Im, Mi-Young; Fischer, Peter; Kim, Sang-Koog

    2012-05-22

    Logic operations based on coupled magnetic vortices were experimentally demonstrated. We utilized a simple chain structure consisting of three physically separated but dipolar-coupled vortex-state Permalloy disks as well as two electrodes for application of the logical inputs. We directly monitored the vortex gyrations in the middle disk, as the logical output, by time-resolved full-field soft X-ray microscopy measurements. By manipulating the relative polarization configurations of both end disks, two different logic operations are programmable: the XOR operation for the parallel polarization and the OR operation for the antiparallel polarization. This work paves the way for new-type programmable logic gates based on the coupled vortex-gyration dynamics achievable in vortex-state networks. The advantages are as follows: a low-power input signal by means of resonant vortex excitation, low-energy dissipation during signal transportation by selection of low-damping materials, and a simple patterned-array structure.

  18. Ideology of a multiparametric system for estimating the insulation system of electric machines on the basis of absorption testing methods

    NASA Astrophysics Data System (ADS)

    Kislyakov, M. A.; Chernov, V. A.; Maksimkin, V. L.; Bozhin, Yu. M.

    2017-12-01

    The article deals with modern methods of monitoring the state and predicting the life of electric machines. In 50% of the cases of failure in the performance of electric machines is associated with insulation damage. As promising, nondestructive methods of control, methods based on the investigation of the processes of polarization occurring in insulating materials are proposed. To improve the accuracy of determining the state of insulation, a multiparametric approach is considered, which is a basis for the development of an expert system for estimating the state of health.

  19. Human Activity Recognition in AAL Environments Using Random Projections.

    PubMed

    Damaševičius, Robertas; Vasiljevas, Mindaugas; Šalkevičius, Justas; Woźniak, Marcin

    2016-01-01

    Automatic human activity recognition systems aim to capture the state of the user and its environment by exploiting heterogeneous sensors attached to the subject's body and permit continuous monitoring of numerous physiological signals reflecting the state of human actions. Successful identification of human activities can be immensely useful in healthcare applications for Ambient Assisted Living (AAL), for automatic and intelligent activity monitoring systems developed for elderly and disabled people. In this paper, we propose the method for activity recognition and subject identification based on random projections from high-dimensional feature space to low-dimensional projection space, where the classes are separated using the Jaccard distance between probability density functions of projected data. Two HAR domain tasks are considered: activity identification and subject identification. The experimental results using the proposed method with Human Activity Dataset (HAD) data are presented.

  20. Human Activity Recognition in AAL Environments Using Random Projections

    PubMed Central

    Damaševičius, Robertas; Vasiljevas, Mindaugas; Šalkevičius, Justas; Woźniak, Marcin

    2016-01-01

    Automatic human activity recognition systems aim to capture the state of the user and its environment by exploiting heterogeneous sensors attached to the subject's body and permit continuous monitoring of numerous physiological signals reflecting the state of human actions. Successful identification of human activities can be immensely useful in healthcare applications for Ambient Assisted Living (AAL), for automatic and intelligent activity monitoring systems developed for elderly and disabled people. In this paper, we propose the method for activity recognition and subject identification based on random projections from high-dimensional feature space to low-dimensional projection space, where the classes are separated using the Jaccard distance between probability density functions of projected data. Two HAR domain tasks are considered: activity identification and subject identification. The experimental results using the proposed method with Human Activity Dataset (HAD) data are presented. PMID:27413392

Top