Sample records for state probability density

  1. Use of uninformative priors to initialize state estimation for dynamical systems

    NASA Astrophysics Data System (ADS)

    Worthy, Johnny L.; Holzinger, Marcus J.

    2017-10-01

    The admissible region must be expressed probabilistically in order to be used in Bayesian estimation schemes. When treated as a probability density function (PDF), a uniform admissible region can be shown to have non-uniform probability density after a transformation. An alternative approach can be used to express the admissible region probabilistically according to the Principle of Transformation Groups. This paper uses a fundamental multivariate probability transformation theorem to show that regardless of which state space an admissible region is expressed in, the probability density must remain the same under the Principle of Transformation Groups. The admissible region can be shown to be analogous to an uninformative prior with a probability density that remains constant under reparameterization. This paper introduces requirements on how these uninformative priors may be transformed and used for state estimation and the difference in results when initializing an estimation scheme via a traditional transformation versus the alternative approach.

  2. Probability density of tunneled carrier states near heterojunctions calculated numerically by the scattering method.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wampler, William R.; Myers, Samuel M.; Modine, Normand A.

    2017-09-01

    The energy-dependent probability density of tunneled carrier states for arbitrarily specified longitudinal potential-energy profiles in planar bipolar devices is numerically computed using the scattering method. Results agree accurately with a previous treatment based on solution of the localized eigenvalue problem, where computation times are much greater. These developments enable quantitative treatment of tunneling-assisted recombination in irradiated heterojunction bipolar transistors, where band offsets may enhance the tunneling effect by orders of magnitude. The calculations also reveal the density of non-tunneled carrier states in spatially varying potentials, and thereby test the common approximation of uniform- bulk values for such densities.

  3. Monte Carlo method for computing density of states and quench probability of potential energy and enthalpy landscapes.

    PubMed

    Mauro, John C; Loucks, Roger J; Balakrishnan, Jitendra; Raghavan, Srikanth

    2007-05-21

    The thermodynamics and kinetics of a many-body system can be described in terms of a potential energy landscape in multidimensional configuration space. The partition function of such a landscape can be written in terms of a density of states, which can be computed using a variety of Monte Carlo techniques. In this paper, a new self-consistent Monte Carlo method for computing density of states is described that uses importance sampling and a multiplicative update factor to achieve rapid convergence. The technique is then applied to compute the equilibrium quench probability of the various inherent structures (minima) in the landscape. The quench probability depends on both the potential energy of the inherent structure and the volume of its corresponding basin in configuration space. Finally, the methodology is extended to the isothermal-isobaric ensemble in order to compute inherent structure quench probabilities in an enthalpy landscape.

  4. The difference between two random mixed quantum states: exact and asymptotic spectral analysis

    NASA Astrophysics Data System (ADS)

    Mejía, José; Zapata, Camilo; Botero, Alonso

    2017-01-01

    We investigate the spectral statistics of the difference of two density matrices, each of which is independently obtained by partially tracing a random bipartite pure quantum state. We first show how a closed-form expression for the exact joint eigenvalue probability density function for arbitrary dimensions can be obtained from the joint probability density function of the diagonal elements of the difference matrix, which is straightforward to compute. Subsequently, we use standard results from free probability theory to derive a relatively simple analytic expression for the asymptotic eigenvalue density (AED) of the difference matrix ensemble, and using Carlson’s theorem, we obtain an expression for its absolute moments. These results allow us to quantify the typical asymptotic distance between the two random mixed states using various distance measures; in particular, we obtain the almost sure asymptotic behavior of the operator norm distance and the trace distance.

  5. Quantum Jeffreys prior for displaced squeezed thermal states

    NASA Astrophysics Data System (ADS)

    Kwek, L. C.; Oh, C. H.; Wang, Xiang-Bin

    1999-09-01

    It is known that, by extending the equivalence of the Fisher information matrix to its quantum version, the Bures metric, the quantum Jeffreys prior can be determined from the volume element of the Bures metric. We compute the Bures metric for the displaced squeezed thermal state and analyse the quantum Jeffreys prior and its marginal probability distributions. To normalize the marginal probability density function, it is necessary to provide a range of values of the squeezing parameter or the inverse temperature. We find that if the range of the squeezing parameter is kept narrow, there are significant differences in the marginal probability density functions in terms of the squeezing parameters for the displaced and undisplaced situations. However, these differences disappear as the range increases. Furthermore, marginal probability density functions against temperature are very different in the two cases.

  6. Effect of density feedback on the two-route traffic scenario with bottleneck

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Yan; Ding, Zhong-Jun; Huang, Guo-Hua

    2016-12-01

    In this paper, we investigate the effect of density feedback on the two-route scenario with a bottleneck. The simulation and theory analysis shows that there exist two critical vehicle entry probabilities αc1 and αc2. When vehicle entry probability α≤αc1, four different states, i.e. free flow state, transition state, maximum current state and congestion state are identified in the system, which correspond to three critical reference densities. However, in the interval αc1<α<αc2, the free flow and transition state disappear, and there is only congestion state when α≥αc2. According to the results, traffic control center can adjust the reference density so that the system is in maximum current state. In this case, the capacity of the traffic system reaches maximum so that drivers can make full use of the roads. We hope that the study results can provide good advice for alleviating traffic jam and be useful to traffic control center for designing advanced traveller information systems.

  7. Radiative transition of hydrogen-like ions in quantum plasma

    NASA Astrophysics Data System (ADS)

    Hu, Hongwei; Chen, Zhanbin; Chen, Wencong

    2016-12-01

    At fusion plasma electron temperature and number density regimes of 1 × 103-1 × 107 K and 1 × 1028-1 × 1031/m3, respectively, the excited states and radiative transition of hydrogen-like ions in fusion plasmas are studied. The results show that quantum plasma model is more suitable to describe the fusion plasma than the Debye screening model. Relativistic correction to bound-state energies of the low-Z hydrogen-like ions is so small that it can be ignored. The transition probability decreases with plasma density, but the transition probabilities have the same order of magnitude in the same number density regime.

  8. Low Probability of Intercept Waveforms via Intersymbol Dither Performance Under Multiple Conditions

    DTIC Science & Technology

    2009-03-01

    United States Air Force, Department of Defense, or the United States Government . AFIT/GE/ENG/09-23 Low Probability of Intercept Waveforms via...21 D random variable governing the distribution of dither values 21 p (ct) D (t) probability density function of the...potential performance loss of a non-cooperative receiver compared to a cooperative receiver designed to account for ISI and multipath. 1.3 Thesis

  9. Low Probability of Intercept Waveforms via Intersymbol Dither Performance Under Multipath Conditions

    DTIC Science & Technology

    2009-03-01

    United States Air Force, Department of Defense, or the United States Government . AFIT/GE/ENG/09-23 Low Probability of Intercept Waveforms via...21 D random variable governing the distribution of dither values 21 p (ct) D (t) probability density function of the...potential performance loss of a non-cooperative receiver compared to a cooperative receiver designed to account for ISI and multipath. 1.3 Thesis

  10. Influence of distributed delays on the dynamics of a generalized immune system cancerous cells interactions model

    NASA Astrophysics Data System (ADS)

    Piotrowska, M. J.; Bodnar, M.

    2018-01-01

    We present a generalisation of the mathematical models describing the interactions between the immune system and tumour cells which takes into account distributed time delays. For the analytical study we do not assume any particular form of the stimulus function describing the immune system reaction to presence of tumour cells but we only postulate its general properties. We analyse basic mathematical properties of the considered model such as existence and uniqueness of the solutions. Next, we discuss the existence of the stationary solutions and analytically investigate their stability depending on the forms of considered probability densities that is: Erlang, triangular and uniform probability densities separated or not from zero. Particular instability results are obtained for a general type of probability densities. Our results are compared with those for the model with discrete delays know from the literature. In addition, for each considered type of probability density, the model is fitted to the experimental data for the mice B-cell lymphoma showing mean square errors at the same comparable level. For estimated sets of parameters we discuss possibility of stabilisation of the tumour dormant steady state. Instability of this steady state results in uncontrolled tumour growth. In order to perform numerical simulation, following the idea of linear chain trick, we derive numerical procedures that allow us to solve systems with considered probability densities using standard algorithm for ordinary differential equations or differential equations with discrete delays.

  11. The maximum entropy production and maximum Shannon information entropy in enzyme kinetics

    NASA Astrophysics Data System (ADS)

    Dobovišek, Andrej; Markovič, Rene; Brumen, Milan; Fajmut, Aleš

    2018-04-01

    We demonstrate that the maximum entropy production principle (MEPP) serves as a physical selection principle for the description of the most probable non-equilibrium steady states in simple enzymatic reactions. A theoretical approach is developed, which enables maximization of the density of entropy production with respect to the enzyme rate constants for the enzyme reaction in a steady state. Mass and Gibbs free energy conservations are considered as optimization constraints. In such a way computed optimal enzyme rate constants in a steady state yield also the most uniform probability distribution of the enzyme states. This accounts for the maximal Shannon information entropy. By means of the stability analysis it is also demonstrated that maximal density of entropy production in that enzyme reaction requires flexible enzyme structure, which enables rapid transitions between different enzyme states. These results are supported by an example, in which density of entropy production and Shannon information entropy are numerically maximized for the enzyme Glucose Isomerase.

  12. A Seakeeping Performance and Affordability Tradeoff Study for the Coast Guard Offshore Patrol Cutter

    DTIC Science & Technology

    2016-06-01

    Index Polar Plot for Sea State 4, All Headings Are Relative to the Wave Motion and Velocity is Given in Meters per Second...40 Figure 15. Probability and Cumulative Density Functions of Annual Sea State Occurrences in the Open Ocean, North Pacific...criteria at a given sea state. Probability distribution functions are available that describe the likelihood that an operational area will experience

  13. Average fidelity between random quantum states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zyczkowski, Karol; Centrum Fizyki Teoretycznej, Polska Akademia Nauk, Aleja Lotnikow 32/44, 02-668 Warsaw; Perimeter Institute, Waterloo, Ontario, N2L 2Y5

    2005-03-01

    We analyze mean fidelity between random density matrices of size N, generated with respect to various probability measures in the space of mixed quantum states: the Hilbert-Schmidt measure, the Bures (statistical) measure, the measure induced by the partial trace, and the natural measure on the space of pure states. In certain cases explicit probability distributions for the fidelity are derived. The results obtained may be used to gauge the quality of quantum-information-processing schemes.

  14. Weibull crack density coefficient for polydimensional stress states

    NASA Technical Reports Server (NTRS)

    Gross, Bernard; Gyekenyesi, John P.

    1989-01-01

    A structural ceramic analysis and reliability evaluation code has recently been developed encompassing volume and surface flaw induced fracture, modeled by the two-parameter Weibull probability density function. A segment of the software involves computing the Weibull polydimensional stress state crack density coefficient from uniaxial stress experimental fracture data. The relationship of the polydimensional stress coefficient to the uniaxial stress coefficient is derived for a shear-insensitive material with a random surface flaw population.

  15. Propensity, Probability, and Quantum Theory

    NASA Astrophysics Data System (ADS)

    Ballentine, Leslie E.

    2016-08-01

    Quantum mechanics and probability theory share one peculiarity. Both have well established mathematical formalisms, yet both are subject to controversy about the meaning and interpretation of their basic concepts. Since probability plays a fundamental role in QM, the conceptual problems of one theory can affect the other. We first classify the interpretations of probability into three major classes: (a) inferential probability, (b) ensemble probability, and (c) propensity. Class (a) is the basis of inductive logic; (b) deals with the frequencies of events in repeatable experiments; (c) describes a form of causality that is weaker than determinism. An important, but neglected, paper by P. Humphreys demonstrated that propensity must differ mathematically, as well as conceptually, from probability, but he did not develop a theory of propensity. Such a theory is developed in this paper. Propensity theory shares many, but not all, of the axioms of probability theory. As a consequence, propensity supports the Law of Large Numbers from probability theory, but does not support Bayes theorem. Although there are particular problems within QM to which any of the classes of probability may be applied, it is argued that the intrinsic quantum probabilities (calculated from a state vector or density matrix) are most naturally interpreted as quantum propensities. This does not alter the familiar statistical interpretation of QM. But the interpretation of quantum states as representing knowledge is untenable. Examples show that a density matrix fails to represent knowledge.

  16. Computing rates of Markov models of voltage-gated ion channels by inverting partial differential equations governing the probability density functions of the conducting and non-conducting states.

    PubMed

    Tveito, Aslak; Lines, Glenn T; Edwards, Andrew G; McCulloch, Andrew

    2016-07-01

    Markov models are ubiquitously used to represent the function of single ion channels. However, solving the inverse problem to construct a Markov model of single channel dynamics from bilayer or patch-clamp recordings remains challenging, particularly for channels involving complex gating processes. Methods for solving the inverse problem are generally based on data from voltage clamp measurements. Here, we describe an alternative approach to this problem based on measurements of voltage traces. The voltage traces define probability density functions of the functional states of an ion channel. These probability density functions can also be computed by solving a deterministic system of partial differential equations. The inversion is based on tuning the rates of the Markov models used in the deterministic system of partial differential equations such that the solution mimics the properties of the probability density function gathered from (pseudo) experimental data as well as possible. The optimization is done by defining a cost function to measure the difference between the deterministic solution and the solution based on experimental data. By evoking the properties of this function, it is possible to infer whether the rates of the Markov model are identifiable by our method. We present applications to Markov model well-known from the literature. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Minimum Action Path Theory Reveals the Details of Stochastic Transitions Out of Oscillatory States

    NASA Astrophysics Data System (ADS)

    de la Cruz, Roberto; Perez-Carrasco, Ruben; Guerrero, Pilar; Alarcon, Tomas; Page, Karen M.

    2018-03-01

    Cell state determination is the outcome of intrinsically stochastic biochemical reactions. Transitions between such states are studied as noise-driven escape problems in the chemical species space. Escape can occur via multiple possible multidimensional paths, with probabilities depending nonlocally on the noise. Here we characterize the escape from an oscillatory biochemical state by minimizing the Freidlin-Wentzell action, deriving from it the stochastic spiral exit path from the limit cycle. We also use the minimized action to infer the escape time probability density function.

  18. Minimum Action Path Theory Reveals the Details of Stochastic Transitions Out of Oscillatory States.

    PubMed

    de la Cruz, Roberto; Perez-Carrasco, Ruben; Guerrero, Pilar; Alarcon, Tomas; Page, Karen M

    2018-03-23

    Cell state determination is the outcome of intrinsically stochastic biochemical reactions. Transitions between such states are studied as noise-driven escape problems in the chemical species space. Escape can occur via multiple possible multidimensional paths, with probabilities depending nonlocally on the noise. Here we characterize the escape from an oscillatory biochemical state by minimizing the Freidlin-Wentzell action, deriving from it the stochastic spiral exit path from the limit cycle. We also use the minimized action to infer the escape time probability density function.

  19. Direct calculation of liquid-vapor phase equilibria from transition matrix Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Errington, Jeffrey R.

    2003-06-01

    An approach for directly determining the liquid-vapor phase equilibrium of a model system at any temperature along the coexistence line is described. The method relies on transition matrix Monte Carlo ideas developed by Fitzgerald, Picard, and Silver [Europhys. Lett. 46, 282 (1999)]. During a Monte Carlo simulation attempted transitions between states along the Markov chain are monitored as opposed to tracking the number of times the chain visits a given state as is done in conventional simulations. Data collection is highly efficient and very precise results are obtained. The method is implemented in both the grand canonical and isothermal-isobaric ensemble. The main result from a simulation conducted at a given temperature is a density probability distribution for a range of densities that includes both liquid and vapor states. Vapor pressures and coexisting densities are calculated in a straightforward manner from the probability distribution. The approach is demonstrated with the Lennard-Jones fluid. Coexistence properties are directly calculated at temperatures spanning from the triple point to the critical point.

  20. Dynamic analysis of pedestrian crossing behaviors on traffic flow at unsignalized mid-block crosswalks

    NASA Astrophysics Data System (ADS)

    Liu, Gang; He, Jing; Luo, Zhiyong; Yang, Wunian; Zhang, Xiping

    2015-05-01

    It is important to study the effects of pedestrian crossing behaviors on traffic flow for solving the urban traffic jam problem. Based on the Nagel-Schreckenberg (NaSch) traffic cellular automata (TCA) model, a new one-dimensional TCA model is proposed considering the uncertainty conflict behaviors between pedestrians and vehicles at unsignalized mid-block crosswalks and defining the parallel updating rules of motion states of pedestrians and vehicles. The traffic flow is simulated for different vehicle densities and behavior trigger probabilities. The fundamental diagrams show that no matter what the values of vehicle braking probability, pedestrian acceleration crossing probability, pedestrian backing probability and pedestrian generation probability, the system flow shows the "increasing-saturating-decreasing" trend with the increase of vehicle density; when the vehicle braking probability is lower, it is easy to cause an emergency brake of vehicle and result in great fluctuation of saturated flow; the saturated flow decreases slightly with the increase of the pedestrian acceleration crossing probability; when the pedestrian backing probability lies between 0.4 and 0.6, the saturated flow is unstable, which shows the hesitant behavior of pedestrians when making the decision of backing; the maximum flow is sensitive to the pedestrian generation probability and rapidly decreases with increasing the pedestrian generation probability, the maximum flow is approximately equal to zero when the probability is more than 0.5. The simulations prove that the influence of frequent crossing behavior upon vehicle flow is immense; the vehicle flow decreases and gets into serious congestion state rapidly with the increase of the pedestrian generation probability.

  1. A hidden Markov model approach to neuron firing patterns.

    PubMed

    Camproux, A C; Saunier, F; Chouvet, G; Thalabard, J C; Thomas, G

    1996-11-01

    Analysis and characterization of neuronal discharge patterns are of interest to neurophysiologists and neuropharmacologists. In this paper we present a hidden Markov model approach to modeling single neuron electrical activity. Basically the model assumes that each interspike interval corresponds to one of several possible states of the neuron. Fitting the model to experimental series of interspike intervals by maximum likelihood allows estimation of the number of possible underlying neuron states, the probability density functions of interspike intervals corresponding to each state, and the transition probabilities between states. We present an application to the analysis of recordings of a locus coeruleus neuron under three pharmacological conditions. The model distinguishes two states during halothane anesthesia and during recovery from halothane anesthesia, and four states after administration of clonidine. The transition probabilities yield additional insights into the mechanisms of neuron firing.

  2. High-Density Signal Interface Electromagnetic Radiation Prediction for Electromagnetic Compatibility Evaluation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halligan, Matthew

    Radiated power calculation approaches for practical scenarios of incomplete high- density interface characterization information and incomplete incident power information are presented. The suggested approaches build upon a method that characterizes power losses through the definition of power loss constant matrices. Potential radiated power estimates include using total power loss information, partial radiated power loss information, worst case analysis, and statistical bounding analysis. A method is also proposed to calculate radiated power when incident power information is not fully known for non-periodic signals at the interface. Incident data signals are modeled from a two-state Markov chain where bit state probabilities aremore » derived. The total spectrum for windowed signals is postulated as the superposition of spectra from individual pulses in a data sequence. Statistical bounding methods are proposed as a basis for the radiated power calculation due to the statistical calculation complexity to find a radiated power probability density function.« less

  3. Carrier Modulation Via Waveform Probability Density Function

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L.

    2006-01-01

    Beyond the classic modes of carrier modulation by varying amplitude (AM), phase (PM), or frequency (FM), we extend the modulation domain of an analog carrier signal to include a class of general modulations which are distinguished by their probability density function histogram. Separate waveform states are easily created by varying the pdf of the transmitted waveform. Individual waveform states are assignable as proxies for digital one's or zero's. At the receiver, these states are easily detected by accumulating sampled waveform statistics and performing periodic pattern matching, correlation, or statistical filtering. No fundamental physical laws are broken in the detection process. We show how a typical modulation scheme would work in the digital domain and suggest how to build an analog version. We propose that clever variations of the modulating waveform (and thus the histogram) can provide simple steganographic encoding.

  4. Carrier Modulation Via Waveform Probability Density Function

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L.

    2004-01-01

    Beyond the classic modes of carrier modulation by varying amplitude (AM), phase (PM), or frequency (FM), we extend the modulation domain of an analog carrier signal to include a class of general modulations which are distinguished by their probability density function histogram. Separate waveform states are easily created by varying the pdf of the transmitted waveform. Individual waveform states are assignable as proxies for digital ONEs or ZEROs. At the receiver, these states are easily detected by accumulating sampled waveform statistics and performing periodic pattern matching, correlation, or statistical filtering. No fundamental natural laws are broken in the detection process. We show how a typical modulation scheme would work in the digital domain and suggest how to build an analog version. We propose that clever variations of the modulating waveform (and thus the histogram) can provide simple steganographic encoding.

  5. Realistic Covariance Prediction for the Earth Science Constellation

    NASA Technical Reports Server (NTRS)

    Duncan, Matthew; Long, Anne

    2006-01-01

    Routine satellite operations for the Earth Science Constellation (ESC) include collision risk assessment between members of the constellation and other orbiting space objects. One component of the risk assessment process is computing the collision probability between two space objects. The collision probability is computed using Monte Carlo techniques as well as by numerically integrating relative state probability density functions. Each algorithm takes as inputs state vector and state vector uncertainty information for both objects. The state vector uncertainty information is expressed in terms of a covariance matrix. The collision probability computation is only as good as the inputs. Therefore, to obtain a collision calculation that is a useful decision-making metric, realistic covariance matrices must be used as inputs to the calculation. This paper describes the process used by the NASA/Goddard Space Flight Center's Earth Science Mission Operations Project to generate realistic covariance predictions for three of the Earth Science Constellation satellites: Aqua, Aura and Terra.

  6. Polarization effects on quantum levels in InN/GaN quantum wells.

    PubMed

    Lin, Wei; Li, Shuping; Kang, Junyong

    2009-12-02

    Polarization effects on quantum states in InN/GaN quantum wells have been investigated by means of ab initio calculation and spectroscopic ellipsometry. Through the position-dependent partial densities of states, our results show that the polarization modified by the strain with different well thickness leads to an asymmetry band bending of the quantum well. The quantum levels are identified via the band structures and their square wave function distributions are analyzed by the partial charge densities. Further theoretical and experimental comparison of the imaginary part of the dielectric function show that the overall transition probability increases under larger polarization fields, which can be attributable to the fact that the excited quantum states of 2h have a greater overlap with 1e states and enhance other hole quantum states in the well by a hybridization. These results would provide a new approach to improve the transition probability and light emission by enhancing the polarization fields in a proper way.

  7. Encircling the dark: constraining dark energy via cosmic density in spheres

    NASA Astrophysics Data System (ADS)

    Codis, S.; Pichon, C.; Bernardeau, F.; Uhlemann, C.; Prunet, S.

    2016-08-01

    The recently published analytic probability density function for the mildly non-linear cosmic density field within spherical cells is used to build a simple but accurate maximum likelihood estimate for the redshift evolution of the variance of the density, which, as expected, is shown to have smaller relative error than the sample variance. This estimator provides a competitive probe for the equation of state of dark energy, reaching a few per cent accuracy on wp and wa for a Euclid-like survey. The corresponding likelihood function can take into account the configuration of the cells via their relative separations. A code to compute one-cell-density probability density functions for arbitrary initial power spectrum, top-hat smoothing and various spherical-collapse dynamics is made available online, so as to provide straightforward means of testing the effect of alternative dark energy models and initial power spectra on the low-redshift matter distribution.

  8. Unit-Sphere Anisotropic Multiaxial Stochastic-Strength Model Probability Density Distribution for the Orientation of Critical Flaws

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel

    2013-01-01

    Models that predict the failure probability of monolithic glass and ceramic components under multiaxial loading have been developed by authors such as Batdorf, Evans, and Matsuo. These "unit-sphere" failure models assume that the strength-controlling flaws are randomly oriented, noninteracting planar microcracks of specified geometry but of variable size. This report develops a formulation to describe the probability density distribution of the orientation of critical strength-controlling flaws that results from an applied load. This distribution is a function of the multiaxial stress state, the shear sensitivity of the flaws, the Weibull modulus, and the strength anisotropy. Examples are provided showing the predicted response on the unit sphere for various stress states for isotropic and transversely isotropic (anisotropic) materials--including the most probable orientation of critical flaws for offset uniaxial loads with strength anisotropy. The author anticipates that this information could be used to determine anisotropic stiffness degradation or anisotropic damage evolution for individual brittle (or quasi-brittle) composite material constituents within finite element or micromechanics-based software

  9. A hidden Markov model approach to neuron firing patterns.

    PubMed Central

    Camproux, A C; Saunier, F; Chouvet, G; Thalabard, J C; Thomas, G

    1996-01-01

    Analysis and characterization of neuronal discharge patterns are of interest to neurophysiologists and neuropharmacologists. In this paper we present a hidden Markov model approach to modeling single neuron electrical activity. Basically the model assumes that each interspike interval corresponds to one of several possible states of the neuron. Fitting the model to experimental series of interspike intervals by maximum likelihood allows estimation of the number of possible underlying neuron states, the probability density functions of interspike intervals corresponding to each state, and the transition probabilities between states. We present an application to the analysis of recordings of a locus coeruleus neuron under three pharmacological conditions. The model distinguishes two states during halothane anesthesia and during recovery from halothane anesthesia, and four states after administration of clonidine. The transition probabilities yield additional insights into the mechanisms of neuron firing. Images FIGURE 3 PMID:8913581

  10. Derivation of an eigenvalue probability density function relating to the Poincaré disk

    NASA Astrophysics Data System (ADS)

    Forrester, Peter J.; Krishnapur, Manjunath

    2009-09-01

    A result of Zyczkowski and Sommers (2000 J. Phys. A: Math. Gen. 33 2045-57) gives the eigenvalue probability density function for the top N × N sub-block of a Haar distributed matrix from U(N + n). In the case n >= N, we rederive this result, starting from knowledge of the distribution of the sub-blocks, introducing the Schur decomposition and integrating over all variables except the eigenvalues. The integration is done by identifying a recursive structure which reduces the dimension. This approach is inspired by an analogous approach which has been recently applied to determine the eigenvalue probability density function for random matrices A-1B, where A and B are random matrices with entries standard complex normals. We relate the eigenvalue distribution of the sub-blocks to a many-body quantum state, and to the one-component plasma, on the pseudosphere.

  11. Epidemics in interconnected small-world networks.

    PubMed

    Liu, Meng; Li, Daqing; Qin, Pengju; Liu, Chaoran; Wang, Huijuan; Wang, Feilong

    2015-01-01

    Networks can be used to describe the interconnections among individuals, which play an important role in the spread of disease. Although the small-world effect has been found to have a significant impact on epidemics in single networks, the small-world effect on epidemics in interconnected networks has rarely been considered. Here, we study the susceptible-infected-susceptible (SIS) model of epidemic spreading in a system comprising two interconnected small-world networks. We find that the epidemic threshold in such networks decreases when the rewiring probability of the component small-world networks increases. When the infection rate is low, the rewiring probability affects the global steady-state infection density, whereas when the infection rate is high, the infection density is insensitive to the rewiring probability. Moreover, epidemics in interconnected small-world networks are found to spread at different velocities that depend on the rewiring probability.

  12. Analytical approach to an integrate-and-fire model with spike-triggered adaptation

    NASA Astrophysics Data System (ADS)

    Schwalger, Tilo; Lindner, Benjamin

    2015-12-01

    The calculation of the steady-state probability density for multidimensional stochastic systems that do not obey detailed balance is a difficult problem. Here we present the analytical derivation of the stationary joint and various marginal probability densities for a stochastic neuron model with adaptation current. Our approach assumes weak noise but is valid for arbitrary adaptation strength and time scale. The theory predicts several effects of adaptation on the statistics of the membrane potential of a tonically firing neuron: (i) a membrane potential distribution with a convex shape, (ii) a strongly increased probability of hyperpolarized membrane potentials induced by strong and fast adaptation, and (iii) a maximized variability associated with the adaptation current at a finite adaptation time scale.

  13. Continuation of probability density functions using a generalized Lyapunov approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baars, S., E-mail: s.baars@rug.nl; Viebahn, J.P., E-mail: viebahn@cwi.nl; Mulder, T.E., E-mail: t.e.mulder@uu.nl

    Techniques from numerical bifurcation theory are very useful to study transitions between steady fluid flow patterns and the instabilities involved. Here, we provide computational methodology to use parameter continuation in determining probability density functions of systems of stochastic partial differential equations near fixed points, under a small noise approximation. Key innovation is the efficient solution of a generalized Lyapunov equation using an iterative method involving low-rank approximations. We apply and illustrate the capabilities of the method using a problem in physical oceanography, i.e. the occurrence of multiple steady states of the Atlantic Ocean circulation.

  14. Simulation of the A-X and B-X transition emission spectra of the InBr molecule for diagnostics in low-pressure plasmas

    NASA Astrophysics Data System (ADS)

    Briefi, S.; Fantz, U.

    2011-04-01

    Inductively coupled low-pressure discharges containing InBr have been investigated spectroscopically. In order to obtain plasma parameters such as the vibrational and rotational temperature of the InBr molecule, the emission spectra of the A\\,^3\\!\\Pi_{0^+}\\rightarrow X\\,^1\\!\\Sigma_{0}^+ and the B\\,^3\\! \\Pi_{1}\\rightarrow X\\,^1\\!\\Sigma_{0}^+ transitions have been simulated. The program is based on the molecular constants and takes into account vibrational states up to v = 24. The required Franck-Condon factors and vibrationally resolved transition probabilities have been computed solving the Schrödinger equation using the Born-Oppenheimer approximation. The ground state density of the InBr molecule in the plasma has been determined from absorption spectra using effective transition probabilities for the A-X and B-X transition according to the vibrational population. The obtained densities agree well with densities derived from an Arrhenius type vapour pressure equation.

  15. The Feynman-Vernon Influence Functional Approach in QED

    NASA Astrophysics Data System (ADS)

    Biryukov, Alexander; Shleenkov, Mark

    2016-10-01

    In the path integral approach we describe evolution of interacting electromagnetic and fermionic fields by the use of density matrix formalism. The equation for density matrix and transitions probability for fermionic field is obtained as average of electromagnetic field influence functional. We obtain a formula for electromagnetic field influence functional calculating for its various initial and final state. We derive electromagnetic field influence functional when its initial and final states are vacuum. We present Lagrangian for relativistic fermionic field under influence of electromagnetic field vacuum.

  16. Weak Measurement and Quantum Smoothing of a Superconducting Qubit

    NASA Astrophysics Data System (ADS)

    Tan, Dian

    In quantum mechanics, the measurement outcome of an observable in a quantum system is intrinsically random, yielding a probability distribution. The state of the quantum system can be described by a density matrix rho(t), which depends on the information accumulated until time t, and represents our knowledge about the system. The density matrix rho(t) gives probabilities for the outcomes of measurements at time t. Further probing of the quantum system allows us to refine our prediction in hindsight. In this thesis, we experimentally examine a quantum smoothing theory in a superconducting qubit by introducing an auxiliary matrix E(t) which is conditioned on information obtained from time t to a final time T. With the complete information before and after time t, the pair of matrices [rho(t), E(t)] can be used to make smoothed predictions for the measurement outcome at time t. We apply the quantum smoothing theory in the case of continuous weak measurement unveiling the retrodicted quantum trajectories and weak values. In the case of strong projective measurement, while the density matrix rho(t) with only diagonal elements in a given basis |n〉 may be treated as a classical mixture, we demonstrate a failure of this classical mixture description in determining the smoothed probabilities for the measurement outcome at time t with both diagonal rho(t) and diagonal E(t). We study the correlations between quantum states and weak measurement signals and examine aspects of the time symmetry of continuous quantum measurement. We also extend our study of quantum smoothing theory to the case of resonance fluorescence of a superconducting qubit with homodyne measurement and observe some interesting effects such as the modification of the excited state probabilities, weak values, and evolution of the predicted and retrodicted trajectories.

  17. Exposing extinction risk analysis to pathogens: Is disease just another form of density dependence?

    USGS Publications Warehouse

    Gerber, L.R.; McCallum, H.; Lafferty, K.D.; Sabo, J.L.; Dobson, A.

    2005-01-01

    In the United States and several other countries, the development of population viability analyses (PVA) is a legal requirement of any species survival plan developed for threatened and endangered species. Despite the importance of pathogens in natural populations, little attention has been given to host-pathogen dynamics in PVA. To study the effect of infectious pathogens on extinction risk estimates generated from PVA, we review and synthesize the relevance of host-pathogen dynamics in analyses of extinction risk. We then develop a stochastic, density-dependent host-parasite model to investigate the effects of disease on the persistence of endangered populations. We show that this model converges on a Ricker model of density dependence under a suite of limiting assumptions, including a high probability that epidemics will arrive and occur. Using this modeling framework, we then quantify: (1) dynamic differences between time series generated by disease and Ricker processes with the same parameters; (2) observed probabilities of quasi-extinction for populations exposed to disease or self-limitation; and (3) bias in probabilities of quasi-extinction estimated by density-independent PVAs when populations experience either form of density dependence. Our results suggest two generalities about the relationships among disease, PVA, and the management of endangered species. First, disease more strongly increases variability in host abundance and, thus, the probability of quasi-extinction, than does self-limitation. This result stems from the fact that the effects and the probability of occurrence of disease are both density dependent. Second, estimates of quasi-extinction are more often overly optimistic for populations experiencing disease than for those subject to self-limitation. Thus, although the results of density-independent PVAs may be relatively robust to some particular assumptions about density dependence, they are less robust when endangered populations are known to be susceptible to disease. If potential management actions involve manipulating pathogens, then it may be useful to model disease explicitly. ?? 2005 by the Ecological Society of America.

  18. Determination of the density of surface states at the semiconductor-insulator interface in a metal-insulator-semiconductor structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulyamov, G., E-mail: Gulyamov1949@rambler.ru; Sharibaev, N. U.

    2011-02-15

    The temporal dependence of thermal generation of electrons from occupied surface states at the semiconductor-insulator interface in a metal-insulator-semiconductor structure is studied. It is established that, at low temperatures, the derivative of the probability of depopulation of occupied surface states with respect to energy is represented by the Dirac {delta} function. It is shown that the density of states of a finite number of discrete energy levels under high-temperature measurements manifests itself as a continuous spectrum, whereas this spectrum appears discrete at low temperatures. A method for processing the continuous spectrum of the density of surface states is suggested thatmore » method makes it possible to determine the discrete energy spectrum. The obtained results may be conducive to an increase in resolution of the method of non-stationary spectroscopy of surface states.« less

  19. Multiple model cardinalized probability hypothesis density filter

    NASA Astrophysics Data System (ADS)

    Georgescu, Ramona; Willett, Peter

    2011-09-01

    The Probability Hypothesis Density (PHD) filter propagates the first-moment approximation to the multi-target Bayesian posterior distribution while the Cardinalized PHD (CPHD) filter propagates both the posterior likelihood of (an unlabeled) target state and the posterior probability mass function of the number of targets. Extensions of the PHD filter to the multiple model (MM) framework have been published and were implemented either with a Sequential Monte Carlo or a Gaussian Mixture approach. In this work, we introduce the multiple model version of the more elaborate CPHD filter. We present the derivation of the prediction and update steps of the MMCPHD particularized for the case of two target motion models and proceed to show that in the case of a single model, the new MMCPHD equations reduce to the original CPHD equations.

  20. Estimating the Probability of Elevated Nitrate Concentrations in Ground Water in Washington State

    USGS Publications Warehouse

    Frans, Lonna M.

    2008-01-01

    Logistic regression was used to relate anthropogenic (manmade) and natural variables to the occurrence of elevated nitrate concentrations in ground water in Washington State. Variables that were analyzed included well depth, ground-water recharge rate, precipitation, population density, fertilizer application amounts, soil characteristics, hydrogeomorphic regions, and land-use types. Two models were developed: one with and one without the hydrogeomorphic regions variable. The variables in both models that best explained the occurrence of elevated nitrate concentrations (defined as concentrations of nitrite plus nitrate as nitrogen greater than 2 milligrams per liter) were the percentage of agricultural land use in a 4-kilometer radius of a well, population density, precipitation, soil drainage class, and well depth. Based on the relations between these variables and measured nitrate concentrations, logistic regression models were developed to estimate the probability of nitrate concentrations in ground water exceeding 2 milligrams per liter. Maps of Washington State were produced that illustrate these estimated probabilities for wells drilled to 145 feet below land surface (median well depth) and the estimated depth to which wells would need to be drilled to have a 90-percent probability of drawing water with a nitrate concentration less than 2 milligrams per liter. Maps showing the estimated probability of elevated nitrate concentrations indicated that the agricultural regions are most at risk followed by urban areas. The estimated depths to which wells would need to be drilled to have a 90-percent probability of obtaining water with nitrate concentrations less than 2 milligrams per liter exceeded 1,000 feet in the agricultural regions; whereas, wells in urban areas generally would need to be drilled to depths in excess of 400 feet.

  1. Agricultural pesticide use in California: pesticide prioritization, use densities, and population distributions for a childhood cancer study.

    PubMed Central

    Gunier, R B; Harnly, M E; Reynolds, P; Hertz, A; Von Behren, J

    2001-01-01

    Several studies have suggested an association between childhood cancer and pesticide exposure. California leads the nation in agricultural pesticide use. A mandatory reporting system for all agricultural pesticide use in the state provides information on the active ingredient, amount used, and location. We calculated pesticide use density to quantify agricultural pesticide use in California block groups for a childhood cancer study. Pesticides with similar toxicologic properties (probable carcinogens, possible carcinogens, genotoxic compounds, and developmental or reproductive toxicants) were grouped together for this analysis. To prioritize pesticides, we weighted pesticide use by the carcinogenic and exposure potential of each compound. The top-ranking individual pesticides were propargite, methyl bromide, and trifluralin. We used a geographic information system to calculate pesticide use density in pounds per square mile of total land area for all United States census-block groups in the state. Most block groups (77%) averaged less than 1 pound per square mile of use for 1991-1994 for pesticides classified as probable human carcinogens. However, at the high end of use density (> 90th percentile), there were 493 block groups with more than 569 pounds per square mile. Approximately 170,000 children under 15 years of age were living in these block groups in 1990. The distribution of agricultural pesticide use and number of potentially exposed children suggests that pesticide use density would be of value for a study of childhood cancer. PMID:11689348

  2. The impacts of the quantum-dot confining potential on the spin-orbit effect.

    PubMed

    Li, Rui; Liu, Zhi-Hai; Wu, Yidong; Liu, C S

    2018-05-09

    For a nanowire quantum dot with the confining potential modeled by both the infinite and the finite square wells, we obtain exactly the energy spectrum and the wave functions in the strong spin-orbit coupling regime. We find that regardless of how small the well height is, there are at least two bound states in the finite square well: one has the σ x [Formula: see text] = -1 symmetry and the other has the σ x [Formula: see text] = 1 symmetry. When the well height is slowly tuned from large to small, the position of the maximal probability density of the first excited state moves from the center to x ≠ 0, while the position of the maximal probability density of the ground state is always at the center. A strong enhancement of the spin-orbit effect is demonstrated by tuning the well height. In particular, there exists a critical height [Formula: see text], at which the spin-orbit effect is enhanced to maximal.

  3. Estimating the influence of population density and dispersal behavior on the ability to detect and monitor Agrilus planipennis (Coleoptera: Buprestidae) populations.

    PubMed

    Mercader, R J; Siegert, N W; McCullough, D G

    2012-02-01

    Emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), a phloem-feeding pest of ash (Fraxinus spp.) trees native to Asia, was first discovered in North America in 2002. Since then, A. planipennis has been found in 15 states and two Canadian provinces and has killed tens of millions of ash trees. Understanding the probability of detecting and accurately delineating low density populations of A. planipennis is a key component of effective management strategies. Here we approach this issue by 1) quantifying the efficiency of sampling nongirdled ash trees to detect new infestations of A. planipennis under varying population densities and 2) evaluating the likelihood of accurately determining the localized spread of discrete A. planipennis infestations. To estimate the probability a sampled tree would be detected as infested across a gradient of A. planipennis densities, we used A. planipennis larval density estimates collected during intensive surveys conducted in three recently infested sites with known origins. Results indicated the probability of detecting low density populations by sampling nongirdled trees was very low, even when detection tools were assumed to have three-fold higher detection probabilities than nongirdled trees. Using these results and an A. planipennis spread model, we explored the expected accuracy with which the spatial extent of an A. planipennis population could be determined. Model simulations indicated a poor ability to delineate the extent of the distribution of localized A. planipennis populations, particularly when a small proportion of the population was assumed to have a higher propensity for dispersal.

  4. Nonparametric Density Estimation Based on Self-Organizing Incremental Neural Network for Large Noisy Data.

    PubMed

    Nakamura, Yoshihiro; Hasegawa, Osamu

    2017-01-01

    With the ongoing development and expansion of communication networks and sensors, massive amounts of data are continuously generated in real time from real environments. Beforehand, prediction of a distribution underlying such data is difficult; furthermore, the data include substantial amounts of noise. These factors make it difficult to estimate probability densities. To handle these issues and massive amounts of data, we propose a nonparametric density estimator that rapidly learns data online and has high robustness. Our approach is an extension of both kernel density estimation (KDE) and a self-organizing incremental neural network (SOINN); therefore, we call our approach KDESOINN. An SOINN provides a clustering method that learns about the given data as networks of prototype of data; more specifically, an SOINN can learn the distribution underlying the given data. Using this information, KDESOINN estimates the probability density function. The results of our experiments show that KDESOINN outperforms or achieves performance comparable to the current state-of-the-art approaches in terms of robustness, learning time, and accuracy.

  5. Photoelectron Spectroscopy and Density Functional Theory Studies of Iron Sulfur (FeS)m- (m = 2-8) Cluster Anions: Coexisting Multiple Spin States.

    PubMed

    Yin, Shi; Bernstein, Elliot R

    2017-10-05

    Iron sulfur cluster anions (FeS) m - (m = 2-8) are studied by photoelectron spectroscopy (PES) at 3.492 eV (355 nm) and 4.661 eV (266 nm) photon energies, and by density functional theory (DFT) calculations. The most probable structures and ground state spin multiplicities for (FeS) m - (m = 2-8) clusters are tentatively assigned through a comparison of their theoretical and experiment first vertical detachment energy (VDE) values. Many spin states lie within 0.5 eV of the ground spin state for the larger (FeS) m - (m ≥ 4) clusters. Theoretical VDEs of these low lying spin states are in good agreement with the experimental VDE values. Therefore, multiple spin states of each of these iron sulfur cluster anions probably coexist under the current experimental conditions. Such available multiple spin states must be considered when evaluating the properties and behavior of these iron sulfur clusters in real chemical and biological systems. The experimental first VDEs of (FeS) m - (m = 1-8) clusters are observed to change with the cluster size (number m). The first VDE trends noted can be related to the different properties of the highest singly occupied molecular orbitals (NBO, HSOMOs) of each cluster anion. The changing nature of the NBO/HSOMO of these (FeS) m - (m = 1-8) clusters from a p orbital on S, to a d orbital on Fe, and to an Fe-Fe bonding orbital is probably responsible for the observed increasing trend for their first VDEs with respect to m.

  6. The Renner effect in triatomic molecules with application to CH+, MgNC and NH2.

    PubMed

    Jensen, Per; Odaka, Tina Erica; Kraemer, W P; Hirano, Tsuneo; Bunker, P R

    2002-03-01

    We have developed a computational procedure, based on the variational method, for the calculation of the rovibronic energies of a triatomic molecule in an electronic state that become degenerate at the linear nuclear configuration. In such an electronic state the coupling caused by the electronic orbital angular momentum is very significant and it is called the Renner effect. We include it, and the effect of spin-orbit coupling, in our program. We have developed the procedure to the point where spectral line intensities can be calculated so that absorption and emission spectra can be simulated. In order to gain insight into the nature of the eigenfunctions, we have introduced and calculated the overall bending probability density function f(p) of the states. By projecting the eigenfunctions onto the Born-Oppenheimer basis, we have determined the probability density functions f+(rho) and f-(rho) associated with the individual Born-Oppenheimer states phi(-)elec and phi(+)elec. At a given temperature the Boltzmann averaged value of the f(p) over all the eigenstates gives the bending probability distribution function F(rho), and this can be related to the result of a Coulomb Explosion Imaging (CEI) experiment. We review our work and apply it to the molecules CH2+, MgNC and NH2, all of which are of astrophysical interest.

  7. On-line prognosis of fatigue crack propagation based on Gaussian weight-mixture proposal particle filter.

    PubMed

    Chen, Jian; Yuan, Shenfang; Qiu, Lei; Wang, Hui; Yang, Weibo

    2018-01-01

    Accurate on-line prognosis of fatigue crack propagation is of great meaning for prognostics and health management (PHM) technologies to ensure structural integrity, which is a challenging task because of uncertainties which arise from sources such as intrinsic material properties, loading, and environmental factors. The particle filter algorithm has been proved to be a powerful tool to deal with prognostic problems those are affected by uncertainties. However, most studies adopted the basic particle filter algorithm, which uses the transition probability density function as the importance density and may suffer from serious particle degeneracy problem. This paper proposes an on-line fatigue crack propagation prognosis method based on a novel Gaussian weight-mixture proposal particle filter and the active guided wave based on-line crack monitoring. Based on the on-line crack measurement, the mixture of the measurement probability density function and the transition probability density function is proposed to be the importance density. In addition, an on-line dynamic update procedure is proposed to adjust the parameter of the state equation. The proposed method is verified on the fatigue test of attachment lugs which are a kind of important joint components in aircraft structures. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Density matrix approach to the hot-electron stimulated photodesorption

    NASA Astrophysics Data System (ADS)

    Kühn, Oliver; May, Volkhard

    1996-07-01

    The dissipative dynamics of the laser-induced nonthermal desorption of small molecules from a metal surface is investigated here. Based on the density matrix formalism a multi-state model is introduced which explicitly takes into account the continuum of electronic states in the metal. Various relaxation mechanisms for the electronic degrees of freedom are shown to govern the desorption dynamics and hence the desorption probability. Particular attention is paid to the modeling of the time dependence of the electron energy distribution in the metal which reflects different excitation conditions.

  9. Olefin Epoxidation by Methyltrioxorhenium: A Density Functional Study on Energetics and Mechanisms.

    PubMed

    Gisdakis, Philip; Antonczak, Serge; Köstlmeier, Sibylle; Herrmann, Wolfgang A; Rösch, Notker

    1998-09-04

    A spiro attack on a peroxo group is calculated to be the preferred reaction pathway for olefin epoxidation with the catalytic system CH 3 ReO 3 /H 2 O 2 (see picture). This finding is supported by density functional calculations on more than ten transition states for the most probable mechanisms. Hydration has significant effects on various reaction species: it stabilizes the intermediates and destabilizes, with one exception, the transition states. © 1998 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  10. Steady-state probability density function of the phase error for a DPLL with an integrate-and-dump device

    NASA Technical Reports Server (NTRS)

    Simon, M.; Mileant, A.

    1986-01-01

    The steady-state behavior of a particular type of digital phase-locked loop (DPLL) with an integrate-and-dump circuit following the phase detector is characterized in terms of the probability density function (pdf) of the phase error in the loop. Although the loop is entirely digital from an implementation standpoint, it operates at two extremely different sampling rates. In particular, the combination of a phase detector and an integrate-and-dump circuit operates at a very high rate whereas the loop update rate is very slow by comparison. Because of this dichotomy, the loop can be analyzed by hybrid analog/digital (s/z domain) techniques. The loop is modeled in such a general fashion that previous analyses of the Real-Time Combiner (RTC), Subcarrier Demodulator Assembly (SDA), and Symbol Synchronization Assembly (SSA) fall out as special cases.

  11. Stochastic response and bifurcation of periodically driven nonlinear oscillators by the generalized cell mapping method

    NASA Astrophysics Data System (ADS)

    Han, Qun; Xu, Wei; Sun, Jian-Qiao

    2016-09-01

    The stochastic response of nonlinear oscillators under periodic and Gaussian white noise excitations is studied with the generalized cell mapping based on short-time Gaussian approximation (GCM/STGA) method. The solutions of the transition probability density functions over a small fraction of the period are constructed by the STGA scheme in order to construct the GCM over one complete period. Both the transient and steady-state probability density functions (PDFs) of a smooth and discontinuous (SD) oscillator are computed to illustrate the application of the method. The accuracy of the results is verified by direct Monte Carlo simulations. The transient responses show the evolution of the PDFs from being Gaussian to non-Gaussian. The effect of a chaotic saddle on the stochastic response is also studied. The stochastic P-bifurcation in terms of the steady-state PDFs occurs with the decrease of the smoothness parameter, which corresponds to the deterministic pitchfork bifurcation.

  12. On the Conformable Fractional Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Mozaffari, F. S.; Hassanabadi, H.; Sobhani, H.; Chung, W. S.

    2018-05-01

    In this paper, a conformable fractional quantum mechanic has been introduced using three postulates. Then in such a formalism, Schr¨odinger equation, probability density, probability flux and continuity equation have been derived. As an application of considered formalism, a fractional-radial harmonic oscillator has been considered. After obtaining its wave function and energy spectrum, effects of the conformable fractional parameter on some quantities have been investigated and plotted for different excited states.

  13. A Gleason-Type Theorem for Any Dimension Based on a Gambling Formulation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Benavoli, Alessio; Facchini, Alessandro; Zaffalon, Marco

    2017-07-01

    Based on a gambling formulation of quantum mechanics, we derive a Gleason-type theorem that holds for any dimension n of a quantum system, and in particular for n=2. The theorem states that the only logically consistent probability assignments are exactly the ones that are definable as the trace of the product of a projector and a density matrix operator. In addition, we detail the reason why dispersion-free probabilities are actually not valid, or rational, probabilities for quantum mechanics, and hence should be excluded from consideration.

  14. Estimating Density and Temperature Dependence of Juvenile Vital Rates Using a Hidden Markov Model

    PubMed Central

    McElderry, Robert M.

    2017-01-01

    Organisms in the wild have cryptic life stages that are sensitive to changing environmental conditions and can be difficult to survey. In this study, I used mark-recapture methods to repeatedly survey Anaea aidea (Nymphalidae) caterpillars in nature, then modeled caterpillar demography as a hidden Markov process to assess if temporal variability in temperature and density influence the survival and growth of A. aidea over time. Individual encounter histories result from the joint likelihood of being alive and observed in a particular stage, and I have included hidden states by separating demography and observations into parallel and independent processes. I constructed a demographic matrix containing the probabilities of all possible fates for each stage, including hidden states, e.g., eggs and pupae. I observed both dead and live caterpillars with high probability. Peak caterpillar abundance attracted multiple predators, and survival of fifth instars declined as per capita predation rate increased through spring. A time lag between predator and prey abundance was likely the cause of improved fifth instar survival estimated at high density. Growth rates showed an increase with temperature, but the preferred model did not include temperature. This work illustrates how state-space models can include unobservable stages and hidden state processes to evaluate how environmental factors influence vital rates of cryptic life stages in the wild. PMID:28505138

  15. Coulomb Impurity Potential RbCl Quantum Pseudodot Qubit

    NASA Astrophysics Data System (ADS)

    Ma, Xin-Jun; Qi, Bin; Xiao, Jing-Lin

    2015-08-01

    By employing a variational method of Pekar type, we study the eigenenergies and the corresponding eigenfunctions of the ground and the first-excited states of an electron strongly coupled to electron-LO in a RbCl quantum pseudodot (QPD) with a hydrogen-like impurity at the center. This QPD system may be used as a two-level quantum qubit. The expressions of electron's probability density versus time and the coordinates, and the oscillating period versus the Coulombic impurity potential and the polaron radius have been derived. The investigated results indicate ① that the probability density of the electron oscillates in the QPD with a certain oscillating period of , ② that due to the presence of the asymmetrical potential in the z direction of the RbCl QPD, the electron probability density shows double-peak configuration, whereas there is only one peak if the confinement is a two-dimensional symmetric structure in the xy plane of the QPD, ③ that the oscillation period is a decreasing function of the Coulombic impurity potential, whereas it is an increasing one of the polaron radius.

  16. Diffusion in shear flow

    NASA Astrophysics Data System (ADS)

    Dufty, J. W.

    1984-09-01

    Diffusion of a tagged particle in a fluid with uniform shear flow is described. The continuity equation for the probability density describing the position of the tagged particle is considered. The diffusion tensor is identified by expanding the irreversible part of the probability current to first order in the gradient of the probability density, but with no restriction on the shear rate. The tensor is expressed as the time integral of a nonequilibrium autocorrelation function for the velocity of the tagged particle in its local fluid rest frame, generalizing the Green-Kubo expression to the nonequilibrium state. The tensor is evaluated from results obtained previously for the velocity autocorrelation function that are exact for Maxwell molecules in the Boltzmann limit. The effects of viscous heating are included and the dependence on frequency and shear rate is displayed explicitly. The mode-coupling contributions to the frequency and shear-rate dependent diffusion tensor are calculated.

  17. The effect of incremental changes in phonotactic probability and neighborhood density on word learning by preschool children

    PubMed Central

    Storkel, Holly L.; Bontempo, Daniel E.; Aschenbrenner, Andrew J.; Maekawa, Junko; Lee, Su-Yeon

    2013-01-01

    Purpose Phonotactic probability or neighborhood density have predominately been defined using gross distinctions (i.e., low vs. high). The current studies examined the influence of finer changes in probability (Experiment 1) and density (Experiment 2) on word learning. Method The full range of probability or density was examined by sampling five nonwords from each of four quartiles. Three- and 5-year-old children received training on nonword-nonobject pairs. Learning was measured in a picture-naming task immediately following training and 1-week after training. Results were analyzed using multi-level modeling. Results A linear spline model best captured nonlinearities in phonotactic probability. Specifically word learning improved as probability increased in the lowest quartile, worsened as probability increased in the midlow quartile, and then remained stable and poor in the two highest quartiles. An ordinary linear model sufficiently described neighborhood density. Here, word learning improved as density increased across all quartiles. Conclusion Given these different patterns, phonotactic probability and neighborhood density appear to influence different word learning processes. Specifically, phonotactic probability may affect recognition that a sound sequence is an acceptable word in the language and is a novel word for the child, whereas neighborhood density may influence creation of a new representation in long-term memory. PMID:23882005

  18. A Cross-Sectional Comparison of the Effects of Phonotactic Probability and Neighborhood Density on Word Learning by Preschool Children

    ERIC Educational Resources Information Center

    Hoover, Jill R.; Storkel, Holly L.; Hogan, Tiffany P.

    2010-01-01

    Two experiments examined the effects of phonotactic probability and neighborhood density on word learning by 3-, 4-, and 5-year-old children. Nonwords orthogonally varying in probability and density were taught with learning and retention measured via picture naming. Experiment 1 used a within story probability/across story density exposure…

  19. Applying quantum principles to psychology

    NASA Astrophysics Data System (ADS)

    Busemeyer, Jerome R.; Wang, Zheng; Khrennikov, Andrei; Basieva, Irina

    2014-12-01

    This article starts out with a detailed example illustrating the utility of applying quantum probability to psychology. Then it describes several alternative mathematical methods for mapping fundamental quantum concepts (such as state preparation, measurement, state evolution) to fundamental psychological concepts (such as stimulus, response, information processing). For state preparation, we consider both pure states and densities with mixtures. For measurement, we consider projective measurements and positive operator valued measurements. The advantages and disadvantages of each method with respect to applications in psychology are discussed.

  20. Kinematic state estimation and motion planning for stochastic nonholonomic systems using the exponential map.

    PubMed

    Park, Wooram; Liu, Yan; Zhou, Yu; Moses, Matthew; Chirikjian, Gregory S

    2008-04-11

    A nonholonomic system subjected to external noise from the environment, or internal noise in its own actuators, will evolve in a stochastic manner described by an ensemble of trajectories. This ensemble of trajectories is equivalent to the solution of a Fokker-Planck equation that typically evolves on a Lie group. If the most likely state of such a system is to be estimated, and plans for subsequent motions from the current state are to be made so as to move the system to a desired state with high probability, then modeling how the probability density of the system evolves is critical. Methods for solving Fokker-Planck equations that evolve on Lie groups then become important. Such equations can be solved using the operational properties of group Fourier transforms in which irreducible unitary representation (IUR) matrices play a critical role. Therefore, we develop a simple approach for the numerical approximation of all the IUR matrices for two of the groups of most interest in robotics: the rotation group in three-dimensional space, SO(3), and the Euclidean motion group of the plane, SE(2). This approach uses the exponential mapping from the Lie algebras of these groups, and takes advantage of the sparse nature of the Lie algebra representation matrices. Other techniques for density estimation on groups are also explored. The computed densities are applied in the context of probabilistic path planning for kinematic cart in the plane and flexible needle steering in three-dimensional space. In these examples the injection of artificial noise into the computational models (rather than noise in the actual physical systems) serves as a tool to search the configuration spaces and plan paths. Finally, we illustrate how density estimation problems arise in the characterization of physical noise in orientational sensors such as gyroscopes.

  1. Colloids exposed to random potential energy landscapes: From particle number density to particle-potential and particle-particle interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bewerunge, Jörg; Capellmann, Ronja F.; Platten, Florian

    2016-07-28

    Colloidal particles were exposed to a random potential energy landscape that has been created optically via a speckle pattern. The mean particle density as well as the potential roughness, i.e., the disorder strength, were varied. The local probability density of the particles as well as its main characteristics were determined. For the first time, the disorder-averaged pair density correlation function g{sup (1)}(r) and an analogue of the Edwards-Anderson order parameter g{sup (2)}(r), which quantifies the correlation of the mean local density among disorder realisations, were measured experimentally and shown to be consistent with replica liquid state theory results.

  2. Hydrodynamic Flow Fluctuations in √sNN = 5:02 TeV PbPbCollisions

    NASA Astrophysics Data System (ADS)

    Castle, James R.

    The collective, anisotropic expansion of the medium created in ultrarelativistic heavy-ion collisions, known as flow, is characterized through a Fourier expansion of the final-state azimuthal particle density. In the Fourier expansion, flow harmonic coefficients vn correspond to shape components in the final-state particle density, which are a consequence of similar spatial anisotropies in the initial-state transverse energy density of a collision. Flow harmonic fluctuations are studied for PbPb collisions at √sNN = 5.02 TeV using the CMS detector at the CERN LHC. Flow harmonic probability distributions p( vn) are obtained using particles with 0.3 < pT < 3.0 GeV/c and ∥eta∥ < 1.0 by removing finite-multiplicity resolution effects from the observed azimuthal particle density through an unfolding procedure. Cumulant elliptic flow harmonics (n = 2) are determined from the moments of the unfolded p(v2) distributions and used to construct observables in 5% wide centrality bins up to 60% that relate to the initial-state spatial anisotropy. Hydrodynamic models predict that fluctuations in the initial-state transverse energy density will lead to a non-Gaussian component in the elliptic flow probability distributions that manifests as a negative skewness. A statistically significant negative skewness is observed for all centrality bins as evidenced by a splitting between the higher-order cumulant elliptic flow harmonics. The unfolded p (v2) distributions are transformed assuming a linear relationship between the initial-state spatial anisotropy and final-state flow and are fitted with elliptic power law and Bessel Gaussian parametrizations to infer information on the nature of initial-state fluctuations. The elliptic power law parametrization is found to provide a more accurate description of the fluctuations than the Bessel-Gaussian parametrization. In addition, the event-shape engineering technique, where events are further divided into classes based on an observed ellipticity, is used to study fluctuation-driven differences in the initial-state spatial anisotropy for a given collision centrality that would otherwise be destroyed by event-averaging techniques. Correlations between the first and second moments of p( vn) distributions and event ellipticity are measured for harmonic orders n = 2 - 4 by coupling event-shape engineering to the unfolding technique.

  3. Excited atoms in the free-burning Ar arc: treatment of the resonance radiation

    NASA Astrophysics Data System (ADS)

    Golubovskii, Yu; Kalanov, D.; Gortschakow, S.; Baeva, M.; Uhrlandt, D.

    2016-11-01

    The collisional-radiative model with an emphasis on the accurate treatment of the resonance radiation transport is developed and applied to the free-burning Ar arc plasma. This model allows for analysis of the influence of resonance radiation on the spatial density profiles of the atoms in different excited states. The comparison of the radial density profiles obtained using an effective transition probability approximation with the results of the accurate solution demonstrates the distinct impact of transport on the profiles and absolute densities of the excited atoms, especially in the arc fringes. The departures from the Saha-Boltzmann equilibrium distributions, caused by different radiative transitions, are analyzed. For the case of the DC arc, the local thermodynamic equilibrium (LTE) state holds close to the arc axis, while strong deviations from the equilibrium state on the periphery occur. In the intermediate radial positions the conditions of partial LTE are fulfilled.

  4. Evolution of probability densities in stochastic coupled map lattices

    NASA Astrophysics Data System (ADS)

    Losson, Jérôme; Mackey, Michael C.

    1995-08-01

    This paper describes the statistical properties of coupled map lattices subjected to the influence of stochastic perturbations. The stochastic analog of the Perron-Frobenius operator is derived for various types of noise. When the local dynamics satisfy rather mild conditions, this equation is shown to possess either stable, steady state solutions (i.e., a stable invariant density) or density limit cycles. Convergence of the phase space densities to these limit cycle solutions explains the nonstationary behavior of statistical quantifiers at equilibrium. Numerical experiments performed on various lattices of tent, logistic, and shift maps with diffusivelike interelement couplings are examined in light of these theoretical results.

  5. Hybrid reconstruction of quantum density matrix: when low-rank meets sparsity

    NASA Astrophysics Data System (ADS)

    Li, Kezhi; Zheng, Kai; Yang, Jingbei; Cong, Shuang; Liu, Xiaomei; Li, Zhaokai

    2017-12-01

    Both the mathematical theory and experiments have verified that the quantum state tomography based on compressive sensing is an efficient framework for the reconstruction of quantum density states. In recent physical experiments, we found that many unknown density matrices in which people are interested in are low-rank as well as sparse. Bearing this information in mind, in this paper we propose a reconstruction algorithm that combines the low-rank and the sparsity property of density matrices and further theoretically prove that the solution of the optimization function can be, and only be, the true density matrix satisfying the model with overwhelming probability, as long as a necessary number of measurements are allowed. The solver leverages the fixed-point equation technique in which a step-by-step strategy is developed by utilizing an extended soft threshold operator that copes with complex values. Numerical experiments of the density matrix estimation for real nuclear magnetic resonance devices reveal that the proposed method achieves a better accuracy compared to some existing methods. We believe that the proposed method could be leveraged as a generalized approach and widely implemented in the quantum state estimation.

  6. A spatially explicit model for an Allee effect: why wolves recolonize so slowly in Greater Yellowstone.

    PubMed

    Hurford, Amy; Hebblewhite, Mark; Lewis, Mark A

    2006-11-01

    A reduced probability of finding mates at low densities is a frequently hypothesized mechanism for a component Allee effect. At low densities dispersers are less likely to find mates and establish new breeding units. However, many mathematical models for an Allee effect do not make a distinction between breeding group establishment and subsequent population growth. Our objective is to derive a spatially explicit mathematical model, where dispersers have a reduced probability of finding mates at low densities, and parameterize the model for wolf recolonization in the Greater Yellowstone Ecosystem (GYE). In this model, only the probability of establishing new breeding units is influenced by the reduced probability of finding mates at low densities. We analytically and numerically solve the model to determine the effect of a decreased probability in finding mates at low densities on population spread rate and density. Our results suggest that a reduced probability of finding mates at low densities may slow recolonization rate.

  7. Characterizing the radial content of orbital-angular-momentum photonic states impaired by weak-to-strong atmospheric turbulence.

    PubMed

    Chen, Chunyi; Yang, Huamin

    2016-08-22

    The changes in the radial content of orbital-angular-momentum (OAM) photonic states described by Laguerre-Gaussian (LG) modes with a radial index of zero, suffering from turbulence-induced distortions, are explored by numerical simulations. For a single-photon field with a given LG mode propagating through weak-to-strong atmospheric turbulence, both the average LG and OAM mode densities are dependent only on two nondimensional parameters, i.e., the Fresnel ratio and coherence-width-to-beam-radius (CWBR) ratio. It is found that atmospheric turbulence causes the radially-adjacent-mode mixing, besides the azimuthally-adjacent-mode mixing, in the propagated photonic states; the former is relatively slighter than the latter. With the same Fresnel ratio, the probabilities that a photon can be found in the zero-index radial mode of intended OAM states in terms of the relative turbulence strength behave very similarly; a smaller Fresnel ratio leads to a slower decrease in the probabilities as the relative turbulence strength increases. A photon can be found in various radial modes with approximately equal probability when the relative turbulence strength turns great enough. The use of a single-mode fiber in OAM measurements can result in photon loss and hence alter the observed transition probability between various OAM states. The bit error probability in OAM-based free-space optical communication systems that transmit photonic modes belonging to the same orthogonal LG basis may depend on what digit is sent.

  8. Correlation between environmental factors and prevalence of Vibrio parahaemolyticus in oysters harvested in the southern coastal area of Sao Paulo State, Brazil.

    PubMed

    Sobrinho, Paulo de Souza Costa; Destro, Maria T; Franco, Bernadette D G M; Landgraf, Mariza

    2010-02-01

    The presence of Vibrio parahaemolyticus in 123 oyster samples collected from an estuary on the southern coast of Sao Paulo state, Brazil, was investigated. Of the 123 samples, 99.2% were positive with densities ranging from < 3 to 10(5) most probable number (MPN)/g. Densities correlated significantly with water temperature (r = 0.48; P < 0.001) but not with salinity (r = -0.09; P = 0.34). The effect of harvest site on counts was not significant (P > 0.05). These data provide information for the assessment of exposure of V. parahaemolyticus in oysters at harvest.

  9. SEMICONDUCTOR PHYSICS: Properties of the two- and three-dimensional quantum dot qubit

    NASA Astrophysics Data System (ADS)

    Shihua, Chen

    2010-05-01

    On the condition of electric-longitudinal-optical (LO) phonon strong coupling in both two- and three-dimensional parabolic quantum dots (QDs), we obtain the eigenenergies of the ground state (GS) and the first excited state (ES), the eigenfunctions of the GS and the first ES by using a variational method of Pekar type. This system in QD may be employed as a quantum system-quantum bit (qubit). When the electron is in the superposition state of the GS and the first ES, we obtain the time evolution of the electron density. The relations of both the electron probability density and the period of oscillation with the electric-LO phonon coupling strength and confinement length are discussed.

  10. Optimal nonlinear filtering using the finite-volume method

    NASA Astrophysics Data System (ADS)

    Fox, Colin; Morrison, Malcolm E. K.; Norton, Richard A.; Molteno, Timothy C. A.

    2018-01-01

    Optimal sequential inference, or filtering, for the state of a deterministic dynamical system requires simulation of the Frobenius-Perron operator, that can be formulated as the solution of a continuity equation. For low-dimensional, smooth systems, the finite-volume numerical method provides a solution that conserves probability and gives estimates that converge to the optimal continuous-time values, while a Courant-Friedrichs-Lewy-type condition assures that intermediate discretized solutions remain positive density functions. This method is demonstrated in an example of nonlinear filtering for the state of a simple pendulum, with comparison to results using the unscented Kalman filter, and for a case where rank-deficient observations lead to multimodal probability distributions.

  11. Modeling of Abrasion and Crushing of Unbound Granular Materials During Compaction

    NASA Astrophysics Data System (ADS)

    Ocampo, Manuel S.; Caicedo, Bernardo

    2009-06-01

    Unbound compacted granular materials are commonly used in engineering structures as layers in road pavements, railroad beds, highway embankments, and foundations. These structures are generally subjected to dynamic loading by construction operations, traffic and wheel loads. These repeated or cyclic loads cause abrasion and crushing of the granular materials. Abrasion changes a particle's shape, and crushing divides the particle into a mixture of many small particles of varying sizes. Particle breakage is important because the mechanical and hydraulic properties of these materials depend upon their grain size distribution. Therefore, it is important to evaluate the evolution of the grain size distribution of these materials. In this paper an analytical model for unbound granular materials is proposed in order to evaluate particle crushing of gravels and soils subjected to cyclic loads. The model is based on a Markov chain which describes the development of grading changes in the material as a function of stress levels. In the model proposed, each particle size is a state in the system, and the evolution of the material is the movement of particles from one state to another in n steps. Each step is a load cycle, and movement between states is possible with a transition probability. The crushing of particles depends on the mechanical properties of each grain and the packing density of the granular material. The transition probability was calculated using both the survival probability defined by Weibull and the compressible packing model developed by De Larrard. Material mechanical properties are considered using the Weibull probability theory. The size and shape of the grains, as well as the method of processing the packing density are considered using De Larrard's model. Results of the proposed analytical model show a good agreement with the experimental tests carried out using the gyratory compaction test.

  12. Constructing the AdS dual of a Fermi liquid: AdS black holes with Dirac hair

    NASA Astrophysics Data System (ADS)

    Čubrović, Mihailo; Zaanen, Jan; Schalm, Koenraad

    2011-10-01

    We provide evidence that the holographic dual to a strongly coupled charged Fermi liquid has a non-zero fermion density in the bulk. We show that the pole-strength of the stable quasiparticle characterizing the Fermi surface is encoded in the AdS probability density of a single normalizable fermion wavefunction in AdS. Recalling Migdal's theorem which relates the pole strength to the Fermi-Dirac characteristic discontinuity in the number density at ω F , we conclude that the AdS dual of a Fermi liquid is described by occupied on-shell fermionic modes in AdS. Encoding the occupied levels in the total spatially averaged probability density of the fermion field directly, we show that an AdS Reissner-Nordström black holein a theory with charged fermions has a critical temperature, at which the system undergoes a first-order transition to a black hole with a non-vanishing profile for the bulk fermion field. Thermodynamics and spectral analysis support that the solution with non-zero AdS fermion-profile is the preferred ground state at low temperatures.

  13. Density distribution function of a self-gravitating isothermal compressible turbulent fluid in the context of molecular clouds ensembles

    NASA Astrophysics Data System (ADS)

    Donkov, Sava; Stefanov, Ivan Z.

    2018-03-01

    We have set ourselves the task of obtaining the probability distribution function of the mass density of a self-gravitating isothermal compressible turbulent fluid from its physics. We have done this in the context of a new notion: the molecular clouds ensemble. We have applied a new approach that takes into account the fractal nature of the fluid. Using the medium equations, under the assumption of steady state, we show that the total energy per unit mass is an invariant with respect to the fractal scales. As a next step we obtain a non-linear integral equation for the dimensionless scale Q which is the third root of the integral of the probability distribution function. It is solved approximately up to the leading-order term in the series expansion. We obtain two solutions. They are power-law distributions with different slopes: the first one is -1.5 at low densities, corresponding to an equilibrium between all energies at a given scale, and the second one is -2 at high densities, corresponding to a free fall at small scales.

  14. Influences of temperature on asymmetric quantum dot qubit in Coulombic impunity potential

    NASA Astrophysics Data System (ADS)

    Chen, Y.-J.; Song, H.-T.; Xiao, J.-L.

    2018-05-01

    Using the variational method of the Pekar-type, we study the influences of the temperature on the asymmetric quantum dot (QD) qubit in the Coulombic impunity potential. Then we derive the numerical results and formulate the derivative relationships of the electron probability density and the electron oscillation period in the superposition state of the ground state and the first-excited state with the electron-phonon coupling constant, the Coulombic impurity potential, the transverse and longitudinal confinement strengths at different temperatures, respectively.

  15. Force Density Function Relationships in 2-D Granular Media

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Metzger, Philip T.; Kilts, Kelly N.

    2004-01-01

    An integral transform relationship is developed to convert between two important probability density functions (distributions) used in the study of contact forces in granular physics. Developing this transform has now made it possible to compare and relate various theoretical approaches with one another and with the experimental data despite the fact that one may predict the Cartesian probability density and another the force magnitude probability density. Also, the transforms identify which functional forms are relevant to describe the probability density observed in nature, and so the modified Bessel function of the second kind has been identified as the relevant form for the Cartesian probability density corresponding to exponential forms in the force magnitude distribution. Furthermore, it is shown that this transform pair supplies a sufficient mathematical framework to describe the evolution of the force magnitude distribution under shearing. Apart from the choice of several coefficients, whose evolution of values must be explained in the physics, this framework successfully reproduces the features of the distribution that are taken to be an indicator of jamming and unjamming in a granular packing. Key words. Granular Physics, Probability Density Functions, Fourier Transforms

  16. Quantum States and Generalized Observables: A Simple Proof of Gleason's Theorem

    NASA Astrophysics Data System (ADS)

    Busch, P.

    2003-09-01

    A quantum state can be understood in a loose sense as a map that assigns a value to every observable. Formalizing this characterization of states in terms of generalized probability distributions on the set of effects, we obtain a simple proof of the result, analogous to Gleason’s theorem, that any quantum state is given by a density operator. As a corollary we obtain a vonNeumann type argument against noncontextual hidden variables. It follows that on an individual interpretation of quantum mechanics the values of effects are appropriately understood as propensities.

  17. Spectral dimension controlling the decay of the quantum first-detection probability

    NASA Astrophysics Data System (ADS)

    Thiel, Felix; Kessler, David A.; Barkai, Eli

    2018-06-01

    We consider a quantum system that is initially localized at xin and that is repeatedly projectively probed with a fixed period τ at position xd. We ask for the probability Fn that the system is detected at xd for the very first time, where n is the number of detection attempts. We relate the asymptotic decay and oscillations of Fn with the system's energy spectrum, which is assumed to be absolutely continuous. In particular, Fn is determined by the Hamiltonian's measurement spectral density of states (MSDOS) f (E ) that is closely related to the density of energy states (DOS). We find that Fn decays like a power law whose exponent is determined by the power-law exponent dS of f (E ) around its singularities E*. Our findings are analogous to the classical first passage theory of random walks. In contrast to the classical case, the decay of Fn is accompanied by oscillations with frequencies that are determined by the singularities E*. This gives rise to critical detection periods τc at which the oscillations disappear. In the ordinary case dS can be identified with the spectral dimension associated with the DOS. Furthermore, the singularities E* are the van Hove singularities of the DOS in this case. We find that the asymptotic statistics of Fn depend crucially on the initial and detection state and can be wildly different for out-of-the-ordinary states, which is in sharp contrast to the classical theory. The properties of the first-detection probabilities can alternatively be derived from the transition amplitudes. All our results are confirmed by numerical simulations of the tight-binding model, and of a free particle in continuous space both with a normal and with an anomalous dispersion relation. We provide explicit asymptotic formulas for the first-detection probability in these models.

  18. Macroscopically constrained Wang-Landau method for systems with multiple order parameters and its application to drawing complex phase diagrams

    NASA Astrophysics Data System (ADS)

    Chan, C. H.; Brown, G.; Rikvold, P. A.

    2017-05-01

    A generalized approach to Wang-Landau simulations, macroscopically constrained Wang-Landau, is proposed to simulate the density of states of a system with multiple macroscopic order parameters. The method breaks a multidimensional random-walk process in phase space into many separate, one-dimensional random-walk processes in well-defined subspaces. Each of these random walks is constrained to a different set of values of the macroscopic order parameters. When the multivariable density of states is obtained for one set of values of fieldlike model parameters, the density of states for any other values of these parameters can be obtained by a simple transformation of the total system energy. All thermodynamic quantities of the system can then be rapidly calculated at any point in the phase diagram. We demonstrate how to use the multivariable density of states to draw the phase diagram, as well as order-parameter probability distributions at specific phase points, for a model spin-crossover material: an antiferromagnetic Ising model with ferromagnetic long-range interactions. The fieldlike parameters in this model are an effective magnetic field and the strength of the long-range interaction.

  19. Statistical tests for whether a given set of independent, identically distributed draws comes from a specified probability density.

    PubMed

    Tygert, Mark

    2010-09-21

    We discuss several tests for determining whether a given set of independent and identically distributed (i.i.d.) draws does not come from a specified probability density function. The most commonly used are Kolmogorov-Smirnov tests, particularly Kuiper's variant, which focus on discrepancies between the cumulative distribution function for the specified probability density and the empirical cumulative distribution function for the given set of i.i.d. draws. Unfortunately, variations in the probability density function often get smoothed over in the cumulative distribution function, making it difficult to detect discrepancies in regions where the probability density is small in comparison with its values in surrounding regions. We discuss tests without this deficiency, complementing the classical methods. The tests of the present paper are based on the plain fact that it is unlikely to draw a random number whose probability is small, provided that the draw is taken from the same distribution used in calculating the probability (thus, if we draw a random number whose probability is small, then we can be confident that we did not draw the number from the same distribution used in calculating the probability).

  20. Discriminating quantum-optical beam-splitter channels with number-diagonal signal states: Applications to quantum reading and target detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nair, Ranjith

    2011-09-15

    We consider the problem of distinguishing, with minimum probability of error, two optical beam-splitter channels with unequal complex-valued reflectivities using general quantum probe states entangled over M signal and M' idler mode pairs of which the signal modes are bounced off the beam splitter while the idler modes are retained losslessly. We obtain a lower bound on the output state fidelity valid for any pure input state. We define number-diagonal signal (NDS) states to be input states whose density operator in the signal modes is diagonal in the multimode number basis. For such input states, we derive series formulas formore » the optimal error probability, the output state fidelity, and the Chernoff-type upper bounds on the error probability. For the special cases of quantum reading of a classical digital memory and target detection (for which the reflectivities are real valued), we show that for a given input signal photon probability distribution, the fidelity is minimized by the NDS states with that distribution and that for a given average total signal energy N{sub s}, the fidelity is minimized by any multimode Fock state with N{sub s} total signal photons. For reading of an ideal memory, it is shown that Fock state inputs minimize the Chernoff bound. For target detection under high-loss conditions, a no-go result showing the lack of appreciable quantum advantage over coherent state transmitters is derived. A comparison of the error probability performance for quantum reading of number state and two-mode squeezed vacuum state (or EPR state) transmitters relative to coherent state transmitters is presented for various values of the reflectances. While the nonclassical states in general perform better than the coherent state, the quantitative performance gains differ depending on the values of the reflectances. The experimental outlook for realizing nonclassical gains from number state transmitters with current technology at moderate to high values of the reflectances is argued to be good.« less

  1. Maximum likelihood estimation for predicting the probability of obtaining variable shortleaf pine regeneration densities

    Treesearch

    Thomas B. Lynch; Jean Nkouka; Michael M. Huebschmann; James M. Guldin

    2003-01-01

    A logistic equation is the basis for a model that predicts the probability of obtaining regeneration at specified densities. The density of regeneration (trees/ha) for which an estimate of probability is desired can be specified by means of independent variables in the model. When estimating parameters, the dependent variable is set to 1 if the regeneration density (...

  2. Magnetoreresistance of carbon nanotube-polypyrrole composite yarns

    NASA Astrophysics Data System (ADS)

    Ghanbari, R.; Ghorbani, S. R.; Arabi, H.; Foroughi, J.

    2018-05-01

    Three types of samples, carbon nanotube yarn and carbon nanotube-polypyrrole composite yarns had been investigated by measurement of the electrical conductivity as a function of temperature and magnetic field. The conductivity was well explained by 3D Mott variable range hopping (VRH) law at T < 100 K. Both positive and negative magnetoresistance (MR) were observed by increasing magnetic field. The MR data were analyzed based a theoretical model. A quadratic positive and negative MR was observed for three samples. It was found that the localization length decreases with applied magnetic field while the density of states increases. The increasing of the density of states induces increasing the number of available energy states for hopping. Thus the electron hopping probability increases in between sites with the shorter distance that results to small the average hopping length.

  3. On the continuity of the stationary state distribution of DPCM

    NASA Astrophysics Data System (ADS)

    Naraghi-Pour, Morteza; Neuhoff, David L.

    1990-03-01

    Continuity and singularity properties of the stationary state distribution of differential pulse code modulation (DPCM) are explored. Two-level DPCM (i.e., delta modulation) operating on a first-order autoregressive source is considered, and it is shown that, when the magnitude of the DPCM prediciton coefficient is between zero and one-half, the stationary state distribution is singularly continuous; i.e., it is not discrete but concentrates on an uncountable set with a Lebesgue measure of zero. Consequently, it cannot be represented with a probability density function. For prediction coefficients with magnitude greater than or equal to one-half, the distribution is pure, i.e., either absolutely continuous and representable with a density function, or singular. This problem is compared to the well-known and still substantially unsolved problem of symmetric Bernoulli convolutions.

  4. Theoretical information measurement in nonrelativistic time-dependent approach

    NASA Astrophysics Data System (ADS)

    Najafizade, S. A.; Hassanabadi, H.; Zarrinkamar, S.

    2018-02-01

    The information-theoretic measures of time-dependent Schrödinger equation are investigated via the Shannon information entropy, variance and local Fisher quantities. In our calculations, we consider the two first states n = 0,1 and obtain the position Sx (t) and momentum Sp (t) Shannon entropies as well as Fisher information Ix (t) in position and momentum Ip (t) spaces. Using the Fourier transformed wave function, we obtain the results in momentum space. Some interesting features of the information entropy densities ρs (x,t) and γs (p,t), as well as the probability densities ρ (x,t) and γ (p,t) for time-dependent states are demonstrated. We establish a general relation between variance and Fisher's information. The Bialynicki-Birula-Mycielski inequality is tested and verified for the states n = 0,1.

  5. Quartetting in Nuclear Matter and α Particle Condensation in Nuclear Systems

    NASA Astrophysics Data System (ADS)

    Röpke, G.; Schuck, P.; Horiuchi, H.; Tohsaki, A.; Funaki, Y.; Yamada, T.

    2008-02-01

    Alternatively to pairing, four-particle correlations may become of importance for the formation of quantum condensates in nuclear matter. With increasing density, four-particle correlations are suppressed because of Pauli blocking. Signatures of α-like clusters are expected to occur in low-density nuclear systems. The famous Hoyle state (02+ at 7.654 MeV in 12C) is identified as being an almost ideal condensate of three α-particles, hold together only by the Coulomb barrier. It, therefore, has a 8Be-α structure of low density. Transition probability and inelastic form factor together with position and other physical quantities are correctly reproduced without any adjustable parameter from our two parameter wave function of α-particle condensate type. The possibility of the existence of α-particle condensed states in heavier nα nuclei is also discussed.

  6. Application of confocal laser microscopy for monitoring mesh implants in herniology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakharov, V P; Belokonev, V I; Bratchenko, I A

    2011-04-30

    The state of the surface of mesh implants and their encapsulation region in herniology is investigated by laser confocal microscopy. A correlation between the probability of developing relapses and the size and density of implant microdefects is experimentally shown. The applicability limits of differential reverse scattering for monitoring the post-operation state of implant and adjacent tissues are established based on model numerical experiments. (optical technologies in biophysics and medicine)

  7. Correlation between Environmental Factors and Prevalence of Vibrio parahaemolyticus in Oysters Harvested in the Southern Coastal Area of Sao Paulo State, Brazil▿

    PubMed Central

    Sobrinho, Paulo de Souza Costa; Destro, Maria T.; Franco, Bernadette D. G. M.; Landgraf, Mariza

    2010-01-01

    The presence of Vibrio parahaemolyticus in 123 oyster samples collected from an estuary on the southern coast of Sao Paulo state, Brazil, was investigated. Of the 123 samples, 99.2% were positive with densities ranging from <3 to 105 most probable number (MPN)/g. Densities correlated significantly with water temperature (r = 0.48; P < 0.001) but not with salinity (r = −0.09; P = 0.34). The effect of harvest site on counts was not significant (P > 0.05). These data provide information for the assessment of exposure of V. parahaemolyticus in oysters at harvest. PMID:20023076

  8. Density of American black bears in New Mexico

    USGS Publications Warehouse

    Gould, Matthew J.; Cain, James W.; Roemer, Gary W.; Gould, William R.; Liley, Stewart

    2018-01-01

    Considering advances in noninvasive genetic sampling and spatially explicit capture–recapture (SECR) models, the New Mexico Department of Game and Fish sought to update their density estimates for American black bear (Ursus americanus) populations in New Mexico, USA, to aide in setting sustainable harvest limits. We estimated black bear density in the Sangre de Cristo, Sandia, and Sacramento Mountains, New Mexico, 2012–2014. We collected hair samples from black bears using hair traps and bear rubs and used a sex marker and a suite of microsatellite loci to individually genotype hair samples. We then estimated density in a SECR framework using sex, elevation, land cover type, and time to model heterogeneity in detection probability and the spatial scale over which detection probability declines. We sampled the populations using 554 hair traps and 117 bear rubs and collected 4,083 hair samples. We identified 725 (367 male, 358 female) individuals. Our density estimates varied from 16.5 bears/100 km2 (95% CI = 11.6–23.5) in the southern Sacramento Mountains to 25.7 bears/100 km2 (95% CI = 13.2–50.1) in the Sandia Mountains. Overall, detection probability at the activity center (g0) was low across all study areas and ranged from 0.00001 to 0.02. The low values of g0 were primarily a result of half of all hair samples for which genotypes were attempted failing to produce a complete genotype. We speculate that the low success we had genotyping hair samples was due to exceedingly high levels of ultraviolet (UV) radiation that degraded the DNA in the hair. Despite sampling difficulties, we were able to produce density estimates with levels of precision comparable to those estimated for black bears elsewhere in the United States.

  9. Series approximation to probability densities

    NASA Astrophysics Data System (ADS)

    Cohen, L.

    2018-04-01

    One of the historical and fundamental uses of the Edgeworth and Gram-Charlier series is to "correct" a Gaussian density when it is determined that the probability density under consideration has moments that do not correspond to the Gaussian [5, 6]. There is a fundamental difficulty with these methods in that if the series are truncated, then the resulting approximate density is not manifestly positive. The aim of this paper is to attempt to expand a probability density so that if it is truncated it will still be manifestly positive.

  10. The effect of magnetic field on RbCl quantum pseudodot qubit

    NASA Astrophysics Data System (ADS)

    Xiao, Jing-Lin

    2015-07-01

    Under the condition of strong electron-LO-phonon coupling in a RbCl quantum pseudodot (QPD) with an applied magnetic field (MF), the eigenenergies and the eigenfunctions of the ground and the first excited states (GFES) are obtained by using a variational method of the Pekar type (VMPT). A single qubit can be realized in this two-level quantum system. The electron’s probability density oscillates in the RbCl QPD with a certain period of T0 = 7.933 fs when the electron is in the superposition state of the GFES. The results indicate that due to the presence of the asymmetrical structure in the z direction of the RbCl QPD, the electron’s probability density shows double-peak configuration, whereas there is only peak if the confinement is a symmetric structure in the x and y directions of the RbCl QPD. The oscillating period is an increasing function of the cyclotron frequency and the polaron radius, whereas it is a decreasing one of the chemical potential of the two-dimensional electron gas and the zero point of the pseudoharmonic potential (PP).

  11. A principled dimension-reduction method for the population density approach to modeling networks of neurons with synaptic dynamics.

    PubMed

    Ly, Cheng

    2013-10-01

    The population density approach to neural network modeling has been utilized in a variety of contexts. The idea is to group many similar noisy neurons into populations and track the probability density function for each population that encompasses the proportion of neurons with a particular state rather than simulating individual neurons (i.e., Monte Carlo). It is commonly used for both analytic insight and as a time-saving computational tool. The main shortcoming of this method is that when realistic attributes are incorporated in the underlying neuron model, the dimension of the probability density function increases, leading to intractable equations or, at best, computationally intensive simulations. Thus, developing principled dimension-reduction methods is essential for the robustness of these powerful methods. As a more pragmatic tool, it would be of great value for the larger theoretical neuroscience community. For exposition of this method, we consider a single uncoupled population of leaky integrate-and-fire neurons receiving external excitatory synaptic input only. We present a dimension-reduction method that reduces a two-dimensional partial differential-integral equation to a computationally efficient one-dimensional system and gives qualitatively accurate results in both the steady-state and nonequilibrium regimes. The method, termed modified mean-field method, is based entirely on the governing equations and not on any auxiliary variables or parameters, and it does not require fine-tuning. The principles of the modified mean-field method have potential applicability to more realistic (i.e., higher-dimensional) neural networks.

  12. Correlations between polarisation states of W particles in the reaction e - e +→ W - W + at LEP2 energies 189-209 GeV

    NASA Astrophysics Data System (ADS)

    Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G. J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; da Silva, T.; da Silva, W.; Della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kerzel, U.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; McNulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nemecek, S.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimin, N. I.; Zintchenko, A.; Zupan, M.

    2009-10-01

    In a study of the reaction e - e +→ W - W + with the DELPHI detector, the probabilities of the two W particles occurring in the joint polarisation states transverse-transverse ( TT), longitudinal-transverse plus transverse-longitudinal ( LT) and longitudinal-longitudinal ( LL) have been determined using the final states WW{rightarrow}lν qbar{q} ( l= e, μ). The two-particle joint polarisation probabilities, i.e. the spin density matrix elements ρ TT , ρ LT , ρ LL , are measured as functions of the W - production angle, θ _{W-}, at an average reaction energy of 198.2 GeV. Averaged over all \\cosθ_{W-}, the following joint probabilities are obtained: bar{ρ}_{TT}=(67±8)%, bar{ρ}_{LT}=(30±8)%, bar{ρ}_{LL}=(3±7)%. These results are in agreement with the Standard Model predictions of 63.0%, 28.9% and 8.1%, respectively. The related polarisation cross-sections σ TT , σ LT and σ LL are also presented.

  13. Predicting critical transitions in dynamical systems from time series using nonstationary probability density modeling.

    PubMed

    Kwasniok, Frank

    2013-11-01

    A time series analysis method for predicting the probability density of a dynamical system is proposed. A nonstationary parametric model of the probability density is estimated from data within a maximum likelihood framework and then extrapolated to forecast the future probability density and explore the system for critical transitions or tipping points. A full systematic account of parameter uncertainty is taken. The technique is generic, independent of the underlying dynamics of the system. The method is verified on simulated data and then applied to prediction of Arctic sea-ice extent.

  14. Maximising profits for an EPQ model with unreliable machine and rework of random defective items

    NASA Astrophysics Data System (ADS)

    Pal, Brojeswar; Sankar Sana, Shib; Chaudhuri, Kripasindhu

    2013-03-01

    This article deals with an economic production quantity (EPQ) model in an imperfect production system. The production system may undergo in 'out-of-control' state from 'in-control' state, after a certain time that follows a probability density function. The density function varies with reliability of the machinery system that may be controlled by new technologies, investing more costs. The defective items produced in 'out-of-control' state are reworked at a cost just after the regular production time. Occurrence of the 'out-of-control' state during or after regular production-run time is analysed and also graphically illustrated separately. Finally, an expected profit function regarding the inventory cost, unit production cost and selling price is maximised analytically. Sensitivity analysis of the model with respect to key parameters of the system is carried out. Two numerical examples are considered to test the model and one of them is illustrated graphically.

  15. Efficient method for computing the maximum-likelihood quantum state from measurements with additive Gaussian noise.

    PubMed

    Smolin, John A; Gambetta, Jay M; Smith, Graeme

    2012-02-17

    We provide an efficient method for computing the maximum-likelihood mixed quantum state (with density matrix ρ) given a set of measurement outcomes in a complete orthonormal operator basis subject to Gaussian noise. Our method works by first changing basis yielding a candidate density matrix μ which may have nonphysical (negative) eigenvalues, and then finding the nearest physical state under the 2-norm. Our algorithm takes at worst O(d(4)) for the basis change plus O(d(3)) for finding ρ where d is the dimension of the quantum state. In the special case where the measurement basis is strings of Pauli operators, the basis change takes only O(d(3)) as well. The workhorse of the algorithm is a new linear-time method for finding the closest probability distribution (in Euclidean distance) to a set of real numbers summing to one.

  16. Kinematic state estimation and motion planning for stochastic nonholonomic systems using the exponential map

    PubMed Central

    Park, Wooram; Liu, Yan; Zhou, Yu; Moses, Matthew; Chirikjian, Gregory S.

    2010-01-01

    SUMMARY A nonholonomic system subjected to external noise from the environment, or internal noise in its own actuators, will evolve in a stochastic manner described by an ensemble of trajectories. This ensemble of trajectories is equivalent to the solution of a Fokker–Planck equation that typically evolves on a Lie group. If the most likely state of such a system is to be estimated, and plans for subsequent motions from the current state are to be made so as to move the system to a desired state with high probability, then modeling how the probability density of the system evolves is critical. Methods for solving Fokker-Planck equations that evolve on Lie groups then become important. Such equations can be solved using the operational properties of group Fourier transforms in which irreducible unitary representation (IUR) matrices play a critical role. Therefore, we develop a simple approach for the numerical approximation of all the IUR matrices for two of the groups of most interest in robotics: the rotation group in three-dimensional space, SO(3), and the Euclidean motion group of the plane, SE(2). This approach uses the exponential mapping from the Lie algebras of these groups, and takes advantage of the sparse nature of the Lie algebra representation matrices. Other techniques for density estimation on groups are also explored. The computed densities are applied in the context of probabilistic path planning for kinematic cart in the plane and flexible needle steering in three-dimensional space. In these examples the injection of artificial noise into the computational models (rather than noise in the actual physical systems) serves as a tool to search the configuration spaces and plan paths. Finally, we illustrate how density estimation problems arise in the characterization of physical noise in orientational sensors such as gyroscopes. PMID:20454468

  17. Process, System, Causality, and Quantum Mechanics: A Psychoanalysis of Animal Faith

    NASA Astrophysics Data System (ADS)

    Etter, Tom; Noyes, H. Pierre

    We shall argue in this paper that a central piece of modern physics does not really belong to physics at all but to elementary probability theory. Given a joint probability distribution J on a set of random variables containing x and y, define a link between x and y to be the condition x=y on J. Define the {\\it state} D of a link x=y as the joint probability distribution matrix on x and y without the link. The two core laws of quantum mechanics are the Born probability rule, and the unitary dynamical law whose best known form is the Schrodinger's equation. Von Neumann formulated these two laws in the language of Hilbert space as prob(P) = trace(PD) and D'T = TD respectively, where P is a projection, D and D' are (von Neumann) density matrices, and T is a unitary transformation. We'll see that if we regard link states as density matrices, the algebraic forms of these two core laws occur as completely general theorems about links. When we extend probability theory by allowing cases to count negatively, we find that the Hilbert space framework of quantum mechanics proper emerges from the assumption that all D's are symmetrical in rows and columns. On the other hand, Markovian systems emerge when we assume that one of every linked variable pair has a uniform probability distribution. By representing quantum and Markovian structure in this way, we see clearly both how they differ, and also how they can coexist in natural harmony with each other, as they must in quantum measurement, which we'll examine in some detail. Looking beyond quantum mechanics, we see how both structures have their special places in a much larger continuum of formal systems that we have yet to look for in nature.

  18. Estimating abundance of mountain lions from unstructured spatial sampling

    USGS Publications Warehouse

    Russell, Robin E.; Royle, J. Andrew; Desimone, Richard; Schwartz, Michael K.; Edwards, Victoria L.; Pilgrim, Kristy P.; Mckelvey, Kevin S.

    2012-01-01

    Mountain lions (Puma concolor) are often difficult to monitor because of their low capture probabilities, extensive movements, and large territories. Methods for estimating the abundance of this species are needed to assess population status, determine harvest levels, evaluate the impacts of management actions on populations, and derive conservation and management strategies. Traditional mark–recapture methods do not explicitly account for differences in individual capture probabilities due to the spatial distribution of individuals in relation to survey effort (or trap locations). However, recent advances in the analysis of capture–recapture data have produced methods estimating abundance and density of animals from spatially explicit capture–recapture data that account for heterogeneity in capture probabilities due to the spatial organization of individuals and traps. We adapt recently developed spatial capture–recapture models to estimate density and abundance of mountain lions in western Montana. Volunteers and state agency personnel collected mountain lion DNA samples in portions of the Blackfoot drainage (7,908 km2) in west-central Montana using 2 methods: snow back-tracking mountain lion tracks to collect hair samples and biopsy darting treed mountain lions to obtain tissue samples. Overall, we recorded 72 individual capture events, including captures both with and without tissue sample collection and hair samples resulting in the identification of 50 individual mountain lions (30 females, 19 males, and 1 unknown sex individual). We estimated lion densities from 8 models containing effects of distance, sex, and survey effort on detection probability. Our population density estimates ranged from a minimum of 3.7 mountain lions/100 km2 (95% Cl 2.3–5.7) under the distance only model (including only an effect of distance on detection probability) to 6.7 (95% Cl 3.1–11.0) under the full model (including effects of distance, sex, survey effort, and distance x sex on detection probability). These numbers translate to a total estimate of 293 mountain lions (95% Cl 182–451) to 529 (95% Cl 245–870) within the Blackfoot drainage. Results from the distance model are similar to previous estimates of 3.6 mountain lions/100 km2 for the study area; however, results from all other models indicated greater numbers of mountain lions. Our results indicate that unstructured spatial sampling combined with spatial capture–recapture analysis can be an effective method for estimating large carnivore densities.

  19. Annular wave packets at Dirac points in graphene and their probability-density oscillation.

    PubMed

    Luo, Ji; Valencia, Daniel; Lu, Junqiang

    2011-12-14

    Wave packets in graphene whose central wave vector is at Dirac points are investigated by numerical calculations. Starting from an initial Gaussian function, these wave packets form into annular peaks that propagate to all directions like ripple-rings on water surface. At the beginning, electronic probability alternates between the central peak and the ripple-rings and transient oscillation occurs at the center. As time increases, the ripple-rings propagate at the fixed Fermi speed, and their widths remain unchanged. The axial symmetry of the energy dispersion leads to the circular symmetry of the wave packets. The fixed speed and widths, however, are attributed to the linearity of the energy dispersion. Interference between states that, respectively, belong to two branches of the energy dispersion leads to multiple ripple-rings and the probability-density oscillation. In a magnetic field, annular wave packets become confined and no longer propagate to infinity. If the initial Gaussian width differs greatly from the magnetic length, expanding and shrinking ripple-rings form and disappear alternatively in a limited spread, and the wave packet resumes the Gaussian form frequently. The probability thus oscillates persistently between the central peak and the ripple-rings. If the initial Gaussian width is close to the magnetic length, the wave packet retains the Gaussian form and its height and width oscillate with a period determined by the first Landau energy. The wave-packet evolution is determined jointly by the initial state and the magnetic field, through the electronic structure of graphene in a magnetic field. © 2011 American Institute of Physics

  20. Population density approach for discrete mRNA distributions in generalized switching models for stochastic gene expression.

    PubMed

    Stinchcombe, Adam R; Peskin, Charles S; Tranchina, Daniel

    2012-06-01

    We present a generalization of a population density approach for modeling and analysis of stochastic gene expression. In the model, the gene of interest fluctuates stochastically between an inactive state, in which transcription cannot occur, and an active state, in which discrete transcription events occur; and the individual mRNA molecules are degraded stochastically in an independent manner. This sort of model in simplest form with exponential dwell times has been used to explain experimental estimates of the discrete distribution of random mRNA copy number. In our generalization, the random dwell times in the inactive and active states, T_{0} and T_{1}, respectively, are independent random variables drawn from any specified distributions. Consequently, the probability per unit time of switching out of a state depends on the time since entering that state. Our method exploits a connection between the fully discrete random process and a related continuous process. We present numerical methods for computing steady-state mRNA distributions and an analytical derivation of the mRNA autocovariance function. We find that empirical estimates of the steady-state mRNA probability mass function from Monte Carlo simulations of laboratory data do not allow one to distinguish between underlying models with exponential and nonexponential dwell times in some relevant parameter regimes. However, in these parameter regimes and where the autocovariance function has negative lobes, the autocovariance function disambiguates the two types of models. Our results strongly suggest that temporal data beyond the autocovariance function is required in general to characterize gene switching.

  1. Interrelated structure of high altitude atmospheric profiles

    NASA Technical Reports Server (NTRS)

    Engler, N. A.; Goldschmidt, M. A.

    1972-01-01

    A preliminary development of a mathematical model to compute probabilities of thermodynamic profiles is presented. The model assumes an exponential expression for pressure and utilizes the hydrostatic law and equation of state in the determination of density and temperature. It is shown that each thermodynamic variable can be factored into the produce of steady state and perturbation functions. The steady state functions have profiles similar to those of the 1962 standard atmosphere while the perturbation functions oscillate about 1. Limitations of the model and recommendations for future work are presented.

  2. The precise time course of lexical activation: MEG measurements of the effects of frequency, probability, and density in lexical decision.

    PubMed

    Stockall, Linnaea; Stringfellow, Andrew; Marantz, Alec

    2004-01-01

    Visually presented letter strings consistently yield three MEG response components: the M170, associated with letter-string processing (Tarkiainen, Helenius, Hansen, Cornelissen, & Salmelin, 1999); the M250, affected by phonotactic probability, (Pylkkänen, Stringfellow, & Marantz, 2002); and the M350, responsive to lexical frequency (Embick, Hackl, Schaeffer, Kelepir, & Marantz, 2001). Pylkkänen et al. found evidence that the M350 reflects lexical activation prior to competition among phonologically similar words. We investigate the effects of lexical and sublexical frequency and neighborhood density on the M250 and M350 through orthogonal manipulation of phonotactic probability, density, and frequency. The results confirm that probability but not density affects the latency of the M250 and M350; however, an interaction between probability and density on M350 latencies suggests an earlier influence of neighborhoods than previously reported.

  3. Effect of H2 binding on the nonadiabatic transition probability between singlet and triplet states of the [NiFe]-hydrogenase active site.

    PubMed

    Kaliakin, Danil S; Zaari, Ryan R; Varganov, Sergey A

    2015-02-12

    We investigate the effect of H2 binding on the spin-forbidden nonadiabatic transition probability between the lowest energy singlet and triplet electronic states of [NiFe]-hydrogenase active site model, using a velocity averaged Landau-Zener theory. Density functional and multireference perturbation theories were used to provide parameters for the Landau-Zener calculations. It was found that variation of the torsion angle between the terminal thiolate ligands around the Ni center induces an intersystem crossing between the lowest energy singlet and triplet electronic states in the bare active site and in the active site with bound H2. Potential energy curves between the singlet and triplet minima along the torsion angle and H2 binding energies to the two spin states were calculated. Upon H2 binding to the active site, there is a decrease in the torsion angle at the minimum energy crossing point between the singlet and triplet states. The probability of nonadiabatic transitions at temperatures between 270 and 370 K ranges from 35% to 32% for the active site with bound H2 and from 42% to 38% for the bare active site, thus indicating the importance of spin-forbidden nonadiabatic pathways for H2 binding on the [NiFe]-hydrogenase active site.

  4. Interface-state density estimation of n-type nanocrystalline FeSi2/p-type Si heterojunctions fabricated by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Nopparuchikun, Adison; Promros, Nathaporn; Sittimart, Phongsaphak; Onsee, Peeradon; Duangrawa, Asanlaya; Teakchaicum, Sakmongkon; Nogami, Tomohiro; Yoshitake, Tsuyoshi

    2017-09-01

    By utilizing pulsed laser deposition (PLD), heterojunctions comprised of n-type nanocrystalline (NC) FeSi2 thin films and p-type Si substrates were fabricated at room temperature in this study. Both dark and illuminated current density-voltage (J-V) curves for the heterojunctions were measured and analyzed at room temperature. The heterojunctions demonstrated a large reverse leakage current as well as a weak near-infrared light response. Based on the analysis of the dark forward J-V curves, at the V value  ⩽  0.2 V, we show that a carrier recombination process was governed at the heterojunction interface. When the V value was  >  0.2 V, the probable mechanism of carrier transportation was a space-charge limited-current process. Both the measurement and analysis for capacitance-voltage-frequency (C-V-f ) and conductance-voltage-frequency (G-V-f ) curves were performed in the applied frequency (f ) range of 50 kHz-2 MHz at room temperature. From the C-V-f and G-V-f curves, the density of interface states (N ss) for the heterojunctions was computed by using the Hill-Coleman method. The N ss values were 9.19  ×  1012 eV-1 cm-2 at 2 MHz and 3.15  ×  1014 eV-1 cm-2 at 50 kHz, which proved the existence of interface states at the heterojunction interface. These interface states are the probable cause of the degraded electrical performance in the heterojunctions. Invited talk at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  5. The plasma environment, charge state, and currents of Saturn's C and D rings

    NASA Technical Reports Server (NTRS)

    Wilson, G. R.

    1991-01-01

    The charge state and associated currents of Saturn's C an D rings are studied by modeling the flow of ionospheric plasma from the mid- to low-latitude ionosphere to the vicinity of the rings. It is found that the plasma density near the C and D rings, at a given radial location, will experience a one to two order of magnitude diurnal variation. The surface charge density (SCD) of these rings can show significant radial and azimuthal variations due mainly to variation in the plasma density. The SCD also depends on structural features of the rings such as thickness and the nature of the particle size distribution. The associated azimuthal currents carried by these rings also show large diurnal variations resulting in field-aligned currents which close in the ionosphere. The resulting ionospheric electric field will probably not produce a significant amount of plasma convection in the topside ionosphere and inner plasmasphere.

  6. Development at the wildland-urban interface and the mitigation of forest-fire risk.

    PubMed

    Spyratos, Vassilis; Bourgeron, Patrick S; Ghil, Michael

    2007-09-04

    This work addresses the impacts of development at the wildland-urban interface on forest fires that spread to human habitats. Catastrophic fires in the western United States and elsewhere make these impacts a matter of urgency for decision makers, scientists, and the general public. Using a simple fire-spread model, along with housing and vegetation data, we show that fire size probability distributions can be strongly modified by the density and flammability of houses. We highlight a sharp transition zone in the parameter space of vegetation flammability and house density. Many actual fire landscapes in the United States appear to have spreading properties close to this transition. Thus, the density and flammability of buildings should be taken into account when assessing fire risk at the wildland-urban interface. Moreover, our results highlight ways for regulation at this interface to help mitigate fire risk.

  7. Estimating loblolly pine size-density trajectories across a range of planting densities

    Treesearch

    Curtis L. VanderSchaaf; Harold E. Burkhart

    2013-01-01

    Size-density trajectories on the logarithmic (ln) scale are generally thought to consist of two major stages. The first is often referred to as the density-independent mortality stage where the probability of mortality is independent of stand density; in the second, often referred to as the density-dependent mortality or self-thinning stage, the probability of...

  8. A Cellular Automaton model for pedestrian counterflow with swapping

    NASA Astrophysics Data System (ADS)

    Tao, Y. Z.; Dong, L. Y.

    2017-06-01

    In this paper, we propose a new floor field Cellular Automaton (CA) model with considering the swapping behaviors of pedestrians. The neighboring pedestrians in opposite directions take swapping in a probability decided by the linear density of pedestrian flow. The swapping which happens simultaneously with the normal movement is introduced to eliminate the gridlock in low density region. Numerical results show that the fundamental diagram is in good agreement with the measured data. Then the model is applied to investigate the counterflow and four typical states such as free flow, lane, intermediate and congestion states are found. More attention is paid on the intermediate state which lane-formation and local congestions switch in an irregular manner. The swapping plays a vital role in reducing the gridlock. Furthermore, the influence of the corridor size and individual's eyesight on counterflow are discussed in detail.

  9. Stochastic analysis of a pulse-type prey-predator model

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Zhu, W. Q.

    2008-04-01

    A stochastic Lotka-Volterra model, a so-called pulse-type model, for the interaction between two species and their random natural environment is investigated. The effect of a random environment is modeled as random pulse trains in the birth rate of the prey and the death rate of the predator. The generalized cell mapping method is applied to calculate the probability distributions of the species populations at a state of statistical quasistationarity. The time evolution of the population densities is studied, and the probability of the near extinction time, from an initial state to a critical state, is obtained. The effects on the ecosystem behaviors of the prey self-competition term and of the pulse mean arrival rate are also discussed. Our results indicate that the proposed pulse-type model shows obviously distinguishable characteristics from a Gaussian-type model, and may confer a significant advantage for modeling the prey-predator system under discrete environmental fluctuations.

  10. Stochastic analysis of a pulse-type prey-predator model.

    PubMed

    Wu, Y; Zhu, W Q

    2008-04-01

    A stochastic Lotka-Volterra model, a so-called pulse-type model, for the interaction between two species and their random natural environment is investigated. The effect of a random environment is modeled as random pulse trains in the birth rate of the prey and the death rate of the predator. The generalized cell mapping method is applied to calculate the probability distributions of the species populations at a state of statistical quasistationarity. The time evolution of the population densities is studied, and the probability of the near extinction time, from an initial state to a critical state, is obtained. The effects on the ecosystem behaviors of the prey self-competition term and of the pulse mean arrival rate are also discussed. Our results indicate that the proposed pulse-type model shows obviously distinguishable characteristics from a Gaussian-type model, and may confer a significant advantage for modeling the prey-predator system under discrete environmental fluctuations.

  11. The Effect of Incremental Changes in Phonotactic Probability and Neighborhood Density on Word Learning by Preschool Children

    ERIC Educational Resources Information Center

    Storkel, Holly L.; Bontempo, Daniel E.; Aschenbrenner, Andrew J.; Maekawa, Junko; Lee, Su-Yeon

    2013-01-01

    Purpose: Phonotactic probability or neighborhood density has predominately been defined through the use of gross distinctions (i.e., low vs. high). In the current studies, the authors examined the influence of finer changes in probability (Experiment 1) and density (Experiment 2) on word learning. Method: The authors examined the full range of…

  12. Gravity anomaly and density structure of the San Andreas fault zone

    NASA Astrophysics Data System (ADS)

    Wang, Chi-Yuen; Rui, Feng; Zhengsheng, Yao; Xingjue, Shi

    1986-01-01

    A densely spaced gravity survey across the San andreas fault zone was conducted near Bear Valley, about 180 km south of San Francisco, along a cross-section where a detailed seismic reflection profile was previously made by McEvilly (1981). With Feng and McEvilly's velocity structure (1983) of the fault zone at this cross-section as a constraint, the density structure of the fault zone is obtained through inversion of the gravity data by a method used by Parker (1973) and Oldenburg (1974). Although the resulting density picture cannot be unique, it is better constrained and contains more detailed information about the structure of the fault than was previously possible. The most striking feature of the resulting density structure is a deeply seated tongue of low-density material within the fault zone, probably representing a wedge of fault gouge between the two moving plates, which projects from the surface to the base of the seismogenic zone. From reasonable assumptions concerning the density of the solid grains and the state of saturation of the fault zone the average porosity of this low-density fault gouge is estimated as about 12%. Stress-induced cracks are not expected to create so much porosity under the pressures in the deep fault zone. Large-scaled removal of fault-zone material by hydrothermal alteration, dissolution, and subsequent fluid transport may have occurred to produce this pronounced density deficiency. In addition, a broad, funnel-shaped belt of low density appears about the upper part of the fault zone, which probably represents a belt of extensively shattered wall rocks.

  13. A formal method for identifying distinct states of variability in time-varying sources: SGR A* as an example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, L.; Witzel, G.; Ghez, A. M.

    2014-08-10

    Continuously time variable sources are often characterized by their power spectral density and flux distribution. These quantities can undergo dramatic changes over time if the underlying physical processes change. However, some changes can be subtle and not distinguishable using standard statistical approaches. Here, we report a methodology that aims to identify distinct but similar states of time variability. We apply this method to the Galactic supermassive black hole, where 2.2 μm flux is observed from a source associated with Sgr A* and where two distinct states have recently been suggested. Our approach is taken from mathematical finance and works withmore » conditional flux density distributions that depend on the previous flux value. The discrete, unobserved (hidden) state variable is modeled as a stochastic process and the transition probabilities are inferred from the flux density time series. Using the most comprehensive data set to date, in which all Keck and a majority of the publicly available Very Large Telescope data have been merged, we show that Sgr A* is sufficiently described by a single intrinsic state. However, the observed flux densities exhibit two states: noise dominated and source dominated. Our methodology reported here will prove extremely useful to assess the effects of the putative gas cloud G2 that is on its way toward the black hole and might create a new state of variability.« less

  14. Robust location and spread measures for nonparametric probability density function estimation.

    PubMed

    López-Rubio, Ezequiel

    2009-10-01

    Robustness against outliers is a desirable property of any unsupervised learning scheme. In particular, probability density estimators benefit from incorporating this feature. A possible strategy to achieve this goal is to substitute the sample mean and the sample covariance matrix by more robust location and spread estimators. Here we use the L1-median to develop a nonparametric probability density function (PDF) estimator. We prove its most relevant properties, and we show its performance in density estimation and classification applications.

  15. Entanglement transitions induced by large deviations

    NASA Astrophysics Data System (ADS)

    Bhosale, Udaysinh T.

    2017-12-01

    The probability of large deviations of the smallest Schmidt eigenvalue for random pure states of bipartite systems, denoted as A and B , is computed analytically using a Coulomb gas method. It is shown that this probability, for large N , goes as exp[-β N2Φ (ζ ) ] , where the parameter β is the Dyson index of the ensemble, ζ is the large deviation parameter, while the rate function Φ (ζ ) is calculated exactly. Corresponding equilibrium Coulomb charge density is derived for its large deviations. Effects of the large deviations of the extreme (largest and smallest) Schmidt eigenvalues on the bipartite entanglement are studied using the von Neumann entropy. Effect of these deviations is also studied on the entanglement between subsystems 1 and 2, obtained by further partitioning the subsystem A , using the properties of the density matrix's partial transpose ρ12Γ. The density of states of ρ12Γ is found to be close to the Wigner's semicircle law with these large deviations. The entanglement properties are captured very well by a simple random matrix model for the partial transpose. The model predicts the entanglement transition across a critical large deviation parameter ζ . Log negativity is used to quantify the entanglement between subsystems 1 and 2. Analytical formulas for it are derived using the simple model. Numerical simulations are in excellent agreement with the analytical results.

  16. Entanglement transitions induced by large deviations.

    PubMed

    Bhosale, Udaysinh T

    2017-12-01

    The probability of large deviations of the smallest Schmidt eigenvalue for random pure states of bipartite systems, denoted as A and B, is computed analytically using a Coulomb gas method. It is shown that this probability, for large N, goes as exp[-βN^{2}Φ(ζ)], where the parameter β is the Dyson index of the ensemble, ζ is the large deviation parameter, while the rate function Φ(ζ) is calculated exactly. Corresponding equilibrium Coulomb charge density is derived for its large deviations. Effects of the large deviations of the extreme (largest and smallest) Schmidt eigenvalues on the bipartite entanglement are studied using the von Neumann entropy. Effect of these deviations is also studied on the entanglement between subsystems 1 and 2, obtained by further partitioning the subsystem A, using the properties of the density matrix's partial transpose ρ_{12}^{Γ}. The density of states of ρ_{12}^{Γ} is found to be close to the Wigner's semicircle law with these large deviations. The entanglement properties are captured very well by a simple random matrix model for the partial transpose. The model predicts the entanglement transition across a critical large deviation parameter ζ. Log negativity is used to quantify the entanglement between subsystems 1 and 2. Analytical formulas for it are derived using the simple model. Numerical simulations are in excellent agreement with the analytical results.

  17. Extinction time of a stochastic predator-prey model by the generalized cell mapping method

    NASA Astrophysics Data System (ADS)

    Han, Qun; Xu, Wei; Hu, Bing; Huang, Dongmei; Sun, Jian-Qiao

    2018-03-01

    The stochastic response and extinction time of a predator-prey model with Gaussian white noise excitations are studied by the generalized cell mapping (GCM) method based on the short-time Gaussian approximation (STGA). The methods for stochastic response probability density functions (PDFs) and extinction time statistics are developed. The Taylor expansion is used to deal with non-polynomial nonlinear terms of the model for deriving the moment equations with Gaussian closure, which are needed for the STGA in order to compute the one-step transition probabilities. The work is validated with direct Monte Carlo simulations. We have presented the transient responses showing the evolution from a Gaussian initial distribution to a non-Gaussian steady-state one. The effects of the model parameter and noise intensities on the steady-state PDFs are discussed. It is also found that the effects of noise intensities on the extinction time statistics are opposite to the effects on the limit probability distributions of the survival species.

  18. Stationary swarming motion of active Brownian particles in parabolic external potential

    NASA Astrophysics Data System (ADS)

    Zhu, Wei Qiu; Deng, Mao Lin

    2005-08-01

    We investigate the stationary swarming motion of active Brownian particles in parabolic external potential and coupled to its mass center. Using Monte Carlo simulation we first show that the mass center approaches to rest after a sufficient long period of time. Thus, all the particles of a swarm have identical stationary motion relative to the mass center. Then the stationary probability density obtained by using the stochastic averaging method for quasi integrable Hamiltonian systems in our previous paper for the motion in 4-dimensional phase space of single active Brownian particle with Rayleigh friction model in parabolic potential is used to describe the relative stationary motion of each particle of the swarm and to obtain more probability densities including that for the total energy of the swarm. The analytical results are confirmed by comparing with those from simulation and also shown to be consistent with the existing deterministic exact steady-state solution.

  19. Conditional Density Estimation with HMM Based Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Hu, Fasheng; Liu, Zhenqiu; Jia, Chunxin; Chen, Dechang

    Conditional density estimation is very important in financial engineer, risk management, and other engineering computing problem. However, most regression models have a latent assumption that the probability density is a Gaussian distribution, which is not necessarily true in many real life applications. In this paper, we give a framework to estimate or predict the conditional density mixture dynamically. Through combining the Input-Output HMM with SVM regression together and building a SVM model in each state of the HMM, we can estimate a conditional density mixture instead of a single gaussian. With each SVM in each node, this model can be applied for not only regression but classifications as well. We applied this model to denoise the ECG data. The proposed method has the potential to apply to other time series such as stock market return predictions.

  20. Voter model with arbitrary degree dependence: clout, confidence and irreversibility

    NASA Astrophysics Data System (ADS)

    Fotouhi, Babak; Rabbat, Michael G.

    2014-03-01

    The voter model is widely used to model opinion dynamics in society. In this paper, we propose three modifications to incorporate heterogeneity into the model. We address the corresponding oversimplifications of the conventional voter model which are unrealistic. We first consider the voter model with popularity bias. The influence of each node on its neighbors depends on its degree. We find the consensus probabilities and expected consensus times for each of the states. We also find the fixation probability, which is the probability that a single node whose state differs from every other node imposes its state on the entire system. In addition, we find the expected fixation time. Then two other extensions to the model are proposed and the motivations behind them are discussed. The first one is confidence, where in addition to the states of neighbors, nodes take their own state into account at each update. We repeat the calculations for the augmented model and investigate the effects of adding confidence to the model. The second proposed extension is irreversibility, where one of the states is given the property that once nodes adopt it, they cannot switch back. This is motivated by applications where, agents take an irreversible action such as seeing a movie, purchasing a music album online, or buying a new product. The dynamics of densities, fixation times and consensus times are obtained.

  1. Competing contact processes in the Watts-Strogatz network

    NASA Astrophysics Data System (ADS)

    Rybak, Marcin; Malarz, Krzysztof; Kułakowski, Krzysztof

    2016-06-01

    We investigate two competing contact processes on a set of Watts-Strogatz networks with the clustering coefficient tuned by rewiring. The base for network construction is one-dimensional chain of N sites, where each site i is directly linked to nodes labelled as i ± 1 and i ± 2. So initially, each node has the same degree k i = 4. The periodic boundary conditions are assumed as well. For each node i the links to sites i + 1 and i + 2 are rewired to two randomly selected nodes so far not-connected to node i. An increase of the rewiring probability q influences the nodes degree distribution and the network clusterization coefficient 𝓒. For given values of rewiring probability q the set 𝓝(q)={𝓝1,𝓝2,...,𝓝 M } of M networks is generated. The network's nodes are decorated with spin-like variables s i ∈ { S,D }. During simulation each S node having a D-site in its neighbourhood converts this neighbour from D to S state. Conversely, a node in D state having at least one neighbour also in state D-state converts all nearest-neighbours of this pair into D-state. The latter is realized with probability p. We plot the dependence of the nodes S final density n S T on initial nodes S fraction n S 0. Then, we construct the surface of the unstable fixed points in (𝓒, p, n S 0) space. The system evolves more often toward n S T for (𝓒, p, n S 0) points situated above this surface while starting simulation with (𝓒, p, n S 0) parameters situated below this surface leads system to n S T =0. The points on this surface correspond to such value of initial fraction n S * of S nodes (for fixed values 𝓒 and p) for which their final density is n S T=1/2.

  2. The Influence of Part-Word Phonotactic Probability/Neighborhood Density on Word Learning by Preschool Children Varying in Expressive Vocabulary

    ERIC Educational Resources Information Center

    Storkel, Holly L.; Hoover, Jill R.

    2011-01-01

    The goal of this study was to examine the influence of part-word phonotactic probability/neighborhood density on word learning by preschool children with normal vocabularies that varied in size. Ninety-eight children (age 2 ; 11-6 ; 0) were taught consonant-vowel-consonant (CVC) nonwords orthogonally varying in the probability/density of the CV…

  3. Properties of strong-coupling magneto-bipolaron qubit in quantum dot under magnetic field

    NASA Astrophysics Data System (ADS)

    Xu-Fang, Bai; Ying, Zhang; Wuyunqimuge; Eerdunchaolu

    2016-07-01

    Based on the variational method of Pekar type, we study the energies and the wave-functions of the ground and the first-excited states of magneto-bipolaron, which is strongly coupled to the LO phonon in a parabolic potential quantum dot under an applied magnetic field, thus built up a quantum dot magneto-bipolaron qubit. The results show that the oscillation period of the probability density of the two electrons in the qubit decreases with increasing electron-phonon coupling strength α, resonant frequency of the magnetic field ω c, confinement strength of the quantum dot ω 0, and dielectric constant ratio of the medium η the probability density of the two electrons in the qubit oscillates periodically with increasing time t, angular coordinate φ 2, and dielectric constant ratio of the medium η the probability of electron appearing near the center of the quantum dot is larger, and the probability of electron appearing away from the center of the quantum dot is much smaller. Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. E2013407119) and the Items of Institution of Higher Education Scientific Research of Hebei Province and Inner Mongolia, China (Grant Nos. ZD20131008, Z2015149, Z2015219, and NJZY14189).

  4. A well-scaling natural orbital theory

    DOE PAGES

    Gebauer, Ralph; Cohen, Morrel H.; Car, Roberto

    2016-11-01

    Here, we introduce an energy functional for ground-state electronic structure calculations. Its variables are the natural spin-orbitals of singlet many-body wave functions and their joint occupation probabilities deriving from controlled approximations to the two-particle density matrix that yield algebraic scaling in general, and Hartree–Fock scaling in its seniority-zero version. Results from the latter version for small molecular systems are compared with those of highly accurate quantum-chemical computations. The energies lie above full configuration interaction calculations, close to doubly occupied configuration interaction calculations. Their accuracy is considerably greater than that obtained from current density-functional theory approximations and from current functionals ofmore » the oneparticle density matrix.« less

  5. A well-scaling natural orbital theory

    PubMed Central

    Gebauer, Ralph; Cohen, Morrel H.; Car, Roberto

    2016-01-01

    We introduce an energy functional for ground-state electronic structure calculations. Its variables are the natural spin-orbitals of singlet many-body wave functions and their joint occupation probabilities deriving from controlled approximations to the two-particle density matrix that yield algebraic scaling in general, and Hartree–Fock scaling in its seniority-zero version. Results from the latter version for small molecular systems are compared with those of highly accurate quantum-chemical computations. The energies lie above full configuration interaction calculations, close to doubly occupied configuration interaction calculations. Their accuracy is considerably greater than that obtained from current density-functional theory approximations and from current functionals of the one-particle density matrix. PMID:27803328

  6. A theory of stationarity and asymptotic approach in dissipative systems

    NASA Astrophysics Data System (ADS)

    Rubel, Michael Thomas

    2007-05-01

    The approximate dynamics of many physical phenomena, including turbulence, can be represented by dissipative systems of ordinary differential equations. One often turns to numerical integration to solve them. There is an incompatibility, however, between the answers it can produce (i.e., specific solution trajectories) and the questions one might wish to ask (e.g., what behavior would be typical in the laboratory?) To determine its outcome, numerical integration requires more detailed initial conditions than a laboratory could normally provide. In place of initial conditions, experiments stipulate how tests should be carried out: only under statistically stationary conditions, for example, or only during asymptotic approach to a final state. Stipulations such as these, rather than initial conditions, are what determine outcomes in the laboratory.This theoretical study examines whether the points of view can be reconciled: What is the relationship between one's statistical stipulations for how an experiment should be carried out--stationarity or asymptotic approach--and the expected results? How might those results be determined without invoking initial conditions explicitly?To answer these questions, stationarity and asymptotic approach conditions are analyzed in detail. Each condition is treated as a statistical constraint on the system--a restriction on the probability density of states that might be occupied when measurements take place. For stationarity, this reasoning leads to a singular, invariant probability density which is already familiar from dynamical systems theory. For asymptotic approach, it leads to a new, more regular probability density field. A conjecture regarding what appears to be a limit relationship between the two densities is presented.By making use of the new probability densities, one can derive output statistics directly, avoiding the need to create or manipulate initial data, and thereby avoiding the conceptual incompatibility mentioned above. This approach also provides a clean way to derive reduced-order models, complete with local and global error estimates, as well as a way to compare existing reduced-order models objectively.The new approach is explored in the context of five separate test problems: a trivial one-dimensional linear system, a damped unforced linear oscillator in two dimensions, the isothermal Rayleigh-Plesset equation, Lorenz's equations, and the Stokes limit of Burgers' equation in one space dimension. In each case, various output statistics are deduced without recourse to initial conditions. Further, reduced-order models are constructed for asymptotic approach of the damped unforced linear oscillator, the isothermal Rayleigh-Plesset system, and Lorenz's equations, and for stationarity of Lorenz's equations.

  7. REVIEWS OF TOPICAL PROBLEMS: The modern view of the nature of the spiral structure of galaxies

    NASA Astrophysics Data System (ADS)

    Efremov, Yurii N.; Korchagin, V. I.; Marochnik, L. S.; Suchkov, A. A.

    1989-04-01

    The current state of the Lin-Shu density wave theory is discussed in the light of modern observational data. Much attention is paid to the problem of wave excitation and to the response of the interstellar gas to the wave gravitational potential. It is noted that the major predictions of the density wave theory—the galactic shock waves, the spiral velocity field of stars, and the age gradient across the spiral arms—have become fundamental observational facts at present, so that the density wave theory now has no competition from alternative theories. The nature of flocculent spirals is also discussed since, unlike regular spirals, they are probably not connected with density waves but with the effects of induced star formation in differentially rotating galactic disks.

  8. A wave function for stock market returns

    NASA Astrophysics Data System (ADS)

    Ataullah, Ali; Davidson, Ian; Tippett, Mark

    2009-02-01

    The instantaneous return on the Financial Times-Stock Exchange (FTSE) All Share Index is viewed as a frictionless particle moving in a one-dimensional square well but where there is a non-trivial probability of the particle tunneling into the well’s retaining walls. Our analysis demonstrates how the complementarity principle from quantum mechanics applies to stock market prices and of how the wave function presented by it leads to a probability density which exhibits strong compatibility with returns earned on the FTSE All Share Index. In particular, our analysis shows that the probability density for stock market returns is highly leptokurtic with slight (though not significant) negative skewness. Moreover, the moments of the probability density determined under the complementarity principle employed here are all convergent - in contrast to many of the probability density functions on which the received theory of finance is based.

  9. The Effects of Phonotactic Probability and Neighborhood Density on Adults' Word Learning in Noisy Conditions

    PubMed Central

    Storkel, Holly L.; Lee, Jaehoon; Cox, Casey

    2016-01-01

    Purpose Noisy conditions make auditory processing difficult. This study explores whether noisy conditions influence the effects of phonotactic probability (the likelihood of occurrence of a sound sequence) and neighborhood density (phonological similarity among words) on adults' word learning. Method Fifty-eight adults learned nonwords varying in phonotactic probability and neighborhood density in either an unfavorable (0-dB signal-to-noise ratio [SNR]) or a favorable (+8-dB SNR) listening condition. Word learning was assessed using a picture naming task by scoring the proportion of phonemes named correctly. Results The unfavorable 0-dB SNR condition showed a significant interaction between phonotactic probability and neighborhood density in the absence of main effects. In particular, adults learned more words when phonotactic probability and neighborhood density were both low or both high. The +8-dB SNR condition did not show this interaction. These results are inconsistent with those from a prior adult word learning study conducted under quiet listening conditions that showed main effects of word characteristics. Conclusions As the listening condition worsens, adult word learning benefits from a convergence of phonotactic probability and neighborhood density. Clinical implications are discussed for potential populations who experience difficulty with auditory perception or processing, making them more vulnerable to noise. PMID:27788276

  10. The Effects of Phonotactic Probability and Neighborhood Density on Adults' Word Learning in Noisy Conditions.

    PubMed

    Han, Min Kyung; Storkel, Holly L; Lee, Jaehoon; Cox, Casey

    2016-11-01

    Noisy conditions make auditory processing difficult. This study explores whether noisy conditions influence the effects of phonotactic probability (the likelihood of occurrence of a sound sequence) and neighborhood density (phonological similarity among words) on adults' word learning. Fifty-eight adults learned nonwords varying in phonotactic probability and neighborhood density in either an unfavorable (0-dB signal-to-noise ratio [SNR]) or a favorable (+8-dB SNR) listening condition. Word learning was assessed using a picture naming task by scoring the proportion of phonemes named correctly. The unfavorable 0-dB SNR condition showed a significant interaction between phonotactic probability and neighborhood density in the absence of main effects. In particular, adults learned more words when phonotactic probability and neighborhood density were both low or both high. The +8-dB SNR condition did not show this interaction. These results are inconsistent with those from a prior adult word learning study conducted under quiet listening conditions that showed main effects of word characteristics. As the listening condition worsens, adult word learning benefits from a convergence of phonotactic probability and neighborhood density. Clinical implications are discussed for potential populations who experience difficulty with auditory perception or processing, making them more vulnerable to noise.

  11. Continuity equation for probability as a requirement of inference over paths

    NASA Astrophysics Data System (ADS)

    González, Diego; Díaz, Daniela; Davis, Sergio

    2016-09-01

    Local conservation of probability, expressed as the continuity equation, is a central feature of non-equilibrium Statistical Mechanics. In the existing literature, the continuity equation is always motivated by heuristic arguments with no derivation from first principles. In this work we show that the continuity equation is a logical consequence of the laws of probability and the application of the formalism of inference over paths for dynamical systems. That is, the simple postulate that a system moves continuously through time following paths implies the continuity equation. The translation between the language of dynamical paths to the usual representation in terms of probability densities of states is performed by means of an identity derived from Bayes' theorem. The formalism presented here is valid independently of the nature of the system studied: it is applicable to physical systems and also to more abstract dynamics such as financial indicators, population dynamics in ecology among others.

  12. Effects of different management regimes on survival of northern red oak underplantings in the Ridge and Valley Province

    Treesearch

    Adam E. Regula; David W. McGill; Cynthia D. Huebner

    2015-01-01

    While dominant throughout much of the eastern United States, a recent decline in oak regeneration has merited substantial research. Ultimately, successful regeneration entails the establishment of advance reproduction of sufficient size and density to provide a high probability of ascendancy to dominant or co-dominant status. Potential prescriptions for achieving this...

  13. The Biharmonic Oscillator and Asymmetric Linear Potentials: From Classical Trajectories to Momentum-Space Probability Densities in the Extreme Quantum Limit

    ERIC Educational Resources Information Center

    Ruckle, L. J.; Belloni, M.; Robinett, R. W.

    2012-01-01

    The biharmonic oscillator and the asymmetric linear well are two confining power-law-type potentials for which complete bound-state solutions are possible in both classical and quantum mechanics. We examine these problems in detail, beginning with studies of their trajectories in position and momentum space, evaluation of the classical probability…

  14. On the nonlocal predictions of quantum optics

    NASA Technical Reports Server (NTRS)

    Marshall, Trevor W.; Santos, Emilio; Vidiella-Barranco, Antonio

    1994-01-01

    We give a definition of locality in quantum optics based upon Bell's work, and show that locality has been violated in no experiment performed up to now. We argue that the interpretation of the Wigner function as a probability density gives a very attractive local realistic picture of quantum optics provided that this function is nonnegative. We conjecture that this is the case for all states which can be realized in the laboratory. In particular, we believe that the usual representation of 'single photon states' by a Fock state of the Hilbert space is not correct and that a more physical, although less simple mathematically, representation involves density matrices. We study in some detail the experiment showing anticorrelation after a beam splitter and prove that it naturally involves a positive Wigner function. Our (quantum) predictions for this experiment disagree with the ones reported in the literature.

  15. Constructiveness and destructiveness of temperature in asymmetric quantum pseudo dot qubit system

    NASA Astrophysics Data System (ADS)

    Chen, Ying-Jie; Song, Hai-Tao; Xiao, Jing-Lin

    2018-06-01

    By using the variational method of the Pekar type, we theoretically study the temperature effects on the asymmetric quantum pseudo dot qubit with a pseudoharmonic potential under an electromagnetic field. The numerical results are analyzed and discussed in detail and show that the relationships of the ground and first excited state energies, the electron oscillation period and the electron probability density in the superposition state of the ground state and the first-excited state with the temperature, the chemical potential, the pseudoharmonic potential, the electric field strength, the cyclotron frequency, the electron phonon coupling constant, the transverse and longitudinal effective confinement length, respectively.

  16. First-principles study of intermediate-spin ferrous iron in the Earth's lower mantle

    NASA Astrophysics Data System (ADS)

    Hsu, Han; Wentzcovitch, Renata M.

    2014-11-01

    Spin crossover of iron is of central importance in solid Earth geophysics. It impacts all physical properties of minerals that altogether constitute ˜95 vol% of the Earth's lower mantle: ferropericlase [(Mg,Fe)O] and Fe-bearing magnesium silicate (MgSiO3) perovskite. Despite great strides made in the past decade, the existence of an intermediate-spin (IS) state in ferrous iron (Fe2 +) (with total electron spin S =1 ) and its possible role in the pressure-induced spin crossover in these lower-mantle minerals still remain controversial. Using density functional theory + self-consistent Hubbard U (DFT+Usc ) calculations, we investigate all possible types of IS states of Fe2 + in (Mg,Fe)O and (Mg,Fe)SiO3 perovskite. Among the possible IS states in these minerals, the most probable IS state has an electronic configuration that significantly reduces the electron overlap and the iron nuclear quadrupole splitting (QS). These most probable IS states, however, are still energetically disfavored, and their QSs are inconsistent with Mössbauer spectra. We therefore conclude that IS Fe2 + is highly unlikely in the Earth's lower mantle.

  17. Probability function of breaking-limited surface elevation. [wind generated waves of ocean

    NASA Technical Reports Server (NTRS)

    Tung, C. C.; Huang, N. E.; Yuan, Y.; Long, S. R.

    1989-01-01

    The effect of wave breaking on the probability function of surface elevation is examined. The surface elevation limited by wave breaking zeta sub b(t) is first related to the original wave elevation zeta(t) and its second derivative. An approximate, second-order, nonlinear, non-Gaussian model for zeta(t) of arbitrary but moderate bandwidth is presented, and an expression for the probability density function zeta sub b(t) is derived. The results show clearly that the effect of wave breaking on the probability density function of surface elevation is to introduce a secondary hump on the positive side of the probability density function, a phenomenon also observed in wind wave tank experiments.

  18. Microscopic description of triaxiality in Ru isotopes with covariant energy density functional theory

    NASA Astrophysics Data System (ADS)

    Shi, Z.; Li, Z. P.

    2018-03-01

    Background: Triaxiality in nuclear low-lying states has attracted great interest for many years. Recently, reduced transition probabilities for levels near the ground state in 110Ru have been measured and provided strong evidence of a triaxial shape of this nucleus. Purpose: The aim of this work is to provide a microscopic study of low-lying states for Ru isotopes with A ≈100 and to examine in detail the role of triaxiality and the evolution of quadrupole shapes with the isospin and spin degrees of freedom. Method: Low-lying excitation spectra and transition probabilities of even-even Ru isotopes are described at the beyond-mean-field level by solving a five-dimensional collective Hamiltonian with parameters determined by constrained self-consistent mean-field calculations based on the relativistic energy density functional PC-PK1. Results: The calculated energy surfaces, low-energy spectra, and intraband and interband transition rates, as well as some characteristic collective observables, such as E (4g.s . +) /E (2g.s . +) ,E (2γ+) /E (4g.s . +) , and B (E 2 ;2g.s . +→0g.s . +) and γ -band staggerings, are in good agreement with the available experimental data. Conclusions: The main features of the experimental low-lying excitation spectra and electric transition rates are well reproduced and, thus, strongly support the onset of triaxiality in the low-lying excited states of Ru isotopes around 110Ru.

  19. High throughput nonparametric probability density estimation.

    PubMed

    Farmer, Jenny; Jacobs, Donald

    2018-01-01

    In high throughput applications, such as those found in bioinformatics and finance, it is important to determine accurate probability distribution functions despite only minimal information about data characteristics, and without using human subjectivity. Such an automated process for univariate data is implemented to achieve this goal by merging the maximum entropy method with single order statistics and maximum likelihood. The only required properties of the random variables are that they are continuous and that they are, or can be approximated as, independent and identically distributed. A quasi-log-likelihood function based on single order statistics for sampled uniform random data is used to empirically construct a sample size invariant universal scoring function. Then a probability density estimate is determined by iteratively improving trial cumulative distribution functions, where better estimates are quantified by the scoring function that identifies atypical fluctuations. This criterion resists under and over fitting data as an alternative to employing the Bayesian or Akaike information criterion. Multiple estimates for the probability density reflect uncertainties due to statistical fluctuations in random samples. Scaled quantile residual plots are also introduced as an effective diagnostic to visualize the quality of the estimated probability densities. Benchmark tests show that estimates for the probability density function (PDF) converge to the true PDF as sample size increases on particularly difficult test probability densities that include cases with discontinuities, multi-resolution scales, heavy tails, and singularities. These results indicate the method has general applicability for high throughput statistical inference.

  20. High throughput nonparametric probability density estimation

    PubMed Central

    Farmer, Jenny

    2018-01-01

    In high throughput applications, such as those found in bioinformatics and finance, it is important to determine accurate probability distribution functions despite only minimal information about data characteristics, and without using human subjectivity. Such an automated process for univariate data is implemented to achieve this goal by merging the maximum entropy method with single order statistics and maximum likelihood. The only required properties of the random variables are that they are continuous and that they are, or can be approximated as, independent and identically distributed. A quasi-log-likelihood function based on single order statistics for sampled uniform random data is used to empirically construct a sample size invariant universal scoring function. Then a probability density estimate is determined by iteratively improving trial cumulative distribution functions, where better estimates are quantified by the scoring function that identifies atypical fluctuations. This criterion resists under and over fitting data as an alternative to employing the Bayesian or Akaike information criterion. Multiple estimates for the probability density reflect uncertainties due to statistical fluctuations in random samples. Scaled quantile residual plots are also introduced as an effective diagnostic to visualize the quality of the estimated probability densities. Benchmark tests show that estimates for the probability density function (PDF) converge to the true PDF as sample size increases on particularly difficult test probability densities that include cases with discontinuities, multi-resolution scales, heavy tails, and singularities. These results indicate the method has general applicability for high throughput statistical inference. PMID:29750803

  1. Moments of the Particle Phase-Space Density at Freeze-out and Coincidence Probabilities

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Czyż, W.; Zalewski, K.

    2005-10-01

    It is pointed out that the moments of phase-space particle density at freeze-out can be determined from the coincidence probabilities of the events observed in multiparticle production. A method to measure the coincidence probabilities is described and its validity examined.

  2. Probability of lek collapse is lower inside sage-grouse Core Areas: Effectiveness of conservation policy for a landscape species.

    PubMed

    Spence, Emma Suzuki; Beck, Jeffrey L; Gregory, Andrew J

    2017-01-01

    Greater sage-grouse (Centrocercus urophasianus) occupy sagebrush (Artemisia spp.) habitats in 11 western states and 2 Canadian provinces. In September 2015, the U.S. Fish and Wildlife Service announced the listing status for sage-grouse had changed from warranted but precluded to not warranted. The primary reason cited for this change of status was that the enactment of new regulatory mechanisms was sufficient to protect sage-grouse populations. One such plan is the 2008, Wyoming Sage Grouse Executive Order (SGEO), enacted by Governor Freudenthal. The SGEO identifies "Core Areas" that are to be protected by keeping them relatively free from further energy development and limiting other forms of anthropogenic disturbances near active sage-grouse leks. Using the Wyoming Game and Fish Department's sage-grouse lek count database and the Wyoming Oil and Gas Conservation Commission database of oil and gas well locations, we investigated the effectiveness of Wyoming's Core Areas, specifically: 1) how well Core Areas encompass the distribution of sage-grouse in Wyoming, 2) whether Core Area leks have a reduced probability of lek collapse, and 3) what, if any, edge effects intensification of oil and gas development adjacent to Core Areas may be having on Core Area populations. Core Areas contained 77% of male sage-grouse attending leks and 64% of active leks. Using Bayesian binomial probability analysis, we found an average 10.9% probability of lek collapse in Core Areas and an average 20.4% probability of lek collapse outside Core Areas. Using linear regression, we found development density outside Core Areas was related to the probability of lek collapse inside Core Areas. Specifically, probability of collapse among leks >4.83 km from inside Core Area boundaries was significantly related to well density within 1.61 km (1-mi) and 4.83 km (3-mi) outside of Core Area boundaries. Collectively, these data suggest that the Wyoming Core Area Strategy has benefited sage-grouse and sage-grouse habitat conservation; however, additional guidelines limiting development densities adjacent to Core Areas may be necessary to effectively protect Core Area populations.

  3. Approaches to Evaluating Probability of Collision Uncertainty

    NASA Technical Reports Server (NTRS)

    Hejduk, Matthew D.; Johnson, Lauren C.

    2016-01-01

    While the two-dimensional probability of collision (Pc) calculation has served as the main input to conjunction analysis risk assessment for over a decade, it has done this mostly as a point estimate, with relatively little effort made to produce confidence intervals on the Pc value based on the uncertainties in the inputs. The present effort seeks to try to carry these uncertainties through the calculation in order to generate a probability density of Pc results rather than a single average value. Methods for assessing uncertainty in the primary and secondary objects' physical sizes and state estimate covariances, as well as a resampling approach to reveal the natural variability in the calculation, are presented; and an initial proposal for operationally-useful display and interpretation of these data for a particular conjunction is given.

  4. Space charge in nanostructure resonances

    NASA Astrophysics Data System (ADS)

    Price, Peter J.

    1996-10-01

    In quantum ballistic propagation of electrons through a variety of nanostructures, resonance in the energy-dependent transmission and reflection probabilities generically is associated with (1) a quasi-level with a decay lifetime, and (2) a bulge in electron density within the structure. It can be shown that, to a good approximation, a simple formula in all cases connects the density of states for the latter to the energy dependence of the phase angles of the eigen values of the S-matrix governing the propagation. For both the Lorentzian resonances (normal or inverted) and for the Fano-type resonances, as a consequence of this eigen value formula, the space charge due to filled states over the energy range of a resonance is just equal (for each spin state) to one electron charge. The Coulomb interaction within this space charge is known to 'distort' the electrical characteristics of resonant nanostructures. In these systems, however, the exchange effect should effectively cancel the interaction between states with parallel spins, leaving only the anti-parallel spin contribution.

  5. Entropy from State Probabilities: Hydration Entropy of Cations

    PubMed Central

    2013-01-01

    Entropy is an important energetic quantity determining the progression of chemical processes. We propose a new approach to obtain hydration entropy directly from probability density functions in state space. We demonstrate the validity of our approach for a series of cations in aqueous solution. Extensive validation of simulation results was performed. Our approach does not make prior assumptions about the shape of the potential energy landscape and is capable of calculating accurate hydration entropy values. Sampling times in the low nanosecond range are sufficient for the investigated ionic systems. Although the presented strategy is at the moment limited to systems for which a scalar order parameter can be derived, this is not a principal limitation of the method. The strategy presented is applicable to any chemical system where sufficient sampling of conformational space is accessible, for example, by computer simulations. PMID:23651109

  6. Precise measurement of the top-quark mass in the lepton+jets topology at CDF II.

    PubMed

    Aaltonen, T; Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carrillo, S; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cilijak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; DaRonco, S; Datta, M; D'Auria, S; Davies, T; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Dörr, C; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraan, A C; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuno, S; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vazquez, F; Velev, G; Vellidis, C; Veramendi, G; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-11-02

    We present a measurement of the mass of the top quark from proton-antiproton collisions recorded at the CDF experiment in Run II of the Fermilab Tevatron. We analyze events from the single lepton plus jets final state (tt-->W(+)bW(-)b-->lnubqq'b). The top-quark mass is extracted using a direct calculation of the probability density that each event corresponds to the tt final state. The probability is a function of both the mass of the top quark and the energy scale of the calorimeter jets, which is constrained in situ by the hadronic W boson mass. Using 167 events observed in 955 pb(-1) of integrated luminosity, we achieve the single most precise measurement of the top-quark mass, 170.8+/-2.2(stat.)+/-1.4(syst.) GeV/c(2).

  7. Assessing peridomestic entomological factors as predictors for Lyme disease

    USGS Publications Warehouse

    Connally, N.P.; Ginsberg, H.S.; Mather, T.N.

    2006-01-01

    The roles of entomologic risk factors, including density of nymphal blacklegged ticks (Ixodes scapularis), prevalence of nymphal infection with the etiologic agent (Borrelia burgdorferi), and density of infected nymphs, in determining the risk of human Lyme disease were assessed at residences in the endemic community of South Kingstown, RI. Nymphs were sampled between May and July from the wooded edge around 51 and 47 residential properties in 2002 and 2003, respectively. Nymphs were collected from all residences sampled. Tick densities, infection rates, and densities of infected nymphs were all significantly higher around homes reporting Lyme disease histories in 2003, while only infection rates were significantly higher in 2002. However, densities of infected nymphs did not significantly predict the probability of Lyme disease at a residence (by logistic regression) in either year. There were no significant differences in entomologic risk factors between homes with state-confirmed Lyme disease histories and homes with self-reported cases (not reported to the state health department). Therefore, although entomologic risk factors tended to be higher at residences with cases of Lyme disease, entomological indices, in the absence of human behavior measures, were not useful predictors of Lyme disease at the scale of individual residences in a tick-endemic community.

  8. Six-dimensional quantum dynamics study for the dissociative adsorption of DCl on Au(111) surface

    NASA Astrophysics Data System (ADS)

    Liu, Tianhui; Fu, Bina; Zhang, Dong H.

    2014-04-01

    We carried out six-dimensional quantum dynamics calculations for the dissociative adsorption of deuterium chloride (DCl) on Au(111) surface using the initial state-selected time-dependent wave packet approach. The four-dimensional dissociation probabilities are also obtained with the center of mass of DCl fixed at various sites. These calculations were all performed based on an accurate potential energy surface recently constructed by neural network fitting to density function theory energy points. The origin of the extremely small dissociation probability for DCl/HCl (v = 0, j = 0) fixed at the top site compared to other fixed sites is elucidated in this study. The influence of vibrational excitation and rotational orientation of DCl on the reactivity was investigated by calculating six-dimensional dissociation probabilities. The vibrational excitation of DCl enhances the reactivity substantially and the helicopter orientation yields higher dissociation probability than the cartwheel orientation. The site-averaged dissociation probability over 25 fixed sites obtained from four-dimensional quantum dynamics calculations can accurately reproduce the six-dimensional dissociation probability.

  9. Six-dimensional quantum dynamics study for the dissociative adsorption of DCl on Au(111) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Tianhui; Fu, Bina, E-mail: bina@dicp.ac.cn, E-mail: zhangdh@dicp.ac.cn; Zhang, Dong H., E-mail: bina@dicp.ac.cn, E-mail: zhangdh@dicp.ac.cn

    We carried out six-dimensional quantum dynamics calculations for the dissociative adsorption of deuterium chloride (DCl) on Au(111) surface using the initial state-selected time-dependent wave packet approach. The four-dimensional dissociation probabilities are also obtained with the center of mass of DCl fixed at various sites. These calculations were all performed based on an accurate potential energy surface recently constructed by neural network fitting to density function theory energy points. The origin of the extremely small dissociation probability for DCl/HCl (v = 0, j = 0) fixed at the top site compared to other fixed sites is elucidated in this study. The influence of vibrational excitationmore » and rotational orientation of DCl on the reactivity was investigated by calculating six-dimensional dissociation probabilities. The vibrational excitation of DCl enhances the reactivity substantially and the helicopter orientation yields higher dissociation probability than the cartwheel orientation. The site-averaged dissociation probability over 25 fixed sites obtained from four-dimensional quantum dynamics calculations can accurately reproduce the six-dimensional dissociation probability.« less

  10. Silicon quantum dots embedded in a SiO2 matrix: From structural study to carrier transport properties

    NASA Astrophysics Data System (ADS)

    Garcia-Castello, Nuria; Illera, Sergio; Guerra, Roberto; Prades, Joan Daniel; Ossicini, Stefano; Cirera, Albert

    2013-08-01

    We study the details of electronic transport related to the atomistic structure of silicon quantum dots embedded in a silicon dioxide matrix using ab initio calculations of the density of states. Several structural and composition features of quantum dots (QDs), such as diameter and amorphization level, are studied and correlated with transport under transfer Hamiltonian formalism. The current is strongly dependent on the QD density of states and on the conduction gap, both dependent on the dot diameter. In particular, as size increases, the available states inside the QD increase, while the QD band gap decreases due to relaxation of quantum confinement. Both effects contribute to increasing the current with the dot size. Besides, valence band offset between the band edges of the QD and the silica, and conduction band offset in a minor grade, increases with the QD diameter up to the theoretical value corresponding to planar heterostructures, thus decreasing the tunneling transmission probability and hence the total current. We discuss the influence of these parameters on electron and hole transport, evidencing a correlation between the electron (hole) barrier value and the electron (hole) current, and obtaining a general enhancement of the electron (hole) transport for larger (smaller) QD. Finally, we show that crystalline and amorphous structures exhibit enhanced probability of hole and electron current, respectively.

  11. Exact Time-Dependent Exchange-Correlation Potential in Electron Scattering Processes

    NASA Astrophysics Data System (ADS)

    Suzuki, Yasumitsu; Lacombe, Lionel; Watanabe, Kazuyuki; Maitra, Neepa T.

    2017-12-01

    We identify peak and valley structures in the exact exchange-correlation potential of time-dependent density functional theory that are crucial for time-resolved electron scattering in a model one-dimensional system. These structures are completely missed by adiabatic approximations that, consequently, significantly underestimate the scattering probability. A recently proposed nonadiabatic approximation is shown to correctly capture the approach of the electron to the target when the initial Kohn-Sham state is chosen judiciously, and it is more accurate than standard adiabatic functionals but ultimately fails to accurately capture reflection. These results may explain the underestimation of scattering probabilities in some recent studies on molecules and surfaces.

  12. Factors affecting breeding season survival of Red-Headed Woodpeckers in South Carolina.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilgo, John, C.; Vukovich, Mark

    2011-11-18

    Red-headed woodpecker (Melanerpes erythrocephalus) populations have declined in the United States and Canada over the past 40 years. However, few demographic studies have been published on the species and none have addressed adult survival. During 2006-2007, we estimated survival probabilities of 80 radio-tagged red-headed woodpeckers during the breeding season in mature loblolly pine (Pinus taeda) forests in South Carolina. We used known-fate models in Program MARK to estimate survival within and between years and to evaluate the effects of foliar cover (number of available cover patches), snag density treatment (high density vs. low density), and sex and age of woodpeckers.more » Weekly survival probabilities followed a quadratic time trend, being lowest during mid-summer, which coincided with the late nestling and fledgling period. Avian predation, particularly by Cooper's (Accipiter cooperii) and sharp-shinned hawks (A. striatus), accounted for 85% of all mortalities. Our best-supported model estimated an 18-week breeding season survival probability of 0.72 (95% CI = 0.54-0.85) and indicated that the number of cover patches interacted with sex of woodpeckers to affect survival; females with few available cover patches had a lower probability of survival than either males or females with more cover patches. At the median number of cover patches available (n = 6), breeding season survival of females was 0.82 (95% CI = 0.54-0.94) and of males was 0.60 (95% CI = 0.42-0.76). The number of cover patches available to woodpeckers appeared in all 3 of our top models predicting weekly survival, providing further evidence that woodpecker survival was positively associated with availability of cover. Woodpecker survival was not associated with snag density. Our results suggest that protection of {ge}0.7 cover patches per ha during vegetation control activities in mature pine forests will benefit survival of this Partners In Flight Watch List species.« less

  13. Investigation of estimators of probability density functions

    NASA Technical Reports Server (NTRS)

    Speed, F. M.

    1972-01-01

    Four research projects are summarized which include: (1) the generation of random numbers on the IBM 360/44, (2) statistical tests used to check out random number generators, (3) Specht density estimators, and (4) use of estimators of probability density functions in analyzing large amounts of data.

  14. Fusion of Hard and Soft Information in Nonparametric Density Estimation

    DTIC Science & Technology

    2015-06-10

    and stochastic optimization models, in analysis of simulation output, and when instantiating probability models. We adopt a constrained maximum...particular, density estimation is needed for generation of input densities to simulation and stochastic optimization models, in analysis of simulation output...an essential step in simulation analysis and stochastic optimization is the generation of probability densities for input random variables; see for

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carson, K.S.

    The presence of overpopulation or unsustainable population growth may place pressure on the food and water supplies of countries in sensitive areas of the world. Severe air or water pollution may place additional pressure on these resources. These pressures may generate both internal and international conflict in these areas as nations struggle to provide for their citizens. Such conflicts may result in United States intervention, either unilaterally, or through the United Nations. Therefore, it is in the interests of the United States to identify potential areas of conflict in order to properly train and allocate forces. The purpose of thismore » research is to forecast the probability of conflict in a nation as a function of it s environmental conditions. Probit, logit and ordered probit models are employed to forecast the probability of a given level of conflict. Data from 95 countries are used to estimate the models. Probability forecasts are generated for these 95 nations. Out-of sample forecasts are generated for an additional 22 nations. These probabilities are then used to rank nations from highest probability of conflict to lowest. The results indicate that the dependence of a nation`s economy on agriculture, the rate of deforestation, and the population density are important variables in forecasting the probability and level of conflict. These results indicate that environmental variables do play a role in generating or exacerbating conflict. It is unclear that the United States military has any direct role in mitigating the environmental conditions that may generate conflict. A more important role for the military is to aid in data gathering to generate better forecasts so that the troops are adequntely prepared when conflicts arises.« less

  16. Statistical Orbit Determination using the Particle Filter for Incorporating Non-Gaussian Uncertainties

    NASA Technical Reports Server (NTRS)

    Mashiku, Alinda; Garrison, James L.; Carpenter, J. Russell

    2012-01-01

    The tracking of space objects requires frequent and accurate monitoring for collision avoidance. As even collision events with very low probability are important, accurate prediction of collisions require the representation of the full probability density function (PDF) of the random orbit state. Through representing the full PDF of the orbit state for orbit maintenance and collision avoidance, we can take advantage of the statistical information present in the heavy tailed distributions, more accurately representing the orbit states with low probability. The classical methods of orbit determination (i.e. Kalman Filter and its derivatives) provide state estimates based on only the second moments of the state and measurement errors that are captured by assuming a Gaussian distribution. Although the measurement errors can be accurately assumed to have a Gaussian distribution, errors with a non-Gaussian distribution could arise during propagation between observations. Moreover, unmodeled dynamics in the orbit model could introduce non-Gaussian errors into the process noise. A Particle Filter (PF) is proposed as a nonlinear filtering technique that is capable of propagating and estimating a more complete representation of the state distribution as an accurate approximation of a full PDF. The PF uses Monte Carlo runs to generate particles that approximate the full PDF representation. The PF is applied in the estimation and propagation of a highly eccentric orbit and the results are compared to the Extended Kalman Filter and Splitting Gaussian Mixture algorithms to demonstrate its proficiency.

  17. Disordered cellular automaton traffic flow model: phase separated state, density waves and self organized criticality

    NASA Astrophysics Data System (ADS)

    Fourrate, K.; Loulidi, M.

    2006-01-01

    We suggest a disordered traffic flow model that captures many features of traffic flow. It is an extension of the Nagel-Schreckenberg (NaSch) stochastic cellular automata for single line vehicular traffic model. It incorporates random acceleration and deceleration terms that may be greater than one unit. Our model leads under its intrinsic dynamics, for high values of braking probability pr, to a constant flow at intermediate densities without introducing any spatial inhomogeneities. For a system of fast drivers pr→0, the model exhibits a density wave behavior that was observed in car following models with optimal velocity. The gap of the disordered model we present exhibits, for high values of pr and random deceleration, at a critical density, a power law distribution which is a hall mark of a self organized criticality phenomena.

  18. Structure of states in 12Be via the 11Be( d,p) reaction

    NASA Astrophysics Data System (ADS)

    Kanungo, R.; Gallant, A. T.; Uchida, M.; Andreoiu, C.; Austin, R. A. E.; Bandyopadhyay, D.; Ball, G. C.; Becker, J. A.; Boston, A. J.; Boston, H. C.; Brown, B. A.; Buchmann, L.; Colosimo, S. J.; Clark, R. M.; Cline, D.; Cross, D. S.; Dare, H.; Davids, B.; Drake, T. E.; Djongolov, M.; Finlay, P.; Galinski, N.; Garrett, P. E.; Garnsworthy, A. B.; Green, K. L.; Grist, S.; Hackman, G.; Harkness, L. J.; Hayes, A. B.; Howell, D.; Hurst, A. M.; Jeppesen, H. B.; Leach, K. G.; Macchiavelli, A. O.; Oxley, D.; Pearson, C. J.; Pietras, B.; Phillips, A. A.; Rigby, S. V.; Ruiz, C.; Ruprecht, G.; Sarazin, F.; Schumaker, M. A.; Shotter, A. C.; Sumitharachchi, C. S.; Svensson, C. E.; Tanihata, I.; Triambak, S.; Unsworth, C.; Williams, S. J.; Walden, P.; Wong, J.; Wu, C. Y.

    2010-01-01

    The s-wave neutron fraction of the 0 levels in 12Be has been investigated for the first time through the 11Be(d,p) transfer reaction using a 5 A MeV11Be beam at TRIUMF, Canada. The reaction populated all the known bound states of 12Be. The ground state s-wave spectroscopic factor was determined to be 0.28-0.07+0.03 while that for the long-lived 02+ excited state was 0.73-0.40+0.27. This observation, together with the smaller effective separation energy indicates enhanced probability for an extended density tail beyond the 10Be core for the 02+ excited state compared to the ground state.

  19. Fokker-Planck description of conductance-based integrate-and-fire neuronal networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovacic, Gregor; Tao, Louis; Rangan, Aaditya V.

    2009-08-15

    Steady dynamics of coupled conductance-based integrate-and-fire neuronal networks in the limit of small fluctuations is studied via the equilibrium states of a Fokker-Planck equation. An asymptotic approximation for the membrane-potential probability density function is derived and the corresponding gain curves are found. Validity conditions are discussed for the Fokker-Planck description and verified via direct numerical simulations.

  20. Evaluating detection probabilities for American marten in the Black Hills, South Dakota

    USGS Publications Warehouse

    Smith, Joshua B.; Jenks, Jonathan A.; Klaver, Robert W.

    2007-01-01

    Assessing the effectiveness of monitoring techniques designed to determine presence of forest carnivores, such as American marten (Martes americana), is crucial for validation of survey results. Although comparisons between techniques have been made, little attention has been paid to the issue of detection probabilities (p). Thus, the underlying assumption has been that detection probabilities equal 1.0. We used presence-absence data obtained from a track-plate survey in conjunction with results from a saturation-trapping study to derive detection probabilities when marten occurred at high (>2 marten/10.2 km2) and low (???1 marten/10.2 km2) densities within 8 10.2-km2 quadrats. Estimated probability of detecting marten in high-density quadrats was p = 0.952 (SE = 0.047), whereas the detection probability for low-density quadrats was considerably lower (p = 0.333, SE = 0.136). Our results indicated that failure to account for imperfect detection could lead to an underestimation of marten presence in 15-52% of low-density quadrats in the Black Hills, South Dakota, USA. We recommend that repeated site-survey data be analyzed to assess detection probabilities when documenting carnivore survey results.

  1. Data Encoding using Periodic Nano-Optical Features

    NASA Astrophysics Data System (ADS)

    Vosoogh-Grayli, Siamack

    Successful trials have been made through a designed algorithm to quantize, compress and optically encode unsigned 8 bit integer values in the form of images using Nano optical features. The periodicity of the Nano-scale features (Nano-gratings) have been designed and investigated both theoretically and experimentally to create distinct states of variation (three on states and one off state). The use of easy to manufacture and machine readable encoded data in secured authentication media has been employed previously in bar-codes for bi-state (binary) models and in color barcodes for multiple state models. This work has focused on implementing 4 states of variation for unit information through periodic Nano-optical structures that separate an incident wavelength into distinct colors (variation states) in order to create an encoding system. Compared to barcodes and magnetic stripes in secured finite length storage media the proposed system encodes and stores more data. The benefits of multiple states of variation in an encoding unit are 1) increased numerically representable range 2) increased storage density and 3) decreased number of typical set elements for any ergodic or semi-ergodic source that emits these encoding units. A thorough investigation has targeted the effects of the use of multi-varied state Nano-optical features on data storage density and consequent data transmission rates. The results show that use of Nano-optical features for encoding data yields a data storage density of circa 800 Kbits/in2 via the implementation of commercially available high resolution flatbed scanner systems for readout. Such storage density is far greater than commercial finite length secured storage media such as Barcode family with maximum practical density of 1kbits/in2 and highest density magnetic stripe cards with maximum density circa 3 Kbits/in2. The numerically representable range of the proposed encoding unit for 4 states of variation is [0 255]. The number of typical set elements for an ergodic source emitting the optical encoding units compared to a bi-state encoding unit (bit) shows a 36 orders of magnitude decrease for the error probability interval of [0 0.01]. The algorithms for the proposed encoding system have been implemented in MATLAB and the Nano-optical structures have been fabricated using Electron Beam Lithography on optical medium.

  2. Stochastic ontogenetic growth model

    NASA Astrophysics Data System (ADS)

    West, B. J.; West, D.

    2012-02-01

    An ontogenetic growth model (OGM) for a thermodynamically closed system is generalized to satisfy both the first and second law of thermodynamics. The hypothesized stochastic ontogenetic growth model (SOGM) is shown to entail the interspecies allometry relation by explicitly averaging the basal metabolic rate and the total body mass over the steady-state probability density for the total body mass (TBM). This is the first derivation of the interspecies metabolic allometric relation from a dynamical model and the asymptotic steady-state distribution of the TBM is fit to data and shown to be inverse power law.

  3. On the quantification and efficient propagation of imprecise probabilities resulting from small datasets

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaxin; Shields, Michael D.

    2018-01-01

    This paper addresses the problem of uncertainty quantification and propagation when data for characterizing probability distributions are scarce. We propose a methodology wherein the full uncertainty associated with probability model form and parameter estimation are retained and efficiently propagated. This is achieved by applying the information-theoretic multimodel inference method to identify plausible candidate probability densities and associated probabilities that each method is the best model in the Kullback-Leibler sense. The joint parameter densities for each plausible model are then estimated using Bayes' rule. We then propagate this full set of probability models by estimating an optimal importance sampling density that is representative of all plausible models, propagating this density, and reweighting the samples according to each of the candidate probability models. This is in contrast with conventional methods that try to identify a single probability model that encapsulates the full uncertainty caused by lack of data and consequently underestimate uncertainty. The result is a complete probabilistic description of both aleatory and epistemic uncertainty achieved with several orders of magnitude reduction in computational cost. It is shown how the model can be updated to adaptively accommodate added data and added candidate probability models. The method is applied for uncertainty analysis of plate buckling strength where it is demonstrated how dataset size affects the confidence (or lack thereof) we can place in statistical estimates of response when data are lacking.

  4. Periodic synchronization in a system of coupled phase oscillators with attractive and repulsive interactions

    NASA Astrophysics Data System (ADS)

    Yuan, Di; Tian, Jun-Long; Lin, Fang; Ma, Dong-Wei; Zhang, Jing; Cui, Hai-Tao; Xiao, Yi

    2018-06-01

    In this study we investigate the collective behavior of the generalized Kuramoto model with an external pinning force in which oscillators with positive and negative coupling strengths are conformists and contrarians, respectively. We focus on a situation in which the natural frequencies of the oscillators follow a uniform probability density. By numerically simulating the model, it is shown that the model supports multistable synchronized states such as a traveling wave state, π state and periodic synchronous state: an oscillating π state. The oscillating π state may be characterized by the phase distribution oscillating in a confined region and the phase difference between conformists and contrarians oscillating around π periodically. In addition, we present the parameter space of the oscillating π state and traveling wave state of the model.

  5. American Marten Respond to Seismic Lines in Northern Canada at Two Spatial Scales

    PubMed Central

    Tigner, Jesse; Bayne, Erin M.; Boutin, Stan

    2015-01-01

    Development of hydrocarbon resources across northwest Canada has spurred economic prosperity and generated concerns over impacts to biodiversity. To balance these interests, numerous jurisdictions have adopted management thresholds that allow for limited energy development but minimize undesirable impacts to wildlife. Used for exploration, seismic lines are the most abundant linear feature in the boreal forest and exist at a variety of widths and recovery states. We used American marten (Martes americana) as a model species to measure how line attributes influence species’ response to seismic lines, and asked whether responses to individual lines trigger population impacts. Marten response to seismic lines was strongly influenced by line width and recovery state. Compared to forest interiors, marten used open seismic lines ≥ 3 m wide less often, but used open lines ≤ 2 m wide and partially recovered lines ≥ 6 m wide similarly. Marten response to individual line types appeared to trigger population impacts. The probability of occurrence at the home range scale declined with increasing seismic line density, and the inclusion of behavioral response to line density calculations improved model fit. In our top performing model, we excluded seismic lines ≤ 2 m from our calculation of line density, and the probability of occurrence declined > 80% between home ranges with the lowest and highest line densities. Models that excluded seismic lines did not strongly explain occurrence. We show how wildlife-derived metrics can inform regulatory guidelines to increase the likelihood those guidelines meet intended management objectives. With respect to marten, not all seismic lines constitute disturbances, but avoidance of certain line types scales to population impacts. This approach provides the ecological context required to understand cause and effect relationships among socio-economic and ecological conservation goals. PMID:25768848

  6. Nonstationary envelope process and first excursion probability.

    NASA Technical Reports Server (NTRS)

    Yang, J.-N.

    1972-01-01

    The definition of stationary random envelope proposed by Cramer and Leadbetter, is extended to the envelope of nonstationary random process possessing evolutionary power spectral densities. The density function, the joint density function, the moment function, and the crossing rate of a level of the nonstationary envelope process are derived. Based on the envelope statistics, approximate solutions to the first excursion probability of nonstationary random processes are obtained. In particular, applications of the first excursion probability to the earthquake engineering problems are demonstrated in detail.

  7. Constrained Kalman Filtering Via Density Function Truncation for Turbofan Engine Health Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Dan; Simon, Donald L.

    2006-01-01

    Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints (which may be based on physical considerations) are often neglected because they do not fit easily into the structure of the Kalman filter. This paper develops an analytic method of incorporating state variable inequality constraints in the Kalman filter. The resultant filter truncates the PDF (probability density function) of the Kalman filter estimate at the known constraints and then computes the constrained filter estimate as the mean of the truncated PDF. The incorporation of state variable constraints increases the computational effort of the filter but significantly improves its estimation accuracy. The improvement is demonstrated via simulation results obtained from a turbofan engine model. The turbofan engine model contains 3 state variables, 11 measurements, and 10 component health parameters. It is also shown that the truncated Kalman filter may be a more accurate way of incorporating inequality constraints than other constrained filters (e.g., the projection approach to constrained filtering).

  8. The force distribution probability function for simple fluids by density functional theory.

    PubMed

    Rickayzen, G; Heyes, D M

    2013-02-28

    Classical density functional theory (DFT) is used to derive a formula for the probability density distribution function, P(F), and probability distribution function, W(F), for simple fluids, where F is the net force on a particle. The final formula for P(F) ∝ exp(-AF(2)), where A depends on the fluid density, the temperature, and the Fourier transform of the pair potential. The form of the DFT theory used is only applicable to bounded potential fluids. When combined with the hypernetted chain closure of the Ornstein-Zernike equation, the DFT theory for W(F) agrees with molecular dynamics computer simulations for the Gaussian and bounded soft sphere at high density. The Gaussian form for P(F) is still accurate at lower densities (but not too low density) for the two potentials, but with a smaller value for the constant, A, than that predicted by the DFT theory.

  9. Postfragmentation density function for bacterial aggregates in laminar flow

    PubMed Central

    Byrne, Erin; Dzul, Steve; Solomon, Michael; Younger, John

    2014-01-01

    The postfragmentation probability density of daughter flocs is one of the least well-understood aspects of modeling flocculation. We use three-dimensional positional data of Klebsiella pneumoniae bacterial flocs in suspension and the knowledge of hydrodynamic properties of a laminar flow field to construct a probability density function of floc volumes after a fragmentation event. We provide computational results which predict that the primary fragmentation mechanism for large flocs is erosion. The postfragmentation probability density function has a strong dependence on the size of the original floc and indicates that most fragmentation events result in clumps of one to three bacteria eroding from the original floc. We also provide numerical evidence that exhaustive fragmentation yields a limiting density inconsistent with the log-normal density predicted in the literature, most likely due to the heterogeneous nature of K. pneumoniae flocs. To support our conclusions, artificial flocs were generated and display similar postfragmentation density and exhaustive fragmentation. PMID:21599205

  10. Absorbing multicultural states in the Axelrod model

    NASA Astrophysics Data System (ADS)

    Vazquez, Federico; Redner, Sidney

    2005-03-01

    We determine the ultimate fate of a limit of the Axelrod model that consists of a population of leftists, centrists, and rightists. In an elemental interaction between agents, a centrist and a leftist can both become centrists or both become leftists with equal rates (similarly for a centrist and a rightist), but leftists and rightists do not interact. This interaction is applied repeatedly until the system can no longer evolve. The constraint between extremists can lead to a frustrated final state where the system consists of only leftists and rightists. In the mean field limit, we can view the evolution of the system as the motion of a random walk in the 3-dimensional space whose coordinates correspond to the density of each species. We find the exact final state probabilities and the time to reach consensus by solving for the first-passage probability of the random walk to the corresponding absorbing boundaries. The extension to a larger number of states will be discussed. This approach is a first step towards the analytic solution of Axelrod-like models.

  11. Speech processing using conditional observable maximum likelihood continuity mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogden, John; Nix, David

    A computer implemented method enables the recognition of speech and speech characteristics. Parameters are initialized of first probability density functions that map between the symbols in the vocabulary of one or more sequences of speech codes that represent speech sounds and a continuity map. Parameters are also initialized of second probability density functions that map between the elements in the vocabulary of one or more desired sequences of speech transcription symbols and the continuity map. The parameters of the probability density functions are then trained to maximize the probabilities of the desired sequences of speech-transcription symbols. A new sequence ofmore » speech codes is then input to the continuity map having the trained first and second probability function parameters. A smooth path is identified on the continuity map that has the maximum probability for the new sequence of speech codes. The probability of each speech transcription symbol for each input speech code can then be output.« less

  12. Ecosystem-scale plant hydraulic strategies inferred from remotely-sensed soil moisture

    NASA Astrophysics Data System (ADS)

    Bassiouni, M.; Good, S. P.; Higgins, C. W.

    2017-12-01

    Characterizing plant hydraulic strategies at the ecosystem scale is important to improve estimates of evapotranspiration and to understand ecosystem productivity and resilience. However, quantifying plant hydraulic traits beyond the species level is a challenge. The probability density function of soil moisture observations provides key information about the soil moisture states at which evapotranspiration is reduced by water stress. Here, an inverse Bayesian approach is applied to a standard bucket model of soil column hydrology forced with stochastic precipitation inputs. Through this approach, we are able to determine the soil moisture thresholds at which stomata are open or closed that are most consistent with observed soil moisture probability density functions. This research utilizes remotely-sensed soil moisture data to explore global patterns of ecosystem-scale plant hydraulic strategies. Results are complementary to literature values of measured hydraulic traits of various species in different climates and previous estimates of ecosystem-scale plant isohydricity. The presented approach provides a novel relation between plant physiological behavior and soil-water dynamics.

  13. Probability distribution of haplotype frequencies under the two-locus Wright-Fisher model by diffusion approximation.

    PubMed

    Boitard, Simon; Loisel, Patrice

    2007-05-01

    The probability distribution of haplotype frequencies in a population, and the way it is influenced by genetical forces such as recombination, selection, random drift ...is a question of fundamental interest in population genetics. For large populations, the distribution of haplotype frequencies for two linked loci under the classical Wright-Fisher model is almost impossible to compute because of numerical reasons. However the Wright-Fisher process can in such cases be approximated by a diffusion process and the transition density can then be deduced from the Kolmogorov equations. As no exact solution has been found for these equations, we developed a numerical method based on finite differences to solve them. It applies to transient states and models including selection or mutations. We show by several tests that this method is accurate for computing the conditional joint density of haplotype frequencies given that no haplotype has been lost. We also prove that it is far less time consuming than other methods such as Monte Carlo simulations.

  14. Coupling of link- and node-ordering in the coevolving voter model.

    PubMed

    Toruniewska, J; Kułakowski, K; Suchecki, K; Hołyst, J A

    2017-10-01

    We consider the process of reaching the final state in the coevolving voter model. There is a coevolution of state dynamics, where a node can copy a state from a random neighbor with probabilty 1-p and link dynamics, where a node can rewire its link to another node of the same state with probability p. That exhibits an absorbing transition to a frozen phase above a critical value of rewiring probability. Our analytical and numerical studies show that in the active phase mean values of magnetization of nodes n and links m tend to the same value that depends on initial conditions. In a similar way mean degrees of spins up and spins down become equal. The system obeys a special statistical conservation law since a linear combination of both types magnetizations averaged over many realizations starting from the same initial conditions is a constant of motion: Λ≡(1-p)μm(t)+pn(t)=const., where μ is the mean node degree. The final mean magnetization of nodes and links in the active phase is proportional to Λ while the final density of active links is a square function of Λ. If the rewiring probability is above a critical value and the system separates into disconnected domains, then the values of nodes and links magnetizations are not the same and final mean degrees of spins up and spins down can be different.

  15. Generalized skew-symmetric interfacial probability distribution in reflectivity and small-angle scattering analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Zhang; Chen, Wei

    Generalized skew-symmetric probability density functions are proposed to model asymmetric interfacial density distributions for the parameterization of any arbitrary density profiles in the `effective-density model'. The penetration of the densities into adjacent layers can be selectively controlled and parameterized. A continuous density profile is generated and discretized into many independent slices of very thin thickness with constant density values and sharp interfaces. The discretized profile can be used to calculate reflectivities via Parratt's recursive formula, or small-angle scattering via the concentric onion model that is also developed in this work.

  16. Generalized skew-symmetric interfacial probability distribution in reflectivity and small-angle scattering analysis

    DOE PAGES

    Jiang, Zhang; Chen, Wei

    2017-11-03

    Generalized skew-symmetric probability density functions are proposed to model asymmetric interfacial density distributions for the parameterization of any arbitrary density profiles in the `effective-density model'. The penetration of the densities into adjacent layers can be selectively controlled and parameterized. A continuous density profile is generated and discretized into many independent slices of very thin thickness with constant density values and sharp interfaces. The discretized profile can be used to calculate reflectivities via Parratt's recursive formula, or small-angle scattering via the concentric onion model that is also developed in this work.

  17. Using Geothermal Play Types as an Analogue for Estimating Potential Resource Size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terry, Rachel; Young, Katherine

    Blind geothermal systems are becoming increasingly common as more geothermal fields are developed. Geothermal development is known to have high risk in the early stages of a project development because reservoir characteristics are relatively unknown until wells are drilled. Play types (or occurrence models) categorize potential geothermal fields into groups based on geologic characteristics. To aid in lowering exploration risk, these groups' reservoir characteristics can be used as analogues in new site exploration. The play type schemes used in this paper were Moeck and Beardsmore play types (Moeck et al. 2014) and Brophy occurrence models (Brophy et al. 2011). Operatingmore » geothermal fields throughout the world were classified based on their associated play type, and then reservoir characteristics data were catalogued. The distributions of these characteristics were plotted in histograms to develop probability density functions for each individual characteristic. The probability density functions can be used as input analogues in Monte Carlo estimations of resource potential for similar play types in early exploration phases. A spreadsheet model was created to estimate resource potential in undeveloped fields. The user can choose to input their own values for each reservoir characteristic or choose to use the probability distribution functions provided from the selected play type. This paper also addresses the United States Geological Survey's 1978 and 2008 assessment of geothermal resources by comparing their estimated values to reported values from post-site development. Information from the collected data was used in the comparison for thirty developed sites in the United States. No significant trends or suggestions for methodologies could be made by the comparison.« less

  18. Probability and Quantum Paradigms: the Interplay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kracklauer, A. F.

    Since the introduction of Born's interpretation of quantum wave functions as yielding the probability density of presence, Quantum Theory and Probability have lived in a troubled symbiosis. Problems arise with this interpretation because quantum probabilities exhibit features alien to usual probabilities, namely non Boolean structure and non positive-definite phase space probability densities. This has inspired research into both elaborate formulations of Probability Theory and alternate interpretations for wave functions. Herein the latter tactic is taken and a suggested variant interpretation of wave functions based on photo detection physics proposed, and some empirical consequences are considered. Although incomplete in a fewmore » details, this variant is appealing in its reliance on well tested concepts and technology.« less

  19. Probability and Quantum Paradigms: the Interplay

    NASA Astrophysics Data System (ADS)

    Kracklauer, A. F.

    2007-12-01

    Since the introduction of Born's interpretation of quantum wave functions as yielding the probability density of presence, Quantum Theory and Probability have lived in a troubled symbiosis. Problems arise with this interpretation because quantum probabilities exhibit features alien to usual probabilities, namely non Boolean structure and non positive-definite phase space probability densities. This has inspired research into both elaborate formulations of Probability Theory and alternate interpretations for wave functions. Herein the latter tactic is taken and a suggested variant interpretation of wave functions based on photo detection physics proposed, and some empirical consequences are considered. Although incomplete in a few details, this variant is appealing in its reliance on well tested concepts and technology.

  20. Imaging the He2 quantum halo state using a free electron laser

    PubMed Central

    Zeller, Stefan; Kunitski, Maksim; Voigtsberger, Jörg; Kalinin, Anton; Schottelius, Alexander; Schober, Carl; Waitz, Markus; Sann, Hendrik; Hartung, Alexander; Bauer, Tobias; Pitzer, Martin; Trinter, Florian; Goihl, Christoph; Janke, Christian; Richter, Martin; Kastirke, Gregor; Weller, Miriam; Czasch, Achim; Kitzler, Markus; Braune, Markus; Grisenti, Robert E.; Schmidt, Lothar Ph. H.; Schöffler, Markus S.; Williams, Joshua B.; Jahnke, Till; Dörner, Reinhard

    2016-01-01

    Quantum tunneling is a ubiquitous phenomenon in nature and crucial for many technological applications. It allows quantum particles to reach regions in space which are energetically not accessible according to classical mechanics. In this “tunneling region,” the particle density is known to decay exponentially. This behavior is universal across all energy scales from nuclear physics to chemistry and solid state systems. Although typically only a small fraction of a particle wavefunction extends into the tunneling region, we present here an extreme quantum system: a gigantic molecule consisting of two helium atoms, with an 80% probability that its two nuclei will be found in this classical forbidden region. This circumstance allows us to directly image the exponentially decaying density of a tunneling particle, which we achieved for over two orders of magnitude. Imaging a tunneling particle shows one of the few features of our world that is truly universal: the probability to find one of the constituents of bound matter far away is never zero but decreases exponentially. The results were obtained by Coulomb explosion imaging using a free electron laser and furthermore yielded He2’s binding energy of 151.9±13.3 neV, which is in agreement with most recent calculations. PMID:27930299

  1. Representation of Probability Density Functions from Orbit Determination using the Particle Filter

    NASA Technical Reports Server (NTRS)

    Mashiku, Alinda K.; Garrison, James; Carpenter, J. Russell

    2012-01-01

    Statistical orbit determination enables us to obtain estimates of the state and the statistical information of its region of uncertainty. In order to obtain an accurate representation of the probability density function (PDF) that incorporates higher order statistical information, we propose the use of nonlinear estimation methods such as the Particle Filter. The Particle Filter (PF) is capable of providing a PDF representation of the state estimates whose accuracy is dependent on the number of particles or samples used. For this method to be applicable to real case scenarios, we need a way of accurately representing the PDF in a compressed manner with little information loss. Hence we propose using the Independent Component Analysis (ICA) as a non-Gaussian dimensional reduction method that is capable of maintaining higher order statistical information obtained using the PF. Methods such as the Principal Component Analysis (PCA) are based on utilizing up to second order statistics, hence will not suffice in maintaining maximum information content. Both the PCA and the ICA are applied to two scenarios that involve a highly eccentric orbit with a lower apriori uncertainty covariance and a less eccentric orbit with a higher a priori uncertainty covariance, to illustrate the capability of the ICA in relation to the PCA.

  2. Nonlinear Attitude Filtering Methods

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Crassidis, John L.; Cheng, Yang

    2005-01-01

    This paper provides a survey of modern nonlinear filtering methods for attitude estimation. Early applications relied mostly on the extended Kalman filter for attitude estimation. Since these applications, several new approaches have been developed that have proven to be superior to the extended Kalman filter. Several of these approaches maintain the basic structure of the extended Kalman filter, but employ various modifications in order to provide better convergence or improve other performance characteristics. Examples of such approaches include: filter QUEST, extended QUEST, the super-iterated extended Kalman filter, the interlaced extended Kalman filter, and the second-order Kalman filter. Filters that propagate and update a discrete set of sigma points rather than using linearized equations for the mean and covariance are also reviewed. A two-step approach is discussed with a first-step state that linearizes the measurement model and an iterative second step to recover the desired attitude states. These approaches are all based on the Gaussian assumption that the probability density function is adequately specified by its mean and covariance. Other approaches that do not require this assumption are reviewed, including particle filters and a Bayesian filter based on a non-Gaussian, finite-parameter probability density function on SO(3). Finally, the predictive filter, nonlinear observers and adaptive approaches are shown. The strengths and weaknesses of the various approaches are discussed.

  3. LFSPMC: Linear feature selection program using the probability of misclassification

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr.; Marion, B. P.

    1975-01-01

    The computational procedure and associated computer program for a linear feature selection technique are presented. The technique assumes that: a finite number, m, of classes exists; each class is described by an n-dimensional multivariate normal density function of its measurement vectors; the mean vector and covariance matrix for each density function are known (or can be estimated); and the a priori probability for each class is known. The technique produces a single linear combination of the original measurements which minimizes the one-dimensional probability of misclassification defined by the transformed densities.

  4. Self-focusing quantum states

    NASA Astrophysics Data System (ADS)

    Villanueva, Anthony Allan D.

    2018-02-01

    We discuss a class of solutions of the time-dependent Schrödinger equation such that the position uncertainty temporarily decreases. This self-focusing or contractive behavior is a consequence of the anti-correlation of the position and momentum observables. Since the associated position density satisfies a continuity equation, upon contraction the probability current at a given fixed point may flow in the opposite direction of the group velocity of the wave packet. For definiteness, we consider a free particle incident from the left of the origin, and establish a condition for the initial position-momentum correlation such that a negative probability current at the origin is possible. This implies a decrease in the particle's detection probability in the region x > 0, and we calculate how long this occurs. Analogous results are obtained for a particle subject to a uniform gravitational force if we consider the particle approaching the turning point. We show that position-momentum anti-correlation may cause a negative probability current at the turning point, leading to a temporary decrease in the particle's detection probability in the classically forbidden region.

  5. Momentum Probabilities for a Single Quantum Particle in Three-Dimensional Regular "Infinite" Wells: One Way of Promoting Understanding of Probability Densities

    ERIC Educational Resources Information Center

    Riggs, Peter J.

    2013-01-01

    Students often wrestle unsuccessfully with the task of correctly calculating momentum probability densities and have difficulty in understanding their interpretation. In the case of a particle in an "infinite" potential well, its momentum can take values that are not just those corresponding to the particle's quantised energies but…

  6. Generalized Maximum Entropy

    NASA Technical Reports Server (NTRS)

    Cheeseman, Peter; Stutz, John

    2005-01-01

    A long standing mystery in using Maximum Entropy (MaxEnt) is how to deal with constraints whose values are uncertain. This situation arises when constraint values are estimated from data, because of finite sample sizes. One approach to this problem, advocated by E.T. Jaynes [1], is to ignore this uncertainty, and treat the empirically observed values as exact. We refer to this as the classic MaxEnt approach. Classic MaxEnt gives point probabilities (subject to the given constraints), rather than probability densities. We develop an alternative approach that assumes that the uncertain constraint values are represented by a probability density {e.g: a Gaussian), and this uncertainty yields a MaxEnt posterior probability density. That is, the classic MaxEnt point probabilities are regarded as a multidimensional function of the given constraint values, and uncertainty on these values is transmitted through the MaxEnt function to give uncertainty over the MaXEnt probabilities. We illustrate this approach by explicitly calculating the generalized MaxEnt density for a simple but common case, then show how this can be extended numerically to the general case. This paper expands the generalized MaxEnt concept introduced in a previous paper [3].

  7. Continental crust

    USGS Publications Warehouse

    Pakiser, L.C.

    1964-01-01

    The structure of the Earth’s crust (the outer shell of the earth above the M-discontinuity) has been intensively studied in many places by use of geophysical methods. The velocity of seismic compressional waves in the crust and in the upper mantle varies from place to place in the conterminous United States. The average crust is thick in the eastern two-thirds of the United States, in which the crustal and upper-mantle velocities tend to be high. The average crust is thinner in the western one-third of the United States, in which these velocities tend to be low. The concept of eastern and western superprovinces can be used to classify these differences. Crustal and upper-mantle densities probably vary directly with compressional-wave velocity, leading to the conclusion that isostasy is accomplished by the variation in densities of crustal and upper-mantle rocks as well as in crustal thickness, and that there is no single, generally valid isostatic model. The nature of the M-discontinuity is still speculative.

  8. Spectrocopic measurements of water vapor plasmas at high resolution: The optical transition probabilities for OH (A 2 Sigma - X 2 Pi)

    NASA Technical Reports Server (NTRS)

    Klein, L.

    1972-01-01

    Emission and absorption spectra of water vapor plasmas generated in a wall-stabilized arc at atmospheric pressure and 4 current, and at 0.03 atm and 15 to 50 A, were measured at high spatial and spectral resolution. The gas temperature was determined from the shape of Doppler-broadened rotational lines of OH. The observed nonequilibrium population distributions over the energy levels of atoms are interpreted in terms of a theoretical state model for diffusion-controlled arc plasmas. Excellent correlation is achieved between measured and predicted occupation of hydrogen energy levels. It is shown that the population distribution over the nonpredissociating rotational-vibrational levels of the A 2 Sigma state of OH is close to an equilibrium distribution at the gas temperature, although the total density of this state is much higher than its equilibrium density. The reduced intensities of the rotational lines originating in these levels yielded Boltzmann plots that were strictly linear.

  9. The finite state projection algorithm for the solution of the chemical master equation.

    PubMed

    Munsky, Brian; Khammash, Mustafa

    2006-01-28

    This article introduces the finite state projection (FSP) method for use in the stochastic analysis of chemically reacting systems. One can describe the chemical populations of such systems with probability density vectors that evolve according to a set of linear ordinary differential equations known as the chemical master equation (CME). Unlike Monte Carlo methods such as the stochastic simulation algorithm (SSA) or tau leaping, the FSP directly solves or approximates the solution of the CME. If the CME describes a system that has a finite number of distinct population vectors, the FSP method provides an exact analytical solution. When an infinite or extremely large number of population variations is possible, the state space can be truncated, and the FSP method provides a certificate of accuracy for how closely the truncated space approximation matches the true solution. The proposed FSP algorithm systematically increases the projection space in order to meet prespecified tolerance in the total probability density error. For any system in which a sufficiently accurate FSP exists, the FSP algorithm is shown to converge in a finite number of steps. The FSP is utilized to solve two examples taken from the field of systems biology, and comparisons are made between the FSP, the SSA, and tau leaping algorithms. In both examples, the FSP outperforms the SSA in terms of accuracy as well as computational efficiency. Furthermore, due to very small molecular counts in these particular examples, the FSP also performs far more effectively than tau leaping methods.

  10. Large eddy simulation of turbulent premixed combustion using tabulated detailed chemistry and presumed probability density function

    NASA Astrophysics Data System (ADS)

    Zhang, Hongda; Han, Chao; Ye, Taohong; Ren, Zhuyin

    2016-03-01

    A method of chemistry tabulation combined with presumed probability density function (PDF) is applied to simulate piloted premixed jet burner flames with high Karlovitz number using large eddy simulation. Thermo-chemistry states are tabulated by the combination of auto-ignition and extended auto-ignition model. To evaluate the predictive capability of the proposed tabulation method to represent the thermo-chemistry states under the condition of different fresh gases temperature, a-priori study is conducted by performing idealised transient one-dimensional premixed flame simulations. Presumed PDF is used to involve the interaction of turbulence and flame with beta PDF to model the reaction progress variable distribution. Two presumed PDF models, Dirichlet distribution and independent beta distribution, respectively, are applied for representing the interaction between two mixture fractions that are associated with three inlet streams. Comparisons of statistical results show that two presumed PDF models for the two mixture fractions are both capable of predicting temperature and major species profiles, however, they are shown to have a significant effect on the predictions for intermediate species. An analysis of the thermo-chemical state-space representation of the sub-grid scale (SGS) combustion model is performed by comparing correlations between the carbon monoxide mass fraction and temperature. The SGS combustion model based on the proposed chemistry tabulation can reasonably capture the peak value and change trend of intermediate species. Aspects regarding model extensions to adequately predict the peak location of intermediate species are discussed.

  11. Equivalence principle for quantum systems: dephasing and phase shift of free-falling particles

    NASA Astrophysics Data System (ADS)

    Anastopoulos, C.; Hu, B. L.

    2018-02-01

    We ask the question of how the (weak) equivalence principle established in classical gravitational physics should be reformulated and interpreted for massive quantum objects that may also have internal degrees of freedom (dof). This inquiry is necessary because even elementary concepts like a classical trajectory are not well defined in quantum physics—trajectories originating from quantum histories become viable entities only under stringent decoherence conditions. From this investigation we posit two logically and operationally distinct statements of the equivalence principle for quantum systems. Version A: the probability distribution of position for a free-falling particle is the same as the probability distribution of a free particle, modulo a mass-independent shift of its mean. Version B: any two particles with the same velocity wave-function behave identically in free fall, irrespective of their masses. Both statements apply to all quantum states, including those without a classical correspondence, and also for composite particles with quantum internal dof. We also investigate the consequences of the interaction between internal and external dof induced by free fall. For a class of initial states, we find dephasing occurs for the translational dof, namely, the suppression of the off-diagonal terms of the density matrix, in the position basis. We also find a gravitational phase shift in the reduced density matrix of the internal dof that does not depend on the particle’s mass. For classical states, the phase shift has a natural classical interpretation in terms of gravitational red-shift and special relativistic time-dilation.

  12. Switching probability of all-perpendicular spin valve nanopillars

    NASA Astrophysics Data System (ADS)

    Tzoufras, M.

    2018-05-01

    In all-perpendicular spin valve nanopillars the probability density of the free-layer magnetization is independent of the azimuthal angle and its evolution equation simplifies considerably compared to the general, nonaxisymmetric geometry. Expansion of the time-dependent probability density to Legendre polynomials enables analytical integration of the evolution equation and yields a compact expression for the practically relevant switching probability. This approach is valid when the free layer behaves as a single-domain magnetic particle and it can be readily applied to fitting experimental data.

  13. Postfragmentation density function for bacterial aggregates in laminar flow.

    PubMed

    Byrne, Erin; Dzul, Steve; Solomon, Michael; Younger, John; Bortz, David M

    2011-04-01

    The postfragmentation probability density of daughter flocs is one of the least well-understood aspects of modeling flocculation. We use three-dimensional positional data of Klebsiella pneumoniae bacterial flocs in suspension and the knowledge of hydrodynamic properties of a laminar flow field to construct a probability density function of floc volumes after a fragmentation event. We provide computational results which predict that the primary fragmentation mechanism for large flocs is erosion. The postfragmentation probability density function has a strong dependence on the size of the original floc and indicates that most fragmentation events result in clumps of one to three bacteria eroding from the original floc. We also provide numerical evidence that exhaustive fragmentation yields a limiting density inconsistent with the log-normal density predicted in the literature, most likely due to the heterogeneous nature of K. pneumoniae flocs. To support our conclusions, artificial flocs were generated and display similar postfragmentation density and exhaustive fragmentation. ©2011 American Physical Society

  14. Identification of the spatial location of deep trap states in AlGaN/GaN heterostructures by surface photovoltage spectroscopy

    NASA Astrophysics Data System (ADS)

    Jana, Dipankar; Porwal, S.; Sharma, T. K.

    2017-12-01

    Spatial and spectral origin of deep level defects in molecular beam epitaxy grown AlGaN/GaN heterostructures are investigated by using surface photovoltage spectroscopy (SPS) and pump-probe SPS techniques. A deep trap center ∼1 eV above the valence band is observed in SPS measurements which is correlated with the yellow luminescence feature in GaN. Capture of electrons and holes is resolved by performing temperature dependent SPS and pump-probe SPS measurements. It is found that the deep trap states are distributed throughout the sample while their dominance in SPS spectra depends on the density, occupation probability of deep trap states and the background electron density of GaN channel layer. Dynamics of deep trap states associated with GaN channel layer is investigated by performing frequency dependent photoluminescence (PL) and SPS measurements. A time constant of few millisecond is estimated for the deep defects which might limit the dynamic performance of AlGaN/GaN based devices.

  15. The Influence of Phonotactic Probability and Neighborhood Density on Children's Production of Newly Learned Words

    ERIC Educational Resources Information Center

    Heisler, Lori; Goffman, Lisa

    2016-01-01

    A word learning paradigm was used to teach children novel words that varied in phonotactic probability and neighborhood density. The effects of frequency and density on speech production were examined when phonetic forms were nonreferential (i.e., when no referent was attached) and when phonetic forms were referential (i.e., when a referent was…

  16. Behavior of Excited Argon Atoms in Inductively Driven Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HEBNER,GREGORY A.; MILLER,PAUL A.

    1999-12-07

    Laser induced fluorescence has been used to measure the spatial distribution of the two lowest energy argon excited states, 1s{sub 5} and 1s{sub 4}, in inductively driven plasmas containing argon, chlorine and boron trichloride. The behavior of the two energy levels with plasma conditions was significantly different, probably because the 1s{sub 5} level is metastable and the 1s{sub 4} level is radiatively coupled to the ground state but is radiation trapped. The argon data is compared with a global model to identify the relative importance of processes such as electron collisional mixing and radiation trapping. The trends in the datamore » suggest that both processes play a major role in determining the excited state density. At lower rfpower and pressure, excited state spatial distributions in pure argon were peaked in the center of the discharge, with an approximately Gaussian profile. However, for the highest rfpowers and pressures investigated, the spatial distributions tended to flatten in the center of the discharge while the density at the edge of the discharge was unaffected. The spatially resolved excited state density measurements were combined with previous line integrated measurements in the same discharge geometry to derive spatially resolved, absolute densities of the 1s{sub 5} and 1s{sub 4} argon excited states and gas temperature spatial distributions. Fluorescence lifetime was a strong fi.mction of the rf power, pressure, argon fraction and spatial location. Increasing the power or pressure resulted in a factor of two decrease in the fluorescence lifetime while adding Cl{sub 2} or BCl{sub 3} increased the fluorescence lifetime. Excited state quenching rates are derived from the data. When Cl{sub 2} or BCl{sub 3} was added to the plasma, the maximum argon metastable density depended on the gas and ratio. When chlorine was added to the argon plasma, the spatial density profiles were independent of chlorine fraction. While it is energetically possible for argon excited states to dissociate some of the molecular species present in this discharge, it does not appear to be a significant source of dissociation. The major source of interaction between the argon and the molecular species BCl{sub 3} and Cl{sub 2} appears to be through modification of the electron density.« less

  17. Inferences about landbird abundance from count data: recent advances and future directions

    USGS Publications Warehouse

    Nichols, J.D.; Thomas, L.; Conn, P.B.; Thomson, David L.; Cooch, Evan G.; Conroy, Michael J.

    2009-01-01

    We summarize results of a November 2006 workshop dealing with recent research on the estimation of landbird abundance from count data. Our conceptual framework includes a decomposition of the probability of detecting a bird potentially exposed to sampling efforts into four separate probabilities. Primary inference methods are described and include distance sampling, multiple observers, time of detection, and repeated counts. The detection parameters estimated by these different approaches differ, leading to different interpretations of resulting estimates of density and abundance. Simultaneous use of combinations of these different inference approaches can not only lead to increased precision but also provides the ability to decompose components of the detection process. Recent efforts to test the efficacy of these different approaches using natural systems and a new bird radio test system provide sobering conclusions about the ability of observers to detect and localize birds in auditory surveys. Recent research is reported on efforts to deal with such potential sources of error as bird misclassification, measurement error, and density gradients. Methods for inference about spatial and temporal variation in avian abundance are outlined. Discussion topics include opinions about the need to estimate detection probability when drawing inference about avian abundance, methodological recommendations based on the current state of knowledge and suggestions for future research.

  18. Surveillance system and method having an adaptive sequential probability fault detection test

    NASA Technical Reports Server (NTRS)

    Herzog, James P. (Inventor); Bickford, Randall L. (Inventor)

    2005-01-01

    System and method providing surveillance of an asset such as a process and/or apparatus by providing training and surveillance procedures that numerically fit a probability density function to an observed residual error signal distribution that is correlative to normal asset operation and then utilizes the fitted probability density function in a dynamic statistical hypothesis test for providing improved asset surveillance.

  19. Surveillance system and method having an adaptive sequential probability fault detection test

    NASA Technical Reports Server (NTRS)

    Bickford, Randall L. (Inventor); Herzog, James P. (Inventor)

    2006-01-01

    System and method providing surveillance of an asset such as a process and/or apparatus by providing training and surveillance procedures that numerically fit a probability density function to an observed residual error signal distribution that is correlative to normal asset operation and then utilizes the fitted probability density function in a dynamic statistical hypothesis test for providing improved asset surveillance.

  20. Surveillance System and Method having an Adaptive Sequential Probability Fault Detection Test

    NASA Technical Reports Server (NTRS)

    Bickford, Randall L. (Inventor); Herzog, James P. (Inventor)

    2008-01-01

    System and method providing surveillance of an asset such as a process and/or apparatus by providing training and surveillance procedures that numerically fit a probability density function to an observed residual error signal distribution that is correlative to normal asset operation and then utilizes the fitted probability density function in a dynamic statistical hypothesis test for providing improved asset surveillance.

  1. Simple gain probability functions for large reflector antennas of JPL/NASA

    NASA Technical Reports Server (NTRS)

    Jamnejad, V.

    2003-01-01

    Simple models for the patterns as well as their cumulative gain probability and probability density functions of the Deep Space Network antennas are developed. These are needed for the study and evaluation of interference from unwanted sources such as the emerging terrestrial system, High Density Fixed Service, with the Ka-band receiving antenna systems in Goldstone Station of the Deep Space Network.

  2. Controlling the Shannon Entropy of Quantum Systems

    PubMed Central

    Xing, Yifan; Wu, Jun

    2013-01-01

    This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete and continuous entropies, controller design methods are proposed based on probability density function control, which can drive the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed. Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve more accurate tracking. PMID:23818819

  3. Controlling the shannon entropy of quantum systems.

    PubMed

    Xing, Yifan; Wu, Jun

    2013-01-01

    This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete and continuous entropies, controller design methods are proposed based on probability density function control, which can drive the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed. Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve more accurate tracking.

  4. Estimating the population size and colony boundary of subterranean termites by using the density functions of directionally averaged capture probability.

    PubMed

    Su, Nan-Yao; Lee, Sang-Hee

    2008-04-01

    Marked termites were released in a linear-connected foraging arena, and the spatial heterogeneity of their capture probabilities was averaged for both directions at distance r from release point to obtain a symmetrical distribution, from which the density function of directionally averaged capture probability P(x) was derived. We hypothesized that as marked termites move into the population and given sufficient time, the directionally averaged capture probability may reach an equilibrium P(e) over the distance r and thus satisfy the equal mixing assumption of the mark-recapture protocol. The equilibrium capture probability P(e) was used to estimate the population size N. The hypothesis was tested in a 50-m extended foraging arena to simulate the distance factor of field colonies of subterranean termites. Over the 42-d test period, the density functions of directionally averaged capture probability P(x) exhibited four phases: exponential decline phase, linear decline phase, equilibrium phase, and postequilibrium phase. The equilibrium capture probability P(e), derived as the intercept of the linear regression during the equilibrium phase, correctly projected N estimates that were not significantly different from the known number of workers in the arena. Because the area beneath the probability density function is a constant (50% in this study), preequilibrium regression parameters and P(e) were used to estimate the population boundary distance 1, which is the distance between the release point and the boundary beyond which the population is absent.

  5. Bidirectional Classical Stochastic Processes with Measurements and Feedback

    NASA Technical Reports Server (NTRS)

    Hahne, G. E.

    2005-01-01

    A measurement on a quantum system is said to cause the "collapse" of the quantum state vector or density matrix. An analogous collapse occurs with measurements on a classical stochastic process. This paper addresses the question of describing the response of a classical stochastic process when there is feedback from the output of a measurement to the input, and is intended to give a model for quantum-mechanical processes that occur along a space-like reaction coordinate. The classical system can be thought of in physical terms as two counterflowing probability streams, which stochastically exchange probability currents in a way that the net probability current, and hence the overall probability, suitably interpreted, is conserved. The proposed formalism extends the . mathematics of those stochastic processes describable with linear, single-step, unidirectional transition probabilities, known as Markov chains and stochastic matrices. It is shown that a certain rearrangement and combination of the input and output of two stochastic matrices of the same order yields another matrix of the same type. Each measurement causes the partial collapse of the probability current distribution in the midst of such a process, giving rise to calculable, but non-Markov, values for the ensuing modification of the system's output probability distribution. The paper concludes with an analysis of a classical probabilistic version of the so-called grandfather paradox.

  6. Defense Conversion Redirecting R and D

    DTIC Science & Technology

    1993-05-01

    agree that maglev or high members aerospace companies, utilities, univer- speed rail systems are probably limited to a few sities, small high tech...200 years. Even maglev a 3-year period for France’s TGV with a manufac- trains, long the favorite technology of the future turing workforce for the...population density. Maglev might parts of the United States, but on the basis of the contribute to the advance of some technologies, preliminary

  7. Shock compression of a recrystallized anorthositic rock from Apollo 15

    NASA Technical Reports Server (NTRS)

    Ahrens, T. J.; Gibbons, R. V.; O'Keefe, J. D.

    1973-01-01

    Hugoniot measurements on 15,418, a recrystallized and brecciated gabbroic anorthosite, yield a value of the Hugoniot elastic limit (HEL) varying from 45 to 70 kbar as the final shock pressure is varied from 70 to 280 kbar. Above the HEL and to 150 kbar, the pressure-density Hugoniot is closely described by a hydrostatic equation of state constructed from ultrasonic data for single-crystal plagioclase and pyroxene. Above 150 kbar, the Hugoniot states indicate that a series of one or more shock-induced phase changes are occurring in the plagioclase and pyroxene. From Hugoniot data for both the single-crystal minerals and the Frederick diabase, we infer that the shock-induced high-pressure phases in 15,418 probably consists of a 3.71 g/cu cm density, high-pressure structure for plagioclase and a 4.70 g/cu cm perovskite-type structure for pyroxene.

  8. Homogeneous quantum electrodynamic turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1992-01-01

    The electromagnetic field equations and Dirac equations for oppositely charged wave functions are numerically time-integrated using a spatial Fourier method. The numerical approach used, a spectral transform technique, is based on a continuum representation of physical space. The coupled classical field equations contain a dimensionless parameter which sets the strength of the nonlinear interaction (as the parameter increases, interaction volume decreases). For a parameter value of unity, highly nonlinear behavior in the time-evolution of an individual wave function, analogous to ideal fluid turbulence, is observed. In the truncated Fourier representation which is numerically implemented here, the quantum turbulence is homogeneous but anisotropic and manifests itself in the nonlinear evolution of equilibrium modal spatial spectra for the probability density of each particle and also for the electromagnetic energy density. The results show that nonlinearly interacting fermionic wave functions quickly approach a multi-mode, dynamic equilibrium state, and that this state can be determined by numerical means.

  9. Comparison of methods for estimating density of forest songbirds from point counts

    Treesearch

    Jennifer L. Reidy; Frank R. Thompson; J. Wesley. Bailey

    2011-01-01

    New analytical methods have been promoted for estimating the probability of detection and density of birds from count data but few studies have compared these methods using real data. We compared estimates of detection probability and density from distance and time-removal models and survey protocols based on 5- or 10-min counts and outer radii of 50 or 100 m. We...

  10. Multiscale Characterization of the Probability Density Functions of Velocity and Temperature Increment Fields

    NASA Astrophysics Data System (ADS)

    DeMarco, Adam Ward

    The turbulent motions with the atmospheric boundary layer exist over a wide range of spatial and temporal scales and are very difficult to characterize. Thus, to explore the behavior of such complex flow enviroments, it is customary to examine their properties from a statistical perspective. Utilizing the probability density functions of velocity and temperature increments, deltau and deltaT, respectively, this work investigates their multiscale behavior to uncover the unique traits that have yet to be thoroughly studied. Utilizing diverse datasets, including idealized, wind tunnel experiments, atmospheric turbulence field measurements, multi-year ABL tower observations, and mesoscale models simulations, this study reveals remarkable similiarities (and some differences) between the small and larger scale components of the probability density functions increments fields. This comprehensive analysis also utilizes a set of statistical distributions to showcase their ability to capture features of the velocity and temperature increments' probability density functions (pdfs) across multiscale atmospheric motions. An approach is proposed for estimating their pdfs utilizing the maximum likelihood estimation (MLE) technique, which has never been conducted utilizing atmospheric data. Using this technique, we reveal the ability to estimate higher-order moments accurately with a limited sample size, which has been a persistent concern for atmospheric turbulence research. With the use robust Goodness of Fit (GoF) metrics, we quantitatively reveal the accuracy of the distributions to the diverse dataset. Through this analysis, it is shown that the normal inverse Gaussian (NIG) distribution is a prime candidate to be used as an estimate of the increment pdfs fields. Therefore, using the NIG model and its parameters, we display the variations in the increments over a range of scales revealing some unique scale-dependent qualities under various stability and ow conditions. This novel approach can provide a method of characterizing increment fields with the sole use of only four pdf parameters. Also, we investigate the capability of the current state-of-the-art mesoscale atmospheric models to predict the features and highlight the potential for use for future model development. With the knowledge gained in this study, a number of applications can benefit by using our methodology, including the wind energy and optical wave propagation fields.

  11. Enhanced switching stability in Ta2O5 resistive RAM by fluorine doping

    NASA Astrophysics Data System (ADS)

    Sedghi, N.; Li, H.; Brunell, I. F.; Dawson, K.; Guo, Y.; Potter, R. J.; Gibbon, J. T.; Dhanak, V. R.; Zhang, W. D.; Zhang, J. F.; Hall, S.; Robertson, J.; Chalker, P. R.

    2017-08-01

    The effect of fluorine doping on the switching stability of Ta2O5 resistive random access memory devices is investigated. It shows that the dopant serves to increase the memory window and improve the stability of the resistive states due to the neutralization of oxygen vacancies. The ability to alter the current in the low resistance state with set current compliance coupled with large memory window makes multilevel cell switching more favorable. The devices have set and reset voltages of <1 V with improved stability due to the fluorine doping. Density functional modeling shows that the incorporation of fluorine dopant atoms at the two-fold O vacancy site in the oxide network removes the defect state in the mid bandgap, lowering the overall density of defects capable of forming conductive filaments. This reduces the probability of forming alternative conducting paths and hence improves the current stability in the low resistance states. The doped devices exhibit more stable resistive states in both dc and pulsed set and reset cycles. The retention failure time is estimated to be a minimum of 2 years for F-doped devices measured by temperature accelerated and stress voltage accelerated retention failure methods.

  12. Structural and thermodynamic properties of WB at high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Hua; Bi, Yan; Cheng, Yan; Ji, Guangfu; Peng, Fang; Hu, Yan-Fei

    2012-12-01

    The structure parameters and electronic structures of tungsten boride (WB) have been investigated by using the density functional theory (DFT). Our calculating results display the bulk modulus of WB are 352±2 GPa (K‧0=4.29) and 322±3 GPa (K‧0=4.21) by LDA and GGA methods, respectively. We have analyzed the probable reason of the discrepancy from the bulk modulus between theoretical and experimental results. The compression behavior of the unit cell axes is anisotropic, with the c-axis being more compressible than the a-axis. By analyzing the bond lengths information, it also demonstrated that WB has a lower compressibility at high pressure. From the partial densities of states (PDOS) of WB, we found that the Fermi lever is mostly contributed by the d states of W atom and p states of B atom and that the contributions from the s, p states of W atom and s states of B atom are small. Moreover, using the Gibbs 2 program, the thermodynamic properties of WB are obtained in a wide temperature range at high pressure for the first time in this work.

  13. Going through a quantum phase

    NASA Technical Reports Server (NTRS)

    Shapiro, Jeffrey H.

    1992-01-01

    Phase measurements on a single-mode radiation field are examined from a system-theoretic viewpoint. Quantum estimation theory is used to establish the primacy of the Susskind-Glogower (SG) phase operator; its phase eigenkets generate the probability operator measure (POM) for maximum likelihood phase estimation. A commuting observables description for the SG-POM on a signal x apparatus state space is derived. It is analogous to the signal-band x image-band formulation for optical heterodyne detection. Because heterodyning realizes the annihilation operator POM, this analogy may help realize the SG-POM. The wave function representation associated with the SG POM is then used to prove the duality between the phase measurement and the number operator measurement, from which a number-phase uncertainty principle is obtained, via Fourier theory, without recourse to linearization. Fourier theory is also employed to establish the principle of number-ket causality, leading to a Paley-Wiener condition that must be satisfied by the phase-measurement probability density function (PDF) for a single-mode field in an arbitrary quantum state. Finally, a two-mode phase measurement is shown to afford phase-conjugate quantum communication at zero error probability with finite average photon number. Application of this construct to interferometric precision measurements is briefly discussed.

  14. Water dissociating on rigid Ni(100): A quantum dynamics study on a full-dimensional potential energy surface

    NASA Astrophysics Data System (ADS)

    Liu, Tianhui; Chen, Jun; Zhang, Zhaojun; Shen, Xiangjian; Fu, Bina; Zhang, Dong H.

    2018-04-01

    We constructed a nine-dimensional (9D) potential energy surface (PES) for the dissociative chemisorption of H2O on a rigid Ni(100) surface using the neural network method based on roughly 110 000 energies obtained from extensive density functional theory (DFT) calculations. The resulting PES is accurate and smooth, based on the small fitting errors and the good agreement between the fitted PES and the direct DFT calculations. Time dependent wave packet calculations also showed that the PES is very well converged with respect to the fitting procedure. The dissociation probabilities of H2O initially in the ground rovibrational state from 9D quantum dynamics calculations are quite different from the site-specific results from the seven-dimensional (7D) calculations, indicating the importance of full-dimensional quantum dynamics to quantitatively characterize this gas-surface reaction. It is found that the validity of the site-averaging approximation with exact potential holds well, where the site-averaging dissociation probability over 15 fixed impact sites obtained from 7D quantum dynamics calculations can accurately approximate the 9D dissociation probability for H2O in the ground rovibrational state.

  15. Quantum mechanics of Klein-Gordon fields I: Hilbert Space, localized states, and chiral symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mostafazadeh, A.; Zamani, F.

    2006-09-15

    We derive an explicit manifestly covariant expression for the most general positive-definite and Lorentz-invariant inner product on the space of solutions of the Klein-Gordon equation. This expression involves a one-parameter family of conserved current densities J{sub a}{sup {mu}}, with a-bar (-1,1), that are analogous to the chiral current density for spin half fields. The conservation of J{sub a}{sup {mu}} is related to a global gauge symmetry of the Klein-Gordon fields whose gauge group is U(1) for rational a and the multiplicative group of positive real numbers for irrational a. We show that the associated gauge symmetry is responsible for themore » conservation of the total probability of the localization of the field in space. This provides a simple resolution of the paradoxical situation resulting from the fact that the probability current density for free scalar fields is neither covariant nor conserved. Furthermore, we discuss the implications of our approach for free real scalar fields offering a direct proof of the uniqueness of the relativistically invariant positive-definite inner product on the space of real Klein-Gordon fields. We also explore an extension of our results to scalar fields minimally coupled to an electromagnetic field.« less

  16. Distinguishability notion based on Wootters statistical distance: Application to discrete maps

    NASA Astrophysics Data System (ADS)

    Gomez, Ignacio S.; Portesi, M.; Lamberti, P. W.

    2017-08-01

    We study the distinguishability notion given by Wootters for states represented by probability density functions. This presents the particularity that it can also be used for defining a statistical distance in chaotic unidimensional maps. Based on that definition, we provide a metric d ¯ for an arbitrary discrete map. Moreover, from d ¯ , we associate a metric space with each invariant density of a given map, which results to be the set of all distinguished points when the number of iterations of the map tends to infinity. Also, we give a characterization of the wandering set of a map in terms of the metric d ¯ , which allows us to identify the dissipative regions in the phase space. We illustrate the results in the case of the logistic and the circle maps numerically and analytically, and we obtain d ¯ and the wandering set for some characteristic values of their parameters. Finally, an extension of the metric space associated for arbitrary probability distributions (not necessarily invariant densities) is given along with some consequences. The statistical properties of distributions given by histograms are characterized in terms of the cardinal of the associated metric space. For two conjugate variables, the uncertainty principle is expressed in terms of the diameters of the associated metric space with those variables.

  17. Online Reinforcement Learning Using a Probability Density Estimation.

    PubMed

    Agostini, Alejandro; Celaya, Enric

    2017-01-01

    Function approximation in online, incremental, reinforcement learning needs to deal with two fundamental problems: biased sampling and nonstationarity. In this kind of task, biased sampling occurs because samples are obtained from specific trajectories dictated by the dynamics of the environment and are usually concentrated in particular convergence regions, which in the long term tend to dominate the approximation in the less sampled regions. The nonstationarity comes from the recursive nature of the estimations typical of temporal difference methods. This nonstationarity has a local profile, varying not only along the learning process but also along different regions of the state space. We propose to deal with these problems using an estimation of the probability density of samples represented with a gaussian mixture model. To deal with the nonstationarity problem, we use the common approach of introducing a forgetting factor in the updating formula. However, instead of using the same forgetting factor for the whole domain, we make it dependent on the local density of samples, which we use to estimate the nonstationarity of the function at any given input point. To address the biased sampling problem, the forgetting factor applied to each mixture component is modulated according to the new information provided in the updating, rather than forgetting depending only on time, thus avoiding undesired distortions of the approximation in less sampled regions.

  18. Theory after experiment on sensing mechanism of a newly developed sensor molecule: Converging or diverging?

    NASA Astrophysics Data System (ADS)

    Paul, Suvendu; Karar, Monaj; Das, Biswajit; Mallick, Arabinda; Majumdar, Tapas

    2017-12-01

    Fluoride ion sensing mechanism of 3,3‧-bis(indolyl)-4-chlorophenylmethane has been analyzed with density functional and time-dependent density functional theories. Extensive theoretical calculations on molecular geometry & energy, charge distribution, orbital energies & electronic distribution, minima on potential energy surface confirmed strong hydrogen bonded sensor-anion complex with incomplete proton transfer in S0. In S1, strong hydrogen bonding extended towards complete ESDPT. The distinct and single minima on the PES of the sensor-anion complex for both ground and first singlet excited states confirmed the concerted proton transfer mechanism. Present study well reproduced the experimental spectroscopic data and provided ESDPT as probable fluoride sensing mechanism.

  19. Spatial correlations and probability density function of the phase difference in a developed speckle-field: numerical and natural experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mysina, N Yu; Maksimova, L A; Ryabukho, V P

    Investigated are statistical properties of the phase difference of oscillations in speckle-fields at two points in the far-field diffraction region, with different shapes of the scatterer aperture. Statistical and spatial nonuniformity of the probability density function of the field phase difference is established. Numerical experiments show that, for the speckle-fields with an oscillating alternating-sign transverse correlation function, a significant nonuniformity of the probability density function of the phase difference in the correlation region of the field complex amplitude, with the most probable values 0 and p, is observed. A natural statistical interference experiment using Young diagrams has confirmed the resultsmore » of numerical experiments. (laser applications and other topics in quantum electronics)« less

  20. Occurrence and implications of methyl tert-butyl ether and gasoline hydrocarbons in ground water and source water in the United States and in drinking water in 12 Northeast and Mid-Atlantic States, 1993-2002

    USGS Publications Warehouse

    Moran, Michael J.; Zogorski, John S.; Squillace, Paul J.

    2004-01-01

    The occurrence and implications of methyl tert-butyl ether (MTBE) and gasoline hydrocarbons were examined in three surveys of water quality conducted by the U.S. Geological Survey?one national-scale survey of ground water, one national-scale survey of source water from ground water, and one regional-scale survey of drinking water from ground water. The overall detection frequency of MTBE in all three surveys was similar to the detection frequencies of some other volatile organic compounds (VOCs) that have much longer production and use histories in the United States. The detection frequency of MTBE was higher in drinking water and lower in source water and ground water. However, when the data for ground water and source water were limited to the same geographic extent as drinking-water data, the detection frequencies of MTBE were comparable to the detection frequency of MTBE in drinking water. In all three surveys, the detection frequency of any gasoline hydrocarbon was less than the detection frequency of MTBE. No concentration of MTBE in source water exceeded the lower limit of U.S. Environmental Protection Agency's Drinking-Water Advisory of 20 ?g/L (micrograms per liter). One concentration of MTBE in ground water exceeded 20 ?g/L, and 0.9 percent of drinking-water samples exceeded 20 ?g/L. The overall detection frequency of MTBE relative to other widely used VOCs indicates that MTBE is an important concern with respect to ground-water management. The probability of detecting MTBE was strongly associated with population density, use of MTBE in gasoline, and recharge, and weakly associated with density of leaking underground storage tanks, soil permeability, and aquifer consolidation. Only concentrations of MTBE above 0.5 ?g/L were associated with dissolved oxygen. Ground water underlying areas with high population density, ground water underlying areas where MTBE is used as a gasoline oxygenate, and ground water underlying areas with high recharge has a greater probability of MTBE contamination. Ground water from public-supply wells and shallow ground water underlying urban land-use areas has a greater probability of MTBE contamination compared to ground water from domestic wells and ground water underlying rural land-use areas.

  1. DCMDN: Deep Convolutional Mixture Density Network

    NASA Astrophysics Data System (ADS)

    D'Isanto, Antonio; Polsterer, Kai Lars

    2017-09-01

    Deep Convolutional Mixture Density Network (DCMDN) estimates probabilistic photometric redshift directly from multi-band imaging data by combining a version of a deep convolutional network with a mixture density network. The estimates are expressed as Gaussian mixture models representing the probability density functions (PDFs) in the redshift space. In addition to the traditional scores, the continuous ranked probability score (CRPS) and the probability integral transform (PIT) are applied as performance criteria. DCMDN is able to predict redshift PDFs independently from the type of source, e.g. galaxies, quasars or stars and renders pre-classification of objects and feature extraction unnecessary; the method is extremely general and allows the solving of any kind of probabilistic regression problems based on imaging data, such as estimating metallicity or star formation rate in galaxies.

  2. Dynamic Graphics in Excel for Teaching Statistics: Understanding the Probability Density Function

    ERIC Educational Resources Information Center

    Coll-Serrano, Vicente; Blasco-Blasco, Olga; Alvarez-Jareno, Jose A.

    2011-01-01

    In this article, we show a dynamic graphic in Excel that is used to introduce an important concept in our subject, Statistics I: the probability density function. This interactive graphic seeks to facilitate conceptual understanding of the main aspects analysed by the learners.

  3. Coincidence probability as a measure of the average phase-space density at freeze-out

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Czyz, W.; Zalewski, K.

    2006-02-01

    It is pointed out that the average semi-inclusive particle phase-space density at freeze-out can be determined from the coincidence probability of the events observed in multiparticle production. The method of measurement is described and its accuracy examined.

  4. The computer simulation of automobile use patterns for defining battery requirements for electric cars

    NASA Technical Reports Server (NTRS)

    Schwartz, H.-J.

    1976-01-01

    The modeling process of a complex system, based on the calculation and optimization of the system parameters, is complicated in that some parameters can be expressed only as probability distributions. In the present paper, a Monte Carlo technique was used to determine the daily range requirements of an electric road vehicle in the United States from probability distributions of trip lengths, frequencies, and average annual mileage data. The analysis shows that a daily range of 82 miles meets to 95% of the car-owner requirements at all times with the exception of long vacation trips. Further, it is shown that the requirement of a daily range of 82 miles can be met by a (intermediate-level) battery technology characterized by an energy density of 30 to 50 Watt-hours per pound. Candidate batteries in this class are nickel-zinc, nickel-iron, and iron-air. These results imply that long-term research goals for battery systems should be focused on lower cost and longer service life, rather than on higher energy densities

  5. Spectral characteristics of convolutionally coded digital signals

    NASA Technical Reports Server (NTRS)

    Divsalar, D.

    1979-01-01

    The power spectral density of the output symbol sequence of a convolutional encoder is computed for two different input symbol stream source models, namely, an NRZ signaling format and a first order Markov source. In the former, the two signaling states of the binary waveform are not necessarily assumed to occur with equal probability. The effects of alternate symbol inversion on this spectrum are also considered. The mathematical results are illustrated with many examples corresponding to optimal performance codes.

  6. The calculation of neutron capture gamma-ray yields for space shielding applications

    NASA Technical Reports Server (NTRS)

    Yost, K. J.

    1972-01-01

    The application of nuclear models to the calculation of neutron capture and inelastic scattering gamma yields is discussed. The gamma ray cascade model describes the cascade process in terms of parameters which either: (1) embody statistical assumptions regarding electric and magnetic multipole transition strengths, level densities, and spin and parity distributions or (2) are fixed by experiment such as measured energies, spin and parity values, and transition probabilities for low lying states.

  7. Imaging the He2 quantum halo state using a free electron laser

    NASA Astrophysics Data System (ADS)

    Zeller, Stefan; Kunitski, Maksim; Voigtsberger, Jörg; Kalinin, Anton; Schottelius, Alexander; Schober, Carl; Waitz, Markus; Sann, Hendrik; Hartung, Alexander; Bauer, Tobias; Pitzer, Martin; Trinter, Florian; Goihl, Christoph; Janke, Christian; Richter, Martin; Kastirke, Gregor; Weller, Miriam; Czasch, Achim; Kitzler, Markus; Braune, Markus; Grisenti, Robert E.; Schöllkopf, Wieland; Schmidt, Lothar Ph. H.; Schöffler, Markus S.; Williams, Joshua B.; Jahnke, Till; Dörner, Reinhard

    2016-12-01

    Quantum tunneling is a ubiquitous phenomenon in nature and crucial for many technological applications. It allows quantum particles to reach regions in space which are energetically not accessible according to classical mechanics. In this “tunneling region,” the particle density is known to decay exponentially. This behavior is universal across all energy scales from nuclear physics to chemistry and solid state systems. Although typically only a small fraction of a particle wavefunction extends into the tunneling region, we present here an extreme quantum system: a gigantic molecule consisting of two helium atoms, with an 80% probability that its two nuclei will be found in this classical forbidden region. This circumstance allows us to directly image the exponentially decaying density of a tunneling particle, which we achieved for over two orders of magnitude. Imaging a tunneling particle shows one of the few features of our world that is truly universal: the probability to find one of the constituents of bound matter far away is never zero but decreases exponentially. The results were obtained by Coulomb explosion imaging using a free electron laser and furthermore yielded He2’s binding energy of 151.9±13.3151.9±13.3 neV, which is in agreement with most recent calculations.

  8. Sensor Fusion Based on an Integrated Neural Network and Probability Density Function (PDF) Dual Kalman Filter for On-Line Estimation of Vehicle Parameters and States.

    PubMed

    Vargas-Melendez, Leandro; Boada, Beatriz L; Boada, Maria Jesus L; Gauchia, Antonio; Diaz, Vicente

    2017-04-29

    Vehicles with a high center of gravity (COG), such as light trucks and heavy vehicles, are prone to rollover. This kind of accident causes nearly 33 % of all deaths from passenger vehicle crashes. Nowadays, these vehicles are incorporating roll stability control (RSC) systems to improve their safety. Most of the RSC systems require the vehicle roll angle as a known input variable to predict the lateral load transfer. The vehicle roll angle can be directly measured by a dual antenna global positioning system (GPS), but it is expensive. For this reason, it is important to estimate the vehicle roll angle from sensors installed onboard in current vehicles. On the other hand, the knowledge of the vehicle's parameters values is essential to obtain an accurate vehicle response. Some of vehicle parameters cannot be easily obtained and they can vary over time. In this paper, an algorithm for the simultaneous on-line estimation of vehicle's roll angle and parameters is proposed. This algorithm uses a probability density function (PDF)-based truncation method in combination with a dual Kalman filter (DKF), to guarantee that both vehicle's states and parameters are within bounds that have a physical meaning, using the information obtained from sensors mounted on vehicles. Experimental results show the effectiveness of the proposed algorithm.

  9. Sensor Fusion Based on an Integrated Neural Network and Probability Density Function (PDF) Dual Kalman Filter for On-Line Estimation of Vehicle Parameters and States

    PubMed Central

    Vargas-Melendez, Leandro; Boada, Beatriz L.; Boada, Maria Jesus L.; Gauchia, Antonio; Diaz, Vicente

    2017-01-01

    Vehicles with a high center of gravity (COG), such as light trucks and heavy vehicles, are prone to rollover. This kind of accident causes nearly 33% of all deaths from passenger vehicle crashes. Nowadays, these vehicles are incorporating roll stability control (RSC) systems to improve their safety. Most of the RSC systems require the vehicle roll angle as a known input variable to predict the lateral load transfer. The vehicle roll angle can be directly measured by a dual antenna global positioning system (GPS), but it is expensive. For this reason, it is important to estimate the vehicle roll angle from sensors installed onboard in current vehicles. On the other hand, the knowledge of the vehicle’s parameters values is essential to obtain an accurate vehicle response. Some of vehicle parameters cannot be easily obtained and they can vary over time. In this paper, an algorithm for the simultaneous on-line estimation of vehicle’s roll angle and parameters is proposed. This algorithm uses a probability density function (PDF)-based truncation method in combination with a dual Kalman filter (DKF), to guarantee that both vehicle’s states and parameters are within bounds that have a physical meaning, using the information obtained from sensors mounted on vehicles. Experimental results show the effectiveness of the proposed algorithm. PMID:28468252

  10. Possible origin of photoconductivity in La0.7Ca0.3MnO3

    NASA Astrophysics Data System (ADS)

    Sagdeo, P. R.; Choudhary, R. J.; Phase, D. M.

    2010-01-01

    The effect of photon energy on the density of states near Fermi level of pulsed laser deposited La0.7Ca0.3MnO3 thin film has been studied to investigate the possible origin of change in the conductivity of these manganites upon photon exposure. For this purpose the photoelectron spectroscopy measurements were carried out using CSR beamline (BL-2) on Indus-1 synchrotron radiation source. The valance band spectra were measured at room temperature with photon energy ranging from 40 to 60 eV. We could see huge change in the density of states near Fermi level and this change is observed to be highest at 56 eV which is due to the resonance between Mn 3p to Mn 3d level. Our results suggest that the probability of electron transfer from deep Mn 3p level to Mn 3d-eg level is higher than that of Mn 3d-t2g level. It appears that this transfer of electron from deep Mn level to Mn 3d-eg level not only modifies the density of state near Fermi level but also changes the mobility of electrons by modifying the electron lattice coupling due to presence of Mn+3 Jahn-Teller ion.

  11. Novel density-based and hierarchical density-based clustering algorithms for uncertain data.

    PubMed

    Zhang, Xianchao; Liu, Han; Zhang, Xiaotong

    2017-09-01

    Uncertain data has posed a great challenge to traditional clustering algorithms. Recently, several algorithms have been proposed for clustering uncertain data, and among them density-based techniques seem promising for handling data uncertainty. However, some issues like losing uncertain information, high time complexity and nonadaptive threshold have not been addressed well in the previous density-based algorithm FDBSCAN and hierarchical density-based algorithm FOPTICS. In this paper, we firstly propose a novel density-based algorithm PDBSCAN, which improves the previous FDBSCAN from the following aspects: (1) it employs a more accurate method to compute the probability that the distance between two uncertain objects is less than or equal to a boundary value, instead of the sampling-based method in FDBSCAN; (2) it introduces new definitions of probability neighborhood, support degree, core object probability, direct reachability probability, thus reducing the complexity and solving the issue of nonadaptive threshold (for core object judgement) in FDBSCAN. Then, we modify the algorithm PDBSCAN to an improved version (PDBSCANi), by using a better cluster assignment strategy to ensure that every object will be assigned to the most appropriate cluster, thus solving the issue of nonadaptive threshold (for direct density reachability judgement) in FDBSCAN. Furthermore, as PDBSCAN and PDBSCANi have difficulties for clustering uncertain data with non-uniform cluster density, we propose a novel hierarchical density-based algorithm POPTICS by extending the definitions of PDBSCAN, adding new definitions of fuzzy core distance and fuzzy reachability distance, and employing a new clustering framework. POPTICS can reveal the cluster structures of the datasets with different local densities in different regions better than PDBSCAN and PDBSCANi, and it addresses the issues in FOPTICS. Experimental results demonstrate the superiority of our proposed algorithms over the existing algorithms in accuracy and efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Beta-decay rate and beta-delayed neutron emission probability of improved gross theory

    NASA Astrophysics Data System (ADS)

    Koura, Hiroyuki

    2014-09-01

    A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for unmeasured nuclei are adopted from the KTUY nuclear mass formula, which is based on the spherical-basis method. Considering the properties of the integrated Fermi function, we can roughly categorized energy region of excited-state of a daughter nucleus into three regions: a highly-excited energy region, which fully affect a delayed neutron probability, a middle energy region, which is estimated to contribute the decay heat, and a region neighboring the ground-state, which determines the beta-decay rate. Some results will be given in the presentation. A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for unmeasured nuclei are adopted from the KTUY nuclear mass formula, which is based on the spherical-basis method. Considering the properties of the integrated Fermi function, we can roughly categorized energy region of excited-state of a daughter nucleus into three regions: a highly-excited energy region, which fully affect a delayed neutron probability, a middle energy region, which is estimated to contribute the decay heat, and a region neighboring the ground-state, which determines the beta-decay rate. Some results will be given in the presentation. This work is a result of Comprehensive study of delayed-neutron yields for accurate evaluation of kinetics of high-burn up reactors entrusted to Tokyo Institute of Technology by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

  13. Time-dependent probability density functions and information geometry in stochastic logistic and Gompertz models

    NASA Astrophysics Data System (ADS)

    Tenkès, Lucille-Marie; Hollerbach, Rainer; Kim, Eun-jin

    2017-12-01

    A probabilistic description is essential for understanding growth processes in non-stationary states. In this paper, we compute time-dependent probability density functions (PDFs) in order to investigate stochastic logistic and Gompertz models, which are two of the most popular growth models. We consider different types of short-correlated multiplicative and additive noise sources and compare the time-dependent PDFs in the two models, elucidating the effects of the additive and multiplicative noises on the form of PDFs. We demonstrate an interesting transition from a unimodal to a bimodal PDF as the multiplicative noise increases for a fixed value of the additive noise. A much weaker (leaky) attractor in the Gompertz model leads to a significant (singular) growth of the population of a very small size. We point out the limitation of using stationary PDFs, mean value and variance in understanding statistical properties of the growth in non-stationary states, highlighting the importance of time-dependent PDFs. We further compare these two models from the perspective of information change that occurs during the growth process. Specifically, we define an infinitesimal distance at any time by comparing two PDFs at times infinitesimally apart and sum these distances in time. The total distance along the trajectory quantifies the total number of different states that the system undergoes in time, and is called the information length. We show that the time-evolution of the two models become more similar when measured in units of the information length and point out the merit of using the information length in unifying and understanding the dynamic evolution of different growth processes.

  14. Probing interfacial characteristics of rubrene/pentacene and pentacene/rubrene bilayers with soft X-ray spectroscopy.

    PubMed

    Seo, J H; Pedersen, T M; Chang, G S; Moewes, A; Yoo, K-H; Cho, S J; Whang, C N

    2007-08-16

    The electronic structure of rubrene/pentacene and pentacene/rubrene bilayers has been investigated using soft X-ray absorption spectroscopy, resonant X-ray emission spectroscopy, and density-functional theory calculations. X-ray absorption and emission measurements reveal that it has been possible to alter the lowest unoccupied and the highest occupied molecular orbital states of rubrene in rubrene/pentacene bilayer. In the reverse case, one gets p* molecular orbital states originating from the pentacene layer. Resonant X-ray emission spectra suggest a reduction in the hole-transition probabilities for the pentacene/rubrene bilayer in comparison to reference pentacene layer. For the rubrenepentacene structure, the hole-transition probability shows an increase in comparison to the rubrene reference. We also determined the energy level alignment of the pentacene-rubrene interface by using X-ray and ultraviolet photoelectron spectroscopy. From these comparisons, it is found that the electronic structure of the pentacene-rubrene interface has a strong dependence on interface characteristics which depends on the order of the layers used.

  15. Predicting the ocurrence probability of freak waves baed on buoy data and non-stationary extreme value models

    NASA Astrophysics Data System (ADS)

    Tomas, A.; Menendez, M.; Mendez, F. J.; Coco, G.; Losada, I. J.

    2012-04-01

    In the last decades, freak or rogue waves have become an important topic in engineering and science. Forecasting the occurrence probability of freak waves is a challenge for oceanographers, engineers, physicists and statisticians. There are several mechanisms responsible for the formation of freak waves, and different theoretical formulations (primarily based on numerical models with simplifying assumption) have been proposed to predict the occurrence probability of freak wave in a sea state as a function of N (number of individual waves) and kurtosis (k). On the other hand, different attempts to parameterize k as a function of spectral parameters such as the Benjamin-Feir Index (BFI) and the directional spreading (Mori et al., 2011) have been proposed. The objective of this work is twofold: (1) develop a statistical model to describe the uncertainty of maxima individual wave height, Hmax, considering N and k as covariates; (2) obtain a predictive formulation to estimate k as a function of aggregated sea state spectral parameters. For both purposes, we use free surface measurements (more than 300,000 20-minutes sea states) from the Spanish deep water buoy network (Puertos del Estado, Spanish Ministry of Public Works). Non-stationary extreme value models are nowadays widely used to analyze the time-dependent or directional-dependent behavior of extreme values of geophysical variables such as significant wave height (Izaguirre et al., 2010). In this work, a Generalized Extreme Value (GEV) statistical model for the dimensionless maximum wave height (x=Hmax/Hs) in every sea state is used to assess the probability of freak waves. We allow the location, scale and shape parameters of the GEV distribution to vary as a function of k and N. The kurtosis-dependency is parameterized using third-order polynomials and the model is fitted using standard log-likelihood theory, obtaining a very good behavior to predict the occurrence probability of freak waves (x>2). Regarding the second objective of this work, we apply different algorithms using three spectral parameters (wave steepness, directional dispersion, frequential dispersion) as predictors, to estimate the probability density function of the kurtosis for a given sea state. ACKNOWLEDGMENTS The authors thank to Puertos del Estado (Spanish Ministry of Public Works) for providing the free surface measurement database.

  16. Identification of Stochastically Perturbed Autonomous Systems from Temporal Sequences of Probability Density Functions

    NASA Astrophysics Data System (ADS)

    Nie, Xiaokai; Luo, Jingjing; Coca, Daniel; Birkin, Mark; Chen, Jing

    2018-03-01

    The paper introduces a method for reconstructing one-dimensional iterated maps that are driven by an external control input and subjected to an additive stochastic perturbation, from sequences of probability density functions that are generated by the stochastic dynamical systems and observed experimentally.

  17. Digital simulation of two-dimensional random fields with arbitrary power spectra and non-Gaussian probability distribution functions.

    PubMed

    Yura, Harold T; Hanson, Steen G

    2012-04-01

    Methods for simulation of two-dimensional signals with arbitrary power spectral densities and signal amplitude probability density functions are disclosed. The method relies on initially transforming a white noise sample set of random Gaussian distributed numbers into a corresponding set with the desired spectral distribution, after which this colored Gaussian probability distribution is transformed via an inverse transform into the desired probability distribution. In most cases the method provides satisfactory results and can thus be considered an engineering approach. Several illustrative examples with relevance for optics are given.

  18. A Modeling and Data Analysis of Laser Beam Propagation in the Maritime Domain

    DTIC Science & Technology

    2015-05-18

    approach to computing pdfs is the Kernel Density Method (Reference [9] has an intro - duction to the method), which we will apply to compute the pdf of our...The project has two parts to it: 1) we present a computational analysis of different probability density function approximation techniques; and 2) we... computational analysis of different probability density function approximation techniques; and 2) we introduce preliminary steps towards developing a

  19. Metric on the space of quantum states from relative entropy. Tomographic reconstruction

    NASA Astrophysics Data System (ADS)

    Man'ko, Vladimir I.; Marmo, Giuseppe; Ventriglia, Franco; Vitale, Patrizia

    2017-08-01

    In the framework of quantum information geometry, we derive, from quantum relative Tsallis entropy, a family of quantum metrics on the space of full rank, N level quantum states, by means of a suitably defined coordinate free differential calculus. The cases N=2, N=3 are discussed in detail and notable limits are analyzed. The radial limit procedure has been used to recover quantum metrics for lower rank states, such as pure states. By using the tomographic picture of quantum mechanics we have obtained the Fisher-Rao metric for the space of quantum tomograms and derived a reconstruction formula of the quantum metric of density states out of the tomographic one. A new inequality obtained for probabilities of three spin-1/2 projections in three perpendicular directions is proposed to be checked in experiments with superconducting circuits.

  20. Shot-noise evidence of fractional quasiparticle creation in a local fractional quantum Hall state.

    PubMed

    Hashisaka, Masayuki; Ota, Tomoaki; Muraki, Koji; Fujisawa, Toshimasa

    2015-02-06

    We experimentally identify fractional quasiparticle creation in a tunneling process through a local fractional quantum Hall (FQH) state. The local FQH state is prepared in a low-density region near a quantum point contact in an integer quantum Hall (IQH) system. Shot-noise measurements reveal a clear transition from elementary-charge tunneling at low bias to fractional-charge tunneling at high bias. The fractional shot noise is proportional to T(1)(1-T(1)) over a wide range of T(1), where T(1) is the transmission probability of the IQH edge channel. This binomial distribution indicates that fractional quasiparticles emerge from the IQH state to be transmitted through the local FQH state. The study of this tunneling process enables us to elucidate the dynamics of Laughlin quasiparticles in FQH systems.

  1. Optical Rogue Waves in Vortex Turbulence.

    PubMed

    Gibson, Christopher J; Yao, Alison M; Oppo, Gian-Luca

    2016-01-29

    We present a spatiotemporal mechanism for producing 2D optical rogue waves in the presence of a turbulent state with creation, interaction, and annihilation of optical vortices. Spatially periodic structures with bound phase lose stability to phase unbound turbulent states in complex Ginzburg-Landau and Swift-Hohenberg models with external driving. When the pumping is high and the external driving is low, synchronized oscillations are unstable and lead to spatiotemporal vortex-mediated turbulence with high excursions in amplitude. Nonlinear amplification leads to rogue waves close to turbulent optical vortices, where the amplitude tends to zero, and to probability density functions (PDFs) with long tails typical of extreme optical events.

  2. Recombination dynamics in In{sub x}Ga{sub 1−x}N quantum wells—Contribution of excited subband recombination to carrier leakage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulz, T.; Markurt, T.; Albrecht, M.

    2014-11-03

    The recombination dynamics of In{sub x}Ga{sub 1−x}N single quantum wells are investigated. By comparing the photoluminescence (PL) decay spectra with simulated emission spectra obtained by a Schrödinger-Poisson approach, we give evidence that recombination from higher subbands contributes the emission of the quantum well at high excitation densities. This recombination path appears as a shoulder on the high energy side of the spectrum at high charge carrier densities and exhibits decay in the range of ps. Due to the lower confinement of the excited subband states, a distinct proportion of the probability density function lies outside the quantum well, thus contributingmore » to charge carrier loss. By estimating the current density in our time resolved PL experiments, we show that the onset of this loss mechanism occurs in the droop relevant regime above 20 A/cm{sup 2}.« less

  3. A Bayesian approach to modeling 2D gravity data using polygon states

    NASA Astrophysics Data System (ADS)

    Titus, W. J.; Titus, S.; Davis, J. R.

    2015-12-01

    We present a Bayesian Markov chain Monte Carlo (MCMC) method for the 2D gravity inversion of a localized subsurface object with constant density contrast. Our models have four parameters: the density contrast, the number of vertices in a polygonal approximation of the object, an upper bound on the ratio of the perimeter squared to the area, and the vertices of a polygon container that bounds the object. Reasonable parameter values can be estimated prior to inversion using a forward model and geologic information. In addition, we assume that the field data have a common random uncertainty that lies between two bounds but that it has no systematic uncertainty. Finally, we assume that there is no uncertainty in the spatial locations of the measurement stations. For any set of model parameters, we use MCMC methods to generate an approximate probability distribution of polygons for the object. We then compute various probability distributions for the object, including the variance between the observed and predicted fields (an important quantity in the MCMC method), the area, the center of area, and the occupancy probability (the probability that a spatial point lies within the object). In addition, we compare probabilities of different models using parallel tempering, a technique which also mitigates trapping in local optima that can occur in certain model geometries. We apply our method to several synthetic data sets generated from objects of varying shape and location. We also analyze a natural data set collected across the Rio Grande Gorge Bridge in New Mexico, where the object (i.e. the air below the bridge) is known and the canyon is approximately 2D. Although there are many ways to view results, the occupancy probability proves quite powerful. We also find that the choice of the container is important. In particular, large containers should be avoided, because the more closely a container confines the object, the better the predictions match properties of object.

  4. Ab initio calculation of transport properties between PbSe quantum dots facets with iodide ligands

    NASA Astrophysics Data System (ADS)

    Wang, B.; Patterson, R.; Chen, W.; Zhang, Z.; Yang, J.; Huang, S.; Shrestha, S.; Conibeer, G.

    2018-01-01

    The transport properties between Lead Selenide (PbSe) quantum dots decorated with iodide ligands has been studied using density functional theory (DFT). Quantum conductance at each selected energy levels has been calculated along with total density of states and projected density of states. The DFT calculation is carried on using a grid-based planar augmented wave (GPAW) code incorporated with the linear combination of atomic orbital (LCAO) mode and Perdew Burke Ernzerhof (PBE) exchange-correlation functional. Three iodide ligand attached low index facets including (001), (011), (111) are investigated in this work. P-orbital of iodide ligand majorly contributes to density of state (DOS) at near top valence band resulting a significant quantum conductance, whereas DOS of Pb p-orbital shows minor influence. Various values of quantum conductance observed along different planes are possibly reasoned from a combined effect electrical field over topmost surface and total distance between adjacent facets. Ligands attached to (001) and (011) planes possess similar bond length whereas it is significantly shortened in (111) plane, whereas transport between (011) has an overall low value due to newly formed electric field. On the other hand, (111) plane with a net surface dipole perpendicular to surface layers leading to stronger electron coupling suggests an apparent increase of transport probability. Apart from previously mentioned, the maximum transport energy levels located several eVs (1 2 eVs) from the edge of valence band top.

  5. A quantitative risk assessment model for Vibrio parahaemolyticus in raw oysters in Sao Paulo State, Brazil.

    PubMed

    Sobrinho, Paulo de S Costa; Destro, Maria T; Franco, Bernadette D G M; Landgraf, Mariza

    2014-06-16

    A risk assessment of Vibrio parahaemolyticus associated with raw oysters produced and consumed in São Paulo State was developed. The model was built according to the United States Food and Drug Administration framework for risk assessment. The outcome of the exposure assessment estimated the prevalence and density of pathogenic V. parahaemolyticus in raw oysters from harvest to consumption. The result of the exposure step was combined with a Beta-Poisson dose-response model to estimate the probability of illness. The model predicted that the average risks per serving of raw oysters were 4.7×10(-4), 6.0×10(-4), 4.7×10(-4) and 3.1×10(-4) for spring, summer, fall and winter, respectively. Sensitivity analyses indicated that the most influential variables on the risk of illness were the total density of V. parahaemolyticus at harvest, transport temperature, relative prevalence of pathogenic strains and storage time at retail. Only storage time under refrigeration at retail showed negative correlation with the risk of illness. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Probability density and exceedance rate functions of locally Gaussian turbulence

    NASA Technical Reports Server (NTRS)

    Mark, W. D.

    1989-01-01

    A locally Gaussian model of turbulence velocities is postulated which consists of the superposition of a slowly varying strictly Gaussian component representing slow temporal changes in the mean wind speed and a more rapidly varying locally Gaussian turbulence component possessing a temporally fluctuating local variance. Series expansions of the probability density and exceedance rate functions of the turbulence velocity model, based on Taylor's series, are derived. Comparisons of the resulting two-term approximations with measured probability density and exceedance rate functions of atmospheric turbulence velocity records show encouraging agreement, thereby confirming the consistency of the measured records with the locally Gaussian model. Explicit formulas are derived for computing all required expansion coefficients from measured turbulence records.

  7. Number-phase minimum-uncertainty state with reduced number uncertainty in a Kerr nonlinear interferometer

    NASA Astrophysics Data System (ADS)

    Kitagawa, M.; Yamamoto, Y.

    1987-11-01

    An alternative scheme for generating amplitude-squeezed states of photons based on unitary evolution which can properly be described by quantum mechanics is presented. This scheme is a nonlinear Mach-Zehnder interferometer containing an optical Kerr medium. The quasi-probability density (QPD) and photon-number distribution of the output field are calculated, and it is demonstrated that the reduced photon-number uncertainty and enhanced phase uncertainty maintain the minimum-uncertainty product. A self-phase-modulation of the single-mode quantized field in the Kerr medium is described based on localized operators. The spatial evolution of the state is demonstrated by QPD in the Schroedinger picture. It is shown that photon-number variance can be reduced to a level far below the limit for an ordinary squeezed state, and that the state prepared using this scheme remains a number-phase minimum-uncertainty state until the maximum reduction of number fluctuations is surpassed.

  8. Electron beam emission from a diamond-amplifier cathode.

    PubMed

    Chang, Xiangyun; Wu, Qiong; Ben-Zvi, Ilan; Burrill, Andrew; Kewisch, Jorg; Rao, Triveni; Smedley, John; Wang, Erdong; Muller, Erik M; Busby, Richard; Dimitrov, Dimitre

    2010-10-15

    The diamond amplifier (DA) is a new device for generating high-current, high-brightness electron beams. Our transmission-mode tests show that, with single-crystal, high-purity diamonds, the peak current density is greater than 400  mA/mm², while its average density can be more than 100  mA/mm². The gain of the primary electrons easily exceeds 200, and is independent of their density within the practical range of DA applications. We observed the electron emission. The maximum emission gain measured was 40, and the bunch charge was 50  pC/0.5  mm². There was a 35% probability of the emission of an electron from the hydrogenated surface in our tests. We identified a mechanism of slow charging of the diamond due to thermal ionization of surface states that cancels the applied field within it. We also demonstrated that a hydrogenated diamond is extremely robust.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlagmüller, Michael; Liebisch, Tara Cubel; Engel, Felix

    Within a dense environment (ρ ≈ 10 14 atoms/cm 3) at ultracold temperatures (T < 1 μK), a single atom excited to a Rydberg state acts as a reaction center for surrounding neutral atoms. At these temperatures, almost all neutral atoms within the Rydberg orbit are bound to the Rydberg core and interact with the Rydberg atom. We have studied the reaction rate and products for nS 87Rb Rydberg states, and we mainly observe a state change of the Rydberg electron to a high orbital angular momentum l, with the released energy being converted into kinetic energy of the Rydberg atom. Unexpectedly, the measurements show a threshold behavior at n ≈ 100 for the inelastic collision time leading to increased lifetimes of the Rydberg state independent of the densities investigated. Even at very high densities (ρ ≈ 4.8 x 10 14 cm -3), the lifetime of a Rydberg atom exceeds 10 μs at n > 140 compared to 1 μs at n = 90. In addition, a second observed reaction mechanism, namely, Rbmore » $$+\\atop{2}$$ molecule formation, was studied. Both reaction products are equally probable for n = 40, but the fraction of Rb + 2 created drops to below 10% for n ≥ 90.« less

  10. Fragile entanglement statistics

    NASA Astrophysics Data System (ADS)

    Brody, Dorje C.; Hughston, Lane P.; Meier, David M.

    2015-10-01

    If X and Y are independent, Y and Z are independent, and so are X and Z, one might be tempted to conclude that X, Y, and Z are independent. But it has long been known in classical probability theory that, intuitive as it may seem, this is not true in general. In quantum mechanics one can ask whether analogous statistics can emerge for configurations of particles in certain types of entangled states. The explicit construction of such states, along with the specification of suitable sets of observables that have the purported statistical properties, is not entirely straightforward. We show that an example of such a configuration arises in the case of an N-particle GHZ state, and we are able to identify a family of observables with the property that the associated measurement outcomes are independent for any choice of 2,3,\\ldots ,N-1 of the particles, even though the measurement outcomes for all N particles are not independent. Although such states are highly entangled, the entanglement turns out to be ‘fragile’, i.e. the associated density matrix has the property that if one traces out the freedom associated with even a single particle, the resulting reduced density matrix is separable.

  11. Improving effectiveness of systematic conservation planning with density data.

    PubMed

    Veloz, Samuel; Salas, Leonardo; Altman, Bob; Alexander, John; Jongsomjit, Dennis; Elliott, Nathan; Ballard, Grant

    2015-08-01

    Systematic conservation planning aims to design networks of protected areas that meet conservation goals across large landscapes. The optimal design of these conservation networks is most frequently based on the modeled habitat suitability or probability of occurrence of species, despite evidence that model predictions may not be highly correlated with species density. We hypothesized that conservation networks designed using species density distributions more efficiently conserve populations of all species considered than networks designed using probability of occurrence models. To test this hypothesis, we used the Zonation conservation prioritization algorithm to evaluate conservation network designs based on probability of occurrence versus density models for 26 land bird species in the U.S. Pacific Northwest. We assessed the efficacy of each conservation network based on predicted species densities and predicted species diversity. High-density model Zonation rankings protected more individuals per species when networks protected the highest priority 10-40% of the landscape. Compared with density-based models, the occurrence-based models protected more individuals in the lowest 50% priority areas of the landscape. The 2 approaches conserved species diversity in similar ways: predicted diversity was higher in higher priority locations in both conservation networks. We conclude that both density and probability of occurrence models can be useful for setting conservation priorities but that density-based models are best suited for identifying the highest priority areas. Developing methods to aggregate species count data from unrelated monitoring efforts and making these data widely available through ecoinformatics portals such as the Avian Knowledge Network will enable species count data to be more widely incorporated into systematic conservation planning efforts. © 2015, Society for Conservation Biology.

  12. A Tomographic Method for the Reconstruction of Local Probability Density Functions

    NASA Technical Reports Server (NTRS)

    Sivathanu, Y. R.; Gore, J. P.

    1993-01-01

    A method of obtaining the probability density function (PDF) of local properties from path integrated measurements is described. The approach uses a discrete probability function (DPF) method to infer the PDF of the local extinction coefficient from measurements of the PDFs of the path integrated transmittance. The local PDFs obtained using the method are compared with those obtained from direct intrusive measurements in propylene/air and ethylene/air diffusion flames. The results of this comparison are good.

  13. Continuous-time random-walk model for financial distributions

    NASA Astrophysics Data System (ADS)

    Masoliver, Jaume; Montero, Miquel; Weiss, George H.

    2003-02-01

    We apply the formalism of the continuous-time random walk to the study of financial data. The entire distribution of prices can be obtained once two auxiliary densities are known. These are the probability densities for the pausing time between successive jumps and the corresponding probability density for the magnitude of a jump. We have applied the formalism to data on the U.S. dollar deutsche mark future exchange, finding good agreement between theory and the observed data.

  14. The Independent Effects of Phonotactic Probability and Neighbourhood Density on Lexical Acquisition by Preschool Children

    ERIC Educational Resources Information Center

    Storkel, Holly L.; Lee, Su-Yeon

    2011-01-01

    The goal of this research was to disentangle effects of phonotactic probability, the likelihood of occurrence of a sound sequence, and neighbourhood density, the number of phonologically similar words, in lexical acquisition. Two-word learning experiments were conducted with 4-year-old children. Experiment 1 manipulated phonotactic probability…

  15. Influence of Phonotactic Probability/Neighbourhood Density on Lexical Learning in Late Talkers

    ERIC Educational Resources Information Center

    MacRoy-Higgins, Michelle; Schwartz, Richard G.; Shafer, Valerie L.; Marton, Klara

    2013-01-01

    Background: Toddlers who are late talkers demonstrate delays in phonological and lexical skills. However, the influence of phonological factors on lexical acquisition in toddlers who are late talkers has not been examined directly. Aims: To examine the influence of phonotactic probability/neighbourhood density on word learning in toddlers who were…

  16. On the mixing time in the Wang-Landau algorithm

    NASA Astrophysics Data System (ADS)

    Fadeeva, Marina; Shchur, Lev

    2018-01-01

    We present preliminary results of the investigation of the properties of the Markov random walk in the energy space generated by the Wang-Landau probability. We build transition matrix in the energy space (TMES) using the exact density of states for one-dimensional and two-dimensional Ising models. The spectral gap of TMES is inversely proportional to the mixing time of the Markov chain. We estimate numerically the dependence of the mixing time on the lattice size, and extract the mixing exponent.

  17. An Application of the H-Function to Curve-Fitting and Density Estimation.

    DTIC Science & Technology

    1983-12-01

    equations into a model that is linear in its coefficients. Nonlinear least squares estimation is a relatively new area developed to accomodate models which...to converge on a solution (10:9-10). For the simple linear model and when general assump- tions are made, the Gauss-Markov theorem states that the...distribution. For example, if the analyst wants to model the time between arrivals to a queue for a computer simulation, he infers the true probability

  18. Shannon entropy and Fisher information of the one-dimensional Klein-Gordon oscillator with energy-dependent potential

    NASA Astrophysics Data System (ADS)

    Boumali, Abdelmalek; Labidi, Malika

    2018-02-01

    In this paper, we studied, at first, the influence of the energy-dependent potentials on the one-dimensionless Klein-Gordon oscillator. Then, the Shannon entropy and Fisher information of this system are investigated. The position and momentum information entropies for the low-lying states n = 0, 1, 2 are calculated. Some interesting features of both Fisher and Shannon densities, as well as the probability densities, are demonstrated. Finally, the Stam, Cramer-Rao and Bialynicki-Birula-Mycielski (BBM) inequalities have been checked, and their comparison with the regarding results have been reported. We showed that the BBM inequality is still valid in the form Sx + Sp ≥ 1 +ln π, as well as in ordinary quantum mechanics.

  19. Vibrio vulnificus and Vibrio parahaemolyticus in U.S. retail shell oysters: a national survey from June 1998 to July 1999.

    PubMed

    Cook, David W; Oleary, Paul; Hunsucker, Jeff C; Sloan, Edna M; Bowers, John C; Blodgett, Robert J; Depaola, Angelo

    2002-01-01

    From June 1998 to July 1999, 370 lots of oysters in the shell were sampled at 275 different establishments (71%, restaurants or oyster bars; 27%, retail seafood markets: and 2%, wholesale seafood markets) in coastal and inland markets throughout the United States. The oysters were harvested from the Gulf (49%). Pacific (14%), Mid-Atlantic (18%), and North Atlantic (11%) Coasts of the United States and from Canada (8%). Densities of Vibrio vulnificus and Vibrio parahaemolyticus were determined using a modification of the most probable number (MPN) techniques described in the Food and Drug Administration's Bacteriological Analytical Manual. DNA probes and enzyme immunoassay were used to identify suspect isolates and to determine the presence of the thermostable direct hemolysin gene associated with pathogenicity of V. parahaemolyticus. Densities of both V. vulnifcus and V. parahaemolyticus in market oysters from all harvest regions followed a seasonal distribution, with highest densities in the summer. Highest densities of both organisms were observed in oysters harvested from the Gulf Coast, where densities often exceeded 10,000 MPN/g. The majority (78%) of lots harvested in the North Atlantic, Pacific, and Canadian Coasts had V. vulnificus densities below the detectable level of 0.2 MPN/g; none exceeded 100 MPN/g. V. parahaemolyticus densities were greater than those of V. vulnificus in lots from these same areas, with some lots exceeding 1,000 MPN/g for V. parahaemolyticus. Some lots from the Mid-Atlantic states exceeded 10,000 MPN/g for both V. vulnificus and V. parahaemolyicus. Overall, there was a significant correlation between V. vulificus and V. parahaemolyticus densities (r = 0.72, n = 202, P < 0.0001), but neither density correlated with salinity. Storage time significantly affected the V. vulnificus (10% decrease per day) and V. parahaemolyticus (7% decrease per day) densities in market oysters. The thermostable direct hemolysin gene associated with V parahaemolyticus virulence was detected in 9 of 3,429 (0.3%) V. parahaemolyticus cultures and in 8 of 198 (4.0%) lots of oysters. These data can be used to estimate the exposure of raw oyster consumers to V. vulnificus and V. parahaemolyticus.

  20. Understanding environmental DNA detection probabilities: A case study using a stream-dwelling char Salvelinus fontinalis

    USGS Publications Warehouse

    Wilcox, Taylor M; Mckelvey, Kevin S.; Young, Michael K.; Sepulveda, Adam; Shepard, Bradley B.; Jane, Stephen F; Whiteley, Andrew R.; Lowe, Winsor H.; Schwartz, Michael K.

    2016-01-01

    Environmental DNA sampling (eDNA) has emerged as a powerful tool for detecting aquatic animals. Previous research suggests that eDNA methods are substantially more sensitive than traditional sampling. However, the factors influencing eDNA detection and the resulting sampling costs are still not well understood. Here we use multiple experiments to derive independent estimates of eDNA production rates and downstream persistence from brook trout (Salvelinus fontinalis) in streams. We use these estimates to parameterize models comparing the false negative detection rates of eDNA sampling and traditional backpack electrofishing. We find that using the protocols in this study eDNA had reasonable detection probabilities at extremely low animal densities (e.g., probability of detection 0.18 at densities of one fish per stream kilometer) and very high detection probabilities at population-level densities (e.g., probability of detection > 0.99 at densities of ≥ 3 fish per 100 m). This is substantially more sensitive than traditional electrofishing for determining the presence of brook trout and may translate into important cost savings when animals are rare. Our findings are consistent with a growing body of literature showing that eDNA sampling is a powerful tool for the detection of aquatic species, particularly those that are rare and difficult to sample using traditional methods.

  1. MRI Brain Tumor Segmentation and Necrosis Detection Using Adaptive Sobolev Snakes.

    PubMed

    Nakhmani, Arie; Kikinis, Ron; Tannenbaum, Allen

    2014-03-21

    Brain tumor segmentation in brain MRI volumes is used in neurosurgical planning and illness staging. It is important to explore the tumor shape and necrosis regions at different points of time to evaluate the disease progression. We propose an algorithm for semi-automatic tumor segmentation and necrosis detection. Our algorithm consists of three parts: conversion of MRI volume to a probability space based on the on-line learned model, tumor probability density estimation, and adaptive segmentation in the probability space. We use manually selected acceptance and rejection classes on a single MRI slice to learn the background and foreground statistical models. Then, we propagate this model to all MRI slices to compute the most probable regions of the tumor. Anisotropic 3D diffusion is used to estimate the probability density. Finally, the estimated density is segmented by the Sobolev active contour (snake) algorithm to select smoothed regions of the maximum tumor probability. The segmentation approach is robust to noise and not very sensitive to the manual initialization in the volumes tested. Also, it is appropriate for low contrast imagery. The irregular necrosis regions are detected by using the outliers of the probability distribution inside the segmented region. The necrosis regions of small width are removed due to a high probability of noisy measurements. The MRI volume segmentation results obtained by our algorithm are very similar to expert manual segmentation.

  2. MRI brain tumor segmentation and necrosis detection using adaptive Sobolev snakes

    NASA Astrophysics Data System (ADS)

    Nakhmani, Arie; Kikinis, Ron; Tannenbaum, Allen

    2014-03-01

    Brain tumor segmentation in brain MRI volumes is used in neurosurgical planning and illness staging. It is important to explore the tumor shape and necrosis regions at di erent points of time to evaluate the disease progression. We propose an algorithm for semi-automatic tumor segmentation and necrosis detection. Our algorithm consists of three parts: conversion of MRI volume to a probability space based on the on-line learned model, tumor probability density estimation, and adaptive segmentation in the probability space. We use manually selected acceptance and rejection classes on a single MRI slice to learn the background and foreground statistical models. Then, we propagate this model to all MRI slices to compute the most probable regions of the tumor. Anisotropic 3D di usion is used to estimate the probability density. Finally, the estimated density is segmented by the Sobolev active contour (snake) algorithm to select smoothed regions of the maximum tumor probability. The segmentation approach is robust to noise and not very sensitive to the manual initialization in the volumes tested. Also, it is appropriate for low contrast imagery. The irregular necrosis regions are detected by using the outliers of the probability distribution inside the segmented region. The necrosis regions of small width are removed due to a high probability of noisy measurements. The MRI volume segmentation results obtained by our algorithm are very similar to expert manual segmentation.

  3. Competition between harvester ants and rodents in the cold desert

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landeen, D.S.; Jorgensen, C.D.; Smith, H.D.

    1979-09-30

    Local distribution patterns of three rodent species (Perognathus parvus, Peromyscus maniculatus, Reithrodontomys megalotis) were studied in areas of high and low densities of harvester ants (Pogonomyrmex owyheei) in Raft River Valley, Idaho. Numbers of rodents were greatest in areas of high ant-density during May, but partially reduced in August; whereas, the trend was reversed in areas of low ant-density. Seed abundance was probably not the factor limiting changes in rodent populations, because seed densities of annual plants were always greater in areas of high ant-density. Differences in seasonal population distributions of rodents between areas of high and low ant-densities weremore » probably due to interactions of seed availability, rodent energetics, and predation.« less

  4. A fast and objective multidimensional kernel density estimation method: fastKDE

    DOE PAGES

    O'Brien, Travis A.; Kashinath, Karthik; Cavanaugh, Nicholas R.; ...

    2016-03-07

    Numerous facets of scientific research implicitly or explicitly call for the estimation of probability densities. Histograms and kernel density estimates (KDEs) are two commonly used techniques for estimating such information, with the KDE generally providing a higher fidelity representation of the probability density function (PDF). Both methods require specification of either a bin width or a kernel bandwidth. While techniques exist for choosing the kernel bandwidth optimally and objectively, they are computationally intensive, since they require repeated calculation of the KDE. A solution for objectively and optimally choosing both the kernel shape and width has recently been developed by Bernacchiamore » and Pigolotti (2011). While this solution theoretically applies to multidimensional KDEs, it has not been clear how to practically do so. A method for practically extending the Bernacchia-Pigolotti KDE to multidimensions is introduced. This multidimensional extension is combined with a recently-developed computational improvement to their method that makes it computationally efficient: a 2D KDE on 10 5 samples only takes 1 s on a modern workstation. This fast and objective KDE method, called the fastKDE method, retains the excellent statistical convergence properties that have been demonstrated for univariate samples. The fastKDE method exhibits statistical accuracy that is comparable to state-of-the-science KDE methods publicly available in R, and it produces kernel density estimates several orders of magnitude faster. The fastKDE method does an excellent job of encoding covariance information for bivariate samples. This property allows for direct calculation of conditional PDFs with fastKDE. It is demonstrated how this capability might be leveraged for detecting non-trivial relationships between quantities in physical systems, such as transitional behavior.« less

  5. Effects of scale of movement, detection probability, and true population density on common methods of estimating population density

    DOE PAGES

    Keiter, David A.; Davis, Amy J.; Rhodes, Olin E.; ...

    2017-08-25

    Knowledge of population density is necessary for effective management and conservation of wildlife, yet rarely are estimators compared in their robustness to effects of ecological and observational processes, which can greatly influence accuracy and precision of density estimates. For this study, we simulate biological and observational processes using empirical data to assess effects of animal scale of movement, true population density, and probability of detection on common density estimators. We also apply common data collection and analytical techniques in the field and evaluate their ability to estimate density of a globally widespread species. We find that animal scale of movementmore » had the greatest impact on accuracy of estimators, although all estimators suffered reduced performance when detection probability was low, and we provide recommendations as to when each field and analytical technique is most appropriately employed. The large influence of scale of movement on estimator accuracy emphasizes the importance of effective post-hoc calculation of area sampled or use of methods that implicitly account for spatial variation. In particular, scale of movement impacted estimators substantially, such that area covered and spacing of detectors (e.g. cameras, traps, etc.) must reflect movement characteristics of the focal species to reduce bias in estimates of movement and thus density.« less

  6. Effects of scale of movement, detection probability, and true population density on common methods of estimating population density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, David A.; Davis, Amy J.; Rhodes, Olin E.

    Knowledge of population density is necessary for effective management and conservation of wildlife, yet rarely are estimators compared in their robustness to effects of ecological and observational processes, which can greatly influence accuracy and precision of density estimates. For this study, we simulate biological and observational processes using empirical data to assess effects of animal scale of movement, true population density, and probability of detection on common density estimators. We also apply common data collection and analytical techniques in the field and evaluate their ability to estimate density of a globally widespread species. We find that animal scale of movementmore » had the greatest impact on accuracy of estimators, although all estimators suffered reduced performance when detection probability was low, and we provide recommendations as to when each field and analytical technique is most appropriately employed. The large influence of scale of movement on estimator accuracy emphasizes the importance of effective post-hoc calculation of area sampled or use of methods that implicitly account for spatial variation. In particular, scale of movement impacted estimators substantially, such that area covered and spacing of detectors (e.g. cameras, traps, etc.) must reflect movement characteristics of the focal species to reduce bias in estimates of movement and thus density.« less

  7. Redundancy and reduction: Speakers manage syntactic information density

    PubMed Central

    Florian Jaeger, T.

    2010-01-01

    A principle of efficient language production based on information theoretic considerations is proposed: Uniform Information Density predicts that language production is affected by a preference to distribute information uniformly across the linguistic signal. This prediction is tested against data from syntactic reduction. A single multilevel logit model analysis of naturally distributed data from a corpus of spontaneous speech is used to assess the effect of information density on complementizer that-mentioning, while simultaneously evaluating the predictions of several influential alternative accounts: availability, ambiguity avoidance, and dependency processing accounts. Information density emerges as an important predictor of speakers’ preferences during production. As information is defined in terms of probabilities, it follows that production is probability-sensitive, in that speakers’ preferences are affected by the contextual probability of syntactic structures. The merits of a corpus-based approach to the study of language production are discussed as well. PMID:20434141

  8. Habitat suitability criteria via parametric distributions: estimation, model selection and uncertainty

    USGS Publications Warehouse

    Som, Nicholas A.; Goodman, Damon H.; Perry, Russell W.; Hardy, Thomas B.

    2016-01-01

    Previous methods for constructing univariate habitat suitability criteria (HSC) curves have ranged from professional judgement to kernel-smoothed density functions or combinations thereof. We present a new method of generating HSC curves that applies probability density functions as the mathematical representation of the curves. Compared with previous approaches, benefits of our method include (1) estimation of probability density function parameters directly from raw data, (2) quantitative methods for selecting among several candidate probability density functions, and (3) concise methods for expressing estimation uncertainty in the HSC curves. We demonstrate our method with a thorough example using data collected on the depth of water used by juvenile Chinook salmon (Oncorhynchus tschawytscha) in the Klamath River of northern California and southern Oregon. All R code needed to implement our example is provided in the appendix. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  9. Neighbor-Dependent Ramachandran Probability Distributions of Amino Acids Developed from a Hierarchical Dirichlet Process Model

    PubMed Central

    Mitra, Rajib; Jordan, Michael I.; Dunbrack, Roland L.

    2010-01-01

    Distributions of the backbone dihedral angles of proteins have been studied for over 40 years. While many statistical analyses have been presented, only a handful of probability densities are publicly available for use in structure validation and structure prediction methods. The available distributions differ in a number of important ways, which determine their usefulness for various purposes. These include: 1) input data size and criteria for structure inclusion (resolution, R-factor, etc.); 2) filtering of suspect conformations and outliers using B-factors or other features; 3) secondary structure of input data (e.g., whether helix and sheet are included; whether beta turns are included); 4) the method used for determining probability densities ranging from simple histograms to modern nonparametric density estimation; and 5) whether they include nearest neighbor effects on the distribution of conformations in different regions of the Ramachandran map. In this work, Ramachandran probability distributions are presented for residues in protein loops from a high-resolution data set with filtering based on calculated electron densities. Distributions for all 20 amino acids (with cis and trans proline treated separately) have been determined, as well as 420 left-neighbor and 420 right-neighbor dependent distributions. The neighbor-independent and neighbor-dependent probability densities have been accurately estimated using Bayesian nonparametric statistical analysis based on the Dirichlet process. In particular, we used hierarchical Dirichlet process priors, which allow sharing of information between densities for a particular residue type and different neighbor residue types. The resulting distributions are tested in a loop modeling benchmark with the program Rosetta, and are shown to improve protein loop conformation prediction significantly. The distributions are available at http://dunbrack.fccc.edu/hdp. PMID:20442867

  10. Pressure-induced electronic topological transitions in the charge-density-wave material In 4 Se 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuhang; Song, Liyan; Shao, Xuecheng

    2017-08-01

    High-pressure in situ angle dispersive X-ray diffraction (ADXRD) measurements were performed on the charge-density-wave (CDW) material In4Se3 up to 48.8 GPa. Pressure-induced structural changes were observed at 7.0 and 34.2 GPa, respectively. Using the CALYPSO methodology, the first high-pressure phase was solved as an exotic Pca21 structure. The compressional behaviors of the initial Pnnm and the Pca21 phases were all determined. Combined with first-principle calculations, we find that, unexpectedly, the Pnnm phase probably experiences twice electronic topological transitions (ETTs), from the initial possible CDW state to a semimetallic state at about 2.3 GPa and then back to a possible CDWmore » state at around 3.5 GPa, which was uncovered for the first time in CDW systems. In the both possible CDW states, pressure provokes a decrease of band-gap. The observation of a bulk metallic state was ascribed to structural transition to the Pca21 phase. Besides, based on electronic band structure calculations, the thermoelectric property of the Pnnm phase under compression was discussed. Our results show that pressure play a dramatic role in tuning In4Se3's structure and transport properties.« less

  11. The structure and statistics of interstellar turbulence

    NASA Astrophysics Data System (ADS)

    Kritsuk, A. G.; Ustyugov, S. D.; Norman, M. L.

    2017-06-01

    We explore the structure and statistics of multiphase, magnetized ISM turbulence in the local Milky Way by means of driven periodic box numerical MHD simulations. Using the higher order-accurate piecewise-parabolic method on a local stencil (PPML), we carry out a small parameter survey varying the mean magnetic field strength and density while fixing the rms velocity to observed values. We quantify numerous characteristics of the transient and steady-state turbulence, including its thermodynamics and phase structure, kinetic and magnetic energy power spectra, structure functions, and distribution functions of density, column density, pressure, and magnetic field strength. The simulations reproduce many observables of the local ISM, including molecular clouds, such as the ratio of turbulent to mean magnetic field at 100 pc scale, the mass and volume fractions of thermally stable Hi, the lognormal distribution of column densities, the mass-weighted distribution of thermal pressure, and the linewidth-size relationship for molecular clouds. Our models predict the shape of magnetic field probability density functions (PDFs), which are strongly non-Gaussian, and the relative alignment of magnetic field and density structures. Finally, our models show how the observed low rates of star formation per free-fall time are controlled by the multiphase thermodynamics and large-scale turbulence.

  12. Accurate study on the quantum dynamics of the He + HeH(+) (X1Σ+) reaction on a new ab initio potential energy surface for the lowest 1(1)A' electronic singlet state.

    PubMed

    Xu, Wenwu; Zhang, Peiyu

    2013-02-21

    A time-dependent quantum wave packet method is used to investigate the dynamics of the He + HeH(+)(X(1)Σ(+)) reaction based on a new potential energy surface [Liang et al., J. Chem. Phys.2012, 136, 094307]. The coupled channel (CC) and centrifugal-sudden (CS) reaction probabilities as well as the total integral cross sections are calculated. A comparison of the results with and without Coriolis coupling revealed that the number of K states N(K) (K is the projection of the total angular momentum J on the body-fixed z axis) significantly influences the reaction threshold. The effective potential energy profiles of each N(K) for the He + HeH(+) reaction in a collinear geometry indicate that the barrier height gradually decreased with increased N(K). The calculated time evolution of CC and CS probability density distribution over the collision energy of 0.27-0.36 eV at total angular momentum J = 50 clearly suggests a lower reaction threshold of CC probabilities. The CC cross sections are larger than the CS results within the entire energy range, demonstrating that the Coriolis coupling effect can effectively promote the He + HeH(+) reaction.

  13. OBSERVATIONAL PROPERTIES OF ROTATIONALLY EXCITED MOLECULAR HYDROGEN IN TRANSLUCENT LINES OF SIGHT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Adam G.; Sonneborn, George; Snow, Theodore P.

    2010-03-10

    The Far Ultraviolet Spectroscopic Explorer (FUSE) has allowed precise determinations of the column densities of molecular hydrogen (H{sub 2}) in Galactic lines of sight with a wide range of pathlengths and extinction properties. However, survey studies of lines of sight with greater extinction have been mostly restricted to the low-J states (lower total angular momentum) in which most molecular hydrogen is observed. This paper presents a survey of column densities for the molecular hydrogen in states of greater rotational excitation (J >= 2) in Galactic lines of sight with log N(H{sub 2}) {approx}> 20. This study is comprehensive through themore » highest excited state detectable in each line of sight. J = 5 is observed in every line of sight, and we detect J = 7 in four lines of sight, J = 8 in one line of sight, and vibrationally excited H{sub 2} in two lines of sight. We compared the apparent b-values and velocity offsets of the higher-J states relative to the dominant low-J states and we found no evidence of any trends that might provide insight into the formation of higher-J H{sub 2}, although these results are the most affected by the limits of the FUSE resolution. We also derive excitation temperatures based on the column densities of the different states. We confirm that at least two distinct temperatures are necessary to adequately describe these lines of sight, and that more temperatures are probably necessary. Total H{sub 2} column density is known to be correlated with other molecules; we explore if correlations vary as a function of J for several molecules, most importantly CH and CH{sup +}. Finally, we briefly discuss interpretations of selected lines of sight by comparing them to models computed using the Meudon PDR code.« less

  14. Estimating maximum instantaneous distortion from inlet total pressure rms and PSD measurements. [Root Mean Square and Power Spectral Density methods

    NASA Technical Reports Server (NTRS)

    Melick, H. C., Jr.; Ybarra, A. H.; Bencze, D. P.

    1975-01-01

    An inexpensive method is developed to determine the extreme values of instantaneous inlet distortion. This method also provides insight into the basic mechanics of unsteady inlet flow and the associated engine reaction. The analysis is based on fundamental fluid dynamics and statistical methods to provide an understanding of the turbulent inlet flow and quantitatively relate the rms level and power spectral density (PSD) function of the measured time variant total pressure fluctuations to the strength and size of the low pressure regions. The most probable extreme value of the instantaneous distortion is then synthesized from this information in conjunction with the steady state distortion. Results of the analysis show the extreme values to be dependent upon the steady state distortion, the measured turbulence rms level and PSD function, the time on point, and the engine response characteristics. Analytical projections of instantaneous distortion are presented and compared with data obtained by a conventional, highly time correlated, 40 probe instantaneous pressure measurement system.

  15. Simulation Of Wave Function And Probability Density Of Modified Poschl Teller Potential Derived Using Supersymmetric Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Angraini, Lily Maysari; Suparmi, Variani, Viska Inda

    2010-12-01

    SUSY quantum mechanics can be applied to solve Schrodinger equation for high dimensional system that can be reduced into one dimensional system and represented in lowering and raising operators. Lowering and raising operators can be obtained using relationship between original Hamiltonian equation and the (super) potential equation. In this paper SUSY quantum mechanics is used as a method to obtain the wave function and the energy level of the Modified Poschl Teller potential. The graph of wave function equation and probability density is simulated by using Delphi 7.0 programming language. Finally, the expectation value of quantum mechanics operator could be calculated analytically using integral form or probability density graph resulted by the programming.

  16. Concepts and Bounded Rationality: An Application of Niestegge's Approach to Conditional Quantum Probabilities

    NASA Astrophysics Data System (ADS)

    Blutner, Reinhard

    2009-03-01

    Recently, Gerd Niestegge developed a new approach to quantum mechanics via conditional probabilities developing the well-known proposal to consider the Lüders-von Neumann measurement as a non-classical extension of probability conditionalization. I will apply his powerful and rigorous approach to the treatment of concepts using a geometrical model of meaning. In this model, instances are treated as vectors of a Hilbert space H. In the present approach there are at least two possibilities to form categories. The first possibility sees categories as a mixture of its instances (described by a density matrix). In the simplest case we get the classical probability theory including the Bayesian formula. The second possibility sees categories formed by a distinctive prototype which is the superposition of the (weighted) instances. The construction of prototypes can be seen as transferring a mixed quantum state into a pure quantum state freezing the probabilistic characteristics of the superposed instances into the structure of the formed prototype. Closely related to the idea of forming concepts by prototypes is the existence of interference effects. Such inference effects are typically found in macroscopic quantum systems and I will discuss them in connection with several puzzles of bounded rationality. The present approach nicely generalizes earlier proposals made by authors such as Diederik Aerts, Andrei Khrennikov, Ricardo Franco, and Jerome Busemeyer. Concluding, I will suggest that an active dialogue between cognitive approaches to logic and semantics and the modern approach of quantum information science is mandatory.

  17. Environmental correlates of temporary emigration for female Weddell seals and consequences for recruitment

    USGS Publications Warehouse

    Stauffer, Glenn E.; Rotella, Jay J.; Garrott, Robert A.; Kendall, William L.

    2014-01-01

    In colonial-breeding species, prebreeders often emigrate temporarily from natal reproductive colonies then subsequently return for one or more years before producing young. Variation in attendance–nonattendance patterns can have implications for subsequent recruitment. We used open robust-design multistate models and 28 years of encounter data for prebreeding female Weddell seals (Leptonychotes weddellii [Lesson]) to evaluate hypotheses about (1) the relationships of temporary emigration (TE) probabilities to environmental and population size covariates and (2) motivations for attendance and consequences of nonattendance for subsequent probability of recruitment to the breeding population. TE probabilities were density dependent (βˆBPOP = 0.66,  = 0.17; estimated effects [β] and standard errors of population size in the previous year) and increased when the fast-ice edge was distant from the breeding colonies (βˆDIST = 0.75,  = 0.04; estimated effects and standard errors of distance to the sea-ice edge in the current year on TE probability in the current year) and were strongly age and state dependent. These results suggest that trade-offs between potential benefits and costs of colony attendance vary annually and might influence motivation to attend colonies. Recruitment probabilities were greatest for seals that consistently attended colonies in two or more years (e.g.,  = 0.56, SD = 0.17) and lowest for seals that never or inconsistently attended prior to recruitment (e.g.,  = 0.32, SD = 0.15), where denotes the mean recruitment probability (over all years) for 10-year-old seals for the specified prebreeder state. In colonial-breeding seabirds, repeated colony attendance increases subsequent probability of recruitment to the adult breeding population; our results suggest similar implications for a marine mammal and are consistent with the hypothesis that prebreeders were motivated to attend reproductive colonies to gain reproductive skills or perhaps to optimally synchronize estrus through close association with mature breeding females.

  18. Surface states and annihilation characteristics of positrons trapped at the oxidized Cu(100) surface

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Weiss, A. H.

    2013-06-01

    In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. Oxidation of the Cu(100) surface has been studied by performing an ab-initio investigation of the stability and electronic structure of the Cu(100) missing row reconstructed surface at various on-surface and subsurface oxygen coverages ranging from 0.5 to 1.5 monolayers using density functional theory (DFT). All studied structures have been found to be energetically more favorable as compared to structures formed by purely on-surface oxygen adsorption. The observed decrease in the positron work function when oxygen atoms occupy on-surface and subsurface sites has been attributed to a significant charge redistribution within the first two layers, buckling effects within each layer and an interlayer expansion. The computed positron binding energy, positron surface state wave function, and annihilation probabilities of the surface trapped positrons with relevant core electrons demonstrate their sensitivity to oxygen coverage, atomic structure of the topmost layers of surfaces, and charge transfer effects. Theoretical results are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES). The results presented provide an explanation for the changes observed in the probability of annihilation of surface trapped positrons with Cu 3p core-level electrons as a function of annealing temperature.

  19. Generalized Wishart Mixtures for Unsupervised Classification of PolSAR Data

    NASA Astrophysics Data System (ADS)

    Li, Lan; Chen, Erxue; Li, Zengyuan

    2013-01-01

    This paper presents an unsupervised clustering algorithm based upon the expectation maximization (EM) algorithm for finite mixture modelling, using the complex wishart probability density function (PDF) for the probabilities. The mixture model enables to consider heterogeneous thematic classes which could not be better fitted by the unimodal wishart distribution. In order to make it fast and robust to calculate, we use the recently proposed generalized gamma distribution (GΓD) for the single polarization intensity data to make the initial partition. Then we use the wishart probability density function for the corresponding sample covariance matrix to calculate the posterior class probabilities for each pixel. The posterior class probabilities are used for the prior probability estimates of each class and weights for all class parameter updates. The proposed method is evaluated and compared with the wishart H-Alpha-A classification. Preliminary results show that the proposed method has better performance.

  20. A probable probability distribution of a series nonequilibrium states in a simple system out of equilibrium

    NASA Astrophysics Data System (ADS)

    Gao, Haixia; Li, Ting; Xiao, Changming

    2016-05-01

    When a simple system is in its nonequilibrium state, it will shift to its equilibrium state. Obviously, in this process, there are a series of nonequilibrium states. With the assistance of Bayesian statistics and hyperensemble, a probable probability distribution of these nonequilibrium states can be determined by maximizing the hyperensemble entropy. It is known that the largest probability is the equilibrium state, and the far a nonequilibrium state is away from the equilibrium one, the smaller the probability will be, and the same conclusion can also be obtained in the multi-state space. Furthermore, if the probability stands for the relative time the corresponding nonequilibrium state can stay, then the velocity of a nonequilibrium state returning back to its equilibrium can also be determined through the reciprocal of the derivative of this probability. It tells us that the far away the state from the equilibrium is, the faster the returning velocity will be; if the system is near to its equilibrium state, the velocity will tend to be smaller and smaller, and finally tends to 0 when it gets the equilibrium state.

  1. A Concise Introduction to Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Swanson, Mark S.

    2018-02-01

    Assuming a background in basic classical physics, multivariable calculus, and differential equations, A Concise Introduction to Quantum Mechanics provides a self-contained presentation of the mathematics and physics of quantum mechanics. The relevant aspects of classical mechanics and electrodynamics are reviewed, and the basic concepts of wave-particle duality are developed as a logical outgrowth of experiments involving blackbody radiation, the photoelectric effect, and electron diffraction. The Copenhagen interpretation of the wave function and its relation to the particle probability density is presented in conjunction with Fourier analysis and its generalization to function spaces. These concepts are combined to analyze the system consisting of a particle confined to a box, developing the probabilistic interpretation of observations and their associated expectation values. The Schrödinger equation is then derived by using these results and demanding both Galilean invariance of the probability density and Newtonian energy-momentum relations. The general properties of the Schrödinger equation and its solutions are analyzed, and the theory of observables is developed along with the associated Heisenberg uncertainty principle. Basic applications of wave mechanics are made to free wave packet spreading, barrier penetration, the simple harmonic oscillator, the Hydrogen atom, and an electric charge in a uniform magnetic field. In addition, Dirac notation, elements of Hilbert space theory, operator techniques, and matrix algebra are presented and used to analyze coherent states, the linear potential, two state oscillations, and electron diffraction. Applications are made to photon and electron spin and the addition of angular momentum, and direct product multiparticle states are used to formulate both the Pauli exclusion principle and quantum decoherence. The book concludes with an introduction to the rotation group and the general properties of angular momentum.

  2. Weak limit of the three-state quantum walk on the line

    NASA Astrophysics Data System (ADS)

    Falkner, Stefan; Boettcher, Stefan

    2014-07-01

    We revisit the one-dimensional discrete time quantum walk with three states and the Grover coin, the simplest model that exhibits localization in a quantum walk. We derive analytic expressions for the localization and a long-time approximation for the entire probability density function (PDF). We find the possibility for asymmetric localization to the extreme that it vanishes completely on one site of the initial conditions. We also connect the time-averaged approximation of the PDF found by Inui et al. [Phys. Rev. E 72, 056112 (2005), 10.1103/PhysRevE.72.056112] to a spatial average of the walk. We show that this smoothed approximation predicts moments of the real PDF accurately.

  3. Electronic and transport properties of a molecular junction with asymmetric contacts.

    PubMed

    Tsai, M-H; Lu, T-H

    2010-02-10

    Asymmetric molecular junctions have been shown experimentally to exhibit a dual-conductance transport property with a pulse-like current-voltage characteristic, by Reed and co-workers. Using a recently developed first-principles integrated piecewise thermal equilibrium current calculation method and a gold-benzene-1-olate-4-thiolate-gold model molecular junction, this unusual transport property has been reproduced. Analysis of the electrostatics and the electronic structure reveals that the high-current state results from subtle bias induced charge transfer at the electrode-molecule contacts that raises molecular orbital energies and enhances the current-contributing molecular density of states and the probabilities of resonance tunneling of conduction electrons from one electrode to another.

  4. Multiple mobility edges in a 1D Aubry chain with Hubbard interaction in presence of electric field: Controlled electron transport

    NASA Astrophysics Data System (ADS)

    Saha, Srilekha; Maiti, Santanu K.; Karmakar, S. N.

    2016-09-01

    Electronic behavior of a 1D Aubry chain with Hubbard interaction is critically analyzed in presence of electric field. Multiple energy bands are generated as a result of Hubbard correlation and Aubry potential, and, within these bands localized states are developed under the application of electric field. Within a tight-binding framework we compute electronic transmission probability and average density of states using Green's function approach where the interaction parameter is treated under Hartree-Fock mean field scheme. From our analysis we find that selective transmission can be obtained by tuning injecting electron energy, and thus, the present model can be utilized as a controlled switching device.

  5. The maximum entropy method of moments and Bayesian probability theory

    NASA Astrophysics Data System (ADS)

    Bretthorst, G. Larry

    2013-08-01

    The problem of density estimation occurs in many disciplines. For example, in MRI it is often necessary to classify the types of tissues in an image. To perform this classification one must first identify the characteristics of the tissues to be classified. These characteristics might be the intensity of a T1 weighted image and in MRI many other types of characteristic weightings (classifiers) may be generated. In a given tissue type there is no single intensity that characterizes the tissue, rather there is a distribution of intensities. Often this distributions can be characterized by a Gaussian, but just as often it is much more complicated. Either way, estimating the distribution of intensities is an inference problem. In the case of a Gaussian distribution, one must estimate the mean and standard deviation. However, in the Non-Gaussian case the shape of the density function itself must be inferred. Three common techniques for estimating density functions are binned histograms [1, 2], kernel density estimation [3, 4], and the maximum entropy method of moments [5, 6]. In the introduction, the maximum entropy method of moments will be reviewed. Some of its problems and conditions under which it fails will be discussed. Then in later sections, the functional form of the maximum entropy method of moments probability distribution will be incorporated into Bayesian probability theory. It will be shown that Bayesian probability theory solves all of the problems with the maximum entropy method of moments. One gets posterior probabilities for the Lagrange multipliers, and, finally, one can put error bars on the resulting estimated density function.

  6. Car accidents induced by a bottleneck

    NASA Astrophysics Data System (ADS)

    Marzoug, Rachid; Echab, Hicham; Ez-Zahraouy, Hamid

    2017-12-01

    Based on the Nagel-Schreckenberg model (NS) we study the probability of car accidents to occur (Pac) at the entrance of the merging part of two roads (i.e. junction). The simulation results show that the existence of non-cooperative drivers plays a chief role, where it increases the risk of collisions in the intermediate and high densities. Moreover, the impact of speed limit in the bottleneck (Vb) on the probability Pac is also studied. This impact depends strongly on the density, where, the increasing of Vb enhances Pac in the low densities. Meanwhile, it increases the road safety in the high densities. The phase diagram of the system is also constructed.

  7. Modeling the Effect of Density-Dependent Chemical Interference Upon Seed Germination

    PubMed Central

    Sinkkonen, Aki

    2005-01-01

    A mathematical model is presented to estimate the effects of phytochemicals on seed germination. According to the model, phytochemicals tend to prevent germination at low seed densities. The model predicts that at high seed densities they may increase the probability of seed germination and the number of germinating seeds. Hence, the effects are reminiscent of the density-dependent effects of allelochemicals on plant growth, but the involved variables are germination probability and seedling number. The results imply that it should be possible to bypass inhibitory effects of allelopathy in certain agricultural practices and to increase the efficiency of nature conservation in several plant communities. PMID:19330163

  8. Modeling the Effect of Density-Dependent Chemical Interference upon Seed Germination

    PubMed Central

    Sinkkonen, Aki

    2006-01-01

    A mathematical model is presented to estimate the effects of phytochemicals on seed germination. According to the model, phytochemicals tend to prevent germination at low seed densities. The model predicts that at high seed densities they may increase the probability of seed germination and the number of germinating seeds. Hence, the effects are reminiscent of the density-dependent effects of allelochemicals on plant growth, but the involved variables are germination probability and seedling number. The results imply that it should be possible to bypass inhibitory effects of allelopathy in certain agricultural practices and to increase the efficiency of nature conservation in several plant communities. PMID:18648596

  9. Spatial capture-recapture models for jointly estimating population density and landscape connectivity

    USGS Publications Warehouse

    Royle, J. Andrew; Chandler, Richard B.; Gazenski, Kimberly D.; Graves, Tabitha A.

    2013-01-01

    Population size and landscape connectivity are key determinants of population viability, yet no methods exist for simultaneously estimating density and connectivity parameters. Recently developed spatial capture–recapture (SCR) models provide a framework for estimating density of animal populations but thus far have not been used to study connectivity. Rather, all applications of SCR models have used encounter probability models based on the Euclidean distance between traps and animal activity centers, which implies that home ranges are stationary, symmetric, and unaffected by landscape structure. In this paper we devise encounter probability models based on “ecological distance,” i.e., the least-cost path between traps and activity centers, which is a function of both Euclidean distance and animal movement behavior in resistant landscapes. We integrate least-cost path models into a likelihood-based estimation scheme for spatial capture–recapture models in order to estimate population density and parameters of the least-cost encounter probability model. Therefore, it is possible to make explicit inferences about animal density, distribution, and landscape connectivity as it relates to animal movement from standard capture–recapture data. Furthermore, a simulation study demonstrated that ignoring landscape connectivity can result in negatively biased density estimators under the naive SCR model.

  10. Spatial capture--recapture models for jointly estimating population density and landscape connectivity.

    PubMed

    Royle, J Andrew; Chandler, Richard B; Gazenski, Kimberly D; Graves, Tabitha A

    2013-02-01

    Population size and landscape connectivity are key determinants of population viability, yet no methods exist for simultaneously estimating density and connectivity parameters. Recently developed spatial capture--recapture (SCR) models provide a framework for estimating density of animal populations but thus far have not been used to study connectivity. Rather, all applications of SCR models have used encounter probability models based on the Euclidean distance between traps and animal activity centers, which implies that home ranges are stationary, symmetric, and unaffected by landscape structure. In this paper we devise encounter probability models based on "ecological distance," i.e., the least-cost path between traps and activity centers, which is a function of both Euclidean distance and animal movement behavior in resistant landscapes. We integrate least-cost path models into a likelihood-based estimation scheme for spatial capture-recapture models in order to estimate population density and parameters of the least-cost encounter probability model. Therefore, it is possible to make explicit inferences about animal density, distribution, and landscape connectivity as it relates to animal movement from standard capture-recapture data. Furthermore, a simulation study demonstrated that ignoring landscape connectivity can result in negatively biased density estimators under the naive SCR model.

  11. State-space modeling to support management of brucellosis in the Yellowstone bison population

    USGS Publications Warehouse

    Hobbs, N. Thompson; Geremia, Chris; Treanor, John; Wallen, Rick; White, P.J.; Hooten, Mevin B.; Rhyan, Jack C.

    2015-01-01

    The bison (Bison bison) of the Yellowstone ecosystem, USA, exemplify the difficulty of conserving large mammals that migrate across the boundaries of conservation areas. Bison are infected with brucellosis (Brucella abortus) and their seasonal movements can expose livestock to infection. Yellowstone National Park has embarked on a program of adaptive management of bison, which requires a model that assimilates data to support management decisions. We constructed a Bayesian state-space model to reveal the influence of brucellosis on the Yellowstone bison population. A frequency-dependent model of brucellosis transmission was superior to a density-dependent model in predicting out-of-sample observations of horizontal transmission probability. A mixture model including both transmission mechanisms converged on frequency dependence. Conditional on the frequency-dependent model, brucellosis median transmission rate was 1.87 yr−1. The median of the posterior distribution of the basic reproductive ratio (R0) was 1.75. Seroprevalence of adult females varied around 60% over two decades, but only 9.6 of 100 adult females were infectious. Brucellosis depressed recruitment; estimated population growth rate λ averaged 1.07 for an infected population and 1.11 for a healthy population. We used five-year forecasting to evaluate the ability of different actions to meet management goals relative to no action. Annually removing 200 seropositive female bison increased by 30-fold the probability of reducing seroprevalence below 40% and increased by a factor of 120 the probability of achieving a 50% reduction in transmission probability relative to no action. Annually vaccinating 200 seronegative animals increased the likelihood of a 50% reduction in transmission probability by fivefold over no action. However, including uncertainty in the ability to implement management by representing stochastic variation in the number of accessible bison dramatically reduced the probability of achieving goals using interventions relative to no action. Because the width of the posterior predictive distributions of future population states expands rapidly with increases in the forecast horizon, managers must accept high levels of uncertainty. These findings emphasize the necessity of iterative, adaptive management with relatively short-term commitment to action and frequent reevaluation in response to new data and model forecasts. We believe our approach has broad applications.

  12. Statistics of cosmic density profiles from perturbation theory

    NASA Astrophysics Data System (ADS)

    Bernardeau, Francis; Pichon, Christophe; Codis, Sandrine

    2014-11-01

    The joint probability distribution function (PDF) of the density within multiple concentric spherical cells is considered. It is shown how its cumulant generating function can be obtained at tree order in perturbation theory as the Legendre transform of a function directly built in terms of the initial moments. In the context of the upcoming generation of large-scale structure surveys, it is conjectured that this result correctly models such a function for finite values of the variance. Detailed consequences of this assumption are explored. In particular the corresponding one-cell density probability distribution at finite variance is computed for realistic power spectra, taking into account its scale variation. It is found to be in agreement with Λ -cold dark matter simulations at the few percent level for a wide range of density values and parameters. Related explicit analytic expansions at the low and high density tails are given. The conditional (at fixed density) and marginal probability of the slope—the density difference between adjacent cells—and its fluctuations is also computed from the two-cell joint PDF; it also compares very well to simulations. It is emphasized that this could prove useful when studying the statistical properties of voids as it can serve as a statistical indicator to test gravity models and/or probe key cosmological parameters.

  13. Word Recognition and Nonword Repetition in Children with Language Disorders: The Effects of Neighborhood Density, Lexical Frequency, and Phonotactic Probability

    ERIC Educational Resources Information Center

    Rispens, Judith; Baker, Anne; Duinmeijer, Iris

    2015-01-01

    Purpose: The effects of neighborhood density (ND) and lexical frequency on word recognition and the effects of phonotactic probability (PP) on nonword repetition (NWR) were examined to gain insight into processing at the lexical and sublexical levels in typically developing (TD) children and children with developmental language problems. Method:…

  14. Many-body calculations of low energy eigenstates in magnetic and periodic systems with self healing diffusion Monte Carlo: steps beyond the fixed-phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reboredo, Fernando A.

    The self-healing diffusion Monte Carlo algorithm (SHDMC) [Reboredo, Hood and Kent, Phys. Rev. B {\\bf 79}, 195117 (2009), Reboredo, {\\it ibid.} {\\bf 80}, 125110 (2009)] is extended to study the ground and excited states of magnetic and periodic systems. A recursive optimization algorithm is derived from the time evolution of the mixed probability density. The mixed probability density is given by an ensemble of electronic configurations (walkers) with complex weight. This complex weigh allows the amplitude of the fix-node wave function to move away from the trial wave function phase. This novel approach is both a generalization of SHDMC andmore » the fixed-phase approximation [Ortiz, Ceperley and Martin Phys Rev. Lett. {\\bf 71}, 2777 (1993)]. When used recursively it improves simultaneously the node and phase. The algorithm is demonstrated to converge to the nearly exact solutions of model systems with periodic boundary conditions or applied magnetic fields. The method is also applied to obtain low energy excitations with magnetic field or periodic boundary conditions. The potential applications of this new method to study periodic, magnetic, and complex Hamiltonians are discussed.« less

  15. Rare reaction channels in real-time time-dependent density functional theory: the test case of electron attachment

    NASA Astrophysics Data System (ADS)

    Lacombe, Lionel; Dinh, P. Huong Mai; Reinhard, Paul-Gerhard; Suraud, Eric; Sanche, Leon

    2015-08-01

    We present an extension of standard time-dependent density functional theory (TDDFT) to include the evaluation of rare reaction channels, taking as an example of application the theoretical modelling of electron attachment to molecules. The latter process is of great importance in radiation-induced damage of biological tissue for which dissociative electron attachment plays a decisive role. As the attachment probability is very low, it cannot be extracted from the TDDFT propagation whose mean field provides an average over various reaction channels. To extract rare events, we augment TDDFT by a perturbative treatment to account for the occasional jumps, namely electron capture in our test case. We apply the modelling to electron attachment to H2O, H3O+, and (H2O)2. Dynamical calculations have been done at low energy (3-16 eV). We explore, in particular, how core-excited states of the targets show up as resonances in the attachment probability. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.

  16. Probability density function of the intensity of a laser beam propagating in the maritime environment.

    PubMed

    Korotkova, Olga; Avramov-Zamurovic, Svetlana; Malek-Madani, Reza; Nelson, Charles

    2011-10-10

    A number of field experiments measuring the fluctuating intensity of a laser beam propagating along horizontal paths in the maritime environment is performed over sub-kilometer distances at the United States Naval Academy. Both above the ground and over the water links are explored. Two different detection schemes, one photographing the beam on a white board, and the other capturing the beam directly using a ccd sensor, gave consistent results. The probability density function (pdf) of the fluctuating intensity is reconstructed with the help of two theoretical models: the Gamma-Gamma and the Gamma-Laguerre, and compared with the intensity's histograms. It is found that the on-ground experimental results are in good agreement with theoretical predictions. The results obtained above the water paths lead to appreciable discrepancies, especially in the case of the Gamma-Gamma model. These discrepancies are attributed to the presence of the various scatterers along the path of the beam, such as water droplets, aerosols and other airborne particles. Our paper's main contribution is providing a methodology for computing the pdf function of the laser beam intensity in the maritime environment using field measurements.

  17. Unification of field theory and maximum entropy methods for learning probability densities

    NASA Astrophysics Data System (ADS)

    Kinney, Justin B.

    2015-09-01

    The need to estimate smooth probability distributions (a.k.a. probability densities) from finite sampled data is ubiquitous in science. Many approaches to this problem have been described, but none is yet regarded as providing a definitive solution. Maximum entropy estimation and Bayesian field theory are two such approaches. Both have origins in statistical physics, but the relationship between them has remained unclear. Here I unify these two methods by showing that every maximum entropy density estimate can be recovered in the infinite smoothness limit of an appropriate Bayesian field theory. I also show that Bayesian field theory estimation can be performed without imposing any boundary conditions on candidate densities, and that the infinite smoothness limit of these theories recovers the most common types of maximum entropy estimates. Bayesian field theory thus provides a natural test of the maximum entropy null hypothesis and, furthermore, returns an alternative (lower entropy) density estimate when the maximum entropy hypothesis is falsified. The computations necessary for this approach can be performed rapidly for one-dimensional data, and software for doing this is provided.

  18. Unification of field theory and maximum entropy methods for learning probability densities.

    PubMed

    Kinney, Justin B

    2015-09-01

    The need to estimate smooth probability distributions (a.k.a. probability densities) from finite sampled data is ubiquitous in science. Many approaches to this problem have been described, but none is yet regarded as providing a definitive solution. Maximum entropy estimation and Bayesian field theory are two such approaches. Both have origins in statistical physics, but the relationship between them has remained unclear. Here I unify these two methods by showing that every maximum entropy density estimate can be recovered in the infinite smoothness limit of an appropriate Bayesian field theory. I also show that Bayesian field theory estimation can be performed without imposing any boundary conditions on candidate densities, and that the infinite smoothness limit of these theories recovers the most common types of maximum entropy estimates. Bayesian field theory thus provides a natural test of the maximum entropy null hypothesis and, furthermore, returns an alternative (lower entropy) density estimate when the maximum entropy hypothesis is falsified. The computations necessary for this approach can be performed rapidly for one-dimensional data, and software for doing this is provided.

  19. Optimizing probability of detection point estimate demonstration

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2017-04-01

    The paper provides discussion on optimizing probability of detection (POD) demonstration experiments using point estimate method. The optimization is performed to provide acceptable value for probability of passing demonstration (PPD) and achieving acceptable value for probability of false (POF) calls while keeping the flaw sizes in the set as small as possible. POD Point estimate method is used by NASA for qualifying special NDE procedures. The point estimate method uses binomial distribution for probability density. Normally, a set of 29 flaws of same size within some tolerance are used in the demonstration. Traditionally largest flaw size in the set is considered to be a conservative estimate of the flaw size with minimum 90% probability and 95% confidence. The flaw size is denoted as α90/95PE. The paper investigates relationship between range of flaw sizes in relation to α90, i.e. 90% probability flaw size, to provide a desired PPD. The range of flaw sizes is expressed as a proportion of the standard deviation of the probability density distribution. Difference between median or average of the 29 flaws and α90 is also expressed as a proportion of standard deviation of the probability density distribution. In general, it is concluded that, if probability of detection increases with flaw size, average of 29 flaw sizes would always be larger than or equal to α90 and is an acceptable measure of α90/95PE. If NDE technique has sufficient sensitivity and signal-to-noise ratio, then the 29 flaw-set can be optimized to meet requirements of minimum required PPD, maximum allowable POF, requirements on flaw size tolerance about mean flaw size and flaw size detectability requirements. The paper provides procedure for optimizing flaw sizes in the point estimate demonstration flaw-set.

  20. Decision theory and information propagation in quantum physics

    NASA Astrophysics Data System (ADS)

    Forrester, Alan

    In recent papers, Zurek [(2005). Probabilities from entanglement, Born's rule p k =| ψ k | 2 from entanglement. Physical Review A, 71, 052105] has objected to the decision-theoretic approach of Deutsch [(1999) Quantum theory of probability and decisions. Proceedings of the Royal Society of London A, 455, 3129-3137] and Wallace [(2003). Everettian rationality: defending Deutsch's approach to probability in the Everett interpretation. Studies in History and Philosophy of Modern Physics, 34, 415-438] to deriving the Born rule for quantum probabilities on the grounds that it courts circularity. Deutsch and Wallace assume that the many worlds theory is true and that decoherence gives rise to a preferred basis. However, decoherence arguments use the reduced density matrix, which relies upon the partial trace and hence upon the Born rule for its validity. Using the Heisenberg picture and quantum Darwinism-the notion that classical information is quantum information that can proliferate in the environment pioneered in Ollivier et al. [(2004). Objective properties from subjective quantum states: Environment as a witness. Physical Review Letters, 93, 220401 and (2005). Environment as a witness: Selective proliferation of information and emergence of objectivity in a quantum universe. Physical Review A, 72, 042113]-I show that measurement interactions between two systems only create correlations between a specific set of commuting observables of system 1 and a specific set of commuting observables of system 2. This argument picks out a unique basis in which information flows in the correlations between those sets of commuting observables. I then derive the Born rule for both pure and mixed states and answer some other criticisms of the decision theoretic approach to quantum probability.

  1. Phonotactics, Neighborhood Activation, and Lexical Access for Spoken Words

    PubMed Central

    Vitevitch, Michael S.; Luce, Paul A.; Pisoni, David B.; Auer, Edward T.

    2012-01-01

    Probabilistic phonotactics refers to the relative frequencies of segments and sequences of segments in spoken words. Neighborhood density refers to the number of words that are phonologically similar to a given word. Despite a positive correlation between phonotactic probability and neighborhood density, nonsense words with high probability segments and sequences are responded to more quickly than nonsense words with low probability segments and sequences, whereas real words occurring in dense similarity neighborhoods are responded to more slowly than real words occurring in sparse similarity neighborhoods. This contradiction may be resolved by hypothesizing that effects of probabilistic phonotactics have a sublexical focus and that effects of similarity neighborhood density have a lexical focus. The implications of this hypothesis for models of spoken word recognition are discussed. PMID:10433774

  2. Fractional Brownian motion with a reflecting wall

    NASA Astrophysics Data System (ADS)

    Wada, Alexander H. O.; Vojta, Thomas

    2018-02-01

    Fractional Brownian motion, a stochastic process with long-time correlations between its increments, is a prototypical model for anomalous diffusion. We analyze fractional Brownian motion in the presence of a reflecting wall by means of Monte Carlo simulations. Whereas the mean-square displacement of the particle shows the expected anomalous diffusion behavior ˜tα , the interplay between the geometric confinement and the long-time memory leads to a highly non-Gaussian probability density function with a power-law singularity at the barrier. In the superdiffusive case α >1 , the particles accumulate at the barrier leading to a divergence of the probability density. For subdiffusion α <1 , in contrast, the probability density is depleted close to the barrier. We discuss implications of these findings, in particular, for applications that are dominated by rare events.

  3. Numerical study of the influence of surface reaction probabilities on reactive species in an rf atmospheric pressure plasma containing humidity

    NASA Astrophysics Data System (ADS)

    Schröter, Sandra; Gibson, Andrew R.; Kushner, Mark J.; Gans, Timo; O'Connell, Deborah

    2018-01-01

    The quantification and control of reactive species (RS) in atmospheric pressure plasmas (APPs) is of great interest for their technological applications, in particular in biomedicine. Of key importance in simulating the densities of these species are fundamental data on their production and destruction. In particular, data concerning particle-surface reaction probabilities in APPs are scarce, with most of these probabilities measured in low-pressure systems. In this work, the role of surface reaction probabilities, γ, of reactive neutral species (H, O and OH) on neutral particle densities in a He-H2O radio-frequency micro APP jet (COST-μ APPJ) are investigated using a global model. It is found that the choice of γ, particularly for low-mass species having large diffusivities, such as H, can change computed species densities significantly. The importance of γ even at elevated pressures offers potential for tailoring the RS composition of atmospheric pressure microplasmas by choosing different wall materials or plasma geometries.

  4. Effects of heterogeneous traffic with speed limit zone on the car accidents

    NASA Astrophysics Data System (ADS)

    Marzoug, R.; Lakouari, N.; Bentaleb, K.; Ez-Zahraouy, H.; Benyoussef, A.

    2016-06-01

    Using the extended Nagel-Schreckenberg (NS) model, we numerically study the impact of the heterogeneity of traffic with speed limit zone (SLZ) on the probability of occurrence of car accidents (Pac). SLZ in the heterogeneous traffic has an important effect, typically in the mixture velocities case. In the deterministic case, SLZ leads to the appearance of car accidents even in the low densities, in this region Pac increases with increasing of fraction of fast vehicles (Ff). In the nondeterministic case, SLZ decreases the effect of braking probability Pb in the low densities. Furthermore, the impact of multi-SLZ on the probability Pac is also studied. In contrast with the homogeneous case [X. Li, H. Kuang, Y. Fan and G. Zhang, Int. J. Mod. Phys. C 25 (2014) 1450036], it is found that in the low densities the probability Pac without SLZ (n = 0) is low than Pac with multi-SLZ (n > 0). However, the existence of multi-SLZ in the road decreases the risk of collision in the congestion phase.

  5. Maximum likelihood density modification by pattern recognition of structural motifs

    DOEpatents

    Terwilliger, Thomas C.

    2004-04-13

    An electron density for a crystallographic structure having protein regions and solvent regions is improved by maximizing the log likelihood of a set of structures factors {F.sub.h } using a local log-likelihood function: (x)+p(.rho.(x).vertline.SOLV)p.sub.SOLV (x)+p(.rho.(x).vertline.H)p.sub.H (x)], where p.sub.PROT (x) is the probability that x is in the protein region, p(.rho.(x).vertline.PROT) is the conditional probability for .rho.(x) given that x is in the protein region, and p.sub.SOLV (x) and p(.rho.(x).vertline.SOLV) are the corresponding quantities for the solvent region, p.sub.H (x) refers to the probability that there is a structural motif at a known location, with a known orientation, in the vicinity of the point x; and p(.rho.(x).vertline.H) is the probability distribution for electron density at this point given that the structural motif actually is present. One appropriate structural motif is a helical structure within the crystallographic structure.

  6. Method for removing atomic-model bias in macromolecular crystallography

    DOEpatents

    Terwilliger, Thomas C [Santa Fe, NM

    2006-08-01

    Structure factor bias in an electron density map for an unknown crystallographic structure is minimized by using information in a first electron density map to elicit expected structure factor information. Observed structure factor amplitudes are combined with a starting set of crystallographic phases to form a first set of structure factors. A first electron density map is then derived and features of the first electron density map are identified to obtain expected distributions of electron density. Crystallographic phase probability distributions are established for possible crystallographic phases of reflection k, and the process is repeated as k is indexed through all of the plurality of reflections. An updated electron density map is derived from the crystallographic phase probability distributions for each one of the reflections. The entire process is then iterated to obtain a final set of crystallographic phases with minimum bias from known electron density maps.

  7. An empirical probability model of detecting species at low densities.

    PubMed

    Delaney, David G; Leung, Brian

    2010-06-01

    False negatives, not detecting things that are actually present, are an important but understudied problem. False negatives are the result of our inability to perfectly detect species, especially those at low density such as endangered species or newly arriving introduced species. They reduce our ability to interpret presence-absence survey data and make sound management decisions (e.g., rapid response). To reduce the probability of false negatives, we need to compare the efficacy and sensitivity of different sampling approaches and quantify an unbiased estimate of the probability of detection. We conducted field experiments in the intertidal zone of New England and New York to test the sensitivity of two sampling approaches (quadrat vs. total area search, TAS), given different target characteristics (mobile vs. sessile). Using logistic regression we built detection curves for each sampling approach that related the sampling intensity and the density of targets to the probability of detection. The TAS approach reduced the probability of false negatives and detected targets faster than the quadrat approach. Mobility of targets increased the time to detection but did not affect detection success. Finally, we interpreted two years of presence-absence data on the distribution of the Asian shore crab (Hemigrapsus sanguineus) in New England and New York, using our probability model for false negatives. The type of experimental approach in this paper can help to reduce false negatives and increase our ability to detect species at low densities by refining sampling approaches, which can guide conservation strategies and management decisions in various areas of ecology such as conservation biology and invasion ecology.

  8. Evolution of single-particle structure and beta-decay near 78Ni

    NASA Astrophysics Data System (ADS)

    Borzov, I. N.

    2012-12-01

    The extended self-consistent beta-decay model has been applied for bet-decay rates and delayed neutron emission probabilities of spherical neutron-rich isotopes near the r-process paths. Unlike a popular global FRDM+RPA model, in our fully microscopic approach, the Gamow-Teller and first-forbidden decays are treated on the same footing. The model has been augmented by blocking of the odd particle in order to account for important ground-state spin-parity inversion effect which has been shown to exist in the region of the most neutron-rich doubly-magic nucleus 78Ni. Finally, a newly developed form of density functional DF3a has been employed which gives a better spin-orbit splitting due to the modified tensor components of the density functional.

  9. Estimating black bear density in New Mexico using noninvasive genetic sampling coupled with spatially explicit capture-recapture methods

    USGS Publications Warehouse

    Gould, Matthew J.; Cain, James W.; Roemer, Gary W.; Gould, William R.

    2016-01-01

    During the 2004–2005 to 2015–2016 hunting seasons, the New Mexico Department of Game and Fish (NMDGF) estimated black bear abundance (Ursus americanus) across the state by coupling density estimates with the distribution of primary habitat generated by Costello et al. (2001). These estimates have been used to set harvest limits. For example, a density of 17 bears/100 km2 for the Sangre de Cristo and Sacramento Mountains and 13.2 bears/100 km2 for the Sandia Mountains were used to set harvest levels. The advancement and widespread acceptance of non-invasive sampling and mark-recapture methods, prompted the NMDGF to collaborate with the New Mexico Cooperative Fish and Wildlife Research Unit and New Mexico State University to update their density estimates for black bear populations in select mountain ranges across the state.We established 5 study areas in 3 mountain ranges: the northern (NSC; sampled in 2012) and southern Sangre de Cristo Mountains (SSC; sampled in 2013), the Sandia Mountains (Sandias; sampled in 2014), and the northern (NSacs) and southern Sacramento Mountains (SSacs; both sampled in 2014). We collected hair samples from black bears using two concurrent non-invasive sampling methods, hair traps and bear rubs. We used a gender marker and a suite of microsatellite loci to determine the individual identification of hair samples that were suitable for genetic analysis. We used these data to generate mark-recapture encounter histories for each bear and estimated density in a spatially explicit capture-recapture framework (SECR). We constructed a suite of SECR candidate models using sex, elevation, land cover type, and time to model heterogeneity in detection probability and the spatial scale over which detection probability declines. We used Akaike’s Information Criterion corrected for small sample size (AICc) to rank and select the most supported model from which we estimated density.We set 554 hair traps, 117 bear rubs and collected 4,083 hair samples. We identified 725 (367 M, 358 F) individuals; the sex ratio for each study area was approximately equal. Our density estimates varied within and among mountain ranges with an estimated density of 21.86 bears/100 km2 (95% CI: 17.83 – 26.80) for the NSC, 19.74 bears/100 km2 (95% CI: 13.77 – 28.30) in the SSC, 25.75 bears/100 km2 (95% CI: 13.22 – 50.14) in the Sandias, 21.86 bears/100 km2 (95% CI: 17.83 – 26.80) in the NSacs, and 16.55 bears/100 km2 (95% CI: 11.64 – 23.53) in the SSacs. Overall detection probability for hair traps and bear rubs, combined, was low across all study areas and ranged from 0.00001 to 0.02. We speculate that detection probabilities were affected by failure of some hair samples to produce a complete genotype due to UV degradation of DNA, and our inability to set and check some sampling devices due to wildfires in the SSC. Ultraviolet radiation levels are particularly high in New Mexico compared to other states where NGS methods have been used because New Mexico receives substantial amounts of sunshine, is relatively high in elevation (1,200 m – 4,000 m), and is at a lower latitude. Despite these sampling difficulties, we were able to produce density estimates for New Mexico black bear populations with levels of precision comparable to estimated black bear densities made elsewhere in the U.S.Our ability to generate reliable black bear density estimates for 3 New Mexico mountain ranges is attributable to our use of a statistically robust study design and analytical method. There are multiple factors that need to be considered when developing future SECR-based density estimation projects. First, the spatial extent of the population of interest and the smallest average home range size must be determined; these will dictate size of the trapping array and spacing necessary between hair traps. The number of technicians needed and access to the study areas will also influence configuration of the trapping array. We believe shorter sampling occasions could be implemented to reduce degradation of DNA due to UV radiation; this might help increase amplification rates and thereby increase both the number of unique individuals identified and the number of recaptures, improving the precision of the density estimates. A pilot study may be useful to determine the length of time hair samples can remain in the field prior to collection. In addition, researchers may consider setting hair traps and bear rubs in more shaded areas (e.g., north facing slopes) to help reduce exposure to UV radiation. To reduce the sampling interval it will be necessary to either hire more field personnel or decrease the number of hair traps per sampling session. Both of these will enhance detection of long-range movement events by individual bears, increase initial capture and recapture rates, and improve precision of the parameter estimates. We recognize that all studies are constrained by limited resources, however, increasing field personnel would also allow a larger study area to be sampled or enable higher trap density.In conclusion, we estimated the density of black bears in 5 study areas within 3 mountains ranges of New Mexico. Our estimates will aid the NMDGF in setting sustainable harvest limits. Along with estimates of density, information on additional demographic rates (e.g., survival rates and reproduction) and the potential effects that climate change and future land use may have on the demography of black bears may also help inform management of black bears in New Mexico, and may be considered as future areas for research.

  10. Estimating detection and density of the Andean cat in the high Andes

    USGS Publications Warehouse

    Reppucci, J.; Gardner, B.; Lucherini, M.

    2011-01-01

    The Andean cat (Leopardus jacobita) is one of the most endangered, yet least known, felids. Although the Andean cat is considered at risk of extinction, rigorous quantitative population studies are lacking. Because physical observations of the Andean cat are difficult to make in the wild, we used a camera-trapping array to photo-capture individuals. The survey was conducted in northwestern Argentina at an elevation of approximately 4,200 m during October-December 2006 and April-June 2007. In each year we deployed 22 pairs of camera traps, which were strategically placed. To estimate detection probability and density we applied models for spatial capture-recapture using a Bayesian framework. Estimated densities were 0.07 and 0.12 individual/km 2 for 2006 and 2007, respectively. Mean baseline detection probability was estimated at 0.07. By comparison, densities of the Pampas cat (Leopardus colocolo), another poorly known felid that shares its habitat with the Andean cat, were estimated at 0.74-0.79 individual/km2 in the same study area for 2006 and 2007, and its detection probability was estimated at 0.02. Despite having greater detectability, the Andean cat is rarer in the study region than the Pampas cat. Properly accounting for the detection probability is important in making reliable estimates of density, a key parameter in conservation and management decisions for any species. ?? 2011 American Society of Mammalogists.

  11. Estimating detection and density of the Andean cat in the high Andes

    USGS Publications Warehouse

    Reppucci, Juan; Gardner, Beth; Lucherini, Mauro

    2011-01-01

    The Andean cat (Leopardus jacobita) is one of the most endangered, yet least known, felids. Although the Andean cat is considered at risk of extinction, rigorous quantitative population studies are lacking. Because physical observations of the Andean cat are difficult to make in the wild, we used a camera-trapping array to photo-capture individuals. The survey was conducted in northwestern Argentina at an elevation of approximately 4,200 m during October–December 2006 and April–June 2007. In each year we deployed 22 pairs of camera traps, which were strategically placed. To estimate detection probability and density we applied models for spatial capture–recapture using a Bayesian framework. Estimated densities were 0.07 and 0.12 individual/km2 for 2006 and 2007, respectively. Mean baseline detection probability was estimated at 0.07. By comparison, densities of the Pampas cat (Leopardus colocolo), another poorly known felid that shares its habitat with the Andean cat, were estimated at 0.74–0.79 individual/km2 in the same study area for 2006 and 2007, and its detection probability was estimated at 0.02. Despite having greater detectability, the Andean cat is rarer in the study region than the Pampas cat. Properly accounting for the detection probability is important in making reliable estimates of density, a key parameter in conservation and management decisions for any species.

  12. Approved Methods and Algorithms for DoD Risk-Based Explosives Siting

    DTIC Science & Technology

    2007-02-02

    glass. Pgha Probability of a person being in the glass hazard area Phit Probability of hit Phit (f) Probability of hit for fatality Phit (maji...Probability of hit for major injury Phit (mini) Probability of hit for minor injury Pi Debris probability densities at the ES PMaj (pair) Individual...combined high-angle and combined low-angle tables. A unique probability of hit is calculated for the three consequences of fatality, Phit (f), major injury

  13. Electrofishing capture probability of smallmouth bass in streams

    USGS Publications Warehouse

    Dauwalter, D.C.; Fisher, W.L.

    2007-01-01

    Abundance estimation is an integral part of understanding the ecology and advancing the management of fish populations and communities. Mark-recapture and removal methods are commonly used to estimate the abundance of stream fishes. Alternatively, abundance can be estimated by dividing the number of individuals sampled by the probability of capture. We conducted a mark-recapture study and used multiple repeated-measures logistic regression to determine the influence of fish size, sampling procedures, and stream habitat variables on the cumulative capture probability for smallmouth bass Micropterus dolomieu in two eastern Oklahoma streams. The predicted capture probability was used to adjust the number of individuals sampled to obtain abundance estimates. The observed capture probabilities were higher for larger fish and decreased with successive electrofishing passes for larger fish only. Model selection suggested that the number of electrofishing passes, fish length, and mean thalweg depth affected capture probabilities the most; there was little evidence for any effect of electrofishing power density and woody debris density on capture probability. Leave-one-out cross validation showed that the cumulative capture probability model predicts smallmouth abundance accurately. ?? Copyright by the American Fisheries Society 2007.

  14. Trapped surfaces and emergent curved space in the Bose-Hubbard model

    NASA Astrophysics Data System (ADS)

    Caravelli, Francesco; Hamma, Alioscia; Markopoulou, Fotini; Riera, Arnau

    2012-02-01

    A Bose-Hubbard model on a dynamical lattice was introduced in previous work as a spin system analogue of emergent geometry and gravity. Graphs with regions of high connectivity in the lattice were identified as candidate analogues of spacetime geometries that contain trapped surfaces. We carry out a detailed study of these systems and show explicitly that the highly connected subgraphs trap matter. We do this by solving the model in the limit of no back-reaction of the matter on the lattice, and for states with certain symmetries that are natural for our problem. We find that in this case the problem reduces to a one-dimensional Hubbard model on a lattice with variable vertex degree and multiple edges between the same two vertices. In addition, we obtain a (discrete) differential equation for the evolution of the probability density of particles which is closed in the classical regime. This is a wave equation in which the vertex degree is related to the local speed of propagation of probability. This allows an interpretation of the probability density of particles similar to that in analogue gravity systems: matter inside this analogue system sees a curved spacetime. We verify our analytic results by numerical simulations. Finally, we analyze the dependence of localization on a gradual, rather than abrupt, falloff of the vertex degree on the boundary of the highly connected region and find that matter is localized in and around that region.

  15. A Riemannian framework for orientation distribution function computing.

    PubMed

    Cheng, Jian; Ghosh, Aurobrata; Jiang, Tianzi; Deriche, Rachid

    2009-01-01

    Compared with Diffusion Tensor Imaging (DTI), High Angular Resolution Imaging (HARDI) can better explore the complex microstructure of white matter. Orientation Distribution Function (ODF) is used to describe the probability of the fiber direction. Fisher information metric has been constructed for probability density family in Information Geometry theory and it has been successfully applied for tensor computing in DTI. In this paper, we present a state of the art Riemannian framework for ODF computing based on Information Geometry and sparse representation of orthonormal bases. In this Riemannian framework, the exponential map, logarithmic map and geodesic have closed forms. And the weighted Frechet mean exists uniquely on this manifold. We also propose a novel scalar measurement, named Geometric Anisotropy (GA), which is the Riemannian geodesic distance between the ODF and the isotropic ODF. The Renyi entropy H1/2 of the ODF can be computed from the GA. Moreover, we present an Affine-Euclidean framework and a Log-Euclidean framework so that we can work in an Euclidean space. As an application, Lagrange interpolation on ODF field is proposed based on weighted Frechet mean. We validate our methods on synthetic and real data experiments. Compared with existing Riemannian frameworks on ODF, our framework is model-free. The estimation of the parameters, i.e. Riemannian coordinates, is robust and linear. Moreover it should be noted that our theoretical results can be used for any probability density function (PDF) under an orthonormal basis representation.

  16. A tool for the estimation of the distribution of landslide area in R

    NASA Astrophysics Data System (ADS)

    Rossi, M.; Cardinali, M.; Fiorucci, F.; Marchesini, I.; Mondini, A. C.; Santangelo, M.; Ghosh, S.; Riguer, D. E. L.; Lahousse, T.; Chang, K. T.; Guzzetti, F.

    2012-04-01

    We have developed a tool in R (the free software environment for statistical computing, http://www.r-project.org/) to estimate the probability density and the frequency density of landslide area. The tool implements parametric and non-parametric approaches to the estimation of the probability density and the frequency density of landslide area, including: (i) Histogram Density Estimation (HDE), (ii) Kernel Density Estimation (KDE), and (iii) Maximum Likelihood Estimation (MLE). The tool is available as a standard Open Geospatial Consortium (OGC) Web Processing Service (WPS), and is accessible through the web using different GIS software clients. We tested the tool to compare Double Pareto and Inverse Gamma models for the probability density of landslide area in different geological, morphological and climatological settings, and to compare landslides shown in inventory maps prepared using different mapping techniques, including (i) field mapping, (ii) visual interpretation of monoscopic and stereoscopic aerial photographs, (iii) visual interpretation of monoscopic and stereoscopic VHR satellite images and (iv) semi-automatic detection and mapping from VHR satellite images. Results show that both models are applicable in different geomorphological settings. In most cases the two models provided very similar results. Non-parametric estimation methods (i.e., HDE and KDE) provided reasonable results for all the tested landslide datasets. For some of the datasets, MLE failed to provide a result, for convergence problems. The two tested models (Double Pareto and Inverse Gamma) resulted in very similar results for large and very large datasets (> 150 samples). Differences in the modeling results were observed for small datasets affected by systematic biases. A distinct rollover was observed in all analyzed landslide datasets, except for a few datasets obtained from landslide inventories prepared through field mapping or by semi-automatic mapping from VHR satellite imagery. The tool can also be used to evaluate the probability density and the frequency density of landslide volume.

  17. Structural Reliability Analysis and Optimization: Use of Approximations

    NASA Technical Reports Server (NTRS)

    Grandhi, Ramana V.; Wang, Liping

    1999-01-01

    This report is intended for the demonstration of function approximation concepts and their applicability in reliability analysis and design. Particularly, approximations in the calculation of the safety index, failure probability and structural optimization (modification of design variables) are developed. With this scope in mind, extensive details on probability theory are avoided. Definitions relevant to the stated objectives have been taken from standard text books. The idea of function approximations is to minimize the repetitive use of computationally intensive calculations by replacing them with simpler closed-form equations, which could be nonlinear. Typically, the approximations provide good accuracy around the points where they are constructed, and they need to be periodically updated to extend their utility. There are approximations in calculating the failure probability of a limit state function. The first one, which is most commonly discussed, is how the limit state is approximated at the design point. Most of the time this could be a first-order Taylor series expansion, also known as the First Order Reliability Method (FORM), or a second-order Taylor series expansion (paraboloid), also known as the Second Order Reliability Method (SORM). From the computational procedure point of view, this step comes after the design point identification; however, the order of approximation for the probability of failure calculation is discussed first, and it is denoted by either FORM or SORM. The other approximation of interest is how the design point, or the most probable failure point (MPP), is identified. For iteratively finding this point, again the limit state is approximated. The accuracy and efficiency of the approximations make the search process quite practical for analysis intensive approaches such as the finite element methods; therefore, the crux of this research is to develop excellent approximations for MPP identification and also different approximations including the higher-order reliability methods (HORM) for representing the failure surface. This report is divided into several parts to emphasize different segments of the structural reliability analysis and design. Broadly, it consists of mathematical foundations, methods and applications. Chapter I discusses the fundamental definitions of the probability theory, which are mostly available in standard text books. Probability density function descriptions relevant to this work are addressed. In Chapter 2, the concept and utility of function approximation are discussed for a general application in engineering analysis. Various forms of function representations and the latest developments in nonlinear adaptive approximations are presented with comparison studies. Research work accomplished in reliability analysis is presented in Chapter 3. First, the definition of safety index and most probable point of failure are introduced. Efficient ways of computing the safety index with a fewer number of iterations is emphasized. In chapter 4, the probability of failure prediction is presented using first-order, second-order and higher-order methods. System reliability methods are discussed in chapter 5. Chapter 6 presents optimization techniques for the modification and redistribution of structural sizes for improving the structural reliability. The report also contains several appendices on probability parameters.

  18. Methane dissociation on Ni(111): A fifteen-dimensional potential energy surface using neural network method

    NASA Astrophysics Data System (ADS)

    Shen, Xiangjian; Chen, Jun; Zhang, Zhaojun; Shao, Kejie; Zhang, Dong H.

    2015-10-01

    In the present work, we develop a highly accurate, fifteen-dimensional potential energy surface (PES) of CH4 interacting on a rigid flat Ni(111) surface with the methodology of neural network (NN) fit to a database consisted of about 194 208 ab initio density functional theory (DFT) energy points. Some careful tests of the accuracy of the fitting PES are given through the descriptions of the fitting quality, vibrational spectrum of CH4 in vacuum, transition state (TS) geometries as well as the activation barriers. Using a 25-60-60-1 NN structure, we obtain one of the best PESs with the least root mean square errors: 10.11 meV for the entrance region and 17.00 meV for the interaction and product regions. Our PES can reproduce the DFT results very well in particular for the important TS structures. Furthermore, we present the sticking probability S0 of ground state CH4 at the experimental surface temperature using some sudden approximations by Jackson's group. An in-depth explanation is given for the underestimated sticking probability.

  19. Force Transmission Modes of Non-Cohesive and Cohesive Materials at the Critical State.

    PubMed

    Wang, Ji-Peng

    2017-08-31

    This paper investigates the force transmission modes, mainly described by probability density distributions, in non-cohesive dry and cohesive wet granular materials by discrete element modeling. The critical state force transmission patterns are focused on with the contact model effect being analyzed. By shearing relatively dense and loose dry specimens to the critical state in the conventional triaxial loading path, it is observed that there is a unique critical state force transmission mode. There is a universe critical state force distribution pattern for both the normal contact forces and tangential contact forces. Furthermore, it is found that using either the linear Hooke or the non-linear Hertz model does not affect the universe force transmission mode, and it is only related to the grain size distribution. Wet granular materials are also simulated by incorporating a water bridge model. Dense and loose wet granular materials are tested, and the critical state behavior for the wet material is also observed. The critical state strength and void ratio of wet granular materials are higher than those of a non-cohesive material. The critical state inter-particle distribution is altered from that of a non-cohesive material with higher probability in relatively weak forces. Grains in non-cohesive materials are under compressive stresses, and their principal directions are mainly in the axial loading direction. However, for cohesive wet granular materials, some particles are in tension, and the tensile stresses are in the horizontal direction on which the confinement is applied. The additional confinement by the tensile stress explains the macro strength and dilatancy increase in wet samples.

  20. Force Transmission Modes of Non-Cohesive and Cohesive Materials at the Critical State

    PubMed Central

    2017-01-01

    This paper investigates the force transmission modes, mainly described by probability density distributions, in non-cohesive dry and cohesive wet granular materials by discrete element modeling. The critical state force transmission patterns are focused on with the contact model effect being analyzed. By shearing relatively dense and loose dry specimens to the critical state in the conventional triaxial loading path, it is observed that there is a unique critical state force transmission mode. There is a universe critical state force distribution pattern for both the normal contact forces and tangential contact forces. Furthermore, it is found that using either the linear Hooke or the non-linear Hertz model does not affect the universe force transmission mode, and it is only related to the grain size distribution. Wet granular materials are also simulated by incorporating a water bridge model. Dense and loose wet granular materials are tested, and the critical state behavior for the wet material is also observed. The critical state strength and void ratio of wet granular materials are higher than those of a non-cohesive material. The critical state inter-particle distribution is altered from that of a non-cohesive material with higher probability in relatively weak forces. Grains in non-cohesive materials are under compressive stresses, and their principal directions are mainly in the axial loading direction. However, for cohesive wet granular materials, some particles are in tension, and the tensile stresses are in the horizontal direction on which the confinement is applied. The additional confinement by the tensile stress explains the macro strength and dilatancy increase in wet samples. PMID:28858238

  1. RS-Forest: A Rapid Density Estimator for Streaming Anomaly Detection.

    PubMed

    Wu, Ke; Zhang, Kun; Fan, Wei; Edwards, Andrea; Yu, Philip S

    Anomaly detection in streaming data is of high interest in numerous application domains. In this paper, we propose a novel one-class semi-supervised algorithm to detect anomalies in streaming data. Underlying the algorithm is a fast and accurate density estimator implemented by multiple fully randomized space trees (RS-Trees), named RS-Forest. The piecewise constant density estimate of each RS-tree is defined on the tree node into which an instance falls. Each incoming instance in a data stream is scored by the density estimates averaged over all trees in the forest. Two strategies, statistical attribute range estimation of high probability guarantee and dual node profiles for rapid model update, are seamlessly integrated into RS-Forest to systematically address the ever-evolving nature of data streams. We derive the theoretical upper bound for the proposed algorithm and analyze its asymptotic properties via bias-variance decomposition. Empirical comparisons to the state-of-the-art methods on multiple benchmark datasets demonstrate that the proposed method features high detection rate, fast response, and insensitivity to most of the parameter settings. Algorithm implementations and datasets are available upon request.

  2. Characteristic Structure of Star-forming Clouds

    NASA Astrophysics Data System (ADS)

    Myers, Philip C.

    2015-06-01

    This paper presents a new method to diagnose the star-forming potential of a molecular cloud region from the probability density function of its column density (N-pdf). This method provides expressions for the column density and mass profiles of a symmetric filament having the same N-pdf as a filamentary region. The central concentration of this characteristic filament can distinguish regions and can quantify their fertility for star formation. Profiles are calculated for N-pdfs which are pure lognormal, pure power law, or a combination. In relation to models of singular polytropic cylinders, characteristic filaments can be unbound, bound, or collapsing depending on their central concentration. Such filamentary models of the dynamical state of N-pdf gas are more relevant to star-forming regions than are spherical collapse models. The star formation fertility of a bound or collapsing filament is quantified by its mean mass accretion rate when in radial free fall. For a given mass per length, the fertility increases with the filament mean column density and with its initial concentration. In selected regions the fertility of their characteristic filaments increases with the level of star formation.

  3. RS-Forest: A Rapid Density Estimator for Streaming Anomaly Detection

    PubMed Central

    Wu, Ke; Zhang, Kun; Fan, Wei; Edwards, Andrea; Yu, Philip S.

    2015-01-01

    Anomaly detection in streaming data is of high interest in numerous application domains. In this paper, we propose a novel one-class semi-supervised algorithm to detect anomalies in streaming data. Underlying the algorithm is a fast and accurate density estimator implemented by multiple fully randomized space trees (RS-Trees), named RS-Forest. The piecewise constant density estimate of each RS-tree is defined on the tree node into which an instance falls. Each incoming instance in a data stream is scored by the density estimates averaged over all trees in the forest. Two strategies, statistical attribute range estimation of high probability guarantee and dual node profiles for rapid model update, are seamlessly integrated into RS-Forest to systematically address the ever-evolving nature of data streams. We derive the theoretical upper bound for the proposed algorithm and analyze its asymptotic properties via bias-variance decomposition. Empirical comparisons to the state-of-the-art methods on multiple benchmark datasets demonstrate that the proposed method features high detection rate, fast response, and insensitivity to most of the parameter settings. Algorithm implementations and datasets are available upon request. PMID:25685112

  4. Integrating resource selection information with spatial capture--recapture

    USGS Publications Warehouse

    Royle, J. Andrew; Chandler, Richard B.; Sun, Catherine C.; Fuller, Angela K.

    2013-01-01

    4. Finally, we find that SCR models using standard symmetric and stationary encounter probability models may not fully explain variation in encounter probability due to space usage, and therefore produce biased estimates of density when animal space usage is related to resource selection. Consequently, it is important that space usage be taken into consideration, if possible, in studies focused on estimating density using capture–recapture methods.

  5. Effect of Phonotactic Probability and Neighborhood Density on Word-Learning Configuration by Preschoolers with Typical Development and Specific Language Impairment

    ERIC Educational Resources Information Center

    Gray, Shelley; Pittman, Andrea; Weinhold, Juliet

    2014-01-01

    Purpose: In this study, the authors assessed the effects of phonotactic probability and neighborhood density on word-learning configuration by preschoolers with specific language impairment (SLI) and typical language development (TD). Method: One hundred thirty-one children participated: 48 with SLI, 44 with TD matched on age and gender, and 39…

  6. The Effect of Phonotactic Probability and Neighbourhood Density on Pseudoword Learning in 6- and 7-Year-Old Children

    ERIC Educational Resources Information Center

    van der Kleij, Sanne W.; Rispens, Judith E.; Scheper, Annette R.

    2016-01-01

    The aim of this study was to examine the influence of phonotactic probability (PP) and neighbourhood density (ND) on pseudoword learning in 17 Dutch-speaking typically developing children (mean age 7;2). They were familiarized with 16 one-syllable pseudowords varying in PP (high vs low) and ND (high vs low) via a storytelling procedure. The…

  7. Basins of distinct asymptotic states in the cyclically competing mobile five species game

    NASA Astrophysics Data System (ADS)

    Kim, Beomseok; Park, Junpyo

    2017-10-01

    We study the dynamics of cyclic competing mobile five species on spatially extended systems originated from asymmetric initial populations and investigate the basins for the three possible asymptotic states, coexistence of all species, existences of only two independent species, and the extinction. Through extensive numerical simulations, we find a prosperous dependence on initial conditions for species biodiversity. In particular, for fixed given equal densities of two relevant species, we find that only five basins for the existence of two independent species exist and they are spirally entangled for high mobility. A basin of coexistence is outbreaking when the mobility parameter is decreased through a critical value and surrounded by the other five basins. For fixed given equal densities of two independent species, however, we find that basin structures are not spirally entangled. Further, final states of two independent species are totally different. For all possible considerations, the extinction state is not witnessed which is verified by the survival probability. To provide the validity of basin structures from lattice simulations, we analyze the system in mean-field manners. Consequently, results on macroscopic levels are matched to direct lattice simulations for high mobility regimes. These findings provide a good insight into the fundamental issue of the biodiversity among many species than previous cases.

  8. Ultracold Chemical Reactions of a Single Rydberg Atom in a Dense Gas

    DOE PAGES

    Schlagmüller, Michael; Liebisch, Tara Cubel; Engel, Felix; ...

    2016-08-10

    Within a dense environment (ρ ≈ 10 14 atoms/cm 3) at ultracold temperatures (T < 1 μK), a single atom excited to a Rydberg state acts as a reaction center for surrounding neutral atoms. At these temperatures, almost all neutral atoms within the Rydberg orbit are bound to the Rydberg core and interact with the Rydberg atom. We have studied the reaction rate and products for nS 87Rb Rydberg states, and we mainly observe a state change of the Rydberg electron to a high orbital angular momentum l, with the released energy being converted into kinetic energy of the Rydberg atom. Unexpectedly, the measurements show a threshold behavior at n ≈ 100 for the inelastic collision time leading to increased lifetimes of the Rydberg state independent of the densities investigated. Even at very high densities (ρ ≈ 4.8 x 10 14 cm -3), the lifetime of a Rydberg atom exceeds 10 μs at n > 140 compared to 1 μs at n = 90. In addition, a second observed reaction mechanism, namely, Rbmore » $$+\\atop{2}$$ molecule formation, was studied. Both reaction products are equally probable for n = 40, but the fraction of Rb + 2 created drops to below 10% for n ≥ 90.« less

  9. Inferences about population dynamics from count data using multi-state models: A comparison to capture-recapture approaches

    USGS Publications Warehouse

    Grant, Evan H. Campbell; Zipkin, Elise; Scott, Sillett T.; Chandler, Richard; Royle, J. Andrew

    2014-01-01

    Wildlife populations consist of individuals that contribute disproportionately to growth and viability. Understanding a population's spatial and temporal dynamics requires estimates of abundance and demographic rates that account for this heterogeneity. Estimating these quantities can be difficult, requiring years of intensive data collection. Often, this is accomplished through the capture and recapture of individual animals, which is generally only feasible at a limited number of locations. In contrast, N-mixture models allow for the estimation of abundance, and spatial variation in abundance, from count data alone. We extend recently developed multistate, open population N-mixture models, which can additionally estimate demographic rates based on an organism's life history characteristics. In our extension, we develop an approach to account for the case where not all individuals can be assigned to a state during sampling. Using only state-specific count data, we show how our model can be used to estimate local population abundance, as well as density-dependent recruitment rates and state-specific survival. We apply our model to a population of black-throated blue warblers (Setophaga caerulescens) that have been surveyed for 25 years on their breeding grounds at the Hubbard Brook Experimental Forest in New Hampshire, USA. The intensive data collection efforts allow us to compare our estimates to estimates derived from capture–recapture data. Our model performed well in estimating population abundance and density-dependent rates of annual recruitment/immigration. Estimates of local carrying capacity and per capita recruitment of yearlings were consistent with those published in other studies. However, our model moderately underestimated annual survival probability of yearling and adult females and severely underestimates survival probabilities for both of these male stages. The most accurate and precise estimates will necessarily require some amount of intensive data collection efforts (such as capture–recapture). Integrated population models that combine data from both intensive and extensive sources are likely to be the most efficient approach for estimating demographic rates at large spatial and temporal scales.

  10. On trends in historical marine wind data

    NASA Technical Reports Server (NTRS)

    Cardone, Vincent J.; Greenwood, Juliet G.; Cane, Mark A.

    1990-01-01

    Long-period variations which include a trend toward strengthening winds over the last three decades have on the one hand been suggested to be real climatic changes, and on the other artifacts of the evolution of measuring techniques. An examination is presently conducted of individual ship reports from three regions with high data densities, in order to resolve this dispute. Even with corrections for instrumental effects, the pre-1950 winds appear weaker than post-1950 winds; the most probable explanation is the absence of universal sea state and Beaufort force standards prior to 1946.

  11. Electron impact excitation of highly charged sodium-like ions

    NASA Technical Reports Server (NTRS)

    Blaha, M.; Davis, J.

    1978-01-01

    Optical transition probabilities and electron collision strengths for Ca X, Fe XVI, Zn XX, Kr XXVI and Mo XXXII are calculated for transitions between n equal to 3 and n equal to 4 levels. The calculations neglect relativistic effects on the radial functions. A semi-empirical approach provides wave functions of the excited states; a distorted wave function without exchange is employed to obtain the excitation cross sections. The density dependence of the relative intensities of certain emission lines in the sodium isoelectronic sequence is also discussed.

  12. A New Approach to Monte Carlo Simulations in Statistical Physics

    NASA Astrophysics Data System (ADS)

    Landau, David P.

    2002-08-01

    Monte Carlo simulations [1] have become a powerful tool for the study of diverse problems in statistical/condensed matter physics. Standard methods sample the probability distribution for the states of the system, most often in the canonical ensemble, and over the past several decades enormous improvements have been made in performance. Nonetheless, difficulties arise near phase transitions-due to critical slowing down near 2nd order transitions and to metastability near 1st order transitions, and these complications limit the applicability of the method. We shall describe a new Monte Carlo approach [2] that uses a random walk in energy space to determine the density of states directly. Once the density of states is known, all thermodynamic properties can be calculated. This approach can be extended to multi-dimensional parameter spaces and should be effective for systems with complex energy landscapes, e.g., spin glasses, protein folding models, etc. Generalizations should produce a broadly applicable optimization tool. 1. A Guide to Monte Carlo Simulations in Statistical Physics, D. P. Landau and K. Binder (Cambridge U. Press, Cambridge, 2000). 2. Fugao Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001); Phys. Rev. E64, 056101-1 (2001).

  13. Spectral sum rules and magneto-roton as emergent graviton in fractional quantum Hall effect

    DOE PAGES

    Golkar, Siavash; Nguyen, Dung X.; Son, Dam T.

    2016-01-05

    Here, we consider gapped fractional quantum Hall states on the lowest Landau level when the Coulomb energy is much smaller than the cyclotron energy. We introduce two spectral densities, ρ T(ω) andmore » $$\\bar{p}$$ T(ω), which are proportional to the probabilities of absorption of circularly polarized gravitons by the quantum Hall system. We prove three sum rules relating these spectral densities with the shift S, the q 4 coefficient of the static structure factor S 4, and the high-frequency shear modulus of the ground state μ ∞, which is precisely defined. We confirm an inequality, first suggested by Haldane, that S 4 is bounded from below by |S–1|/8. The Laughlin wavefunction saturates this bound, which we argue to imply that systems with ground state wavefunctions close to Laughlin’s absorb gravitons of predominantly one circular polarization. We consider a nonlinear model where the sum rules are saturated by a single magneto-roton mode. In this model, the magneto-roton arises from the mixing between oscillations of an internal metric and the hydrodynamic motion. Implications for experiments are briefly discussed.« less

  14. Estimation of State Transition Probabilities: A Neural Network Model

    NASA Astrophysics Data System (ADS)

    Saito, Hiroshi; Takiyama, Ken; Okada, Masato

    2015-12-01

    Humans and animals can predict future states on the basis of acquired knowledge. This prediction of the state transition is important for choosing the best action, and the prediction is only possible if the state transition probability has already been learned. However, how our brains learn the state transition probability is unknown. Here, we propose a simple algorithm for estimating the state transition probability by utilizing the state prediction error. We analytically and numerically confirmed that our algorithm is able to learn the probability completely with an appropriate learning rate. Furthermore, our learning rule reproduced experimentally reported psychometric functions and neural activities in the lateral intraparietal area in a decision-making task. Thus, our algorithm might describe the manner in which our brains learn state transition probabilities and predict future states.

  15. Constructing 1/omegaalpha noise from reversible Markov chains.

    PubMed

    Erland, Sveinung; Greenwood, Priscilla E

    2007-09-01

    This paper gives sufficient conditions for the output of 1/omegaalpha noise from reversible Markov chains on finite state spaces. We construct several examples exhibiting this behavior in a specified range of frequencies. We apply simple representations of the covariance function and the spectral density in terms of the eigendecomposition of the probability transition matrix. The results extend to hidden Markov chains. We generalize the results for aggregations of AR1-processes of C. W. J. Granger [J. Econometrics 14, 227 (1980)]. Given the eigenvalue function, there is a variety of ways to assign values to the states such that the 1/omegaalpha condition is satisfied. We show that a random walk on a certain state space is complementary to the point process model of 1/omega noise of B. Kaulakys and T. Meskauskas [Phys. Rev. E 58, 7013 (1998)]. Passing to a continuous state space, we construct 1/omegaalpha noise which also has a long memory.

  16. Simultaneous modeling of habitat suitability, occupancy, and relative abundance: African elephants in Zimbabwe

    USGS Publications Warehouse

    Martin, Julien; Chamaille-Jammes, Simon; Nichols, James D.; Fritz, Herve; Hines, James E.; Fonnesbeck, Christopher J.; MacKenzie, Darryl I.; Bailey, Larissa L.

    2010-01-01

    The recent development of statistical models such as dynamic site occupancy models provides the opportunity to address fairly complex management and conservation problems with relatively simple models. However, surprisingly few empirical studies have simultaneously modeled habitat suitability and occupancy status of organisms over large landscapes for management purposes. Joint modeling of these components is particularly important in the context of management of wild populations, as it provides a more coherent framework to investigate the population dynamics of organisms in space and time for the application of management decision tools. We applied such an approach to the study of water hole use by African elephants in Hwange National Park, Zimbabwe. Here we show how such methodology may be implemented and derive estimates of annual transition probabilities among three dry-season states for water holes: (1) unsuitable state (dry water holes with no elephants); (2) suitable state (water hole with water) with low abundance of elephants; and (3) suitable state with high abundance of elephants. We found that annual rainfall and the number of neighboring water holes influenced the transition probabilities among these three states. Because of an increase in elephant densities in the park during the study period, we also found that transition probabilities from low abundance to high abundance states increased over time. The application of the joint habitat–occupancy models provides a coherent framework to examine how habitat suitability and factors that affect habitat suitability influence the distribution and abundance of organisms. We discuss how these simple models can further be used to apply structured decision-making tools in order to derive decisions that are optimal relative to specified management objectives. The modeling framework presented in this paper should be applicable to a wide range of existing data sets and should help to address important ecological, conservation, and management problems that deal with occupancy, relative abundance, and habitat suitability.

  17. Properties of the probability density function of the non-central chi-squared distribution

    NASA Astrophysics Data System (ADS)

    András, Szilárd; Baricz, Árpád

    2008-10-01

    In this paper we consider the probability density function (pdf) of a non-central [chi]2 distribution with arbitrary number of degrees of freedom. For this function we prove that can be represented as a finite sum and we deduce a partial derivative formula. Moreover, we show that the pdf is log-concave when the degrees of freedom is greater or equal than 2. At the end of this paper we present some Turán-type inequalities for this function and an elegant application of the monotone form of l'Hospital's rule in probability theory is given.

  18. Assessing hypotheses about nesting site occupancy dynamics

    USGS Publications Warehouse

    Bled, Florent; Royle, J. Andrew; Cam, Emmanuelle

    2011-01-01

    Hypotheses about habitat selection developed in the evolutionary ecology framework assume that individuals, under some conditions, select breeding habitat based on expected fitness in different habitat. The relationship between habitat quality and fitness may be reflected by breeding success of individuals, which may in turn be used to assess habitat quality. Habitat quality may also be assessed via local density: if high-quality sites are preferentially used, high density may reflect high-quality habitat. Here we assessed whether site occupancy dynamics vary with site surrogates for habitat quality. We modeled nest site use probability in a seabird subcolony (the Black-legged Kittiwake, Rissa tridactyla) over a 20-year period. We estimated site persistence (an occupied site remains occupied from time t to t + 1) and colonization through two subprocesses: first colonization (site creation at the timescale of the study) and recolonization (a site is colonized again after being deserted). Our model explicitly incorporated site-specific and neighboring breeding success and conspecific density in the neighborhood. Our results provided evidence that reproductively "successful'' sites have a higher persistence probability than "unsuccessful'' ones. Analyses of site fidelity in marked birds and of survival probability showed that high site persistence predominantly reflects site fidelity, not immediate colonization by new owners after emigration or death of previous owners. There is a negative quadratic relationship between local density and persistence probability. First colonization probability decreases with density, whereas recolonization probability is constant. This highlights the importance of distinguishing initial colonization and recolonization to understand site occupancy. All dynamics varied positively with neighboring breeding success. We found evidence of a positive interaction between site-specific and neighboring breeding success. We addressed local population dynamics using a site occupancy approach integrating hypotheses developed in behavioral ecology to account for individual decisions. This allows development of models of population and metapopulation dynamics that explicitly incorporate ecological and evolutionary processes.

  19. On Schrödinger's bridge problem

    NASA Astrophysics Data System (ADS)

    Friedland, S.

    2017-11-01

    In the first part of this paper we generalize Georgiou-Pavon's result that a positive square matrix can be scaled uniquely to a column stochastic matrix which maps a given positive probability vector to another given positive probability vector. In the second part we prove that a positive quantum channel can be scaled to another positive quantum channel which maps a given positive definite density matrix to another given positive definite density matrix using Brouwer's fixed point theorem. This result proves the Georgiou-Pavon conjecture for two positive definite density matrices, made in their recent paper. We show that the fixed points are unique for certain pairs of positive definite density matrices. Bibliography: 15 titles.

  20. Density probability distribution functions of diffuse gas in the Milky Way

    NASA Astrophysics Data System (ADS)

    Berkhuijsen, E. M.; Fletcher, A.

    2008-10-01

    In a search for the signature of turbulence in the diffuse interstellar medium (ISM) in gas density distributions, we determined the probability distribution functions (PDFs) of the average volume densities of the diffuse gas. The densities were derived from dispersion measures and HI column densities towards pulsars and stars at known distances. The PDFs of the average densities of the diffuse ionized gas (DIG) and the diffuse atomic gas are close to lognormal, especially when lines of sight at |b| < 5° and |b| >= 5° are considered separately. The PDF of at high |b| is twice as wide as that at low |b|. The width of the PDF of the DIG is about 30 per cent smaller than that of the warm HI at the same latitudes. The results reported here provide strong support for the existence of a lognormal density PDF in the diffuse ISM, consistent with a turbulent origin of density structure in the diffuse gas.

  1. Geotechnical parameter spatial distribution stochastic analysis based on multi-precision information assimilation

    NASA Astrophysics Data System (ADS)

    Wang, C.; Rubin, Y.

    2014-12-01

    Spatial distribution of important geotechnical parameter named compression modulus Es contributes considerably to the understanding of the underlying geological processes and the adequate assessment of the Es mechanics effects for differential settlement of large continuous structure foundation. These analyses should be derived using an assimilating approach that combines in-situ static cone penetration test (CPT) with borehole experiments. To achieve such a task, the Es distribution of stratum of silty clay in region A of China Expo Center (Shanghai) is studied using the Bayesian-maximum entropy method. This method integrates rigorously and efficiently multi-precision of different geotechnical investigations and sources of uncertainty. Single CPT samplings were modeled as a rational probability density curve by maximum entropy theory. Spatial prior multivariate probability density function (PDF) and likelihood PDF of the CPT positions were built by borehole experiments and the potential value of the prediction point, then, preceding numerical integration on the CPT probability density curves, the posterior probability density curve of the prediction point would be calculated by the Bayesian reverse interpolation framework. The results were compared between Gaussian Sequential Stochastic Simulation and Bayesian methods. The differences were also discussed between single CPT samplings of normal distribution and simulated probability density curve based on maximum entropy theory. It is shown that the study of Es spatial distributions can be improved by properly incorporating CPT sampling variation into interpolation process, whereas more informative estimations are generated by considering CPT Uncertainty for the estimation points. Calculation illustrates the significance of stochastic Es characterization in a stratum, and identifies limitations associated with inadequate geostatistical interpolation techniques. This characterization results will provide a multi-precision information assimilation method of other geotechnical parameters.

  2. Hybrid neural network for density limit disruption prediction and avoidance on J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Zheng, W.; Hu, F. R.; Zhang, M.; Chen, Z. Y.; Zhao, X. Q.; Wang, X. L.; Shi, P.; Zhang, X. L.; Zhang, X. Q.; Zhou, Y. N.; Wei, Y. N.; Pan, Y.; J-TEXT team

    2018-05-01

    Increasing the plasma density is one of the key methods in achieving an efficient fusion reaction. High-density operation is one of the hot topics in tokamak plasmas. Density limit disruptions remain an important issue for safe operation. An effective density limit disruption prediction and avoidance system is the key to avoid density limit disruptions for long pulse steady state operations. An artificial neural network has been developed for the prediction of density limit disruptions on the J-TEXT tokamak. The neural network has been improved from a simple multi-layer design to a hybrid two-stage structure. The first stage is a custom network which uses time series diagnostics as inputs to predict plasma density, and the second stage is a three-layer feedforward neural network to predict the probability of density limit disruptions. It is found that hybrid neural network structure, combined with radiation profile information as an input can significantly improve the prediction performance, especially the average warning time ({{T}warn} ). In particular, the {{T}warn} is eight times better than that in previous work (Wang et al 2016 Plasma Phys. Control. Fusion 58 055014) (from 5 ms to 40 ms). The success rate for density limit disruptive shots is above 90%, while, the false alarm rate for other shots is below 10%. Based on the density limit disruption prediction system and the real-time density feedback control system, the on-line density limit disruption avoidance system has been implemented on the J-TEXT tokamak.

  3. Assessing future vent opening locations at the Somma-Vesuvio volcanic complex: 2. Probability maps of the caldera for a future Plinian/sub-Plinian event with uncertainty quantification

    NASA Astrophysics Data System (ADS)

    Tadini, A.; Bevilacqua, A.; Neri, A.; Cioni, R.; Aspinall, W. P.; Bisson, M.; Isaia, R.; Mazzarini, F.; Valentine, G. A.; Vitale, S.; Baxter, P. J.; Bertagnini, A.; Cerminara, M.; de Michieli Vitturi, M.; Di Roberto, A.; Engwell, S.; Esposti Ongaro, T.; Flandoli, F.; Pistolesi, M.

    2017-06-01

    In this study, we combine reconstructions of volcanological data sets and inputs from a structured expert judgment to produce a first long-term probability map for vent opening location for the next Plinian or sub-Plinian eruption of Somma-Vesuvio. In the past, the volcano has exhibited significant spatial variability in vent location; this can exert a significant control on where hazards materialize (particularly of pyroclastic density currents). The new vent opening probability mapping has been performed through (i) development of spatial probability density maps with Gaussian kernel functions for different data sets and (ii) weighted linear combination of these spatial density maps. The epistemic uncertainties affecting these data sets were quantified explicitly with expert judgments and implemented following a doubly stochastic approach. Various elicitation pooling metrics and subgroupings of experts and target questions were tested to evaluate the robustness of outcomes. Our findings indicate that (a) Somma-Vesuvio vent opening probabilities are distributed inside the whole caldera, with a peak corresponding to the area of the present crater, but with more than 50% probability that the next vent could open elsewhere within the caldera; (b) there is a mean probability of about 30% that the next vent will open west of the present edifice; (c) there is a mean probability of about 9.5% that the next medium-large eruption will enlarge the present Somma-Vesuvio caldera, and (d) there is a nonnegligible probability (mean value of 6-10%) that the next Plinian or sub-Plinian eruption will have its initial vent opening outside the present Somma-Vesuvio caldera.

  4. Electronic resonant tunneling on graphene superlattice heterostructures with a tunable graphene layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Shan; Cui, Liyong; Liu, Fen

    We have theoretically investigated the electronic resonant tunneling effect in graphene superlattice heterostructures, where a tunable graphene layer is inserted between two different superlattices. It is found that a complete tunneling state appears inside the enlarged forbidden gap of the heterostructure by changing the thickness of the inserted graphene layer and the transmittance of the tunneling state depends on the thickness of the inserted layer. Furthermore, the frequency of the tunneling state changes with the thickness of the inserted graphene layer but it always located in the little overlapped forbidden gap of two graphene superlattices. Therefore, both a perfect tunnelingmore » state and an ultrawide forbidden gap are realized in such heterostrutures. Since maximum probability densities of the perfect tunneling state are highly localized near the interface between the inserted graphene layer and one graphene superlattice, it can be named as an interface-like state. Such structures are important to fabricate high-Q narrowband electron wave filters.« less

  5. Hierarchical modeling of an invasive spread: The eurasian collared-dove streptopelia decaocto in the United States

    USGS Publications Warehouse

    Bled, F.; Royle, J. Andrew; Cam, E.

    2011-01-01

    Invasive species are regularly claimed as the second threat to biodiversity. To apply a relevant response to the potential consequences associated with invasions (e.g., emphasize management efforts to prevent new colonization or to eradicate the species in places where it has already settled), it is essential to understand invasion mechanisms and dynamics. Quantifying and understanding what influences rates of spatial spread is a key research area for invasion theory. In this paper, we develop a model to account for occupancy dynamics of an invasive species. Our model extends existing models to accommodate several elements of invasive processes; we chose the framework of hierarchical modeling to assess site occupancy status during an invasion. First, we explicitly accounted for spatial structure and how distance among sites and position relative to one another affect the invasion spread. In particular, we accounted for the possibility of directional propagation and provided a way of estimating the direction of this possible spread. Second, we considered the influence of local density on site occupancy. Third, we decided to split the colonization process into two subprocesses, initial colonization and recolonization, which may be ground-breaking because these subprocesses may exhibit different relationships with environmental variations (such as density variation) or colonization history (e.g., initial colonization might facilitate further colonization events). Finally, our model incorporates imperfection in detection, which might be a source of substantial bias in estimating population parameters. We focused on the case of the Eurasian Collared-Dove (Streptopelia decaocto) and its invasion of the United States since its introduction in the early 1980s, using data from the North American BBS (Breeding Bird Survey). The Eurasian Collared-Dove is one of the most successful invasive species, at least among terrestrial vertebrates. Our model provided estimation of the spread direction consistent with empirical observations. Site persistence probability exhibits a quadratic response to density. We also succeeded at detecting differences in the relationship between density and initial colonization vs. recolonization probabilities. We provide a map of sites that may be colonized in the future as an example of possible practical application of our work. ?? 2011 by the Ecological Society of America.

  6. Fractional Brownian motion with a reflecting wall.

    PubMed

    Wada, Alexander H O; Vojta, Thomas

    2018-02-01

    Fractional Brownian motion, a stochastic process with long-time correlations between its increments, is a prototypical model for anomalous diffusion. We analyze fractional Brownian motion in the presence of a reflecting wall by means of Monte Carlo simulations. Whereas the mean-square displacement of the particle shows the expected anomalous diffusion behavior 〈x^{2}〉∼t^{α}, the interplay between the geometric confinement and the long-time memory leads to a highly non-Gaussian probability density function with a power-law singularity at the barrier. In the superdiffusive case α>1, the particles accumulate at the barrier leading to a divergence of the probability density. For subdiffusion α<1, in contrast, the probability density is depleted close to the barrier. We discuss implications of these findings, in particular, for applications that are dominated by rare events.

  7. Statistics of intensity in adaptive-optics images and their usefulness for detection and photometry of exoplanets.

    PubMed

    Gladysz, Szymon; Yaitskova, Natalia; Christou, Julian C

    2010-11-01

    This paper is an introduction to the problem of modeling the probability density function of adaptive-optics speckle. We show that with the modified Rician distribution one cannot describe the statistics of light on axis. A dual solution is proposed: the modified Rician distribution for off-axis speckle and gamma-based distribution for the core of the point spread function. From these two distributions we derive optimal statistical discriminators between real sources and quasi-static speckles. In the second part of the paper the morphological difference between the two probability density functions is used to constrain a one-dimensional, "blind," iterative deconvolution at the position of an exoplanet. Separation of the probability density functions of signal and speckle yields accurate differential photometry in our simulations of the SPHERE planet finder instrument.

  8. Physiological responses to acid stress by Saccharomyces cerevisiae when applying high initial cell density

    PubMed Central

    2016-01-01

    High initial cell density is used to increase volumetric productivity and shorten production time in lignocellulosic hydrolysate fermentation. Comparison of physiological parameters in high initial cell density cultivation of Saccharomyces cerevisiae in the presence of acetic, formic, levulinic and cinnamic acids demonstrated general and acid-specific responses of cells. All the acids studied impaired growth and inhibited glycolytic flux, and caused oxidative stress and accumulation of trehalose. However, trehalose may play a role other than protecting yeast cells from acid-induced oxidative stress. Unlike the other acids, cinnamic acid did not cause depletion of cellular ATP, but abolished the growth of yeast on ethanol. Compared with low initial cell density, increasing initial cell density reduced the lag phase and improved the bioconversion yield of cinnamic acid during acid adaptation. In addition, yeast cells were able to grow at elevated concentrations of acid, probable due to the increase in phenotypic cell-to-cell heterogeneity in large inoculum size. Furthermore, the specific growth rate and the specific rates of glucose consumption and metabolite production were significantly lower than at low initial cell density, which was a result of the accumulation of a large fraction of cells that persisted in a viable but non-proliferating state. PMID:27620460

  9. Transition properties from the Hermitian formulation of the coupled cluster polarization propagator

    NASA Astrophysics Data System (ADS)

    Tucholska, Aleksandra M.; Modrzejewski, Marcin; Moszynski, Robert

    2014-09-01

    Theory of one-electron transition density matrices has been formulated within the time-independent coupled cluster method for the polarization propagator [R. Moszynski, P. S. Żuchowski, and B. Jeziorski, Coll. Czech. Chem. Commun. 70, 1109 (2005)]. Working expressions have been obtained and implemented with the coupled cluster method limited to single, double, and linear triple excitations (CC3). Selected dipole and quadrupole transition probabilities of the alkali earth atoms, computed with the new transition density matrices are compared to the experimental data. Good agreement between theory and experiment is found. The results obtained with the new approach are of the same quality as the results obtained with the linear response coupled cluster theory. The one-electron density matrices for the ground state in the CC3 approximation have also been implemented. The dipole moments for a few representative diatomic molecules have been computed with several variants of the new approach, and the results are discussed to choose the approximation with the best balance between the accuracy and computational efficiency.

  10. Global asymptotic stability of plant-seed bank models.

    PubMed

    Eager, Eric Alan; Rebarber, Richard; Tenhumberg, Brigitte

    2014-07-01

    Many plant populations have persistent seed banks, which consist of viable seeds that remain dormant in the soil for many years. Seed banks are important for plant population dynamics because they buffer against environmental perturbations and reduce the probability of extinction. Viability of the seeds in the seed bank can depend on the seed's age, hence it is important to keep track of the age distribution of seeds in the seed bank. In this paper we construct a general density-dependent plant-seed bank model where the seed bank is age-structured. We consider density dependence in both seedling establishment and seed production, since previous work has highlighted that overcrowding can suppress both of these processes. Under certain assumptions on the density dependence, we prove that there is a globally stable equilibrium population vector which is independent of the initial state. We derive an analytical formula for the equilibrium population using methods from feedback control theory. We apply these results to a model for the plant species Cirsium palustre and its seed bank.

  11. Modeling the subfilter scalar variance for large eddy simulation in forced isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Cheminet, Adam; Blanquart, Guillaume

    2011-11-01

    Static and dynamic model for the subfilter scalar variance in homogeneous isotropic turbulence are investigated using direct numerical simulations (DNS) of a lineary forced passive scalar field. First, we introduce a new scalar forcing technique conditioned only on the scalar field which allows the fluctuating scalar field to reach a statistically stationary state. Statistical properties, including 2nd and 3rd statistical moments, spectra, and probability density functions of the scalar field have been analyzed. Using this technique, we performed constant density and variable density DNS of scalar mixing in isotropic turbulence. The results are used in an a-priori study of scalar variance models. Emphasis is placed on further studying the dynamic model introduced by G. Balarac, H. Pitsch and V. Raman [Phys. Fluids 20, (2008)]. Scalar variance models based on Bedford and Yeo's expansion are accurate for small filter width but errors arise in the inertial subrange. Results suggest that a constant coefficient computed from an assumed Kolmogorov spectrum is often sufficient to predict the subfilter scalar variance.

  12. Parasite transmission in social interacting hosts: Monogenean epidemics in guppies

    USGS Publications Warehouse

    Johnson, M.B.; Lafferty, K.D.; van, Oosterhout C.; Cable, J.

    2011-01-01

    Background: Infection incidence increases with the average number of contacts between susceptible and infected individuals. Contact rates are normally assumed to increase linearly with host density. However, social species seek out each other at low density and saturate their contact rates at high densities. Although predicting epidemic behaviour requires knowing how contact rates scale with host density, few empirical studies have investigated the effect of host density. Also, most theory assumes each host has an equal probability of transmitting parasites, even though individual parasite load and infection duration can vary. To our knowledge, the relative importance of characteristics of the primary infected host vs. the susceptible population has never been tested experimentally. Methodology/Principal Findings: Here, we examine epidemics using a common ectoparasite, Gyrodactylus turnbulli infecting its guppy host (Poecilia reticulata). Hosts were maintained at different densities (3, 6, 12 and 24 fish in 40 L aquaria), and we monitored gyrodactylids both at a population and individual host level. Although parasite population size increased with host density, the probability of an epidemic did not. Epidemics were more likely when the primary infected fish had a high mean intensity and duration of infection. Epidemics only occurred if the primary infected host experienced more than 23 worm days. Female guppies contracted infections sooner than males, probably because females have a higher propensity for shoaling. Conclusions/Significance: These findings suggest that in social hosts like guppies, the frequency of social contact largely governs disease epidemics independent of host density. ?? 2011 Johnson et al.

  13. Parasite transmission in social interacting hosts: Monogenean epidemics in guppies

    USGS Publications Warehouse

    Johnson, Mirelle B.; Lafferty, Kevin D.; van Oosterhout, Cock; Cable, Joanne

    2011-01-01

    Background Infection incidence increases with the average number of contacts between susceptible and infected individuals. Contact rates are normally assumed to increase linearly with host density. However, social species seek out each other at low density and saturate their contact rates at high densities. Although predicting epidemic behaviour requires knowing how contact rates scale with host density, few empirical studies have investigated the effect of host density. Also, most theory assumes each host has an equal probability of transmitting parasites, even though individual parasite load and infection duration can vary. To our knowledge, the relative importance of characteristics of the primary infected host vs. the susceptible population has never been tested experimentally. Methodology/Principal Findings Here, we examine epidemics using a common ectoparasite, Gyrodactylus turnbulli infecting its guppy host (Poecilia reticulata). Hosts were maintained at different densities (3, 6, 12 and 24 fish in 40 L aquaria), and we monitored gyrodactylids both at a population and individual host level. Although parasite population size increased with host density, the probability of an epidemic did not. Epidemics were more likely when the primary infected fish had a high mean intensity and duration of infection. Epidemics only occurred if the primary infected host experienced more than 23 worm days. Female guppies contracted infections sooner than males, probably because females have a higher propensity for shoaling. Conclusions/Significance These findings suggest that in social hosts like guppies, the frequency of social contact largely governs disease epidemics independent of host density.

  14. Randomized path optimization for thevMitigated counter detection of UAVS

    DTIC Science & Technology

    2017-06-01

    using Bayesian filtering . The KL divergence is used to compare the probability density of aircraft termination to a normal distribution around the...Bayesian filtering . The KL divergence is used to compare the probability density of aircraft termination to a normal distribution around the true terminal...algorithm’s success. A recursive Bayesian filtering scheme is used to assimilate noisy measurements of the UAVs position to predict its terminal location. We

  15. Effects of environmental covariates and density on the catchability of fish populations and interpretation of catch per unit effort trends

    USGS Publications Warehouse

    Korman, Josh; Yard, Mike

    2017-01-01

    Article for outlet: Fisheries Research. Abstract: Quantifying temporal and spatial trends in abundance or relative abundance is required to evaluate effects of harvest and changes in habitat for exploited and endangered fish populations. In many cases, the proportion of the population or stock that is captured (catchability or capture probability) is unknown but is often assumed to be constant over space and time. We used data from a large-scale mark-recapture study to evaluate the extent of spatial and temporal variation, and the effects of fish density, fish size, and environmental covariates, on the capture probability of rainbow trout (Oncorhynchus mykiss) in the Colorado River, AZ. Estimates of capture probability for boat electrofishing varied 5-fold across five reaches, 2.8-fold across the range of fish densities that were encountered, 2.1-fold over 19 trips, and 1.6-fold over five fish size classes. Shoreline angle and turbidity were the best covariates explaining variation in capture probability across reaches and trips. Patterns in capture probability were driven by changes in gear efficiency and spatial aggregation, but the latter was more important. Failure to account for effects of fish density on capture probability when translating a historical catch per unit effort time series into a time series of abundance, led to 2.5-fold underestimation of the maximum extent of variation in abundance over the period of record, and resulted in unreliable estimates of relative change in critical years. Catch per unit effort surveys have utility for monitoring long-term trends in relative abundance, but are too imprecise and potentially biased to evaluate population response to habitat changes or to modest changes in fishing effort.

  16. Wavefronts, actions and caustics determined by the probability density of an Airy beam

    NASA Astrophysics Data System (ADS)

    Espíndola-Ramos, Ernesto; Silva-Ortigoza, Gilberto; Sosa-Sánchez, Citlalli Teresa; Julián-Macías, Israel; de Jesús Cabrera-Rosas, Omar; Ortega-Vidals, Paula; Alejandro Juárez-Reyes, Salvador; González-Juárez, Adriana; Silva-Ortigoza, Ramón

    2018-07-01

    The main contribution of the present work is to use the probability density of an Airy beam to identify its maxima with the family of caustics associated with the wavefronts determined by the level curves of a one-parameter family of solutions to the Hamilton–Jacobi equation with a given potential. To this end, we give a classical mechanics characterization of a solution of the one-dimensional Schrödinger equation in free space determined by a complete integral of the Hamilton–Jacobi and Laplace equations in free space. That is, with this type of solution, we associate a two-parameter family of wavefronts in the spacetime, which are the level curves of a one-parameter family of solutions to the Hamilton–Jacobi equation with a determined potential, and a one-parameter family of caustics. The general results are applied to an Airy beam to show that the maxima of its probability density provide a discrete set of: caustics, wavefronts and potentials. The results presented here are a natural generalization of those obtained by Berry and Balazs in 1979 for an Airy beam. Finally, we remark that, in a natural manner, each maxima of the probability density of an Airy beam determines a Hamiltonian system.

  17. Status of the desert tortoise in Red Rock Canyon State Park

    USGS Publications Warehouse

    Berry, Kristin H.; Keith, Kevin; Bailey, Tracy Y.

    2008-01-01

    We surveyed for desert tortoises, Gopherus agassizii, in the western part of Red Rock Canyon State Park and watershed in eastern Kern County, California, between 2002 and 2004. We used two techniques: a single demographic plot (~4 km2 ) and 37 landscape plots (1-ha each). We estimated population densities of tortoises to be between 2.7 and 3.57/km2 and the population in the Park to be 108 tortoises. We estimated the death rate at 67% for subadults and adults during the last 4 yrs. Mortality was high for several reasons: gunshot deaths, avian predation, mammalian predation, and probably disease. Historic and recent anthropogenic impacts from State Highway 14, secondary roads, trash, cross-country vehicle tracks, and livestock have contributed to elevated death rates and degradation of habitat. We propose conservation actions to reduce mortality.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Travis A.; Kashinath, Karthik; Cavanaugh, Nicholas R.

    Numerous facets of scientific research implicitly or explicitly call for the estimation of probability densities. Histograms and kernel density estimates (KDEs) are two commonly used techniques for estimating such information, with the KDE generally providing a higher fidelity representation of the probability density function (PDF). Both methods require specification of either a bin width or a kernel bandwidth. While techniques exist for choosing the kernel bandwidth optimally and objectively, they are computationally intensive, since they require repeated calculation of the KDE. A solution for objectively and optimally choosing both the kernel shape and width has recently been developed by Bernacchiamore » and Pigolotti (2011). While this solution theoretically applies to multidimensional KDEs, it has not been clear how to practically do so. A method for practically extending the Bernacchia-Pigolotti KDE to multidimensions is introduced. This multidimensional extension is combined with a recently-developed computational improvement to their method that makes it computationally efficient: a 2D KDE on 10 5 samples only takes 1 s on a modern workstation. This fast and objective KDE method, called the fastKDE method, retains the excellent statistical convergence properties that have been demonstrated for univariate samples. The fastKDE method exhibits statistical accuracy that is comparable to state-of-the-science KDE methods publicly available in R, and it produces kernel density estimates several orders of magnitude faster. The fastKDE method does an excellent job of encoding covariance information for bivariate samples. This property allows for direct calculation of conditional PDFs with fastKDE. It is demonstrated how this capability might be leveraged for detecting non-trivial relationships between quantities in physical systems, such as transitional behavior.« less

  19. Two is better than one: joint statistics of density and velocity in concentric spheres as a cosmological probe

    NASA Astrophysics Data System (ADS)

    Uhlemann, C.; Codis, S.; Hahn, O.; Pichon, C.; Bernardeau, F.

    2017-08-01

    The analytical formalism to obtain the probability distribution functions (PDFs) of spherically averaged cosmic densities and velocity divergences in the mildly non-linear regime is presented. A large-deviation principle is applied to those cosmic fields assuming their most likely dynamics in spheres is set by the spherical collapse model. We validate our analytical results using state-of-the-art dark matter simulations with a phase-space resolved velocity field finding a 2 per cent level agreement for a wide range of velocity divergences and densities in the mildly non-linear regime (˜10 Mpc h-1 at redshift zero), usually inaccessible to perturbation theory. From the joint PDF of densities and velocity divergences measured in two concentric spheres, we extract with the same accuracy velocity profiles and conditional velocity PDF subject to a given over/underdensity that are of interest to understand the non-linear evolution of velocity flows. Both PDFs are used to build a simple but accurate maximum likelihood estimator for the redshift evolution of the variance of both the density and velocity divergence fields, which have smaller relative errors than their sample variances when non-linearities appear. Given the dependence of the velocity divergence on the growth rate, there is a significant gain in using the full knowledge of both PDFs to derive constraints on the equation of state-of-dark energy. Thanks to the insensitivity of the velocity divergence to bias, its PDF can be used to obtain unbiased constraints on the growth of structures (σ8, f) or it can be combined with the galaxy density PDF to extract bias parameters.

  20. Solving the chemical master equation using sliding windows

    PubMed Central

    2010-01-01

    Background The chemical master equation (CME) is a system of ordinary differential equations that describes the evolution of a network of chemical reactions as a stochastic process. Its solution yields the probability density vector of the system at each point in time. Solving the CME numerically is in many cases computationally expensive or even infeasible as the number of reachable states can be very large or infinite. We introduce the sliding window method, which computes an approximate solution of the CME by performing a sequence of local analysis steps. In each step, only a manageable subset of states is considered, representing a "window" into the state space. In subsequent steps, the window follows the direction in which the probability mass moves, until the time period of interest has elapsed. We construct the window based on a deterministic approximation of the future behavior of the system by estimating upper and lower bounds on the populations of the chemical species. Results In order to show the effectiveness of our approach, we apply it to several examples previously described in the literature. The experimental results show that the proposed method speeds up the analysis considerably, compared to a global analysis, while still providing high accuracy. Conclusions The sliding window method is a novel approach to address the performance problems of numerical algorithms for the solution of the chemical master equation. The method efficiently approximates the probability distributions at the time points of interest for a variety of chemically reacting systems, including systems for which no upper bound on the population sizes of the chemical species is known a priori. PMID:20377904

  1. Kinetic Monte Carlo simulations of nucleation and growth in electrodeposition.

    PubMed

    Guo, Lian; Radisic, Aleksandar; Searson, Peter C

    2005-12-22

    Nucleation and growth during bulk electrodeposition is studied using kinetic Monte Carlo (KMC) simulations. Ion transport in solution is modeled using Brownian dynamics, and the kinetics of nucleation and growth are dependent on the probabilities of metal-on-substrate and metal-on-metal deposition. Using this approach, we make no assumptions about the nucleation rate, island density, or island distribution. The influence of the attachment probabilities and concentration on the time-dependent island density and current transients is reported. Various models have been assessed by recovering the nucleation rate and island density from the current-time transients.

  2. Cetacean population density estimation from single fixed sensors using passive acoustics.

    PubMed

    Küsel, Elizabeth T; Mellinger, David K; Thomas, Len; Marques, Tiago A; Moretti, David; Ward, Jessica

    2011-06-01

    Passive acoustic methods are increasingly being used to estimate animal population density. Most density estimation methods are based on estimates of the probability of detecting calls as functions of distance. Typically these are obtained using receivers capable of localizing calls or from studies of tagged animals. However, both approaches are expensive to implement. The approach described here uses a MonteCarlo model to estimate the probability of detecting calls from single sensors. The passive sonar equation is used to predict signal-to-noise ratios (SNRs) of received clicks, which are then combined with a detector characterization that predicts probability of detection as a function of SNR. Input distributions for source level, beam pattern, and whale depth are obtained from the literature. Acoustic propagation modeling is used to estimate transmission loss. Other inputs for density estimation are call rate, obtained from the literature, and false positive rate, obtained from manual analysis of a data sample. The method is applied to estimate density of Blainville's beaked whales over a 6-day period around a single hydrophone located in the Tongue of the Ocean, Bahamas. Results are consistent with those from previous analyses, which use additional tag data. © 2011 Acoustical Society of America

  3. Probabilistic-driven oriented Speckle reducing anisotropic diffusion with application to cardiac ultrasonic images.

    PubMed

    Vegas-Sanchez-Ferrero, G; Aja-Fernandez, S; Martin-Fernandez, M; Frangi, A F; Palencia, C

    2010-01-01

    A novel anisotropic diffusion filter is proposed in this work with application to cardiac ultrasonic images. It includes probabilistic models which describe the probability density function (PDF) of tissues and adapts the diffusion tensor to the image iteratively. For this purpose, a preliminary study is performed in order to select the probability models that best fit the stastitical behavior of each tissue class in cardiac ultrasonic images. Then, the parameters of the diffusion tensor are defined taking into account the statistical properties of the image at each voxel. When the structure tensor of the probability of belonging to each tissue is included in the diffusion tensor definition, a better boundaries estimates can be obtained instead of calculating directly the boundaries from the image. This is the main contribution of this work. Additionally, the proposed method follows the statistical properties of the image in each iteration. This is considered as a second contribution since state-of-the-art methods suppose that noise or statistical properties of the image do not change during the filter process.

  4. Probability Current in Hydrogen with Spin-Orbit Interaction

    NASA Astrophysics Data System (ADS)

    Hodge, William; Migirditch, Sam; Kerr, William

    2013-03-01

    The spin-orbit interaction is a coupling between a particle's spin and its motion. The Hamiltonian for a spin- 1 / 2 particle which includes this coupling is H =p2/2 m + V (x) +∇/V (x) × p 2m2c2 . S . To describe the flow of probability in this system, we derive the continuity equation, which takes the usual form. In this case, however, we find the probability current density j (x , t) to be the sum of two terms. The first term is the one obtained by most quantum mechanics textbooks during their derivation of the continuity equation. The second term, js (x , t) =1/2m2c2 ∑ σ , σ ' = ↑ , ↓ [ ψ* (x , σ , t) < σ | S | σ ' > ψ (x , σ ' , t) ] × ∇ V (x) , arises due to the inclusion of the spin-orbit term in the Hamiltonian and is small compared to the first. Using a perturbative treatment, we calculate j (x , t) for hydrogenlike atoms; for states with l = 0 , we find that j (x , t) =js (x , t) .

  5. From Inverse Problems in Mathematical Physiology to Quantitative Differential Diagnoses

    PubMed Central

    Zenker, Sven; Rubin, Jonathan; Clermont, Gilles

    2007-01-01

    The improved capacity to acquire quantitative data in a clinical setting has generally failed to improve outcomes in acutely ill patients, suggesting a need for advances in computer-supported data interpretation and decision making. In particular, the application of mathematical models of experimentally elucidated physiological mechanisms could augment the interpretation of quantitative, patient-specific information and help to better target therapy. Yet, such models are typically complex and nonlinear, a reality that often precludes the identification of unique parameters and states of the model that best represent available data. Hypothesizing that this non-uniqueness can convey useful information, we implemented a simplified simulation of a common differential diagnostic process (hypotension in an acute care setting), using a combination of a mathematical model of the cardiovascular system, a stochastic measurement model, and Bayesian inference techniques to quantify parameter and state uncertainty. The output of this procedure is a probability density function on the space of model parameters and initial conditions for a particular patient, based on prior population information together with patient-specific clinical observations. We show that multimodal posterior probability density functions arise naturally, even when unimodal and uninformative priors are used. The peaks of these densities correspond to clinically relevant differential diagnoses and can, in the simplified simulation setting, be constrained to a single diagnosis by assimilating additional observations from dynamical interventions (e.g., fluid challenge). We conclude that the ill-posedness of the inverse problem in quantitative physiology is not merely a technical obstacle, but rather reflects clinical reality and, when addressed adequately in the solution process, provides a novel link between mathematically described physiological knowledge and the clinical concept of differential diagnoses. We outline possible steps toward translating this computational approach to the bedside, to supplement today's evidence-based medicine with a quantitatively founded model-based medicine that integrates mechanistic knowledge with patient-specific information. PMID:17997590

  6. Oak regeneration and overstory density in the Missouri Ozarks

    Treesearch

    David R. Larsen; Monte A. Metzger

    1997-01-01

    Reducing overstory density is a commonly recommended method of increasing the regeneration potential of oak (Quercus) forests. However, recommendations seldom specify the probable increase in density or the size of reproduction associated with a given residual overstory density. This paper presents logistic regression models that describe this...

  7. Particle Filter with State Permutations for Solving Image Jigsaw Puzzles

    PubMed Central

    Yang, Xingwei; Adluru, Nagesh; Latecki, Longin Jan

    2016-01-01

    We deal with an image jigsaw puzzle problem, which is defined as reconstructing an image from a set of square and non-overlapping image patches. It is known that a general instance of this problem is NP-complete, and it is also challenging for humans, since in the considered setting the original image is not given. Recently a graphical model has been proposed to solve this and related problems. The target label probability function is then maximized using loopy belief propagation. We also formulate the problem as maximizing a label probability function and use exactly the same pairwise potentials. Our main contribution is a novel inference approach in the sampling framework of Particle Filter (PF). Usually in the PF framework it is assumed that the observations arrive sequentially, e.g., the observations are naturally ordered by their time stamps in the tracking scenario. Based on this assumption, the posterior density over the corresponding hidden states is estimated. In the jigsaw puzzle problem all observations (puzzle pieces) are given at once without any particular order. Therefore, we relax the assumption of having ordered observations and extend the PF framework to estimate the posterior density by exploring different orders of observations and selecting the most informative permutations of observations. This significantly broadens the scope of applications of the PF inference. Our experimental results demonstrate that the proposed inference framework significantly outperforms the loopy belief propagation in solving the image jigsaw puzzle problem. In particular, the extended PF inference triples the accuracy of the label assignment compared to that using loopy belief propagation. PMID:27795660

  8. A new approach to the problem of bulk-mediated surface diffusion.

    PubMed

    Berezhkovskii, Alexander M; Dagdug, Leonardo; Bezrukov, Sergey M

    2015-08-28

    This paper is devoted to bulk-mediated surface diffusion of a particle which can diffuse both on a flat surface and in the bulk layer above the surface. It is assumed that the particle is on the surface initially (at t = 0) and at time t, while in between it may escape from the surface and come back any number of times. We propose a new approach to the problem, which reduces its solution to that of a two-state problem of the particle transitions between the surface and the bulk layer, focusing on the cumulative residence times spent by the particle in the two states. These times are random variables, the sum of which is equal to the total observation time t. The advantage of the proposed approach is that it allows for a simple exact analytical solution for the double Laplace transform of the conditional probability density of the cumulative residence time spent on the surface by the particle observed for time t. This solution is used to find the Laplace transform of the particle mean square displacement and to analyze the peculiarities of its time behavior over the entire range of time. We also establish a relation between the double Laplace transform of the conditional probability density and the Fourier-Laplace transform of the particle propagator over the surface. The proposed approach treats the cases of both finite and infinite bulk layer thicknesses (where bulk-mediated surface diffusion is normal and anomalous at asymptotically long times, respectively) on equal footing.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez, O.; Roa, Luis; Delgado, A.

    We study the probabilistic cloning of equidistant states. These states are such that the inner product between them is a complex constant or its conjugate. Thereby, it is possible to study their cloning in a simple way. In particular, we are interested in the behavior of the cloning probability as a function of the phase of the overlap among the involved states. We show that for certain families of equidistant states Duan and Guo's cloning machine leads to cloning probabilities lower than the optimal unambiguous discrimination probability of equidistant states. We propose an alternative cloning machine whose cloning probability ismore » higher than or equal to the optimal unambiguous discrimination probability for any family of equidistant states. Both machines achieve the same probability for equidistant states whose inner product is a positive real number.« less

  10. Aging ballistic Lévy walks

    NASA Astrophysics Data System (ADS)

    Magdziarz, Marcin; Zorawik, Tomasz

    2017-02-01

    Aging can be observed for numerous physical systems. In such systems statistical properties [like probability distribution, mean square displacement (MSD), first-passage time] depend on a time span ta between the initialization and the beginning of observations. In this paper we study aging properties of ballistic Lévy walks and two closely related jump models: wait-first and jump-first. We calculate explicitly their probability distributions and MSDs. It turns out that despite similarities these models react very differently to the delay ta. Aging weakly affects the shape of probability density function and MSD of standard Lévy walks. For the jump models the shape of the probability density function is changed drastically. Moreover for the wait-first jump model we observe a different behavior of MSD when ta≪t and ta≫t .

  11. Coarsening and persistence in a one-dimensional system of orienting arrowheads: Domain-wall kinetics with A +B →0

    NASA Astrophysics Data System (ADS)

    Khandkar, Mahendra D.; Stinchcombe, Robin; Barma, Mustansir

    2017-01-01

    We demonstrate the large-scale effects of the interplay between shape and hard-core interactions in a system with left- and right-pointing arrowheads <> on a line, with reorientation dynamics. This interplay leads to the formation of two types of domain walls, >< (A ) and <> (B ). The correlation length in the equilibrium state diverges exponentially with increasing arrowhead density, with an ordered state of like orientations arising in the limit. In this high-density limit, the A domain walls diffuse, while the B walls are static. In time, the approach to the ordered state is described by a coarsening process governed by the kinetics of domain-wall annihilation A +B →0 , quite different from the A +A →0 kinetics pertinent to the Glauber-Ising model. The survival probability of a finite set of walls is shown to decay exponentially with time, in contrast to the power-law decay known for A +A →0 . In the thermodynamic limit with a finite density of walls, coarsening as a function of time t is studied by simulation. While the number of walls falls as t-1/2, the fraction of persistent arrowheads decays as t-θ where θ is close to 1/4 , quite different from the Ising value. The global persistence too has θ =1/4 , as follows from a heuristic argument. In a generalization where the B walls diffuse slowly, θ varies continuously, increasing with increasing diffusion constant.

  12. Coarsening and persistence in a one-dimensional system of orienting arrowheads: Domain-wall kinetics with A+B→0.

    PubMed

    Khandkar, Mahendra D; Stinchcombe, Robin; Barma, Mustansir

    2017-01-01

    We demonstrate the large-scale effects of the interplay between shape and hard-core interactions in a system with left- and right-pointing arrowheads <> on a line, with reorientation dynamics. This interplay leads to the formation of two types of domain walls, >< (A) and <> (B). The correlation length in the equilibrium state diverges exponentially with increasing arrowhead density, with an ordered state of like orientations arising in the limit. In this high-density limit, the A domain walls diffuse, while the B walls are static. In time, the approach to the ordered state is described by a coarsening process governed by the kinetics of domain-wall annihilation A+B→0, quite different from the A+A→0 kinetics pertinent to the Glauber-Ising model. The survival probability of a finite set of walls is shown to decay exponentially with time, in contrast to the power-law decay known for A+A→0. In the thermodynamic limit with a finite density of walls, coarsening as a function of time t is studied by simulation. While the number of walls falls as t^{-1/2}, the fraction of persistent arrowheads decays as t^{-θ} where θ is close to 1/4, quite different from the Ising value. The global persistence too has θ=1/4, as follows from a heuristic argument. In a generalization where the B walls diffuse slowly, θ varies continuously, increasing with increasing diffusion constant.

  13. On Orbital Elements of Extrasolar Planetary Candidates and Spectroscopic Binaries

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Black, D. C.

    2001-01-01

    We estimate probability densities of orbital elements, periods, and eccentricities, for the population of extrasolar planetary candidates (EPC) and, separately, for the population of spectroscopic binaries (SB) with solar-type primaries. We construct empirical cumulative distribution functions (CDFs) in order to infer probability distribution functions (PDFs) for orbital periods and eccentricities. We also derive a joint probability density for period-eccentricity pairs in each population. Comparison of respective distributions reveals that in all cases EPC and SB populations are, in the context of orbital elements, indistinguishable from each other to a high degree of statistical significance. Probability densities of orbital periods in both populations have P(exp -1) functional form, whereas the PDFs of eccentricities can he best characterized as a Gaussian with a mean of about 0.35 and standard deviation of about 0.2 turning into a flat distribution at small values of eccentricity. These remarkable similarities between EPC and SB must be taken into account by theories aimed at explaining the origin of extrasolar planetary candidates, and constitute an important clue us to their ultimate nature.

  14. Benchmarks for detecting 'breakthroughs' in clinical trials: empirical assessment of the probability of large treatment effects using kernel density estimation.

    PubMed

    Miladinovic, Branko; Kumar, Ambuj; Mhaskar, Rahul; Djulbegovic, Benjamin

    2014-10-21

    To understand how often 'breakthroughs,' that is, treatments that significantly improve health outcomes, can be developed. We applied weighted adaptive kernel density estimation to construct the probability density function for observed treatment effects from five publicly funded cohorts and one privately funded group. 820 trials involving 1064 comparisons and enrolling 331,004 patients were conducted by five publicly funded cooperative groups. 40 cancer trials involving 50 comparisons and enrolling a total of 19,889 patients were conducted by GlaxoSmithKline. We calculated that the probability of detecting treatment with large effects is 10% (5-25%), and that the probability of detecting treatment with very large treatment effects is 2% (0.3-10%). Researchers themselves judged that they discovered a new, breakthrough intervention in 16% of trials. We propose these figures as the benchmarks against which future development of 'breakthrough' treatments should be measured. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. In Search of Sleep Biomarkers of Alzheimer’s Disease: K-Complexes Do Not Discriminate between Patients with Mild Cognitive Impairment and Healthy Controls

    PubMed Central

    Reda, Flaminia; Gorgoni, Maurizio; Lauri, Giulia; Truglia, Ilaria; Cordone, Susanna; Scarpelli, Serena; Mangiaruga, Anastasia; D’Atri, Aurora; Ferrara, Michele; Lacidogna, Giordano; Marra, Camillo; Rossini, Paolo Maria; De Gennaro, Luigi

    2017-01-01

    The K-complex (KC) is one of the hallmarks of Non-Rapid Eye Movement (NREM) sleep. Recent observations point to a drastic decrease of spontaneous KCs in Alzheimer’s disease (AD). However, no study has investigated when, in the development of AD, this phenomenon starts. The assessment of KC density in mild cognitive impairment (MCI), a clinical condition considered a possible transitional stage between normal cognitive function and probable AD, is still lacking. The aim of the present study was to compare KC density in AD/MCI patients and healthy controls (HCs), also assessing the relationship between KC density and cognitive decline. Twenty amnesic MCI patients underwent a polysomnographic recording of a nocturnal sleep. Their data were compared to those of previously recorded 20 HCs and 20 AD patients. KCs during stage 2 NREM sleep were visually identified and KC densities of the three groups were compared. AD patients showed a significant KC density decrease compared with MCI patients and HCs, while no differences were observed between MCI patients and HCs. KC density was positively correlated with Mini-Mental State Examination (MMSE) scores. Our results point to the existence of an alteration of KC density only in a full-blown phase of AD, which was not observable in the early stage of the pathology (MCI), but linked with cognitive deterioration. PMID:28468235

  16. On the joint spectral density of bivariate random sequences. Thesis Technical Report No. 21

    NASA Technical Reports Server (NTRS)

    Aalfs, David D.

    1995-01-01

    For univariate random sequences, the power spectral density acts like a probability density function of the frequencies present in the sequence. This dissertation extends that concept to bivariate random sequences. For this purpose, a function called the joint spectral density is defined that represents a joint probability weighing of the frequency content of pairs of random sequences. Given a pair of random sequences, the joint spectral density is not uniquely determined in the absence of any constraints. Two approaches to constraining the sequences are suggested: (1) assume the sequences are the margins of some stationary random field, (2) assume the sequences conform to a particular model that is linked to the joint spectral density. For both approaches, the properties of the resulting sequences are investigated in some detail, and simulation is used to corroborate theoretical results. It is concluded that under either of these two constraints, the joint spectral density can be computed from the non-stationary cross-correlation.

  17. Solution of the finite Milne problem in stochastic media with RVT Technique

    NASA Astrophysics Data System (ADS)

    Slama, Howida; El-Bedwhey, Nabila A.; El-Depsy, Alia; Selim, Mustafa M.

    2017-12-01

    This paper presents the solution to the Milne problem in the steady state with isotropic scattering phase function. The properties of the medium are considered as stochastic ones with Gaussian or exponential distributions and hence the problem treated as a stochastic integro-differential equation. To get an explicit form for the radiant energy density, the linear extrapolation distance, reflectivity and transmissivity in the deterministic case the problem is solved using the Pomraning-Eddington method. The obtained solution is found to be dependent on the optical space variable and thickness of the medium which are considered as random variables. The random variable transformation (RVT) technique is used to find the first probability density function (1-PDF) of the solution process. Then the stochastic linear extrapolation distance, reflectivity and transmissivity are calculated. For illustration, numerical results with conclusions are provided.

  18. Use of generalized population ratios to obtain Fe XV line intensities and linewidths at high electron densities

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.; Bhatia, A. K.

    1980-01-01

    A generalized method for obtaining individual level population ratios is used to obtain relative intensities of extreme ultraviolet Fe XV emission lines in the range 284-500 A, which are density dependent for electron densities in the tokamak regime or higher. Four lines in particular are found to attain quite high intensities in the high-density limit. The same calculation provides inelastic contributions to linewidths. The method connects level populations and level widths through total probabilities t(ij), related to 'taboo' probabilities of Markov chain theory. The t(ij) are here evaluated for a real atomic system, being therefore of potential interest to random-walk theorists who have been limited to idealized systems characterized by simplified transition schemes.

  19. Use of generalized population ratios to obtain Fe XV line intensities and linewidths at high electron densities

    NASA Astrophysics Data System (ADS)

    Kastner, S. O.; Bhatia, A. K.

    1980-08-01

    A generalized method for obtaining individual level population ratios is used to obtain relative intensities of extreme ultraviolet Fe XV emission lines in the range 284-500 A, which are density dependent for electron densities in the tokamak regime or higher. Four lines in particular are found to attain quite high intensities in the high-density limit. The same calculation provides inelastic contributions to linewidths. The method connects level populations and level widths through total probabilities t(ij), related to 'taboo' probabilities of Markov chain theory. The t(ij) are here evaluated for a real atomic system, being therefore of potential interest to random-walk theorists who have been limited to idealized systems characterized by simplified transition schemes.

  20. The non-Gaussian joint probability density function of slope and elevation for a nonlinear gravity wave field. [in ocean surface

    NASA Technical Reports Server (NTRS)

    Huang, N. E.; Long, S. R.; Bliven, L. F.; Tung, C.-C.

    1984-01-01

    On the basis of the mapping method developed by Huang et al. (1983), an analytic expression for the non-Gaussian joint probability density function of slope and elevation for nonlinear gravity waves is derived. Various conditional and marginal density functions are also obtained through the joint density function. The analytic results are compared with a series of carefully controlled laboratory observations, and good agreement is noted. Furthermore, the laboratory wind wave field observations indicate that the capillary or capillary-gravity waves may not be the dominant components in determining the total roughness of the wave field. Thus, the analytic results, though derived specifically for the gravity waves, may have more general applications.

  1. Estimation of the four-wave mixing noise probability-density function by the multicanonical Monte Carlo method.

    PubMed

    Neokosmidis, Ioannis; Kamalakis, Thomas; Chipouras, Aristides; Sphicopoulos, Thomas

    2005-01-01

    The performance of high-powered wavelength-division multiplexed (WDM) optical networks can be severely degraded by four-wave-mixing- (FWM-) induced distortion. The multicanonical Monte Carlo method (MCMC) is used to calculate the probability-density function (PDF) of the decision variable of a receiver, limited by FWM noise. Compared with the conventional Monte Carlo method previously used to estimate this PDF, the MCMC method is much faster and can accurately estimate smaller error probabilities. The method takes into account the correlation between the components of the FWM noise, unlike the Gaussian model, which is shown not to provide accurate results.

  2. Effect of Non-speckle Echo Signals on Tissue Characteristics for Liver Fibrosis using Probability Density Function of Ultrasonic B-mode image

    NASA Astrophysics Data System (ADS)

    Mori, Shohei; Hirata, Shinnosuke; Yamaguchi, Tadashi; Hachiya, Hiroyuki

    To develop a quantitative diagnostic method for liver fibrosis using an ultrasound B-mode image, a probability imaging method of tissue characteristics based on a multi-Rayleigh model, which expresses a probability density function of echo signals from liver fibrosis, has been proposed. In this paper, an effect of non-speckle echo signals on tissue characteristics estimated from the multi-Rayleigh model was evaluated. Non-speckle signals were determined and removed using the modeling error of the multi-Rayleigh model. The correct tissue characteristics of fibrotic tissue could be estimated with the removal of non-speckle signals.

  3. Opinion evolution and rare events in an open community

    NASA Astrophysics Data System (ADS)

    Ye, Yusong; Yang, Zhuoqin; Zhang, Zili

    2016-11-01

    There are many multi-stable phenomena in society. To explain these multi-stable phenomena, we have studied opinion evolution in an open community. We focus on probability of transition (or the mean transition time) that the system transfer from one state to another. We suggest a bistable model to provide an interpretation of these phenomena. The quasi-potential method that we used is the most important method to calculate the transition time and it can be used to determine the whole probability density. We study the condition of bistability and then discuss rare events in a multi-stable system. In our model, we find that two parameters, ;temperature; and ;persuading intensity,; influence the behavior of the system; a suitable ;persuading intensity; and low ;temperature; make the system more stable. This means that the transition rarely happens. The asymmetric phenomenon caused by ;public-opinion; is also discussed.

  4. Delay-induced stochastic bifurcations in a bistable system under white noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Zhongkui, E-mail: sunzk@nwpu.edu.cn; Fu, Jin; Xu, Wei

    2015-08-15

    In this paper, the effects of noise and time delay on stochastic bifurcations are investigated theoretically and numerically in a time-delayed Duffing-Van der Pol oscillator subjected to white noise. Due to the time delay, the random response is not Markovian. Thereby, approximate methods have been adopted to obtain the Fokker-Planck-Kolmogorov equation and the stationary probability density function for amplitude of the response. Based on the knowledge that stochastic bifurcation is characterized by the qualitative properties of the steady-state probability distribution, it is found that time delay and feedback intensity as well as noise intensity will induce the appearance of stochasticmore » P-bifurcation. Besides, results demonstrated that the effects of the strength of the delayed displacement feedback on stochastic bifurcation are accompanied by the sensitive dependence on time delay. Furthermore, the results from numerical simulations best confirm the effectiveness of the theoretical analyses.« less

  5. Natural environment application for NASP-X-30 design and mission planning

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.; Hill, C. K.; Brown, S. C.; Batts, G. W.

    1993-01-01

    The NASA/MSFC Mission Analysis Program has recently been utilized in various National Aero-Space Plane (NASP) mission and operational planning scenarios. This paper focuses on presenting various atmospheric constraint statistics based on assumed NASP mission phases using established natural environment design, parametric, threshold values. Probabilities of no-go are calculated using atmospheric parameters such as temperature, humidity, density altitude, peak/steady-state winds, cloud cover/ceiling, thunderstorms, and precipitation. The program although developed to evaluate test or operational missions after flight constraints have been established, can provide valuable information in the design phase of the NASP X-30 program. Inputting the design values as flight constraints the Mission Analysis Program returns the probability of no-go, or launch delay, by hour by month. This output tells the X-30 program manager whether the design values are stringent enough to meet his required test flight schedules.

  6. Canonical-ensemble state-averaged complete active space self-consistent field (SA-CASSCF) strategy for problems with more diabatic than adiabatic states: Charge-bond resonance in monomethine cyanines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, Seth, E-mail: seth.olsen@uq.edu.au

    2015-01-28

    This paper reviews basic results from a theory of the a priori classical probabilities (weights) in state-averaged complete active space self-consistent field (SA-CASSCF) models. It addresses how the classical probabilities limit the invariance of the self-consistency condition to transformations of the complete active space configuration interaction (CAS-CI) problem. Such transformations are of interest for choosing representations of the SA-CASSCF solution that are diabatic with respect to some interaction. I achieve the known result that a SA-CASSCF can be self-consistently transformed only within degenerate subspaces of the CAS-CI ensemble density matrix. For uniformly distributed (“microcanonical”) SA-CASSCF ensembles, self-consistency is invariant tomore » any unitary CAS-CI transformation that acts locally on the ensemble support. Most SA-CASSCF applications in current literature are microcanonical. A problem with microcanonical SA-CASSCF models for problems with “more diabatic than adiabatic” states is described. The problem is that not all diabatic energies and couplings are self-consistently resolvable. A canonical-ensemble SA-CASSCF strategy is proposed to solve the problem. For canonical-ensemble SA-CASSCF, the equilibrated ensemble is a Boltzmann density matrix parametrized by its own CAS-CI Hamiltonian and a Lagrange multiplier acting as an inverse “temperature,” unrelated to the physical temperature. Like the convergence criterion for microcanonical-ensemble SA-CASSCF, the equilibration condition for canonical-ensemble SA-CASSCF is invariant to transformations that act locally on the ensemble CAS-CI density matrix. The advantage of a canonical-ensemble description is that more adiabatic states can be included in the support of the ensemble without running into convergence problems. The constraint on the dimensionality of the problem is relieved by the introduction of an energy constraint. The method is illustrated with a complete active space valence-bond (CASVB) analysis of the charge/bond resonance electronic structure of a monomethine cyanine: Michler’s hydrol blue. The diabatic CASVB representation is shown to vary weakly for “temperatures” corresponding to visible photon energies. Canonical-ensemble SA-CASSCF enables the resolution of energies and couplings for all covalent and ionic CASVB structures contributing to the SA-CASSCF ensemble. The CASVB solution describes resonance of charge- and bond-localized electronic structures interacting via bridge resonance superexchange. The resonance couplings can be separated into channels associated with either covalent charge delocalization or chemical bonding interactions, with the latter significantly stronger than the former.« less

  7. Canonical-ensemble state-averaged complete active space self-consistent field (SA-CASSCF) strategy for problems with more diabatic than adiabatic states: charge-bond resonance in monomethine cyanines.

    PubMed

    Olsen, Seth

    2015-01-28

    This paper reviews basic results from a theory of the a priori classical probabilities (weights) in state-averaged complete active space self-consistent field (SA-CASSCF) models. It addresses how the classical probabilities limit the invariance of the self-consistency condition to transformations of the complete active space configuration interaction (CAS-CI) problem. Such transformations are of interest for choosing representations of the SA-CASSCF solution that are diabatic with respect to some interaction. I achieve the known result that a SA-CASSCF can be self-consistently transformed only within degenerate subspaces of the CAS-CI ensemble density matrix. For uniformly distributed ("microcanonical") SA-CASSCF ensembles, self-consistency is invariant to any unitary CAS-CI transformation that acts locally on the ensemble support. Most SA-CASSCF applications in current literature are microcanonical. A problem with microcanonical SA-CASSCF models for problems with "more diabatic than adiabatic" states is described. The problem is that not all diabatic energies and couplings are self-consistently resolvable. A canonical-ensemble SA-CASSCF strategy is proposed to solve the problem. For canonical-ensemble SA-CASSCF, the equilibrated ensemble is a Boltzmann density matrix parametrized by its own CAS-CI Hamiltonian and a Lagrange multiplier acting as an inverse "temperature," unrelated to the physical temperature. Like the convergence criterion for microcanonical-ensemble SA-CASSCF, the equilibration condition for canonical-ensemble SA-CASSCF is invariant to transformations that act locally on the ensemble CAS-CI density matrix. The advantage of a canonical-ensemble description is that more adiabatic states can be included in the support of the ensemble without running into convergence problems. The constraint on the dimensionality of the problem is relieved by the introduction of an energy constraint. The method is illustrated with a complete active space valence-bond (CASVB) analysis of the charge/bond resonance electronic structure of a monomethine cyanine: Michler's hydrol blue. The diabatic CASVB representation is shown to vary weakly for "temperatures" corresponding to visible photon energies. Canonical-ensemble SA-CASSCF enables the resolution of energies and couplings for all covalent and ionic CASVB structures contributing to the SA-CASSCF ensemble. The CASVB solution describes resonance of charge- and bond-localized electronic structures interacting via bridge resonance superexchange. The resonance couplings can be separated into channels associated with either covalent charge delocalization or chemical bonding interactions, with the latter significantly stronger than the former.

  8. Laboratory-Tutorial Activities for Teaching Probability

    ERIC Educational Resources Information Center

    Wittmann, Michael C.; Morgan, Jeffrey T.; Feeley, Roger E.

    2006-01-01

    We report on the development of students' ideas of probability and probability density in a University of Maine laboratory-based general education physics course called "Intuitive Quantum Physics". Students in the course are generally math phobic with unfavorable expectations about the nature of physics and their ability to do it. We…

  9. Stream permanence influences crayfish occupancy and abundance in the Ozark Highlands, USA

    USGS Publications Warehouse

    Yarra, Allyson N.; Magoulick, Daniel D.

    2018-01-01

    Crayfish use of intermittent streams is especially important to understand in the face of global climate change. We examined the influence of stream permanence and local habitat on crayfish occupancy and species densities in the Ozark Highlands, USA. We sampled in June and July 2014 and 2015. We used a quantitative kick–seine method to sample crayfish presence and abundance at 20 stream sites with 32 surveys/site in the Upper White River drainage, and we measured associated local environmental variables each year. We modeled site occupancy and detection probabilities with the software PRESENCE, and we used multiple linear regressions to identify relationships between crayfish species densities and environmental variables. Occupancy of all crayfish species was related to stream permanence. Faxonius meeki was found exclusively in intermittent streams, whereas Faxonius neglectus and Faxonius luteushad higher occupancy and detection probability in permanent than in intermittent streams, and Faxonius williamsi was associated with intermittent streams. Estimates of detection probability ranged from 0.56 to 1, which is high relative to values found by other investigators. With the exception of F. williamsi, species densities were largely related to stream permanence rather than local habitat. Species densities did not differ by year, but total crayfish densities were significantly lower in 2015 than 2014. Increased precipitation and discharge in 2015 probably led to the lower crayfish densities observed during this year. Our study demonstrates that crayfish distribution and abundance is strongly influenced by stream permanence. Some species, including those of conservation concern (i.e., F. williamsi, F. meeki), appear dependent on intermittent streams, and conservation efforts should include consideration of intermittent streams as an important component of freshwater biodiversity.

  10. A very efficient approach to compute the first-passage probability density function in a time-changed Brownian model: Applications in finance

    NASA Astrophysics Data System (ADS)

    Ballestra, Luca Vincenzo; Pacelli, Graziella; Radi, Davide

    2016-12-01

    We propose a numerical method to compute the first-passage probability density function in a time-changed Brownian model. In particular, we derive an integral representation of such a density function in which the integrand functions must be obtained solving a system of Volterra equations of the first kind. In addition, we develop an ad-hoc numerical procedure to regularize and solve this system of integral equations. The proposed method is tested on three application problems of interest in mathematical finance, namely the calculation of the survival probability of an indebted firm, the pricing of a single-knock-out put option and the pricing of a double-knock-out put option. The results obtained reveal that the novel approach is extremely accurate and fast, and performs significantly better than the finite difference method.

  11. Committor of elementary reactions on multistate systems

    NASA Astrophysics Data System (ADS)

    Király, Péter; Kiss, Dóra Judit; Tóth, Gergely

    2018-04-01

    In our study, we extend the committor concept on multi-minima systems, where more than one reaction may proceed, but the feasible data evaluation needs the projection onto partial reactions. The elementary reaction committor and the corresponding probability density of the reactive trajectories are defined and calculated on a three-hole two-dimensional model system explored by single-particle Langevin dynamics. We propose a method to visualize more elementary reaction committor functions or probability densities of reactive trajectories on a single plot that helps to identify the most important reaction channels and the nonreactive domains simultaneously. We suggest a weighting for the energy-committor plots that correctly shows the limits of both the minimal energy path and the average energy concepts. The methods also performed well on the analysis of molecular dynamics trajectories of 2-chlorobutane, where an elementary reaction committor, the probability densities, the potential energy/committor, and the free-energy/committor curves are presented.

  12. A MATLAB implementation of the minimum relative entropy method for linear inverse problems

    NASA Astrophysics Data System (ADS)

    Neupauer, Roseanna M.; Borchers, Brian

    2001-08-01

    The minimum relative entropy (MRE) method can be used to solve linear inverse problems of the form Gm= d, where m is a vector of unknown model parameters and d is a vector of measured data. The MRE method treats the elements of m as random variables, and obtains a multivariate probability density function for m. The probability density function is constrained by prior information about the upper and lower bounds of m, a prior expected value of m, and the measured data. The solution of the inverse problem is the expected value of m, based on the derived probability density function. We present a MATLAB implementation of the MRE method. Several numerical issues arise in the implementation of the MRE method and are discussed here. We present the source history reconstruction problem from groundwater hydrology as an example of the MRE implementation.

  13. Using areas of known occupancy to identify sources of variation in detection probability of raptors: taking time lowers replication effort for surveys.

    PubMed

    Murn, Campbell; Holloway, Graham J

    2016-10-01

    Species occurring at low density can be difficult to detect and if not properly accounted for, imperfect detection will lead to inaccurate estimates of occupancy. Understanding sources of variation in detection probability and how they can be managed is a key part of monitoring. We used sightings data of a low-density and elusive raptor (white-headed vulture Trigonoceps occipitalis ) in areas of known occupancy (breeding territories) in a likelihood-based modelling approach to calculate detection probability and the factors affecting it. Because occupancy was known a priori to be 100%, we fixed the model occupancy parameter to 1.0 and focused on identifying sources of variation in detection probability. Using detection histories from 359 territory visits, we assessed nine covariates in 29 candidate models. The model with the highest support indicated that observer speed during a survey, combined with temporal covariates such as time of year and length of time within a territory, had the highest influence on the detection probability. Averaged detection probability was 0.207 (s.e. 0.033) and based on this the mean number of visits required to determine within 95% confidence that white-headed vultures are absent from a breeding area is 13 (95% CI: 9-20). Topographical and habitat covariates contributed little to the best models and had little effect on detection probability. We highlight that low detection probabilities of some species means that emphasizing habitat covariates could lead to spurious results in occupancy models that do not also incorporate temporal components. While variation in detection probability is complex and influenced by effects at both temporal and spatial scales, temporal covariates can and should be controlled as part of robust survey methods. Our results emphasize the importance of accounting for detection probability in occupancy studies, particularly during presence/absence studies for species such as raptors that are widespread and occur at low densities.

  14. Extremal optimization for Sherrington-Kirkpatrick spin glasses

    NASA Astrophysics Data System (ADS)

    Boettcher, S.

    2005-08-01

    Extremal Optimization (EO), a new local search heuristic, is used to approximate ground states of the mean-field spin glass model introduced by Sherrington and Kirkpatrick. The implementation extends the applicability of EO to systems with highly connected variables. Approximate ground states of sufficient accuracy and with statistical significance are obtained for systems with more than N=1000 variables using ±J bonds. The data reproduces the well-known Parisi solution for the average ground state energy of the model to about 0.01%, providing a high degree of confidence in the heuristic. The results support to less than 1% accuracy rational values of ω=2/3 for the finite-size correction exponent, and of ρ=3/4 for the fluctuation exponent of the ground state energies, neither one of which has been obtained analytically yet. The probability density function for ground state energies is highly skewed and identical within numerical error to the one found for Gaussian bonds. But comparison with infinite-range models of finite connectivity shows that the skewness is connectivity-dependent.

  15. SU-G-JeP2-02: A Unifying Multi-Atlas Approach to Electron Density Mapping Using Multi-Parametric MRI for Radiation Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, S; Tianjin University, Tianjin; Hara, W

    Purpose: MRI has a number of advantages over CT as a primary modality for radiation treatment planning (RTP). However, one key bottleneck problem still remains, which is the lack of electron density information in MRI. In the work, a reliable method to map electron density is developed by leveraging the differential contrast of multi-parametric MRI. Methods: We propose a probabilistic Bayesian approach for electron density mapping based on T1 and T2-weighted MRI, using multiple patients as atlases. For each voxel, we compute two conditional probabilities: (1) electron density given its image intensity on T1 and T2-weighted MR images, and (2)more » electron density given its geometric location in a reference anatomy. The two sources of information (image intensity and spatial location) are combined into a unifying posterior probability density function using the Bayesian formalism. The mean value of the posterior probability density function provides the estimated electron density. Results: We evaluated the method on 10 head and neck patients and performed leave-one-out cross validation (9 patients as atlases and remaining 1 as test). The proposed method significantly reduced the errors in electron density estimation, with a mean absolute HU error of 138, compared with 193 for the T1-weighted intensity approach and 261 without density correction. For bone detection (HU>200), the proposed method had an accuracy of 84% and a sensitivity of 73% at specificity of 90% (AUC = 87%). In comparison, the AUC for bone detection is 73% and 50% using the intensity approach and without density correction, respectively. Conclusion: The proposed unifying method provides accurate electron density estimation and bone detection based on multi-parametric MRI of the head with highly heterogeneous anatomy. This could allow for accurate dose calculation and reference image generation for patient setup in MRI-based radiation treatment planning.« less

  16. Applications of conformal field theory to problems in 2D percolation

    NASA Astrophysics Data System (ADS)

    Simmons, Jacob Joseph Harris

    This thesis explores critical two-dimensional percolation in bounded regions in the continuum limit. The main method which we employ is conformal field theory (CFT). Our specific results follow from the null-vector structure of the c = 0 CFT that applies to critical two-dimensional percolation. We also make use of the duality symmetry obeyed at the percolation point, and the fact that percolation may be understood as the q-state Potts model in the limit q → 1. Our first results describe the correlations between points in the bulk and boundary intervals or points, i.e. the probability that the various points or intervals are in the same percolation cluster. These quantities correspond to order-parameter profiles under the given conditions, or cluster connection probabilities. We consider two specific cases: an anchoring interval, and two anchoring points. We derive results for these and related geometries using the CFT null-vectors for the corresponding boundary condition changing (bcc) operators. In addition, we exhibit several exact relationships between these probabilities. These relations between the various bulk-boundary connection probabilities involve parameters of the CFT called operator product expansion (OPE) coefficients. We then compute several of these OPE coefficients, including those arising in our new probability relations. Beginning with the familiar CFT operator φ1,2, which corresponds to a free-fixed spin boundary change in the q-state Potts model, we then develop physical interpretations of the bcc operators. We argue that, when properly normalized, higher-order bcc operators correspond to successive fusions of multiple φ1,2, operators. Finally, by identifying the derivative of φ1,2 with the operator φ1,4, we derive several new quantities called first crossing densities. These new results are then combined and integrated to obtain the three previously known crossing quantities in a rectangle: the probability of a horizontal crossing cluster, the probability of a cluster crossing both horizontally and vertically, and the expected number of horizontal crossing clusters. These three results were known to be solutions to a certain fifth-order differential equation, but until now no physically meaningful explanation had appeared. This differential equation arises naturally in our derivation.

  17. Can we estimate molluscan abundance and biomass on the continental shelf?

    NASA Astrophysics Data System (ADS)

    Powell, Eric N.; Mann, Roger; Ashton-Alcox, Kathryn A.; Kuykendall, Kelsey M.; Chase Long, M.

    2017-11-01

    Few empirical studies have focused on the effect of sample density on the estimate of abundance of the dominant carbonate-producing fauna of the continental shelf. Here, we present such a study and consider the implications of suboptimal sampling design on estimates of abundance and size-frequency distribution. We focus on a principal carbonate producer of the U.S. Atlantic continental shelf, the Atlantic surfclam, Spisula solidissima. To evaluate the degree to which the results are typical, we analyze a dataset for the principal carbonate producer of Mid-Atlantic estuaries, the Eastern oyster Crassostrea virginica, obtained from Delaware Bay. These two species occupy different habitats and display different lifestyles, yet demonstrate similar challenges to survey design and similar trends with sampling density. The median of a series of simulated survey mean abundances, the central tendency obtained over a large number of surveys of the same area, always underestimated true abundance at low sample densities. More dramatic were the trends in the probability of a biased outcome. As sample density declined, the probability of a survey availability event, defined as a survey yielding indices >125% or <75% of the true population abundance, increased and that increase was disproportionately biased towards underestimates. For these cases where a single sample accessed about 0.001-0.004% of the domain, 8-15 random samples were required to reduce the probability of a survey availability event below 40%. The problem of differential bias, in which the probabilities of a biased-high and a biased-low survey index were distinctly unequal, was resolved with fewer samples than the problem of overall bias. These trends suggest that the influence of sampling density on survey design comes with a series of incremental challenges. At woefully inadequate sampling density, the probability of a biased-low survey index will substantially exceed the probability of a biased-high index. The survey time series on the average will return an estimate of the stock that underestimates true stock abundance. If sampling intensity is increased, the frequency of biased indices balances between high and low values. Incrementing sample number from this point steadily reduces the likelihood of a biased survey; however, the number of samples necessary to drive the probability of survey availability events to a preferred level of infrequency may be daunting. Moreover, certain size classes will be disproportionately susceptible to such events and the impact on size frequency will be species specific, depending on the relative dispersion of the size classes.

  18. Automated side-chain model building and sequence assignment by template matching.

    PubMed

    Terwilliger, Thomas C

    2003-01-01

    An algorithm is described for automated building of side chains in an electron-density map once a main-chain model is built and for alignment of the protein sequence to the map. The procedure is based on a comparison of electron density at the expected side-chain positions with electron-density templates. The templates are constructed from average amino-acid side-chain densities in 574 refined protein structures. For each contiguous segment of main chain, a matrix with entries corresponding to an estimate of the probability that each of the 20 amino acids is located at each position of the main-chain model is obtained. The probability that this segment corresponds to each possible alignment with the sequence of the protein is estimated using a Bayesian approach and high-confidence matches are kept. Once side-chain identities are determined, the most probable rotamer for each side chain is built into the model. The automated procedure has been implemented in the RESOLVE software. Combined with automated main-chain model building, the procedure produces a preliminary model suitable for refinement and extension by an experienced crystallographer.

  19. Simulations of Spray Reacting Flows in a Single Element LDI Injector With and Without Invoking an Eulerian Scalar PDF Method

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Liu, Nan-Suey

    2012-01-01

    This paper presents the numerical simulations of the Jet-A spray reacting flow in a single element lean direct injection (LDI) injector by using the National Combustion Code (NCC) with and without invoking the Eulerian scalar probability density function (PDF) method. The flow field is calculated by using the Reynolds averaged Navier-Stokes equations (RANS and URANS) with nonlinear turbulence models, and when the scalar PDF method is invoked, the energy and compositions or species mass fractions are calculated by solving the equation of an ensemble averaged density-weighted fine-grained probability density function that is referred to here as the averaged probability density function (APDF). A nonlinear model for closing the convection term of the scalar APDF equation is used in the presented simulations and will be briefly described. Detailed comparisons between the results and available experimental data are carried out. Some positive findings of invoking the Eulerian scalar PDF method in both improving the simulation quality and reducing the computing cost are observed.

  20. The Havriliak-Negami relaxation and its relatives: the response, relaxation and probability density functions

    NASA Astrophysics Data System (ADS)

    Górska, K.; Horzela, A.; Bratek, Ł.; Dattoli, G.; Penson, K. A.

    2018-04-01

    We study functions related to the experimentally observed Havriliak-Negami dielectric relaxation pattern proportional in the frequency domain to [1+(iωτ0){\\hspace{0pt}}α]-β with τ0 > 0 being some characteristic time. For α = l/k< 1 (l and k being positive and relatively prime integers) and β > 0 we furnish exact and explicit expressions for response and relaxation functions in the time domain and suitable probability densities in their domain dual in the sense of the inverse Laplace transform. All these functions are expressed as finite sums of generalized hypergeometric functions, convenient to handle analytically and numerically. Introducing a reparameterization β = (2-q)/(q-1) and τ0 = (q-1){\\hspace{0pt}}1/α (1 < q < 2) we show that for 0 < α < 1 the response functions fα, β(t/τ0) go to the one-sided Lévy stable distributions when q tends to one. Moreover, applying the self-similarity property of the probability densities gα, β(u) , we introduce two-variable densities and show that they satisfy the integral form of the evolution equation.

  1. Integrating Geologic, Geochemical and Geophysical Data in a Statistical Analysis of Geothermal Resource Probability across the State of Hawaii

    NASA Astrophysics Data System (ADS)

    Lautze, N. C.; Ito, G.; Thomas, D. M.; Hinz, N.; Frazer, L. N.; Waller, D.

    2015-12-01

    Hawaii offers the opportunity to gain knowledge and develop geothermal energy on the only oceanic hotspot in the U.S. As a remote island state, Hawaii is more dependent on imported fossil fuel than any other state in the U.S., and energy prices are 3 to 4 times higher than the national average. The only proven resource, located on Hawaii Island's active Kilauea volcano, is a region of high geologic risk; other regions of probable resource exist but lack adequate assessment. The last comprehensive statewide geothermal assessment occurred in 1983 and found a potential resource on all islands (Hawaii Institute of Geophysics, 1983). Phase 1 of a Department of Energy funded project to assess the probability of geothermal resource potential statewide in Hawaii was recently completed. The execution of this project was divided into three main tasks: (1) compile all historical and current data for Hawaii that is relevant to geothermal resources into a single Geographic Information System (GIS) project; (2) analyze and rank these datasets in terms of their relevance to the three primary properties of a viable geothermal resource: heat (H), fluid (F), and permeability (P); and (3) develop and apply a Bayesian statistical method to incorporate the ranks and produce probability models that map out Hawaii's geothermal resource potential. Here, we summarize the project methodology and present maps that highlight both high prospect areas as well as areas that lack enough data to make an adequate assessment. We suggest a path for future exploration activities in Hawaii, and discuss how this method of analysis can be adapted to other regions and other types of resources. The figure below shows multiple layers of GIS data for Hawaii Island. Color shades indicate crustal density anomalies produced from inversions of gravity (Flinders et al. 2013). Superimposed on this are mapped calderas, rift zones, volcanic cones, and faults (following Sherrod et al., 2007). These features were used to identify probable locations of intrusive rock (heat) and permeability.

  2. Edge Probability and Pixel Relativity-Based Speckle Reducing Anisotropic Diffusion.

    PubMed

    Mishra, Deepak; Chaudhury, Santanu; Sarkar, Mukul; Soin, Arvinder Singh; Sharma, Vivek

    2018-02-01

    Anisotropic diffusion filters are one of the best choices for speckle reduction in the ultrasound images. These filters control the diffusion flux flow using local image statistics and provide the desired speckle suppression. However, inefficient use of edge characteristics results in either oversmooth image or an image containing misinterpreted spurious edges. As a result, the diagnostic quality of the images becomes a concern. To alleviate such problems, a novel anisotropic diffusion-based speckle reducing filter is proposed in this paper. A probability density function of the edges along with pixel relativity information is used to control the diffusion flux flow. The probability density function helps in removing the spurious edges and the pixel relativity reduces the oversmoothing effects. Furthermore, the filtering is performed in superpixel domain to reduce the execution time, wherein a minimum of 15% of the total number of image pixels can be used. For performance evaluation, 31 frames of three synthetic images and 40 real ultrasound images are used. In most of the experiments, the proposed filter shows a better performance as compared to the state-of-the-art filters in terms of the speckle region's signal-to-noise ratio and mean square error. It also shows a comparative performance for figure of merit and structural similarity measure index. Furthermore, in the subjective evaluation, performed by the expert radiologists, the proposed filter's outputs are preferred for the improved contrast and sharpness of the object boundaries. Hence, the proposed filtering framework is suitable to reduce the unwanted speckle and improve the quality of the ultrasound images.

  3. Probabilistic Cloning of Three Real States with Optimal Success Probabilities

    NASA Astrophysics Data System (ADS)

    Rui, Pin-shu

    2017-06-01

    We investigate the probabilistic quantum cloning (PQC) of three real states with average probability distribution. To get the analytic forms of the optimal success probabilities we assume that the three states have only two pairwise inner products. Based on the optimal success probabilities, we derive the explicit form of 1 →2 PQC for cloning three real states. The unitary operation needed in the PQC process is worked out too. The optimal success probabilities are also generalized to the M→ N PQC case.

  4. An improved probabilistic approach for linking progenitor and descendant galaxy populations using comoving number density

    NASA Astrophysics Data System (ADS)

    Wellons, Sarah; Torrey, Paul

    2017-06-01

    Galaxy populations at different cosmic epochs are often linked by cumulative comoving number density in observational studies. Many theoretical works, however, have shown that the cumulative number densities of tracked galaxy populations not only evolve in bulk, but also spread out over time. We present a method for linking progenitor and descendant galaxy populations which takes both of these effects into account. We define probability distribution functions that capture the evolution and dispersion of galaxy populations in number density space, and use these functions to assign galaxies at redshift zf probabilities of being progenitors/descendants of a galaxy population at another redshift z0. These probabilities are used as weights for calculating distributions of physical progenitor/descendant properties such as stellar mass, star formation rate or velocity dispersion. We demonstrate that this probabilistic method provides more accurate predictions for the evolution of physical properties than the assumption of either a constant number density or an evolving number density in a bin of fixed width by comparing predictions against galaxy populations directly tracked through a cosmological simulation. We find that the constant number density method performs least well at recovering galaxy properties, the evolving method density slightly better and the probabilistic method best of all. The improvement is present for predictions of stellar mass as well as inferred quantities such as star formation rate and velocity dispersion. We demonstrate that this method can also be applied robustly and easily to observational data, and provide a code package for doing so.

  5. Probabilistic Density Function Method for Stochastic ODEs of Power Systems with Uncertain Power Input

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Peng; Barajas-Solano, David A.; Constantinescu, Emil

    Wind and solar power generators are commonly described by a system of stochastic ordinary differential equations (SODEs) where random input parameters represent uncertainty in wind and solar energy. The existing methods for SODEs are mostly limited to delta-correlated random parameters (white noise). Here we use the Probability Density Function (PDF) method for deriving a closed-form deterministic partial differential equation (PDE) for the joint probability density function of the SODEs describing a power generator with time-correlated power input. The resulting PDE is solved numerically. A good agreement with Monte Carlo Simulations shows accuracy of the PDF method.

  6. Change-in-ratio density estimator for feral pigs is less biased than closed mark-recapture estimates

    USGS Publications Warehouse

    Hanson, L.B.; Grand, J.B.; Mitchell, M.S.; Jolley, D.B.; Sparklin, B.D.; Ditchkoff, S.S.

    2008-01-01

    Closed-population capture-mark-recapture (CMR) methods can produce biased density estimates for species with low or heterogeneous detection probabilities. In an attempt to address such biases, we developed a density-estimation method based on the change in ratio (CIR) of survival between two populations where survival, calculated using an open-population CMR model, is known to differ. We used our method to estimate density for a feral pig (Sus scrofa) population on Fort Benning, Georgia, USA. To assess its validity, we compared it to an estimate of the minimum density of pigs known to be alive and two estimates based on closed-population CMR models. Comparison of the density estimates revealed that the CIR estimator produced a density estimate with low precision that was reasonable with respect to minimum known density. By contrast, density point estimates using the closed-population CMR models were less than the minimum known density, consistent with biases created by low and heterogeneous capture probabilities for species like feral pigs that may occur in low density or are difficult to capture. Our CIR density estimator may be useful for tracking broad-scale, long-term changes in species, such as large cats, for which closed CMR models are unlikely to work. ?? CSIRO 2008.

  7. Testing the impact of morphological rate heterogeneity on ancestral state reconstruction of five floral traits in angiosperms.

    PubMed

    Reyes, Elisabeth; Nadot, Sophie; von Balthazar, Maria; Schönenberger, Jürg; Sauquet, Hervé

    2018-06-21

    Ancestral state reconstruction is an important tool to study morphological evolution and often involves estimating transition rates among character states. However, various factors, including taxonomic scale and sampling density, may impact transition rate estimation and indirectly also the probability of the state at a given node. Here, we test the influence of rate heterogeneity using maximum likelihood methods on five binary perianth characters, optimized on a phylogenetic tree of angiosperms including 1230 species sampled from all families. We compare the states reconstructed by an equal-rate (Mk1) and a two-rate model (Mk2) fitted either with a single set of rates for the whole tree or as a partitioned model, allowing for different rates on five partitions of the tree. We find strong signal for rate heterogeneity among the five subdivisions for all five characters, but little overall impact of the choice of model on reconstructed ancestral states, which indicates that most of our inferred ancestral states are the same whether heterogeneity is accounted for or not.

  8. Domestic wells have high probability of pumping septic tank leachate

    NASA Astrophysics Data System (ADS)

    Horn, J. E.; Harter, T.

    2011-06-01

    Onsite wastewater treatment systems such as septic systems are common in rural and semi-rural areas around the world; in the US, about 25-30 % of households are served by a septic system and a private drinking water well. Site-specific conditions and local groundwater flow are often ignored when installing septic systems and wells. Particularly in areas with small lots, thus a high septic system density, these typically shallow wells are prone to contamination by septic system leachate. Typically, mass balance approaches are used to determine a maximum septic system density that would prevent contamination of the aquifer. In this study, we estimate the probability of a well pumping partially septic system leachate. A detailed groundwater and transport model is used to calculate the capture zone of a typical drinking water well. A spatial probability analysis is performed to assess the probability that a capture zone overlaps with a septic system drainfield depending on aquifer properties, lot and drainfield size. We show that a high septic system density poses a high probability of pumping septic system leachate. The hydraulic conductivity of the aquifer has a strong influence on the intersection probability. We conclude that mass balances calculations applied on a regional scale underestimate the contamination risk of individual drinking water wells by septic systems. This is particularly relevant for contaminants released at high concentrations, for substances which experience limited attenuation, and those being harmful even in low concentrations.

  9. Use of a priori statistics to minimize acquisition time for RFI immune spread spectrum systems

    NASA Technical Reports Server (NTRS)

    Holmes, J. K.; Woo, K. T.

    1978-01-01

    The optimum acquisition sweep strategy was determined for a PN code despreader when the a priori probability density function was not uniform. A psuedo noise spread spectrum system was considered which could be utilized in the DSN to combat radio frequency interference. In a sample case, when the a priori probability density function was Gaussian, the acquisition time was reduced by about 41% compared to a uniform sweep approach.

  10. RADC Multi-Dimensional Signal-Processing Research Program.

    DTIC Science & Technology

    1980-09-30

    Formulation 7 3.2.2 Methods of Accelerating Convergence 8 3.2.3 Application to Image Deblurring 8 3.2.4 Extensions 11 3.3 Convergence of Iterative Signal... noise -driven linear filters, permit development of the joint probability density function oz " kelihood function for the image. With an expression...spatial linear filter driven by white noise (see Fig. i). If the probability density function for the white noise is known, Fig. t. Model for image

  11. Global tracking of space debris via CPHD and consensus

    NASA Astrophysics Data System (ADS)

    Wei, Baishen; Nener, Brett; Liu, Weifeng; Ma, Liang

    2017-05-01

    Space debris tracking is of great importance for safe operation of spacecraft. This paper presents an algorithm that achieves global tracking of space debris with a multi-sensor network. The sensor network has unknown and possibly time-varying topology. A consensus algorithm is used to effectively counteract the effects of data incest. Gaussian Mixture-Cardinalized Probability Hypothesis Density (GM-CPHD) filtering is used to estimate the state of the space debris. As an example of the method, 45 clusters of sensors are used to achieve global tracking. The performance of the proposed approach is demonstrated by simulation experiments.

  12. Noise-induced transitions in a double-well oscillator with nonlinear dissipation.

    PubMed

    Semenov, Vladimir V; Neiman, Alexander B; Vadivasova, Tatyana E; Anishchenko, Vadim S

    2016-05-01

    We develop a model of bistable oscillator with nonlinear dissipation. Using a numerical simulation and an electronic circuit realization of this system we study its response to additive noise excitations. We show that depending on noise intensity the system undergoes multiple qualitative changes in the structure of its steady-state probability density function (PDF). In particular, the PDF exhibits two pitchfork bifurcations versus noise intensity, which we describe using an effective potential and corresponding normal form of the bifurcation. These stochastic effects are explained by the partition of the phase space by the nullclines of the deterministic oscillator.

  13. Natural versus anthropogenic factors affecting low-level cloud albedo over the North Atlantic

    NASA Technical Reports Server (NTRS)

    Falkowski, Paul G.; Kim, Yongseung; Kolber, Zbigniew; Wilson, Cara; Wirick, Creighton; Cess, Robert

    1992-01-01

    Cloud albedo plays a key role in regulating earth's climate. Cloud albedo depends on column-integrated liquid water content and the density of cloud condensation nuclei, which consists primarily of submicrometer-sized aerosol sulfate particles. A comparison of two independent satellite data sets suggests that, although anthropogenic sulfate emissions may enhance cloud albedo immediately adjacent to the east coast of the United States, over the central North Atlantic Ocean the variability in albedo can be largely accounted for by natural marine and atmospheric processes that probably have remained relatively constant since the beginning of the industrial revolution.

  14. Energetics and Birth Rates of Supernova Remnants in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Leahy, D. A.

    2017-03-01

    Published X-ray emission properties for a sample of 50 supernova remnants (SNRs) in the Large Magellanic Cloud (LMC) are used as input for SNR evolution modeling calculations. The forward shock emission is modeled to obtain the initial explosion energy, age, and circumstellar medium density for each SNR in the sample. The resulting age distribution yields a SNR birthrate of 1/(500 yr) for the LMC. The explosion energy distribution is well fit by a log-normal distribution, with a most-probable explosion energy of 0.5× {10}51 erg, with a 1σ dispersion by a factor of 3 in energy. The circumstellar medium density distribution is broader than the explosion energy distribution, with a most-probable density of ˜0.1 cm-3. The shape of the density distribution can be fit with a log-normal distribution, with incompleteness at high density caused by the shorter evolution times of SNRs.

  15. Probability density function of non-reactive solute concentration in heterogeneous porous formations

    Treesearch

    Alberto Bellin; Daniele Tonina

    2007-01-01

    Available models of solute transport in heterogeneous formations lack in providing complete characterization of the predicted concentration. This is a serious drawback especially in risk analysis where confidence intervals and probability of exceeding threshold values are required. Our contribution to fill this gap of knowledge is a probability distribution model for...

  16. Predictions of malaria vector distribution in Belize based on multispectral satellite data.

    PubMed

    Roberts, D R; Paris, J F; Manguin, S; Harbach, R E; Woodruff, R; Rejmankova, E; Polanco, J; Wullschleger, B; Legters, L J

    1996-03-01

    Use of multispectral satellite data to predict arthropod-borne disease trouble spots is dependent on clear understandings of environmental factors that determine the presence of disease vectors. A blind test of remote sensing-based predictions for the spatial distribution of a malaria vector, Anopheles pseudopunctipennis, was conducted as a follow-up to two years of studies on vector-environmental relationships in Belize. Four of eight sites that were predicted to be high probability locations for presence of An. pseudopunctipennis were positive and all low probability sites (0 of 12) were negative. The absence of An. pseudopunctipennis at four high probability locations probably reflects the low densities that seem to characterize field populations of this species, i.e., the population densities were below the threshold of our sampling effort. Another important malaria vector, An. darlingi, was also present at all high probability sites and absent at all low probability sites. Anopheles darlingi, like An. pseudopunctipennis, is a riverine species. Prior to these collections at ecologically defined locations, this species was last detected in Belize in 1946.

  17. Predictions of malaria vector distribution in Belize based on multispectral satellite data

    NASA Technical Reports Server (NTRS)

    Roberts, D. R.; Paris, J. F.; Manguin, S.; Harbach, R. E.; Woodruff, R.; Rejmankova, E.; Polanco, J.; Wullschleger, B.; Legters, L. J.

    1996-01-01

    Use of multispectral satellite data to predict arthropod-borne disease trouble spots is dependent on clear understandings of environmental factors that determine the presence of disease vectors. A blind test of remote sensing-based predictions for the spatial distribution of a malaria vector, Anopheles pseudopunctipennis, was conducted as a follow-up to two years of studies on vector-environmental relationships in Belize. Four of eight sites that were predicted to be high probability locations for presence of An. pseudopunctipennis were positive and all low probability sites (0 of 12) were negative. The absence of An. pseudopunctipennis at four high probability locations probably reflects the low densities that seem to characterize field populations of this species, i.e., the population densities were below the threshold of our sampling effort. Another important malaria vector, An. darlingi, was also present at all high probability sites and absent at all low probability sites. Anopheles darlingi, like An. pseudopunctipennis, is a riverine species. Prior to these collections at ecologically defined locations, this species was last detected in Belize in 1946.

  18. Natal and breeding philopatry in a black brant, Branta bernicla nigricans, metapopulation

    USGS Publications Warehouse

    Lindberg, Mark S.; Sedinger, James S.; Derksen, Dirk V.; Rockwell, Robert F.

    1998-01-01

    We estimated natal and breeding philopatry and dispersal probabilities for a metapopulation of Black Brant (Branta bernicla nigricans) based on observations of marked birds at six breeding colonies in Alaska, 1986–1994. Both adult females and males exhibited high (>0.90) probability of philopatry to breeding colonies. Probability of natal philopatry was significantly higher for females than males. Natal dispersal of males was recorded between every pair of colonies, whereas natal dispersal of females was observed between only half of the colony pairs. We suggest that female-biased philopatry was the result of timing of pair formation and characteristics of the mating system of brant, rather than factors related to inbreeding avoidance or optimal discrepancy. Probability of natal philopatry of females increased with age but declined with year of banding. Age-related increase in natal philopatry was positively related to higher breeding probability of older females. Declines in natal philopatry with year of banding corresponded negatively to a period of increasing population density; therefore, local population density may influence the probability of nonbreeding and gene flow among colonies.

  19. Effects of fiber density and plasma modification of nanofibrous membranes on the adhesion and growth of HaCaT keratinocytes.

    PubMed

    Bacakova, Marketa; Lopot, Frantisek; Hadraba, Daniel; Varga, Marian; Zaloudkova, Margit; Stranska, Denisa; Suchy, Tomas; Bacakova, Lucie

    2015-01-01

    It may be possible to regulate the cell colonization of biodegradable polymer nanofibrous membranes by plasma treatment and by the density of the fibers. To test this hypothesis, nanofibrous membranes of different fiber densities were treated by oxygen plasma with a range of plasma power and exposure times. Scanning electron microscopy and mechanical tests showed significant modification of nanofibers after plasma treatment. The intensity of the fiber modification increased with plasma power and exposure time. The exposure time seemed to have a stronger effect on modifying the fiber. The mechanical behavior of the membranes was influenced by the plasma treatment, the fiber density, and their dry or wet state. Plasma treatment increased the membrane stiffness; however, the membranes became more brittle. Wet membranes displayed significantly lower stiffness than dry membranes. X-ray photoelectron spectroscopy (XPS) analysis showed a slight increase in oxygen-containing groups on the membrane surface after plasma treatment. Plasma treatment enhanced the adhesion and growth of HaCaT keratinocytes on nanofibrous membranes. The cells adhered and grew preferentially on membranes of lower fiber densities, probably due to the larger area of void spaces between the fibers. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  20. Lineshapes of Dipole-Dipole Resonances in a Cold Rydberg Gas

    NASA Astrophysics Data System (ADS)

    Richards, B. G.; Jones, R. R.

    2015-05-01

    We have examined the lineshapes associated with Stark tuned, dipole-dipole resonances involving Rydberg atoms in a cold gas. Rb atoms in a MOT are laser excited from the 5 p level to 32p3 / 2 in the presence of a weak electric field. A fast rising electric field pulse Stark tunes the total energy of two 32 p atom pairs so it is (nearly) degenerate with that of the 32s1 / 2+33s1 / 2 states. Because of the dipole-dipole coupling, atom pairs separated by a distance R, develop 32s1 / 2+33s1 / 2 character. The maximum probability for finding atoms in s-states depends on the detuning from degeneracy and on the dipole-dipole coupling. We obtain the ``resonance'' lineshape by measuring, via state-selective field ionization, the s-state population as a function of the tuning field. The resonance width decreases with density due to R-3 dependence of the dipole-dipole coupling. In principle, the lineshape provides information about the distribution of Rydberg atom spacings in the sample. For equally spaced atoms, the lineshape should be Lorentzian while for a random nearest neighbor distribution it appears as a cusp. At low densities nearly Gaussian lineshapes are observed with widths that are too large to be the result of inhomogeneous electric or magnetic fields. Supported by the NSF.

  1. State-specific tunneling lifetimes from classical trajectories: H-atom dissociation in electronically excited pyrrole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Weiwei; Domcke, Wolfgang; Farantos, Stavros C.

    A trajectory method of calculating tunneling probabilities from phase integrals along straight line tunneling paths, originally suggested by Makri and Miller [J. Chem. Phys. 91, 4026 (1989)] and recently implemented by Truhlar and co-workers [Chem. Sci. 5, 2091 (2014)], is tested for one- and two-dimensional ab initio based potentials describing hydrogen dissociation in the {sup 1}B{sub 1} excited electronic state of pyrrole. The primary observables are the tunneling rates in a progression of bending vibrational states lying below the dissociation barrier and their isotope dependences. Several initial ensembles of classical trajectories have been considered, corresponding to the quasiclassical and themore » quantum mechanical samplings of the initial conditions. It is found that the sampling based on the fixed energy Wigner density gives the best agreement with the quantum mechanical dissociation rates.« less

  2. A DNS study of turbulent mixing of two passive scalars

    NASA Astrophysics Data System (ADS)

    Juneja, A.; Pope, S. B.

    1996-08-01

    We employ direct numerical simulations to study the mixing of two passive scalars in stationary, homogeneous, isotropic turbulence. The present work is a direct extension of that of Eswaran and Pope from one scalar to two scalars and the focus is on examining the evolution states of the scalar joint probability density function (jpdf) and the conditional expectation of the scalar diffusion to motivate better models for multi-scalar mixing. The initial scalar fields are chosen to conform closely to a ``triple-delta function'' jpdf corresponding to blobs of fluid in three distinct states. The effect of the initial length scales and diffusivity of the scalars on the evolution of the jpdf and the conditional diffusion is investigated in detail as the scalars decay from their prescribed initial state. Also examined is the issue of self-similarity of the scalar jpdf at large times and the rate of decay of the scalar variance and dissipation.

  3. Crowding Effects in Vehicular Traffic

    PubMed Central

    Combinido, Jay Samuel L.; Lim, May T.

    2012-01-01

    While the impact of crowding on the diffusive transport of molecules within a cell is widely studied in biology, it has thus far been neglected in traffic systems where bulk behavior is the main concern. Here, we study the effects of crowding due to car density and driving fluctuations on the transport of vehicles. Using a microscopic model for traffic, we found that crowding can push car movement from a superballistic down to a subdiffusive state. The transition is also associated with a change in the shape of the probability distribution of positions from a negatively-skewed normal to an exponential distribution. Moreover, crowding broadens the distribution of cars’ trap times and cluster sizes. At steady state, the subdiffusive state persists only when there is a large variability in car speeds. We further relate our work to prior findings from random walk models of transport in cellular systems. PMID:23139762

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehesa, J.S.; Martinez-Finkelshtein, A.; Sorokin, V.N.

    The asymptotics of the Boltzmann-Shannon information entropy as well as the Renyi entropy for the quantum probability density of a single-particle system with a confining (i.e., bounded below) power-type potential V(x)=x{sup 2k} with k is a member of N and x is a member of R, is investigated in the position and momentum spaces within the semiclassical (WKB) approximation. It is found that for highly excited states both physical entropies, as well as their sum, have a logarithmic dependence on its quantum number not only when k=1 (harmonic oscillator), but also for any fixed k. As a by-product, the extremalmore » case k{yields}{infinity} (the infinite well potential) is also rigorously analyzed. It is shown that not only the position-space entropy has the same constant value for all quantum states, which is a known result, but also that the momentum-space entropy is constant for highly excited states.« less

  5. Basis adaptation and domain decomposition for steady-state partial differential equations with random coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tipireddy, R.; Stinis, P.; Tartakovsky, A. M.

    We present a novel approach for solving steady-state stochastic partial differential equations (PDEs) with high-dimensional random parameter space. The proposed approach combines spatial domain decomposition with basis adaptation for each subdomain. The basis adaptation is used to address the curse of dimensionality by constructing an accurate low-dimensional representation of the stochastic PDE solution (probability density function and/or its leading statistical moments) in each subdomain. Restricting the basis adaptation to a specific subdomain affords finding a locally accurate solution. Then, the solutions from all of the subdomains are stitched together to provide a global solution. We support our construction with numericalmore » experiments for a steady-state diffusion equation with a random spatially dependent coefficient. Our results show that highly accurate global solutions can be obtained with significantly reduced computational costs.« less

  6. Quantum Entanglement and Chemical Reactivity.

    PubMed

    Molina-Espíritu, M; Esquivel, R O; López-Rosa, S; Dehesa, J S

    2015-11-10

    The water molecule and a hydrogenic abstraction reaction are used to explore in detail some quantum entanglement features of chemical interest. We illustrate that the energetic and quantum-information approaches are necessary for a full understanding of both the geometry of the quantum probability density of molecular systems and the evolution of a chemical reaction. The energy and entanglement hypersurfaces and contour maps of these two models show different phenomena. The energy ones reveal the well-known stable geometry of the models, whereas the entanglement ones grasp the chemical capability to transform from one state system to a new one. In the water molecule the chemical reactivity is witnessed through quantum entanglement as a local minimum indicating the bond cleavage in the dissociation process of the molecule. Finally, quantum entanglement is also useful as a chemical reactivity descriptor by detecting the transition state along the intrinsic reaction path in the hypersurface of the hydrogenic abstraction reaction corresponding to a maximally entangled state.

  7. Effect of nearest-neighbor ions on excited ionic states, emission spectra, and line profiles in hot and dense plasmas

    NASA Technical Reports Server (NTRS)

    Salzmann, D.; Stein, J.; Goldberg, I. B.; Pratt, R. H.

    1991-01-01

    The effect of the cylindrical symmetry imposed by the nearest-neighbor ions on the ionic levels and the emission spectra of a Li-like Kr ion immersed in hot and dense plasmas is investigated using the Stein et al. (1989) two-centered model extended to include computations of the line profiles, shifts, and widths, as well as the energy-level mixing and the forbidden transition probabilities. It is shown that the cylindrical symmetry mixes states with different orbital quantum numbers l, particularly for highly excited states, and, thereby, gives rise to forbidden transitions in the emission spectrum. Results are obtained for the variation of the ionic level shifts and mixing coefficients with the distance to the nearest neighbor. Also obtained are representative computed spectra that show the density effects on the spectral line profiles, shifts, and widths, and the forbidden components in the spectrum.

  8. Dendritic brushes under theta and poor solvent conditions

    NASA Astrophysics Data System (ADS)

    Gergidis, Leonidas N.; Kalogirou, Andreas; Charalambopoulos, Antonios; Vlahos, Costas

    2013-07-01

    The effects of solvent quality on the internal stratification of polymer brushes formed by dendron polymers up to third generation were studied by means of molecular dynamics simulations with Langevin thermostat. The distributions of polymer units, of the free ends, the radii of gyration, and the back folding probabilities of the dendritic spacers were studied at the macroscopic states of theta and poor solvent. For high grafting densities we observed a small decrease in the height of the brush as the solvent quality decreases. The internal stratification in theta solvent was similar to the one we found in good solvent, with two and in some cases three kinds of populations containing short dendrons with weakly extended spacers, intermediate-height dendrons, and tall dendrons with highly stretched spacers. The differences increase as the grafting density decreases and single dendron populations were evident in theta and poor solvent. In poor solvent at low grafting densities, solvent micelles, polymeric pinned lamellae, spherical and single chain collapsed micelles were observed. The scaling dependence of the height of the dendritic brush at high density brushes for both solvents was found to be in agreement with existing analytical results.

  9. Covariant Formulation of Fluid Dynamics and Estakhr's Material Geodesic Equation, far down the Rabbit hole

    NASA Astrophysics Data System (ADS)

    Estakhr, Ahmad Reza

    2013-11-01

    ``When i meet God, I am going to ask him two questions, why relativity and why turbulence. A. Einstein'' You probably will not need to ask these questions of God, I've already answered both of them. Uμ = γ (c , u (r --> , t)) denotes four-velocity field. Jμ = ρUμ denotes four-current mass density. Estakhr's Material-Geodesic equation is developed analogy of Navier Stokes equation and Einstein Geodesic equation. DJμ/Dτ =dJμ/Dτ +ΓαβμJαUβ =JνΩμν +∂νTμν +ΓαβμJαUβ Covariant formulation of fluid dynamics, describe the motion of fluid substances. The local existence and uniqueness theorem for geodesics states that geodesics on a smooth manifold with an affine connection exist, and are unique. EMG equation is also applicable in different branches of physics, it all depend on what you mean by 4-current density, if you mean 4-current electron number density then it is plasma physics, if you mean 4-current electron charge density then it is DJμ/Dτ =JνFμν +∂νTμν +ΓαβμJαUβ electromagnetism.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popovich, P.; Carter, T. A.; Friedman, B.

    Numerical simulation of plasma turbulence in the Large Plasma Device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky et al., Rev. Sci. Instrum. 62, 2875 (1991)] is presented. The model, implemented in the BOUndary Turbulence code [M. Umansky, X. Xu, B. Dudson et al., Contrib. Plasma Phys. 180, 887 (2009)], includes three-dimensional (3D) collisional fluid equations for plasma density, electron parallel momentum, and current continuity, and also includes the effects of ion-neutral collisions. In nonlinear simulations using measured LAPD density profiles but assuming constant temperature profile for simplicity, self-consistent evolution of instabilities and nonlinearly generated zonal flows results in a saturatedmore » turbulent state. Comparisons of these simulations with measurements in LAPD plasmas reveal good qualitative and reasonable quantitative agreement, in particular in frequency spectrum, spatial correlation, and amplitude probability distribution function of density fluctuations. For comparison with LAPD measurements, the plasma density profile in simulations is maintained either by direct azimuthal averaging on each time step, or by adding particle source/sink function. The inferred source/sink values are consistent with the estimated ionization source and parallel losses in LAPD. These simulations lay the groundwork for more a comprehensive effort to test fluid turbulence simulation against LAPD data.« less

  11. Nonparametric probability density estimation by optimization theoretic techniques

    NASA Technical Reports Server (NTRS)

    Scott, D. W.

    1976-01-01

    Two nonparametric probability density estimators are considered. The first is the kernel estimator. The problem of choosing the kernel scaling factor based solely on a random sample is addressed. An interactive mode is discussed and an algorithm proposed to choose the scaling factor automatically. The second nonparametric probability estimate uses penalty function techniques with the maximum likelihood criterion. A discrete maximum penalized likelihood estimator is proposed and is shown to be consistent in the mean square error. A numerical implementation technique for the discrete solution is discussed and examples displayed. An extensive simulation study compares the integrated mean square error of the discrete and kernel estimators. The robustness of the discrete estimator is demonstrated graphically.

  12. Manual hierarchical clustering of regional geochemical data using a Bayesian finite mixture model

    USGS Publications Warehouse

    Ellefsen, Karl J.; Smith, David

    2016-01-01

    Interpretation of regional scale, multivariate geochemical data is aided by a statistical technique called “clustering.” We investigate a particular clustering procedure by applying it to geochemical data collected in the State of Colorado, United States of America. The clustering procedure partitions the field samples for the entire survey area into two clusters. The field samples in each cluster are partitioned again to create two subclusters, and so on. This manual procedure generates a hierarchy of clusters, and the different levels of the hierarchy show geochemical and geological processes occurring at different spatial scales. Although there are many different clustering methods, we use Bayesian finite mixture modeling with two probability distributions, which yields two clusters. The model parameters are estimated with Hamiltonian Monte Carlo sampling of the posterior probability density function, which usually has multiple modes. Each mode has its own set of model parameters; each set is checked to ensure that it is consistent both with the data and with independent geologic knowledge. The set of model parameters that is most consistent with the independent geologic knowledge is selected for detailed interpretation and partitioning of the field samples.

  13. Statistical Analysis of the Fractal Gating Motions of the Enzyme Acetylcholinesterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, T Y.; Tai, Kaihsu; Mccammon, Andy

    The enzyme acetylcholinesterase has an active site that is accessible only by a gorge or main channel from the surface, and perhaps by secondary channels such as the back door. Molecular-dynamics simulations show that these channels are too narrow most of the time to admit substrate or other small molecules. Binding of substrates is therefore gated by structural fluctuations of the enzyme. Here, we analyze the fluctuations of these possible channels, as observed in the 10.8-ns trajectory of the simulation. The probability density function of the gorge proper radius (defined in the text) was calculated. A double-peak feature of themore » function was discovered and therefore two states with a threshold were identified. The relaxation (transition probability) functions of these two states were also calculated. The results revealed a power-law decay trend and an oscillation around it, which show properties of fractal dynamics with a complex exponent. The cross correlation of potential energy versus proper radius was also investigated. We discuss possible physical models behind the fractal protein dynamics; the dynamic hierarchical model for glassy systems is evaluated in detail.« less

  14. Study of positron annihilation with core electrons at the clean and oxygen covered Ag(001) surface

    NASA Astrophysics Data System (ADS)

    Joglekar, P.; Shastry, K.; Olenga, A.; Fazleev, N. G.; Weiss, A. H.

    2013-03-01

    In this paper we present measurements of the energy spectrum of electrons emitted as a result of Positron Annihilation Induce Auger Electron Emission from a clean and oxygen covered Ag (100) surface using a series of incident beam energies ranging from 20 eV down to 2 eV. A peak was observed at ~ 40 eV corresponding to the N23VV Auger transition in agreement with previous PAES studies. Experimental results were investigated theoretically by calculations of positron states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the clean and oxygen covered Ag(100) surface. An ab-initio investigation of stability and associated electronic properties of different adsorption phases of oxygen on Ag(100) has been performed on the basis of density functional theory and using DMOl3 code. The computed positron binding energy, positron surface state wave function, and positron annihilation probabilities of surface trapped positrons with relevant core electrons demonstrate their sensitivity to oxygen coverage, elemental content, atomic structure of the topmost layers of surfaces, and charge transfer effects. Theoretical results are compared with experimental data. This work was supported in part by the National Science Foundation Grant # DMR-0907679.

  15. Dynamics of influence and social balance in spatially-embedded regular and random networks

    NASA Astrophysics Data System (ADS)

    Singh, P.; Sreenivasan, S.; Szymanski, B.; Korniss, G.

    2015-03-01

    Structural balance - the tendency of social relationship triads to prefer specific states of polarity - can be a fundamental driver of beliefs, behavior, and attitudes on social networks. Here we study how structural balance affects deradicalization in an otherwise polarized population of leftists and rightists constituting the nodes of a low-dimensional social network. Specifically, assuming an externally moderating influence that converts leftists or rightists to centrists with probability p, we study the critical value p =pc , below which the presence of metastable mixed population states exponentially delay the achievement of centrist consensus. Above the critical value, centrist consensus is the only fixed point. Complementing our previously shown results for complete graphs, we present results for the process on low-dimensional networks, and show that the low-dimensional embedding of the underlying network significantly affects the critical value of probability p. Intriguingly, on low-dimensional networks, the critical value pc can show non-monotonicity as the dimensionality of the network is varied. We conclude by analyzing the scaling behavior of temporal variation of unbalanced triad density in the network for different low-dimensional network topologies. Supported in part by ARL NS-CTA, ONR, and ARO.

  16. Stochastic transport models for mixing in variable-density turbulence

    NASA Astrophysics Data System (ADS)

    Bakosi, J.; Ristorcelli, J. R.

    2011-11-01

    In variable-density (VD) turbulent mixing, where very-different- density materials coexist, the density fluctuations can be an order of magnitude larger than their mean. Density fluctuations are non-negligible in the inertia terms of the Navier-Stokes equation which has both quadratic and cubic nonlinearities. Very different mixing rates of different materials give rise to large differential accelerations and some fundamentally new physics that is not seen in constant-density turbulence. In VD flows material mixing is active in a sense far stronger than that applied in the Boussinesq approximation of buoyantly-driven flows: the mass fraction fluctuations are coupled to each other and to the fluid momentum. Statistical modeling of VD mixing requires accounting for basic constraints that are not important in the small-density-fluctuation passive-scalar-mixing approximation: the unit-sum of mass fractions, bounded sample space, and the highly skewed nature of the probability densities become essential. We derive a transport equation for the joint probability of mass fractions, equivalent to a system of stochastic differential equations, that is consistent with VD mixing in multi-component turbulence and consistently reduces to passive scalar mixing in constant-density flows.

  17. The Wang-Landau Sampling Algorithm

    NASA Astrophysics Data System (ADS)

    Landau, David P.

    2003-03-01

    Over the past several decades Monte Carlo simulations[1] have evolved into a powerful tool for the study of wide-ranging problems in statistical/condensed matter physics. Standard methods sample the probability distribution for the states of the system, usually in the canonical ensemble, and enormous improvements have been made in performance through the implementation of novel algorithms. Nonetheless, difficulties arise near phase transitions, either due to critical slowing down near 2nd order transitions or to metastability near 1st order transitions, thus limiting the applicability of the method. We shall describe a new and different Monte Carlo approach [2] that uses a random walk in energy space to determine the density of states directly. Once the density of states is estimated, all thermodynamic properties can be calculated at all temperatures. This approach can be extended to multi-dimensional parameter spaces and has already found use in classical models of interacting particles including systems with complex energy landscapes, e.g., spin glasses, protein folding models, etc., as well as for quantum models. 1. A Guide to Monte Carlo Simulations in Statistical Physics, D. P. Landau and K. Binder (Cambridge U. Press, Cambridge, 2000). 2. Fugao Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001); Phys. Rev. E64, 056101-1 (2001).

  18. Dynamics of photoionization from molecular electronic wavepacket states in intense pulse laser fields: A nonadiabatic electron wavepacket study.

    PubMed

    Matsuoka, Takahide; Takatsuka, Kazuo

    2017-04-07

    A theory for dynamics of molecular photoionization from nonadiabatic electron wavepackets driven by intense pulse lasers is proposed. Time evolution of photoelectron distribution is evaluated in terms of out-going electron flux (current of the probability density of electrons) that has kinetic energy high enough to recede from the molecular system. The relevant electron flux is in turn evaluated with the complex-valued electronic wavefunctions that are time evolved in nonadiabatic electron wavepacket dynamics in laser fields. To uniquely rebuild such wavefunctions with its electronic population being lost by ionization, we adopt the complex-valued natural orbitals emerging from the electron density as building blocks of the total wavefunction. The method has been implemented into a quantum chemistry code, which is based on configuration state mixing for polyatomic molecules. Some of the practical aspects needed for its application will be presented. As a first illustrative example, we show the results of hydrogen molecule and its isotope substitutes (HD and DD), which are photoionized by a two-cycle pulse laser. Photon emission spectrum associated with above threshold ionization is also shown. Another example is taken from photoionization dynamics from an excited state of a water molecule. Qualitatively significant effects of nonadiabatic interaction on the photoelectron spectrum are demonstrated.

  19. Phosphorylation of rat brain purified mitochondrial Voltage-Dependent Anion Channel by c-Jun N-terminal kinase-3 modifies open-channel noise.

    PubMed

    Gupta, Rajeev

    2017-09-02

    The drift kinetic energy of ionic flow through single ion channels cause vibrations of the pore walls which are observed as open-state current fluctuations (open-channel noise) during single-channel recordings. Vibration of the pore wall leads to transitions among different conformational sub-states of the channel protein in the open-state. Open-channel noise analysis can provide important information about the different conformational sub-state transitions and how biochemical modifications of ion channels would affect their transport properties. It has been shown that c-Jun N-terminal kinase-3 (JNK3) becomes activated by phosphorylation in various neurodegenerative diseases and phosphorylates outer mitochondrion associated proteins leading to neuronal apoptosis. In our earlier work, JNK3 has been reported to phosphorylate purified rat brain mitochondrial voltage-dependent anion channel (VDAC) in vitro and modify its conductance and opening probability. In this article we have compared the open-state noise profile of the native and the JNK3 phosphorylated VDAC using Power Spectral Density vs frequency plots. Power spectral density analysis of open-state noise indicated power law with average slope value α ≈1 for native VDAC at both positive and negative voltage whereas average α value < 0.5 for JNK3 phosphorylated VDAC at both positive and negative voltage. It is proposed that 1/f 1 power law in native VDAC open-state noise arises due to coupling of ionic transport and conformational sub-states transitions in open-state and this coupling is perturbed as a result of channel phosphorylation. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Modelling the Probability of Landslides Impacting Road Networks

    NASA Astrophysics Data System (ADS)

    Taylor, F. E.; Malamud, B. D.

    2012-04-01

    During a landslide triggering event, the threat of landslides blocking roads poses a risk to logistics, rescue efforts and communities dependant on those road networks. Here we present preliminary results of a stochastic model we have developed to evaluate the probability of landslides intersecting a simple road network during a landslide triggering event and apply simple network indices to measure the state of the road network in the affected region. A 4000 x 4000 cell array with a 5 m x 5 m resolution was used, with a pre-defined simple road network laid onto it, and landslides 'randomly' dropped onto it. Landslide areas (AL) were randomly selected from a three-parameter inverse gamma probability density function, consisting of a power-law decay of about -2.4 for medium and large values of AL and an exponential rollover for small values of AL; the rollover (maximum probability) occurs at about AL = 400 m2 This statistical distribution was chosen based on three substantially complete triggered landslide inventories recorded in existing literature. The number of landslide areas (NL) selected for each triggered event iteration was chosen to have an average density of 1 landslide km-2, i.e. NL = 400 landslide areas chosen randomly for each iteration, and was based on several existing triggered landslide event inventories. A simple road network was chosen, in a 'T' shape configuration, with one road 1 x 4000 cells (5 m x 20 km) in a 'T' formation with another road 1 x 2000 cells (5 m x 10 km). The landslide areas were then randomly 'dropped' over the road array and indices such as the location, size (ABL) and number of road blockages (NBL) recorded. This process was performed 500 times (iterations) in a Monte-Carlo type simulation. Initial results show that for a landslide triggering event with 400 landslides over a 400 km2 region, the number of road blocks per iteration, NBL,ranges from 0 to 7. The average blockage area for the 500 iterations (A¯ BL) is about 3000 m2, which closely matches the value of A¯ L for the triggered landslide inventories. We further find that over the 500 iterations, the probability of a given number of road blocks occurring on any given iteration, p(NBL) as a function of NBL, follows reasonably well a three-parameter inverse gamma probability density distribution with an exponential rollover (i.e., the most frequent value) at NBL = 1.3. In this paper we have begun to calculate the probability of the number of landslides blocking roads during a triggering event, and have found that this follows an inverse-gamma distribution, which is similar to that found for the statistics of landslide areas resulting from triggers. As we progress to model more realistic road networks, this work will aid in both long-term and disaster management for road networks by allowing probabilistic assessment of road network potential damage during different magnitude landslide triggering event scenarios.

  1. Uncertainty quantification of voice signal production mechanical model and experimental updating

    NASA Astrophysics Data System (ADS)

    Cataldo, E.; Soize, C.; Sampaio, R.

    2013-11-01

    The aim of this paper is to analyze the uncertainty quantification in a voice production mechanical model and update the probability density function corresponding to the tension parameter using the Bayes method and experimental data. Three parameters are considered uncertain in the voice production mechanical model used: the tension parameter, the neutral glottal area and the subglottal pressure. The tension parameter of the vocal folds is mainly responsible for the changing of the fundamental frequency of a voice signal, generated by a mechanical/mathematical model for producing voiced sounds. The three uncertain parameters are modeled by random variables. The probability density function related to the tension parameter is considered uniform and the probability density functions related to the neutral glottal area and the subglottal pressure are constructed using the Maximum Entropy Principle. The output of the stochastic computational model is the random voice signal and the Monte Carlo method is used to solve the stochastic equations allowing realizations of the random voice signals to be generated. For each realization of the random voice signal, the corresponding realization of the random fundamental frequency is calculated and the prior pdf of this random fundamental frequency is then estimated. Experimental data are available for the fundamental frequency and the posterior probability density function of the random tension parameter is then estimated using the Bayes method. In addition, an application is performed considering a case with a pathology in the vocal folds. The strategy developed here is important mainly due to two things. The first one is related to the possibility of updating the probability density function of a parameter, the tension parameter of the vocal folds, which cannot be measured direct and the second one is related to the construction of the likelihood function. In general, it is predefined using the known pdf. Here, it is constructed in a new and different manner, using the own system considered.

  2. Evolution of a hybrid micro-macro entangled state of the qubit-oscillator system via the generalized rotating wave approximation

    NASA Astrophysics Data System (ADS)

    Chakrabarti, R.; Yogesh, V.

    2016-04-01

    We study the evolution of the hybrid entangled states in a bipartite (ultra) strongly coupled qubit-oscillator system. Using the generalized rotating wave approximation the reduced density matrices of the qubit and the oscillator are obtained. The reduced density matrix of the oscillator yields the phase space quasi probability distributions such as the diagonal P-representation, the Wigner W-distribution and the Husimi Q-function. In the strong coupling regime the Q-function evolves to uniformly separated macroscopically distinct Gaussian peaks representing ‘kitten’ states at certain specified times that depend on multiple time scales present in the interacting system. The ultrastrong coupling strength of the interaction triggers appearance of a large number of modes that quickly develop a randomization of their phase relationships. A stochastic averaging of the dynamical quantities sets in, and leads to the decoherence of the system. The delocalization in the phase space of the oscillator is studied by using the Wehrl entropy. The negativity of the W-distribution reflects the departure of the oscillator from the classical states, and allows us to study the underlying differences between various information-theoretic measures such as the Wehrl entropy and the Wigner entropy. Other features of nonclassicality such as the existence of the squeezed states and appearance of negative values of the Mandel parameter are realized during the course of evolution of the bipartite system. In the parametric regime studied here these properties do not survive in the time-averaged limit.

  3. A photoemission moments model using density functional and transfer matrix methods applied to coating layers on surfaces: Theory

    NASA Astrophysics Data System (ADS)

    Jensen, Kevin L.; Finkenstadt, Daniel; Shabaev, Andrew; Lambrakos, Samuel G.; Moody, Nathan A.; Petillo, John J.; Yamaguchi, Hisato; Liu, Fangze

    2018-01-01

    Recent experimental measurements of a bulk material covered with a small number of graphene layers reported by Yamaguchi et al. [NPJ 2D Mater. Appl. 1, 12 (2017)] (on bialkali) and Liu et al. [Appl. Phys. Lett. 110, 041607 (2017)] (on copper) and the needs of emission models in beam optics codes have lead to substantial changes in a Moments model of photoemission. The changes account for (i) a barrier profile and density of states factor based on density functional theory (DFT) evaluations, (ii) a Drude-Lorentz model of the optical constants and laser penetration depth, and (iii) a transmission probability evaluated by an Airy Transfer Matrix Approach. Importantly, the DFT results lead to a surface barrier profile of a shape similar to both resonant barriers and reflectionless wells: the associated quantum mechanical transmission probabilities are shown to be comparable to those recently required to enable the Moments (and Three Step) model to match experimental data but for reasons very different than the assumption by conventional wisdom that a barrier is responsible. The substantial modifications of the Moments model components, motivated by computational materials methods, are developed. The results prepare the Moments model for use in treating heterostructures and discrete energy level systems (e.g., quantum dots) proposed for decoupling the opposing metrics of performance that undermine the performance of advanced light sources like the x-ray Free Electron Laser. The consequences of the modified components on quantum yield, emittance, and emission models needed by beam optics codes are discussed.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tipireddy, R.; Stinis, P.; Tartakovsky, A. M.

    In this paper, we present a novel approach for solving steady-state stochastic partial differential equations (PDEs) with high-dimensional random parameter space. The proposed approach combines spatial domain decomposition with basis adaptation for each subdomain. The basis adaptation is used to address the curse of dimensionality by constructing an accurate low-dimensional representation of the stochastic PDE solution (probability density function and/or its leading statistical moments) in each subdomain. Restricting the basis adaptation to a specific subdomain affords finding a locally accurate solution. Then, the solutions from all of the subdomains are stitched together to provide a global solution. We support ourmore » construction with numerical experiments for a steady-state diffusion equation with a random spatially dependent coefficient. Lastly, our results show that highly accurate global solutions can be obtained with significantly reduced computational costs.« less

  5. On the origin of Hawking mini black-holes and the cold early universe

    NASA Technical Reports Server (NTRS)

    Canuto, V.

    1978-01-01

    A simple argument is outlined leading to the result that the mass of mini black holes exploding today is 10 to the 15th power g. A mathematical model is discussed which indicates that the equation of state is greatly softened in the high-density regime and a phase transition may exist, such that any length (particularly very small sizes) will grow with time irrespective of its relation to the size of the particle horizon. It is shown that the effect of spin-2 mesons with respect to the equation of state is to soften the pressure and make it negative. An analytical expression is given for the probability that any particular region in a hot early universe will evolve into a black hole.

  6. Constraining the interior density profile of a Jovian planet from precision gravity field data

    NASA Astrophysics Data System (ADS)

    Movshovitz, Naor; Fortney, Jonathan J.; Helled, Ravit; Hubbard, William B.; Thorngren, Daniel; Mankovich, Chris; Wahl, Sean; Militzer, Burkhard; Durante, Daniele

    2017-10-01

    The external gravity field of a planetary body is determined by the distribution of mass in its interior. Therefore, a measurement of the external field, properly interpreted, tells us about the interior density profile, ρ(r), which in turn can be used to constrain the composition in the interior and thereby learn about the formation mechanism of the planet. Planetary gravity fields are usually described by the coefficients in an expansion of the gravitational potential. Recently, high precision measurements of these coefficients for Jupiter and Saturn have been made by the radio science instruments on the Juno and Cassini spacecraft, respectively.The resulting coefficients come with an associated uncertainty. And while the task of matching a given density profile with a given set of gravity coefficients is relatively straightforward, the question of how best to account for the uncertainty is not. In essentially all prior work on matching models to gravity field data, inferences about planetary structure have rested on imperfect knowledge of the H/He equation of state and on the assumption of an adiabatic interior. Here we wish to vastly expand the phase space of such calculations. We present a framework for describing all the possible interior density structures of a Jovian planet, constrained only by a given set of gravity coefficients and their associated uncertainties. Our approach is statistical. We produce a random sample of ρ(a) curves drawn from the underlying (and unknown) probability distribution of all curves, where ρ is the density on an interior level surface with equatorial radius a. Since the resulting set of density curves is a random sample, that is, curves appear with frequency proportional to the likelihood of their being consistent with the measured gravity, we can compute probability distributions for any quantity that is a function of ρ, such as central pressure, oblateness, core mass and radius, etc. Our approach is also bayesian, in that it can utilize any prior assumptions about the planet's interior, as necessary, without being overly constrained by them.We demonstrate this approach with a sample of Jupiter interior models based on recent Juno data and discuss prospects for Saturn.

  7. Constraining Saturn's interior density profile from precision gravity field measurement obtained during Grand Finale

    NASA Astrophysics Data System (ADS)

    Movshovitz, N.; Fortney, J. J.; Helled, R.; Hubbard, W. B.; Mankovich, C.; Thorngren, D.; Wahl, S. M.; Militzer, B.; Durante, D.

    2017-12-01

    The external gravity field of a planetary body is determined by the distribution of mass in its interior. Therefore, a measurement of the external field, properlyinterpreted, tells us about the interior density profile, ρ(r), which in turn can be used to constrain the composition in the interior and thereby learn about theformation mechanism of the planet. Recently, very high precision measurements of the gravity coefficients for Saturn have been made by the radio science instrument on the Cassini spacecraft during its Grand Finale orbits. The resulting coefficients come with an associated uncertainty. The task of matching a given density profile to a given set of gravity coefficients is relatively straightforward, but the question of how to best account for the uncertainty is not. In essentially all prior work on matching models to gravity field data inferences about planetary structure have rested on assumptions regarding the imperfectly known H/He equation of state and the assumption of an adiabatic interior. Here we wish to vastly expand the phase space of such calculations. We present a framework for describing all the possible interior density structures of a Jovian planet constrained by a given set of gravity coefficients and their associated uncertainties. Our approach is statistical. We produce a random sample of ρ(a) curves drawn from the underlying (and unknown) probability distribution of all curves, where ρ is the density on an interior level surface with equatorial radius a. Since the resulting set of density curves is a random sample, that is, curves appear with frequency proportional to the likelihood of their being consistent with the measured gravity, we can compute probability distributions for any quantity that is a function of ρ, such as central pressure, oblateness, core mass and radius, etc. Our approach is also Bayesian, in that it can utilize any prior assumptions about the planet's interior, as necessary, without being overly constrained by them. We apply this approach to produce a sample of Saturn interior models based on gravity data from Grand Finale orbits and discuss their implications.

  8. Theoretical studies of positron states and annihilation characteristics at the oxidized Cu(100) surface

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Weiss, A. H.

    2013-04-01

    In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. An ab-initio study of the electronic properties of the Cu(100) missing row reconstructed surface at various on surface and sub-surface oxygen coverages has been performed on the basis of the density functional theory (DFT) using the Dmol3 code and the generalized gradient approximation (GGA). Surface structures in calculations have been constructed by adding oxygen atoms to various surface hollow and sub-surface octahedral sites of the 0.5 monolayer (ML) missing row reconstructed phase of the Cu(100) surface with oxygen coverages ranging from 0.5 to 1.5 ML. The charge redistribution at the surface and variations in atomic structure and chemical composition of the topmost layers associated with oxidation and surface reconstruction have been found to affect the spatial extent and localization of the positron surface state wave function and annihilation probabilities of surface trapped positrons with relevant core electrons. Theoretical results are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES). It has been shown that positron annihilation probabilities with Cu 3s and 3p core electrons decrease when total (on-surface and sub-surface) oxygen coverage of the Cu(100) surface increases up to 1 ML. The calculations show that for high oxygen coverage when total oxygen coverage is 1. 5 ML the positron is not bound to the surface.

  9. Theoretical studies of positron states and annihilation characteristics at the oxidized Cu(100) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fazleev, N. G.; Weiss, A. H.

    2013-04-19

    In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. An ab-initio study of the electronic properties of the Cu(100) missing row reconstructed surface at various on surface and sub-surface oxygen coverages has been performed on the basis of the density functional theory (DFT) using the Dmol3 code and the generalized gradient approximation (GGA). Surface structures in calculations have been constructed by adding oxygen atoms to various surface hollow and sub-surface octahedral sitesmore » of the 0.5 monolayer (ML) missing row reconstructed phase of the Cu(100) surface with oxygen coverages ranging from 0.5 to 1.5 ML. The charge redistribution at the surface and variations in atomic structure and chemical composition of the topmost layers associated with oxidation and surface reconstruction have been found to affect the spatial extent and localization of the positron surface state wave function and annihilation probabilities of surface trapped positrons with relevant core electrons. Theoretical results are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES). It has been shown that positron annihilation probabilities with Cu 3s and 3p core electrons decrease when total (on-surface and sub-surface) oxygen coverage of the Cu(100) surface increases up to 1 ML. The calculations show that for high oxygen coverage when total oxygen coverage is 1. 5 ML the positron is not bound to the surface.« less

  10. Attenuated associations between increasing BMI and unfavorable lipid profiles in Chinese Buddhist vegetarians.

    PubMed

    Zhang, Hui-Jie; Han, Peng; Sun, Su-Yun; Wang, Li-Ying; Yan, Bing; Zhang, Jin-Hua; Zhang, Wei; Yang, Shu-Yu; Li, Xue-Jun

    2013-01-01

    Obesity is related to hyperlipidemia and risk of cardiovascular disease. Health benefits of vegetarian diets have well-documented in the Western countries where both obesity and hyperlipidemia were prevalent. We studied the association between BMI and various lipid/lipoprotein measures, as well as between BMI and predicted coronary heart disease probability in lean, low risk populations in Southern China. The study included 170 Buddhist monks (vegetarians) and 126 omnivore men. Interaction between BMI and vegetarian status was tested in the multivariable regression analysis adjusting for age, education, smoking, alcohol drinking, and physical activity. Compared with omnivores, vegetarians had significantly lower mean BMI, blood pressures, total cholesterol, low density lipoprotein cholesterol, high density lipoprotein cholesterol, total cholesterol to high density lipoprotein ratio, triglycerides, apolipoprotein B and A-I, as well as lower predicted probability of coronary heart disease. Higher BMI was associated with unfavorable lipid/lipoprotein profile and predicted probability of coronary heart disease in both vegetarians and omnivores. However, the associations were significantly diminished in Buddhist vegetarians. Vegetarian diets not only lower BMI, but also attenuate the BMI-related increases of atherogenic lipid/ lipoprotein and the probability of coronary heart disease.

  11. Modulation Based on Probability Density Functions

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L.

    2009-01-01

    A proposed method of modulating a sinusoidal carrier signal to convey digital information involves the use of histograms representing probability density functions (PDFs) that characterize samples of the signal waveform. The method is based partly on the observation that when a waveform is sampled (whether by analog or digital means) over a time interval at least as long as one half cycle of the waveform, the samples can be sorted by frequency of occurrence, thereby constructing a histogram representing a PDF of the waveform during that time interval.

  12. A partial differential equation for pseudocontact shift.

    PubMed

    Charnock, G T P; Kuprov, Ilya

    2014-10-07

    It is demonstrated that pseudocontact shift (PCS), viewed as a scalar or a tensor field in three dimensions, obeys an elliptic partial differential equation with a source term that depends on the Hessian of the unpaired electron probability density. The equation enables straightforward PCS prediction and analysis in systems with delocalized unpaired electrons, particularly for the nuclei located in their immediate vicinity. It is also shown that the probability density of the unpaired electron may be extracted, using a regularization procedure, from PCS data.

  13. Probability density cloud as a geometrical tool to describe statistics of scattered light.

    PubMed

    Yaitskova, Natalia

    2017-04-01

    First-order statistics of scattered light is described using the representation of the probability density cloud, which visualizes a two-dimensional distribution for complex amplitude. The geometric parameters of the cloud are studied in detail and are connected to the statistical properties of phase. The moment-generating function for intensity is obtained in a closed form through these parameters. An example of exponentially modified normal distribution is provided to illustrate the functioning of this geometrical approach.

  14. Unusual Nonemissive Behavior of Rubrene J-Aggregates: A Rare Violation.

    PubMed

    Aggarwal, Nikhil; Patnaik, Archita

    2017-04-13

    Structure-property correlations in rubrene (RB) colloidal J-aggregates were unravelled by steady state and time-resolved spectroscopy in conjunction with excited state density functional calculations. The RB J-aggregate with a slippage angle θ = 30.4°, estimated from the monomeric transition dipole moment directions, exhibited a broad fwhm of 1073 cm -1 and a 5 nm red-shifted absorption band carrying a transition dipole moment (M⃗ λ agg = 1.80 D) almost equivalent to the monomeric dye (M⃗ λ mon = 1.89 D). A significantly low magnitude of exciton coupling energy, ΔE exc = -358 cm -1 for the rhombic-RB colloidal J-aggregates resulted owing to the weaker electronic communication between the largely separated RB subunits (r = 7.2 Å) and a restricted exciton delocalization over the RB J-dimer (N = 2). The RB J-dimer exhibited a perfect balance between the computed singlet (2.53 eV) and the triplet (1.29 eV) exciton energies for singlet fission (SF). Supporting this, the PL decay profile of the J-aggregates revealed a delayed fluorescence, substantiating triplet pair formation via SF. The experimental evidence for the long-lived triplet formation was furthermore confirmed by its transient absorption (T 1 → T N ) at 530 nm. Consequently, a high probability for SF and a low probability for triplet-triplet recombination, leading to a dramatic lowering in photoluminescence quantum yield from 0.172 down to 0.035 was noted. The electronic structure calculations for the RB J-dimer followed TD-DFT-M062X/6-31G+(d,p) level of theory following integral equation formalism polarizable continuum model (IEFPCM) in water. S 1 excited state for RB J-dimer was carefully analyzed using integral overlap of electron and hole density distribution (ϕ) and the defined t-indexes along all three spatial directions, and was found to be of locally excited in character.

  15. Statistical time-dependent model for the interstellar gas

    NASA Technical Reports Server (NTRS)

    Gerola, H.; Kafatos, M.; Mccray, R.

    1974-01-01

    We present models for temperature and ionization structure of low, uniform-density (approximately 0.3 per cu cm) interstellar gas in a galactic disk which is exposed to soft X rays from supernova outbursts occurring randomly in space and time. The structure was calculated by computing the time record of temperature and ionization at a given point by Monte Carlo simulation. The calculation yields probability distribution functions for ionized fraction, temperature, and their various observable moments. These time-dependent models predict a bimodal temperature distribution of the gas that agrees with various observations. Cold regions in the low-density gas may have the appearance of clouds in 21-cm absorption. The time-dependent model, in contrast to the steady-state model, predicts large fluctuations in ionization rate and the existence of cold (approximately 30 K), ionized (ionized fraction equal to about 0.1) regions.

  16. Statistics of Point Vortex Turbulence in Non-neutral Flows and in Flows with Translational and Rotational Symmetries

    NASA Astrophysics Data System (ADS)

    Esler, J. G.

    2017-12-01

    A theory (Esler and Ashbee in J Fluid Mech 779:275-308, 2015) describing the statistics of N freely-evolving point vortices in a bounded two-dimensional domain is extended. First, the case of a non-neutral vortex gas is addressed, and it is shown that the density of states function can be identified with the probability density function of an infinite sum of independent non-central chi-squared random variables, the details of which depend only on the shape of the domain. Equations for the equilibrium energy spectrum and other statistical quantities follow, the validity of which are verified against direct numerical simulations of the equations of motion. Second, domains with additional conserved quantities associated with a symmetry (e.g., circle, periodic channel) are investigated, and it is shown that the treatment of the non-neutral case can be modified to account for the additional constraint.

  17. Representation of radiative strength functions within a practical model of cascade gamma decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vu, D. C., E-mail: vuconghnue@gmail.com; Sukhovoj, A. M., E-mail: suchovoj@nf.jinr.ru; Mitsyna, L. V., E-mail: mitsyna@nf.jinr.ru

    A practical model developed at the Joint Institute for Nuclear Research (JINR, Dubna) in order to describe the cascade gamma decay of neutron resonances makes it possible to determine simultaneously, from an approximation of the intensities of two-step cascades, parameters of nuclear level densities and partial widths with respect to the emission of nuclear-reaction products. The number of the phenomenological ideas used isminimized in themodel version considered in the present study. An analysis of new results confirms what was obtained earlier for the dependence of dynamics of the interaction of fermion and boson nuclear states on the nuclear shape. Frommore » the ratio of the level densities for excitations of the vibrational and quasiparticle types, it also follows that this interaction manifests itself in the region around the neutron binding energy and is probably different in nuclei that have different parities of nucleons.« less

  18. Probabilistic density function method for nonlinear dynamical systems driven by colored noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barajas-Solano, David A.; Tartakovsky, Alexandre M.

    2016-05-01

    We present a probability density function (PDF) method for a system of nonlinear stochastic ordinary differential equations driven by colored noise. The method provides an integro-differential equation for the temporal evolution of the joint PDF of the system's state, which we close by means of a modified Large-Eddy-Diffusivity-type closure. Additionally, we introduce the generalized local linearization (LL) approximation for deriving a computable PDF equation in the form of the second-order partial differential equation (PDE). We demonstrate the proposed closure and localization accurately describe the dynamics of the PDF in phase space for systems driven by noise with arbitrary auto-correlation time.more » We apply the proposed PDF method to the analysis of a set of Kramers equations driven by exponentially auto-correlated Gaussian colored noise to study the dynamics and stability of a power grid.« less

  19. Photoconductive gain and quantum efficiency of remotely doped Ge/Si quantum dot photodetectors

    NASA Astrophysics Data System (ADS)

    Yakimov, A. I.; Kirienko, V. V.; Armbrister, V. A.; Bloshkin, A. A.; Dvurechenskii, A. V.; Shklyaev, A. A.

    2016-10-01

    We study the effect of quantum dot charging on the mid-infrared photocurrent, optical gain, hole capture probability, and absorption quantum efficiency in remotely delta-doped Ge/Si quantum dot photodetectors. The dot occupation with holes is controlled by varying dot and doping densities. From our investigations of samples doped to contain from about one to nine holes per dot we observe an over 10 times gain enhancement and similar suppression of the hole capture probability with increased carrier population. The data are explained by quenching the capture process and increasing the photoexcited hole lifetime due to formation of the repulsive Coulomb potential of the extra holes inside the quantum dots. The normal incidence quantum efficiency is found to be strongly asymmetric with respect to applied bias polarity. Based on the polarization-dependent absorption measurements it is concluded that, at a positive voltage, when holes move toward the nearest δ-doping plane, photocurrent is originated from the bound-to-continuum transitions of holes between the ground state confined in Ge dots and the extended states of the Si matrix. At a negative bias polarity, the photoresponse is caused by optical excitation to a quasibound state confined near the valence band edge with subsequent tunneling to the Si valence band. In a latter case, the possibility of hole transfer into continuum states arises from the electric field generated by charge distributed between quantum dots and delta-doping planes.

  20. Update rules and interevent time distributions: slow ordering versus no ordering in the voter model.

    PubMed

    Fernández-Gracia, J; Eguíluz, V M; San Miguel, M

    2011-07-01

    We introduce a general methodology of update rules accounting for arbitrary interevent time (IET) distributions in simulations of interacting agents. We consider in particular update rules that depend on the state of the agent, so that the update becomes part of the dynamical model. As an illustration we consider the voter model in fully connected, random, and scale-free networks with an activation probability inversely proportional to the time since the last action, where an action can be an update attempt (an exogenous update) or a change of state (an endogenous update). We find that in the thermodynamic limit, at variance with standard updates and the exogenous update, the system orders slowly for the endogenous update. The approach to the absorbing state is characterized by a power-law decay of the density of interfaces, observing that the mean time to reach the absorbing state might be not well defined. The IET distributions resulting from both update schemes show power-law tails.

  1. Constructing 1/ωα noise from reversible Markov chains

    NASA Astrophysics Data System (ADS)

    Erland, Sveinung; Greenwood, Priscilla E.

    2007-09-01

    This paper gives sufficient conditions for the output of 1/ωα noise from reversible Markov chains on finite state spaces. We construct several examples exhibiting this behavior in a specified range of frequencies. We apply simple representations of the covariance function and the spectral density in terms of the eigendecomposition of the probability transition matrix. The results extend to hidden Markov chains. We generalize the results for aggregations of AR1-processes of C. W. J. Granger [J. Econometrics 14, 227 (1980)]. Given the eigenvalue function, there is a variety of ways to assign values to the states such that the 1/ωα condition is satisfied. We show that a random walk on a certain state space is complementary to the point process model of 1/ω noise of B. Kaulakys and T. Meskauskas [Phys. Rev. E 58, 7013 (1998)]. Passing to a continuous state space, we construct 1/ωα noise which also has a long memory.

  2. Multi-Target State Extraction for the SMC-PHD Filter

    PubMed Central

    Si, Weijian; Wang, Liwei; Qu, Zhiyu

    2016-01-01

    The sequential Monte Carlo probability hypothesis density (SMC-PHD) filter has been demonstrated to be a favorable method for multi-target tracking. However, the time-varying target states need to be extracted from the particle approximation of the posterior PHD, which is difficult to implement due to the unknown relations between the large amount of particles and the PHD peaks representing potential target locations. To address this problem, a novel multi-target state extraction algorithm is proposed in this paper. By exploiting the information of measurements and particle likelihoods in the filtering stage, we propose a validation mechanism which aims at selecting effective measurements and particles corresponding to detected targets. Subsequently, the state estimates of the detected and undetected targets are performed separately: the former are obtained from the particle clusters directed by effective measurements, while the latter are obtained from the particles corresponding to undetected targets via clustering method. Simulation results demonstrate that the proposed method yields better estimation accuracy and reliability compared to existing methods. PMID:27322274

  3. The role of demographic compensation theory in incidental take assessments for endangered species

    USGS Publications Warehouse

    McGowan, Conor P.; Ryan, Mark R.; Runge, Michael C.; Millspaugh, Joshua J.; Cochrane, Jean Fitts

    2011-01-01

    Many endangered species laws provide exceptions to legislated prohibitions through incidental take provisions as long as take is the result of unintended consequences of an otherwise legal activity. These allowances presumably invoke the theory of demographic compensation, commonly applied to harvested species, by allowing limited harm as long as the probability of the species' survival or recovery is not reduced appreciably. Demographic compensation requires some density-dependent limits on survival or reproduction in a species' annual cycle that can be alleviated through incidental take. Using a population model for piping plovers in the Great Plains, we found that when the population is in rapid decline or when there is no density dependence, the probability of quasi-extinction increased linearly with increasing take. However, when the population is near stability and subject to density-dependent survival, there was no relationship between quasi-extinction probability and take rates. We note however, that a brief examination of piping plover demography and annual cycles suggests little room for compensatory capacity. We argue that a population's capacity for demographic compensation of incidental take should be evaluated when considering incidental allowances because compensation is the only mechanism whereby a population can absorb the negative effects of take without incurring a reduction in the probability of survival in the wild. With many endangered species there is probably little known about density dependence and compensatory capacity. Under these circumstances, using multiple system models (with and without compensation) to predict the population's response to incidental take and implementing follow-up monitoring to assess species response may be valuable in increasing knowledge and improving future decision making.

  4. Ensemble Kalman filtering in presence of inequality constraints

    NASA Astrophysics Data System (ADS)

    van Leeuwen, P. J.

    2009-04-01

    Kalman filtering is presence of constraints is an active area of research. Based on the Gaussian assumption for the probability-density functions, it looks hard to bring in extra constraints in the formalism. On the other hand, in geophysical systems we often encounter constraints related to e.g. the underlying physics or chemistry, which are violated by the Gaussian assumption. For instance, concentrations are always non-negative, model layers have non-negative thickness, and sea-ice concentration is between 0 and 1. Several methods to bring inequality constraints into the Kalman-filter formalism have been proposed. One of them is probability density function (pdf) truncation, in which the Gaussian mass from the non-allowed part of the variables is just equally distributed over the pdf where the variables are alolwed, as proposed by Shimada et al. 1998. However, a problem with this method is that the probability that e.g. the sea-ice concentration is zero, is zero! The new method proposed here does not have this drawback. It assumes that the probability-density function is a truncated Gaussian, but the truncated mass is not distributed equally over all allowed values of the variables, but put into a delta distribution at the truncation point. This delta distribution can easily be handled with in Bayes theorem, leading to posterior probability density functions that are also truncated Gaussians with delta distributions at the truncation location. In this way a much better representation of the system is obtained, while still keeping most of the benefits of the Kalman-filter formalism. In the full Kalman filter the formalism is prohibitively expensive in large-scale systems, but efficient implementation is possible in ensemble variants of the kalman filter. Applications to low-dimensional systems and large-scale systems will be discussed.

  5. Oregon Cascades Play Fairway Analysis: Faults and Heat Flow maps

    DOE Data Explorer

    Adam Brandt

    2015-11-15

    This submission includes a fault map of the Oregon Cascades and backarc, a probability map of heat flow, and a fault density probability layer. More extensive metadata can be found within each zip file.

  6. Local Structure Theory for Cellular Automata.

    NASA Astrophysics Data System (ADS)

    Gutowitz, Howard Andrew

    The local structure theory (LST) is a generalization of the mean field theory for cellular automata (CA). The mean field theory makes the assumption that iterative application of the rule does not introduce correlations between the states of cells in different positions. This assumption allows the derivation of a simple formula for the limit density of each possible state of a cell. The most striking feature of CA is that they may well generate correlations between the states of cells as they evolve. The LST takes the generation of correlation explicitly into account. It thus has the potential to describe statistical characteristics in detail. The basic assumption of the LST is that though correlation may be generated by CA evolution, this correlation decays with distance. This assumption allows the derivation of formulas for the estimation of the probability of large blocks of states in terms of smaller blocks of states. Given the probabilities of blocks of size n, probabilities may be assigned to blocks of arbitrary size such that these probability assignments satisfy the Kolmogorov consistency conditions and hence may be used to define a measure on the set of all possible (infinite) configurations. Measures defined in this way are called finite (or n-) block measures. A function called the scramble operator of order n maps a measure to an approximating n-block measure. The action of a CA on configurations induces an action on measures on the set of all configurations. The scramble operator is combined with the CA map on measure to form the local structure operator (LSO). The LSO of order n maps the set of n-block measures into itself. It is hypothesised that the LSO applied to n-block measures approximates the rule itself on general measures, and does so increasingly well as n increases. The fundamental advantage of the LSO is that its action is explicitly computable from a finite system of rational recursion equations. Empirical study of a number of CA rules demonstrates the potential of the LST to describe the statistical features of CA. The behavior of some simple rules is derived analytically. Other rules have more complex, chaotic behavior. Even for these rules, the LST yields an accurate portrait of both small and large time statistics.

  7. Optimal estimation for discrete time jump processes

    NASA Technical Reports Server (NTRS)

    Vaca, M. V.; Tretter, S. A.

    1977-01-01

    Optimum estimates of nonobservable random variables or random processes which influence the rate functions of a discrete time jump process (DTJP) are obtained. The approach is based on the a posteriori probability of a nonobservable event expressed in terms of the a priori probability of that event and of the sample function probability of the DTJP. A general representation for optimum estimates and recursive equations for minimum mean squared error (MMSE) estimates are obtained. MMSE estimates are nonlinear functions of the observations. The problem of estimating the rate of a DTJP when the rate is a random variable with a probability density function of the form cx super K (l-x) super m and show that the MMSE estimates are linear in this case. This class of density functions explains why there are insignificant differences between optimum unconstrained and linear MMSE estimates in a variety of problems.

  8. Optimal estimation for discrete time jump processes

    NASA Technical Reports Server (NTRS)

    Vaca, M. V.; Tretter, S. A.

    1978-01-01

    Optimum estimates of nonobservable random variables or random processes which influence the rate functions of a discrete time jump process (DTJP) are derived. The approach used is based on the a posteriori probability of a nonobservable event expressed in terms of the a priori probability of that event and of the sample function probability of the DTJP. Thus a general representation is obtained for optimum estimates, and recursive equations are derived for minimum mean-squared error (MMSE) estimates. In general, MMSE estimates are nonlinear functions of the observations. The problem is considered of estimating the rate of a DTJP when the rate is a random variable with a beta probability density function and the jump amplitudes are binomially distributed. It is shown that the MMSE estimates are linear. The class of beta density functions is rather rich and explains why there are insignificant differences between optimum unconstrained and linear MMSE estimates in a variety of problems.

  9. Information Density and Syntactic Repetition.

    PubMed

    Temperley, David; Gildea, Daniel

    2015-11-01

    In noun phrase (NP) coordinate constructions (e.g., NP and NP), there is a strong tendency for the syntactic structure of the second conjunct to match that of the first; the second conjunct in such constructions is therefore low in syntactic information. The theory of uniform information density predicts that low-information syntactic constructions will be counterbalanced by high information in other aspects of that part of the sentence, and high-information constructions will be counterbalanced by other low-information components. Three predictions follow: (a) lexical probabilities (measured by N-gram probabilities and head-dependent probabilities) will be lower in second conjuncts than first conjuncts; (b) lexical probabilities will be lower in matching second conjuncts (those whose syntactic expansions match the first conjunct) than nonmatching ones; and (c) syntactic repetition should be especially common for low-frequency NP expansions. Corpus analysis provides support for all three of these predictions. Copyright © 2015 Cognitive Science Society, Inc.

  10. Mean Recency Period for Estimation of HIV-1 Incidence with the BED-Capture EIA and Bio-Rad Avidity in Persons Diagnosed in the United States with Subtype B.

    PubMed

    Hanson, Debra L; Song, Ruiguang; Masciotra, Silvina; Hernandez, Angela; Dobbs, Trudy L; Parekh, Bharat S; Owen, S Michele; Green, Timothy A

    2016-01-01

    HIV incidence estimates are used to monitor HIV-1 infection in the United States. Use of laboratory biomarkers that distinguish recent from longstanding infection to quantify HIV incidence rely on having accurate knowledge of the average time that individuals spend in a transient state of recent infection between seroconversion and reaching a specified biomarker cutoff value. This paper describes five estimation procedures from two general statistical approaches, a survival time approach and an approach that fits binomial models of the probability of being classified as recently infected, as a function of time since seroconversion. We compare these procedures for estimating the mean duration of recent infection (MDRI) for two biomarkers used by the U.S. National HIV Surveillance System for determination of HIV incidence, the Aware BED EIA HIV-1 incidence test (BED) and the avidity-based, modified Bio-Rad HIV-1/HIV-2 plus O ELISA (BRAI) assay. Collectively, 953 specimens from 220 HIV-1 subtype B seroconverters, taken from 5 cohorts, were tested with a biomarker assay. Estimates of MDRI using the non-parametric survival approach were 198.4 days (SD 13.0) for BED and 239.6 days (SD 13.9) for BRAI using cutoff values of 0.8 normalized optical density and 30%, respectively. The probability of remaining in the recent state as a function of time since seroconversion, based upon this revised statistical approach, can be applied in the calculation of annual incidence in the United States.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kastner, S.O.; Bhatia, A.K.

    A generalized method for obtaining individual level population ratios is used to obtain relative intensities of extreme ultraviolet Fe XV emission lines in the range 284 --500 A, which are density dependent for electron densities in the tokamak regime or higher. Four lines in particular are found to attain quite high intensities in the high-density limit. The same calculation provides inelastic contributions to linewidths. The method connects level populations and level widths through total probabilities t/sub i/j, related to ''taboo'' probabilities of Markov chain theory. The t/sub i/j are here evaluated for a real atomic system, being therefore of potentialmore » interest to random-walk theorists who have been limited to idealized systems characterized by simplified transition schemes.« less

  12. A matrix-based approach to solving the inverse Frobenius-Perron problem using sequences of density functions of stochastically perturbed dynamical systems

    NASA Astrophysics Data System (ADS)

    Nie, Xiaokai; Coca, Daniel

    2018-01-01

    The paper introduces a matrix-based approach to estimate the unique one-dimensional discrete-time dynamical system that generated a given sequence of probability density functions whilst subjected to an additive stochastic perturbation with known density.

  13. A matrix-based approach to solving the inverse Frobenius-Perron problem using sequences of density functions of stochastically perturbed dynamical systems.

    PubMed

    Nie, Xiaokai; Coca, Daniel

    2018-01-01

    The paper introduces a matrix-based approach to estimate the unique one-dimensional discrete-time dynamical system that generated a given sequence of probability density functions whilst subjected to an additive stochastic perturbation with known density.

  14. The risks and returns of stock investment in a financial market

    NASA Astrophysics Data System (ADS)

    Li, Jiang-Cheng; Mei, Dong-Cheng

    2013-03-01

    The risks and returns of stock investment are discussed via numerically simulating the mean escape time and the probability density function of stock price returns in the modified Heston model with time delay. Through analyzing the effects of delay time and initial position on the risks and returns of stock investment, the results indicate that: (i) There is an optimal delay time matching minimal risks of stock investment, maximal average stock price returns and strongest stability of stock price returns for strong elasticity of demand of stocks (EDS), but the opposite results for weak EDS; (ii) The increment of initial position recedes the risks of stock investment, strengthens the average stock price returns and enhances stability of stock price returns. Finally, the probability density function of stock price returns and the probability density function of volatility and the correlation function of stock price returns are compared with other literatures. In addition, good agreements are found between them.

  15. The effects of the one-step replica symmetry breaking on the Sherrington-Kirkpatrick spin glass model in the presence of random field with a joint Gaussian probability density function for the exchange interactions and random fields

    NASA Astrophysics Data System (ADS)

    Hadjiagapiou, Ioannis A.; Velonakis, Ioannis N.

    2018-07-01

    The Sherrington-Kirkpatrick Ising spin glass model, in the presence of a random magnetic field, is investigated within the framework of the one-step replica symmetry breaking. The two random variables (exchange integral interaction Jij and random magnetic field hi) are drawn from a joint Gaussian probability density function characterized by a correlation coefficient ρ, assuming positive and negative values. The thermodynamic properties, the three different phase diagrams and system's parameters are computed with respect to the natural parameters of the joint Gaussian probability density function at non-zero and zero temperatures. The low temperature negative entropy controversy, a result of the replica symmetry approach, has been partly remedied in the current study, leading to a less negative result. In addition, the present system possesses two successive spin glass phase transitions with characteristic temperatures.

  16. Estimation of proportions in mixed pixels through their region characterization

    NASA Technical Reports Server (NTRS)

    Chittineni, C. B. (Principal Investigator)

    1981-01-01

    A region of mixed pixels can be characterized through the probability density function of proportions of classes in the pixels. Using information from the spectral vectors of a given set of pixels from the mixed pixel region, expressions are developed for obtaining the maximum likelihood estimates of the parameters of probability density functions of proportions. The proportions of classes in the mixed pixels can then be estimated. If the mixed pixels contain objects of two classes, the computation can be reduced by transforming the spectral vectors using a transformation matrix that simultaneously diagonalizes the covariance matrices of the two classes. If the proportions of the classes of a set of mixed pixels from the region are given, then expressions are developed for obtaining the estmates of the parameters of the probability density function of the proportions of mixed pixels. Development of these expressions is based on the criterion of the minimum sum of squares of errors. Experimental results from the processing of remotely sensed agricultural multispectral imagery data are presented.

  17. Characterization of nonGaussian atmospheric turbulence for prediction of aircraft response statistics

    NASA Technical Reports Server (NTRS)

    Mark, W. D.

    1977-01-01

    Mathematical expressions were derived for the exceedance rates and probability density functions of aircraft response variables using a turbulence model that consists of a low frequency component plus a variance modulated Gaussian turbulence component. The functional form of experimentally observed concave exceedance curves was predicted theoretically, the strength of the concave contribution being governed by the coefficient of variation of the time fluctuating variance of the turbulence. Differences in the functional forms of response exceedance curves and probability densities also were shown to depend primarily on this same coefficient of variation. Criteria were established for the validity of the local stationary assumption that is required in the derivations of the exceedance curves and probability density functions. These criteria are shown to depend on the relative time scale of the fluctuations in the variance, the fluctuations in the turbulence itself, and on the nominal duration of the relevant aircraft impulse response function. Metrics that can be generated from turbulence recordings for testing the validity of the local stationary assumption were developed.

  18. A H-infinity Fault Detection and Diagnosis Scheme for Discrete Nonlinear System Using Output Probability Density Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yumin; Lum, Kai-Yew; Wang Qingguo

    In this paper, a H-infinity fault detection and diagnosis (FDD) scheme for a class of discrete nonlinear system fault using output probability density estimation is presented. Unlike classical FDD problems, the measured output of the system is viewed as a stochastic process and its square root probability density function (PDF) is modeled with B-spline functions, which leads to a deterministic space-time dynamic model including nonlinearities, uncertainties. A weighting mean value is given as an integral function of the square root PDF along space direction, which leads a function only about time and can be used to construct residual signal. Thus,more » the classical nonlinear filter approach can be used to detect and diagnose the fault in system. A feasible detection criterion is obtained at first, and a new H-infinity adaptive fault diagnosis algorithm is further investigated to estimate the fault. Simulation example is given to demonstrate the effectiveness of the proposed approaches.« less

  19. A H-infinity Fault Detection and Diagnosis Scheme for Discrete Nonlinear System Using Output Probability Density Estimation

    NASA Astrophysics Data System (ADS)

    Zhang, Yumin; Wang, Qing-Guo; Lum, Kai-Yew

    2009-03-01

    In this paper, a H-infinity fault detection and diagnosis (FDD) scheme for a class of discrete nonlinear system fault using output probability density estimation is presented. Unlike classical FDD problems, the measured output of the system is viewed as a stochastic process and its square root probability density function (PDF) is modeled with B-spline functions, which leads to a deterministic space-time dynamic model including nonlinearities, uncertainties. A weighting mean value is given as an integral function of the square root PDF along space direction, which leads a function only about time and can be used to construct residual signal. Thus, the classical nonlinear filter approach can be used to detect and diagnose the fault in system. A feasible detection criterion is obtained at first, and a new H-infinity adaptive fault diagnosis algorithm is further investigated to estimate the fault. Simulation example is given to demonstrate the effectiveness of the proposed approaches.

  20. A comparative study of nonparametric methods for pattern recognition

    NASA Technical Reports Server (NTRS)

    Hahn, S. F.; Nelson, G. D.

    1972-01-01

    The applied research discussed in this report determines and compares the correct classification percentage of the nonparametric sign test, Wilcoxon's signed rank test, and K-class classifier with the performance of the Bayes classifier. The performance is determined for data which have Gaussian, Laplacian and Rayleigh probability density functions. The correct classification percentage is shown graphically for differences in modes and/or means of the probability density functions for four, eight and sixteen samples. The K-class classifier performed very well with respect to the other classifiers used. Since the K-class classifier is a nonparametric technique, it usually performed better than the Bayes classifier which assumes the data to be Gaussian even though it may not be. The K-class classifier has the advantage over the Bayes in that it works well with non-Gaussian data without having to determine the probability density function of the data. It should be noted that the data in this experiment was always unimodal.

  1. Scale-invariant puddles in graphene: Geometric properties of electron-hole distribution at the Dirac point.

    PubMed

    Najafi, M N; Nezhadhaghighi, M Ghasemi

    2017-03-01

    We characterize the carrier density profile of the ground state of graphene in the presence of particle-particle interaction and random charged impurity in zero gate voltage. We provide detailed analysis on the resulting spatially inhomogeneous electron gas, taking into account the particle-particle interaction and the remote Coulomb disorder on an equal footing within the Thomas-Fermi-Dirac theory. We present some general features of the carrier density probability measure of the graphene sheet. We also show that, when viewed as a random surface, the electron-hole puddles at zero chemical potential show peculiar self-similar statistical properties. Although the disorder potential is chosen to be Gaussian, we show that the charge field is non-Gaussian with unusual Kondev relations, which can be regarded as a new class of two-dimensional random-field surfaces. Using Schramm-Loewner (SLE) evolution, we numerically demonstrate that the ungated graphene has conformal invariance and the random zero-charge density contours are SLE_{κ} with κ=1.8±0.2, consistent with c=-3 conformal field theory.

  2. Fully probabilistic control for stochastic nonlinear control systems with input dependent noise.

    PubMed

    Herzallah, Randa

    2015-03-01

    Robust controllers for nonlinear stochastic systems with functional uncertainties can be consistently designed using probabilistic control methods. In this paper a generalised probabilistic controller design for the minimisation of the Kullback-Leibler divergence between the actual joint probability density function (pdf) of the closed loop control system, and an ideal joint pdf is presented emphasising how the uncertainty can be systematically incorporated in the absence of reliable systems models. To achieve this objective all probabilistic models of the system are estimated from process data using mixture density networks (MDNs) where all the parameters of the estimated pdfs are taken to be state and control input dependent. Based on this dependency of the density parameters on the input values, explicit formulations to the construction of optimal generalised probabilistic controllers are obtained through the techniques of dynamic programming and adaptive critic methods. Using the proposed generalised probabilistic controller, the conditional joint pdfs can be made to follow the ideal ones. A simulation example is used to demonstrate the implementation of the algorithm and encouraging results are obtained. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Ensemble Averaged Probability Density Function (APDF) for Compressible Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Liu, Nan-Suey

    2012-01-01

    In this paper, we present a concept of the averaged probability density function (APDF) for studying compressible turbulent reacting flows. The APDF is defined as an ensemble average of the fine grained probability density function (FG-PDF) with a mass density weighting. It can be used to exactly deduce the mass density weighted, ensemble averaged turbulent mean variables. The transport equation for APDF can be derived in two ways. One is the traditional way that starts from the transport equation of FG-PDF, in which the compressible Navier- Stokes equations are embedded. The resulting transport equation of APDF is then in a traditional form that contains conditional means of all terms from the right hand side of the Navier-Stokes equations except for the chemical reaction term. These conditional means are new unknown quantities that need to be modeled. Another way of deriving the transport equation of APDF is to start directly from the ensemble averaged Navier-Stokes equations. The resulting transport equation of APDF derived from this approach appears in a closed form without any need for additional modeling. The methodology of ensemble averaging presented in this paper can be extended to other averaging procedures: for example, the Reynolds time averaging for statistically steady flow and the Reynolds spatial averaging for statistically homogeneous flow. It can also be extended to a time or spatial filtering procedure to construct the filtered density function (FDF) for the large eddy simulation (LES) of compressible turbulent reacting flows.

  4. Spatial and temporal Brook Trout density dynamics: Implications for conservation, management, and monitoring

    USGS Publications Warehouse

    Wagner, Tyler; Jefferson T. Deweber,; Jason Detar,; Kristine, David; John A. Sweka,

    2014-01-01

    Many potential stressors to aquatic environments operate over large spatial scales, prompting the need to assess and monitor both site-specific and regional dynamics of fish populations. We used hierarchical Bayesian models to evaluate the spatial and temporal variability in density and capture probability of age-1 and older Brook Trout Salvelinus fontinalis from three-pass removal data collected at 291 sites over a 37-year time period (1975–2011) in Pennsylvania streams. There was high between-year variability in density, with annual posterior means ranging from 2.1 to 10.2 fish/100 m2; however, there was no significant long-term linear trend. Brook Trout density was positively correlated with elevation and negatively correlated with percent developed land use in the network catchment. Probability of capture did not vary substantially across sites or years but was negatively correlated with mean stream width. Because of the low spatiotemporal variation in capture probability and a strong correlation between first-pass CPUE (catch/min) and three-pass removal density estimates, the use of an abundance index based on first-pass CPUE could represent a cost-effective alternative to conducting multiple-pass removal sampling for some Brook Trout monitoring and assessment objectives. Single-pass indices may be particularly relevant for monitoring objectives that do not require precise site-specific estimates, such as regional monitoring programs that are designed to detect long-term linear trends in density.

  5. Effects of the heterogeneous landscape on a predator-prey system

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Hee

    2010-01-01

    In order to understand how a heterogeneous landscape affects a predator-prey system, a spatially explicit lattice model consisting of predators, prey, grass, and landscape was constructed. The predators and preys randomly move on the lattice space and the grass grows in its neighboring site according to its growth probability. When predators and preys meet at the same site at the same time, a number of prey, equal to the number of predators are eaten. This rule was also applied to the relationship between the prey and grass. The predator (prey) could give birth to an offspring when it ate prey (grass), with a birth probability. When a predator or prey animal was initially introduced, or newly born, its health state was set at a given high value. This health state decreased by one with every time step. When the state of an animal decreased to less than zero, the animal died and was removed from the system. The heterogeneous landscape was characterized by parameter H, which controlled the heterogeneity according to the neutral model. The simulation results showed that H positively or negatively affected a predator’s survival, while its effect on prey and grass was less pronounced. The results can be understood by the disturbance of the balance between the prey and predator densities in the areas where the animals aggregated.

  6. On the use of the noncentral chi-square density function for the distribution of helicopter spectral estimates

    NASA Technical Reports Server (NTRS)

    Garber, Donald P.

    1993-01-01

    A probability density function for the variability of ensemble averaged spectral estimates from helicopter acoustic signals in Gaussian background noise was evaluated. Numerical methods for calculating the density function and for determining confidence limits were explored. Density functions were predicted for both synthesized and experimental data and compared with observed spectral estimate variability.

  7. Using hidden Markov models to align multiple sequences.

    PubMed

    Mount, David W

    2009-07-01

    A hidden Markov model (HMM) is a probabilistic model of a multiple sequence alignment (msa) of proteins. In the model, each column of symbols in the alignment is represented by a frequency distribution of the symbols (called a "state"), and insertions and deletions are represented by other states. One moves through the model along a particular path from state to state in a Markov chain (i.e., random choice of next move), trying to match a given sequence. The next matching symbol is chosen from each state, recording its probability (frequency) and also the probability of going to that state from a previous one (the transition probability). State and transition probabilities are multiplied to obtain a probability of the given sequence. The hidden nature of the HMM is due to the lack of information about the value of a specific state, which is instead represented by a probability distribution over all possible values. This article discusses the advantages and disadvantages of HMMs in msa and presents algorithms for calculating an HMM and the conditions for producing the best HMM.

  8. Domestic wells have high probability of pumping septic tank leachate

    NASA Astrophysics Data System (ADS)

    Bremer, J. E.; Harter, T.

    2012-08-01

    Onsite wastewater treatment systems are common in rural and semi-rural areas around the world; in the US, about 25-30% of households are served by a septic (onsite) wastewater treatment system, and many property owners also operate their own domestic well nearby. Site-specific conditions and local groundwater flow are often ignored when installing septic systems and wells. In areas with small lots (thus high spatial septic system densities), shallow domestic wells are prone to contamination by septic system leachate. Mass balance approaches have been used to determine a maximum septic system density that would prevent contamination of groundwater resources. In this study, a source area model based on detailed groundwater flow and transport modeling is applied for a stochastic analysis of domestic well contamination by septic leachate. Specifically, we determine the probability that a source area overlaps with a septic system drainfield as a function of aquifer properties, septic system density and drainfield size. We show that high spatial septic system density poses a high probability of pumping septic system leachate. The hydraulic conductivity of the aquifer has a strong influence on the intersection probability. We find that mass balance calculations applied on a regional scale underestimate the contamination risk of individual drinking water wells by septic systems. This is particularly relevant for contaminants released at high concentrations, for substances that experience limited attenuation, and those that are harmful even at low concentrations (e.g., pathogens).

  9. Transition probabilities of health states for workers in Malaysia using a Markov chain model

    NASA Astrophysics Data System (ADS)

    Samsuddin, Shamshimah; Ismail, Noriszura

    2017-04-01

    The aim of our study is to estimate the transition probabilities of health states for workers in Malaysia who contribute to the Employment Injury Scheme under the Social Security Organization Malaysia using the Markov chain model. Our study uses four states of health (active, temporary disability, permanent disability and death) based on the data collected from the longitudinal studies of workers in Malaysia for 5 years. The transition probabilities vary by health state, age and gender. The results show that men employees are more likely to have higher transition probabilities to any health state compared to women employees. The transition probabilities can be used to predict the future health of workers in terms of a function of current age, gender and health state.

  10. An investigation of student understanding of classical ideas related to quantum mechanics: Potential energy diagrams and spatial probability density

    NASA Astrophysics Data System (ADS)

    Stephanik, Brian Michael

    This dissertation describes the results of two related investigations into introductory student understanding of ideas from classical physics that are key elements of quantum mechanics. One investigation probes the extent to which students are able to interpret and apply potential energy diagrams (i.e., graphs of potential energy versus position). The other probes the extent to which students are able to reason classically about probability and spatial probability density. The results of these investigations revealed significant conceptual and reasoning difficulties that students encounter with these topics. The findings guided the design of instructional materials to address the major problems. Results from post-instructional assessments are presented that illustrate the impact of the curricula on student learning.

  11. Deployment Design of Wireless Sensor Network for Simple Multi-Point Surveillance of a Moving Target

    PubMed Central

    Tsukamoto, Kazuya; Ueda, Hirofumi; Tamura, Hitomi; Kawahara, Kenji; Oie, Yuji

    2009-01-01

    In this paper, we focus on the problem of tracking a moving target in a wireless sensor network (WSN), in which the capability of each sensor is relatively limited, to construct large-scale WSNs at a reasonable cost. We first propose two simple multi-point surveillance schemes for a moving target in a WSN and demonstrate that one of the schemes can achieve high tracking probability with low power consumption. In addition, we examine the relationship between tracking probability and sensor density through simulations, and then derive an approximate expression representing the relationship. As the results, we present guidelines for sensor density, tracking probability, and the number of monitoring sensors that satisfy a variety of application demands. PMID:22412326

  12. Steady-state kinetics of solitary batrachotoxin-treated sodium channels. Kinetics on a bounded continuum of polymer conformations.

    PubMed Central

    Rubinson, K A

    1992-01-01

    The underlying principles of the kinetics and equilibrium of a solitary sodium channel in the steady state are examined. Both the open and closed kinetics are postulated to result from round-trip excursions from a transition region that separates the openable and closed forms. Exponential behavior of the kinetics can have origins different from small-molecule systems. These differences suggest that the probability density functions (PDFs) that describe the time dependences of the open and closed forms arise from a distribution of rate constants. The distribution is likely to arise from a thermal modulation of the channel structure, and this provides a physical basis for the following three-variable equation: [formula; see text] Here, A0 is a scaling term, k is the mean rate constant, and sigma quantifies the Gaussian spread for the contributions of a range of effective rate constants. The maximum contribution is made by k, with rates faster and slower contributing less. (When sigma, the standard deviation of the spread, goes to zero, then p(f) = A0 e-kt.) The equation is applied to the single-channel steady-state probability density functions for batrachotoxin-treated sodium channels (1986. Keller et al. J. Gen. Physiol. 88: 1-23). The following characteristics are found: (a) The data for both open and closed forms of the channel are fit well with the above equation, which represents a Gaussian distribution of first-order rate processes. (b) The simple relationship [formula; see text] holds for the mean effective rat constants. Or, equivalently stated, the values of P open calculated from the k values closely agree with the P open values found directly from the PDF data. (c) In agreement with the known behavior of voltage-dependent rate constants, the voltage dependences of the mean effective rate constants for the opening and closing of the channel are equal and opposite over the voltage range studied. That is, [formula; see text] "Bursts" are related to the well-known cage effect of solution chemistry. PMID:1312365

  13. Quenching of highly vibrationally excited pyrimidine by collisions with CO2

    NASA Astrophysics Data System (ADS)

    Johnson, Jeremy A.; Duffin, Andrew M.; Hom, Brian J.; Jackson, Karl E.; Sevy, Eric T.

    2008-02-01

    Relaxation of highly vibrationally excited pyrimidine (C4N2H4) by collisions with carbon dioxide has been investigated using diode laser transient absorption spectroscopy. Vibrationally hot pyrimidine (E'=40635cm-1) was prepared by 248-nm excimer laser excitation, followed by rapid radiationless relaxation to the ground electronic state. The nascent rotational population distribution (J=58-80) of the 0000 ground state of CO2 resulting from collisions with hot pyrimidine was probed at short times following the excimer laser pulse. Doppler spectroscopy was used to measure the CO2 recoil velocity distribution for J =58-80 of the 0000 state. Rate constants and probabilities for collisions populating these CO2 rotational states were determined. The measured energy transfer probabilities, indexed by final bath state, were resorted as a function of ΔE to create the energy transfer distribution function, P(E,E'), from E'-E˜1300-7000cm-1. P(E,E') is fitted to a single exponential and a biexponential function to determine the average energy transferred in a single collision between pyrimidine and CO2 and parameters that can be compared to previously studied systems using this technique, pyrazine/CO2, C6F6/CO2, and methylpyrazine/CO2. P(E,E') parameters for these four systems are also compared to various molecular properties of the donor molecules. Finally, P(E,E') is analyzed in the context of two models, one which suggests that the shape of P(E,E') is primarily determined by the low-frequency out-of-plane donor vibrational modes and one which suggests that the shape of P(E,E') can be determined by how the donor molecule final density of states changes with ΔE.

  14. Toward a microscopic model of bidirectional synaptic plasticity

    PubMed Central

    Castellani, Gastone C.; Bazzani, Armando; Cooper, Leon N

    2009-01-01

    We show that a 2-step phospho/dephosphorylation cycle for the α-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid receptor (AMPAR), as used in in vivo learning experiments to assess long-term potentiation (LTP) induction and establishment, exhibits bistability for a wide range of parameters, consistent with values derived from biological literature. The AMPAR model we propose, hence, is a candidate for memory storage and switching behavior at a molecular-microscopic level. Furthermore, the stochastic formulation of the deterministic model leads to a mesoscopic interpretation by considering the effect of enzymatic fluctuations on the Michelis–Menten average dynamics. Under suitable hypotheses, this leads to a stochastic dynamical system with multiplicative noise whose probability density evolves according to a Fokker–Planck equation in the Stratonovich sense. In this approach, the probability density associated with each AMPAR phosphorylation state allows one to compute the probability of any concentration value, whereas the Michaelis–Menten equations consider the average concentration dynamics. We show that bistable dynamics are robust for multiplicative stochastic perturbations and that the presence of both noise and bistability simulates LTP and long-term depression (LTD) behavior. Interestingly, the LTP part of this model has been experimentally verified as a result of in vivo, one-trial inhibitory avoidance learning protocol in rats, that produced the same changes in hippocampal AMPARs phosphorylation state as observed with in vitro induction of LTP with high-frequency stimulation (HFS). A consequence of this model is the possibility of characterizing a molecular switch with a defined biochemical set of reactions showing bistability and bidirectionality. Thus, this 3-enzymes-based biophysical model can predict LTP as well as LTD and their transition rates. The theoretical results can be, in principle, validated by in vitro and in vivo experiments, such as fluorescence measurements and electrophysiological recordings at multiple scales, from molecules to neurons. A further consequence is that the bistable regime occurs only within certain parametric windows, which may simulate a “history-dependent threshold”. This effect might be related to the Bienenstock–Cooper–Munro theory of synaptic plasticity. PMID:19666550

  15. Compositional cokriging for mapping the probability risk of groundwater contamination by nitrates.

    PubMed

    Pardo-Igúzquiza, Eulogio; Chica-Olmo, Mario; Luque-Espinar, Juan A; Rodríguez-Galiano, Víctor

    2015-11-01

    Contamination by nitrates is an important cause of groundwater pollution and represents a potential risk to human health. Management decisions must be made using probability maps that assess the nitrate concentration potential of exceeding regulatory thresholds. However these maps are obtained with only a small number of sparse monitoring locations where the nitrate concentrations have been measured. It is therefore of great interest to have an efficient methodology for obtaining those probability maps. In this paper, we make use of the fact that the discrete probability density function is a compositional variable. The spatial discrete probability density function is estimated by compositional cokriging. There are several advantages in using this approach: (i) problems of classical indicator cokriging, like estimates outside the interval (0,1) and order relations, are avoided; (ii) secondary variables (e.g. aquifer parameters) can be included in the estimation of the probability maps; (iii) uncertainty maps of the probability maps can be obtained; (iv) finally there are modelling advantages because the variograms and cross-variograms of real variables that do not have the restrictions of indicator variograms and indicator cross-variograms. The methodology was applied to the Vega de Granada aquifer in Southern Spain and the advantages of the compositional cokriging approach were demonstrated. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Microdosimetric Analysis Confirms Similar Biological Effectiveness of External Exposure to Gamma-Rays and Internal Exposure to 137Cs, 134Cs, and 131I

    PubMed Central

    Sato, Tatsuhiko; Manabe, Kentaro; Hamada, Nobuyuki

    2014-01-01

    The risk of internal exposure to 137Cs, 134Cs, and 131I is of great public concern after the accident at the Fukushima-Daiichi nuclear power plant. The relative biological effectiveness (RBE, defined herein as effectiveness of internal exposure relative to the external exposure to γ-rays) is occasionally believed to be much greater than unity due to insufficient discussions on the difference of their microdosimetric profiles. We therefore performed a Monte Carlo particle transport simulation in ideally aligned cell systems to calculate the probability densities of absorbed doses in subcellular and intranuclear scales for internal exposures to electrons emitted from 137Cs, 134Cs, and 131I, as well as the external exposure to 662 keV photons. The RBE due to the inhomogeneous radioactive isotope (RI) distribution in subcellular structures and the high ionization density around the particle trajectories was then derived from the calculated microdosimetric probability density. The RBE for the bystander effect was also estimated from the probability density, considering its non-linear dose response. The RBE due to the high ionization density and that for the bystander effect were very close to 1, because the microdosimetric probability densities were nearly identical between the internal exposures and the external exposure from the 662 keV photons. On the other hand, the RBE due to the RI inhomogeneity largely depended on the intranuclear RI concentration and cell size, but their maximum possible RBE was only 1.04 even under conservative assumptions. Thus, it can be concluded from the microdosimetric viewpoint that the risk from internal exposures to 137Cs, 134Cs, and 131I should be nearly equivalent to that of external exposure to γ-rays at the same absorbed dose level, as suggested in the current recommendations of the International Commission on Radiological Protection. PMID:24919099

  17. Estimating The Probability Of Achieving Shortleaf Pine Regeneration At Variable Specified Levels

    Treesearch

    Thomas B. Lynch; Jean Nkouka; Michael M. Huebschmann; James M. Guldin

    2002-01-01

    A model was developed that can be used to estimate the probability of achieving regeneration at a variety of specified stem density levels. The model was fitted to shortleaf pine (Pinus echinata Mill.) regeneration data, and can be used to estimate the probability of achieving desired levels of regeneration between 300 and 700 stems per acre 9-l 0...

  18. Properties of Traffic Risk Coefficient

    NASA Astrophysics Data System (ADS)

    Tang, Tie-Qiao; Huang, Hai-Jun; Shang, Hua-Yan; Xue, Yu

    2009-10-01

    We use the model with the consideration of the traffic interruption probability (Physica A 387(2008)6845) to study the relationship between the traffic risk coefficient and the traffic interruption probability. The analytical and numerical results show that the traffic interruption probability will reduce the traffic risk coefficient and that the reduction is related to the density, which shows that this model can improve traffic security.

  19. Probability mass first flush evaluation for combined sewer discharges.

    PubMed

    Park, Inhyeok; Kim, Hongmyeong; Chae, Soo-Kwon; Ha, Sungryong

    2010-01-01

    The Korea government has put in a lot of effort to construct sanitation facilities for controlling non-point source pollution. The first flush phenomenon is a prime example of such pollution. However, to date, several serious problems have arisen in the operation and treatment effectiveness of these facilities due to unsuitable design flow volumes and pollution loads. It is difficult to assess the optimal flow volume and pollution mass when considering both monetary and temporal limitations. The objective of this article was to characterize the discharge of storm runoff pollution from urban catchments in Korea and to estimate the probability of mass first flush (MFFn) using the storm water management model and probability density functions. As a result of the review of gauged storms for the representative using probability density function with rainfall volumes during the last two years, all the gauged storms were found to be valid representative precipitation. Both the observed MFFn and probability MFFn in BE-1 denoted similarly large magnitudes of first flush with roughly 40% of the total pollution mass contained in the first 20% of the runoff. In the case of BE-2, however, there were significant difference between the observed MFFn and probability MFFn.

  20. Comparison of sticking probabilities of metal atoms in magnetron sputtering deposition of CuZnSnS films

    NASA Astrophysics Data System (ADS)

    Sasaki, K.; Kikuchi, S.

    2014-10-01

    In this work, we compared the sticking probabilities of Cu, Zn, and Sn atoms in magnetron sputtering deposition of CZTS films. The evaluations of the sticking probabilities were based on the temporal decays of the Cu, Zn, and Sn densities in the afterglow, which were measured by laser-induced fluorescence spectroscopy. Linear relationships were found between the discharge pressure and the lifetimes of the atom densities. According to Chantry, the sticking probability is evaluated from the extrapolated lifetime at the zero pressure, which is given by 2l0 (2 - α) / (v α) with α, l0, and v being the sticking probability, the ratio between the volume and the surface area of the chamber, and the mean velocity, respectively. The ratio of the extrapolated lifetimes observed experimentally was τCu :τSn :τZn = 1 : 1 . 3 : 1 . This ratio coincides well with the ratio of the reciprocals of their mean velocities (1 /vCu : 1 /vSn : 1 /vZn = 1 . 00 : 1 . 37 : 1 . 01). Therefore, the present experimental result suggests that the sticking probabilities of Cu, Sn, and Zn are roughly the same.

Top