Sample records for state physics part

  1. Superconductivity driven by pairing of the coherent parts of the physical electrons

    NASA Astrophysics Data System (ADS)

    Su, Yuehua; Zhang, Chao

    2018-03-01

    How the superconductivity in unconventional superconductors emerges from the diverse mother normal states is still a big puzzle. Whatever the mother normal states are the superconductivity is normal with BCS-like behaviours of the paired quasiparticles in condensation. To reconcile the diverse mother normal states and the normal superconductivity in unconventional superconductors, we revisit a proposal that the emergence of the low-energy coherent parts of the physical electrons, which survive from the interaction correlations, is an essential prerequisite for superconductivity. The superconductivity is driven by the pair condensation of these coherent parts of the physical electrons. Moreover the incoherent parts of the physical electrons can enhance the superconducting transition temperature Tc although they are not in driving role in the emergence of the superconductivity. Some experimental responses of the coherent parts of the physical electrons are predicted.

  2. On understanding the very different science premises meaningful to CAM versus orthodox medicine: Part II--applications of Part I fundamentals to five different space-time examples.

    PubMed

    Tiller, William A

    2010-04-01

    In Part I of this pair of articles, the fundamental experimental observations and theoretical perspectives were provided for one to understand the key differences between our normal, uncoupled state of physical reality and the human consciousness-induced coupled state of physical reality. Here in Part II, the thermodynamics of complementary and alternative medicine, which deals with the partially coupled state of physical reality, is explored via the use of five different foci of relevance to today's science and medicine: (1) homeopathy; (2) the placebo effect; (3) long-range, room temperature, macroscopic size-scale, information entanglement; (4) an explanation for dark matter/energy plus human levitation possibility; and (5) electrodermal diagnostic devices. The purpose of this pair of articles is to clearly differentiate the use and limitations of uncoupled state physics in both nature and today's orthodox medicine from coupled state physics in tomorrow's complementary and alternative medicine.

  3. Keeping Recess in Schools

    ERIC Educational Resources Information Center

    Zavacky, Francesca; Michael, Shannon L.

    2017-01-01

    Recess is an important part of a comprehensive school physical activity program by providing physical activity to students during the school day, in addition to physical education and classroom physical activity. Unfortunately, recess in the United States is not an expected part of the school day, especially in middle and high schools. High-stakes…

  4. Driving Forces in Physical, Biological and Socio-economic Phenomena

    NASA Astrophysics Data System (ADS)

    Roehner, Bertrand M.

    2007-05-01

    Preface; Part I. Bridging the Gap between Physics and the Social Sciences: 1. Probing bonds; 2. The battle against noise in physics; 3. The battle against noise in the social sciences; 4. Equilibrium and metastable states; 5. Are the data reliable?; Part II. Macro Interactions: Societies and States: 6. Shaping the zeitgeist; 7. Bonds of vassalage; 8. The absentee ownership syndrome; Part III. Micro Interactions: A Network View of Suicide: 9. Effects of male-female imbalance; 10. Effect of weakened marital bonds on suicide; 11. Effect of social isolation on suicide; 12. Apoptosis; 13. Perspectives; References; Index.

  5. Driving Forces in Physical, Biological and Socio-economic Phenomena

    NASA Astrophysics Data System (ADS)

    Roehner, Bertrand M.

    2012-10-01

    Preface; Part I. Bridging the Gap between Physics and the Social Sciences: 1. Probing bonds; 2. The battle against noise in physics; 3. The battle against noise in the social sciences; 4. Equilibrium and metastable states; 5. Are the data reliable?; Part II. Macro Interactions: Societies and States: 6. Shaping the zeitgeist; 7. Bonds of vassalage; 8. The absentee ownership syndrome; Part III. Micro Interactions: A Network View of Suicide: 9. Effects of male-female imbalance; 10. Effect of weakened marital bonds on suicide; 11. Effect of social isolation on suicide; 12. Apoptosis; 13. Perspectives; References; Index.

  6. THE PHYSICAL ASPECTS OF URBANIZATION, PHYSICAL CONSIDERATIONS IN COMMUNITY ACTION. KANSAS STATE UNIVERSITY SHORT COURSE SERIES IN PLANNING AND DEVELOPMENT, 5.

    ERIC Educational Resources Information Center

    MCGRAW, EUGENE T.

    PART OF A KANSAS STATE UNIVERSITY SERIES ON COMMUNITY PLANNING AND DEVELOPMENT, THIS MONOGRAPH DESCRIBES AND DEFINES THE NATURE OF URBAN CENTERS AS PHYSICAL ENTITIES. BASIC LAND USE CATEGORIES AND SUBDIVISIONS, FUNCTIONAL CLASSIFICATIONS OF COMMUNITIES IN THE UNITED STATES (MANUFACTURING, RETAIL, WHOLESALE, DIVERSIFIED, TRANSPORTATION, MINING,…

  7. Helping General Physical Educators and Adapted Physical Educators Address the Office of Civil Rights Dear Colleague Guidance Letter: Part IV--Sport Groups

    ERIC Educational Resources Information Center

    Lieberman, Lauren; Lucas, Mark; Jones, Jeffery; Humphreys, Dan; Cody, Ann; Vaughn, Bev; Storms, Tommie

    2013-01-01

    "Helping General Physical Educators and Adapted Physical Educators Address the Office of Civil Rights Dear Colleague Guidance Letter: Part IV--Sport Groups" provides the the following articles: (1) "Sport Programming Offered by Camp Abilities and the United States Association for Blind Athletes" (Lauren Lieberman and Mark…

  8. Status of Participation in Physical Activity among International Students Attending Colleges and Universities in the United States

    ERIC Educational Resources Information Center

    Yoh, Taeho; Yang, Heewon; Gordon, Brian

    2008-01-01

    This study examined the status of participation in physical activity among international students attending colleges and universities in the United States. Participants for the study were 521 international students from five universities in the Midwestern part of the United States. Descriptive statistics revealed that international college…

  9. 10 CFR Appendix A to Part 605 - The Energy Research Program Office Descriptions

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... inorganic chemistry; chemical physics; atomic physics; photochemistry; radiation chemistry; thermodynamics... is comprised of the subfields metallurgy, ceramics, solid state physics, materials chemistry, and... listed below. (a) Applied Plasma Physics (APP) This Division seeks to develop that body of physics...

  10. Losing and Saving and Losing Physics in Texas

    NASA Astrophysics Data System (ADS)

    Marder, Michael

    2015-03-01

    Texas has the second-largest population of the states, and played even a larger role in education reform movements of the past 15 years than its size would indicate. In the Fall of 2011, physicists across the country were surprised to learn that six university physics programs in Texas were threatened with closure because of small graduation numbers. Five of them ultimately closed. Many of the faculty at the institutions losing programs came together and formed a consortium that eventually made it possible to continue offering physics,by unconventional means, to their undergraduates. In the Spring of 2013 came an even larger change. Physics had been part of the recommended high school graduation plan in Texas. As part of a bill making sweeping changes to high school graduation requirements and accountability, the physics requirement was removed. Physics may partly be falling victim to the national focus on STEM, which suggests that the various disciplines of science are interchangeable and not individually important. None of the changes in Texas are hard to imagine coming to other states as well.

  11. Interactive Video Games in Physical Education

    ERIC Educational Resources Information Center

    Trout, Josh; Christie, Brett

    2007-01-01

    As the obesity epidemic in the United States spreads among children and teenagers, due in part to sedentary lifestyles, some physical education programs are using interactive video games to keep students engaged in physical activity. These innovative games make physical activity fun and challenging for both high- and low-skilled students. Although…

  12. DIRECTORY OF PHYSICS AND ASTRONOMY FACULTIES 1967-1968, UNITED STATES, CANADA, MEXICO.

    ERIC Educational Resources Information Center

    BARISCH, SYLVIA

    THIS IS THE NINTH EDITION OF A DIRECTORY OF COLLEGES AND UNIVERSITIES WHICH OFFER COURSES IN PHYSICS, AND/OR ASTRONOMY, PUBLISHED BY THE AMERICAN ASSOCIATION OF PHYSICS TEACHERS AND THE AMERICAN INSTITUTE OF PHYSICS. THE INFORMATION FOR PART I WAS COLLECTED UNDER THE PHYSICS SECTION OF THE NATIONAL REGISTER OF SCIENTIFIC AND TECHNICAL PERSONNEL,…

  13. Classroom Demonstrations of Polymer Principles. Part III. Physical States and Transitions.

    ERIC Educational Resources Information Center

    Rodriguez, F.; And Others

    1988-01-01

    Presented is a classification of polymers according to physical condition. Considered are molecular structure and arrangements. Described are demonstrations using polarized light and the mechanical properties of polymers. (CW)

  14. 2012 Shape of the Nation Report: Status of Physical Education in the USA

    ERIC Educational Resources Information Center

    American Alliance for Health, Physical Education, Recreation and Dance (NJ1), 2012

    2012-01-01

    This report provides current information on the status of physical education in each of the states and the District of Columbia. Advocates can use this information in presentations, letters and other means of communication with federal and state policymakers, the media and the general public as part of the basis for expanding and improving…

  15. European Scientific Notes. Volume 34, Number 9,

    DTIC Science & Technology

    1980-09-30

    ancient Great Pyramids of Giza . Modern oil/water interfaces by examining their automobiles share the right of way with behavior as emulsifying agents...Cheston 447 The First European Physical Society "Solid State" Meeting J.R. Neighbours 449 Physics, Peace, and Pyramids in Egypt-Part II R.S. Hughes...sputtering with var- ious additives or by introducing PH3 PHYSICS PEACE, AND PYRAMIDS IN EGYPT- ( n type) or BH4 (- p type) into the PART "T SiH, gas used in

  16. Strongly-Interacting Fermi Gases in Reduced Dimensions

    DTIC Science & Technology

    2015-11-16

    one spin state is surrounded by a particle- hole cloud of the other 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12...explained in part by a polaron model, in which an atom of one spin state is surrounded by a particle- hole cloud of the other spin state. However, a...superconductivity), nuclear physics (nuclear matter), high-energy physics (effective theories of the strong interactions), astrophysics (compact stellar objects

  17. Paths to Licensure: Things Physicists Should Know

    NASA Astrophysics Data System (ADS)

    Stewart, Gay; Stewart, John

    2016-03-01

    The path to licensure can be quite complicated, and can thwart a physics department's efforts to produce more and better prepared high school physics teachers. Each state has different pathways to licensure. Acronyms like CAEP and SPA are not within the normal physicist's vocabulary. Some understanding of this topic can allow physics faculty advisers to help our students so that fewer are derailed on their path to the classroom, or take a path that will leave them less well prepared if they do find themselves there. Examples of different approaches that work within state licensure systems from two different states will be presented. Physics teacher preparation efforts in both Arkansas and West Virginia have been supported in part by the Physics Teacher Education Coalition (PhysTEC).

  18. The Relationship between State Lead Agency and Enrollment into Early Intervention Services

    ERIC Educational Resources Information Center

    Twardzik, Erica; MacDonald, Megan; Dixon-Ibarra, Alicia

    2017-01-01

    Services offered through Part C of the Individuals With Disabilities Education Improvement Act improve cognitive, behavioral, and physical skills for children less than 3 years old at risk for or with a disability. However, there are low enrollment rates into services. Various Lead Agencies oversee services through Part C, and states determine…

  19. Mandatory continuing education in physical therapy: survey of physical therapists in states with and states without a mandate.

    PubMed

    Landers, Merrill R; McWhorter, James W; Krum, Laura L; Glovinsky, David

    2005-09-01

    Although formal continuing education (CE) in physical therapy is one part of professional development, its value for renewing licensure is not shared by all states. The purpose of this study was to explore the differences in how physical therapists pursue formal continuing education on the basis of state mandate, sex, years of experience, practice specialty, American Physical Therapy Association membership, motivation, and perception of the benefits of CE. A survey questionnaire was sent to 3,000 physical therapists in 7 states--1,500 to physical therapists in states with mandatory CE and 1,500 to physical therapists in states without a requirement. A total of 1,145 usable survey questionnaires were returned, for a response rate of 38.2%. Physical therapists in states with mandatory CE averaged 33.8 hours of CE per year, whereas physical therapists in states without a mandate averaged 28.3 hours per year; 5.9% of therapists in states without a mandate reported taking no CE at all, and 10.8% reported taking 2 or fewer hours of CE within the preceding 5 years. No statistically significant relationships were observed between the amount of CE taken and years of experience, sex, or practice specialty. Therapists who reported membership in the American Physical Therapy Association participated in 7.2 more hours of CE per year than therapists who did not report membership. Significant motivational variables that respondents noted for taking CE were state mandate, increased clinical competence, and certification. Therapists overwhelmingly (96.2%) believed that CE had a beneficial effect on their clinical practice. Results from this study suggest that mandatory CE does have a significant association with the number of formal CE hours taken by physical therapists.

  20. David Kirk on Physical Education and Sport Pedagogy: In Dialogue with Steven Stolz (Part 2)

    ERIC Educational Resources Information Center

    Stolz, Steven A.; Kirk, David

    2015-01-01

    Forming the second of two articles, this dialogue revisits and explores the educational value of physical education as a means to stimulate further discussion about what physical education is, or as Kirk states within this interview, what do "we want physical education to be". Although the theme of the second interview relates to the…

  1. Some Research Centers for Plasma Physics and Solid State Physics in the Netherlands and Belgium. Part II. Belgium,

    DTIC Science & Technology

    plasma column and observed the interesting phenomenon of plasma ejection. At FUB, Balescu and Prigogine direct a group of sixty theoreticians doing...outstanding work in statistical physics. Balescu is writing another graduate textbook on non-equilibrium statistical mechanics. He is tackling the

  2. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges

    NASA Astrophysics Data System (ADS)

    King, W. E.; Anderson, A. T.; Ferencz, R. M.; Hodge, N. E.; Kamath, C.; Khairallah, S. A.; Rubenchik, A. M.

    2015-12-01

    The production of metal parts via laser powder bed fusion additive manufacturing is growing exponentially. However, the transition of this technology from production of prototypes to production of critical parts is hindered by a lack of confidence in the quality of the part. Confidence can be established via a fundamental understanding of the physics of the process. It is generally accepted that this understanding will be increasingly achieved through modeling and simulation. However, there are significant physics, computational, and materials challenges stemming from the broad range of length and time scales and temperature ranges associated with the process. In this paper, we review the current state of the art and describe the challenges that need to be met to achieve the desired fundamental understanding of the physics of the process.

  3. Sport for All? Insight into Stratification and Compensation Mechanisms of Sporting Activity in the 27 European Union Member States

    ERIC Educational Resources Information Center

    Van Tuyckom, Charlotte; Scheerder, Jeroen

    2010-01-01

    Physical activity is an important public health issue and the benefits of an active lifestyle in relation to well-being and health have been strongly emphasised in recent years in Europe, as well as in most parts of the world. However, previous research has shown that physical activity within Europe and its member states is stratified. The present…

  4. Recess Physical Activity Packs in Elementary Schools: A Qualitative Investigation

    ERIC Educational Resources Information Center

    Elliott, Steven; Combs, Sue; Boyce, Robert

    2011-01-01

    To supplement the present weekly allotment of 30 minutes of physical education, a school district in southeastern North Carolina identified recess time as part of the state mandated (HSP-S-000) 150 minutes of physical activity (PA) per week and have purchased fitness equipment (recess packs) for the children to use. Twelve participants were…

  5. An Integrated Earth Science, Astronomy, and Physics Course for Elementary Education Majors

    ERIC Educational Resources Information Center

    Plotnick, Roy E.; Varelas, Maria; Fan, Qian

    2009-01-01

    Physical World is a one-semester course designed for elementary education majors, that integrates earth science, astronomy, and physics. The course is part of a four-course set that explores science concepts, processes, and skills, along with the nature of scientific practice, that are included in state and national standards for elementary school…

  6. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges

    DOE PAGES

    King, W. E.; Anderson, A. T.; Ferencz, R. M.; ...

    2015-12-29

    The production of metal parts via laser powder bed fusion additive manufacturing is growing exponentially. However, the transition of this technology from production of prototypes to production of critical parts is hindered by a lack of confidence in the quality of the part. Confidence can be established via a fundamental understanding of the physics of the process. It is generally accepted that this understanding will be increasingly achieved through modeling and simulation. However, there are significant physics, computational, and materials challenges stemming from the broad range of length and time scales and temperature ranges associated with the process. In thismore » study, we review the current state of the art and describe the challenges that need to be met to achieve the desired fundamental understanding of the physics of the process.« less

  7. Middle School Students' Body Mass Index and Physical Activity Levels in Physical Education

    ERIC Educational Resources Information Center

    Gao, Zan; Oh, Hyunju; Sheng, Huiping

    2011-01-01

    One of the most critical public concerns in the United States is the rapid increase in childhood obesity, partly due to the social and environmental changes (e.g., excessive TV and computer use, pressures of standardized testing, etc.) in the past few decades, which has resulted in less physical activity in school children's daily routines.…

  8. Hearings Before the Select Committee on Nutrition and Human Needs of the United States Senate, Ninety-Third Congress, First Session. Maternal, Fetal, and Infant Nutrition--1973. Part 1--Consequences of Malnutrition; Part 2--Government Responses. Hearings Held Washington, D.C., June 5, 6, and 7, 1973.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Senate Select Committee on Nutrition and Human Needs.

    Part One of these hearings before the Select Committee on Nutrition and Human Needs of the United States Senate includes the testimony of scientists and doctors engaged in research regarding the relationship between maternal, fetal, and infant nutrition and optimum mental and physical development of the child. In testimony it was shown that the…

  9. Guidelines and Procedures for Meeting the Specialized Physical Health Care Needs of Pupils.

    ERIC Educational Resources Information Center

    Lunden, Janet, Ed.

    This monograph presents the California State guidelines for providing physical health care services within the public school setting. Part I addresses administrative concerns. Included are sections on: education and chronic illness; professional roles; referral and evaluation; guidelines and procedures for transporting chronically ill pupils;…

  10. Teaching Wellness Concepts Using Mosston's Spectrum of Teaching Styles

    ERIC Educational Resources Information Center

    Wilkinson, Carol; Pennington, Todd; Zanandrea, Maria

    2011-01-01

    Teaching wellness principles in secondary physical education classes has become an important aspect of physical education as teachers work to help their students develop lifelong healthy lifestyle habits. Many schools now have a required wellness/fitness component as part of their state core requirements. Having developed their teaching skills by…

  11. Human Blood Typing: A Forensic Science Approach. Part I: Background.

    ERIC Educational Resources Information Center

    Kobilinsky, Lawrence; Sheehan, Francis X.

    1988-01-01

    In this article, part I of a series, the forensic methods used in "typing" human blood, which as physical evidence is often found in the dried state, are outlined. Background information about individualization, antibody typing, fresh blood, dried blood, and additional systems is provided. (CW)

  12. Glues Used in Airplane Parts

    NASA Technical Reports Server (NTRS)

    Allen, S W; Truax, T R

    1920-01-01

    This report was prepared for the National Advisory Committee for Aeronautics and presents the results of investigations conducted by the Forest Products Laboratory of the United States Forest Service on the manufacture, preparation, application, testing and physical properties of the different types of glues used in wood airplane parts.

  13. Excited state correlations of the finite Heisenberg chain

    NASA Astrophysics Data System (ADS)

    Pozsgay, Balázs

    2017-02-01

    We consider short range correlations in excited states of the finite XXZ and XXX Heisenberg spin chains. We conjecture that the known results for the factorized ground state correlations can be applied to the excited states too, if the so-called physical part of the construction is changed appropriately. For the ground state we derive simple algebraic expressions for the physical part; the formulas only use the ground state Bethe roots as an input. We conjecture that the same formulas can be applied to the excited states as well, if the exact Bethe roots of the excited states are used instead. In the XXZ chain the results are expected to be valid for all states (except certain singular cases where regularization is needed), whereas in the XXX case they only apply to singlet states or group invariant operators. Our conjectures are tested against numerical data from exact diagonalization and coordinate Bethe Ansatz calculations, and perfect agreement is found in all cases. In the XXX case we also derive a new result for the nearest-neighbour correlator < σ 1zσ 2z> , which is valid for non-singlet states as well. Our results build a bridge between the known theory of factorized correlations, and the recently conjectured TBA-like description for the building blocks of the construction.

  14. Source Physics Experiment Phase II, Dry Alluvium Geology (DAG) Experiments Using Nitromethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traeger, Scott R.

    Need to provide briefing to the State of Nevada as part of the Permitting process for the Nevada Chemical Accident Prevention Program (CAPP) for use of nitromethane at the NNSS. This document will be accessible to the public as part of the CAPP program.

  15. 34 CFR 361.16 - Establishment of an independent commission or a state rehabilitation council.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-controlled by persons who— (A) Are individuals with physical or mental impairments that substantially limit...; (iii) Includes family members, advocates, or other representatives of individuals with mental... this part; and (C) Copies of due process hearing decisions issued under this part and transmitted in a...

  16. State and Jurisdictional Eligibility Definitions for Infants and Toddlers with Disabilities under IDEA. NECTAC Notes.

    ERIC Educational Resources Information Center

    Shackelford, Jo

    Under Part C of the Individuals with Disabilities Education Act (IDEA), participating states and jurisdictions must provide services to children who are either experiencing developmental delays, or who have a diagnosed mental or physical condition that has a a high probability of resulting in developmental delay. Additionally, states may choose to…

  17. State and Jurisdictional Eligibility Definitions for Infants and Toddlers with Disabilities under IDEA. NECTAC Notes No. 16

    ERIC Educational Resources Information Center

    Shackelford, Jo

    2004-01-01

    Under Part C of the Individuals with Disabilities Education Act (IDEA), participating states and jurisdictions must provide services to children who are either experiencing developmental delays, or who have a diagnosed mental or physical condition that has a high probability of resulting in developmental delay. Additionally, states may choose to…

  18. Dynamics of Galaxies

    NASA Astrophysics Data System (ADS)

    Bertin, Giuseppe

    2000-08-01

    Part I. Basic Phenomenology: 1. Scales; 2. Observational windows; 3. Classifications; 4. Photometry, kinematics, dark matter; 5. Basic questions, semi-empirical approach, dynamical window; Part II. Physical Models: 6. Self-gravity and relation with plasma physics; 7. Relaxation times, absence of thermodynamical equilibrium; 8. Models; 9. Equilibrium and stability: symmetry and symmetry breaking; 10. Classical ellipsoids; 11. Introduction to dispersive waves; 12. Jeans instability; Part III. Spiral Galaxies: 13. Orbits; 14. The basic state: vertical and horizontal equilibrium in the disk; 15. Density waves; 16. Role of gas; 17. Global spiral modes; 18. Spiral structure in galaxies; 19. Bending waves; 20. Dark matter in spiral galaxies; Part IV. Elliptical Galaxies: 21. Orbits; 22. Stellar dynamical approach; 23. Stability; 24. Dark matter in elliptical galaxies; Part V. In Perspective: 25. Selected aspects of formation and evolution; Notes; Index.

  19. Using activity triggered e-diaries to reveal the associations between physical activity and affective states in older adult's daily living.

    PubMed

    Kanning, Martina; Ebner-Priemer, Ulrich; Schlicht, Wolfgang

    2015-09-17

    Evidence suggests that older adults show positive affects after participating in exercise bouts. However, it is less clear, if and how physical activities in daily living enhance affective states, too. This is dissatisfying, as most of older adults' physical activities are part of their daily living. To answer these questions we used activity-triggered e-diaries to investigate the within-subject effects of physical activity on three dimensions of affective states (valence, energetic arousal, calmness) during everyday life. Older adults (N = 74) between 50 and 70 years took part in the study during three consecutive days. Physical activity in daily living was objectively assessed using accelerometers. Affects were measured 10 min after a study participant surpassed a predefined threshold for activity or inactivity. The participants were prompted by an acoustic signal to assess their momentary affective states on an e-diary. Data were analyzed with hierarchical multilevel analyses. Whenever older individuals were more physically active, they felt more energized (energetic arousal) and agitated (calmness). However, they did not feel better (valence). Interestingly, body mass index (BMI) and valence were associated in a significant cross-level interaction. BMI acts as a moderating variable in the way that lower BMI scores were associated with higher levels of valence scores after being physically active. The innovative ambulatory assessment used here affords an interesting insight to the affective effects of daily activity of older adults. These effects are no simple and no linear ones, i.e. physical activity is not associated with positive affects per se as shown several times in experimental studies with single activity bouts. Rather there is a differentiating association seen as an enhanced feeling of energy and agitation, which is not accompanied by a better feeling. Socio-emotional selectivity theory may support the finding that older individuals are emotionally more stable during their day-to-day life, which might explain the non-significant effect on the affect dimension valence.

  20. Physical Education, Part I. Options in Education, Program No. 99.

    ERIC Educational Resources Information Center

    George Washington Univ., Washington, DC. Inst. for Educational Leadership.

    This transcript of a National Public Radio broadcast discusses the impact of Title IX on elementary and secondary physical education. Topics covered include competition, difficulties involved in the sex integration of sports, statements on Title IX by five chief state school officers, the experience of Massachusetts in implementing Title IX, and…

  1. Can We Have Fries with That, Please? Nutrition and Physical Activities among College Students

    ERIC Educational Resources Information Center

    Monteiro, Andreia C.; Jeremic, Miljana; Budden, Michael C.

    2010-01-01

    Obesity is a growing health and socioeconomic issue in the United States. College students are an important part of the alarming statistics involving weight gain. This study investigated how nutrition behaviors and physical activity modified students' perceptions of body weight and nutrition knowledge. Furthermore, the study assessed gender and…

  2. The Impact of Part Time Employment on Students' Health and Academic Performance: A Scottish Perspective

    ERIC Educational Resources Information Center

    Carney, Claire; McNeish, Sharon; McColl, John

    2005-01-01

    The purpose of this study was to examine the relationship between part time working, mental and physical health and academic performance. Fifty per cent of the undergraduate full time respondents had part time jobs. Mean pay per hour was ?4.25 and mean number of hours worked was 14 hours. When the current state of students' health was compared to…

  3. Moving toward Integration of CSPAP in a Highly Regulated PETE Context

    ERIC Educational Resources Information Center

    Doolittle, Sarah A.; Virgilio, Stephen J.

    2017-01-01

    Physical education teacher education (PETE) programs are often driven in large part by the external demands of state and national accreditation, such as standardized teacher certification exams. Furthermore, the state of New York requires that practicing teachers be evaluated each year through structured observations, together with quantitative…

  4. Chesapeake Bay: Introduction to an Ecosystem.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    The Chesapeake Bay is the largest estuary in the contiguous United States. The Bay and its tidal tributaries make up the Chesapeake Bay ecosystem. This document, which focuses of various aspects of this ecosystem, is divided into four major parts. The first part traces the geologic history of the Bay, describes the overall physical structure of…

  5. State and Jurisdictional Eligibility Definitions for Infants and Toddlers with Disabilities under IDEA. NECTAC Notes Issue No. 14

    ERIC Educational Resources Information Center

    Shackelford, Jo

    2004-01-01

    Under Part C of the Individuals with Disabilities Education Act (IDEA), participating states and jurisdictions must provide services to children who are either experiencing developmental delays, or who have a diagnosed mental or physical condition that has a high probability of resulting in developmental delay. Additionally, states may choose to…

  6. Physical therapists' perceptions of sexual boundaries in clinical practice in the United States.

    PubMed

    Roush, Susan E; Cox, Kenneth; Garlick, John; Kane, Molly; Marchand, Lauren

    2015-07-01

    Physical therapists' perceptions of sexual boundaries in clinic settings in the United States have not been studied. Given the magnitude of potential consequences of sexual boundary violations, examination of this topic is imperative. The purpose of this study was to describe the perceptions of sexual boundaries among licensed physical therapists in the United States. Licensed physical therapists from Arkansas, Kansas, Maine, Ohio, and Oregon were contacted by email and asked to complete a sexual boundaries questionnaire via Survey Monkey™; 967 surveys (7.3%) were returned. While most physical therapists practice within the profession's Code of Ethics, there are practitioners who date current and former patients, and condone patients' sexual banter in the clinic. Almost half (42%) of the participants acknowledged feeling sexually attracted to a patient. While gender differences were seen throughout the analyses, generally, the demographic and professional variables did not account for meaningful variance. Results were similar to previous research on physiotherapists in other countries. Sexuality is part of the physical therapy practice environment and physical therapists' understanding of sexual boundaries is ambiguous. These data can inform professional conversation on sexual boundaries in physical therapy practice leading to greater understanding and decreased potential for violations.

  7. Teaching the Hydrologic and Geomorphic Significance of Drainage Basins and Discharge in Physical Geography.

    ERIC Educational Resources Information Center

    Sutherland, Ross

    1994-01-01

    States that drainage basins, stream discharge, and sediment discharge are fundamental concepts in physical geography and integral parts of other cognate disciplines. Presents two exercises about these concepts. Includes a set of field-based exercises and a set of exercises for students who are unable to conduct field monitoring. (CFR)

  8. Listening to Girls and Boys Talk about Girls' Physical Activity Behaviors

    ERIC Educational Resources Information Center

    Vu, Maihan B.; Murrie, Dale; Gonzalez, Vivian; Jobe, Jared B.

    2006-01-01

    As part of the formative assessment for the Trial of Activity for Adolescent Girls (TAAG), a multicenter study to reduce the decline of physical activity in adolescent girls, girls and boys with diverse ethnicity from six states participated in focus groups and semistructured interviews. Data from 13 girls' focus groups (N = 100), 11 boys' focus…

  9. The Role of Teacher Work Samples in Developing Effective and Reflective Physical Education Teachers

    ERIC Educational Resources Information Center

    Sutherland, Sue; Goodway, Jackie

    2010-01-01

    For eight years, Ohio State University (OSU) has systematically infused teacher work samples (TWS) into their physical education teacher education (PETE) undergraduate curriculum in order to develop effective and reflective teachers. Teacher work samples are made up of five main parts: (1) community mapping, (2) unit planning, (3) data collection…

  10. The Association between Funding for Statewide Programs and Enactment of Obesity Legislation

    ERIC Educational Resources Information Center

    Hersey, James; Lynch, Christina; Williams-Piehota, Pamela; Rooks, Adrienne; Hamre, Robin; Chappelle, Eileen F.; Roussel, Amy; O'Toole, Terry; Grasso, Tamara; Hannan, Casey

    2010-01-01

    Objective: As part of a national effort to prevent and control obesity, the Centers for Disease Control and Prevention's (CDC's) Nutrition and Physical Activity Program to Prevent Obesity and Other Chronic Diseases (NPAO) provides funding to states to improve access to healthful food and increase opportunities for physical activity. The CDC also…

  11. Re-Visioning Sports, Physical Education and the Body.

    ERIC Educational Resources Information Center

    Leonard, George

    Physical education and athletic programs are usually considered expendable parts of the American lifestyle. Nearly half the adults in the United States do not exercise at all, and of those that do, many indulge in their favorite sport only once or twice a month. Although America seems to be a sports-conscious nation, the majority of the population…

  12. Reactions. Learning in Science Project. Working Paper No. 37.

    ERIC Educational Resources Information Center

    Schollum, Brendan

    The concept of a chemical reaction (as opposed to physical mixing, dissolution, or change of state) is developed in this five-part unit. In addition, the ideas that chemical reactions involve the formation of new substances and that mass is conserved in a chemical reaction are stressed. Part 1 discusses unit objectives and considers teachers'…

  13. Policy Development in Physical Education … The Last Best Chance?

    ERIC Educational Resources Information Center

    van der Mars, Hans

    2018-01-01

    In this article, I provide a brief historical perspective on how state-level policy was an integral part of the rise of school physical education in the first half of the twentieth century, as well as the evolution of sport pedagogy as a subdiscipline within the field of kinesiology. The role and importance of policy in changing behavior are…

  14. 27 CFR 9.3 - Relation to parts 4 and 70 of this chapter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Evidence relating to the geographical features (climate, soil, elevation, physical features, etc.) which... of the viticultural area, based on features which can be found on United States Geological Survey (U... index by State.) [T.D. ATF-60, 44 FR 56692, Oct. 2, 1979, as amended by T.D. ATF-92, 46 FR 46913, Sept...

  15. Observational knowledge about the physical properties of O stars

    NASA Technical Reports Server (NTRS)

    Underhill, A. B.

    1983-01-01

    Information about the effective temperatures, radii, and masses of O-type stars is presented. It is argued that rapid variations in the amount of light from O stars and the spectral distribution are a result chiefly of changes which occur in the envelope of the star. The stability of the photospheric layers of O stars against convection is reviewed and it is noted that late O stars and early B stars have a convection zone in the deeper parts of the photosphere. This convection zone is due to the second ionization of helium. Evidence is reviewed that most of the line-profile changes seen for O stars are generated by changes in the physical state of the mantle of the star, that is of the outer atmosphere where the deposition of non-radiative energy and momentum controls the physical state of the atmosphere. The physical state of the mantle may change in response to changes in the upper envelope of a star with a different time constant than the photosphere does.

  16. Prevalence of physical activity levels by ethnicity among adults in Hawaii, BRFSS 2001.

    PubMed

    Mampilly, Carrie M; Yore, Michelle M; Maddock, Jay E; Nigg, Claudio R; Buchner, David; Heath, Gregory W

    2005-10-01

    Few studies have examined the differences in physical activity levels between subgroups of Asian or Pacific Islanders living in the United States. This study compared levels of physical activity for three subgroups of Asian or Pacific Islanders residing in Hawaii. Data on Native Hawaiian/Part Native Hawaiian (N=585), Filipino (N=548), Japanese (N=871), and White (N=1728) adults were obtained from the Hawaii 2001 Behavioral Risk Factor Surveillance System (BRFSS), which contained more detailed questions on ethnicity than are collected by most states. Six physical activity categories were compared: inactive, insufficient (some activity but less than recommended activity), moderate activity (> or = 30 minutes of moderate activity > or = 5 days a week), vigorous activity (> or = 20 minutes of vigorous activity > or = 3 days a week), recommended activity (meeting either moderate or vigorous activity requirements), and a recently suggested target of > or = 60 minutes of moderate activity 7 days a week or > or = 20 minutes of vigorous activity > or = 4 days a week. Among Asians or Pacific Islanders, Native Hawaiians/Part Native Hawaiians were most active (38.9% moderate and 23.9% vigorous), followed by Japanese (32.1%, 20.4%) and Filipinos (31.8%, 18.6%). Whites were more active than any of these three subgroups (47.2%, 35.4%). Differences in physical activity levels between subgroups of Asians or Pacific Islanders in Hawaii suggests that aggregated data for all subgroups obscures important information about disparities in activity levels. State efforts to reduce disparities in activity levels should take into account differences between Asian or Pacific Islander subgroups.

  17. Sedentary lifestyle and state variation in coronary heart disease mortality.

    PubMed Central

    Yeager, K K; Anda, R F; Macera, C A; Donehoo, R S; Eaker, E D

    1995-01-01

    Using linear regression, the authors demonstrated a strong association between State-specific coronary heart disease mortality rates and State prevalence of sedentary lifestyle (r2 = 0.34; P = 0.0002) that remained significant after controlling for the prevalence of diagnosed hypertension, smoking, and overweight among the State's population. This ecologic analysis suggests that sedentary lifestyle may explain State variation in coronary heart disease mortality and reinforces the need to include physical activity promotion as a part of programs in the States to prevent heart disease. PMID:7838933

  18. The influence of self-generated emotions on physical performance: an investigation of happiness, anger, anxiety, and sadness.

    PubMed

    Rathschlag, Marco; Memmert, Daniel

    2013-04-01

    The present study examined the relationship between self-generated emotions and physical performance. All participants took part in five emotion induction conditions (happiness, anger, anxiety, sadness, and an emotion-neutral state) and we investigated their influence on the force of the finger musculature (Experiment 1), the jump height of a counter-movement jump (Experiment 2), and the velocity of a thrown ball (Experiment 3). All experiments showed that participants could produce significantly better physical performances when recalling anger or happiness emotions in contrast to the emotion-neutral state. Experiments 1 and 2 also revealed that physical performance in the anger and the happiness conditions was significantly enhanced compared with the anxiety and the sadness conditions. Results are discussed in relation to the Lazarus (1991, 2000a) cognitive-motivational-relational (CMR) theory framework.

  19. Legislation on Custody Arrangements. Wisconsin Legislative Council Report No. 2. to the 1987 Legislature. 1987 Assembly Bill 205, Relating to Granting Custody, Periods of Physical Placement and Visitation in an Action Affecting the Family and Making an Appropriation.

    ERIC Educational Resources Information Center

    Salm, Don

    This report presents Wisconsin state legislation dealing with custody arrangements. Part I gives key provisions of 1987 Assembly Bill 205. Part II reviews background activities related to the custody legislation. Part III discusses major issues relating to child custody arrangements, including definition clarification, child custody dispute…

  20. Monetary economics from econophysics perspective

    NASA Astrophysics Data System (ADS)

    Yakovenko, Victor M.

    2016-12-01

    This is an invited article for the Discussion and Debate special issue of The European Physical Journal Special Topics on the subject "Can Economics be a Physical Science?" The first part of the paper traces the personal path of the author from theoretical physics to economics. It briefly summarizes applications of statistical physics to monetary transactions in an ensemble of economic agents. It shows how a highly unequal probability distribution of money emerges due to irreversible increase of entropy in the system. The second part examines deep conceptual and controversial issues and fallacies in monetary economics from econophysics perspective. These issues include the nature of money, conservation (or not) of money, distinctions between money vs. wealth and money vs. debt, creation of money by the state and debt by the banks, the origins of monetary crises and capitalist profit. Presentation uses plain language understandable to laypeople and may be of interest to both specialists and general public.

  1. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  2. Hanford Site annual dangerous waste report: Volume 1, Part 2, Generator dangerous waste report, dangerous waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report contains information on hazardous materials at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  3. Health Guides: Health Is a State of Mind and Body

    MedlinePlus

    ... Caring for your physical health through a positive attitude Staying positive and motivated can help you live ... part of a healthy life. Have a positive attitude. Show your kids how great it feels to ...

  4. Quantum-metric contribution to the pair mass in spin-orbit-coupled Fermi superfluids

    NASA Astrophysics Data System (ADS)

    Iskin, M.

    2018-03-01

    As a measure of the quantum distance between Bloch states in the Hilbert space, the quantum metric was introduced to solid-state physics through the real part of the so-called geometric Fubini-Study tensor, the imaginary part of which corresponds to the Berry curvature measuring the emergent gauge field in momentum space. Here, we first derive the Ginzburg-Landau theory near the critical superfluid transition temperature and then identify and analyze the geometric effects on the effective mass tensor of the Cooper pairs. By showing that the quantum-metric contribution accounts for a sizable fraction of the pair mass in a surprisingly large parameter regime throughout the BCS-Bose-Einstein condensate crossover, we not only reveal the physical origin of its governing role in the superfluid density tensor but also hint at its plausible roles in many other observables.

  5. Parts and Wholes. An Inquiry into Quantum and Classical Correlations

    NASA Astrophysics Data System (ADS)

    Seevinck, M. P.

    2008-10-01

    The primary topic of this dissertation is, firstly, the study of the correlations between outcomes of measurements on the subsystems of a composed system as predicted by a particular physical theory; secondly, the study of what this physical theory predicts for the relationships these subsystems can have to the composed system they are a part of; and thirdly, the comparison of different physical theories with respect to these two aspects. The physical theories investigated and compared are generalized probability theories in a quasi-classical physics framework and non-relativistic quantum theory. The motivation for these enquiries is that a comparison of the relationships between parts and whole as described by each theory, and of the correlations predicted by each theory between separated subsystems yields a fruitful method to investigate what these physical theories say about the world. One then finds, independent of any physical model, relationships and constraints that capture the essential physical assumptions and structural aspects of the theory in question. As such one gains a larger and deeper understanding of the different physical theories under investigation and of what they say about the world. A large part of this dissertation is devoted to understanding different aspects of different kinds of correlations that can exist between the outcomes of measurement on subsystems of a larger system. Four different kinds of correlation have been investigated: local, partially-local, no-signaling and quantum mechanical. Novel characteristics of these correlations have been used to study how they are related and how they can be discerned. The main tool of this investigation has been the usage of Bell-type inequalities that give non-trivial bounds on the strength of the correlations. The study of quantum correlations has also prompted us to study the multi-partite qubit state space with respect to its entanglement and separability characteristics, and the differing strength of the correlations in separable and entangled qubit states. Comparing the different types of correlations has provided us with many new results on the various strengths of the different types of correlation. Because of the generality of the investigation -- we have considered abstract general models, not some specific and particular ones -- these results have strong repercussions for different sorts of physical theories. These repercussions have foundational as well as philosophical impact, notably for the viability of hidden variable theories for quantum mechanics, for the possibility of doing experimental metaphysics, for the question of holism in physical theories, and for the classical vs. quantum dichotomy.

  6. Crystallization tendencies of modelled Lennard-Jones liquids with different attractions

    NASA Astrophysics Data System (ADS)

    Valdès, L.-C.; Gerges, J.; Mizuguchi, T.; Affouard, F.

    2018-01-01

    Molecular dynamics simulations are performed on simple models composed of monoatomic Lennard-Jones atoms for which the repulsive interaction is the same but the attractive part is tuned. We investigate the precise role of the attractive part of the interaction potential on different structural, dynamical, and thermodynamical properties of these systems in the liquid and crystalline states. It includes crystallization trends for which the main physical ingredients involved have been computed: the diffusion coefficient, the Gibbs energy difference between the liquid and the crystalline state, and the crystal-liquid interfacial free energy. Results are compared with predictions from the classical nucleation theory including transient and steady-state regimes at moderate and deeper undercooling. The question of the energetic and entropic impact of the repulsive and attractive part of the interaction potential towards crystallization is also addressed.

  7. Physics at the FMQT’08 conference

    NASA Astrophysics Data System (ADS)

    Špička, V.; Nieuwenhuizen, Th. M.; Keefe, P. D.

    2010-01-01

    This paper summarizes the recent state of the art of the following topics presented at the FQMT’08 conference: Foundations of quantum physics, Quantum measurement; Quantum noise, decoherence and dephasing; Cold atoms and Bose-Einstein condensation; Physics of quantum computing and information; Nonequilibrium quantum statistical mechanics; Quantum, mesoscopic and partly classical thermodynamics; Mesoscopic, nano-electro-mechanical systems and optomechanical systems; Spins systems and their dynamics, Brownian motion and molecular motors; Physics of biological systems, and Relevant experiments from the nanoscale to the macroscale. To all these subjects an introduction is given and the recent literature is overviewed. The paper contains some 680 references in total.

  8. Time trends in physical activity in the state of São Paulo, Brazil: 2002-2008.

    PubMed

    Matsudo, Victor K R; Matsudo, Sandra M; Araújo, Timóteo L; Andrade, Douglas R; Oliveira, Luis C; Hallal, Pedro C

    2010-12-01

    To document time trends in physical activity in the state of São Paulo, Brazil (2002-2008). In addition, we discuss the role of Agita São Paulo at explaining such trends. Cross-sectional surveys were carried out in 2002, 2003, 2006, and 2008 in the state of São Paulo, Brazil, using comparable sampling approaches and similar sample sizes. In all surveys, physical activity was measured using the short version of the International Physical Activity Questionnaire. Separate weekly scores of walking and moderate- and vigorous-intensity physical activities were generated; cutoff points of 0 and 150 min·wk were used. Also, we created a total physical activity score by summing these three types of activity. We used logistic regression models for adjusting time trends for the different sociodemographic compositions of the samples. The prevalence of no physical activity decreased from 9.6% in 2002 to 2.7% in 2008, whereas the proportion of subjects below the 150-min threshold decreased from 43.7% in 2002 to 11.6% in 2008. These trends were mainly explained by increases in walking and moderate-intensity physical activity. Increases in physical activity were slightly greater among females than among males. Logistic regression models confirmed that these trends were not due to the different compositions of the samples. Physical activity levels are increasing in the state of São Paulo, Brazil. Considering that the few data available in Brazil using the same instrument indicate exactly the opposite trend and that Agita São Paulo primarily incentives the involvement in moderate-intensity physical activity and walking, it seems that at least part of the trends described here are explained by the Agita São Paulo program.

  9. Physiotherapy: a historical analysis of the transformation from an occupation to a profession in Brazil

    PubMed Central

    Oliveira, Ana L. O.; Nunes, Everardo D.

    2015-01-01

    ABSTRACT Background: Analyzing the historical and social path of an occupation using the sociology of professions and the perspective of scientific knowledge promotes an understanding of the origin of physical therapy in Brazil and of discussions of the profession in its contemporary context. Objective: The aim of this paper was to discuss the professionalization process of physical therapy in São Paulo. The authors tried to analyze bath therapy, massage therapy, and physical therapy as occupations involving distinct expertise and as part of the group of occupations that evolved into the profession of physiotherapy in the first half of the twentieth century. Method: The analysis undertaken was a qualitative study based on an analysis of historical documents. Eighty-six professional records from the Service of Inspection of Professional Practice in the state of São Paulo and healthcare legislation from the 1930s and 1940s were analyzed. Results: The distinction between physical therapy practitioner and profession of physiotherapy can be seen by examining registration requirements for rank-and-file nurses with expertise in interactions; this distinction suggests the emergence of specialized expertise that was clearly a part of neither medicine nor nursing and contributed to expertise in physical therapy since the 1950s. Conclusion: The regulation of physiotherapy practices, the recognition of expertise, the accreditation of practical nurses by the State, and the institutionalization of a course for physical therapy practitioners in 1951 are key elements of the professionalization process for the physical therapy profession in Brazil. PMID:26443976

  10. AAPT/PTRA -- A Part of the Solution

    NASA Astrophysics Data System (ADS)

    Amann, George; Mader, Jan; Matsler, Karen Jo; Nelson, Jim

    2011-12-01

    A train barrels directly toward a stone wall. It looks like a disaster is inevitable. Suddenly, a group of railroad workers run to a switch that changes the direction of the train. They reroute the train onto a new track by throwing the switch just in time. Perhaps you had not known what to do, nor were you strong enough to do it yourself, but you now see that it was not a forgone conclusion that the train had to run into the wall. In this scenario, the train represents precollege physics education in the United States. The wall represents the classroom situation that many teachers find when they are assigned to teach physics. These teachers often find themselves teaching a subject for which they were not adequately prepared. It is not their fault, but rather the result of the necessity of having a teacher assigned to the class. The United States needs students to be prepared for a future in which science and technology will be more and more a part of everyone's life, and there are not enough well-prepared physics teachers graduating from colleges and universities. So the train is headed toward the wall. "Who are the strong railroad workers?" you ask. These are the 200 Physics Teaching Resource Agents (PTRAs), who for the past 25 years have been selected and trained by AAPT to do workshops for practicing physics and physical science teachers. Thus AAPT celebrated the PTRA silver anniversary during the 2010 AAPT meeting in Portland. And APS recognized this achievement with their 2011 Excellence in Physics Education Award.2

  11. Introduction: Like the United States, Asian Nations Have Grappled with the Challenge of Creating and Using National Physical Education Standards

    ERIC Educational Resources Information Center

    Housner, Lynn Dale

    2005-01-01

    Over the course of the last several decades, advances in the Internet and media have brought distant parts of the globe closer together. It is now possible to email, chat with, and offer web-based classes or conferences to colleagues and students from all over the world. As this occurs, it is becoming increasingly possible for physical educators…

  12. Semantic modeling of the structural and process entities during plastic deformation of crystals and rocks

    NASA Astrophysics Data System (ADS)

    Babaie, Hassan; Davarpanah, Armita

    2016-04-01

    We are semantically modeling the structural and dynamic process components of the plastic deformation of minerals and rocks in the Plastic Deformation Ontology (PDO). Applying the Ontology of Physics in Biology, the PDO classifies the spatial entities that participate in the diverse processes of plastic deformation into the Physical_Plastic_Deformation_Entity and Nonphysical_Plastic_Deformation_Entity classes. The Material_Physical_Plastic_Deformation_Entity class includes things such as microstructures, lattice defects, atoms, liquid, and grain boundaries, and the Immaterial_Physical_Plastic_Deformation_Entity class includes vacancies in crystals and voids along mineral grain boundaries. The objects under the many subclasses of these classes (e.g., crystal, lattice defect, layering) have spatial parts that are related to each other through taxonomic (e.g., Line_Defect isA Lattice_Defect), structural (mereological, e.g., Twin_Plane partOf Twin), spatial-topological (e.g., Vacancy adjacentTo Atom, Fluid locatedAlong Grain_Boundary), and domain specific (e.g., displaces, Fluid crystallizes Dissolved_Ion, Void existsAlong Grain_Boundary) relationships. The dynamic aspect of the plastic deformation is modeled under the dynamical Process_Entity class that subsumes classes such as Recrystallization and Pressure_Solution that define the flow of energy amongst the physical entities. The values of the dynamical state properties of the physical entities (e.g., Chemical_Potential, Temperature, Particle_Velocity) change while they take part in the deformational processes such as Diffusion and Dislocation_Glide. The process entities have temporal parts (phases) that are related to each other through temporal relations such as precedes, isSubprocessOf, and overlaps. The properties of the physical entities, defined under the Physical_Property class, change as they participate in the plastic deformational processes. The properties are categorized into dynamical, constitutive, spatial, temporal, statistical, and thermodynamical. The dynamical properties, categorized under the Dynamical_Rate_Property and Dynamical_State_Property classes, subsume different classes of properties (e.g., Fluid_Flow_Rate, Temperature, Chemical_Potential, Displacement, Electrical_Charge) based on the physical domain (e.g., fluid, heat, chemical, solid, electrical). The properties are related to the objects under the Physical_Entity class through diverse object type (e.g., physicalPropertyOf) and data type (e.g., Fluid_Pressure unit 'MPa') properties. The changes of the dynamical properties of the physical entities, described by the empirical laws (equations) modeled by experimental structural geologists, are modeled through the Physical_Property_Dependency class that subsumes the more specialized constitutive, kinetic, and thermodynamic expressions of the relationships among the dynamic properties. Annotation based on the PDO will make it possible to integrate and reuse experimental plastic deformation data, knowledge, and simulation models, and conduct semantic-based search of the source data originating from different rock testing laboratories.

  13. Laser interferometric studies of thermal effects of diode-pumped solid state lasing medium

    NASA Astrophysics Data System (ADS)

    Peng, Xiaoyuan; Asundi, Anand K.; Xu, Lei; Chen, Yihong; Xiong, Zhengjun; Lim, Gnian Cher

    2000-04-01

    Thermal effects dramatically influence the laser performance of diode-pumped solid state lasers (DPSSL). There are three factors accounting for thermal effects in diode-pumped laser medium: the change of the refractive index due to temperature gradient, the change of the refractive index due to thermal stress, and the change of the physical length due to thermal expansion (end effect), in which the first two effects can be called as thermal parts. A laser interferometer is proposed to measure both the bulk and physical messages of solid-state lasing medium. There are two advantages of the laser interferometry to determine the thermal lensing effect. One is that it allows separating the average thermal lens into thermal parts and end effect. Another is that the laser interferometry provides a non- invasive, full field, high-resolution means of diagnosing such effects by measuring the optical path difference induced by thermal loading in a lasing crystal reliable without disturbing the normal working conditions of the DPSS laser. Relevant measurement results are presented in this paper.

  14. How to Investigate Within-Subject Associations between Physical Activity and Momentary Affective States in Everyday Life: A Position Statement Based on a Literature Overview

    PubMed Central

    Kanning, Martina K.; Ebner-Priemer, Ulrich W.; Schlicht, Wolfgang Michael

    2013-01-01

    Several meta-analyses have investigated the association between physical activity and affective states and have found evidence suggesting that exercise exerts a positive effect on affective state. However, in this field of research, most studies have conducted between-subject analyses. Nonetheless, there is more and more interest in the within-subject associations between physical activity and momentary affective states in everyday life. This position statement pertains to this up-and-coming field of research and provides methodological recommendations for further studies. The paper is divided into three parts: first, we summarize and evaluate three methodological requirements necessary for the proper evaluation of within-subject associations between physical activity and momentary affective states in everyday life. We propose that the following issues should be considered: (a) to address the dynamic nature of such relationships, repeated assessments are necessary; (b) as activities performed in everyday life are mostly spontaneous and unconscious, an objective assessment of physical activity is useful; (c) given that recall of affective states is often affected by systematic distortions, real-time assessment is preferable. In sum, we suggest the use of ambulatory assessment techniques, and more specifically the combination of accelerometer-assessment of physical activity with an electronic diary assessment of the momentary affective state and additional context information. Second, we summarize 22 empirical studies published between 1980 and 2012 using ambulatory assessment to investigate within-subject associations between momentary affective states and physical activity in everyday life. Generally, the literature overview detects a positive association, which appears stronger among those studies that were of high methodological quality. Third, we propose the use of ambulatory assessment intervention (AAIs) strategies to change people’s behavior and to enable people to be active as often as possible during the day (e.g., reducing sitting time, taking more steps per day). PMID:23641221

  15. Why Russia is not a state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stern, J.E.

    1993-08-16

    This article makes two principal points. First the author argues that the Russian federation has never been a state and is not sustainable as a state. Four centrifugal indicators are presented to support this claim: ethnic divisiveness; uncertainty about the legitimacy of Russia`s current borders; competing claims for legitimacy on the part of federal and regional leaders; and army units` unpredictable allegiances. Second, she argues that Soviet policies intended to facilitate central control of the periphery had the perverse effect of creating ethnic identity and demands for national autonomy where, in many cases, they did not exist prior to themore » Communist regime. Following the introduction, part one briefly reviews the concepts of state, nation, and nationalism and the roles they play in Russia. Criteria for state-hood are discussed. Part two lists the main ethnic groups in Russia and considers the roots of ethnic nationalism in the Russian Federation. Part three discusses confusion over the legitimacy of the physical, economic, and political boundaries of the Russian Federation. Part four discusses political disarray in the center and the regions and the lack of unity among order-enforcing entities. The Volga-Ural region -- where there is a large concentration of nuclear weapons and facilities, and which is especially volatile politically -- is discussed in somewhat more detail. Part five argues that these factors taken together call into question Russia`s identity as a state. The author concludes that Russia remains a multi-ethnic empire in which the rule of law is still not supreme.« less

  16. Applications of statistical physics to the social and economic sciences

    NASA Astrophysics Data System (ADS)

    Petersen, Alexander M.

    2011-12-01

    This thesis applies statistical physics concepts and methods to quantitatively analyze socioeconomic systems. For each system we combine theoretical models and empirical data analysis in order to better understand the real-world system in relation to the complex interactions between the underlying human agents. This thesis is separated into three parts: (i) response dynamics in financial markets, (ii) dynamics of career trajectories, and (iii) a stochastic opinion model with quenched disorder. In Part I we quantify the response of U.S. markets to financial shocks, which perturb markets and trigger "herding behavior" among traders. We use concepts from earthquake physics to quantify the decay of volatility shocks after the "main shock." We also find, surprisingly, that we can make quantitative statements even before the main shock. In order to analyze market behavior before as well as after "anticipated news" we use Federal Reserve interest-rate announcements, which are regular events that are also scheduled in advance. In Part II we analyze the statistical physics of career longevity. We construct a stochastic model for career progress which has two main ingredients: (a) random forward progress in the career and (b) random termination of the career. We incorporate the rich-get-richer (Matthew) effect into ingredient (a), meaning that it is easier to move forward in the career the farther along one is in the career. We verify the model predictions analyzing data on 400,000 scientific careers and 20,000 professional sports careers. Our model highlights the importance of early career development, showing that many careers are stunted by the relative disadvantage associated with inexperience. In Part III we analyze a stochastic two-state spin model which represents a system of voters embedded on a network. We investigate the role in consensus formation of "zealots", which are agents with time-independent opinion. Our main result is the unexpected finding that it is the number and not the density of zealots which deter- mines the steady-state opinion polarization. We compare our findings with results for United States Presidential elections.

  17. EDITORIAL: Richard Palmer: celebrating 37 years with Journal of Physics: Condensed Matter Richard Palmer: celebrating 37 years with Journal of Physics: Condensed Matter

    NASA Astrophysics Data System (ADS)

    Ferry, David

    2009-01-01

    It is with a great deal of both happiness and sadness that I have to announce that we are losing one of the real strengths of the Journal of Physics: Condensed Matter (JPCM). Dr Richard Palmer, our Senior Publisher, announced his retirement, and this issue marks the first without his involvement. Of course, we are happy that he will get to enjoy his retirement, but we are sad to lose such a valuable member of our team. Richard first started work at IOP Publishing in March 1971 as an Editorial Assistant with Journal of Physics B: Atomic and Molecular Physics. After a few months, he transferred to Journal of Physics C: Solid State Physics. During his first year, he was sent on a residential publishing training course and asked to sign an undertaking to stay at IOP Publishing for at least two years. Although Richard refused to sign, as he did not want to commit himself, he has remained with the journal since then. The following year, the Assistant Editor of Journal of Physics C: Solid State Physics, Malcolm Haines, walked out without notice in order to work on his family vineyard in France, and Richard stepped into the breach. In those days, external editors had a much more hands-on role in IOP Publishing and he had to travel to Harwell to be interviewed by Alan Lidiard, the Honorary Editor of Journal of Physics C: Solid State Physics, before being given the job of Assistant Editor permanently. I am told that in those days the job consisted mainly of editing and proofreading and peer review. There was no journal development work. At some point in the early 1980s, production and peer review were split into separate departments and Richard then headed a group of journals consisting of Journal of Physics C: Solid State Physics, Journal of Physics D: Applied Physics and Journal of Physics F: Metal Physics, Semiconductor Science and Technology, Superconductor Science and Technology, Plasma Physics and Controlled Fusion, and later Nanotechnology and Modelling and Simulation in Materials Science and Engineering. Under the new structure, journal development became an increasingly important part of his job. At about the same time, Richard was also asked to take over running Reports on Progress in Physics, which up to then had been done by the head of the IOP Journals Department, Kurt Paulus. In 1989, Journal of Physics C: Solid State Physics and Journal of Physics F: Metal Physics remerged to form JPCM. Since then, Richard has gradually shed his other journal responsibilities, except for Reports on Progress in Physics, to build up JPCM. He has worked closely with four Editors-in-Chief of Journal of Physics C: Solid State Physics, five of JPCM, five of Reports on Progress in Physics and about ten of other journals, and attended approximately 300 Editorial Board meetings. I should say that he has made my own tenure at Editor-in-Chief an easy task to learn and take on, and has been a major guiding light in the development of the journal. In 2006, Richard was honoured by the award of a Member of the British Empire (MBE) for services to science publishing. Those of us on the board were particularly pleased about this, as one is not always recognized for the effort they expend, and this award was certainly due for Richard. We are going to miss Richard a great deal, but are happy that he will remain on a part time basis to help our new Publisher, Dr Lucy Smith, and the rest of us through the transition. His retirement leaves us with a huge hole that we will have to work extremely hard to fill. Speaking for the various boards, and especially the executive board, I want to wish Richard the very best in his retirement.

  18. Physical workload and thoughts of retirement.

    PubMed

    Perkiö-Mäkelä, Merja; Hirvonen, Maria

    2012-01-01

    The aim of this paper is to present Finnish employees' opinions on continuing work until retirement pension and after the age of 63, and to find out if physical workload is related to these opinions. Altogether 39% of men and 40% of women had never had thoughts of early retirement, and 59% claimed (both men and women) that they would consider working beyond the age of 63. Own health (20%); financial gain such as salary and better pension (19%); meaningful, interesting and challenging work (15%); flexible working hours or part-time work (13%); lighter work load (13%); good work community (8%); and good work environment (6%) were stated as factors affecting the decision to continue working after the age of 63. Employees whose work involved low physical workload had less thoughts of early retirement and had considered continuing work after the age of 63 more often than those whose work involved high physical loads. Own health in particular was stated as a reason to consider continuing work by employees whose work was physically demanding.

  19. Solid State Surfaces and Interfaces VIII

    NASA Astrophysics Data System (ADS)

    Pincik, Emil

    2014-09-01

    The conference SSSI VIII (November 25-28, 2013) was the 8th continuation of the series of the Solid State Surfaces and Interfaces conferences taking place usually in the Smolenice castle in the western part of the Slovak Republic. The event was organized by the following institutions of Slovak Republic: Institute of Physics of SAS Bratislava, Institute of Aurel Stodola of University of Žilina, and Faculty of Mathematics, Physics and Informatics of Comenius University Bratislava. More than 150 scientists of the three continents (Europe, Asia and Africa) participated on the event with almost 100 poster presentations. The representatives of all organizing institutions consider this event as very important for Middle Europe region.

  20. Quantum catastrophes: a case study

    NASA Astrophysics Data System (ADS)

    Znojil, Miloslav

    2012-11-01

    The bound-state spectrum of a Hamiltonian H is assumed real in a non-empty domain D of physical values of parameters. This means that for these parameters, H may be called crypto-Hermitian, i.e. made Hermitian via an ad hoc choice of the inner product in the physical Hilbert space of quantum bound states (i.e. via an ad hoc construction of the operator Θ called the metric). The name quantum catastrophe is then assigned to the N-tuple-exceptional-point crossing, i.e. to the scenario in which we leave the domain D along such a path that at the boundary of D, an N-plet of bound-state energies degenerates and, subsequently, complexifies. At any fixed N ⩾ 2, this process is simulated via an N × N benchmark effective matrix Hamiltonian H. It is being assigned such a closed-form metric which is made unique via an N-extrapolation-friendliness requirement. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’.

  1. Non-compact Groups, Coherent States, Relativistic Wave Equations and the Harmonic Oscillator II: Physical and Geometrical Considerations

    NASA Astrophysics Data System (ADS)

    Cirilo-Lombardo, Diego Julio

    2009-04-01

    The physical meaning of the particularly simple non-degenerate supermetric, introduced in the previous part by the authors, is elucidated and the possible connection with processes of topological origin in high energy physics is analyzed and discussed. New possible mechanism of the localization of the fields in a particular sector of the supermanifold is proposed and the similarity and differences with a 5-dimensional warped model are shown. The relation with gauge theories of supergravity based in the OSP(1/4) group is explicitly given and the possible original action is presented. We also show that in this non-degenerate super-model the physic states, in contrast with the basic states, are observables and can be interpreted as tomographic projections or generalized representations of operators belonging to the metaplectic group Mp(2). The advantage of geometrical formulations based on non-degenerate super-manifolds over degenerate ones is pointed out and the description and the analysis of some interesting aspects of the simplest Riemannian superspaces are presented from the point of view of the possible vacuum solutions.

  2. Health and Physical Education as an Important Part of School Curricula: A Comparison of Schools for the Deaf in the Czech Republic and the United States

    ERIC Educational Resources Information Center

    Kurkova, Petra; Scheetz, Nanci; Stelzer, Jiri

    2010-01-01

    The authors describe and compare how physical education classes and healthy lifestyle concepts are taught in selected Czech and U.S. schools for the deaf. Professionals who participated in the study included principals and teachers employed by 4 schools for the deaf. Data from schools were collected during the summer and fall semesters, and…

  3. Hanford Site annual dangerous waste report: Volume 3, Part 1, Waste Management Facility report, dangerous waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation, and amount of waste.

  4. 10 CFR Appendix D to Part 73 - Physical Protection of Irradiated Reactor Fuel in Transit, Training Program Subject Schedule

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... radioactive cargo —Function and characteristics of the shipping casks —Radiation hazards —Federal, State and... Contingencies —Accidents —Severe weather conditions —Vehicle breakdown —Communications problems —Radioactive...

  5. 10 CFR Appendix D to Part 73 - Physical Protection of Irradiated Reactor Fuel in Transit, Training Program Subject Schedule

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... radioactive cargo —Function and characteristics of the shipping casks —Radiation hazards —Federal, State and... Contingencies —Accidents —Severe weather conditions —Vehicle breakdown —Communications problems —Radioactive...

  6. 10 CFR Appendix D to Part 73 - Physical Protection of Irradiated Reactor Fuel in Transit, Training Program Subject Schedule

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... radioactive cargo —Function and characteristics of the shipping casks —Radiation hazards —Federal, State and... Contingencies —Accidents —Severe weather conditions —Vehicle breakdown —Communications problems —Radioactive...

  7. Alterations in Physical State of Silver Nanoparticles Exposed to Synthetic Human Stomach Fluid

    EPA Science Inventory

    The bioavailability of ingested silver nanoparticles (AgNPs) depends in large part on initial particle size, shape and surface coating, properties which will influence aggregation, solubility and chemical composition during transit of the gastrointestinal tract. Citrate-stabilize...

  8. Thermostatted kinetic equations as models for complex systems in physics and life sciences.

    PubMed

    Bianca, Carlo

    2012-12-01

    Statistical mechanics is a powerful method for understanding equilibrium thermodynamics. An equivalent theoretical framework for nonequilibrium systems has remained elusive. The thermodynamic forces driving the system away from equilibrium introduce energy that must be dissipated if nonequilibrium steady states are to be obtained. Historically, further terms were introduced, collectively called a thermostat, whose original application was to generate constant-temperature equilibrium ensembles. This review surveys kinetic models coupled with time-reversible deterministic thermostats for the modeling of large systems composed both by inert matter particles and living entities. The introduction of deterministic thermostats allows to model the onset of nonequilibrium stationary states that are typical of most real-world complex systems. The first part of the paper is focused on a general presentation of the main physical and mathematical definitions and tools: nonequilibrium phenomena, Gauss least constraint principle and Gaussian thermostats. The second part provides a review of a variety of thermostatted mathematical models in physics and life sciences, including Kac, Boltzmann, Jager-Segel and the thermostatted (continuous and discrete) kinetic for active particles models. Applications refer to semiconductor devices, nanosciences, biological phenomena, vehicular traffic, social and economics systems, crowds and swarms dynamics. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. A physics-based fractional order model and state of energy estimation for lithium ion batteries. Part II: Parameter identification and state of energy estimation for LiFePO4 battery

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyu; Pan, Ke; Fan, Guodong; Lu, Rengui; Zhu, Chunbo; Rizzoni, Giorgio; Canova, Marcello

    2017-11-01

    State of energy (SOE) is an important index for the electrochemical energy storage system in electric vehicles. In this paper, a robust state of energy estimation method in combination with a physical model parameter identification method is proposed to achieve accurate battery state estimation at different operating conditions and different aging stages. A physics-based fractional order model with variable solid-state diffusivity (FOM-VSSD) is used to characterize the dynamic performance of a LiFePO4/graphite battery. In order to update the model parameter automatically at different aging stages, a multi-step model parameter identification method based on the lexicographic optimization is especially designed for the electric vehicle operating conditions. As the battery available energy changes with different applied load current profiles, the relationship between the remaining energy loss and the state of charge, the average current as well as the average squared current is modeled. The SOE with different operating conditions and different aging stages are estimated based on an adaptive fractional order extended Kalman filter (AFEKF). Validation results show that the overall SOE estimation error is within ±5%. The proposed method is suitable for the electric vehicle online applications.

  10. An Integrated Approach to Laser Crystal Development

    NASA Technical Reports Server (NTRS)

    Ries, Heidi R.

    1996-01-01

    Norfolk State University has developed an integrated research program in the area of laser crystal development, including crystal modeling, crystal growth, spectroscopy, and laser modeling. This research program supports a new graduate program in Chemical Physics, designed in part to address the shortage of minority scientists.

  11. Atoms in Astronomy.

    ERIC Educational Resources Information Center

    Blanchard, Paul A.

    This booklet is part of an American Astronomical Society curriculum project designed to provide teaching materials to teachers of secondary school chemistry, physics, and earth science. A Basic Topics section discusses atomic structure, emphasizing states of matter at high temperature and spectroscopic analysis of light from the stars. A section…

  12. Solutions of the Schrodinger Equation Using Approximate Nucleon-Nucleon and Lambda-Nucleon Potentials.

    ERIC Educational Resources Information Center

    Banerjee, S. N.; Chakraborty, S. N.

    1980-01-01

    Presents the outline of an approach related to the teaching of the chapter on bound and scattering states in a short-range potential, which forms a standard part of an undergraduate quantum mechanics course or nuclear physics course. (HM)

  13. Measurements of pile driving noise from control piles and noise-reduced piles at the Vashon Island ferry dock.

    DOT National Transportation Integrated Search

    2017-04-01

    As part of the Washington State Department of Transportation (WSDOT) pile attenuation test program, : researchers from the University of Washington Applied Physics Laboratory (APL-UW) conducted underwater sound : measurements on 7 and 8 December 2015...

  14. The Impact of the Nuclear Equation of State in Core Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Baird, M. L.; Lentz, E. J.; Hix, W. R.; Mezzacappa, A.; Messer, O. E. B.; Liebendoerfer, M.; TeraScale Supernova Initiative Collaboration

    2005-12-01

    One of the key ingredients to the core collapse supernova mechanism is the physics of matter at or near nuclear density. Included in simulations as part of the Equation of State (EOS), nuclear repulsion experienced at high densities are responsible for the bounce shock, which initially causes the outer envelope of the supernova to expand, as well as determining the structure of the newly formed proto-neutron star. Recent years have seen renewed interest in this fundamental piece of supernova physics, resulting in several promising candidate EOS parameterizations. We will present the impact of these variations in the nuclear EOS using spherically symmetric, Newtonian and General Relativistic neutrino transport simulations of stellar core collapse and bounce. This work is supported in part by SciDAC grants to the TeraScale Supernovae Initiative from the DOE Office of Science High Energy, Nuclear, and Advanced Scientific Computing Research Programs. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for U.S. Department of Energy under contract DEAC05-00OR22725

  15. Teal Ruby Experiment. Phase I Definition Study. Volume I. Part 2. Appendixes

    DTIC Science & Technology

    1977-05-01

    degree, Engineering Mechanics, Stanford University; M.S., Physics, New Mexico State University; B.A., Mathematics, Uaiversity of California atLos...Receiving Inspection Supervisor, military aircraft parts and materials * M.B.A., Mexico City College; Industrial Engineering, General Motors Institute A...S$Act ..MCA!y. f A SuiSn.•..v Of t¢OCtNI1 AI*CIATf COIOV*A,*ON LMSC-5699533 RICHARD- C. SEXT -ON -. Material Procurement Responsibilities

  16. A Non-Dimensional Analysis of Cardiovascular Response to Cold Stress. Part I. Identification of the Physical Parameters that Govern the Thermoregulatory Function of the Cardiovascular System.

    DTIC Science & Technology

    1983-09-01

    together with an increased ventricular distensibility , tend to raise the end - 66 - diastolic volume. Again, however, :he inadequace emptying tends to... Distensibility (Sympathetic Increase, Para- sympathetic Decrease); (xi) Atrial contraction (end diastolic volume), (enhanced by sympathetic stimulation...Relationships For Striated Skeletal Muscle; Part III, Mechanics and Energetics of Muscular Contraction," Virginia Polytechnic Institute and State

  17. Techniques of Water-Resources Investigations of the United States Geological Survey. Book 3, Applications of Hydraulics. Chapter B2, Introduction to Ground-Water Hydraulics: Programed Text for Self-Instruction.

    ERIC Educational Resources Information Center

    Bennett, Gordon D.

    This programmed text of self-instruction is one of a series of manuals on techniques describing procedures for planning and executing specialized work in water-resources investigations. It has been prepared on the assumption that the reader has completed standard courses in calculus and college physics and is presented in eight parts. Part I…

  18. Material Science

    NASA Image and Video Library

    2002-08-06

    Khalid Alshibli of Louisiana State University, project scientist for the Mechanics of Granular Materials (MGM-III) experiment, explains the MGM experiment to Kristen Erickson, acting deputy associate administrator in NASA's Office of Biological and Physical Research. A training model of the test cell is at right. The activity was part of the Space Research and You education event held by NASA's Office of Biological and Physical Research on June 25, 2002, in Arlington, VA, to highlight the research that will be conducted on STS-107.

  19. The many Metaphysics within Physics. Essay review of 'The Metaphysics within Physics' by Tim Maudlin

    NASA Astrophysics Data System (ADS)

    Suárez, Mauricio

    Tim Maudlin's new book The Metaphysics within Physics (Oxford University Press, 2007) collects six essays by one of the most thoughtful and original minds working in the philosophy of physics nowadays. Some had previously circulated informally for years. For example, Chapter 1 ('A Modest Proposal Concerning Laws, Counterfactuals and Explanations') is as old as my own philosophical career-I recall reading a draft in the early 1990s. The mere publication of such a long-awaited collection is therefore already good news. In addition, the degree of coherence and the lack of redundancy are greater than one would expect from a collection of disparate essays written at diverse times and with a range of different targets. The whole book can be understood coherently as an extended argument in favor of a particular 'physics-based' methodology for inquiry in metaphysics. This methodology recommends a detailed and thorough analysis of current physics as a benchmark for any thesis, dispute or argument in metaphysics. It follows that proper metaphysical inquiry must be suitably informed not just about the current state of play in analytical metaphysics but also about the current state of development of the relevant part of present day physics.

  20. Impact of poor sleep quality and physical inactivity on cognitive function in community-dwelling older adults.

    PubMed

    Nakakubo, Sho; Makizako, Hyuma; Doi, Takehiko; Tsutsumimoto, Kota; Lee, Sangyoon; Lee, Sungchul; Hotta, Ryo; Bae, Seongryu; Suzuki, Takao; Shimada, Hiroyuki

    2017-11-01

    The purpose of the present study was to examine whether the combination of subjective sleep quality and physical activity is associated with cognitive performance among community-dwelling older adults. Cross-sectional data on 5381 older adults who participated in part of the National Center for Geriatrics and Gerontology - Study of Geriatric Syndromes were analyzed. We assessed general cognitive impairment using the Mini-Mental State Examination, and also assessed story memory, attention, executive function and processing speed using the National Center for Geriatrics and Gerontology Functional Assessment Tool. Physical activity was assessed using two questionnaires, and participants were categorized as active or inactive. Sleep quality was assessed using the Pittsburgh Sleep Quality Index, and participants were categorized as having poor (PS) or good sleep quality (GS). Participants in the inactive + PS group had worse performances than those in the active + GS group in all cognitive measures (Mini-Mental State Examination: P = 0.008, story memory: P = 0.007, other cognitive measures: P < 0.001), and also had worse performances than those in the inactive + GS and active + PS groups in the trail-making test, part B, and the symbol digit substitution test (P < 0.001, respectively). Additionally, participants in the inactive + GS group had worse performances than in the active + GS in the trail-making test, part B, and the symbol digit substitution test (P = 0.002 and P = 0.001, respectively). Inactivity and poor sleep quality were associated with poor cognitive performance among community-dwelling older adults. The combination of poor sleep quality and physical inactivity also worsened cognitive performance. Geriatr Gerontol Int 2017; 17: 1823-1828. © 2017 Japan Geriatrics Society.

  1. 42 CFR 410.74 - Physician assistants' services.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 2 2011-10-01 2011-10-01 false Physician assistants' services. 410.74 Section 410... Physician assistants' services. (a) Basic rule. Medicare Part B covers physician assistants' services only... physically present when the physician assistant is performing the services unless required by State law...

  2. 42 CFR 410.74 - Physician assistants' services.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 2 2013-10-01 2013-10-01 false Physician assistants' services. 410.74 Section 410... Physician assistants' services. (a) Basic rule. Medicare Part B covers physician assistants' services only... physically present when the physician assistant is performing the services unless required by State law...

  3. 42 CFR 410.74 - Physician assistants' services.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 2 2014-10-01 2014-10-01 false Physician assistants' services. 410.74 Section 410... Physician assistants' services. (a) Basic rule. Medicare Part B covers physician assistants' services only... physically present when the physician assistant is performing the services unless required by State law...

  4. 42 CFR 410.74 - Physician assistants' services.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 2 2012-10-01 2012-10-01 false Physician assistants' services. 410.74 Section 410... Physician assistants' services. (a) Basic rule. Medicare Part B covers physician assistants' services only... physically present when the physician assistant is performing the services unless required by State law...

  5. 42 CFR 410.74 - Physician assistants' services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Physician assistants' services. 410.74 Section 410... Physician assistants' services. (a) Basic rule. Medicare Part B covers physician assistants' services only... physically present when the physician assistant is performing the services unless required by State law...

  6. Combining research in physical chemistry and chemical education: Part A. The femtosecond molecular dynamics of small gas-phase anion clusters. Part B. Surveying student beliefs about chemistry and the development of physical chemistry learning tutorials

    NASA Astrophysics Data System (ADS)

    Barbera, Jack

    2007-12-01

    This dissertation combines work in the areas of experimental physical chemistry and chemical education. In the area of physical chemistry, femtosecond pump-probe spectroscopy is used to interrogate the time-dependence for energy redistribution, solvent reorientation, and dissociation dynamics in small gas-phase anion clusters. The chemical education research addressed in this manuscript include the development and validation of a survey to measure students' beliefs about chemistry and the learning of chemistry and the development and testing of learning tutorials for use in undergraduate physical chemistry courses in thermodynamics and kinetics. In the first part of this dissertation, the Cu(CD3OD) dynamics are investigated using a combination of femtosecond pump-probe experiments and ab initio calculations. Dissociation of this complex into Cu and CD3OD occurs on two distinct time scales: 3 and 30 ps, which arise, respectively, from the coupling of intermolecular solvent rotations and excited methyl rotor rotation into the Cu-O dissociation component upon electron photodetachment of the precursor anion. In the second part of this dissertation, the time-resolved recombination of photodissociated IBr-(CO2)n (n = 5 - 10) cluster anions is investigated. Upon excitation to the A' 2pi 1/2 state of the chromophore, the bare anion results in I- and Br products, upon solvation with CO2, the IBr- chromophore regains near-IR absorption after recombination and vibrational relaxation on the ground electronic state. The recombination times vary with the number of solvent molecules from 12 ps for n = 5 to 900 ps for n = 10. Extensive electronic structure and non-adiabatic molecular dynamic simulations provide a framework to understand this behavior. In the third part of this dissertation, the modification and validation of the Colorado Learning Attitudes about Science Survey (CLASS) for use in chemistry is presented in detail. The CLASS survey is designed to measure student beliefs about chemistry and the learning of chemistry. This instrument is a modification of the original CLASS-Phys survey designed for use in physics. Statements on the chemistry version (CLASS-Chem) are validated using chemistry students with a broad range of experience levels to ensure clarity in wording and meaning. The chemistry version addresses additional belief areas important in learning chemistry but not physics, specifically, beliefs about reactions and molecular structure. Statements are grouped into statistically robust categories using reduced basis factor analysis. The final part of this dissertation addresses the development and testing of learning tutorials for use in undergraduate physical chemistry. The tutorials are designed to promote the active mental engagement of students in the process of learning. Questions within the pencil-paper format guide students through the reasoning needed to apply concepts to real-world situations. Each tutorial is connected to a physical model or computer simulation providing students with additional hands-on investigations to strengthen their connection with the concepts addressed in the tutorial. Currently tutorials connected with the First and Second Laws of Thermodynamics as well as Kinetics have been developed and tested.

  7. Black-hole Binaries: Life Begins at 40 keV

    NASA Astrophysics Data System (ADS)

    Belloni, Tomaso M.; Motta, Sara

    2009-05-01

    In the study of black-hole transients, an important problem that still needs to be answered is how the high-energy part of the spectrum evolves from the low-hard to the high-soft state, given that they have very different properties. Recent results obtained with RXTE and INTEGRAL have given inconsistent results. With RXTE, we have found that the high-energy cutoff in GX 339-4 during the transition first decreases (during the low-hard state), then increases again across the Hard-Intermediate state, to become unmeasurable in the soft states (possibly because of statistical limitations). We show Simbol-X will be able to determine the spectral shape with superb accuracy. As the high-energy part of the spectrum is relatively less known than the one below 20 keV, Simbol-X will provide important results that will help out understanding of the extreme physical conditions in the vicinity of a stellar-mass black hole.

  8. Fundamental Physics and Model Assumptions in Turbulent Combustion Models for Aerospace Propulsion

    DTIC Science & Technology

    2014-06-01

    of the equation of state is enabling to this variables split since a constant pressure implies that density can be obtained ... of models, the Reynolds stress term is first expressed as the sum of the deviatoric and isotropic stress parts. The deviatoric part is given by: τD...interpretation with regard to turbulent flow. It may be more appropriate to look at the modeling of the cross- stress terms in the LES equations

  9. Association of hair iron levels with creativity and psychological variables related to creativity

    PubMed Central

    Takeuchi, Hikaru; Taki, Yasuyuki; Sekiguchi, Atsushi; Nouchi, Rui; Kotozaki, Yuka; Nakagawa, Seishu; Miyauchi, Carlos M.; Iizuka, Kunio; Yokoyama, Ryoichi; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Kunitoki, Keiko; Sassa, Yuko; Kawashima, Ryuta

    2013-01-01

    Creativity generally involves the conception of original and valuable ideas. Previous studies have suggested an association between creativity and the dopaminergic system, and that physical activity facilitates creativity. Iron plays a key role in the dopaminergic system and physical activity. Here, we newly investigated the associations between hair iron levels and creativity, dopamine-related traits and states [novelty seeking, extraversion, and vigor (motivational state)], as well as the physical activity level. In the present study, we addressed this issue by performing a hair mineral analysis to determine iron levels and a behavioral creativity test of divergent thinking and related psychological measures among young adults (254 men, 88 women; mean age 20.79 ± 2.03 years). Iron levels did not show any significant association with creativity but displayed significant positive associations with novelty seeking, extraversion, and physical activity level. These results may be partly congruent with the notion that iron plays a key role in the dopaminergic system and imply that iron is important for traits and physical activity, which facilitate creativity. Future interventional or longitudinal studies are warranted to identify any causal effects. PMID:24385960

  10. Publications of LASL research, 1974

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, A.K.

    1975-05-01

    This bibliography includes Los Alamos Scientific Laboratory reports, papers released as non-Los Alamos reports, journal articles, books, chapters of books, conference papers (whether published separately or as part of conference proceedings issued as books or reports), papers published in congressional hearings, theses, and U. S. patents. Publications by LASL authors which are not records of Laboratory-sponsored work are included when the Library becomes aware of them. The entries are arranged in sections by broad subject categories; within each section they are alphabetical by title. The following subject categories are included: aerospace studies; analytical technology; astrophysics; atomic and molecular physics, equationmore » of state, opacity; biology and medicine; chemical dynamics and kinetics; chemistry; cryogenics; crystallography; CTR and plasma studies; earth science and engineering; energy (non-nuclear); engineering and equipment; EPR, ESR, NMR studies; explosives and detonations; fission physics; health and safety; hydrodynamics and radiation transport; instruments; lasers; mathematics and computers; medium-energy physics; metallurgy and ceramics technology; neutronic and criticality studies; nuclear physics; nuclear safeguards; physics; reactor technology; solid state science; and miscellaneous (including Project Rover). Author, numerical and KWIC indexes are included. (RWR)« less

  11. Use of model analysis to analyse Thai students’ attitudes and approaches to physics problem solving

    NASA Astrophysics Data System (ADS)

    Rakkapao, S.; Prasitpong, S.

    2018-03-01

    This study applies the model analysis technique to explore the distribution of Thai students’ attitudes and approaches to physics problem solving and how those attitudes and approaches change as a result of different experiences in physics learning. We administered the Attitudes and Approaches to Problem Solving (AAPS) survey to over 700 Thai university students from five different levels, namely students entering science, first-year science students, and second-, third- and fourth-year physics students. We found that their inferred mental states were generally mixed. The largest gap between physics experts and all levels of the students was about the role of equations and formulas in physics problem solving, and in views towards difficult problems. Most participants of all levels believed that being able to handle the mathematics is the most important part of physics problem solving. Most students’ views did not change even though they gained experiences in physics learning.

  12. The Coefficient of First Viscosity Via Three-Phonon Processes in Bulk Liquid Helium

    DTIC Science & Technology

    1988-06-01

    of Chemistry and Physics State University of New York at Buffalo Buffalo, New York 14260 June 1988 Reproduction in whole or in part is permitted for...NUBUFFALO/DC/88/TR-71 6.. NAME OF PERFORMING ORGANIZATION I 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION Depts. Chemistry & Physics j (If... Chemistry Program Buffalo, New York 14260 800 N. Quincy Street _ __ _Arlington, Virginia 22217 Ba. NAME OF FUND:NG/SPONSORING 8b. OFFICE SYMBOL 9

  13. 1987 Oak Ridge model conference: Proceedings: Volume I, Part 3, Waste Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-01-01

    A conference sponsored by the United States Department of Energy (DOE), was held on waste management. Topics of discussion were transuranic waste management, chemical and physical treatment technologies, waste minimization, land disposal technology and characterization and analysis. Individual projects are processed separately for the data bases. (CBS)

  14. 49 CFR 225.21 - Forms.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... stated on this form. All railroads subject to this part, shall show on this form the total number of... Attachment to a Rail Equipment Accident/Incident Report, that the act, omission, or physical condition of a.../Incident Reports.” Any response from a highway user is voluntary and not mandatory. A railroad shall use...

  15. In female adolescents, romantic love is related to hypomanic-like stages and increased physical activity, but not to sleep or depressive symptoms.

    PubMed

    Bajoghli, Hafez; Joshaghani, Narges; Mohammadi, Mohammad Reza; Holsboer-Trachsler, Edith; Brand, Serge

    2011-09-01

    Experiencing romantic love is important in individual development. Little is known about romantic love among adolescents in non-Western countries. The aim of the present study was therefore to explore romantic love among Iranian female adolescents. Eighty-six females (mean age: 17.97 years) took part in the study; 38 of them (44%) indicated they were experiencing romantic love at the time of survey, and 48 (56%) indicated they were not in love. Participants completed questionnaires related to affective states and physical activity, and a sleep log for seven consecutive nights. Compared to controls, participants in love had higher scores for hypomanic-like states, positive mood, physical activity, but not for better sleep quality or for depressive symptoms. Against expectations, hypomania scores increased with the duration of the romantic relationship, suggesting that culture-related issues might shape the way romantic love may be experienced.

  16. Acute Bouts of Exercising Improved Mood, Rumination and Social Interaction in Inpatients With Mental Disorders.

    PubMed

    Brand, Serge; Colledge, Flora; Ludyga, Sebastian; Emmenegger, Raphael; Kalak, Nadeem; Sadeghi Bahmani, Dena; Holsboer-Trachsler, Edith; Pühse, Uwe; Gerber, Markus

    2018-01-01

    Background: Studies at the macro level (such as longer-term interventions) showed that physical activity impacts positively on cognitive-emotional processes of patients with mental disorders. However, research focusing on the immediate impact of acute bouts of exercise (micro level) are missing. The aim of the present study was therefore to investigate whether and to what extent single bouts of moderately intense exercise can influence dimensions of psychological functioning in inpatients with mental disorders. Method: 129 inpatients (mean age: 38.16 years; 50.4% females) took part and completed a questionnaire both immediately before and immediately after exercising. Thirty inpatients completed the questionnaires a second time in the same week. The questionnaire covered socio-demographic and illness-related information. Further, the questionnaire asked about current psychological states such as mood, rumination, social interactions, and attention, tiredness, and physical strengths as a proxy of physiological states. Results: Psychological states improved from pre- to post-session. Improvements were observed for mood, social interactions, attention, and physical strengths. Likewise, rumination and tiredness decreased. Mood, rumination, and tiredness further improved, when patients completed the questionnaires the second time in the same week. Conclusion: At micro level, single bouts of exercise impacted positively on cognitive-emotional processes such as mood, rumination, attention and social interactions, and physiological states of tiredness and physical strengths among inpatients with mental disorders. In addition, further improvements were observed, if patients participated in physical activities a second time.

  17. Acute Bouts of Exercising Improved Mood, Rumination and Social Interaction in Inpatients With Mental Disorders

    PubMed Central

    Brand, Serge; Colledge, Flora; Ludyga, Sebastian; Emmenegger, Raphael; Kalak, Nadeem; Sadeghi Bahmani, Dena; Holsboer-Trachsler, Edith; Pühse, Uwe; Gerber, Markus

    2018-01-01

    Background: Studies at the macro level (such as longer-term interventions) showed that physical activity impacts positively on cognitive-emotional processes of patients with mental disorders. However, research focusing on the immediate impact of acute bouts of exercise (micro level) are missing. The aim of the present study was therefore to investigate whether and to what extent single bouts of moderately intense exercise can influence dimensions of psychological functioning in inpatients with mental disorders. Method: 129 inpatients (mean age: 38.16 years; 50.4% females) took part and completed a questionnaire both immediately before and immediately after exercising. Thirty inpatients completed the questionnaires a second time in the same week. The questionnaire covered socio-demographic and illness-related information. Further, the questionnaire asked about current psychological states such as mood, rumination, social interactions, and attention, tiredness, and physical strengths as a proxy of physiological states. Results: Psychological states improved from pre- to post-session. Improvements were observed for mood, social interactions, attention, and physical strengths. Likewise, rumination and tiredness decreased. Mood, rumination, and tiredness further improved, when patients completed the questionnaires the second time in the same week. Conclusion: At micro level, single bouts of exercise impacted positively on cognitive-emotional processes such as mood, rumination, attention and social interactions, and physiological states of tiredness and physical strengths among inpatients with mental disorders. In addition, further improvements were observed, if patients participated in physical activities a second time. PMID:29593592

  18. Dynamical Evolution of a Coronal Streamer-Flux Rope System: 2. A Self-Consistent Non-Planar Magnetohydrodynamic Simulation

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Guo, W. P.; Dryer, Murray

    1996-01-01

    The dynamical response of a helmet streamer to a flux rope escape from the sub-photosphere is examined in a physically self-consistent manner within the approximation of axisymmetric three-dimensional magnetohydrodynamics (i.e., so-called '2 1/2 D'). In contrast to the previous planar analyses of Paper 1 (Wu, Guo, and Wang), the present study shows, with the inclusion of out-of-plane components of magnetic and velocity fields, that the magnetic configuration represents a helical flux rope instead of a planar bubble as shown in Paper 1. Because of this more physically-realistic configuration, we are able to examine the dynamical evolution of the helical flux rope's interaction with the helmet streamer. This process leads to the formation of two parts of the solar mass ejection: (i) the expulsion of the helmet dome due to eruption of this flux rope, and (ii) the flux rope's eruption itself. When this two-part feature propagates out to the interplanetary space, it exhibits all the physical characteristics of observed interplanetary magnetic clouds. These numerical simulations also show that the dynamical behavior of the streamer-flux rope system has three distinct states: (i) quasi-equilibrium, (ii) non-equilibrium, and (iii) eruptive state depending on the energy level of the flux rope.

  19. Quantum Entanglement in Neural Network States

    NASA Astrophysics Data System (ADS)

    Deng, Dong-Ling; Li, Xiaopeng; Das Sarma, S.

    2017-04-01

    Machine learning, one of today's most rapidly growing interdisciplinary fields, promises an unprecedented perspective for solving intricate quantum many-body problems. Understanding the physical aspects of the representative artificial neural-network states has recently become highly desirable in the applications of machine-learning techniques to quantum many-body physics. In this paper, we explore the data structures that encode the physical features in the network states by studying the quantum entanglement properties, with a focus on the restricted-Boltzmann-machine (RBM) architecture. We prove that the entanglement entropy of all short-range RBM states satisfies an area law for arbitrary dimensions and bipartition geometry. For long-range RBM states, we show by using an exact construction that such states could exhibit volume-law entanglement, implying a notable capability of RBM in representing quantum states with massive entanglement. Strikingly, the neural-network representation for these states is remarkably efficient, in the sense that the number of nonzero parameters scales only linearly with the system size. We further examine the entanglement properties of generic RBM states by randomly sampling the weight parameters of the RBM. We find that their averaged entanglement entropy obeys volume-law scaling, and the meantime strongly deviates from the Page entropy of the completely random pure states. We show that their entanglement spectrum has no universal part associated with random matrix theory and bears a Poisson-type level statistics. Using reinforcement learning, we demonstrate that RBM is capable of finding the ground state (with power-law entanglement) of a model Hamiltonian with a long-range interaction. In addition, we show, through a concrete example of the one-dimensional symmetry-protected topological cluster states, that the RBM representation may also be used as a tool to analytically compute the entanglement spectrum. Our results uncover the unparalleled power of artificial neural networks in representing quantum many-body states regardless of how much entanglement they possess, which paves a novel way to bridge computer-science-based machine-learning techniques to outstanding quantum condensed-matter physics problems.

  20. Courses in Modern Physics for Non-science Majors, Future Science Teachers, and Biology Students

    NASA Astrophysics Data System (ADS)

    Zollman, Dean

    2001-03-01

    For the past 15 years Kansas State University has offered a course in modern physics for students who are not majoring in physics. This course carries a prerequisite of one physics course so that the students have a basic introduction in classical topics. The majors of students range from liberal arts to engineering. Future secondary science teachers whose first area of teaching is not physics can use the course as part of their study of science. The course has evolved from a lecture format to one which is highly interactive and uses a combination of hands-on activities, tutorials and visualizations, particularly the Visual Quantum Mechanics materials. Another course encourages biology students to continue their physics learning beyond the introductory course. Modern Miracle Medical Machines introduces the basic physics which underlie diagnosis techniques such as MRI and PET and laser surgical techniques. Additional information is available at http://www.phys.ksu.edu/perg/

  1. Inertial Confinement Fusion as an Extreme Example of Dynamic Compression

    NASA Astrophysics Data System (ADS)

    Moses, E.

    2013-06-01

    Initiating and controlling thermonuclear burn at the national ignition facility (NIF) will require the manipulation of matter to extreme energy densities. We will discuss recent advances in both controlling the dynamic compression of ignition targets and our understanding of the physical states and processes leading to ignition. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344.

  2. Chimaera simulation of complex states of flowing matter.

    PubMed

    Succi, S

    2016-11-13

    We discuss a unified mesoscale framework (chimaera) for the simulation of complex states of flowing matter across scales of motion. The chimaera framework can deal with each of the three macro-meso-micro levels through suitable 'mutations' of the basic mesoscale formulation. The idea is illustrated through selected simulations of complex micro- and nanoscale flows.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).

  3. Remote access application for general physics examinations in the Magistracy Institute of National Research Nuclear University MEPhI

    NASA Astrophysics Data System (ADS)

    Kalashnikov, N. P.; Muravyev-Smirnov, S. S.; Samarchenko, D. A.; Tyulyusov, A. N.

    2017-01-01

    We discuss the remote training technique in general physics for foreign students. The examination for the student certification was chosen in the quiz form for all parts of the general physics course. This article describes the basic principles of the creation and placement of the structured question bank for the distance learning system. The possibility of creating an adaptive tests system on the basis of the minimal state education requirements is described. The examination results are analyzed and the tests validity is carried out based on the comparison of the exam results with a student certification during the semester.

  4. "MAPHICS", its development and influence on the future of Science.

    NASA Astrophysics Data System (ADS)

    Castellano, Doc

    2001-11-01

    On the fifth 'anniversary' of his conferences with Einstein, the Author reviewed the State of the Art of Mathematical Physics. During this review, 1960, the Author formulated an Omega Science. Namely, combining the Philosophy of Mathematics with the Philosophy of Physics into ONE Philosophy, "MAPHICS". "MA from MAthematics and PH--ICS" from Physics; "MAPHICS" (TM). The PhD co. views Science in general, and Mathematical Physics in particular, from a Historic-Philosophical viewpoint. Thus, it remained anonymous and 'in the background' as publicly known Mathematicians and Physicists, with their great reservoir of rhetoric expertise in said Fields; gradually presented and refined the essence of what the Author calls "Spirito Mathematics". A Philosophical concept that now appears to be publicly developing, with the utilization of some its speed and resolution power. The Author will give at least three examples of its speed and resolution power. One being the partial differential equation in the development of Wave Mechanics & Quantum Mechanics. Namely, [(-ih bar(squared)/2m)(2nd Part.Der. psi/ respect to x)] + V psi = ih bar -(Part.Der. psi/respect to t).

  5. The physical challenges of early breastfeeding.

    PubMed

    Kelleher, Christa M

    2006-11-01

    Breastfeeding rates have recently increased in the United States and Canada and a majority of women now initiate breastfeeding. Feminist scholarship on breastfeeding has addressed a variety of issues related to women's breastfeeding experiences but has tended to ignore or downplay the potentially physically challenging aspects of early breastfeeding. This study, based on semi-structured, in-depth interviews with 52 women from Canada and the United States conducted at approximately one month postpartum, examines women's experiences of pain and discomfort associated with breastfeeding. The findings demonstrate that many women experienced pain and discomfort and that they were generally surprised by the extent, intensity and duration of discomfort and pain, which ranged from mild to severe. Several women indicated that the physical impact of breastfeeding affected their relationship with their baby; others indicated that they became hesitant to continue the practice due to feelings of physical vulnerability, pain and/or discomfort. Lastly, women's experiences of the physical implications of breastfeeding were influenced in part by assistance provided by health care practitioners, in both positive and negative ways. The practice of breastfeeding has the potential to challenge women's physicality. Feminist scholars addressing the topic of breastfeeding, women's postpartum health, and embodiment must more directly and comprehensively account for the potentially negative physical implications and demands associated with early breastfeeding.

  6. A novel design for storage of inner stress by colloidal processing on rock-like materials

    NASA Astrophysics Data System (ADS)

    Chen, Weichang; Wang, Sijing; Lekan Olatayo, Afolagboye; Fu, Huanran

    2018-06-01

    Inner stress exists in rocks, affecting rock engineering, yet has received very little attention and quantitative investigation because of uncertainty about its characteristics. Previous studies have suggested that the inner stresses of rock materials are closely related to their physical state variation. In this work, a novel mold was designed to simulate the storage process of inner stress in specimens composed of quartz sands and epoxy. Then, thermal tests were carried out to change the physical state of the specimens, and expansion of the specimens was monitored. The results indicated that inner stress could be partly locked by the mold and it could also be released by heating. It can be inferred from the analysis that one necessary condition of storage and release of inner stress is physical state variation. Additionally, by using an XRD method, the variations in the interplanar spacing of the quartz sands were detected, and the results reflect that inner stress could be locked-in aggregates (quartz sands) by a cement constraint (solid epoxy). The inner stress stored in quartz sands was calculated using height and interplanar spacing variations.

  7. Meeting Core Requirements through Efficient Time Management. Teaching Tips.

    ERIC Educational Resources Information Center

    Prusak, Keven

    1997-01-01

    Using a basketball unit as an example, this paper presents a model to help middle school physical educators accomplish a proper warmup, stretch, and cardiovascular workout as required by state core requirements without sacrificing time for skills acquisition and play. Concepts of individual goal setting and goal achievement are an inherent part of…

  8. First record of Ectomyelois muriscis (Lepidoptera: Pyralidae) on physic nut (Jatropha curcas), a biofuel plant

    USDA-ARS?s Scientific Manuscript database

    The natural infestation of fruits and stems of Jatropha curcas L. (Euphorbiaceae) by larvae of the pyralid moth Ectomyelois muriscis (Dyar) (Lepidoptera: Pyralidae) is reported for the first time. Populations of E. muriscis on J. curcas were observed in various parts of the state of Chiapas, souther...

  9. 75 FR 10834 - Energy Northwest; Columbia Generating Station; Environmental Assessment and Finding of No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... consulted with the Washington State official, Mr. R. Cowley of the Office of Radiation Protection, regarding... requirement of 10 CFR part 73, ``Physical protection of plants and materials,'' for Facility Operating License... change to radioactive effluents that affect radiation exposures to plant workers and members of the...

  10. [The relationship between executive functions, physical and functional capability in people over 60 years old].

    PubMed

    Rajtar-Zembaty, Anna; Sałakowski, Andrzej; Rajtar-Zembaty, Jakub

    Nowadays it is believed that cognitive decline may contribute to the formation of gait disturbance and increased risk of falls. Currently the importance of executive functions to maintain proper control of gait is emphasized. The aim of the study was to assess the relationship between the level of executive function, functional and physical capability in patients over 60 years of age. The study included 300 patients (199 women and 101 men) aged 60-88 years. In order to screening for cognitive function Mini-Mental State Examination (MMSE) was used. The following researchers tools were used to conduct functional assessment: a) Short Physical Performance Battery (SPPB), b) Timed “Up and Go” (TUG) and c) Fast Walking Test. To assess executive fucntion Trail Making Test (TMT) was selected. The relationship between the speed of information processing (part A, TMT), executive functions (Part B, TMT), level of functional and physical capability was observed. The strongest positive correlation was noted between the time of TUG test and TMT part B (r=0.32; p<0.01), and also between Fast Gait Test and TMT part A (r=0.27; p<0.01). It has been proven that the level of executive function is related to the level of functional capability (β=0.18; p=0.001). It was found that 15% of variation in the level of the TUG test was explained by age, TMT- B, GDS and BMI. There is a relationship between level of executive functions, functional and physical capability in patients over 60 years of age. Cognitive processes play an important role in the control of motor functions therefore it is important to incorporate examination of cognitive functions in the early geriatric diagnosis.

  11. Tensegrity II. How structural networks influence cellular information processing networks

    NASA Technical Reports Server (NTRS)

    Ingber, Donald E.

    2003-01-01

    The major challenge in biology today is biocomplexity: the need to explain how cell and tissue behaviors emerge from collective interactions within complex molecular networks. Part I of this two-part article, described a mechanical model of cell structure based on tensegrity architecture that explains how the mechanical behavior of the cell emerges from physical interactions among the different molecular filament systems that form the cytoskeleton. Recent work shows that the cytoskeleton also orients much of the cell's metabolic and signal transduction machinery and that mechanical distortion of cells and the cytoskeleton through cell surface integrin receptors can profoundly affect cell behavior. In particular, gradual variations in this single physical control parameter (cell shape distortion) can switch cells between distinct gene programs (e.g. growth, differentiation and apoptosis), and this process can be viewed as a biological phase transition. Part II of this article covers how combined use of tensegrity and solid-state mechanochemistry by cells may mediate mechanotransduction and facilitate integration of chemical and physical signals that are responsible for control of cell behavior. In addition, it examines how cell structural networks affect gene and protein signaling networks to produce characteristic phenotypes and cell fate transitions during tissue development.

  12. Multireference Density Functional Theory with Generalized Auxiliary Systems for Ground and Excited States.

    PubMed

    Chen, Zehua; Zhang, Du; Jin, Ye; Yang, Yang; Su, Neil Qiang; Yang, Weitao

    2017-09-21

    To describe static correlation, we develop a new approach to density functional theory (DFT), which uses a generalized auxiliary system that is of a different symmetry, such as particle number or spin, from that of the physical system. The total energy of the physical system consists of two parts: the energy of the auxiliary system, which is determined with a chosen density functional approximation (DFA), and the excitation energy from an approximate linear response theory that restores the symmetry to that of the physical system, thus rigorously leading to a multideterminant description of the physical system. The electron density of the physical system is different from that of the auxiliary system and is uniquely determined from the functional derivative of the total energy with respect to the external potential. Our energy functional is thus an implicit functional of the physical system density, but an explicit functional of the auxiliary system density. We show that the total energy minimum and stationary states, describing the ground and excited states of the physical system, can be obtained by a self-consistent optimization with respect to the explicit variable, the generalized Kohn-Sham noninteracting density matrix. We have developed the generalized optimized effective potential method for the self-consistent optimization. Among options of the auxiliary system and the associated linear response theory, reformulated versions of the particle-particle random phase approximation (pp-RPA) and the spin-flip time-dependent density functional theory (SF-TDDFT) are selected for illustration of principle. Numerical results show that our multireference DFT successfully describes static correlation in bond dissociation and double bond rotation.

  13. MONTE CARLO SIMULATIONS OF PERIODIC PULSED REACTOR WITH MOVING GEOMETRY PARTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yan; Gohar, Yousry

    2015-11-01

    In a periodic pulsed reactor, the reactor state varies periodically from slightly subcritical to slightly prompt supercritical for producing periodic power pulses. Such periodic state change is accomplished by a periodic movement of specific reactor parts, such as control rods or reflector sections. The analysis of such reactor is difficult to perform with the current reactor physics computer programs. Based on past experience, the utilization of the point kinetics approximations gives considerable errors in predicting the magnitude and the shape of the power pulse if the reactor has significantly different neutron life times in different zones. To accurately simulate themore » dynamics of this type of reactor, a Monte Carlo procedure using the transfer function TRCL/TR of the MCNP/MCNPX computer programs is utilized to model the movable reactor parts. In this paper, two algorithms simulating the geometry part movements during a neutron history tracking have been developed. Several test cases have been developed to evaluate these procedures. The numerical test cases have shown that the developed algorithms can be utilized to simulate the reactor dynamics with movable geometry parts.« less

  14. Model-based restoration using light vein for range-gated imaging systems.

    PubMed

    Wang, Canjin; Sun, Tao; Wang, Tingfeng; Wang, Rui; Guo, Jin; Tian, Yuzhen

    2016-09-10

    The images captured by an airborne range-gated imaging system are degraded by many factors, such as light scattering, noise, defocus of the optical system, atmospheric disturbances, platform vibrations, and so on. The characteristics of low illumination, few details, and high noise make the state-of-the-art restoration method fail. In this paper, we present a restoration method especially for range-gated imaging systems. The degradation process is divided into two parts: the static part and the dynamic part. For the static part, we establish the physical model of the imaging system according to the laser transmission theory, and estimate the static point spread function (PSF). For the dynamic part, a so-called light vein feature extraction method is presented to estimate the fuzzy parameter of the atmospheric disturbance and platform movement, which make contributions to the dynamic PSF. Finally, combined with the static and dynamic PSF, an iterative updating framework is used to restore the image. Compared with the state-of-the-art methods, the proposed method can effectively suppress ringing artifacts and achieve better performance in a range-gated imaging system.

  15. Geohydrologic systems in Kansas; physical framework of the confining unit in the Western Interior Plains aquifer system

    USGS Publications Warehouse

    Hansen, C.V.; Wolf, R.J.; Spinazola, J.M.

    1992-01-01

    The purpose of this Hydrologic Investigations Atlas is to provide a description of the geohydrologic systems in Upper Cambrian through Lower Cretaceous rocks in Kansas. This investigation was made as part of the Central Midwest Regional Aquifer-System Analysis (CMRASA). The CMRASA is one of several major investigations by the U.S. Geological Survey of regional aquifer systems in the United States. These regional investigations are designed to increase knowledge of the flow regime and hydrologic properties of major aquifer systems and to provide quantitative information for the assessment, development, and management of water supplies. The CMRASA study area includes all or parts of 10 Central Midwestern States (Jorgensen and Signor, 1981), as shown on the envelope cover.

  16. Geohydrologic systems in Kansas physical framework of the western interior plains confining system

    USGS Publications Warehouse

    Wolf, R.J.; McGovern, Harold E.; Spinazola, Joseph M.

    1992-01-01

    The purpose of this Hydrologic Investigations Atlas is to provide a description of the principal geohydrologic systems in the Upper Cambrian through Lower Cretaceous rocks in Kansas.  This investigation was made as part of the Central Midwest Regional Aquifer-System Analysis (CMRASA). The CMRASA is one of several major investigations by the U.S. Geological Survey of regional aquifer systems in the United States. These regional investigations are designed to increase knowledge of the flow regime and hydrologic properties of major aquifer systems and to provide quantitative information for assessing, developing, and managing water supplies.  The CMRASA study area includes all or parts of 10 Central Midwestern States (Jorgensen and Signor, 1981) as shown on the envelope cover.

  17. Medical physics in Europe following recommendations of the International Atomic Energy Agency.

    PubMed

    Casar, Bozidar; Lopes, Maria do Carmo; Drljević, Advan; Gershkevitsh, Eduard; Pesznyak, Csilla

    2016-03-01

    Medical physics is a health profession where principles of applied physics are mostly directed towards the application of ionizing radiation in medicine. The key role of the medical physics expert in safe and effective use of ionizing radiation in medicine was widely recognized in recent European reference documents like the European Union Council Directive 2013/59/EURATOM (2014), and European Commission Radiation Protection No. 174, European Guidelines on Medical Physics Expert (2014). Also the International Atomic Energy Agency (IAEA) has been outspoken in supporting and fostering the status of medical physics in radiation medicine through multiple initiatives as technical and cooperation projects and important documents like IAEA Human Health Series No. 25, Roles and Responsibilities, and Education and Training Requirements for Clinically Qualified Medical Physicists (2013) and the International Basic Safety Standards, General Safety Requirements Part 3 (2014). The significance of these documents and the recognition of the present insufficient fulfilment of the requirements and recommendations in many European countries have led the IAEA to organize in 2015 the Regional Meeting on Medical Physics in Europe, where major issues in medical physics in Europe were discussed. Most important outcomes of the meeting were the recommendations addressed to European member states and the survey on medical physics status in Europe conducted by the IAEA and European Federation of Organizations for Medical Physics. Published recommendations of IAEA Regional Meeting on Medical Physics in Europe shall be followed and enforced in all European states. Appropriate qualification framework including education, clinical specialization, certification and registration of medical physicists shall be established and international recommendation regarding staffing levels in the field of medical physics shall be fulfilled in particular. European states have clear legal and moral responsibility to effectively transpose Basic Safety Standards into national legislation in order to ensure high quality and safety in patient healthcare.

  18. Medical physics in Europe following recommendations of the International Atomic Energy Agency

    PubMed Central

    Lopes, Maria do Carmo; Drljević, Advan; Gershkevitsh, Eduard; Pesznyak, Csilla

    2016-01-01

    Background Medical physics is a health profession where principles of applied physics are mostly directed towards the application of ionizing radiation in medicine. The key role of the medical physics expert in safe and effective use of ionizing radiation in medicine was widely recognized in recent European reference documents like the European Union Council Directive 2013/59/EURATOM (2014), and European Commission Radiation Protection No. 174, European Guidelines on Medical Physics Expert (2014). Also the International Atomic Energy Agency (IAEA) has been outspoken in supporting and fostering the status of medical physics in radiation medicine through multiple initiatives as technical and cooperation projects and important documents like IAEA Human Health Series No. 25, Roles and Responsibilities, and Education and Training Requirements for Clinically Qualified Medical Physicists (2013) and the International Basic Safety Standards, General Safety Requirements Part 3 (2014). The significance of these documents and the recognition of the present insufficient fulfilment of the requirements and recommendations in many European countries have led the IAEA to organize in 2015 the Regional Meeting on Medical Physics in Europe, where major issues in medical physics in Europe were discussed. Most important outcomes of the meeting were the recommendations addressed to European member states and the survey on medical physics status in Europe conducted by the IAEA and European Federation of Organizations for Medical Physics. Conclusions Published recommendations of IAEA Regional Meeting on Medical Physics in Europe shall be followed and enforced in all European states. Appropriate qualification framework including education, clinical specialization, certification and registration of medical physicists shall be established and international recommendation regarding staffing levels in the field of medical physics shall be fulfilled in particular. European states have clear legal and moral responsibility to effectively transpose Basic Safety Standards into national legislation in order to ensure high quality and safety in patient healthcare. PMID:27069451

  19. Physics Meets Philosophy at the Planck Scale

    NASA Astrophysics Data System (ADS)

    Callender, Craig; Huggett, Nick

    2001-04-01

    Preface; 1. Introduction Craig Callendar and Nick Huggett; Part I. Theories of Quantum Gravity and their Philosophical Dimensions: 2. Spacetime and the philosophical challenge of quantum gravity Jeremy Butterfield and Christopher Isham; 3. Naive quantum gravity Steven Weinstein; 4. Quantum spacetime: what do we know? Carlo Rovelli; Part II. Strings: 5. Reflections on the fate of spacetime Edward Witten; 6. A philosopher looks at string theory Robert Weingard; 7. Black holes, dumb holes, and entropy William G. Unruh; Part III. Topological Quantum Field Theory: 8. Higher-dimensional algebra and Planck scale physics John C. Baez; Part IV. Quantum Gravity and the Interpretation of General Relativity: 9. On general covariance and best matching Julian B. Barbour; 10. Pre-Socratic quantum gravity Gordon Belot and John Earman; 11. The origin of the spacetime metric: Bell's 'Lorentzian Pedagogy' and its significance in general relativity Harvey R. Brown and Oliver Pooley; Part IV. Quantum Gravity and the Interpretation of Quantum Mechanics: 12. Quantum spacetime without observers: ontological clarity and the conceptual foundations of quantum gravity Sheldon Goldstein and Stefan Teufel; 13. On gravity's role in quantum state reduction Roger Penrose; 14. Why the quantum must yield to gravity Joy Christian.

  20. Selected Physical, Chemical, and Biological Data Used to Study Urbanizing Streams in Nine Metropolitan Areas of the United States, 1999-2004

    USGS Publications Warehouse

    Giddings, Elise M.P.; Bell, Amanda H.; Beaulieu, Karen M.; Cuffney, Thomas F.; Coles, James F.; Brown, Larry R.; Fitzpatrick, Faith A.; Falcone, James A.; Sprague, Lori A.; Bryant, Wade L.; Peppler, Marie C.; Stephens, Cory; McMahon, Gerard

    2009-01-01

    This report documents and summarizes physical, chemical, and biological data collected during 1999-2004 in a study titled Effects of Urbanization on Stream Ecosystems, undertaken as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Data-collection methods and data processing are described in this report for streamflow; stream temperature; instream chemistry; instream aquatic habitat; and algal, macroinvertebrate, and fish communities. Data summaries prepared for analytical use are presented in downloadable data tables.

  1. Revitalizing Support for the Physical Sciences: The American Competitiveness Initiative

    NASA Astrophysics Data System (ADS)

    Rooney, Peter

    2006-11-01

    In January 2006, during his State of the Union Address, President Bush announced a renewed commitment on the part of his Administration to funding math and science education, and science and engineering research. Two weeks later, in February 2006, the President submitted his budget request to Congress, including The American Competitiveness Initiative (ACI), a budget initiative that proposes to double federal investments in fundamental research in the physical sciences at three civilian science agencies---the Office of Science in the Department of Energy, the National Science Foundation (NSF), and the National Institute of Standards and Technology (NIST)---over ten years. To date, ACI has fared well in Congress. The House of Representatives has already approved the increases for the Office of Science (up 14 percent), NSF (up 8 percent), and NIST (core laboratory research and infrastructure up 24 percent). Key Senate Subcommittees have approved similar increases. Of equal significance to the budget proposal, the President's pronouncements represent an effort to change the public perception of the value of science. This is the capstone of a fifteen-year effort on the part of the scientific community, including the American Physical Society, to develop a new rationale for funding physical science research in the post-Cold War era. 30 years of economic research suggests there is a strong correlation between the government investments in education and research, particularly physical science and engineering research, and future economic performance. The President made this connection explicit for the public in his State of the Union Address and in subsequent speeches and town hall meetings. The author will discuss these trends and the outlook for ACI going forward.

  2. Universality of emergent states in diverse physical systems

    NASA Astrophysics Data System (ADS)

    Guidry, Mike

    2017-12-01

    Our physics textbooks are dominated by examples of simple weakly-interacting microscopic states, but most of the real world around us is most effectively described in terms of emergent states that have no clear connection to simple textbook states. Emergent states are strongly-correlated and dominated by properties that emerge as a consequence of interactions and are not part of the description of the corresponding weakly-interacting system. This paper proposes a connection of weakly-interacting textbook states and realistic emergent states through fermion dynamical symmetries having fully-microscopic generators of the emergent states. These imply unique truncation of the Hilbert space for the weakly-interacting system to a collective subspace where the emergent states live. Universality arises because the possible symmetries under commutation of generators, which transcend the microscopic structure of the generators, are highly restricted in character and determine the basic structure of the emergent state, with the microscopic structure of the generators influencing emergent state only parametrically. In support of this idea we show explicit evidence that high-temperature superconductors, collective states in heavy atomic nuclei, and graphene quantum Hall states in strong magnetic fields exhibit a near-universal emergent behavior in their microscopically-computed total energy surfaces, even though these systems share essentially nothing in common at the microscopic level and their emergent states are characterized by fundamentally different order parameters.

  3. Stochastic foundations of undulatory transport phenomena: generalized Poisson-Kac processes—part III extensions and applications to kinetic theory and transport

    NASA Astrophysics Data System (ADS)

    Giona, Massimiliano; Brasiello, Antonio; Crescitelli, Silvestro

    2017-08-01

    This third part extends the theory of Generalized Poisson-Kac (GPK) processes to nonlinear stochastic models and to a continuum of states. Nonlinearity is treated in two ways: (i) as a dependence of the parameters (intensity of the stochastic velocity, transition rates) of the stochastic perturbation on the state variable, similarly to the case of nonlinear Langevin equations, and (ii) as the dependence of the stochastic microdynamic equations of motion on the statistical description of the process itself (nonlinear Fokker-Planck-Kac models). Several numerical and physical examples illustrate the theory. Gathering nonlinearity and a continuum of states, GPK theory provides a stochastic derivation of the nonlinear Boltzmann equation, furnishing a positive answer to the Kac’s program in kinetic theory. The transition from stochastic microdynamics to transport theory within the framework of the GPK paradigm is also addressed.

  4. Composition in the Quantum World

    NASA Astrophysics Data System (ADS)

    Hall, Edward Jonathan

    This thesis presents a problem for the foundations of quantum mechanics. It arises from the way that theory describes the composition of larger systems in terms of smaller ones, and renders untenable a wide range of interpretations of quantum mechanics. That quantum mechanics is difficult to interpret is old news, given the well-known Measurement Problem. But the problem I raise is quite different, and in important respects more fundamental. In brief: The physical world exhibits mereological structure: physical objects have parts, which in turn have parts, and so on. A natural way to try to represent this structure is by means of a particle theory, according to which the physical world consists entirely enduring physical objects which themselves have no proper parts, but aggregates of which are, or compose, all physical objects. Elementary, non-relativistic quantum mechanics can be cast in this mold--at least, according to the usual expositions of that theory. But herein lies the problem: the standard attempt to give a systematic particle interpretation to elementary quantum mechanics results in nonsense, thanks to the well-established principle of Permutation Invariance, which constrains the quantum -mechanical description of systems containing identical particles. Specifically, it follows from the most minimal principles of a particle interpretation (much weaker than those needed to generate the Measurement Problem), together with Permutation Invariance, that systems identical in composition must have the same physical state. In other words, systems which merely have the same numbers of the same types of particles are therefore, at all times, perfect physical duplicates. This conclusion is absurd: e.g., it is quite plausible that some of those particles which compose my body make up a system identical in composition to some pepperoni pizza. Yet no part of me is a qualitative physical duplicate of any pepperoni pizza. Perhaps "you are what you eat" --but not in this sense! In what follows I develop the principles needed to explore this problem, contrast it with the Measurement Problem, and consider, finally, how it should influence our judgments of the relative merits of the many extant interpretations of quantum mechanics.

  5. Part-to-itself model inversion in process compensated resonance testing

    NASA Astrophysics Data System (ADS)

    Mayes, Alexander; Jauriqui, Leanne; Biedermann, Eric; Heffernan, Julieanne; Livings, Richard; Aldrin, John C.; Goodlet, Brent; Mazdiyasni, Siamack

    2018-04-01

    Process Compensated Resonance Testing (PCRT) is a non-destructive evaluation (NDE) method involving the collection and analysis of a part's resonance spectrum to characterize its material or damage state. Prior work used the finite element method (FEM) to develop forward modeling and model inversion techniques. In many cases, the inversion problem can become confounded by multiple parameters having similar effects on a part's resonance frequencies. To reduce the influence of confounding parameters and isolate the change in a part (e.g., creep), a part-to-itself (PTI) approach can be taken. A PTI approach involves inverting only the change in resonance frequencies from the before and after states of a part. This approach reduces the possible inversion parameters to only those that change in response to in-service loads and damage mechanisms. To evaluate the effectiveness of using a PTI inversion approach, creep strain and material properties were estimated in virtual and real samples using FEM inversion. Virtual and real dog bone samples composed of nickel-based superalloy Mar-M-247 were examined. Virtual samples were modeled with typically observed variations in material properties and dimensions. Creep modeling was verified with the collected resonance spectra from an incrementally crept physical sample. All samples were inverted against a model space that allowed for change in the creep damage state and the material properties but was blind to initial part dimensions. Results quantified the capabilities of PTI inversion in evaluating creep strain and material properties, as well as its sensitivity to confounding initial dimensions.

  6. The Dynamic Relationship Between Physical Function and Cognition in Longitudinal Aging Cohorts

    PubMed Central

    Clouston, Sean A. P.; Brewster, Paul; Kuh, Diana; Richards, Marcus; Cooper, Rachel; Hardy, Rebecca; Rubin, Marcie S.; Hofer, Scott M.

    2013-01-01

    On average, older people remember less and walk more slowly than do younger persons. Some researchers argue that this is due in part to a common biologic process underlying age-related declines in both physical and cognitive functioning. Only recently have longitudinal data become available for analyzing this claim. We conducted a systematic review of English-language research published between 2000 and 2011 to evaluate the relations between rates of change in physical and cognitive functioning in older cohorts. Physical functioning was assessed using objective measures: walking speed, grip strength, chair rise time, flamingo stand time, and summary measures of physical functioning. Cognition was measured using mental state examinations, fluid cognition, and diagnosis of impairment. Results depended on measurement type: Change in grip strength was more strongly correlated with mental state, while change in walking speed was more strongly correlated with change in fluid cognition. Examining physical and cognitive functioning can help clinicians and researchers to better identify individuals and groups that are aging differently and at different rates. In future research, investigators should consider the importance of identifying different patterns and rates of decline, examine relations between more diverse types of measures, and analyze the order in which age-related declines occur. PMID:23349427

  7. Supercritical fluid technologies: an innovative approach for manipulating the solid-state of pharmaceuticals.

    PubMed

    Pasquali, Irene; Bettini, Ruggero; Giordano, Ferdinando

    2008-02-14

    Solid-state, crystallographic purity and careful monitoring of the polymorphism of drugs and excipients are currently an integral part of the development of modern drug delivery systems. The reproducible preparation of organic crystals in a specific form and size is a major issue that must be addressed. A recent approach for obtaining pharmaceutical materials in pure physical form is represented by the technologies based on supercritical fluids. The present work aims to provide a critical review of the recent advances in the use of supercritical fluids for the preparation and control of the specific physical form of pharmaceutical substances with particular attention to those fluids used for drug delivery systems. These innovative technologies are highly promising for future application in particle design and engineering.

  8. Stochastic theory of nonequilibrium steady states and its applications. Part I

    NASA Astrophysics Data System (ADS)

    Zhang, Xue-Juan; Qian, Hong; Qian, Min

    2012-01-01

    The concepts of equilibrium and nonequilibrium steady states are introduced in the present review as mathematical concepts associated with stationary Markov processes. For both discrete stochastic systems with master equations and continuous diffusion processes with Fokker-Planck equations, the nonequilibrium steady state (NESS) is characterized in terms of several key notions which are originated from nonequilibrium physics: time irreversibility, breakdown of detailed balance, free energy dissipation, and positive entropy production rate. After presenting this NESS theory in pedagogically accessible mathematical terms that require only a minimal amount of prerequisites in nonlinear differential equations and the theory of probability, it is applied, in Part I, to two widely studied problems: the stochastic resonance (also known as coherent resonance) and molecular motors (also known as Brownian ratchet). Although both areas have advanced rapidly on their own with a vast amount of literature, the theory of NESS provides them with a unifying mathematical foundation. Part II of this review contains applications of the NESS theory to processes from cellular biochemistry, ranging from enzyme catalyzed reactions, kinetic proofreading, to zeroth-order ultrasensitivity.

  9. Exciting (the) Vacuum: Possible Manifestations of the Higgs particle at the LHC

    ScienceCinema

    David Kaplan

    2017-12-09

    The Higgs boson is the particle most anticipated at the LHC. However, there is currently no leading theory of electroweak symmetry breaking (and the 'Higgs mechanism'). The many possibilities suggest many ways the Higgs could appear in the detectors, some of which require non-standard search methods. I will review the current state of beyond the standard model physics and the implication for Higgs physics. I then discuss some non-standard Higgs decays and suggest (perhaps naive) new experimental strategies for detecting the Higgs in such cases. In some models, while part of the new physics at the weak scale would be visible, the Higgs would be nearly impossible to detect.

  10. Development of Nonelectronic Part Cyclic Failure Rates

    DTIC Science & Technology

    1977-12-01

    Schilling, W. A., "The User-Oriented Connector," Microwave Journal, Octcber 1976 40. Schneider, C., "Military Relay Reliability," Bell Telephone...polyimide B Diallyl phthalate, melamine , -55 to 200 fluorosilicone, silicone rubber, polysulfone, epoxy resin C Polytetrafluoroethylene (teflon) -55 to 125...propagation, solid state sciences, microwave physics and electronic reliability, maintainabilitg andcompatibility. .,% -UT104, , 8. g z

  11. THE RELATIONSHIP BETWEEN TEMPERATURE, PHYSICAL HABITAT AND FISH ASSEMBLAGE DATA IN A STATE WIDE PROBABILITY SURVEY OF OREGON STREAMS

    EPA Science Inventory

    To assess the ecological condition of streams and rivers in Oregon, we sampled 146 sites
    in summer, 1997 as part of the U.S. EPA's Environmental Monitoring and Assessment Program.
    Sample reaches were selected using a systematic, randomized sample design from the blue-line n...

  12. A Conversation with William A. Fowler Part II

    NASA Astrophysics Data System (ADS)

    Greenberg, John

    2005-06-01

    Physicist William A.Fowler initiated an experimental program in nuclear astrophysics after World War II. He recalls here the Steady State versus Big Bang controversy and his celebrated collaboration with Fred Hoyle and Geoffrey and Margaret Burbidge on nucleosynthesis in stars. He also comments on the shift away from nuclear physics in universities to large accelerators and national laboratories.

  13. Inversion of scattered radiance horizon profiles for gaseous concentrations and aerosol parameters

    NASA Technical Reports Server (NTRS)

    Malchow, H. L.; Whitney, C. K.

    1977-01-01

    Techniques have been developed and used to invert limb scan measurements for vertical profiles of atmospheric state parameters. The parameters which can be found are concentrations of Rayleigh scatters, ozone, NO2, and aerosols, and aerosol physical properties including a Junge-size distribution parameter and real and imaginary parts of the index of refraction.

  14. Differences Within: A Comparative Analysis of Women in the Physical Sciences--Motivation and--Background Factors

    ERIC Educational Resources Information Center

    Dabney, Katherine Patricia Traudel

    2012-01-01

    Science, technology, engineering, and mathematics (STEM) education has become a critical focus in the United States due to economic concerns and public policy (National Academy of Sciences, 2007; U.S. Department of Education, 2006). Part of this focus has been an emphasis on encouraging and evaluating career choice and persistence factors among…

  15. The CMS Data Analysis School Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Filippis, N.; Bauerdick, L.; Chen, J.

    The CMS Data Analysis School is an official event organized by the CMS Collaboration to teach students and post-docs how to perform a physics analysis. The school is coordinated by the CMS schools committee and was first implemented at the LHC Physics Center at Fermilab in 2010. As part of the training, there are a number of “short” exercises on physics object reconstruction and identification, Monte Carlo simulation, and statistical analysis, which are followed by “long” exercises based on physics analyses. Some of the long exercises go beyond the current state of the art of the corresponding CMS analyses. Thismore » paper describes the goals of the school, the preparations for a school, the structure of the training, and student satisfaction with the experience as measured by surveys.« less

  16. The CMS data analysis school experience

    NASA Astrophysics Data System (ADS)

    De Filippis, N.; Bauerdick, L.; Chen, J.; Gallo, E.; Klima, B.; Malik, S.; Mulders, M.; Palla, F.; Rolandi, G.

    2017-10-01

    The CMS Data Analysis School is an official event organized by the CMS Collaboration to teach students and post-docs how to perform a physics analysis. The school is coordinated by the CMS schools committee and was first implemented at the LHC Physics Center at Fermilab in 2010. As part of the training, there are a number of “short” exercises on physics object reconstruction and identification, Monte Carlo simulation, and statistical analysis, which are followed by “long” exercises based on physics analyses. Some of the long exercises go beyond the current state of the art of the corresponding CMS analyses. This paper describes the goals of the school, the preparations for a school, the structure of the training, and student satisfaction with the experience as measured by surveys.

  17. Tensor Network Wavefunctions for Topological Phases

    NASA Astrophysics Data System (ADS)

    Ware, Brayden Alexander

    The combination of quantum effects and interactions in quantum many-body systems can result in exotic phases with fundamentally entangled ground state wavefunctions--topological phases. Topological phases come in two types, both of which will be studied in this thesis. In topologically ordered phases, the pattern of entanglement in the ground state wavefunction encodes the statistics of exotic emergent excitations, a universal indicator of a phase that is robust to all types of perturbations. In symmetry protected topological phases, the entanglement instead encodes a universal response of the system to symmetry defects, an indicator that is robust only to perturbations respecting the protecting symmetry. Finding and creating these phases in physical systems is a motivating challenge that tests all aspects--analytical, numerical, and experimental--of our understanding of the quantum many-body problem. Nearly three decades ago, the creation of simple ansatz wavefunctions--such as the Laughlin fractional quantum hall state, the AKLT state, and the resonating valence bond state--spurred analytical understanding of both the role of entanglement in topological physics and physical mechanisms by which it can arise. However, quantitative understanding of the relevant phase diagrams is still challenging. For this purpose, tensor networks provide a toolbox for systematically improving wavefunction ansatz while still capturing the relevant entanglement properties. In this thesis, we use the tools of entanglement and tensor networks to analyze ansatz states for several proposed new phases. In the first part, we study a featureless phase of bosons on the honeycomb lattice and argue that this phase can be topologically protected under any one of several distinct subsets of the crystalline lattice symmetries. We discuss methods of detecting such phases with entanglement and without. In the second part, we consider the problem of constructing fixed-point wavefunctions for intrinsically fermionic topological phases, i.e. topological phases contructed out of fermions with a nontrivial response to fermion parity defects. A zero correlation length wavefunction and a commuting projector Hamiltonian that realizes this wavefunction as its ground state are constructed. Using an appropriate generalization of the minimally entangled states method for extraction of topological order from the ground states on a torus to the intrinsically fermionic case, we fully characterize the corresponding topological order as Ising x (px - ipy). We argue that this phase can be captured using fermionic tensor networks, expanding the applicability of tensor network methods.

  18. Evaluation of the healthy schools program: Part I. Interim progress.

    PubMed

    Beam, Margaret; Ehrlich, Ginny; Donze Black, Jessica; Block, Audrey; Leviton, Laura C

    2012-01-01

    Federal and state policies identify schools as a setting to prevent childhood obesity, but schools need better health-promoting strategies. The objective of this study was to evaluate interim progress in schools receiving hands-on training from the Healthy Schools Program, the nation's largest school-based program aimed at preventing childhood obesity. The 4-year program targets schools with predominantly low-income, African American, or Hispanic students. In 2010 we assessed schools that enrolled in the 2007-2008 and 2008-2009 school years. School representatives completed an inventory of 8 content areas: policy and systems, school meals, competitive foods and beverages, health education, physical education, physical activity outside of physical education, before- and after-school programs, and school employee wellness. Schools' baseline inventory was compared by t test with the most recent inventory available. Schools made significant changes in all content areas, and effect sizes were moderate to large. Participating schools improved environmental policies and practices to prevent childhood obesity. The program is a resource to implement recent federal and state policies.

  19. Analysis of Newton's Third Law Questions on the Force Concepts Inventory at Georgia State University

    NASA Astrophysics Data System (ADS)

    Oakley, Christopher; Thoms, Brian

    2012-03-01

    A major emphasis of the Physics Education Research program at Georgia State University is an effort to assess and improve students' understanding of Newton's Laws concepts. As part of these efforts the Force Concepts Inventory (FCI) has been given to students in both the algebra-based and calculus-based introductory physics sequences. In addition, the algebra-based introductory physics sequence is taught in both a SCALE-UP and a traditional lecture format. The results of the FCI have been analyzed by individual question and also as categorized by content. The analysis indicates that students in both algebra and calculus-based courses are successful at overcoming Aristotelian misconceptions regarding Newton's Third Law (N3) in the context of a stationary system. However, students are less successful on N3 questions involving objects in constant motion or accelerating. Interference between understanding of Newton's Second and Third Laws as well as other possible explanations for lower student performance on N3 questions involving non-stationary objects will be discussed.

  20. Barriers to children walking and biking to school--United States, 1999.

    PubMed

    2002-08-16

    Physical activity is an important part of a healthy lifestyle; however, many children in the United States do not meet recommended levels of physical activity. Although walking and biking to school can increase physical activity among children, motor-vehicle traffic and other factors can make these activities difficult. The majority of U.S. children do not walk or bike to school, approximately one third ride a school bus, and half are driven in a private vehicle. Less than one trip in seven is made by walking or biking. To examine why the majority of children do not walk or bike to school, CDC analyzed data from the national HealthStyles Survey. This report summarizes the results of that analysis, which indicate that long distances and dangerous motor-vehicle traffic pose the most common barriers to children walking and biking to school. Public health and community-based efforts that encourage walking and biking to school should address these barriers.

  1. Normalization of aberrant resting state functional connectivity in fibromyalgia patients following a three month physical exercise therapy

    PubMed Central

    Flodin, P.; Martinsen, S.; Mannerkorpi, K.; Löfgren, M.; Bileviciute-Ljungar, I.; Kosek, E.; Fransson, P.

    2015-01-01

    Physical exercise is one of the most efficient interventions to mitigate chronic pain symptoms in fibromyalgia (FM). However, little is known about the neurophysiological mechanisms mediating these effects. In this study we investigated resting-state connectivity using functional magnetic resonance imaging (fMRI) before and after a 15 week standardized exercise program supervised by physical therapists. Our aim was to gain an understanding of how physical exercise influences previously shown aberrant patterns of intrinsic brain activity in FM. Fourteen FM patients and eleven healthy controls successfully completed the physical exercise treatment. We investigated post- versus pre-treatment changes of brain connectivity, as well as changes in clinical symptoms in the patient group. FM patients reported improvements in symptom severity. Although several brain regions showed a treatment-related change in connectivity, only the connectivity between the right anterior insula and the left primary sensorimotor area was significantly more affected by the physical exercise among the fibromyalgia patients compared to healthy controls. Our results suggest that previously observed aberrant intrinsic brain connectivity patterns in FM are partly normalized by the physical exercise therapy. However, none of the observed normalizations in intrinsic brain connectivity were significantly correlated with symptom changes. Further studies conducted in larger cohorts are warranted to investigate the precise relationship between improvements in fibromyalgia symptoms and changes in intrinsic brain activity. PMID:26413476

  2. Normalization of aberrant resting state functional connectivity in fibromyalgia patients following a three month physical exercise therapy.

    PubMed

    Flodin, P; Martinsen, S; Mannerkorpi, K; Löfgren, M; Bileviciute-Ljungar, I; Kosek, E; Fransson, P

    2015-01-01

    Physical exercise is one of the most efficient interventions to mitigate chronic pain symptoms in fibromyalgia (FM). However, little is known about the neurophysiological mechanisms mediating these effects. In this study we investigated resting-state connectivity using functional magnetic resonance imaging (fMRI) before and after a 15 week standardized exercise program supervised by physical therapists. Our aim was to gain an understanding of how physical exercise influences previously shown aberrant patterns of intrinsic brain activity in FM. Fourteen FM patients and eleven healthy controls successfully completed the physical exercise treatment. We investigated post- versus pre-treatment changes of brain connectivity, as well as changes in clinical symptoms in the patient group. FM patients reported improvements in symptom severity. Although several brain regions showed a treatment-related change in connectivity, only the connectivity between the right anterior insula and the left primary sensorimotor area was significantly more affected by the physical exercise among the fibromyalgia patients compared to healthy controls. Our results suggest that previously observed aberrant intrinsic brain connectivity patterns in FM are partly normalized by the physical exercise therapy. However, none of the observed normalizations in intrinsic brain connectivity were significantly correlated with symptom changes. Further studies conducted in larger cohorts are warranted to investigate the precise relationship between improvements in fibromyalgia symptoms and changes in intrinsic brain activity.

  3. Health physics division annual progress report for period ending June 30, 1977

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-07-01

    This annual progress report follows, as in the past, the organizational structure of the Health Physics Division. Each part is a report of work done by a section of the division: Assessment and Technology Section (Part I), headed by H.W. Dickson; Biological and Radiation Physics Section (Part II), H.A. Wright; Chemical Physics and Spectroscopy Section (Part III), W.R. Garrett; Emergency Technology Section (Part IV), C.V. Chester, Medical Physics and Internal Dosimetry Section (Part V), K.E. Cowser; and the Analytic Dosimetry and Education Group (Part VI), J.E. Turner.

  4. Hall viscosity and geometric response in the Chern-Simons matrix model of the Laughlin states

    NASA Astrophysics Data System (ADS)

    Lapa, Matthew F.; Hughes, Taylor L.

    2018-05-01

    We study geometric aspects of the Laughlin fractional quantum Hall (FQH) states using a description of these states in terms of a matrix quantum mechanics model known as the Chern-Simons matrix model (CSMM). This model was proposed by Polychronakos as a regularization of the noncommutative Chern-Simons theory description of the Laughlin states proposed earlier by Susskind. Both models can be understood as describing the electrons in a FQH state as forming a noncommutative fluid, i.e., a fluid occupying a noncommutative space. Here, we revisit the CSMM in light of recent work on geometric response in the FQH effect, with the goal of determining whether the CSMM captures this aspect of the physics of the Laughlin states. For this model, we compute the Hall viscosity, Hall conductance in a nonuniform electric field, and the Hall viscosity in the presence of anisotropy (or intrinsic geometry). Our calculations show that the CSMM captures the guiding center contribution to the known values of these quantities in the Laughlin states, but lacks the Landau orbit contribution. The interesting correlations in a Laughlin state are contained entirely in the guiding center part of the state/wave function, and so we conclude that the CSMM accurately describes the most important aspects of the physics of the Laughlin FQH states, including the Hall viscosity and other geometric properties of these states, which are of current interest.

  5. Availability of physical activity-related facilities and neighborhood demographic and socioeconomic characteristics: a national study.

    PubMed

    Powell, Lisa M; Slater, Sandy; Chaloupka, Frank J; Harper, Deborah

    2006-09-01

    We examined associations between neighborhood demographic characteristics and the availability of commercial physical activity-related outlets by zip code across the United States. Multivariate analyses were conducted to assess the availability of 4 types of outlets: (1) physical fitness facilities, (2) membership sports and recreation clubs, (3) dance facilities, and (4) public golf courses. Commercial outlet data were linked by zip code to US Census Bureau population and socioeconomic data. Results showed that commercial physical activity-related facilities were less likely to be present in lower-income neighborhoods and in neighborhoods with higher proportions of African American residents, residents with His-panic ethnicity, and residents of other racial minority backgrounds. In addition, these neighborhoods had fewer such facilities available. Lack of availability of facilities that enable and promote physical activity may, in part, underpin the lower levels of activity observed among populations of low socioeconomic status and minority backgrounds.

  6. Orbital Electron Capture Rates in Extreme Astrophysical Environments

    NASA Astrophysics Data System (ADS)

    Martin, Matthew; McDonald, William; Leach, Kyle

    2017-09-01

    In an attempt to better understand EC decay rates in hot environments, we have developed a program to examine and parse all evaluated atomic and nuclear data. Taking into account the effects of ionization on accessible decay states and electron capture probabilities, half lives across the nuclear chart can be investigated without the need for theoretical estimates. Part of the ongoing project will include isolating stable isotopes that become unstable due to ionization and estimating their stability in these new environments. In addition, we hope to account for a thermal population of excited states to better simulate these environments. This should aide in the complete understanding of nuclear processes in these extreme astrophysical environments. This work is supported in part by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics.

  7. Improving High School Physics Through An Outreach Initiative

    NASA Astrophysics Data System (ADS)

    Zettili, Nouredine

    2006-04-01

    We want to discuss our outreach initiative at Jacksonville State University designed to help improve the teaching of physics at a number of high schools in Northeast Alabama. This initiative is part of Project IMPACTSEED (IMproving Physics And Chemistry Teaching in SEcondary Education), a No-Child Left Behind grant funded by the Alabama Commission on Higher Education. This project is motivated by a major pressing local need: A large number of high school physics teachers teach out of field. IMPACTSEED is designed to achieve a double aim: (a) to make physics and chemistry understandable and fun to learn within a hands-on, inquiry-based setting; (b) to overcome the fear-factor for physics and chemistry among students. Through a two-week long summer institute, a series of weekend workshops designed to help bring technology into physics classrooms, onsite support, and a hotline, we have been providing year-round support to the physics/chemistry teachers in this area. IMPACTSEED aims at providing our students with a physics/chemistry education that enjoys a great deal of continuity and consistency from high school to college.

  8. Preliminary examinations for the identification of U.S. domestic and international cotton fibers by near-infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Cotton is and has been a large cash crop in the United States and abroad for many years. Part of the widespread interest and utility of this product is due to its attractive chemical and physical properties for use in textiles. The textile industry could benefit from the presentation of a quick rel...

  9. NeXT Application Development Workshop. [Use and Design of Instructional Applications on the NeXT Computer.

    ERIC Educational Resources Information Center

    Kiel, Don; And Others

    Instructional applications for NeXT computers were developed by nine faculty members from the biology, mathematics and computer science, fine arts, chemistry, physics and astronomy, and geology departments as part of a grant awarded to the California State University at Los Angeles. These notes provide a schedule of events and reports from a 2-day…

  10. Indicators of climate impacts for forests: recommendations for the US National Climate Assessment indicators system

    Treesearch

    Linda S. Heath; Sarah M. Anderson; Marla R. Emery; Jeffrey A. Hicke; Jeremy Littell; Alan Lucier; Jeffrey G. Masek; David L. Peterson; Richard Pouyat; Kevin M. Potter; Guy Robertson; Jinelle Sperry; Andrzej Bytnerowicz; Sarah Jovan; Miranda H. Mockrin; Robert Musselman; Bethany K. Schulz; Robert J. Smith; Susan I. Stewart

    2015-01-01

    The Third National Climate Assessment (NCA) process for the United States focused in part on developing a system of indicators to communicate key aspects of the physical climate, climate impacts, vulnerabilities, and preparedness to inform decisionmakers and the public. Initially, 13 active teams were formed to recommend indicators in a range of categories, including...

  11. Therapeutic Lifestyle Changes for Diabetes Mellitus.

    PubMed

    Levesque, Celia

    2017-12-01

    Diabetes mellitus is a common chronic disease affecting approximately 9% of the United States population. Successful management of diabetes demands constant self-management on the part of the patient. The patient has to balance diabetes medications, blood glucose monitoring, food intake, physical activity, and management of diabetes-related acute and chronic complications. The patient is often bombarded with misinformation from friends, relatives, and such sources as the Internet and social media. This article discusses the current recommendations for diabetes self-management education and skills including medical nutrition therapy, physical activity, smoking cessation, and assessment for diabetes distress. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Exercise: the data on its role in health, mental health, disease prevention, and productivity.

    PubMed

    Diehl, Jason J; Choi, Haemi

    2008-12-01

    How would you define exercise? If you look up exercise in the dictionary, it is defined as physical activity used for the purpose of conditioning any part of the body. Exercise is an important topic because in the United States less than 50% of the total population exercises on a regular basis. The lack of regular physical activity is linked to an increased rate of obesity, development of chronic diseases, and an overall decline in health. This article uses an evidence-based approach to demonstrate how exercise affects health, mental health, disease prevention, and productivity.

  13. PM2.5 Technology Assessment and Characterization Study in New York - PMTACS-NY: The 2001 Summer Field Intensive in Queens, NY

    NASA Astrophysics Data System (ADS)

    Demerjian, K. L.

    2002-12-01

    In the summer of 2001, an intensive field measurement campaign was carried out in Queens, NY as part of the PM2.5 Technology Assessment and Characterization Study in New York (PMTACS-NY) to characterize the physical and chemical composition of particulate matter and related precursors utilizing conventional and advanced instrumentation technologies. The measurement program, involving a team of scientists from federal, state, university and private sector organizations, was designed to provide detailed time resolved chemical and physical characterization of the urban PM2.5/co-pollutant complex in relation to the regional environment. A summary of the chemical and meteorological data defining specific events during the field intensive is presented as are results addressing specific hypothesis designed around PMTACS-NY program objectives. These include initial findings and conclusions related to 1) performance testing and evaluation of emerging measurement technologies and comparison with EPA mandated PM federal reference methods currently operational as part of the New York State and national PM2.5 monitoring network; 2) emissions characterization of CNG, standard diesel and CRT (Continuously Regenerating Technology) diesel retrofit powered vehicles; and 3) compositional comparisons of urban and regional PM2.5.

  14. Exercise induced adipokine changes and the metabolic syndrome.

    PubMed

    Golbidi, Saeid; Laher, Ismail

    2014-01-01

    The lack of adequate physical activity and obesity created a worldwide pandemic. Obesity is characterized by the deposition of adipose tissue in various parts of the body; it is now evident that adipose tissue also acts as an endocrine organ capable of secreting many cytokines that are though to be involved in the pathophysiology of obesity, insulin resistance, and metabolic syndrome. Adipokines, or adipose tissue-derived proteins, play a pivotal role in this scenario. Increased secretion of proinflammatory adipokines leads to a chronic inflammatory state that is accompanied by insulin resistance and glucose intolerance. Lifestyle change in terms of increased physical activity and exercise is the best nonpharmacological treatment for obesity since these can reduce insulin resistance, counteract the inflammatory state, and improve the lipid profile. There is growing evidence that exercise exerts its beneficial effects partly through alterations in the adipokine profile; that is, exercise increases secretion of anti-inflammatory adipokines and reduces proinflammatory cytokines. In this paper we briefly describe the pathophysiologic role of four important adipokines (adiponectin, leptin, TNF-α, and IL-6) in the metabolic syndrome and review some of the clinical trials that monitored these adipokines as a clinical outcome before and after exercise.

  15. Thermodynamic neutral density: A new physically-based, energy-constrained, materially conserved neutral density variable for quantifying mixing and tracking water masses in the ocean

    NASA Astrophysics Data System (ADS)

    Tailleux, R.

    2016-02-01

    A new materially-conserved quasi-neutral density variable has been constructed, called thermodynamic neutral density. It is composed of two parts. The first part is the Lorenz reference density entering Lorenz theory of available potential energy, which can be interpreted as the potential density of a fluid parcel referenced to the pressure it would have in Lorenz reference state of minimum potential energy. The second part is an empirical correction for pressure, which can be suitably chosen to make thermodynamic neutral density a very good approximation of Jackett and McDougall (1997) neutral density over most of the ocean water masses for which the latter is defined. Thermodynamic neutral density possesses many advantages over the empirically constructed Jackett and McDougall (1997) neutral density: 1) it is physically-based; 2) it is easily computed using fast and efficient methods for arbitrary states of the ocean, not just the present state, using the recently developed methodology by Saenz et al. (2015); 3) it is exactly neutral in a state of rest, and approximately neutral in the present ocean; 4) it is exactly materially conserved (it is a function of salinity and potential temperature only) and not plagued by unphysical nonmaterial effects, so can be used unambiguously to define and diagnose diapycnal and isopycnal mixing; 5) it is based on available potential energy, and therefore is the most suitable variable to discuss the energy cost of adiabatic stirring; 6) it is the variable that should be used to define the isopycnal and diapycnal directions in rotated diffusion tensor, as it can be shown that using the directions defined by the local neutral tangent plane as currently done causes spurious destruction of water masses. References: J. A. Saenz, R. Tailleux, E.D. Butler, G.O. Hughes, and K.I.C. Oliver, 2015: Estimating Lorenz's reference state in an ocean with a nonlinear equation of state for seawater. J. Phys. Oceanogr., 45, 1242—1257

  16. National Lakes Assessment 2012: A Collaborative Survey of ...

    EPA Pesticide Factsheets

    The National Lakes Assessment 2012: A Collaborative Survey of Lakes in the United States presents the results of a second evaluation of the lakes in the United States. This report is part of the National Aquatic Resource Surveys, a series of statistically based surveys designed to provide the public and decision makers with nationally consistent and representative information on the condition of all the nation's waters. The NLA 2012 report provides information on the biological, chemical, physical and recreational condition of lakes, key stressors, and how the condition of lakes has changed since 2007.

  17. Helical ordering in the ground state of spin-one color superconductors as a consequence of parity violation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brauner, Tomas

    We investigate spin-one color superconductivity of a single quark flavor using the Ginzburg-Landau theory. First we examine the classic analysis of Bailin and Love and show that by restricting to the so-called inert states, it misses the true ground state in a part of the phase diagram. This suggests the use of the more general, noninert states, in particular, within three-flavor quark matter where the color neutrality constraint imposes stress on the spin-one pairing and may disfavor the symmetric color-spin-locked state. In the second part of the paper we show that, in analogy to some ferromagnetic materials, lack of space-inversionmore » symmetry leads to a new term in the Ginzburg-Landau functional, which favors a spatially nonuniform long-range ordering with a spiral structure. In color superconductors, this new parity-violating term is a tiny effect of weak-interaction physics. The modified phase diagram is determined and the corresponding ground states for all the phases constructed. At the end, we estimate the coefficient of the new term in the free energy functional, and discuss its relevance for the phenomenology of dense quark matter.« less

  18. Ocean Modeling in an Eddying Regime

    NASA Astrophysics Data System (ADS)

    Hecht, Matthew W.; Hasumi, Hiroyasu

    This monograph is the first to survey progress in realistic simulation in a strongly eddying regime made possible by recent increases in computational capability. Its contributors comprise the leading researchers in this important and constantly evolving field. Divided into three parts, • Oceanographic Processes and Regimes: Fundamental Questions • Ocean Dynamics and State: From Regional to Global Scale, and • Modeling at the Mesoscale: State of the Art and Future Directions the volume details important advances in physical oceanography based on eddy resolving ocean modeling. It captures the state of the art and discusses issues that ocean modelers must consider in order to effectively contribute to advancing current knowledge, from subtleties of the underlying fluid dynamical equations to meaningful comparison with oceanographic observations and leading-edge model development. It summarizes many of the important results which have emerged from ocean modeling in an eddying regime, for those interested broadly in the physical science. More technical topics are intended to address the concerns of those actively working in the field.

  19. Rotations of a logical qubit using the quantum Zeno effect extended to a manifold - Part 1

    NASA Astrophysics Data System (ADS)

    Grimm, A.; Touzard, S.; Leghtas, Z.; Mundhada, S. O.; Reinhold, P.; Heeres, R.; Axline, C.; Reagor, M.; Chou, K.; Blumoff, J.; Sliwa, K. M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Mirrahimi, M.; Devoret, M. H.

    Encoding Quantum Information in the large Hilbert space of a harmonic oscillator has proven to have advantages over encoding in a register of physical qubits, but has also provided new challenges. While recent experiments have demonstrated quantum error correction using such an encoding based on superpositions of coherent states, these codes are still susceptible to non-corrected errors and lack controllability: compared to physical qubits it is hard to make arbitrary states and to perform operations on them. Our approach is to engineer the dynamics and the dissipation of a microwave cavity to implement a continuous dissipative measurement yielding two degenerate outcomes. This extends the quantum Zeno effect to a manifold, which in our case is spanned by two coherent states of opposite phases. In this first talk we present the concept and architecture of an experiment that performs rotations on a logical qubit encoded in this protected manifold. Work supported by: ARO, ONR, AFOSR and YINQE.

  20. Physically based modeling in catchment hydrology at 50: Survey and outlook

    NASA Astrophysics Data System (ADS)

    Paniconi, Claudio; Putti, Mario

    2015-09-01

    Integrated, process-based numerical models in hydrology are rapidly evolving, spurred by novel theories in mathematical physics, advances in computational methods, insights from laboratory and field experiments, and the need to better understand and predict the potential impacts of population, land use, and climate change on our water resources. At the catchment scale, these simulation models are commonly based on conservation principles for surface and subsurface water flow and solute transport (e.g., the Richards, shallow water, and advection-dispersion equations), and they require robust numerical techniques for their resolution. Traditional (and still open) challenges in developing reliable and efficient models are associated with heterogeneity and variability in parameters and state variables; nonlinearities and scale effects in process dynamics; and complex or poorly known boundary conditions and initial system states. As catchment modeling enters a highly interdisciplinary era, new challenges arise from the need to maintain physical and numerical consistency in the description of multiple processes that interact over a range of scales and across different compartments of an overall system. This paper first gives an historical overview (past 50 years) of some of the key developments in physically based hydrological modeling, emphasizing how the interplay between theory, experiments, and modeling has contributed to advancing the state of the art. The second part of the paper examines some outstanding problems in integrated catchment modeling from the perspective of recent developments in mathematical and computational science.

  1. Plasma Equilibrium Control in Nuclear Fusion Devices 2. Plasma Control in Magnetic Confinement Devices 2.1 Plasma Control in Tokamaks

    NASA Astrophysics Data System (ADS)

    Fukuda, Takeshi

    The plasma control technique for use in large tokamak devices has made great developmental strides in the last decade, concomitantly with progress in the understanding of tokamak physics and in part facilitated by the substantial advancement in the computing environment. Equilibrium control procedures have thereby been established, and it has been pervasively recognized in recent years that the real-time feedback control of physical quantities is indispensable for the improvement and sustainment of plasma performance in a quasi-steady-state. Further development is presently undertaken to realize the “advanced plasma control” concept, where integrated fusion performance is achieved by the simultaneous feedback control of multiple physical quantities, combined with equilibrium control.

  2. Fundamentals of Condensed Matter Physics Marvin L. Cohen and Steven G. Louie

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devanathan, Ram

    This graduate level textbook on Condensed Matter Physics is written lucidly by two leading luminaries in this field. The volume draws its material from the graduate course in condensed matter physics that has been offered by the authors for several decades at the University of California, Berkeley. Cohen and Louie have done an admirable job of guiding the reader gradually from elementary concepts to advanced topics. The book is divided into four main parts that have four chapters each. Chapter 1 presents models of solids in terms of interacting atoms, which is appropriate for the ground state, and excitations tomore » describe collective effects. Chapter 2 deals with the properties of electrons in crystalline materials. The authors introduce the Born-Oppenheimer approximation and then proceed to the periodic potential approximation. Chapter 3 discusses energy bands in materials and covers concepts from the free electron model to the tight binding model and periodic boundary conditions. Chapter 4 starts with fixed atomic cores and introduces lattice vibrations, phonons, and the concept of density of states. By the end of this part, the student should have a basic understanding of electrons and phonons in materials. Part II presents electron dynamics and the response of materials to external probes. Chapter 5 covers the effective Hamiltonian approximation and the motion of the electron under a perturbation, such as an external field. The discussion moves to many-electron interactions and the exchange-correlation energy in Chapter 6, the widely-used Density Functional Theory (DFT) in chapter 7, and the dielectric response function in Chapter 8. The next two parts of the book cover advanced topics. Part III begins with a discussion of the response of materials to photons in Chapter 9. Chapter 10 goes into the details of electron-phonon interactions in different materials and introduces the polaron. Chapter 11 presents electron dynamics in a magnetic field and Chapter 12 discusses electrical and thermal transport in materials. Part IV takes the reader further into many body effects, superconductivity, and nanoscale materials. The authors introduce Feynman diagrams and many-body perturbation theory in Chapter 13, theories of superconductivity in Chapter 14, magnetism in Chapter 15, and low dimensional systems in Chapter 16. The first two parts are required reading for the beginner planning to perform DFT calculations. The advanced student interested in conducting research in condensed matter physics will benefit from continuing on to the last two parts. There is a set of problems at the end of each part. The narrative is aided by equations and detailed figures. References at the end of the book direct the reader to relevant books and review articles for each chapter. The inside covers include a periodic table and a useful list of fundamental physical constants. The authors present the underlying mathematics elegantly, which makes the textbook quite readable for those with a good mathematical background. Students lacking a firm footing in math will find the terrain rough after Chapter 1. This field has seen many good undergraduate textbooks including those by Kittel and by Ashcroft and Mermin. This volume fills the need for a rigorous graduate level textbook, and is a required addition to the bookshelf of every condensed matter physicist. Cohen and Louie have brought refreshing clarity to a challenging subject and made it eminently accessible to the motivated student.« less

  3. Publications of LASL research, 1975

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, A.K.

    1976-09-01

    This bibliography lists unclassified 1975 publications of work done at the Los Alamos Scientific Laboratory and those earlier publications that were received too late for inclusion in earlier compilations. Papers published in 1975 are included regardless of when they were actually written. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted. The bibliography includes Los Alamos Scientific Laboratory reports, papers released as non-Los Alamos reports, journal articles, books, chapters of books, conference papers (whether published separately or as part of conference proceedings issued as books or reports), papers published in congressional hearings, theses, andmore » U.S. Patents. Publications by LASL authors which are not records of Laboratory-sponsored work are included when the Library becomes aware of them. The entries are arranged in sections by the following broad subject categories: aerospace studies; analytical technology; astrophysics; atomic and molecular physics, equation of state, opacity; biology and medicine; chemical dynamics and kinetics; chemistry; cryogenics; crystallography; CTR and plasma physics; earth science and engineering; energy (nonnuclear); engineering and equipment; EPR, ESR, NMR studies; explosives and detonations; fission physics; health and safety; hydrodynamics and radiation transport; instruments; lasers; mathematics and computers; medium-energy physics; metallurgy and ceramics technology; neutronics and criticality studies; nuclear physics; nuclear safeguards; physics; reactor technology; solid state science; and miscellaneous (including Project Rover). Author, numerical, and KWIC indexes are included. (RWR)« less

  4. Secure estimation, control and optimization of uncertain cyber-physical systems with applications to power networks

    NASA Astrophysics Data System (ADS)

    Taha, Ahmad Fayez

    Transportation networks, wearable devices, energy systems, and the book you are reading now are all ubiquitous cyber-physical systems (CPS). These inherently uncertain systems combine physical phenomena with communication, data processing, control and optimization. Many CPSs are controlled and monitored by real-time control systems that use communication networks to transmit and receive data from systems modeled by physical processes. Existing studies have addressed a breadth of challenges related to the design of CPSs. However, there is a lack of studies on uncertain CPSs subject to dynamic unknown inputs and cyber-attacks---an artifact of the insertion of communication networks and the growing complexity of CPSs. The objective of this dissertation is to create secure, computational foundations for uncertain CPSs by establishing a framework to control, estimate and optimize the operation of these systems. With major emphasis on power networks, the dissertation deals with the design of secure computational methods for uncertain CPSs, focusing on three crucial issues---(1) cyber-security and risk-mitigation, (2) network-induced time-delays and perturbations and (3) the encompassed extreme time-scales. The dissertation consists of four parts. In the first part, we investigate dynamic state estimation (DSE) methods and rigorously examine the strengths and weaknesses of the proposed routines under dynamic attack-vectors and unknown inputs. In the second part, and utilizing high-frequency measurements in smart grids and the developed DSE methods in the first part, we present a risk mitigation strategy that minimizes the encountered threat levels, while ensuring the continual observability of the system through available, safe measurements. The developed methods in the first two parts rely on the assumption that the uncertain CPS is not experiencing time-delays, an assumption that might fail under certain conditions. To overcome this challenge, networked unknown input observers---observers/estimators for uncertain CPSs---are designed such that the effect of time-delays and cyber-induced perturbations are minimized, enabling secure DSE and risk mitigation in the first two parts. The final part deals with the extreme time-scales encompassed in CPSs, generally, and smart grids, specifically. Operational decisions for long time-scales can adversely affect the security of CPSs for faster time-scales. We present a model that jointly describes steady-state operation and transient stability by combining convex optimal power flow with semidefinite programming formulations of an optimal control problem. This approach can be jointly utilized with the aforementioned parts of the dissertation work, considering time-delays and DSE. The research contributions of this dissertation furnish CPS stakeholders with insights on the design and operation of uncertain CPSs, whilst guaranteeing the system's real-time safety. Finally, although many of the results of this dissertation are tailored to power systems, the results are general enough to be applied for a variety of uncertain CPSs.

  5. One Part Nuclear, One Part Solid State: Fifty Years of Mössbauer Spectroscopy

    NASA Astrophysics Data System (ADS)

    Westfall, Catherine

    2004-05-01

    Starting in 1955 Rudolf Mössbauer conducted experiments that would demonstrate in the next three years that an atomic nucleus in a crystal does not recoil when it emits a gamma ray and provides the entire emitted energy to the gamma ray. The resonance spectroscopy made possible by this discovery led to fifty years of scientific explorations in a wide variety of fields including nuclear and solid state physics, chemistry, and geology. At the current time, Mössbauer spectroscopy is a vital part of science programs, both in many laboratories and at world-class light sources, such as Argonnes Advanced Photon Source. This paper will focus on the history of multidisciplinary Mössbauer research at Argonne National Laboratory and particularly on the interaction between nuclear and condensed matter physicists. This was necessary because of the ultra-high energy resolution of the Mössbauer resonance with its ability to resolve hyperfine interactions between the nuclear moments (nuclear charge distribution, the nuclear magnetic moment, and nuclear quadrupole moment) and corresponding solid state properties (electron charge distribution at the nucleus, magnetic field at the nucleus, and electric field gradient at the nucleus.) Understanding and exploiting Mössbauer spectroscopy therefore required work at the intersection of nuclear and solid state physics and the skills and knowledge of both specialties. The paper will start with the discovery and confirmation of the Mössbauer effect. Then it will outline early important experiments, such as the use of Mössbauer spectroscopy to confirm Einsteins general theory of relativity, and give an overview of the rapid expansion of this research tool, first with the use of Fe57 and later with the use of other isotopes. In particular the paper will focus on Argonnes cutting-edge Mössbauer work on transuranics. This work built on the resources and expertise first developed at the laboratory during WWII and brought together not only nuclear and condensed matter physicists, but also chemists, material scientists, and others.

  6. Experimental magic state distillation for fault-tolerant quantum computing.

    PubMed

    Souza, Alexandre M; Zhang, Jingfu; Ryan, Colm A; Laflamme, Raymond

    2011-01-25

    Any physical quantum device for quantum information processing (QIP) is subject to errors in implementation. In order to be reliable and efficient, quantum computers will need error-correcting or error-avoiding methods. Fault-tolerance achieved through quantum error correction will be an integral part of quantum computers. Of the many methods that have been discovered to implement it, a highly successful approach has been to use transversal gates and specific initial states. A critical element for its implementation is the availability of high-fidelity initial states, such as |0〉 and the 'magic state'. Here, we report an experiment, performed in a nuclear magnetic resonance (NMR) quantum processor, showing sufficient quantum control to improve the fidelity of imperfect initial magic states by distilling five of them into one with higher fidelity.

  7. Class notes from the first international training course on the physical protection of nuclear facilities and materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrington, P.B.

    1979-05-01

    The International Training Course on Physical Protection of Nuclear Facilities and Materials was intended for representatives from the developing countries who are responsible for preparing regulations and designing and assessing physical protection systems. The first part of the course consists of lectures on the objectives, organizational characteristics, and licensing and regulations requirements of a state system of physical protection. Since the participants may have little experience in nuclear energy, background information is provided on the topics of nuclear materials, radiation hazards, reactor systems, and reactor operations. Transportation of nuclear materials is addressed and emphasis is placed on regulations. Included inmore » these discussions are presentations by guest speakers from countries outside the United States of America who present their countries' threat to nuclear facilities. Effectiveness evaluation methodology is introduced to the participants by means of instructions which teach them how to use logic trees and the EASI (Estimate of Adversary Sequence Interruption) program. The following elements of a physical protection system are discussed: barriers, protective force, intrusion detection systems, communications, and entry-control systems. Total systems concepts of physical protection system design are emphasized throughout the course. Costs, manpower/technology trade-offs, and other practical considerations are discussed. Approximately one-third of the course is devoted to practical exercises during which the attendees participatein problem solving. A hypothetical nuclear facility is introduced, and the attendees participate in the conceptual design of a physical protection system for the facility.« less

  8. PREFACE: XIX Latin American Symposium on Solid State Physics (SLAFES XIX)

    NASA Astrophysics Data System (ADS)

    Serquis, Adriana; Balseiro, Carlos; Bolcatto, Pablo

    2009-07-01

    This volume contains selected papers which have been presented at the XIX Latin American Symposium on Solid State Physics (SLAFES XIX) held at Puerto Iguazú, Argentina, from 5--10 October 2008. The conference, covering all areas of Solid State Physics, is one of the most important and traditional meetings in Physics in our region. The Latin American Symposium on Solid State Physics is a forum where researchers and students from Latin America as well as leading scientists from other parts of the world get together to exchange information, strengthen collaborations and identify new challenges in Solid State Physics. This successful series of meetings has been organised in eight different countries, the last three held in Mérida, Venezuela (2002), La Habana, Cuba (2004) and Puebla, México (2006). Following the trends of previous events, SLAFES XIX included seven plenary talks, eighteen invited talks and contributions, and 28 oral and 255 poster presentations, covering mostly the latest experimental and theoretical advances in Nanophysics, Nanomaterials and Nanotechnology, Spintronics, Magnetism, New Materials, Superconductivity, Surfaces and Interfaces, Low-Dimensional Systems, Materials Preparation and Characterization, Theory and Computing Simulations of Materials among other topics. The group of scientists participating had come from Argentina, Chile, Colombia, Cuba, Brazil, France, Spain, Switzerland and the USA We are indebted to all participants for their enthusiasm and contributions and to the members of the International Advisory Commitees. We also wish to thank to the rest of the Organizing Committee: Gustavo Lozano, Ana María Llois, Laura Steren and Edith Goldberg and very specially to Javier Schmidt, Gustavo Ruano, Marcelo Romero, Lucila Cristina and Juan Carlos Moreno for their invaluable assistance during the event. Finally we gratefully aknowledge the financial support the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina, Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Argentina, Secretaría de Estado de Ciencia, Tecnología e Innovación, Provincia de Santa Fe, Argentina, Centro Latinoamericano de Física (CLAF), Universidad Nacional del Litoral, Santa Fe, Argentina, Institute of Physics (IOP) Publishing, The European Physical Journal (EPJ), EDP Science, Societa Italiana di Fisica and Springer. Adriana Serquis, Carlos Balseiro and Pablo Bolcatto

  9. A Computational Study of the Flow Physics of Acoustic Liners

    NASA Technical Reports Server (NTRS)

    Tam, Christopher

    2006-01-01

    The present investigation is a continuation of a previous joint project between the Florida State University and the NASA Langley Research Center Liner Physics Team. In the previous project, a study of acoustic liners, in two dimensions, inside a normal incidence impedance tube was carried out. The study consisted of two parts. The NASA team was responsible for the experimental part of the project. This involved performing measurements in an impedance tube with a large aspect ratio slit resonator. The FSU team was responsible for the computation part of the project. This involved performing direct numerical simulation (DNS) of the NASA experiment in two dimensions using CAA methodology. It was agreed that upon completion of numerical simulation, the computed values of the liner impedance were to be sent to NASA for validation with experimental results. On following this procedure good agreements were found between numerical results and experimental measurements over a wide range of frequencies and sound-pressure-level. Broadband incident sound waves were also simulated numerically and measured experimentally. Overall, good agreements were also found.

  10. Current-Voltage Characteristic of Nanosecond - Duration Relativistic Electron Beam

    NASA Astrophysics Data System (ADS)

    Andreev, Andrey

    2005-10-01

    The pulsed electron-beam accelerator SINUS-6 was used to measure current-voltage characteristic of nanosecond-duration thin annular relativistic electron beam accelerated in vacuum along axis of a smooth uniform metal tube immersed into strong axial magnetic field. Results of these measurements as well as results of computer simulations performed using 3D MAGIC code show that the electron-beam current dependence on the accelerating voltage at the front of the nanosecond-duration pulse is different from the analogical dependence at the flat part of the pulse. In the steady-state (flat) part of the pulse), the measured electron-beam current is close to Fedosov current [1], which is governed by the conservation law of an electron moment flow for any constant voltage. In the non steady-state part (front) of the pulse, the electron-beam current is higher that the appropriate, for a giving voltage, steady-state (Fedosov) current. [1] A. I. Fedosov, E. A. Litvinov, S. Ya. Belomytsev, and S. P. Bugaev, ``Characteristics of electron beam formed in diodes with magnetic insulation,'' Soviet Physics Journal (A translation of Izvestiya VUZ. Fizika), vol. 20, no. 10, October 1977 (April 20, 1978), pp.1367-1368.

  11. Application of ATHLET/DYN3D coupled codes system for fast liquid metal cooled reactor steady state simulation

    NASA Astrophysics Data System (ADS)

    Ivanov, V.; Samokhin, A.; Danicheva, I.; Khrennikov, N.; Bouscuet, J.; Velkov, K.; Pasichnyk, I.

    2017-01-01

    In this paper the approaches used for developing of the BN-800 reactor test model and for validation of coupled neutron-physic and thermohydraulic calculations are described. Coupled codes ATHLET 3.0 (code for thermohydraulic calculations of reactor transients) and DYN3D (3-dimensional code of neutron kinetics) are used for calculations. The main calculation results of reactor steady state condition are provided. 3-D model used for neutron calculations was developed for start reactor BN-800 load. The homogeneous approach is used for description of reactor assemblies. Along with main simplifications, the main reactor BN-800 core zones are described (LEZ, MEZ, HEZ, MOX, blankets). The 3D neutron physics calculations were provided with 28-group library, which is based on estimated nuclear data ENDF/B-7.0. Neutron SCALE code was used for preparation of group constants. Nodalization hydraulic model has boundary conditions by coolant mass-flow rate for core inlet part, by pressure and enthalpy for core outlet part, which can be chosen depending on reactor state. Core inlet and outlet temperatures were chosen according to reactor nominal state. The coolant mass flow rate profiling through the core is based on reactor power distribution. The test thermohydraulic calculations made with using of developed model showed acceptable results in coolant mass flow rate distribution through the reactor core and in axial temperature and pressure distribution. The developed model will be upgraded in future for different transient analysis in metal-cooled fast reactors of BN type including reactivity transients (control rods withdrawal, stop of the main circulation pump, etc.).

  12. Effects of easy-to-use protein-rich energy bar on energy balance, physical activity and performance during 8 days of sustained physical exertion.

    PubMed

    Tanskanen, Minna M; Westerterp, Klaas R; Uusitalo, Arja L; Atalay, Mustafa; Häkkinen, Keijo; Kinnunen, Hannu O; Kyröläinen, Heikki

    2012-01-01

    Previous military studies have shown an energy deficit during a strenuous field training course (TC). This study aimed to determine the effects of energy bar supplementation on energy balance, physical activity (PA), physical performance and well-being and to evaluate ad libitum fluid intake during wintertime 8-day strenuous TC. Twenty-six men (age 20±1 yr.) were randomly divided into two groups: The control group (n = 12) had traditional field rations and the experimental (Ebar) group (n = 14) field rations plus energy bars of 4.1 MJ•day(-1). Energy (EI) and water intake was recorded. Fat-free mass and water loss were measured with deuterium dilution and elimination, respectively. The energy expenditure was calculated using the intake/balance method and energy availability as (EI/estimated basal metabolic rate). PA was monitored using an accelerometer. Physical performance was measured and questionnaires of upper respiratory tract infections (URTI), hunger and mood state were recorded before, during and after TC. Ebar had a higher EI and energy availability than the controls. However, decreases in body mass and fat mass were similar in both groups representing an energy deficit. No differences were observed between the groups in PA, water balance, URTI symptoms and changes in physical performance and fat-free mass. Ebar felt less hunger after TC than the controls and they had improved positive mood state during the latter part of TC while controls did not. Water deficit associated to higher PA. Furthermore, URTI symptoms and negative mood state associated negatively with energy availability and PA. An easy-to-use protein-rich energy bars did not prevent energy deficit nor influence PA during an 8-day TC. The high content of protein in the bars might have induced satiation decreasing energy intake from field rations. PA and energy intake seems to be primarily affected by other factors than energy supplementation such as mood state.

  13. A systematic policy approach to changing the food system and physical activity environments to prevent obesity.

    PubMed

    Sacks, Gary; Swinburn, Boyd A; Lawrence, Mark A

    2008-06-05

    As obesity prevention becomes an increasing health priority in many countries, including Australia and New Zealand, the challenge that governments are now facing is how to adopt a systematic policy approach to increase healthy eating and regular physical activity. This article sets out a structure for systematically identifying areas for obesity prevention policy action across the food system and full range of physical activity environments. Areas amenable to policy intervention can be systematically identified by considering policy opportunities for each level of governance (local, state, national, international and organisational) in each sector of the food system (primary production, food processing, distribution, marketing, retail, catering and food service) and each sector that influences physical activity environments (infrastructure and planning, education, employment, transport, sport and recreation). Analysis grids are used to illustrate, in a structured fashion, the broad array of areas amenable to legal and regulatory intervention across all levels of governance and all relevant sectors. In the Australian context, potential regulatory policy intervention areas are widespread throughout the food system, e.g., land-use zoning (primary production within local government), food safety (food processing within state government), food labelling (retail within national government). Policy areas for influencing physical activity are predominantly local and state government responsibilities including, for example, walking and cycling environments (infrastructure and planning sector) and physical activity education in schools (education sector). The analysis structure presented in this article provides a tool to systematically identify policy gaps, barriers and opportunities for obesity prevention, as part of the process of developing and implementing a comprehensive obesity prevention strategy. It also serves to highlight the need for a coordinated approach to policy development and implementation across all levels of government in order to ensure complementary policy action.

  14. Boscovich: his geodetic and cartographic studies.

    NASA Astrophysics Data System (ADS)

    Crippa, B.; Forcella, V.; Mussio, L.

    The name of Ruggero Giuseppe Boscovich has many spellings: the Croatian Boscovič, linked to his Dalmatian origin, becomes Boscowich in German. Ruggero Giuseppe Boscovich lived and worked in many cities: Rome, Pavia, Venice, Paris, London, Warsaw, Saint Petersburg and Constantinople, where he carried out diplomatic missions. He was a Jesuit and studied mathematics, physics, astronomy, geodesy, and cartography. His studies in geodesy and cartography were developed in Italy: he measured the meridian between Rome and Rimini, he worked on the new map of the Papal State and he designed the Brera Observatory. In the first part of the present work, we present Boscovich's activities from a chronological point of view. In the second part, we focus on two specific arguments, related to geodesy and cartography: the new map of the Papal State and an attempt to rebuild the associated triangulation.

  15. Integration of Engineering Education by High School Teachers to Meet Standards in the Physics Classroom

    ERIC Educational Resources Information Center

    Kersten, Jennifer Anna

    2013-01-01

    In recent years there has been increasing interest in engineering education at the K-12 level, which has resulted in states adopting engineering standards as a part of their academic science standards. From a national perspective, the basis for research into engineering education at the K-12 level is the belief that it is of benefit to student…

  16. Body Mass Index and Skinfold Thickness Measurements as Body Composition Screening Tools in Caucasian and African American Youth

    ERIC Educational Resources Information Center

    Bryan, Charity Leigh; Solmon, Melinda A.; Zanovec, Michael T.; Tuuri, Georgianna

    2011-01-01

    There is growing concern regarding childhood obesity and its impact on children's health, and many states and school districts have mandated that health assessments be conducted as part of physical education. Tools such as the FITNESSGRAM[R] can help teachers inform students and parents if students are above a healthy weight range. The FITNESSGRAM…

  17. JPRS Report, East Europe

    DTIC Science & Technology

    1987-09-29

    action simply as paternalism . E.g. the government’s support of the continuing education of children of physical laborers evokes apprehension on part...equally—jontly create an organizational framework for self -governance and self -regulations. 12995 CSO: 2500/466 20 HUNGARY POLITICAL CHILDREN ...provided for increas- ing the state allocation and the allowance for children , the aid that is given to mothers with many children , and the maternity

  18. Forest processes and global environmental change: predicting the effects of individual and multiple stressors

    Treesearch

    John Aber; Ronald P. Neilson; Steve McNulty; James M. Lenihan; Dominque Bachelet; Raymond J. Drapek

    2001-01-01

    The purpose of this article is to review the state of prediction of forest ecosystem response to envisioned changes in the physical and chemical climate. These results are offered as one part of the forest sector analysis of the National Assessment of the Potential Consequences of Climate Variability and Change. This article has three sections. The first offers a very...

  19. European Scientific Notes. Volume 38, Number 6.

    DTIC Science & Technology

    1984-06-01

    powerful information-processing theories and + * eye-movement analysis provides .i path toward integration in cognitive psychology. The Neo-Piayetian...differences. This work has in turn led to While confirming the hierarchical aspect similar studies of adult cognitive of Piagetian theory in part, the results...Convection Phenomena, and Experiments in languages of the conference are French Solid State Physics Relevant to Litho- and English , with simultaneous

  20. Maxwell's Enduring Legacy

    NASA Astrophysics Data System (ADS)

    Longair, Malcolm

    2016-07-01

    Preface; Acknowledgements; Figure credits; Part I. To 1874: 1. Physics in the nineteenth century; 2. Mathematics and physics in Cambridge in the nineteenth century; Part II. 1874 to 1879: 3. The Maxwell era; Part III. 1879 to 1884: 4. Rayleigh's Quinquennium; Part IV. 1884 to 1919: 5. The challenges facing J. J. Thomson; 6. The J. J. Thomson era, 1884-1900 - the electron; 7. The Thomson era, 1900-19 - atomic structure; Part V. 1919 to 1937: 8. Rutherford at McGill and Manchester Universities - new challenges in Cambridge; 9. The Rutherford era - the radioactivists; 10. Rutherford era - the seeds of the new physics; Part VI. 1938 to 1953: 11. Bragg and the war years; 12. Bragg and the post-war years; Part VII. 1953 to 1971: 13. The Mott era - an epoch of expansion; 14. The Mott era - radio astronomy and high energy physics; 15. The Mott era - the growth of condensed matter physics; Part VIII. 1971 to 1982: 16. The Pippard era - a new laboratory and a new vision; 17. The Pippard era - radio astronomy, high energy physics and laboratory astrophysics; 18. The Pippard era - condensed matter physics; Part IX. 1984 to 1995: 19. The Edwards era - a new epoch of expansion; 20. The Edwards era - new directions in condensed matter physics; 21. The Edwards era - high energy physics and radio astronomy; Part X. 1995 to present: 22. Towards the new millennium and beyond; 23. The evolution of the New Museums site; Notes; Bibliography; Author index; Index.

  1. Structure of the physical therapy benefit in a typical Blue Cross Blue Shield preferred provider organization plan available in the individual insurance market in 2011.

    PubMed

    Sandstrom, Robert W; Lehman, Jedd; Hahn, Lee; Ballard, Andrew

    2013-10-01

    The Affordable Care Act of 2010 establishes American Health Benefit Exchanges. The benefit design of insurance plans in state health insurance exchanges will be based on the structure of existing small-employer-sponsored plans. The purpose of this study was to describe the structure of the physical therapy benefit in a typical Blue Cross Blue Shield (BCBS) preferred provider organization (PPO) health insurance plan available in the individual insurance market in 2011. A cross-sectional survey design was used. The physical therapy benefit within 39 BCBS PPO plans in 2011 was studied for a standard consumer with a standard budget. First, whether physical therapy was a benefit in the plan was determined. If so, then the structure of the benefit was described in terms of whether the physical therapy benefit was a stand-alone benefit or part of a combined-discipline benefit and whether a visit or financial limit was placed on the physical therapy benefit. Physical therapy was included in all BCBS plans that were studied. Ninety-three percent of plans combined physical therapy with other disciplines. Two thirds of plans placed a limit on the number of visits covered. The results of the study are limited to 1 standard consumer, 1 association of insurance companies, 1 form of insurance (a PPO), and 1 PPO plan in each of the 39 states that were studied. Physical therapy is a covered benefit in a typical BCBS PPO health insurance plan. Physical therapy most often is combined with other therapy disciplines, and the number of covered visits is limited in two thirds of plans.

  2. Subsystem functional and the missing ingredient of confinement physics in density functionals.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armiento, Rickard Roberto; Mattsson, Ann Elisabet; Hao, Feng

    2010-08-01

    The subsystem functional scheme is a promising approach recently proposed for constructing exchange-correlation density functionals. In this scheme, the physics in each part of real materials is described by mapping to a characteristic model system. The 'confinement physics,' an essential physical ingredient that has been left out in present functionals, is studied by employing the harmonic-oscillator (HO) gas model. By performing the potential {yields} density and the density {yields} exchange energy per particle mappings based on two model systems characterizing the physics in the interior (uniform electron-gas model) and surface regions (Airy gas model) of materials for the HO gases,more » we show that the confinement physics emerges when only the lowest subband of the HO gas is occupied by electrons. We examine the approximations of the exchange energy by several state-of-the-art functionals for the HO gas, and none of them produces adequate accuracy in the confinement dominated cases. A generic functional that incorporates the description of the confinement physics is needed.« less

  3. Becoming physics people: Development of integrated physics identity through the Learning Assistant experience

    NASA Astrophysics Data System (ADS)

    Close, Eleanor W.; Conn, Jessica; Close, Hunter G.

    2016-06-01

    [This paper is part of the Focused Collection on Preparing and Supporting University Physics Educators.] In this study, we analyze the experience of students in the Physics Learning Assistant (LA) program at Texas State University in terms of the existing theoretical frameworks of community of practice and physics identity, and explore the implications suggested by these theories for LA program adoption and adaptation. Regression models from physics identity studies show that the physics identity construct strongly predicts intended choice of a career in physics. The goal of our current project is to understand the details of the impacts of participation in the LA experience on participants' practice and self-concept, in order to identify critical elements of LA program structure that positively influence physics identity and physics career intentions for students. Our analysis suggests that participation in the LA program impacts LAs in ways that support both stronger "physics student" identity and stronger "physics instructor" identity, and that these identities are reconciled into a coherent integrated physics identity. Increased comfort in interactions with peers, near peers, and faculty seems to be an important component of this identity development and reconciliation, suggesting that a focus on supporting community membership is useful for effective program design.

  4. Locally covariant quantum field theory and the problem of formulating the same physics in all space-times.

    PubMed

    Fewster, Christopher J

    2015-08-06

    The framework of locally covariant quantum field theory is discussed, motivated in part using 'ignorance principles'. It is shown how theories can be represented by suitable functors, so that physical equivalence of theories may be expressed via natural isomorphisms between the corresponding functors. The inhomogeneous scalar field is used to illustrate the ideas. It is argued that there are two reasonable definitions of the local physical content associated with a locally covariant theory; when these coincide, the theory is said to be dynamically local. The status of the dynamical locality condition is reviewed, as are its applications in relation to (i) the foundational question of what it means for a theory to represent the same physics in different space-times and (ii) a no-go result on the existence of natural states. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. Factors controlling threshold friction velocity in semiarid and arid areas of the United States

    USGS Publications Warehouse

    Marticorena, Beatrice; Bergametti, G.; Belnap, Jayne

    1997-01-01

    A physical model was developed to explain threshold friction velocities u*t for particles of the size 60a??120 I?m lying on a rough surface in loose soils for semiarid and arid parts of the United States. The model corrected for the effect of momentum absorption by the nonerodible roughness. For loose or disturbed soils the most important parameter that controls u*t is the aerodynamic roughness height z 0. For physical crusts damaged by wind the size of erodible crust pieces is important along with the roughness. The presence of cyanobacteriallichen soil crusts roughens the surface, and the biological fibrous growth aggregates soil particles. Only undisturbed sandy soils and disturbed soils of all types would be expected to be erodible in normal wind storms. Therefore disturbance of soils by both cattle and humans is very important in predicting wind erosion as confirmed by our measurements.

  6. Quantum scar and breakdown of universality in graphene: A theoretical insight

    NASA Astrophysics Data System (ADS)

    Iyakutti, Kombiah; Rajeswarapalanichamy, Ratnavelu; Surya, Velappa Jayaraman; Kawazoe, Yoshiyuki

    2017-12-01

    Graphene has brought forward a lot of new physics. One of them is the emergence of massless Dirac fermions in addition to the electrons and these features are new to physics. In this theoretical study, the signatures for quantum scar and the breakdown of universality in graphene are investigated with reference to the presence of these two types of fermions. Taking the graphene quantum dot (QD) potential as the confining potential, the radial part of Dirac equations are solved numerically. Concentrations of the two component eigen-wavefunctions about classical periodic orbits emerge as the signatures for the quantum scar. The sudden variations, in the ratio of the radial wave-functions (large and small components), R(g/f), with mass ratio κ are the signatures for breakdown of universality in graphene. The breakdown of universality occurs for the states k = -1 and k = 1, and the state k = -1 is more susceptible to the breakdown of universality.

  7. Structure-Property Relationships in Novel Materials Part I: Frustrated Magnetism and Deintercalation of Honeycomb Oxides Part II: Electron-Precise Gold Intermetallics

    NASA Astrophysics Data System (ADS)

    Seibel, Elizabeth M.

    This thesis is a study of the structure-property relationships of novel materials, broken into two major parts. The first part, "Part I: Frustrated Magnetism and Deintercalation of Honeycomb Oxides" explores new, layered nickel oxides and their properties, specifically the synthesis, structure, magnetism, and applications of the Na3Ni 2BiO6-NaNi2BiO6-NaNi2BiO 6•1.7H2O system. These phases are of interest to the solid-state and physics communities because they display frustrated magnetism on a hexagonal lattice. Chapter 3 explores the chemistry and physics of Na 3Ni2BiO6; Chapter 4 then discusses its chemical deintercalation and subsequent hydration to form the NaNi2BiO 6-NaNi2BiO6•1.7H2O system. These phases are examples of sought-after spin-1/2 systems on a hexagonal lattice. The second part of this thesis, "Part II: Electron-Precise Gold Intermetallics" explores novel, electron-precise intermetallics in the Lanthanide-gold-pnictide ternary system. The chemistry of gold-containing solids has not been well-studied despite gold's unusual physics, motivating the study. There are three new families discussed herein. The first, found in Chapter 7, is of the type LnAuSb (Ln = Lanthanide) which are new Dirac semimetals. The work illustrates a chemical design principle that can be used to predict new Dirac Semimetals, which is important given that the field of topological materials is rapidly growing. Chapter 8 discusses materials of the type LnAuBi2, which are layered intermetallics with a high degree of magnetic anisotropy. Finally, Chapter 9 explores new phases of the form Ln 3Au3Bi4. These materials are semiconductors with high Seebeck coefficients at room temperature, indicating their potential for use as thermoelectric materials.

  8. On bipartite pure-state entanglement structure in terms of disentanglement

    NASA Astrophysics Data System (ADS)

    Herbut, Fedor

    2006-12-01

    Schrödinger's disentanglement [E. Schrödinger, Proc. Cambridge Philos. Soc. 31, 555 (1935)], i.e., remote state decomposition, as a physical way to study entanglement, is carried one step further with respect to previous work in investigating the qualitative side of entanglement in any bipartite state vector. Remote measurement (or, equivalently, remote orthogonal state decomposition) from previous work is generalized to remote linearly independent complete state decomposition both in the nonselective and the selective versions. The results are displayed in terms of commutative square diagrams, which show the power and beauty of the physical meaning of the (antiunitary) correlation operator inherent in the given bipartite state vector. This operator, together with the subsystem states (reduced density operators), constitutes the so-called correlated subsystem picture. It is the central part of the antilinear representation of a bipartite state vector, and it is a kind of core of its entanglement structure. The generalization of previously elaborated disentanglement expounded in this article is a synthesis of the antilinear representation of bipartite state vectors, which is reviewed, and the relevant results of [Cassinelli et al., J. Math. Anal. Appl. 210, 472 (1997)] in mathematical analysis, which are summed up. Linearly independent bases (finite or infinite) are shown to be almost as useful in some quantum mechanical studies as orthonormal ones. Finally, it is shown that linearly independent remote pure-state preparation carries the highest probability of occurrence. This singles out linearly independent remote influence from all possible ones.

  9. Applicability of Satellite Freeze Forecasting and Cold Climate Mapping to the Other Parts of the United States

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Tasks performed to determine the value of using GOES satellite thermal imagery to enhance fruit crop production in Michigan are described. An overview is presented of the system developed for image processing and thermal image and surface environmental data bases prepared to assess the physical models developed in Florida. These data bases were used to identify correlations between satellite apparent temperatures patterns and Earth surface factors. Significant freeze events in 1981 and the physical models used to provide a perspective on how Florida models can be applied in the context of the Michigan environment are discussed.

  10. Few-Body Techniques Using Momentum Space for Bound and Continuum States

    NASA Astrophysics Data System (ADS)

    Yamashita, M. T.; Rosa, D. S.; Sandoval, J. H.

    2018-05-01

    This article is based on the notes (arxiv:1710.11228) written for a set of three lectures given in a school at the Max Planck Institute for the Physics of Complex Systems in October/2017 before the workshop "Critical Stability of Quantum Few-Body Systems". The last part of the article includes the specific topic presented in the workshop related to the dimensional effects in three-body systems. These notes are primarily dedicated to the students and are only a tentative to show a technique, among many others, to solve problems in a very rich area of the contemporary physics—the Few-Body Physics.

  11. Physical dimensions, torsional performance, bending properties, and metallurgical characteristics of rotary endodontic instruments. VI. Canal Master drills.

    PubMed

    Luebke, N H; Brantley, W A; Sabri, Z I; Luebke, F L; Lausten, L L

    1995-05-01

    A laboratory study was performed on machine-driven Canal Master drills to determine their physical dimensions, torsional performance, bending properties, and metallurgical characteristics in fracture. Physical dimensions were determined for each of the available sizes (#50 to #100) of Canal Master drills from the manufacturer that distributes these instruments in the United States. Samples were also tested in clockwise torsion using a Maillefer memocouple. Bending properties of cantilever specimens were measured with a Tinius Olsen stiffness tester. Bending fatigue testing was performed on a unique laboratory apparatus. Scanning electron microscope examination confirmed visual observations that the stainless steel Canal Master drills exhibited ductile torsional fracture. This study is part of a continuing investigation to establish standards for all machine-driven rotary endodontic instruments.

  12. Management of chronic (post-viral) fatigue syndrome.

    PubMed Central

    Wessely, S; David, A; Butler, S; Chalder, T

    1989-01-01

    Simple rehabilitative strategies are proposed to help patients with the chronic fatigue syndrome. A model is outlined of an acute illness giving way to a chronic fatigue state in which symptoms are perpetuated by a cycle of inactivity, deterioration in exercise tolerance and further symptoms. This is compounded by the depressive illness that is often part of the syndrome. The result is a self-perpetuating cycle of exercise avoidance. Effective treatment depends upon an understanding of the interaction between physical and psychological factors. Cognitive behavioural therapy is suggested. Cognitive therapy helps the patient understand how genuine symptoms arise from the frequent combination of physical inactivity and depression, rather than continuing infection, while a behavioural approach enables the treatment of avoidance behaviour and a gradual return to normal physical activity. PMID:2553945

  13. Study of Atomic Quasi-Stable States, Decoherence And Cooling of Mesoscale Particles

    NASA Astrophysics Data System (ADS)

    Zhong, Changchun

    Quantum mechanics, since its very beginning, has totally changed the way we understand nature. The past hundred years have seen great successes in the application of quantum physics, including atomic spectra, laser technology, condensed matter physics and the remarkable possibility for quantum computing, etc. This thesis is dedicated to a small regime of quantum physics. In the first part of the thesis, I present the studies of atomic quasi-stable states, which refer to those Rydberg states of an atom that are relatively stable in the presence of strong fields. Through spectrally probing the quasi-stable states, series of survival peaks are found. If the quasi-stable electrons were created by ultraviolet (UV) lasers with two different frequencies, the survival peaks could be modulated by continuously changing the phase difference between the UV and the IR laser. The quantum simulation, through directly solving the Schrodinger equation, matches the experimental results performed with microwave fields, and our studies should provide a guidance for future experiments. Despite the huge achievements in the application of quantum theory, there are still some fundamental problems that remain unresolved. One of them is the so-called quantum-to-classical transition, which refers to the expectation that the system behaves in a more classical manner when the system size increases. This basic question was not well answered until decoherence theory was proposed, which states that the coherence of a quantum system tends to be destroyed by environmental interruptions. Thus, if a system is well isolated from its environment, it is in principle possible to observe macroscopic quantum coherence. Quite recently, testing quantum principles in the macroscale has become a hot topic due to rapic technological developments. A very promising platform for testing macroscale quantum physics is a laser levitated nanoparticle, and cooling its mechanical motion to the ground state is the first step. In the second part of this thesis, we develop the theory of decoherence for a mesoscopic system's rotational degrees of freedom. Combining decoherence in the translational degrees of freedom, the system's shot noise heating is discussed. We then focus on cooling the nanoparticle in the laser-shot-noise-dominant regime using two different feedback cooling schemes: the force feedback cooling and the parametric feedback cooling. Both quantum and classical calculations are performed, and an exact match is observed. We also explore the parameters that could possibly affect the cooling trend, where we find that the cooling limit for both cooling schemes strongly depends on the position measurement efficiency, and it poses good questions for researchers interested in achieving ground state cooling: what is the best measurement efficiency for a given measurement setup and what can be done to get a better measurement efficiency?

  14. Social cognitive perspective of gender disparities in undergraduate physics

    NASA Astrophysics Data System (ADS)

    Kelly, Angela M.

    2016-12-01

    [This paper is part of the Focused Collection on Gender in Physics.] This article synthesizes sociopsychological theories and empirical research to establish a framework for exploring causal pathways and targeted interventions for the low representation of women in post-secondary physics. The rationale for this article is based upon disproportionate representation among undergraduate physics majors in the United States; women earned only 19.7% of physics undergraduate degrees in 2012. This disparity has been attributed to a variety of factors, including unwelcoming classroom atmospheres, low confidence and self-efficacy, and few female role models in physics academic communities. Recent empirical studies have suggested gender disparities in physics and related STEM fields may be more amenable to social cognitive interventions than previously thought. Social psychologists have found that women improved physics self-concept when adopting a malleable view of intelligence, when they received support and encouragement from family and teachers, and when they experienced interactive learning techniques in communal environments. By exploring research-based evidence for strategies to support women in physics, precollege and university faculty and administrators may apply social cognitive constructs to improve the representation of women in the field.

  15. Advancing Successful Physics Majors - The Physics First Year Seminar Experience

    NASA Astrophysics Data System (ADS)

    Deibel, Jason; Petkie, Douglas

    In 2012, the Wright State University physics curriculum introduced a new year-long seminar course required for all new physics majors. The goal of this course is to improve student retention and success via building a community of physics majors and provide them with the skills, mindset, and advising necessary to successfully complete a degree and transition to the next part of their careers. This new course sequence assembles a new cohort of majors annually. To prepare each cohort, students engage in a variety of activities that span from student success skills to more specific physics content while building an entrepreneurial mindset. Students participate in activities including study skills, career night, course planning, campus services, and a department social function. More importantly, students gain exposure to programming, literature searches, data analysis, technical writing, elevator pitches, and experimental design via hands-on projects. This includes the students proposing, designing, and conducting their own experiments. Preliminary evidence indicates increased retention, student success, and an enhanced sense of community among physics undergraduate students, The overall number of majors and students eventually completing their physics degrees has nearly tripled. Associate Professor, Department of Physics.

  16. Scattering General Analysis; ANALISIS GENERAL DE LA DISPERSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tixaire, A.G.

    1962-01-01

    A definition of scattering states is given. It is shown that such states must belong to the absolutely continuous part of the spectrum of the total hamiltonian whenever scattering systems are considered. Such embedding may be proper unless the quantum system is physically admissible. The Moller wave operators are analyzed using Abel- and Cesaro-limit theoretical arguments. Von Neumann s ergodic theorem is partially generalized. A rigorous derivation of the Gell-Mann and Goldberger and Lippmann and Schwinger equations is obtained by making use of results on spectral theory, wave function, and eigendifferential concepts contained. (auth)

  17. Geohydrologic systems in Kansas physical framework of the upper aquifer unit in the western interior plains aquifer system

    USGS Publications Warehouse

    Hansen, Cristi V.; Spinazola, Joseph M.; Underwood, E.J.; Wolf, R.J.

    1992-01-01

    The purpose of this Hydrologic Investigations Atlas is to provide a description of the principal geohydrologic systems in Upper Cambrian through Lower Cretaceous rocks in Kansas. This investigation was made as part of the Central Midwest Regional Aquifer-System Analysis (CMRASA). The CMRASA is one of several major investigations by the U.S. Geological Survey of regional aquifer systems in the United States. These regional investigations are designed to increase knowledge of the flow regime and hydrologic properties of major aquifer systems and to provide quantitative information for the assessment, development, and management water supplies. The CMRASA study area includes all or parts of 10 Central Midwestern States (Jorgensen and Signor, 1981), as shown on the envelope cover.This Hydrologic Investigations Atlas, which consists of a series of nine chapters, presents a description of the physical framework and the geohydrology of principal aquifers and confining systems in Kansas. Chapter D presents maps that show the areal extent, altitude and configuration of the top, and thickness of Mississippian rocks that compose the upper aquifer unit of the Western Interior Plains aquifer system in Kansas, The chapter is limited to the presentation of the physical framework of the upper aquifer unit. The interpretation of the physical framework of the upper aquifer unit is based on selected geophysical and lithologic logs and published maps of stratigraphically equivalent units. Maps indicating the thickness and the altitude and configuration of the top of the upper aquifer unit in the Western Interior Plains aquifer system have been prepared as part of a series of interrelated maps that describe the stratigraphic interval from the Precambrian basement through Lower Cretaceous rocks. A concerted effort was made to ensure that maps of each geohydrologic unit are consistent with the maps of underlying and overlying units. Chapter A of this atlas series (Wolf and others, 1990) describes the relation of principal geohydrologic systems in Kansas and presents a more detailed discussion of the methods and data used to prepare and ensure consistency among the sets of maps.

  18. Listening to Girls and Boys Talk About Girls’ Physical Activity Behaviors

    PubMed Central

    Vu, Maihan B.; Murrie, Dale; Gonzalez, Vivian; Jobe, Jared B.

    2008-01-01

    As part of the formative assessment for the Trial of Activity for Adolescent Girls (TAAG), a multicenter study to reduce the decline of physical activity in adolescent girls, girls and boys with diverse ethnicity from six states participated in focus groups and semistructured interviews. Data from 13 girls’ focus groups (N = 100), 11 boys’ focus groups (N = 77), and 80 semistructured interviews with girls are examined to identify perceptions of girls’ physical activity behaviors to help develop TAAG interventions. Both girls and boys talk about physically active girls as being “tomboys” or “too aggressive.” Girls are more likely to characterize active girls as “in shape,” whereas boys say they are “too athletic.” Girls report boys to be influential barriers and motivators in shaping their beliefs about physical activity. Given the strong influence of peers, developing successful interventions for girls should include verbal persuasion, modeling, and social support from both girls and boys. PMID:16397161

  19. A collaborative approach to improve the assessment of physical health in adult consumers with schizophrenia in Queensland mental health services.

    PubMed

    Plever, Sally; McCarthy, Irene; Anzolin, Melissa; Emmerson, Brett; Khatun, Mohsina

    2016-02-01

    The objective of this study was to apply a quality improvement collaborative to increase the number of physical health assessments conducted with consumers diagnosed with schizophrenia in adult community mental health services across Queensland. Sixteen adult mental health service organisations voluntarily took part in the statewide collaborative initiative to increase the number of physical health assessments completed on persons with a diagnosis of schizophrenia spectrum disorders managed through the community mental health service. Improvement in the physical health assessment clinical indicator was demonstrated across the state over a 3-year period with an increase in the number of physical health assessments recorded from 12% to 58%. Significant improvements were made over a 3-year period by all mental health services involved in the collaborative, supporting the application of a quality improvement methodology to drive change across mental health services. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  20. Psychological Maltreatment--Maltreatment of the Mind: A Catalyst for Advancing Child Protection toward Proactive Primary Prevention and Promotion of Personal Well-Being

    ERIC Educational Resources Information Center

    Hart, Stuart N.; Glaser, Danya

    2011-01-01

    Objective: Child protection, as primarily applied toward narrow corrective intervention, has been judged to be inadequate in dealing with the wide variety of forms and levels of physical, psychological and sexual violence to which children are subjected throughout the world. Concern about this state of affairs has grown as a part of a global…

  1. CHEMICAL CHARACTERISTICS OF STREAMS IN THE MID-ATLANTIC AND SOUTHEASTERN UNITED STATES (NATIONAL STREAM SURVEY: PHASE 1). VOLUME 2. STREAMS SAMPLED, DESCRIPTIVE STATISTICS, AND COMPENDIUM OF PHYSICAL AND CHEMICAL DATA

    EPA Science Inventory

    National Stream Survey Phase I (NSS-I) field activities were conducted in the Mid-Atlantic and Southeastern U.S. in the spring of 1986 by the U.S. EPA as part of the National Surface Water Survey and the National Acid Precipitation Assessment Program. The Survey employed a probab...

  2. Experimental Physics

    NASA Astrophysics Data System (ADS)

    Wilson, Harold A.

    2014-05-01

    Preface; Introduction; Part I. Mechanics and Properties of Matter: 1. Space and time; 2. Motion; 3. The laws of motion and matter; 4. Force and motion; 5. Work and study; 6. Mechanics of rigid bodies; 7. Gravitation; 8. Elasticity; 9. The properties of liquids; Part II. Heat: 1. Temperature; 2. The expansion of solid bones with rise of temperature; 3. The expansion of liquids with rise of temperature; 4. The properties of gases; 5. Quantity of heat. Specific heat; 6. Change of state. Solid-liquid; 7. Change of state. Liquid-vapour; 8. Convection and conduction; 9. Heat a form of energy; 10. The conversion of heat into work; 11. The kinetic theory of gases; Part III. Sound: 1. Production and velocity of sound; 2. Wave motion; 3. Wave trains; 4. Musical notes; 5. Reflection, refraction, interference of sound and composition of perpendicular vibrations; 6. Resonance; 7. Vibration of strings; 8. Vibration of air in open and closed spaces; Part IV. Light: 1. Sources of light. Photometry; 2. Reflection and refraction at plane surfaces; 3. Spherical mirrors; 4. Lenses; 5. Dispersion; 6. Colour; 7. Optical instruments; 8. The velocity of light; 9. Interference and diffraction; 10. Polarization and double refraction; 11. Energy of light. Invisible radiations; Index.

  3. Spin and Wind Directions II: A Bell State Quantum Model.

    PubMed

    Aerts, Diederik; Arguëlles, Jonito Aerts; Beltran, Lester; Geriente, Suzette; Sassoli de Bianchi, Massimiliano; Sozzo, Sandro; Veloz, Tomas

    2018-01-01

    In the first half of this two-part article (Aerts et al. in Found Sci. doi:10.1007/s10699-017-9528-9, 2017b), we analyzed a cognitive psychology experiment where participants were asked to select pairs of directions that they considered to be the best example of Two Different Wind Directions , and showed that the data violate the CHSH version of Bell's inequality, with same magnitude as in typical Bell-test experiments in physics. In this second part, we complete our analysis by presenting a symmetrized version of the experiment, still violating the CHSH inequality but now also obeying the marginal law, for which we provide a full quantum modeling in Hilbert space, using a singlet state and suitably chosen product measurements. We also address some of the criticisms that have been recently directed at experiments of this kind, according to which they would not highlight the presence of genuine forms of entanglement. We explain that these criticisms are based on a view of entanglement that is too restrictive, thus unable to capture all possible ways physical and conceptual entities can connect and form systems behaving as a whole. We also provide an example of a mechanical model showing that the violations of the marginal law and Bell inequalities are generally to be associated with different mechanisms.

  4. Exercise and limitations in physical activity levels among new dialysis patients in the United States: an epidemiologic study.

    PubMed

    Stack, Austin G; Murthy, Bhamidipati

    2008-12-01

    Epidemiologic studies of physical activity among patients with end-stage renal disease (ESRD) are lacking. The aim of this study was to describe the patterns of physical activity among new dialysis patients in the United States. Multivariate logistic regression analyses examined associations of self-reported limitations in physical activity and exercise frequency with sociodemographic and clinical variables in 2,264 patients from Wave 2 of the Dialysis Morbidity and Mortality Study. Overall, 56% of patients exercised less than once a week, 75% reported severe limitations in vigorous activities, whereas 42% had severe limitations in moderate physical activities. Fewer limitations in moderate or vigorous activities correlated positively with male gender (odds-ratio [OR] = 1.61), black race OR =1.49), Hispanic ethnicity (OR = 2.39), serum albumin (OR = 1.69 per 1 g/L higher), positive affect (OR = 2.33), peritoneal dialysis (OR = 1.90), and negatively with age (OR = 0.67), heart failure (OR = 0.75), peripheral vascular disease (OR = 0.69), malnutrition (OR = 0.67), and depression (OR = 0.39). Patients reporting fewer limitations in moderate or vigorous activities (OR = 1.35 and 1.28, respectively), or frequent visits with a dietitian (2 to 3 times per week vs. less) (OR = 1.21) in the pre-ESRD period exercised more frequently. Limitations in physical activity are common among new ESRD patients and these, in part, are related to pre-existing cardiovascular disease, malnutrition, and mental health.

  5. Physical Education in Schools: Preliminary Findings of a Worldwide Survey. Part II.

    ERIC Educational Resources Information Center

    Hardman, Ken; Marshall, J. Joe

    2000-01-01

    This second in a two-part article summarizes the preliminary findings of a worldwide survey on physical education in schools. This part focuses on: resources (i.e., finances, facilities and equipment, and qualified teaching personnel); issues and trends in physical education; concluding comments; and selected references covering both parts of the…

  6. Investigating Student Understanding for a Statistical Analysis of Two Thermally Interacting Solids

    NASA Astrophysics Data System (ADS)

    Loverude, Michael E.

    2010-10-01

    As part of an ongoing research and curriculum development project for upper-division courses in thermal physics, we have developed a sequence of tutorials in which students apply statistical methods to examine the behavior of two interacting Einstein solids. In the sequence, students begin with simple results from probability and develop a means for counting the states in a single Einstein solid. The students then consider the thermal interaction of two solids, and observe that the classical equilibrium state corresponds to the most probable distribution of energy between the two solids. As part of the development of the tutorial sequence, we have developed several assessment questions to probe student understanding of various aspects of this system. In this paper, we describe the strengths and weaknesses of student reasoning, both qualitative and quantitative, to assess the readiness of students for one tutorial in the sequence.

  7. 'Bright side' and 'dark side' hypomania are associated with differences in psychological functioning, sleep and physical activity in a non-clinical sample of young adults.

    PubMed

    Brand, Serge; Gerber, Markus; Pühse, Uwe; Holsboer-Trachsler, Edith

    2011-06-01

    No research has yet focused on hypomanic states in non-clinical early adult populations. The aim of the present study was therefore to assess hypomania in a large non-clinical sample of young adults. A total of 862 participants (639 females and 223 males; mean age: M=24.67; SD=5.91) took part in the study. They completed a series of validated self-report questionnaires assessing hypomania (HCL-32) and other aspects of psychological functioning, sleep, stress, quality of life, cognitive-emotional elaboration of pain, self-efficacy, and physical activity. Based on the HCL-32, 19% of the participants (n=169) were categorized as currently being in a hypomanic state. Of those, 57.6% were classified as "active/elated" ('bright side'), whereas 42.4% were classified as "irritable/risk-taking" ('dark side'). Compared to non-hypomanic participants and the 'bright side' group, 'dark side' hypomanic participants reported more depressive symptoms, sleep disturbances, somatic complaints, perceived stress, negative coping strategies, and lower self-efficacy. By contrast, 'bright side' hypomanic participants had lower stress scores, more positive self-instructions, and higher levels of exploration, self-efficacy, and physical activity. A cross-sectional design was adopted, assessing university students, who may not be representative of the stage of early adulthood. The present results underscore the notion of a continuity between a mood state and both favorable ('bright side') and unfavorable ('dark side') hypomanic states. In early adulthood, 'bright' and 'dark side' hypomania differs with respect to physical activity, psychological functioning and sleep. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Cyber-Physical System Security of a Power Grid: State-of-the-Art

    DOE PAGES

    Sun, Chih -Che; Liu, Chen -Ching; Xie, Jing

    2016-07-14

    Here, as part of the smart grid development, more and more technologies are developed and deployed on the power grid to enhance the system reliability. A primary purpose of the smart grid is to significantly increase the capability of computer-based remote control and automation. As a result, the level of connectivity has become much higher, and cyber security also becomes a potential threat to the cyber-physical systems (CPSs). In this paper, a survey of the state-of-the-art is conducted on the cyber security of the power grid concerning issues of: the structure of CPSs in a smart grid; cyber vulnerability assessment;more » cyber protection systems; and testbeds of a CPS. At Washington State University (WSU), the Smart City Testbed (SCT) has been developed to provide a platform to test, analyze and validate defense mechanisms against potential cyber intrusions. A test case is provided in this paper to demonstrate how a testbed helps the study of cyber security and the anomaly detection system (ADS) for substations.« less

  9. Cyber-Physical System Security of a Power Grid: State-of-the-Art

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Chih -Che; Liu, Chen -Ching; Xie, Jing

    Here, as part of the smart grid development, more and more technologies are developed and deployed on the power grid to enhance the system reliability. A primary purpose of the smart grid is to significantly increase the capability of computer-based remote control and automation. As a result, the level of connectivity has become much higher, and cyber security also becomes a potential threat to the cyber-physical systems (CPSs). In this paper, a survey of the state-of-the-art is conducted on the cyber security of the power grid concerning issues of: the structure of CPSs in a smart grid; cyber vulnerability assessment;more » cyber protection systems; and testbeds of a CPS. At Washington State University (WSU), the Smart City Testbed (SCT) has been developed to provide a platform to test, analyze and validate defense mechanisms against potential cyber intrusions. A test case is provided in this paper to demonstrate how a testbed helps the study of cyber security and the anomaly detection system (ADS) for substations.« less

  10. Clinical education and cultural diversity in physical therapy: clinical performance of minority student physical therapists and the expectations of clinical instructors.

    PubMed

    Clouten, Norene; Homma, Midori; Shimada, Rie

    2006-01-01

    Clinical education is an integral part of preparation for the profession of physical therapy and the role of the clinical instructor is critical. The purpose of this study was to investigate clinical instructors' expectations of student physical therapists with different ethnic backgrounds and the clinical performance of the students as assessed using a modification of the Generic Abilities Assessment. For this study, individuals with a Caucasian ethnic background who were raised in the United States were considered as the majority. The remaining individuals (minority) were subdivided into five groups: African American, Hispanic, Asian/Pacific Islander, Caucasian from outside the United States, and Other. Clinical instructors reported their experiences with students from different ethnic backgrounds, their expectation of students' performance, and recollections of specific weaknesses in performance. From the 216 surveys distributed, 192 clinical instructors responded. Fifty-seven percent had supervised a minority student, with a mean of three students each. While 4% reported that they expected a higher standard from majority students, 17% noted a difference in performance between majority and minority students. Results from this study suggest that minority students would benefit from further preparation in communication and interpersonal skills but they are stronger than majority students in stress management and the effective use of time and resources.

  11. Which dimensions of impulsivity are related to problematic practice of physical exercise?

    PubMed

    Kotbagi, Gayatri; Morvan, Yannick; Romo, Lucia; Kern, Laurence

    2017-06-01

    Background and aims Problematic practice of physical exercise (PPPE) has been suggested to be a behavioral addiction. Impulsivity represents a core dimension of behavioral addictions. However, little is known about impulsivity facets in PPPE. The aim of this study was to investigate the role of impulsivity facets in PPPE. Methods A total of 684 students (between 18 and 25 years) took part in this study and filled up a battery of questionnaire, which consisted of following measures - Global Physical Activity Questionnaire, Exercise Dependence Scale - Revised, and the UPPS Impulsive Behavior Scale. Multiple regression analyses were utilized to investigate the predictive role of each impulsivity facet in PPPE. Results Age, the total level of physical activity per day, sex (male), negative urgency, and sensation seeking were found to be significant predictors of PPPE. A categorical analysis of PPPE revealed that negative urgency, positive urgency, and sensation seeking were significantly higher in the dependent category of PPPE. Discussion and conclusions Associations to negative urgency and sensation seeking might indicate that PPPE serves to regulate or alleviate negative affect or aversive emotional states. Thus, PPPE could be conceptualized as a short-term coping strategy dedicated to relieving negative affective states, like other maladaptive behaviors such as binge eating, binge drinking, or compulsive buying.

  12. 37 CFR Appendix A to Part 202 - Technical Guidelines Regarding Sound Physical Condition

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regarding Sound Physical Condition A Appendix A to Part 202 Patents, Trademarks, and Copyrights COPYRIGHT... COPYRIGHT Pt. 202, App. A Appendix A to Part 202—Technical Guidelines Regarding Sound Physical Condition To be considered a copy “of sound physical condition” within the meaning of 37 CFR 202.22(d)(5), a copy...

  13. 37 CFR Appendix A to Part 202 - Technical Guidelines Regarding Sound Physical Condition

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Regarding Sound Physical Condition A Appendix A to Part 202 Patents, Trademarks, and Copyrights COPYRIGHT... COPYRIGHT Pt. 202, App. A Appendix A to Part 202—Technical Guidelines Regarding Sound Physical Condition To be considered a copy “of sound physical condition” within the meaning of 37 CFR 202.22(d)(5), a copy...

  14. WavePacket: A Matlab package for numerical quantum dynamics.II: Open quantum systems, optimal control, and model reduction

    NASA Astrophysics Data System (ADS)

    Schmidt, Burkhard; Hartmann, Carsten

    2018-07-01

    WavePacket is an open-source program package for numeric simulations in quantum dynamics. It can solve time-independent or time-dependent linear Schrödinger and Liouville-von Neumann-equations in one or more dimensions. Also coupled equations can be treated, which allows, e.g., to simulate molecular quantum dynamics beyond the Born-Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semi-classical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry. Being highly versatile and offering visualization of quantum dynamics 'on the fly', WavePacket is well suited for teaching or research projects in atomic, molecular and optical physics as well as in physical or theoretical chemistry. Building on the previous Part I [Comp. Phys. Comm. 213, 223-234 (2017)] which dealt with closed quantum systems and discrete variable representations, the present Part II focuses on the dynamics of open quantum systems, with Lindblad operators modeling dissipation and dephasing. This part also describes the WavePacket function for optimal control of quantum dynamics, building on rapid monotonically convergent iteration methods. Furthermore, two different approaches to dimension reduction implemented in WavePacket are documented here. In the first one, a balancing transformation based on the concepts of controllability and observability Gramians is used to identify states that are neither well controllable nor well observable. Those states are either truncated or averaged out. In the other approach, the H2-error for a given reduced dimensionality is minimized by H2 optimal model reduction techniques, utilizing a bilinear iterative rational Krylov algorithm. The present work describes the MATLAB version of WavePacket 5.3.0 which is hosted and further developed at the Sourceforge platform, where also extensive Wiki-documentation as well as numerous worked-out demonstration examples with animated graphics can be found.

  15. The current state of physical activity and exercise programs in German-speaking, Swiss psychiatric hospitals: results from a brief online survey

    PubMed Central

    Brand, Serge; Colledge, Flora; Beeler, Nadja; Pühse, Uwe; Kalak, Nadeem; Sadeghi Bahmani, Dena; Mikoteit, Thorsten; Holsboer-Trachsler, Edith; Gerber, Markus

    2016-01-01

    Background Physical activity and exercise programs (PAEPs) are an important factor in increasing and maintaining physical and mental health. This holds particularly true for patients with psychiatric disorders undergoing treatment in a psychiatric hospital. To understand whether the benefits reported in the literature are mirrored in current treatment modalities, the aim of the present study was to assess the current state of PAEPs in psychiatric hospitals in the German-speaking part of Switzerland. Methods All psychiatric hospitals (N=55) in the German-speaking part of Switzerland were contacted in spring 2014. Staff responsible for PAEPs were asked to complete an online questionnaire covering questions related to PAEPs such as type, frequency, staff training, treatment rationale, importance of PAEPs within the treatment strategy, and possible avenues to increase PAEPs. Results Staff members of 48 different psychiatric hospitals completed the survey. Hospitals provided the following therapeutic treatments: relaxation techniques (100%), sports therapy (97%), activity-related psychotherapeutic interventions (95%), physiotherapy (85%), body therapies (59%), far-east techniques (57%), and hippotherapy (22%). Frequencies ranged from once/week to five times/week. Approximately 25% of patients participated in the PAEPs. Interventions were offered irrespective of psychiatric disorders. PAEP providers wanted and needed more vocational training. Conclusion All participating psychiatric hospitals offer a broad variety of PAEPs in their treatment curricula. However, the majority of inpatients do not participate in PAEPs. Furthermore, those who do participate cannot continue to do so following discharge. PAEP providers need specific extended vocational trainings and believe that the potential of PA should be improved. PMID:27350748

  16. Geographic Variations in Cardiovascular Health in the United States: Contributions of State- and Individual-Level Factors

    PubMed Central

    Gebreab, Samson Y; Davis, Sharon K; Symanzik, Jürgen; Mensah, George A; Gibbons, Gary H; Diez-Roux, Ana V

    2015-01-01

    Background Improving cardiovascular health (CVH) of all Americans by 2020 is a strategic goal of the American Heart Association. Understanding the sources of variation and identifying contextual factors associated with poor CVH may suggest important avenues for prevention. Methods and Results Cross-sectional data from the Behavioral Risk Factor Surveillance System for the year 2011 were linked to state-level coronary heart disease and stroke mortality data from the National Vital Statistics System and to state-level measures of median household income, income inequality, taxes on soda drinks and cigarettes, and food and physical activity environments from various administrative sources. Poor CVH was defined according to the American Heart Association definition using 7 self-reported CVH metrics (current smoking, physical inactivity, obesity, poor diet, hypertension, diabetes, and high cholesterol). Linked micromap plots and multilevel logistic models were used to examine state variation in poor CVH and to investigate the contributions of individual- and state-level factors to this variation. We found significant state-level variation in the prevalence of poor CVH (median odds ratio 1.32, P<0.001). Higher rates of poor CVH and cardiovascular disease mortality were clustered in the southern states. Minority and low socioeconomic groups were strongly associated with poor CVH and explained 51% of the state-level variation in poor CVH; state-level factors explained an additional 28%. State-level median household income (odds ratio 0.89; 95% CI 0.84–0.94), taxes on soda drinks (odds ratio 0.94; 95% CI 0.89–0.99), farmers markets (odds ratio 0.91; 95% CI 0.85–0.98), and convenience stores (odds ratio 1.09; 95% CI 1.01–1.17) were predictive of poor CVH even after accounting for individual-level factors. Conclusions There is significant state-level variation in poor CVH that is partly explained by individual- and state-level factors. Additional longitudinal research is warranted to examine the influence of state-level policies and food and physical activity environments on poor CVH. PMID:26019131

  17. Implementing active-learning strategies to improve physics learning in Latin America

    NASA Astrophysics Data System (ADS)

    Alarcon, Hugo; Zavala, G.; Fernandez, R.; Benegas, J.

    2006-12-01

    It is evident that the most effective active-learning strategies to improve physics learning at the college level have been developed in the United States. Recently, some universities in Latin America have begun adopting such methods as a part of institutional projects, or motivated by national projects led by education authorities. In this work we will present two cases, a large-scale implementation of Tutorials in Introductory Physics (1) in Mexico supported by the institution as a part of a change in its educational model, and a medium-scale implementation of this method in Chile supported by the national government. In both experiences, the professors involved in the educational experience have previously participated in a training workshop that prepared them for implementing this strategy in the classroom. The training workshop, described elsewhere (2), was designed also under active learning premises, so teachers completed the proposed activities in the same way as their students will do. We will present the first results of these two projects. References: (1) McDermott, L. C., Shaffer, P. S., & PER (1998). "Tutorials in Introductory Physics", Prentice Hall, translated as "Tutoriales para Física Introductoria" (2001) Prentice Hall, Buenos Aires.. (2) Zavala, G., Alarcón, H. and Benegas, J. (2005). "Innovative training of in-service teachers for active learning: A short teacher development course based on Physics Education Research", accepted for publication, J. of Sc. Teach. Ed. This work has been partially supported by Tecnológico de Monterrey through the Chair in Physics Education Research and by MECE Educación Superior Program (Chile).

  18. WE-D-213-04: Preparing for Parts 2 & 3 of the ABR Nuclear Medicine Physics Exam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDougall, R.

    Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR professional certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance ofmore » all aspects of clinical medical physics. All three parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation and skill sets necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those aspects that are unique to the nuclear exam. Medical physicists who have recently completed each of part of the ABR exam will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to Prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to Prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less

  19. WE-D-213-01: Preparing for Part 1 of the ABR Diagnostic Physics Exam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simiele, S.

    Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR professional certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance ofmore » all aspects of clinical medical physics. All three parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation and skill sets necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those aspects that are unique to the nuclear exam. Medical physicists who have recently completed each of part of the ABR exam will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to Prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to Prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less

  20. WE-D-213-03: Preparing for Part 3 of the ABR Diagnostic Physics Exam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bevins, N.

    Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR professional certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance ofmore » all aspects of clinical medical physics. All three parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation and skill sets necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those aspects that are unique to the nuclear exam. Medical physicists who have recently completed each of part of the ABR exam will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to Prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to Prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less

  1. WE-D-213-02: Preparing for Part 2 of the ABR Diagnostic Physics Exam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zambelli, J.

    Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR professional certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance ofmore » all aspects of clinical medical physics. All three parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation and skill sets necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those aspects that are unique to the nuclear exam. Medical physicists who have recently completed each of part of the ABR exam will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to Prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to Prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less

  2. Parastomal hernia and physical activity. Are patients getting the right advice?

    PubMed

    Russell, Sarah

    2017-09-28

    This article draws on a large nationwide survey (2631 respondents) that investigated the physical health and wellbeing of people living with stomas in the UK. It specifically considers the findings relating to parastomal hernia (where additional loops of bowel protrude through the abdominal wall around the stoma, creating a bulge). In this survey, 26% of respondents reported that they had a medically diagnosed parastomal hernia, which is below average when compared with other estimates. The impact of parastomal hernia on physical activity levels was the most significant finding: 32% of those with a medically diagnosed hernia reported being 'much less active' than they were prior to their surgery (compared with 19% without a hernia). This creates a more serious problem for general health-significantly increasing their risk of co-morbidities such as cancer, stroke, diabetes and other chronic conditions related to physical inactivity. Clinical guidelines clearly state that patients should be informed of exercises to strengthen core muscles, as part of hernia prevention, but 88% of patients did not engage in any sort of abdominal or core exercises. When asked, 69% of patients did not realise it was important and 82% of patients could not recall being given advice to do abdominal exercises as part of their recovery. There is a significant gap in the patient care pathway regarding advice on physical activity, core/abdominal exercises and hernia prevention and management after stoma surgery. This is an area that urgently needs more research and education for patients and all health professionals.

  3. Towards a Data-Optimized Coronal Magnetic Field Model (DOC-FM): Synthetic Test Beds and Multiwavelength Forward Modeling

    NASA Astrophysics Data System (ADS)

    Gibson, S. E.; Dalmasse, K.; Fan, Y.; Fineschi, S.; MacKay, D.; Rempel, M.; White, S. M.

    2015-12-01

    Understanding the physical state of the solar corona is key to deciphering the origins of space weather as well as to realistically representing the environment to be navigated by missions such as Solar Orbiter and Solar Probe Plus. However, inverting solar coronal observations to reconstruct this physical state -- and in particular the three-dimensional coronal magnetic field - is complicated by limited lines of sight and by projection effects. On the other hand, the sensitivity of multiwavelength observations to different physical mechanisms implies a potential for simultaneous probing of different parts of the coronal plasma. In order to study this complementarity, and to ultimately establish an optimal set of observations for constraining the three-dimensional coronal magnetic field, we are developing a suite of representative simulations to act as diagnostic test beds. We will present three such test beds: a coronal active region, a quiescent prominence, and a global corona. Each fully define the physical state of density, temperature, and vector magnetic field in three dimensions throughout the simulation domain. From these test beds, and using the FORWARD SolarSoft IDL codes, we will create a broad range of synthetic data. Radio observables will include intensity and circular polarization (including gyroresonance effects) and Faraday rotation for a range of frequencies. Infrared and visible forbidden line diagnostics of Zeeman and saturated Hanle effects will yield full Stokes vector (I, Q, U, V) synthetic data, and UV permitted line Hanle diagnostics will yield intensity and linear polarization. In addition, we will synthesize UV and SXR imager data, UV/EUV spectrometric data, and white light brightness and polarized brightness. All of these synthetic data, along with the "ground truth" physical state of the simulations from which they are derived, will be made available to the community for the purpose of testing coronal inversion techniques.

  4. Utilization of Physical Therapy Intervention Among Patients With Plantar Fasciitis in the United States.

    PubMed

    Fraser, John J; Glaviano, Neal R; Hertel, Jay

    2017-02-01

    Study Design Retrospective observational study. Background Plantar fasciitis is responsible for 1 million ambulatory patient care visits annually in the United States. Few studies have investigated practice patterns in the treatment of patients with plantar fasciitis. Objective To assess physical therapist utilization and employment of manual therapy and supervised rehabilitation in the treatment of patients with plantar fasciitis. Methods A retrospective review of the PearlDiver patient record database was used to evaluate physical therapist utilization and use of manual therapy and supervised rehabilitation in patients with plantar fasciitis between 2007 and 2011. An International Classification of Diseases code (728.71) was used to identify plantar fasciitis, and Current Procedural Terminology codes were used to identify evaluations (97001), manual therapy (97140), and rehabilitation services (97110, 97530, 97112). Results A total of 819 963 unique patients diagnosed with plantar fasciitis accounted for 5 739 737 visits from 2007 to 2011, comprising 2.7% of all patients in the database. Only 7.1% (95% confidence interval: 7.0%, 7.1%) of patients received a physical therapist evaluation. Of the 57 800 patients evaluated by a physical therapist (59.8% female), 50 382 (87.2% ± 0.4%) received manual therapy, with significant increases in utilization per annum. A large proportion (89.5% ± 0.4%) received rehabilitation following physical therapist evaluation. Conclusion Despite plantar fasciitis being a frequently occurring musculoskeletal condition, a small proportion of patients with plantar fasciitis were seen by physical therapists. Most patients who were evaluated by a physical therapist received manual therapy and a course of supervised rehabilitation as part of their plan of care. Level of Evidence Treatment, level 2a. J Orthop Sports Phys Ther 2017;47(2):49-55. doi:10.2519/jospt.2017.6999.

  5. Electronic refractive index changes and measurement of saturation intensity in Cr3+-doped YAG crystal

    NASA Astrophysics Data System (ADS)

    Kesavulu, C. R.; Moncorgé, R.; Fromager, M.; Ait-Ameur, K.; Catunda, T.

    2018-04-01

    The electronic refractive index variation is associated with the difference in the polarizabilities (Δαp) of the Cr3+ ion in its ground and excited states. In order to further address the physical origin of Δαp in a Cr3+-doped YAG crystal, time-resolved Z-scan measurements were performed and analyzed at λ = 457 nm by using a chopped Ar+ ion laser. It is found a nonlinear refractive index with the real and imaginary parts n2‧ = 2.2 × 10-8 cm2/W and n2‧‧ = 2.8 × 10-10 cm2/W, respectively. The real part is associated with a polarizability difference Δαp = 2.2 × 10-25 cm3. The imaginary part indicates that excited state absorption (ESA) occurs and that Cr:YAG behaves as a saturable absorber. The transient response of the Z-scan signal decreases with the laser intensity as τ-1 = τo-1(1+I/Is), where τo is the excited state lifetime and Is the saturation intensity. By measuring this transient response at different laser intensities, it was possible to confirm the τo value which can be derived from fluorescence measurements and to determine a Is value of 8.3 kW/cm2.

  6. 37 CFR Appendix A to Part 202 - Technical Guidelines Regarding Sound Physical Condition

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Regarding Sound Physical Condition A Appendix A to Part 202 Patents, Trademarks, and Copyrights U.S... CLAIMS TO COPYRIGHT Pt. 202, App. A Appendix A to Part 202—Technical Guidelines Regarding Sound Physical Condition To be considered a copy “of sound physical condition” within the meaning of 37 CFR 202.22(d)(5), a...

  7. Exploring a Multiphysics Resolution Approach for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Estupinan Donoso, Alvaro Antonio; Peters, Bernhard

    2018-06-01

    Metal additive manufacturing (AM) is a fast-evolving technology aiming to efficiently produce complex parts while saving resources. Worldwide, active research is being performed to solve the existing challenges of this growing technique. Constant computational advances have enabled multiscale and multiphysics numerical tools that complement the traditional physical experimentation. In this contribution, an advanced discrete-continuous concept is proposed to address the physical phenomena involved during laser powder bed fusion. The concept treats powder as discrete by the extended discrete element method, which predicts the thermodynamic state and phase change for each particle. The fluid surrounding is solved with multiphase computational fluid dynamics techniques to determine momentum, heat, gas and liquid transfer. Thus, results track the positions and thermochemical history of individual particles in conjunction with the prevailing fluid phases' temperature and composition. It is believed that this methodology can be employed to complement experimental research by analysis of the comprehensive results, which can be extracted from it to enable AM processes optimization for parts qualification.

  8. Exploring Relationships: Teacher Characteristics and Student Learning in Physical Science

    NASA Astrophysics Data System (ADS)

    Close, Eleanor; Vokos, S.; Seeley, L.

    2006-12-01

    The Department of Physics and the School of Education at Seattle Pacific University, together with FACET Innovations, LLC, are beginning the second year of a five-year NSF TPC grant, Improving the Effectiveness of Teacher Diagnostic Skills and Tools. We are working in partnership with school districts in Washington State to identify and characterize widespread productive and unproductive modes of reasoning employed by both pre-college students and teachers on foundational topics in physical science. In the first year of the grant, base-line preand post-test data were collected from a large number (N 2300) of middle and high school students. We will discuss relationships between preand post-test results, student learning gains, and student and teacher characteristics. * Supported in part by NSF grant #ESI-0455796, The Boeing Corporation, and the SPU Science Initiative.

  9. A survey of physicians and physiotherapists on physical activity promotion in Nigeria.

    PubMed

    Oyeyemi, Adewale L; Oyeyemi, Adetoyeje Y; Habib, Rahana Y; Usman, Rashida B; Sunday, Jasper U; Usman, Zubair

    2017-01-01

    Effective control of non-communicable diseases and promotion of population-wide physical activity participation require the active engagement of health professionals. Physiotherapists and physicians, as part of their practice, routinely screen and assess physical activity status, and recommend health enhancing physical activity participation for their patients. This study aims to compare Nigerian physiotherapists and physicians' knowledge of physical activity message, role perception and confidence, perceived feasibility and barriers, and overall disposition to promoting physical activity in their practice. A total of 153 physicians and 94 physiotherapists recruited from 10 government hospitals in five states in Northern Nigeria completed a standardized physical activity promotion questionnaire that elicited information on the knowledge of physical activity, role perception and confidence, feasibility, and barriers to physical activity promotion. Descriptive and inferential statistics were used to analyze the data. The physiotherapists and physicians were fairly knowledgeable on physical activity message (14.2 ± 2.1/20), reported minimal or little barrier to physical activity promotion (23.7 ± 3.1/30), perceived physical activity promotion as their role (13.0 ± 1.8/15), were confident in their ability to discuss and recommend physical activity promotion (7.6 ± 1.6/10) and believed promoting physical activity was feasible for them (15.6 ± 2.6/20). However, over 40% of the physiotherapists and physicians do not know the correct dosage of physical activity that could confer health benefits to patients. The physicians showed better overall disposition to physical activity promotion than the physiotherapists ( P  = 0.048), but more physiotherapists than the physicians believed ' it is part of their role to suggest to patients to increase their daily physical activity' (95.7% vs 88.2%, P  = 0.043) and were more 'confident in suggesting specific physical activity programs for their patients' (87.2% vs 64.5%, P  < 0.001). Physiotherapists and physicians in Nigeria demonstrated good disposition to promoting physical activity but many of them have knowledge deficits on the correct dosage required for better health for their patients. These health professionals can serve as good advocates for physical activity promotion in Nigeria, but many of them may require knowledge update on health enhancing physical activity for effective health promotion and primary prevention of non-communicable diseases.

  10. A preliminary report on the growth of the rock bass, Ambloplites rupestris (Rafinesque), in two lakes of northern Wisconsin

    USGS Publications Warehouse

    Wright, Stillman

    1929-01-01

    For several years the Wisconsin Geological and Natural History Survey has been making a limnological study of lakes in the northern part of the State. Because of the fact that so much has been learned of the physical, chemical and biological conditions in these lakes, the region seems particularly favorable for a study of the growth rates of fishes in relation to environmental factors.

  11. Material Science

    NASA Image and Video Library

    2002-08-06

    Khalid Alshibli of Louisiana State University, project scientist for the Mechanics of Granular Materials (MGM-III) experiment, uses a jar of sand and a training model of the MGM apparatus to explain the experiment to two young Virginia students. The activity was part of the Space Research and You education event held by NASA's Office of Biological and Physical Research on June 25, 2002, in Arlington, VA, to highlight the research that will be conducted on STS-107.

  12. Putting intimate partner violence on your radar.

    PubMed

    Collett, DeShana; Bennett, Tamara

    2015-10-01

    Intimate partner violence is a preventable health problem that affects more than 12 million people in the United States each year. Those affected can be of any sex, race, ethnicity, socioeconomic status, religion, education level, or sexual orientation. All clinicians should screen for intimate partner violence as part of the routine history and physical examination. This article describes the dynamics of intimate partner violence and the 2013 screening guidelines from the US Preventive Services Task Force.

  13. Klopsteg Memorial Lecture (August, 1992): What science knows about violins-and what it does not know

    NASA Astrophysics Data System (ADS)

    Weinreich, Gabriel

    1993-12-01

    This is the edited text of the Klopsteg Lecture delivered to the Summer Meeting of the AAPT on August 13, 1992. It sketches the current state of knowledge about the violin—at least as seen by the author—in two parts, Physics of the Bowed String and The Violin as a Radiator of Sound, punctuated by a number of ``meditations'' about the nature of scientific knowledge.

  14. Reality and the Physicist

    NASA Astrophysics Data System (ADS)

    D'Espagnat, Bernard; Whitehouse, Translated by J. C.

    1989-03-01

    Preface; Introduction; Part I. Instrumentalism and Science: 1. The positivism of the physicists; 2. Positivism and fallibilism: philosophical controversies; 3. Border areas of instrumentalism; Part II. Physical Realism and Contemporary Physics: 4. Physical realism and fallibilism; 5. Microrealism and non-separability; 6. Physical realism in trouble; Part III. Causality, Reality and Time: 7. Irreversibility; 8. Sensible reality; 9. Independent reality; 10. The dilemma of modern physics: reality or meaning?; 11. Questions and answers; 12. Summary and perspectives; Appendixes; Addendum; Notes; References; Index.

  15. Production induced boiling and cold water entry in the Cerro Prieto geothermal reservoir indicated by chemical and physical measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, M.A.; Truesdell, A.H.; Manon, A.

    1981-01-01

    Chemical and physical data suggest that the relatively shallow western part of the Cerro Prieto reservoir is bounded below by low permeability rocks, and above and at the sides by an interface with cooler water. There is no continuous permeability barrier around or immediately above the reservoir. Permeability within the reservoir is dominantly intergranular. Mixture with cooler water rather than boiling is the dominant cooling process in the natural state, and production causes displacement of hot water by cooler water, not by vapor. Local boiling occurs near most wells in response to pressure decreases, but no general vapor zone hasmore » formed.« less

  16. MO-F-204-02: Preparing for Part 2 of the ABR Diagnostic Physics Exam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szczykutowicz, T.

    Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of allmore » aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less

  17. MO-F-204-03: Preparing for Part 3 of the ABR Diagnostic Physics Exam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zambelli, J.

    Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of allmore » aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less

  18. MO-F-204-01: Preparing for Part 1 of the ABR Diagnostic Physics Exam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKenney, S.

    Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of allmore » aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less

  19. MO-F-204-04: Preparing for Parts 2 & 3 of the ABR Nuclear Medicine Physics Exam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDougall, R.

    Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of allmore » aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less

  20. WE-D-213-00: Preparing for the ABR Diagnostic and Nuclear Medicine Physics Exams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR professional certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance ofmore » all aspects of clinical medical physics. All three parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation and skill sets necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those aspects that are unique to the nuclear exam. Medical physicists who have recently completed each of part of the ABR exam will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to Prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to Prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less

  1. Linking Statistically- and Physically-Based Models for Improved Streamflow Simulation in Gaged and Ungaged Areas

    NASA Astrophysics Data System (ADS)

    Lafontaine, J.; Hay, L.; Archfield, S. A.; Farmer, W. H.; Kiang, J. E.

    2014-12-01

    The U.S. Geological Survey (USGS) has developed a National Hydrologic Model (NHM) to support coordinated, comprehensive and consistent hydrologic model development, and facilitate the application of hydrologic simulations within the continental US. The portion of the NHM located within the Gulf Coastal Plains and Ozarks Landscape Conservation Cooperative (GCPO LCC) is being used to test the feasibility of improving streamflow simulations in gaged and ungaged watersheds by linking statistically- and physically-based hydrologic models. The GCPO LCC covers part or all of 12 states and 5 sub-geographies, totaling approximately 726,000 km2, and is centered on the lower Mississippi Alluvial Valley. A total of 346 USGS streamgages in the GCPO LCC region were selected to evaluate the performance of this new calibration methodology for the period 1980 to 2013. Initially, the physically-based models are calibrated to measured streamflow data to provide a baseline for comparison. An enhanced calibration procedure then is used to calibrate the physically-based models in the gaged and ungaged areas of the GCPO LCC using statistically-based estimates of streamflow. For this application, the calibration procedure is adjusted to address the limitations of the statistically generated time series to reproduce measured streamflow in gaged basins, primarily by incorporating error and bias estimates. As part of this effort, estimates of uncertainty in the model simulations are also computed for the gaged and ungaged watersheds.

  2. Nuclear Reactions Studies in Laser-Plasmas at the forthcoming ELI-NP facilities

    NASA Astrophysics Data System (ADS)

    Lanzalone, G.; Muoio, A.; Altana, C.; Frassetto, M.; Malferrari, L.; Mascali, D.; Odorici, F.; Tudisco, S.; Gizzi, L. A.; Labate, L.; Puglia, S. M. R.; Trifirò, A.

    2018-05-01

    This work aim to prepare a program of studies on nuclear physics and astrophysics, which will be conducted at the new ELI-NP Laser facility, which actually is under construction in Bucharest, Romania. For the arguments treated, such activity has required also a multidisciplinary approach and knowledge in the fields of nuclear physics, astrophysics, laser and plasma physics join with also some competences on solid state physics related to the radiation detection. A part of this work has concerned to the experimental test, which have been performed in several laboratories and in order to study and increase the level of knowledge on the different parts of the project. In particular have been performed studies on the laser matter interaction at the ILIL laboratory of Pisa Italy and at the LENS laboratory in Catania, where (by using different experimental set-ups) has been investigated some key points concerning the production of the plasma stream. Test has been performed on several target configurations in terms of: composition, structure and size. All the work has been devoted to optimize the conditions of target in order to have the best performance on the production yields and on energies distribution of the inner plasma ions. A parallel activity has been performed in order to study the two main detectors, which will constitute the full detections system, which will be installed at the ELI-NP facility.

  3. On the Computational Capabilities of Physical Systems. Part 1; The Impossibility of Infallible Computation

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.; Koga, Dennis (Technical Monitor)

    2000-01-01

    In this first of two papers, strong limits on the accuracy of physical computation are established. First it is proven that there cannot be a physical computer C to which one can pose any and all computational tasks concerning the physical universe. Next it is proven that no physical computer C can correctly carry out any computational task in the subset of such tasks that can be posed to C. This result holds whether the computational tasks concern a system that is physically isolated from C, or instead concern a system that is coupled to C. As a particular example, this result means that there cannot be a physical computer that can, for any physical system external to that computer, take the specification of that external system's state as input and then correctly predict its future state before that future state actually occurs; one cannot build a physical computer that can be assured of correctly 'processing information faster than the universe does'. The results also mean that there cannot exist an infallible, general-purpose observation apparatus, and that there cannot be an infallible, general-purpose control apparatus. These results do not rely on systems that are infinite, and/or non-classical, and/or obey chaotic dynamics. They also hold even if one uses an infinitely fast, infinitely dense computer, with computational powers greater than that of a Turing Machine. This generality is a direct consequence of the fact that a novel definition of computation - a definition of 'physical computation' - is needed to address the issues considered in these papers. While this definition does not fit into the traditional Chomsky hierarchy, the mathematical structure and impossibility results associated with it have parallels in the mathematics of the Chomsky hierarchy. The second in this pair of papers presents a preliminary exploration of some of this mathematical structure, including in particular that of prediction complexity, which is a 'physical computation analogue' of algorithmic information complexity. It is proven in that second paper that either the Hamiltonian of our universe proscribes a certain type of computation, or prediction complexity is unique (unlike algorithmic information complexity), in that there is one and only version of it that can be applicable throughout our universe.

  4. The influence of physical activity on hair toxic and essential trace element content in male and female students.

    PubMed

    Zaitseva, Irina P; Skalny, Andrey A; Tinkov, Alexey A; Berezkina, Elena S; Grabeklis, Andrei R; Skalny, Anatoly V

    2015-02-01

    The primary aim of the current study is to estimate the effect of different physical activity levels on hair trace element content in male and female students. A total of 113 students (59 women and 54 men) of P. G. Demidov Yaroslavl State University (Yaroslavl, Russia) took part in the current investigation. According to the level of the physical activity, all students were divided into three groups: high, medium, and low physical activity. Essential and toxic metal content (μg/g) in hair samples was assessed by inductively coupled plasma mass spectrometry using NexION 300D + NWR213 (Perkin-Elmer, USA). The obtained data show that hair iodine, zinc, arsenic, nickel, and tin levels are not related to physical activity in male and female students. At the same time, increased physical activity is associated with decreased hair copper, vanadium, bismuth, and mercury content in comparison to the low physical activity groups. Students with higher physical activity are also characterized by significantly higher hair cobalt, iron, manganese, selenium, cadmium, lithium, and lead concentrations. Finally, statistical analysis has revealed maximal gender differences in hair trace element content in the high physical activity groups, whereas in the low activity groups, the hair metal concentrations were nearly similar in females and males.

  5. Effects of Easy-to-Use Protein-Rich Energy Bar on Energy Balance, Physical Activity and Performance during 8 Days of Sustained Physical Exertion

    PubMed Central

    Tanskanen, Minna M.; Westerterp, Klaas R.; Uusitalo, Arja L.; Atalay, Mustafa; Häkkinen, Keijo; Kinnunen, Hannu O.; Kyröläinen, Heikki

    2012-01-01

    Background Previous military studies have shown an energy deficit during a strenuous field training course (TC). This study aimed to determine the effects of energy bar supplementation on energy balance, physical activity (PA), physical performance and well-being and to evaluate ad libitum fluid intake during wintertime 8-day strenuous TC. Methods Twenty-six men (age 20±1 yr.) were randomly divided into two groups: The control group (n = 12) had traditional field rations and the experimental (Ebar) group (n = 14) field rations plus energy bars of 4.1 MJ•day−1. Energy (EI) and water intake was recorded. Fat-free mass and water loss were measured with deuterium dilution and elimination, respectively. The energy expenditure was calculated using the intake/balance method and energy availability as (EI/estimated basal metabolic rate). PA was monitored using an accelerometer. Physical performance was measured and questionnaires of upper respiratory tract infections (URTI), hunger and mood state were recorded before, during and after TC. Results Ebar had a higher EI and energy availability than the controls. However, decreases in body mass and fat mass were similar in both groups representing an energy deficit. No differences were observed between the groups in PA, water balance, URTI symptoms and changes in physical performance and fat-free mass. Ebar felt less hunger after TC than the controls and they had improved positive mood state during the latter part of TC while controls did not. Water deficit associated to higher PA. Furthermore, URTI symptoms and negative mood state associated negatively with energy availability and PA. Conclusion An easy-to-use protein-rich energy bars did not prevent energy deficit nor influence PA during an 8-day TC. The high content of protein in the bars might have induced satiation decreasing energy intake from field rations. PA and energy intake seems to be primarily affected by other factors than energy supplementation such as mood state. PMID:23094083

  6. Current distribution in a three-dimensional IC analyzed by a perturbation method. Part 1: A simple steady state theory

    NASA Technical Reports Server (NTRS)

    Edmonds, Larry D.

    1987-01-01

    The steady state current distribution in a three dimensional integrated circuit is presented. A device physics approach, based on a perturbation method rather than an equivalent lumped circuit approach, is used. The perturbation method allows the various currents to be expressed in terms of elementary solutions which are solutions to very simple boundary value problems. A Simple Steady State Theory is the subtitle because the most obvious limitation of the present version of the analysis is that all depletion region boundary surfaces are treated as equipotential surfaces. This may be an adequate approximation in some applications but it is an obvious weakness in the theory when applied to latched states. Examples that illustrate the use of these analytical methods are not given because they will be presented in detail in the future.

  7. Mapping the Prevalence of Physical Inactivity in U.S. States, 1984-2015.

    PubMed

    An, Ruopeng; Xiang, Xiaoling; Yang, Yan; Yan, Hai

    2016-01-01

    Physical inactivity is a leading cause of morbidity, disability and premature mortality in the U.S. and worldwide. This study aimed to map the prevalence of physical inactivity across U.S. states over the past three decades, and estimate the over-time adjusted changes in the prevalence of physical inactivity in each state. Individual-level data (N = 6,701,954) were taken from the 1984-2015 Behavioral Risk Factor Surveillance System (BRFSS), an annually repeated cross-sectional survey of state-representative adult population. Prevalence of self-reported leisure-time physical inactivity was estimated by state and survey year, accounting for the BRFSS sampling design. Logistic regressions were performed to estimate the changes in the prevalence of physical inactivity over the study period for each state, adjusting for individual characteristics including sex, age, race/ethnicity, education, marital status, and employment status. The prevalence of leisure-time physical inactivity varied substantially across states and survey years. In general, the adjusted prevalence of physical inactivity gradually declined over the past three decades in a majority of states. However, a substantial proportion of American adults remain physically inactive. Among the 50 states and District of Columbia, 45 had over a fifth of their adult population without any leisure-time physical activity, and 8 had over 30% without physical activity in 2015. Moreover, the adjusted prevalence of physical inactivity in several states (Arizona, North Carolina, North Dakota, Utah, West Virginia, and Wyoming) remained largely unchanged or even increased (Minnesota and Ohio) over the study period. Although the prevalence of physical inactivity declined over the past three decades in a majority of states, the rates remain substantially high and vary considerably across states. Closely monitoring and tracking physical activity level using the state physical activity maps can help guide policy and program development to promote physical activity and reduce the burden of chronic disease.

  8. Mapping the Prevalence of Physical Inactivity in U.S. States, 1984-2015

    PubMed Central

    Xiang, Xiaoling; Yang, Yan; Yan, Hai

    2016-01-01

    Background Physical inactivity is a leading cause of morbidity, disability and premature mortality in the U.S. and worldwide. This study aimed to map the prevalence of physical inactivity across U.S. states over the past three decades, and estimate the over-time adjusted changes in the prevalence of physical inactivity in each state. Methods Individual-level data (N = 6,701,954) were taken from the 1984–2015 Behavioral Risk Factor Surveillance System (BRFSS), an annually repeated cross-sectional survey of state-representative adult population. Prevalence of self-reported leisure-time physical inactivity was estimated by state and survey year, accounting for the BRFSS sampling design. Logistic regressions were performed to estimate the changes in the prevalence of physical inactivity over the study period for each state, adjusting for individual characteristics including sex, age, race/ethnicity, education, marital status, and employment status. Results The prevalence of leisure-time physical inactivity varied substantially across states and survey years. In general, the adjusted prevalence of physical inactivity gradually declined over the past three decades in a majority of states. However, a substantial proportion of American adults remain physically inactive. Among the 50 states and District of Columbia, 45 had over a fifth of their adult population without any leisure-time physical activity, and 8 had over 30% without physical activity in 2015. Moreover, the adjusted prevalence of physical inactivity in several states (Arizona, North Carolina, North Dakota, Utah, West Virginia, and Wyoming) remained largely unchanged or even increased (Minnesota and Ohio) over the study period. Conclusions Although the prevalence of physical inactivity declined over the past three decades in a majority of states, the rates remain substantially high and vary considerably across states. Closely monitoring and tracking physical activity level using the state physical activity maps can help guide policy and program development to promote physical activity and reduce the burden of chronic disease. PMID:27959906

  9. Stress and human spirituality 2000: at the cross roads of physics and metaphysics.

    PubMed

    Seaward, B L

    2000-12-01

    Although stress is defined as a perceived threat, the implications of stress go well beyond physical well-being. In the words of Carl Jung, "Every crisis is a spiritual crisis." Western science, so strongly influenced by the Cartesian Principle of Reductionism, has ignored the essence and significance of human spirituality in the health and healing process. Holistic healing honors the integration, balance, and harmony of mind, body, spirit, and emotions, where the whole is greater than the sum of the parts. Stress (unresolved issues of anger and fear) chokes the human spirit, the life force of human energy, which ultimately affects the physical body. From the perspectives of both physics and metaphysics, stress is a disruption in the state of coherence between the layers of consciousness in the human energy field. The emerging paradigm of health reunites mind, body, and spirit, and considers health as a function of coherence among the energy levels of these components.

  10. MO-F-204-00: Preparing for the ABR Diagnostic and Nuclear Medical Physics Exams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of allmore » aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less

  11. National Study of Excellence and Innovation in Physical Therapist Education: Part 1-Design, Method, and Results.

    PubMed

    Jensen, Gail M; Nordstrom, Terrence; Mostrom, Elizabeth; Hack, Laurita M; Gwyer, Janet

    2017-09-01

    The Carnegie Foundation for the Advancement of Teaching commissioned the Preparation for the Professions Program, a qualitative study of professional education in 5 professions: medicine, nursing, law, engineering, and clergy. These studies identified curricular structures, instructional practices, assessment approaches, and environmental characteristics that support the preparation of professionals and led to educational reforms. The physical therapy profession has not had any in-depth, national investigation of physical therapist education since the Catherine Worthingham studies conducted more than 50 years ago. This research was a Carnegie-type study, investigating elements of excellence and innovation in academic and clinical physical therapist education in the United States. Five physical therapist education researchers from across the United States used a qualitative multiple-case study design. Six academic and 5 clinical programs were selected for the study. The academic institutions and clinical agencies studied were diverse in size, institutional setting, geography, and role in residency education. Qualitative case studies were generated from review of artifacts, field observations, and interviews (individual and focus group), and they provided the data for the study. A conceptual framework grounded in 3 major dimensions was generated, with 8 supporting elements: (1) culture of excellence (shared beliefs and values, leadership and vision, drive for excellence, and partnerships), (2) praxis of learning (signature pedagogy, practice-based learning, creating adaptive learners, and professional formation), and (3) organizational structures and resources. Building on the work of the Carnegie Foundation's Preparation for the Professions Program, a conceptual model was developed, representing the dimensions and elements of excellence in physical therapist education that is centered on the foundational importance of a nexus of linked and highly valued aims of being learner centered and patient centered in all learning environments, both academic and clinical. © 2017 American Physical Therapy Association

  12. Characterizing synthetic gypsum for wallboard manufacture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henkels, P.J.; Gynor, J.C.

    1996-12-31

    United States Gypsum Company (USGC) has developed specifications and guidelines covering the chemical and physical aspects of synthetic gypsum to help predict end use acceptability in wallboard manufacture. These guidelines are based in part on past experiences with natural and synthetic gypsum. Similarly, most wallboard manufacturers in North America have developed their own guidelines based in part on its unique history and particular experiences with synthetic gypsum. While there are similarities between manufacturers` guidelines, differences do exist. This paper discusses the importance of selected parameters contained in the FGD gypsum guidelines. In most cases, the parameters are equally relevant tomore » other synthetic gypsums and the naturally occurring gypsum mineral as well.« less

  13. Current Government Actions and Potential Policy Options for Reducing Obesity in Queensland Schools.

    PubMed

    Alsharairi, Naser A

    2018-01-29

    School nutrition policies provide promising avenues towards the improvement of children's eating habits and the prevention of obesity. Childhood obesity rates and related chronic diseases are increasing in Queensland, in part as a result of unhealthy eating habits and lack of physical activity. There is a very high investment by the Queensland government in maintaining healthy weight and promoting nutrition and physical activity among schoolchildren through delivering a range of initiatives across the state. However, there is a lack of evidence concerning the effectiveness of nutrition/physical education and parental involvement programs addressing obesity delivered in Queensland schools. This paper can be used to guide government and policy-makers regarding the most effective policy options that will promote healthy eating and physical activity among Queensland schoolchildren. The aim of this paper is to: (i) summarize current evidence on Queensland government responses to obesity; and (ii) discuss potential policy options that could support healthy eating and regular physical activity, and examine the evidence base for each option and suggest new areas for future research.

  14. A lifetime of violence: results from an exploratory survey of Mexican women with HIV.

    PubMed

    Kendall, Tamil; van Dijk, Marieke; Wilson, Katherine S; Picasso, Nizarindandi; Lara, Diana; Garcia, Sandra

    2012-01-01

    Despite recognition that traditional Mexican gender norms can contribute to the twin epidemics of violence against women and HIV, there is an absence of published literature on experiences of violence among Mexican women with HIV. We conducted a cross-sectional survey with 77 HIV-infected women from 21 of Mexico's 32 states to describe experiences of violence before and after HIV-diagnosis. We measured lifetime physical, sexual, and psychological violence; physical violence from a male partner in the previous 12 months; and physical and psychological violence related to disclosing an HIV diagnosis. Respondents reported ever experiencing physical violence (37.3%) and sexual violence (29.2%). Disclosure of HIV status resulted in physical violence for 7.2% and psychological violence for 26.5% of the respondents. This study underlines the need to identify and address past and current gender-based violence during pre- and post-HIV test counseling and as a systematic and integral part of HIV care. Copyright © 2012 Association of Nurses in AIDS Care. Published by Elsevier Inc. All rights reserved.

  15. Physical Therapy in Palliative Care: From Symptom Control to Quality of Life: A Critical Review

    PubMed Central

    Kumar, Senthil P; Jim, Anand

    2010-01-01

    Physiotherapy is concerned with identifying and maximizing movement potential, within the spheres of promotion, prevention, treatment and rehabilitation. Physical therapists practice in a broad range of inpatient, outpatient, and community-based settings such as hospice and palliative care centers where as part of a multidisciplinary team of care, they address the physical and functional dimensions of the patients’ suffering. Physiotherapy treatment methods like therapeutic exercise, electrical modalities, thermal modalities, actinotherapy, mechanical modalities, manual physical therapy and assistive devices are useful for a range of life-threatening and life-limiting conditions like cancer and cancer-associated conditions; HIV; neurodegenerative disorders like amyotrophic lateral sclerosis, multiple sclerosis; respiratory disorders like idiopathic pulmonary fibrosis; and altered mental states. The professional armamentarium is still expanding with inclusion of other miscellaneous techniques which were also proven to be effective in improving quality of life in these patients. Considering the scope of physiotherapy in India, and in palliative care, professionals in a multidisciplinary palliative care team need to understand and mutually involve toward policy changes to successfully implement physical therapeutic palliative care delivery. PMID:21218003

  16. Numerical analysis of the heating phase and densification mechanism in polymers selective laser melting process

    NASA Astrophysics Data System (ADS)

    Mokrane, Aoulaiche; Boutaous, M'hamed; Xin, Shihe

    2018-05-01

    The aim of this work is to address a modeling of the SLS process at the scale of the part in PA12 polymer powder bed. The powder bed is considered as a continuous medium with homogenized properties, meanwhile understanding multiple physical phenomena occurring during the process and studying the influence of process parameters on the quality of final product. A thermal model, based on enthalpy approach, will be presented with details on the multiphysical couplings that allow the thermal history: laser absorption, melting, coalescence, densification, volume shrinkage and on numerical implementation using FV method. The simulations were carried out in 3D with an in-house developed FORTRAN code. After validation of the model with comparison to results from literature, a parametric analysis will be proposed. Some original results as densification process and the thermal history with the evolution of the material, from the granular solid state to homogeneous melted state will be discussed with regards to the involved physical phenomena.

  17. Detecting Life and Biology-Related Parameters on Mars

    NASA Technical Reports Server (NTRS)

    Levin, Gilbet V.; Miller, Joseph D.; Straat, Patricia A.; Lodder, Robert; Hoover, Richard B.

    2007-01-01

    An integrated, miniaturized, low-power instrument capable of the detection and early characterization of microbial life in the soil of Mars is proposed. Based on the detection apd monitoring of on-going metabolism as being the surest evidence for extant life, the experiments will probe for chirality in metabolism, for circadian rhythm, and for photosynthesis. However, the instrument package will also be able to detect biosignatures and a variety of other physical and chemical parameters of the Martian surface that have significance for life. These include the presence and the physical state of water, the existence of an oxidant, the pH and the penetrability of the soil. Using the legacy of the 1976 Viking Labeled Release (LR) life detection experiment in conjunction with state-of-the-art laser diode spectral analysis, the instrument can be flown stand-alone, with or without a rover, or as part of an MSL-type mission. Sterility for experiment integrity and for planetary protection is provided.

  18. Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Florian, D.

    This Report summarizes the results of the activities of the LHC Higgs Cross Section Working Group in the period 2014-2016. The main goal of the working group was to present the state-of-the-art of Higgs physics at the LHC, integrating all new results that have appeared in the last few years. The first part compiles the most up-to-date predictions of Higgs boson production cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects. The second part discusses the recent progress in Higgs effective field theory predictions, followed by the third part on pseudo-observables, simplifiedmore » template cross section and fiducial cross section measurements, which give the baseline framework for Higgs boson property measurements. The fourth part deals with the beyond the Standard Model predictions of various benchmark scenarios of Minimal Supersymmetric Standard Model, extended scalar sector, Next-to-Minimal Supersymmetric Standard Model and exotic Higgs boson decays. This report follows three previous working-group reports: Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables (CERN-2011-002), Handbook of LHC Higgs Cross Sections: 2. Differential Distributions (CERN-2012-002), and Handbook of LHC Higgs Cross Sections: 3. Higgs properties (CERN-2013-004). The current report serves as the baseline reference for Higgs physics in LHC Run 2 and beyond.« less

  19. Material Science

    NASA Image and Video Library

    2002-08-06

    Khalid Alshibli of Louisiana State University, project scientist for the Mechanics of Granular Materials (MGM-III) experiment, uses a jar of sand as he explains MGM to NASA Administrator Sean O'Keefe. A training model of an MGM test cell is in the foreground. The activity was part of the Space Research and You education event held by NASA's Office of Biological and Physical Research on June 25, 2002, in Arlington, VA, to highlight the research that will be conducted on STS-107.

  20. Computer modeling and simulators as part of university training for NPP operating personnel

    NASA Astrophysics Data System (ADS)

    Volman, M.

    2017-01-01

    This paper considers aspects of a program for training future nuclear power plant personnel developed by the NPP Department of Ivanovo State Power Engineering University. Computer modeling is used for numerical experiments on the kinetics of nuclear reactors in Mathcad. Simulation modeling is carried out on the computer and full-scale simulator of water-cooled power reactor for the simulation of neutron-physical reactor measurements and the start-up - shutdown process.

  1. TAGS measurements of 100 Nb ground and isomeric states and 140 Cs for neutrino physics with the new DTAS detector

    DOE PAGES

    Guadilla, V.; Algora, A.; Tain, J. L.; ...

    2017-09-13

    In this work we report on total absorption γ -ray spectroscopy measurements of the β decay of fission products that are important contributors to the antineutrino spectrum. The experiment was performed at IGISOL as a part of a campaign of measurements with the new DTAS spectrometer. Preliminary results of the analysis of the β decay of 100Nb, 100mNb and 140Cs are presented.

  2. On The Computational Capabilities of Physical Systems. Part 2; Relationship With Conventional Computer Science

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.; Koga, Dennis (Technical Monitor)

    2000-01-01

    In the first of this pair of papers, it was proven that there cannot be a physical computer to which one can properly pose any and all computational tasks concerning the physical universe. It was then further proven that no physical computer C can correctly carry out all computational tasks that can be posed to C. As a particular example, this result means that no physical computer that can, for any physical system external to that computer, take the specification of that external system's state as input and then correctly predict its future state before that future state actually occurs; one cannot build a physical computer that can be assured of correctly "processing information faster than the universe does". These results do not rely on systems that are infinite, and/or non-classical, and/or obey chaotic dynamics. They also hold even if one uses an infinitely fast, infinitely dense computer, with computational powers greater than that of a Turing Machine. This generality is a direct consequence of the fact that a novel definition of computation - "physical computation" - is needed to address the issues considered in these papers, which concern real physical computers. While this novel definition does not fit into the traditional Chomsky hierarchy, the mathematical structure and impossibility results associated with it have parallels in the mathematics of the Chomsky hierarchy. This second paper of the pair presents a preliminary exploration of some of this mathematical structure. Analogues of Chomskian results concerning universal Turing Machines and the Halting theorem are derived, as are results concerning the (im)possibility of certain kinds of error-correcting codes. In addition, an analogue of algorithmic information complexity, "prediction complexity", is elaborated. A task-independent bound is derived on how much the prediction complexity of a computational task can differ for two different reference universal physical computers used to solve that task, a bound similar to the "encoding" bound governing how much the algorithm information complexity of a Turing machine calculation can differ for two reference universal Turing machines. Finally, it is proven that either the Hamiltonian of our universe proscribes a certain type of computation, or prediction complexity is unique (unlike algorithmic information complexity), in that there is one and only version of it that can be applicable throughout our universe.

  3. Using Facet Clusters to Map Learner Modes of Reasoning

    NASA Astrophysics Data System (ADS)

    Vokos, Stamatis; DeWater, L. S.; Seeley, L.; Kraus, P.

    2006-12-01

    The Department of Physics and the School of Education at Seattle Pacific University, together with FACET Innovations, LLC, are beginning the second year of a five-year NSF TPC project, Improving the Effectiveness of Teacher Diagnostic Skills and Tools. We are working in partnership with school districts in Washington State to use formative assessment as a means to helping teachers and precollege students deepen their understanding of foundational topics in physical science. We utilize a theoretical framework of knowledge-in-pieces to identify and categorize widespread productive and unproductive modes of reasoning in the topical areas of Properties of Matter, Heat and Temperature, and Physical and Chemical Changes. In this talk, we describe the development and iterative refinement of certain facet clusters of student ideas, as well as the usefulness and limitations of such a mapping scheme. * Supported in part by NSF grant #ESI-0455796, The Boeing Corporation, and the SPU Science Initiative.

  4. Review of the physical oceanography of the Cape Hatteras, North Carolina Region. Volume 1. Literature synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, C.E.; Berger, T.J.; Boicourt, W.C.

    The present study is part of a sequence of programs designed to provide the MMS with a basis for evaluating the potential environmental impacts of oil and gas production off of the Cape Hatteras region. The primary objective of this review is to summarize and critique the present state of knowledge of the physical oceanography of the complex region offshore of Cape Hatteras, North Carolina, within the context of understanding the regional circulation and its relation to the fate of any discharges resulting from offshore oil and gas activity. The two other related objectives are to produce an annotated bibliographymore » of the pertinent literature, primarily from 1970 to the present, and to identify relevant oceanographic data sets which can provide a basis for an improved understanding of circulation patterns and physical oceanographic conditions in the study area.« less

  5. Holistic health: does it really include mental health?

    PubMed

    McClanahan, Kimberly K; Huff, Marlene B; Omar, Hatim A

    2006-03-14

    Holistic health, incorporating mind and body as equally important and unified components of health, is a concept utilized in some health care arenas in the United States (U.S.) over the past 30 years. However, in the U.S., mental health is not seen as conceptually integral to physical health and, thus, holistic health cannot be realized until the historical concept of mind-body dualism, continuing stigma regarding mental illness, lack of mental health parity in insurance, and inaccurate public perceptions regarding mental illness are adequately addressed and resolved. Until then, mental and physical health will continue to be viewed as disparate entities rather than parts of a unified whole. We conclude that the U.S. currently does not generally incorporate the tenets of holistic health in its view of the mental and physical health of its citizens, and provide some suggestions for changing that viewpoint.

  6. Willis Lamb, Jr., the Hydrogen Atom, and the Lamb Shift

    Science.gov Websites

    1955, Lamb won the Nobel Prize in Physics for his discoveries concerning "the fine structure of , May 7 - September 30, 1979 Fine Structure of the Hydrogen Atom, Part I; Part II; Part III; Part IV ; Part V; Part VI (from Physical Review 1950-1953) Microwave Technique for Determining the Fine Structure

  7. Sport in China.

    ERIC Educational Resources Information Center

    Knuttgen, Howard G., Ed.; And Others

    Part 1 of this book, "Evoluation and Organization of Physical Culture," examines the history and current organization of physical education and sport in the People's Republic of China. This part includes chapters on: the evolution and organization of physical culture; physical culture in China today; the organizational structure of…

  8. The First United States Microgravity Laboratory

    NASA Technical Reports Server (NTRS)

    Powers, C. Blake (Editor); Shea, Charlotte; Mcmahan, Tracy; Accardi, Denise; Mikatarian, Jeff

    1991-01-01

    The United States Microgravity Laboratory (USML-1) is one part of a science and technology program that will open NASA's next great era of discovery and establish the United States' leadership in space. A key component in the preparation for this new age of exploration, the USML-1 will fly in orbit for extended periods, providing greater opportunities for research in materials science, fluid dynamics, biotechnology, and combustion science. The major components of the USML-1 are the Crystal Growth Furnace, the Surface Tension Driven Convection Experiment (STDCE) Apparatus, and the Drop Physics Module. Other components of USML-1 include Astroculture, Generic Bioprocessing Apparatus, Extended Duration Orbiter Medical Project, Protein Crystal Growth, Space Acceleration Measurement System, Solid Surface Combustion Experiment, Zeolite Crystal Growth and Spacelab Glovebox provided by the European Space Agency.

  9. Preventive HIV/AIDS education through physical education: reflections from Zambia.

    PubMed

    Njelesani, Donald

    2011-01-01

    Governments, UN agencies and international and local NGOs have mounted a concerted effort to remobilise sport as a vehicle for broad, sustainable social development. This resonates with the call for sport to be a key component in national and international development objectives. Missing in these efforts is an explicit focus on physical education within state schools, which still enroll most children in the global South. This article focuses on research into one of the few instances where physical education within the national curriculum is being revitalised as part of the growing interest in leveraging the appeal of sport and play as means to address social development challenges such as HIV/AIDS. It examines the response to the Zambian government's 2006 Declaration of Mandatory Physical Education (with a preventive education focus on HIV/AIDS) by personnel charged with its implementation and illustrates weaknesses within the education sector. The use of policy instruments such as decrees/mandates helps ensure the mainstreaming of physical education in development. However, the urgency required to respond to new mandates, particularly those sanctioned by the highest levels of government, can result in critical pieces of the puzzle being ignored, thereby undermining the potential of physical education (and sport) within development.

  10. Part of the job: the role of physical work conditions in the nurse turnover process.

    PubMed

    Vardaman, James M; Cornell, Paul T; Allen, David G; Gondo, Maria B; Muslin, Ivan S; Mobley, Robin N; Brock, Meagan E; Sigmon, Tracy L

    2014-01-01

    Retention of nursing staff remains an important issue for health care managers. Turnover research has focused primarily on motivational and social factors as keys to retention, whereas the role of the physical work conditions has received considerably less attention. However, work design theory suggests that physical work conditions may be an important factor in fostering retention among nursing staff. The aim of this study was to integrate work design theory with turnover process models to explore the influence of perceptions of physical work conditions on the development of turnover intentions among nursing staff. Drawing on two samples of registered nurses working in cancer units in metropolitan hospitals in the southeastern United States, this study explores the impact of perceptions of physical work conditions on turnover intentions using ordinary least squares regression. Hypotheses are tested in Study 1 and replicated in Study 2. A measure of perceptions of physical work conditions is also developed and validated using exploratory (Study 1) and confirmatory (Study 2) factor analyses. Perceptions of physical work conditions explain variance in turnover intentions above than that explained by motivational and social factors. Specifically, employee perceptions of noisy work conditions are found to significantly increase turnover intentions, whereas perceptions that work conditions facilitate tasks were found to significantly reduce turnover intentions. Perceptions of temperature and health hazard did not show significant effects. Results suggest that health care managers and scholars should re-examine the role of physical work conditions in the turnover process. Investments in upgrades that facilitate tasks may foster retention better than investments that simply improve employee comfort. Negative perceptions of work conditions may have no impact if they are considered a normal "part of the job," although negative perceptions of conditions that are viewed as under the organization's control may be important in creating a desire to leave.

  11. CLIC CDR - physics and detectors: CLIC conceptual design report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, E.; Demarteau, M.; Repond, J.

    This report forms part of the Conceptual Design Report (CDR) of the Compact LInear Collider (CLIC). The CLIC accelerator complex is described in a separate CDR volume. A third document, to appear later, will assess strategic scenarios for building and operating CLIC in successive center-of-mass energy stages. It is anticipated that CLIC will commence with operation at a few hundred GeV, giving access to precision standard-model physics like Higgs and top-quark physics. Then, depending on the physics landscape, CLIC operation would be staged in a few steps ultimately reaching the maximum 3 TeV center-of-mass energy. Such a scenario would maximizemore » the physics potential of CLIC providing new physics discovery potential over a wide range of energies and the ability to make precision measurements of possible new states previously discovered at the Large Hadron Collider (LHC). The main purpose of this document is to address the physics potential of a future multi-TeV e{sup +}e{sup -} collider based on CLIC technology and to describe the essential features of a detector that are required to deliver the full physics potential of this machine. The experimental conditions at CLIC are significantly more challenging than those at previous electron-positron colliders due to the much higher levels of beam-induced backgrounds and the 0.5 ns bunch-spacing. Consequently, a large part of this report is devoted to understanding the impact of the machine environment on the detector with the aim of demonstrating, with the example of realistic detector concepts, that high precision physics measurements can be made at CLIC. Since the impact of background increases with energy, this document concentrates on the detector requirements and physics measurements at the highest CLIC center-of-mass energy of 3 TeV. One essential output of this report is the clear demonstration that a wide range of high precision physics measurements can be made at CLIC with detectors which are challenging, but considered feasible following a realistic future R&D program.« less

  12. Growth and Characterization of III-V Semiconductors for Device Applications

    NASA Technical Reports Server (NTRS)

    Williams, Michael D.

    2000-01-01

    The research goal was to achieve a fundamental understanding of the physical processes occurring at the surfaces and interfaces of epitaxially grown InGaAs/GaAs (100) heterostructures. This will facilitate the development of quantum well devices for infrared optical applications and provide quantitative descriptions of key phenomena which impact their performance. Devices impacted include high-speed laser diodes and modulators for fiber optic communications at 1.55 micron wavelengths and intersub-band lasers for longer infrared wavelengths. The phenomenon of interest studied was the migration of indium in InGaAs structures. This work centered on the molecular beam epitaxy reactor and characterization apparatus donated to CAU by AT&T Bell Laboratories. The material characterization tool employed was secondary ion mass spectrometry. The training of graduate and undergraduate students was an integral part of this program. The graduate students received a thorough exposure to state-of-the-art techniques and equipment for semiconductor materials analysis as part of the Master''s degree requirement in physics. The undergraduates were exposed to a minority scientist who has an excellent track record in this area. They also had the opportunity to explore surface physics as a career option. The results of the scientific work was published in a refereed journal and several talks were presented professional conferences and academic seminars.

  13. Select strengths and biases of models in representing the Arctic winter boundary layer over sea ice: the Larcform 1 single column model intercomparison

    PubMed Central

    Pithan, Felix; Ackerman, Andrew; Angevine, Wayne M.; Hartung, Kerstin; Ickes, Luisa; Kelley, Maxwell; Medeiros, Brian; Sandu, Irina; Steeneveld, Gert-Jan; Sterk, HAM; Svensson, Gunilla; Vaillancourt, Paul A.; Zadra, Ayrton

    2017-01-01

    Weather and climate models struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Arctic winter, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic winter boundary layer. In the cloudy state, cloud liquid water limits surface radiative cooling, and temperature inversions are weak and elevated. In the radiatively clear state, strong surface radiative cooling leads to the build-up of surface-based temperature inversions. Many large-scale models lack the cloudy state, and some substantially underestimate inversion strength in the clear state. Here, the transformation from a moist to a cold dry air mass is modelled using an idealized Lagrangian perspective. The trajectory includes both boundary layer states, and the single-column experiment is the first Lagrangian Arctic air formation experiment (Larcform 1) organized within GEWEX GASS (Global atmospheric system studies). The intercomparison reproduces the typical biases of large-scale models: Some models lack the cloudy state of the boundary layer due to the representation of mixed-phase micro-physics or to the interaction between micro-and macrophysics. In some models, high emissivities of ice clouds or the lack of an insulating snow layer prevent the build-up of surface-based inversions in the radiatively clear state. Models substantially disagree on the amount of cloud liquid water in the cloudy state and on turbulent heat fluxes under clear skies. Observations of air mass transformations including both boundary layer states would allow for a tighter constraint of model behaviour. PMID:28966718

  14. Select strengths and biases of models in representing the Arctic winter boundary layer over sea ice: the Larcform 1 single column model intercomparison.

    PubMed

    Pithan, Felix; Ackerman, Andrew; Angevine, Wayne M; Hartung, Kerstin; Ickes, Luisa; Kelley, Maxwell; Medeiros, Brian; Sandu, Irina; Steeneveld, Gert-Jan; Sterk, Ham; Svensson, Gunilla; Vaillancourt, Paul A; Zadra, Ayrton

    2016-09-01

    Weather and climate models struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Arctic winter, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic winter boundary layer. In the cloudy state, cloud liquid water limits surface radiative cooling, and temperature inversions are weak and elevated. In the radiatively clear state, strong surface radiative cooling leads to the build-up of surface-based temperature inversions. Many large-scale models lack the cloudy state, and some substantially underestimate inversion strength in the clear state. Here, the transformation from a moist to a cold dry air mass is modelled using an idealized Lagrangian perspective. The trajectory includes both boundary layer states, and the single-column experiment is the first L agrangian Arc tic air form ation experiment (Larcform 1) organized within GEWEX GASS (Global atmospheric system studies). The intercomparison reproduces the typical biases of large-scale models: Some models lack the cloudy state of the boundary layer due to the representation of mixed-phase micro-physics or to the interaction between micro-and macrophysics. In some models, high emissivities of ice clouds or the lack of an insulating snow layer prevent the build-up of surface-based inversions in the radiatively clear state. Models substantially disagree on the amount of cloud liquid water in the cloudy state and on turbulent heat fluxes under clear skies. Observations of air mass transformations including both boundary layer states would allow for a tighter constraint of model behaviour.

  15. Reduction of State Victim Compensation Disparities in Disadvantaged Crime Victims Through Active Outreach and Assistance: A Randomized Trial

    PubMed Central

    Alvidrez, Jennifer; Shumway, Martha; Boccellari, Alicia; Green, Jon Dean; Kelly, Vanessa; Merrill, Gregory

    2008-01-01

    Objectives. We examined whether providing active outreach and assistance to crime victims as part of comprehensive psychosocial services reduced disparities in access to state compensation funds. Methods. We analyzed data from a randomized trial of injured crime victims (N = 541) and compared outcomes from comprehensive psychosocial services with usual community care. We examined the impact of outreach and assistance on disparities in applying for victim compensation by testing for interactions between victim characteristics and treatment condition in logistic regression analyses. Results. Victims receiving comprehensive services were much more likely to apply for victim compensation than were victims receiving usual care. Comprehensive services decreased disparities associated with younger age, lower levels of education, and homelessness. Conclusions. State-level victim compensation funds are available to help individuals recover physically, psychologically, and financially from crime victimization. However, few crime victims apply for victim compensation, and there are particularly low application rates among young, male, ethnic minority, and physical assault victims. Active outreach and assistance can address disparities in access to victim compensation funds for disadvantaged populations and should be offered more widely to victims of violent crime. PMID:18382004

  16. Chemical and physical characteristics of natural ground waters in Michigan: A preliminary report

    USGS Publications Warehouse

    Cummings, T. Ray

    1980-01-01

    Wide variations occur in the chemical and physical characteristics of natural groundwaters in Michigan. Dissolved-solids concentrations range from 23 to 2,100 milligrams per liter. Waters having low dissolved-solids concentrations are calcium bicarbonate waters. Sodium, sulfate, and chloride increase as mineralization increases. Iron, aluminum, and titanium are higher at some locations than is common in most natural waters. Lead concentrations exceed those desirable in drinking water at some locations in the northern part of the Lower Peninsula. Generalized areal patterns of water quality variation suggest that geology is a primary cause of differences across the State. Examples of chemical associations in water suggest that chemical analyses may be valuable in tracing and identifying mineral deposits.

  17. Effect of Soil Washing for Lead and Zinc Removal on Soil Hydraulic Properties

    NASA Astrophysics Data System (ADS)

    Kammerer, Gerhard; Zupanc, Vesna; Gluhar, Simon; Lestan, Domen

    2017-04-01

    Soil washing as a metal pollution remediation process, especially part with intensive mixing of the soil slurry and soil compression after de-watering, significantly deteriorates physical properties of soil compared to those of non-remediated soil. Furthermore, changed physical characteristics of remediated soil influence interaction of plant roots with soil system and affect soil water regime. Remediated soils showed significant differences to their original state in water retention properties and changed structure due to the influence of artificial structure created during remediation process. Disturbed and undisturbed soil samples of remediated and original soils were analyzed. We evaluated soil hydraulic properties as a possible constraint for re-establishing soil structure and soil fertility after the remediation procedure.

  18. The New Physics

    NASA Astrophysics Data System (ADS)

    Fraser, Gordon

    2006-04-01

    Introduction Gordon Fraser; Part I. Matter and the Universe: 1. Cosmology Wendy Freedman and Rocky Kolb; 2. Gravity Ronald Adler; 3. Astrophysics Arnon Dar; 4. Particles and the standard model Chris Quigg; 5. Superstrings Michael Green; Part II. Quantum Matter: 6. Atoms and photons Claude Cohen-Tannoudji and Jean Dalibard; 7. The quantum world of ultra-cold atoms Christopher Foot and William Phillips; 8. Superfluidity Henry Hall; 9. Quantum phase transitions Subir Sachdev; Part III. Quanta in Action: 10. Quantum entanglement Anton Zeilinger; 11. Quanta, ciphers and computers Artur Ekert; 12. Small-scale structure and nanoscience Yoseph Imry; Part IV. Calculation and Computation: 13. Nonlinearity Henry Abarbanel; 14. Complexity Antonio Politi; 15. Collaborative physics, e-science and the grid Tony Hey and Anne Trefethen; Part V. Science in Action: 16. Biophysics Cyrus Safinya; 17. Medical physics Nicolaj Pavel; 18. Physics and materials Robert Cahn; 19. Physics and society Ugo Amaldi.

  19. The New Physics

    NASA Astrophysics Data System (ADS)

    Fraser, Gordon

    2009-08-01

    Introduction Gordon Fraser; Part I. Matter and the Universe: 1. Cosmology Wendy Freedman and Rocky Kolb; 2. Gravity Ronald Adler; 3. Astrophysics Arnon Dar; 4. Particles and the standard model Chris Quigg; 5. Superstrings Michael Green; Part II. Quantum Matter: 6. Atoms and photons Claude Cohen-Tannoudji and Jean Dalibard; 7. The quantum world of ultra-cold atoms Christopher Foot and William Phillips; 8. Superfluidity Henry Hall; 9. Quantum phase transitions Subir Sachdev; Part III. Quanta in Action: 10. Quantum entanglement Anton Zeilinger; 11. Quanta, ciphers and computers Artur Ekert; 12. Small-scale structure and nanoscience Yoseph Imry; Part IV. Calculation and Computation: 13. Nonlinearity Henry Abarbanel; 14. Complexity Antonio Politi; 15. Collaborative physics, e-science and the grid Tony Hey and Anne Trefethen; Part V. Science in Action: 16. Biophysics Cyrus Safinya; 17. Medical physics Nicolaj Pavel; 18. Physics and materials Robert Cahn; 19. Physics and society Ugo Amaldi.

  20. Nonperturbative Quantum Physics from Low-Order Perturbation Theory.

    PubMed

    Mera, Héctor; Pedersen, Thomas G; Nikolić, Branislav K

    2015-10-02

    The Stark effect in hydrogen and the cubic anharmonic oscillator furnish examples of quantum systems where the perturbation results in a certain ionization probability by tunneling processes. Accordingly, the perturbed ground-state energy is shifted and broadened, thus acquiring an imaginary part which is considered to be a paradigm of nonperturbative behavior. Here we demonstrate how the low order coefficients of a divergent perturbation series can be used to obtain excellent approximations to both real and imaginary parts of the perturbed ground state eigenenergy. The key is to use analytic continuation functions with a built-in singularity structure within the complex plane of the coupling constant, which is tailored by means of Bender-Wu dispersion relations. In the examples discussed the analytic continuation functions are Gauss hypergeometric functions, which take as input fourth order perturbation theory and return excellent approximations to the complex perturbed eigenvalue. These functions are Borel consistent and dramatically outperform widely used Padé and Borel-Padé approaches, even for rather large values of the coupling constant.

  1. Predictive modeling of solidification during laser additive manufacturing of nickel superalloys: recent developments, future directions

    NASA Astrophysics Data System (ADS)

    Ghosh, Supriyo

    2018-01-01

    Additive manufacturing (AM) processes produce parts with improved physical, chemical, and mechanical properties compared to conventional manufacturing processes. In AM processes, intricate part geometries are produced from multicomponent alloy powder, in a layer-by-layer fashion with multipass laser melting, solidification, and solid-state phase transformations, in a shorter manufacturing time, with minimal surface finishing, and at a reasonable cost. However, there is an increasing need for post-processing of the manufactured parts via, for example, stress relieving heat treatment and hot isostatic pressing to achieve homogeneous microstructure and properties at all times. Solidification in an AM process controls the size, shape, and distribution of the grains, the growth morphology, the elemental segregation and precipitation, the subsequent solid-state phase changes, and ultimately the material properties. The critical issues in this process are linked with multiphysics (such as fluid flow and diffusion of heat and mass) and multiscale (lengths, times and temperature ranges) challenges that arise due to localized rapid heating and cooling during AM processing. The alloy chemistry-process-microstructure-property-performance correlation in this process will be increasingly better understood through multiscale modeling and simulation.

  2. Influence of the nuclear matter equation of state on the r-mode instability using the finite-range simple effective interaction

    NASA Astrophysics Data System (ADS)

    Pattnaik, S. P.; Routray, T. R.; Viñas, X.; Basu, D. N.; Centelles, M.; Madhuri, K.; Behera, B.

    2018-05-01

    The characteristic physical properties of rotating neutron stars under the r-mode oscillation are evaluated using the finite-range simple effective interaction. Emphasis is given on examining the influence of the stiffness of both the symmetric and asymmetric parts of the nuclear equation of state on these properties. The amplitude of the r-mode at saturation is calculated using the data of particular neutron stars from the considerations of ‘spin equilibrium’ and ‘thermal equilibrium’. The upper limit of the r-mode saturation amplitude is found to lie in the range 10‑8–10‑6, in agreement with the predictions of earlier work.

  3. Discovery of heavy hydrogen and heavy water. Internal report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saylor, C.P.

    1983-10-01

    This report is a brief account prepared by request of Walter Weinstein for Dr. C. P. Saylor some years prior to his death in April 1982. It has been carefully reviewed by several present and former staff members, including former NBS scientis, Dr. F. G. Brickwedde, who participated with Dr. Harold C. Urey and others in the experiments and events described by Saylor. In his review Dr. Brickwedde, now Evans Pugh Research Professor of Physics emeritus at Pennsylvania State University, stated that 'Dr. Saylor's paper covers an important part of the history of the discovery of deuterium that is notmore » so well known ... and contains information important for the chemical historian.« less

  4. Determination of physical and chemical states of lubricants in concentrated contacts, part 2

    NASA Technical Reports Server (NTRS)

    Lauer, J. L.

    1981-01-01

    Infrared emission spectroscopy through a window in an operating bearing continued to provide most of the information gathered on the state of lubricants subjected to elastohydrodynamic (EHD) conditions. Other measurements were traction, scanning electron microscopy and elemental surface analysis X-rays. A very significant finding was the decomposition of a naphthenic oil lubricant in the presence of small concentrations of an organic chloride. Olefins and aromatics were formed in ever increasing amounts prior to total lubricant failure. An aromatic fluid also failed in the presence of chloride. A correlation was found between changes of the alignment of lubricant molecules evidence by infrared polarization and changes of traction under varying EHD stresses.

  5. Towards a molecular logic machine

    NASA Astrophysics Data System (ADS)

    Remacle, F.; Levine, R. D.

    2001-06-01

    Finite state logic machines can be realized by pump-probe spectroscopic experiments on an isolated molecule. The most elaborate setup, a Turing machine, can be programmed to carry out a specific computation. We argue that a molecule can be similarly programmed, and provide examples using two photon spectroscopies. The states of the molecule serve as the possible states of the head of the Turing machine and the physics of the problem determines the possible instructions of the program. The tape is written in an alphabet that allows the listing of the different pump and probe signals that are applied in a given experiment. Different experiments using the same set of molecular levels correspond to different tapes that can be read and processed by the same head and program. The analogy to a Turing machine is not a mechanical one and is not completely molecular because the tape is not part of the molecular machine. We therefore also discuss molecular finite state machines, such as sequential devices, for which the tape is not part of the machine. Nonmolecular tapes allow for quite long input sequences with a rich alphabet (at the level of 7 bits) and laser pulse shaping experiments provide concrete examples. Single molecule spectroscopies show that a single molecule can be repeatedly cycled through a logical operation.

  6. Colloidal Disorder-Order Transition Experiment Probes Particle Interactions in Microgravity

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Everything in the universe is made up of the same basic building blocks - atoms. All physical properties of matter such as weight, hardness, and color are determined by the kind of atoms present and the way they interact with each other. The Colloidal Disorder-Order Transition (CDOT) shuttle flight experiment tested fundamental theories that model atomic interactions. The experiment was part of the Second United States Microgravity Laboratory (USML-2) aboard the Space Shuttle Columbia, which flew from October 20 to November 5, 1995.

  7. Physical Chemistry of Reaction Dynamics in Ionic Liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margulis, Claudio Javier

    2016-10-31

    The Margulis group BES funded research at the University of Iowa is part of a broader collaborative effort that includes the groups of Blank (U. Minnesota), Castner (Rutgers U.), Maroncelli (Penn. State U.) and Wishart (BNL). The goal of this group of PIs is to better understand from an experimental and a theoretical perspective different aspects of photo-initiated electron transfer processes in a set of different room-temperature ionic-liquid systems. The Margulis contribution is theoretical and computational. Details are presented in the attached documentation.

  8. Water-quality data from the observation-well network in Illinois, 1985-87

    USGS Publications Warehouse

    Voelker, D.C.; Oberg, D.J.; Grober, M.J.

    1988-01-01

    The report presents water-quality and well-site information for public water-supply wells in Illinois. These wells were sampled during the period January 1985 through June 1987 as part of an ongoing cooperative ground-water observation network in the State. Water-quality data are tabulated for physical parameters, nutrients, common constituents, metals, phenols, cyanide, and volative organic compounds. A subnetwork of wells also have data on several pesticides and herbicides. Some well-site information is also presented in this report.

  9. Khalid Alshibli shows a child MGM apparatus at outreach event

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Khalid Alshibli of Louisiana State University, project scientist for the Mechanics of Granular Materials (MGM-III) experiment, uses a jar of sand and a training model of the MGM apparatus to explain the experiment to two young Virginia students. The activity was part of the Space Research and You education event held by NASA's Office of Biological and Physical Research on June 25, 2002, in Arlington, VA, to highlight the research that will be conducted on STS-107.

  10. Khalid Alshibli explains MGM to Sean O'Keefe

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Khalid Alshibli of Louisiana State University, project scientist for the Mechanics of Granular Materials (MGM-III) experiment, uses a jar of sand as he explains MGM to NASA Administrator Sean O'Keefe. A training model of an MGM test cell is in the foreground. The activity was part of the Space Research and You education event held by NASA's Office of Biological and Physical Research on June 25, 2002, in Arlington, VA, to highlight the research that will be conducted on STS-107.

  11. Hearings Before the Select Committee on Nutrition and Human Needs of the United States Senate, Ninety-Third Congress, First Session. Nutrition Education 1973. Part 8--Broadcast Industry's Response to TV Ads. Hearings Held Washington, D.C., June 11, 1973.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Senate Select Committee on Nutrition and Human Needs.

    These hearings are with the broadcasting industry on television advertising of food to children. The committee had heard testimony previously from nutritionists, dentists and consumers that there is incessant advertising of sugared and snack foods on television to children, which adversely affects their dental and physical health. The Code…

  12. The relation of trait and state mindfulness with satisfaction and physical activity: A cross-sectional study in 305 Dutch participants.

    PubMed

    Tsafou, Kalliopi-Eleni; Lacroix, Joyca Pw; van Ee, Raymond; Vinkers, Charlotte Dw; De Ridder, Denise Td

    2017-09-01

    Previous research has shown that satisfaction mediates the relationship of state mindfulness (i.e. during physical activity) with physical activity. This study aimed to replicate this finding and to explore the role of trait mindfulness with a cross-sectional design. In all, 305 participants completed measures on trait and state mindfulness, satisfaction with physical activity, and physical activity. Mediation analyses were used. Satisfaction mediated the effect of state mindfulness on physical activity. Trait mindfulness related to physical activity via an indirect path, namely through two consecutive mediators, first state mindfulness and then satisfaction. Our results suggest that to enhance satisfaction, both state and trait mindfulness should be considered.

  13. Behavioral and Psychological Phenotyping of Physical Activity and Sedentary Behavior: Implications for Weight Management.

    PubMed

    Bryan, Angela D; Jakicic, John M; Hunter, Christine M; Evans, Mary E; Yanovski, Susan Z; Epstein, Leonard H

    2017-10-01

    Risk for obesity is determined by a complex mix of genetics and lifetime exposures at multiple levels, from the metabolic milieu to psychosocial and environmental influences. These phenotypic differences underlie the variability in risk for obesity and response to weight management interventions, including differences in physical activity and sedentary behavior. As part of a broader effort focused on behavioral and psychological phenotyping in obesity research, the National Institutes of Health convened a multidisciplinary workshop to explore the state of the science in behavioral and psychological phenotyping in humans to explain individual differences in physical activity, both as a risk factor for obesity development and in response to activity-enhancing interventions. Understanding the behavioral and psychological phenotypes that contribute to differences in physical activity and sedentary behavior could allow for improved treatment matching and inform new targets for tailored, innovative, and effective weight management interventions. This summary provides the rationale for identifying psychological and behavioral phenotypes relevant to physical activity and identifies opportunities for future research to better understand, define, measure, and validate putative phenotypic factors and characterize emerging phenotypes that are empirically associated with initiation of physical activity, response to intervention, and sustained changes in physical activity. © 2017 The Obesity Society.

  14. An integrated weather and sea-state forecasting system for the Arabian Peninsula (WASSF)

    NASA Astrophysics Data System (ADS)

    Kallos, George; Galanis, George; Spyrou, Christos; Mitsakou, Christina; Solomos, Stavros; Bartsotas, Nikolaos; Kalogrei, Christina; Athanaselis, Ioannis; Sofianos, Sarantis; Vervatis, Vassios; Axaopoulos, Panagiotis; Papapostolou, Alexandros; Qahtani, Jumaan Al; Alaa, Elyas; Alexiou, Ioannis; Beard, Daniel

    2013-04-01

    Nowadays, large industrial conglomerates such as the Saudi ARAMCO, require a series of weather and sea state forecasting products that cannot be found in state meteorological offices or even commercial data providers. The two major objectives of the system is prevention and mitigation of environmental problems and of course early warning of local conditions associated with extreme weather events. The management and operations part is related to early warning of weather and sea-state events that affect operations of various facilities. The environmental part is related to air quality and especially the desert dust levels in the atmosphere. The components of the integrated system include: (i) a weather and desert dust prediction system with forecasting horizon of 5 days, (ii) a wave analysis and prediction component for Red Sea and Arabian Gulf, (iii) an ocean circulation and tidal analysis and prediction of both Red Sea and Arabian Gulf and (iv) an Aviation part specializing in the vertical structure of the atmosphere and extreme events that affect air transport and other operations. Specialized data sets required for on/offshore operations are provided ate regular basis. State of the art modeling components are integrated to a unique system that distributes the produced analysis and forecasts to each department. The weather and dust prediction system is SKIRON/Dust, the wave analysis and prediction system is based on WAM cycle 4 model from ECMWF, the ocean circulation model is MICOM while the tidal analysis and prediction is a development of the Ocean Physics and Modeling Group of University of Athens, incorporating the Tidal Model Driver. A nowcasting subsystem is included. An interactive system based on Google Maps gives the capability to extract and display the necessary information for any location of the Arabian Peninsula, the Red Sea and Arabian Gulf.

  15. NP2010: An Assessment and Outlook for Nuclear Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lancaster, James

    This grant provided partial support for the National Research Council’s (NRC) decadal survey of nuclear physics. This is part of NRC’s larger effort to assess and discuss the outlook for different fields in physics and astronomy, Physics 2010, which takes place approximately every ten years. A report has been prepared as a result of the study that is intended to inform those who are interested about the current status of research in this area and to help guide future developments of the field. A pdf version of the report is available for download, for free, at http://www.nap.edu/catalog.php?record_id=13438. Among the principalmore » conclusions reached in the report are that the nuclear physics program in the United States has been especially well managed, principally through a recurring long-range planning process conducted by the community, and that current opportunities developed pursuant to that planning process should be exploited. In the section entitled “Building the Foundation for the Future,” the report notes that attention needs to be paid to certain elements that are essential to the continued vitality of the field. These include ensuring that education and research at universities remain a focus for funding and that a plan be developed to ensure that forefront-computing resources, including exascale capabilities when developed, be made available to nuclear science researchers. The report also notes that nimbleness is essential for the United States to remain competitive in a rapidly expanding international nuclear physics arena and that streamlined and flexible procedures should be developed for initiating and managing smaller-scale nuclear science projects.« less

  16. The Psychology of Physical Science

    NASA Astrophysics Data System (ADS)

    Feist, Gregory J.

    2006-12-01

    Who becomes a physical scientist is not completely a coincidence. People with spatial talent and who are thing-oriented are most likely to be attracted to physical science, including astronomy. Additional lessons from the psychology of science suggest that compared with non-scientists and social scientists, physical scientists are most likely to be introverted, independent, self-confident, and yet somewhat arrogant. Understanding the physical and inanimate world is part of what physical scientists do, and understanding those who understand the physical world is part of what psychologists of science do.

  17. Introduction of Special Physics Topics (Geophysics) Through the Use of Physics Laboratory Projects

    ERIC Educational Resources Information Center

    Parker, R. H.; Whittles, A. B. L.

    1970-01-01

    Describes the objectives and content of a physics laboratory program for freshman students at the British Columbia Institute of Technology. The first part of the program consists of basic physics experiments, while the second part emphasizes student work on projects in geophysics that have direct technical applications. (LC)

  18. 75 FR 47494 - Implementation Guidance for Physical Protection of Byproduct Material; Category 1 and Category 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... for Physical Protection of Byproduct Material; Category 1 and Category 2 Quantities of Radioactive... on the draft implementation guidance for proposed 10 CFR part 37 Physical Protection of Byproduct... proposed 10 CFR part 37, Physical Protection of Byproduct Material, specifically Category 1 and Category 2...

  19. 75 FR 40756 - Implementation Guidance for Physical Protection of Byproduct Material; Category 1 and Category 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-14

    ...-2010-0194] RIN 3150-AI12 Implementation Guidance for Physical Protection of Byproduct Material... licensee or applicant for implementation of proposed 10 CFR part 37, ``Physical Protection of Byproduct... ``Implementation Guidance for 10 CFR part 37 Physical Protection of Byproduct Material, Category 1 and Category 2...

  20. 17 CFR Appendix B to Part 43 - Enumerated Physical Commodity Contracts and Other Contracts

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 1 2012-04-01 2012-04-01 false Enumerated Physical Commodity... TRADING COMMISSION REAL-TIME PUBLIC REPORTING Pt. 43, App. B Appendix B to Part 43—Enumerated Physical Commodity Contracts and Other Contracts Enumerated Physical Commodity Contracts Agriculture ICE Futures U.S...

  1. Static Behavior of Chalcogenide Based Programmable Metallization Cells

    NASA Astrophysics Data System (ADS)

    Rajabi, Saba

    Nonvolatile memory (NVM) technologies have been an integral part of electronic systems for the past 30 years. The ideal non-volatile memory have minimal physical size, energy usage, and cost while having maximal speed, capacity, retention time, and radiation hardness. A promising candidate for next-generation memory is ion-conducting bridging RAM which is referred to as programmable metallization cell (PMC), conductive bridge RAM (CBRAM), or electrochemical metallization memory (ECM), which is likely to surpass flash memory in all the ideal memory characteristics. A comprehensive physics-based model is needed to completely understand PMC operation and assist in design optimization. To advance the PMC modeling effort, this thesis presents a precise physical model parameterizing materials associated with both ion-rich and ion-poor layers of the PMC's solid electrolyte, so that captures the static electrical behavior of the PMC in both its low-resistance on-state (LRS) and high resistance off-state (HRS). The experimental data is measured from a chalcogenide glass PMC designed and manufactured at ASU. The static on- and off-state resistance of a PMC device composed of a layered (Ag-rich/Ag-poor) Ge30Se70 ChG film is characterized and modeled using three dimensional simulation code written in Silvaco Atlas finite element analysis software. Calibrating the model to experimental data enables the extraction of device parameters such as material bandgaps, workfunctions, density of states, carrier mobilities, dielectric constants, and affinities. The sensitivity of our modeled PMC to the variation of its prominent achieved material parameters is examined on the HRS and LRS impedance behavior. The obtained accurate set of material parameters for both Ag-rich and Ag-poor ChG systems and process variation verification on electrical characteristics enables greater fidelity in PMC device simulation, which significantly enhances our ability to understand the underlying physics of ChG-based resistive switching memory.

  2. Toward TiO2 Nanofluids—Part 1: Preparation and Properties

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Hu, Yuhan

    2017-06-01

    As a new generation of working fluid, nanofluid has long been regarded as a hot research topic in the past three decades. Many review papers have provided comprehensive and systematic summaries on the development and state-of-the-art of nanofluids. As of today, it is becoming increasingly difficult to provide a comprehensive review of all kinds of nanofluids owing to the huge amounts of the related literatures. And many controversies and inconsistencies in the reported arguments have been observed in various nanofluids. Meanwhile, the systematic or comprehensive reviews on a certain kind of nanofluid are insufficient. Therefore, this review focuses on the research about one of the hottest kinds viz. TiO2 nanofluid, which has captured scientists' great attention because of its interesting and comprehensive properties such as sensational dispersivity, chemical stability, and non-toxicity. Due to the preparation of nanofluids is the prerequisite and physical properties are critical factors for further applications, this first part of the review summarizes recent research on preparation, stability, and physical properties of TiO2 nanofluids.

  3. Reality, Causality, and Probability, from Quantum Mechanics to Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Plotnitsky, Arkady

    2015-10-01

    These three lectures consider the questions of reality, causality, and probability in quantum theory, from quantum mechanics to quantum field theory. They do so in part by exploring the ideas of the key founding figures of the theory, such N. Bohr, W. Heisenberg, E. Schrödinger, or P. A. M. Dirac. However, while my discussion of these figures aims to be faithful to their thinking and writings, and while these lectures are motivated by my belief in the helpfulness of their thinking for understanding and advancing quantum theory, this project is not driven by loyalty to their ideas. In part for that reason, these lectures also present different and even conflicting ways of thinking in quantum theory, such as that of Bohr or Heisenberg vs. that of Schrödinger. The lectures, most especially the third one, also consider new physical, mathematical, and philosophical complexities brought in by quantum field theory vis-à-vis quantum mechanics. I close by briefly addressing some of the implications of the argument presented here for the current state of fundamental physics.

  4. EPR of Nd3+ in congruent and nearly stoichiometric lithium niobate

    NASA Astrophysics Data System (ADS)

    Malovichko, G.; Grachev, V.; Okulov, S.; Kokanyan, E.; Henecker, F.; Hofstaetter, A.; Schirmer, O.

    2006-02-01

    The cover picture refers to the article by Galina Malovichko et al. which has been selected as Editor's Choice for this issue [1]. The lower part of the figure shows a section of the angular dependence of the EPR spectra in the xy-plane for nearly stoichiometric LiNbO3:Nd3+. The solid lines correspond to non-magnetic neodymium isotopes of axial C3 symmetry (green) and low C1 symmetry (purple and blue), respectively; the symbols represent experimental data. The upper part of the figure shows possible structures of the nearest surrounding for the C3 and C1 centers and their correspondence to the observed line positions.The first author Galina Malovichko is Associate Professor in the Physics Department at the Montana State University, USA. Her scientific activity is devoted to experimental condensed matter physics, particularly to the study of structures of extrinsic, intrinsic and radiation defects and their influence on crystal prop-erties. Her group is involved in the characterization of various materials and optimization of their parameters for advanced ap-plications.

  5. Physical-chemical processes of diamond grinding

    NASA Astrophysics Data System (ADS)

    Lobanov, D. V.; Arhipov, P. V.; Yanyushkin, A. S.; Skeeba, V. Yu

    2017-10-01

    The article focuses on the relevance of the research into the problem of diamond abrasive metal-bonded tool performance loss with a view to enhancing the effectiveness of high-strength materials finishing processing. The article presents the results of theoretical and empirical studies of loading layer formation on the surface of diamond wheels during processing high-strength materials. The theoretical part deals with the physical and chemical processes at the contact area of the diamond wheel and work surface with the viewpoint of the electrochemical potentials equilibrium state. We defined dependencies for calculating the loading layer dimensions. The practical part of work centers on various electron-microscopic, spectral and X-ray diffraction studies of the metal-bonded wheel samples during diamond grinding. The analysis of the research results revealed the composition and structure of the loading layer. The validity of the theoretical data is confirmed by sufficient convergence of the calculated values with the results of empirical research. In order to reduce the intensity of loading and improve the cutting properties of metal-bonded diamond abrasive tools, it is recommended to use combined methods for more efficient processing of high-strength materials.

  6. On the contribution of circumferential resonance modes in acoustic radiation force experienced by cylindrical shells

    NASA Astrophysics Data System (ADS)

    Rajabi, Majid; Behzad, Mehdi

    2014-10-01

    A body insonified by a constant (time-varying) intensity sound field is known to experience a steady (oscillatory) force that is called the steady-state (dynamic) acoustic radiation force. Using the classical resonance scattering theorem (RST) which suggests the scattered field as a superposition of a resonance field and a background (non-resonance) component, we show that the radiation force acting on a cylindrical shell may be synthesized as a composition of three components: background part, resonance part and their interaction. The background component reveals the pure geometrical reflection effects and illustrates a regular behavior with respect to frequency, while the others demonstrate a singular behavior near the resonance frequencies. The results illustrate that the resonance effects associated to partial waves can be isolated by the subtraction of the background component from the total (steady-state or dynamic) radiation force function (i.e., residue component). In the case of steady-state radiation force, the components are exerted on the body as static forces. For the case of oscillatory amplitude excitation, the components are exerted at the modulation frequency with frequency-dependant phase shifts. The results demonstrate the dominant contribution of the non-resonance component of dynamic radiation force at high frequencies with respect to the residue component, which offers the potential application of ultrasound stimulated vibro-acoustic spectroscopy technique in low frequency resonance spectroscopy purposes. Furthermore, the proposed formulation may be useful essentially due to its intrinsic value in physical acoustics. In addition, it may unveil the contribution of resonance modes in the dynamic radiation force experienced by the cylindrical objects and its underlying physics.

  7. On the important role of the anti-Jahn-Teller effect in underdoped cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Kamimura, Hiroshi; Matsuno, Shunichi; Mizokawa, Takashi; Sasaoka, Kenji; Shiraishi, Kenji; Ushio, Hideki

    2013-04-01

    In this paper it is shown that the "anti-Jahn-Teller effect" plays an essential role in giving rise to a small Fermi surface of Fermi pockets above Tc and d-wave superconductivity below Tc in underdoped cuprates. In the first part of the present paper, we review the latest developments of the model proposed by Kamimura and Suwa, which bears important characteristics born from the interplay of Jahn-Teller Physics and Mott Physics. It is shown that the feature of Fermi surfaces in underdoped LSCO is the Fermi pockets in the nodal region constructed by doped holes under the coexistence of a metallic state and of the local antiferromagnetic order. In the antinodal region in the momentum space, there are no Fermi surfaces. Then it is discussed that the phonon-involved mechanism based on the Kamimura-Suwa model leads to the d-wave superconductivity. In particular, it is shown that the origin of strong electron-phonon interactions in cuprates is due to the anti-Jahn-Teller effect. In the second part a recent theoretical result on the energy distribution curves (EDCs) of angle-resolved photoemission spectroscopy (ARPES) below Tc is discussed. It is shown that the feature of ARPES profiles of underdoped cuprates consists of a coherent peak in the nodal region and the real transitions of photoexcited electrons from occupied states below the Fermi level to a free-electron state above the vacuum level in the antinodal region, where the latter transitions form a broad hump. From this feature, the origin of the two distinct gaps observed by ARPES is elucidated without introducing the concept of the pseudogap. Finally, a remark is made on the phase diagram of underdoped cuprates.

  8. Helping General Physical Educators and Adapted Physical Educators Address the Office of Civil Rights Dear Colleague Guidance Letter: Part III--Practitioners and Programs

    ERIC Educational Resources Information Center

    Poulin, David; Martinez, David; Aenchbacher, Amy; Aiello, Rocco; Doyle, Mike; Hilgenbrinck, Linda; Busse, Sean; Cappuccio, Jim

    2013-01-01

    In Part III of the feature, physical educators and adapted physical educators offer current best practices as models of implementation for readers. Contributions included are: (1) Answer to the Dear Colleague Letter from the Anchorage School District's Adapted Sport Program (David Poulin); (2) Georgia's Adapted Physical Educators Response to the…

  9. Predictability of the geospace variations and measuring the capability to model the state of the system

    NASA Astrophysics Data System (ADS)

    Pulkkinen, A.

    2012-12-01

    Empirical modeling has been the workhorse of the past decades in predicting the state of the geospace. For example, numerous empirical studies have shown that global geoeffectiveness indices such as Kp and Dst are generally well predictable from the solar wind input. These successes have been facilitated partly by the strongly externally driven nature of the system. Although characterizing the general state of the system is valuable and empirical modeling will continue playing an important role, refined physics-based quantification of the state of the system has been the obvious next step in moving toward more mature science. Importantly, more refined and localized products are needed also for space weather purposes. Predictions of local physical quantities are necessary to make physics-based links to the impacts on specific systems. As we have introduced more localized predictions of the geospace state one central question is how predictable these local quantities are? This complex question can be addressed by rigorously measuring the model performance against the observed data. Space sciences community has made great advanced on this topic over the past few years and there are ongoing efforts in SHINE, CEDAR and GEM to carry out community-wide evaluations of the state-of-the-art solar and heliospheric, ionosphere-thermosphere and geospace models, respectively. These efforts will help establish benchmarks and thus provide means to measure the progress in the field analogous to monitoring of the improvement in lower atmospheric weather predictions carried out rigorously since 1980s. In this paper we will discuss some of the latest advancements in predicting the local geospace parameters and give an overview of some of the community efforts to rigorously measure the model performances. We will also briefly discuss some of the future opportunities for advancing the geospace modeling capability. These will include further development in data assimilation and ensemble modeling (e.g. taking into account uncertainty in the inflow boundary conditions).

  10. Status of Knowledge after Ulysses and SOHO: Session 2: Investigate the Links between the Solar Surface, Corona, and Inner Heliosphere.

    NASA Technical Reports Server (NTRS)

    Suess, Steven

    2006-01-01

    As spacecraft observations of the heliosphere have moved from exploration into studies of physical processes, we are learning about the linkages that exist between different parts of the system. The past fifteen years have led to new ideas for how the heliospheric magnetic field connects back to the Sun and to how that connection plays a role in the origin of the solar wind. A growing understanding these connections, in turn, has led to the ability to use composition, ionization state, the microscopic state of the in situ plasma, and energetic particles as tools to further analyze the linkages and the underlying physical processes. Many missions have contributed to these investigations of the heliosphere as an integrated system. Two of the most important are Ulysses and SOHO, because of the types of measurements they make, their specific orbits, and how they have worked to complement each other. I will review and summarize the status of knowledge about these linkages, with emphasis on results from the Ulysses and SOHO missions. Some of the topics will be the global heliosphere at sunspot maximum and minimum, the physics and morphology of coronal holes, the origin(s) of slow wind, SOHO-Ulysses quadrature observations, mysteries in the propagation of energetic particles, and the physics of eruptive events and their associated current sheets. These specific topics are selected because they point towards the investigations that will be carried out with Solar Orbiter (SO) and the opportunity will be used to illustrate how SO will uniquely contribute to our knowledge of the underlying physical processes.

  11. Physics and Innovation: A Large-Company Perspective

    NASA Astrophysics Data System (ADS)

    Doering, Robert

    2013-03-01

    With regard to its influence on innovation (i.e., creating new commercial technologies), physics continuously faces the challenge of ``keeping ahead of engineering'' and ``moving on'' to new concepts as well as to potentially new roles with respect to industrial research. For most large companies, the R&D model has undergone significant transformation over the past three decades. This has been driven, in part, by the increasing cost of continuously developing new technologies upon which to base state-of-the-art products. Part of this challenge is to select which new concepts and ``emerging technologies'' to pursue. A poor decision at this point wastes development resources and can be very difficult to overcome later. Therefore, a key feature of many new R&D models is collaboration with entities outside of the corporation. Such partnerships reduce both the cost and risk of exploring multiple lines of research which may lead to new technologies. One flexible approach to organizing R&D partnerships is via the establishment of a consortium. The semiconductor industry has successfully used research consortia since the founding of the Semiconductor Research Corporation (SRC) in 1982 and SEMATECH a few years later. The automotive industry has also used the consortium approach for many years since the formation of the United States Council for Automotive Research (USCAR) in 1992. In the case of the SRC, the principal operating methodology is for the members to create requests for proposals leading to the collective funding of university research. This is often done in partnership with federal agencies. For example, the Focus Center Research Program (FCRP, an SRC subsidiary) is co-funded with DARPA. Another SRC subsidiary, the Nanoelectronics Research Initiative (NRI) is jointly supported with the NSF and NIST. This NRI-agency partnership has partly been enabled by the National Nanotechnology Initiative's Signature Initiative on ``Nanoelectronics for 2020 and Beyond.'' Within the SRC portfolio, the NRI research is particularly ``physics intensive''! Of course, in addition to consortia, the new models typically include external R&D through consulting arrangements, IP licensing, and acquisition of smaller companies that have developed useful new technologies, supported in some cases by SBIRs and other forms of government investment in growth of the economy.

  12. Daemonic ergotropy: enhanced work extraction from quantum correlations

    NASA Astrophysics Data System (ADS)

    Francica, Gianluca; Goold, John; Plastina, Francesco; Paternostro, Mauro

    2017-03-01

    We investigate how the presence of quantum correlations can influence work extraction in closed quantum systems, establishing a new link between the field of quantum non-equilibrium thermodynamics and the one of quantum information theory. We consider a bipartite quantum system and we show that it is possible to optimize the process of work extraction, thanks to the correlations between the two parts of the system, by using an appropriate feedback protocol based on the concept of ergotropy. We prove that the maximum gain in the extracted work is related to the existence of quantum correlations between the two parts, quantified by either quantum discord or, for pure states, entanglement. We then illustrate our general findings on a simple physical situation consisting of a qubit system.

  13. Evolution of Lamb Vector as a Vortex Breaking into Turbulence.

    NASA Astrophysics Data System (ADS)

    Wu, J. Z.; Lu, X. Y.

    1996-11-01

    In an incompressible flow, either laminar or turbulent, the Lamb vector is solely responsible to nonlinear interactions. While its longitudinal part is balanced by stagnation enthalpy, its transverse part is the unique source (as an external forcing in spectral space) that causes the flow to evolve. Moreover, in Reynolds-averaged flows the turbulent force can be derived exclusively from the Lamb vector instead of the full Reynolds stress tensor. Therefore, studying the evolution of the Lamb vector itself (both longitudinal and transverse parts) is of great interest. We have numerically examined this problem, taking the nonlinear distabilization of a viscous vortex as an example. In the later stage of this evolution we introduced a forcing to keep a statistically steady state, and observed the Lamb vector behavior in the resulting fine turbulence. The result is presented in both physical and spectral spaces.

  14. Study of energetic particle dynamics in Harbin Dipole eXperiment (HDX) on Space Plasma Environment Research Facility (SPERF)

    NASA Astrophysics Data System (ADS)

    Zhibin, W.; Xiao, Q.; Wang, X.; Xiao, C.; Zheng, J.; E, P.; Ji, H.; Ding, W.; Lu, Q.; Ren, Y.; Mao, A.

    2015-12-01

    Zhibin Wang1, Qingmei Xiao1, Xiaogang Wang1, Chijie Xiao2, Jinxing Zheng3, Peng E1, Hantao Ji1,5, Weixing Ding4, Quaming Lu6, Y. Ren1,5, Aohua Mao11 Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, China 150001 2 State Key Lab of Nuclear Physics & Technology, and School of Physics, Peking University, Beijing, China 100871 3ASIPP, Hefei, China, 230031 4University of California at Los Angeles, Los Angeles, CA, 90095 5Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 6University of Science and Technology of China, Hefei, China, 230026 A new terrella device for laboratory studies of space physics relevant to the inner magnetospheric plasmas, Harbin Dipole eXperiment (HDX), is scheduled to be built at Harbin Institute of Technology (HIT), China. HDX is one of two essential parts of Space Plasma Environment Research Facility (SPERF), which is a major national research facility for space physics studies. HDX is designed to provide a laboratory experimental platform to reproduce the earth's magnetospheric structure for investigations on the mechanism of acceleration/loss and wave-particle interaction of energetic particles in radiation belt, and on the influence of magnetic storms on the inner magnetosphere. It can be operated together with Harbin Reconnection eXperiment (HRX), which is another part of SPERF, to study the fundamental processes during interactions between solar wind and Earth's magnetosphere. In this presentation, the scientific goals and experimental plans for HDX, together with the means applied to generate the plasma with desired parameters, including multiple plasma sources and different kinds of coils with specific functions, as well as advanced diagnostics designed to be equipped to the facility for multi-functions, are reviewed. Three typical scenarios of HDX with operations of various coils and plasma sources to study specific physical processes in space plasmas will also be presented.

  15. Understanding and scaffolding Danish schoolteachers' motivation for using classroom-based physical activity: study protocol for a mixed methods study.

    PubMed

    Knudsen, Louise Stjerne; Skovgaard, Thomas; Bredahl, Thomas

    2018-03-14

    The benefits of physical activity for children's health, both mental and physical, and its positive effects on academic achievement are well established. Research also emphasises that schools could provide a natural setting for regular physical activity. There is, however, a limited amount of knowledge about teachers' views when it comes to integrating physical activity as part of teaching. The aim of this study is to understand teachers' motivation for integrating physical activity as part of teaching and to assess their need for guidance and support. The study uses an explanatory sequential mixed-methods design. Schools from across Denmark are included in the sample. The design comprises two separated phases-a quantitative and qualitative phase. The quantitative phase is guided by the self-determination theory where teachers' motivation will be measured using the Work Task Motivation Scale for Teachers. The theory of scaffolding guides the qualitative phase, which consists of in-depth interviews with participants selected from the quantitative phase based on levels of motivation and on demographic information. In accordance with the study aims, the analysis of data will identify teachers' internal and external levels of motivation. The purpose of the qualitative phase is to enhance understanding of teachers' motivation and of their need for support in the use of physical activity in teaching. All relevant ethics approvals have been acquired. All participants in this study will provide written informed consent prior to data collection. All data emerging from the quantitative and qualitative phase will be anonymised for analysis. Ethics approval was requested from the Regional Committee on Health Research Ethics for Southern Denmark approval ID S-20162000-40 and the Danish Data Protection Agency approval ID 16/15491). The study was deemed not notifiable by both authorities. NCT02894346; Pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Physical Activity: A Tool for Improving Health (Part 3--Recommended Amounts of Physical Activity for Optimal Health)

    ERIC Educational Resources Information Center

    Gallaway, Patrick J.; Hongu, Nobuko

    2016-01-01

    By promoting physical activities and incorporating them into their community-based programs, Extension professionals are improving the health of individuals, particularly those with limited resources. This article is the third in a three-part series describing the benefits of physical activity for human health: (1) biological health benefits of…

  17. On the constituent counting rule for hard exclusive processes involving multi-quark states

    NASA Astrophysics Data System (ADS)

    Guo, Feng-Kun; Meißner, Ulf-G.; Wang, Wei

    2017-05-01

    At high energy, the cross section at finite scattering angle of a hard exclusive process falls off as a power of the Manderstam variable s. If all involved quark-gluon compositions undergo hard momentum transfers, the fall-off scaling is determined by the underlying valence structures of the initial and final hadrons, known as the constituent counting rule. In spite of the complication due to helicity conservation, it has been argued that when applied to exclusive process with exotic multiquark states, the counting rule is a powerful way to determine the valence degrees of freedom inside hadron exotics. In this work, we demonstrate that for hadrons with hidden flavors, the naive application of the constituent counting rule to exclusive process with hadron exotic multiquark states is problematic, since it is not mandatory for all components to participate in hard scattering at the scale . We illustrate the problems in the viewpoint based on effective field theory. We clarify the misleading results that may be obtained from the constituent counting rule in exclusive processes with exotic candidates such as , , X(3872), etc. Supported in part by DFG and NSFC through funds provided to the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD” (NSFC Grant No. 11261130311), Thousand Talents Plan for Young Professionals, Chinese Academy of Sciences (CAS) President’s International Fellowship Initiative (PIFI) (2015VMA076), National Natural Science Foundation of China (11575110, 11655002), Natural Science Foundation of Shanghai (15DZ2272100, 15ZR1423100), Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Y5KF111CJ1), and by Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education.

  18. All health is local: state and local planning for physical activity promotion.

    PubMed

    Kohl, Harold W; Satinsky, Sara B; Whitfield, Geoffrey P; Evenson, Kelly R

    2013-01-01

    Physical activity is a leading cause of death in the world. Although state and local public health planning is a useful strategy to address noncommunicable disease health concerns such as heart disease, diabetes, cancer, and obesity, physical activity frequently is subsumed in such disease-centric planning efforts. This strategy could dilute broader efforts to promote physical activity, create administrative silos that may be trying to accomplish similar goals, and weaken efforts to more collectively address a variety of noncommunicable diseases. Currently, few stand-alone state plans directed specifically at physical activity exist. The reasons and barriers for this situation are not understood. In 2011, we surveyed public health care practitioners to describe state and local efforts for physical activity planning. Cross-sectional study. Survey of physical activity practitioners in the United States. A total of 227 former or current members of the US National Society of Physical Activity Practitioners in Public Health who completed a survey. Overall, 48.0% of respondents indicated that they were aware of public health plans for physical activity promotion in their state, whereas 36.6% indicated that they did not know. Respondents at the state level more frequently reported awareness of a plan (62.1%) than those with local-level (52.4%) or other job responsibilities (36.0%). A greater proportion of respondents reported that stand-alone physical activity plans existed in their state than actually did exist in the respective states. Integration with the National Physical Activity Plan was least often identified as a moderately or extremely relevant aspect of a state-level physical activity plan, although it was chosen at a high percentage (75.7%). Respondents identified financial support (88.0%) and political will and support (54.6%) most frequently as very or somewhat difficult barriers to moving forward with state-level physical activity plans. These data suggest that despite efforts to increase development and use of stand-alone physical activity plans, most practitioners rely on existing chronic disease- or obesity-related plans to guide their efforts. Barriers to developing stand-alone physical activity plans must be addressed to develop such plans.

  19. Dwight Nicholson Medal Lecture: Science and Society

    NASA Astrophysics Data System (ADS)

    Dahlberg, E. Dan

    2014-03-01

    I will present some background as to the current ``scientific state'' of our society and some ideas of how we got into the fix we are in. I will then describe The Physics Force a program we developed to popularize physics. It has proven to be a very successful and entertaining outreach program of the College of Science and Engineering in the University of Minnesota developed to make science exciting and fun for students of all ages, from 6 to 106. The Force performed variations of The Physics Circus, our most popular show, at Disney's Epcot Center, parts of it were shown on Newton's Apple and several of us have performed demonstrations on the Knoff-Hoff Show, a very successful German T.V. science program. The goal of The Physics Force is to show students and the public Science is Fun, Science is Interesting, and Science is Understandable. By all measures we have available, we are extremely successful in reaching our goals. In the last three year cycle of our University support about 110,000 residents of Minnesota (or about 2% of the total population) saw a Physics Force performance; over the last decade the total is around 250,000!

  20. Integrating writing research with curricular development in large-enrollment introductory physics

    NASA Astrophysics Data System (ADS)

    Demaree, Dedra

    2008-05-01

    Multiple research projects have been undertaken as part of an ongoing study to develop methods to do quantitative assessment of writing to learn within physics. The ability to make use of writing to learn at first glance appears limited in large-enrollment courses due to the time-intensive nature of essay writing and grading. However, effective ways to implement writing are quite possible. One study that will be discussed required students to do textbook summary writing in introductory physics in the 2007 spring semester of the ``Foundation Physics Course'' at the University of Cape Town. This course is a component of the special access program which contains mostly second language English speakers. Another use of writing will be reported that is currently being used in the introductory physics course at Oregon State University as a way to enhance problem solving. This project is also aimed at scaffolding students toward goals in our upper division courses. This talk will report on some of what we know about writing to learn, how we are working to improve ways to study it quantitatively, and how we are incorporating some aspects of it in accessible ways in large-enrollment introductory courses.

  1. RETRACTED: An overview of mathematical modeling of electrochemical supercapacitors/ultracapacitors

    NASA Astrophysics Data System (ADS)

    Ike, Innocent S.; Sigalas, Iakovos; Iyuke, Sunny; Ozoemena, Kenneth I.

    2015-01-01

    This article has been retracted at the request of the Editor-in-Chief, with agreement of the authors: please see Elsevier Policy on Article Withdrawal. Substantial parts of this review paper are similar to the texts of existing papers in the literature. The co-authors state that the corresponding author submitted the manuscript without their approval. The following works are affected: IEEE Transactions on Power Electronics, 26 (2011) 3472-3480, http://dx.doi.org/10.1109/TPEL.2011.2161096 The Journal of Physical Chemistry Letters, 4 (2013) 1260-1267, http://dx.doi.org/10.1021/jz4002967 The Journal of Physical Chemistry Letters, 4 (2013), 3367-3376, http://dx.doi.org/10.1021/jz4014163 Physical Chemistry Chemical Physics, 16 (2014), 6519-6538, http://dx.doi.org/10.1039/c3cp55186e The Authors unreservedly apologise for this violation of the publishing policies, and offer sincere apologies to the parties affected. The journal apologises to its readers and the authors that the overlap was not detected during the submission and review process.

  2. The importance of the complete history in the discovery of a potential suicide: a case report.

    PubMed

    Carter, Adam C; Nicholas, John J

    2003-03-01

    Suicidal ideation and completed suicides are an increasing problem among the elderly. In 1992, the elderly accounted for 13% of the population but represented 20% of all completed suicides. There are recognized risk factors for suicides in elderly patients, which include depression, deteriorating physical health, and loss of independent functioning. A complete history enables the examiner to establish a relationship with the patient and to formulate a diagnosis. Unfortunately, histories are often incomplete. Many factors can account for this, including financial pressures, patient volume, and overspecialization. The physiatric history is the integration of many parts. It incorporates not only the physiatrist's evaluation but those of other disciplines as well, for example, physical and occupational therapy. The physiatric history is a sensitive tool for assessing the state of being of the whole patient. We describe a case in which a careful and complete physiatric history and physical examination revealed an elderly patient with suicidal ideation and a plan. Copyright 2003 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation

  3. Putting the spark into physical science and algebra

    NASA Astrophysics Data System (ADS)

    Pill, Bruce; Dagenais, Andre

    2007-06-01

    The presenters will describe a number of laboratory activities developed in collaboration with the Department of Electrical Engineering at the University of Delaware as part of their outreach program to help make math and science more authentic on the pre-college level. Lessons relating to electrical topics are often abstract and appropriate only for advanced students in math and science. We have devised lessons that rely on simple equipment. They promote skills that are included in National and State Standards. They emphasize the connections between math and science; they are appropriate for an algebra course, a physical science course, a PhysicsFirst course or a traditional physics course. Students benefit from seeing that what they learn in math and science courses can lead to cutting-edge work in areas such as passive wave imaging, photonics, wireless communication and high performance computing. The collaboration has been meaningful because it has motivated us to tailor our lessons to reflect what is happening in the research lab of our local university. Written materials for use in teacher training workshops will also be available.

  4. Thermal and chemical denaturation of Bacillus circulans xylanase: A biophysical chemistry laboratory module.

    PubMed

    Raabe, Richard; Gentile, Lisa

    2008-11-01

    A number of institutions have been, or are in the process of, modifying their biochemistry major to include some emphasis on the quantitative physical chemistry of biomolecules. Sometimes this is done as a replacement for part for the entire physical chemistry requirement, while at other institutions this is incorporated as a component into the traditional two-semester biochemistry series. The latter is the model used for biochemistry and molecular biology majors at the University of Richmond, whose second semester of biochemistry is a course entitled Proteins: Structure, Function, and Biophysics. What is described herein is a protein thermodynamics laboratory module, using the protein Bacillus circulans xylanase, which reinforces many lecture concepts, including: (i) the denatured (D) state ensemble of a protein can be different, depending on how it was populated; (ii) intermediate states may be detected by some spectroscopic techniques but not by others; (iii) the use and assumptions of the van't Hoff approach to calculate ΔH(o) , ΔS(o) , and ΔG(o) (T) for thermal protein unfolding transitions; and (iv) the use and assumptions of an approach that allows determination of the Gibb's free energy of a protein unfolding transition based on the linear dependence of ΔG(o) on the concentration of denaturant used. This module also requires students to design their own experimental protocols and spend time in the primary literature, both important parts of an upper division lab. Copyright © 2008 International Union of Biochemistry and Molecular Biology, Inc.

  5. Forecasting in the presence of expectations

    NASA Astrophysics Data System (ADS)

    Allen, R.; Zivin, J. G.; Shrader, J.

    2016-05-01

    Physical processes routinely influence economic outcomes, and actions by economic agents can, in turn, influence physical processes. This feedback creates challenges for forecasting and inference, creating the potential for complementarity between models from different academic disciplines. Using the example of prediction of water availability during a drought, we illustrate the potential biases in forecasts that only take part of a coupled system into account. In particular, we show that forecasts can alter the feedbacks between supply and demand, leading to inaccurate prediction about future states of the system. Although the example is specific to drought, the problem of feedback between expectations and forecast quality is not isolated to the particular model-it is relevant to areas as diverse as population assessments for conservation, balancing the electrical grid, and setting macroeconomic policy.

  6. Generalized Ehrenfest Relations, Deformation Quantization, and the Geometry of Inter-model Reduction

    NASA Astrophysics Data System (ADS)

    Rosaler, Joshua

    2018-03-01

    This study attempts to spell out more explicitly than has been done previously the connection between two types of formal correspondence that arise in the study of quantum-classical relations: one the one hand, deformation quantization and the associated continuity between quantum and classical algebras of observables in the limit \\hbar → 0, and, on the other, a certain generalization of Ehrenfest's Theorem and the result that expectation values of position and momentum evolve approximately classically for narrow wave packet states. While deformation quantization establishes a direct continuity between the abstract algebras of quantum and classical observables, the latter result makes in-eliminable reference to the quantum and classical state spaces on which these structures act—specifically, via restriction to narrow wave packet states. Here, we describe a certain geometrical re-formulation and extension of the result that expectation values evolve approximately classically for narrow wave packet states, which relies essentially on the postulates of deformation quantization, but describes a relationship between the actions of quantum and classical algebras and groups over their respective state spaces that is non-trivially distinct from deformation quantization. The goals of the discussion are partly pedagogical in that it aims to provide a clear, explicit synthesis of known results; however, the particular synthesis offered aspires to some novelty in its emphasis on a certain general type of mathematical and physical relationship between the state spaces of different models that represent the same physical system, and in the explicitness with which it details the above-mentioned connection between quantum and classical models.

  7. Physics in France Circa 1850-1914; its National Organisation, Characteristics and Content.

    NASA Astrophysics Data System (ADS)

    Davis, John L.

    1990-01-01

    Available from UMI in association with The British Library. The thesis begins with an examination of what was understood by the term 'physics' in France circa. 1850. The development of the centralised state educational system and the physics research which was produced within this system in Paris and the provinces, is then considered. Although all the relevant institutions, where some form of physics or physical science was taught, have been examined, the Ecole Polytechnique, and the Ecole Normale Superieure have a particular importance in the early period of this study. As time passed and as a result of reforms put in hand by the republican regime which came out of the defeat of the Franco -Prussian war of 1870-71, the universite system grew in importance, while the role of the Polytechnique declined. The Ecole Normale, the Paris Faculty and the provincial faculties form part of the universite system and participated in its growth. A knowledge of the objectives of the physics courses in these institutions helps in the understanding of the characteristics of physics in France in this period. The central objective was, largely, to produce either science teachers, or (in the case of the Polytechnique), a type of elite 'technocrat', for the state, i.e. men who could communicate clearly, or technically utilise knowledge, which was already established on a firm theoretical basis. This is not to say that research had no place in the institutions of higher education, on the contrary, and this research, carried out by both teachers and students, is examined here to try to relate its form and content to the particular institution in which it was carried out. The role of national organisations like the Societe de physique and the Association Francaise pour l'avancement des sciences in the development of physics in France is also considered, as is the role of the Academie des sciences. The predominantly experimental nature of physics research in France is related to the interests of these organisations, to the requirements of the licence programme, and to the increasingly fierce competition for membership of the physics section of the Academie.

  8. Two decades of Mexican particle physics at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy Rubinstein

    2002-12-03

    This report is a view from Fermilab of Mexican particle physics at the Laboratory since about 1980; it is not intended to be a history of Mexican particle physics: that topic is outside the expertise of the writer. The period 1980 to the present coincides with the growth of Mexican experimental particle physics from essentially no activity to its current state where Mexican groups take part in experiments at several of the world's major laboratories. Soon after becoming Fermilab director in 1979, Leon Lederman initiated a program to encourage experimental physics, especially experimental particle physics, in Latin America. At themore » time, Mexico had significant theoretical particle physics activity, but none in experiment. Following a visit by Lederman to UNAM in 1981, a conference ''Panamerican Symposium on Particle Physics and Technology'' was held in January 1982 at Cocoyoc, Mexico, with about 50 attendees from Europe, North America, and Latin America; these included Lederman, M. Moshinsky, J. Flores, S. Glashow, J. Bjorken, and G. Charpak. Among the conference outcomes were four subsequent similar symposia over the next decade, and a formal Fermilab program to aid Latin American physics (particularly particle physics); it also influenced a decision by Mexican physicist Clicerio Avilez to switch from theoretical to experimental particle physics. The first physics collaboration between Fermilab and Mexico was in particle theory. Post-docs Rodrigo Huerta and Jose Luis Lucio spent 1-2 years at Fermilab starting in 1981, and other theorists (including Augusto Garcia, Arnulfo Zepeda, Matias Moreno and Miguel Angel Perez) also spent time at the Laboratory in the 1980s.« less

  9. Women in Physics and Astronomy in the U.S.

    NASA Astrophysics Data System (ADS)

    Ivie, Rachel

    2005-10-01

    I presented results from the AIP report, Women in Physics and Astronomy, 2005 (R. Ivie and K. Nies Ray, AIP Publication Number R-430.02, www.aip.org/statistics/trends/reports/women05.pdf), which was funded by the Alfred P. Sloan Foundation. Compared with other scientific fields, women are very underrepresented in physics, although their representation has increased in the last 30 years. By 2003, women earned 18% of the physics degrees in the United States, which is a record high. In 2003, women earned 26% of the PhDs in astronomy. However, minority women (African-American and Hispanic) receive very few physics and astronomy degrees in the U.S. Also troubling is the salary gap between men's and women's salaries in physics and related fields. Even within the same employment sector and controlling for years since degree, women earn 5% less than men. The percentage of newly hired part-time faculty who are women is higher than the percentages hired into tenured and tenure-track positions. Many women take physics in high school, but a smaller percentage take the Advanced Placement physics exams, and an even smaller percentage earn physics bachelor's degrees. However, once women have earned a bachelor's degree in physics, they are able to persist in academic careers. In fact, our data show that women are represented on physics and astronomy faculties at about the rates we would expect given degree production in the past. Finally, women's representation in physics varies across countries, documenting the influence of social and cultural factors on the representation of women in science.

  10. Young people's use of sports facilities: a Norwegian study on physical activity.

    PubMed

    Limstrand, Torgeir; Rehrer, Nancy J

    2008-07-01

    In recent years, sports facilities have formed part of Norwegian public health policies to increase physical activity among children and adolescents. Despite large sums of public money being spent on such facilities, information on usage is limited. Our aim was to study the effects of gender, age and relative activity level on young people's use of sports facilities. We explored 662 young people's (age 6-16 years) usage of 19 different kinds of sports facilities. A questionnaire was administered to students and teachers, and situation plots of students at recess were made. The findings indicate that sports facilities in general were less used by girls, adolescents (14-16 years) and the least active (physically active < or = 1 times/week outside school) than by boys, children (6-13 years) and the most active (physically active > or = 4 times/ week outside school). More general, multifunctional facilities were used to a greater extent than specialized facilities, particularly by the least active. Distance to facility was important for the use of common facilities. These results raise the question of whether sports facilities significantly increase physical activity among "all'' young people, which is the government's stated goal. More research on sports facilities use and physical activity levels among males and females of all ages is warranted.

  11. Oceanic Forcing of Ice-Sheet Retreat: West Antarctica and More

    NASA Astrophysics Data System (ADS)

    Alley, Richard B.; Anandakrishnan, Sridhar; Christianson, Knut; Horgan, Huw J.; Muto, Atsu; Parizek, Byron R.; Pollard, David; Walker, Ryan T.

    2015-05-01

    Ocean-ice interactions have exerted primary control on the Antarctic Ice Sheet and parts of the Greenland Ice Sheet, and will continue to do so in the near future, especially through melting of ice shelves and calving cliffs. Retreat in response to increasing marine melting typically exhibits threshold behavior, with little change for forcing below the threshold but a rapid, possibly delayed shift to a reduced state once the threshold is exceeded. For Thwaites Glacier, West Antarctica, the threshold may already have been exceeded, although rapid change may be delayed by centuries, and the reduced state will likely involve loss of most of the West Antarctic Ice Sheet, causing >3 m of sea-level rise. Because of shortcomings in physical understanding and available data, uncertainty persists about this threshold and the subsequent rate of change. Although sea-level histories and physical understanding allow the possibility that ice-sheet response could be quite fast, no strong constraints are yet available on the worst-case scenario. Recent work also suggests that the Greenland and East Antarctic Ice Sheets share some of the same vulnerabilities to shrinkage from marine influence.

  12. Polymer Principles in the Undergraduate Physical Chemistry Course. Part 2.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1985

    1985-01-01

    Part l (SE 538 305) covered application of classical thermodynamics, polymer crystallinity, and phase diagrams to teaching physical chemistry. This part covers statistical thermodynamics, conformation, molecular weights, rubber elasticity and viscoelasticity, and kinetics of polymerization. Eight polymer-oriented, multiple-choice test questions…

  13. Proof of Monogamy of non-local correlations in three and four qubit states

    NASA Astrophysics Data System (ADS)

    Sharma, Santosh Shelly; Sharma, Naresh Kumar

    2015-03-01

    Recently, we used the process of selective construction of invariants to obtain physically meaningful polynomial invariants for three and four qubit pure states. In this article, we report the exact relations between the concurrence of a two qubit reduced state and corresponding three or four qubit pure state invariants. Firstly, we obtain an analytical expression for concurrence of a given mixed state of two qubits in terms of determinants of negativity fonts in the three or four qubit pure state. For three qubits, a comparison with three tangle and squared negativity expressed in terms of determinants of negativity fonts leads to three relations. These three conditions satisfied by the two-way and three-way correlations sum together and lead to well known CKW inequality. When a qubit pair is part of a four qubit pure state, it may be entangled to the rest of the system through two-way, three-way and four-way correlations. Monogamy equalities, satisfied by two-way, three-way and four-way non-local quantum correlatios are presented for states belonging to classes of four qubit pure states with distinct entanglement types. We gratefully acknowledge financial support from CNPq and Capes Brazil.

  14. What's in a Name Change?

    NASA Astrophysics Data System (ADS)

    Martin, Joseph D.

    2015-03-01

    When solid state physics emerged in the 1940s, its name was controversial. By the 1970s, some physicists came to prefer "condensed matter" as a way to identify the discipline of physics examining complex matter. Physicists and historians often gloss this transition as a simple rebranding of a problematically named field, but attention to the motives behind these names reveals telling nuances. "Solid state physics" and "condensed matter physics"—along with "materials science," which also emerged during the Cold War—were named in accordance with ideological commitments about the identity of physics. Historians, therefore, can profitably understand solid state and condensed matter physics as distinct disciplines. Condensed matter, rather than being continuous with solid state physics, should be considered alongside materials science as an outlet for specific frustrations with the way solid state was organized.

  15. Topics in Cosmic String Physics and Vacuum Stability of Field Theories

    NASA Astrophysics Data System (ADS)

    Dasgupta, Indranil

    1998-01-01

    In this thesis I examine aspects of the vacuum state of quantum field theories. Namely, I study topological defects in the vacuum which appear as localized regions of non-zero energy density if the model system is unable to relax to a homogeneous and isotropic ground state because of topological constraints. I also examine the stability of the so called false vacua in theories that have multiple vacuum states with different energy densities. I first consider topological defects in the form of strings and independently the decay of false vacua in models of particle physics where the presence of either defects or of false vacua leads to interesting phenomenology. Then I describe a situation in which the defects arising from topological properties of the vacuum in turn affect the stability of the vacuum itself. In the first part of this work (chapters 2 and 3), I explore the phenomenology of cosmic strings. I introduce new string-like topological defects that resemble pairs of strings bound together. I give an existence proof of these 'binary strings' and then develop their cosmological properties in detail. I then propose a simple extension of the Standard Model in which cosmic strings may form and then decay through baryon number violating interactions leading to baryogenesis. I show that the model has distinct and testable signatures. In the second part of this work (chapters 4 and 5), I examine the vacua of several proposed models of gauge mediated dynamical supersymmetry breaking and show that the viable vacua are often unstable. I develop a rigorous theory for approximating vacuum tunneling rates in multi-scalar field theories and by computing bounds on the decay rate of the vacua in these models obtain useful constraints on the parameter space. In the final part of this work (chapter 6), I develop a theory of vacuum tunneling induced by topological defects. I show that defects can speed up vacuum tunneling rates by seeding new kinds of bubbles during a first order phase transition. I then indicate possible phenomenological applications of this effect and develop simple approximation techniques for computing the rate of seeded tunneling.

  16. Parental perception on the efficacy of a physical activity program for preschoolers.

    PubMed

    Bellows, Laura; Silvernail, Sara; Caldwell, Lisa; Bryant, Angela; Kennedy, Cathy; Davies, Patricia; Anderson, Jennifer

    2011-04-01

    Childhood obesity is among the leading health concerns in the United States. The relationship between unmet physical activity needs in young children is of particular interest as the trend in childhood obesity continues to rise and unmet physical activity needs are identified. The preschool years are an influential time in promoting healthful lifestyle habits and early childhood interventions may help establish lifelong healthful behaviors which could help prevent obesity later in life. The Food Friends®: Get Movin' with Mighty Moves® is a preschool physical activity program which aims to improve children's gross motor skills and physical activity levels. The home environment and parental modeling are critical factors related to child physical activity in this population. The parent component, Mighty Moves®: Fun Ways to Keep Families Active and Healthy, was designed to address barriers in the home environment that lead to unmet physical activity needs in preschoolers and their families. The program and materials were designed based on Social Marketing tenets and Social Learning Theory principles. Four Colorado Head Start centers were assigned to an experimental group as part of the Mighty Moves® group randomized trial. Quantitative and qualitative evaluation methods were used to determine what messages and materials reached and motivated the target audience to increase physical activity levels. Results of the study indicated the program's materials helped families and children to be more physically active. Additionally, materials and material dissemination were revised to enhance program goals.

  17. 34 CFR 300.108 - Physical education.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false Physical education. 300.108 Section 300.108 Education... DISABILITIES State Eligibility Other Fape Requirements § 300.108 Physical education. The State must ensure that public agencies in the State comply with the following: (a) General. Physical education services...

  18. 34 CFR 300.108 - Physical education.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 2 2013-07-01 2013-07-01 false Physical education. 300.108 Section 300.108 Education... DISABILITIES State Eligibility Other Fape Requirements § 300.108 Physical education. The State must ensure that public agencies in the State comply with the following: (a) General. Physical education services...

  19. 34 CFR 300.108 - Physical education.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 2 2014-07-01 2013-07-01 true Physical education. 300.108 Section 300.108 Education... DISABILITIES State Eligibility Other Fape Requirements § 300.108 Physical education. The State must ensure that public agencies in the State comply with the following: (a) General. Physical education services...

  20. 34 CFR 300.108 - Physical education.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 2 2012-07-01 2012-07-01 false Physical education. 300.108 Section 300.108 Education... DISABILITIES State Eligibility Other Fape Requirements § 300.108 Physical education. The State must ensure that public agencies in the State comply with the following: (a) General. Physical education services...

  1. A physics-based fractional order model and state of energy estimation for lithium ion batteries. Part I: Model development and observability analysis

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyu; Fan, Guodong; Pan, Ke; Wei, Guo; Zhu, Chunbo; Rizzoni, Giorgio; Canova, Marcello

    2017-11-01

    The design of a lumped parameter battery model preserving physical meaning is especially desired by the automotive researchers and engineers due to the strong demand for battery system control, estimation, diagnosis and prognostics. In light of this, a novel simplified fractional order electrochemical model is developed for electric vehicle (EV) applications in this paper. In the model, a general fractional order transfer function is designed for the solid phase lithium ion diffusion approximation. The dynamic characteristics of the electrolyte concentration overpotential are approximated by a first-order resistance-capacitor transfer function in the electrolyte phase. The Ohmic resistances and electrochemical reaction kinetics resistance are simplified to a lumped Ohmic resistance parameter. Overall, the number of model parameters is reduced from 30 to 9, yet the accuracy of the model is still guaranteed. In order to address the dynamics of phase-change phenomenon in the active particle during charging and discharging, variable solid-state diffusivity is taken into consideration in the model. Also, the observability of the model is analyzed on two types of lithium ion batteries subsequently. Results show the fractional order model with variable solid-state diffusivity agrees very well with experimental data at various current input conditions and is suitable for electric vehicle applications.

  2. Study of radiation damage to the CMS Hadronic Endcap Calorimeter and investigation into new physics using multi-boson measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belloni, Alberto

    This document is the final report for the U.S. D.O.E. Grant No. DE-SC0014088, which covers the period from May 15, 2015 to March 31, 2016. The funded research covered the study of multi-boson final states, culminated in the measurement of the W ±γγ and, for the first time at an hadronic collider, of the Zγγ production cross sections. These processes, among the rarest multi-boson final states measurable by LHC experiments, allow us to investigate the possibility of new physics in a model-independent way, by looking for anomalies in the standard model couplings among electroweak bosons. In particular, these 3-boson finalmore » states access quartic gauge couplings; the W ±γγ analysis performed as a part of this proposal sets limits on anomalies in the WWγγ quartic gauge coupling. The award also covered R&D activities to define a radiation-tolerant material to be used in the incoming upgrade of the CMS hadronic endcap calorimeter. In particular, the usage of a liquid-scintillator-based detector was investigated. The research work performed in this direction has been collected in a paper recently submitted for publication in the Journal of Instrumentation (JINST).« less

  3. Probabilistic short-term forecasting of eruption rate at Kīlauea Volcano using a physics-based model

    NASA Astrophysics Data System (ADS)

    Anderson, K. R.

    2016-12-01

    Deterministic models of volcanic eruptions yield predictions of future activity conditioned on uncertainty in the current state of the system. Physics-based eruption models are well-suited for deterministic forecasting as they can relate magma physics with a wide range of observations. Yet, physics-based eruption forecasting is strongly limited by an inadequate understanding of volcanic systems, and the need for eruption models to be computationally tractable. At Kīlauea Volcano, Hawaii, episodic depressurization-pressurization cycles of the magma system generate correlated, quasi-exponential variations in ground deformation and surface height of the active summit lava lake. Deflations are associated with reductions in eruption rate, or even brief eruptive pauses, and thus partly control lava flow advance rates and associated hazard. Because of the relatively well-understood nature of Kīlauea's shallow magma plumbing system, and because more than 600 of these events have been recorded to date, they offer a unique opportunity to refine a physics-based effusive eruption forecasting approach and apply it to lava eruption rates over short (hours to days) time periods. A simple physical model of the volcano ascribes observed data to temporary reductions in magma supply to an elastic reservoir filled with compressible magma. This model can be used to predict the evolution of an ongoing event, but because the mechanism that triggers events is unknown, event durations are modeled stochastically from previous observations. A Bayesian approach incorporates diverse data sets and prior information to simultaneously estimate uncertain model parameters and future states of the system. Forecasts take the form of probability distributions for eruption rate or cumulative erupted volume at some future time. Results demonstrate the significant uncertainties that still remain even for short-term eruption forecasting at a well-monitored volcano - but also the value of a physics-based, mixed deterministic-probabilistic eruption forecasting approach in reducing and quantifying these uncertainties.

  4. Solar Eruptive Flares: from Physical Understanding to Probabilistic Forecasting

    NASA Astrophysics Data System (ADS)

    Georgoulis, M. K.

    2013-12-01

    We describe a new, emerging physical picture of the triggering of major solar eruptions. First, we discuss and aim to interpret the single distinguishing feature of tight, shear-ridden magnetic polarity inversion lines (PILs) in solar active regions, where most of these eruptions occur. Then we analyze the repercussions of this feature, that acts to form increasingly helical pre-eruption structures. Eruptions, with the CME progenitor preceding the flare, tend to release parts of the accumulated magnetic free energy and helicity that are always much smaller than the respective budgets of the source active region. These eruption-related decreases, however, are not optimal for eruption forecasting - this role is claimed by physically intuitive proxy parameters that could show increased pre-eruption sensitivity at time scales practical for prediction. Concluding, we show how reconciling this new information - jointly enabled by the exceptional resolution and quality of Hinode and cadence of SDO data - can lead to advances in understanding that outline the current state-of-the-art of our eruption-forecasting capability.

  5. Sam Goudsmit--His Physics and His Statesmanship

    NASA Astrophysics Data System (ADS)

    Bederson, Benjamin

    2010-03-01

    Sam Goudsmit was already a famous theoretical physicist in his thirties, mainly because of his co-discovery of electron spin with George Uhlenbeck while both were students of Paul Ehrenfest in Holland in 1925. He and Uhlenbeck continued their thriving careers at the University of Michigan. Goudsmit's style as a physicist was always to make as close a connection between theory and experiment as possible. Thus, for example, his development with his student Robert Bacher of the technique called ``fractional parentage'' used fruitfully in both atomic and nuclear physics to compute energy levels of unknown states in terms of know ones. He also delved deeply into problems related to determinations of nuclear spins and moments. Partly because of his service as scientific leader of the Alsos project at the end of WWII he became a leading statesman of science. I will describe some of his achievements both as a physicist and as a statesman, prior to his becoming Editor in Chief of the American Physical Society.

  6. Oklahoma Center for High Energy Physics (OCHEP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandi, S; Strauss, M J; Snow, J

    2012-02-29

    The DOE EPSCoR implementation grant, with the support from the State of Oklahoma and from the three universities, Oklahoma State University, University of Oklahoma and Langston University, resulted in establishing of the Oklahoma Center for High Energy Physics (OCHEP) in 2004. Currently, OCHEP continues to flourish as a vibrant hub for research in experimental and theoretical particle physics and an educational center in the State of Oklahoma. All goals of the original proposal were successfully accomplished. These include foun- dation of a new experimental particle physics group at OSU, the establishment of a Tier 2 computing facility for the Largemore » Hadron Collider (LHC) and Tevatron data analysis at OU and organization of a vital particle physics research center in Oklahoma based on resources of the three universities. OSU has hired two tenure-track faculty members with initial support from the grant funds. Now both positions are supported through OSU budget. This new HEP Experimental Group at OSU has established itself as a full member of the Fermilab D0 Collaboration and LHC ATLAS Experiment and has secured external funds from the DOE and the NSF. These funds currently support 2 graduate students, 1 postdoctoral fellow, and 1 part-time engineer. The grant initiated creation of a Tier 2 computing facility at OU as part of the Southwest Tier 2 facility, and a permanent Research Scientist was hired at OU to maintain and run the facility. Permanent support for this position has now been provided through the OU university budget. OCHEP represents a successful model of cooperation of several universities, providing the establishment of critical mass of manpower, computing and hardware resources. This led to increasing Oklahoma's impact in all areas of HEP, theory, experiment, and computation. The Center personnel are involved in cutting edge research in experimental, theoretical, and computational aspects of High Energy Physics with the research areas ranging from the search for new phenomena at the Fermilab Tevatron and the CERN Large Hadron Collider to theoretical modeling, computer simulation, detector development and testing, and physics analysis. OCHEP faculty members participating on the D0 collaboration at the Fermilab Tevatron and on the ATLAS collaboration at the CERN LHC have made major impact on the Standard Model (SM) Higgs boson search, top quark studies, B physics studies, and measurements of Quantum Chromodynamics (QCD) phenomena. The OCHEP Grid computing facility consists of a large computer cluster which is playing a major role in data analysis and Monte Carlo productions for both the D0 and ATLAS experiments. Theoretical efforts are devoted to new ideas in Higgs bosons physics, extra dimensions, neutrino masses and oscillations, Grand Unified Theories, supersymmetric models, dark matter, and nonperturbative quantum field theory. Theory members are making major contributions to the understanding of phenomena being explored at the Tevatron and the LHC. They have proposed new models for Higgs bosons, and have suggested new signals for extra dimensions, and for the search of supersymmetric particles. During the seven year period when OCHEP was partially funded through the DOE EPSCoR implementation grant, OCHEP members published over 500 refereed journal articles and made over 200 invited presentations at major conferences. The Center is also involved in education and outreach activities by offering summer research programs for high school teachers and college students, and organizing summer workshops for high school teachers, sometimes coordinating with the Quarknet programs at OSU and OU. The details of the Center can be found in http://ochep.phy.okstate.edu.« less

  7. Completed Research in Health, Physical Education, and Recreation, Including International Sources.

    ERIC Educational Resources Information Center

    Singer, Robert W., Ed.; Weiss, Raymond A., Ed.

    This compilation lists research completed in the areas of health, physical education, recreation, and allied areas during 1969. It is arranged in three parts. Part 1 is a subject heading index in which cross references are given for all the listings in parts 2 and 3. Part 2 is a bibliography of published research, citing 801 articles published in…

  8. Completed Research in Health, Physical Education, and Recreation including International Sources. Volume 16, 1974 Edition.

    ERIC Educational Resources Information Center

    Singer, Robert N., Ed.; Weiss, Raymond A., Ed.

    This three-part document is a compilation of research studies completed in health, physical education, recreation, and allied areas during 1973. Part 1 consists of an index, which cross references the listings in parts 2 and 3. Part 2 is a bibliography that lists published research and cites articles published in the 177 periodicals reviewed by…

  9. A brief introduction to PYTHIA 8.1

    NASA Astrophysics Data System (ADS)

    Sjöstrand, Torbjörn; Mrenna, Stephen; Skands, Peter

    2008-06-01

    The PYTHIA program is a standard tool for the generation of high-energy collisions, comprising a coherent set of physics models for the evolution from a few-body hard process to a complex multihadronic final state. It contains a library of hard processes and models for initial- and final-state parton showers, multiple parton-parton interactions, beam remnants, string fragmentation and particle decays. It also has a set of utilities and interfaces to external programs. While previous versions were written in Fortran, PYTHIA 8 represents a complete rewrite in C++. The current release is the first main one after this transition, and does not yet in every respect replace the old code. It does contain some new physics aspects, on the other hand, that should make it an attractive option especially for LHC physics studies. Program summaryProgram title:PYTHIA 8.1 Catalogue identifier: ACTU_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ACTU_v3_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL version 2 No. of lines in distributed program, including test data, etc.: 176 981 No. of bytes in distributed program, including test data, etc.: 2 411 876 Distribution format: tar.gz Programming language: C++ Computer: Commodity PCs Operating system: Linux; should also work on other systems RAM: 8 megabytes Classification: 11.2 Does the new version supersede the previous version?: yes, partly Nature of problem: High-energy collisions between elementary particles normally give rise to complex final states, with large multiplicities of hadrons, leptons, photons and neutrinos. The relation between these final states and the underlying physics description is not a simple one, for two main reasons. Firstly, we do not even in principle have a complete understanding of the physics. Secondly, any analytical approach is made intractable by the large multiplicities. Solution method: Complete events are generated by Monte Carlo methods. The complexity is mastered by a subdivision of the full problem into a set of simpler separate tasks. All main aspects of the events are simulated, such as hard-process selection, initial- and final-state radiation, beam remnants, fragmentation, decays, and so on. Therefore events should be directly comparable with experimentally observable ones. The programs can be used to extract physics from comparisons with existing data, or to study physics at future experiments. Reasons for new version: Improved and expanded physics models, transition from Fortran to C++. Summary of revisions: New user interface, transverse-momentum-ordered showers, interleaving with multiple interactions, and much more. Restrictions: Depends on the problem studied. Running time: 10-1000 events per second, depending on process studied. References: [1] T. Sjöstrand, P. Edén, C. Friberg, L. Lönnblad, G. Miu, S. Mrenna, E. Norrbin, Comput. Phys. Comm. 135 (2001) 238.

  10. Study on global performances and mooring-induced damping of a semi-submersible

    NASA Astrophysics Data System (ADS)

    Xiong, Ling-zhi; Yang, Jian-min; Lv, Hai-ning; Zhao, Wen-hua; Kou, Yu-feng

    2016-10-01

    The harsh environmental conditions bring strong nonlinearities to the hydrodynamic performances of the offshore floating platforms, which challenge the reliable prediction of the platform coupled with the mooring system. The present study investigates a typical semi-submersible under both the operational and the survival conditions through numerical and experimental methods. The motion responses, the mooring line tensions, and the wave loads on the longitudinal mid-section are investigated by both the fully non-linearly coupled numerical simulation and the physical experiment. Particularly, in the physical model test, the wave loads distributed on the semi-submersible's mid-section were measured by dividing the model into two parts, namely the port and the starboard parts, which were rigidly connected by three six-component force transducers. It is concluded that both the numerical and physical model can have good prediction of the semi-submersible's global responses. In addition, an improved numerical approach is proposed for the estimation of the mooring-induced damping, and is validated by both the experimental and the published results. The characteristics of the mooring-induced damping are further summarized in various sea states, including the operational and the survival environments. In order to obtain the better prediction of the system response in deep water, the mooring-induced damping of the truncated mooring lines applied in the physical experiment are compensated by comparing with those in full length. Furthermore, the upstream taut and the downstream slack mooring lines are classified and investigated to obtain the different mooring line damping performances in the comparative study.

  11. Panel Discussion

    NASA Astrophysics Data System (ADS)

    Langer, James

    1997-03-01

    Panelists: Arthur Bienenstock, Stanford University Cherry Ann Murray, Lucent Technologies Venkatesh Narayanamurti, University of California-Santa Barbara Paul Peercy, SEMI-SEMATECH Robert Richardson, Cornell University James Roberto, Oak Ridge National Laboratory The Board on Physics and Astronomy is undertaking a series of reassessments of all branches of physics as the foundation of a new physics survey. As part of this project, a Committee on Condensed Matter and Materials Physics has been established under the leadership of Venkatesh Narayanamurti of the University of California-Santa Barbara. The committee has been working since June on a study that will include an illustrative recounting of major recent achievements; identification of new opportunities and challenges facing the field; and articulation-for leaders in government, industry, universities, and the public at large-of the important roles played by the field in modern society. An especially urgent issue is how to maintain the intellectual vitality of condensed matter and materials physics, and its contributions to the well-being of the United States, in an era of limited resources. The forum will feature a panel of materials researchers who are members of the Committee on Condensed Matter and Materials Physics. They will give a brief report on the status of the study and engage in a dialogue with the audience about issues facing the condensed matter and materials physics community. Broad community input is vital to the success of the study. Please come and make your voice heard!

  12. Fiber orientation interpolation for the multiscale analysis of short fiber reinforced composite parts

    NASA Astrophysics Data System (ADS)

    Köbler, Jonathan; Schneider, Matti; Ospald, Felix; Andrä, Heiko; Müller, Ralf

    2018-06-01

    For short fiber reinforced plastic parts the local fiber orientation has a strong influence on the mechanical properties. To enable multiscale computations using surrogate models we advocate a two-step identification strategy. Firstly, for a number of sample orientations an effective model is derived by numerical methods available in the literature. Secondly, to cover a general orientation state, these effective models are interpolated. In this article we develop a novel and effective strategy to carry out this interpolation. Firstly, taking into account symmetry arguments, we reduce the fiber orientation phase space to a triangle in R^2 . For an associated triangulation of this triangle we furnish each node with an surrogate model. Then, we use linear interpolation on the fiber orientation triangle to equip each fiber orientation state with an effective stress. The proposed approach is quite general, and works for any physically nonlinear constitutive law on the micro-scale, as long as surrogate models for single fiber orientation states can be extracted. To demonstrate the capabilities of our scheme we study the viscoelastic creep behavior of short glass fiber reinforced PA66, and use Schapery's collocation method together with FFT-based computational homogenization to derive single orientation state effective models. We discuss the efficient implementation of our method, and present results of a component scale computation on a benchmark component by using ABAQUS ®.

  13. Fiber orientation interpolation for the multiscale analysis of short fiber reinforced composite parts

    NASA Astrophysics Data System (ADS)

    Köbler, Jonathan; Schneider, Matti; Ospald, Felix; Andrä, Heiko; Müller, Ralf

    2018-04-01

    For short fiber reinforced plastic parts the local fiber orientation has a strong influence on the mechanical properties. To enable multiscale computations using surrogate models we advocate a two-step identification strategy. Firstly, for a number of sample orientations an effective model is derived by numerical methods available in the literature. Secondly, to cover a general orientation state, these effective models are interpolated. In this article we develop a novel and effective strategy to carry out this interpolation. Firstly, taking into account symmetry arguments, we reduce the fiber orientation phase space to a triangle in R^2 . For an associated triangulation of this triangle we furnish each node with an surrogate model. Then, we use linear interpolation on the fiber orientation triangle to equip each fiber orientation state with an effective stress. The proposed approach is quite general, and works for any physically nonlinear constitutive law on the micro-scale, as long as surrogate models for single fiber orientation states can be extracted. To demonstrate the capabilities of our scheme we study the viscoelastic creep behavior of short glass fiber reinforced PA66, and use Schapery's collocation method together with FFT-based computational homogenization to derive single orientation state effective models. We discuss the efficient implementation of our method, and present results of a component scale computation on a benchmark component by using ABAQUS ®.

  14. Effects of consumption of sucromalt, a slowly digestible carbohydrate, on mental and physical energy questionnaire responses.

    PubMed

    Dammann, Kristen W; Bell, Margie; Kanter, Mitch; Berger, Alvin

    2013-03-01

    To evaluate whether consumption of the low-glycemic index (GI) carbohydrate sucromalt improves healthy adults' perceptions of mental and physical energy and fatigue compared to dextrose (glucose), a high GI control. In this double-blind, randomized, cross-over study, subjects (n = 44 healthy adults) consumed a standardized dinner, and following an overnight fast, ingested 75 g of either sucromalt or glucose in solution at 7:30 AM the next day. Subjects completed validated questionnaires that assessed mental and physical energy, and fatigue, hunger, and sleepiness at baseline and hourly until 12:30 PM for a total of five post-consumption time points. Within-subject differences adjusted for baseline for individual questions and composite scores (Mental Energy State, Mental Fatigue State, Physical Energy State, and Physical Fatigue State) were analyzed using repeated measures analysis of variance. Mental Energy State, Physical Energy State, and Physical Fatigue State results favored sucromalt compared to glucose, with significant differences emerging particularly after 4-5 hours (P < 0.050). A trend toward a delay in Mental Fatigue State was also observed with sucromalt compared to glucose (P < 0.100). Minimal differences in ratings of hunger and sleepiness were observed between the beverages. Sucromalt may help attenuate the perceived decline in mental and physical energy and rise in mental and physical fatigue that can occur 4-5 hours after ingestion of a high GI beverage. Trials examining effects of sucromalt on cognitive and physical performance are of future interest.

  15. Geohydrologic systems in Kansas with emphasis on systems in Upper Cambrian through Lower Cretaceous rocks

    USGS Publications Warehouse

    Wolf, R.J.; Hansen, C.V.; McGovern, H.E.; Spinazola, J.M.

    1990-01-01

    This Hydrologic Investigations Atlas, which consists of a series of chapters, presents a description of (1) the physical frameworks and (2) the geohydrology of the principal aquifers and confining systems in Kansas. The report is the result of an investigation that has been made as part of the Central Midwest Regional Aquifer System Analysis (CMRASA), one of several major investigations by the U.S. Geological Survey to define regional aquifer systems. These regional analyses are designed to increase knowledge of major flow regimes and provide data for assessing, developing, and managing water supplies. The CMRASA is an investigation of water in Upper Cambrian through Lower Cretaceous rocks in parts of 10 Central Midwestern States, as shown by the map on the envelope cover.

  16. Water Resources Data for California, 1969; Part 2: Water Quality Records

    USGS Publications Warehouse

    1970-01-01

    Water-resources investigations of the U.S. Geological Survey include the collection of water-quality data on the chemical and physical characteristics of surface and ground-water supplies of the Nation. Theses data for the 1969 water year for the quality of surface water in California are presented in this report. Data for a few water-quality stations in bordering States are also included. The data were collected by the Water Resources Division of the Geological Survey under the direction of R. Stanley Lord, district chief, Menlo Park, Calif.

  17. Entropy inequality and hydrodynamic limits for the Boltzmann equation.

    PubMed

    Saint-Raymond, Laure

    2013-12-28

    Boltzmann brought a fundamental contribution to the understanding of the notion of entropy, by giving a microscopic formulation of the second principle of thermodynamics. His ingenious idea, motivated by the works of his contemporaries on the atomic nature of matter, consists of describing gases as huge systems of identical and indistinguishable elementary particles. The state of a gas can therefore be described in a statistical way. The evolution, which introduces couplings, loses part of the information, which is expressed by the decay of the so-called mathematical entropy (the opposite of physical entropy!).

  18. Positive spaces, generalized semi-densities, and quantum interactions

    NASA Astrophysics Data System (ADS)

    Canarutto, Daniel

    2012-03-01

    The basics of quantum particle physics on a curved Lorentzian background are expressed in a formulation which has original aspects and exploits some non-standard mathematical notions. In particular, positive spaces and generalized semi-densities (in a distributional sense) are shown to link, in a natural way, discrete multi-particle spaces to distributional bundles of quantum states. The treatment of spinor and boson fields is partly original also from an algebraic point of view and suggests a non-standard approach to quantum interactions. The case of electroweak interactions provides examples.

  19. Recent developments in LIBXC - A comprehensive library of functionals for density functional theory

    NASA Astrophysics Data System (ADS)

    Lehtola, Susi; Steigemann, Conrad; Oliveira, Micael J. T.; Marques, Miguel A. L.

    2018-01-01

    LIBXC is a library of exchange-correlation functionals for density-functional theory. We are concerned with semi-local functionals (or the semi-local part of hybrid functionals), namely local-density approximations, generalized-gradient approximations, and meta-generalized-gradient approximations. Currently we include around 400 functionals for the exchange, correlation, and the kinetic energy, spanning more than 50 years of research. Moreover, LIBXC is by now used by more than 20 codes, not only from the atomic, molecular, and solid-state physics, but also from the quantum chemistry communities.

  20. Spin state switching in iron coordination compounds

    PubMed Central

    Gaspar, Ana B; Garcia, Yann

    2013-01-01

    Summary The article deals with coordination compounds of iron(II) that may exhibit thermally induced spin transition, known as spin crossover, depending on the nature of the coordinating ligand sphere. Spin transition in such compounds also occurs under pressure and irradiation with light. The spin states involved have different magnetic and optical properties suitable for their detection and characterization. Spin crossover compounds, though known for more than eight decades, have become most attractive in recent years and are extensively studied by chemists and physicists. The switching properties make such materials potential candidates for practical applications in thermal and pressure sensors as well as optical devices. The article begins with a brief description of the principle of molecular spin state switching using simple concepts of ligand field theory. Conditions to be fulfilled in order to observe spin crossover will be explained and general remarks regarding the chemical nature that is important for the occurrence of spin crossover will be made. A subsequent section describes the molecular consequences of spin crossover and the variety of physical techniques usually applied for their characterization. The effects of light irradiation (LIESST) and application of pressure are subjects of two separate sections. The major part of this account concentrates on selected spin crossover compounds of iron(II), with particular emphasis on the chemical and physical influences on the spin crossover behavior. The vast variety of compounds exhibiting this fascinating switching phenomenon encompasses mono-, oligo- and polynuclear iron(II) complexes and cages, polymeric 1D, 2D and 3D systems, nanomaterials, and polyfunctional materials that combine spin crossover with another physical or chemical property. PMID:23504535

  1. Gravitational Wave Astronomy:The High Frequency Window

    NASA Astrophysics Data System (ADS)

    Andersson, Nils; Kokkotas, Kostas D.

    As several large scale interferometers are beginning to take data at sensitivities where astrophysical sources are predicted, the direct detection of gravitational waves may well be imminent. This would (finally) open the long anticipated gravitational-wave window to our Universe, and should lead to a much improved understanding of the most violent processes imaginable; the formation of black holes and neutron stars following core collapse supernovae and the merger of compact objects at the end of binary inspiral. Over the next decade we can hope to learn much about the extreme physics associated with, in particular, neutron stars. This contribution is divided in two parts. The first part provides a text-book level introduction to gravitational radiation. The key concepts required for a discussion of gravitational-wave physics are introduced. In particular, the quadrupole formula is applied to the anticipated bread-and-butter source for detectors like LIGO, GEO600, EGO and TAMA300: inspiralling compact binaries. The second part provides a brief review of high frequency gravitational waves. In the frequency range above (say) 100 Hz, gravitational collapse, rotational instabilities and oscillations of the remnant compact objects are potentially important sources of gravitational waves. Significant and unique information concerning the various stages of collapse, the evolution of protoneutron stars and the details of the supranuclear equation of state of such objects can be drawn from careful study of the gravitational-wave signal. As the amount of exciting physics one may be able to study via the detections of gravitational waves from these sources is truly inspiring, there is strong motivation for the development of future generations of ground based detectors sensitive in the range from hundreds of Hz to several kHz.

  2. Analysis of imperfections in the coherent optical excitation of single atoms to Rydberg states

    NASA Astrophysics Data System (ADS)

    de Léséleuc, Sylvain; Barredo, Daniel; Lienhard, Vincent; Browaeys, Antoine; Lahaye, Thierry

    2018-05-01

    We study experimentally various physical limitations and technical imperfections that lead to damping and finite contrast of optically driven Rabi oscillations between ground and Rydberg states of a single atom. Finite contrast is due to preparation and detection errors, and we show how to model and measure them accurately. Part of these errors originates from the finite lifetime of Rydberg states, and we observe its n3 scaling with the principal quantum number n . To explain the damping of Rabi oscillations, we use simple numerical models taking into account independently measured experimental imperfections and show that the observed damping actually results from the accumulation of several small effects, each at the level of a few percent. We discuss prospects for improving the coherence of ground-Rydberg Rabi oscillations in view of applications in quantum simulation and quantum information processing with arrays of single Rydberg atoms.

  3. Classical and quantum filaments in the ground state of trapped dipolar Bose gases

    NASA Astrophysics Data System (ADS)

    Cinti, Fabio; Boninsegni, Massimo

    2017-07-01

    We study, by quantum Monte Carlo simulations, the ground state of a harmonically confined dipolar Bose gas with aligned dipole moments and with the inclusion of a repulsive two-body potential of varying range. Two different limits can clearly be identified, namely, a classical one in which the attractive part of the dipolar interaction dominates and the system forms an ordered array of parallel filaments and a quantum-mechanical one, wherein filaments are destabilized by zero-point motion, and eventually the ground state becomes a uniform cloud. The physical character of the system smoothly evolves from classical to quantum mechanical as the range of the repulsive two-body potential increases. An intermediate regime is observed in which ordered filaments are still present, albeit forming different structures from the ones predicted classically; quantum-mechanical exchanges of indistinguishable particles across different filaments allow phase coherence to be established, underlying a global superfluid response.

  4. Quantum field-theoretical description of neutrino and neutral kaon oscillations

    NASA Astrophysics Data System (ADS)

    Volobuev, Igor P.

    2018-05-01

    It is shown that the neutrino and neutral kaon oscillation processes can be consistently described in quantum field theory using only plane waves of the mass eigenstates of neutrinos and neutral kaons. To this end, the standard perturbative S-matrix formalism is modified so that it can be used for calculating the amplitudes of the processes passing at finite distances and finite time intervals. The distance-dependent and time-dependent parts of the amplitudes of the neutrino and neutral kaon oscillation processes are calculated and the results turn out to be in accordance with those of the standard quantum mechanical description of these processes based on the notion of neutrino flavor states and neutral kaon states with definite strangeness. However, the physical picture of the phenomena changes radically: now, there are no oscillations of flavor or definite strangeness states, but, instead of it, there is interference of amplitudes due to different virtual mass eigenstates.

  5. Python-Based Tool for Universal Nuclear Data Extraction

    NASA Astrophysics Data System (ADS)

    McDonald, William; Blair, Hayden; Consalvi, Peter; Garbiso, Markus; Grover, Hannah; Harget, Alex; Martin, Matthew; Natzke, Connor; Leach, Kyle

    2017-09-01

    Over the past 70 years, nuclear physics experiments have provided a vast wealth of experimental data on both ground and excited state properties across the nuclear chart. In many cases, searching for and parsing the relevant nuclear structure data from previous work can be tedious and difficult. Although the compilation, evaluation, and digitization of this data by multiple groups around the world over the past several decades has helped dramatically in this respect, the process of performing systematic studies using this data can still be cumbersome and limited. We are in the process of creating a python-based program to extract, sort, and manipulate nuclear and atomic data efficiently. In its current state, the program is able to extract all atomic-shell ionization energies, excited- and ground-state nuclear properties, and all beta-decay rates and ratios. As a part of this ongoing project, we plan to use this tool to examine beta-decay rates in extreme astrophysical environments.

  6. Large-eddy simulations of a Salt Lake Valley cold-air pool

    NASA Astrophysics Data System (ADS)

    Crosman, Erik T.; Horel, John D.

    2017-09-01

    Persistent cold-air pools are often poorly forecast by mesoscale numerical weather prediction models, in part due to inadequate parameterization of planetary boundary-layer physics in stable atmospheric conditions, and also because of errors in the initialization and treatment of the model surface state. In this study, an improved numerical simulation of the 27-30 January 2011 cold-air pool in Utah's Great Salt Lake Basin is obtained using a large-eddy simulation with more realistic surface state characterization. Compared to a Weather Research and Forecasting model configuration run as a mesoscale model with a planetary boundary-layer scheme where turbulence is highly parameterized, the large-eddy simulation more accurately captured turbulent interactions between the stable boundary-layer and flow aloft. The simulations were also found to be sensitive to variations in the Great Salt Lake temperature and Salt Lake Valley snow cover, illustrating the importance of land surface state in modelling cold-air pools.

  7. What is life? Bio-physical perspectives.

    PubMed

    Gladyshev, G P

    2009-01-01

    Life arises and develops in gravitationally bound atomic systems, under certain conditions, in the presence of the inflow of energy. A condition of structural dynamic reactivity to the energy inflow qualifies what are anthropomorphically considered as "alive objects". Alive objects, in this perspective, include such rudimentary animate atomic structures as the retinal molecule C20H28o to the herpes simplex virus C102H152N26o29 to the human being, a twenty-six element atomic structure, which can be quantified further as thermodynamic quasi-closed supramolecular systems, which are part of natural open systems. These systems appear and evolve in periodic conditions near to internal equilibrium. This systems attribute of dynamic life can be understood further by the determination and use of mathematical "state functions", which are functions that quantify the state of a system defined by the ensemble of physical quantities: temperature, pressure, composition, etc., which characterize the system, but neither by its surroundings nor by its history. In this view, the phenomenon of a life is easily understood as a general consequence of the laws of the universe, in particular, the laws of thermodynamics, which in the geocentric perspective translate to a formulation of "hierarchical thermodynamics" and a "principle of substance stability". The formation of living thermodynamic structures, in short, arises on the nanolevel by a constantly varying environment that causes variety of living forms. The definition of a life as the bio-chemical-physical phenomenon can thus be given on the basis of the exact sciences, i. e. chemistry, physics, and thermodynamics, without mention of numerous private attributes of a living substance and without physically baseless models of mathematical modeling, such as Prigoginean thermodynamics.

  8. Chiral sp-orbital paired superfluid of fermionic atoms in a 2D spin-dependent optical lattice

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Li, Xiaopeng; Wu, Biao; Liu, W. Vincent

    2014-03-01

    Recent progress in realizing synthetic quantum orbital materials in chequerboard and hexagonal optical lattices opens an avenue towards exploiting unconventional quantum states, advancing our understanding of correlated quantum matter. Here, we unveil a chiral sp -orbital paired superfluid state for an interacting two-component Fermi gas in a 2D spin-dependent optical lattice. Surprisingly, this novel state is found to exist in a wide regime of experimentally tunable interaction strengths. The coexistence of this chiral superfluid and the ferro-orbital order is reminiscent of that of magnetism and superconductivity which is a long-standing issue in condensed matter physics. The topological properties are demonstrated by the existence of gapless chiral fermions in the presence of domain wall defects, reminiscent of quantum Hall edge states. Such properties can be measured by radio frequency spectroscopy in cold atomic experiments. Work supported in part by U.S. ARO, AFOSR, and DARPA-OLE-ARO, Kaufman Foundation, and NSF of China.

  9. Implementing the TARGET Model in Physical Education: Effects on Perceived Psychobiosocial and Motivational States in Girls.

    PubMed

    Bortoli, Laura; Bertollo, Maurizio; Filho, Edson; di Fronso, Selenia; Robazza, Claudio

    2017-01-01

    Grounded in achievement goal and self-determination theories, the purpose of this study was to investigate the effects of mastery and performance climate interventions on students' psychobiosocial (PBS) states and self-determined motivation. A first study was conducted to determine the validity of the measures. In a second study, two groups of female students ( N = 65, 14-15 years of age) took part in the investigation. A mastery-performance group participated in eight task-involving lessons and then in another set of eight ego-involving lessons. A performance-mastery group participated in ego-involving lessons and then in task-involving lessons. Findings revealed that the program was effective in changing PBS states and self-determined motivation in the performance-mastery group. In particular, participants in this group reported lower scores on pleasant/functional PBS states and self-determined motivation after the first phase of the intervention. Furthermore, lower levels of self-determined motivation were maintained after the second phase of the intervention, thereby suggesting detrimental carryover effects.

  10. Completed Research in Health, Physical Education and Recreation Including International Sources. Volume 22. 1980 Edition. Covering Research Completed in 1979.

    ERIC Educational Resources Information Center

    Rothstein, Anne L., Ed.; Nelson, Jack, Ed.

    This compilation lists research completed in the areas of health, physical education, recreation, and allied areas during 1979. It is arranged in three parts. Part one, the index, gives cross references for all the listings in parts two and three. References are arranged alphabetically under the subject headings. Part two contains a bibliography…

  11. Teaching Middle School Physical Education: A Standards-Based Approach for Grades 5-8. Second Edition.

    ERIC Educational Resources Information Center

    Mohnsen, Bonnie S.

    This book provides a blueprint for developing environment, curriculum, instruction, and assessment based on high quality physical education guidelines. There are 17 chapters in four parts. Part 1, "Prepare for Your Journey," includes (1) "Physical Education in a Changing World"; (2) "Reform Efforts in the Middle…

  12. Physical Activity: A Tool for Improving Health (Part 1--Biological Health Benefits)

    ERIC Educational Resources Information Center

    Gallaway, Patrick J.; Hongu, Nobuko

    2015-01-01

    Extension educators have been promoting and incorporating physical activities into their community-based programs and improving the health of individuals, particularly those with limited resources. This article is the first of a three-part series describing the benefits of physical activity for human health: 1) biological health benefits of…

  13. Physical Activity: A Tool for Improving Health (Part 2-Mental Health Benefits)

    ERIC Educational Resources Information Center

    Gallaway, Patrick J.; Hongu, Nobuko

    2016-01-01

    By promoting physical activities and incorporating them into their community-based programs, Extension professionals are improving the health of individuals, particularly those with limited resources. This article is the second in a three-part series describing the benefits of physical activity for human health: (1) biological health benefits of…

  14. Expendable Launch Vehicles Briefing and Basic Rocketry Physics

    NASA Technical Reports Server (NTRS)

    Delgado, Luis G.

    2010-01-01

    This slide presentation is composed of two parts. The first part shows pictures of launch vehicles and lift offs or in the case of the Pegasus launch vehicle separations. The second part discusses the basic physics of rocketry, starting with Newton's three physical laws that form the basis for classical mechanics. It includes a review of the basic equations that define the physics of rocket science, such as total impulse, specific impulse, effective exhaust velocity, mass ratio, propellant mass fraction, and the equations that combine to arrive at the thrust of the rocket. The effect of atmospheric pressure is reviewed, as is the effect of propellant mix on specific impulse.

  15. Physics in 1981 plus and minus 50.

    ERIC Educational Resources Information Center

    Ramsey, Norman F.

    1981-01-01

    Examines the state of physics in 1931, the predicted and actual states of physics in 1981, and predictions for 2031. Focuses on general conditions such as economy, energy (fossil, solar, nuclear fission, fusion), physics research, and physics publications. (JN)

  16. Implication of the Observable Spectral Cutoff Energy Evolution in XTE J1550-564

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev; Shaposhnikov, Nikolai

    2010-01-01

    The physical mechanisms responsible for production of the non-thermal emission in accreting black holes should be imprinted in the observational appearances of the power law tails in the X-ray spectra from these objects. Variety of spectral states observed from galactic black hole binaries by it Rossi X-ray Timing Explorer (RXTE) allow examination of the photon upscattering under different accretion regimes. We revisit of RXTE data collected from the black hole X-ray binary XTE J1550-564 during two periods of X-ray activity in 1998 and 2000 focusing on the behavior of the high energy cutoff of the power law part of the spectrum. For the 1998 outburst the Iran- sition from the low-hard state to the intermediate state was accompanied by a gradual decrease in the cutoff energy which then showed a sharp reversal to a clear increasing trend during the further evolution towards the very high and high-soft states. However, the 2000 outburst showed only the decreasing part of this pattern. Notably, the photon indexes corresponding to the cutoff increase for the 1998 event are much higher than the index values reached during the 2000 rise transition. We attribute this difference in the cutoff' energy behav- for to the different partial contributions of the thermal and non-thermal (bulk motion) Comptonization in photon upscattering. Namely, during the 1998 event the higher accretion rate presumably provided more cooling to the Comptonizing media and thus reducing the effectiveness of the thermal upscattering process. Under these conditions the bulk motion takes a leading role in boosting the input soft photons. Monte Carlo simulations of the The physical mechanisms responsible for production of the non-thermal emission in accreting black holes should be imprinted in the observational apperances of the power law tails in the X-ray spectra from these objects. Variety of spectral states observed from galactic black hole binaries by it Rossi X-ray Timing Explorer (RXTE) allow examination of the photon upscattering under different accretion regimes. We revisit of RXTE data collected from the black hole X-ray binary XTE J1550-564 during two periods of X-ray activity in 1998 and 2000 focusing on the behavior of the high energy cutoff of the power law part of the spectrum. For the 1998 outburst the Iran- sition from the low-hard state to the intermediate state was accompanied by a gradual decrease in the cutoff energy which then showed a sharp reversal to a clear increasing trend during the further evolution towards the very high and high-soft states. However, the 2000 outburst showed only the decreasing part of this pattern. Notably, the photon indexes corresponding to the cutoff increase for the 1998 event are much higher than the index values reached during the 2000 rise transition. We attribute this difference in the cutoff' energy behav- for to the different partial contributions of the thermal and non-thermal (bulk motion) Comptonization in photon upscattering. Namely, during the 1998 event the higher accretion rate presumably provided more cooling to the Comptonizing media and thus reducing the effectiveness of the thermal upscattering process. Under these conditions the bulk motion takes a leading role in boosting the input soft photons. Monte Carlo simulations of the Comptonization in a bulk motion region near an accreting black hole by Laurent & Titarchuk (2010) strongly support this scenario. strongly support this scenario

  17. Association between state physical education (PE) requirements and PE participation, physical activity, and body mass index change.

    PubMed

    Taber, Daniel R; Chriqui, Jamie F; Perna, Frank M; Powell, Lisa M; Slater, Sandy J; Chaloupka, Frank J

    2013-11-01

    To determine if state physical education (PE) laws are associated with student physical education attendance and physical activity (PA), and whether physical education and competitive food laws, in conjunction, are associated with lower BMI change. State laws regarding physical education time requirements and competitive foods in 2003 and 2006 were classified as strong, weak, or none, based on codified law ratings obtained from the Classification of Laws Associated with School Students. Laws were linked to student data on PE attendance and physical activity (8th grade, Spring 2007) and BMI change (5th-8th grade, 2004-2007), obtained from the Early Childhood Longitudinal Study (n=5510 students in 40 states). Girls reported 0.31 more days of activity (95% CI: 0.02, 0.61) and were more likely to attend physical education ≥ 3 days/week (74.1% versus 52.1%, difference=22.0, 95% CI: 2.1, 42.0) if they resided in states with strong physical education laws compared to no physical education laws. Weak physical education laws had modest associations with PE and activity, and there was no evidence that weak laws reduce BMI gain regardless of competitive food laws. Strong physical education laws with specific time requirements may increase physical education attendance and activity in girls. There is insufficient evidence that physical education laws reduce student weight gain. © 2013.

  18. Facts about Physical Activity

    MedlinePlus

    ... Physical Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local Programs Facts about Physical Activity ... Physical Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local Programs File Formats Help: How ...

  19. Geohydrologic systems in Kansas, geohydrology of the upper aquifer unit in the western interior plains aquifer system

    USGS Publications Warehouse

    Kenny, J.F.; Wolf, R.J.; Hansen, Cristi V.

    1993-01-01

    The purpose of the investigation is to provide a description of the principal geohydrologic systems in Upper Cambrian through Lower Cretaceous rocks in Kansas. This investigation was made as part of the Central Midwest Regional Aquifer-System Analysis (CMRASA). The CMRASA is one of several major investigations by the U.S. Geological Survey of regional aquifer systems in the United States. These regional investigations are designed to increase knowledge of the flow regime and hydrologic properties of major aquifer systems and to provide quantitative information for the assessment, development, and management of water supplies. The CMRASA study area includes all or parts of 10 Central Midwestern States (Jorgensen and Signor, 1981), as shown of the envelope cover,This Hydrologic Investigations Atlas, which consists of a series of chapters, presents a description of the physical framework and geohydrology of principal aquifers and confining systems in Kansas. Chapter H presents the geohydrology of the upper aquifer unit in the Western Interior Plains aquifer system. The physical framework of the aquifer system in relation to other systems is described by maps and sections showing areal extent and the thickness of rocks that compose the unit. The physical framework of the upper aquifer unit is described in detail in chapter D of the atlas (Hansen and others, in press). The hydrology of the system in relation to that of other systems is described in this chapter by maps showing the altitude of fluid levels and the direction of water movement within the unit. The chemical composition of water in the system is described by maps that show the distribution of dissolved-solids concentrations and the differences in water types on the basis of principal chemical constituents. Chapter A of this atlas series (Wolf and others, 1990) describes the relation of principal geohydrologic systems in Kansas and presents a more detailed discussion of the methods and data used to prepare and ensure consistency among the sets of maps.

  20. Primary students' conceptions of living things

    NASA Astrophysics Data System (ADS)

    Legaspi, Britt Anne

    Elementary school teachers are pressed for time throughout the instructional day to teach all curricular areas as expected by states and districts because of the current focus on reading and mathematics. Thus, foundational science concepts may be overlooked. For example, students' understandings of living and nonliving things may be overlooked by teachers, yet is useful in understanding the nature of living things. In this qualitative study, K-3 grade students were asked to sort objects as either living or nonliving and to give rationales for their choices. It was found that K-3 students readily used physical characteristics, such as having body parts, and physical abilities, such as being able to move, as criteria for living things. Students in grades 1 through 3 were able to articulate their reasons with more adult-like logic based on Jean Piaget' s research on developmental stages.

  1. Using a 400 kV Van de Graaff accelerator to teach physics at West Point

    NASA Astrophysics Data System (ADS)

    Marble, D. K.; Bruch, S. E.; Lainis, T.

    1997-02-01

    A small accelerator visitation laboratory is being built at the United States Military Academy using two 400 kV Van de Graaff accelerators. This laboratory will provide quality teaching experiments and increased research opportunities for both faculty and cadets as well as enhancing the department's ability to teach across the curriculum by using nuclear techniques to solve problems in environmental engineering, material science, archeology, art, etc. This training enhances a students ability to enter non-traditional fields that are becoming a large part of the physics job market. Furthermore, a small accelerator visitation laboratory for high school students can stimulate student interest in science and provide an effective means of communicating the scientific method to a general audience. A discussion of the USMA facility, class experiments and student research projects will be presented.

  2. Proposal for an Experiment to Measure Mixing, CP Violation and Rare Decays in Charm and Beauty Particle Decays at the Fermilab Collider - BTeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulyavtsev, A.; Procario, M.; Russ, J.

    2000-05-01

    This proposal consists of five parts and two appendices. The first part provides a detailed physics justification for the BTe V experiment. The second part presents the considerations that drive the detector design, followed by a description of the detector itself. The third part summarizes our simulation results which demonstrate that the design does enable us to achieve our physics goals. The fourth part compares BTeV's physics reach to that of other experiments which will be active in B physics in the same time period. The fifth part gives a very brief, high level summary of the cost estimate formore » BTeV. Appendix A has additional technical details about many of the detector subsystems and R&D plans; it is intended to be read primarily by experts in each area. Appendix B contains a roadmap which describes the location in the proposal of the answers to questions posed to the BTeV collaboration by the Fermilab Program Advisory Committee in June of 1999.« less

  3. Supersaturation and crystallization: non-equilibrium dynamics of amorphous solid dispersions for oral drug delivery.

    PubMed

    Kawakami, Kohsaku

    2017-06-01

    Amorphous solid dispersions (ASDs) are one of the key formulation technologies that aid the development of poorly soluble candidates. However, their dynamic behaviors, including dissolution and crystallization processes, are still full of mystery. Further understanding of these processes should enhance their wider use. Areas covered: The first part of this review describes the current understanding of the dissolution of ASDs, where phase separation behavior is frequently involved and attempts to develop appropriate dissolution tests to achieve an in vitro-in vivo correlation are examined. The second part of this review discusses crystallization of the drug molecule with the eventual aim of establishing an accelerated testing protocol for predicting its physical stability. Expert opinion: The phase separation behavior from the supersaturated state during the dissolution test must be understood, and its relevance to the oral absorption behavior needs to be clarified. Research efforts should focus on the differences between the phase behavior in in vitro and in vivo situations. Initiation time of the crystallization was shown to be predicted only from storage and glass transition temperatures. This finding should encourage the establishment of testing protocol of the physical stability of ASDs.

  4. 8 CFR 207.8 - Physical presence in the United States.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 8 Aliens and Nationality 1 2012-01-01 2012-01-01 false Physical presence in the United States. 207... ADMISSION OF REFUGEES § 207.8 Physical presence in the United States. For the purpose of adjustment of status under section 209(a)(1) of the Act, the required one year physical presence of the applicant in...

  5. 8 CFR 207.8 - Physical presence in the United States.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 8 Aliens and Nationality 1 2014-01-01 2014-01-01 false Physical presence in the United States. 207... ADMISSION OF REFUGEES § 207.8 Physical presence in the United States. For the purpose of adjustment of status under section 209(a)(1) of the Act, the required one year physical presence of the applicant in...

  6. 20 CFR 656.15 - Applications for labor certification for Schedule A occupations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Schedule A labor certification for an alien to be employed as a physical therapist (§ 656.5(a)(1)) must... state physical therapy licensing official in the state of intended employment, stating the alien is qualified to take that state's written licensing examination for physical therapists. Application for...

  7. 20 CFR 656.15 - Applications for labor certification for Schedule A occupations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Schedule A labor certification for an alien to be employed as a physical therapist (§ 656.5(a)(1)) must... state physical therapy licensing official in the state of intended employment, stating the alien is qualified to take that state's written licensing examination for physical therapists. Application for...

  8. 20 CFR 656.15 - Applications for labor certification for Schedule A occupations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Schedule A labor certification for an alien to be employed as a physical therapist (§ 656.5(a)(1)) must... state physical therapy licensing official in the state of intended employment, stating the alien is qualified to take that state's written licensing examination for physical therapists. Application for...

  9. Completing the physical representation of quantum algorithms provides a retrocausal explanation of the speedup

    NASA Astrophysics Data System (ADS)

    Castagnoli, Giuseppe

    2017-05-01

    The usual representation of quantum algorithms, limited to the process of solving the problem, is physically incomplete as it lacks the initial measurement. We extend it to the process of setting the problem. An initial measurement selects a problem setting at random, and a unitary transformation sends it into the desired setting. The extended representation must be with respect to Bob, the problem setter, and any external observer. It cannot be with respect to Alice, the problem solver. It would tell her the problem setting and thus the solution of the problem implicit in it. In the representation to Alice, the projection of the quantum state due to the initial measurement should be postponed until the end of the quantum algorithm. In either representation, there is a unitary transformation between the initial and final measurement outcomes. As a consequence, the final measurement of any ℛ-th part of the solution could select back in time a corresponding part of the random outcome of the initial measurement; the associated projection of the quantum state should be advanced by the inverse of that unitary transformation. This, in the representation to Alice, would tell her, before she begins her problem solving action, that part of the solution. The quantum algorithm should be seen as a sum over classical histories in each of which Alice knows in advance one of the possible ℛ-th parts of the solution and performs the oracle queries still needed to find it - this for the value of ℛ that explains the algorithm's speedup. We have a relation between retrocausality ℛ and the number of oracle queries needed to solve an oracle problem quantumly. All the oracle problems examined can be solved with any value of ℛ up to an upper bound attained by the optimal quantum algorithm. This bound is always in the vicinity of 1/2 . Moreover, ℛ =1/2 always provides the order of magnitude of the number of queries needed to solve the problem in an optimal quantum way. If this were true for any oracle problem, as plausible, it would solve the quantum query complexity problem.

  10. Stability of power systems coupled with market dynamics

    NASA Astrophysics Data System (ADS)

    Meng, Jianping

    This Ph.D. thesis presented here spans two relatively independent topics. The first part, Chapter 2 is self-contained, and is dedicated to studies of new algorithms for power system state estimation. The second part, encompassing the remaining chapters, is dedicated to stability analysis of power system coupled with market dynamics. The first part of this thesis presents improved Newton's methods employing efficient vectorized calculations of higher order derivatives in power system state estimation problems. The improved algorithms are proposed based on an exact Newton's method using the second order terms. By efficiently computing an exact gain matrix, combined with a special optimal multiplier method, the new algorithms show more reliable convergence compared with the existing methods of normal equations, orthogonal decomposition, and Hachtel's sparse tableau. Our methods are able to handle ill-conditioned problems, yet show minimal penalty in computational cost for well-conditioned cases. These claims are illustrated through the standard IEEE 118 and 300 bus test examples. The second part of the thesis focuses on stability analysis of market/power systems. The work presented is motivated by an emerging problem. As the frequency of market based dispatch updates increases, there will inevitably be interaction between the dynamics of markets determining the generator dispatch commands, and the physical response of generators and network interconnections, necessitating the development of stability analysis for such coupled systems. We begin with numeric tests using different market models, with detailed machine/exciter/turbine/governor dynamics, in the New England 39 bus test system. A progression of modeling refinements are introduced, including such non-ideal effects as time delays. Electricity market parameter identification algorithms are also studied based on real time data from the PJM electricity market. Finally our power market model is augmented by optimal power flow constraints, allowing study of the so-called congestion problem. These studies show that understanding of potential modes of instability in such coupled systems is of crucial importance both in designing suitable rules for power markets, and in designing physical generator controls that are complementary to market-based dispatch.

  11. How Much Physical Activity Do Adults Need?

    MedlinePlus

    ... Physical Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local Programs How much physical activity ... Physical Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local Programs File Formats Help: How ...

  12. Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas-Kroll-Hess transformation up to arbitrary order.

    PubMed

    Reiher, Markus; Wolf, Alexander

    2004-12-08

    In order to achieve exact decoupling of the Dirac Hamiltonian within a unitary transformation scheme, we have discussed in part I of this series that either a purely numerical iterative technique (the Barysz-Sadlej-Snijders method) or a stepwise analytic approach (the Douglas-Kroll-Hess method) are possible. For the evaluation of Douglas-Kroll-Hess Hamiltonians up to a pre-defined order it was shown that a symbolic scheme has to be employed. In this work, an algorithm for this analytic derivation of Douglas-Kroll-Hess Hamiltonians up to any arbitrary order in the external potential is presented. We discuss how an estimate for the necessary order for exact decoupling (within machine precision) for a given system can be determined from the convergence behavior of the Douglas-Kroll-Hess expansion prior to a quantum chemical calculation. Once this maximum order has been accomplished, the spectrum of the positive-energy part of the decoupled Hamiltonian, e.g., for electronic bound states, cannot be distinguished from the corresponding part of the spectrum of the Dirac operator. An efficient scalar-relativistic implementation of the symbolic operations for the evaluation of the positive-energy part of the block-diagonal Hamiltonian is presented, and its accuracy is tested for ground-state energies of one-electron ions over the whole periodic table. Furthermore, the first many-electron calculations employing sixth up to fourteenth order DKH Hamiltonians are presented. (c) 2004 American Institute of Physics.

  13. Examining acute bi-directional relationships between affect, physical feeling states, and physical activity in free-living situations using electronic ecological momentary assessment.

    PubMed

    Liao, Yue; Chou, Chih-Ping; Huh, Jimi; Leventhal, Adam; Dunton, Genevieve

    2017-06-01

    Current knowledge about the relationship of physical activity with acute affective and physical feeling states is informed largely by lab-based studies, which have limited generalizability to the natural ecology. This study used ecological momentary assessment to assess subjective affective and physical feeling states in free-living settings across 4 days from 110 non-physically active adults (Age M = 40.4, SD = 9.7). Light physical activity (LPA) and moderate-to-vigorous physical activity (MVPA) were measured objectively by an accelerometer. Multilevel modeling was used to test the bi-directional associations between affective and physical feeling states and LPA/MVPA minutes. Higher positive affect, lower negative affect and fatigue were associated with more MVPA over the subsequent 15 min, while higher negative affect and energy were associated with more LPA over the subsequent 15 and 30 min. Additionally, more LPA and MVPA were associated with feeling more energetic over the subsequent 15 and 30 min, and more LPA was additionally associated with feeling more negative and less tired over the subsequent 15 and 30 min. Positive and negative affective states might serve as antecedents to but not consequences of MVPA in adults' daily lives. Changes in LPA may be predicted and followed by negative affective states. Physical feeling states appear to lead up to and follow changes in both LPA and MVPA.

  14. Protecting the Library and Its Resources. A Guide to Physical Protection and Insurance.

    ERIC Educational Resources Information Center

    Johnson, Edward M., Ed.

    The first part of this manual contains information about providing physical protection for libraries and is organized into the following chapters--(1) types of physical losses, (2) the prevention of losses, (3) fire defense measures, (4) fire protection equipment, and (5) fire protection in library planning. The second part is concerned with…

  15. Biology--Chemistry--Physics, Students' Guide, A Three-Year Sequence, Parts I and II.

    ERIC Educational Resources Information Center

    Scott, Arthur; And Others

    Parts I and II of the students' guide to the three-year integrated biology, chemistry, and physics course being prepared by the Portland Project Committee are contained in this guide. A committee reviewed and selected material developed by the national course improvement groups--Physical Science Study Committee, Chemical Bond Approach, Chemical…

  16. Mature Stuff. Physical Activity for the Older Adult.

    ERIC Educational Resources Information Center

    Leslie, David K., Ed.

    This book on physical education for the older adult is divided into three parts. The first part contains a chapter that introduces the reader to the topic of aging in American society and ties that topic to the interests of health professionals. Chapters 2 through 6 address the foundation areas of health, physical education, recreation and dance…

  17. Student Learning in Physical Education: Applying Research To Enhance Instruction. Second Edition.

    ERIC Educational Resources Information Center

    Silverman, Steven J., Ed.; Ennis, Catherine D., Ed.

    This book provides the latest research on physical education curriculum, teaching, and teacher education and shows physical educators how to apply this knowledge to their day-to-day practices. There are 19 chapters in five parts. Part 1, "Overview of the Field," includes (1) "Enhancing Learning: An Introduction" (Stephen J. Silverman and Catherine…

  18. Teaching Einsteinian Physics at Schools: Part 3, Review of Research Outcomes

    ERIC Educational Resources Information Center

    Kaur, Tejinder; Blair, David; Moschilla, John; Stannard, Warren; Zadnik, Marjan

    2017-01-01

    This paper reviews research results obtained from Einsteinian physics programs run by different instructors with Years 6, 9, 10 and 11 students using the models and analogies described in parts 1 and 2. The research aimed to determine whether it is possible to teach Einsteinian physics and to measure the changes in student attitudes to physics…

  19. Do psychobiosocial states mediate the relationship between perceived motivational climate and individual motivation in youngsters?

    PubMed

    Bortoli, Laura; Bertollo, Maurizio; Filho, Edson; Robazza, Claudio

    2014-01-01

    Grounded in achievement goal theory and self-determination theory, this cross-sectional study examined the relationship between perceived motivational climate and individuals' motivation as well as the mediation effect of psychobiosocial states as conceptualised within the individual zones of optimal functioning (IZOF) model. Young students (N = 167, age range 14-15 years) taking part in physical education classes completed measures of teacher-initiated motivational climate, task and ego orientation, motivation and psychobiosocial states. Simple and serial mediation analyses indicated that a perceived mastery climate and individuals' task orientation were related to intrinsic motivation and identified regulation through the mediation of pleasant/functional psychobiosocial states. In contrast, a perceived performance climate was related to external regulation and amotivation through the mediation of unpleasant/dysfunctional psychobiosocial states. Regression analysis results also showed that discrete psychobiosocial states accounted for a significant proportion of variance in motivational variables. Taken together, findings highlight the role of psychobiosocial states as mediators of the relationship between motivational climate and an individual's motivation, and suggest that educators should consider a wide range of individual's functional and dysfunctional reactions deriving from their instructional activity.

  20. Better or Worse: a Study of Day-to-Day Changes over Five Months of Rosen Method Bodywork Treatment for Chronic Low Back Pain.

    PubMed

    Fogel, Alan

    2013-01-01

    Fluctuations of good days and bad days-in physical symptoms and emotional states-are common for individuals with chronic illness. This pilot study examines these fluctuations during bodywork treatment. We analyzed changes in daily self-reports over a period of five months for five individuals who received weekly treatments of Rosen Method Bodywork (RMB), which uses touch and words to enhance body awareness of physical sensations and emotional states. Five subjects (aged 31-56) who had chronic low back pain (CLBP) received 16 weekly treatments given by three experienced RMB practitioners. Pre- and posttreatment assessments covered demographics, disability, and pain. Clients also completed daily bedtime assessments of pain, fatigue, emotional state, and sense of control during the entire treatment period. All clients reported reductions in pain and/or disability in post- compared to pretreatment. In spite of a high level of day-to-day variability in the daily assessments, there were significant reductions in pain and fatigue, and significant increases in positive emotional state and sense of control across the treatment period. In reaching this end, however, some clients had slow and steady improvements, some improved more rapidly, while others got worse before they got better. The natural course of healing-with its inevitable fluctuations in symptoms-is part of a process leading to successful treatment outcomes. Rosen Method Bodywork may be especially helpful in developing and accepting both sensory and emotional body awareness changes that facilitate overall improvement.

  1. Protecting the unprotected: mixed-method research on drug use, sex work and rights in Pakistan's fight against HIV/AIDS.

    PubMed

    Mayhew, S; Collumbien, M; Qureshi, A; Platt, L; Rafiq, N; Faisel, A; Lalji, N; Hawkes, S

    2009-04-01

    To investigate the nature and extent of human rights abuses against three vulnerable groups (injecting drug users (IDUs) and male and female sex workers), to understand the social and sexual linkages between them and to examine how protecting their rights could enhance the impact of HIV prevention policies. In-depth interviews were carried out with 38 high-risk respondents (IDUs and female, male and transgender sex workers) and a bio-behavioural survey was performed of 813 IDU/sex worker respondents in Rawalpindi. People in all vulnerable groups interacted both sexually and socially. All groups experienced human rights abuses by state and non-state actors which increased their HIV risk. Non-state actors, including relations and sex worker clients, are responsible for verbal, physical and sexual violence. State actors (particularly police) perpetrate harassment, exploitation and abuse of all vulnerable groups with impunity. Health service providers fail to provide adequate services for vulnerable groups. High levels of discrimination and abuse of human dignity of all groups studied were revealed. This violates their physical and mental integrity and also leads to an increased risk of HIV. The sexual and social interactions between groups mean that human rights abuses experienced by one high-risk group can increase the risk of HIV both for them and other groups. The protection of human rights needs to become an integral part of a multisector response to the risk of HIV/AIDS by state and non-state agencies. The Government of Pakistan should work at both legal and programme levels to protect the rights of, and minimise discrimination against, groups vulnerable to HIV in order to reduce the potential for the spread of HIV before the epidemic takes hold.

  2. Climate Simulations based on a different-grid nested and coupled model

    NASA Astrophysics Data System (ADS)

    Li, Dan; Ji, Jinjun; Li, Yinpeng

    2002-05-01

    An atmosphere-vegetation interaction model (A VIM) has been coupled with a nine-layer General Cir-culation Model (GCM) of Institute of Atmospheic Physics/State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (IAP/LASG), which is rhomboidally truncated at zonal wave number 15, to simulate global climatic mean states. A VIM is a model having inter-feedback between land surface processes and eco-physiological processes on land. As the first step to couple land with atmosphere completely, the physiological processes are fixed and only the physical part (generally named the SVAT (soil-vegetation-atmosphere-transfer scheme) model) of AVIM is nested into IAP/LASG L9R15 GCM. The ocean part of GCM is prescribed and its monthly sea surface temperature (SST) is the climatic mean value. With respect to the low resolution of GCM, i.e., each grid cell having lon-gitude 7.5° and latitude 4.5°, the vegetation is given a high resolution of 1.5° by 1.5° to nest and couple the fine grid cells of land with the coarse grid cells of atmosphere. The coupling model has been integrated for 15 years and its last ten-year mean of outputs was chosen for analysis. Compared with observed data and NCEP reanalysis, the coupled model simulates the main characteris-tics of global atmospheric circulation and the fields of temperature and moisture. In particular, the simu-lated precipitation and surface air temperature have sound results. The work creates a solid base on coupling climate models with the biosphere.

  3. Barriers to Providing Physical Education and Physical Activity in Victorian State Secondary Schools

    ERIC Educational Resources Information Center

    Jenkinson, Kate A.; Benson, Amanda C.

    2010-01-01

    An on-line questionnaire was completed by 115 physical education teachers to establish the barriers to their implementation of physical education in Victorian state secondary schools. In addition, the barriers perceived by teachers to impact on students' participation in school-based physical education and physical activity were examined. The…

  4. Question 1: origin of life and the living state.

    PubMed

    Kauffman, Stuart

    2007-10-01

    The aim of this article is to discuss four topics: First, the origin of molecular reproduction. Second, the origin of agency - the capacity of a system to act on its own behalf. Agency is a stunning feature of human and some wider range of life. Third, to discuss a still poorly articulated feature of life noticed by the philosopher Immanuel Kant over 200 years ago: A self propagating organization of process. We have no theory for this aspect of life, yet it is central to life. Fourth, I will discuss constraints, as in Schroedinger's aperiodic crystal (Schroedinger E, What is life? The physical aspect of the living cell, 1944), as information, part of the total non-equilibrium union of matter, energy, work, work cycles, constraints, and information that appear to comprise the living state.

  5. Research Of The Influence Of Reftinskii SDPP’S Ash On The Processes Of Cement Stone’S Structure Forming

    NASA Astrophysics Data System (ADS)

    Zimakova, G. A.; Solonina, V. A.; Zelig, M. P.

    2017-01-01

    The article describes the experimental research of cement stone. Cement stone forming involves highly dispersive mineral additive - ground ash. It is stated that the substitution of some part of cement with activated ash leaves cement strength high. This is possible due to the activity of ash in structure forming processes. Activation of ash provides the increase in its puzzolanic activity, complete hydration processes. it is stated that ash grinding leads to a selective crystallization hydrated neoformations. Their morthology is different on outer and inner surfaces of ash spheres. The usage of ash can provide cement economy on condition that rheological characteristics of concrete stay constant. Besides, the usage of ash will improve physical and mechanic characteristics of cement stone and concrete.

  6. Physical Activity for a Healthy Weight

    MedlinePlus

    ... Physical Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local Programs Physical Activity for a ... Physical Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local Programs Language: English Español (Spanish) ...

  7. On Faraday Instability in Magnetic Liquids: Ince-Erdelyi Approach Applied to the Hill Equation Describing Oscillations of a Ferrofluid Free Surface

    NASA Astrophysics Data System (ADS)

    Hennenberg, M.; Slavtchev, S.; Valchev, G.

    2013-12-01

    When an isothermal ferrofluid is submitted to an oscillating magnetic field, the initially motionless liquid free surface can start to oscillate. This physical phenomenon is similar to the Faraday instability for usual Newtonian liquids subjected to a mechanical oscillation. In the present paper, we consider the magnetic field as a sum of a constant part and a time periodic part. Two different cases for the constant part of the field, being vertical in the first one or horizontal in the second one are studied. Assuming both ferrofluid magnetization and magnetic field to be collinear, we develop the linear stability analysis of the motionless reference state taking into account the Kelvin magnetic forces. The Laplace law describing the free surface deformation reduces to Hill's equation, which is studied using the classical method of Ince and Erdelyi. Inside this framework, we obtain the transition conditions leading to the free surface oscillations.

  8. Precise Heater Controller with rf-Biased Josephson Junctions

    NASA Technical Reports Server (NTRS)

    Green, Colin J.; Sergatskov, Dmitri A.; Duncan, R. V.

    2003-01-01

    Paramagnetic susceptibility thermometers used in fundamental physics experiments are capable of measuring temperature changes with a precision of a part in 2 x 10(exp 10). However, heater controllers are only able to control open-loop power dissipation to about a part in 10(exp 5). We used an array of rf-biased Josephson junctions to precisely control the electrical power dissipation in a heater resistor mounted on a thermally isolated cryogenic platform. Theoretically, this method is capable of controlling the electrical power dissipation to better than a part in 10(exp 12). However, this level has not yet been demonstrated experimentally. The experiment consists of a liquid helium cell that also functions as a high-resolution PdMn thermometer, with a heater resistor mounted on it. The cell is thermally connected to a temperature-controlled cooling stage via a weak thermal link. The heater resistor is electrically connected to the array of Josephson junctions using superconducting wire. An rf-biased array of capacitively shunted Josephson junctions drives the voltage across the heater. The quantized voltage across the resistor is Vn = nf(h/2e), where h is Planck's constant, f is the array biasing frequency, e is the charge of an electron, and n is the integer quantum state of the Josephson array. This results in an electrical power dissipation on the cell of Pn = (Vn)(sup 2/R), where R is the heater resistance. The change of the quantum state of the array changes the power dissipated in the heater, which in turn, results in the change of the cell temperature. This temperature change is compared to the expected values based on the known thermal standoff resistance of the cell from the cooling stage. We will present our initial experimental results and discuss future improvements. This work has been funded by the Fundamental Physics Discipline of the Microgravity Science Office of NASA, and supported by a no-cost equipment loan from Sandia National Laboratories.

  9. Smooth Sailing or Stormy Seas? Atlantic Canadian Physical Educators on the State and Future of Physical Education

    ERIC Educational Resources Information Center

    Robinson, Daniel B.; Randall, Lynn

    2016-01-01

    This article summarizes results from a recently completed study that focused upon the current state and possible future of physical education within Canada's four Atlantic provinces. Data from both large-scale surveys and eight follow-up focus group interviews are shared as they relate to the state and future of physical education, possible…

  10. Sequential Data Assimilation for Seismicity: a Proof of Concept

    NASA Astrophysics Data System (ADS)

    van Dinther, Ylona; Kuensch, Hans Rudolf; Fichtner, Andreas

    2017-04-01

    Integrating geological and geophysical observations, laboratory results and physics-based numerical modeling is crucial to improve our understanding of the occurrence of large subduction earthquakes. How to do this integration is less obvious, especially in light of the scarcity and uncertainty of natural and laboratory data and the difficulty of modeling the physics governing earthquakes. One way to efficiently combine information from these sources in order to estimate states and/or parameters is data assimilation, a mathematically sound framework extensively developed for weather forecasting purposes. We demonstrate the potential of using data assimilation by applying an Ensemble Kalman Filter to recover the current and forecast the future state of stress and strength on the megathrust based on data from a single borehole. Data and its errors are for the first time assimilated to - using the least-squares solution of Bayes theorem - update a Partial Differential Equation-driven seismic cycle model. This visco-elasto-plastic continuum forward model solves Navier-Stokes equations with a rate-dependent friction coefficient. To prove this concept we perform a perfect model test in an analogue subduction zone setting. Synthetic numerical data from a single analogue borehole are assimilated into 150 ensemble models. Since we know the true state of the numerical data model, a quantitative and qualitative evaluation shows that meaningful information on the stress and strength is available, even when only data from a single borehole is assimilated over only a part of a seismic cycle. This is possible, since the sampled error covariance matrix contains prior information on the physics that relates velocities, stresses, and pressures at the surface to those at the fault. During the analysis step, stress and strength distributions are thus reconstructed in such a way that fault coupling can be updated to either inhibit or trigger events. In the subsequent forward propagation step the physical equations are solved to propagate the updated states forward in time and thus provide probabilistic information on the occurrence of the next analogue earthquake. At the next assimilation step(s), the systems forecasting ability turns out to be distinctly better than using a periodic model to forecast this simple, quasi-periodic sequence. Combining our knowledge of physical laws with observations thus seems to be a useful tool that could be used to improve probabilistic seismic hazard assessment and increase our physical understanding of the spatiotemporal occurrence of earthquakes, subduction zones, and other Solid Earth systems.

  11. Physiology of Exercise for Physical Education and Athletics. Second Edition.

    ERIC Educational Resources Information Center

    deVries, Herbert A.

    This three-part text, which is concerned with human functions under stress of muscular activity, provides a basis for the study of physical fitness and athletic training. Part 1 reviews pertinent areas of basic physiology. Muscles, the nervous system, the heart, respiratory system, exercise metabolism, and the endocrine system are reviewed. Part 2…

  12. A cyber physical system approach for composite part: From smart manufacturing to predictive maintenance

    NASA Astrophysics Data System (ADS)

    Quaranta, Giacomo; Abisset-Chavanne, Emmanuelle; Chinesta, Francisco; Duval, Jean-Louis

    2018-05-01

    In this work, a Cyber Physical System called Hybrid Twin is proposed for composite parts manufactured from RTM. This allows to introduce in the virtual twin of the parts the defect and the final properties induced by the real manufacturing process and to use on line data collection for predictive maintenance.

  13. Monte Carlo Particle Trajectory Models for Neutral Cometary Gases. II. The Spatial Morphology of the Lyman-Alpha Coma

    NASA Astrophysics Data System (ADS)

    Combi, Michael R.; Smyth, William H.

    1988-04-01

    The Monte Carlo particle-trajectory model (MCPTM) developed in Paper 1 is applied to explain the observed morphology of the spatially extended Lyα comae of comets. The physical processes and assumptions used in the model as they relate to the photodissociation of H2O and OH and the solar radiation pressure acceleration are presented herein. For this first application, the rocket and Skylab images of the Lyα coma of comet Kohoutek were chosen for study. The self-consistent modeling analysis of these data consisted of two parts. The first part entailed using a steady state spherically symmetric inner coma MCPTM coupled with a simple gas-dynamic model to calculate the physical development of the coma, i.e., the dependence of coma temperature and outflow speed on radial distance to the center of the nucleus, as a function of the (time) heliocentric distance of the comet. The inner coma MCPTM was used to calculate correctly the photo-chemical heating of the coma due to the partial collisional thermalization of the hot hydrogen atoms produced in the photodissociation of water molecules. In the second part of the analysis the results from the first part were used in a fully time-dependent and three-dimensional extended coma MCPTM which includes the explicit calculation of partial thermalization of the H atoms by multiple collisions with coma molecules. The same physical model yielded very good matches between the modeled Lycα isophotes and those observed in both of the two very different images of comet Kohoutek. The production rate was varied in time as implied by the shape of the visual light curve. All other physical parameters were varied only according to their naturally expected heliocentric distance and velocity dependencies. The complete physical description of the inner coma provided by the coupled gas-dynamic/MCPTM calculation was needed to obtain a good fit to the data. The correct inner coma description is important since it provides not only the initial conditions for the photodissociated H atoms but also (and most importantly) the collisional targets for the H atoms produced in the innermost regions of the coma. Simplistic descriptions for the coma (single speed and perfectly radial molecular motion) do not yield realistic isophote contours. The implications of the model results as they apply to other comets, species, and a variety of conditions are also discussed.

  14. Advanced Ground Systems Maintenance Physics Models For Diagnostics Project

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.

    2015-01-01

    The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations. This project will develop and implement high-fidelity physics-based modeling techniques tosimulate the real-time operation of cryogenics and other fluids systems and, when compared to thereal-time operation of the actual systems, provide assessment of their state. Physics-modelcalculated measurements (called “pseudo-sensors”) will be compared to the system real-timedata. Comparison results will be utilized to provide systems operators with enhanced monitoring ofsystems' health and status, identify off-nominal trends and diagnose system/component failures.This capability can also be used to conduct planning and analysis of cryogenics and other fluidsystems designs. This capability will be interfaced with the ground operations command andcontrol system as a part of the Advanced Ground Systems Maintenance (AGSM) project to helpassure system availability and mission success. The initial capability will be developed for theLiquid Oxygen (LO2) ground loading systems.

  15. Putting the “Spark” into Physical Science and Algebra

    NASA Astrophysics Data System (ADS)

    Dagenais, Andre; Pill, B.

    2006-12-01

    The presenters will describe a number of laboratory activities developed in collaboration with the Department of Electrical Engineering at the University of Delaware as part of their outreach program to help make math and science more authentic on the pre-college level. Lessons relating to electrical topics are often abstract and appropriate only for advanced students in math and science. We have devised lessons that rely on simple equipment. They promote skills that are included in National and State Standards. They emphasize the connections between math and science; they are appropriate for an algebra course, a physical science course, a PhysicsFirst course or a traditional physics course. Students benefit from seeing that what they learn in math and science courses can lead to cutting-edge work in areas such as passive wave imaging, photonics, wireless communication and high performance computing. The collaboration has been meaningful because it has motivated us to tailor our lessons to reflect what is happening in the research lab of our local university. Written materials for use in teacher training workshops will also be available. Funded by NSF Research Experience for Teachers(RET #0322633) program under the direction of Dr. Dennis Prather, University of Delaware Electrical Engineering

  16. Nonequilibrium thermodynamics and information theory: basic concepts and relaxing dynamics

    NASA Astrophysics Data System (ADS)

    Altaner, Bernhard

    2017-11-01

    Thermodynamics is based on the notions of energy and entropy. While energy is the elementary quantity governing physical dynamics, entropy is the fundamental concept in information theory. In this work, starting from first principles, we give a detailed didactic account on the relations between energy and entropy and thus physics and information theory. We show that thermodynamic process inequalities, like the second law, are equivalent to the requirement that an effective description for physical dynamics is strongly relaxing. From the perspective of information theory, strongly relaxing dynamics govern the irreversible convergence of a statistical ensemble towards the maximally non-commital probability distribution that is compatible with thermodynamic equilibrium parameters. In particular, Markov processes that converge to a thermodynamic equilibrium state are strongly relaxing. Our framework generalizes previous results to arbitrary open and driven systems, yielding novel thermodynamic bounds for idealized and real processes. , which features invited work from the best early-career researchers working within the scope of J. Phys. A. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Bernhard Altaner was selected by the Editorial Board of J. Phys. A as an Emerging Talent.

  17. A Test of Learned Industriousness in the Physical Activity Domain

    PubMed Central

    Bustamante, Eduardo E.; Davis, Catherine L.; Marquez, David X.

    2015-01-01

    Background The Theory of Learned Industriousness states that durable individual differences in industriousness are due in part to differences in the extent to which individuals were rewarded for high effort at an earlier time. Individuals rewarded for high effort during training are thought to generalize greater persistence to subsequent tasks than those rewarded for low effort. This study tested whether rewarded physical and/or mental effort at different intensities generalized to greater persistence at a subsequent mental task. Methods 80 inactive 18–25 year-olds were randomized into four groups: Low Mental Effort, High Mental Effort, Low Physical Effort, and High Physical Effort. Each completed group-specific effort training and a mental persistence task at baseline and posttest. Results Factorial analysis of covariance revealed a significant domain x effort interaction on persistence (F[1,75]=4.93, p=.029). High Mental Effort and Low Mental Effort groups demonstrated similar gains in persistence (d=-0.08, p>.05) and points earned (d=0.11, p>.05) following effort training. High Physical Effort and Low Physical Effort diverged on persistence (d=-0.49, p=.004) but not points earned (d =-0.12, p>.05). Conclusions Findings suggest either that training and test stimuli were too dissimilar to cue effects of associative learning in physical effort groups, or that effects were present but overpowered by the affective and neurocognitive consequences of an acute bout of intense aerobic physical activity. Findings do not support the Theory of Learned Industriousness nor generalization of effort across physical and mental domains. PMID:26052372

  18. Randomness in quantum mechanics: philosophy, physics and technology.

    PubMed

    Bera, Manabendra Nath; Acín, Antonio; Kuś, Marek; Mitchell, Morgan W; Lewenstein, Maciej

    2017-12-01

    This progress report covers recent developments in the area of quantum randomness, which is an extraordinarily interdisciplinary area that belongs not only to physics, but also to philosophy, mathematics, computer science, and technology. For this reason the article contains three parts that will be essentially devoted to different aspects of quantum randomness, and even directed, although not restricted, to various audiences: a philosophical part, a physical part, and a technological part. For these reasons the article is written on an elementary level, combining simple and non-technical descriptions with a concise review of more advanced results. In this way readers of various provenances will be able to gain while reading the article.

  19. Randomness in quantum mechanics: philosophy, physics and technology

    NASA Astrophysics Data System (ADS)

    Nath Bera, Manabendra; Acín, Antonio; Kuś, Marek; Mitchell, Morgan W.; Lewenstein, Maciej

    2017-12-01

    This progress report covers recent developments in the area of quantum randomness, which is an extraordinarily interdisciplinary area that belongs not only to physics, but also to philosophy, mathematics, computer science, and technology. For this reason the article contains three parts that will be essentially devoted to different aspects of quantum randomness, and even directed, although not restricted, to various audiences: a philosophical part, a physical part, and a technological part. For these reasons the article is written on an elementary level, combining simple and non-technical descriptions with a concise review of more advanced results. In this way readers of various provenances will be able to gain while reading the article.

  20. Physical Education in the School Curriculum. ICHPER International Questionnaire Report Part 1, 1967-1968 Revision.

    ERIC Educational Resources Information Center

    International Council on Health, Physical Education, and Recreation, Washington, DC.

    This study gives an overview of the organization, scope, and content of the school physical education programs provided for boys and girls at primary, intermediate, and secondary school levels around the world. Part 1 contains information supplied by respondents in 81 countries on the following points: (a) major objectives of physical education,…

  1. Mechanics of Ballast Compaction. Volume 3 : Field Test Results for Ballast Physical State Measurement

    DOT National Transportation Integrated Search

    1982-03-01

    The important mechanical processes which influence the ballast physical state in track are tamping, crib and shoulder compaction and train traffic. Three methods of assessing physical state were used at four railroad sites to obtain needed data on th...

  2. The Hypothesis-Driven Physical Examination.

    PubMed

    Garibaldi, Brian T; Olson, Andrew P J

    2018-05-01

    The physical examination remains a vital part of the clinical encounter. However, physical examination skills have declined in recent years, in part because of decreased time at the bedside. Many clinicians question the relevance of physical examinations in the age of technology. A hypothesis-driven approach to teaching and practicing the physical examination emphasizes the performance of maneuvers that can alter the likelihood of disease. Likelihood ratios are diagnostic weights that allow clinicians to estimate the post-probability of disease. This hypothesis-driven approach to the physical examination increases its value and efficiency, while preserving its cultural role in the patient-physician relationship. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Semi-analytical models of hydroelastic sloshing impact in tanks of liquefied natural gas vessels.

    PubMed

    Ten, I; Malenica, Š; Korobkin, A

    2011-07-28

    The present paper deals with the methods for the evaluation of the hydroelastic interactions that appear during the violent sloshing impacts inside the tanks of liquefied natural gas carriers. The complexity of both the fluid flow and the structural behaviour (containment system and ship structure) does not allow for a fully consistent direct approach according to the present state of the art. Several simplifications are thus necessary in order to isolate the most dominant physical aspects and to treat them properly. In this paper, choice was made of semi-analytical modelling for the hydrodynamic part and finite-element modelling for the structural part. Depending on the impact type, different hydrodynamic models are proposed, and the basic principles of hydroelastic coupling are clearly described and validated with respect to the accuracy and convergence of the numerical results.

  4. Using SIR (Scientific Information Retrieval System) for data management during a field program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.L.

    As part of the US Department of Energy's program, PRocessing of Emissions by Clouds and Precipitation (PRECP), a team of scientists from four laboratories conducted a study in north central New York State, to characterize the chemical and physical processes occurring in winter storms. Sampling took place from three aircraft, two instrumented motor homes and a network of 26 surface precipitation sampling sites. Data management personnel were part of the field program, using a portable IBM PC-AT computer to enter information as it became available during the field study. Having the same database software on the field computer and onmore » the cluster of VAX 11/785 computers in use aided database development and the transfer of data between machines. 2 refs., 3 figs., 5 tabs.« less

  5. Characterization and selection of suitable grades of lactose as functional fillers for capsule filling: part 1.

    PubMed

    Moolchandani, Vikas; Augsburger, Larry L; Gupta, Abhay; Khan, Mansoor; Langridge, John; Hoag, Stephen W

    2015-01-01

    The purpose of this work is to characterize thermal, physical and mechanical properties of different grades of lactose and better understand the relationships between these properties and capsule filling performance. Eight grades of commercially available lactose were evaluated: Pharmatose 110 M, 125 M, 150 M, 200 M, 350 M (α-lactose monohydrate), AL (anhydrous lactose containing ∼80% β-AL), DCL11 (spray dried α-lactose monohydrate containing ∼15% amorphous lactose) and DCL15 (granulated α-lactose monohydrate containing ∼12% β-AL). In this study, different lactose grades were characterized by thermal, solid state, physical and mechanical properties and later evaluated using principal component analysis (PCA) to assess the inter-relationships among some of these properties. The lactose grades were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), moisture sorption/desorption isotherms, particle size distribution; the flow was characterized by Carr Index (CI), critical orifice diameter (COD) and angle of friction. Plug mechanical strength was estimated from its diametric crushing strength. The first and second principal components (PC) captured 47.6% and 27.4% of variation in the physical and mechanical property data, respectively. The PCA plot grouped together 110 M, AL, DCL11 and DCL15 on the one side of plot which possessed superior properties for capsule formulation and these grades were selected for future formulation development studies (part II of this work).

  6. Exploration of the Theoretical Physical Capacity of the John F. Kennedy International Airport Runway System

    NASA Technical Reports Server (NTRS)

    Neitzke, Kurt W.; Guerreiro, Nelson M.

    2014-01-01

    A design study was completed to explore the theoretical physical capacity (TPC) of the John F. Kennedy International Airport (KJFK) runway system for a northflow configuration assuming impedance-free (to throughput) air traffic control functionality. Individual runways were modeled using an agent-based, airspace simulation tool, the Airspace Concept Evaluation System (ACES), with all runways conducting both departures and arrivals on a first-come first-served (FCFS) scheduling basis. A realistic future flight schedule was expanded to 3.5 times the traffic level of a selected baseline day, September 26, 2006, to provide a steady overdemand state for KJFK runways. Rules constraining departure and arrival operations were defined to reflect physical limits beyond which safe operations could no longer be assumed. Safety buffers to account for all sources of operational variability were not included in the TPC estimate. Visual approaches were assumed for all arrivals to minimize inter-arrival spacing. Parallel runway operations were assumed to be independent based on lateral spacing distances. Resulting time intervals between successive airport operations were primarily constrained by same-runway and then by intersecting-runway spacing requirements. The resulting physical runway capacity approximates a theoretical limit that cannot be exceeded without modifying runway interaction assumptions. Comparison with current KJFK operational limits for a north-flow runway configuration indicates a substantial throughput gap of approximately 48%. This gap may be further analyzed to determine which part may be feasibly bridged through the deployment of advanced systems and procedures, and which part cannot, because it is either impossible or not cost-effective to control. Advanced systems for bridging the throughput gap may be conceptualized and simulated using this same experimental setup to estimate the level of gap closure achieved.

  7. Warrior Model for Human Performance and Injury Prevention: Eagle Tactical Athlete Program (ETAP) Part II.

    PubMed

    Sell, Timothy C; Abt, John P; Crawford, Kim; Lovalekar, Mita; Nagai, Takashi; Deluzio, Jennifer B; Smalley, Brain W; McGrail, Mark A; Rowe, Russell S; Cardin, Sylvain; Lephart, Scott M

    2010-01-01

    Physical training for United States military personnel requires a combination of injury prevention and performance optimization to counter unintentional musculoskeletal injuries and maximize warrior capabilities. Determining the most effective activities and tasks to meet these goals requires a systematic, research-based approach that is population specific based on the tasks and demands of the Warrior. The authors have modified the traditional approach to injury prevention to implement a comprehensive injury prevention and performance optimization research program with the 101st Airborne Division (Air Assault) at Fort Campbell, KY. This is second of two companion papers and presents the last three steps of the research model and includes Design and Validation of the Interventions, Program Integration and Implementation, and Monitor and Determine the Effectiveness of the Program. An 8-week trial was performed to validate the Eagle Tactical Athlete Program (ETAP) to improve modifiable suboptimal characteristics identified in Part I. The experimental group participated in ETAP under the direction of a ETAP Strength and Conditioning Specialist while the control group performed the current physical training at Fort Campbell under the direction of a Physical Training Leader and as governed by FM 21-20 for the 8-week study period. Soldiers performing ETAP demonstrated improvements in several tests for strength, flexibility, performance, physiology, and the APFT compared to current physical training performed at Fort Campbell. ETAP was proven valid to improve certain suboptimal characteristics within the 8-week trial as compared to the current training performed at Fort Campbell. ETAP has long-term implications and with expected greater improvements when implemented into a Division pre-deployment cycle of 10-12 months which will result in further systemic adaptations for each variable.

  8. String Theory on five dimensional Anti de Sitter space-times: Fundamental aspects and applications

    NASA Astrophysics Data System (ADS)

    Hofman, Diego M.

    2009-12-01

    In this thesis we study basic properties and applications of String Theory on AdS5 backgrounds. We do this in the framework of the AdS/CFT Correspondence and use our results to learn about four dimensional Conformal Field Theories. The first part of this work deals fundamentally with the problem of solving the exact spectrum of anomalous dimensions of planar N = 4 Super Yang Mills theory for all values of the 't Hooft coupling lambda. We study the problem for operators of large SO(6) charge J and identify the string configurations dual to magnons in the spin chain picture of the gauge theory. We name these states Giant Magnons. Furthermore we study their interactions and discuss the implications of the spectrum of states on the analytic structure of the exact scattering matrix of the theory. It is found that BPS states account for all the poles present in the full S-matrix. We also study the spectrum of Giant Magnons attached to D3-branes (Giant Gravitons). The dual operators in N = 4 SYM are long strings of SO(6) scalars connected to baryonic operators constructed of order N fields. The problem turns out to be mapped to solving the mulitparticle spectrum of a spin chain with non trivial boundary conditions. We study the properties of the boundary reflection matrix in detail and write equations that determine the associated phase factor. The second part of this work deals with applications of this type of string theories to the collider physics of conformal theories. We study infrared safe observables in the CFT given by energy correlation functions. We discuss the short distance behavior of these objects and explain that this physics is controlled by non local light ray operators. We find the dual String Theory description of these observables and use these results to study the strong coupling physics of conformal theories. We also describe the precise string states dual to the light ray operators. We argue that the energy operators that account for the energy measured at a calorimeter in a collider experiment should always be positive in any UV complete Quantum Field Theory. This fact has consequences in the higher derivative terms in the gravity action of the dual description. Finally, we discuss a proposed bound for the central charges of CFTs that is a consequence of the energy positivity condition.

  9. Resonant alteration of propagation in guiding structures with complex Robin parameter and its magnetic-field-induced restoration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olendski, O., E-mail: oolendski@ksu.edu.sa

    2011-06-15

    Highlights: > Solutions of the wave equation are analyzed for the confined circular geometry with complex Robin boundary conditions. > Sharp extremum is found in the energy dependence on the imaginary part of the extrapolation length. > Nonzero real part of the Robin length or/and magnetic field wipe out the resonance. - Abstract: Solutions of the scalar Helmholtz wave equation are derived for the analysis of the transport and thermodynamic properties of the two-dimensional disk and three-dimensional infinitely long straight wire in the external uniform longitudinal magnetic field B under the assumption that the Robin boundary condition contains extrapolation lengthmore » {Lambda} with nonzero imaginary part {Lambda}{sub i}. As a result of this complexity, the self-adjointness of the Hamiltonian is lost, its eigenvalues E become complex too and the discrete bound states of the disk characteristic for the real {Lambda} turn into the corresponding quasibound states with their lifetime defined by the eigenenergies imaginary parts E{sub i}. Accordingly, the longitudinal flux undergoes an alteration as it flows along the wire with its attenuation/amplification being E{sub i}-dependent too. It is shown that, for zero magnetic field, the component E{sub i} as a function of the Robin imaginary part exhibits a pronounced sharp extremum with its magnitude being the largest for the zero real part {Lambda}{sub r} of the extrapolation length. Increasing magnitude of {Lambda}{sub r} quenches the E{sub i} - {Lambda}{sub i} resonance and at very large {Lambda}{sub r} the eigenenergies E approach the asymptotic real values independent of {Lambda}{sub i}. The extremum is also wiped out by the magnetic field when, for the large B, the energies tend to the Landau levels. Mathematical and physical interpretations of the obtained results are provided; in particular, it is shown that the finite lifetime of the disk quasibound states stems from the {Lambda}{sub i}-induced currents flowing through the sample boundary. Possible experimental tests of the calculated effect are discussed; namely, it is argued that it can be observed in superconductors by applying to them the external electric field E normal to the surface.« less

  10. Overview of States' Use of Telehealth for the Delivery of Early Intervention (IDEA Part C) Services.

    PubMed

    Cason, Jana; Behl, Diane; Ringwalt, Sharon

    2012-01-01

    Early intervention (EI) services are designed to promote the development of skills and enhance the quality of life of infants and toddlers who have been identified as having a disability or developmental delay, enhance capacity of families to care for their child with special needs, reduce future educational costs, and promote independent living (NECTAC, 2011). EI services are regulated by Part C of the Individuals with Disabilities Education Improvement Act (IDEA); however, personnel shortages, particularly in rural areas, limit access for children who qualify. Telehealth is an emerging delivery model demonstrating potential to deliver EI services effectively and efficiently, thereby improving access and ameliorating the impact of provider shortages in underserved areas. The use of a telehealth delivery model facilitates inter-disciplinary collaboration, coordinated care, and consultation with specialists not available within a local community. A survey sent by the National Early Childhood Technical Assistance Center (NECTAC) to IDEA Part C coordinators assessed their utilization of telehealth within states' IDEA Part C programs. Reimbursement for provider type and services and barriers to implement a telehealth service delivery model were identified. Representatives from 26 states and one jurisdiction responded to the NECTAC telehealth survey. Of these, 30% (n=9) indicated that they are either currently using telehealth as an adjunct service delivery model (n=6) or plan to incorporate telehealth within the next 1-2 years (n=3). Identified telehealth providers included developmental specialists, teachers of the Deaf/Hard of Hearing (DHH), speech-language pathologists, occupational therapists, physical therapists, behavior specialists, audiologists, and interpreters. Reimbursement was variable and included use of IDEA Part C funding, Medicaid, and private insurance. Expressed barriers and concerns for the implementation of telehealth as a delivery model within Part C programming included security issues (40%; n=11); privacy issues (44%; n=12); concerns about quality of services delivered via telehealth (40%; n=11); and lack of evidence to support the effectiveness of a telehealth service delivery model within IDEA Part C programming (3%; n=1). Reimbursement policy and billing processes and technology infrastructure were also identified as barriers impacting the implementation of telehealth programming. Provider shortages impact the quantity and quality of services available for children with disabilities and developmental delay, particularly in rural areas. While many states are incorporating telehealth within their Early Intervention (IDEA Part C) services in order to improve access and overcome personnel shortages, barriers persist. Policy development, education of stakeholders, research, utilization of secure and private delivery platforms, and advocacy may facilitate more widespread adoption of telehealth within IDEA Part C programs across the country.

  11. Comparing the Hydrologic and Watershed Processes between a Full Scale Stochastic Model Versus a Scaled Physical Model of Bell Canyon

    NASA Astrophysics Data System (ADS)

    Hernandez, K. F.; Shah-Fairbank, S.

    2016-12-01

    The San Dimas Experimental Forest has been designated as a research area by the United States Forest Service for use as a hydrologic testing facility since 1933 to investigate watershed hydrology of the 27 square mile land. Incorporation of a computer model provides validity to the testing of the physical model. This study focuses on San Dimas Experimental Forest's Bell Canyon, one of the triad of watersheds contained within the Big Dalton watershed of the San Dimas Experimental Forest. A scaled physical model was constructed of Bell Canyon to highlight watershed characteristics and each's effect on runoff. The physical model offers a comprehensive visualization of a natural watershed and can vary the characteristics of rainfall intensity, slope, and roughness through interchangeable parts and adjustments to the system. The scaled physical model is validated and calibrated through a HEC-HMS model to assure similitude of the system. Preliminary results of the physical model suggest that a 50-year storm event can be represented by a peak discharge of 2.2 X 10-3 cfs. When comparing the results to HEC-HMS, this equates to a flow relationship of approximately 1:160,000, which can be used to model other return periods. The completion of the Bell Canyon physical model can be used for educational instruction in the classroom, outreach in the community, and further research using the model as an accurate representation of the watershed present in the San Dimas Experimental Forest.

  12. Linear Collider Physics Resource Book for Snowmass 2001 - Part 3: Studies of Exotic and Standard Model Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, T.; et al.

    This Resource Book reviews the physics opportunities of a next-generation e+e- linear collider and discusses options for the experimental program. Part 3 reviews the possible experiments on that can be done at a linear collider on strongly coupled electroweak symmetry breaking, exotic particles, and extra dimensions, and on the top quark, QCD, and two-photon physics. It also discusses the improved precision electroweak measurements that this collider will make available.

  13. PREFACE: Special section featuring selected papers from the 3rd International Workshop on Numerical Modelling of High Temperature Superconductors Special section featuring selected papers from the 3rd International Workshop on Numerical Modelling of High Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Granados, Xavier; Sánchez, Àlvar; López-López, Josep

    2012-10-01

    The development of superconducting applications and superconducting engineering requires the support of consistent tools which can provide models for obtaining a good understanding of the behaviour of the systems and predict novel features. These models aim to compute the behaviour of the superconducting systems, design superconducting devices and systems, and understand and test the behavior of the superconducting parts. 50 years ago, in 1962, Charles Bean provided the superconducting community with a model efficient enough to allow the computation of the response of a superconductor to external magnetic fields and currents flowing through in an understandable way: the so called critical-state model. Since then, in addition to the pioneering critical-state approach, other tools have been devised for designing operative superconducting systems, allowing integration of the superconducting design in nearly standard electromagnetic computer-aided design systems by modelling the superconducting parts with consideration of time-dependent processes. In April 2012, Barcelona hosted the 3rd International Workshop on Numerical Modelling of High Temperature Superconductors (HTS), the third in a series of workshops started in Lausanne in 2010 and followed by Cambridge in 2011. The workshop reflected the state-of-the-art and the new initiatives of HTS modelling, considering mathematical, physical and technological aspects within a wide and interdisciplinary scope. Superconductor Science and Technology is now publishing a selection of papers from the workshop which have been selected for their high quality. The selection comprises seven papers covering mathematical, physical and technological topics which contribute to an improvement in the development of procedures, understanding of phenomena and development of applications. We hope that they provide a perspective on the relevance and growth that the modelling of HTS superconductors has achieved in the past 25 years.

  14. Polymer Mixtures and Films: Free Volume as a Driving Force for Miscibility and Glassiness

    NASA Astrophysics Data System (ADS)

    DeFelice, Jeffrey

    The microscopic characteristics of polymer molecules are connected with many macro- scopic and mechanical properties of their liquid (pure or mixed) and solid states. How these properties are affected by the different molecular attributes of polymers is of particular interest for practical applications of polymer materials. In Part I of this thesis, the thermodynamics of polymer/supercritical CO2 mixtures and blends of linear and branched polymers are modeled using a lattice based equation of state approach. Analyses of trends in the pure component physical properties lead to insight regarding how changes in molecular architecture and/or isotopic labeling affect the relative compatibilities of the mixtures. This approach is also applied to the mixed state to predict the enthalpic and entropic changes of mixing, from which, information is provided about the role of pure component properties in controlling the underlying thermodynamics of the mixtures. In Part II, the focus of this thesis turns to how interfacial effects can shift a number of physical properties in glass forming fluids relative to those of the pure bulk material. One of the most notable deviations from bulk behavior that has been reported for these systems is a change in the glass transition temperature (Tg). In this work, interfacial effects on Tg are probed in film and polymer/additive systems using a simple kinetic lattice model that simulates free volume and mobility in glass forming fluids. For films, the thickness-dependent behavior of Tg is characterized for different types of interfaces, including films that are substrate supported, free- standing, and 'stacked'. Connections are drawn between the size of the region of enhanced mobility near a free surface and the distribution of local Tg values across a film. For polymer/additive systems, where the "interface" is dispersed throughout the material, trends in additive induced Tg changes are analyzed with respect to additive concentration and the strength of the additive's influence on the local mobility of the polymer matrix.

  15. Global Precipitation Measurement, Validation, and Applications Integrated Hydrologic Validation to Improve Physical Precipitation Retrievals for GPM

    NASA Technical Reports Server (NTRS)

    Peters-Lidar, Christa D.; Tian, Yudong; Kenneth, Tian; Harrison, Kenneth; Kumar, Sujay

    2011-01-01

    Land surface modeling and data assimilation can provide dynamic land surface state variables necessary to support physical precipitation retrieval algorithms over land. It is well-known that surface emission, particularly over the range of frequencies to be included in the Global Precipitation Measurement Mission (GPM), is sensitive to land surface states, including soil properties, vegetation type and greenness, soil moisture, surface temperature, and snow cover, density, and grain size. In order to investigate the robustness of both the land surface model states and the microwave emissivity and forward radiative transfer models, we have undertaken a multi-site investigation as part of the NASA Precipitation Measurement Missions (PMM) Land Surface Characterization Working Group. Specifically, we will demonstrate the performance of the Land Information System (LIS; http://lis.gsfc.nasa.gov; Peters-Lidard et aI., 2007; Kumar et al., 2006) coupled to the Joint Center for Satellite Data Assimilation (JCSDA's) Community Radiative Transfer Model (CRTM; Weng, 2007; van Deist, 2009). The land surface is characterized by complex physical/chemical constituents and creates temporally and spatially heterogeneous surface properties in response to microwave radiation scattering. The uncertainties in surface microwave emission (both surface radiative temperature and emissivity) and very low polarization ratio are linked to difficulties in rainfall detection using low-frequency passive microwave sensors (e.g.,Kummerow et al. 2001). Therefore, addressing these issues is of utmost importance for the GPM mission. There are many approaches to parameterizing land surface emission and radiative transfer, some of which have been customized for snow (e.g., the Helsinki University of Technology or HUT radiative transfer model;) and soil moisture (e.g., the Land Surface Microwave Emission Model or LSMEM).

  16. The Physics of the B Factories

    DOE PAGES

    Bevan, A. J.; Golob, B.; Mannel, Th.; ...

    2014-11-19

    This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C.

  17. Kassiopeia: a modern, extensible C++ particle tracking package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furse, Daniel; Groh, Stefan; Trost, Nikolaus

    The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease-of-use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur inmore » flight such as bulk scattering and decay, and stochastic surface processes occurring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a rich geometry package which serves a variety of roles, including initialization of electromagnetic field simulations and the support of state-dependent algorithm-swapping and behavioral changes as a particle's state evolves. Thanks to the very general approach taken by Kassiopeia it can be used by other experiments facing similar challenges when calculating particle trajectories in electromagnetic fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopeia.« less

  18. Kassiopeia: a modern, extensible C++ particle tracking package

    DOE PAGES

    Furse, Daniel; Groh, Stefan; Trost, Nikolaus; ...

    2017-05-16

    The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease-of-use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur inmore » flight such as bulk scattering and decay, and stochastic surface processes occurring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a rich geometry package which serves a variety of roles, including initialization of electromagnetic field simulations and the support of state-dependent algorithm-swapping and behavioral changes as a particle's state evolves. Thanks to the very general approach taken by Kassiopeia it can be used by other experiments facing similar challenges when calculating particle trajectories in electromagnetic fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopeia.« less

  19. Kassiopeia: a modern, extensible C++ particle tracking package

    NASA Astrophysics Data System (ADS)

    Furse, Daniel; Groh, Stefan; Trost, Nikolaus; Babutzka, Martin; Barrett, John P.; Behrens, Jan; Buzinsky, Nicholas; Corona, Thomas; Enomoto, Sanshiro; Erhard, Moritz; Formaggio, Joseph A.; Glück, Ferenc; Harms, Fabian; Heizmann, Florian; Hilk, Daniel; Käfer, Wolfgang; Kleesiek, Marco; Leiber, Benjamin; Mertens, Susanne; Oblath, Noah S.; Renschler, Pascal; Schwarz, Johannes; Slocum, Penny L.; Wandkowsky, Nancy; Wierman, Kevin; Zacher, Michael

    2017-05-01

    The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease-of-use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur in flight such as bulk scattering and decay, and stochastic surface processes occurring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a rich geometry package which serves a variety of roles, including initialization of electromagnetic field simulations and the support of state-dependent algorithm-swapping and behavioral changes as a particle’s state evolves. Thanks to the very general approach taken by Kassiopeia it can be used by other experiments facing similar challenges when calculating particle trajectories in electromagnetic fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopeia.

  20. Wheelchair users' experience of non-adapted and adapted clothes during sailing, quad rugby or wheel-walking.

    PubMed

    Kratz, G; Söderback, I; Guidetti, S; Hultling, C; Rykatkin, T; Söderström, M

    1997-01-01

    The purpose of the present quasi-experimental post-test-design study was to compare 32 wheelchair users' (mostly para/tetraplegics) experience of wearing specially adapted clothes and non-adapted clothes for sailing, quad rugby or wheel-walking. Four existing assessment instruments were used: the Klein-Bell Activities of Daily Living Scale; a two-part Basic Information Questionnaire eliciting experience of effort, comfort and feeling of physical condition; the Experience Sampling Form for investigating the individuals' attitudes in terms of involvement and affective and activity mood states, and the Occupational Therapy Assessment of Leisure Time interview framework for collecting data about experience of leisure time. The wheelchair users all associated significantly greater comfort with use of the adapted clothes and, particularly the 'sailors', better physical condition. Overall, significantly greater involvement and more positive affect states were associated with the adapted clothes than with conventional garments, and mood state changed for the better. The wheelchair users set a higher priority upon work or leisure activities than upon independence in activities of daily living, and for this reason the Klein-Bell ratings showed great variation between the 'sailors' and the 'quad rugby players' (range 57%-93%), though these groups demonstrated more independence than the 'wheel-walkers'. The results of the study confirm the value of adapting sportswear for handicapped people. Such adaptations should also be of benefit for other activities than those studied.

  1. Solid dispersions, part I: recent evolutions and future opportunities in manufacturing methods for dissolution rate enhancement of poorly water-soluble drugs.

    PubMed

    Bikiaris, Dimitrios N

    2011-11-01

    In recent years, the number of active pharmaceutical ingredients with high therapeutic impact, but very low water solubility, has increased significantly. Thus, a great challenge for pharmaceutical technology is to create new formulations and efficient drug-delivery systems to overcome these dissolution problems. Drug formulation in solid dispersions (SDs) is one of the most commonly used techniques for the dissolution rate enhancement of poorly water-soluble drugs. Generally, SDs can be defined as a dispersion of active ingredients in molecular, amorphous and/or microcrystalline forms into an inert carrier. This review covers literature which states that the dissolution enhancement of SDs is based on the fact that drugs in the nanoscale range, or in amorphous phase, dissolve faster and to a greater extent than micronized drug particles. This is in accordance to the Noyes-Whitney equation, while the wetting properties of the used polymer may also play an important role. The main factors why SD-based pharmaceutical products on the market are steadily increasing over the last few years are: the recent progress in various methods used for the preparation of SDs, the effect of evolved interactions in physical state of the drug and formulation stability during storage, the characterization of the physical state of the drug and the mechanism of dissolution rate enhancement.

  2. High temperature polymerization monitoring of an epoxy resin using ultrasound

    NASA Astrophysics Data System (ADS)

    Maréchal, P.; Ghodhbani, N.; Duflo, H.

    2018-05-01

    In this study, the real time ultrasonic monitoring is investigated to quantify changes in physical and mechanical properties during the manufacture of composite structures. In this context, an experimental transmission was developed with the aim of characterizing a high temperature polymerization reaction and post-curing properties using an ultrasonic method. First, the monitoring of ultrasonic parameters of a thermosetting resin is carried out in a device reproducing the experimental conditions for manufacturing a composite material with a process known as RTM, that is to say an isothermal polymerization at T = 160°C. During this curing, the resin is changing from its initial viscous liquid state to its final viscous solid state. Between those states, a glassy transition stage is observed, during which the physical properties are strongly changing, i.e. an increase of the ultrasonic velocity up to its steady value and a transient increase of the ultrasonic attenuation. Second, the ultrasonic inspection of the thermosetting resin is performed during a heating and cooling process to study the temperature sensitivity after curing. This type of characterization leads to identifying the ultrasonic properties dependence before, during and after the glassy transition temperature Tg . Eventually, this study is composed of two complementary parts: the first is useful for the curing optimization, while the second one is fruitful for the post-processing characterization in a temperature range including the glassy transition temperature Tg .

  3. Why Physical Activity Is Important (for Girls)

    MedlinePlus

    ... Home Fitness Why physical activity is important Why physical activity is important You may wonder if being physically ... you are to be around. That's partly because physical activity gets your brain to make "feel-good" chemicals ...

  4. Proceedings of the Annual Symposium on the Role of Behavioral Science in Physical Security (9th), Symmetry and Asymmetry of Global Adversary Behavior Held at Springfield, Virginia on 3-4 April 1984

    DTIC Science & Technology

    1984-04-04

    when those systems are deployed. Multi- billion dollar investments of the American taxpayers’ money are at stake and taxpayers have a right to expect...meet the most likely—and most important—threats simply are not going to be there, Policy changes on the part of the United States can change all...Thais may be responding incorrectly. For example, they are buying expensive, high-technology fighters when they ought to buy something at lower

  5. Oversight on Education for All Handicapped Children Act, 1980. Oversight on Public Law 94-142, Education for All Handicapped Children Act. Part 2. Hearings before the Subcommittee on the Handicapped of the Committee on Labor and Human Resources, United States Senate, Ninety-Sixth Congress, Second Session (July 29 and 31, and September 10, 1980).

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Senate Committee on Labor and Human Resources.

    The document contains proceedings from oversight hearings on the problems and difficulties of implementing P.L. 94-142, the Education for All Handicapped Children Act. Testimonies cover such issues as the failure to carry out effective and proper physical education programs, improper student placement, misapplication of the mainstreaming concept,…

  6. Geropsychiatric inpatient care: what is state of the art?

    PubMed

    Smith, Marianne; Specht, Janet; Buckwalter, Kathleen C

    2005-01-01

    Although dedicated geropsychiatric units have been available for many years, little information is available about them as a group. This article describes a survey that was developed to learn what type of resources, policies, or procedures geropsychiatric inpatient units employed to promote best nursing care practices. Physical changes to the unit and enhanced staff training were components of the current units and were consistently identified as needing enhancement to move to the next level of excellence. An unanticipated outcome was survey respondents' interest in becoming a part of a network of individuals who provide inpatient geropsychiatric care.

  7. Mobile impurities in ferromagnetic liquids

    NASA Astrophysics Data System (ADS)

    Kantian, Adrian; Schollwoeck, Ulrich; Giamarchi, Thierry

    2011-03-01

    Recent work has shown that mobile impurities in one dimensional interacting systems may exhibit behaviour that differs strongly from that predicted by standard Tomonaga-Luttinger liquid theory, with the appearance of power-law divergences in the spectral function signifying sublinear diffusion of the impurity. Using time-dependent matrix product states, we investigate a range of cases of mobile impurities in systems beyond the analytically accessible examples to assess the existence of a new universality class of low-energy physics in one-dimensional systems. Correspondence: Adrian.Kantian@unige.ch This work was supported in part by the Swiss SNF under MaNEP and division II.

  8. Electronic Gaming and the Obesity Crisis

    PubMed Central

    Calvert, Sandra L.; Staiano, Amanda E.; Bond, Bradley J.

    2014-01-01

    Children and adolescents in the United States and in many countries are projected to have shorter life spans than their parents, partly because of the obesity crisis engulfing the developed world. Exposure to electronic media is often implicated in this crisis because media use, including electronic game play, may promote sedentary behavior and increase consumption of high-calorie foods and beverages that are low in nutritional value. Electronic games, however, may increase children’s physical activity and expose them to healthier foods. We examine the role of electronic games in the pediatric obesity crisis and their contribution to more favorable health outcomes. PMID:23483693

  9. Flow induced crystallisation of penetrable particles

    NASA Astrophysics Data System (ADS)

    Scacchi, Alberto; Brader, Joseph M.

    2018-03-01

    For a system of Brownian particles interacting via a soft exponential potential we investigate the interaction between equilibrium crystallisation and spatially varying shear flow. For thermodynamic state points within the liquid part of the phase diagram, but close to the crystallisation phase boundary, we observe that imposing a Poiseuille flow can induce nonequilibrium crystalline ordering in regions of low shear gradient. The physical mechanism responsible for this phenomenon is shear-induced particle migration, which causes particles to drift preferentially towards the center of the flow channel, thus increasing the local density in the channel center. The method employed is classical dynamical density functional theory.

  10. Flow induced crystallisation of penetrable particles.

    PubMed

    Scacchi, Alberto; Brader, Joseph M

    2018-03-07

    For a system of Brownian particles interacting via a soft exponential potential we investigate the interaction between equilibrium crystallisation and spatially varying shear flow. For thermodynamic state points within the liquid part of the phase diagram, but close to the crystallisation phase boundary, we observe that imposing a Poiseuille flow can induce nonequilibrium crystalline ordering in regions of low shear gradient. The physical mechanism responsible for this phenomenon is shear-induced particle migration, which causes particles to drift preferentially towards the center of the flow channel, thus increasing the local density in the channel center. The method employed is classical dynamical density functional theory.

  11. 76 FR 24028 - Agency Forms Undergoing Paperwork Reduction Act Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-29

    .... The components are: Health education, physical education, health services, mental health and social...) State Officials State Health Education..... 51 1 30/60 State Physical Education 51 1 30/60 and Activity... Script... 51 1 1 District Officials District Health Education.. 685 1 30/60 District Physical Education...

  12. The Golden Age of Radio: Solid State's Debt to the Rad Lab

    NASA Astrophysics Data System (ADS)

    Martin, Joseph D.

    2011-03-01

    While MIT's Radiation Laboratory is rightly celebrated for its contributions to World War II radar research, its legacy extended beyond the war. The Rad Lab provided a model for interdisciplinary collaboration that continued to influence research at MIT in the post-war decades. The Rad Lab's institutional legacy--MIT's interdepartmental laboratories--drove the Institute's postwar research agenda. This talk examines how solid state physics research at MIT was shaped by a laboratory structure that encouraged cross-disciplinary collaboration. As the sub-discipline of solid state physics emerged through the late-1940s and 1950s, MIT was unique among universities in its laboratory structure, made possible by a large degree of government and military funding. Nonetheless, the manner in which MIT research groups from physics, chemistry, engineering, and metallurgy interfaced through the medium of solid state physics exemplified how the discipline of solid state physics came to be structured in the rest of the country. Through examining the Rad Lab's institutional legacy, I argue that World War II radar research, by establishing precedent for a particular mode of interdisciplinary collaboration, shaped the future structure of solid state research in the United States. Research supported by a grant-in-aid from the Friends of the Center for the History of Physics, American Institute of Physics.

  13. Contribution a l'inspection automatique des pieces flexibles a l'etat libre sans gabarit de conformation

    NASA Astrophysics Data System (ADS)

    Sattarpanah Karganroudi, Sasan

    The competitive industrial market demands manufacturing companies to provide the markets with a higher quality of production. The quality control department in industrial sectors verifies geometrical requirements of products with consistent tolerances. These requirements are presented in Geometric Dimensioning and Tolerancing (GD&T) standards. However, conventional measuring and dimensioning methods for manufactured parts are time-consuming and costly. Nowadays manual and tactile measuring methods have been replaced by Computer-Aided Inspection (CAI) methods. The CAI methods apply improvements in computational calculations and 3-D data acquisition devices (scanners) to compare the scan mesh of manufactured parts with the Computer-Aided Design (CAD) model. Metrology standards, such as ASME-Y14.5 and ISO-GPS, require implementing the inspection in free-state, wherein the part is only under its weight. Non-rigid parts are exempted from the free-state inspection rule because of their significant geometrical deviation in a free-state with respect to the tolerances. Despite the developments in CAI methods, inspection of non-rigid parts still remains a serious challenge. Conventional inspection methods apply complex fixtures for non-rigid parts to retrieve the functional shape of these parts on physical fixtures; however, the fabrication and setup of these fixtures are sophisticated and expensive. The cost of fixtures has doubled since the client and manufacturing sectors require repetitive and independent inspection fixtures. To eliminate the need for costly and time-consuming inspection fixtures, fixtureless inspection methods of non-rigid parts based on CAI methods have been developed. These methods aim at distinguishing flexible deformations of parts in a free-state from defects. Fixtureless inspection methods are required to be automatic, reliable, reasonably accurate and repeatable for non-rigid parts with complex shapes. The scan model, which is acquired as point clouds, represent the shape of a part in a free-state. Afterward, the inspection of defects is performed by comparing the scan and CAD models, but these models are presented in different coordinate systems. Indeed, the scan model is presented in the measurement coordinate system whereas the CAD model is introduced in the designed coordinate system. To accomplish the inspection and facilitate an accurate comparison between the models, the registration process is required to align the scan and CAD models in a common coordinate system. The registration includes a virtual compensation for the flexible deformation of the parts in a free-state. Then, the inspection is implemented as a geometrical comparison between the CAD and scan models. This thesis focuses on developing automatic and accurate fixtureless CAI methods for non-rigid parts along with assessing the robustness of the methods. To this end, an automatic fixtureless CAI method for non-rigid parts based on filtering registration points is developed to identify and quantify defects more accurately on the surface of scan models. The flexible deformation of parts in a free-state in our developed automatic fixtureless CAI method is compensated by applying FE non-rigid Registration (FENR) to deform the CAD model towards the scan mesh. The displacement boundary conditions (BCs) for FENR are determined based on the corresponding sample points, which are generated by the Generalized Numerical Inspection Fixture (GNIF) method on the CAD and scan models. These corresponding sample points are evenly distributed on the surface of the models. The comparison between this deformed CAD model and the scan mesh intend to evaluate and quantify the defects on the scan model. However, some sample points can be located close or on defect areas which result in an inaccurate estimation of defects. These sample points are automatically filtered out in our CAI method based on curvature and von Mises stress criteria. Once filtered out, the remaining sample points are used in a new FENR, which allows an accurate evaluation of defects with respect to the tolerances. The performance and robustness of all CAI methods are generally required to be assessed with respect to the actual measurements. This thesis also introduces a new validation metric for Verification and Validation (V&V) of CAI methods based on ASME recommendations. The developed V&V approach uses a nonparametric statistical hypothesis test, namely the Kolmogorov-Smirnov (K-S) test. In addition to validating the defects size, the K-S test allows a deeper evaluation based on distance distribution of defects. The robustness of CAI method with respect to uncertainties such as scanning noise is quantitatively assessed using the developed validation metric. Due to the compliance of non-rigid parts, a geometrically deviated part can still be assembled in the assembly-state. This thesis also presents a fixtureless CAI method for geometrically deviated (presenting defects) non-rigid parts to evaluate the feasibility of mounting these parts in the functional assembly-state. Our developed Virtual Mounting Assembly-State Inspection (VMASI) method performs a non-rigid registration to virtually mount the scan mesh in assembly-state. To this end, the point clouds of scan model representing the part in a free-state is deformed to meet the assembly constraints such as fixation position (e.g. mounting holes). In some cases, the functional shape of a deviated part can be retrieved by applying assembly loads, which are limited to permissible loads, on the surface of the part. The required assembly loads are estimated through our developed Restraining Pressures Optimization (RPO) aiming at displacing the deviated scan model to achieve the tolerance for mounting holes. Therefore, the deviated scan model can be assembled if the mounting holes on the predicted functional shape of scan model attain the tolerance range. Different industrial parts are used to evaluate the performance of our developed methods in this thesis. The automatic inspection for identifying different types of small (local) and big (global) defects on the parts results in an accurate evaluation of defects. The robustness of this inspection method is also validated with respect to different levels of scanning noise, which shows promising results. Meanwhile, the VMASI method is performed on various parts with different types of defects, which concludes that in some cases the functional shape of deviated parts can be retrieved by mounting them on a virtual fixture in assembly-state under restraining loads.

  14. Dance for health: improving fitness in African American and Hispanic adolescents.

    PubMed

    Flores, R

    1995-01-01

    Cardiovascular disease begins early in life but might be prevented or delayed by primary prevention programs designed for children and adolescents. Regular physical activity is an important part of primary prevention programs, and school physical education programs have potential for the promotion of regular physical activity. Cardiovascular disease is the major cause of death among Hispanics and African Americans in the United States. Low levels of fitness and increased body mass index are common in African American and Hispanic adolescents. Increased physical activity and the adoption of healthy eating habits would increase fitness and reduce body mass index among these adolescents. The purpose of the study was to undertake a small-scale controlled trial to determine if Dance for Health, an intervention program designed to provide an enjoyable aerobic program for African American and Hispanic adolescents, has a significant effect on improving aerobic capacity, helping students maintain or decrease weight, and on improving attitudes toward physical activity and physical fitness. In the first year of the program (1990-91), approximately 110 boys and girls ages 10-13 years participated in an aerobic dance pilot program three times per week for 12 weeks. Dance for Health was revised and continued in the 1992-93 school year with seventh grade students and an added culturally sensitive health curriculum. Forty-three students were randomized to Dance for Health and 38 to usual physical activity. Those in the intervention class received a health education curriculum twice a week and a dance oriented physical education class three times a week. The usual physical activity consisted mostly of playground activities. Students in the intervention had a significantly greater lowering in body mass index and resting heart rate than students in regular physical activity.

  15. A pedestrian approach to the measurement problem in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Boughn, Stephen; Reginatto, Marcel

    2013-09-01

    The quantum theory of measurement has been a matter of debate for over eighty years. Most of the discussion has focused on theoretical issues with the consequence that other aspects (such as the operational prescriptions that are an integral part of experimental physics) have been largely ignored. This has undoubtedly exacerbated attempts to find a solution to the "measurement problem". How the measurement problem is defined depends to some extent on how the theoretical concepts introduced by the theory are interpreted. In this paper, we fully embrace the minimalist statistical (ensemble) interpretation of quantum mechanics espoused by Einstein, Ballentine, and others. According to this interpretation, the quantum state description applies only to a statistical ensemble of similarly prepared systems rather than representing an individual system. Thus, the statistical interpretation obviates the need to entertain reduction of the state vector, one of the primary dilemmas of the measurement problem. The other major aspect of the measurement problem, the necessity of describing measurements in terms of classical concepts that lay outside of quantum theory, remains. A consistent formalism for interacting quantum and classical systems, like the one based on ensembles on configuration space that we refer to in this paper, might seem to eliminate this facet of the measurement problem; however, we argue that the ultimate interface with experiments is described by operational prescriptions and not in terms of the concepts of classical theory. There is no doubt that attempts to address the measurement problem have yielded important advances in fundamental physics; however, it is also very clear that the measurement problem is still far from being resolved. The pedestrian approach presented here suggests that this state of affairs is in part the result of searching for a theoretical/mathematical solution to what is fundamentally an experimental/observational question. It suggests also that the measurement problem is, in some sense, ill-posed and might never be resolved. This point of view is tenable so long as one is willing to view physical theories as providing models of nature rather than complete descriptions of reality. Among other things, these considerations lead us to suggest that the Copenhagen interpretation's insistence on the classicality of the measurement apparatus should be replaced by the requirement that a measurement, which is specified operationally, should simply be of sufficient precision.

  16. Detection and quantification of creep strain using process compensated resonance testing (PCRT) sorting modules trained with modeled resonance spectra

    NASA Astrophysics Data System (ADS)

    Heffernan, Julieanne; Biedermann, Eric; Mayes, Alexander; Livings, Richard; Jauriqui, Leanne; Goodlet, Brent; Aldrin, John C.; Mazdiyasni, Siamack

    2018-04-01

    Process Compensated Resonant Testing (PCRT) is a full-body nondestructive testing (NDT) method that measures the resonance frequencies of a part and correlates them to the part's material and/or damage state. PCRT testing is used in the automotive, aerospace, and power generation industries via automated PASS/FAIL inspections to distinguish parts with nominal process variation from those with the defect(s) of interest. Traditional PCRT tests are created through the statistical analysis of populations of "good" and "bad" parts. However, gathering a statistically significant number of parts can be costly and time-consuming, and the availability of defective parts may be limited. This work uses virtual databases of good and bad parts to create two targeted PCRT inspections for single crystal (SX) nickel-based superalloy turbine blades. Using finite element (FE) models, populations were modeled to include variations in geometric dimensions, material properties, crystallographic orientation, and creep damage. Model results were verified by comparing the frequency variation in the modeled populations with the measured frequency variations of several physical blade populations. Additionally, creep modeling results were verified through the experimental evaluation of coupon geometries. A virtual database of resonance spectra was created from the model data. The virtual database was used to create PCRT inspections to detect crystallographic defects and creep strain. Quantification of creep strain values using the PCRT inspection results was also demonstrated.

  17. Constellation Stick Figures Convey Information about Gravity and Neutrinos

    NASA Astrophysics Data System (ADS)

    Mc Leod, David Matthew; Mc Leod, Roger David

    2008-10-01

    12/21/98, at America's Stonehenge, DMM detected, and drew, the full stick-figure equivalent of Canis Major, CM, as depicted by our Wolf Clan leaders, and many others. Profound, foundational physics is implied, since this occurred in the Watch House there, hours before the ``model rose.'' Similar configurations like Orion, Osiris of ancient Egypt, show that such figures are projected through solid parts of the Earth, as two-dimensional equivalents of the three-dimensional star constellations. Such ``sticks'' indicate that ``line equivalents'' connect the stars, and the physical mechanism projects outlines detectable by traditional cultures. We had discussed this ``flashlight'' effect, and recognized some of its implications. RDM states that the flashlight is a strong, distant neutrino source; the lines represent neutrinos longitudinally aligned in gravitational excitation, opaque, to earthbound, transient, transversely excited neutrinos. ``Sticks'' represent ``graviton'' detection. Neutrinos' longitudinal alignment accounts for the weakness of gravitational force.

  18. Utilization of the Internet to deliver educational materials to healthcare professionals.

    PubMed

    Hallgren, R C; Gorbis, S

    1997-01-01

    We have developed a computer-based learning module which uses three-dimensional animation sequences to enhance the acquisition of physical concepts and skills necessary for clinical evaluation and treatment of the cervical spine. This teaching tool, designed to serve as an adjunct to teaching strategies that faculty may be currently using, is available to students through the Kobiljak Resource Center at Michigan State University College of Osteopathic Medicine (MSUCOM) and via the Internet (http:/(/)hal.bim.msu.edu/EdTech) to individuals and groups who are physically removed from the MSU campus. While we are restricting this initial effort to the upper cervical spine, it is planned that future materials will include other parts of the body and, in addition, will enable students to not only visualize the effects of pathology on motion mechanics, but also give them the ability to interactively control an articulation in three-dimensional space.

  19. Using multimedia learning modules in a hybrid-online course in electricity and magnetism

    NASA Astrophysics Data System (ADS)

    Sadaghiani, Homeyra R.

    2011-06-01

    We have been piloting web-based multimedia learning modules (MLMs), developed by the Physics Education Research Group at the University of Illinois at Urbana Champaign (UIUC), as a “prelecture assignment” in several introductory physics courses at California State Polytechnic University at Pomona. In this study, we report the results from a controlled study utilizing modules on electricity and magnetism as a part of a blended hybrid-online course. We asked students in the experimental section to view the MLMs prior to attending the face-to-face class, and to make sure this would not result in additional instructional time, we reduced the weekly class time by one-third. We found that despite reduced class time, student-learning outcomes were not hindered; in fact, the implementation of the UIUC MLMs resulted in a positive effect on student performance on conceptual tests and classroom discussion questions.

  20. Quantum technologies with hybrid systems

    PubMed Central

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-01-01

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field. PMID:25737558

  1. Quantum technologies with hybrid systems.

    PubMed

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-03-31

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.

  2. Support networks and people with physical disabilities: social inclusion and access to health services.

    PubMed

    Holanda, Cristina Marques de Almeida; De Andrade, Fabienne Louise Juvêncio Paes; Bezerra, Maria Aparecida; Nascimento, João Paulo da Silva; Neves, Robson da Fonseca; Alves, Simone Bezerra; Ribeiro, Kátia Suely Queiroz Silva

    2015-01-01

    This study seeks to identify the formation of social support networks of people with physical disabilities, and how these networks can help facilitate access to health services and promote social inclusion. It is a cross-sectional study, with data collected via a form applied to physically disabled persons over eighteen years of age registered with the Family Health Teams of the municipal district of João Pessoa in the state of Paraíba. It was observed that the support networks of these individuals predominantly consist of family members (parents, siblings, children, spouses) and people outside the family (friends and neighbors). However, 50% of the interviewees declared that they could not count on any support from outside the family. It was observed that the support network contributes to access to the services and participation in social groups. However, reduced social inclusion was detected, due to locomotion difficulties, this being the main barrier to social interaction. Among those individuals who began to interact in society, the part played by social support was fundamental.

  3. End-Directedness and Context in Nonliving Dissipative Systems

    NASA Astrophysics Data System (ADS)

    Dixon, James A.; Kay, Bruce A.; Davis, Tehran J.; Kondepudi, Dilip

    Biological organisms are distinguished from non-living systems, in part, by their ability to choose and strive towards particular ends. This end-directed behavior is seen across all five biological kingdoms, from single-celled organisms to the most advanced primates. The ubiquitous nature of end-directedness, across such a wide variety of biological entities, suggests that a deeper principle may be at work. We propose that end-directedness, rather than being a special ability of living systems, is actually a fundamental property of a larger class of physical systems, called dissipative structures, which are formed and maintained by the flow of energy and matter. Our work shows that dissipative structures "behave so as to persist", seeking states that increase their rate of entropy production, and thus facilitate their own persistence. In addition, we suggest that biological entities create their exquisite sensitivity to context by interweaving this fundamental end-directedness with the contextual and physical constraints of their environments. The result is a repertoire of complex behavior. We provide an example of such complex behavior emerging from contextual and physical constraints coupled with end-directedness.

  4. Quantum technologies with hybrid systems

    NASA Astrophysics Data System (ADS)

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-03-01

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.

  5. Physical attractiveness and reproductive success in humans: Evidence from the late 20 century United States.

    PubMed

    Jokela, Markus

    2009-09-01

    Physical attractiveness has been associated with mating behavior, but its role in reproductive success of contemporary humans has received surprisingly little attention. In the Wisconsin Longitudinal Study (1244 women, 997 men born between 1937 and 1940) we examined whether attractiveness assessed from photographs taken at age ~18 predicted the number of biological children at age 53-56. In women, attractiveness predicted higher reproductive success in a nonlinear fashion, so that attractive (second highest quartile) women had 16% and very attractive (highest quartile) women 6% more children than their less attractive counterparts. In men, there was a threshold effect so that men in the lowest attractiveness quartile had 13% fewer children than others who did not differ from each other in the average number of children. These associations were partly but not completely accounted for by attractive participants' increased marriage probability. A linear regression analysis indicated relatively weak directional selection gradient for attractiveness (β=0.06 in women, β=0.07 in men). These findings indicate that physical attractiveness may be associated with reproductive success in humans living in industrialized settings.

  6. Teaching Einsteinian physics at schools: part 3, review of research outcomes

    NASA Astrophysics Data System (ADS)

    Kaur, Tejinder; Blair, David; Moschilla, John; Stannard, Warren; Zadnik, Marjan

    2017-11-01

    This paper reviews research results obtained from Einsteinian physics programs run by different instructors with Years 6, 9, 10 and 11 students using the models and analogies described in parts 1 and 2. The research aimed to determine whether it is possible to teach Einsteinian physics and to measure the changes in student attitudes to physics engendered by introducing the modern concepts that underpin technology today. Results showed that students easily coped with the concepts of Einsteinian physics, and considered that they were not too young for the material presented. Importantly, in all groups, girls improved their attitude to physics considerably more than the boys, generally achieving near parity with the boys.

  7. Improved thermodynamics of the dense solar plasma and molecular-dynamics simulations of the nuclear-reaction rates

    NASA Astrophysics Data System (ADS)

    Mao, Dan

    The conditions in the solar interior are so extreme that it has so far been impossible to match them in a laboratory. However, for nearly 50 years solar oscillations have been precisely observed, and the wealth of their data has enabled us to study the interior of the Sun as if it were a laboratory. Helioseismology is the name of this branch of astrophysics. It allows a high- precision diagnostic of the thermodynamic quantities in the solar interior. High-quality thermodynamic quantities are crucial for successful solar modeling. If good solar models are desired, considerable theoretical effort is required. Good solar models, in turn, are fundamental tools for solar physics. The most prominent example of this link between solar physics and basic physics was the resolution of the solar neutrino problem in 2002. The equation of state is a key material property that describes the relation between pressure, density and temperature. If the equation of state is derived from a thermodynamic potential it will also determine all associated thermodynamic quantities. A second key material property is the nuclear-energy production rate, which plays a crucial role in the solar core. Both are important physical properties describing the structure of the Sun. Both derive from microphysical models. In the equation-of-state part, we have studied two models of the equation of state (EOS). One is the MHD EOS, which is widely used in solar models. In our research, we have incorporated new terms into the MHD EOS. These terms have been borrowed from the major competing formalism, the OPAL EOS. They were missing in the original MHD EOS. Not only do the upgrades bring MHD closer to the OPAL equation of state, which is well known for its better match with observations. Most importantly it will allow solar modelers to use the OPAL equation of state directly, without recourse to the OPAL tables distributed by the Lawrence Livermore National Laboratory. Since the OPAL code is not publicly available, there is no alternative source. The official OPAL tables, however, have disadvantages. First, they are inflexible regarding the chemical mix, which is set once and for all by the producers of the tables. Our equation of state will allow the user to choose, in principle, an arbitrary mix. Second, the OPAL tables by their very nature are limited by the errors of interpolation within tables. The second equation of state model is a density expansion based on the Feynman-Kac path-integral formalism. By making use of the equivalence of quantum Hamiltonian matrix and the classical action of closed and open filaments (paths), an analytic formalism of equation of state. Although the character of density expansion limits its application, the formalism can still be valid in most region in the Sun. Our work provides the link between the abstract theoretical formalism that was developed in the 1990s and a numerically smooth realization that can be used in solar and stellar models. Since it is so far the most exact and systematic approach for an EOS, it provides another way to study the influence of different very fine physical effects, despite considerable limitations in its domain of applicability. In the nuclear-reaction part of the thesis, we have used a molecular-dynamics method to simulate the motion of protons in a hydrogen plasma (which is a good approximation for this purpose). Quantum tunneling explains why nuclear fusion can occur in the first place, considering the "low" temperature in the solar core. It is well known that this tunneling is enhanced (which leads to higher nuclear reaction rates) in the presence of Coulomb screening. In the 1950, Salpeter formulated a theory based on the static-screened Coulomb potential, as derived by Debye and H=FCckel in the 1920s. As expected, Salpeter obtained enhanced reaction rates. But from our simulation, we confirmed the results of a recent controversy about the existence of a dynamic effect. Since the bulk of fusion reactions happens at the high end of the Maxwell distribution, this is an relevant issue. Our work is the first independent confirmation of such a dynamic effect.

  8. Physical therapy in the 21st century (Part II): evidence-based practice within the context of evidence-informed practice.

    PubMed

    Dean, Elizabeth

    2009-07-01

    Part II of this two-part introduction to this Special Issue on physical therapy practice in the 21st century outlines a health-focused strategy for physical therapists to lead in the assault on lifestyle conditions, global health care priorities, described in Part I. Consistent with contemporary definitions of physical therapy, its practice, professional education, and research, physical therapy needs to reflect 21st-century health priorities and be aligned with global and regional public health strategies. A proposed focus on health emphasizes clinical competencies, including assessments of health, lifestyle health behaviors, and lifestyle risk factors; and the prescription of interventions to promote health and well-being in every client or patient. Such an approach is aimed to increase the threshold for chronic conditions over the life cycle and reduce their rate of progression, thereby preventing, delaying, or minimizing the severity of illness and disability. The 21st-century physical therapist needs to be able to practice such competencies within the context of a culturally diverse society to effect positive health behavior change. The physical therapist is uniquely positioned to lead in health promotion and prevention of the lifestyle conditions, address many of their causes, as well as manage these conditions. Physical therapists need to impact health globally through public and social health policy as well as one-on-one care. This role is consistent with contemporary definitions of physical therapy as the quintessential noninvasive health care practitioner, and the established efficacy and often superiority of lifestyle and lifestyle change on health outcomes compared with invasive interventions, namely, drugs and surgery. A concerted commitment by physical therapists to health and well-being and reduced health risk is consistent with minimizing the substantial social and economic burdens of lifestyle conditions globally.

  9. History of ``NANO''-Scale VERY EARLY Solid-State (and Liquid-State) Physics/Chemistry/Metallurgy/ Ceramics; Interstitial-Alloys Carbides/Nitrides/Borides/...Powders and Cermets, Rock Shocks, ...

    NASA Astrophysics Data System (ADS)

    Maiden, Colin; Siegel, Edward

    History of ``NANO'': Siegel-Matsubara-Vest-Gregson[Mtls. Sci. and Eng. 8, 6, 323(`71); Physica Status Solidi (a)11,45(`72)] VERY EARLY carbides/nitrides/borides powders/cermets solid-state physics/chemistry/metallurgy/ ceramics FIRST-EVER EXPERIMENTAL NANO-physics/chemistry[1968 ->Physica Status Solidi (a)11,45(`72); and EARLY NANO-``physics''/NANO-``chemistry'' THEORY(after: Kubo(`62)-Matsubara(`60s-`70s)-Fulde (`65) [ref.: Sugano[Microcluster-Physics, Springer('82 `98)

  10. Completed Research in Health, Physical Education, and Recreation Including International Sources. Volume 17, 1975 Edition Covering Research Completed in 1974.

    ERIC Educational Resources Information Center

    Thomas, Jerry R., Ed.; Weiss, Raymond A., Ed.

    This compilation lists research completed in health, physical education, and allied areas during 1974. It is arranged in three parts. Part one is an index which cross references the listings in parts two and three. References are arranged under subject headings, which are in alphabetical order. Instructions for using the index are also given in…

  11. How overdrying wood reduces its bonding to phenol-formaldehyde adhesives : a critical review of the literature. Part II, Chemical reactions

    Treesearch

    Alfred W. Christiansen

    1991-01-01

    Literature dealing with the effect of excessive drying (overdrying) on wood surface inactivation to bonding is reviewed in two parts and critically evaluated, primarily for phenolic adhesives. Part 1 of the review, published earlier, covers physical mechanisms that could contribute to surface inactivation. The principal physical mechanism is the migration to the...

  12. How overdrying wood reduces its bonding to phenol-formaldehyde adhesives : a critical review of the literature. Part I, Physical responses

    Treesearch

    Alfred W. Christiansen

    1990-01-01

    This review critically evaluates literature on the ways in which excessive drying (overdrying) inactivates wood surfaces to bonding, primarily for phenolic adhesives. In Part I of a two-part review, three inactivation mechanisms involving physical responses to overdrying are considered: (1) exudation of extractives to the surface, which lowers the wettability or hides...

  13. Oblique Chest Views as a Routine Part of Skeletal Surveys Performed for Possible Physical Abuse--Is This Practice Worthwhile?

    ERIC Educational Resources Information Center

    Hansen, Karen Kirhofer; Prince, Jeffrey S.; Nixon, G. William

    2008-01-01

    Objective: To evaluate the utility of oblique chest views in the diagnosis of rib fractures when used as a routine part of the skeletal survey performed for possible physical abuse. Methods: Oblique chest views have been part of the routine skeletal survey protocol at Primary Children's Medical Center since October 2002. Dictated radiology reports…

  14. The influence of physical self-perception of female college students participating in Pilates classes on perceived health state and psychological wellbeing

    PubMed Central

    Roh, Su Yeon

    2018-01-01

    The purpose of this study is to examine the influence of physical self-perception of female college students participating in Pilates on perceived health state and psychological wellbeing. The subjects of this study were 187 female college students participating in Pilates classes in six universities located in Gyeonggi-do. The collected data was analyzed by using SPSS and AMOS 18.0 version. The results are as follows. First, the physical self-perception of female college students participating in Pilates classes affects their perceived health state. Second, the physical self-perception of female college students participating in Pilates classes affects their psychological well-being. Third, the perceived health state of female college students participating in Pilates classes affects their psychological well-being. Fourth, there is a causal relationship among the physical self-perception, perceived health state, and psychological well-being of female college students participating in Pilates classes. In particular, the physical self-perception obtained by the students through their Pilates classes strengthens their psychological well-being through their perceived health state. PMID:29740551

  15. The influence of physical self-perception of female college students participating in Pilates classes on perceived health state and psychological wellbeing.

    PubMed

    Roh, Su Yeon

    2018-04-01

    The purpose of this study is to examine the influence of physical self-perception of female college students participating in Pilates on perceived health state and psychological wellbeing. The subjects of this study were 187 female college students participating in Pilates classes in six universities located in Gyeonggi-do. The collected data was analyzed by using SPSS and AMOS 18.0 version. The results are as follows. First, the physical self-perception of female college students participating in Pilates classes affects their perceived health state. Second, the physical self-perception of female college students participating in Pilates classes affects their psychological well-being. Third, the perceived health state of female college students participating in Pilates classes affects their psychological well-being. Fourth, there is a causal relationship among the physical self-perception, perceived health state, and psychological well-being of female college students participating in Pilates classes. In particular, the physical self-perception obtained by the students through their Pilates classes strengthens their psychological well-being through their perceived health state.

  16. A multilevel intervention to increase physical activity and improve healthy eating and physical literacy among young children (ages 3-5) attending early childcare centres: the Healthy Start-Départ Santé cluster randomised controlled trial study protocol.

    PubMed

    Bélanger, Mathieu; Humbert, Louise; Vatanparast, Hassan; Ward, Stéphanie; Muhajarine, Nazeem; Chow, Amanda Froehlich; Engler-Stringer, Rachel; Donovan, Denise; Carrier, Natalie; Leis, Anne

    2016-04-12

    Childhood obesity is a growing concern for public health. Given a majority of children in many countries spend approximately 30 h per week in early childcare centers, this environment represents a promising setting for implementing strategies to foster healthy behaviours for preventing and controlling childhood obesity. Healthy Start-Départ Santé was designed to promote physical activity, physical literacy, and healthy eating among preschoolers. The objectives of this study are to assess the effectiveness of the Healthy Start-Départ Santé intervention in improving physical activity levels, physical literacy, and healthy eating among preschoolers attending early childcare centers. This study follows a cluster randomized controlled trial design in which the childcare centers are randomly assigned to receive the intervention or serve as usual care controls. The Healthy Start-Départ Santé intervention is comprised of interlinked components aiming to enable families and educators to integrate physical activity and healthy eating in the daily lives of young children by influencing factors at the intrapersonal, interpersonal, organizational, community, physical environment and policy levels. The intervention period, spanning 6-8 months, is preceded and followed by data collections. Participants are recruited from 61 childcare centers in two Canadian provinces, New Brunswick and Saskatchewan. Centers eligible for this study have to prepare and provide meals for lunch and have at least 20 children between the ages of 3 and 5. Centers are excluded if they have previously received a physical activity or nutrition promoting intervention. Eligible centers are stratified by province, geographical location (urban or rural) and language (English or French), then recruited and randomized using a one to one protocol for each stratum. Data collection is ongoing. The primary study outcomes are assessed using accelerometers (physical activity levels), the Test of Gross Motor Development-II (physical literacy), and digital photography-assisted weighted plate waste (food intake). The multifaceted approach of Healthy Start-Départ Santé positions it well to improve the physical literacy and both dietary and physical activity behaviors of children attending early childcare centers. The results of this study will be of relevance given the overwhelming prevalence of overweight and obesity in children worldwide. NCT02375490 (ClinicalTrials.gov registry).

  17. Becoming physics people: Development of physics identity in self-concept and practice through the Learning Assistant experience

    NASA Astrophysics Data System (ADS)

    Close, Eleanor

    2016-03-01

    The physics department at Texas State University has implemented a Learning Assistant (LA) program with reform-based instructional changes in our introductory course sequences. We are interested in how participation in the LA program influences LAs' identity both as physics students and as physics teachers; in particular, how being part of the LA community changes participants' self-concepts and their day-to-day practice. We analyze video of weekly LA preparation sessions and interviews with LAs as well as written artifacts from program applications, pedagogy course reflections, and evaluations. Our analysis of self-concepts is informed by the identity framework developed by Hazari et al., and our analysis of practice is informed by Lave and Wenger's theory of Communities of Practice. Regression models from quantitative studies show that the physics identity construct strongly predicts intended choice of a career in physics; the goal of our current project is to understand the details of the impacts of participation in the LA experience on participants' practice and self-concept, in order to identify critical elements of LA program structure that positively influence physics identity and physics career intentions for students. Our analysis suggests that participation in the LA program impacts LAs in ways that support both stronger ``physics student'' identity and stronger ``physics instructor'' identity, and that these identities are reconciled into a coherent integrated physics identity. In addition to becoming more confident and competent in physics, LAs perceive themselves to have increased competence in communication and a stronger sense of belonging to a supportive and collaborative community; participation in the LA program also changes their ways of learning and of being students, both within and beyond physics. This research and the TXST LA program are supported by NSF DUE-1240036, NSF DUE-1431578, and the Halliburton Foundation.

  18. Personality disorder is an excess risk factor for physical multimorbidity among women with mental state disorders.

    PubMed

    Quirk, Shae E; Stuart, Amanda L; Berk, Michael; Pasco, Julie A; Brennan Olsen, Sharon L; Koivumaa-Honkanen, Heli; Honkanen, Risto; Lukkala, Pyry S; Chanen, Andrew M; Kotowicz, Mark; Williams, Lana J

    2017-11-01

    We examined whether mental state disorders (lifetime mood, anxiety, eating, substance misuse) with comorbid personality disorder are associated with physical multimorbidity in a population-based sample of women. Mental state and personality disorders were assessed using semi-structured diagnostic interviews. Clinical measures were performed and medical conditions, medication use and lifestyle factors were documented by questionnaire. Mental state disorders were associated with higher odds of physical multimorbidity; risk was especially high for those with comorbid personality disorder. These findings suggest that mental state and physical comorbidity might be worsened by the additional comorbidity of personality disorder. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Question 1: Origin of Life and the Living State

    NASA Astrophysics Data System (ADS)

    Kauffman, Stuart

    2007-10-01

    The aim of this article is to discuss four topics: First, the origin of molecular reproduction. Second, the origin of agency the capacity of a system to act on its own behalf. Agency is a stunning feature of human and some wider range of life. Third, to discuss a still poorly articulated feature of life noticed by the philosopher Immanuel Kant over 200 years ago: A self propagating organization of process. We have no theory for this aspect of life, yet it is central to life. Fourth, I will discuss constraints, as in Schroedinger’s aperiodic crystal (Schroedinger E, What is life? The physical aspect of the living cell, 1944), as information, part of the total non-equilibrium union of matter, energy, work, work cycles, constraints, and information that appear to comprise the living state.

  20. Rotationally resolved fluorescence spectroscopy of molecular iodine

    NASA Astrophysics Data System (ADS)

    Lemon, Christopher; Canagaratna, Sebastian; Gray, Jeffrey

    2008-03-01

    Vibration-electronic spectroscopy of I2 vapor is a common, important experiment in physical chemistry lab courses. We use narrow bandwidth diode-pumped solid state (DPSS) lasers to excite specific rotational levels; these lasers are surprisingly stable and are now available at low cost. We also use efficient miniature fiber-optic spectrometers to resolve rotational fluorescence patterns in a vibrational progression. The resolution enables thorough and accurate analysis of spectroscopic constants for the ground electronic state. The high signal-to-noise ratio, which is easily achieved, also enables students to precisely measure fluorescence band intensities, providing further insight into vibrational wavefunctions and the molecular potential function. We will provide a detailed list of parts for the apparatus as well as modeling algorithms with statistical evaluation to facilitate widespread adoption of these experimental improvements by instructors of intermediate and advanced lab courses.

Top