Sample records for state science framework

  1. A Decision Support Framework For Science-Based, Multi-Stakeholder Deliberation: A Coral Reef Example

    EPA Science Inventory

    We present a decision support framework for science-based assessment and multi-stakeholder deliberation. The framework consists of two parts: a DPSIR (Drivers-Pressures-States-Impacts-Responses) analysis to identify the important causal relationships among anthropogenic environ...

  2. Bioinformatics in high school biology curricula: a study of state science standards.

    PubMed

    Wefer, Stephen H; Sheppard, Keith

    2008-01-01

    The proliferation of bioinformatics in modern biology marks a modern revolution in science that promises to influence science education at all levels. This study analyzed secondary school science standards of 49 U.S. states (Iowa has no science framework) and the District of Columbia for content related to bioinformatics. The bioinformatics content of each state's biology standards was analyzed and categorized into nine areas: Human Genome Project/genomics, forensics, evolution, classification, nucleotide variations, medicine, computer use, agriculture/food technology, and science technology and society/socioscientific issues. Findings indicated a generally low representation of bioinformatics-related content, which varied substantially across the different areas, with Human Genome Project/genomics and computer use being the lowest (8%), and evolution being the highest (64%) among states' science frameworks. This essay concludes with recommendations for reworking/rewording existing standards to facilitate the goal of promoting science literacy among secondary school students.

  3. Bioinformatics in High School Biology Curricula: A Study of State Science Standards

    PubMed Central

    Sheppard, Keith

    2008-01-01

    The proliferation of bioinformatics in modern biology marks a modern revolution in science that promises to influence science education at all levels. This study analyzed secondary school science standards of 49 U.S. states (Iowa has no science framework) and the District of Columbia for content related to bioinformatics. The bioinformatics content of each state's biology standards was analyzed and categorized into nine areas: Human Genome Project/genomics, forensics, evolution, classification, nucleotide variations, medicine, computer use, agriculture/food technology, and science technology and society/socioscientific issues. Findings indicated a generally low representation of bioinformatics-related content, which varied substantially across the different areas, with Human Genome Project/genomics and computer use being the lowest (8%), and evolution being the highest (64%) among states' science frameworks. This essay concludes with recommendations for reworking/rewording existing standards to facilitate the goal of promoting science literacy among secondary school students. PMID:18316818

  4. The Nation's Report Card Science 2009 State Snapshot Report. DoDEA. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  5. The Nation's Report Card Science 2009 State Snapshot Report. DoDEA. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  6. The Nation's Report Card Science 2009 State Snapshot Report. New Hampshire. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  7. The Nation's Report Card Science 2009 State Snapshot Report. New Mexico. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  8. The Nation's Report Card Science 2009 State Snapshot Report. New Mexico. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  9. The Nation's Report Card Science 2009 State Snapshot Report. Colorado. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  10. The Nation's Report Card Science 2009 State Snapshot Report. Colorado. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter,…

  11. The Nation's Report Card Science 2009 State Snapshot Report. Hawaii. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  12. The Nation's Report Card Science 2009 State Snapshot Report. Wisconsin. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  13. The Nation's Report Card Science 2009 State Snapshot Report. Ohio. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  14. The Nation's Report Card Science 2009 State Snapshot Report. Florida. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  15. The Nation's Report Card Science 2009 State Snapshot Report. Ohio. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  16. The Nation's Report Card Science 2009 State Snapshot Report. Arizona. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  17. The Nation's Report Card Science 2009 State Snapshot Report. Mississippi. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  18. The Nation's Report Card Science 2009 State Snapshot Report. Alabama. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  19. The Nation's Report Card Science 2009 State Snapshot Report. Michigan. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  20. The Nation's Report Card Science 2009 State Snapshot Report. Arkansas. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  1. The Nation's Report Card Science 2009 State Snapshot Report. Georgia. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  2. The Nation's Report Card Science 2009 State Snapshot Report. Oklahoma. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  3. The Nation's Report Card Science 2009 State Snapshot Report. New Jersey. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  4. The Nation's Report Card Science 2009 State Snapshot Report. Missouri. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  5. The Nation's Report Card Science 2009 State Snapshot Report. Illinois. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  6. The Nation's Report Card Science 2009 State Snapshot Report. Idaho. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  7. The Nation's Report Card Science 2009 State Snapshot Report. South Dakota. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  8. The Nation's Report Card Science 2009 State Snapshot Report. Louisiana. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  9. The Nation's Report Card Science 2009 State Snapshot Report. New Jersey. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  10. The Nation's Report Card Science 2009 State Snapshot Report. Maine. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  11. The Nation's Report Card Science 2009 State Snapshot Report. Wisconsin. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  12. The Nation's Report Card Science 2009 State Snapshot Report. Connecticut. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  13. The Nation's Report Card Science 2009 State Snapshot Report. Montana. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  14. The Nation's Report Card Science 2009 State Snapshot Report. Maryland. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  15. The Nation's Report Card Science 2009 State Snapshot Report. Mississippi. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  16. The Nation's Report Card Science 2009 State Snapshot Report. Maryland. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  17. The Nation's Report Card Science 2009 State Snapshot Report. Tennessee. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  18. The Nation's Report Card Science 2009 State Snapshot Report. Hawaii. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  19. The Nation's Report Card Science 2009 State Snapshot Report. Wyoming. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  20. The Nation's Report Card Science 2009 State Snapshot Report. Minnesota. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  1. The Nation's Report Card Science 2009 State Snapshot Report. New York. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  2. The Nation's Report Card Science 2009 State Snapshot Report. Louisiana. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  3. The Nation's Report Card Science 2009 State Snapshot Report. Illinois. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  4. The Nation's Report Card Science 2009 State Snapshot Report. Indiana. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  5. The Nation's Report Card Science 2009 State Snapshot Report. Oregon. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  6. The Nation's Report Card Science 2009 State Snapshot Report. Connecticut. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  7. The Nation's Report Card Science 2009 State Snapshot Report. Oregon. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  8. The Nation's Report Card Science 2009 State Snapshot Report. Idaho. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  9. The Nation's Report Card Science 2009 State Snapshot Report. Alabama. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  10. The Nation's Report Card Science 2009 State Snapshot Report. Arizona. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  11. The Nation's Report Card Science 2009 State Snapshot Report. New York. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  12. The Nation's Report Card Science 2009 State Snapshot Report. Iowa. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  13. The Nation's Report Card Science 2009 State Snapshot Report. Delaware. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  14. The Nation's Report Card Science 2009 State Snapshot Report. West Virginia. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  15. The Nation's Report Card Science 2009 State Snapshot Report. Florida. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter,…

  16. The Nation's Report Card Science 2009 State Snapshot Report. North Dakota. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  17. The Nation's Report Card Science 2009 State Snapshot Report. California. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  18. The Nation's Report Card Science 2009 State Snapshot Report. Rhode Island. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  19. The Nation's Report Card Science 2009 State Snapshot Report. Minnesota. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  20. The Nation's Report Card Science 2009 State Snapshot Report. North Carolina. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  1. The Nation's Report Card Science 2009 State Snapshot Report. Utah. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  2. The Nation's Report Card Science 2009 State Snapshot Report. North Dakota. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  3. The Nation's Report Card Science 2009 State Snapshot Report. California. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  4. The Nation's Report Card Science 2009 State Snapshot Report. Kentucky. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  5. The Nation's Report Card Science 2009 State Snapshot Report. Pennsylvania. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  6. The Nation's Report Card Science 2009 State Snapshot Report. Oklahoma. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  7. The Nation's Report Card Science 2009 State Snapshot Report. South Carolina. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  8. The Nation's Report Card Science 2009 State Snapshot Report. Maine. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  9. The Nation's Report Card Science 2009 State Snapshot Report. Tennessee. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  10. The Nation's Report Card Science 2009 State Snapshot Report. Rhode Island. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  11. The Nation's Report Card Science 2009 State Snapshot Report. Texas. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  12. The Nation's Report Card Science 2009 State Snapshot Report. Iowa. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  13. The Nation's Report Card Science 2009 State Snapshot Report. Washington. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  14. The Nation's Report Card Science 2009 State Snapshot Report. New Hampshire. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  15. The Nation's Report Card Science 2009 State Snapshot Report. Massachusetts. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  16. The Nation's Report Card Science 2009 State Snapshot Report. Washington. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  17. The Nation's Report Card Science 2009 State Snapshot Report. Arkansas. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  18. The Nation's Report Card Science 2009 State Snapshot Report. Georgia. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  19. The Nation's Report Card Science 2009 State Snapshot Report. Indiana. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  20. The Nation's Report Card Science 2009 State Snapshot Report. Missouri. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  1. The Nation's Report Card Science 2009 State Snapshot Report. West Virginia. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas Physical science includes concepts related to properties and changes of matter, forms…

  2. The Nation's Report Card Science 2009 State Snapshot Report. Montana. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  3. The Nation's Report Card Science 2009 State Snapshot Report. Nevada. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  4. The Nation's Report Card Science 2009 State Snapshot Report. Massachusetts. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  5. Next Generation Science Standards: For States, by States

    ERIC Educational Resources Information Center

    National Academies Press, 2013

    2013-01-01

    "Next Generation Science Standards" identifies the science all K-12 students should know. These new standards are based on the National Research Council's "A Framework for K-12 Science Education." The National Research Council, the National Science Teachers Association, the American Association for the Advancement of Science,…

  6. Next Generation Science Standards: Adoption and Implementation Workbook

    ERIC Educational Resources Information Center

    Peltzman, Alissa; Rodriguez, Nick

    2013-01-01

    The Next Generation Science Standards (NGSS) represent the culmination of years of collaboration and effort by states, science educators and experts from across the United States. Based on the National Research Council's "A Framework for K-12 Science Education" and developed in partnership with 26 lead states, the NGSS, when…

  7. The Nexus between Science Literacy & Technical Literacy: A State by State Analysis of Engineering Content in State Science Standards

    ERIC Educational Resources Information Center

    Koehler, Catherine M.; Faraclas, Elias; Giblin, David; Moss, David M.; Kazerounian, Kazem

    2013-01-01

    This study explores how engineering concepts are represented in secondary science standards across the nation by examining how engineering and technical concepts are infused into these frameworks. Secondary science standards from 49 states plus the District of Columbia were analyzed and ranked based on how many engineering concepts were found.…

  8. Educating for the 21st-Century Health Care System: An Interdependent Framework of Basic, Clinical, and Systems Sciences.

    PubMed

    Gonzalo, Jed D; Haidet, Paul; Papp, Klara K; Wolpaw, Daniel R; Moser, Eileen; Wittenstein, Robin D; Wolpaw, Terry

    2017-01-01

    In the face of a fragmented and poorly performing health care delivery system, medical education in the United States is poised for disruption. Despite broad-based recommendations to better align physician training with societal needs, adaptive change has been slow. Traditionally, medical education has focused on the basic and clinical sciences, largely removed from the newer systems sciences such as population health, policy, financing, health care delivery, and teamwork. In this article, authors examine the current state of medical education with respect to systems sciences and propose a new framework for educating physicians in adapting to and practicing in systems-based environments. Specifically, the authors propose an educational shift from a two-pillar framework to a three-pillar framework where basic, clinical, and systems sciences are interdependent. In this new three-pillar framework, students not only learn the interconnectivity in the basic, clinical, and systems sciences but also uncover relevance and meaning in their education through authentic, value-added, and patient-centered roles as navigators within the health care system. Authors describe the Systems Navigation Curriculum, currently implemented for all students at the Penn State College of Medicine, as an example of this three-pillar educational model. Simple adjustments, such as including occasional systems topics in medical curriculum, will not foster graduates prepared to practice in the 21st-century health care system. Adequate preparation requires an explicit focus on the systems sciences as a vital and equal component of physician education.

  9. Three-Dimensional Instruction: Using a New Type of Teaching in the Science Classroom

    ERIC Educational Resources Information Center

    Krajcik, Joe

    2015-01-01

    Science teaching and learning in the United States are at a pivotal point. "A Framework for K-12 Science Education" (NRC 2012b) and the "Next Generation Science Standards" ("NGSS"; NGSS Lead States 2013) shift science educators' focus from simply teaching science ideas to helping students figure out phenomena and…

  10. Evaluation of Online Teacher and Student Materials for the Framework for K-12 Science Education Science and Engineering Crosscutting Concepts

    ERIC Educational Resources Information Center

    Schwab, Patrick

    2013-01-01

    The National Research Council developed and published the "Framework for K-12 Science Education," a new set of concepts that many states were planning on adopting. Part of this new endeavor included a set of science and engineering crosscutting concepts to be incorporated into science materials and activities, a first in science…

  11. Lessons Learned From Developing A Streaming Data Framework for Scientific Analysis

    NASA Technical Reports Server (NTRS)

    Wheeler. Kevin R.; Allan, Mark; Curry, Charles

    2003-01-01

    We describe the development and usage of a streaming data analysis software framework. The framework is used for three different applications: Earth science hyper-spectral imaging analysis, Electromyograph pattern detection, and Electroencephalogram state determination. In each application the framework was used to answer a series of science questions which evolved with each subsequent answer. This evolution is summarized in the form of lessons learned.

  12. The State of State Science Standards, 2012

    ERIC Educational Resources Information Center

    Lerner, Lawrence S.; Goodenough, Ursula; Lynch, John; Schwartz, Martha; Schwartz, Richard

    2012-01-01

    This report examines K-12 science standards for fifty states and the District of Columbia, as well as the science assessment framework of the National Assessment of Educational Progress (NAEP). The reviewers' aim is to evaluate them for their intrinsic clarity, completeness, and scientific correctness. Their earlier evaluations, as well as those…

  13. Bioinformatics in High School Biology Curricula: A Study of State Science Standards

    ERIC Educational Resources Information Center

    Wefer, Stephen H.; Sheppard, Keith

    2008-01-01

    The proliferation of bioinformatics in modern biology marks a modern revolution in science that promises to influence science education at all levels. This study analyzed secondary school science standards of 49 U.S. states (Iowa has no science framework) and the District of Columbia for content related to bioinformatics. The bioinformatics…

  14. Assessing Students' Deep Conceptual Understanding in Physical Sciences: An Example on Sinking and Floating

    ERIC Educational Resources Information Center

    Shen, Ji; Liu, Ou Lydia; Chang, Hsin-Yi

    2017-01-01

    This paper presents a transformative modeling framework that guides the development of assessment to measure students' deep understanding in physical sciences. The framework emphasizes 3 types of connections that students need to make when learning physical sciences: (1) linking physical states, processes, and explanatory models, (2) integrating…

  15. Plants, Alike and Different

    ERIC Educational Resources Information Center

    Trundle, Kathy Cabe; Mollohan, Katherine N; Smith, Mandy McCormick

    2013-01-01

    A Framework for K-12 Science Education (NRC 2012) includes inheritance as a core idea within the life science framework. For example, life science core idea 3A states that by the end of second grade, children's knowledge should include the ability to recognize and investigate physical differences and similarities among the same kind of…

  16. Curriculum Framework (CF) Implementation Conference. Report of the Regional Educational Laboratory Network Program and the National Network of Eisenhower Mathematics and Science Regional Consortia (Hilton Head Island, South Carolina, January 26-27, 1995).

    ERIC Educational Resources Information Center

    Palmer, Jackie; Powell, Mary Jo

    The Laboratory Network Program and the National Network of Eisenhower Mathematics and Science Regional Consortia, operating as the Curriculum Frameworks Task Force, jointly convened a group of educators involved in implementing state-level mathematics or science curriculum frameworks (CF). The Hilton Head (South Carolina) conference had a dual…

  17. e-Science Partnerships: Towards a Sustainable Framework for School-Scientist Engagement

    NASA Astrophysics Data System (ADS)

    Falloon, Garry

    2013-08-01

    In late 2006, the New Zealand Government embarked on a series of initiatives to explore how the resources and expertise of eight, small, state-owned science research institutes could be combined efficiently to support science teaching in schools. Programmes were developed to enable students and teachers to access and become involved in local science research and innovation, with the aim being to broaden their awareness of New Zealand science research contexts, adding authenticity and relevance to their school studies. One of these initiatives, known as Science-for-Life, partnered scientists with teachers and students in primary and secondary schools (K-12). A key output from the trial phase of Science-for-Life was the generation of a framework for guiding and coordinating the activities of the eight institutes within the education sector, to improve efficiency, effectiveness and promote sustainability. The framework, based on data gathered from a series of interviews with each institute's Chief Executive Officer (CEO), an online questionnaire, and informed by findings from trial partnership case studies published as institute technical reports and published articles, is presented in this paper. While the framework is developed from New Zealand data, it is suggested that it may be useful for coordinating interactions between multiple small science organisations and the school sector in other small-nation or state contexts.

  18. The RITES Way for NGSS Success

    NASA Astrophysics Data System (ADS)

    Murray, D. P.; De Oliveira, G.; Caulkins, J. L.; Veeger, A. I.; McLaren, P. J.

    2012-12-01

    The NRC's Framework for Science Education describes a new vision for science education: practical experience, thought process, and connecting ideas are not lost in a sea of endless information. That is because the Framework does not emphasize broad coverage of all subfields of science. Instead, they identify ideas in three dimensions that lend themselves to the creation of opportunities for a deeper understanding of science, namely, Science and Engineering Practices, Disciplinary Core Ideas, and Crosscutting Concepts. Developed with fidelity to the Framework the K-12 Next Generation Science Standards (NGSS) will provide a rich, cohesive set of standards in all disciplines designed to engage all students in the practices and apply crosscutting concepts to deepen their understanding of the core ideas within these discipline. In Rhode Island, for the last four years, the Rhode Island Technology Enhanced Science Project (RITES) has aimed to transform the quality of science teaching and learning at all secondary schools, with a similar vision to the Framework and NGSS. RITES was initially developed to closely align with existing state standards (Grade Span Expectations). As the work of developing new standards progresses, Rhode Island, as a NGSS Lead State Partner, established the RI-NGSS State Leadership Team, which was charged with providing feedback to the NGSS Writing Team. The inclusion of nine RITES personnel in this state team ensures that this project will quickly adjust to the new standards, even as they are being developed and refined. A main component of RITES is a professional development program for teachers, framed around summer workshops and projects during the school year. At the heart of the PD are Investigations, modules developed by scientist/teacher teams designed to engage students through science practices while presenting core ideas and crosscutting concepts. Around fifty investigations, drawn from the life, physical, and earth & space sciences (ESS), employ a web-based platform to explore models and analyze data collected by students. Formative and summative assessment tools are built into the investigations. Investigation topics include: rock cycle; measurements in astronomy; plate tectonics; seasons; nuclear decay; and phases of the moon. We will showcase at least two ESS investigations that exemplify the three dimensional components envisioned by the Framework.

  19. Science supervisors' conceptions of biology and the field of science: A qualitative study

    NASA Astrophysics Data System (ADS)

    Young, Jean Radcliff

    1999-12-01

    This study examined the nature, source and formation of science supervisors' cognitive frameworks for biology and for the field of science and the impact of these frameworks on their work in school divisions. The design for this qualitative study was an emergent case study using ethnographic methods. The purposeful sample consisted of five science supervisors selected from different school divisions in three geographic regions of a middle-Atlantic state. Each participant had a background in biology, classroom teaching and full-time supervisory experience. To collect data for this study, an open-ended questionnaire was used to gain an understanding of the nature of the supervisors' conceptions of biology and for the field of science. Two semi-structured interviews, each lasting 1--2 hours in length, were designed to explore the source and formation of the supervisors' conceptual frameworks, and the impact of these frameworks on their work in school divisions. Data were inductively analyzed using a constant comparative approach. The major findings of this study were: (1) All of the supervisors in this study were remarkably cognizant of possessing a framework for biology and for the field of science. (2) The supervisors' frameworks were well-formed, relatively highly complex and showed a variety of organizational patterns. (3) All of the supervisors' diagrams showed evidence of coherent, integrated themes with emphasis on the importance of connections and interrelationships. (4) The supervisors were able to readily articulate sound rationales for construction of their diagrams. (5) Instead of seeing biology as an isolated discipline, the supervisors view biology in the context of science. Overall, the supervisors no longer see their frameworks as biology-content related, but as science-related. (6) Major influences on the source and formation of the supervisors' conceptual frameworks were a result of selected work-related experiences. (7) The supervisors' conceptual frameworks, in the context of implementation of state Standards of Learning, have had a major impact on their work in their school divisions with teachers and indirectly with students, parents and the public. Results are discussed in comparison with prior studies of non-supervisors using a similar methodology. Implications for educational practice and further research are included.

  20. Framework for Disciplinary Writing in Science Grades 6-12: A National Survey

    ERIC Educational Resources Information Center

    Drew, Sally Valentino; Olinghouse, Natalie G.; Faggella-Luby, Michael; Welsh, Megan E.

    2017-01-01

    This study investigated the current state of writing instruction in science classes (Grades 6-12). A random sample of certified science teachers from the United States (N = 287) was electronically surveyed. Participants reported on their purposes for teaching writing, the writing assignments most often given to students, use of evidence-based…

  1. Cybersecurity Protection: Design Science Research toward an Intercloud Transparent Bridge Architecture (ITCOBRA)

    ERIC Educational Resources Information Center

    Wilson, Joe M.

    2013-01-01

    This dissertation uses design science research and engineering to develop a cloud-based simulator for modeling next-generation cybersecurity protection frameworks in the United States. The claim is made that an agile and neutral framework extending throughout the cyber-threat plane is needed for critical infrastructure protection (CIP). This…

  2. The New Curriculum Standards for Astronomy in the United States

    NASA Astrophysics Data System (ADS)

    Schleigh, Sharon P.; Slater, Stephanie J.; Slater, Timothy F.; Stork, Debra J.

    2015-12-01

    There is widespread interest in constraining the wide range and vast domain of the possible topics one might teach about astronomy into a manageable framework. Although there is no mandated national curriculum in the United States, an analysis of the three recent national efforts to create an age-appropriate sequence of astronomy concepts to be taught in primary and secondary schools reveals a considerable lack of consensus of which concepts are most age-appropriate and which topics should be covered. The most recent standardization framework for US science education, the Next Generation Science Standards, suggests that most astronomy concepts should be taught only in the last years of one’s education; however, the framework has been met with considerable criticism. A comparison of astronomy learning frameworks in the United States, and a brief discussion of their criticisms, might provide international astronomy educators with comparison data in formulating recommendations in their own regions.

  3. A Framework for Analyzing Cognitive Demand and Content-Practices Integration: Task Analysis Guide in Science

    ERIC Educational Resources Information Center

    Tekkumru-Kisa, Miray; Stein, Mary Kay; Schunn, Christian

    2015-01-01

    Many countries, including the United States, emphasize the importance of developing students' scientific habits of mind and their capacity to think deeply about scientific ideas in an integrated fashion. Recent science education policies in the United States portray a related vision of science teaching and learning that is meant to guide the…

  4. Scaling up Three-Dimensional Science Learning through Teacher-Led Study Groups across a State

    ERIC Educational Resources Information Center

    Reiser, Brian J.; Michaels, Sarah; Moon, Jean; Bell, Tara; Dyer, Elizabeth; Edwards, Kelsey D.; McGill, Tara A. W.; Novak, Michael; Park, Aimee

    2017-01-01

    The vision for science teaching in the Framework for K-12 Science Education and the Next Generation Science Standards requires a radical departure from traditional science teaching. Science literacy is defined as three-dimensional (3D), in which students engage in science and engineering practices to develop and apply science disciplinary ideas…

  5. Teaching Teachers: Assessing Students as Scientists

    ERIC Educational Resources Information Center

    Russ, Rosemary S.; Conlin, Luke

    2017-01-01

    Most elementary science teachers would like to give their students opportunities to do science. The "Next Generation Science Standards" and "A Framework for K-12 Science Education" (NGSS Lead States 2013; NRC 2012) make this goal explicit by requiring that students learn how to engage in the practices of science. Consequently,…

  6. The ConNECT Framework: a model for advancing behavioral medicine science and practice to foster health equity.

    PubMed

    Alcaraz, Kassandra I; Sly, Jamilia; Ashing, Kimlin; Fleisher, Linda; Gil-Rivas, Virginia; Ford, Sabrina; Yi, Jean C; Lu, Qian; Meade, Cathy D; Menon, Usha; Gwede, Clement K

    2017-02-01

    Health disparities persist despite ongoing efforts. Given the United States' rapidly changing demography and socio-cultural diversity, a paradigm shift in behavioral medicine is needed to advance research and interventions focused on health equity. This paper introduces the ConNECT Framework as a model to link the sciences of behavioral medicine and health equity with the goal of achieving equitable health and outcomes in the twenty-first century. We first evaluate the state of health equity efforts in behavioral medicine science and identify key opportunities to advance the field. We then discuss and present actionable recommendations related to ConNECT's five broad and synergistic principles: (1) Integrating Context; (2) Fostering a Norm of Inclusion; (3) Ensuring Equitable Diffusion of Innovations; (4) Harnessing Communication Technology; and (5) Prioritizing Specialized Training. The framework holds significant promise for furthering health equity and ushering in a new and refreshing era of behavioral medicine science and practice.

  7. Making Science Accessible to Students with Significant Cognitive Disabilities

    ERIC Educational Resources Information Center

    Andersen, Lori; Nash, Brooke

    2016-01-01

    The publication of A Framework for K-12 Science Education (National Research Council, 2012) and the Next Generation Science Standards (NGSS Lead States, 2013) have created a need for new alternate content standards and alternate assessments in science that are linked to the new general education science standards. This article describes how a…

  8. A Science Framework for Connecticut River Watershed Sustainability

    USGS Publications Warehouse

    Rideout, Stephen; Nicolson, Craig; Russell-Robinson, Susan L.; Mecray, Ellen L.

    2005-01-01

    Introduction: This document outlines a research framework for water resource managers and land-use planners in the four-state Connecticut River Watershed (CRW). It specifically focuses on developing the decision-support tools and data needed by managers in the watershed. The purpose of the Science Framework is to identify critical research issues and information required to better equip managers to make decisions on desirable changes in the CRW. This Science Framework is the result of a cooperative project between the U.S. Geological Survey (USGS), the University of Massachusetts at Amherst (UMass-Amherst), and the U.S. Fish and Wildlife Service (FWS). The cooperative project was guided by a Science Steering Committee (SC) and included several focus groups, a 70-person workshop in September 2004, and an open collaborative process by which the workshop outcomes were synthesized, written up, and then progressively refined through peer review. This document is the product of that collaborative process.

  9. Making and Defending Scientific Arguments

    ERIC Educational Resources Information Center

    Llewellyn, Douglas

    2013-01-01

    Since 1996, science education has been guided by the National Science Education Standards (NRC 1996). But now there's a "new sheriff in town" as the "Common Core State Standards" and "A Framework for K-12 Science Education" together become the 21st century's torch bearer for curricula reform in science and…

  10. A Framework for Understanding Cross-National and Cross-Ethnic Gaps in Math and Science Achievement: The Case of the United States

    ERIC Educational Resources Information Center

    Guglielmi, R. Sergio; Brekke, Nancy

    2017-01-01

    Comparative international assessments of academic achievement consistently indicate that US students trail behind many peers, particularly those from east Asia, in math and science. Traditional efforts to explain this finding have focused on identifying characteristics that might differentiate the United States from top-performing countries.…

  11. Civil Rights Questions: Where Race, Economics, and Criminal Justice Intersect.

    ERIC Educational Resources Information Center

    Dutton, Marghi

    This curriculum unit on civil rights questions in the United States was developed as a history-social science project at San Jose State University. The unit is intended for high school students and needs one or two class periods to complete. It provides the teacher with a rationale, a framework, history-social science standards, student outcomes,…

  12. RAFTing with Raptors: Connecting Science, English Language Arts, and the Common Core State Standards

    ERIC Educational Resources Information Center

    Senn, Gary J.; McMurtrie, Deborah H.; Coleman, Bridget K.

    2013-01-01

    This article explores using the RAFT strategy (Role, Audience, Format, Topic) for writing in science classes. The framework of the RAFT strategy will be explained, and connections with Common Core State Standards (CCSS) for ELA/Literacy will be discussed. Finally, there will be a discussion of a professional learning experience for teachers in…

  13. Assessment of Examinations in Computer Science Doctoral Education

    ERIC Educational Resources Information Center

    Straub, Jeremy

    2014-01-01

    This article surveys the examination requirements for attaining degree candidate (candidacy) status in computer science doctoral programs at all of the computer science doctoral granting institutions in the United States. It presents a framework for program examination requirement categorization, and categorizes these programs by the type or types…

  14. Engineering Design Skills Coverage in K-12 Engineering Program Curriculum Materials in the USA

    ERIC Educational Resources Information Center

    Chabalengula, Vivien M.; Mumba, Frackson

    2017-01-01

    The current "K-12 Science Education framework" and "Next Generation Science Standards" (NGSS) in the United States emphasise the integration of engineering design in science instruction to promote scientific literacy and engineering design skills among students. As such, many engineering education programmes have developed…

  15. Exploring How Research Experiences for Teachers Changes Their Understandings of the Nature of Science and Scientific Inquiry

    ERIC Educational Resources Information Center

    Buxner, Sanlyn R.

    2014-01-01

    The nature of science is a prevalent theme across United States national science education standards and frameworks as well as other documents that guide formal and informal science education reform. To support teachers in engaging their students in authentic scientific practices and reformed teaching strategies, research experiences for teachers…

  16. Impact of National Assessment of Educational Progress (NAEP) use and score interpretation on states' inquiry-based science education policies and practices: A descriptive study

    NASA Astrophysics Data System (ADS)

    Conley, David M.

    This study examined the influence of use and interpretation of National Assessment of Educational Progress (NAEP) science results on science education policies and practices in the United States, in the context of teaching and learning through inquiry and the assessment of student inquiry achievement. State assessment directors, NAEP coordinators, and science education specialists nationwide were invited to participate in the study by responding to a Web-based self-administered survey instrument. Sixty-seven percent of the population responded, providing both quantitative and qualitative data through selected-response and open-ended survey items, respectively. The findings of this study revealed that: (a) not all states interpret NAEP science results as an indicator of students' abilities to undertake inquiry investigations or understand the nature of inquiry---in fact, states view their own science assessments as more indicative of expectations regarding inquiry achievement; (b) most states have made changes to science curricular frameworks and assessments since the last NAEP science administration in 2000, so that more emphasis is placed on inquiry-based instruction and assessment of inquiry achievement---however, NAEP results have had a minor influence on these changes; (c) fewer states have made changes in legislation, policies, and professional development that reflect greater emphasis on inquiry, and those that did felt that NAEP results had no significant impact; (d) NAEP's influence has changed since the No Child Left Behind (NCLB) Act of 2001, but it remains minor since NAEP is still perceived as a "low stakes" test; (e) state officials believe NAEP's influence will increase significantly after the results of NAEP science 2005 are released and interpreted and as NCLB accountability provisions in science take hold in 2007--2008. The implications of the study's findings are discussed in reference to the theoretical and practical knowledge-bases concerning the consequences of assessment; the interpretation and use of future NAEP results to inform state science education systems; and NAEP validity studies and revisions to the NAEP assessment framework that may ensue. Limitations of the study's findings and directions for future research are also addressed.

  17. Leveraging Cognitive Science Underpinnings to Enhance NGSS Astronomy Concepts

    NASA Astrophysics Data System (ADS)

    Slater, Stephanie; Slater, Timothy F.

    2014-06-01

    National-scale science education reform efforts have been hampered by highly fragmented frameworks and standards that vary considerably from one state to the next. In an effort to improve the quality of science education across the nation’s K-12 schools, the 2013 Next Generation Science Standards (NGSS) have been designed to guide states in specifying the learning targets and performance expectations of all K-12 students. The NGSS is designed to reflect the 2011 Framework for K-12 Science Education developed by the National Research Council of the National Academy of Sciences. As teachers, curriculum developers, and assessment experts begin to implement the NGSS in specific geographical and socio-economic contexts, moving beyond an examination of common student misconceptions and reasoning difficulties to delineate the specific cognitive sources of those difficulties, and the specific interventions that can serve as countermeasures, should be a fruitful next step. While astronomy education researchers have already documented challenges in teaching system processes that operate with the space system, solar system, and interconnected Earth science systems, we are far from a thorough understanding of student thinking in astronomy. Many of these ideas can be better taught-and tested-by carefully examining the underlying cognitive science including learners’ difficulties with spatial thinking and the prescribed astronomy and space science concepts. The NGSS may prove to be useful as a framework for next steps in the cognitive science within astronomy, and this work may benefit from deliberate collaborations between education researchers, curriculum developers, and those who engage in teacher professional development.

  18. Soils in our big back yard: characterizing the state, vulnerabilities, and opportunities for detecting changes in soil carbon storage

    NASA Astrophysics Data System (ADS)

    Harden, Jennifer W.; Loiesel, Julie; Ryals, Rebecca; Lawrence, Corey; Blankinship, Joseph; Phillips, Claire; Bond-Lamberty, Ben; Todd-Brown, Katherine; Vargas, Rodrigo; Hugelius, Gustaf; Nave, Luke; Malhotra, Avni; Silver, Whendee; Sanderman, Jon

    2017-04-01

    A number of diverse approaches and sciences can contribute to a robust understanding of the I. state, II. vulnerabilities, and III. opportunities for soil carbon in context of its potential contributions to the atmospheric C budget. Soil state refers to the current C stock of a given site, region, or ecosystem/landuse type. Soil vulnerabilities refers to the forms and bioreactivity of C stocks, which determine how soil C might respond to climate, disturbance, and landuse perturbations. Opportunities refer to the potential for soils in their current state to increase capacity for and rate of C storage under future conditions, thereby impacting atmospheric C budgets. In order to capture the state, vulnerability, and opportunities for soil C, a robust C accounting scheme must include at least three science needs: (1) a user-friendly and dynamic database with transparent, shared coding in which data layers of solid, liquid, and gaseous phases share relational metadata and allow for changes over time (2) a framework to characterize the capacity and reactivity of different soil types based on climate, historic, and landscape factors (3) a framework to characterize landuse practices and their impact on physical state, capacity/reactivity, and potential for C change. In order to transfer our science information to practicable implementations for land policies, societal and social needs must also include: (1) metrics for landowners and policy experts to recognize conditions of vulnerability or opportunity (2)communication schemes for accessing salient outcomes of the science. Importantly, there stands an opportunity for contributions of data, model code, and conceptual frameworks in which scientists, educators, and decision-makers can become citizens of a shared, scrutinized database that contributes to a dynamic, improved understanding of our soil system.

  19. An extended framework for science.

    PubMed

    Cazalis, Roland

    2017-12-01

    We may be at the cusp of a next generation framework for science which can be facilitated by understanding current limitations in the context of a divergence of 'scientific' tradition from the Axial Age (800-200 BCE) to the present. A powerful advance may come from fusing certain elements from Western and Eastern traditions, synthesizing the framework with an apt understanding of the divergence. Key traits will include the ethopoetic nature of the scientist with attention to his/her experience of self. The framework will also 'access' knowledge through a state of mind less encumbered with paradoxes, duality, incompatibility and other aporias. Case studies in biology and physics illustrate possibilities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Hallmarks of science missing from North American wildlife management

    PubMed Central

    Artelle, Kyle A.; Reynolds, John D.; Treves, Adrian; Walsh, Jessica C.; Paquet, Paul C.; Darimont, Chris T.

    2018-01-01

    Resource management agencies commonly defend controversial policy by claiming adherence to science-based approaches. For example, proponents and practitioners of the “North American Model of Wildlife Conservation,” which guides hunting policy across much of the United States and Canada, assert that science plays a central role in shaping policy. However, what that means is rarely defined. We propose a framework that identifies four fundamental hallmarks of science relevant to natural resource management (measurable objectives, evidence, transparency, and independent review) and test for their presence in hunt management plans created by 62 U.S. state and Canadian provincial and territorial agencies across 667 management systems (species-jurisdictions). We found that most (60%) systems contained fewer than half of the indicator criteria assessed, with more criteria detected in systems that were peer-reviewed, that pertained to “big game,” and in jurisdictions at increasing latitudes. These results raise doubt about the purported scientific basis of hunt management across the United States and Canada. Our framework provides guidance for adopting a science-based approach to safeguard not only wildlife but also agencies from potential social, legal, and political conflict. PMID:29532032

  1. The Early Years: Pondering Strawberries

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2013-01-01

    Understanding the needs of plants, the function of their structures, and plant reproduction, is part of the National Science Education Content Standard C: Life science (NRC 1996). "A Framework for K-12 Science Education" (NRC 2012) states that by the end of grade 2, students should understand that plants have external parts, used to help…

  2. e-Science Partnerships: Towards a Sustainable Framework for School-Scientist Engagement

    ERIC Educational Resources Information Center

    Falloon, Garry

    2013-01-01

    In late 2006, the New Zealand Government embarked on a series of initiatives to explore how the resources and expertise of eight, small, state-owned science research institutes could be combined efficiently to support science teaching in schools. Programmes were developed to enable students and teachers to access and become involved in local…

  3. Considerations of Multicultural Science and Curriculum Reform: A Content Analysis of State-Adopted Biology Textbooks in Florida

    ERIC Educational Resources Information Center

    Delgato, Margaret H.

    2009-01-01

    The purpose of this investigation was to determine the extent to which multicultural science education, including indigenous knowledge representations, had been infused within the content of high school biology textbooks. The study evaluated the textbook as an instructional tool and framework for multicultural science education instruction by…

  4. Incorporating Earth Science into Other High School Science Classes

    NASA Astrophysics Data System (ADS)

    Manning, C. L. B.; Holzer, M.; Colson, M.; Courtier, A. M. B.; Jacobs, B. E.

    2016-12-01

    As states begin to review their standards, some adopt or adapt the NGSS and others write their own, many basing these on the Framework for K-12 Science Education. Both the NGSS and the Frameworks have an increased emphasis on Earth Science but many high school teachers are being asked to teach these standards in traditional Biology, Chemistry and Physics courses. At the Earth Educators Rendezvous, teachers, scientists, and science education researchers worked together to find the interconnections between the sciences using the NGSS and identified ways to reference the role of Earth Sciences in the other sciences during lectures, activities and laboratory assignments. Weaving Earth and Space sciences into the other curricular areas, the teams developed relevant problems for students to solve by focusing on using current issues, media stories, and community issues. These and other lessons and units of study will be presented along with other resources used by teachers to ensure students are gaining exposure and a deeper understanding of Earth and Space Science concepts.

  5. Planetary Sciences: American and Soviet Research

    NASA Technical Reports Server (NTRS)

    Donahue, Thomas M. (Editor); Trivers, Kathleen Kearney (Editor); Abramson, David M. (Editor)

    1991-01-01

    Papers presented at the US-USSR Workshop on Planetary Sciences are compiled. The purpose of the workshop was to examine the current state of theoretical understanding of how the planets were formed and how they evolved to their present state. The workshop assessed the types of observations and experiments that are needed to advance understanding of the formation and evolution of the solar system based on the current theoretical framework.

  6. Making and Measuring the California History Standards

    ERIC Educational Resources Information Center

    Fogo, Bradley

    2011-01-01

    The California history and social science standards-based reform has been touted as the "gold standard" for state history curricula. But the standards, framework, and tests that constitute this reform provide inconsistent and contradictory criteria for teaching and assessing history and social science. An examination of the political…

  7. Planning Instruction to Meet the Intent of the Next Generation Science Standards

    NASA Astrophysics Data System (ADS)

    Krajcik, Joseph; Codere, Susan; Dahsah, Chanyah; Bayer, Renee; Mun, Kongju

    2014-03-01

    The National Research Council's Framework for K- 12 Science Education and the Next Generation Science Standards (NGSS Lead States in Next Generation Science Standards: For states, by states. The National Academies Press, Washington, 2013) move teaching away from covering many isolated facts to a focus on a smaller number of disciplinary core ideas (DCIs) and crosscutting concepts that can be used to explain phenomena and solve problems by engaging in science and engineering practices. The NGSS present standards as knowledge-in-use by expressing them as performance expectations (PEs) that integrate all three dimensions from the Framework for K- 12 Science Education. This integration of core ideas, practices, and crosscutting concepts is referred to as three-dimensional learning (NRC in Division of Behavioral and Social Sciences and Education. The National Academies Press, Washington, 2014). PEs state what students can be assessed on at the end of grade level for K-5 and at the end of grade band for 6-8 and 9-12. PEs do not specify how instruction should be developed nor do they serve as objectives for individual lessons. To support students in developing proficiency in the PEs, the elements of the DCIs will need to be blended with various practices and crosscutting concepts. In this paper, we examine how to design instruction to support students in meeting a cluster or "bundle" of PEs and how to blend the three dimensions to develop lesson level PEs that can be used for guiding instruction. We provide a ten-step process and an example of that process that teachers and curriculum designers can use to design lessons that meet the intent of the Next Generation of Science Standards.

  8. Why Data Literacy Matters

    ERIC Educational Resources Information Center

    Fontichiaro, Kirstin; Oehrli, Jo Angela

    2016-01-01

    As many states move forward with adoption or adaptation of the College, Career, and Civic Life (C3) Framework for Social Studies State Standards, Common Core State Standards, and/or Next Generation Science Standards, students are expected to be fluent with data: to collect and analyze it, create figures and tables, integrate quantitative…

  9. A Decision Support Framework for Science-Based, Multi-Stakeholder Deliberation: A Coral Reef Example

    NASA Astrophysics Data System (ADS)

    Rehr, Amanda P.; Small, Mitchell J.; Bradley, Patricia; Fisher, William S.; Vega, Ann; Black, Kelly; Stockton, Tom

    2012-12-01

    We present a decision support framework for science-based assessment and multi-stakeholder deliberation. The framework consists of two parts: a DPSIR (Drivers-Pressures-States-Impacts-Responses) analysis to identify the important causal relationships among anthropogenic environmental stressors, processes, and outcomes; and a Decision Landscape analysis to depict the legal, social, and institutional dimensions of environmental decisions. The Decision Landscape incorporates interactions among government agencies, regulated businesses, non-government organizations, and other stakeholders. It also identifies where scientific information regarding environmental processes is collected and transmitted to improve knowledge about elements of the DPSIR and to improve the scientific basis for decisions. Our application of the decision support framework to coral reef protection and restoration in the Florida Keys focusing on anthropogenic stressors, such as wastewater, proved to be successful and offered several insights. Using information from a management plan, it was possible to capture the current state of the science with a DPSIR analysis as well as important decision options, decision makers and applicable laws with a the Decision Landscape analysis. A structured elicitation of values and beliefs conducted at a coral reef management workshop held in Key West, Florida provided a diversity of opinion and also indicated a prioritization of several environmental stressors affecting coral reef health. The integrated DPSIR/Decision landscape framework for the Florida Keys developed based on the elicited opinion and the DPSIR analysis can be used to inform management decisions, to reveal the role that further scientific information and research might play to populate the framework, and to facilitate better-informed agreement among participants.

  10. A Data-Driven Framework for Incorporating New Tools for Toxicity, Exposure, and Risk Assessment

    EPA Science Inventory

    This talk was given during the “Exposure-Based Toxicity Testing” session at the annual meeting of the International Society for Exposure Science. It provided an update on the state of the science and tools that may be employed in risk-based prioritization efforts. It ...

  11. Measurement Science and Training.

    ERIC Educational Resources Information Center

    Bunderson, C. Victor

    The need for training and retraining is a central element in current discussions about the economy of the United States. This paper is designed to introduce training practitioners to some new concepts about how measurement science can provide a new framework for assessing progress and can add new discipline to the development, implementation, and…

  12. Engineering Encounters: Can a Student Really Do What Engineers Do?

    ERIC Educational Resources Information Center

    Brown, Sherri; Newman, Channa; Dearing-Smith, Kelley; Smith, Stephanie

    2014-01-01

    "Framework for K-12 Science Education" states that "children are natural engineers … they spontaneously build sand castles, dollhouses, and hamster enclosures and use a variety of tools and materials for their own playful purposes" (NRC 2012, p. 70). The "Next Generation Science Standards" ("NGSS") also…

  13. Modeling Successful STEM High Schools in the United States: An Ecology Framework

    ERIC Educational Resources Information Center

    Erdogan, Niyazi; Stuessy, Carol L.

    2015-01-01

    This study aims to generate a conceptual framework for specialized Science, Technology, Engineering, and Mathematics (STEM) schools. To do so, we focused on literature and found specialized STEM schools have existed for over 100 years and recently expanded nationwide. The current perception for these schools can be described as unique environments…

  14. The ConNECT Framework: a model for advancing behavioral medicine science and practice to foster health equity

    PubMed Central

    Alcaraz, Kassandra I.; Sly, Jamilia; Ashing, Kimlin; Fleisher, Linda; Gil-Rivas, Virginia; Ford, Sabrina; Yi, Jean C.; Lu, Qian; Meade, Cathy D.; Menon, Usha; Gwede, Clement K.

    2017-01-01

    Health disparities persist despite ongoing efforts. Given the United States’ rapidly changing demography and socio-cultural diversity, a paradigm shift in behavioral medicine is needed to advance research and interventions focused on health equity. This paper introduces the Con-NECT Framework as a model to link the sciences of behavioral medicine and health equity with the goal of achieving equitable health and outcomes in the twenty-first century. We first evaluate the state of health equity efforts in behavioral medicine science and identify key opportunities to advance the field. We then discuss and present actionable recommendations related to ConNECT’s five broad and synergistic principles: (1) Integrating Context; (2) Fostering a Norm of Inclusion; (3) Ensuring Equitable Diffusion of Innovations; (4) Harnessing Communication Technology; and (5) Prioritizing Specialized Training. The framework holds significant promise for furthering health equity and ushering in a new and refreshing era of behavioral medicine science and practice. PMID:27509892

  15. Factors Affecting Female Attitude Formation toward Science. Specific Reference to 12-14 Year Old Female Adolescents and Their Affective Orientation toward Middle School Science.

    ERIC Educational Resources Information Center

    Schreiber, Deborah A.

    This paper: (1) briefly reviews the existing literature which supports that female adolescents possess significantly more negative attitudes toward middle school science than do males; (2) examines the process of gender socialization in the United States to establish the socio-cultural and social psychological framework within which an attitudinal…

  16. ED20. Crisis or Opportunity? Earth and Space Science Education at the State and National Levels

    NASA Astrophysics Data System (ADS)

    Brett, J. M.

    2011-12-01

    Scientists and researchers, those often in oversight positions and often control of the purse strings, have historically not been kind to the Earth Systems Science (ESS) discipline. This is puzzling to those of us who are ESS educators because we know that to appreciate how our planet works it is necessary to integrate and apply all the disciplines of science. With our amazing technologies and the increasing demands of a growing population we are dramatically changing our home planet. Perhaps a crisis? As the last century ended we found ESS in the same minor league position it was in when the 20th Century started. During the review period of what was to become the National Science Education Standards (NSES) draft after draft, no matter what color the cover was, seemed to ignore, omit, or severely limit ESS topics in meteorology and oceanography. Once published the NSES became the basis for the science standards in many states with what many said were critical gaps. In the years following 1996 different groups have worked to correct the omissions they found by developing guides...Ocean Literacy: Essential Principles of Ocean Science K-12 and Climate Literacy: The Essential Principals of Climate Science. An observer on the side might have considered each effort one of lobbying to get attention, funding and materials. Each effort was clearly interested in making an impact where it mattered...in the classroom. Now our Opportunity! The NAS process for developing "A Framework for K-12 Science Education" presented ESS educators with a real opportunity and we can proudly say we made our voices heard. And while there is great enthusiasm for the framework and the Chapter 7 Earth and Space we face critically important work to bring real Earth Space Science Education into the K-12 classroom. The possibility of the standards to be developed from the Framework becoming Common Core for the majority of states following the course of ELA and mathematics requires that those who previously guarded their territory collaborate.

  17. Advances in covalent organic frameworks in separation science.

    PubMed

    Qian, Hai-Long; Yang, Cheng-Xiong; Wang, Wen-Long; Yang, Cheng; Yan, Xiu-Ping

    2018-03-23

    Covalent organic frameworks (COFs) are a new class of multifunctional crystalline organic polymer constructed with organic monomers via robust covalent bonds. The unique properties such as convenient modification, low densities, large specific surface areas, good stability and permanent porosity make COFs great potential in separation science. This review shows the state-of-the art for the application of COFs and their composites in analytical separation science. COFs and their composites have been explored as promising sorbents for solid phase extraction, potential coatings for solid phase microextraction, and novel stationary phases for gas chromatography, high-performance liquid chromatography and capillary electrochromatography. The prospects of COFs for separation science are also presented, which can offer an outlook and reference for further study on the applications of COFs. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. A comparative analysis of Science-Technology-Society standards in elementary, middle and high school state science curriculum frameworks

    NASA Astrophysics Data System (ADS)

    Tobias, Karen Marie

    An analysis of curriculum frameworks from the fifty states to ascertain the compliance with the National Science Education Standards for integrating Science-Technology-Society (STS) themes is reported within this dissertation. Science standards for all fifty states were analyzed to determine if the STS criteria were integrated at the elementary, middle, and high school levels of education. The analysis determined the compliance level for each state, then compared each educational level to see if the compliance was similar across the levels. Compliance is important because research shows that using STS themes in the science classroom increases the student's understanding of the concepts, increases the student's problem solving skills, increases the student's self-efficacy with respect to science, and students instructed using STS themes score well on science high stakes tests. The two hypotheses for this study are: (1) There is no significant difference in the degree of compliance to Science-Technology-Society themes (derived from National Science Education Standards) between the elementary, middle, and high school levels. (2) There is no significant difference in the degree of compliance to Science-Technology-Society themes (derived from National Science Education Standards) between the elementary, middle, and high school level when examined individually. The Analysis of Variance F ratio was used to determine the variance between and within the three educational levels. This analysis addressed hypothesis one. The Analysis of Variance results refused to reject the null hypothesis, meaning there is significant difference in the compliance to STS themes between the elementary, middle and high school educational levels. The Chi-Square test was the statistical analysis used to compare the educational levels for each individual criterion. This analysis addressed hypothesis two. The Chi-Squared results showed that none of the states were equally compliant with each individual criterion across the elementary, middle, and high school levels. The National Science Education Standards were created with the input of thousands of people and over twenty scientific and educational societies. The standards were tested in numerous classrooms and showed an increase in science literacy for the students. With the No Child Left Behind legislation and Project 2061, the attainment of a science literate society will be helped by the adoption of the NSES standards and the STS themes into the American classrooms.

  19. History and Social Studies Standards of Learning for Virginia Public Schools.

    ERIC Educational Resources Information Center

    Virginia State Dept. of Education, Richmond.

    In 1995, the Virginia Board of Education published Virginia state Standards of Learning in English, mathematics, science, and history and social science for kindergarten through grade 12. The Standards of Learning provide a framework for instructional programs designed to raise the academic achievement of all Virginia public school students. The…

  20. What States Should Know about International Standards in Science: Highlights from Achieve's Analysis

    ERIC Educational Resources Information Center

    Achieve, Inc., 2010

    2010-01-01

    Achieve, through support from the Noyce Foundation, examined ten sets of international standards with the intent of informing the development of both the conceptual framework and Next Generation Science Standards. Achieve selected countries based on their strong performance on international assessments and/or their economic, political, or cultural…

  1. 2008 Mississippi Curriculum Framework: Family and Consumer Sciences. (Program CIP: 19.9999 - Family and Consumer Sciences)

    ERIC Educational Resources Information Center

    Rosetti, Pamela; Byrd, Jenean; West, Brenda; Bigham, Melody

    2008-01-01

    Secondary vocational-technical education programs in Mississippi are faced with many challenges resulting from sweeping educational reforms at the national and state levels. Schools and teachers are increasingly being held accountable for providing true learning activities to every student in the classroom. This accountability is measured through…

  2. Restoring composition and structure in Southwestern frequent-fire forests: A science-based framework for improving ecosystem resiliency

    Treesearch

    Richard T. Reynolds; Andrew J. Sanchez Meador; James A. Youtz; Tessa Nicolet; Megan S. Matonis; Patrick L. Jackson; Donald G. DeLorenzo; Andrew D. Graves

    2013-01-01

    Ponderosa pine and dry mixed-conifer forests in the Southwest United States are experiencing, or have become increasingly susceptible to, large-scale severe wildfire, insect, and disease episodes resulting in altered plant and animal demographics, reduced productivity and biodiversity, and impaired ecosystem processes and functions. We present a management framework...

  3. A geoscientist in the State Department

    NASA Astrophysics Data System (ADS)

    Prather, Michael J.

    2006-12-01

    It must have been in a fit of idealism, à la Jimmy Stewart, that I applied to be a Jefferson Science Fellow (JSF) at the U.S. Department of State in the summer of 2004. The flyer was appealing, offering an opportunity to become "directly involved with the State Department, applying current knowledge of science and technology in support of the development of U.S. international policy. The Jefferson Science Fellowships enable academic scientists and engineers to act as consultants to the State Department on matters of science, technology, and engineering as they affect foreign policy."My own science—elating to ozone depletion, climate change, and aviation environmental impacts—often has been at the science-policy interface. As a result, I have attended governmental and intergovernmental meetings, particularly the international assessments on climate change and ozone depletion. I had even come to know the State Department team on climate negotiations, although I had never been inside the State Department. The appeal of working on the inside of negotiations within the United Nations Framework Convention on Climate Change was strong—if only to find out what an 'interlocutor' was.

  4. Application of Implementation Science Methodology to Immediate Postpartum Long-Acting Reversible Contraception Policy Roll-Out Across States.

    PubMed

    Rankin, Kristin M; Kroelinger, Charlan D; DeSisto, Carla L; Pliska, Ellen; Akbarali, Sanaa; Mackie, Christine N; Goodman, David A

    2016-11-01

    Purpose Providing long-acting reversible contraception (LARC) in the immediate postpartum period is an evidence-based strategy for expanding women's access to highly effective contraception and for reducing unintended and rapid repeat pregnancy. The purpose of this article is to demonstrate the application of implementation science methodology to study the complexities of rolling-out policies that promote immediate postpartum LARC use across states. Description The Immediate Postpartum LARC Learning Community, sponsored by the Association of State and Territorial Health Officials (ASTHO), is made up of multi-disciplinary, multi-agency teams from 13 early-adopting states with Medicaid reimbursement policies promoting immediate postpartum LARC. Partners include federal agencies and maternal and child health organizations. The Learning Community discussed barriers, opportunities, strategies, and promising practices at an in-person meeting. Implementation science theory and methods, including the Consolidated Framework for Implementation Research (CFIR), and a recent compilation of implementation strategies, provide useful tools for studying the complexities of implementing immediate postpartum LARC policies in birthing facilities across early adopting states. Assessment To demonstrate the utility of this framework for guiding the expansion of immediate postpartum LARC policies, illustrative examples of barriers and strategies discussed during the in-person ASTHO Learning Community meeting are organized by the five CFIR domains-intervention characteristics, outer setting, inner setting, characteristics of the individuals involved, and process. Conclusion States considering adopting policies can learn from ASTHO's Immediate Postpartum LARC Learning Community. Applying implementation science principles may lead to more effective statewide scale-up of immediate postpartum LARC and other evidence-based strategies to improve women and children's health.

  5. Framework for assessing causality of air pollution-related health effects for reviews of the National Ambient Air Quality Standards.

    PubMed

    Owens, Elizabeth Oesterling; Patel, Molini M; Kirrane, Ellen; Long, Thomas C; Brown, James; Cote, Ila; Ross, Mary A; Dutton, Steven J

    2017-08-01

    To inform regulatory decisions on the risk due to exposure to ambient air pollution, consistent and transparent communication of the scientific evidence is essential. The United States Environmental Protection Agency (U.S. EPA) develops the Integrated Science Assessment (ISA), which contains evaluations of the policy-relevant science on the effects of criteria air pollutants and conveys critical science judgments to inform decisions on the National Ambient Air Quality Standards. This article discusses the approach and causal framework used in the ISAs to evaluate and integrate various lines of scientific evidence and draw conclusions about the causal nature of air pollution-induced health effects. The framework has been applied to diverse pollutants and cancer and noncancer effects. To demonstrate its flexibility, we provide examples of causality judgments on relationships between health effects and pollutant exposures, drawing from recent ISAs for ozone, lead, carbon monoxide, and oxides of nitrogen. U.S. EPA's causal framework has increased transparency by establishing a structured process for evaluating and integrating various lines of evidence and uniform approach for determining causality. The framework brings consistency and specificity to the conclusions in the ISA, and the flexibility of the framework makes it relevant for evaluations of evidence across media and health effects. Published by Elsevier Inc.

  6. Next generation science standards available for comment

    NASA Astrophysics Data System (ADS)

    Asher, Pranoti

    2012-05-01

    The first public draft of the Next Generation Science Standards (NGSS) is now available for public comment. Feedback on the standards is sought from people who have a stake in science education, including individuals in the K-12, higher education, business, and research communities. Development of NGSS is a state-led effort to define the content and practices students need to learn from kindergarten through high school. NGSS will be based on the U.S. National Research Council's reportFramework for K-12 Science Education.

  7. The Telescoping Phenomenon: Origins in Gender Bias and Implications for Contemporary Scientific Inquiry.

    PubMed

    Marks, Katherine R; Clark, Claire D

    2018-05-12

    In an article published in International Journal of the Addictions in 1989, Nick Piazza and his coauthors described "telescoping," an accelerated progression through "landmark symptoms" of alcoholism, among a sample of recovering women. The aim of this critical analysis is to apply a feminist philosophy of science to examine the origins of the framework of telescoping research and its implications for contemporary scientific inquiry. A feminist philosophy of science framework is outlined and applied to key source publications of telescoping literature drawn from international and United States-based peer-reviewed journals published beginning in 1952. A feminist philosophy of science framework identifies gender bias in telescoping research in three ways. First, gender bias was present in the early conventions that laid the groundwork for telescoping research. Second, a "masculine" framework was present in the methodology guiding telescoping research. Third, gender bias was present in the interpretation of results as evidenced by biased comparative language. Telescoping research contributed to early evidence of critical sex and gender differences helping to usher in women's substance abuse research more broadly. However, it also utilized a "masculine" framework that perpetuated gender bias and limited generative, novel research that can arise from women-focused research and practice. A feminist philosophy of science identifies gender bias in telescoping research and provides an alternative, more productive approach for substance abuse researchers and clinicians.

  8. Carroll County hands-on elementary science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herlocker, H.G.; Dunkleberger, G.L.

    1994-12-31

    Carroll County Hands-on Elementary Science is a nationally recognized Elementary Science Curriculum which has been disseminated in forty states, Puerto Rico, The Virgin Islands, Saipan, and Samoa. The curriculum is a non-textbook, process-based, constructivist approach to teaching science. Unique features of this curriculum include its teacher-written daily lesson plan format, its complete kit of science supplies, and its complete set of Spanish materials. In order to be included by the National Diffusion Network, Hands-on Elementary Science collected data to support the following claims: the program enhances teacher and student attitudes toward science; the program changes both the amount and themore » type of science instruction; the program is adaptable and transportable; the teacher training component is effective. The poster display will feature sample activities, data which demonstrates the effectiveness of the staff development plan, and samples which show the degree to which the program supports selected state curriculum frameworks.« less

  9. Mississippi Curriculum Framework for Postsecondary Funeral Services Technology Programs (Program CIP: 12.0301--Funeral Service and Mortuary Science). Postsecondary Programs.

    ERIC Educational Resources Information Center

    Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.

    This document, which is intended for use by community and junior colleges throughout Mississippi, contains curriculum frameworks for the course sequences in the state's funeral services technology program. Presented in the introduction are a program description and suggested course sequence. Section I lists baseline competencies for the funeral…

  10. Navigating Windows into Past Human Minds: A Framework of Shifting Selves in Historical Perspective Taking

    ERIC Educational Resources Information Center

    Nilsen, Adam P.

    2016-01-01

    This article presents a framework for understanding historical perspective taking (HPT), the effort to use historical material to explore the internal states of past people. It addresses gaps in HPT research by (a) linking HPT to theories and research from the social science disciplines on perspective taking and the self and (b) proposing a way to…

  11. Biology AB: An Instructional Course Outline. Publication No. SC-928-1987.

    ERIC Educational Resources Information Center

    Los Angeles Unified School District, CA. Office of Secondary Instruction.

    This course of study is aligned with the California State Science Framework and provides students the biology content needed to become scientifically literate and prepared for post-secondary science education. The course of study is divided into four sections. The first section provides an overview of the course and includes a course description,…

  12. Formative Assessment Probes: Labeling versus Explaining

    ERIC Educational Resources Information Center

    Keeley, Page

    2013-01-01

    In the elementary grades, the butterfly is a commonly used curricular context for children to learn about growth and development of organisms as they progress through their life cycle. "A Framework for K-12 Science Education's" life science core idea LS1.B, Growth and Development of Organisms, states that by the end of grade 5,…

  13. Health Sciences Libraries Forecasting Information Service Trends for Researchers: Models Applicable to All Academic Libraries

    ERIC Educational Resources Information Center

    Cain, Timothy J.; Cheek, Fern M.; Kupsco, Jeremy; Hartel, Lynda J.; Getselman, Anna

    2016-01-01

    To better understand the value of current information services and to forecast the evolving information and data management needs of researchers, a study was conducted at two research-intensive universities. The methodology and planning framework applied by health science librarians at Emory University and The Ohio State University focused on…

  14. The Power of Questions to Bring Balance to the Curriculum in the Age of New Standards

    ERIC Educational Resources Information Center

    del Prado, Pixita; McMillen, Susan E.; Friedland, Ellen S.

    2017-01-01

    The Common Core State Standards (CCSS); the Next Generation Science Standards (NGSS); and the College, Career, and Civic Life (C3) Framework for Social State Standards are bringing many changes to schools and classrooms across the United States. This article suggests using the power of questions to make connections across seemingly disparate…

  15. The Making of a History Standards Wiki: "Covering", "Uncovering", and "Discovering" Curriculum Frameworks Using a Highly Interactive Technology

    ERIC Educational Resources Information Center

    Maloy, Robert W.; Poirier, Michelle; Smith, Hilary K.; Edwards, Sharon A.

    2010-01-01

    This article explores using a wiki, one of the newest forms of interactive computer-based technology, as a resource for teaching the Massachusetts K-12 History and Social Science Curriculum Framework, a set of state-mandated learning standards. Wikis are web pages that can be easily edited by multiple authors. They invite active involvement by…

  16. A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas

    ERIC Educational Resources Information Center

    National Academies Press, 2012

    2012-01-01

    Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S.…

  17. Who Is Learning About Climate Change in American Schools? An Analysis of Climate Change in Curriculum Standards

    NASA Astrophysics Data System (ADS)

    Golden, B. W.; Francis, T. K.

    2014-12-01

    This work attempts to answer the question "how much, if any, climate change, exists in middle and high school curricula in the United States?" A necessary first step towards this answer involves an examination of Global Climate Change (GCC) coverage in the requisite standards documents. Until recently, each state had its own science framework, with four states (at the time of writing) having already adopted the new Next Generation Science Standards (NGSS) (Achieve, Inc, 2013). This work reports on an analysis of the extent to which GCC exists within the content frameworks of each state, including the NGSS. The analysis began with a word search for such content as "climate change", "greenhouse effect", and "global warming". We then searched through the remainder of the documents in question to understand the nuance of each framework. Each framework was then scored on a scale form zero (no mention of climate change) to four (climate change is explicit, an anthropogenic potential cause is emphasized, and GCC appears within at least one standard of its own). Eighteen states scored a zero, while only five states scored a four. This is particularly troubling, in light of recent statements of scientific consensus (AAAS, 2006; 2009; AGU, 2013; IPCC, 2007). While the NGSS scored well, it is unclear what this means in terms of actual students encountering the subject of climate change in actual classroom. Attention is given to some still-problematic aspects of GCC content are addressed, including its focus largely within courses not required for graduation, as well as the murky details of the yet-to-be determined processes by which individual states will choose to test, or not to test, the subject matter. The authors conclude that as of 2013, there is little evidence that students in most states are required to take courses which include significant aspects of GCC in their curricula.

  18. Mobilizing Science, Evidence and Technology for the Sendai Framework

    NASA Astrophysics Data System (ADS)

    Calkins, J. A.

    2015-12-01

    In March 2015, UN member states adopted the Sendai Framework for Disaster Risk Reduction: 2015-2030. The Sendai Framework recognises the cross-cutting nature of DRR policy and calls on a range of stakeholders to help governments. The Sendai Framework sets the aim of achieving "the substantial reduction of disaster risk and losses in lives, livelihoods and health and in the economic, physical, social, cultural and environmental assets of persons, businesses, communities and countries" (para 16). The international science community is acknowledged as a key stakeholder in supporting countries to implement the Sendai Framework. With this call to action and the gravity of disaster risk escalating around the globe, it is now vital that scientific knowledge and research resources are shared and become accessible in a form that can directly support coordinated application. Recent work is presented on the DRR gaps voiced by governments and scientists across a range of science and technology related needs, including through the drafting process for the Sendai Framework. Across regions and development levels, countries are seeking to address specific gaps they face in scientific capacities and information. Considering the many existing programmes, research initiatives and resources already seeking to generate evidence on DRR at all scales, how can science and technology improve delivery? Models and case studies prompt a useful discussion on what does and does not work. We provide an example of recent work in the UK disasters research community to assess scientific and technical capacity and collaborative effort to fulfil the commitment of the Sendai Framework. While there is no one-size-fits-all, any implementation approach needs to take into account the extraordinary, dynamic and localised nature of disasters and needs to be able to deliver relevant information to decision-makers at national and local levels, in a timely manner.

  19. Development of an Agile Knowledge Engineering Framework in Support of Multi-Disciplinary Translational Research

    PubMed Central

    Borlawsky, Tara B.; Dhaval, Rakesh; Hastings, Shannon L.; Payne, Philip R. O.

    2009-01-01

    In October 2006, the National Institutes of Health launched a new national consortium, funded through Clinical and Translational Science Awards (CTSA), with the primary objective of improving the conduct and efficiency of the inherently multi-disciplinary field of translational research. To help meet this goal, the Ohio State University Center for Clinical and Translational Science has launched a knowledge management initiative that is focused on facilitating widespread semantic interoperability among administrative, basic science, clinical and research computing systems, both internally and among the translational research community at-large, through the integration of domain-specific standard terminologies and ontologies with local annotations. This manuscript describes an agile framework that builds upon prevailing knowledge engineering and semantic interoperability methods, and will be implemented as part this initiative. PMID:21347164

  20. Development of an agile knowledge engineering framework in support of multi-disciplinary translational research.

    PubMed

    Borlawsky, Tara B; Dhaval, Rakesh; Hastings, Shannon L; Payne, Philip R O

    2009-03-01

    In October 2006, the National Institutes of Health launched a new national consortium, funded through Clinical and Translational Science Awards (CTSA), with the primary objective of improving the conduct and efficiency of the inherently multi-disciplinary field of translational research. To help meet this goal, the Ohio State University Center for Clinical and Translational Science has launched a knowledge management initiative that is focused on facilitating widespread semantic interoperability among administrative, basic science, clinical and research computing systems, both internally and among the translational research community at-large, through the integration of domain-specific standard terminologies and ontologies with local annotations. This manuscript describes an agile framework that builds upon prevailing knowledge engineering and semantic interoperability methods, and will be implemented as part this initiative.

  1. A Framework to Guide the Assessment of Human-Machine Systems.

    PubMed

    Stowers, Kimberly; Oglesby, James; Sonesh, Shirley; Leyva, Kevin; Iwig, Chelsea; Salas, Eduardo

    2017-03-01

    We have developed a framework for guiding measurement in human-machine systems. The assessment of safety and performance in human-machine systems often relies on direct measurement, such as tracking reaction time and accidents. However, safety and performance emerge from the combination of several variables. The assessment of precursors to safety and performance are thus an important part of predicting and improving outcomes in human-machine systems. As part of an in-depth literature analysis involving peer-reviewed, empirical articles, we located and classified variables important to human-machine systems, giving a snapshot of the state of science on human-machine system safety and performance. Using this information, we created a framework of safety and performance in human-machine systems. This framework details several inputs and processes that collectively influence safety and performance. Inputs are divided according to human, machine, and environmental inputs. Processes are divided into attitudes, behaviors, and cognitive variables. Each class of inputs influences the processes and, subsequently, outcomes that emerge in human-machine systems. This framework offers a useful starting point for understanding the current state of the science and measuring many of the complex variables relating to safety and performance in human-machine systems. This framework can be applied to the design, development, and implementation of automated machines in spaceflight, military, and health care settings. We present a hypothetical example in our write-up of how it can be used to aid in project success.

  2. Collaborative Supercomputing for Global Change Science

    NASA Astrophysics Data System (ADS)

    Nemani, R.; Votava, P.; Michaelis, A.; Melton, F.; Milesi, C.

    2011-03-01

    There is increasing pressure on the science community not only to understand how recent and projected changes in climate will affect Earth's global environment and the natural resources on which society depends but also to design solutions to mitigate or cope with the likely impacts. Responding to this multidimensional challenge requires new tools and research frameworks that assist scientists in collaborating to rapidly investigate complex interdisciplinary science questions of critical societal importance. One such collaborative research framework, within the NASA Earth sciences program, is the NASA Earth Exchange (NEX). NEX combines state-of-the-art supercomputing, Earth system modeling, remote sensing data from NASA and other agencies, and a scientific social networking platform to deliver a complete work environment. In this platform, users can explore and analyze large Earth science data sets, run modeling codes, collaborate on new or existing projects, and share results within or among communities (see Figure S1 in the online supplement to this Eos issue (http://www.agu.org/eos_elec)).

  3. Conceptions of scientific literacy: Reactionaries in ascendency in the state of Victoria

    NASA Astrophysics Data System (ADS)

    Cross, Rober

    1995-06-01

    Schooling as much as any other social activity is determined by ideology. The introduction of the Victorian Curriculum & Standards Framework is a case in point. The alliance between the new Victorian State government and traditionalists has “reformed” the schooling of science. Evidence is presented that points to a return to a conception of scientific literacy in which the central mythology of value-free science is the guiding principle. Here is a vision for an “educated” Australia, which begs the question: Whose Australia?

  4. 2002 Mississippi Curriculum Framework: Comprehensive Consumer & Homemaking Education (Program CIP: 20.0101 - Comprehensive Consumer & Homemaking Education). Family and Consumer Sciences (Program CIP: 20.0192 - Family and Consumer Sciences)

    ERIC Educational Resources Information Center

    Arthur, Jan; Blackwell, Michelle; Clemmer, Phyllis; Cocroft, Shunda; Everett, Laurelie; Green, Coretta; West, Brenda; Yarbrough, Ruthie

    2002-01-01

    Secondary vocational-technical education programs in Mississippi are faced with many challenges resulting from sweeping educational reforms at the national and state levels. Schools and teachers are increasingly being held accountable for providing true learning activities to every student in the classroom. This accountability is measured through…

  5. Technology-induced errors. The current use of frameworks and models from the biomedical and life sciences literatures.

    PubMed

    Borycki, E M; Kushniruk, A W; Bellwood, P; Brender, J

    2012-01-01

    The objective of this paper is to examine the extent, range and scope to which frameworks, models and theories dealing with technology-induced error have arisen in the biomedical and life sciences literature as indexed by Medline®. To better understand the state of work in the area of technology-induced error involving frameworks, models and theories, the authors conducted a search of Medline® using selected key words identified from seminal articles in this research area. Articles were reviewed and those pertaining to frameworks, models or theories dealing with technology-induced error were further reviewed by two researchers. All articles from Medline® from its inception to April of 2011 were searched using the above outlined strategy. 239 citations were returned. Each of the abstracts for the 239 citations were reviewed by two researchers. Eleven articles met the criteria based on abstract review. These 11 articles were downloaded for further in-depth review. The majority of the articles obtained describe frameworks and models with reference to theories developed in other literatures outside of healthcare. The papers were grouped into several areas. It was found that articles drew mainly from three literatures: 1) the human factors literature (including human-computer interaction and cognition), 2) the organizational behavior/sociotechnical literature, and 3) the software engineering literature. A variety of frameworks and models were found in the biomedical and life sciences literatures. These frameworks and models drew upon and extended frameworks, models and theoretical perspectives that have emerged in other literatures. These frameworks and models are informing an emerging line of research in health and biomedical informatics involving technology-induced errors in healthcare.

  6. Commercial aviation : a framework for considering federal financial assistance

    DOT National Transportation Integrated Search

    2001-01-01

    This is the statement of David M. Walker, Comptroller General of the United States, before the Committee on Commerce, Science, and Transportation, U.S. Senate regarding provision of financial assistance to the airlines. In summary, the government nee...

  7. [The development of European Union common research and development policy and programs with special regard to life sciences].

    PubMed

    Pörzse, Gábor

    2009-08-09

    Research and development (R&D) has been playing a leading role in the European Community's history since the very beginning of European integration. Its importance has grown in recent years, after the launch of the Lisbon strategy. Framework programs have always played a considerable part in community research. The aim of their introduction was to fine tune national R&D activities, and to successfully divide research tasks between the Community and the member states. The Community, from the very outset, has acknowledged the importance of life sciences. It is no coincidence that life sciences have become the second biggest priority in the last two framework programs. This study provides a historical, and at the same time analytical and evaluative review of community R&D policy and activity from the starting point of its development until the present day. It examines in detail how the changes in structure, conditional system, regulations and priorities of the framework programs have followed the formation of social and economic needs. The paper puts special emphasis on the analysis of the development of life science research, presenting how they have met the challenges of the age, and how they have been built into the framework programs. Another research area of the present study is to elaborate how successfully Hungarian researchers have been joining the community research, especially the framework programs in the field of life sciences. To answer these questions, it was essential to survey, process and analyze the data available in the national and European public and closed databases. Contrary to the previous documents, this analysis doesn't concentrate on the political and scientific background. It outlines which role community research has played in sustainable social and economic development and competitiveness, how it has supported common policies and how the processes of integration have been deepening. Besides, the present paper offers a complete review of the given field, from its foundation up until the present day, by elaborating the newest initiatives and ideas for the future. This work is also novel from the point of view of the given professional field, the life sciences in the framework programs, and processing and evaluating of data of Hungarian participation in the 5th and 6th framework programs in the field of life sciences.

  8. Materials Degradation and Detection (MD2): Deep Dive Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCloy, John S.; Montgomery, Robert O.; Ramuhalli, Pradeep

    2013-02-01

    An effort is underway at Pacific Northwest National Laboratory (PNNL) to develop a fundamental and general framework to foster the science and technology needed to support real-time monitoring of early degradation in materials used in the production of nuclear power. The development of such a capability would represent a timely solution to the mounting issues operators face with materials degradation in nuclear power plants. The envisioned framework consists of three primary and interconnected “thrust” areas including 1) microstructural science, 2) behavior assessment, and 3) monitoring and predictive capabilities. A brief state-of-the-art assessment for each of these core technology areas ismore » discussed in the paper.« less

  9. Scientific assessment of animal welfare.

    PubMed

    Hemsworth, P H; Mellor, D J; Cronin, G M; Tilbrook, A J

    2015-01-01

    Animal welfare is a state within the animal and a scientific perspective provides methodologies for evidence-based assessment of an animal's welfare. A simplistic definition of animal welfare might be how the animal feels now. Affective experiences including emotions, are subjective states so cannot be measured directly in animals, but there are informative indirect physiological and behavioural indices that can be cautiously used to interpret such experiences. This review enunciates several key science-based frameworks for understanding animal welfare. The biological functioning and affective state frameworks were initially seen as competing, but a recent more unified approach is that biological functioning is taken to include affective experiences and affective experiences are recognised as products of biological functioning, and knowledge of the dynamic interactions between the two is considered to be fundamental to managing and improving animal welfare. The value of these two frameworks in understanding the welfare of group-housed sows is reviewed. The majority of studies of the welfare of group-housed sows have employed the biological functioning framework to infer compromised sow welfare, on the basis that suboptimal biological functioning accompanies negative affective states such as sow hunger, pain, fear, helplessness, frustration and anger. Group housing facilitates social living, but group housing of gestating sows raises different welfare considerations to stall housing, such as high levels of aggression, injuries and stress, at least for several days after mixing, as well as subordinate sows being underfed due to competition at feeding. This paper highlights the challenges and potential opportunities for the continued improvement in sow management through well-focused research and multidisciplinary assessment of animal welfare. In future the management of sentient animals will require the promotion of positive affective experiences in animals and this is likely to be a major focus for animal welfare science activity in the early twenty-first century.

  10. Introduction: the human sciences and Cold War America.

    PubMed

    Isaac, Joel

    2011-01-01

    Studies of the history of the human sciences during the Cold War era have proliferated over the past decade--in JHBS and elsewhere. This special issue focuses on the connections between the behavioral sciences and the culture and politics of the Cold War in the United States. In the recent literature, there is a tendency to identify the Cold War human sciences with two main paradigms: that of psychocultural analysis, on the one hand, and of the systems sciences, on the other. The essays in the special issue both extend understanding of each of these interpretive frameworks and help us to grasp their interconnection. © 2011 Wiley Periodicals, Inc.

  11. Assessment of Critical-Analytic Thinking

    ERIC Educational Resources Information Center

    Brown, Nathaniel J.; Afflerbach, Peter P.; Croninger, Robert G.

    2014-01-01

    National policy and standards documents, including the National Assessment of Educational Progress frameworks, the "Common Core State Standards" and the "Next Generation Science Standards," assert the need to assess critical-analytic thinking (CAT) across subject areas. However, assessment of CAT poses several challenges for…

  12. State-of-the-science on prevention of elder abuse and lessons learned from child abuse and domestic violence prevention: Toward a conceptual framework for research

    PubMed Central

    Teresi, Jeanne A.; Burnes, David; Skowron, Elizabeth A.; Dutton, Mary Ann; Mosqueda, Laura; Lachs, Mark S.; Pillemer, Karl

    2017-01-01

    The goal of this review is to discuss the state-of-the-science in elder abuse prevention. Findings from evidence-based programs to reduce elder abuse are discussed, drawing from findings and insights from evidence-based programs for child maltreatment and domestic/ intimate partner violence. A conceptual measurement model for the study of elder abuse is presented, and linked to possible measures of risk factors and outcomes. Advances in neuroscience in child maltreatment and novel measurement strategies for outcome assessment are presented. PMID:27676289

  13. State of the science on prevention of elder abuse and lessons learned from child abuse and domestic violence prevention: Toward a conceptual framework for research.

    PubMed

    Teresi, Jeanne A; Burnes, David; Skowron, Elizabeth A; Dutton, Mary Ann; Mosqueda, Laura; Lachs, Mark S; Pillemer, Karl

    2016-01-01

    The goal of this review is to discuss the state of the science in elder abuse prevention. Findings from evidence-based programs to reduce elder abuse are discussed, drawing from findings and insights from evidence-based programs for child maltreatment and domestic/intimate partner violence. A conceptual measurement model for the study of elder abuse is presented and linked to possible measures of risk factors and outcomes. Advances in neuroscience in child maltreatment and novel measurement strategies for outcome assessment are presented.

  14. Promoting Global Perspective and Raising the Visibility of Asia in World History: An Assignment for Pre-Service Teachers

    ERIC Educational Resources Information Center

    Keirn, Tim; Luhr, Eileen; Escobar, Miguel; Choudhary, Manoj

    2012-01-01

    Given California's role in the Pacific economy, its historic Asian heritage, and the strong and growing presence of Asian communities and businesses in the state, it is imperative that students statewide understand the history of Asia. Unfortunately, the California state curricular framework and standards in history and social science limit the…

  15. Integrating human health and environmental health into the DPSIR framework: a tool to identify research opportunities for sustainable and healthy communities.

    PubMed

    Yee, Susan H; Bradley, Patricia; Fisher, William S; Perreault, Sally D; Quackenboss, James; Johnson, Eric D; Bousquin, Justin; Murphy, Patricia A

    2012-12-01

    The U.S. Environmental Protection Agency has recently realigned its research enterprise around the concept of sustainability. Scientists from across multiple disciplines have a role to play in contributing the information, methods, and tools needed to more fully understand the long-term impacts of decisions on the social and economic sustainability of communities. Success will depend on a shift in thinking to integrate, organize, and prioritize research within a systems context. We used the Driving forces-Pressures-State-Impact-Response (DPSIR) framework as a basis for integrating social, cultural, and economic aspects of environmental and human health into a single framework. To make the framework broadly applicable to sustainability research planning, we provide a hierarchical system of DPSIR keywords and guidelines for use as a communication tool. The applicability of the integrated framework was first tested on a public health issue (asthma disparities) for purposes of discussion. We then applied the framework at a science planning meeting to identify opportunities for sustainable and healthy communities research. We conclude that an integrated systems framework has many potential roles in science planning, including identifying key issues, visualizing interactions within the system, identifying research gaps, organizing information, developing computational models, and identifying indicators.

  16. When Playing Meets Learning: Methodological Framework for Designing Educational Games

    NASA Astrophysics Data System (ADS)

    Linek, Stephanie B.; Schwarz, Daniel; Bopp, Matthias; Albert, Dietrich

    Game-based learning builds upon the idea of using the motivational potential of video games in the educational context. Thus, the design of educational games has to address optimizing enjoyment as well as optimizing learning. Within the EC-project ELEKTRA a methodological framework for the conceptual design of educational games was developed. Thereby state-of-the-art psycho-pedagogical approaches were combined with insights of media-psychology as well as with best-practice game design. This science-based interdisciplinary approach was enriched by enclosed empirical research to answer open questions on educational game-design. Additionally, several evaluation-cycles were implemented to achieve further improvements. The psycho-pedagogical core of the methodology can be summarized by the ELEKTRA's 4Ms: Macroadaptivity, Microadaptivity, Metacognition, and Motivation. The conceptual framework is structured in eight phases which have several interconnections and feedback-cycles that enable a close interdisciplinary collaboration between game design, pedagogy, cognitive science and media psychology.

  17. Beauty and the beast: Aligning national curriculum standards with state (high school) graduation requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linder-Scholer, B.

    1994-12-31

    An overview of SCI/MATH/MN - Minnesota`s standards-based, systemic approach to the reform and improvement of the K-12 science and mathematics education delivery system - is offered as an illustration of the challenges of aligning state educational practices with the national curriculum standards, and as a model for business involvement in state educational policy issues that will enable fundamental, across-the-system reform. SCI/MATH/MN illustrates the major challenges involved in developing a statewide vision for math and science education reform, articulating frameworks aligned with the national standards, building capacity for system-oriented change at the local level, and involving business in systemic reform.

  18. Framework for Supporting Web-Based Collaborative Applications

    NASA Astrophysics Data System (ADS)

    Dai, Wei

    The article proposes an intelligent framework for supporting Web-based applications. The framework focuses on innovative use of existing resources and technologies in the form of services and takes the leverage of theoretical foundation of services science and the research from services computing. The main focus of the framework is to deliver benefits to users with various roles such as service requesters, service providers, and business owners to maximize their productivity when engaging with each other via the Web. The article opens up with research motivations and questions, analyses the existing state of research in the field, and describes the approach in implementing the proposed framework. Finally, an e-health application is discussed to evaluate the effectiveness of the framework where participants such as general practitioners (GPs), patients, and health-care workers collaborate via the Web.

  19. UNESCO's activities in ethics.

    PubMed

    ten Have, Henk A M J

    2010-03-01

    UNESCO is an intergovernmental organization with 193 Member States. It is concerned with a broad range of issues regarding education, science and culture. It is the only UN organisation with a mandate in science. Since 1993 it is addressing ethics of science and technology, with special emphasis on bioethics. One major objective of the ethics programme is the development of international normative standards. This is particularly important since many Member States only have a limited infrastructure in bioethics, lacking expertise, educational programs, bioethics committees and legal frameworks. UNESCO has recently adopted the Universal Declaration on Bioethics and Human Rights. The focus of current activities is now on implementation of this Declaration. Three activities are discussed that aim at improving and reinforcing the ethics infrastructure in relation to science and technology: the Global Ethics Observatory, the Ethics Education Programme and the Assisting Bioethics Committees project.

  20. Creating State-based Alliances to Support Earth and Space Science Education Reform

    NASA Astrophysics Data System (ADS)

    Geary, E. E.; Manduca, C. A.; Barstow, D.

    2002-05-01

    Seven years after the publication of the National Science Education Standards and adoption of new state science education standards, Earth and space science remains outside the mainstream K-12 curriculum. Currently, less than ten percent of high school students in the United States of America take an Earth or space science course before graduation. This state of affairs is simply unacceptable. "All of us who live on this planet have the right and the obligation to understand Earth's unique history, its dynamic processes, its abundant resources, and its intriguing mysteries. As citizens of Earth, with the power to modify our climate and ecosystems, we also have a personal and collective responsibility to understand Earth so that we can make wise decisions about its and our future". As one step toward addressing this situation, we support the establishment of state-based alliances to promote Earth and space science education reform. "In many ways, states are the most vital locus of change in our nation's schools. State departments of education define curriculum frameworks, establish testing policies, support professional development and, in some cases, approve textbooks and materials for adoption". State alliance partners should include a broad spectrum of K-16 educators, scientists, policy makers, parents, and community leaders from academic institutions, businesses, museums, technology centers, and not-for profit organizations. The focus of these alliances should be on systemic and sustainable reform of K-16 Earth and space science education. Each state-based alliance should focus on specific educational needs within their state, but work together to share ideas, resources, and models for success. As we build these alliances we need to take a truly collaborative approach working with the other sciences, geography, and mathematics so that collectively we can improve the caliber and scope of science and mathematics education for all students.

  1. Probabilistic machine learning and artificial intelligence.

    PubMed

    Ghahramani, Zoubin

    2015-05-28

    How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.

  2. Probabilistic machine learning and artificial intelligence

    NASA Astrophysics Data System (ADS)

    Ghahramani, Zoubin

    2015-05-01

    How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.

  3. Science Technology Engineering and Math (STEM) Education MUST Begin in Early Childhood Education: A Systematic Analysis of Washington State Guidelines Used to Gauge the Development and Learning of Young Learners

    NASA Astrophysics Data System (ADS)

    Briseno, Luis Miguel

    This paper reflects future direction for early Science Technology Engineering and Mathematics (STEM) education, science in particular. Washington State stakeholders use guidelines including: standards, curriculums and assessments to gauge young children's development and learning, in early childhood education (ECE). Next Generation Science Standards (NGSS), and the Framework for K-12 programs (National Research Council, 2011) emphasizes the need for reconfiguration of standards: "Too often standards are a long list of detailed and disconnected facts... this approach alienates young people, it also leaves them with fragments of knowledge and little sense of the inherent logic and consistency of science and of its universality." NGSS' position elevates the concern and need for learners to experience teaching and learning from intentionally designed cohesive curriculum units, rather than as a series of unrelated and isolated lessons. To introduce the argument the present study seeks to examine Washington State early learning standards. To evaluate this need, I examined balance and coverage/depth. Analysis measures the level of continuum in high-quality guidelines from which Washington State operates to serve its youngest citizens and their families.

  4. Identifying Decision-Makers’ Science Needs for Adaptation to Climate-Related Impacts on Forest Ecosystem Services

    NASA Astrophysics Data System (ADS)

    Gordon, E.; Lukas, J.

    2009-12-01

    Through the Western Water Assessment RISA program, we are conducting a research project that will produce science synthesis information to help local, state, and federal decision-makers in Colorado and Wyoming develop adaptation strategies to deal with climate-related threats to forest ecosystem services, in particular bark beetle infestations and stand-replacing wildfires. We begin by using the problem orientation framework, a policy sciences methodology, to understand how decision-makers can most effectively address policy problems that threaten the attainment of socially accepted goals. By applying this framework to the challenges facing decision-makers, we more accurately identify specific areas where scientific research can improve decision-making. WWA researchers will next begin to connect decision-makers with relevant scientific literature and identify specific areas of future scientific research that will be most effective at addressing their needs.

  5. California State University, Bakersfield Fab Lab: "Making" a Difference in Middle School Students' STEM Attitudes

    ERIC Educational Resources Information Center

    Medina, Andrea Lee

    2017-01-01

    The digital fabrication lab, or Fab Lab, at California State University, Bakersfield provided a 1-week, half-day summer program for local area middle school students. The purpose of this study was to examine the effect this summer program had on their attitudes towards math and science. The theoretical framework used for this study was based on…

  6. The Death of Imhotep: A Hermeneutical Framework for Understanding the Lack of Black Males in STEM Fields

    ERIC Educational Resources Information Center

    Mocombe, Paul C.

    2018-01-01

    In Afrocentric circles in the United States, ancient Kemetic (Egyptian) scientist Imhotep is considered the Black father of medicine. In this article, I use his name in the title as an allusion to highlight the lack of Black males matriculating in science, technology, engineering, and mathematics (STEM) programs or fields in the United States. The…

  7. New perspectives in forest management: background, science issues, and research agenda.

    Treesearch

    David J. Brooks; Gordon E. Grant

    1992-01-01

    Scientific, management, and social factors that have contributed to changes in United States forest management are examined. Principles underlying new approaches are developed and implications are considered at various spatial and temporal scales. A general framework for a research program is outlined.

  8. Conceptualizing In-service Secondary School Science Teachers' Knowledge Base for Promoting Understanding about the Science of Global Climate Change

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Devarati

    Efforts to adapt and mitigate the effects of global climate change (GCC) have been ongoing for the past two decades and have become a major global concern. However, research and practice for promoting climate literacy and understanding about GCC have only recently become a national priority. The National Research Council (NRC), has recently emphasized upon the importance of developing learners' capacity of reasoning, their argumentation skills and understanding of GCC (Framework for K-12 Science Education, National Research Council, 2012). This framework focuses on fostering conceptual clarity about GCC to promote innovation, resilience, and readiness in students as a response towards the threat of a changing environment. Previous research about teacher understanding of GCC describes that in spite of the prevalent frameworks like the AAAS Science Literacy Atlas (AAAS, 2007) and the Essential Principles for Climate Literacy (United States Global Climate Research Program, 2009; Bardsley, 2007), most learners are challenged in understanding the science of GCC (Michail et al., 2007) and misinformed perceptions about basic climate science content and the role of human activities in changing climate remain persistent (Reibich and Gautier, 2006). Our teacher participants had a rather simplistic knowledge structure. While aware of climate change, teacher participants lacked in depth understanding of how change in climate can impact various ecosystems on the Earth. Furthermore, they felt overwhelmed with the extensive amount of information needed to comprehend the complexity in GCC. Hence, extensive efforts not only focused on assessing conceptual understanding of GCC but also for teaching complex science topics like GCC are essential. This dissertation explains concept mapping, and the photo elicitation method for assessing teachers' understanding of GCC and the use of metacognitive scaffolding in instruction of GCC for developing competence of learners in this complex science phenomenon.

  9. The Development of a Conceptual Framework for New K-12 Science Education Standards (Invited)

    NASA Astrophysics Data System (ADS)

    Keller, T.

    2010-12-01

    The National Academy of Sciences has created a committee of 18 National Academy of Science and Engineering members, academic scientists, cognitive and learning scientists, and educators, educational policymakers and researchers to develop a framework to guide new K-12 science education standards. The committee began its work in January, 2010, released a draft of the framework in July, 2010, and intends to have the final framework in the first quarter of 2011. The committee was helped in early phases of the work by consultant design teams. The framework is designed to help realize a vision for science and engineering education in which all students actively engage in science and engineering practices in order to deepen their understanding of core ideas in science over multiple years of school. These three dimensions - core disciplinary ideas, science and engineering practices, and cross-cutting elements - must blend together to build an exciting, relevant, and forward looking science education. The framework will be used as a base for development of next generation K-12 science education standards.

  10. The physician-scientist, the state, and the oath: thoughts for our times

    PubMed Central

    Coller, Barry S.

    2006-01-01

    Triggered by an encounter with survivors of the studies on twins conducted in Auschwitz by Joseph Mengele, who held both MD and PhD degrees, I offer thoughts on the extraordinary powers physician-scientists have to enhance or degrade human dignity. Biomedical science lacks intrinsic morality, but attains moral status by virtue of its purpose and the ethical framework that controls its conduct, both of which derive from the principles of medical humanism codified in the physician’s oath. Physician-scientists have responsibilities to humankind that transcend the state. Careful analysis of historical examples of abuses of human rights committed in the name of medical science or the state is an important mechanism to safeguard current and future human participants. PMID:17016549

  11. The physician-scientist, the state, and the oath: thoughts for our times.

    PubMed

    Coller, Barry S

    2006-10-01

    Triggered by an encounter with survivors of the studies on twins conducted in Auschwitz by Joseph Mengele, who held both MD and PhD degrees, I offer thoughts on the extraordinary powers physician-scientists have to enhance or degrade human dignity. Biomedical science lacks intrinsic morality, but attains moral status by virtue of its purpose and the ethical framework that controls its conduct, both of which derive from the principles of medical humanism codified in the physician's oath. Physician-scientists have responsibilities to humankind that transcend the state. Careful analysis of historical examples of abuses of human rights committed in the name of medical science or the state is an important mechanism to safeguard current and future human participants.

  12. The contributions and future direction of Program Science in HIV/STI prevention.

    PubMed

    Becker, Marissa; Mishra, Sharmistha; Aral, Sevgi; Bhattacharjee, Parinita; Lorway, Rob; Green, Kalada; Anthony, John; Isac, Shajy; Emmanuel, Faran; Musyoki, Helgar; Lazarus, Lisa; Thompson, Laura H; Cheuk, Eve; Blanchard, James F

    2018-01-01

    Program Science is an iterative, multi-phase research and program framework where programs drive the scientific inquiry, and both program and science are aligned towards a collective goal of improving population health. To achieve this, Program Science involves the systematic application of theoretical and empirical knowledge to optimize the scale, quality and impact of public health programs. Program Science tools and approaches developed for strategic planning, program implementation, and program management and evaluation have been incorporated into HIV and sexually transmitted infection prevention programs in Kenya, Nigeria, India, and the United States. In this paper, we highlight key scientific contributions that emerged from the growing application of Program Science in the field of HIV and STI prevention, and conclude by proposing future directions for Program Science.

  13. Generalized Information Theory Meets Human Cognition: Introducing a Unified Framework to Model Uncertainty and Information Search.

    PubMed

    Crupi, Vincenzo; Nelson, Jonathan D; Meder, Björn; Cevolani, Gustavo; Tentori, Katya

    2018-06-17

    Searching for information is critical in many situations. In medicine, for instance, careful choice of a diagnostic test can help narrow down the range of plausible diseases that the patient might have. In a probabilistic framework, test selection is often modeled by assuming that people's goal is to reduce uncertainty about possible states of the world. In cognitive science, psychology, and medical decision making, Shannon entropy is the most prominent and most widely used model to formalize probabilistic uncertainty and the reduction thereof. However, a variety of alternative entropy metrics (Hartley, Quadratic, Tsallis, Rényi, and more) are popular in the social and the natural sciences, computer science, and philosophy of science. Particular entropy measures have been predominant in particular research areas, and it is often an open issue whether these divergences emerge from different theoretical and practical goals or are merely due to historical accident. Cutting across disciplinary boundaries, we show that several entropy and entropy reduction measures arise as special cases in a unified formalism, the Sharma-Mittal framework. Using mathematical results, computer simulations, and analyses of published behavioral data, we discuss four key questions: How do various entropy models relate to each other? What insights can be obtained by considering diverse entropy models within a unified framework? What is the psychological plausibility of different entropy models? What new questions and insights for research on human information acquisition follow? Our work provides several new pathways for theoretical and empirical research, reconciling apparently conflicting approaches and empirical findings within a comprehensive and unified information-theoretic formalism. Copyright © 2018 Cognitive Science Society, Inc.

  14. Theoretical Issues of the Constitutional Regulation Mechanism

    ERIC Educational Resources Information Center

    Zhussupova, Guldaray B.; Zhailyaubayev, Rassul T.; Ukin, Symbat K.; Shunayeva, Sylu M.; Nurmagambetov, Rachit G.

    2016-01-01

    The purpose of this research is to define the concept of "constitutional regulation mechanism." The definition of the concept of "constitutional regulation mechanism" will give jurists and legislators a theoretical framework for developing legal sciences, such as the constitutional law and the theory of state and law. The…

  15. Uncritical Educational Theory in the Guise of Progressive Social Science?

    ERIC Educational Resources Information Center

    Lingelbach, Karl Christoph

    1988-01-01

    Examines H. E. Tenorth's critique of research on the Nazi educational system and states that Herman Nohl's historio-educational concept is being reformulated within Tenorth's argumentational framework. Discusses pedagogical and sociological deficits in these efforts of "reformulation" as well as difficulties which arise when applying…

  16. A CBO Study: The Economics of Climate Change: A Primer

    DTIC Science & Technology

    2003-04-01

    issues related to climate change , focusing primarily on its economic aspects. The study draws from numerous published sources to summarize the current...state of climate science and provide a conceptual framework for addressing climate change as an economic problem. It also examines public policy

  17. Next Generation Science Partnerships

    NASA Astrophysics Data System (ADS)

    Magnusson, J.

    2016-02-01

    I will provide an overview of the Next Generation Science Standards (NGSS) and demonstrate how scientists and educators can use these standards to strengthen and enhance their collaborations. The NGSS are rich in content and practice and provide all students with an internationally-benchmarked science education. Using these state-led standards to guide outreach efforts can help develop and sustain effective and mutually beneficial teacher-researcher partnerships. Aligning outreach with the three dimensions of the standards can help make research relevant for target audiences by intentionally addressing the science practices, cross-cutting concepts, and disciplinary core ideas of the K-12 science curriculum that drives instruction and assessment. Collaborations between researchers and educators that are based on this science framework are more sustainable because they address the needs of both scientists and educators. Educators are better able to utilize science content that aligns with their curriculum. Scientists who learn about the NGSS can better understand the frameworks under which educators work, which can lead to more extensive and focused outreach with teachers as partners. Based on this model, the International Ocean Discovery Program (IODP) develops its education materials in conjunction with scientists and educators to produce accurate, standards-aligned activities and curriculum-based interactions with researchers. I will highlight examples of IODP's current, successful teacher-researcher collaborations that are intentionally aligned with the NGSS.

  18. Science Framework for the 2009 National Assessment of Educational Progress

    ERIC Educational Resources Information Center

    National Assessment Governing Board, 2008

    2008-01-01

    This document sets forth recommendations for the design of a new science assessment. The assessment resulting from this framework will start a new NAEP science trend (i.e., measure of student progress in science) beginning in 2009. This framework represents a unique opportunity to build on previous NAEP science work as well as key developments in…

  19. How Climate Science got to be in the Next Generation Science Standards (Invited)

    NASA Astrophysics Data System (ADS)

    Wysession, M. E.

    2013-12-01

    Climate science plays a prominent role in the new national K-12 Next Generation Science Standards (NGSS). This represents the culmination of a significant amount of effort by many different organizations that have worked hard to educate the public on one of the most interesting, complex, complicated, and societally important aspects of geoscience. While there are significant challenges to the full implementation of the NGSS, especially those aspects that relate to climate change, the fact that so many states are currently adopting the NGSS represents a significant milestone in geoscience education. When grade 6-12 textbooks were written ten years ago, such as Pearson's high school Physical Science: Concepts in Action (Wysession et al., 2004), very little mention of climate change was incorporated because it did not appear in state standards. Now, climate and climate change are an integral part of the middle school and high school NGSS standards, and textbook companies are fully incorporating this content into their programs. There are many factors that have helped the shift toward teaching about climate, such as the IPCC report, Al Gore's 'An Inconvenient Truth,' and the many reports on climate change published by the National Research Council (NRC). However, four major community-driven literacy documents (The Essential Principles of Ocean Science, Essential Principles and Fundamental Concepts for Atmospheric Science Literacy, The Earth Science Literacy Principles, and The Essential Principles of Climate Science) were essential in that they directly informed the construction of the Earth and Space Science (ESS) content of the NRC's 'Framework for K-12 Science Education' by the ESS Design Team. The actual performance expectations of the NGSS were then informed directly by the disciplinary core ideas of the NRC Framework, which were motivated by the community-driven literacy documents and the significant credentials these bore. The work in getting climate science into classrooms has just begun: having standards that address climate science does not ensure that it will reach students. However, the fact that climate science plays an important role in the nation's first attempt at a national K-12 science program represents a significant advancement.

  20. How Climate Science got to be in the Next Generation Science Standards (Invited)

    NASA Astrophysics Data System (ADS)

    Westnedge, K. L.; Dallimore, A.; Salish Sea Expedition Team

    2011-12-01

    Climate science plays a prominent role in the new national K-12 Next Generation Science Standards (NGSS). This represents the culmination of a significant amount of effort by many different organizations that have worked hard to educate the public on one of the most interesting, complex, complicated, and societally important aspects of geoscience. While there are significant challenges to the full implementation of the NGSS, especially those aspects that relate to climate change, the fact that so many states are currently adopting the NGSS represents a significant milestone in geoscience education. When grade 6-12 textbooks were written ten years ago, such as Pearson's high school Physical Science: Concepts in Action (Wysession et al., 2004), very little mention of climate change was incorporated because it did not appear in state standards. Now, climate and climate change are an integral part of the middle school and high school NGSS standards, and textbook companies are fully incorporating this content into their programs. There are many factors that have helped the shift toward teaching about climate, such as the IPCC report, Al Gore's 'An Inconvenient Truth,' and the many reports on climate change published by the National Research Council (NRC). However, four major community-driven literacy documents (The Essential Principles of Ocean Science, Essential Principles and Fundamental Concepts for Atmospheric Science Literacy, The Earth Science Literacy Principles, and The Essential Principles of Climate Science) were essential in that they directly informed the construction of the Earth and Space Science (ESS) content of the NRC's 'Framework for K-12 Science Education' by the ESS Design Team. The actual performance expectations of the NGSS were then informed directly by the disciplinary core ideas of the NRC Framework, which were motivated by the community-driven literacy documents and the significant credentials these bore. The work in getting climate science into classrooms has just begun: having standards that address climate science does not ensure that it will reach students. However, the fact that climate science plays an important role in the nation's first attempt at a national K-12 science program represents a significant advancement.

  1. A New U.S. Carbon Cycle Science Plan

    NASA Astrophysics Data System (ADS)

    Michalak, A. M.; Jackson, R.; Marland, G.; Sabine, C.

    2009-05-01

    The report "A U.S. carbon cycle science plan" (J. L. Sarmiento and S. C. Wofsy, U.S. Global Change Res. Program, Washington, D. C., 1999) outlined research priorities and promoted coordinated carbon cycle research across federal agencies in the United States for nearly a decade. Building on this framework and subsequent reports (http://www.carboncyclescience.gov/docs.php), a working group comprised of 27 scientists was formed in 2008 under the United States Carbon Cycle Science Program to review the 1999 Science Plan, and to develop an updated strategy for carbon cycle research for the period from 2010 to 2020. This comprehensive review is being conducted with wide input from the research and stakeholder communities. The recommendations of the Carbon Cycle Science Working Group (CCSWG) will go to U.S. agency managers who have collective responsibility for setting national carbon cycle science priorities and for sponsoring much of the carbon cycle research in the United States. This presentation will provide an update on the ongoing planning process, will outline the steps that the CCSWG is undertaking in building consensus towards an updated U.S. Carbon Cycle Science Plan, and will seek input on the best ways in which to coordinate efforts with ongoing and upcoming research in Canada and Mexico, as well as with ongoing work globally.

  2. A Framework for an ICT-Based Development Program for Science Teachers in State Universities and Colleges in Region VI

    ERIC Educational Resources Information Center

    Magallanes; Lavezores, Amel

    2014-01-01

    Curriculum reform is central to the aspirations of many developing countries as they strive to deliver a quality education to their citizens. In State Universities and Colleges in Region VI, with its remarkable achievement of a high literacy rate in a few decades, the next step is bringing its resources to bear on providing a quality education so…

  3. Discovery Orientation, Cognitive Schemas, and Disparities in Science Identity in Early Adolescence.

    PubMed

    Hill, Patricia Wonch; McQuillan, Julia; Spiegel, Amy N; Diamond, Judy

    2018-02-01

    Why are some youth more likely to think of themselves as a science kind of person than others? In this paper, we use a cognitive social-theoretical framework to assess disparities in science identity among middle school-age youth in the United States. We investigate how discovery orientation is associated with science interest, perceived ability, importance, and reflected appraisal, and how they are related to whether youth see themselves, and perceive that others see them, as a science kind of person. We surveyed 441 students in an ethnically diverse, low-income middle school. Gender and race/ethnicity are associated with science identity but not with discovery orientation. Structural equation model results show that the positive association between discovery orientation and science identity is mediated by science interest, importance, and reflected appraisal. These findings advance understanding of how science attitudes and recognition may contribute to the underrepresentation of girls and/or minorities in science.

  4. "This war for men's minds": the birth of a human science in Cold War America.

    PubMed

    Martin-Nielsen, Janet

    2010-01-01

    The past decade has seen an explosion of work on the history of the human sciences during the Cold War. This work, however, does not engage with one of the leading human sciences of the period: linguistics. This article begins to rectify this knowledge gap by investigating the influence of linguistics and its concept of study, language, on American public, political and intellectual life during the postwar and early Cold War years. I show that language emerged in three frameworks in this period: language as tool, language as weapon, and language as knowledge. As America stepped onto the international stage, language and linguistics were at the forefront: the military poured millions of dollars into machine translation, American diplomats were required to master scores of foreign languages, and schoolchildren were exposed to language-learning on a scale never before seen in the United States. Together, I argue, language and linguistics formed a critical part of the rise of American leadership in the new world order - one that provided communities as dispersed as the military, the diplomatic corps, scientists and language teachers with a powerful way of tackling the problems they faced. To date, linguistics has not been integrated into the broader framework of Cold War human sciences. In this article, I aim to bring both language, as concept, and linguistics, as discipline, into this framework. In doing so, I pave the way for future work on the history of linguistics as a human science.

  5. The Landscape Framework for the Spatial Characterization and Mapping of Ecosystem Services: What is the State of the Science?

    EPA Science Inventory

    Ecosystem services (ESS) represent an ecosystems capacity for satisfying essential human needs, directly or indirectly, above that required to maintain ecosystem integrity (structure, function and processes). The spatial characterization and mapping of ESS is an essential first s...

  6. A Configuration Framework and Implementation for the Least Privilege Separation Kernel

    DTIC Science & Technology

    2010-12-01

    The Altova Web site states that virtualization software, Parallels for Mac and Wine , is required for running it on MacOS and RedHat Linux...University of Singapore Singapore 28. Tan Lai Poh National University of Singapore Singapore 29. Quek Chee Luan Defence Science & Technology Agency Singapore

  7. Digging into Rocks with Young Children

    ERIC Educational Resources Information Center

    Trundle, Kathy; Miller, Heather; Krissek, Lawrence

    2013-01-01

    Rocks and other Earth materials are included in national, state, and local standards. For example, "A Framework for K-12 Science Education" (NRC 2012) contains topics related to Earth systems, which include the hydrosphere, atmosphere, biosphere, and geosphere. By second grade, students should be able to describe how most areas where…

  8. On Campus Study of Florida Wildlife: Project Report.

    ERIC Educational Resources Information Center

    Newcomb-Jones, Carol

    Ecosystem management is an integrated approach to managing Florida's biological and physical environments designed to maintain, protect, and improve the state's natural, managed, and human communities. This document contains activities designed for 4th-5th grade students that meet the guidelines of Florida's K-12 Science Framework to better…

  9. Discourse on Disability and Rehabilitation Issues: Opportunities for Psychology.

    ERIC Educational Resources Information Center

    Pledger, Constance

    2003-01-01

    Discusses the old and new paradigms of disability. Examines the relevance to psychology, summarizes the fundamental theoretical frameworks that have influenced the current state of the science in disability and rehabilitation, and offers an overview of definitions, terminology, and models of disability. Concludes with an introduction to four other…

  10. Nebraska Social Studies/History Standards K-12.

    ERIC Educational Resources Information Center

    Nebraska State Dept. of Education, Lincoln.

    Social studies promotes civic competence through the integrated study of the social sciences and humanities. This Nebraska framework states that the primary purpose of social studies is to help young people make informed and reasoned decisions for the public good as citizens of a culturally diverse and democratic society in an interdependent…

  11. Secondary Teacher Self-Efficacy and Technology Integration

    ERIC Educational Resources Information Center

    Hale, James Lee

    2013-01-01

    This dissertation is based on a conceptual framework founded in the plight of the United States in the critical areas of science, technology, engineering, and mathematics, such as student performance, global economy, job opportunities, and technological innovation. Subpar performance can be traced to, among other things, education and specifically…

  12. Sustainable Schools through Science Across the World

    ERIC Educational Resources Information Center

    Cutler, Marianne

    2007-01-01

    Children need new skills if they are to become part of the solution to challenges such as climate change rather than part of the problem. So states the UK's National Framework for Sustainable Schools. Skills include expressing points of view, weighing up evidence, cooperating, thinking critically, tackling real problems, participating in…

  13. Middle-Skill STEM State Policy Framework. Executive Summary

    ERIC Educational Resources Information Center

    Rosenblum, Ian; Kazis, Richard

    2014-01-01

    The sector of the economy frequently referred to as STEM (Science, Technology, Engineering and Mathematics) is the subject of much national interest and debate. While there is general consensus across various stakeholders such as policymakers, educators, and industry that STEM education and careers are essential to maintaining an innovative and…

  14. Middle-Skill STEM State Policy Framework

    ERIC Educational Resources Information Center

    Rosenblum, Ian; Kazis, Richard

    2014-01-01

    The sector of the economy frequently referred to as STEM (Science, Technology, Engineering and Mathematics) is the subject of much national interest and debate. While there is general consensus across various stakeholders such as policymakers, educators, and industry that STEM education and careers are essential to maintaining an innovative and…

  15. Shifts in fisheries management: adapting to regime shifts

    PubMed Central

    King, Jacquelynne R.; McFarlane, Gordon A.; Punt, André E.

    2015-01-01

    For many years, fisheries management was based on optimizing yield and maintaining a target biomass, with little regard given to low-frequency environmental forcing. However, this policy was often unsuccessful. In the last two to three decades, fisheries science and management have undergone a shift towards balancing sustainable yield with conservation, with the goal of including ecosystem considerations in decision-making frameworks. Scientific understanding of low-frequency climate–ocean variability, which is manifested as ecosystem regime shifts and states, has led to attempts to incorporate these shifts and states into fisheries assessment and management. To date, operationalizing these attempts to provide tactical advice has met with limited success. We review efforts to incorporate regime shifts and states into the assessment and management of fisheries resources, propose directions for future investigation and outline a potential framework to include regime shifts and changes in ecosystem states into fisheries management.

  16. Exploring the development of a cultural care framework for European caring science

    PubMed Central

    Rosser, Elizabeth; Bach, Shirley; Uhrenfeldt, Lisbeth; Lundberg, Pranee; Law, Kate

    2011-01-01

    The aim of this paper is to discuss the development of a cultural care framework that seeks to inform and embrace the philosophical ideals of caring science. Following a review of the literature that identified a lack of evidence of an explicit relationship between caring science and cultural care, a number of well-established transcultural care frameworks were reviewed. Our purpose was to select one that would resonate with underpinning philosophical values of caring science and that drew on criteria generated by the European Academy of Caring Science members. A modified framework based on the work of Giger and Davidhizar was developed as it embraced many of the values such as humanism that are core to caring science practice. The proposed caring science framework integrates determinants of cultural lifeworld-led care and seeks to provide clear directions for humanizing the care of individuals. The framework is offered to open up debate and act as a platform for further academic enquiry. PMID:22171224

  17. A U.S. Carbon Cycle Science Plan

    NASA Astrophysics Data System (ADS)

    Michalak, Anna M.; Jackson, Rob; Marland, Gregg; Sabine, Christopher

    2009-03-01

    First Meeting of the Carbon Cycle Science Working Group; Washington, D. C., 17-18 November 2008; The report “A U.S. carbon cycle science plan” (J. L. Sarmiento and S. C. Wofsy, U.S. Global Change Res. Program, Washington, D. C., 1999) outlined research priorities and promoted coordinated carbon cycle research across federal agencies for nearly a decade. Building on this framework and subsequent reports (available at http://www.carboncyclescience.gov/docs.php), the Carbon Cycle Science Working Group (CCSWG) was formed in 2008 to develop an updated strategy for the next decade. The recommendations of the CCSWG will go to agency managers who have collective responsibility for setting national carbon cycle science priorities and for sponsoring much of the carbon cycle research in the United States.

  18. MiTEP's Collaborative Field Course Design Process Based on Earth Science Literacy Principles

    NASA Astrophysics Data System (ADS)

    Engelmann, C. A.; Rose, W. I.; Huntoon, J. E.; Klawiter, M. F.; Hungwe, K.

    2010-12-01

    Michigan Technological University has developed a collaborative process for designing summer field courses for teachers as part of their National Science Foundation funded Math Science Partnership program, called the Michigan Teacher Excellence Program (MiTEP). This design process was implemented and then piloted during two two-week courses: Earth Science Institute I (ESI I) and Earth Science Institute II (ESI II). Participants consisted of a small group of Michigan urban science teachers who are members of the MiTEP program. The Earth Science Literacy Principles (ESLP) served as the framework for course design in conjunction with input from participating MiTEP teachers as well as research done on common teacher and student misconceptions in Earth Science. Research on the Earth Science misconception component, aligned to the ESLP, is more fully addressed in GSA Abstracts with Programs Vol. 42, No. 5. “Recognizing Earth Science Misconceptions and Reconstructing Knowledge through Conceptual-Change-Teaching”. The ESLP were released to the public in January 2009 by the Earth Science Literacy Organizing Committee and can be found at http://www.earthscienceliteracy.org/index.html. Each day of the first nine days of both Institutes was focused on one of the nine ESLP Big Ideas; the tenth day emphasized integration of concepts across all of the ESLP Big Ideas. Throughout each day, Michigan Tech graduate student facilitators and professors from Michigan Tech and Grand Valley State University consistantly focused teaching and learning on the day's Big Idea. Many Earth Science experts from Michigan Tech and Grand Valley State University joined the MiTEP teachers in the field or on campus, giving presentations on the latest research in their area that was related to that Big Idea. Field sites were chosen for their unique geological features as well as for the “sense of place” each site provided. Preliminary research findings indicate that this collaborative design process piloted as ESI I and ESI II was successful in improving MiTEP teacher understanding of Earth Science content and that it was helpful to use the ESLP framework. Ultimately, a small sample of student scores will look at the impact on student learning in the MiTEP teacher classrooms.

  19. Neglected Population, Neglected Right: Children Living with HIV and the Right to Science.

    PubMed

    Scanlon, Michael L; MacNaughton, Gillian; Sprague, Courtenay

    2017-12-01

    The laws, language, and tools of human rights have been instrumental in expanding access to lifesaving treatment for people living with HIV. Children, however, remain a neglected population, as evidenced by inadequate child-specific and child-friendly HIV treatment options. In this article, we explore the right to science, a potentially powerful but underdeveloped right in international law, and its application to research and development for pediatric HIV treatment. Drawing on reports of human rights bodies and scholars and applying the human rights typology of state obligations to respect, protect, and fulfill, we argue that states have five core obligations related to research and development for child-specific and child-friendly treatment: (1) adopting a public goods approach to science and science policy; (2) including and protecting children in research activities; (3) adopting legal and policy frameworks to support research and development through public funding and private sector incentives; (4) promoting international cooperation and assistance; and (5) ensuring the participation of marginalized communities in decision-making processes. In concluding, we make a number of recommendations for states, human rights bodies, international organizations, civil society, and private industry to further develop and implement the right to science.

  20. Density Functional Methods for Shock Physics and High Energy Density Science

    NASA Astrophysics Data System (ADS)

    Desjarlais, Michael

    2017-06-01

    Molecular dynamics with density functional theory has emerged over the last two decades as a powerful and accurate framework for calculating thermodynamic and transport properties with broad application to dynamic compression, high energy density science, and warm dense matter. These calculations have been extensively validated against shock and ramp wave experiments, are a principal component of high-fidelity equation of state generation, and are having wide-ranging impacts on inertial confinement fusion, planetary science, and shock physics research. In addition to thermodynamic properties, phase boundaries, and the equation of state, one also has access to electrical conductivity, thermal conductivity, and lower energy optical properties. Importantly, all these properties are obtained within the same theoretical framework and are manifestly consistent. In this talk I will give a brief history and overview of molecular dynamics with density functional theory and its use in calculating a wide variety of thermodynamic and transport properties for materials ranging from ambient to extreme conditions and with comparisons to experimental data. I will also discuss some of the limitations and difficulties, as well as active research areas. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. Exciton States in a Gaussian Confining Potential Well

    NASA Astrophysics Data System (ADS)

    Xie, Wen-Fang; Gu, Juan

    2003-11-01

    We consider the problem of an electron-hole pair in a Gaussian confining potential well. This problem is treated within the effective-mass approximation framework using the method of numerical matrix diagonalization. The energy levels of the low-lying states are calculated as a function of the electron-hole effective mass ratio and the size of the confining potential. The project supported by National Natural Science Foundation of China under Grant No. 10275014

  2. Scaling, Similarity, and the Fourth Paradigm for Hydrology

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, Christa D.; Clark, Martyn; Samaniego, Luis; Verhoest, Niko E. C.; van Emmerik, Tim; Uijlenhoet, Remko; Achieng, Kevin; Franz, Trenton E.; Woods, Ross

    2017-01-01

    In this synthesis paper addressing hydrologic scaling and similarity, we posit that roadblocks in the search for universal laws of hydrology are hindered by our focus on computational simulation (the third paradigm), and assert that it is time for hydrology to embrace a fourth paradigm of data-intensive science. Advances in information-based hydrologic science, coupled with an explosion of hydrologic data and advances in parameter estimation and modelling, have laid the foundation for a data-driven framework for scrutinizing hydrological scaling and similarity hypotheses. We summarize important scaling and similarity concepts (hypotheses) that require testing, describe a mutual information framework for testing these hypotheses, describe boundary condition, state flux, and parameter data requirements across scales to support testing these hypotheses, and discuss some challenges to overcome while pursuing the fourth hydrological paradigm. We call upon the hydrologic sciences community to develop a focused effort towards adopting the fourth paradigm and apply this to outstanding challenges in scaling and similarity.

  3. Elevation-derived watershed basins and characteristics for major rivers of the conterminous United States

    USGS Publications Warehouse

    Poppenga, S.K.; Worstell, B.B.

    2008-01-01

    The U.S. Geological Survey Earth Resources Observation and Science Center Topographic Science Project has developed elevation-derived watershed basins and characteristics for major rivers of the conterminous United States. Watershed basins are delineated upstream from the mouth of major rivers by using the hydrologic connectivity of the Elevation Derivatives for National Applications (EDNA) seamless database. Watershed characteristics are quantified by integrating ancillary geospatial datasets, including land cover, population, slope, and topography, with elevation-derived watershed boundaries. The results are published in an online EDNA Watershed Atlas at http://edna.usgs.gov/watersheds. The atlas serves as a framework for evaluating and analyzing the physical, biological, and anthropogenic status of watersheds.

  4. Leveraging Current Initiatives to Bring Earth and Space Science into Elementary and Early Childhood Classrooms: NGSS in the Context of the Classroom Technology Push

    NASA Astrophysics Data System (ADS)

    Pacheco-Guffrey, H. A.

    2016-12-01

    Classroom teachers face many challenges today such as new standards, the moving targets of high stakes tests and teacher evaluations, inconsistent/insufficient access to resources and evolving education policies. Science education in the K-5 context is even more complex. NGSS can be intimidating, especially to K-5 educators with little science background. High stakes science tests are slow to catch up with newly drafted state level science standards, leaving teachers unsure about what to change and when to implement updated standards. Amid all this change, many schools are also piloting new technology programs. Though exciting, tech initiatives can also be overwhelming to teachers who are already overburdened. A practical way to support teachers in science while remaining mindful of these stressors is to design and share resources that leverage other K-5 school initiatives. This is often done by integrating writing or math into science learning to meet Common Core requirements. This presentation will suggest a method for bringing Earth and space science learning into elementary / early childhood classrooms by utilizing the current push for tablet technology. The goal is to make science integration reasonable by linking it to technology programs that are in their early stages. The roles and uses of K-5 Earth and space science apps will be examined in this presentation. These apps will be linked to NGSS standards as well as to the science and engineering practices. To complement the app resources, two support frameworks will also be shared. They are designed to help educators consider new technologies in the context of their own classrooms and lessons. The SAMR Model (Puentadura, 2012) is a conceptual framework that helps teachers think critically about the means and purposes of integrating technology into existing lessons. A practical framework created by the author will also be shared. It is designed to help teachers identify and address the important logistical and curricular decision-making aspects of integrating technology into K-5 classroom science. This method provides clear applications for new technology while also bringing meaningful Earth and space science learning into K-5 classrooms.

  5. Data science ethics in government.

    PubMed

    Drew, Cat

    2016-12-28

    Data science can offer huge opportunities for government. With the ability to process larger and more complex datasets than ever before, it can provide better insights for policymakers and make services more tailored and efficient. As with all new technologies, there is a risk that we do not take up its opportunities and miss out on its enormous potential. We want people to feel confident to innovate with data. So, over the past 18 months, the Government Data Science Partnership has taken an open, evidence-based and user-centred approach to creating an ethical framework. It is a practical document that brings all the legal guidance together in one place, and is written in the context of new data science capabilities. As part of its development, we ran a public dialogue on data science ethics, including deliberative workshops, an experimental conjoint survey and an online engagement tool. The research supported the principles set out in the framework as well as provided useful insight into how we need to communicate about data science. It found that people had a low awareness of the term 'data science', but that showing data science examples can increase broad support for government exploring innovative uses of data. But people's support is highly context driven. People consider acceptability on a case-by-case basis, first thinking about the overall policy goals and likely intended outcome, and then weighing up privacy and unintended consequences. The ethical framework is a crucial start, but it does not solve all the challenges it highlights, particularly as technology is creating new challenges and opportunities every day. Continued research is needed into data minimization and anonymization, robust data models, algorithmic accountability, and transparency and data security. It also has revealed the need to set out a renewed deal between the citizen and state on data, to maintain and solidify trust in how we use people's data for social good.This article is part of the themed issue 'The ethical impact of data science'. © 2016 The Author(s).

  6. A Framework for Guiding Future Citizens to Think Critically about Nature of Science and Socioscientific Issues

    ERIC Educational Resources Information Center

    Yacoubian, Hagop A.

    2015-01-01

    In this article, I introduce a framework for guiding future citizens to think critically about nature of science (NOS) and "with" NOS as they engage in socioscientific decision making. The framework, referred to as the critical thinking--nature of science (CT-NOS) framework, explicates and targets both NOS as a learning objective and NOS…

  7. A Bolman and Deal Framework of Science Teachers' Beliefs on Teacher Preparation and Reform Practices for Diverse Learners

    NASA Astrophysics Data System (ADS)

    Whitmyer, Charnita P.

    This dissertation uses Bolman and Deal's Four Framework approach to reframing an organization to examine science teachers' beliefs on teacher preparation and reform practices for diverse learners. Despite the national emphasis on "science for all students" in the National Science Education Standards (NRC, 2011), some traditionally underserved groups tend to underperform on standardized measures of science learning (Kober, 2001; Darling-Hammond, 2010; Bracey, 2009; Kozol, 2009, 2007; PCAST, 2012); and teachers struggle to meet the needs of these students (Hira, 2010). The literature is replete with calls for a better understanding of teacher quality as an entry point into increased student achievement in science. In the current study, the 2012 National Survey of Science and Mathematics Education (NSSME) was used to gain an understanding of science teacher quality in the United States, and SPSS 22.0 software was used to evaluate descriptive and inferential statistics, including bivariate correlation analysis, simple linear regression, and a multiple regression of the survey responses. The findings indicated that professional development was the most salient predictor of teachers' preparedness to teach diverse learners. Findings further showed that teachers who held favorable perceptions of preparedness to teach diverse learners were more likely to use reform-oriented practices. This study contributes to an emerging area of research on science teacher quality and its influence on instructional reform for diverse learners. The study concludes with a discussion of supports and obstacles that may enable or inhibit the development of these relationships.

  8. Integrating Comparative Research on Global Instructional Practices in Pre-Service Early Childhood Education Science Course Instruction

    ERIC Educational Resources Information Center

    Medlin, Dorene

    2017-01-01

    The purpose of this study was to determine the impact of internationalizing a curricular component of the class on preservice teachers. By realigning course objectives and including a content specific Albany State University internationalization initiative framework, the project evaluated the impact on preservice teacher knowledge of culturally…

  9. Higher Education Governance: A Critical Mapping of Key Themes and Issues

    ERIC Educational Resources Information Center

    Sultana, Ronald G.

    2012-01-01

    Using the lenses and theoretical frameworks provided by social science, this article highlights some of the central debates concerning higher education governance, within a perspective that privileges the relation between the state and the citizen as mediated by the institution of the university. The article begins by interrogating the meaning of…

  10. H[subscript 2]O and You

    ERIC Educational Resources Information Center

    Jackson, Julie

    2009-01-01

    Learning about states of matter is fun and exciting when students, acting as water molecules, role-play moving from a solid to a liquid to a gas. The 5-E lesson plan model provides the framework for this activity, ensuring that students actively engage in inquiry science while creatively constructing knowledge. (Contains 2 figures.)

  11. Chemistry in Past and New Science Frameworks and Standards: Gains, Losses, and Missed Opportunities

    ERIC Educational Resources Information Center

    Talanquer, Vicente; Sevian, Hannah

    2014-01-01

    Science education frameworks and standards play a central role in the development of curricula and assessments, as well as in guiding teaching practices in grades K-12. Recently, the National Research Council published a new Framework for K-12 Science Education that has guided the development of the Next Generation Science Standards. In this…

  12. Scientific and Engineering Practices in K-12 Classrooms: Understanding "A Framework for K-12 Science Education"

    ERIC Educational Resources Information Center

    Bybee, Rodger W.

    2011-01-01

    In this article, the author presents the science and engineering practices from the recently released "A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas" (NRC 2011). The author recognizes the changes implied by the new framework, and eventually a new generation of science education standards will present new…

  13. Using Metaphors to Investigate the Personal Frameworks of Pre-Service Science Teachers as They Experience a Science in Society Course

    ERIC Educational Resources Information Center

    Campbell, Todd

    2011-01-01

    This research presents a multiple case study investigating the personal frameworks of pre-service science teachers as they experience a science in society course. Through examining the metaphors employed by the participants' student experiences were illuminated. These experiences revealed shifts in frameworks over time that were more consistent…

  14. An integrative and functional framework for the study of animal emotion and mood

    PubMed Central

    Mendl, Michael; Burman, Oliver H. P.; Paul, Elizabeth S.

    2010-01-01

    A better understanding of animal emotion is an important goal in disciplines ranging from neuroscience to animal welfare science. The conscious experience of emotion cannot be assessed directly, but neural, behavioural and physiological indicators of emotion can be measured. Researchers have used these measures to characterize how animals respond to situations assumed to induce discrete emotional states (e.g. fear). While advancing our understanding of specific emotions, this discrete emotion approach lacks an overarching framework that can incorporate and integrate the wide range of possible emotional states. Dimensional approaches that conceptualize emotions in terms of universal core affective characteristics (e.g. valence (positivity versus negativity) and arousal) can provide such a framework. Here, we bring together discrete and dimensional approaches to: (i) offer a structure for integrating different discrete emotions that provides a functional perspective on the adaptive value of emotional states, (ii) suggest how long-term mood states arise from short-term discrete emotions, how they also influence these discrete emotions through a bi-directional relationship and how they may function to guide decision-making, and (iii) generate novel hypothesis-driven measures of animal emotion and mood. PMID:20685706

  15. An integrative and functional framework for the study of animal emotion and mood.

    PubMed

    Mendl, Michael; Burman, Oliver H P; Paul, Elizabeth S

    2010-10-07

    A better understanding of animal emotion is an important goal in disciplines ranging from neuroscience to animal welfare science. The conscious experience of emotion cannot be assessed directly, but neural, behavioural and physiological indicators of emotion can be measured. Researchers have used these measures to characterize how animals respond to situations assumed to induce discrete emotional states (e.g. fear). While advancing our understanding of specific emotions, this discrete emotion approach lacks an overarching framework that can incorporate and integrate the wide range of possible emotional states. Dimensional approaches that conceptualize emotions in terms of universal core affective characteristics (e.g. valence (positivity versus negativity) and arousal) can provide such a framework. Here, we bring together discrete and dimensional approaches to: (i) offer a structure for integrating different discrete emotions that provides a functional perspective on the adaptive value of emotional states, (ii) suggest how long-term mood states arise from short-term discrete emotions, how they also influence these discrete emotions through a bi-directional relationship and how they may function to guide decision-making, and (iii) generate novel hypothesis-driven measures of animal emotion and mood.

  16. Sustainability. Planetary boundaries: guiding human development on a changing planet.

    PubMed

    Steffen, Will; Richardson, Katherine; Rockström, Johan; Cornell, Sarah E; Fetzer, Ingo; Bennett, Elena M; Biggs, Reinette; Carpenter, Stephen R; de Vries, Wim; de Wit, Cynthia A; Folke, Carl; Gerten, Dieter; Heinke, Jens; Mace, Georgina M; Persson, Linn M; Ramanathan, Veerabhadran; Reyers, Belinda; Sörlin, Sverker

    2015-02-13

    The planetary boundaries framework defines a safe operating space for humanity based on the intrinsic biophysical processes that regulate the stability of the Earth system. Here, we revise and update the planetary boundary framework, with a focus on the underpinning biophysical science, based on targeted input from expert research communities and on more general scientific advances over the past 5 years. Several of the boundaries now have a two-tier approach, reflecting the importance of cross-scale interactions and the regional-level heterogeneity of the processes that underpin the boundaries. Two core boundaries—climate change and biosphere integrity—have been identified, each of which has the potential on its own to drive the Earth system into a new state should they be substantially and persistently transgressed. Copyright © 2015, American Association for the Advancement of Science.

  17. IAEA activities related to radiation biology and health effects of radiation.

    PubMed

    Wondergem, Jan; Rosenblatt, Eduardo

    2012-03-01

    The IAEA is involved in capacity building with regard to the radiobiological sciences in its member states through its technical cooperation programme. Research projects/programmes are normally carried out within the framework of coordinated research projects (CRPs). Under this programme, two CRPs have been approved which are relevant to nuclear/radiation accidents: (1) stem cell therapeutics to modify radiation-induced damage to normal tissue, and (2) strengthening biological dosimetry in IAEA member states.

  18. Creating contextually authentic science in a low-performing urban elementary school

    NASA Astrophysics Data System (ADS)

    Buxton, Cory A.

    2006-09-01

    This article reports on a 2-year collaborate project to reform the teaching and learning of science in the context of Mae Jemison Elementary, the lowest performing elementary school in the state of Louisiana. I outline a taxonomy of authentic science inquiry experiences and then use the resulting framework to focus on how project participants interpreted and enacted ideas about collaboration and authenticity. The resulting contextually authentic science inquiry model links the strengths of a canonically authentic model of science inquiry (grounded in the Western scientific canon) with the strengths of a youth-centered model of authenticity (grounded in student-generated inquiry), thus bringing together relevant content standards and topics with critical social relevance. I address the question of how such enactments may or may not promote doing science together and consider the implications of this model for urban science education.

  19. Focus: new perspectives on science and the Cold War. Introduction.

    PubMed

    Heyck, Hunter; Kaiser, David

    2010-06-01

    Twenty years after the fall of the Berlin Wall, the Cold War looks ever more like a slice of history rather than a contemporary reality. During those same twenty years, scholarship on science, technology, and the state during the Cold War era has expanded dramatically. Building on major studies of physics in the American context--often couched in terms of "big science"--recent work has broached scientific efforts in other domains as well, scrutinizing Cold War scholarship in increasingly international and comparative frameworks. The essays in this Focus section take stock of current thinking about science and the Cold War, revisiting the question of how best to understand tangled (and sometimes surprising) relationships between government patronage and the world of ideas.

  20. Methodology issues in implementation science.

    PubMed

    Newhouse, Robin; Bobay, Kathleen; Dykes, Patricia C; Stevens, Kathleen R; Titler, Marita

    2013-04-01

    Putting evidence into practice at the point of care delivery requires an understanding of implementation strategies that work, in what context and how. To identify methodological issues in implementation science using 4 studies as cases and make recommendations for further methods development. Four cases are presented and methodological issues identified. For each issue raised, evidence on the state of the science is described. Issues in implementation science identified include diverse conceptual frameworks, potential weaknesses in pragmatic study designs, and the paucity of standard concepts and measurement. Recommendations to advance methods in implementation include developing a core set of implementation concepts and metrics, generating standards for implementation methods including pragmatic trials, mixed methods designs, complex interventions and measurement, and endorsing reporting standards for implementation studies.

  1. A science data gateway for environmental management: A SCIENCE DATA GATEWAY FOR ENVIRONMENTAL MANAGEMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Deborah A.; Faybishenko, Boris; Freedman, Vicky L.

    Science data gateways are effective in providing complex science data collections to the world-wide user communities. In this paper we describe a gateway for the Advanced Simulation Capability for Environmental Management (ASCEM) framework. Built on top of established web service technologies, the ASCEM data gateway is specifically designed for environmental modeling applications. Its key distinguishing features include: (1) handling of complex spatiotemporal data, (2) offering a variety of selective data access mechanisms, (3) providing state of the art plotting and visualization of spatiotemporal data records, and (4) integrating seamlessly with a distributed workflow system using a RESTful interface. ASCEM projectmore » scientists have been using this data gateway since 2011.« less

  2. Development of an Online Exoplanet Course for In-Service Teachers

    NASA Astrophysics Data System (ADS)

    Barringer, Daniel; Palma, Christopher

    2016-01-01

    The Earth and Space Science Partnership (ESSP) is a collaboration among Penn State scientists, science educators and seven school districts across Pennsylvania. Penn State also offers through its fully online World Campus the opportunity for In-Service science teachers to earn an M.Ed. degree in Earth Science, and we currently offer a required online astronomy course for that program. We have previously presented descriptions of how have incorporated research-based pedagogical practices into ESSP-sponsored workshops for in-service teachers (Palma et al. 2013) and into a pilot section of introductory astronomy for non-science majors (Palma et al. 2014). In this presentation, we detail the design and development of a new online astronomy course to be offered through the M.Ed. Earth Science degree program. This course also uses a coherent content storyline approach (Roth et al. 2011), and will engage the teachers in investigations using authentic data within the Claims Evidence Reasoning framework (McNeill & Krajcik 2012). The course theme will be exploring exoplanets in order to show how these objects have forced us to reconsider some ideas in our model for the formation of the Solar System, which is a disciplinary core idea identified in the Next Generation Science Standards (citation). Course materials will be made available through Penn State's open courseware initiative and will be promoted to teachers throughout PA through the Pennsylvania Earth Science Teachers' Association (PAESTA). We gratefully acknowledge support from the NSF MSP program award DUE#0962792.

  3. The Bethesda System for Reporting Thyroid Cytopathology.

    PubMed

    Cibas, Edmund S; Ali, Syed Z

    2009-11-01

    To address terminology and other issues related to thyroid fine-needle aspiration (FNA), the National Cancer Institute (NCI) hosted The NCI Thyroid FNA State of the Science Conference. The conclusions regarding terminology and morphologic criteria from the NCI meeting led to the Bethesda Thyroid Atlas Project and form the framework for the Bethesda System for Reporting Thyroid Cytopathology. Participants of the Atlas Project were selected from among the committee members of the NCI FNA State of the Science Conference and other participants at the live conference. The terminology framework was based on a literature search of English language publications dating back to 1995 using PubMed as the search engine; online forum discussions ( http://thyroidfna.cancer.gov/forums/default.aspx ); and formal interdisciplinary discussions held on October 22 and 23, 2007, in Bethesda, MD. For clarity of communication, the Bethesda System for Reporting Thyroid Cytopathology recommends that each report begin with one of the six general diagnostic categories. Each of the categories has an implied cancer risk that links it to an appropriate clinical management guideline. The project participants hope that the adoption of this framework will facilitate communication among cytopathologists, endocrinologists, surgeons, and radiologists; facilitate cytologic-histologic correlation for thyroid diseases; facilitate research into the understanding of thyroid diseases; and allow easy and reliable sharing of data from different laboratories for national and international collaborative studies.

  4. Systematic study of α preformation probability of nuclear isomeric and ground states

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Dong; Wu, Xi-Jun; Zheng, Bo; Xiang, Dong; Guo, Ping; Li, Xiao-Hua

    2017-01-01

    In this paper, based on the two-potential approach combining with the isospin dependent nuclear potential, we systematically compare the α preformation probabilities of odd-A nuclei between nuclear isomeric states and ground states. The results indicate that during the process of α particle preforming, the low lying nuclear isomeric states are similar to ground states. Meanwhile, in the framework of single nucleon energy level structure, we find that for nuclei with nucleon number below the magic numbers, the α preformation probabilities of high-spin states seem to be larger than low ones. For nuclei with nucleon number above the magic numbers, the α preformation probabilities of isomeric states are larger than those of ground states. Supported by National Natural Science Foundation of China (11205083), Construct Program of Key Discipline in Hunan Province, Research Foundation of Education Bureau of Hunan Province, China (15A159), Natural Science Foundation of Hunan Province, China (2015JJ3103, 2015JJ2123), Innovation Group of Nuclear and Particle Physics in USC, Hunan Provincial Innovation Foundation for Postgraduate (CX2015B398)

  5. U.S. initiatives to strengthen forensic science & international standards in forensic DNA.

    PubMed

    Butler, John M

    2015-09-01

    A number of initiatives are underway in the United States in response to the 2009 critique of forensic science by a National Academy of Sciences committee. This article provides a broad review of activities including efforts of the White House National Science and Technology Council Subcommittee on Forensic Science and a partnership between the Department of Justice (DOJ) and the National Institute of Standards and Technology (NIST) to create the National Commission on Forensic Science and the Organization of Scientific Area Committees. These initiatives are seeking to improve policies and practices of forensic science. Efforts to fund research activities and aid technology transition and training in forensic science are also covered. The second portion of the article reviews standards in place or in development around the world for forensic DNA. Documentary standards are used to help define written procedures to perform testing. Physical standards serve as reference materials for calibration and traceability purposes when testing is performed. Both documentary and physical standards enable reliable data comparison, and standard data formats and common markers or testing regions are crucial for effective data sharing. Core DNA markers provide a common framework and currency for constructing DNA databases with compatible data. Recent developments in expanding core DNA markers in Europe and the United States are discussed. Published by Elsevier Ireland Ltd.

  6. U.S. initiatives to strengthen forensic science & international standards in forensic DNA

    PubMed Central

    Butler, John M.

    2015-01-01

    A number of initiatives are underway in the United States in response to the 2009 critique of forensic science by a National Academy of Sciences committee. This article provides a broad review of activities including efforts of the White House National Science and Technology Council Subcommittee on Forensic Science and a partnership between the Department of Justice (DOJ) and the National Institute of Standards and Technology (NIST) to create the National Commission on Forensic Science and the Organization of Scientific Area Committees. These initiatives are seeking to improve policies and practices of forensic science. Efforts to fund research activities and aid technology transition and training in forensic science are also covered. The second portion of the article reviews standards in place or in development around the world for forensic DNA. Documentary standards are used to help define written procedures to perform testing. Physical standards serve as reference materials for calibration and traceability purposes when testing is performed. Both documentary and physical standards enable reliable data comparison, and standard data formats and common markers or testing regions are crucial for effective data sharing. Core DNA markers provide a common framework and currency for constructing DNA databases with compatible data. Recent developments in expanding core DNA markers in Europe and the United States are discussed. PMID:26164236

  7. Teacher Professional Develpment That Meets 21st Century Science Education Standards

    NASA Astrophysics Data System (ADS)

    van der Veen, Wil E.; Roelofsen Moody, T.

    2011-01-01

    The National Academies are working with several other groups to develop new National Science Education Standards, with the intention that they will be adopted by all states. It is critical that the science education community uses these new standards when planning teacher professional development and understands the potential implementation challenges. As a first step in developing these new standards, the National Research Council (NRC) recently published a draft Framework for Science Education. This framework describes the major scientific ideas and practices that all students should be familiar with by the end of high school. Following recommendations from the NRC Report "Taking Science to School” (NRC, 2007), it emphasizes the importance of integrating science practices with the learning of science content. These same recommendations influenced the recently revised New Jersey Science Education Standards. Thus, the revised New Jersey standards can be valuable as a case study for curriculum developers and professional development providers. While collaborating with the New Jersey Department of Education on the development of these revised science standards, we identified two critical needs for successful implementation. First, we found that many currently used science activities must be adapted to meet the revised standards and that new activities must be developed. Second, teacher professional development is needed to model the integration of science practices with the learning of science content. With support from the National Space Grant Foundation we developed a week-long Astronomy Institute, which was presented in the summers of 2009 and 2010. We will briefly describe our professional development model and how it helped teachers to bridge the gap between the standards and their current classroom practice. We will provide examples of astronomy activities that were either adapted or developed to meet the new standards. Finally, we will briefly discuss the evaluation results.

  8. Formative Assessment Probes: Pushes and Pulls

    ERIC Educational Resources Information Center

    Keeley, Page

    2011-01-01

    When the concept of force is first taught in the elementary curriculum, it is usually introduced as a push or a pull. The recently released "A Framework for K-12 Science Education" describes grade band endpoints for the Core Idea: Motion and Stability: Forces and Interactions (NRC 2011). It states that by the end of grade 2 students should know…

  9. Framework Fuels the Need to Read: Strategies Boost Literacy of Students in Content-Area Classes

    ERIC Educational Resources Information Center

    Schoenbach, Ruth; Greenleaf, Cynthia L.; Hale, Gina

    2010-01-01

    Middle and high school teachers across academic disciplines face increased pressure to address the Common Core State Standards (CCSS) for English language arts and for literacy in history/social studies, science, and technical subjects. This means that the responsibility of preparing students to read, write, talk, and think critically about…

  10. Health impact assessment review: a framework for determining the current state-of science and areas for improvement

    EPA Science Inventory

    A systematic review is being conducted of health impact assessments (HIAs) from the U.S. The purpose of this review is to obtain a clear picture of how HIAs are being implemented nationally and to identify potential areas for improving the HIA community of practice. The review is...

  11. Climate Change in the Social Studies Classroom: A "Why" and "How To" Guide Using the C3 Framework

    ERIC Educational Resources Information Center

    Kumler, Lori M.; Vosburg-Bluem, Bethany

    2014-01-01

    Weather phenomena across the United States have provided heightened attention to climate change in headlines such as "Heavy Rain and Floods: The 'New Normal' with Climate Change?" ("Christian Science Monitor," Aug. 14, 2014); "Delay Action on Climate Change by 10 Years and Costs Rocket 40%"…

  12. A Comparative Analysis of Numbers and Biology Content Domains between Turkey and the USA

    ERIC Educational Resources Information Center

    Incikabi, Lutfi; Ozgelen, Sinan; Tjoe, Hartono

    2012-01-01

    This study aimed to compare Mathematics and Science programs focusing on TIMSS content domains of Numbers and Biology that produced the largest achievement gap among students from Turkey and the USA. Specifically, it utilized the content analysis method within Turkish and New York State (NYS) frameworks. The procedures of study included matching…

  13. Finding the Return on Investment: A Framework for Monitoring Local Child Welfare Agencies

    ERIC Educational Resources Information Center

    Wulczyn, Fred H.; Orlebeke, Britany; Haight, Jennifer

    2009-01-01

    From year to year, child welfare directors allocate resources in the hope that their efforts will improve children's outcomes. Recently, with the help of the federal government, states have invested significant resources in the sort of information technology needed to run a smarter, more accountable child welfare system. In addition, science has…

  14. A Reconstructed Vision of Environmental Science Literacy: The Case of Qatar

    ERIC Educational Resources Information Center

    Khishfe, Rola

    2014-01-01

    The purpose of this study was twofold: (a) develop a conceptual framework for environmental science literacy; and consequently (b) examine the potential of science standards/curricula to prepare environmentally literate citizens. The framework comprised four pillars: science content knowledge, scientific inquiry, nature of science (NOS), and…

  15. Neglected Population, Neglected Right

    PubMed Central

    MacNaughton, Gillian; Sprague, Courtenay

    2017-01-01

    Abstract The laws, language, and tools of human rights have been instrumental in expanding access to lifesaving treatment for people living with HIV. Children, however, remain a neglected population, as evidenced by inadequate child-specific and child-friendly HIV treatment options. In this article, we explore the right to science, a potentially powerful but underdeveloped right in international law, and its application to research and development for pediatric HIV treatment. Drawing on reports of human rights bodies and scholars and applying the human rights typology of state obligations to respect, protect, and fulfill, we argue that states have five core obligations related to research and development for child-specific and child-friendly treatment: (1) adopting a public goods approach to science and science policy; (2) including and protecting children in research activities; (3) adopting legal and policy frameworks to support research and development through public funding and private sector incentives; (4) promoting international cooperation and assistance; and (5) ensuring the participation of marginalized communities in decision-making processes. In concluding, we make a number of recommendations for states, human rights bodies, international organizations, civil society, and private industry to further develop and implement the right to science. PMID:29302174

  16. The Next Generation Science Standards: A Focus on Physical Science

    ERIC Educational Resources Information Center

    Krajcik, Joe

    2013-01-01

    This article describes ways to adapt U.S. science curriculum to the U.S. National Research Council (NRC) "Framework for K-12 Science Education" and "Next Generation of Science Standards" (NGSS), noting their focus on teaching the physical sciences. The overall goal of the Framework and NGSS is to help all learners develop the…

  17. Awareness, adoption, and application of the Association of College & Research Libraries (ACRL) Framework for Information Literacy in health sciences libraries.

    PubMed

    Schulte, Stephanie J; Knapp, Maureen

    2017-10-01

    In early 2016, the Association of College & Research Libraries (ACRL) officially adopted a conceptual Framework for Information Literacy (Framework) that was a significant shift away from the previous standards-based approach. This study sought to determine (1) if health sciences librarians are aware of the recent Framework for Information Literacy; (2) if they have used the Framework to change their instruction or communication with faculty, and if so, what changes have taken place; and (3) if certain librarian characteristics are associated with the likelihood of adopting the Framework. This study utilized a descriptive electronic survey. Half of all respondents were aware of and were using or had plans to use the Framework. Academic health sciences librarians and general academic librarians were more likely than hospital librarians to be aware of the Framework. Those using the Framework were mostly revising and creating content, revising their teaching approach, and learning more about the Framework. Framework users commented that it was influencing how they thought about and discussed information literacy with faculty and students. Most hospital librarians and half the academic health sciences librarians were not using and had no plans to use the Framework. Librarians with more than twenty years of experience were less likely to be aware of the Framework and more likely to have no plans to use it. Common reasons for not using the Framework were lack of awareness of a new version and lack of involvement in formal instruction. The results suggest that there is room to improve awareness and application of the Framework among health sciences librarians.

  18. Awareness, adoption, and application of the Association of College & Research Libraries (ACRL) Framework for Information Literacy in health sciences libraries*

    PubMed Central

    Schulte, Stephanie J.; Knapp, Maureen

    2017-01-01

    Objective: In early 2016, the Association of College & Research Libraries (ACRL) officially adopted a conceptual Framework for Information Literacy (Framework) that was a significant shift away from the previous standards-based approach. This study sought to determine (1) if health sciences librarians are aware of the recent Framework for Information Literacy; (2) if they have used the Framework to change their instruction or communication with faculty, and if so, what changes have taken place; and (3) if certain librarian characteristics are associated with the likelihood of adopting the Framework. Methods: This study utilized a descriptive electronic survey. Results: Half of all respondents were aware of and were using or had plans to use the Framework. Academic health sciences librarians and general academic librarians were more likely than hospital librarians to be aware of the Framework. Those using the Framework were mostly revising and creating content, revising their teaching approach, and learning more about the Framework. Framework users commented that it was influencing how they thought about and discussed information literacy with faculty and students. Most hospital librarians and half the academic health sciences librarians were not using and had no plans to use the Framework. Librarians with more than twenty years of experience were less likely to be aware of the Framework and more likely to have no plans to use it. Common reasons for not using the Framework were lack of awareness of a new version and lack of involvement in formal instruction. Conclusion: The results suggest that there is room to improve awareness and application of the Framework among health sciences librarians. PMID:28983198

  19. Word embeddings quantify 100 years of gender and ethnic stereotypes.

    PubMed

    Garg, Nikhil; Schiebinger, Londa; Jurafsky, Dan; Zou, James

    2018-04-17

    Word embeddings are a powerful machine-learning framework that represents each English word by a vector. The geometric relationship between these vectors captures meaningful semantic relationships between the corresponding words. In this paper, we develop a framework to demonstrate how the temporal dynamics of the embedding helps to quantify changes in stereotypes and attitudes toward women and ethnic minorities in the 20th and 21st centuries in the United States. We integrate word embeddings trained on 100 y of text data with the US Census to show that changes in the embedding track closely with demographic and occupation shifts over time. The embedding captures societal shifts-e.g., the women's movement in the 1960s and Asian immigration into the United States-and also illuminates how specific adjectives and occupations became more closely associated with certain populations over time. Our framework for temporal analysis of word embedding opens up a fruitful intersection between machine learning and quantitative social science.

  20. A Community Assessmet of Biosignatures and their Frameworks

    NASA Astrophysics Data System (ADS)

    Domagal-Goldman, Shawn David; Nexus for Exoplanet Systems Science (NExSS)

    2018-01-01

    The Nexus for Exoplanet Systems Science (NExSS) organized a workshop to assess the current state of exoplanet biosignature research. Here, we review the products from that workshop. This includes: 1) a review of previously-proposed biosignatures in both the atmosphere and on the sruface of an exoplanet; 2) the need for context in assessing those biosignatures; 3) the potential for a Bayesian framework to formalize and quantify the need for context; 4) the interdisciplinary research required to advance that Bayesian framework; and 5) the missions that would search for biosignatures, including required contextual observations. Here we will revie those findings, the future path for research they suggest, and the implications they have for future missions, including both ground- and space-based missions.

  1. Review of the National Research Council's Framework for K-12 Science Education

    ERIC Educational Resources Information Center

    Gross, Paul R.

    2011-01-01

    The new "Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas" is a big, comprehensive volume, carefully organized and heavily documented. It is the long-awaited product of the Committee on a Conceptual Framework for New K-12 Science Education Standards. As noted, it is a weighty document (more than 300…

  2. International Lunar Decade Status

    NASA Astrophysics Data System (ADS)

    Beldavs, VZ; Crisafulli, J.; Dunlop, D.; Foing, B.

    2017-09-01

    The International Lunar Decade is a global decadal event designed to provide a framework for strategically directed international cooperation for permanent return to the Moon. To be launched July 20, 2019, the 50th anniversary of the giant leap for mankind marked by Neil Armstrong's first step on the Moon, the ILD launch will include events around the world to celebrate space exploration, science, and the expansion of humanity into the Solar System. The ILD framework links lunar exploration and space sciences with the development of enabling technologies, infrastructure, means of financing, laws and policies aimed at lowering the costs and risks of venturing into space. Dramatically reduced costs will broaden the range of opportunities available in space and widen access to space for more states, companies and people worldwide. The ILD is intended to bring about the efflorescence of commercial business based on space resources from the Moon, asteroids, comets and other bodies in the Solar System.

  3. Accounting for the risks of phosphorus losses through tile drains in a phosphorus index.

    PubMed

    Reid, D Keith; Ball, Bonnie; Zhang, T Q

    2012-01-01

    Tile drainage systems have been identified as a significant conduit for phosphorus (P) losses to surface water, but P indices do not currently account for this transport pathway in a meaningful way. Several P indices mention tile drains, but most account for either the reduction in surface runoff or the enhanced transport through tiles rather than both simultaneously. A summary of the current state of how tile drains are accounted for within P indices is provided, and the challenges in predicting the risk of P losses through tile drains that are relative to actual losses are discussed. A framework for a component P Index is described, along with a proposal to incorporate predictions of losses through tile drains as a component within this framework. Options for calibrating and testing this component are discussed. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Science gateways for semantic-web-based life science applications.

    PubMed

    Ardizzone, Valeria; Bruno, Riccardo; Calanducci, Antonio; Carrubba, Carla; Fargetta, Marco; Ingrà, Elisa; Inserra, Giuseppina; La Rocca, Giuseppe; Monforte, Salvatore; Pistagna, Fabrizio; Ricceri, Rita; Rotondo, Riccardo; Scardaci, Diego; Barbera, Roberto

    2012-01-01

    In this paper we present the architecture of a framework for building Science Gateways supporting official standards both for user authentication and authorization and for middleware-independent job and data management. Two use cases of the customization of the Science Gateway framework for Semantic-Web-based life science applications are also described.

  5. Technology Framework. For Grades Five through Twelve.

    ERIC Educational Resources Information Center

    KnowledgeContext, Santa Cruz, CA.

    While California has frameworks defining what concepts are necessary for understanding science, math, history-social science, and other disciplines, there has been no such framework for technology. The framework presented in this paper proposes a strategy for thriving in a future that will be strongly influenced by technology. That strategy is…

  6. Teacher talk about science: An examination of the constructed understanding of science held by four elementary school teachers

    NASA Astrophysics Data System (ADS)

    Price, Robert John

    The elementary school teacher's personal understanding of science has not been a primary focus of consideration in educational reform discussions. This study examines how four elementary school teachers have constructed their personal understanding of science. The purpose of this study is to explore core understandings about science held by these teachers, and to examine the origins of these ideas. This study assumes that a teacher's understanding of science is unique and constructed on personal experiences affected by influences. This study further explores the relationship of the teachers understanding to the school's stated curriculum. The theoretical framework of this research recognizes three guiding assumptions: science exists as a set of ideas that have developed over time through competing discourses; the teacher plays an important role in the implementation of the science curriculum; and the guiding influences of a teacher's understanding of science are associated with power that emerges from discourse. The methodology in this qualitative study is closely associated with narrative inquiry. Data collection methods include a questionnaire, focus group sessions, and individual interviews. Teachers' stories were collected through collaborative interview opportunities between the researcher and the participants. The findings are presented through the narratives of the four teachers, and are organized through the guiding influences, and talk related to the stated science curriculum. The teachers' talk can be categorized by three broad guiding influences: family, education, and an image of science. The talk related to the stated curriculum illustrates both conflicts, and a relationship between the teachers' understanding of science and the curriculum. The finding of this study provides evidence that each teacher's understanding of science is unique and developed over time. Additionally, this understanding plays a role in how the stated curriculum is discussed and understood. This investigation recommends that teachers' personal understanding of science, as revealed through narrative inquiry, becomes a focus in developing new educational opportunities for elementary school teachers. This study further recommends challenging a hegemony related to positivism that exists in science curricula, and the addition of the valued voice of elementary teachers to the discourse of science education.

  7. Outstanding Science Trade Books for Students K-12

    ERIC Educational Resources Information Center

    Science Teacher, 2016

    2016-01-01

    Science teachers and mentors continue to be challenged to meet the high expectations of "A Framework for K-12 Science Education" and the "Next Generation Science Standards." Indeed the Framework urges teachers to help learners "[build] progressively more sophisticated explanations of natural phenomena..." while the…

  8. Where Theory and Law Meet: Trends in establishment clause jurisprudence in the US federal courts and implications for science education

    NASA Astrophysics Data System (ADS)

    King, Lance E.; Southerland, Sherry A.

    2013-03-01

    In this study, federal court opinions and writings of legal scholars, spanning 63 years of establishment clause jurisprudence in the US federal courts were analysed in an effort to determine dominant trends in judicial philosophy that are of significance to science educators. The study's findings suggest that the dominant legal theory underpinning the adjudication of establishment clause cases on the US Supreme Court has undergone a shift from one that emphasizes separation of church and state to one that favours integration of religion in the public sphere. This development poses significant challenges to science educators who are charged with the task of teaching in accordance with state science standards that emphasize topics that are considered controversial (e.g. evolution and global climate change) by many in the faith-based community. These findings constitute a basis for forecasting future actions in US courts regarding the role of government in establishing religious practices in the public sphere-particularly where such actions intersect with the roles of teachers in the nation's public K-12 science classrooms. Finally, we argue that scientists and science educators must adopt an assertive stance in defining science in curricular frameworks, providing something for the courts to draw upon in future decisions.

  9. Numerical time evolution of ETH spin chains by means of matrix product density operators

    NASA Astrophysics Data System (ADS)

    White, Christopher; Zaletel, Michael; Mong, Roger; Refael, Gil

    We introduce a method for approximating density operators of 1D systems that, when combined with a standard framework for time evolution (TEBD), makes possible simulation of the dynamics of strongly thermalizing systems to arbitrary times. We demonstrate that the method works on both near-equilibrium initial states (Gibbs states with spatially varying temperatures) and far-from-equilibrium initial states, including quenches across phase transitions and pure states. This work was supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE \\x901144469 and by the Caltech IQIM, an NSF Physics Frontiers Center with support of the Gordon and Betty Moore.

  10. Engaging the public on climate change issues

    NASA Astrophysics Data System (ADS)

    Bean, Alice

    2016-03-01

    As a Jefferson Science Fellow from August 2014-August 2015, Alice Bean worked with the Office of Religion and Global Affairs at the U.S. Department of State on climate change and environmental issues. The Office of Religion and Global Affairs works to implement the National Strategy on Religious Leader and Faith Community Engagement which includes building partnerships on environmental issues. With the United Nations Framework Convention on Climate Change Conference of the Parties meeting 21 in December, 2015 in Paris, there were and continue to be great opportunities for physicists to interact with policy makers and the general public. As an experimental particle physicist, much was learned about climate change science, how the public views scientists, how science can influence policy, but most especially how to communicate about science.

  11. Student Perceptions of Using Games to Address Science Literacy

    NASA Astrophysics Data System (ADS)

    Keller, Cara M.

    The purpose of this qualitative evaluative case study was to gain insight into how students perceived the efficacy of using games to address their science literacy concerns. Scientists in the United States are concerned with the lack of science literacy. The No Child Left Behind Act of 2001 requires proficiency in reading, mathematics, language arts, and science by the completion of the 2013--2014 school year. The high school participating in this study received substandard test scores on both the 2009 state graduation test and the science portion of the ACT test. The research question included understanding how students perceive the use of games in addressing their science literacy needs. The data from the student journals, field notes, and transcribed class discussions were analyzed using a 6 step method that included coding the data into main themes. The triangulated data were used to both gain insight into student perspective and inform game development. Constructivist theories formed the conceptual framework of the study. The findings of the study suggested that games may prove a valuable tool in science literacy attainment. The study indicated that games were perceived by the students to be effective tools in meeting their learning needs. Implications for positive social change included providing students, educators, and administrators with game resources that can be used to meet the science learning needs of struggling students, thereby improving science scores on high stakes tests.

  12. Building a Semantic Framework for eScience

    NASA Astrophysics Data System (ADS)

    Movva, S.; Ramachandran, R.; Maskey, M.; Li, X.

    2009-12-01

    The e-Science vision focuses on the use of advanced computing technologies to support scientists. Recent research efforts in this area have focused primarily on “enabling” use of infrastructure resources for both data and computational access especially in Geosciences. One of the existing gaps in the existing e-Science efforts has been the failure to incorporate stable semantic technologies within the design process itself. In this presentation, we describe our effort in designing a framework for e-Science built using Service Oriented Architecture. Our framework provides users capabilities to create science workflows and mine distributed data. Our e-Science framework is being designed around a mass market tool to promote reusability across many projects. Semantics is an integral part of this framework and our design goal is to leverage the latest stable semantic technologies. The use of these stable semantic technologies will provide the users of our framework the useful features such as: allow search engines to find their content with RDFa tags; create RDF triple data store for their content; create RDF end points to share with others; and semantically mash their content with other online content available as RDF end point.

  13. Rising Above the Storm: DIG TEXAS

    NASA Astrophysics Data System (ADS)

    Ellins, K. K.; Miller, K. C.; Bednarz, S. W.; Mosher, S.

    2011-12-01

    For a decade Texas educators, scientists and citizens have shown a commitment to earth science education through planning at the national and state levels, involvement in earth science curriculum and teacher professional development projects, and the creation of a model senior level capstone Earth and Space Science course first offered in 2010 - 2011. The Texas state standards for Earth and Space Science demonstrate a shift to rigorous content, career relevant skills and use of 21st century technology. Earth and Space Science standards also align with the Earth Science, Climate and Ocean Literacy framework documents. In spite of a decade of progress K-12 earth science education in Texas is in crisis. Many school districts do not offer Earth and Space Science, or are using the course as a contingency for students who fail core science subjects. The State Board for Educator Certification eliminated Texas' secondary earth science teacher certification in 2009, following the adoption of the new Earth and Space Science standards. This makes teachers with a composite teacher certification (biology, physics and chemistry) eligible to teach Earth and Space Science, as well other earth science courses (e.g., Aquatic Science, Environmental Systems/Science) even if they lack earth science content knowledge. Teaching materials recently adopted by the State Board of Education do not include Earth and Space Science resources. In July 2011 following significant budget cuts at the 20 Education Service Centers across Texas, the Texas Education Agency eliminated key staff positions in its curriculum division, including science. This "perfect storm" has created a unique opportunity for a university-based approach to confront the crisis in earth science education in Texas which the Diversity and Innovation in the Geosciences (DIG) TEXAS alliance aims to fulfill. Led by the Texas A&M University College of Geosciences and The University of Texas Jackson School of Geosciences, with initial assistance of the American Geophysical Union, the alliance comprises earth scientists and educators at higher education institutions across the state, and science teachers, united to improve earth science literacy (geoscience-earth, ocean, atmospheric, planetary, and geography) among Texas science teachers in order to attract individuals from groups underrepresented in STEM fields to pursue earth science as a career. Members of the alliance are affiliated with one of eight regional DIG TEXAS hub institutions. With an NSF planning grant, DIG TEXAS leaders created the DIG TEXAS brand, developed a project website, organized and held the first community meeting in March, 2011 at Exxon Mobil's Training Center in Houston. DIG TEXAS members have also delivered testimony to the State Board for Educator Certification in support of a new earth science teacher certification and collaborated on proposals that seek funding to support recommendations formulated at the community meeting.

  14. An Algebraic Approach to Unital Quantities and their Measurement

    NASA Astrophysics Data System (ADS)

    Domotor, Zoltan; Batitsky, Vadim

    2016-06-01

    The goals of this paper fall into two closely related areas. First, we develop a formal framework for deterministic unital quantities in which measurement unitization is understood to be a built-in feature of quantities rather than a mere annotation of their numerical values with convenient units. We introduce this idea within the setting of certain ordered semigroups of physical-geometric states of classical physical systems. States are assumed to serve as truth makers of metrological statements about quantity values. A unital quantity is presented as an isomorphism from the target system's ordered semigroup of states to that of positive reals. This framework allows us to include various derived and variable quantities, encountered in engineering and the natural sciences. For illustration and ease of presentation, we use the classical notions of length, time, electric current and mean velocity as primordial examples. The most important application of the resulting unital quantity calculus is in dimensional analysis. Second, in evaluating measurement uncertainty due to the analog-to-digital conversion of the measured quantity's value into its measuring instrument's pointer quantity value, we employ an ordered semigroup framework of pointer states. Pointer states encode the measuring instrument's indiscernibility relation, manifested by not being able to distinguish the measured system's topologically proximal states. Once again, we focus mainly on the measurement of length and electric current quantities as our motivating examples. Our approach to quantities and their measurement is strictly state-based and algebraic in flavor, rather than that of a representationalist-style structure-preserving numerical assignment.

  15. The Exploratorium Guide to Scale and Structure: Activities for the Elementary Classroom.

    ERIC Educational Resources Information Center

    Kluger-Bell, Barry; And Others

    The theme of Scale and Structure (or simply Scale) appears in many state science frameworks and projects of national importance. The major idea of this theme is that a change in scale will affect the nature of the given structure. This book is designed as a guide and set of activities for third- through eighth-grade teachers. The activities…

  16. Response to Comment on "Water harvesting from air with metal-organic frameworks powered by natural sunlight".

    PubMed

    Kim, Hyunho; Rao, Sameer R; Kapustin, Eugene A; Narayanan, Shankar; Yang, Sungwoo; Furukawa, Hiroyasu; Umans, Ari S; Yaghi, Omar M; Wang, Evelyn N

    2017-11-24

    The Comment by Meunier states that the process we described in our report cannot deliver the claimed amount of liquid water in an arid climate. This statement is not valid because the parameters presented in our study were inappropriately combined to draw misguided conclusions. Copyright © 2017, American Association for the Advancement of Science.

  17. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Baltimore City Public Schools. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  18. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Boston Public Schools. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  19. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Charlotte-Mecklenburg Schools. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  20. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Atlanta Public Schools. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  1. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Atlanta Public Schools. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  2. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Fresno Unified School District. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  3. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Cleveland Metropolitan School District. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  4. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Detroit Public Schools. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  5. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Austin Independent School District. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  6. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Austin Independent School District. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  7. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. School District of Philadelphia. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  8. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Detroit Public Schools. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  9. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Milwaukee Public Schools. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  10. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Houston Independent School District. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  11. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Milwaukee Public Schools. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  12. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Cleveland Metropolitan School District. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  13. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Boston Public Schools. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  14. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. School District of Philadelphia. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  15. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Charlotte-Mecklenburg Schools. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  16. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Fresno Unified School District. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  17. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Baltimore City Public Schools. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  18. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Chicago Public Schools. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  19. Using Frameworks in a Government Contracting Environment: Case Study at the NASA Center for Computational Sciences

    NASA Technical Reports Server (NTRS)

    McGalliard, James

    2008-01-01

    A viewgraph describing the use of multiple frameworks by NASA, GSA, and U.S. Government agencies is presented. The contents include: 1) Federal Systems Integration and Management Center (FEDSIM) and NASA Center for Computational Sciences (NCCS) Environment; 2) Ruling Frameworks; 3) Implications; and 4) Reconciling Multiple Frameworks.

  20. Implications of the Next Generation Science Standards for Earth and Space Sciences

    NASA Astrophysics Data System (ADS)

    Wysession, M. E.; Colson, M.; Duschl, R. A.; Huff, K.; Lopez, R. E.; Messina, P.; Speranza, P.; Matthews, T.; Childress, J.

    2012-12-01

    The Next Generation Science Standards (NGSS), due to be released in 2013, set a new direction for K-12 science education in America. These standards will put forth significant changes for Earth and space sciences. The NGSS are based upon the recommendations of the National Research Council's 2011 report "A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas." The standards are being written by a large group of authors who represent many different constituencies, including 26 participating states, in a process led by Achieve, Inc. The standards encourage innovative ways to teach science at the K-12 level, including enhanced integration between the content, practices, and crosscutting ideas of science and greater assimilation among the sciences and engineering, and among the sciences, mathematics, and English language arts. The NGSS presents a greater emphasis on Earth and space sciences than in previous standards, recommending a year at both the middle and high school levels. The new standards also present a greater emphasis on areas of direct impact between humans and the Earth system, including climate change, natural hazards, resource management, and sustainability.

  1. A blueprint for genomic nursing science.

    PubMed

    Calzone, Kathleen A; Jenkins, Jean; Bakos, Alexis D; Cashion, Ann K; Donaldson, Nancy; Feero, W Gregory; Feetham, Suzanne; Grady, Patricia A; Hinshaw, Ada Sue; Knebel, Ann R; Robinson, Nellie; Ropka, Mary E; Seibert, Diane; Stevens, Kathleen R; Tully, Lois A; Webb, Jo Ann

    2013-03-01

    This article reports on recommendations arising from an invitational workshop series held at the National Institutes of Health for the purposes of identifying critical genomics problems important to the health of the public that can be addressed through nursing science. The overall purpose of the Genomic Nursing State of the Science Initiative is to establish a nursing research blueprint based on gaps in the evidence and expert evaluation of the current state of the science and through public comment. A Genomic Nursing State of the Science Advisory Panel was convened in 2012 to develop the nursing research blueprint. The Advisory Panel, which met via two webinars and two in-person meetings, considered existing evidence from evidence reviews, testimony from key stakeholder groups, presentations from experts in research synthesis, and public comment. The genomic nursing science blueprint arising from the Genomic Nursing State of Science Advisory Panel focuses on biologic plausibility studies as well as interventions likely to improve a variety of outcomes (e.g., clinical, economic, environmental). It also includes all care settings and diverse populations. The focus is on (a) the client, defined as person, family, community, or population; (b) the context, targeting informatics support systems, capacity building, education, and environmental influences; and (c) cross-cutting themes. It was agreed that building capacity to measure the impact of nursing actions on costs, quality, and outcomes of patient care is a strategic and scientific priority if findings are to be synthesized and aggregated to inform practice and policy. The genomic nursing science blueprint provides the framework for furthering genomic nursing science to improve health outcomes. This blueprint is an independent recommendation of the Advisory Panel with input from the public and is not a policy statement of the National Institutes of Health or the federal government. This genomic nursing science blueprint targets research to build the evidence base to inform integration of genomics into nursing practice and regulation (such as nursing licensure requirements, institutional accreditation, and academic nursing school accreditation). © 2013 Sigma Theta Tau International.

  2. NASA's NPOESS Preparatory Project Science Data Segment: A Framework for Measurement-based Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Schwaller, Mathew R.; Schweiss, Robert J.

    2007-01-01

    The NPOESS Preparatory Project (NPP) Science Data Segment (SDS) provides a framework for the future of NASA s distributed Earth science data systems. The NPP SDS performs research and data product assessment while using a fully distributed architecture. The components of this architecture are organized around key environmental data disciplines: land, ocean, ozone, atmospheric sounding, and atmospheric composition. The SDS thus establishes a set of concepts and a working prototypes. This paper describes the framework used by the NPP Project as it enabled Measurement-Based Earth Science Data Systems for the assessment of NPP products.

  3. Integration of Culturally Relevant Pedagogy into the Science Learning Progression Framework

    ERIC Educational Resources Information Center

    Bernardo, Cyntra

    2017-01-01

    This study integrated elements of culturally relevant pedagogy into a science learning progression framework, with the goal of enhancing teachers' cultural knowledge and thereby creating better teaching practices in an urban public high school science classroom. The study was conducted using teachers, an administrator, a science coach, and…

  4. Engineering Encounters: Engineer It, Learn It--Science and Engineering Practices in Action

    ERIC Educational Resources Information Center

    Lachapelle, Cathy P.; Sargianis, Kristin; Cunningham, Christine M.

    2013-01-01

    Engineering is prominently included in the "Next Generation Science Standards" (Achieve Inc. 2013), as it was in "A Framework for K-12 Science Education" (NRC 2012). The National Research Council, authors of the "Framework," write, "Engineering and technology are featured alongside the natural sciences (physical…

  5. Nanotechnology and Secondary Science Teacher's Self-Efficacy

    NASA Astrophysics Data System (ADS)

    Cox, Elena K.

    The recommendations of the United States President's Council of Advisors on Science and Technology and the multi-agency National Nanotechnology Initiative (NNI) identified the need to prepare the workforce and specialists in the field of nanotechnology in order for the United States to continue to compete in the global marketplace. There is a lack of research reported in recent literature on the readiness of secondary science teachers to introduce higher level sciences---specifically nanotechnology---in their classes. The central research question of this study examined secondary science teachers' beliefs about teaching nanotechnology comfortably, effectively, and successfully. Bandura's self-efficacy theory provided the conceptual framework for this phenomenological study. A data analysis rubric was used to identify themes and patterns that emerged from detailed descriptions during in-depth interviews with 15 secondary science teachers. The analysis revealed the shared, lived experiences of teachers and their beliefs about their effectiveness and comfort in teaching higher-level sciences, specifically nanotechnology. The results of the study indicated that, with rare exceptions, secondary science teachers do not feel comfortable or effective, nor do they believe they have adequate training to teach nanotechnology concepts to their students. These teachers believed they were not prepared or trained in incorporating these higher level science concepts in the curriculum. Secondary science teachers' self-efficacy and personal beliefs of effectiveness in teaching nanotechnology can be an important component in achieving a positive social change by helping to familiarize high school students with nanotechnology and how it can benefit society and the future of science.

  6. Conceptions of systemic reform: California science education as an investigative example

    NASA Astrophysics Data System (ADS)

    Sachse, Thomas Paul

    This study explored three perspectives of systemic reform in the context of the California state strategies for improving science education. The three perspectives are those of conceptualizers, implementers, and government administrators. The California case study is examined during the ten-year period from 1983 to 1993. This study is of particular significance, because it examines science education reforms during the ten-year period of Bill Honig's state superintendency in the largest and most diverse state. By examining the facets of state science reforms from three rather different perspectives, the study contrasts how systemic reform definitions vary with role. This qualitative study employs document analysis, archival reviews, and participant interviews as the primary data collection methods. Document analysis included key curriculum frameworks, project proposals and reports, relevant legislation, and professional correspondence. Archival reviews included databases (such as the California Basic Educational Data System), assessment reports (such as the California Assessment Program---Rationale and Content), and policy analyses (such as the Policy Analysis for California Education---Conditions of Education). Interviews were conducted for each of the three perspectives across five segments of the reform strategy for a total of fifteen interviews. Data analysis consisted of combining detailed reviews of documents, archives, and interview information with an examination of perspectives, by role group. The study concludes with an analysis of how each role group perceived the facets of systemic reform in the context of the California case study of science education reform. In addition, the research points to "lessons learned", the strengths and weaknesses of systemic reform strategies at the state level. The study offers recommendations to other large-scale (state level) policy reformers interested in creating, sustaining, and maintaining lasting change.

  7. Engineering chiral porous metal-organic frameworks for enantioselective adsorption and separation

    NASA Astrophysics Data System (ADS)

    Peng, Yongwu; Gong, Tengfei; Zhang, Kang; Lin, Xiaochao; Liu, Yan; Jiang, Jianwen; Cui, Yong

    2014-07-01

    The separation of racemic molecules is of substantial significance not only for basic science but also for technical applications, such as fine chemicals and drug development. Here we report two isostructural chiral metal-organic frameworks decorated with chiral dihydroxy or -methoxy auxiliares from enantiopure tetracarboxylate-bridging ligands of 1,1‧-biphenol and a manganese carboxylate chain. The framework bearing dihydroxy groups functions as a solid-state host capable of adsorbing and separating mixtures of a range of chiral aromatic and aliphatic amines, with high enantioselectivity. The host material can be readily recycled and reused without any apparent loss of performance. The utility of the present adsorption separation is demonstrated in the large-scale resolution of racemic 1-phenylethylamine. Control experiments and molecular simulations suggest that the chiral recognition and separation are attributed to the different orientations and specific binding energies of the enantiomers in the microenvironment of the framework.

  8. Enhancing student engagement to positively impact mathematics anxiety, confidence and achievement for interdisciplinary science subjects

    NASA Astrophysics Data System (ADS)

    Everingham, Yvette L.; Gyuris, Emma; Connolly, Sean R.

    2017-11-01

    Contemporary science educators must equip their students with the knowledge and practical know-how to connect multiple disciplines like mathematics, computing and the natural sciences to gain a richer and deeper understanding of a scientific problem. However, many biology and earth science students are prejudiced against mathematics due to negative emotions like high mathematical anxiety and low mathematical confidence. Here, we present a theoretical framework that investigates linkages between student engagement, mathematical anxiety, mathematical confidence, student achievement and subject mastery. We implement this framework in a large, first-year interdisciplinary science subject and monitor its impact over several years from 2010 to 2015. The implementation of the framework coincided with an easing of anxiety and enhanced confidence, as well as higher student satisfaction, retention and achievement. The framework offers interdisciplinary science educators greater flexibility and confidence in their approach to designing and delivering subjects that rely on mathematical concepts and practices.

  9. Science-based Framework for Environmental Benefits Assessment

    DTIC Science & Technology

    2013-03-01

    ER D C/ EL T R -1 3 -4 Environmental Benefits Analysis Program Science-based Framework for Environmental Benefits Assessment E nv ir...acwc.sdp.sirsi.net/client/default. Environmental Benefits Analysis Program ERDC/EL TR-13-4 March 2013 Science-based Framework for Environmental Benefits ...evaluating ecosystem restoration benefits within the context of USACE Civil Works planning process. An emphasis is placed on knowledge gained from

  10. Completing the Link between Exposure Science and Toxicology for Improved Environmental Health Decision Making: The Aggregate Exposure Pathway Framework.

    PubMed

    Teeguarden, Justin G; Tan, Yu-Mei; Edwards, Stephen W; Leonard, Jeremy A; Anderson, Kim A; Corley, Richard A; Kile, Molly L; Simonich, Staci M; Stone, David; Tanguay, Robert L; Waters, Katrina M; Harper, Stacey L; Williams, David E

    2016-05-03

    Driven by major scientific advances in analytical methods, biomonitoring, computation, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deployment of an organizational and predictive framework for exposure science analogous to the "systems approaches" used in the biological sciences is a necessary step in this evolution. Here we propose the aggregate exposure pathway (AEP) concept as the natural and complementary companion in the exposure sciences to the adverse outcome pathway (AOP) concept in the toxicological sciences. Aggregate exposure pathways offer an intuitive framework to organize exposure data within individual units of prediction common to the field, setting the stage for exposure forecasting. Looking farther ahead, we envision direct linkages between aggregate exposure pathways and adverse outcome pathways, completing the source to outcome continuum for more meaningful integration of exposure assessment and hazard identification. Together, the two frameworks form and inform a decision-making framework with the flexibility for risk-based, hazard-based, or exposure-based decision making.

  11. Museums, zoos, and gardens: how formal-informal partnerships can impact urban students' performance in science.

    PubMed

    Weinstein, Meryle; Whitesell, Emilyn Ruble; Schwartz, Amy Ellen

    2014-12-01

    Informal science education institutions (ISEIs) are critical partners in public science education, as they support the science efforts of school systems by providing authentic opportunities for scientific inquiry. This study reports findings from an evaluation of urban advantage (UA), a collaboration between the New York City Department of Education and eight ISEIs designed to improve science education in New York City (NYC) middle schools. Now in its 10th year, the program harnesses the resources and expertise of NYC's ISEIs to (a) enhance the science content knowledge of middle school science teachers, (b) develop teachers' skills at using inquiry-based approaches in their classrooms, and (c) improve the science achievement of middle school students. We examine whether the UA program has led to increased student achievement on the eighth-grade New York State standardized science exam for students in participating schools; in supplemental analyses, we examine the effects on longer term (ninth-grade) outcomes. We use a difference-in-differences framework with school fixed effects to estimate the impact of attending a UA school in eighth grade on science achievement. Our key outcome is performance on New York State's eighth-grade intermediate-level science assessment; longer term outcomes include enrollment at specialized science, technology, engineering, and math high schools as well as taking and passing the high school (Regents) science exams. We find that attending a UA school increases student performance on the eighth-grade science exam by approximately 0.05 SD, and there is some evidence of small effects on Regents taking and passing rates. © The Author(s) 2014.

  12. Completing the Link between Exposure Science and Toxicology for Improved Environmental Health Decision Making: The Aggregate Exposure Pathway Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teeguarden, Justin G.; Tan, Yu-Mei; Edwards, Stephen W.

    Driven by major scientific advances in analytical methods, biomonitoring, and computational exposure assessment, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deployment of an organizational and predictive framework for exposure science analogous to the computationally enabled “systems approaches” used in the biological sciences is a necessary step in this evolution. Here we propose the aggregate exposure pathway (AEP) concept as the natural and complementary companion in the exposure sciences to the adverse outcome pathway (AOP) conceptmore » in the toxicological sciences. The AEP framework offers an intuitive approach to successful organization of exposure science data within individual units of prediction common to the field, setting the stage for exposure forecasting. Looking farther ahead, we envision direct linkages between aggregate exposure pathway and adverse outcome pathways, completing the source to outcome continuum and setting the stage for more efficient integration of exposure science and toxicity testing information. Together these frameworks form and inform a decision making framework with the flexibility for risk-based, hazard-based or exposure-based decisions.« less

  13. Massachusetts Science and Technology Engineering Curriculum Framework

    ERIC Educational Resources Information Center

    Massachusetts Department of Education, 2006

    2006-01-01

    This 2006 "Massachusetts Science and Technology/Engineering Curriculum Framework" provides a guide for teachers and curriculum coordinators regarding specific content to be taught from PreK through high school. Following this "Organization" chapter, the "Framework" contains the following sections: (1) Philosophy and…

  14. PREFACE: IV Nanotechnology International Forum (RUSNANOTECH 2011)

    NASA Astrophysics Data System (ADS)

    Dvurechenskii, Anatoly; Alfimov, Mikhail; Suzdalev, Igor; Osiko, Vyacheslav; Khokhlov, Aleksey; Son, Eduard; Skryabin, Konstantin; Petrov, Rem; Deev, Sergey

    2012-02-01

    Logo The RUSNANOTECH 2011 International Forum on Nanotechnology was held from 26-28 October 2011, in Moscow, Russia. It was the fourth forum organized by RUSNANO (Russian Corporation of Nanotechnologies) since 2008. In March 2011 RUSNANO was established as an open joint-stock company through the reorganization of the state corporation Russian Corporation of Nanotechnologies. RUSNANO's mission is to develop the Russian nanotechnology industry through co-investment in nanotechnology projects with substantial economic potential or social benefit. Within the framework of the Forum Science and Technology Program, presentations on key trends of nanotechnology development were given by foreign and Russian scientists, R&D officers of leading international companies, universities and scientific centers. The science and technology program of the Forum was divided into four sections as follows (by following hyperlinks you may find each section's program including videos of all oral presentations): Nanoelectronics and Nanophotonics Nanomaterials Nanotechnology and Green Energy Nanotechnology in Healthcare and Pharma (United business and science & technology section on 'RUSNANOTECH 2011') The scientific program of the forum included more than 50 oral presentations by leading scientists from 15 countries. Among them were world-known specialists such as Professor S Bader (Argonne National Laboratory, USA), Professor O Farokzhad (Harvard Medical School, USA), Professor K Chien (Massachusetts General Hospital, USA), Professor L Liz-Marzan (University of Vigo), A Luque (Polytechnic University of Madrid) and many others. The poster session consisted of over 120 presentations, 90 of which were presented in the framework of the young scientists' nanotechnology papers competition. This volume of Journal of Physics: Conference Series includes a selection of 47 submissions. Section editors of the proceedings: Nanoelectronics and nanophotonics Corresponding Member of Russian Academy of Sciences, Professor Anatoly Dvurechenskii (Institute of Semiconductor Physics, RAS). Nanomaterials Member of Russian Academy of Sciences, Professor Mikhail Alfimov (Photochemistry Center, RAS), Professor Igor Suzdalev (Semenov Institute of Chemical Physics, RAS), Member of Russian Academy of Science, Professor Vyacheslav Osiko (Prokhorov General Physics Institute, RAS), Member of Russian Academy of Science, Professor Aleksey Khokhlov (Physical department of Moscow State University). Nanotechnology and green energy Corresponding Member of Russian Academy of Sciences, Professor Eduard Son (Joint Institute for High Temperatures, RAS). Nanotechnology in Healthcare and Pharma Member of Russian Academy of Sciences, Professor Konstantin Skryabin (Bioengineering Center, RAS), Member of Russian Academy of Sciences, Professor Rem Petrov (RAS), Corresponding Member of Russian Academy of Sciences, Professor Sergey Deev (Institute of Bioorganic Chemistry).

  15. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. San Diego Unified School District. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  16. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. San Diego Unified School District. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  17. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Los Angeles Unified School District. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  18. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. New York City Department of Education. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  19. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. New York City Department of Education. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  20. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Jefferson County Public Schools (Louisville, KY). Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  1. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Miami-Dade County Public Schools. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  2. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Jefferson County Public Schools (Louisville, KY). Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  3. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Los Angeles Unified School District. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  4. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Miami-Dade County Public Schools. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  5. Effectiveness and Sensitivity of the Arctic Observing Network in a Coupled Ocean-Sea Ice State Estimation Framework

    NASA Astrophysics Data System (ADS)

    Nguyen, A. T.; Heimbach, P.; Garg, V.; Ocana, V.

    2016-12-01

    Over the last few decades, various agencies have invested heavily in the development and deployment of Arctic ocean and sea ice observing platforms, especially moorings, profilers, gliders, and satellite-based instruments. These observational assets are heterogeneous in terms of variables sampled and spatio-temporal coverage, which calls for a dynamical synthesis framework of the diverse data streams. Here we introduce an adjoint-based Arctic Subpolar gyre sTate estimate (ASTE), a medium resolution model-data synthesis that leverages all the possible observational assets. Through an established formal state and parameter estimation framework, the ASTE framework produces a 2002-present ocean-sea ice state that can be used to address Arctic System science questions. It is dynamically and kinematically consistent with known equations of motion and consistent with observations. Four key aspects of ASTE will be discussed: (1) How well is ASTE constrained by the existing observations; (2) which data most effectively constrain the system, and what impact on the solution does spatial and temporal coverage have; (3) how much information does one set of observation (e.g. Fram Strait heat transport) carry about a remote, but dynamically linked component (e.g. heat content in the Beaufort Gyre); and (4) how can the framework be used to assess the value of hypothetical observations in constraining poorly observed parts of the Arctic Ocean and the implied mechanisms responsible for the changes occurring in the Arctic. We will discuss the suggested geographic distribution of new observations to maximize the impact on improving our understanding of the general circulation, water mass distribution and hydrographic changes in the Arctic.

  6. Environmental literacy framework with a focus on climate change (ELF): a framework and resources for teaching climate change

    NASA Astrophysics Data System (ADS)

    Huffman, L. T.; Blythe, D.; Dahlman, L. E.; Fischbein, S.; Johnson, K.; Kontar, Y.; Rack, F. R.; Kulhanek, D. K.; Pennycook, J.; Reed, J.; Youngman, B.; Reeves, M.; Thomas, R.

    2010-12-01

    The challenges of communicating climate change science to non-technical audiences present a daunting task, but one that is recognized in the science community as urgent and essential. ANDRILL's (ANtarctic geological DRILLing) international network of scientists, engineers, technicians and educators work together to convey a deeper understanding of current geoscience research as well as the process of science to non-technical audiences. One roadblock for educators who recognize the need to teach climate change has been the lack of a comprehensive, integrated set of resources and activities that are related to the National Science Education Standards. Pieces of the climate change puzzle can be found in the excellent work of the groups of science and education professionals who wrote the Essential Principles of Ocean Sciences, Climate Literacy: The Essential Principles of Climate Science, Earth Science Literacy Principles: The Big Ideas and Supporting Concepts of Earth Science, and Essential Principals and Fundamental Concepts for Atmospheric Science Literacy, but teachers have precious little time to search out the climate change goals and objectives in those frameworks and then find the resources to teach them. Through NOAA funding, ANDRILL has created a new framework, The Environmental Literacy Framework with a Focus on Climate Change (ELF), drawing on the works of the aforementioned groups, and promoting an Earth Systems approach to teaching climate change through five units: Atmosphere, Biosphere, Geosphere, Hydrosphere/Cryosphere, and Energy as the driver of interactions within and between the “spheres.” Each key concept in the framework has a hands-on, inquiry activity and matching NOAA resources for teaching the objectives. In its present form, we present a ‘road map’ for teaching climate change and a set of resources intended to continue to evolve over time.

  7. Using the Geoscience Literacy Frameworks and Educational Technologies to Promote Science Literacy in Non-science Major Undergraduates

    NASA Astrophysics Data System (ADS)

    Carley, S.; Tuddenham, P.; Bishop, K. O.

    2008-12-01

    In recent years several geoscience communities have been developing ocean, climate, atmosphere and earth science literacy frameworks as enhancements to the National Science Education Standards content standards. Like the older content standards these new geoscience literacy frameworks have focused on K-12 education although they are also intended for informal education and general public audiences. These geoscience literacy frameworks potentially provide a more integrated and less abstract approach to science literacy that may be more suitable for non-science major students that are not pursuing careers in science research or education. They provide a natural link to contemporary environmental issues - e.g., climate change, resource depletion, species and habitat loss, natural hazards, pollution, development of renewable energy, material recycling. The College of Exploration is an education research non-profit that has provided process and technical support for the development of most of these geoscience literacy frameworks. It has a unique perspective on their development. In the last ten years it has also gained considerable national and international expertise in facilitating web-based workshops that support in-depth conversations among educators and working scientists/researchers on important science topics. These workshops have been of enormous value to educators working in K-12, 4-year institutions and community colleges. How can these geoscience literacy frameworks promote more collaborative inquiry-based learning that enhances the appreciation of scientific thinking by non-majors? How can web- and mobile-based education technologies transform the undergraduate non-major survey course into a place where learners begin their passion for science literacy rather than end it? How do we assess science literacy in students and citizens?

  8. Evaluating the role of public health in implementation of genomics-related recommendations: a case study of hereditary cancers using the CDC Science Impact Framework.

    PubMed

    Green, Ridgely Fisk; Ari, Mary; Kolor, Katherine; Dotson, W David; Bowen, Scott; Habarta, Nancy; Rodriguez, Juan L; Richardson, Lisa C; Khoury, Muin J

    2018-06-15

    Public health plays an important role in ensuring access to interventions that can prevent disease, including the implementation of evidence-based genomic recommendations. We used the Centers for Disease Control and Prevention (CDC) Science Impact Framework to trace the impact of public health activities and partnerships on the implementation of the 2009 Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Lynch Syndrome screening recommendation and the 2005 and 2013 United States Preventive Services Task Force (USPSTF) BRCA1 and BRCA2 testing recommendations.The EGAPP and USPSTF recommendations have each been cited by >300 peer-reviewed publications. CDC funds selected states to build capacity to integrate these recommendations into public health programs, through education, policy, surveillance, and partnerships. Most state cancer control plans include genomics-related goals, objectives, or strategies. Since the EGAPP recommendation, major public and private payers now provide coverage for Lynch Syndrome screening for all newly diagnosed colorectal cancers. National guidelines and initiatives, including Healthy People 2020, included similar recommendations and cited the EGAPP and USPSTF recommendations. However, disparities in implementation based on race, ethnicity, and rural residence remain challenges. Public health achievements in promoting the evidence-based use of genomics for the prevention of hereditary cancers can inform future applications of genomics in public health.

  9. Conceptual Elements: A Detailed Framework to Support and Assess Student Learning of Biology Core Concepts.

    PubMed

    Cary, Tawnya; Branchaw, Janet

    2017-01-01

    The Vision and Change in Undergraduate Biology Education: Call to Action report has inspired and supported a nationwide movement to restructure undergraduate biology curricula to address overarching disciplinary concepts and competencies. The report outlines the concepts and competencies generally but does not provide a detailed framework to guide the development of the learning outcomes, instructional materials, and assessment instruments needed to create a reformed biology curriculum. In this essay, we present a detailed Vision and Change core concept framework that articulates key components that transcend subdisciplines and scales for each overarching biological concept, the Conceptual Elements (CE) Framework. The CE Framework was developed using a grassroots approach of iterative revision and incorporates feedback from more than 60 biologists and undergraduate biology educators from across the United States. The final validation step resulted in strong national consensus, with greater than 92% of responders agreeing that each core concept list was ready for use by the biological sciences community, as determined by scientific accuracy and completeness. In addition, we describe in detail how educators and departments can use the CE Framework to guide and document reformation of individual courses as well as entire curricula. © 2017 T. Cary and J. Branchaw. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  10. Why Teach Science with an Interdisciplinary Approach: History, Trends, and Conceptual Frameworks

    ERIC Educational Resources Information Center

    You, Hye Sun

    2017-01-01

    This study aims to describe the history of interdisciplinary education and the current trends and to elucidate the conceptual framework and values that support interdisciplinary science teaching. Many science educators have perceived the necessity for a crucial paradigm shift towards interdisciplinary learning as shown in science standards.…

  11. Designing and Implementing an Integrated Technological Pedagogical Science Knowledge Framework for Science Teachers Professional Development

    ERIC Educational Resources Information Center

    Jimoyiannis, Athanassios

    2010-01-01

    This paper reports on the design and the implementation of the Technological Pedagogical Science Knowledge (TPASK), a new model for science teachers professional development built on an integrated framework determined by the Technological Pedagogical Content Knowledge (TPACK) model and the authentic learning approach. The TPASK curriculum…

  12. Computational Thinking in High School Science Classrooms: Exploring the Science "Framework" and "NGSS"

    ERIC Educational Resources Information Center

    Sneider, Cary; Stephenson, Chris; Schafer, Bruce; Flick, Larry

    2014-01-01

    A "Framework for K-12 Science Education" identified eight practices as "essential elements of the K-12 science and engineering curriculum" (NRC 2012, p. 49). Most of the practices, such as Developing and Using Models, Planning and Carrying Out Investigations, and Analyzing and Interpreting Data, are well known among science…

  13. Argumentation in Science Education: A Model-Based Framework

    ERIC Educational Resources Information Center

    Bottcher, Florian; Meisert, Anke

    2011-01-01

    The goal of this article is threefold: First, the theoretical background for a model-based framework of argumentation to describe and evaluate argumentative processes in science education is presented. Based on the general model-based perspective in cognitive science and the philosophy of science, it is proposed to understand arguments as reasons…

  14. Student Empowerment in an Environmental Science Classroom: Toward a Framework for Social Justice Science Education

    ERIC Educational Resources Information Center

    Dimick, Alexandra Schindel

    2012-01-01

    Social justice education is undertheorized in science education. Given the wide range of goals and purposes proposed within both social justice education and social justice science education scholarship, these fields require reconciliation. In this paper, I suggest a student empowerment framework for conceptualizing teaching and learning social…

  15. EarthLabs: A National Model for Earth Science Lab Courses

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2008-12-01

    As a response to the need for more rigorous, inquiry-based high school Earth science courses, a coalition of scientists, educators, and five states have created EarthLabs, a set of pilot modules that can serve as a national model for lab-based science courses. The content of EarthLabs chapters focuses on Earth system science and environmental literacy and conforms to the National Science Education Standards as well as the states' curriculum frameworks. The effort is funded by NOAA's Environmental Literacy program. The pilot modules present activities on Corals, Drought, Fisheries, and Hurricanes. The Fisheries and Hurricanes units were reviewed and field-tested by educators in Texas and Arizona. The feedback from this evaluation led to revisions of these units and guided development of the Corals and Drought chapters. Each module consists of activities that use online data sets, satellite imagery, web-based readings, and hands-on laboratory experiments. The project comprises two separate websites, one for the instructor and one for students. The instructor's site contains the pedagogical underpinnings for each lab including teaching materials, assessment strategies, and the alignment of activities with state and national science standards. The student site provides access to all materials that students need to complete the activities or, in the case of the hands-on labs, where they access additional information to help extend their learning. There are also formative and summative questions embedded in the student webpages to help scaffold learning through the activities.

  16. Public health, science, and policy debate: being right is not enough.

    PubMed

    Camargo, Kenneth; Grant, Roy

    2015-02-01

    Public health is usually enacted through public policies, necessitating that the public engage in debates that, ideally, are grounded in solid scientific findings. Mistrust in science, however, has compromised the possibility of deriving sound policy from such debates, partially owing to justified concerns regarding undue interference and even outright manipulation by commercial interests. This situation has generated problematic impasses, one of which is the emergence of an anti-vaccination movement that is already affecting public health, with a resurgence in the United States of preventable diseases thought to have been eradicated. Drawing on British sociologist Harry Collins' work on expertise, we propose a theoretical framework in which the paralyzing, undue public distrust of science can be analyzed and, it is hoped, overcome.

  17. The influence of high school academics on freshman college mathematics and science courses at SUNY Oswego

    NASA Astrophysics Data System (ADS)

    Hayali, Tolga

    This study examined the relationship between 2011 freshman college mathematics and science grades and freshman students' high school academics and demographic data, exploring the factors that contribute to the success of first-year STEM majoring freshman students at State University of New York at Oswego. The variables were Gender, Race, SES, School Size, Parent with College Education, High School Grade Point Average (HSGPA), Transfer Credit, SAT Composite Score, and New York State Regents Exam results, based on data from 237 freshman students entering college immediately following high school. The findings show HSGPA as a significant predictor of success in freshman College Mathematics and Sciences, Transfer Credit as a significant predictor in College Mathematics and College Chemistry, SES as a significant predictor in College Biology and College Chemistry, Parent with College Education as a significant predictor in College Biology and New York State Chemistry Regents Exam as a significant predictor in College Chemistry. Based on these findings, guidance counselors, science educators, and education institutions can develop a framework to determine which measurements are meaningful and advise students to focus on excellent performance in the Chemistry Regents Exams, take more college courses during high school, and maintain a high grade point average.

  18. U.S. Forest Service Research and Development (USFS R/D) national science strategy on White Nose Syndrome (WNS)

    Treesearch

    Sybill Amelon; Robert T. Brooks; Jessie Glaeser; Megan Friggens; Daniel Lindner; Susan C. Loeb; Ann Lynch; Drew Minnis; Roger Perry; Mary M. Rowland; Monica Tomosy; Ted Weller

    2012-01-01

    The National Plan for Assisting States, Federal Agencies, and Tribes in Managing White-Nose Syndrome in Bats (National WNS Plan), is a document prepared jointly by the U.S. Departments of the Interior, Agriculture, and Defense, along with the Association of Fish and Wildlife Agencies. This document provides a strategic framework for the investigation and management of...

  19. Integrating Content and Literacy in Social Studies: Assessing Instructional Materials and Student Work from a Common Core-Aligned Intervention

    ERIC Educational Resources Information Center

    Reisman, Abby

    2017-01-01

    The Common Core State Standards (CCSS) call on science and social studies teachers to engage in literacy instruction that prepares students for the academic rigors of college. The Literacy Design Collaborative (LDC) designed a framework to address the challenge of literacy-content integration. At the heart of the intervention are fill-in-the-blank…

  20. Dedos de Luna. Children's Literature in Spanish: Bilingual Edition. Guia para maestros en espanol e ingles. Elementary Literature Series, Part II.

    ERIC Educational Resources Information Center

    Walker, Dana; Huerta, Mario

    This curriculum unit is designed to give primary school students foreign language experiences and also to support the cultural literacy strand of the California State History-Social Science Framework. The unit is part of an elementary literature series which utilizes quality primary source literature from various world regions and countries and…

  1. Effects of climatic variability and change on forest ecosystems: a comprehensive science synthesis for the U.S

    Treesearch

    James M. Vose; David L. Peterson; Toral Patel-Weynand

    2012-01-01

    This report is a scientific assessment of the current condition and likely future condition of forest resources in the United States relative to climatic variability and change. It serves as the U.S. Forest Service forest sector technical report for the National Climate Assessment and includes descriptions of key regional issues and examples of a risk-based framework...

  2. Formative Assessment Probes: Is It a Solid? Claim Cards and Argumentation

    ERIC Educational Resources Information Center

    Keeley, Page

    2013-01-01

    A "Framework for K-12 Science Education"'s disciplinary core idea PS1.A states that students should know by the end of grade 2 that different kinds of matter exist and many of them can be solid or liquid, depending on temperature (NRC 2012). By the end of grade 8, they describe solids, liquids, and gases by the arrangement and…

  3. The emphasis given to evolution in state science standards: A lever for change in evolution education?

    NASA Astrophysics Data System (ADS)

    Skoog, Gerald; Bilica, Kimberly

    2002-07-01

    This study analyzed the science frameworks of 49 states and the District of Colombia to determine the emphasis given to evolution in these documents at the middle and secondary levels. These concepts were species evolve over time, speciation, diversity of life, descent with modification from common ancestry, evidence of evolution, natural selection, pace and direction of evolution, and human evolution. Collectively, the 50 science frameworks emphasized evolution in a manner that suggests that if the public's support for standards-based curricula is a reality, the study of evolution will be emphasized in an unprecedented manner in the nation's schools in the near future. However, all concepts were not emphasized equally in these documents. For example, human evolution was included in only seven documents. The word evolution is absent from some standards. Despite these negatives, recent actions to improve existing standards or to adopt new standards that emphasize evolution have occurred. The metaphor lever of change is often used in the context of school reform. This metaphor suggests a simple system where one change can result in a desired outcome. However, in classrooms where curriculum decisions evolve constantly, multiple factors interact and reinforce one another in response to both internal and external contingencies that emerge. Educational change can not be reduced to a simple linear cause/effect situation. The change process involved is nonlinear where what goes in is not proportional to what comes out because of feedback loops and other factors that complicate results. This nonlinearity is reflected in the varied responses of teachers to specific contingencies. Yet, systems can be changed and nudged towards a structure where desired outcomes will emerge. Judicial rulings indicating that the teaching of evolution cannot be prohibited or equal time for creationism mandated, improved coverage of evolution in secondary school biology textbooks, the negative response of many leaders, scientists, organizations, and editorial writers to the 1999 decision of the Kansas State Board of Education to deemphasize and misrepresent evolution in the state's science standards, and the emphasis given to evolution in the standards reviewed for this study, all coalesce to provide needed support for administrators and teachers who are striving to create science curricula that emphasize evolution in a manner commensurate with its importance in understanding the natural world and our place within it.

  4. A Generic Simulation Framework for Non-Entangled based Experimental Quantum Cryptography and Communication: Quantum Cryptography and Communication Simulator (QuCCs)

    NASA Astrophysics Data System (ADS)

    Buhari, Abudhahir; Zukarnain, Zuriati Ahmad; Khalid, Roszelinda; Zakir Dato', Wira Jaafar Ahmad

    2016-11-01

    The applications of quantum information science move towards bigger and better heights for the next generation technology. Especially, in the field of quantum cryptography and quantum computation, the world already witnessed various ground-breaking tangible product and promising results. Quantum cryptography is one of the mature field from quantum mechanics and already available in the markets. The current state of quantum cryptography is still under various researches in order to reach the heights of digital cryptography. The complexity of quantum cryptography is higher due to combination of hardware and software. The lack of effective simulation tool to design and analyze the quantum cryptography experiments delays the reaching distance of the success. In this paper, we propose a framework to achieve an effective non-entanglement based quantum cryptography simulation tool. We applied hybrid simulation technique i.e. discrete event, continuous event and system dynamics. We also highlight the limitations of a commercial photonic simulation tool based experiments. Finally, we discuss ideas for achieving one-stop simulation package for quantum based secure key distribution experiments. All the modules of simulation framework are viewed from the computer science perspective.

  5. Marine Science Summer Enrichment Camp's Impact Ocean Literacy for Middle School Students

    NASA Astrophysics Data System (ADS)

    Young, Victoria Jewel

    Although careers in science, technology, engineering, and mathematics have expanded in the United States, science literacy skills for K-12 students have declined from 2001 to 2011. Limited research has been conducted on the impact of science enrichment programs on the science literacy skills of K-12 students, particularly in marine science. The purpose of this study was to describe the impact of a marine science summer enrichment camp located in the eastern region of the United States on the ocean literacy skills of middle school students who participated in this camp. Weimar's learner centered teaching approach and the definition and principles of ocean literacy formed the conceptual framework. The central research question focused on how a marine science summer enrichment camp impacted the ocean literacy skills of middle grade students. A single case study research design was used with ten participants including 3 camp teachers, four students, and 3 parents of Grade 6-8 students who participated this camp in 2016. Data were collected from multiple sources including individual interviews of camp teachers, students, and parents, as well as camp documents and archival records. A constant comparative method was used to construct categories, determine emergent themes and discrepant data. Results indicated that the marine science camp positively impacted the ocean literacy skills of middle school students through an emphasis on a learner centered instructional approach. The findings of this study may provide a positive social impact by demonstrating active science literacy instructional strategies for teachers which can motivate students to continue studies in science and science related fields.

  6. Preschool Teachers' Attitudes and Beliefs Toward Science

    NASA Astrophysics Data System (ADS)

    Lloyd, Sharon Henry

    In the United States, a current initiative, Advancing Active STEM Education for Our Youngest Learners, aims to advance science, technology, engineering, and math (STEM) education in early childhood. The purpose of this study was to understand preschool teachers' proficiency with science and address the problem of whether or not science learning opportunities are provided to young children based on teachers' attitudes and beliefs. A theoretical framework for establishing teachers' attitudes toward science developed by van Aalderen-Smeets, van der Molen, and Asma, along with Bandura's theory of self-efficacy were the foundations for this research. Research questions explored preschool teachers' attitudes and beliefs toward science in general and how they differed based on education level and years of preschool teaching experience. Descriptive comparative data were collected from 48 preschool teacher participants using an online format with a self-reported measure and were analyzed using nonparametric tests to describe differences between groups based on identified factors of teacher comfort, child benefit, and challenges. Results indicated that the participants believed that early childhood science is developmentally appropriate and that young children benefit from science instruction through improved school-readiness skills. Preschool teachers with a state credential or an associate's degree and more teaching experience had more teacher comfort toward science based on attitudes and beliefs surveyed. The data indicated participating preschool teachers experienced few challenges in teaching science. The study may support positive social change through increased awareness of strengths and weaknesses of preschool teachers for the development of effective science professional development. Science is a crucial component of school-readiness skills, laying a foundation for success in later grades.

  7. A Bolman and Deal Framework of Science Teachers' Beliefs on Teacher Preparation and Reform Practices for Diverse Learners

    ERIC Educational Resources Information Center

    Whitmyer, Charnita P.

    2016-01-01

    This dissertation uses Bolman and Deal's Four Framework approach to reframing an organization to examine science teachers' beliefs on teacher preparation and reform practices for diverse learners. Despite the national emphasis on "science for all students" in the National Science Education Standards (NRC, 2011), some traditionally…

  8. An integrated science plan for the Lake Tahoe basin: conceptual framework and research strategies

    Treesearch

    Zachary P. Hymanson; Michael W. Collopy

    2010-01-01

    An integrated science plan was developed to identify and refine contemporary science information needs for the Lake Tahoe basin ecosystem. The main objectives were to describe a conceptual framework for an integrated science program, and to develop research strategies addressing key uncertainties and information gaps that challenge government agencies in the theme...

  9. Science framework for conservation and restoration of the sagebrush biome: Linking the Department of the Interior’s Integrated Rangeland Fire Management Strategy to long-term strategic conservation actions

    Treesearch

    J.C. Chambers; J.L. Beck; J.B. Bradford; J. Bybee; S. Campbell; J. Carlson; T.J. Christiansen; K.J. Clause; G. Collins; M.R. Crist; J.B. Dinkins; K.E. Doherty; F. Edwards; S. Espinosa; K.A. Griffin; P. Griffin; J.R. Haas; S.E. Hanser; D.W. Havlina; K.F. Henke; J.D. Hennig; L.A. Joyce; F.M. Kilkenny; S.M. Kulpa; L.L. Kurth; J.D. Maestas; M. Manning; K.E. Mayer; B.A. Mealor; C. McCarthy; M. Pellant; M.A. Perea; K.L. Prentice; D.A. Pyke; L.A. Wiechman; A. Wuenschel

    2017-01-01

    The Science Framework is intended to link the Department of the Interior’s Integrated Rangeland Fire Management Strategy with long-term strategic conservation actions in the sagebrush biome. The Science Framework provides a multiscale approach for prioritizing areas for management and determining effective management strategies within the sagebrush biome. The emphasis...

  10. Moving Forward after Sendai: How Countries Want to Use Science, Evidence and Technology for Disaster Risk Reduction.

    PubMed

    Calkins, Julie

    2015-05-14

    Following the 2004 Indian Ocean earthquake and tsunami event, the global community adopted the UN Hyogo Framework for Action (HFA) for Disaster Risk Reduction 2005-2015, which set out priorities to help countries achieve disaster resilience by encouraging the establishment of national platforms and strengthening disaster governance. In March 2015, UN member states adopted the successor to HFA, the Sendai Framework for Disaster Risk Reduction: 2015-2030 (SFDRR). The SFDRR recognises the cross-cutting nature of DRR policy and calls on stakeholders to help governments. Over the following months, the international science community as a stakeholder will contribute by outlining guidance, research opportunities and partnerships to help countries implement the new framework. To inform this process, this study examines government' and national scientists' perspectives about the needs to use science, evidence and technology to achieve disaster risk reduction (DRR) and put the words of the new framework into action. This study was conducted using qualitative content analysis and quantifiable survey results. Data was collected via extraction from published statements and online survey responses. For statement content analysis, search terms were determined iteratively in a sample of statements until no new terms emerged. Additionally, 167 national scientists were recruited to participate in the online survey with a response rate of 26.3% (44/167). Country priorities are clustered and clear, showing that there is a demand for greater science in DRR decision-making and solutions. The main themes highlighted by countries were promoting research and practitioner engagement; increase technology transfer mechanisms; open data; communication of usable evidence and user's needs; education and training; and lastly, international cooperation all contributing to national capacity building. As identified, the main difficulties with existing delivery are gaps in knowledge, lack of coordination and a gap in capacity to use scientific evidence for policy-making. Countries and organisations have identified a range of science and technology related needs, including through the preparatory and drafting process for the Sendai Framework for DRR. Across regions and development levels, countries are seeking to address the gaps they face in scientific capacities and information. It is hoped that understanding these priorities and challenges will help decision-makers and scientists in developing the implementation plan to consider how science, technology and innovation can be enabling factors for DRR. An implementation plan of action underpinned by scientific evidence has the potential to save lives, more accurately target investment, and contribute to greater resilience over the coming decades.

  11. A conceptual framework to advance exposure science research and complement the Adverse Outcome Pathway framework

    EPA Science Inventory

    A tremendous amount of data on environmental stressors has been accumulated in exposure science, epidemiology, and toxicology, yet most of these data reside in different silos. The Adverse Outcome Pathway (AOP) framework was developed as an organizing principle for toxicological ...

  12. The application of language-game theory to the analysis of science learning: Developing an interpretive classroom-level learning framework

    NASA Astrophysics Data System (ADS)

    Ahmadibasir, Mohammad

    In this study an interpretive learning framework that aims to measure learning on the classroom level is introduced. In order to develop and evaluate the value of the framework, a theoretical/empirical study is designed. The researcher attempted to illustrate how the proposed framework provides insights on the problem of classroom-level learning. The framework is developed by construction of connections between the current literature on science learning and Wittgenstein's language-game theory. In this framework learning is defined as change of classroom language-game or discourse. In the proposed framework, learning is measured by analysis of classroom discourse. The empirical explanation power of the framework is evaluated by applying the framework in the analysis of learning in a fifth-grade science classroom. The researcher attempted to analyze how students' colloquial discourse changed to a discourse that bears more resemblance to science discourse. The results of the empirical part of the investigation are presented in three parts: first, the gap between what students did and what they were supposed to do was reported. The gap showed that students during the classroom inquiry wanted to do simple comparisons by direct observation, while they were supposed to do tool-assisted observation and procedural manipulation for a complete comparison. Second, it was illustrated that the first attempt to connect the colloquial to science discourse was done by what was immediately intelligible for students and then the teacher negotiated with students in order to help them to connect the old to the new language-game more purposefully. The researcher suggested that these two events in the science classroom are critical in discourse change. Third, it was illustrated that through the academic year, the way that students did the act of comparison was improved and by the end of the year more accurate causal inferences were observable in classroom communication. At the end of the study, the researcher illustrates that the application of the proposed framework resulted in an improved version of the framework. The improved version of the proposed framework is more connected to the topic of science learning, and is able to measure the change of discourse in higher resolution.

  13. Completing the link between exposure science and toxicology for improved environmental health decision making: The aggregate exposure pathway framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teeguarden, Justin G.; Tan, Yu -Mei; Edwards, Stephen W.

    Here, driven by major scientific advances in analytical methods, biomonitoring, computation, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deployment of an organizational and predictive framework for exposure science analogous to the “systems approaches” used in the biological sciences is a necessary step in this evolution. Here we propose the aggregate exposure pathway (AEP) concept as the natural and complementary companion in the exposure sciences to the adverse outcome pathway (AOP) concept in the toxicological sciences.more » Aggregate exposure pathways offer an intuitive framework to organize exposure data within individual units of prediction common to the field, setting the stage for exposure forecasting. Looking farther ahead, we envision direct linkages between aggregate exposure pathways and adverse outcome pathways, completing the source to outcome continuum for more meaningful integration of exposure assessment and hazard identification. Together, the two frameworks form and inform a decision-making framework with the flexibility for risk-based, hazard-based, or exposure-based decision making.« less

  14. Completing the link between exposure science and toxicology for improved environmental health decision making: The aggregate exposure pathway framework

    DOE PAGES

    Teeguarden, Justin G.; Tan, Yu -Mei; Edwards, Stephen W.; ...

    2016-01-13

    Here, driven by major scientific advances in analytical methods, biomonitoring, computation, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deployment of an organizational and predictive framework for exposure science analogous to the “systems approaches” used in the biological sciences is a necessary step in this evolution. Here we propose the aggregate exposure pathway (AEP) concept as the natural and complementary companion in the exposure sciences to the adverse outcome pathway (AOP) concept in the toxicological sciences.more » Aggregate exposure pathways offer an intuitive framework to organize exposure data within individual units of prediction common to the field, setting the stage for exposure forecasting. Looking farther ahead, we envision direct linkages between aggregate exposure pathways and adverse outcome pathways, completing the source to outcome continuum for more meaningful integration of exposure assessment and hazard identification. Together, the two frameworks form and inform a decision-making framework with the flexibility for risk-based, hazard-based, or exposure-based decision making.« less

  15. Toulmin's argument pattern as a "horizon of possibilities" in the study of argumentation in science education

    NASA Astrophysics Data System (ADS)

    Erduran, Sibel

    2018-01-01

    Kim and Roth (this issue) purport to draw on the social-psychological theory of L. S. Vygotsky in order to investigate social relations in children's argumentation in science topics. The authors argue that the argumentation framework offered by Stephen Toulmin is limited in addressing social relations. The authors thus criticize Toulmin's Argument Pattern (TAP) as an analytical tool and propose to investigate the genesis of evidence-related practices (especially burden of proof) in second- and third-grade children by studying dialogical interactions. In this paper, I illustrate how Toulmin's framework can contribute to (a) the study of "social relations", and (b) provide an example utilizing a theoretical framework on social relations, namely Engeström's Activity Theory framework, and (c) describe how we have used the Activity Theory along with TAP in order to understand the development of argumentation in the practices of science educators. Overall, I will argue that TAP is not inherently incapable of addressing social relational aspects of argumentation in science education but rather that science education researchers can transform theoretical tools such as Toulmin's framework intended for other purposes for use in science education research.

  16. The Nature Index: a general framework for synthesizing knowledge on the state of biodiversity.

    PubMed

    Certain, Grégoire; Skarpaas, Olav; Bjerke, Jarle-Werner; Framstad, Erik; Lindholm, Markus; Nilsen, Jan-Erik; Norderhaug, Ann; Oug, Eivind; Pedersen, Hans-Christian; Schartau, Ann-Kristin; van der Meeren, Gro I; Aslaksen, Iulie; Engen, Steinar; Garnåsjordet, Per-Arild; Kvaløy, Pål; Lillegård, Magnar; Yoccoz, Nigel G; Nybø, Signe

    2011-04-22

    The magnitude and urgency of the biodiversity crisis is widely recognized within scientific and political organizations. However, a lack of integrated measures for biodiversity has greatly constrained the national and international response to the biodiversity crisis. Thus, integrated biodiversity indexes will greatly facilitate information transfer from science toward other areas of human society. The Nature Index framework samples scientific information on biodiversity from a variety of sources, synthesizes this information, and then transmits it in a simplified form to environmental managers, policymakers, and the public. The Nature Index optimizes information use by incorporating expert judgment, monitoring-based estimates, and model-based estimates. The index relies on a network of scientific experts, each of whom is responsible for one or more biodiversity indicators. The resulting set of indicators is supposed to represent the best available knowledge on the state of biodiversity and ecosystems in any given area. The value of each indicator is scaled relative to a reference state, i.e., a predicted value assessed by each expert for a hypothetical undisturbed or sustainably managed ecosystem. Scaled indicator values can be aggregated or disaggregated over different axes representing spatiotemporal dimensions or thematic groups. A range of scaling models can be applied to allow for different ways of interpreting the reference states, e.g., optimal situations or minimum sustainable levels. Statistical testing for differences in space or time can be implemented using Monte-Carlo simulations. This study presents the Nature Index framework and details its implementation in Norway. The results suggest that the framework is a functional, efficient, and pragmatic approach for gathering and synthesizing scientific knowledge on the state of biodiversity in any marine or terrestrial ecosystem and has general applicability worldwide.

  17. The Nature Index: A General Framework for Synthesizing Knowledge on the State of Biodiversity

    PubMed Central

    Certain, Grégoire; Skarpaas, Olav; Bjerke, Jarle-Werner; Framstad, Erik; Lindholm, Markus; Nilsen, Jan-Erik; Norderhaug, Ann; Oug, Eivind; Pedersen, Hans-Christian; Schartau, Ann-Kristin; van der Meeren, Gro I.; Aslaksen, Iulie; Engen, Steinar; Garnåsjordet, Per-Arild; Kvaløy, Pål; Lillegård, Magnar; Yoccoz, Nigel G.; Nybø, Signe

    2011-01-01

    The magnitude and urgency of the biodiversity crisis is widely recognized within scientific and political organizations. However, a lack of integrated measures for biodiversity has greatly constrained the national and international response to the biodiversity crisis. Thus, integrated biodiversity indexes will greatly facilitate information transfer from science toward other areas of human society. The Nature Index framework samples scientific information on biodiversity from a variety of sources, synthesizes this information, and then transmits it in a simplified form to environmental managers, policymakers, and the public. The Nature Index optimizes information use by incorporating expert judgment, monitoring-based estimates, and model-based estimates. The index relies on a network of scientific experts, each of whom is responsible for one or more biodiversity indicators. The resulting set of indicators is supposed to represent the best available knowledge on the state of biodiversity and ecosystems in any given area. The value of each indicator is scaled relative to a reference state, i.e., a predicted value assessed by each expert for a hypothetical undisturbed or sustainably managed ecosystem. Scaled indicator values can be aggregated or disaggregated over different axes representing spatiotemporal dimensions or thematic groups. A range of scaling models can be applied to allow for different ways of interpreting the reference states, e.g., optimal situations or minimum sustainable levels. Statistical testing for differences in space or time can be implemented using Monte-Carlo simulations. This study presents the Nature Index framework and details its implementation in Norway. The results suggest that the framework is a functional, efficient, and pragmatic approach for gathering and synthesizing scientific knowledge on the state of biodiversity in any marine or terrestrial ecosystem and has general applicability worldwide. PMID:21526118

  18. Are There Levels of Consciousness?

    PubMed

    Bayne, Tim; Hohwy, Jakob; Owen, Adrian M

    2016-06-01

    The notion of a level of consciousness is a key construct in the science of consciousness. Not only is the term employed to describe the global states of consciousness that are associated with post-comatose disorders, epileptic absence seizures, anaesthesia, and sleep, it plays an increasingly influential role in theoretical and methodological contexts. However, it is far from clear what precisely a level of consciousness is supposed to be. This paper argues that the levels-based framework for conceptualizing global states of consciousness is untenable and develops in its place a multidimensional account of global states. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Inter-disciplinarity in sport sciences: The neuroscience example.

    PubMed

    Fargier, Patrick; Collet, Christian; Moran, Aidan; Massarelli, Raphaël

    2017-02-01

    Sport science is a relatively recent domain of research born from the interactions of different disciplines related to sport. According to the European College of sport science ( http://sport-science.org ): "scientific excellence in sport science is based on disciplinary competence embedded in the understanding that its essence lies in its multi- and interdisciplinary character". In this respect, the scientific domain of neuroscience has been developed within such a framework. Influenced by the apparent homogeneity of this scientific domain, the present paper reviews three important research topics in sport from a neuroscientific perspective. These topics concern the relationship between mind and motor action, the effects of cognition on motor performance, and the study of certain mental states (such as the "flow" effect, see below) and motor control issues to understand, for example, the neural substrates of the vertical squat jump. Based on the few extensive examples shown in this review, we argue that by adopting an interdisciplinary paradigm, sport science can emulate neuroscience in becoming a mono-discipline.

  20. History and Social Science Curriculum Framework.

    ERIC Educational Resources Information Center

    Massachusetts State Dept. of Education, Boston.

    This curriculum framework represents the first statewide guideline for learning, teaching, and assessment in history and social science for the Commonwealth of Massachusetts's public schools. The framework is based on sound research and effective practice and reflects a vision of how classrooms can and should look to assist all students to achieve…

  1. Guided-Inquiry Lessons Raise Scores on the Sixth Grade Georgia Science Test

    NASA Astrophysics Data System (ADS)

    Page, Purlie M.

    At the local level, G Middle School has the highest district-wide percentage of 6th grade science students who are not meeting standards. It is imperative that G middle school take corrective action to reduce the number of students failing to meet state science standards. Dewey's theory of conceptual framework, which involves knowledge constructed on a person's personal experience and mind activity through active forms of learning, guided this study. The goal of the study was to determine whether inquiry-based science modules produce greater 6th grade science achievement, as measured by an equivalent instrument of the science section of the Georgia Criterion-Referenced Competency Test, when compared to traditional instruction among eastern Georgia 6th graders. The sample consisted of 230 students in the nonintervention group and 119 students in the intervention group. All students were from intact classes. At the end of the intervention, an independent t test was conducted to analyze the scores. According to the study t test, (t = 12.33, df = 304.56, p < 0.05), the difference between the means was statistically significant. This project's potential impact on social change includes increasing student motivation towards, comprehension of, and interest in science concepts. At the local level, these inquiry lessons can be shared with science teachers across grade levels and within the district to improve county-wide science scores. An increase in student interest and comprehension of science concepts could ultimately lead to the United States producing more students in the fields of science, technology, engineering, and mathematics (STEM) education.

  2. Exploring the Science Framework

    ERIC Educational Resources Information Center

    Bell, Philip; Bricker, Leah; Tzou, Carrie; Lee, Tiffany; Van Horne, Katie

    2012-01-01

    The National Research Council's recent publication "A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas" (NRC 2011), which is the foundation for the Next Generation Science Standards now being developed, places unprecedented focus on the practices involved in doing scientific and engineering work. In an effort…

  3. A systems-based approach to transform climate education in the U.S. Affiliated Pacific islands (USAPI)

    NASA Astrophysics Data System (ADS)

    Sussman, A.; Fletcher, C. H.; Sachs, J. P.

    2011-12-01

    The USAPI has a population of about 1,800,000 people spread across 4.9 million square miles of the Pacific Ocean. The Pacific Islands are characterized by a multitude of indigenous cultures and languages. English is the common language of instruction in all jurisdictions, but is not the language spoken at home for most students outside of Hawai'i. Many USAPI students live considerably below the poverty line. The Pacific Island region is projected to experience some of the most profound negative impacts considerably sooner than other regions. Funded by the National Science Foundation, the Pacific Islands Climate Education Partnership (PCEP) aims to educate the region's students and citizens in ways that exemplify modern science and indigenous environmental knowledge, address the urgency of climate change impacts, and honor indigenous cultures. Students and citizens within the region will have the knowledge and skills to advance their and our understanding of climate change, and to adapt to its impacts. PCEP has developed a regional network, tools, and an emerging plan to systemically transform K-14 climate education in the USAPI. More than 50 organizations and networks have joined the partnership. These partners include all of the region's state departments of education, major universities, and community colleges, and a wide range of local partners, particularly conservation organizations. One of PCEP's major tools is general, multidisciplinary K-14 climate science education framework that organizes major underlying concepts and skills within appropriate grade-span progressions. This framework is based largely upon prior national science and climate literacy work and the National Research Council's recent document "A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas." The PCEP climate education framework has an Earth System Science foundation that is directly applicable in all locations, and it also has orientations that are particularly relevant to the USAPI context. PCEP is working with the Micronesia Conservation Trust and The Nature Conservancy to combine the climate education work with local community climate adaptation projects. This work combines the PCEP climate education framework with the Micronesia Challenge community training plans and materials, particularly the Pacific-oriented community booklet "Adapting to a Changing Climate." Combining pre-college education with community climate adaptation has the potential to yield major synergistic benefits for both efforts. Another key PCEP tool is an interactive web-based environment (http://pcep.dsp.wested.org) that interlinks the region's locations, organizations and people with information about climate science and climate impacts. This system enables the region's diverse stakeholders to access and contribute to the same information pool, and to collectively develop, and disseminate our work. This web-based environment can be configured for other climate education projects or regions.

  4. Science Education as Public and Social Wealth: The Notion of Citizenship from a European Perspective

    ERIC Educational Resources Information Center

    Siatras, Anastasios; Koumaras, Panagiotis

    2013-01-01

    In this paper, (a) we present a framework for developing a science content (i.e., science concepts, scientific methods, scientific mindset, and problem-solving strategies for socio-scientific issues) used to design the new Cypriot science curriculum aiming at ensuring a democratic and human society, (b) we use the previous framework to explore the…

  5. Deaf Pupils' Reasoning about Scientific Phenomena: School Science as a Framework for Understanding or as Fragments of Factual Knowledge.

    ERIC Educational Resources Information Center

    Molander, B. O.; Pedersen, Svend; Norell, Kia

    2001-01-01

    A Swedish interview study of how deaf pupils reason about phenomena in a science context revealed significant variation in the extent to which pupils used scientific principles for reasoning about science phenomena, which suggests that for some pupils, school science offers little as a framework for reasoning. (Contains references.) (DB)

  6. Rethinking Environmental Protection: Meeting the Challenges of a Changing World.

    PubMed

    Burke, Thomas A; Cascio, Wayne E; Costa, Daniel L; Deener, Kacee; Fontaine, Thomas D; Fulk, Florence A; Jackson, Laura E; Munns, Wayne R; Orme-Zavaleta, Jennifer; Slimak, Michael W; Zartarian, Valerie G

    2017-03-01

    From climate change to hydraulic fracturing, and from drinking water safety to wildfires, environmental challenges are changing. The United States has made substantial environmental protection progress based on media-specific and single pollutant risk-based frameworks. However, today’s environmental problems are increasingly complex and new scientific approaches and tools are needed to achieve sustainable solutions to protect the environment and public health. In this article, we present examples of today’s environmental challenges and offer an integrated systems approach to address them. We provide a strategic framework and recommendations for advancing the application of science for protecting the environment and public health. We posit that addressing 21st century challenges requires transdisciplinary and systems approaches, new data sources, and stakeholder partnerships. To address these challenges, we outline a process driven by problem formulation with the following steps: a ) formulate the problem holistically, b ) gather and synthesize diverse information, c ) develop and assess options, and d ) implement sustainable solutions. This process will require new skills and education in systems science, with an emphasis on science translation. A systems-based approach can transcend media- and receptor-specific bounds, integrate diverse information, and recognize the inextricable link between ecology and human health.

  7. From Standards to Standard Practice: A Critical Look at the Perceptions and Process of Integrating the Next Generation Science Standards in the Nation's Schools

    NASA Astrophysics Data System (ADS)

    Mercadante, Katie Lynn

    The Next Generation Science Standards (NGSS) are the culmination of reform efforts spanning more than three decades and are the first major reform movement in science education since Sputnik. When implementing these new standards, teachers are faced with many barriers. NGSS requires critical thinking, cross-curricular learning, and key changes in teaching, learning, and assessment. Implementation nationwide has been slow, due to sweeping changes, and controversial content within the standards. Resistance to implementation occurs in nearly all levels for these reasons. The purpose of this descriptive study was to determine the perceptions of in-service teachers of the NGSS Framework, to identify barriers that inhibit implementation, and to identify commonalities among teachers who have successfully implemented the Framework, as well as assist others who may do the same in the future. Teachers from public, private, and charter schools from across the United States participated in the study. Based upon teacher response, a three-stage action plan and series of necessary recommendations were developed to assist teachers and administrators in K-12 schools to develop plans to implement the NGSS.

  8. Rethinking Environmental Protection: Meeting the Challenges of a Changing World

    PubMed Central

    Burke, Thomas A.; Cascio, Wayne E.; Costa, Daniel L.; Deener, Kacee; Fontaine, Thomas D.; Fulk, Florence A.; Jackson, Laura E.; Munns, Wayne R.; Orme-Zavaleta, Jennifer; Slimak, Michael W.; Zartarian, Valerie G.

    2017-01-01

    Summary: From climate change to hydraulic fracturing, and from drinking water safety to wildfires, environmental challenges are changing. The United States has made substantial environmental protection progress based on media-specific and single pollutant risk-based frameworks. However, today’s environmental problems are increasingly complex and new scientific approaches and tools are needed to achieve sustainable solutions to protect the environment and public health. In this article, we present examples of today’s environmental challenges and offer an integrated systems approach to address them. We provide a strategic framework and recommendations for advancing the application of science for protecting the environment and public health. We posit that addressing 21st century challenges requires transdisciplinary and systems approaches, new data sources, and stakeholder partnerships. To address these challenges, we outline a process driven by problem formulation with the following steps: a) formulate the problem holistically, b) gather and synthesize diverse information, c) develop and assess options, and d) implement sustainable solutions. This process will require new skills and education in systems science, with an emphasis on science translation. A systems-based approach can transcend media- and receptor-specific bounds, integrate diverse information, and recognize the inextricable link between ecology and human health. PMID:28248180

  9. “State of the Estuary” - Developing a long term monitoring ...

    EPA Pesticide Factsheets

    As the lower Saint Louis River moves closer and closer to delisting as an Area of Concern, it is incumbent that we measure, assess and report on our success. Going forward, It’s equally important that we continue monitoring to protect and sustain the healthy ecosystems we’ve worked so hard to attain. We propose here the development of a long term systematic monitoring, assessment and reporting framework to help highlight and publicize the successful recovery of the lower Saint Louis River. Such a framework should outline methods for regularly measuring, monitoring and assessing the current health of the river and its ecosystems into the future followed with a periodic reporting of the “State of the Estuary”. This framework should be developed by the stakeholder community over a series of meetings, leading to a collaborative, partner-driven approach. To the extent possible, existing sampling and monitoring programs should be incorporated, along with additional metrics needed to tell the complete story on the “State of the Estuary”. These additional metrics might include economic, social science and human health indicators, contaminants of emerging concern, long term restoration effectiveness and other monitoring needs not yet recognized. Examples of other “State of the Ecosystem” efforts will be discussed as possible models to follow. This abstract is for a presentation at the St. Louis River Summit. The talk will discuss the need for a “S

  10. Towards a Philosophically and a Pedagogically Reasonable Nature of Science Curriculum

    NASA Astrophysics Data System (ADS)

    Yacoubian, Hagop Azad

    This study, primarily theoretical in nature, explores a philosophically and pedagogically reasonable way of addressing nature of science (NOS) in school science. NOS encompasses what science is and how scientific knowledge develops. I critically evaluate consensus frameworks of NOS in school science, which converge contentious philosophical viewpoints into general NOS-related ideas. I argue that they (1) lack clarity in terms of how NOS-related ideas could be applied for various ends, (2) portray a distorted image of the substantive content of NOS and the process of its development, and (3) lack a developmental trajectory for how to address NOS at different grade levels. As a remedy to these problems, I envision a NOS curriculum that (1) explicates and targets both NOS as an educational end and NOS as a means for socioscientific decision making, (2) has critical thinking as its foundational pillar, and (3) provides a developmental pathway for NOS learning using critical thinking as a progression unit. Next, I illustrate a framework for addressing NOS in school science referred to as the critical thinking—nature of science (CT-NOS) framework. This framework brings together the first two of the three elements envisioned in the NOS curriculum. I address the third element by situating the CT-NOS framework in a developmental context, borrowing from the literature on learning progressions in science and using critical thinking as a progression unit. Finally, I present an empirical study of experienced secondary science teachers’ views of a NOS lesson prepared using the CT-NOS framework. The teachers attended a professional development workshop at which the lesson, and the characteristics of the CT-NOS framework, were presented. The analysis of the qualitative data revealed that most teachers found the lesson to be somewhat feasible for a secondary science classroom, useful or somewhat useful to their students, and interesting. The teachers focused on 14 features of the lesson in their judgments and recommendations. The study revealed a number of teacher challenges generally related to critical thinking and its teaching as well as to the distinction between critical thinking about NOS and critical thinking with NOS.

  11. Symplectic no-core configuration interaction framework for ab initio nuclear structure. II. Structure of rotational states

    NASA Astrophysics Data System (ADS)

    Caprio, Mark A.; McCoy, Anna E.; Dytrych, Tomas

    2017-09-01

    Rotational band structure is readily apparent as an emergent phenomenon in ab initio nuclear many-body calculations of light nuclei, despite the incompletely converged nature of most such calculations at present. Nuclear rotation in light nuclei can be analyzed in terms of approximate dynamical symmetries of the nuclear many-body problem: in particular, Elliott's SU (3) symmetry of the three-dimensional harmonic oscillator and the symplectic Sp (3 , R) symmetry of three-dimensional phase space. Calculations for rotational band members in the ab initio symplectic no-core configuration interaction (SpNCCI) framework allow us to directly examine the SU (3) and Sp (3 , R) nature of rotational states. We present results for rotational bands in p-shell nuclei. Supported by the US DOE under Award No. DE-FG02-95ER-40934 and the Czech Science Foundation under Grant No. 16-16772S.

  12. Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and comparative cognition

    NASA Astrophysics Data System (ADS)

    Fitch, W. Tecumseh

    2014-09-01

    Progress in understanding cognition requires a quantitative, theoretical framework, grounded in the other natural sciences and able to bridge between implementational, algorithmic and computational levels of explanation. I review recent results in neuroscience and cognitive biology that, when combined, provide key components of such an improved conceptual framework for contemporary cognitive science. Starting at the neuronal level, I first discuss the contemporary realization that single neurons are powerful tree-shaped computers, which implies a reorientation of computational models of learning and plasticity to a lower, cellular, level. I then turn to predictive systems theory (predictive coding and prediction-based learning) which provides a powerful formal framework for understanding brain function at a more global level. Although most formal models concerning predictive coding are framed in associationist terms, I argue that modern data necessitate a reinterpretation of such models in cognitive terms: as model-based predictive systems. Finally, I review the role of the theory of computation and formal language theory in the recent explosion of comparative biological research attempting to isolate and explore how different species differ in their cognitive capacities. Experiments to date strongly suggest that there is an important difference between humans and most other species, best characterized cognitively as a propensity by our species to infer tree structures from sequential data. Computationally, this capacity entails generative capacities above the regular (finite-state) level; implementationally, it requires some neural equivalent of a push-down stack. I dub this unusual human propensity "dendrophilia", and make a number of concrete suggestions about how such a system may be implemented in the human brain, about how and why it evolved, and what this implies for models of language acquisition. I conclude that, although much remains to be done, a neurally-grounded framework for theoretical cognitive science is within reach that can move beyond polarized debates and provide a more adequate theoretical future for cognitive biology.

  13. Toward a computational framework for cognitive biology: unifying approaches from cognitive neuroscience and comparative cognition.

    PubMed

    Fitch, W Tecumseh

    2014-09-01

    Progress in understanding cognition requires a quantitative, theoretical framework, grounded in the other natural sciences and able to bridge between implementational, algorithmic and computational levels of explanation. I review recent results in neuroscience and cognitive biology that, when combined, provide key components of such an improved conceptual framework for contemporary cognitive science. Starting at the neuronal level, I first discuss the contemporary realization that single neurons are powerful tree-shaped computers, which implies a reorientation of computational models of learning and plasticity to a lower, cellular, level. I then turn to predictive systems theory (predictive coding and prediction-based learning) which provides a powerful formal framework for understanding brain function at a more global level. Although most formal models concerning predictive coding are framed in associationist terms, I argue that modern data necessitate a reinterpretation of such models in cognitive terms: as model-based predictive systems. Finally, I review the role of the theory of computation and formal language theory in the recent explosion of comparative biological research attempting to isolate and explore how different species differ in their cognitive capacities. Experiments to date strongly suggest that there is an important difference between humans and most other species, best characterized cognitively as a propensity by our species to infer tree structures from sequential data. Computationally, this capacity entails generative capacities above the regular (finite-state) level; implementationally, it requires some neural equivalent of a push-down stack. I dub this unusual human propensity "dendrophilia", and make a number of concrete suggestions about how such a system may be implemented in the human brain, about how and why it evolved, and what this implies for models of language acquisition. I conclude that, although much remains to be done, a neurally-grounded framework for theoretical cognitive science is within reach that can move beyond polarized debates and provide a more adequate theoretical future for cognitive biology. Copyright © 2014. Published by Elsevier B.V.

  14. Can Programming Frameworks Bring Smartphones into the Mainstream of Psychological Science?

    PubMed

    Piwek, Lukasz; Ellis, David A

    2016-01-01

    Smartphones continue to provide huge potential for psychological science and the advent of novel research frameworks brings new opportunities for researchers who have previously struggled to develop smartphone applications. However, despite this renewed promise, smartphones have failed to become a standard item within psychological research. Here we consider the key issues that continue to limit smartphone adoption within psychological science and how these barriers might be diminishing in light of ResearchKit and other recent methodological developments. We conclude that while these programming frameworks are certainly a step in the right direction it remains challenging to create usable research-orientated applications with current frameworks. Smartphones may only become an asset for psychology and social science as a whole when development software that is both easy to use and secure becomes freely available.

  15. The state of genetically modified crop regulation in Canada

    PubMed Central

    Smyth, Stuart J

    2014-01-01

    Genetically modified (GM) crops were first commercialized in Canada in 1995 and the 2014 crop represents the 20th year of successful production. Prior to the first commercialization of GM crops, Canada reviewed its existing science-based regulatory framework and adapted the existing framework to allow for risk assessments on the new technology to be undertaken in a timely and efficient manner. The result has been the rapid and widespread adoption of GM varieties of canola, corn and soybeans. The first decade of GM crop production precipitated 2 landmark legal cases relating to patent infringement and economic liability, while the second decade witnessed increased political efforts to have GM crops labeled in Canada as well as significant challenges from the low level comingling of GM crops with non-GM commodities. This article reviews the 20 y of GM crop production in Canada from a social science perspective that includes intellectual property, consumer acceptance and low level presence. PMID:25437238

  16. Beyond happiness: Building a science of discrete positive emotions.

    PubMed

    Shiota, Michelle N; Campos, Belinda; Oveis, Christopher; Hertenstein, Matthew J; Simon-Thomas, Emiliana; Keltner, Dacher

    2017-10-01

    While trait positive emotionality and state positive-valence affect have long been the subject of intense study, the importance of differentiating among several "discrete" positive emotions has only recently begun to receive serious attention. In this article, we synthesize existing literature on positive emotion differentiation, proposing that the positive emotions are best described as branches of a "family tree" emerging from a common ancestor mediating adaptive management of fitness-critical resources (e.g., food). Examples are presented of research indicating the importance of differentiating several positive emotion constructs. We then offer a new theoretical framework, built upon a foundation of phylogenetic, neuroscience, and behavioral evidence, that accounts for core features as well as mechanisms for differentiation. We propose several directions for future research suggested by this framework and develop implications for the application of positive emotion research to translational issues in clinical psychology and the science of behavior change. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. Energy-Water Nexus Knowledge Discovery Framework

    NASA Astrophysics Data System (ADS)

    Bhaduri, B. L.; Foster, I.; Chandola, V.; Chen, B.; Sanyal, J.; Allen, M.; McManamay, R.

    2017-12-01

    As demand for energy grows, the energy sector is experiencing increasing competition for water. With increasing population and changing environmental, socioeconomic scenarios, new technology and investment decisions must be made for optimized and sustainable energy-water resource management. This requires novel scientific insights into the complex interdependencies of energy-water infrastructures across multiple space and time scales. An integrated data driven modeling, analysis, and visualization capability is needed to understand, design, and develop efficient local and regional practices for the energy-water infrastructure components that can be guided with strategic (federal) policy decisions to ensure national energy resilience. To meet this need of the energy-water nexus (EWN) community, an Energy-Water Knowledge Discovery Framework (EWN-KDF) is being proposed to accomplish two objectives: Development of a robust data management and geovisual analytics platform that provides access to disparate and distributed physiographic, critical infrastructure, and socioeconomic data, along with emergent ad-hoc sensor data to provide a powerful toolkit of analysis algorithms and compute resources to empower user-guided data analysis and inquiries; and Demonstration of knowledge generation with selected illustrative use cases for the implications of climate variability for coupled land-water-energy systems through the application of state-of-the art data integration, analysis, and synthesis. Oak Ridge National Laboratory (ORNL), in partnership with Argonne National Laboratory (ANL) and researchers affiliated with the Center for International Earth Science Information Partnership (CIESIN) at Columbia University and State University of New York-Buffalo (SUNY), propose to develop this Energy-Water Knowledge Discovery Framework to generate new, critical insights regarding the complex dynamics of the EWN and its interactions with climate variability and change. An overarching objective of this project is to integrate impacts, adaptation, and vulnerability (IAV) science with emerging data science to meet the data analysis needs of the U.S. Department of Energy and partner federal agencies with respect to the EWN.

  18. Citizen Science, Crowdsourcing and Big Data: A Scientific and Social Framework for Natural Resources and Environments

    NASA Astrophysics Data System (ADS)

    Glynn, P. D.; Jones, J. W.; Liu, S. B.; Shapiro, C. D.; Jenter, H. L.; Hogan, D. M.; Govoni, D. L.; Poore, B. S.

    2014-12-01

    We describe a conceptual framework for Citizen Science that can be applied to improve the understanding and management of natural resources and environments. For us, Citizen Science represents an engagement from members of the public, usually volunteers, in collaboration with paid professionals and technical experts to observe and understand natural resources and environments for the benefit of science and society. Our conceptual framework for Citizen Science includes crowdsourcing of observations (or sampling). It considers a wide range of activities, including volunteer and professional monitoring (e.g. weather and climate variables, water availability and quality, phenology, biota, image capture and remote sensing), as well as joint fact finding and analyses, and participatory mapping and modeling. Spatial distribution and temporal dynamics of the biophysical processes that control natural resources and environments are taken into account within this conceptual framework, as are the availability, scaling and diversity of tools and efforts that are needed to properly describe these biophysical processes. Opportunities are sought within the framework to properly describe, QA/QC, archive, and make readily accessible, the large amounts of information and traceable knowledge required to better understand and manage natural resources and environments. The framework also considers human motivational needs, primarily through a modern version of Maslow's hierarchy of needs. We examine several USGS-based Citizen Science efforts within the context of our framework, including the project called "iCoast - Did the Coast Change?", to understand the utility of the framework, its costs and benefits, and to offer concrete examples of how to expand and sustain specific projects. We make some recommendations that could aid its implementation on a national or larger scale. For example, implementation might be facilitated (1) through greater engagement of paid professionals, and (2) through the involvement of integrating entities, including institutions of learning and agencies with broad science responsibilities.

  19. Assessing Scientific Practices Using Machine-Learning Methods: How Closely Do They Match Clinical Interview Performance?

    ERIC Educational Resources Information Center

    Beggrow, Elizabeth P.; Ha, Minsu; Nehm, Ross H.; Pearl, Dennis; Boone, William J.

    2014-01-01

    The landscape of science education is being transformed by the new "Framework for Science Education" (National Research Council, "A framework for K-12 science education: practices, crosscutting concepts, and core ideas." The National Academies Press, Washington, DC, 2012), which emphasizes the centrality of scientific…

  20. Improving Hospital Discharge Planning for Elderly Patients

    PubMed Central

    Potthoff, Sandra; Kane, Robert L.; Franco, Sheila J.

    1997-01-01

    Hospital discharge planning has become increasingly important in an era of prospective payment and managed care. Given the changes in tasks, decisions, and environments involved, it is important to identify how to move such planning from an art to an empirically based decisionmaking process. The authors use a decision-sciences framework to review the state-of-the-art of hospital discharge planning and to suggest methods for improvement. PMID:10345406

  1. A Framework for Socio-Scientific Issues Based Education

    ERIC Educational Resources Information Center

    Presley, Morgan L.; Sickel, Aaron J.; Muslu, Nilay; Merle-Johnson, Dominike; Witzig, Stephen B.; Izci, Kemal; Sadler, Troy D.

    2013-01-01

    Science instruction based on student exploration of socio-scientific issues (SSI) has been presented as a powerful strategy for supporting science learning and the development of scientific literacy. This paper presents an instructional framework for SSI based education. The framework is based on a series of research studies conducted in a diverse…

  2. Framework for Leading Next Generation Science Standards Implementation

    ERIC Educational Resources Information Center

    Stiles, Katherine; Mundry, Susan; DiRanna, Kathy

    2017-01-01

    In response to the need to develop leaders to guide the implementation of the Next Generation Science Standards (NGSS), the Carnegie Corporation of New York provided funding to WestEd to develop a framework that defines the leadership knowledge and actions needed to effectively implement the NGSS. The development of the framework entailed…

  3. Teaching Political Science in the Arab World.

    ERIC Educational Resources Information Center

    Habiby, Raymond

    There are many impediments to the development of political science as a true academic discipline in the Arab world. Each nation has its own ideological and political framework, and freedoms are determined within this framework. To operate outside this framework is considered an attack on the legality of the system and a possible threat to national…

  4. DIS[subscript 2]ECT: A Framework for Effective Inclusive Science Instruction

    ERIC Educational Resources Information Center

    Spaulding, Lucinda S.; Flannagan, Jenny Sue

    2012-01-01

    The purpose of this article is to provide special education and general education teachers a framework (DIS[subscript 2]ECT) for teaching science in inclusive settings. DIS2ECT stands for Design (Backwards); Individualization; Scaffolding and Strategies; Experiential learning; Cooperative Learning; and Teamwork. This framework was derived from our…

  5. Assessing Students' Understandings of Biological Models and Their Use in Science to Evaluate a Theoretical Framework

    ERIC Educational Resources Information Center

    Grünkorn, Juliane; Upmeier zu Belzen, Annette; Krüger, Dirk

    2014-01-01

    Research in the field of students' understandings of models and their use in science describes different frameworks concerning these understandings. Currently, there is no conjoint framework that combines these structures and so far, no investigation has focused on whether it reflects students' understandings sufficiently (empirical evaluation).…

  6. A Safe Cooperative Framework for Atmospheric Science Missions with Multiple Heterogeneous UAS using Piecewise Bezier Curves

    NASA Technical Reports Server (NTRS)

    Mehdi, S. Bilal; Puig-Navarro, Javier; Choe, Ronald; Cichella, Venanzio; Hovakimyan, Naira; Chandarana, Meghan; Trujillo, Anna; Rothhaar, Paul M.; Tran, Loc; Neilan, James H.; hide

    2016-01-01

    Autonomous operation of UAS holds promise for greater productivity of atmospheric science missions. However, several challenges need to be overcome before such missions can be made autonomous. This paper presents a framework for safe autonomous operations of multiple vehicles, particularly suited for atmospheric science missions. The framework revolves around the use of piecewise Bezier curves for trajectory representation, which in conjunction with path-following and time-coordination algorithms, allows for safe coordinated operations of multiple vehicles.

  7. Place, social exchange and health: proposed sociological framework.

    PubMed

    Siegrist, J

    2000-11-01

    A sociological framework is proposed to better understand how spatial characteristics translate into people's physical and psychosocial conditions that are relevant to their health. In particular, high susceptibility to poor health among specific adult population groups is analyzed in terms of exclusion from or inadequate participation in a society's structure of opportunities. Acquisition of, and agency through, core social roles, such as the work role, the family and marital role, and civic roles, are essential prerequisites for successful personal self-regulation in adult life, strengthening a sense of self-esteem, self-efficacy, and belonging (self-integration). It is argued that exclusion from, or loss of core social roles, threats to their continuity and confinement to non-reciprocal exchange impair personal self-regulation and trigger a state of 'social reward deficiency'. This state, in turn, elicits prolonged stressful experience, and it may reinforce a person's craving for stress-relieving, potentially addictive health-damaging behavior. This framework is applied to the explanation of the life expectancy gap between Western and Central/Eastern European countries. Although most of the epidemiological evidence reviewed in support of this approach originates from investigations that were conducted in western countries several results reported in the collection of articles published in this Special Issue of Social Science and Medicine are in line with the proposed framework.

  8. A science of integration: frameworks, processes, and products in a place-based, integrative study

    USGS Publications Warehouse

    Kliskey, Andrew; Alessa, Lilian; Wandersee, Sarah; Williams, Paula; Trammell, Jamie; Powell, Jim; Grunblatt, Jess; Wipfli, Mark S.

    2017-01-01

    Integrative research is increasingly a priority within the scientific community and is a central goal for the evolving field of sustainability science. While it is conceptually attractive, its successful implementation has been challenging and recent work suggests that the move towards interdisciplinarity and transdisciplinarity in sustainability science is being only partially realized. To address this from the perspective of social-ecological systems (SES) research, we examine the process of conducting a science of integration within the Southcentral Alaska Test Case (SCTC) of Alaska-EPSCoR as a test-bed for this approach. The SCTC is part of a large, 5 year, interdisciplinary study investigating changing environments and adaptations to those changes in Alaska. In this paper, we review progress toward a science of integration and present our efforts to confront the practical issues of applying proposed integration frameworks. We: (1) define our integration framework; (2) describe the collaborative processes, including the co-development of science through stakeholder engagement and partnerships; and (3) illustrate potential products of integrative, social-ecological systems research. The approaches we use can also be applied outside of this particular framework. We highlight challenges and propose improvements for integration in sustainability science by addressing the need for common frameworks and improved contextual understanding. These insights may be useful for capacity-building for interdisciplinary projects that address complex real-world social and environmental problems.

  9. Studying citizen science through adaptive management and learning feedbacks as mechanisms for improving conservation.

    PubMed

    Jordan, Rebecca; Gray, Steven; Sorensen, Amanda; Newman, Greg; Mellor, David; Newman, Greg; Hmelo-Silver, Cindy; LaDeau, Shannon; Biehler, Dawn; Crall, Alycia

    2016-06-01

    Citizen science has generated a growing interest among scientists and community groups, and citizen science programs have been created specifically for conservation. We examined collaborative science, a highly interactive form of citizen science, which we developed within a theoretically informed framework. In this essay, we focused on 2 aspects of our framework: social learning and adaptive management. Social learning, in contrast to individual-based learning, stresses collaborative and generative insight making and is well-suited for adaptive management. Adaptive-management integrates feedback loops that are informed by what is learned and is guided by iterative decision making. Participants engaged in citizen science are able to add to what they are learning through primary data collection, which can result in the real-time information that is often necessary for conservation. Our work is particularly timely because research publications consistently report a lack of established frameworks and evaluation plans to address the extent of conservation outcomes in citizen science. To illustrate how our framework supports conservation through citizen science, we examined how 2 programs enacted our collaborative science framework. Further, we inspected preliminary conservation outcomes of our case-study programs. These programs, despite their recent implementation, are demonstrating promise with regard to positive conservation outcomes. To date, they are independently earning funds to support research, earning buy-in from local partners to engage in experimentation, and, in the absence of leading scientists, are collecting data to test ideas. We argue that this success is due to citizen scientists being organized around local issues and engaging in iterative, collaborative, and adaptive learning. © 2016 Society for Conservation Biology.

  10. Putting the International Space Station to work.

    PubMed

    Clancy, Paul

    2003-08-01

    The International Space Station (ISS) is the largest international cooperative science and technology project ever undertaken. Involving the United States, Russia, Japan, Canada and 10 ESA Member States, it is now rapidly becoming a reality in orbit, offering unprecedented access for research and applications under space conditions. Europe has invested heavily in this endeavour and plans to exploit that investment by a vigorous utilisation of the ISS for life and physical sciences research and applications, space science, Earth observation, space technology development, the promotion of commercial access to space, and the use of space for educational purposes. In recent years, ESA has engaged in an intensive promotional effort to encourage potential user communities to exploit the novel opportunities that the ISS offers. It has also made significant financial commitments to develop both multi-user facilities for life and physical sciences studies in the Columbus Laboratory, and observational and technology exposure instruments using the external Columbus mounting locations, as well as giving financial support to promote commercial and educational activities. ESA has now elaborated a European Strategy for the efficient utilisation of the ISS by European scientists and other users, which is being coordinated with the Agency's Member States contributing to the ISS Programme, and with the European Science Foundation (ESF). In cooperation with the European Commission, ESA is also fostering synergy with the European Commission's Framework Programmes in terms of shared R&D objectives. This article describes the plan that has been evolved to integrate all of these various elements.

  11. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 57; US Scientific and Technical Information Policy

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1996-01-01

    In fiscal year 1994, the United States government spent about $68 billion for science and technology. Although there is general agreement among policy makers that the results of this expenditure can be used to enhance technological innovation and improve economic competitiveness, there is no coherent scientific and technical information (STI) policy. The absence of a cohesive policy and STI policy framework means that the transfer and utilization of STI goes uncoordinated. This chapter examines the U.S. government's role in funding science and technology, reviews Federal STI activities and involvement in the transfer and use of STI resulting from federally-funded science and technology, presents issues surrounding the use of federally-funded STI, and offers recommendations for improving the transfer and use of STI.

  12. Academic performance: A case study of mathematics and science educators from rural Washington high schools

    NASA Astrophysics Data System (ADS)

    Hancock, Tira K.

    A qualitative descriptive case study explored courses of action for educators and leaders of math and science educators to implement to help students achieve state assessment standard and postsecondary success. The problem focused on two demographically similar rural high schools in Southwest Washington that demonstrated inadequate rates of student achievement in mathematics and science. The research question investigated courses of action that may assist educators and leaders of secondary math and science educators to help students achieve WASL standards and postsecondary success in compliance with the No Child Left Behind (NCLB) Act of 2001. Senge's learning organization theory (1990, 2006) and Fullan's (2001) contributions to leading and learning in times of change provided the theoretical framework for the study. Twenty study participant responses analyzed with qualitative analysis software QSR NVivo 7 revealed six themes. Triangulation of responses with secondary data from WASL assessment scores and case study school assessment data identified 14 courses of action and three recommendations for educators and leaders of math and science educators to help students meet state standards and postsecondary success. Critical factors identified in the study as needed to assist educators to help students succeed included professional development, collaboration, teaching practices, funding, student accountability, and parental involvement.

  13. A Blueprint for Genomic Nursing Science

    PubMed Central

    Calzone, Kathleen A.; Jenkins, Jean; Bakos, Alexis D.; Cashion, Ann; Donaldson, Nancy; Feero, Greg; Feetham, Suzanne; Grady, Patricia A.; Hinshaw, Ada Sue; Knebel, Ann R.; Robinson, Nellie; Ropka, Mary E.; Seibert, Diane; Stevens, Kathleen R.; Tully, Lois A.; Webb, Jo Ann

    2012-01-01

    Purpose This article reports on recommendations arising from an invitational workshop series held at the National Institutes of Health for the purposes of identifying critical genomics problems important to the health of the public that can be addressed through nursing science. The overall purpose of the Genomic Nursing State of the Science Initiative is to establish a nursing research blueprint based on gaps in the evidence and expert evaluation of the current state of the science and through public comment. Organizing Constructs A Genomic Nursing State of the Science Advisory Panel was convened in 2012 to develop the nursing research blueprint. The Advisory Panel, which met via two webinars and two in-person meetings, considered existing evidence from evidence reviews, testimony from key stakeholder groups, presentations from experts in research synthesis, and public comment. Findings The genomic nursing science blueprint arising from the Genomic Nursing State of Science Advisory Panel focuses on biologic plausibility studies as well as interventions likely to improve a variety of outcomes (e.g., clinical, economic, environmental). It also includes all care settings and diverse populations. The focus is on (a) the client, defined as person, family, community, or population; (b) the context, targeting informatics support systems, capacity building, education, and environmental influences; and (c) cross-cutting themes. It was agreed that building capacity to measure the impact of nursing actions on costs, quality, and outcomes of patient care is a strategic and scientific priority if findings are to be synthesized and aggregated to inform practice and policy. Conclusions The genomic nursing science blueprint provides the framework for furthering genomic nursing science to improve health outcomes. This blueprint is an independent recommendation of the Advisory Panel with input from the public and is not a policy statement of the National Institutes of Health or the federal government. Clinical Relevance This genomic nursing science blueprint targets research to build the evidence base to inform integration of genomics into nursing practice and regulation (such as nursing licensure requirements, institutional accreditation, and academic nursing school accreditation). PMID:23368636

  14. A Study of the Impact of Transformative Professional Development on Hispanic Student Performance on State Mandated Assessments of Science in Elementary School

    NASA Astrophysics Data System (ADS)

    Johnson, Carla C.; Fargo, Jamison D.

    2014-11-01

    This paper reports the findings of a study of the impact of the transformative professional development (TPD) model on student achievement on state-mandated assessments of science in elementary school. Two schools (one intervention and one control) participated in the case study where teachers from one school received the TPD intervention across a 2-year period while teachers at the other school received no program and continued business as usual. The TPD program includes a focus on the core conceptual framework for effective professional development (Desimone in Educ Res 38:181-199, 2009) as well as an emphasis on culturally relevant pedagogy (CRP) and other effective science instructional strategies. Findings revealed that participation in TPD had a significant impact on student achievement for Burns Elementary with the percentage of proficient students growing from 25 % at baseline to 67 % at the end of the 2-year program, while the comparison school did not experience similar growth. Implications for future research and implementation of professional development programs to meet the needs of teachers in the realm of CRP in science are discussed.

  15. Preservice Elementary Teachers' Ideas About Scientific Practices

    NASA Astrophysics Data System (ADS)

    Ricketts, Amy

    2014-10-01

    With the goal of producing scientifically literate citizens who are able to make informed decisions and reason critically when science intersects with their everyday lives, the National Research Council (NRC) has produced two recent documents that call for a new approach to K-12 science education that is based on scientific practices, crosscutting concepts, and disciplinary core ideas. These documents will potentially influence future state standards and K-12 curricula. Teachers will need support in order to teach science using a practices based approach, particularly if they do not have strong science backgrounds, which is often the case with elementary teachers. This study investigates one cohort (n = 19) of preservice elementary teachers' ideas about scientific practices, as developed in a one-semester elementary science teaching methods course. The course focused on eight particular scientific practices, as defined by the National Research Council's A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (2012). Participants' written reflections, lesson plans and annotated teaching videos were analyzed in fine detail to better understand their ideas about what it means to engage in each of the practices. The findings suggest that preservice elementary teachers hold promising ideas about scientific practices (such as an emphasis on argumentation and communication between scientists, critical thinking, and answering and asking questions as the goal of science) as well as problematic ideas (including confusion over the purpose of modeling and the process of analysis, and conflating argumentation and explanation building). These results highlight the strengths and limitations of using the Framework (NRC 2012) as an instructional text and the difficulties of differentiating between preservice teachers' content knowledge about doing the practices and their pedagogical knowledge about teaching the practices.

  16. A framework for analyzing interdisciplinary tasks: implications for student learning and curricular design.

    PubMed

    Gouvea, Julia Svoboda; Sawtelle, Vashti; Geller, Benjamin D; Turpen, Chandra

    2013-06-01

    The national conversation around undergraduate science instruction is calling for increased interdisciplinarity. As these calls increase, there is a need to consider the learning objectives of interdisciplinary science courses and how to design curricula to support those objectives. We present a framework that can help support interdisciplinary design research. We developed this framework in an introductory physics for life sciences majors (IPLS) course for which we designed a series of interdisciplinary tasks that bridge physics and biology. We illustrate how this framework can be used to describe the variation in the nature and degree of interdisciplinary interaction in tasks, to aid in redesigning tasks to better align with interdisciplinary learning objectives, and finally, to articulate design conjectures that posit how different characteristics of these tasks might support or impede interdisciplinary learning objectives. This framework will be useful for both curriculum designers and education researchers seeking to understand, in more concrete terms, what interdisciplinary learning means and how integrated science curricula can be designed to support interdisciplinary learning objectives.

  17. A Framework for Analyzing Interdisciplinary Tasks: Implications for Student Learning and Curricular Design

    PubMed Central

    Gouvea, Julia Svoboda; Sawtelle, Vashti; Geller, Benjamin D.; Turpen, Chandra

    2013-01-01

    The national conversation around undergraduate science instruction is calling for increased interdisciplinarity. As these calls increase, there is a need to consider the learning objectives of interdisciplinary science courses and how to design curricula to support those objectives. We present a framework that can help support interdisciplinary design research. We developed this framework in an introductory physics for life sciences majors (IPLS) course for which we designed a series of interdisciplinary tasks that bridge physics and biology. We illustrate how this framework can be used to describe the variation in the nature and degree of interdisciplinary interaction in tasks, to aid in redesigning tasks to better align with interdisciplinary learning objectives, and finally, to articulate design conjectures that posit how different characteristics of these tasks might support or impede interdisciplinary learning objectives. This framework will be useful for both curriculum designers and education researchers seeking to understand, in more concrete terms, what interdisciplinary learning means and how integrated science curricula can be designed to support interdisciplinary learning objectives. PMID:23737627

  18. Microgravity isolation system design: A modern control synthesis framework

    NASA Technical Reports Server (NTRS)

    Hampton, R. D.; Knospe, C. R.; Allaire, P. E.; Grodsinsky, C. M.

    1994-01-01

    Manned orbiters will require active vibration isolation for acceleration-sensitive microgravity science experiments. Since umbilicals are highly desirable or even indispensable for many experiments, and since their presence greatly affects the complexity of the isolation problem, they should be considered in control synthesis. In this paper a general framework is presented for applying extended H2 synthesis methods to the three-dimensional microgravity isolation problem. The methodology integrates control and state frequency weighting and input and output disturbance accommodation techniques into the basic H2 synthesis approach. The various system models needed for design and analysis are also presented. The paper concludes with a discussion of a general design philosophy for the microgravity vibration isolation problem.

  19. Microgravity isolation system design: A modern control synthesis framework

    NASA Technical Reports Server (NTRS)

    Hampton, R. D.; Knospe, C. R.; Allaire, P. E.; Grodsinsky, C. M.

    1994-01-01

    Manned orbiters will require active vibration isolation for acceleration-sensitive microgravity science experiments. Since umbilicals are highly desirable or even indispensable for many experiments, and since their presence greatly affects the complexity of the isolation problem, they should be considered in control synthesis. A general framework is presented for applying extended H2 synthesis methods to the three-dimensional microgravity isolation problem. The methodology integrates control and state frequency weighting and input and output disturbance accommodation techniques into the basic H2 synthesis approach. The various system models needed for design and analysis are also presented. The paper concludes with a discussion of a general design philosophy for the microgravity vibration isolation problem.

  20. Preparing students for higher education and careers in agriculture and related fields: An ethnography of an urban charter school

    NASA Astrophysics Data System (ADS)

    Henry, Kesha Atasha

    This study explored the preparation of students for higher education and careers in agriculturally-related fields at an urban charter high school. The data were collected through interviews, observations, and field notes. The data were analyzed by qualitative methodology with phenomenology as the theoretical framework. Findings indicated that administrators thought it was important to incorporate agricultural science courses into urban school curricula. They stated that agricultural science courses gave urban students a different way of looking at science and helped to enhance the science and technology focus of the school. Further, agricultural science courses helped to break urban students' stereotypes about agriculture and helped to bring in more state funding for educational programs. However they thought that it was more challenging to teach agricultural science in urban versus rural schools and they focused more on Science, Technology, Engineering, and Mathematics (STEM) related careers. The students had mixed views about higher education and careers in agriculture. This was based on their limited knowledge and stereotypes about agricultural majors and career options. The students highlighted several key reasons why they chose to enroll in agricultural science courses. This included the benefits of dual science credits and the ability to earn an associate degree upon successful completion of their program. Students also loved science and appreciated the science intensive nature of the agricultural courses. Additionally, they thought that the agricultural science courses were better than the other optional courses. The results also showed that electronic media such as radio and TV had a negative impact on students' perceptions about higher education and careers in agriculturally-related fields. Conclusions and recommendations are presented.

  1. Learning through Constructing Representations in Science: A Framework of Representational Construction Affordances

    ERIC Educational Resources Information Center

    Prain, Vaughan; Tytler, Russell

    2012-01-01

    Compared with research on the role of student engagement with expert representations in learning science, investigation of the use and theoretical justification of student-generated representations to learn science is less common. In this paper, we present a framework that aims to integrate three perspectives to explain how and why…

  2. Conceptualizing the Science Curriculum: 40 Years of Developing Assessment Frameworks in Three Large-Scale Assessments

    ERIC Educational Resources Information Center

    Kind, Per Morten

    2013-01-01

    The paper analyzes conceptualizations in the science frameworks in three large-scale assessments, Trends in Mathematics and Science Study (TIMSS), Programme for International Student Assessment (PISA), and National Assessment of Educational Progress (NAEP). The assessments have a shared history, but have developed different conceptualizations. The…

  3. Inquiry-Based Learning: A Framework for Assessing Science in the Early Years

    ERIC Educational Resources Information Center

    Marian, Hazel; Jackson, Claire

    2017-01-01

    This article draws on current literature leading to the development of a holistic framework to support practitioners in observation and assessment of childrens evolving inquiry skills. Evidence from the 2011 Trends in International Maths and Science Study (TIMSS) in England identifies a decline of year five student achievement in science. A…

  4. What Makes Us Tick...Tock?

    ERIC Educational Resources Information Center

    Talbot, Kristen; Hug, Barbara

    2013-01-01

    Teachers often ask: How can I engage my students in the study of "real" science? The answer can be found in the National Research Council's "A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas" (NRC 2012). This framework calls for a new approach to science education and is the basis for…

  5. Action Research Study. A Framework To Help Move Teachers toward an Inquiry-Based Science Teaching Approach.

    ERIC Educational Resources Information Center

    Staten, Mary E.

    This action research study developed a framework for moving teachers toward an inquiry-based approach to teaching science, emphasizing elements, strategies, and supports necessary to encourage and sustain teachers' use of inquiry-based science instruction. The study involved a literature review, participant observation, focus group discussions,…

  6. Ocean Sciences Sequence for Grades 6-8: Climate Change Curriculum Developed Through a Collaboration Between Scientists and Educators

    NASA Astrophysics Data System (ADS)

    Weiss, E.; Skene, J.; Tran, L.

    2011-12-01

    Today's youth have been tasked with the overwhelming job of addressing the world's climate future. The students who will become the scientists, policy makers, and citizens of tomorrow must gain a robust understanding of the causes and effects of climate change, as well as possible adaptation strategies. Currently, there are few high quality curricula available to teachers that address these topics in a developmentally appropriate manner. The NOAA-funded Ocean Sciences Sequence for Grades 6-8 aims to address this gap by providing teachers with scientifically accurate climate change curriculum that hits on some of the most salient points in climate science, while simultaneously developing students' science process skills. The Ocean Sciences Sequence for Grades 6-8 is developed through a collaboration between some of the nation's leading ocean and climate scientists and the Lawrence Hall of Science's highly qualified GEMS (Great Explorations in Math & Science) curriculum development team. Scientists are active partners throughout the whole development process, from initial brainstorming of key concepts and creating the conceptual storyline for the curriculum to final review of the content and activities. As with all GEMS Sequences, the Ocean Sciences Sequence for Grades 6-8 is designed to provide significant scientific and educational depth, systematic assessments and informational readings, and incorporate new learning technologies. The goal is to focus strategically and effectively on the core concepts within ocean and climate sciences that students need to understand. This curriculum is designed in accordance with the latest research from the learning sciences, and provides numerous opportunities for students to develop inquiry skills and abilities as they learn about the practice of science through hands-on activities. The Ocean Sciences Sequence for Grades 6-8 addresses in depth a significant number of national, state, and district standards and benchmarks. It aligns with the Ocean Literacy and Climate Literacy Frameworks, as well as multiple core ideas in the new National Academy of Sciences Framework for K-12 Science Education. In brief, the curriculum comprises 33 45-minute sessions organized into three thematic units that are each driven by an exploratory question: Unit 1 (11 sessions)-How do the ocean and atmosphere interact?; Unit 2 (8 sessions)-How does carbon flow through the ocean, land, and atmosphere?; and Unit 3 (12 sessions)-What are the causes and effects of climate change? The curriculum deliberately explores the ocean and climate as global systems, and challenges students to use scientific evidence to make explanations about climate change. The Ocean Sciences Sequence for Grades 6-8 is currently being classroom tested by teachers across the United States in a wide variety of classroom settings. Evaluation is also being undertaken to determine the efficacy of the sequence in addressing the curriculum's learning goals.

  7. Can Programming Frameworks Bring Smartphones into the Mainstream of Psychological Science?

    PubMed Central

    Piwek, Lukasz; Ellis, David A.

    2016-01-01

    Smartphones continue to provide huge potential for psychological science and the advent of novel research frameworks brings new opportunities for researchers who have previously struggled to develop smartphone applications. However, despite this renewed promise, smartphones have failed to become a standard item within psychological research. Here we consider the key issues that continue to limit smartphone adoption within psychological science and how these barriers might be diminishing in light of ResearchKit and other recent methodological developments. We conclude that while these programming frameworks are certainly a step in the right direction it remains challenging to create usable research-orientated applications with current frameworks. Smartphones may only become an asset for psychology and social science as a whole when development software that is both easy to use and secure becomes freely available. PMID:27602010

  8. Economics and econophysics in the era of Big Data

    NASA Astrophysics Data System (ADS)

    Cheong, Siew Ann

    2016-12-01

    There is an undeniable disconnect between theory-heavy economics and the real world, and some cross polination of ideas with econophysics, which is more balanced between data and models, might help economics along the way to become a truly scientific enterprise. With the coming of the era of Big Data, this transformation of economics into a data-driven science is becoming more urgent. In this article, I use the story of Kepler's discovery of his three laws of planetary motion to enlarge the framework of the scientific approach, from one that focuses on experimental sciences, to one that accommodates observational sciences, and further to one that embraces data mining and machine learning. I distinguish between the ontological values of Kepler's Laws vis-a-vis Newton's Laws, and argue that the latter is more fundamental because it is able to explain the former. I then argue that the fundamental laws of economics lie not in mathematical equations, but in models of adaptive economic agents. With this shift in mind set, it becomes possible to think about how interactions between agents can lead to the emergence of multiple stable states and critical transitions, and complex adaptive policies and regulations that might actually work in the real world. Finally, I discuss how Big Data, exploratory agent-based modeling, and predictive agent-based modeling can come together in a unified framework to make economics a true science.

  9. Practices influenced by policy? An exploration of newly hired science teachers at sites in South Africa and the United States

    NASA Astrophysics Data System (ADS)

    Navy, S. L.; Luft, J. A.; Toerien, R.; Hewson, P. W.

    2018-05-01

    In many parts of the world, newly hired science teachers' practices are developing in a complex policy environment. However, little is known about how newly hired science teachers' practices are enacted throughout a cycle of instruction and how these practices can be influenced by macro-, meso-, and micro-policies. Knowing how policies impact practice can result in better policies or better support for certain policies in order to enhance the instruction of newly hired teachers. This comparative study investigated how 12 newly hired science teachers at sites in South Africa (SA) and the United States (US) progressed through an instructional cycle of planning, teaching, and reflection. The qualitative data were analysed through beginning teacher competency frameworks, the cycle of instruction, and institutional theory. Data analysis revealed prevailing areas of practice and connections to levels of policy within the instructional cycle phases. There were some differences between the SA and US teachers and among first-, second-, and third-year teachers. More importantly, this study indicates that newly hired teachers are susceptible to micro-policies and are progressively developing their practice. It also shows the importance of meso-level connectors. It suggests that teacher educators and policy makers must consider how to prepare and support newly hired science teachers to achieve the shared global visions of science teaching.

  10. A Framework for Evaluating Science and Technology Electronic Reference Books: A Comparison of Five Platforms in Chemistry

    ERIC Educational Resources Information Center

    Lafferty, Meghan

    2009-01-01

    This article examines what is desirable in online reference books in science and technology and outlines a framework for evaluating their interfaces. The framework considers factors unique to these subject areas like chemical structures and numerical data. Criteria in three categories, navigability, searchability, and results, were applied to five…

  11. Teaching about Israel in the Seventh Grade: How It Relates to the History/Social Science Framework.

    ERIC Educational Resources Information Center

    Benson, Cecile

    1981-01-01

    Describes an eight-week unit on Israel for seventh graders and shows how the unit relates to the 1981 "California History/Social Science Framework." The unit introduces students to framework content goals in history and the humanities. Activities include journal writing, artifact building, archaeological simulations, and a geographical…

  12. A Competence-Based Science Learning Framework Illustrated through the Study of Natural Hazards and Disaster Risk Reduction

    ERIC Educational Resources Information Center

    Oyao, Sheila G.; Holbrook, Jack; Rannikmäe, Miia; Pagunsan, Marmon M.

    2015-01-01

    This article proposes a competence-based learning framework for science teaching, applied to the study of "big ideas", in this case to the study of natural hazards and disaster risk reduction (NH&DRR). The framework focuses on new visions of competence, placing emphasis on nurturing connectedness and behavioral actions toward…

  13. The Pursuit of a "Better" Explanation as an Organizing Framework for Science Teaching and Learning

    ERIC Educational Resources Information Center

    Papadouris, Nicos; Vokos, Stamatis; Constantinou, Constantinos P.

    2018-01-01

    This article seeks to make the case for the pursuit of a "better" explanation being a productive organizing framework for science teaching and learning. Underlying this position is the idea that this framework allows promoting, in a unified manner, facility with the scientific practice of constructing explanations, appreciation of its…

  14. Optimal and robust control of quantum state transfer by shaping the spectral phase of ultrafast laser pulses.

    PubMed

    Guo, Yu; Dong, Daoyi; Shu, Chuan-Cun

    2018-04-04

    Achieving fast and efficient quantum state transfer is a fundamental task in physics, chemistry and quantum information science. However, the successful implementation of the perfect quantum state transfer also requires robustness under practically inevitable perturbative defects. Here, we demonstrate how an optimal and robust quantum state transfer can be achieved by shaping the spectral phase of an ultrafast laser pulse in the framework of frequency domain quantum optimal control theory. Our numerical simulations of the single dibenzoterrylene molecule as well as in atomic rubidium show that optimal and robust quantum state transfer via spectral phase modulated laser pulses can be achieved by incorporating a filtering function of the frequency into the optimization algorithm, which in turn has potential applications for ultrafast robust control of photochemical reactions.

  15. Parallel Distributed Processing at 25: further explorations in the microstructure of cognition.

    PubMed

    Rogers, Timothy T; McClelland, James L

    2014-08-01

    This paper introduces a special issue of Cognitive Science initiated on the 25th anniversary of the publication of Parallel Distributed Processing (PDP), a two-volume work that introduced the use of neural network models as vehicles for understanding cognition. The collection surveys the core commitments of the PDP framework, the key issues the framework has addressed, and the debates the framework has spawned, and presents viewpoints on the current status of these issues. The articles focus on both historical roots and contemporary developments in learning, optimality theory, perception, memory, language, conceptual knowledge, cognitive control, and consciousness. Here we consider the approach more generally, reviewing the original motivations, the resulting framework, and the central tenets of the underlying theory. We then evaluate the impact of PDP both on the field at large and within specific subdomains of cognitive science and consider the current role of PDP models within the broader landscape of contemporary theoretical frameworks in cognitive science. Looking to the future, we consider the implications for cognitive science of the recent success of machine learning systems called "deep networks"-systems that build on key ideas presented in the PDP volumes. Copyright © 2014 Cognitive Science Society, Inc.

  16. Evolving Frameworks for Different Communities of Scientists and End Users

    NASA Astrophysics Data System (ADS)

    Graves, S. J.; Keiser, K.

    2016-12-01

    Two evolving frameworks for interdisciplinary science will be described in the context of the Common Data Framework for Earth-Observation Data and the importance of standards and protocols. The Event Data Driven Delivery (ED3) Framework, funded by NASA Applied Sciences, provides the delivery of data based on predetermined subscriptions and associated workflows to various communities of end users. ED3's capabilities are used by scientists, as well as policy and resource managers, when event alerts are triggered to respond to their needs. The EarthCube Integration and Testing Environment (ECITE) Assessment Framework for Technology Interoperability and Integration is being developed to facilitate the EarthCube community's assessment of NSF funded technologies addressing Earth science problems. ECITE is addressing the translation of geoscience researchers' use cases into technology use case that apply EarthCube-funded building block technologies (and other existing technologies) for solving science problems. EarthCube criteria for technology assessment include the use of data, metadata and service standards to improve interoperability and integration across program components. The long-range benefit will be the growth of a cyberinfrastructure with technology components that have been shown to work together to solve known science objectives.

  17. Conceptual Elements: A Detailed Framework to Support and Assess Student Learning of Biology Core Concepts

    PubMed Central

    Cary, Tawnya; Branchaw, Janet

    2017-01-01

    The Vision and Change in Undergraduate Biology Education: Call to Action report has inspired and supported a nationwide movement to restructure undergraduate biology curricula to address overarching disciplinary concepts and competencies. The report outlines the concepts and competencies generally but does not provide a detailed framework to guide the development of the learning outcomes, instructional materials, and assessment instruments needed to create a reformed biology curriculum. In this essay, we present a detailed Vision and Change core concept framework that articulates key components that transcend subdisciplines and scales for each overarching biological concept, the Conceptual Elements (CE) Framework. The CE Framework was developed using a grassroots approach of iterative revision and incorporates feedback from more than 60 biologists and undergraduate biology educators from across the United States. The final validation step resulted in strong national consensus, with greater than 92% of responders agreeing that each core concept list was ready for use by the biological sciences community, as determined by scientific accuracy and completeness. In addition, we describe in detail how educators and departments can use the CE Framework to guide and document reformation of individual courses as well as entire curricula. PMID:28450444

  18. Small Science: Infants and Toddlers Experiencing Science in Everyday Family Life

    NASA Astrophysics Data System (ADS)

    Sikder, Shukla; Fleer, Marilyn

    2015-06-01

    Vygotsky (1987) stated that the restructured form of everyday concepts learned at home and in the community interact with scientific concepts introduced in formal school settings, leading to a higher level of scientific thinking for school-aged children. But, what does this mean for the scientific learning of infants and toddlers? What kinds of science learning are afforded at home during this early period of life? The study reported in this paper sought to investigate the scientific development of infants-toddlers (10 to 36 months) growing up in Bangladeshi families living in Australia and Singapore. Four families were studied over 2 years. Digital video observations were made of everyday family life and analysed using Vygotsky's theoretical framework of everyday concepts and scientific concepts (51 h of digital observations). While there are many possibilities for developing scientific concepts in infants-toddlers' everyday life, our study found four categories of what we have called small science: multiple possibilities for science; discrete science; embedded science and counter intuitive science. The findings of this study contribute to the almost non-existent literature into infants and toddlers' scientific development and advance new understandings of early childhood science education.

  19. Engaging Students In The Science Of Climate Change

    NASA Astrophysics Data System (ADS)

    Rhew, R. C.; Halversen, C.; Weiss, E.; Pedemonte, S.; Weirman, T.

    2013-12-01

    Climate change is arguably the defining environmental issue of our generation. It is thus increasingly necessary for every member of the global community to understand the basic underlying science of Earth's climate system and how it is changing in order to make informed, evidence-based decisions about how we will respond individually and as a society. Through exploration of the inextricable interconnection between Earth's ocean, atmosphere and climate, we believe students will be better prepared to tackle the complex issues surrounding the causes and effects of climate change and evaluate possible solutions. If students are also given opportunities to gather evidence from real data and use scientific argumentation to make evidence-based explanations about climate change, not only will they gain an increased understanding of the science concepts and science practices, the students will better comprehend the nature of climate change science. Engaging in argument from evidence is a scientific practice not only emphasized in the Framework for K-12 Science Education and the Next Generation Science Standards (NGSS), but also emphasized in the Common Core State Standards for English Language Arts & Literacy in History/Social Studies and Science (CCSS). This significant overlap between NGSS and CCSS has implications for science and language arts classrooms, and should influence how we support and build students' expertise with this practice of sciences. The featured exemplary curricula supports middle school educators as they address climate change in their classrooms. The exemplar we will use is the NOAA-funded Ocean Sciences Sequence (OSS) for Grades 6-8: The ocean-atmosphere connection and climate change, which are curriculum units that deliver rich science content correlated to the Next Generation Science Standards (NGSS) Disciplinary Core Ideas and an emphasis on the Practices of Science, as called for in NGSS and the Framework. Designed in accordance with the latest research on learning this curriculum provides numerous opportunities for students to use real data to make evidence-based explanations. During the session, we will discuss ways in which students can use scientific data related to climate change as evidence in their construction of scientific arguments.

  20. Bound States and the Third Harmonic Generation in an Electric Field Biased Semi-parabolic Quantum Well

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Xie, Hong-Jing

    2003-11-01

    Within the framework of the compact density matrix approach, the third-harmonic generation (THG) in an electric-field-biased semi-parabolic quantum well (QW) has been deduced and investigated. Via variant of displacement harmonic oscillation, the exact electronic states in the semi-parabolic QW with an applied electric field have also been obtained and discussed. Numerical results on typical GaAs material reveal that, electric fields and confined potential frequency of semi-parabolic QW have obvious influences on the energy levels of electronic states and the THG in the semi-parabolic QW systems. The project supported in part by Guangdong Provincial Natural Science Foundation of China

  1. Research design: the methodology for interdisciplinary research framework.

    PubMed

    Tobi, Hilde; Kampen, Jarl K

    2018-01-01

    Many of today's global scientific challenges require the joint involvement of researchers from different disciplinary backgrounds (social sciences, environmental sciences, climatology, medicine, etc.). Such interdisciplinary research teams face many challenges resulting from differences in training and scientific culture. Interdisciplinary education programs are required to train truly interdisciplinary scientists with respect to the critical factor skills and competences. For that purpose this paper presents the Methodology for Interdisciplinary Research (MIR) framework. The MIR framework was developed to help cross disciplinary borders, especially those between the natural sciences and the social sciences. The framework has been specifically constructed to facilitate the design of interdisciplinary scientific research, and can be applied in an educational program, as a reference for monitoring the phases of interdisciplinary research, and as a tool to design such research in a process approach. It is suitable for research projects of different sizes and levels of complexity, and it allows for a range of methods' combinations (case study, mixed methods, etc.). The different phases of designing interdisciplinary research in the MIR framework are described and illustrated by real-life applications in teaching and research. We further discuss the framework's utility in research design in landscape architecture, mixed methods research, and provide an outlook to the framework's potential in inclusive interdisciplinary research, and last but not least, research integrity.

  2. Teaching Scientific Practices: Meeting the Challenge of Change

    ERIC Educational Resources Information Center

    Osborne, Jonathan

    2014-01-01

    This paper provides a rationale for the changes advocated by the Framework for K-12 Science Education and the Next Generation Science Standards. It provides an argument for why the model embedded in the Next Generation Science Standards is seen as an improvement. The Case made here is that the underlying model that the new Framework presents of…

  3. The Impact of a "Framework"-Aligned Science Professional Development Program on Literacy and Mathematics Achievement of K-3 Students

    ERIC Educational Resources Information Center

    Paprzycki, Peter; Tuttle, Nicole; Czerniak, Charlene M.; Molitor, Scott; Kadervaek, Joan; Mendenhall, Robert

    2017-01-01

    This study investigates the effect of a Framework-aligned professional development program at the PreK-3 level. The NSF funded program integrated science with literacy and mathematics learning and provided teacher professional development, along with materials and programming for parents to encourage science investigations and discourse around…

  4. Contextualization of Nature of Science within the Socioscientific Issues Framework: A Review of Research

    ERIC Educational Resources Information Center

    Karisan, Dilek; Zeidler, Dana L.

    2017-01-01

    The aim of this paper is to examine the importance of contextualization of Nature of Science (NOS) within the Socioscientific Issues (SSI) framework, because of the importance to science education. The emphasis on advancing scientific literacy is contingent upon a robust understanding and appreciation of NOS, as well as the acquisition of…

  5. The Art and Science of Teaching: A Comprehensive Framework for Effective Instruction

    ERIC Educational Resources Information Center

    Marzano, Robert J.

    2007-01-01

    Though classroom instructional strategies should clearly be based on sound science and research, knowing when to use them and with whom is more of an art. In "The Art and Science of Teaching: A Comprehensive Framework for Effective Instruction," author Robert J. Marzano presents a model for ensuring quality teaching that balances the necessity of…

  6. Towards a Pedagogical Model for Science Education: Bridging Educational Contexts through a Blended Learning Approach

    ERIC Educational Resources Information Center

    Bidarra, José; Rusman, Ellen

    2017-01-01

    This paper proposes a design framework to support science education through blended learning, based on a participatory and interactive approach supported by ICT-based tools, called "Science Learning Activities Model" (SLAM). The development of this design framework started as a response to complex changes in society and education (e.g.…

  7. What Are Some Alternatives for Working Within a Regionally Adopted Science Framework?

    ERIC Educational Resources Information Center

    Perkes, Victor A.

    Alternatives for working within a regionally adopted framework for selecting an elementary school science program are considered in this paper. The alternatives are ranked on a scale from 0 to 5 in increasing levels of modifying a set instructional pattern: Level 0, typified by indifference to any consistent program in science; Level 1, a complete…

  8. Reconsidering the Framework. Learning in Science Project. Working Paper No. 14.

    ERIC Educational Resources Information Center

    Osborne, Roger; And Others

    The first working paper of the Learning in Science Project, "An Initial Framework," outlined what was then seen as the major aims of the project and suggested how these aims might be achieved by three phases of research: exploratory (to observe teaching/learning in Form 1 to 4 science classrooms and to identify difficulties perceived by…

  9. Keeping the Local Local: Recalibrating the Status of Science and Traditional Ecological Knowledge (TEK) in Education

    ERIC Educational Resources Information Center

    Van Eijck, Michiel; Roth, Wolff-Michael

    2007-01-01

    The debate on the status of traditional ecological knowledge (TEK) in science curricula is currently centered on a juxtaposition of two incompatible frameworks: multiculturalism and universalism. The aim of this paper is to establish a framework that overcomes this opposition between multiculturalism and universalism in science education, so that…

  10. Narrative Approaches to Organizational Development: A Case Study of Implementation of Collaborative Helping.

    PubMed

    Madsen, William C

    2016-06-01

    Across North America, community agencies and state/provincial jurisdictions are embracing family-centered approaches to service delivery that are grounded in strength-based, culturally responsive, accountable partnerships with families. This article details a collaborative consultation process to initiate and sustain organizational change toward this effort. It draws on innovative ideas from narrative theory, organizational development, and implementation science to highlight a three component approach. This approach includes the use of appreciative inquiry focus groups to elicit existing best practices, the provision of clinical training, and ongoing coaching with practice leaders to build on those better moments and develop concrete practice frameworks, and leadership coaching and organizational consultation to develop organizational structures that institutionalize family-centered practice. While the article uses a principle-based practice framework, Collaborative Helping, to illustrate this process, the approach is applicable with a variety of clinical frameworks grounded in family-centered values and principles. © 2016 Family Process Institute.

  11. A Framework for Relating Cognitive to Neural Systems. Cognitive Science Program, Technical Report No. 84-2.

    ERIC Educational Resources Information Center

    Posner, Michael I.

    This paper reviews the aspects of cognitive science that relate best to using electrical and magnetic recording to understand the function of brain systems. It outlines a framework for relating cognitive activities of daily life (typing, reading) to underlying neural systems. The framework uses five levels of analysis: task, elementary operations,…

  12. Scaffolding Preservice Teachers' Evaluation of Children's Science Literature: Attention to Science-Focused Genres and Use

    NASA Astrophysics Data System (ADS)

    Ford, Danielle J.

    2004-04-01

    The use of an inquiry framework to support the development of learners'' scientific literacy has been supported by research on learning in science and advocated by the major science standards and policy documents. To fully engage in inquiry, however, a wide range of tools, including both activities and texts, must be employed. The successful integration of text materials requires the selection of suitable texts. This, in turn, requires an in-depth understanding of the types of science books available and their potential uses within an inquiry framework. To support preservice teachers'' development of these understandings, I examined the criteria they typically employ when evaluating texts in contextualized and uncontextualized settings. In these settings, students attended primarily to visual characteristics of texts or exhibited their limited understandings of science content and text use. These results were used to develop an evaluation framework that emphasizes use in inquiry over other typical evaluation criteria.

  13. NASA's explorer school and spaceward bound programs: Insights into two education programs designed to heighten public support for space science initiatives

    USGS Publications Warehouse

    Allner, Matthew; McKay, Christopher P; Coe, Liza; Rask, Jon; Paradise, Jim; Wynne, J. Judson

    2010-01-01

    IntroductionNASA has played an influential role in bringing the enthusiasm of space science to schools across the United States since the 1980s. The evolution of this public outreach has led to a variety of NASA funded education programs designed to promote student interest in science, technology, engineering, math, and geography (STEM-G) careers.PurposeThis paper investigates the educational outreach initiatives, structure, and impact of two of NASA's largest educational programs: the NASA Explorer School (NES) and NASA Spaceward Bound programs.ResultsSince its induction in 2003 the NES program has networked and provided resources to over 300 schools across the United States. Future directions include further development of mentor schools for each new NES school selected, while also developing a longitudinal student tracking system for NES students to monitor their future involvement in STEM-G careers. The Spaceward Bound program, now in its third year of teacher outreach, is looking to further expand its teacher network and scientific collaboration efforts, while building on its teacher mentorship framework.

  14. Virtue ethics, positive psychology, and a new model of science and engineering ethics education.

    PubMed

    Han, Hyemin

    2015-04-01

    This essay develops a new conceptual framework of science and engineering ethics education based on virtue ethics and positive psychology. Virtue ethicists and positive psychologists have argued that current rule-based moral philosophy, psychology, and education cannot effectively promote students' moral motivation for actual moral behavior and may even lead to negative outcomes, such as moral schizophrenia. They have suggested that their own theoretical framework of virtue ethics and positive psychology can contribute to the effective promotion of motivation for self-improvement by connecting the notion of morality and eudaimonic happiness. Thus this essay attempts to apply virtue ethics and positive psychology to science and engineering ethics education and to develop a new conceptual framework for more effective education. In addition to the conceptual-level work, this essay suggests two possible educational methods: moral modeling and involvement in actual moral activity in science and engineering ethics classes, based on the conceptual framework.

  15. Science-based Forest Management in an Era of Climate Change

    NASA Astrophysics Data System (ADS)

    Swanston, C.; Janowiak, M.; Brandt, L.; Butler, P.; Handler, S.; Shannon, D.

    2014-12-01

    Recognizing the need to provide climate adaptation information, training, and tools to forest managers, the Forest Service joined with partners in 2009 to launch a comprehensive effort called the Climate Change Response Framework (www.forestadaptation.org). The Framework provides a structured approach to help managers integrate climate considerations into forest management plans and then implement adaptation actions on the ground. A planning tool, the Adaptation Workbook, is used in conjunction with vulnerability assessments and a diverse "menu" of adaptation approaches to generate site-specific adaptation actions that meet explicit management objectives. Additionally, a training course, designed around the Adaptation Workbook, leads management organizations through this process of designing on-the-ground adaptation tactics for their management projects. The Framework is now being actively pursued in 20 states in the Northwoods, Central Hardwoods, Central Appalachians, Mid-Atlantic, and New England. The Framework community includes over 100 science and management groups, dozens of whom have worked together to complete six ecoregional vulnerability assessments covering nearly 135 million acres. More than 75 forest and urban forest adaptation strategies and approaches were synthesized from peer-reviewed and gray literature, expert solicitation, and on-the-ground adaptation projects. These are being linked through the Adaptation Workbook process to on-the-ground adaptation tactics being planned and employed in more than 50 adaptation "demonstrations". This presentation will touch on the scientific and professional basis of the vulnerability assessments, and showcase efforts where adaptation actions are currently being implemented in forests.

  16. USGS ecosystem research for the next decade: advancing discovery and application in parks and protected areas through collaboration

    USGS Publications Warehouse

    van Riper, Charles; Nichols, James D.; Wingard, G. Lynn; Kershner, Jeffrey L.; Cloern, James E.; Jacobson, Robert B.; White, Robin P.; McGuire, Anthony David; Williams, Byron K.; Gelfenbaum, Guy; Shapiro, Carl D.

    2014-01-01

    Ecosystems within parks and protected areas in the United States and throughout the world are being transformed at an unprecedented rate. Changes associated with natural hazards, greenhouse gas emissions, and increasing demands for water, food, land, energy and mineral resources are placing urgency on sound decision making that will help sustain our Nation’s economic and environmental well-being (Millennium Ecosystem Assessment, 2005). In recognition of the importance of science in making these decisions, the U.S. Geological Survey (USGS) in 2007 identified ecosystem science as one of six science directions included in a comprehensive decadal strategy (USGS 2007). The Ecosystems Mission Area was identified as essential for integrating activity within the USGS and as a key to enhanced integration with other Federal and private sector research and management organizations (Myers at al., 2007). This paper focuses on benefits to parks and protected areas from the USGS Ecosystems Mission Area plan that expanded the scope of the original 2007 science strategy, to identify the Bureau’s work in ecosystem science over the next decade (Williams et al., 2013). The plan describes a framework that encompasses both basic and applied science and allows the USGS to continue to contribute meaningfully to conservation and management issues related to the Nation’s parks and ecological resources. This framework relies on maintaining long-standing, collaborative relationships with partners in both conducting science and applying scientific results. Here we summarize the major components of the USGS Ecosystems Science Strategy, articulating the vision, goals and strategic approaches, then outlining some of the proposed actions that will ultimately prove useful to those managing parks and protected areas. We end with a discussion on the future of ecosystem science for the USGS and how it can be used to evaluate ecosystem change and the associated consequences to management of our Nation’s natural resources.

  17. PREFACE: Rusnanotech 2010 International Forum on Nanotechnology

    NASA Astrophysics Data System (ADS)

    Kazaryan, Konstantin

    2011-03-01

    The Rusnanotech 2010 International Forum on Nanotechnology was held from November 1-3, 2010, in Moscow, Russia. It was the third forum organized by RUSNANO (Russian Corporation of Nanotechnologies) since 2008. In March 2011 RUSNANO was established as an open joint-stock company through the reorganization of the state corporation Russian Corporation of Nanotechnologies. RUSNANO's mission is to develop the Russian nanotechnology industry through co-investment in nanotechnology projects with substantial economic potential or social benefit. Within the framework of the Forum Science and Technology Program, presentations on key trends of nanotechnology development were given by foreign and Russian scientists, R&D officers of leading international companies, universities and scientific centers. The science and technology program of the Forum was divided into eight sections as follows (by following hyperlinks you may find each section's program including videos of all oral presentations): Catalysis and Chemical Industry Nanobiotechnology Nanodiagnostics Nanoelectronics Nanomaterials Nanophotonics Nanotechnolgy In The Energy Industry Nanotechnology in Medicine The scientific program of the forum included 115 oral presentations by leading scientists from 15 countries. Among them in the "Nanomaterials" section was the lecture by Dr Konstantin Novoselov, winner of the Nobel Prize in Physics 2010. The poster session consisted of over 500 presentations, 300 of which were presented in the framework of the young scientists' nanotechnology papers competition. This volume of the Journal of Physics: Conference Series includes a selection of 57 submissions. The scientific program committee: Prof Zhores Alferov, AcademicianVice-president of Russian Academy of Sciences, Nobel Prize winner, Russia, Chairman of the Program CommitteeProf Sergey Deev, Corresponding Member of Russian Academy of SciencesHead of the Laboratory of Molecular Immunology, M M Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Russia, Deputy Chairman of the Program CommitteeProf Alexander Aseev, AcademicianVice-president of Russian Academy of Sciences Director, A V Rzhanov-Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, RussiaProf Sergey Bagaev, AcademicianDirector, Institute of Laser Physics, Siberian Branch of Russian Academy of Sciences, RussiaProf Alexander Gintsburg, Ademician, Russian Academy of Medical SciencesDirector Gamaleya Research Institute of Epidemiology and Microbiology, Russian Academy of Medical Sciences, RussiaProf Anatoly Grigoryev, Academician, Russian Academy of Sciences, Russian Academy of Medical SciencesVice-president, Russian Academy of Medical Sciences, RussiaProf Michael Kovalchuk, RAS Corresponding MemberDirector, Kurchatov Institute Russian Scientific Center, RussiaProf Valery Lunin, AcademicianDean, Department of Chemistry, Lomonosov Moscow State University, RussiaProf Valentin Parmon, Academician, DirectorBoreskov Institute of Catalysis, Siberian Branch of Russian Academy of Sciences, RussiaProf Rem Petrov, AcademicianAdvisor, Russian Academy of Sciences, RussiaProf Konstantin Skryabin, AcademicianDirector, Bioinzheneriya Center, Russian Academy of Sciences, RussiaProf Vsevolod Tkachuk, Academician, Russian Academy of Sciences, Russian Academy of Medical SciencesDean, Faculty of Fundamental Medicine, Lomonosov Moscow State University, RussiaProf Vladimir Fortov, AcademicianDirector, Joint Institute for High Temperatures, Russian Academy of Sciences, RussiaProf Alexey Khokhlov, AcademicianVice Principal, Head of Innovation, Information and International Scientific Affairs Department, Lomonosov Moscow State University, RussiaProf Valery Bukhtiyarov, RAS Corresponding MemberDirector, Physicochemical Research Methods Dept., Boreskov Institute of Catalysis, Siberian Branch of Russian Academy of Sciences, RussiaProf Anatoly Dvurechensky, RAS Corresponding MemberDeputy Director, Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, RussiaProf Vladimir Kvardakov, Corresponding Member of Russian Academy of SciencesExecutive Director, Kurchatov Center of Synchrotron Radiation and Nanotechnology, RussiaProf Edward Son, Corresponding member of Russian Academy of SciencesScientific Deputy Director, Joint Institute for High Temperatures, Russian Academy of Sciences, RussiaProf Andrey GudkovSenior Vice President, Basic Science Chairman, Department of Cell Stress Biology, Roswell Park Cancer Institute, USAProf Robert NemanichChair, Department of Physics, Arizona State University, USAProf Kandlikar SatishProfessor, Rochester Institute of Technology, USAProf Xiang ZhangUC Berkeley, Director of NSF Nano-scale Science and Engineering Center (NSEC), USAProf Andrei ZvyaginProfessor, Macquarie University, AustraliaProf Sergey KalyuzhnyDirector of the Scientific and Technological Expertise Department, RUSNANO, RussiaKonstantin Kazaryan, PhDExpert of the Scientific and Technological Expertise Department, RUSNANO, Russia, Program Committee SecretarySimeon ZhavoronkovHead of Nanotechnology Programs Development Office, Rusnanotech Forum Fund for the Nanotechnology Development, Russia Editors of the proceedings: Section "Nanoelectronics" - Corresponding Member of Russian Academy of Sciences, Professor Anatoly Dvurechenskii (Institute of Semiconductor Physics, RAS).Section "Nanophotonics" - Professor Vasily Klimov (Institute of Physics, RAS).Section "Nanodiagnostics" - Professor P Kashkarov (Russian Scientific Center, Kurchatov Institute).Section "Nanotechnology for power engineering" - Corresponding Member of Russian Academy of Sciences, Professor Eduard Son (Joint Institute for High Temperatures, RAS).Section "Catalysis and chemical industry" - Member of Russian Academy of Sciences, Professor Valentin Parmon (Institute of Catalysis SB RAS).Section "Nanomaterials" - E Obraztsova, PhD (Institute of Physics, RAS), Marat Gallamov PhD (Moscow State University).Section "Nanotechnology in medicine" - Denis Logunov, PhD (Gamaleya Research Institute of Epidemiology and Microbiology, RAMS).Section "Nanobiotechnology" - Member of Russian Academy of Sciences, Professor Konstantin Skryabin (Bioengineering Center, RAS), Member of Russian Academy of Sciences, Professor Rem Petrov (RAS), Corresponding Member of Russian Academy of Sciences, Professor Sergey Deev (Institute of Bioorganic Chemistry).

  18. Horizon: The Portable, Scalable, and Reusable Framework for Developing Automated Data Management and Product Generation Systems

    NASA Astrophysics Data System (ADS)

    Huang, T.; Alarcon, C.; Quach, N. T.

    2014-12-01

    Capture, curate, and analysis are the typical activities performed at any given Earth Science data center. Modern data management systems must be adaptable to heterogeneous science data formats, scalable to meet the mission's quality of service requirements, and able to manage the life-cycle of any given science data product. Designing a scalable data management doesn't happen overnight. It takes countless hours of refining, refactoring, retesting, and re-architecting. The Horizon data management and workflow framework, developed at the Jet Propulsion Laboratory, is a portable, scalable, and reusable framework for developing high-performance data management and product generation workflow systems to automate data capturing, data curation, and data analysis activities. The NASA's Physical Oceanography Distributed Active Archive Center (PO.DAAC)'s Data Management and Archive System (DMAS) is its core data infrastructure that handles capturing and distribution of hundreds of thousands of satellite observations each day around the clock. DMAS is an application of the Horizon framework. The NASA Global Imagery Browse Services (GIBS) is NASA's Earth Observing System Data and Information System (EOSDIS)'s solution for making high-resolution global imageries available to the science communities. The Imagery Exchange (TIE), an application of the Horizon framework, is a core subsystem for GIBS responsible for data capturing and imagery generation automation to support the EOSDIS' 12 distributed active archive centers and 17 Science Investigator-led Processing Systems (SIPS). This presentation discusses our ongoing effort in refining, refactoring, retesting, and re-architecting the Horizon framework to enable data-intensive science and its applications.

  19. Business aspects and sustainability for healthgrids - an expert survey.

    PubMed

    Scholz, Stefan; Semler, Sebastian C; Breitner, Michael H

    2009-01-01

    Grid computing initiatives in medicine and life sciences are under pressure to prove their sustainability. While some first business model frameworks were outlined, few practical experiences were considered. This gap has been narrowed by an international survey of 33 grid computing experts with biomedical and non-biomedical background on business aspects. The experts surveyed were cautiously optimistic about a sustainable implementation of grid computing within a mid term timeline. They identified marketable application areas, stated the underlying value proposition, outlined trends and specify critical success factors. From a general perspective of their answers, they provided a stable basis for a road map of sustainable grid computing solutions for medicine and life sciences.

  20. Completing the Link between Exposure Science and ...

    EPA Pesticide Factsheets

    Driven by major scientific advances in analytical methods, biomonitoring, computation, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deployment of an organizational and predictive framework for exposure science analogous to the “systems approaches” used in the biological sciences is a necessary step in this evolution. Here we propose the aggregate exposure pathway (AEP) concept as the natural and complementary companion in the exposure sciences to the adverse outcome pathway (AOP) concept in the toxicological sciences. Aggregate exposure pathways offer an intuitive framework to organize exposure data within individual units of prediction common to the field, setting the stage for exposure forecasting. Looking farther ahead, we envision direct linkages between aggregate exposure pathways and adverse outcome pathways, completing the source to outcome continuum for more meaningful integration of exposure assessment and hazard identification. Together, the two frameworks form and inform a decision-making framework with the flexibility for risk-based, hazard-based, or exposure-based decision making. The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports G

  1. Utilizing the National Research Council's (NRC) Conceptual Framework for the Next Generation Science Standards (NGSS): A Self-Study in My Science, Engineering, and Mathematics Classroom

    NASA Astrophysics Data System (ADS)

    Corvo, Arthur Francis

    Given the reality that active and competitive participation in the 21 st century requires American students to deepen their scientific and mathematical knowledge base, the National Research Council (NRC) proposed a new conceptual framework for K--12 science education. The framework consists of an integration of what the NRC report refers to as the three dimensions: scientific and engineering practices, crosscutting concepts, and core ideas in four disciplinary areas (physical, life and earth/spaces sciences, and engineering/technology). The Next Generation Science Standards (NGSS ), which are derived from this new framework, were released in April 2013 and have implications on teacher learning and development in Science, Technology, Engineering, and Mathematics (STEM). Given the NGSS's recent introduction, there is little research on how teachers can prepare for its release. To meet this research need, I implemented a self-study aimed at examining my teaching practices and classroom outcomes through the lens of the NRC's conceptual framework and the NGSS. The self-study employed design-based research (DBR) methods to investigate what happened in my secondary classroom when I designed, enacted, and reflected on units of study for my science, engineering, and mathematics classes. I utilized various best practices including Learning for Use (LfU) and Understanding by Design (UbD) models for instructional design, talk moves as a tool for promoting discourse, and modeling instruction for these designed units of study. The DBR strategy was chosen to promote reflective cycles, which are consistent with and in support of the self-study framework. A multiple case, mixed-methods approach was used for data collection and analysis. The findings in the study are reported by study phase in terms of unit planning, unit enactment, and unit reflection. The findings have implications for science teaching, teacher professional development, and teacher education.

  2. Science framework for conservation and restoration of the sagebrush biome: Linking the Department of the Interior’s Integrated Rangeland Fire Management Strategy to long-term strategic conservation actions, Part 1. Science basis and applications

    USGS Publications Warehouse

    Chambers, Jeanne C.; Beck, Jeffrey L.; Bradford, John B.; Bybee, Jared; Campbell, Steve; Carlson, John; Christiansen, Thomas J; Clause, Karen J.; Collins, Gail; Crist, Michele R.; Dinkins, Jonathan B.; Doherty, Kevin E.; Edwards, Fred; Espinosa, Shawn; Griffin, Kathleen A.; Griffin, Paul; Haas, Jessica R.; Hanser, Steven E.; Havlina, Douglas W.; Henke, Kenneth F.; Hennig, Jacob D.; Joyce, Linda A; Kilkenny, Francis F.; Kulpa, Sarah M; Kurth, Laurie L; Maestas, Jeremy D; Manning, Mary E.; Mayer, Kenneth E.; Mealor, Brian A.; McCarthy, Clinton; Pellant, Mike; Perea, Marco A.; Prentice, Karen L.; Pyke, David A.; Wiechman , Lief A.; Wuenschel, Amarina

    2017-01-01

    The Science Framework is intended to link the Department of the Interior’s Integrated Rangeland Fire Management Strategy with long-term strategic conservation actions in the sagebrush biome. The Science Framework provides a multiscale approach for prioritizing areas for management and determining effective management strategies within the sagebrush biome. The emphasis is on sagebrush (Artemisia spp.) ecosystems and Greater sage-grouse (Centrocercus urophasianus). The approach provided in the Science Framework links sagebrush ecosystem resilience to disturbance and resistance to nonnative, invasive plant species to species habitat information based on the distribution and abundance of focal species. A geospatial process is presented that overlays information on ecosystem resilience and resistance, species habitats, and predominant threats and that can be used at the mid-scale to prioritize areas for management. A resilience and resistance habitat matrix is provided that can help decisionmakers evaluate risks and determine appropriate management strategies. Prioritized areas and management strategies can be refined by managers and stakeholders at the local scale based on higher resolution data and local knowledge. Decision tools are discussed for determining appropriate management actions for areas that are prioritized for management. Geospatial data, maps, and models are provided through the U.S. Geological Survey (USGS) ScienceBase and Bureau of Land Management (BLM) Landscape Approach Data Portal. The Science Framework is intended to be adaptive and will be updated as additional data become available on other values and species at risk. It is anticipated that the Science Framework will be widely used to: (1) inform emerging strategies to conserve sagebrush ecosystems, sagebrush dependent species, and human uses of the sagebrush system, and (2) assist managers in prioritizing and planning on-the-ground restoration and mitigation actions across the sagebrush biome.

  3. Argumentation, Critical Thinking, Nature of Science and Socioscientific Issues: A Dialogue between Two Researchers

    ERIC Educational Resources Information Center

    Yacoubian, Hagop A.; Khishfe, Rola

    2018-01-01

    The purpose of this paper is to compare and contrast between two theoretical frameworks for addressing nature of science (NOS) and socioscientific issues (SSI) in school science. These frameworks are critical thinking (CT) and argumentation (AR). For the past years, the first and second authors of this paper have pursued research in this area…

  4. The Use of Ethical Frameworks for Implementing Science as a Human Endeavour in Year 10 Biology

    ERIC Educational Resources Information Center

    Yap, Siew Fong; Dawson, Vaille

    2014-01-01

    This research focuses on the use of ethical frameworks as a pedagogical model for socio-scientific education in implementing the "Science as a Human Endeavour" (SHE) strand of the Australian Curriculum: Science in a Year 10 biology class in a Christian college in metropolitan Perth, Western Australia. Using a case study approach, a mixed…

  5. Completing the Link between Exposure Science and Toxicology for Improved Environmental Health Decision Making: The Aggregate Exposure Pathway Framework

    PubMed Central

    Teeguarden, Justin. G.; Tan, Yu-Mei; Edwards, Stephen W.; Leonard, Jeremy A.; Anderson, Kim A.; Corley, Richard A.; Harding, Anna K; Kile, Molly L.; Simonich, Staci M; Stone, David; Tanguay, Robert L.; Waters, Katrina M.; Harper, Stacey L.; Williams, David E.

    2016-01-01

    Synopsis Driven by major scientific advances in analytical methods, biomonitoring, computational tools, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deployment of an organizational and predictive framework for exposure science analogous to the “systems approaches” used in the biological sciences is a necessary step in this evolution. Here we propose the Aggregate Exposure Pathway (AEP) concept as the natural and complementary companion in the exposure sciences to the Adverse Outcome Pathway (AOP) concept in the toxicological sciences. Aggregate exposure pathways offer an intuitive framework to organize exposure data within individual units of prediction common to the field, setting the stage for exposure forecasting. Looking farther ahead, we envision direct linkages between aggregate exposure pathways and adverse outcome pathways, completing the source to outcome continuum for more efficient integration of exposure assessment and hazard identification. Together, the two pathways form and inform a decision-making framework with the flexibility for risk-based, hazard-based, or exposure-based decision making. PMID:26759916

  6. Practical use of a framework for network science experimentation

    NASA Astrophysics Data System (ADS)

    Toth, Andrew; Bergamaschi, Flavio

    2014-06-01

    In 2006, the US Army Research Laboratory (ARL) and the UK Ministry of Defence (MoD) established a collaborative research alliance with academia and industry, called the International Technology Alliance (ITA)1 In Network and Information Sciences, to address fundamental issues concerning Network and Information Sciences that will enhance decision making for coalition operations and enable rapid, secure formation of ad hoc teams in coalition environments and enhance US and UK capabilities to conduct coalition warfare. Research conducted under the ITA was extended through collaboration between ARL and IBM UK to characterize and dene a software stack and tooling that has become the reference framework for network science experimentation in support for validation of theoretical research. This paper discusses the composition of the reference framework for experimentation resulting from the ARL/IBM UK collaboration and its use, by the Network Science Collaborative Technology Alliance (NS CTA)2 , in a recent network science experiment conducted at ARL. It also discusses how the experiment was modeled using the reference framework, the integration of two new components, the Apollo Fact-Finder3 tool and the Medusa Crowd Sensing4 application, the limitations identified and how they shall be addressed in future work.

  7. Toward an Analytic Framework of Interdisciplinary Reasoning and Communication (IRC) Processes in Science

    NASA Astrophysics Data System (ADS)

    Shen, Ji; Sung, Shannon; Zhang, Dongmei

    2015-11-01

    Students need to think and work across disciplinary boundaries in the twenty-first century. However, it is unclear what interdisciplinary thinking means and how to analyze interdisciplinary interactions in teamwork. In this paper, drawing on multiple theoretical perspectives and empirical analysis of discourse contents, we formulate a theoretical framework that helps analyze interdisciplinary reasoning and communication (IRC) processes in interdisciplinary collaboration. Specifically, we propose four interrelated IRC processes-integration, translation, transfer, and transformation, and develop a corresponding analytic framework. We apply the framework to analyze two meetings of a project that aims to develop interdisciplinary science assessment items. The results illustrate that the framework can help interpret the interdisciplinary meeting dynamics and patterns. Our coding process and results also suggest that these IRC processes can be further examined in terms of interconnected sub-processes. We also discuss the implications of using the framework in conceptualizing, practicing, and researching interdisciplinary learning and teaching in science education.

  8. Evaluation of Investments in Science, Technology and Innovation: Applying Scientific and Technical Human Capital Framework for Assessment of Doctoral Students in Cooperative Research Centers

    ERIC Educational Resources Information Center

    Leonchuk, Olena

    2016-01-01

    This dissertation builds on an alternative framework for evaluation of science, technology and innovation (STI) outcomes--the scientific & technical (S&T) human capital which was developed by Bozeman, Dietz and Gaughan (2001). At its core, this framework looks beyond simple economic and publication metrics and instead focuses on…

  9. An Official American Thoracic Society Research Statement: Implementation Science in Pulmonary, Critical Care, and Sleep Medicine

    PubMed Central

    Krishnan, Jerry A.; Au, David H.; Bender, Bruce G.; Carson, Shannon S.; Cattamanchi, Adithya; Cloutier, Michelle M.; Cooke, Colin R.; Erickson, Karen; George, Maureen; Gerald, Joe K.; Gerald, Lynn B.; Goss, Christopher H.; Gould, Michael K.; Hyzy, Robert; Kahn, Jeremy M.; Mittman, Brian S.; Mosesón, Erika M.; Mularski, Richard A.; Parthasarathy, Sairam; Patel, Sanjay R.; Rand, Cynthia S.; Redeker, Nancy S.; Reiss, Theodore F.; Riekert, Kristin A.; Rubenfeld, Gordon D.; Tate, Judith A.; Wilson, Kevin C.; Thomson, Carey C.

    2016-01-01

    Background: Many advances in health care fail to reach patients. Implementation science is the study of novel approaches to mitigate this evidence-to-practice gap. Methods: The American Thoracic Society (ATS) created a multidisciplinary ad hoc committee to develop a research statement on implementation science in pulmonary, critical care, and sleep medicine. The committee used an iterative consensus process to define implementation science and review the use of conceptual frameworks to guide implementation science for the pulmonary, critical care, and sleep community and to explore how professional medical societies such as the ATS can promote implementation science. Results: The committee defined implementation science as the study of the mechanisms by which effective health care interventions are either adopted or not adopted in clinical and community settings. The committee also distinguished implementation science from the act of implementation. Ideally, implementation science should include early and continuous stakeholder involvement and the use of conceptual frameworks (i.e., models to systematize the conduct of studies and standardize the communication of findings). Multiple conceptual frameworks are available, and we suggest the selection of one or more frameworks on the basis of the specific research question and setting. Professional medical societies such as the ATS can have an important role in promoting implementation science. Recommendations for professional societies to consider include: unifying implementation science activities through a single organizational structure, linking front-line clinicians with implementation scientists, seeking collaborations to prioritize and conduct implementation science studies, supporting implementation science projects through funding opportunities, working with research funding bodies to set the research agenda in the field, collaborating with external bodies responsible for health care delivery, disseminating results of implementation science through scientific journals and conferences, and teaching the next generation about implementation science through courses and other media. Conclusions: Implementation science plays an increasingly important role in health care. Through support of implementation science, the ATS and other professional medical societies can work with other stakeholders to lead this effort. PMID:27739895

  10. An Official American Thoracic Society Research Statement: Implementation Science in Pulmonary, Critical Care, and Sleep Medicine.

    PubMed

    Weiss, Curtis H; Krishnan, Jerry A; Au, David H; Bender, Bruce G; Carson, Shannon S; Cattamanchi, Adithya; Cloutier, Michelle M; Cooke, Colin R; Erickson, Karen; George, Maureen; Gerald, Joe K; Gerald, Lynn B; Goss, Christopher H; Gould, Michael K; Hyzy, Robert; Kahn, Jeremy M; Mittman, Brian S; Mosesón, Erika M; Mularski, Richard A; Parthasarathy, Sairam; Patel, Sanjay R; Rand, Cynthia S; Redeker, Nancy S; Reiss, Theodore F; Riekert, Kristin A; Rubenfeld, Gordon D; Tate, Judith A; Wilson, Kevin C; Thomson, Carey C

    2016-10-15

    Many advances in health care fail to reach patients. Implementation science is the study of novel approaches to mitigate this evidence-to-practice gap. The American Thoracic Society (ATS) created a multidisciplinary ad hoc committee to develop a research statement on implementation science in pulmonary, critical care, and sleep medicine. The committee used an iterative consensus process to define implementation science and review the use of conceptual frameworks to guide implementation science for the pulmonary, critical care, and sleep community and to explore how professional medical societies such as the ATS can promote implementation science. The committee defined implementation science as the study of the mechanisms by which effective health care interventions are either adopted or not adopted in clinical and community settings. The committee also distinguished implementation science from the act of implementation. Ideally, implementation science should include early and continuous stakeholder involvement and the use of conceptual frameworks (i.e., models to systematize the conduct of studies and standardize the communication of findings). Multiple conceptual frameworks are available, and we suggest the selection of one or more frameworks on the basis of the specific research question and setting. Professional medical societies such as the ATS can have an important role in promoting implementation science. Recommendations for professional societies to consider include: unifying implementation science activities through a single organizational structure, linking front-line clinicians with implementation scientists, seeking collaborations to prioritize and conduct implementation science studies, supporting implementation science projects through funding opportunities, working with research funding bodies to set the research agenda in the field, collaborating with external bodies responsible for health care delivery, disseminating results of implementation science through scientific journals and conferences, and teaching the next generation about implementation science through courses and other media. Implementation science plays an increasingly important role in health care. Through support of implementation science, the ATS and other professional medical societies can work with other stakeholders to lead this effort.

  11. Landscape and climate science and scenarios for Florida

    USGS Publications Warehouse

    Terando, Adam; Traxler, Steve; Collazo, Jaime

    2014-01-01

    The Peninsular Florida Landscape Conservation Cooperative (PFLCC) is part of a network of 22 Landscape Conservation Cooperatives (LCCs) that extend from Alaska to the Caribbean. LCCs are regional-applied conservation-science partnerships among Federal agencies, regional organizations, States, tribes, nongovernmental organizations (NGOs), private stakeholders, universities, and other entities within a geographic area. The goal of these conservation-science partnerships is to help inform managers and decision makers at a landscape scale to further the principles of adaptive management and strategic habitat conservation. A major focus for LCCs is to help conservation managers and decision makers respond to large-scale ecosystem and habitat stressors, such as climate change, habitat fragmentation, invasive species, and water scarcity. The purpose of the PFLCC is to facilitate planning, design, and implementation of conservation strategies for fish and wildlife species at the landscape level using the adaptive management framework of strategic habitat conservation—integrating planning, design, delivery, and evaluation. Florida faces a set of unique challenges when responding to regional and global stressors because of its unique ecosystems and assemblages of species, its geographic location at the crossroads of temperate and tropical climates, and its exposure to both rapid urbanization and rising sea levels as the climate warms. In response to these challenges, several landscape-scale science projects were initiated with the goal of informing decision makers about how potential changes in climate and the built environment could impact habitats and ecosystems of concern in Florida and the Southeast United States. In June 2012, the PFLCC, North Carolina State University, convened a workshop at the U.S. Geological Survey (USGS) Coastal and Marine Science Center in St. Petersburg to assess the results of these integrated assessments and to foster an open dialogue about science gaps and future research needs.

  12. Quality Teaching in Science: an Emergent Conceptual Framework

    NASA Astrophysics Data System (ADS)

    Jordens, J. Zoe; Zepke, Nick

    2017-09-01

    Achieving quality in higher education is a complex task involving the interrelationship of many factors. The influence of the teacher is well established and has led to some general principles of good teaching. However, less is known about the extent that specific disciplines influence quality teaching. The purposes of the paper are to investigate how quality teaching is perceived in the sciences and from these perceptions to develop for discussion a framework for teaching practice in the sciences. A New Zealand study explored the views of national teaching excellence award winners in science on quality teaching in undergraduate science. To capture all possible views from this expert panel, a dissensus-recognising Delphi method was used together with sensitising concepts based on complexity and wickedity. The emergent conceptual framework for quality teaching in undergraduate science highlighted areas of consensus and areas where there were a variety of views. About the purposes of science and its knowledge base, there was relative consensus, but there was more variable support for values underpinning science teaching. This highlighted the complex nature of quality teaching in science. The findings suggest that, in addition to general and discipline-specific influences, individual teacher values contribute to an understanding of quality in undergraduate science teaching.

  13. Learners' strategies for reconstructing cognitive frameworks and navigating conceptual change from prior conception to consensual genetics knowledge

    NASA Astrophysics Data System (ADS)

    Parrott, Annette M.

    Problem. Science teachers are charged with preparing students to become scientifically literate individuals. Teachers are given curriculum that specifies the knowledge that students should come away with; however, they are not necessarily aware of the knowledge with which the student arrives or how best to help them navigate between the two knowledge states. Educators must be aware, not only of where their students are conceptually, but how their students move from their prior knowledge and naive theories, to scientifically acceptable theories. The understanding of how students navigate this course has the potential to revolutionize educational practices. Methods. This study explored how five 9th grade biology students reconstructed their cognitive frameworks and navigated conceptual change from prior conception to consensual genetics knowledge. The research questions investigated were: (1) how do students in the process of changing their naive science theories to accepted science theories describe their journey from prior knowledge to current conception, and (2) what are the methods that students utilize to bridge the gap between alternate and consensual science conceptions to effect conceptual change. Qualitative and quantitative methods were employed to gather and analyze the data. In depth, semi-structured interviews formed the primary data for probing the context and details of students' conceptual change experience. Primary interview data was coded by thematic analysis. Results and discussion. This study revealed information about students' perceived roles in learning, the role of articulation in the conceptual change process, and ways in which a community of learners aids conceptual change. It was ascertained that students see their role in learning primarily as repeating information until they could add that information to their knowledge. Students are more likely to consider challenges to their conceptual frameworks and be more motivated to become active participants in constructing their knowledge when they are working collaboratively with peers instead of receiving instruction from their teacher. Articulation was found to be instrumental in aiding learners in identifying their alternate conceptions as well as in revisiting, investigating and reconstructing their conceptual frameworks. Based on the assumptions generated, suggestions were offered to inform pedagogical practice in support of the conceptual change process.

  14. Intersectoral approaches and integrated services in achieving the right to health for refugees upon resettlement: a scoping review protocol.

    PubMed

    Javadi, Dena; Langlois, Etienne V; Ho, Shirley; Friberg, Peter; Tomson, Göran

    2017-08-30

    Global insecurity and climate change are exacerbating the need for improved management of refugee resettlement services. International standards hold states responsible for the protection of the right of non-citizens to an adequate standard of physical and mental health while recognising the importance of social determinants of health. However, programmes to protect refugees' right to health often lack coordination and monitoring. This paper describes the protocol for a scoping review to explore barriers and facilitators to the integration of health services for refugees; the content, process and actors involved in protecting refugee health; and the extent to which intersectoral approaches are leveraged to protect refugees' right to health on resettlement, especially for vulnerable groups such as women and children. Peer-reviewed (through four databases including MEDLINE, Web of Science, Global Health and PsycINFO) and grey literature were searched to identify programmes and interventions designed to promote refugee health in receiving countries. Two reviewers will screen articles and abstract data. Two frameworks for integration and intersectoral action will be applied to understand how and why certain approaches work while others do not and to identify the actors involved in achieving success at different levels of integration as defined by these frameworks. Findings from the scoping review will be shared in relevant conferences and meetings. A brief will be created with lessons learnt from successful programmes to inform decision making in design of refugee programmes and services. Ethical approval is not required as human subjects are not involved. Registered on Open Science Framework at https://osf.io/gt9ck/. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. A view of the tip of the iceberg: revisiting conceptual continuities and their implications for science learning

    NASA Astrophysics Data System (ADS)

    Brown, Bryan A.; Kloser, Matt

    2009-12-01

    We respond to Hwang and Kim and Yeo's critiques of the conceptual continuity framework in science education. First, we address the criticism that their analysis fails to recognize the situated perspective of learning by denying the dichotomy of the formal and informal knowledge as a starting point in the learning process. Second, we address the critique that students' descriptions fail to meet the "gold standard" of science education—alignment with an authoritative source and generalizability—by highlighting some student-expert congruence that could serve as the foundation for future learning. Third, we address the critique that a conceptual continuity framework could lead to less rigorous science education goals by arguing that the ultimate goals do not change, but rather that if the pathways that lead to the goals' achievement could recognize existing lexical continuities' science teaching may become more efficient. In sum, we argue that a conceptual continuities framework provides an asset, not deficit lexical perspective from which science teacher educators and science educators can begin to address and build complete science understandings.

  16. Cumulative risk assessment for combined health effects from chemical and nonchemical stressors.

    PubMed

    Sexton, Ken; Linder, Stephen H

    2011-12-01

    Cumulative risk assessment is a science policy tool for organizing and analyzing information to examine, characterize, and possibly quantify combined threats from multiple environmental stressors. We briefly survey the state of the art regarding cumulative risk assessment, emphasizing challenges and complexities of moving beyond the current focus on chemical mixtures to incorporate nonchemical stressors, such as poverty and discrimination, into the assessment paradigm. Theoretical frameworks for integrating nonchemical stressors into cumulative risk assessments are discussed, the impact of geospatial issues on interpreting results of statistical analyses is described, and four assessment methods are used to illustrate the diversity of current approaches. Prospects for future progress depend on adequate research support as well as development and verification of appropriate analytic frameworks.

  17. Cumulative Risk Assessment for Combined Health Effects From Chemical and Nonchemical Stressors

    PubMed Central

    Linder, Stephen H.

    2011-01-01

    Cumulative risk assessment is a science policy tool for organizing and analyzing information to examine, characterize, and possibly quantify combined threats from multiple environmental stressors. We briefly survey the state of the art regarding cumulative risk assessment, emphasizing challenges and complexities of moving beyond the current focus on chemical mixtures to incorporate nonchemical stressors, such as poverty and discrimination, into the assessment paradigm. Theoretical frameworks for integrating nonchemical stressors into cumulative risk assessments are discussed, the impact of geospatial issues on interpreting results of statistical analyses is described, and four assessment methods are used to illustrate the diversity of current approaches. Prospects for future progress depend on adequate research support as well as development and verification of appropriate analytic frameworks. PMID:21551386

  18. Preparatory planning framework for Created Out of Mind: Shaping perceptions of dementia through art and science

    PubMed Central

    Brotherhood, Emilie; Ball, Philip; Camic, Paul M; Evans, Caroline; Fox, Nick; Murphy, Charlie; Walsh, Fergus; West, Julian; Windle, Gill; Billiald, Sarah; Firth, Nicholas; Harding, Emma; Harrison, Charles; Holloway, Catherine; Howard, Susanna; McKee-Jackson, Roberta; Jones, Esther; Junghaus, Janette; Martin, Harriet; Nolan, Kailey; Rollins, Bridie; Shapiro, Lillian; Shapiro, Lionel; Twigg, Jane; van Leeuwen, Janneke; Walton, Jill; Warren, Jason; Wray, Selina; Yong, Keir; Zeilig, Hannah; Crutch, Sebastian

    2017-01-01

    Created Out of Mind is an interdisciplinary project, comprised of individuals from arts, social sciences, music, biomedical sciences, humanities and operational disciplines. Collaboratively we are working to shape perceptions of dementias through the arts and sciences, from a position within the Wellcome Collection. The Collection is a public building, above objects and archives, with a porous relationship between research, museum artefacts, and the public.  This pre-planning framework will act as an introduction to Created Out of Mind. The framework explains the rationale and aims of the project, outlines our focus for the project, and explores a number of challenges we have encountered by virtue of working in this way. PMID:29387805

  19. Education for a Green and Resilient Economy: An Educator Framework for Teaching Climate and Energy Literacy for K-12 Teachers Across the Curriculum

    NASA Astrophysics Data System (ADS)

    Niepold, F., III; Ledley, T. S.; Lockwood, J.; Youngman, E.; Manning, C. L. B.; Sullivan, S. M.

    2015-12-01

    The U.S. is embarking on a major transition to a green and resilient economy, a monumental change requiring all sectors and segments of the population to pull together. Transforming our nation's economic, energy, and environmental systems to in this way will require a sustained level of expertise, innovation, and cooperative effort unseen since the 1940s to meet the challenges involved. Education can - and must - help people understand the true connections, the linkages and interdependencies, between the environment, our energy sources and the economy which underpin and form the very foundation of the concept of a green and resilient economy. To produce such a literate future workforce and citizenry, the United States will need to make major new investments in our educational systems. Teachers across the nation are helping to increase science-based understanding and awareness of current and future climate change, enhancing climate and energy literacy in K-12 classrooms, on college and university campuses. There has been tremendous progress to date, but there is still more work to be done. The new academic standards in mathematics and science (the Common Core State Standards in Mathematics and the Next Generation Science Standards (NGSS)) represent a sea change from the nation's previous sets of standards. Addressing these standards in the currently over 40 percent of the nation's classrooms that have adopted or adapted the NGSS will demand that we prepare new and current teachers, who can effectively address the interdisciplinary nature of climate change and societal responses. To address this opportunity and need a collaboration between NOAA, TERC and CIRES has been established to develop an Educator Framework for Teaching Climate and Energy Literacy for K-12 teachers across the curriculum based on the NRC Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. This collaboration is developing an effective way to frame the use of resources and practices to help teachers address the NGSS using the CLEAN (Climate Literacy and Energy Awareness Network, cleanet.org) and Climate.gov products and models to engage students as citizens of a low-carbon and climate-resilient future. The results of this collaboration will be discussed in the session.

  20. Learning in a Physics Classroom Community: Physics Learning Identity Construct Development, Measurement and Validation

    NASA Astrophysics Data System (ADS)

    Li, Sissi L.

    At the university level, introductory science courses usually have high student to teacher ratios which increases the challenge to meaningfully connect with students. Various curricula have been developed in physics education to actively engage students in learning through social interactions with peers and instructors in class. This learning environment demands not only conceptual understanding but also learning to be a scientist. However, the success of student learning is typically measured in test performance and course grades while assessment of student development as science learners is largely ignored. This dissertation addresses this issue with the development of an instrument towards a measure of physics learning identity (PLI) which is used to guide and complement case studies through student interviews and in class observations. Using the conceptual framework based on Etienne Wenger's communities of practice (1998), I examine the relationship between science learning and learning identity from a situated perspective in the context of a large enrollment science class as a community of practice. This conceptual framework emphasizes the central role of identity in the practices negotiated in the classroom community and in the way students figure out their trajectory as members. Using this framework, I seek to understand how the changes in student learning identity are supported by active engagement based instruction. In turn, this understanding can better facilitate the building of a productive learning community and provide a measure for achievement of the curricular learning goals in active engagement strategies. Based on the conceptual framework, I developed and validated an instrument for measuring physics learning identity in terms of student learning preferences, self-efficacy for learning physics, and self-image as a physics learner. The instrument was pilot tested with a population of Oregon State University students taking calculus based introductory physics. The responses were analyzed using principal component exploratory factor analysis. The emergent factors were analyzed to create reliable subscales to measure PLI in terms of physics learning self-efficacy and social expectations about learning. Using these subscales, I present a case study of a student who performed well in the course but resisted the identity learning goals of the curriculum. These findings are used to support the factors that emerged from the statistical analysis and suggest a potential model of the relationships between the factors describing science learning and learning identity in large enrollment college science classes. This study offers an instrument with which to measure aspects of physics learning identity and insights on how PLI might develop in a classroom community of practice.

  1. The artful mind meets art history: toward a psycho-historical framework for the science of art appreciation.

    PubMed

    Bullot, Nicolas J; Reber, Rolf

    2013-04-01

    Research seeking a scientific foundation for the theory of art appreciation has raised controversies at the intersection of the social and cognitive sciences. Though equally relevant to a scientific inquiry into art appreciation, psychological and historical approaches to art developed independently and lack a common core of theoretical principles. Historicists argue that psychological and brain sciences ignore the fact that artworks are artifacts produced and appreciated in the context of unique historical situations and artistic intentions. After revealing flaws in the psychological approach, we introduce a psycho-historical framework for the science of art appreciation. This framework demonstrates that a science of art appreciation must investigate how appreciators process causal and historical information to classify and explain their psychological responses to art. Expanding on research about the cognition of artifacts, we identify three modes of appreciation: basic exposure to an artwork, the artistic design stance, and artistic understanding. The artistic design stance, a requisite for artistic understanding, is an attitude whereby appreciators develop their sensitivity to art-historical contexts by means of inquiries into the making, authorship, and functions of artworks. We defend and illustrate the psycho-historical framework with an analysis of existing studies on art appreciation in empirical aesthetics. Finally, we argue that the fluency theory of aesthetic pleasure can be amended to meet the requirements of the framework. We conclude that scientists can tackle fundamental questions about the nature and appreciation of art within the psycho-historical framework.

  2. A distributed component framework for science data product interoperability

    NASA Technical Reports Server (NTRS)

    Crichton, D.; Hughes, S.; Kelly, S.; Hardman, S.

    2000-01-01

    Correlation of science results from multi-disciplinary communities is a difficult task. Traditionally data from science missions is archived in proprietary data systems that are not interoperable. The Object Oriented Data Technology (OODT) task at the Jet Propulsion Laboratory is working on building a distributed product server as part of a distributed component framework to allow heterogeneous data systems to communicate and share scientific results.

  3. From molecule to market access: drug regulatory science as an upcoming discipline.

    PubMed

    Gispen-de Wied, Christine C; Leufkens, Hubertus G M

    2013-11-05

    Regulatory science as a discipline has evolved over the past years with the object to boost and promote scientific rationale behind benefit/risk and decision making by regulatory authorities. The European Medicines Agency, EMA, the Food and Drug Administration, FDA, and the Japanese Pharmaceutical and Medical Devices Agency, PMDA, highlighted in their distinct ways the importance of regulatory science as a basis of good quality assessment in their strategic plans. The Medicines Evaluation Board, MEB, states: 'regulatory science is the science of developing and validating new standards and tools to evaluate and assess the benefit/risk of medicinal products, facilitating sound and transparent regulatory decision making'. Through analysis of regulatory frameworks itself and their effectiveness, however, regulatory science can also advance knowledge of these systems in general. The comprehensive guidance that is issued to complete an application dossier for regulatory product approval has seldomly been scrutinized for its efficiency. Since it is the task of regulatory authorities to protect and promote public health, it is understood that they take a cautious approach in regulating drugs prior to market access. In general, the authorities are among the first to be blamed if dangerous or useless drugs were allowed to the market. Yet, building a regulatory framework that is not challenged continuously in terms of deliverables for public health and cost-effectiveness, might be counterproductive in the end. Regulatory science and research can help understand how and why regulatory decisions are made, and where renewed discussions may be warranted. The MEB supports regulatory science as an R&D activity to fuel primary regulatory processes on product evaluation and vigilance, but also invests in a 'looking into the mirror' approach. Along the line of the drug life-cycle, publicly available data are reviewed and their regulatory impact highlighted. If made explicit, regulatory research can open the door to evidence based regulatory practice and serve the regulator's contribution to innovative drug licensing today. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Promoting Climate And Data Literacy: University Courses Engaging Students In Effective Teaching, Learning, Communication And Outreach Practices.

    NASA Astrophysics Data System (ADS)

    Halversen, C.; McDonnell, J. D.; Apple, J. K.; Weiss, E. L.

    2016-02-01

    Two university courses, 1) Promoting Climate Literacy and 2) Climate and Data Literacy, developed by the University of California Berkeley provide faculty across the country with course materials to help their students delve into the science underlying global environmental change. The courses include culturally responsive content, such as indigenous and place-based knowledge, and examine how people learn and consequently, how we should teach and communicate science. Promoting Climate Literacy was developed working with Scripps Institution of Oceanography, University of Washington, and Western Washington University. Climate and Data Literacy was developed with Rutgers University and Padilla Bay National Estuarine Research Reserve, WA. The Climate and Data Literacy course also focuses on helping students in science majors participating in U-Teach programs and students in pre-service teacher education programs gain skills in using real and near-real time data through engaging in investigations using web-based and locally-relevant data resources. The course helps these students understand and apply the scientific practices, disciplinary concepts and big ideas described in the Framework for K-12 Science Education and the Next Generation Science Standards (NGSS). This course focuses on students interested in teaching middle school science for three reasons: (1) teachers often have relatively weak understandings of the practices of science, and of complex Earth systems science and climate change; (2) the concepts that underlie climate change align well with the NGSS; and (3) middle school is a critical time for promoting student interest in science and for recruitment to STEM careers and lifelong climate literacy. This course is now being field tested in a number of U-Teach programs including Florida State University, Louisiana State University, as well as pre-service teacher education programs at California State University East Bay, and Western Washington University. The Promoting Climate Literacy course is focused on graduate and undergraduate science students interested in learning how to more effectively communicate climate science, while participating in outreach opportunities with the public. The course has been disseminated through a workshop for faculty at 17 universities.

  5. ``It depends on what science teacher you got'': urban science self-efficacy from teacher and student voices

    NASA Astrophysics Data System (ADS)

    Bolshakova, Virginia L. J.; Johnson, Carla C.; Czerniak, Charlene M.

    2011-12-01

    In the United States today, urban schools serve the majority of high-poverty and high minority populations including large numbers of Hispanic students. While many Hispanic students perform below grade level in middle school science, the science teaching community as a whole is lacking elements of diversity as teachers struggle to meet the needs of all learners. Researchers have recognized that science teacher effectiveness, one consequence of self-efficacy among teachers, is associated with future science achievement and science-related careers of their students. This qualitative study explores how three science teachers' effectiveness in the classroom impacts students' science self-efficacy beliefs at one urban middle school. Hispanic students were the focus of this investigation due to demographics and history of underperformance within this district. Teachers' perspectives, as well as outside observer evaluations of instructional strategies and classroom climates were triangulated to explore dynamics that influence students' interests and motivation to learn science using a framework to link teachers' sense of efficacy (focusing on student outcomes). Findings suggest the impact teacher effectiveness can have on student outcomes, including strengthened student science self-efficacy and increased science achievement. Building awareness and support in teachers' sense of efficacy, as well as developing respectful and supportive relationships between educator/facilitator and pupil during the transition to middle school may construct permanence and accomplishment for all in science.

  6. Responsible research and innovation indicators for science education assessment: how to measure the impact?

    NASA Astrophysics Data System (ADS)

    Heras, Maria; Ruiz-Mallén, Isabel

    2017-12-01

    The emerging paradigm of responsible research and innovation (RRI) in the European Commission policy discourse identifies science education as a key agenda for better equipping students with skills and knowledge to tackle complex societal challenges and foster active citizenship in democratic societies. The operationalisation of this broad approach in science education demands, however, the identification of assessment frameworks able to grasp the complexity of RRI process requirements and learning outcomes within science education practice. This article aims to shed light over the application of the RRI approach in science education by proposing a RRI-based analytical framework for science education assessment. We use such framework to review a sample of empirical studies of science education assessments and critically analyse it under the lenses of RRI criteria. As a result, we identify a set of 86 key RRI assessment indicators in science education related to RRI values, transversal competences and experiential and cognitive aspects of learning. We argue that looking at science education through the lenses of RRI can potentially contribute to the integration of metacognitive skills, emotional aspects and procedural dimensions within impact assessments so as to address the complexity of learning.

  7. The ACRL framework for information literacy in higher education: implications for health sciences librarianship.

    PubMed

    Knapp, Maureen; Brower, Stewart

    2014-01-01

    The Association of College and Research Libraries is developing a new framework of information literacy concepts that will revise and replace the previously adopted standards. This framework consists of six threshold concepts that are more flexible than the original standards, and that work to identify both the function and the feelings behind information literacy education practices. This column outlines the new tentative framework with an eye toward its implications for health sciences libraries, and suggests ways the medical library community might work with this new document.

  8. Space Weather Forecasting and Supporting Research in the USA

    NASA Astrophysics Data System (ADS)

    Pevtsov, A. A.

    2017-12-01

    In the United State, scientific research in space weather is funded by several Government Agencies including the National Science Foundation (NSF) and the National Aeronautics and Space Agency (NASA). For civilian and commercial purposes, space weather forecast is done by the Space Weather Prediction Center (SWPC) of the National Oceanic and Atmospheric Administration (NOAA). Observational data for modeling come from the network of groundbased observatories funded via various sources, as well as from the instruments on spacecraft. Numerical models used in forecast are developed in framework of individual research projects. The article provides a brief review of current state of space weather-related research and forecasting in the USA.

  9. State strategies of governance in biomedical innovation: aligning conceptual approaches for understanding 'Rising Powers' in the global context

    PubMed Central

    2011-01-01

    Background 'Innovation' has become a policy focus in its own right in many states as they compete to position themselves in the emerging knowledge economies. Innovation in biomedicine is a global enterprise in which 'Rising Power' states figure prominently, and which undoubtedly will re-shape health systems and health economies globally. Scientific and technological innovation processes and policies raise difficult issues in the domains of science/technology, civil society, and the economic and healthcare marketplace. The production of knowledge in these fields is complex, uncertain, inter-disciplinary and inter-institutional, and subject to a continuing political struggle for advantage. As part of this struggle, a wide variety of issues - regulation, intellectual property, ethics, scientific boundaries, healthcare market formation - are raised and policy agendas negotiated. Methods A range of social science disciplines and approaches have conceptualised such innovation processes. Against a background of concepts such as the competition state and the developmental state, and national innovation systems, we give an overview of a range of approaches that have potential for advancing understanding of governance of global life science and biomedical innovation, with special reference to the 'Rising Powers', in order to examine convergences and divergences between them. Conceptual approaches that we focus on include those drawn from political science/political economy, sociology of technology; Innovation Studies and Science & Technology Studies. The paper is part of a project supported by the UK ESRC's Rising Powers programme. Results We show convergences and complementarities between the approaches discussed, and argue that the role of the national state itself has become relatively neglected in much of the relevant theorising. Conclusions We conclude that an approach is required that enables innovation and governance to be seen as 'co-producing' each other in a multi-level, global ecology of innovation, taking account of the particular, differing characteristics of different emerging scientific fields and technologies. We suggest key points to take account of in order in the future to move toward a satisfactory integrative conceptual framework, capable of better understanding the processes of the emergence, state steerage and transnational governance of innovative biomedical sectors in the Rising Powers and global context. PMID:21349182

  10. New Contemporary Criterion-Referenced Assessment Instruments for Astronomy & Geology: TOAST & EGGS

    NASA Astrophysics Data System (ADS)

    Guffey, Sarah Katie; Slater, Stephanie J.; Slater, Timothy F.

    2015-08-01

    Considerable effort in the astronomy and Earth sciences education research over the past decade has focused on developing assessment tools in the form of multiple-choice conceptual diagnostics and content knowledge surveys. This has been critically important in advancing discipline-based education research allowing scholar to establish the initial, incoming knowledge state of students as well as to attempt to measure some of the impacts of innovative instructional interventions. Before now, few of the existing instruments were constructed upon a solid list of clearly articulated and widely agreed upon learning objectives. Whereas first-generation assessment tools, such as the Astronomy Diagnostics Test ADT2) were based primarily upon further identifying documented astronomy misconceptions, scholars from the CAPER Center for Astronomy & Physics Education Research team are creating contemporary instruments based instead by developing items using modern test construction techniques and tightly aligned to the consensus learning goals identified by the American Association of the Advancement of Science’s Project 2061 Benchmarks, and the National Research Council’s National Science Education Standards, and the National Research Council’s Frameworks for A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. These consensus learning goals are further enhanced guiding documents from the American Astronomical Society - Chair’s Conference on ASTRO 101 and the NSF-funded Earth Science Literacy Initiative. Two of the resulting criterion-referenced assessment tools widely used by researchers are the Test Of Astronomy STandards (TOAST) and the Exam of GeoloGy StandardS (EGGS). These easy-to-use and easy-to-score multiple-choice instruments have a high degree of reliability and validity for instructors and researchers needing information on students’ initial knowledge state at the beginning of a course and can be used, in aggregate, to help measure the impact teaching innovations with learning goals tightly aligned to consensus goals of the broader education community.

  11. Inservice teachers' implementation of the Science Writing Heuristic as a tool for professional growth

    NASA Astrophysics Data System (ADS)

    Omar, Sozan H.

    According to the National Science Standards, science educators have been calling for the inclusion of inquiry-based approaches in science classrooms as a reform for science instruction. Teachers' reluctance to implement inquiry-based approaches may be attributed to the different interpretations of the underpinning theory. Any efforts to help teachers implement effective teaching approaches, therefore, should not target merely additive skills; rather, such efforts should foster fundamental changes of beliefs, knowledge, and habits of practice that teachers deeply hold. This study is a part of a bigger project known as the Science Writing Heuristic (SWH) Partnership Professional Development Project, conducted at Iowa State University in association with the Iowa Department of Education to help improve science teaching. The aim of the project is to help in service science teachers understand and apply a student-oriented instructional approach, using the SWH. The framework of the SWH emphasizes the role of classroom dialogical discussion in students' learning. The role of the teacher when implementing constructivist approaches represented in a student-oriented instruction, differs markedly from traditional approaches, and hence there is a need to study the changes in teaching practice when using this specific tool. The methodological framework of this study combined qualitative and quantitative methods. Interpretative case studies for 18 science teachers are presented. A triangulation strategy was used to provide support for the qualitative findings using three different data collection approaches: observation, questionnaire, and interviews. Quantitative data in the form of student performance on higher order conceptual questions and total test scores were collected. Teachers varied in their implementation of the SWH. Three criteria were constructed to define teachers' levels of implementation: epistemological belief, pedagogical practice, and teacher content knowledge. Different components were included within each criterion, with three scales used to rank each teacher's implementation within each criterion. The study is pointing to the importance of assisting science teachers with effective pedagogical strategies if there is to be an impact on students' performance on tests. This project was undertaken with partnerships between schools, Area Educational Agencies, and the University. Such partnerships need to be built to promote successful change to science teaching.

  12. The Translational Science Benefits Model: A New Framework for Assessing the Health and Societal Benefits of Clinical and Translational Sciences

    PubMed Central

    Sarli, Cathy C.; Suiter, Amy M.; Carothers, Bobbi J.; Combs, Todd B.; Allen, Jae L.; Beers, Courtney E.; Evanoff, Bradley A.

    2017-01-01

    Abstract We report the development of the Translational Science Benefits Model (TSBM), a framework designed to support institutional assessment of clinical and translational research outcomes to measure clinical and community health impacts beyond bibliometric measures. The TSBM includes 30 specific and potentially measurable indicators that reflect benefits that accrue from clinical and translational science research such as products, system characteristics, or activities. Development of the TSBM was based on literature review, a modified Delphi method, and in‐house expert panel feedback. Three case studies illustrate the feasibility and face validity of the TSBM for identification of clinical and community health impacts that result from translational science activities. Future plans for the TSBM include further pilot testing and a resource library that will be freely available for evaluators, translational scientists, and academic institutions who wish to implement the TSBM framework in their own evaluation efforts. PMID:28887873

  13. Video-Based Analyses of Motivation and Interaction in Science Classrooms

    NASA Astrophysics Data System (ADS)

    Moeller Andersen, Hanne; Nielsen, Birgitte Lund

    2013-04-01

    An analytical framework for examining students' motivation was developed and used for analyses of video excerpts from science classrooms. The framework was developed in an iterative process involving theories on motivation and video excerpts from a 'motivational event' where students worked in groups. Subsequently, the framework was used for an analysis of students' motivation in the whole class situation. A cross-case analysis was carried out illustrating characteristics of students' motivation dependent on the context. This research showed that students' motivation to learn science is stimulated by a range of different factors, with autonomy, relatedness and belonging apparently being the main sources of motivation. The teacher's combined use of questions, uptake and high level evaluation was very important for students' learning processes and motivation, especially students' self-efficacy. By coding and analysing video excerpts from science classrooms, we were able to demonstrate that the analytical framework helped us gain new insights into the effect of teachers' communication and other elements on students' motivation.

  14. Complexity Science Framework for Big Data: Data-enabled Science

    NASA Astrophysics Data System (ADS)

    Surjalal Sharma, A.

    2016-07-01

    The ubiquity of Big Data has stimulated the development of analytic tools to harness the potential for timely and improved modeling and prediction. While much of the data is available near-real time and can be compiled to specify the current state of the system, the capability to make predictions is lacking. The main reason is the basic nature of Big Data - the traditional techniques are challenged in their ability to cope with its velocity, volume and variability to make optimum use of the available information. Another aspect is the absence of an effective description of the time evolution or dynamics of the specific system, derived from the data. Once such dynamical models are developed predictions can be made readily. This approach of " letting the data speak for itself " is distinct from the first-principles models based on the understanding of the fundamentals of the system. The predictive capability comes from the data-derived dynamical model, with no modeling assumptions, and can address many issues such as causality and correlation. This approach provides a framework for addressing the challenges in Big Data, especially in the case of spatio-temporal time series data. The reconstruction of dynamics from time series data is based on recognition that in most systems the different variables or degrees of freedom are coupled nonlinearly and in the presence of dissipation the state space contracts, effectively reducing the number of variables, thus enabling a description of its dynamical evolution and consequently prediction of future states. The predictability is analysed from the intrinsic characteristics of the distribution functions, such as Hurst exponents and Hill estimators. In most systems the distributions have heavy tails, which imply higher likelihood for extreme events. The characterization of the probabilities of extreme events are critical in many cases e. g., natural hazards, for proper assessment of risk and mitigation strategies. Big Data with such new analytics can yield improved risk estimates. The challenges of scientific inference from complex and massive data are addressed by data-enabled science, also referred as the Fourth paradigm, after experiment, theory and simulation. An example of this approach is the modelling of dynamical and statistical features of natural systems, without assumptions of specific processes. An effective use of the techniques of complexity science to yield the inherent features of a system from extensive data from observations and large scale numerical simulations is evident in the case of Earth's magnetosphere. The multiscale nature of the magnetosphere makes the numerical simulations a challenge, requiring very large computing resources. The reconstruction of dynamics from observational data can however yield the inherent characteristics using typical desktop computers. Such studies for other systems are in progress. Data-enabled approach using the framework of complexity science provides new techniques for modelling and prediction using Big Data. The studies of Earth's magnetosphere, provide an example of the potential for a new approach to the development of quantitative analytic tools.

  15. A stochastic and dynamical view of pluripotency in mouse embryonic stem cells

    PubMed Central

    Lee, Esther J.

    2018-01-01

    Pluripotent embryonic stem cells are of paramount importance for biomedical sciences because of their innate ability for self-renewal and differentiation into all major cell lines. The fateful decision to exit or remain in the pluripotent state is regulated by complex genetic regulatory networks. The rapid growth of single-cell sequencing data has greatly stimulated applications of statistical and machine learning methods for inferring topologies of pluripotency regulating genetic networks. The inferred network topologies, however, often only encode Boolean information while remaining silent about the roles of dynamics and molecular stochasticity inherent in gene expression. Herein we develop a framework for systematically extending Boolean-level network topologies into higher resolution models of networks which explicitly account for the promoter architectures and gene state switching dynamics. We show the framework to be useful for disentangling the various contributions that gene switching, external signaling, and network topology make to the global heterogeneity and dynamics of transcription factor populations. We find the pluripotent state of the network to be a steady state which is robust to global variations of gene switching rates which we argue are a good proxy for epigenetic states of individual promoters. The temporal dynamics of exiting the pluripotent state, on the other hand, is significantly influenced by the rates of genetic switching which makes cells more responsive to changes in extracellular signals. PMID:29451874

  16. A Manual to Identify Sources of Fluvial Sediment | Science ...

    EPA Pesticide Factsheets

    Sedimentation is one of the main causes of stream/river aquatic life use impairments in R3. Currently states lack standard guidance on appropriate tools available to quantify sediment sources and develop sediment budgets in TMDL Development. Methods for distinguishing sediment types for TMDL development will focus stream restoration and soil conservation efforts in strategic locations in a watershed and may better target appropriate BMPs to achieve sediment load reductions. Properly identifying sediment sources in a TMDL will also help focus NPDES permitting, stream restoration activities and other TMDL implementation efforts. This project will focus on developing a framework that will be published as a guidance document that outlines steps and approaches to identify the significant sources of fine-grained sediment in 303D listed watersheds. In this framework, the sediment-fingerprinting and sediment budget approaches will be emphasized. This project will focus on developing a framework that will be published as a guidance document that outlines steps and approaches to identify the significant sources of fine-grained sediment in 303D listed watersheds. In this framework, the sediment-fingerprinting and sediment budget approaches will be emphasized.

  17. Examining Deaf Students' Equitable Access to Science vis-a-vis Contemporary Pedagogical Practices

    NASA Astrophysics Data System (ADS)

    Ross, Annemarie D.

    As a Deaf individual, it is important to ensure the growth of the Deaf community as science-literate members of society. While many predecessors have contributed to the body of research in Deaf pedagogy, there is still much to be done in safeguarding Deaf learners' equitable access to science education. One area of concern is in narrowing the statistically significant gap in Climate Change knowledge between Deaf students' and Hearing students' at the Rochester Institute of Technology. It is within this topic that the writing-to-learn-science framework is practiced and Deaf students in the Laboratory Science Technology program at the National Technical Institute for the Deaf participate in a study to assess whether or not the use of writing-to-learn-science strategies help them become better scientists, writers and learners. In this study, the social constructivist framework (Vygotsky, 1987) is used to study the impact of the use of the Berland and Reiser (2009) argumentation framework, so that they write-to-learn-science through the steps of sense-making, articulation and persuasion.

  18. Constructing School Science: Physics, Biology, and Chemistry Education in Ontario High Schools, 1880--1940

    NASA Astrophysics Data System (ADS)

    Hoffman, Michelle Diane

    This thesis is a history of science education reform in Ontario, from 1880 to 1940. It examines successive eras of science education reform in secondary (pre-university) schools, including the rise of laboratory science; the spread of general science programs; and efforts to teach science "humanistically." This research considers the rhetorical strategies employed by scientists and educators to persuade educational policymakers and the public about the value and purpose of science education. Their efforts hinged in large part on building a moral framework for school science, which they promoted an essential stimulus to students' mental development and a check on the emotive influence of literature and the arts. These developments are placed in international context by examining how educational movements conceived in other places, especially the United States and Britain, were filtered and transformed in the distinct educational context of Ontario. Finally, the sometimes-blurry boundaries between "academic" science education and technical education are explored, most notably in Ontario in the late nineteenth century, when science education was undergoing a rapid, driven expansion in the province's high schools. This research contributes to a relatively recent body of literature that promotes a greater appreciation of pre-college science education -- an area that has often been overlooked in favour of higher education and the training of specialists -- as an important window onto the public perception of science.

  19. A Collaborative Data Scientist Framework for both Primary and Secondary Education

    NASA Astrophysics Data System (ADS)

    Branch, B. D.

    2011-12-01

    The earth science data educational pipeline may be dependent on K-20 outcomes. Thus, a challenge for earth science and space informatics education or generational knowledge transfer consideration may be a non-existing or cost prohibitive pedagogical earth science reality. Such may require a technological infrastructure, a validated assessment system, and collaboration among stakeholders of primary and secondary education. Moreover, the K-20 paradigms may engage separate science and technology preparation standards when fundamental informatics requires an integrated pedagogical approach. In simple terms, a collaborative earth science training program for a subset of disciplines may a pragmatics means for formal data scientist training that is sustainable as technology evolves and data-sharing policy becomes a norm of data literacy. As the Group Earth Observation Systems of Systems (GEOSS) has a 10-work plan, educational stakeholders may find funding avenues if government can see earth science data training as a valuable job skill and societal need. This proposed framework suggested that ontological literacy, database management and storage management and data sharing capability are fundamental informatics concepts of this proposed framework where societal engagement is incited. Here all STEM disciplines could incite an integrated approach to mature such as learning metrics in their matriculation and assessment systems. The NSF's Earth Cube and Europe's WISE may represent best cased for such framework implementation.

  20. Listening to their voices: Exploring mathematics-science identity development of African American males in an urban school community

    NASA Astrophysics Data System (ADS)

    Wilson, Kimi Leemar

    National data continues to show an underrepresentation of African American males pursuing science, technology, engineering and mathematics (STEM) majors, careers and professions in the United States. Whites and Asian Americans are continuously positioned as the face of STEM education and participation. And while research has provided ways to support mathematics and science learning for African American males, there still remains a gap in understanding how their formed mathematics-science identities in K-12 public schooling influences STEM participation. The research undertaken in this study explores this gap, and uses an integrative identity framework to understand mathematics-science identity development which goes beyond personal identity, and explores the relational, collective and material components of identity. Specifically, this research seeks to answer the following research questions: What are the shared lived experiences that exist between a group of African American male students developing a mathematics-science identity, and how these shared lived experiences shape their mathematics-science identity development? Therefore, by analyzing African American males lived experiences employing an integrative identity framework fosters a greater understanding of how mathematics-science identity is formed in K-12 public schools, which impacts STEM education and participation. The high school aged youth featured in this study consist of four African American males, who live in a moderate size city in California. Data for this study consists of observations, phenomenological interviews, and policy document analysis that took place over six months. Data has been analyzed to describe and interpret the young men's mathematics and science experiences, as revealed in their K-12 public school education. This inquiry sought to make meaning of how African American males experience mathematics and science teaching and learning within K-12 public schooling and how these experiences impact mathematics-science identity development. The goal of the study seeks to inform educational, psychological and sociological theory about how urban adolescent African American males understand, develop and make use of their mathematics and science knowledge. Finally, this work seeks to inform mathematics and science educational research to include identity theory, beyond a personal or individual identity perspective, but also to include relational, collective, and material identity components to understand how the culture of mathematics and science within and outside of K-12 public schooling impacts African American males in an endeavor to become learners of mathematics and science.

  1. A cognitive framework to inform the design of professional development supporting teachers' classroom assessment of inquiry-based science

    NASA Astrophysics Data System (ADS)

    Matese, Gabrielle

    Inquiry-based science places new demands on teachers for assessing students' growth, both of deep conceptual understanding as well as developing inquiry skills. In addition, new ideas about classroom assessment, such as the importance of formative assessment, are gaining currency. While we have ideas about what classroom assessment consistent with inquiry-based pedagogy might look like, and why it is necessary, we have little understanding of what it takes to implement it. That teachers face a challenge in doing so is well-documented. Researchers have noted that teachers attempting changes in classroom assessment often bring with them incompatible beliefs, knowledge, and practices. However, noting general incompatibility is insufficient to support addressing these issues through professional development. In response to this need, I initiated a research project to identify and describe in more detail the categories of beliefs, knowledge and skills that play an important role in inquiry-based science assessment practices. I created an assessment framework outlining specific categories of beliefs, knowledge, and skills affecting particular classroom assessment practices. I then used the framework to examine teachers' classroom assessment practices and to create comparative cases between three middle-school science teachers, highlighting how the different cognitive factors affect four particular assessment practices. The comparative cases demonstrate the framework's utility for analyzing and explicating teacher assessment practices. As a tool for analyzing and understanding teacher practice, the framework supports the design of professional development. To demonstrate the value of the framework, I draw on the comparative cases to identify implications for the design of professional development to support teachers' classroom assessment of inquiry-based science. In this dissertation I provide a brief overview of the framework and its rationale, present an example of the comparative case studies demonstrating the application of the framework and what it reveals about the cognitive influences on teacher practice, and outline the resulting design implications for professional development. This research allows us to better understand the cognitive factors underlying classroom assessment in inquiry-based science, and to design professional development to support teachers engaging in these practices.

  2. Teacher Perceptions of Inquiry and STEM Education in Bangladesh

    NASA Astrophysics Data System (ADS)

    Shahidullah, Kazi K.

    This dissertation reports lower secondary science teachers perceptions of current practice in Dhaka, Bangladesh concerning inquiry and STEM Education in order to establish a baseline of data for reform of science education in Bangladesh. Bangladesh has been trying to incorporate inquiry-based science curricula since the 1970s. Over time, the science curricula also aligned with different international science education movements such as Science for All, Scientific Literacy, Science, Technology, and Society. Science, Technology, Engineering, and Mathematics (STEM) is the most recent science education movement in international science education. This study explored current practices and perceptions of lower secondary science teachers in order to establish a baseline of current practice so that future reform recommendations may be pursued and recommendations made for Bangladesh to overcome the inquiry-based challenges and to incorporate new STEM-based science education trends happening in the US and throughout the world. The study explored science teachers perceptions and readiness to transform their science classrooms based on self-reported survey. The survey utilized Likert-type scale with range 1 (very strongly disagree) to 6 (very strongly agree) among four hundred lower secondary science teachers, teacher training college faculty, and university faculty. The data is presented in four different categories: curriculum, instruction, assessment, and professional development. Results indicated that the participants understand and practice a certain level of inquiry in their science classrooms, though they do not have adequate professional development. Participants also stated that they do not have sufficient instructional materials and the curriculum is not articulated enough to support inquiry. On the other hand, the participants reported that they understand and practice a certain degree of inquiry and STEM-based science education, but they also state that the current curriculum and instructional materials are not sufficient to practice inquiry nor to integrate more than one or two disciplines with science as is required in STEM integrated teaching. Finally, this study recommends a framework for science education reform for Bangladesh based upon a combination of successful international science education reformation practices.

  3. Designing Computer Learning Environments for Engineering and Computer Science: The Scaffolded Knowledge Integration Framework.

    ERIC Educational Resources Information Center

    Linn, Marcia C.

    1995-01-01

    Describes a framework called scaffolded knowledge integration and illustrates how it guided the design of two successful course enhancements in the field of computer science and engineering: the LISP Knowledge Integration Environment and the spatial reasoning environment. (101 references) (Author/MKR)

  4. Exploring How Globalization Shapes Education: Methodology and Theoretical Framework

    ERIC Educational Resources Information Center

    Pan, Su-Yan

    2010-01-01

    This is a commentary on some major issues raised in Carter and Dediwalage's "Globalisation and science education: The case of "Sustainability by the bay"" (this issue), particularly their methodology and theoretical framework for understanding how globalisation shapes education (including science education). While acknowledging the authors'…

  5. Argumentation, critical thinking, nature of science and socioscientific issues: a dialogue between two researchers

    NASA Astrophysics Data System (ADS)

    Yacoubian, Hagop A.; Khishfe, Rola

    2018-05-01

    The purpose of this paper is to compare and contrast between two theoretical frameworks for addressing nature of science (NOS) and socioscientific issues (SSI) in school science. These frameworks are critical thinking (CT) and argumentation (AR). For the past years, the first and second authors of this paper have pursued research in this area using CT and AR as theoretical frameworks, respectively. Yacoubian argues that future citizens need to develop a critical mindset as they are guided to (1) practice making judgments on what views of NOS to acquire and (2) practice making decisions on SSI through applying their NOS understandings. Khishfe asserts that AR is an important component of decision making when dealing with SSI and the practice in AR in relation to controversial issues is needed for informed decision making. She argues that AR as a framework may assist in the development of more informed understandings of NOS. In this paper, the authors delve into a dialogue for (1) elucidating strengths and potential of each framework, (2) highlighting challenges that they face in their research using the frameworks in question, (3) exploring the extent to which the frameworks can overlap, and (4) proposing directions for future research.

  6. Role of Network Science in the Study of Anesthetic State Transitions.

    PubMed

    Lee, UnCheol; Mashour, George A

    2018-04-23

    The heterogeneity of molecular mechanisms, target neural circuits, and neurophysiologic effects of general anesthetics makes it difficult to develop a reliable and drug-invariant index of general anesthesia. No single brain region or mechanism has been identified as the neural correlate of consciousness, suggesting that consciousness might emerge through complex interactions of spatially and temporally distributed brain functions. The goal of this review article is to introduce the basic concepts of networks and explain why the application of network science to general anesthesia could be a pathway to discover a fundamental mechanism of anesthetic-induced unconsciousness. This article reviews data suggesting that reduced network efficiency, constrained network repertoires, and changes in cortical dynamics create inhospitable conditions for information processing and transfer, which lead to unconsciousness. This review proposes that network science is not just a useful tool but a necessary theoretical framework and method to uncover common principles of anesthetic-induced unconsciousness.

  7. Project LAUNCH: Bringing Space into Math and Science Classrooms

    NASA Technical Reports Server (NTRS)

    Fauerbach, M.; Henry, D. P.; Schmidt, D. L.

    2005-01-01

    Project LAUNCH is a K-12 teacher professional development program, which has been created in collaboration between the Whitaker Center for Science, Mathematics and Technology Education at Florida Gulf Coast University (FGCU), and the Florida Space Research Institute (FSRI). Utilizing Space as the overarching theme it is designed to improve mathematics and science teaching, using inquiry based, hands-on teaching practices, which are aligned with Florida s Sunshine State Standards. Many students are excited about space exploration and it provides a great venue to get them involved in science and mathematics. The scope of Project LAUNCH however goes beyond just providing competency in the subject area, as pedagogy is also an intricate part of the project. Participants were introduced to the Conceptual Change Model (CCM) [1] as a framework to model good teaching practices. As the CCM closely follows what scientists call the scientific process, this teaching method is also useful to actively engage institute participants ,as well as their students, in real science. Project LAUNCH specifically targets teachers in low performing, high socioeconomic schools, where the need for skilled teachers is most critical.

  8. Open science versus commercialization: a modern research conflict?

    PubMed

    Caulfield, Timothy; Harmon, Shawn He; Joly, Yann

    2012-02-27

    Efforts to improve research outcomes have resulted in genomic researchers being confronted with complex and seemingly contradictory instructions about how to perform their tasks. Over the past decade, there has been increasing pressure on university researchers to commercialize their work. Concurrently, they are encouraged to collaborate, share data and disseminate new knowledge quickly (that is, to adopt an open science model) in order to foster scientific progress, meet humanitarian goals, and to maximize the impact of their research. We present selected guidelines from three countries (Canada, United States, and United Kingdom) situated at the forefront of genomics to illustrate this potential policy conflict. Examining the innovation ecosystem and the messages conveyed by the different policies surveyed, we further investigate the inconsistencies between open science and commercialization policies. Commercialization and open science are not necessarily irreconcilable and could instead be envisioned as complementary elements of a more holistic innovation framework. Given the exploratory nature of our study, we wish to point out the need to gather additional evidence on the coexistence of open science and commercialization policies and on its impact, both positive and negative, on genomics academic research.

  9. A critique of the hypothesis, and a defense of the question, as a framework for experimentation.

    PubMed

    Glass, David J

    2010-07-01

    Scientists are often steered by common convention, funding agencies, and journal guidelines into a hypothesis-driven experimental framework, despite Isaac Newton's dictum that hypotheses have no place in experimental science. Some may think that Newton's cautionary note, which was in keeping with an experimental approach espoused by Francis Bacon, is inapplicable to current experimental method since, in accord with the philosopher Karl Popper, modern-day hypotheses are framed to serve as instruments of falsification, as opposed to verification. But Popper's "critical rationalist" framework too is problematic. It has been accused of being: inconsistent on philosophical grounds; unworkable for modern "large science," such as systems biology; inconsistent with the actual goals of experimental science, which is verification and not falsification; and harmful to the process of discovery as a practical matter. A criticism of the hypothesis as a framework for experimentation is offered. Presented is an alternative framework-the query/model approach-which many scientists may discover is the framework they are actually using, despite being required to give lip service to the hypothesis.

  10. Integrating theory and practice to increase scientific workforce diversity: a framework for career development in graduate research training.

    PubMed

    Byars-Winston, Angela; Gutierrez, Belinda; Topp, Sharon; Carnes, Molly

    2011-01-01

    Few, if any, educational interventions intended to increase underrepresented minority (URM) graduate students in biological and behavioral sciences are informed by theory and research on career persistence. Training and Education to Advance Minority Scholars in Science (TEAM-Science) is a program funded by the National Institute of General Medical Sciences at the University of Wisconsin-Madison with the twin goals of increasing the number of URM students entering and completing a PhD in BBS and increasing the number of these students who pursue academic careers. A framework for career development in graduate research training is proposed using social cognitive career theory. Based on this framework, TEAM-Science has five core components: 1) mentor training for the research advisor, 2) eight consensus-derived fundamental competencies required for a successful academic career, 3) career coaching by a senior faculty member, 4) an individualized career development plan that aligns students' activities with the eight fundamental competencies, and 5) a strengths, weaknesses, opportunities, and threats personal career analysis. This paper describes the theoretical framework used to guide development of these components, the research and evaluation plan, and early experience implementing the program. We discuss the potential of this framework to increase desired career outcomes for URM graduate trainees in mentored research programs and, thereby, strengthen the effectiveness of such interventions on participants' career behaviors.

  11. Increasing the Translation of Evidence Into Practice, Policy, and Public Health Improvements: A Framework for Training Health Professionals in Implementation and Dissemination Science

    PubMed Central

    Gonzales, Ralph; Handley, Margaret A.; Ackerman, Sara; O’Sullivan, Patricia S.

    2012-01-01

    The authors describe a conceptual framework for implementation and dissemination science (IDS) and propose competencies for IDS training. Their framework is designed to facilitate the application of theories and methods from the distinct domains of clinical disciplines (e.g., medicine, public health), population sciences (e.g., biostatistics, epidemiology) and translational disciplines (e.g., social and behavioral sciences, business administration education). They explore three principles that guided the development of their conceptual framework: Behavior change among organizations and/or individuals (providers, patients) is inherent in the translation process; engagement of stakeholder organizations, health care delivery systems, and individuals is imperative to achieve effective translation and sustained improvements; and IDS research is iterative, benefiting from cycles and collaborative, bidirectional relationships. The authors propose seven domains for IDS training--team science, context identification, literature identification and assessment, community engagement, intervention design and research implementation, evaluation of effect of translational activity, behavioral change communication strategies--and define twelve IDS training competencies within these domains. As a model, they describe specific courses introduced at the University of California, San Francisco, which they designed to develop these competencies. The authors encourage other training programs and institutions to use (or adapt) the design principles, conceptual framework, And proposed competencies to evaluate their current IDS training needs and to support new program development. PMID:22373617

  12. Integrating Theory and Practice to Increase Scientific Workforce Diversity: A Framework for Career Development in Graduate Research Training

    PubMed Central

    Byars-Winston, Angela; Gutierrez, Belinda; Topp, Sharon; Carnes, Molly

    2011-01-01

    Few, if any, educational interventions intended to increase underrepresented minority (URM) graduate students in biological and behavioral sciences are informed by theory and research on career persistence. Training and Education to Advance Minority Scholars in Science (TEAM-Science) is a program funded by the National Institute of General Medical Sciences at the University of Wisconsin–Madison with the twin goals of increasing the number of URM students entering and completing a PhD in BBS and increasing the number of these students who pursue academic careers. A framework for career development in graduate research training is proposed using social cognitive career theory. Based on this framework, TEAM-Science has five core components: 1) mentor training for the research advisor, 2) eight consensus-derived fundamental competencies required for a successful academic career, 3) career coaching by a senior faculty member, 4) an individualized career development plan that aligns students’ activities with the eight fundamental competencies, and 5) a strengths, weaknesses, opportunities, and threats personal career analysis. This paper describes the theoretical framework used to guide development of these components, the research and evaluation plan, and early experience implementing the program. We discuss the potential of this framework to increase desired career outcomes for URM graduate trainees in mentored research programs and, thereby, strengthen the effectiveness of such interventions on participants’ career behaviors. PMID:22135370

  13. Pika: A snow science simulation tool built using the open-source framework MOOSE

    NASA Astrophysics Data System (ADS)

    Slaughter, A.; Johnson, M.

    2017-12-01

    The Department of Energy (DOE) is currently investing millions of dollars annually into various modeling and simulation tools for all aspects of nuclear energy. An important part of this effort includes developing applications based on the open-source Multiphysics Object Oriented Simulation Environment (MOOSE; mooseframework.org) from Idaho National Laboratory (INL).Thanks to the efforts of the DOE and outside collaborators, MOOSE currently contains a large set of physics modules, including phase-field, level set, heat conduction, tensor mechanics, Navier-Stokes, fracture and crack propagation (via the extended finite-element method), flow in porous media, and others. The heat conduction, tensor mechanics, and phase-field modules, in particular, are well-suited for snow science problems. Pika--an open-source MOOSE-based application--is capable of simulating both 3D, coupled nonlinear continuum heat transfer and large-deformation mechanics applications (such as settlement) and phase-field based micro-structure applications. Additionally, these types of problems may be coupled tightly in a single solve or across length and time scales using a loosely coupled Picard iteration approach. In addition to the wide range of physics capabilities, MOOSE-based applications also inherit an extensible testing framework, graphical user interface, and documentation system; tools that allow MOOSE and other applications to adhere to nuclear software quality standards. The snow science community can learn from the nuclear industry and harness the existing effort to build simulation tools that are open, modular, and share a common framework. In particular, MOOSE-based multiphysics solvers are inherently parallel, dimension agnostic, adaptive in time and space, fully coupled, and capable of interacting with other applications. The snow science community should build on existing tools to enable collaboration between researchers and practitioners throughout the world, and advance the state-of-the-art in line with other scientific research efforts.

  14. A model for rigorously applying the Exploration, Preparation, Implementation, Sustainment (EPIS) framework in the design and measurement of a large scale collaborative multi-site study.

    PubMed

    Becan, Jennifer E; Bartkowski, John P; Knight, Danica K; Wiley, Tisha R A; DiClemente, Ralph; Ducharme, Lori; Welsh, Wayne N; Bowser, Diana; McCollister, Kathryn; Hiller, Matthew; Spaulding, Anne C; Flynn, Patrick M; Swartzendruber, Andrea; Dickson, Megan F; Fisher, Jacqueline Horan; Aarons, Gregory A

    2018-04-13

    This paper describes the means by which a United States National Institute on Drug Abuse (NIDA)-funded cooperative, Juvenile Justice-Translational Research on Interventions for Adolescents in the Legal System (JJ-TRIALS), utilized an established implementation science framework in conducting a multi-site, multi-research center implementation intervention initiative. The initiative aimed to bolster the ability of juvenile justice agencies to address unmet client needs related to substance use while enhancing inter-organizational relationships between juvenile justice and local behavioral health partners. The EPIS (Exploration, Preparation, Implementation, Sustainment) framework was selected and utilized as the guiding model from inception through project completion; including the mapping of implementation strategies to EPIS stages, articulation of research questions, and selection, content, and timing of measurement protocols. Among other key developments, the project led to a reconceptualization of its governing implementation science framework into cyclical form as the EPIS Wheel. The EPIS Wheel is more consistent with rapid-cycle testing principles and permits researchers to track both progressive and recursive movement through EPIS. Moreover, because this randomized controlled trial was predicated on a bundled strategy method, JJ-TRIALS was designed to rigorously test progress through the EPIS stages as promoted by facilitation of data-driven decision making principles. The project extended EPIS by (1) elucidating the role and nature of recursive activity in promoting change (yielding the circular EPIS Wheel), (2) by expanding the applicability of the EPIS framework beyond a single evidence-based practice (EBP) to address varying process improvement efforts (representing varying EBPs), and (3) by disentangling outcome measures of progression through EPIS stages from the a priori established study timeline. The utilization of EPIS in JJ-TRIALS provides a model for practical and applied use of implementation frameworks in real-world settings that span outer service system and inner organizational contexts in improving care for vulnerable populations. NCT02672150 . Retrospectively registered on 22 January 2016.

  15. Translating Behavioral Science into Practice: A Framework to Determine Science Quality and Applicability for Police Organizations.

    PubMed

    McClure, Kimberley A; McGuire, Katherine L; Chapan, Denis M

    2018-05-07

    Policy on officer-involved shootings is critically reviewed and errors in applying scientific knowledge identified. Identifying and evaluating the most relevant science to a field-based problem is challenging. Law enforcement administrators with a clear understanding of valid science and application are in a better position to utilize scientific knowledge for the benefit of their organizations and officers. A recommended framework is proposed for considering the validity of science and its application. Valid science emerges via hypothesis testing, replication, extension and marked by peer review, known error rates, and general acceptance in its field of origin. Valid application of behavioral science requires an understanding of the methodology employed, measures used, and participants recruited to determine whether the science is ready for application. Fostering a science-practitioner partnership and an organizational culture that embraces quality, empirically based policy, and practices improves science-to-practice translation. © 2018 American Academy of Forensic Sciences.

  16. ΔI = 4 Bifurcation and the sdg Interacting Boson Model

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Xin; Sun, Hong-Zhou; Zhao, En-Guang

    1997-01-01

    We show that the superdeformed nuclear states can be described in the framework of the interacting boson model (IBM) with the g-bosons being taken into account in this paper. The ΔI = 4 bifurcation in superdeformed rotational bands can be reproduced in the SU(5) limit of the sdg IBM. The perturbation causing the ΔI = 4 bifurcation to emerge in the ΔI = 2 superdeformed rotational band may possess the SU(5) symmetry. The project supported by National Natural Science Foundation of China

  17. An Overview of Step 2 of the Risk Assessment and Mitigation Framework for Strategic Materials (RAMF-SM)

    DTIC Science & Technology

    2015-03-01

    supply came from a country that is defined as a “foreign market dominator,” which is defined as a country that produces more than half of the global ...production of that particular material.4 The United States competes for access to materials with other countries, and so a “ market share” factor limits...analysis, including scrutinizing macroeconomic trends, global trade, theater- level combat, material science, and international relations. Step 2

  18. United States and Western Europe cooperation in planetary exploration

    NASA Technical Reports Server (NTRS)

    Levy, Eugene H.; Hunten, Donald M.; Masursky, Harold; Scarf, Frederick L.; Solomon, Sean C.; Wilkening, Laurel L.; Fechtig, Hugo; Balsiger, Hans; Blamont, Jacques; Fulchignoni, Marcello

    1989-01-01

    A framework was sought for U.S.-European cooperation in planetary exploration. Specific issues addressed include: types and levels of possible cooperative activities in the planetary sciences; specific or general scientific areas that seem most promising as the main focus of cooperative efforts; potential mission candidates for cooperative ventures; identification of special issues or problems for resolution by negotiation between the agencies, and possible suggestions for their resolutions; and identification of coordinated technological and instrumental developments for planetary missions.

  19. OpenSim: A Flexible Distributed Neural Network Simulator with Automatic Interactive Graphics.

    PubMed

    Jarosch, Andreas; Leber, Jean Francois

    1997-06-01

    An object-oriented simulator called OpenSim is presented that achieves a high degree of flexibility by relying on a small set of building blocks. The state variables and algorithms put in this framework can easily be accessed through a command shell. This allows one to distribute a large-scale simulation over several workstations and to generate the interactive graphics automatically. OpenSim opens new possibilities for cooperation among Neural Network researchers. Copyright 1997 Elsevier Science Ltd.

  20. Technology-based Interventions for Preventing and Treating Substance Use Among Youth

    PubMed Central

    Marsch, Lisa A.; Borodovsky, Jacob T.

    2017-01-01

    Summary Preventing or mitigating substance use among youth generally involves three different intervention frameworks: universal prevention, selective prevention, and treatment. Each of these levels of intervention poses unique therapeutic and implementation challenges. Technology-based interventions provide solutions to many of these problems by delivering evidence-based interventions in a consistent and cost-effective manner. This article summarizes the current state of the science of technology-based interventions for preventing substance use initiation and mitigating substance use and associated consequences among youth. PMID:27613350

Top