Sample records for state selective detection

  1. In-situ fault detection apparatus and method for an encased energy storing device

    DOEpatents

    Hagen, Ronald A.; Comte, Christophe; Knudson, Orlin B.; Rosenthal, Brian; Rouillard, Jean

    2000-01-01

    An apparatus and method for detecting a breach in an electrically insulating surface of an electrically conductive power system enclosure within which a number of series connected energy storing devices are disposed. The energy storing devices disposed in the enclosure are connected to a series power connection. A detector is coupled to the series connection and detects a change of state in a test signal derived from the series connected energy storing devices. The detector detects a breach in the insulating layer of the enclosure by detecting a state change in the test signal from a nominal state to a non-nominal state. A voltage detector detects a state change of the test signals from a nominal state, represented by a voltage of a selected end energy storing device, to a non-nominal state, represented by a voltage that substantially exceeds the voltage of the selected opposing end energy storing device. Alternatively, the detector may comprise a signal generator that produces the test signal as a time-varying or modulated test signal and injects the test signal into the series connection. The detector detects the state change of the time-varying or modulated test signal from a nominal state, represented by a signal substantially equivalent to the test signal, to a non-nominal state, representative by an absence of the test signal.

  2. Highly selective "turn-on" fluorescent and colorimetric sensing of fluoride ion using 2-(2-hydroxyphenyl)-2,3-dihydroquinolin-4(1H)-one based on excited-state proton transfer.

    PubMed

    Kanagaraj, Kuppusamy; Pitchumani, Kasi

    2014-01-01

    A simple, highly selective and sensitive colorimetric system for the detection of fluoride ion in an aqueous medium has been developed using 2-(2-hydroxyphenyl)-2,3-dihydroquinolin-4(1H)-one. This system allows selective "turn-on" fluorescence detection of fluoride ion, which is found to be dependent upon guest basicity. An excited-state proton transfer is proposed to be the signaling mechanism, which is rationalized by DFT and TD-DFT calculations. The present sensor can also be applied to detect fluoride levels in real water samples. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Occurrence and distribution of methyl tert-butyl ether and other volatile organic compounds in drinking water in the Northeast and Mid-Atlantic regions of the United States, 1993-98

    USGS Publications Warehouse

    Grady, S.J.; Casey, G.D.

    2001-01-01

    Data on volatile organic compounds (VOCs) in drinking water supplied by 2,110 randomly selected community water systems (CWSs) in 12 Northeast and Mid-Atlantic States indicate 64 VOC analytes were detected at least once during 1993-98. Selection of the 2,110 CWSs inventoried for this study targeted 20 percent of the 10,479 active CWSs in the region and represented a random subset of the total distribution by State, source of water, and size of system. The data include 21,635 analyses of drinking water collected for compliance monitoring under the Safe Drinking Water Act; the data mostly represent finished drinking water collected at the pointof- entry to, or at more distal locations within, each CWS?s distribution system following any watertreatment processes. VOC detections were more common in drinking water supplied by large systems (serving more than 3,300 people) that tap surface-water sources or both surface- and groundwater sources than in small systems supplied exclusively by ground-water sources. Trihalomethane (THM) compounds, which are potentially formed during the process of disinfecting drinking water with chlorine, were detected in 45 percent of the randomly selected CWSs. Chloroform was the most frequently detected THM, reported in 39 percent of the CWSs. The gasoline additive methyl tert-butyl ether (MTBE) was the most frequently detected VOC in drinking water after the THMs. MTBE was detected in 8.9 percent of the 1,194 randomly selected CWSs that analyzed samples for MTBE at any reporting level, and it was detected in 7.8 percent of the 1,074 CWSs that provided MTBE data at the 1.0-?g/L (microgram per liter) reporting level. As with other VOCs reported in drinking water, most MTBE concentrations were less than 5.0 ?g/L, and less than 1 percent of CWSs reported MTBE concentrations at or above the 20.0-?g/L lower limit recommended by the U.S. Environmental Protection Agency?s Drinking-Water Advisory. The frequency of MTBE detections in drinking water is significantly related to high- MTBE-use patterns. Detections are five times more likely in areas where MTBE is or has been used in gasoline at greater than 5 percent by volume as part of the oxygenated or reformulated (OXY/RFG) fuels program. Detection frequencies of the individual gasoline compounds (benzene, toluene, ethylbenzene, and xylenes (BTEX)) were mostly less than 3 percent of the randomly selected CWSs, but collectively, BTEX compounds were detected in 8.4 percent of CWSs. BTEX concentrations also were low and just three drinkingwater samples contained BTEX at concentrations exceeding 20 ?g/L. Co-occurrence of MTBE and BTEX was rare, and only 0.8 percent of CWSs reported simultaneous detections of MTBE and BTEX compounds. Low concentrations and cooccurrence of MTBE and BTEX indicate most gasoline contaminants in drinking water probably represent nonpoint sources. Solvents were frequently detected in drinking water in the 12-State area. One or more of 27 individual solvent VOCs were detected at any reporting level in 3,080 drinking-water samples from 304 randomly selected CWSs (14 percent) and in 206 CWSs (9.8 percent) at concentrations at or above 1.0 ?g/L. High co-occurrence among solvents probably reflects common sources and the presence of transformation by-products. Other VOCs were relatively rarely detected in drinking water in the 12-State area. Six percent (127) of the 2,110 randomly selected CWSs reported concentrations of 16 VOCs at or above drinking-water criteria. The 127 CWSs collectively serve 2.6 million people. The occurrence of VOCs in drinking water was significantly associated (p<0.0001) with high population- density urban areas. New Jersey, Massachusetts, and Rhode Island, States with substantial urbanization and high population density, had the highest frequency of VOC detections among the 12 States. More than two-thirds of the randomly selected CWSs in New Jersey reported detecting VOC concentrations in drinking water at or above 1

  4. State-of-the art of selective detection and identification of I-, Br-, Cl-, and F-containing compounds in gas chromatography and liquid chromatography.

    PubMed

    Brede, Cato; Pedersen-Bjergaard, Stig

    2004-09-24

    This review article presents an overview of halogen-specific detection in gas chromatography (GC) and liquid chromatography (LC). Attention is primarily focused on the use of plasma emission spectroscopy and plasma mass spectrometry as detectors, but other halogen-selective detection principles are also mentioned. Different instrumental configurations are discussed both with respect to technical set-up and performance, the principal reasons for halogen-selective detection are highlighted, and recent applications are reviewed from areas such as environmental chemistry, petroleum characterization, and drug analysis.

  5. Stimulated Raman Spectroscopy with Entangled Light: Enhanced Resolution and Pathway Selection

    PubMed Central

    2015-01-01

    We propose a novel femtosecond stimulated Raman spectroscopy (FSRS) technique that combines entangled photons with interference detection to select matter pathways and enhance the resolution. Following photoexcitation by an actinic pump, the measurement uses a pair of broad-band entangled photons; one (signal) interacts with the molecule and together with a third narrow-band pulse induces the Raman process. The other (idler) photon provides a reference for the coincidence measurement. This interferometric photon coincidence counting detection allows one to separately measure the Raman gain and loss signals, which is not possible with conventional probe transmission detection. Entangled photons further provide a unique temporal and spectral detection window that can better resolve fast excited-state dynamics compared to classical and correlated disentangled states of light. PMID:25177427

  6. Progress Report on the Improved Linear Ion Trap Physics Package

    NASA Technical Reports Server (NTRS)

    Prestage, John D.

    1995-01-01

    This article describes the first operational results from the extended linear ion trap frequency standard now being developed at JPL. This new design separates the state selection/interrogation region from the more critical microwave resonance region where the multiplied local oscillator (LO) signal is compared to the stable atomic transition. Hg+ ions have been trapped, shuttled back and forth between the resonance and state selection traps. In addition, microwave transitions between the Hg+ clock levels have been driven in the resonance trap and detected in the state selection trap.

  7. Selective and reusable iron(II)-based molecular sensor for the vapor-phase detection of alcohols.

    PubMed

    Naik, Anil D; Robeyns, Koen; Meunier, Christophe F; Léonard, Alexandre F; Rotaru, Aurelian; Tinant, Bernard; Filinchuk, Yaroslav; Su, Bao Lian; Garcia, Yann

    2014-02-03

    A mononuclear iron(II) neutral complex (1) is screened for sensing abilities for a wide spectrum of chemicals and to evaluate the response function toward physical perturbation like temperature and mechanical stress. Interestingly, 1 precisely detects methanol among an alcohol series. The sensing process is visually detectable, fatigue-resistant, highly selective, and reusable. The sensing ability is attributed to molecular sieving and subsequent spin-state change of iron centers, after a crystal-to-crystal transformation.

  8. Selective detection of crystalline cellulose in plant cell walls with sum-frequency-generation (SFG) vibration spectroscopy.

    PubMed

    Barnette, Anna L; Bradley, Laura C; Veres, Brandon D; Schreiner, Edward P; Park, Yong Bum; Park, Junyeong; Park, Sunkyu; Kim, Seong H

    2011-07-11

    The selective detection of crystalline cellulose in biomass was demonstrated with sum-frequency-generation (SFG) vibration spectroscopy. SFG is a second-order nonlinear optical response from a system where the optical centrosymmetry is broken. In secondary plant cell walls that contain mostly cellulose, hemicellulose, and lignin with varying concentrations, only certain vibration modes in the crystalline cellulose structure can meet the noninversion symmetry requirements. Thus, SFG can be used to detect and analyze crystalline cellulose selectively in lignocellulosic biomass without extraction of noncellulosic species from biomass or deconvolution of amorphous spectra. The selective detection of crystalline cellulose in lignocellulosic biomass is not readily achievable with other techniques such as XRD, solid-state NMR, IR, and Raman analyses. Therefore, the SFG analysis presents a unique opportunity to reveal the cellulose crystalline structure in lignocellulosic biomass.

  9. Laser-induced fluorescence fiber optic probe measurement of oil dilution by fuel

    DOEpatents

    Parks, II, James E [Knoxville, TN; Partridge, Jr., William P [Oak Ridge, TN

    2010-11-23

    Apparatus for detecting fuel in oil includes an excitation light source in optical communication with an oil sample for exposing the oil sample to excitation light in order to excite the oil sample from a non-excited state to an excited state and a spectrally selective device in optical communication with the oil sample for detecting light emitted from the oil sample as the oil sample returns from the excited state to a non-excited state to produce spectral indicia that can be analyzed to determine the presence of fuel in the oil sample. A method of detecting fuel in oil includes the steps of exposing a oil sample to excitation light in order to excite the oil sample from a non-excited state to an excited state, as the oil sample returns from the excited state to a non-excited state, detecting light emitted from the oil sample to produce spectral indicia; and analyzing the spectral indicia to determine the presence of fuel in the oil sample.

  10. A SVM-based quantitative fMRI method for resting-state functional network detection.

    PubMed

    Song, Xiaomu; Chen, Nan-kuei

    2014-09-01

    Resting-state functional magnetic resonance imaging (fMRI) aims to measure baseline neuronal connectivity independent of specific functional tasks and to capture changes in the connectivity due to neurological diseases. Most existing network detection methods rely on a fixed threshold to identify functionally connected voxels under the resting state. Due to fMRI non-stationarity, the threshold cannot adapt to variation of data characteristics across sessions and subjects, and generates unreliable mapping results. In this study, a new method is presented for resting-state fMRI data analysis. Specifically, the resting-state network mapping is formulated as an outlier detection process that is implemented using one-class support vector machine (SVM). The results are refined by using a spatial-feature domain prototype selection method and two-class SVM reclassification. The final decision on each voxel is made by comparing its probabilities of functionally connected and unconnected instead of a threshold. Multiple features for resting-state analysis were extracted and examined using an SVM-based feature selection method, and the most representative features were identified. The proposed method was evaluated using synthetic and experimental fMRI data. A comparison study was also performed with independent component analysis (ICA) and correlation analysis. The experimental results show that the proposed method can provide comparable or better network detection performance than ICA and correlation analysis. The method is potentially applicable to various resting-state quantitative fMRI studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Boolean Logic Tree of Label-Free Dual-Signal Electrochemical Aptasensor System for Biosensing, Three-State Logic Computation, and Keypad Lock Security Operation.

    PubMed

    Lu, Jiao Yang; Zhang, Xin Xing; Huang, Wei Tao; Zhu, Qiu Yan; Ding, Xue Zhi; Xia, Li Qiu; Luo, Hong Qun; Li, Nian Bing

    2017-09-19

    The most serious and yet unsolved problems of molecular logic computing consist in how to connect molecular events in complex systems into a usable device with specific functions and how to selectively control branchy logic processes from the cascading logic systems. This report demonstrates that a Boolean logic tree is utilized to organize and connect "plug and play" chemical events DNA, nanomaterials, organic dye, biomolecule, and denaturant for developing the dual-signal electrochemical evolution aptasensor system with good resettability for amplification detection of thrombin, controllable and selectable three-state logic computation, and keypad lock security operation. The aptasensor system combines the merits of DNA-functionalized nanoamplification architecture and simple dual-signal electroactive dye brilliant cresyl blue for sensitive and selective detection of thrombin with a wide linear response range of 0.02-100 nM and a detection limit of 1.92 pM. By using these aforementioned chemical events as inputs and the differential pulse voltammetry current changes at different voltages as dual outputs, a resettable three-input biomolecular keypad lock based on sequential logic is established. Moreover, the first example of controllable and selectable three-state molecular logic computation with active-high and active-low logic functions can be implemented and allows the output ports to assume a high impediment or nothing (Z) state in addition to the 0 and 1 logic levels, effectively controlling subsequent branchy logic computation processes. Our approach is helpful in developing the advanced controllable and selectable logic computing and sensing system in large-scale integration circuits for application in biomedical engineering, intelligent sensing, and control.

  12. Boric-Acid-Functional Lanthanide Metal-Organic Frameworks for Selective Ratiometric Fluorescence Detection of Fluoride Ions.

    PubMed

    Yang, Zhong-Rui; Wang, Man-Man; Wang, Xue-Sheng; Yin, Xue-Bo

    2017-02-07

    Here, we report that boric acid is used to tune the optical properties of lanthanide metal-organic frameworks (LMOFs) for dual-fluorescence emission and improves the selectivity of LMOFs for the determination of F - ions. The LMOFs are prepared with 5-boronoisophthalic acid (5-bop) and Eu 3+ ions as the precursors. Emission mechanism study indicates that 5-bop is excited with UV photons to produce its triplet state, which then excites Eu 3+ ions for their red emission. This is the general story of the antenna effect, but electron-deficient boric acid decreases the energy transfer efficiency from the triplet state of 5-bop to Eu 3+ ions, so dual emission from both 5-bop and Eu 3+ ions is efficiently excited at the single excitation of 275 nm. Moreover, boric acid is used to identify fluoride specifically as a free accessible site. The ratiometric fluorescent detection of F - ions is validated with the dual emission at single excitation. The LMOFs are very monodisperse, so the determination of aqueous F - ions is easily achieved with high selectivity and a low detection limit (2 μM). For the first time, we reveal that rational selection of functional ligands can improve the sensing efficiency of LMOFs through tuning their optical property and enhancing the selectivity toward targets.

  13. Feasibility of assessing health state by detecting redox state of human body based on Chinese medicine constitution.

    PubMed

    Li, Ling-Ru; Wang, Qi; Wang, Ji; Wang, Qian-Fei; Yang, Ling-Ling; Zheng, Lu-Yu; Zhang, Yan

    2016-08-01

    This article discussed the feasibility of assessing health state by detecting redox state of human body. Firstly, the balance of redox state is the basis of homeostasis, and the balance ability of redox can reflflect health state of human body. Secondly, the redox state of human body is a sensitive index of multiple risk factors of health such as age, external environment and psychological factors. It participates in the occurrence and development of multiple diseases involving metabolic diseases and nervous system diseases, and can serve as a cut-in point for treatment of these diseases. Detecting the redox state of high risk people is signifificantly important for early detection and treatment of disease. The blood plasma and urine could be selected to detect, which is convenient. It is pointed that the indexes not only involve oxidation product and antioxidant enzyme but also redox couple. Chinese medicine constitution reflflects the state of body itself and the ability of adapting to external environment, which is consistent with the connotation of health. It is found that there are nine basic types of constitution in Chinese population, which provides a theoretical basis of health preservation, preventive treatment of disease and personalized treatment. With the combination of redox state detection and the Chinese medicine constitution theory, the heath state can be systemically assessed by conducting large-scale epidemiological survey with classifified detection on redox state of human body.

  14. Atomic-resolution single-spin magnetic resonance detection concept based on tunneling force microscopy

    NASA Astrophysics Data System (ADS)

    Payne, A.; Ambal, K.; Boehme, C.; Williams, C. C.

    2015-05-01

    A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single-electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy system noise. The results show that the approach could provide single-spin measurement of electrically isolated qubit states with atomic spatial resolution at room temperature.

  15. Playing quantum games by a scheme with pre- and post-selection

    NASA Astrophysics Data System (ADS)

    Weng, Guo-Fu; Yu, Yang

    2016-01-01

    We propose a scheme to play quantum games by assuming that the two players interact with each other. Thus, by pre-selection, two players can choose their initial states, and some dilemma in classical game may be removed by post-selection, which is particularly useful for the cooperative games. We apply the proposal to both of BoS and Prisoners' dilemma games in cooperative situations. The examples show that the proposal would guarantee a remarkably binding agreement between two parties. Any deviation during the game will be detected, and the game may be abnegated. By illuminating the examples, we find that the initial state in the cooperative game does not destroy process to get preferable payoffs by pre- and post-selections, which is not true in other schemes for implementing the quantum game. We point out that one player can use the scheme to detect his opponent's choices if he is advantageous in information theory and technology.

  16. Nanoneedle transistor-based sensors for the selective detection of intracellular calcium ions.

    PubMed

    Son, Donghee; Park, Sung Young; Kim, Byeongju; Koh, Jun Tae; Kim, Tae Hyun; An, Sangmin; Jang, Doyoung; Kim, Gyu Tae; Jhe, Wonho; Hong, Seunghun

    2011-05-24

    We developed a nanoneedle transistor-based sensor (NTS) for the selective detection of calcium ions inside a living cell. In this work, a single-walled carbon nanotube-based field effect transistor (swCNT-FET) was first fabricated at the end of a glass nanopipette and functionalized with Fluo-4-AM probe dye. The selective binding of calcium ions onto the dye molecules altered the charge state of the dye molecules, resulting in the change of the source-drain current of the swCNT-FET as well as the fluorescence intensity from the dye. We demonstrated the electrical and fluorescence detection of the concentration change of intracellular calcium ions inside a HeLa cell using the NTS.

  17. Unsupervised online classifier in sleep scoring for sleep deprivation studies.

    PubMed

    Libourel, Paul-Antoine; Corneyllie, Alexandra; Luppi, Pierre-Hervé; Chouvet, Guy; Gervasoni, Damien

    2015-05-01

    This study was designed to evaluate an unsupervised adaptive algorithm for real-time detection of sleep and wake states in rodents. We designed a Bayesian classifier that automatically extracts electroencephalogram (EEG) and electromyogram (EMG) features and categorizes non-overlapping 5-s epochs into one of the three major sleep and wake states without any human supervision. This sleep-scoring algorithm is coupled online with a new device to perform selective paradoxical sleep deprivation (PSD). Controlled laboratory settings for chronic polygraphic sleep recordings and selective PSD. Ten adult Sprague-Dawley rats instrumented for chronic polysomnographic recordings. The performance of the algorithm is evaluated by comparison with the score obtained by a human expert reader. Online detection of PS is then validated with a PSD protocol with duration of 72 hours. Our algorithm gave a high concordance with human scoring with an average κ coefficient > 70%. Notably, the specificity to detect PS reached 92%. Selective PSD using real-time detection of PS strongly reduced PS amounts, leaving only brief PS bouts necessary for the detection of PS in EEG and EMG signals (4.7 ± 0.7% over 72 h, versus 8.9 ± 0.5% in baseline), and was followed by a significant PS rebound (23.3 ± 3.3% over 150 minutes). Our fully unsupervised data-driven algorithm overcomes some limitations of the other automated methods such as the selection of representative descriptors or threshold settings. When used online and coupled with our sleep deprivation device, it represents a better option for selective PSD than other methods like the tedious gentle handling or the platform method. © 2015 Associated Professional Sleep Societies, LLC.

  18. Modern Directions for Potentiometric Sensors

    PubMed Central

    Bakker, Eric; Chumbimuni-Torres, Karin

    2009-01-01

    This paper gives an overview of the newest developments of polymeric membrane ion-selective electrodes. A short essence of the underlying theory is given, emphasizing how the electromotive force may be used to assess binding constants of the ionophore, and how the selectivity and detection limit are related to the underlying membrane processes. The recent developments in lowering the detection limits of ISEs are described, including recent approaches of developing all solid state ISEs, and breakthroughs in detecting ultra-small quantities of ions at low concentrations. These developments have paved the way to use potentiometric sensors as in ultra-sensitive affinity bioanalysis in conjunction with nanoparticle labels. Recent results establish that potentiometry compares favorably to electrochemical stripping analysis. Other new developments with ion-selective electrodes are also described, including the concept of backside calibration potentiometry, controlled current coulometry, pulsed chronopotentiometry, and localized flash titration with ion-selective membranes to design sensors for the direct detection of total acidity without net sample perturbation. These developments have further opened the field for exciting new possibilities and applications. PMID:19890473

  19. Sequential projection pursuit for optimised vibration-based damage detection in an experimental wind turbine blade

    NASA Astrophysics Data System (ADS)

    Hoell, Simon; Omenzetter, Piotr

    2018-02-01

    To advance the concept of smart structures in large systems, such as wind turbines (WTs), it is desirable to be able to detect structural damage early while using minimal instrumentation. Data-driven vibration-based damage detection methods can be competitive in that respect because global vibrational responses encompass the entire structure. Multivariate damage sensitive features (DSFs) extracted from acceleration responses enable to detect changes in a structure via statistical methods. However, even though such DSFs contain information about the structural state, they may not be optimised for the damage detection task. This paper addresses the shortcoming by exploring a DSF projection technique specialised for statistical structural damage detection. High dimensional initial DSFs are projected onto a low-dimensional space for improved damage detection performance and simultaneous computational burden reduction. The technique is based on sequential projection pursuit where the projection vectors are optimised one by one using an advanced evolutionary strategy. The approach is applied to laboratory experiments with a small-scale WT blade under wind-like excitations. Autocorrelation function coefficients calculated from acceleration signals are employed as DSFs. The optimal numbers of projection vectors are identified with the help of a fast forward selection procedure. To benchmark the proposed method, selections of original DSFs as well as principal component analysis scores from these features are additionally investigated. The optimised DSFs are tested for damage detection on previously unseen data from the healthy state and a wide range of damage scenarios. It is demonstrated that using selected subsets of the initial and transformed DSFs improves damage detectability compared to the full set of features. Furthermore, superior results can be achieved by projecting autocorrelation coefficients onto just a single optimised projection vector.

  20. Automatic Detection of Seizures with Applications

    NASA Technical Reports Server (NTRS)

    Olsen, Dale E.; Harris, John C.; Cutchis, Protagoras N.; Cristion, John A.; Lesser, Ronald P.; Webber, W. Robert S.

    1993-01-01

    There are an estimated two million people with epilepsy in the United States. Many of these people do not respond to anti-epileptic drug therapy. Two devices can be developed to assist in the treatment of epilepsy. The first is a microcomputer-based system designed to process massive amounts of electroencephalogram (EEG) data collected during long-term monitoring of patients for the purpose of diagnosing seizures, assessing the effectiveness of medical therapy, or selecting patients for epilepsy surgery. Such a device would select and display important EEG events. Currently many such events are missed. A second device could be implanted and would detect seizures and initiate therapy. Both of these devices require a reliable seizure detection algorithm. A new algorithm is described. It is believed to represent an improvement over existing seizure detection algorithms because better signal features were selected and better standardization methods were used.

  1. Technique for Increasing the Selectivity of the Method of Laser Fragmentation/Laser-Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Bobrovnikov, S. M.; Gorlov, E. V.; Zharkov, V. I.

    2018-05-01

    A technique for increasing the selectivity of the method of detecting high-energy materials (HEMs) based on laser fragmentation of HEM molecules with subsequent laser excitation of fluorescence of the characteristic NO fragments from the first vibrational level of the ground state is suggested.

  2. An experimental sample of the field gamma-spectrometer based on solid state Si-photomultiplier

    NASA Astrophysics Data System (ADS)

    Denisov, Viktor; Korotaev, Valery; Titov, Aleksandr; Blokhina, Anastasia; Kleshchenok, Maksim

    2017-05-01

    Design of optical-electronic devices and systems involves the selection of such technical patterns that under given initial requirements and conditions are optimal according to certain criteria. The original characteristic of the OES for any purpose, defining its most important feature ability is a threshold detection. Based on this property, will be achieved the required functional quality of the device or system. Therefore, the original criteria and optimization methods have to subordinate to the idea of a better detectability. Generally reduces to the problem of optimal selection of the expected (predetermined) signals in the predetermined observation conditions. Thus the main purpose of optimization of the system when calculating its detectability is the choice of circuits and components that provide the most effective selection of a target.

  3. Switchable electrochemiluminescence aptasensor coupled with resonance energy transfer for selective attomolar detection of Hg2+ via CdTe@CdS/dendrimer probe and Au nanoparticle quencher.

    PubMed

    Babamiri, Bahareh; Salimi, Abdollah; Hallaj, Rahman

    2018-04-15

    In the present study, an ultrasensitive electrochemiluminescence (ECL) aptasensing assay for selective detection of Hg 2+ was designed. In this electrochemiluminescence resonance energy transfer (ECL-RET) approach, Fe 3 O 4 @SiO 2 /dendrimers/QDs exhibited amplified ECL emissions (switch "on" state) and with the hybridization between T-rich ssDNA(S 1 ) immobilized on the Fe 3 O 4 @SiO 2 /dendrimers/QDs and AuNPs modified with complementary aptamer (AuNPs-S 2 ), the ECL of QDs nanocomposites was efficiently quenched (switch "off" state). In the presence of Hg 2+ ions, formation of strong and stable T-Hg 2+ -T complex led to the release of the AuNPs-S 2 from double-stranded DNA(dsDNA) and the recovery of the ECL signal of QDs (second signal switch "on" state). Under optimal conditions, Hg 2+ can be detected in a wide linear range from 20aM to 2µM with a very low detection limit of 2aM. The proposed ECL aptasensor showed high selectivity for Hg 2+ determination compared to other environmentally relevant metal ions at concentration ratio more than 1000 times. The aptasensor was used for detection Hg 2+ ions from samples of tap waters, carp and saltwater fishes with satisfactory results. The aptasensor exhibited high sensitivity, wide linear response (11 orders of magnitude), excellent reproducibility and stability. The proposed aptasensor will be a promising candidate for facile and rapid determination of Hg 2+ in environmental and fishery samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xin

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). Themore » spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of K{alpha} and K{beta} emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS.« less

  5. Concept for room temperature single-spin tunneling force microscopy with atomic spatial resolution

    NASA Astrophysics Data System (ADS)

    Payne, Adam

    A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy (AFM) system noise. The results show that the approach could provide single-spin measurement of electrically isolated defect states with atomic spatial resolution at room temperature.

  6. Quantum key distribution with passive decoy state selection

    NASA Astrophysics Data System (ADS)

    Mauerer, Wolfgang; Silberhorn, Christine

    2007-05-01

    We propose a quantum key distribution scheme which closely matches the performance of a perfect single photon source. It nearly attains the physical upper bound in terms of key generation rate and maximally achievable distance. Our scheme relies on a practical setup based on a parametric downconversion source and present day, nonideal photon-number detection. Arbitrary experimental imperfections which lead to bit errors are included. We select decoy states by classical postprocessing. This allows one to improve the effective signal statistics and achievable distance.

  7. Effects of life-state on detectability in a demographic study of the terrestrial orchid Cleistes bifaria

    USGS Publications Warehouse

    Kery, M.; Gregg, K.B.

    2003-01-01

    1. Most plant demographic studies follow marked individuals in permanent plots. Plots tend to be small, so detectability is assumed to be one for every individual. However, detectability could be affected by factors such as plant traits, time, space, observer, previous detection, biotic interactions, and especially by life-state. 2. We used a double-observer survey and closed population capture-recapture modelling to estimate state-specific detectability of the orchid Cleistes bifaria in a long-term study plot of 41.2 m2. Based on AICc model selection, detectability was different for each life-state and for tagged vs. previously untagged plants. There were no differences in detectability between the two observers. 3. Detectability estimates (SE) for one-leaf vegetative, two-leaf vegetative, and flowering/fruiting states correlated with mean size of these states and were 0.76 (0.05), 0.92 (0.06), and 1 (0.00), respectively, for previously tagged plants, and 0.84 (0.08), 0.75 (0.22), and 0 (0.00), respectively, for previously untagged plants. (We had insufficient data to obtain a satisfactory estimate of previously untagged flowering plants). 4. Our estimates are for a medium-sized plant in a small and intensively surveyed plot. It is possible that detectability is even lower for larger plots and smaller plants or smaller life-states (e.g. seedlings) and that detectabilities < 1 are widespread in plant demographic studies. 5. State-dependent detectabilities are especially worrying since they will lead to a size- or state-biased sample from the study plot. Failure to incorporate detectability into demographic estimation methods introduces a bias into most estimates of population parameters such as fecundity, recruitment, mortality, and transition rates between life-states. We illustrate this by a simple example using a matrix model, where a hypothetical population was stable but, due to imperfect detection, wrongly projected to be declining at a rate of 8% per year. 6. Almost all plant demographic studies are based on models for discrete states. State and size are important predictors both for demographic rates and detectability. We suggest that even in studies based on small plots, state- or size-specific detectability should be estimated at least at some point to avoid biased inference about the dynamics of the population sampled.

  8. Selection of single chain variable fragments (scFv) against Xylella fastidiosa subsp. pauca by phage display

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa is a gram-negative member of the gamma proteobacteria. Xylella fastidiosa subsp pauca causes citrus variegated chlorosis in Brazil and enjoys ‘select agent’ status in the United States. Antibody based detection assays are commercially available for Xylella fastidiosa, and are ef...

  9. A Review of Selected Engineered Nanoparticles in the Atmosphere: Sources, Transformations, and Techniques for Sampling and Analysis

    EPA Science Inventory

    A state-of-the-science review was undertaken to identify and assess sampling and analysis methods to detect and quantify selected nanomaterials (NMs) in the ambient atmosphere. The review is restricted to five types of NMs of interest to the Office of Research and Development Nan...

  10. Objective Properties from Subjective Quantum States: Environment as a Witness

    NASA Astrophysics Data System (ADS)

    Ollivier, Harold; Poulin, David; Zurek, Wojciech H.

    2004-11-01

    We study the emergence of objective properties in open quantum systems. In our analysis, the environment is promoted from a passive role of a reservoir selectively destroying quantum coherence to an active role of amplifier selectively proliferating information about the system. We show that only preferred pointer states of the system can leave a redundant and therefore easily detectable imprint on the environment. Observers who—as is almost always the case—discover the state of the system indirectly (by probing a fraction of its environment) will find out only about the corresponding pointer observable. Many observers can act in this fashion independently and without perturbing the system. They will agree about its state. In this operational sense, preferred pointer states exist objectively.

  11. Selection and Biosensor Application of Aptamers for Small Molecules

    PubMed Central

    Pfeiffer, Franziska; Mayer, Günter

    2016-01-01

    Small molecules play a major role in the human body and as drugs, toxins, and chemicals. Tools to detect and quantify them are therefore in high demand. This review will give an overview about aptamers interacting with small molecules and their selection. We discuss the current state of the field, including advantages as well as problems associated with their use and possible solutions to tackle these. We then discuss different kinds of small molecule aptamer-based sensors described in literature and their applications, ranging from detecting drinking water contaminations to RNA imaging. PMID:27379229

  12. Detection systems for mass spectrometry imaging: a perspective on novel developments with a focus on active pixel detectors.

    PubMed

    Jungmann, Julia H; Heeren, Ron M A

    2013-01-15

    Instrumental developments for imaging and individual particle detection for biomolecular mass spectrometry (imaging) and fundamental atomic and molecular physics studies are reviewed. Ion-counting detectors, array detection systems and high mass detectors for mass spectrometry (imaging) are treated. State-of-the-art detection systems for multi-dimensional ion, electron and photon detection are highlighted. Their application and performance in three different imaging modes--integrated, selected and spectral image detection--are described. Electro-optical and microchannel-plate-based systems are contrasted. The analytical capabilities of solid-state pixel detectors--both charge coupled device (CCD) and complementary metal oxide semiconductor (CMOS) chips--are introduced. The Medipix/Timepix detector family is described as an example of a CMOS hybrid active pixel sensor. Alternative imaging methods for particle detection and their potential for future applications are investigated. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Resonant optical transducers for in-situ gas detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, Tiziana C.; Cole, Garrett; Goddard, Lynford

    Configurations for in-situ gas detection are provided, and include miniaturized photonic devices, low-optical-loss, guided-wave structures and state-selective adsorption coatings. High quality factor semiconductor resonators have been demonstrated in different configurations, such as micro-disks, micro-rings, micro-toroids, and photonic crystals with the properties of very narrow NIR transmission bands and sensitivity up to 10.sup.-9 (change in complex refractive index). The devices are therefore highly sensitive to changes in optical properties to the device parameters and can be tunable to the absorption of the chemical species of interest. Appropriate coatings applied to the device enhance state-specific molecular detection.

  14. Resonant optical transducers for in-situ gas detection

    DOEpatents

    Bond, Tiziana C; Cole, Garrett; Goddard, Lynford

    2016-06-28

    Configurations for in-situ gas detection are provided, and include miniaturized photonic devices, low-optical-loss, guided-wave structures and state-selective adsorption coatings. High quality factor semiconductor resonators have been demonstrated in different configurations, such as micro-disks, micro-rings, micro-toroids, and photonic crystals with the properties of very narrow NIR transmission bands and sensitivity up to 10.sup.-9 (change in complex refractive index). The devices are therefore highly sensitive to changes in optical properties to the device parameters and can be tunable to the absorption of the chemical species of interest. Appropriate coatings applied to the device enhance state-specific molecular detection.

  15. An excited state intramolecular proton transfer dye based fluorescence turn-on probe for fast detection of thiols and its applications in bioimaging

    NASA Astrophysics Data System (ADS)

    Zhao, Yun; Xue, Yuanyuan; Li, Haoyang; Zhu, Ruitao; Ren, Yuehong; Shi, Qinghua; Wang, Song; Guo, Wei

    2017-03-01

    In this study, a new fluorescent probe 2-(2‧-hydroxy-5‧-N-maleimide phenyl)-benzothiazole (probe 1), was designed and synthesized by linking the excited state intramolecular proton transfer (ESIPT) fluorophore to the maleimide group for selective detection of thiols in aqueous solution. The fluorescence of probe 1 is strongly quenched by maleimide group through the photo-induced electron transfer (PET) mechanism, but after reaction with thiol, the fluorescence of ESIPT fluorophore is restored, affording a large Stokes shifts. Upon addition of cysteine (Cys), probe 1 exhibited a fast response time (complete within 30 s) and a high signal-to-noise ratio (up to 23-fold). It showed a high selectivity and excellent sensitivity to thiols over other relevant biological species, with a detection limit of 3.78 × 10- 8 M (S/N = 3). Moreover, the probe was successfully applied to the imaging of thiols in living cells.

  16. Electron-rich triphenylamine-based sensors for picric acid detection.

    PubMed

    Chowdhury, Aniket; Mukherjee, Partha Sarathi

    2015-04-17

    This paper demonstrates the role of solvent in selectivity and sensitivity of a series of electron-rich compounds for the detection of trace amounts of picric acid. Two new electron-rich fluorescent esters (6, 7) containing a triphenylamine backbone as well as their analogous carboxylic acids (8, 9) have been synthesized and characterized. Fluorescent triphenylamine coupled with an ethynyl moiety constitutes π-electron-rich selective and sensitive probes for electron-deficient picric acid (PA). In solution, the high sensitivity of all the sensors toward PA can be attributed to a combined effect of the ground-state charge-transfer complex formation and resonance energy transfer between the sensor and analyte. The acids 8 and 9 also showed enhanced sensitivity for nitroaromatics in the solid state, and their enhanced sensitivity could be attributed to exciton migration due to close proximity of the neighboring acid molecules, as evident from the X-ray diffraction study. The compounds were found to be quite sensitive for the detection of trace amount of nitroaromatics in solution, solid, and contact mode.

  17. X-ray structure of acid-sensing ion channel 1-snake toxin complex reveals open state of a Na(+)-selective channel.

    PubMed

    Baconguis, Isabelle; Bohlen, Christopher J; Goehring, April; Julius, David; Gouaux, Eric

    2014-02-13

    Acid-sensing ion channels (ASICs) detect extracellular protons produced during inflammation or ischemic injury and belong to the superfamily of degenerin/epithelial sodium channels. Here, we determine the cocrystal structure of chicken ASIC1a with MitTx, a pain-inducing toxin from the Texas coral snake, to define the structure of the open state of ASIC1a. In the MitTx-bound open state and in the previously determined low-pH desensitized state, TM2 is a discontinuous α helix in which the Gly-Ala-Ser selectivity filter adopts an extended, belt-like conformation, swapping the cytoplasmic one-third of TM2 with an adjacent subunit. Gly 443 residues of the selectivity filter provide a ring of three carbonyl oxygen atoms with a radius of ∼3.6 Å, presenting an energetic barrier for hydrated ions. The ASIC1a-MitTx complex illuminates the mechanism of MitTx action, defines the structure of the selectivity filter of voltage-independent, sodium-selective ion channels, and captures the open state of an ASIC. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Anomaly Monitoring Method for Key Components of Satellite

    PubMed Central

    Fan, Linjun; Xiao, Weidong; Tang, Jun

    2014-01-01

    This paper presented a fault diagnosis method for key components of satellite, called Anomaly Monitoring Method (AMM), which is made up of state estimation based on Multivariate State Estimation Techniques (MSET) and anomaly detection based on Sequential Probability Ratio Test (SPRT). On the basis of analysis failure of lithium-ion batteries (LIBs), we divided the failure of LIBs into internal failure, external failure, and thermal runaway and selected electrolyte resistance (R e) and the charge transfer resistance (R ct) as the key parameters of state estimation. Then, through the actual in-orbit telemetry data of the key parameters of LIBs, we obtained the actual residual value (R X) and healthy residual value (R L) of LIBs based on the state estimation of MSET, and then, through the residual values (R X and R L) of LIBs, we detected the anomaly states based on the anomaly detection of SPRT. Lastly, we conducted an example of AMM for LIBs, and, according to the results of AMM, we validated the feasibility and effectiveness of AMM by comparing it with the results of threshold detective method (TDM). PMID:24587703

  19. Unsupervised Online Classifier in Sleep Scoring for Sleep Deprivation Studies

    PubMed Central

    Libourel, Paul-Antoine; Corneyllie, Alexandra; Luppi, Pierre-Hervé; Chouvet, Guy; Gervasoni, Damien

    2015-01-01

    Study Objective: This study was designed to evaluate an unsupervised adaptive algorithm for real-time detection of sleep and wake states in rodents. Design: We designed a Bayesian classifier that automatically extracts electroencephalogram (EEG) and electromyogram (EMG) features and categorizes non-overlapping 5-s epochs into one of the three major sleep and wake states without any human supervision. This sleep-scoring algorithm is coupled online with a new device to perform selective paradoxical sleep deprivation (PSD). Settings: Controlled laboratory settings for chronic polygraphic sleep recordings and selective PSD. Participants: Ten adult Sprague-Dawley rats instrumented for chronic polysomnographic recordings Measurements: The performance of the algorithm is evaluated by comparison with the score obtained by a human expert reader. Online detection of PS is then validated with a PSD protocol with duration of 72 hours. Results: Our algorithm gave a high concordance with human scoring with an average κ coefficient > 70%. Notably, the specificity to detect PS reached 92%. Selective PSD using real-time detection of PS strongly reduced PS amounts, leaving only brief PS bouts necessary for the detection of PS in EEG and EMG signals (4.7 ± 0.7% over 72 h, versus 8.9 ± 0.5% in baseline), and was followed by a significant PS rebound (23.3 ± 3.3% over 150 minutes). Conclusions: Our fully unsupervised data-driven algorithm overcomes some limitations of the other automated methods such as the selection of representative descriptors or threshold settings. When used online and coupled with our sleep deprivation device, it represents a better option for selective PSD than other methods like the tedious gentle handling or the platform method. Citation: Libourel PA, Corneyllie A, Luppi PH, Chouvet G, Gervasoni D. Unsupervised online classifier in sleep scoring for sleep deprivation studies. SLEEP 2015;38(5):815–828. PMID:25325478

  20. Selective and sensitive fluorescent sensor for Pd2+ using coumarin 460 for real-time and biological applications.

    PubMed

    Ashwin, Bosco Christin Maria Arputham; Sivaraman, Gandhi; Stalin, Thambusamy; Yuvakkumar, Rathinam; Muthu Mareeswaran, Paulpandian

    2018-06-01

    The efficient fluorescent property of coumarin 460 (C460) is utilized to sense the Pd 2+ selectively and sensitively. Fabrication of a sensor strip using commercial adhesive tape is achieved and the detection of Pd 2+ is attempted using a handy UV torch. The naked eye detection in solution state using UV chamber is also attempted. The calculated high binding constant values support the strong stable complex formation of Pd 2+ with C460. The detection limit up to 2.5 × 10 -7  M is achieved using fluorescence spectrometer, which is considerably low from the WHO's recommendation. The response of coumarin 460 with various cations also studied. The quenching is further studied by the lifetime measurements. The binding mechanism is clearly explained by the 1 H NMR titration. The sensing mechanism is established as ICT. C460 strip's Pd 2+ quenching detection is further confirmed by solid-state PL study. The in-vitro response of Pd 2+ in a living cell is also studied using fluorescent imaging studies by means of HeLa cell lines and this probe is very compatible with biological environments. It could be applicable to sense trace amounts of a Pd 2+ ion from various industries. Compared with previous reports, this one is very cheap, sensitive, selective and suitable for biological systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. A Selective Meta-Analysis on the Relative Incidence of Discrete Affective States during Learning with Technology

    ERIC Educational Resources Information Center

    D'Mello, Sidney

    2013-01-01

    The last decade has witnessed considerable interest in the investigation of the affective dimensions of learning and in the development of advanced learning technologies that automatically detect and respond to student affect. Identifying the affective states that students experience in technology-enhanced learning contexts is a fundamental…

  2. Does the Adoption of Plagiarism-Detection Software in Higher Education Reduce Plagiarism?

    ERIC Educational Resources Information Center

    Youmans, Robert J.

    2011-01-01

    In two studies, students at California State University, Northridge wrote papers that were checked for plagiarism using plagiarism-detection software. In the first study, half of the students in two classes were randomly selected and told by the professor that their term papers would be scanned for plagiarism using the software. Students in the…

  3. Detection of tannins in modern and fossil barks and in plant residues by high-resolution solid-state 13C nuclear magnetic resonance

    USGS Publications Warehouse

    Wilson, M.A.; Hatcher, P.G.

    1988-01-01

    Bark samples isolated from brown coal deposits in Victoria, Australia, and buried wood from Rhizophora mangle have been studies by high-resolution solid-state nuclear magnetic resonance (NMR) techniques. Dipolar dephasing 13C NMR appears to be a useful method of detecting the presence of tannins in geochemical samples including barks, buried woods, peats and leaf litter. It is shown that tannins are selectively preserved in bark during coalification to the brown coal stage. ?? 1988.

  4. Effects of bleeder cloth impressions on the use of polar backscatter to detect porosity

    NASA Technical Reports Server (NTRS)

    Handley, S. M.; Miller, J. G.; Madaras, Eric I.

    1988-01-01

    The influence of the nature of the composite's surface on ultrasonic polar backscatter measurements for detecting and characterizing porosity in composite laminates is studied, focusing on the effects of bleeder cloth impressions noted by Bar-Cohen (1987). The results indicate that the presence of the bleeder cloth impressions substantially influences the degree of anisotropy. It is found that, for relatively thin samples in which selective time gating is not feasible, the state of the insonified surface and the state of the back surface both influence the received signal.

  5. State observer for synchronous motors

    DOEpatents

    Lang, Jeffrey H.

    1994-03-22

    A state observer driven by measurements of phase voltages and currents for estimating the angular orientation of a rotor of a synchronous motor such as a variable reluctance motor (VRM). Phase voltages and currents are detected and serve as inputs to a state observer. The state observer includes a mathematical model of the electromechanical operation of the synchronous motor. The characteristics of the state observer are selected so that the observer estimates converge to the actual rotor angular orientation and velocity, winding phase flux linkages or currents.

  6. High Spin States in ^24Mg

    NASA Astrophysics Data System (ADS)

    Schwartz, J.; Lister, C. J.; Wuosmaa, A.; Betts, R. R.; Blumenthal, D.; Carpenter, M. P.; Davids, C. N.; Fischer, S. M.; Hackman, G.; Janssens, R. V. F.

    1996-05-01

    The ^12C(^16O,α)^24Mg reaction was used at 51.5MeV to populate high angular momentum states in ^24Mg. Gamma-rays de-exciting high spin states were detected in a 20 detector spectrometer (the AYE-ball) triggered by the ANL Fragment Mass Analyser (FMA). Channel selection, through detection of ^24Mg nuclei with the appropriate time of flight, was excellent. All the known decays from high spin states were seen in a few hours, with the exception of the 5.04 MeV γ-decay of the J^π=9^- state at 16.904 MeV footnote A.E.Smith et al., Phys. Lett. \\underlineB176, (1986)292. which could not be confirmed. The potential of the technique for studying the radiative decay of states with very high spin in light nuclei will be discussed.

  7. Two-colour dip spectroscopy of jet-cooled molecules

    NASA Astrophysics Data System (ADS)

    Ito, Mitsuo

    In optical-optical double resonance spectroscopy, the resonance transition from an intermediate state to a final state can be detected by a dip of the signal (fluorescence or ion) associated with the intermediate state. This method probing the signal of the intermediate state may be called `two-colour dip spectroscopy'. Various kinds of two-colour dip spectroscopy such as two-colour fluorescence/ion dip spectroscopy, two-colour ionization dip spectroscopy employing stimulated emission, population labelling spectroscopy and mass-selected ion dip spectroscopy with dissociation were briefly described, paying special attention to their characteristics in excitation, detection and application. They were extensively and successfully applied to jet-cooled large molecules and provided us with new useful information on the energy and dynamics of excited molecules.

  8. Data acquisition and path selection decision making for an autonomous roving vehicle

    NASA Technical Reports Server (NTRS)

    Frederick, D. K.; Shen, C. N.; Yerazunis, S. W.

    1976-01-01

    Problems related to the guidance of an autonomous rover for unmanned planetary exploration were investigated. Topics included in these studies were: simulation on an interactive graphics computer system of the Rapid Estimation Technique for detection of discrete obstacles; incorporation of a simultaneous Bayesian estimate of states and inputs in the Rapid Estimation Scheme; development of methods for estimating actual laser rangefinder errors and their application to date provided by Jet Propulsion Laboratory; and modification of a path selection system simulation computer code for evaluation of a hazard detection system based on laser rangefinder data.

  9. Detection of plant quarantine pathogen Ralstonia solanacearum r3b2 with portable POCKIT™ and BLItz® systems

    USDA-ARS?s Scientific Manuscript database

    Ralstonia solanacearum (Rs) race 3 biovar 2 (r3b2) is designated as a quarantine pathogen in many countries and additionally as a Select Agent in the United States. Rapid, sensitive and accurate detection methods are urgently needed. We report here the development of two portable platforms for r3b...

  10. Ultrasensitive detection of nitroexplosive - picric acid via a conjugated polyelectrolyte in aqueous media and solid support.

    PubMed

    Hussain, Sameer; Malik, Akhtar Hussain; Afroz, Mohammad Adil; Iyer, Parameswar Krishnan

    2015-04-28

    Picric acid (PA) detection at parts per trillion (ppt) levels is achieved by a conjugated polyelectrolyte (PMI) in 100% aqueous media and on a solid platform using paper strips and chitosan (CS) films. The unprecedented selectivity is accomplished via combination of ground state charge transfer and resonance energy transfer (RET) facilitated by favorable electrostatic interactions.

  11. Spatial-time-state fusion algorithm for defect detection through eddy current pulsed thermography

    NASA Astrophysics Data System (ADS)

    Xiao, Xiang; Gao, Bin; Woo, Wai Lok; Tian, Gui Yun; Xiao, Xiao Ting

    2018-05-01

    Eddy Current Pulsed Thermography (ECPT) has received extensive attention due to its high sensitive of detectability on surface and subsurface cracks. However, it remains as a difficult challenge in unsupervised detection as to identify defects without knowing any prior knowledge. This paper presents a spatial-time-state features fusion algorithm to obtain fully profile of the defects by directional scanning. The proposed method is intended to conduct features extraction by using independent component analysis (ICA) and automatic features selection embedding genetic algorithm. Finally, the optimal feature of each step is fused to obtain defects reconstruction by applying common orthogonal basis extraction (COBE) method. Experiments have been conducted to validate the study and verify the efficacy of the proposed method on blind defect detection.

  12. T-wave end detection using neural networks and Support Vector Machines.

    PubMed

    Suárez-León, Alexander Alexeis; Varon, Carolina; Willems, Rik; Van Huffel, Sabine; Vázquez-Seisdedos, Carlos Román

    2018-05-01

    In this paper we propose a new approach for detecting the end of the T-wave in the electrocardiogram (ECG) using Neural Networks and Support Vector Machines. Both, Multilayer Perceptron (MLP) neural networks and Fixed-Size Least-Squares Support Vector Machines (FS-LSSVM) were used as regression algorithms to determine the end of the T-wave. Different strategies for selecting the training set such as random selection, k-means, robust clustering and maximum quadratic (Rényi) entropy were evaluated. Individual parameters were tuned for each method during training and the results are given for the evaluation set. A comparison between MLP and FS-LSSVM approaches was performed. Finally, a fair comparison of the FS-LSSVM method with other state-of-the-art algorithms for detecting the end of the T-wave was included. The experimental results show that FS-LSSVM approaches are more suitable as regression algorithms than MLP neural networks. Despite the small training sets used, the FS-LSSVM methods outperformed the state-of-the-art techniques. FS-LSSVM can be successfully used as a T-wave end detection algorithm in ECG even with small training set sizes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Selective detection of trace nitroaromatic, nitramine, and nitrate ester explosive residues using a three-step fluorimetric sensing process: a tandem turn-off, turn-on sensor.

    PubMed

    Sanchez, Jason C; Toal, Sarah J; Wang, Zheng; Dugan, Regina E; Trogler, William C

    2007-11-01

    Detection of trace quantities of explosive residues plays a key role in military, civilian, and counter-terrorism applications. To advance explosives sensor technology, current methods will need to become cheaper and portable while maintaining sensitivity and selectivity. The detection of common explosives including trinitrotoluene (TNT), cyclotrimethylenetrinitramine, cyclotetramethylene-tetranitramine, pentaerythritol tetranitrate, 2,4,6-trinitrophenyl-N-methylnitramine, and trinitroglycerin may be carried out using a three-step process combining "turn-off" and "turn-on" fluorimetric sensing. This process first detects nitroaromatic explosives by their quenching of green luminescence of polymetalloles (lambda em approximately 400-510 nm). The second step places down a thin film of 2,3-diaminonaphthalene (DAN) while "erasing" the polymetallole luminescence. The final step completes the reaction of the nitramines and/or nitrate esters with DAN resulting in the formation of a blue luminescent traizole complex (lambda(em) = 450 nm) providing a "turn-on" response for nitramine and nitrate ester-based explosives. Detection limits as low as 2 ng are observed. Solid-state detection of production line explosives demonstrates the applicability of this method to real world situations. This method offers a sensitive and selective detection process for a diverse group of the most common high explosives used in military and terrorist applications today.

  14. The mental simulation of state/psychological verbs in the adolescent brain: An fMRI study.

    PubMed

    Tomasino, Barbara; Nobile, Maria; Re, Marta; Bellina, Monica; Garzitto, Marco; Arrigoni, Filippo; Molteni, Massimo; Fabbro, Franco; Brambilla, Paolo

    2018-06-01

    This fMRI study investigated mental simulation of state/psychological and action verbs during adolescence. Sixteen healthy subjects silently read verbs describing a motor scene or not (STIMULUS: motor, state/psychological verbs) and they were explicitly asked to imagine the situation or they performed letter detection preventing them from using simulation (TASK: imagery vs. letter detection). A significant task by stimuli interaction showed that imagery of state/psychological verbs, as compared to action stimuli (controlled by the letter detection) selectively increased activation in the right supramarginal gyrus/rolandic operculum and in the right insula, and decreased activation in the right intraparietal sulcus. We compared these data to those from a group of older participants (Tomasino et al. 2014a). Activation in the left supramarginal gyrus decreased for the latter group (as compared to the present group) for imagery of state/psychological verbs. By contrast, activation in the right superior frontal gyrus decreased for the former group (as compared to the older group) for imagery of state/psychological verbs. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. A Multi-Region Magnetoimpedance-Based Bio-Analytical System for Ultrasensitive Simultaneous Determination of Cardiac Biomarkers Myoglobin and C-Reactive Protein.

    PubMed

    Yang, Zhen; Wang, Huanhuan; Guo, Pengfei; Ding, Yuanyuan; Lei, Chong; Luo, Yongsong

    2018-06-01

    Cardiac biomarkers (CBs) are substances that appear in the blood when the heart is damaged or stressed. Measurements of the level of CBs can be used in course of diagnostics or monitoring the state of the health of group risk persons. A multi-region bio-analytical system (MRBAS) based on magnetoimpedance (MI) changes was proposed for ultrasensitive simultaneous detection of CBs myoglobin (Mb) and C-reactive protein (CRP). The microfluidic device was designed and developed using standard microfabrication techniques for their usage in different regions, which were pre-modified with specific antibody for specified detection. Mb and CRP antigens labels attached to commercial Dynabeads with selected concentrations were trapped in different detection regions. The MI response of the triple sensitive element was carefully evaluated in initial state and in the presence of biomarkers. The results showed that the MI-based bio-sensing system had high selectivity and sensitivity for detection of CBs. Compared with the control region, ultrasensitive detections of CRP and Mb were accomplished with the detection limits of 1.0 pg/mL and 0.1 pg/mL, respectively. The linear detection range contained low concentration detection area and high concentration detection area, which were 1 pg/mL⁻10 ng/mL, 10⁻100 ng/mL for CRP, and 0.1 pg/mL⁻1 ng/mL, 1 n/mL⁻80 ng/mL for Mb. The measurement technique presented here provides a new methodology for multi-target biomolecules rapid testing.

  16. Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection.

    PubMed

    Jiménez-Banzo, Ana; Ragàs, Xavier; Kapusta, Peter; Nonell, Santi

    2008-09-01

    Two recent advances in optoelectronics, namely novel near-IR sensitive photomultipliers and inexpensive yet powerful diode-pumped solid-state lasers working at kHz repetition rate, enable the time-resolved detection of singlet oxygen (O2(a1Deltag)) phosphorescence in photon counting mode, thereby boosting the time-resolution, sensitivity, and dynamic range of this well-established detection technique. Principles underlying this novel approach and selected examples of applications are provided in this perspective, which illustrate the advantages over the conventional analog detection mode.

  17. Threshold-selecting strategy for best possible ground state detection with genetic algorithms

    NASA Astrophysics Data System (ADS)

    Lässig, Jörg; Hoffmann, Karl Heinz

    2009-04-01

    Genetic algorithms are a standard heuristic to find states of low energy in complex state spaces as given by physical systems such as spin glasses but also in combinatorial optimization. The paper considers the problem of selecting individuals in the current population in genetic algorithms for crossover. Many schemes have been considered in literature as possible crossover selection strategies. We show for a large class of quality measures that the best possible probability distribution for selecting individuals in each generation of the algorithm execution is a rectangular distribution over the individuals sorted by their energy values. This means uniform probabilities have to be assigned to a group of the individuals with lowest energy in the population but probabilities equal to zero to individuals which are corresponding to energy values higher than a fixed cutoff, which is equal to a certain rank in the vector sorted by the energy of the states in the current population. The considered strategy is dubbed threshold selecting. The proof applies basic arguments of Markov chains and linear optimization and makes only a few assumptions on the underlying principles and hence applies to a large class of algorithms.

  18. Electrochemical OFF-ON ratiometric chemodosimeters for the selective and rapid detection of fluoride.

    PubMed

    Mani, Veerappan; Li, Wen-Yung; Gu, Jiun-An; Lin, Chun-Mao; Huang, Sheng-Tung

    2015-01-01

    We have described two "OFF-ON electrochemical latent ratiometric redox chemodosimeters", 1,4-Bis(tert-butyldimethylsiloxy)benzene (H2Q') and 1,4-Bis (tert-butyldimet hylsiloxy)-2-methoxybenzene (MH2Q') for the selective detection of inorganic fluoride. The electrochemical signals of hydroquinone (H2Q) and o-methoxy hydroquinone (MH2Q) within this latent redox probes (H2Q' and MH2Q') were completely masked by protecting their hydroxyl group as silylether (OFF state). The externally added fluoride ions triggered the deprotection of H2Q' and MH2Q' and unmasked the electrochemical properties of H2Q and MH2Q respectively. The electrochemical reporters (H2Q and MH2Q) presented a pair of redox peaks at the electrode surface (ON state) and the peak currents are linearly dependent with the concentration of fluoride which leading to the ratiometric detection of fluoride. The limit of detection (signal-to-noise ratio=3) observed for the probes are 23.8 µM and 2.38 µM for H2Q' and MH2Q' respectively. The deprotection is highly selective for fluoride over other anions investigated. The probes are highly stable and the proposed approach offers rapid response time and promising practical applicability. The proposed strategy holds great promise for the commencement of new H2Q based electrochemical probes by tuning the electrochemical behavior of H2Q. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Radionuclide Sensors and Systems for Monitoring Technetium-99 and Strontium-90 in Groundwater at the Hanford Site

    NASA Astrophysics Data System (ADS)

    Grate, J. W.; O'Hara, M. J.; Egorov, O. B.; Burge, S. R.

    2009-12-01

    We have developed automated sensor and analyzer devices for detection and monitoring of trace radionuclides in water, using preconcentrating columns and radiometric detection. The preconcentrating minicolumn sensor concept combines selective capture and detection in a single functional unit, where the column contains tens to hundreds of milligrams of selectively sorbent material, and the entire column content is monitored with a radiometric detector. Compared to thin film sensors with a few microgram of sorbent, this approach achieves tremendous preconcentration with efficient mass transport via pumping. Furthermore, in an equilibration-based mode of operation, the preconcentration by the sensor is maximized while eliminating the need for consumable reagents to regenerate the column; it can simply be re-equilibrated. We have demonstrated quantification of radionuclides such as technetium-99 to levels below drinking water standards in an equilibration-based process that produces steady state signals, signal proportional to concentration, and easy re-equilibration to new concentration levels. Alternatively, analyzers can be developed with separate separation and detection units that are fluidically linked. We have demonstrated detection of strontium-90 to levels below drinking water standards by this approach. We are developing autonomous systems for at-site monitoring on the Hanford Site in Washington State, using the fluidic sensor and analyzer methods, with the aim of monitoring natural and accelerated attenuation processes, remediation and barrier performance, and contaminant fluxes in the environment. Figure 1. The strontium-90 monitoring method deployed as part of the Burge Environmental Universal Sensor Platform, shown on the shores of the Columbia River on the Hanford site in Washington State.

  20. Valley Vortex States in Sonic Crystals

    NASA Astrophysics Data System (ADS)

    Lu, Jiuyang; Qiu, Chunyin; Ke, Manzhu; Liu, Zhengyou

    2016-03-01

    Valleytronics is quickly emerging as an exciting field in fundamental and applied research. In this Letter, we study the acoustic version of valley states in sonic crystals and reveal a vortex nature of such states. In addition to the selection rules established for exciting valley polarized states, a mimicked valley Hall effect of sound is proposed further. The extraordinary chirality of valley vortex states, detectable in experiments, may open a new possibility in sound manipulations. This is appealing to scalar acoustics that lacks a spin degree of freedom inherently. In addition, the valley selection enables a handy way to create vortex matter in acoustics, in which the vortex chirality can be controlled flexibly. Potential applications can be anticipated with the exotic interaction of acoustic vortices with matter, such as to trigger the rotation of the trapped microparticles without contact.

  1. Nonenzymatic all-solid-state coated wire electrode for acetylcholine determination in vitro.

    PubMed

    He, Cheng; Wang, Zhan; Wang, You; Hu, Ruifen; Li, Guang

    2016-11-15

    A nonenzymatic all-solid-state coated wire acetylcholine electrode was investigated. Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT/PSS) as conducting polymer was coated on one end of a gold wire (0.5mm in diameter). The acetylcholine selective membrane containing heptakis(2,3,6-tri-Ο-methyl)-β-cyclodextrin as an ionophore covered the conducting polymer layer. The electrode could work stably in a pH range of 6.5-8.5 and a temperature range of 15-40°C. It covered an acetylcholine concentration range of 10(-5)-10(-1)M with a slope of 54.04±1.70mV/decade, while detection limit was 5.69±1.06µM. The selectivity, dynamic response, reproducibility and stability were evaluated. The electrode could work properly in the rat brain homogenate to detect different concentrations of acetylcholine. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Description, Properties, and Degradation of Selected Volatile Organic Compounds Detected in Ground Water--A Review of Selected Literature

    USGS Publications Warehouse

    Lawrence, Stephen J.

    2006-01-01

    This report provides abridged information describing the most salient properties and biodegradation of 27 chlorinated volatile organic compounds detected during ground-water studies in the United States. This information is condensed from an extensive list of reports, papers, and literature published by the U.S. Government, various State governments, and peer-reviewed journals. The list includes literature reviews, compilations, and summaries describing volatile organic compounds in ground water. This report cross-references common names and synonyms associated with volatile organic compounds with the naming conventions supported by the International Union of Pure and Applied Chemistry. In addition, the report describes basic physical characteristics of those compounds such as Henry's Law constant, water solubility, density, octanol-water partition (log Kow), and organic carbon partition (log Koc) coefficients. Descriptions and illustrations are provided for natural and laboratory biodegradation rates, chemical by-products, and degradation pathways.

  3. Sodium hydroxide as pretreatment and fluorosurfactant-capped gold nanoparticles as sensor for the highly selective detection of cysteine.

    PubMed

    Wu, Hsin-Pin; Huang, Chia-Chi; Cheng, Tian-Lu; Tseng, Wei-Lung

    2008-07-15

    A sensor for detecting cysteine (Cys) in a solution of fluorosurfactant (FSN)-capped gold nanoparticles (AuNPs) has been developed. Under acidic conditions, FSN-capped AuNPs are aggregated in the presence of homocysteine (HCys) and Cys but not in the presence of cysteinylglycine, glutathione, and gamma-glutamycysteine. When adding NaOH to a solution of HCys, the five-membered ring transition state is formed through intramolecular hydrogen abstraction. By contrast, it is difficult for Cys to form a four-membered ring transition state after Cys has been pretreated with NaOH. As a result, the HCys-induced aggregation of the FSN-capped AuNPs is suppressed because the five-membered ring transition state exhibits relatively larger steric hindrance and has stronger interaction with the FSN molecules. Thus, we can discriminate between Cys and HCys on the basis of different aggregation kinetics. Under the optimum condition, the selectivity of the probe for Cys in aqueous solutions is remarkably high over the other aminthiols. Note that HCys and Cys have very similar structure and pK(a) value. We have validated the applicability of our method through the analyses of Cys in urine samples. It is believed that this approach has great potential for the detection of Cys in biological samples.

  4. Experimental Resonance Enhanced Multiphoton Ionization (REMPI) studies of small molecules

    NASA Technical Reports Server (NTRS)

    Dehmer, J. L.; Dehmer, P. M.; Pratt, S. T.; Ohalloran, M. A.; Tomkins, F. S.

    1987-01-01

    Resonance enhanced multiphoton ionization (REMPI) utilizes tunable dye lasers to ionize an atom or molecule by first preparing an excited state by multiphoton absorption and then ionizing that state before it can decay. This process is highly selective with respect to both the initial and resonant intermediate states of the target, and it can be extremely sensitive. In addition, the products of the REMPI process can be detected as needed by analyzing the resulting electrons, ions, fluorescence, or by additional REMPI. This points to a number of exciting opportunities for both basic and applied science. On the applied side, REMPI has great potential as an ultrasensitive, highly selective detector for trace, reactive, or transient species. On the basic side, REMPI affords an unprecedented means of exploring excited state physics and chemistry at the quantum-state-specific level. An overview of current studies of excited molecular states is given to illustrate the principles and prospects of REMPI.

  5. Evaluation of the Botanical Authenticity and Phytochemical Profile of Black Cohosh Products by High-Performance Liquid Chromatography with Selected Ion Monitoring Liquid Chromatography–Mass Spectrometry

    PubMed Central

    Jiang, Bei; Kronenberg, Fredi; Nuntanakorn, Paiboon; Qiu, Ming-Hua; Kennelly, Edward J.

    2011-01-01

    Black cohosh (Actaea racemosa L., syn. Cimicifuga racemosa L.) has become increasingly popular as a dietary supplement in the United States for the treatment of symptoms related to menopause, but the botanical authenticity of most products containing black cohosh has not been evaluated, nor is manufacturing highly regulated in the United States. In this study, 11 black cohosh products were analyzed for triterpene glycosides, phenolic constituents, and formononetin by high-performance liquid chromatography–photodiode array detection and a new selected ion monitoring liquid chromatography–mass spectrometry method. Three of the 11 products were found to contain the marker compound cimifugin and not cimiracemoside C, thereby indicating that these plants contain Asian Actaea instead of black cohosh. One product contained both black cohosh and an Asian Actaea species. For the products containing only black cohosh, there was significant product-to-product variability in the amounts of the selected triterpene glycosides and phenolic constituents, and as expected, no formononetin was detected. PMID:16637680

  6. Simultaneous Analysis of Monovalent Anions and Cations with a Sub-Microliter Dead-Volume Flow-Through Potentiometric Detector for Ion Chromatography

    PubMed Central

    Dumanli, Rukiye; Attar, Azade; Erci, Vildan; Isildak, Ibrahim

    2016-01-01

    A microliter dead-volume flow-through cell as a potentiometric detector is described in this article for sensitive, selective and simultaneous detection of common monovalent anions and cations in single column ion chromatography for the first time. The detection cell consisted of less selective anion- and cation-selective composite membrane electrodes together with a solid-state composite matrix reference electrode. The simultaneous separation and sensitive detection of sodium (Na+), potassium (K+), ammonium (NH4+), chloride (Cl−) and nitrate (NO3−) in a single run was achieved by using 98% 1.5 mM MgSO4 and 2% acetonitrile eluent with a mixed-bed ion-exchange separation column without suppressor column system. The separation and simultaneous detection of the anions and cations were completed in 6 min at the eluent flow-rate of 0.8 mL/min. Detection limits, at S/N = 3, were ranged from 0.2 to 1.0 µM for the anions and 0.3 to 3.0 µM for the cations, respectively. The developed method was successfully applied to the simultaneous determination of monovalent anions and cations in several environmental and biological samples. PMID:26786906

  7. Measurement of the length of pedestrian crossings and detection of traffic lights from image data

    NASA Astrophysics Data System (ADS)

    Shioyama, Tadayoshi; Wu, Haiyuan; Nakamura, Naoki; Kitawaki, Suguru

    2002-09-01

    This paper proposes a method for measurement of the length of a pedestrian crossing and for the detection of traffic lights from image data observed with a single camera. The length of a crossing is measured from image data of white lines painted on the road at a crossing by using projective geometry. Furthermore, the state of the traffic lights, green (go signal) or red (stop signal), is detected by extracting candidates for the traffic light region with colour similarity and selecting a true traffic light from them using affine moment invariants. From the experimental results, the length of a crossing is measured with an accuracy such that the maximum relative error of measured length is less than 5% and the rms error is 0.38 m. A traffic light is efficiently detected by selecting a true traffic light region with an affine moment invariant.

  8. Triphenylbenzene Sensor for Selective Detection of Picric Acid.

    PubMed

    Nagendran, S; Vishnoi, Pratap; Murugavel, Ramaswamy

    2017-07-01

    A C 3 -symmetric triphenylbenzene based photoluminescent compound, 1,3,5-tris(4'-(N-methylamino)phenyl) benzene ([NHMe] 3 TAPB), has been synthesized by mono-N-methylation of 1,3,5-tris(4'-aminophenyl) benzene (TAPB) and structurally characterized. [NHMe] 3 TAPB acts as a selective fluorescent sensor for picric acid (PA) with a detection limit as low as 2.25 ppm at a signal to noise ratio of 3. Other related analytes (i.e. TNT, DNT and DNB) show very little effect on the fluorescence intensity of [NHMe] 3 TAPB. The selectivity is triggered by proton transfer from picric acid to the fluorophore and ground-state complex formation between the protonated fluorophore and picrate anion through hydrogen bonding interactions. The fluorescence lifetime measurements reveal static nature of fluorescence quenching.

  9. Fluorescence based explosive detection: from mechanisms to sensory materials.

    PubMed

    Sun, Xiangcheng; Wang, Ying; Lei, Yu

    2015-11-21

    The detection of explosives is one of the current pressing concerns in global security. In the past few decades, a large number of emissive sensing materials have been developed for the detection of explosives in vapor, solution, and solid states through fluorescence methods. In recent years, great efforts have been devoted to develop new fluorescent materials with various sensing mechanisms for detecting explosives in order to achieve super-sensitivity, ultra-selectivity, as well as fast response time. This review article starts with a brief introduction on various sensing mechanisms for fluorescence based explosive detection, and then summarizes in an exhaustive and systematic way the state-of-the-art of fluorescent materials for explosive detection with a focus on the research in the recent 5 years. A wide range of fluorescent materials, such as conjugated polymers, small fluorophores, supramolecular systems, bio-inspired materials and aggregation induced emission-active materials, and their sensing performance and sensing mechanism are the centerpiece of this review. Finally, conclusions and future outlook are presented and discussed.

  10. [Quality of the Early Cervical Cancer Detection Program in the State of Nuevo León].

    PubMed

    Salinas-Martínez, A M; Villarreal-Ríos, E; Garza-Elizondo, M E; Fraire-Gloria, J M; López-Franco, J J; Barboza-Quintana, O

    1997-01-01

    To determine the quality of the Early Cervical Cancer Detection Program in the state of Nuevo León. A random selection of 4791 cytologic reports were analyzed, emitted by the State Ministry of Health, the University Hospital and the Mexican Institute for Social Security early cervical cancer detection modules. Pap tests of women with hysterectomy, current pregnancy, menopause or positive result were excluded. Quality was measured with previously defined standards. Analysis included, besides univariate statistics, tests of significance for proportions and means. The quality of the program was fairly satisfactory at the level of the State. The quality of the sampling procedure was low; 39.9% of the tests contained endocervical cells. Quality of coverage was low; 15.6% were women 25+years with first time Pap test. Quality of opportunity was high; 8.5 +/- 7 weekdays between the date of the pap smear and the interpretation date. Strategies are needed to increase the impact of the state program, such as improving the sampling procedure and the coverage quality levels.

  11. State recovery and lockstep execution restart in a system with multiprocessor pairing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gara, Alan; Gschwind, Michael K; Salapura, Valentina

    System, method and computer program product for a multiprocessing system to offer selective pairing of processor cores for increased processing reliability. A selective pairing facility is provided that selectively connects, i.e., pairs, multiple microprocessor or processor cores to provide one highly reliable thread (or thread group). Each paired microprocessor or processor cores that provide one highly reliable thread for high-reliability connect with a system components such as a memory "nest" (or memory hierarchy), an optional system controller, and optional interrupt controller, optional I/O or peripheral devices, etc. The memory nest is attached to a selective pairing facility via a switchmore » or a bus. Each selectively paired processor core is includes a transactional execution facility, whereing the system is configured to enable processor rollback to a previous state and reinitialize lockstep execution in order to recover from an incorrect execution when an incorrect execution has been detected by the selective pairing facility.« less

  12. Probing resonant energy transfer in collisions of ammonia with Rydberg helium atoms by microwave spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhelyazkova, V.; Hogan, S. D.

    2017-12-01

    We present the results of experiments demonstrating the spectroscopic detection of Förster resonance energy transfer from NH3 in the X1A1 ground electronic state to helium atoms in 1sns 3S1 Rydberg levels, where n = 37 and n = 40. For these values of n, the 1sns 3S1 → 1snp 3PJ transitions in helium lie close to resonance with the ground-state inversion transitions in NH3 and can be tuned through resonance using electric fields of less than 10 V/cm. In the experiments, energy transfer was detected by direct state-selective electric field ionization of the 3S1 and 3PJ Rydberg levels and by monitoring the population of the 3DJ levels following pulsed microwave transfer from the 3PJ levels. Detection by microwave spectroscopic methods represents a highly state selective, low-background approach to probing the collisional energy transfer process and the environment in which the atom-molecule interactions occur. The experimentally observed electric-field dependence of the resonant energy transfer process, probed both by direct electric field ionization and by microwave transfer, agrees well with the results of calculations performed using a simple theoretical model of the energy transfer process. For measurements performed in zero electric field with atoms prepared in the 1s40s 3S1 level, the transition from a regime in which a single energy transfer channel can be isolated for detection to one in which multiple collision channels begin to play a role has been identified as the NH3 density was increased.

  13. Monitoring of Diisopropyl Fluorophosphate Hydrolysis by Fluoride-Selective Polymeric Films Using Absorbance Spectroscopy

    PubMed Central

    Ramanathan, Madhumati; Wang, Lin; Wild, James R.; Meyeroff, Mark E.; Simonian, Aleksandr L.

    2012-01-01

    In this study, a novel system for the detection and quantification of organofluorophosphonates (OFP) has been developed by using an optical sensing polymeric membrane to detect the fluoride ions produced upon OFP hydrolysis. Diisopropyl fluorophosphate (DFP), a structural analogue of Type G Chemical Warfare Agents such as Sarin (GB) and Soman (GD), is used as the surrogate target analyte. An optical sensing fluoride-ion-selective polymeric film was formulated from plasticized PVC containing aluminum(III) octaethylporphyrin and ETH 7075 chromoionophore (Al[OEP]-ETH 7075). Selected formulations were used to detect the fluoride ions produced by the catalytic hydrolysis of DFP by the enzyme organophosphate hydrolase (OPH, EC 3.1.8.1). The changes in absorbance that corresponded to the deprotonated state of chromoionophore within the film results from simultaneous co-extraction of fluoride and protons as DFP hydrolysis takes place in the solution phase in contact with the film. The developed sensing system demonstrates excellent sensitivity for concentrations as low as 0.1 µM DFP. PMID:20441875

  14. Support Vector Feature Selection for Early Detection of Anastomosis Leakage From Bag-of-Words in Electronic Health Records.

    PubMed

    Soguero-Ruiz, Cristina; Hindberg, Kristian; Rojo-Alvarez, Jose Luis; Skrovseth, Stein Olav; Godtliebsen, Fred; Mortensen, Kim; Revhaug, Arthur; Lindsetmo, Rolv-Ole; Augestad, Knut Magne; Jenssen, Robert

    2016-09-01

    The free text in electronic health records (EHRs) conveys a huge amount of clinical information about health state and patient history. Despite a rapidly growing literature on the use of machine learning techniques for extracting this information, little effort has been invested toward feature selection and the features' corresponding medical interpretation. In this study, we focus on the task of early detection of anastomosis leakage (AL), a severe complication after elective surgery for colorectal cancer (CRC) surgery, using free text extracted from EHRs. We use a bag-of-words model to investigate the potential for feature selection strategies. The purpose is earlier detection of AL and prediction of AL with data generated in the EHR before the actual complication occur. Due to the high dimensionality of the data, we derive feature selection strategies using the robust support vector machine linear maximum margin classifier, by investigating: 1) a simple statistical criterion (leave-one-out-based test); 2) an intensive-computation statistical criterion (Bootstrap resampling); and 3) an advanced statistical criterion (kernel entropy). Results reveal a discriminatory power for early detection of complications after CRC (sensitivity 100%; specificity 72%). These results can be used to develop prediction models, based on EHR data, that can support surgeons and patients in the preoperative decision making phase.

  15. Fast Selective Detection of Pyocyanin Using Cyclic Voltammetry

    PubMed Central

    Alatraktchi, Fatima AlZahra’a; Breum Andersen, Sandra; Krogh Johansen, Helle; Molin, Søren; Svendsen, Winnie E.

    2016-01-01

    Pyocyanin is a virulence factor uniquely produced by the pathogen Pseudomonas aeruginosa. The fast and selective detection of pyocyanin in clinical samples can reveal important information about the presence of this microorganism in patients. Electrochemical sensing of the redox-active pyocyanin is a route to directly quantify pyocyanin in real time and in situ in hospitals and clinics. The selective quantification of pyocyanin is, however, limited by other redox-active compounds existing in human fluids and by other metabolites produced by pathogenic bacteria. Here we present a direct selective method to detect pyocyanin in a complex electroactive environment using commercially available electrodes. It is shown that cyclic voltammetry measurements between −1.0 V to 1.0 V reveal a potential detection window of pyocyanin of 0.58–0.82 V that is unaffected by other redox-active interferents. The linear quantification of pyocyanin has an R2 value of 0.991 across the clinically relevant concentration range of 2–100 µM. The proposed method was tested on human saliva showing a standard deviation of 2.5% ± 1% (n = 5) from the known added pyocyanin concentration to the samples. This inexpensive procedure is suggested for clinical use in monitoring the presence and state of P. aeruginosa infection in patients. PMID:27007376

  16. Fast Selective Detection of Pyocyanin Using Cyclic Voltammetry.

    PubMed

    Alatraktchi, Fatima AlZahra'a; Andersen, Sandra Breum; Johansen, Helle Krogh; Molin, Søren; Svendsen, Winnie E

    2016-03-19

    Pyocyanin is a virulence factor uniquely produced by the pathogen Pseudomonas aeruginosa. The fast and selective detection of pyocyanin in clinical samples can reveal important information about the presence of this microorganism in patients. Electrochemical sensing of the redox-active pyocyanin is a route to directly quantify pyocyanin in real time and in situ in hospitals and clinics. The selective quantification of pyocyanin is, however, limited by other redox-active compounds existing in human fluids and by other metabolites produced by pathogenic bacteria. Here we present a direct selective method to detect pyocyanin in a complex electroactive environment using commercially available electrodes. It is shown that cyclic voltammetry measurements between -1.0 V to 1.0 V reveal a potential detection window of pyocyanin of 0.58-0.82 V that is unaffected by other redox-active interferents. The linear quantification of pyocyanin has an R² value of 0.991 across the clinically relevant concentration range of 2-100 µM. The proposed method was tested on human saliva showing a standard deviation of 2.5% ± 1% (n = 5) from the known added pyocyanin concentration to the samples. This inexpensive procedure is suggested for clinical use in monitoring the presence and state of P. aeruginosa infection in patients.

  17. TAQL: A Problem Space Tool for Expert System Development.

    DTIC Science & Technology

    1992-05-01

    underlies Soar (Rosenbloom, Laird, Newell, and McCarl, 1991; Laird, Congdon , Altmann and Swedlow, 1990), a general- purpose intelligent architecture...select among multiple operators (or problem spaces or states), its default action is to use the selection space in a subgoal (Laird, Congdon , Altmann...during the experiments. "* TP : TAQL problems. There are bugs due to misunderstanding TAQL’s semantics. Subjects detected only one bug of this class

  18. An evaluation of two H1-linked markers and their suitability for selecting Globodera rostochiensis resistant potatoes in the New York breeding program

    USDA-ARS?s Scientific Manuscript database

    The golden cyst nematode (Globodera rostochiensis) is a serious pest that can dramatically reduce potato crop yield. Pathotype Ro1 of G. rostochiensis was first detected in the United States in 1941 and is still present on several farms in New York State. The H1 gene confers high levels of resistan...

  19. Interagency partnering for weed prevention--progress on development of a National Early Detection and Rapid Response System for Invasive Plants in the United States

    USGS Publications Warehouse

    Westbrooks, R.; Westbrooks, R.

    2011-01-01

    Over the past 50 years, experience has shown that interagency groups provide an effective forum for addressing various invasive species issues and challenges on multiple land units. However, more importantly, they can also provide a coordinated framework for early detection, reporting, identification and vouchering, rapid assessment, and rapid response to new and emerging invasive plants in the United States. Interagency collaboration maximizes the use of available expertise, resources, and authority for promoting early detection and rapid response (EDRR) as the preferred management option for addressing new and emerging invasive plants. Currently, an interagency effort is underway to develop a National EDRR System for Invasive Plants in the United States. The proposed system will include structural and informational elements. Structural elements of the system include a network of interagency partner groups to facilitate early detection and rapid response to new invasive plants, including the Federal Interagency Committee for the Management of Noxious and Exotic Weeds (FICMNEW), State Invasive Species Councils, State Early Detection and Rapid Response Coordinating Committees, State Volunteer Detection and Reporting Networks, Invasive Plant Task Forces, and Cooperative Weed Management Areas. Informational elements and products being developed include Regional Invasive Plant Atlases, and EDRR Guidelines for EDRR Volunteer Network Training, Rapid Assessment and Rapid Response, and Criteria for Selection of EDRR Species. System science and technical support elements which are provided by cooperating state and federal scientists, include EDRR guidelines, training curriculum for EDRR volunteers and agency field personnel, plant identification and vouchering, rapid assessments, as well as predictive modeling and ecological range studies for invasive plant species.

  20. Amplified solid-state electrochemiluminescence detection of cholesterol in near-infrared range based on CdTe quantum dots decorated multiwalled carbon nanotubes@reduced graphene oxide nanoribbons.

    PubMed

    Huan, Juan; Liu, Qian; Fei, Airong; Qian, Jing; Dong, Xiaoya; Qiu, Baijing; Mao, Hanping; Wang, Kun

    2015-11-15

    An amplified solid-state electrochemiluminescence (ECL) biosensor for detection of cholesterol in near-infrared (NIR) range was constructed based on CdTe quantum dots (QDs) decorated multiwalled carbon nanotubes@reduced graphene nanoribbons (CdTe-MWCNTs@rGONRs), which were prepared by electrostatic interactions. The CdTe QDs decorated on the MWCNTs@rGONRs resulted in the amplified ECL intensity by ~4.5 fold and decreased onset potential by ~100 mV. By immobilization of the cholesterol oxidase (ChOx) and NIR CdTe-MWCNTs@rGONRs on the electrode surface, a solid-state ECL biosensor for cholesterol detection was constructed. When cholesterol was added to the detection solution, the immobilized ChOx catalyzed the oxidation of cholesterol to generate H2O2, which could be used as the co-reactant in the ECL system of CdTe-MWCNTs@rGONRs. The as-prepared biosensor exhibited good performance for cholesterol detection including good reproducibility, selectivity, and acceptable linear range from 1 μM to 1mM with a relative low detection limit of 0.33 μM (S/N=3). The biosensor was successfully applied to the determination of cholesterol in biological fluid and food sample, which would open a new possibility for development of solid-state ECL biosensors with NIR emitters. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Perchlorate Data for Streams and Groundwater in Selected Areas of the United States, 2004

    USGS Publications Warehouse

    Kalkhoff, Stephen J.; Stetson, Sarah J.; Lund, Kris D.; Wanty, Richard B.; Linder, Gregory L.

    2010-01-01

    This report presents data collected as part of a reconnaissance study to evaluate the occurrence of perchlorate in rivers and streams and in shallow aquifers in selected areas of the United States. Perchlorate, a component in rocket fuels, fireworks, and some explosives is soluble in water and persists in soils and water for long periods. It is biologically active at relatively low-levels in the environment, and has been identified as an endocrine-disrupting chemical. The purpose of this reconnaissance was to determine the occurrence of perchlorate in agricultural areas of the Midwestern and North-Central United States and in arid Central and Western parts of the United States. Samples were collected from 171 sites on rivers and streams and 146 sites from wells during the summer and early fall of 2004. Samples were collected from surface-water sites in 19 states and from wells in 5 states. Perchlorate was detected in samples collected in 15 states and was detected in 34 of 182 samples from rivers and streams and in 64 of 148 groundwater samples at concentrations equal to or greater than 0.4 micrograms per liter. Perchlorate concentrations were 1.0 micrograms per liter or greater in surface-water samples from seven states and in groundwater samples in four states. Only one surface-water and one groundwater sample had concentrations greater than 5.0 micrograms per liter. Perchlorate concentrations in followup samples collected from 1 to 3 months after the initial sample were unchanged at four of five stream sites.

  2. Pharmaceuticals in Surface Waters and Potential Transfer to Irrigated Food Crops

    EPA Science Inventory

    A number of pharmaceuticals have been detected in surface waters across the United States. The objective of this study was to evaluate the presence of selected pharmaceuticals (macrolidic antibiotics and pseudoephedrine) and illicit drugs (methamphetamine, Ecstasy) in surface wat...

  3. PHARMACEUTICALS IN WASTE STREAMS AND SURFACE WATERS OF THE COLORADO RIVER BASIN

    EPA Science Inventory

    A number of pharmaceuticals have been detected in surface waters across the United States. The objective of this study was to evaluate the presence of selected pharmaceuticals (macrolidic antibiotics and pseudoephedrine) and illicit drugs (methamphetamine and Ecstasy) in surface ...

  4. Quantum Darwinism

    NASA Astrophysics Data System (ADS)

    Zurek, Wojciech Hubert

    2009-03-01

    Quantum Darwinism describes the proliferation, in the environment, of multiple records of selected states of a quantum system. It explains how the quantum fragility of a state of a single quantum system can lead to the classical robustness of states in their correlated multitude; shows how effective `wave-packet collapse' arises as a result of the proliferation throughout the environment of imprints of the state of the system; and provides a framework for the derivation of Born's rule, which relates the probabilities of detecting states to their amplitudes. Taken together, these three advances mark considerable progress towards settling the quantum measurement problem.

  5. Detecting Selection on Protein Stability through Statistical Mechanical Models of Folding and Evolution

    PubMed Central

    Bastolla, Ugo

    2014-01-01

    The properties of biomolecules depend both on physics and on the evolutionary process that formed them. These two points of view produce a powerful synergism. Physics sets the stage and the constraints that molecular evolution has to obey, and evolutionary theory helps in rationalizing the physical properties of biomolecules, including protein folding thermodynamics. To complete the parallelism, protein thermodynamics is founded on the statistical mechanics in the space of protein structures, and molecular evolution can be viewed as statistical mechanics in the space of protein sequences. In this review, we will integrate both points of view, applying them to detecting selection on the stability of the folded state of proteins. We will start discussing positive design, which strengthens the stability of the folded against the unfolded state of proteins. Positive design justifies why statistical potentials for protein folding can be obtained from the frequencies of structural motifs. Stability against unfolding is easier to achieve for longer proteins. On the contrary, negative design, which consists in destabilizing frequently formed misfolded conformations, is more difficult to achieve for longer proteins. The folding rate can be enhanced by strengthening short-range native interactions, but this requirement contrasts with negative design, and evolution has to trade-off between them. Finally, selection can accelerate functional movements by favoring low frequency normal modes of the dynamics of the native state that strongly correlate with the functional conformation change. PMID:24970217

  6. Sequential Adaptive Multi-Modality Target Detection and Classification Using Physics Based Models

    DTIC Science & Technology

    2006-09-01

    estimation," R. Raghuram, R. Raich and A.O. Hero, IEEE Intl. Conf. on Acoustics, Speech , and Signal Processing, Toulouse France, June 2006, <http...can then be solved using off-the-shelf classifiers such as radial basis functions, SVM, or kNN classifier structures. When applied to mine detection we...stage waveform selection for adaptive resource constrained state estimation," 2006 IEEE Intl. Conf. on Acoustics, Speech , and Signal Processing

  7. Detecting negative selection on recurrent mutations using gene genealogy

    PubMed Central

    2013-01-01

    Background Whether or not a mutant allele in a population is under selection is an important issue in population genetics, and various neutrality tests have been invented so far to detect selection. However, detection of negative selection has been notoriously difficult, partly because negatively selected alleles are usually rare in the population and have little impact on either population dynamics or the shape of the gene genealogy. Recently, through studies of genetic disorders and genome-wide analyses, many structural variations were shown to occur recurrently in the population. Such “recurrent mutations” might be revealed as deleterious by exploiting the signal of negative selection in the gene genealogy enhanced by their recurrence. Results Motivated by the above idea, we devised two new test statistics. One is the total number of mutants at a recurrently mutating locus among sampled sequences, which is tested conditionally on the number of forward mutations mapped on the sequence genealogy. The other is the size of the most common class of identical-by-descent mutants in the sample, again tested conditionally on the number of forward mutations mapped on the sequence genealogy. To examine the performance of these two tests, we simulated recurrently mutated loci each flanked by sites with neutral single nucleotide polymorphisms (SNPs), with no recombination. Using neutral recurrent mutations as null models, we attempted to detect deleterious recurrent mutations. Our analyses demonstrated high powers of our new tests under constant population size, as well as their moderate power to detect selection in expanding populations. We also devised a new maximum parsimony algorithm that, given the states of the sampled sequences at a recurrently mutating locus and an incompletely resolved genealogy, enumerates mutation histories with a minimum number of mutations while partially resolving genealogical relationships when necessary. Conclusions With their considerably high powers to detect negative selection, our new neutrality tests may open new venues for dealing with the population genetics of recurrent mutations as well as help identifying some types of genetic disorders that may have escaped identification by currently existing methods. PMID:23651527

  8. Explosives Detection in a Lasing Plasmon Nanocavity

    DTIC Science & Technology

    2014-08-01

    plasmonic sensors7,13–18 with 2,4-dinitrotoluene and ammonium nitrate . The selectivity between 2,4-dinitrotoluene, ammonium nitrate and nitrobenzene is on a...ammonium nitrate . The selectivity between 2,4-dinitrotoluene, ammoniumnitrate and nitrobenzene is on a par with other state-of-the-art explosives... nitrate (AN) and nitrobenzene (NB). Air was used both to dilute them and as the background reference. Figure 4a–c presents con- tinuous traces of lasing

  9. ADVANCED TOOLS FOR ASSESSING SELECTED ...

    EPA Pesticide Factsheets

    The purpose of this poster is to present the application and assessment of advanced state-of-the-art technologies in a real-world environment - wastewater effluent and source waters - for detecting six drugs [azithromycin, fluoxetine, omeprazole, levothyroxine, methamphetamine, methylenedioxymethamphetamine (MDMA)]. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various research projects being performed in support of this Task and more in-depth coverage of each project. Briefly, each project's objective is stated below.Subtask 1: To integrate state-of-the-art technologies (polar organic chemical integrative samplers, advanced solid-phase extraction methodologies with liquid chromatography/electrospray/mass spectrometry) and apply them to studying the sources and fate of a select list of PPCPs. Application and improvement of analytical methodologies that can detect non-volatile, polar, water-soluble pharmaceuticals in source waters at levels that could be environmentally significant (at concentrations less than parts per billion, ppb). IAG with USGS ends in FY05. APM 20 due in FY05.Subtask 2: Coordination of interagency research and public outreach activities for PPCPs. Participate on NSTC Health and Environment subcommittee working group on PPCPs. Web site maintenance and expansi

  10. Fukunaga-Koontz feature transformation for statistical structural damage detection and hierarchical neuro-fuzzy damage localisation

    NASA Astrophysics Data System (ADS)

    Hoell, Simon; Omenzetter, Piotr

    2017-07-01

    Considering jointly damage sensitive features (DSFs) of signals recorded by multiple sensors, applying advanced transformations to these DSFs and assessing systematically their contribution to damage detectability and localisation can significantly enhance the performance of structural health monitoring systems. This philosophy is explored here for partial autocorrelation coefficients (PACCs) of acceleration responses. They are interrogated with the help of the linear discriminant analysis based on the Fukunaga-Koontz transformation using datasets of the healthy and selected reference damage states. Then, a simple but efficient fast forward selection procedure is applied to rank the DSF components with respect to statistical distance measures specialised for either damage detection or localisation. For the damage detection task, the optimal feature subsets are identified based on the statistical hypothesis testing. For damage localisation, a hierarchical neuro-fuzzy tool is developed that uses the DSF ranking to establish its own optimal architecture. The proposed approaches are evaluated experimentally on data from non-destructively simulated damage in a laboratory scale wind turbine blade. The results support our claim of being able to enhance damage detectability and localisation performance by transforming and optimally selecting DSFs. It is demonstrated that the optimally selected PACCs from multiple sensors or their Fukunaga-Koontz transformed versions can not only improve the detectability of damage via statistical hypothesis testing but also increase the accuracy of damage localisation when used as inputs into a hierarchical neuro-fuzzy network. Furthermore, the computational effort of employing these advanced soft computing models for damage localisation can be significantly reduced by using transformed DSFs.

  11. Fast, low-level detection of strontium-90 and strontium-89 in environmental samples by collinear resonance ionization spectroscopy

    NASA Astrophysics Data System (ADS)

    Monz, L.; Hohmann, R.; Kluge, H.-J.; Kunze, S.; Lantzsch, J.; Otten, E. W.; Passler, G.; Senne, P.; Stenner, J.; Stratmann, K.; Swendt, K.; Zimmer, K.; Herrmann, G.; Trautmann, N.; Walter, K.

    1993-12-01

    Environmental assessment in the wake of a nuclear accident requires the rapid determination of the radiotoxic isotopes 89Sr and 90Sr. Useful measurements must be able to detect 10 8 atoms in the presence of about 10 18 atoms of the stable, naturally occurring isotopes. This paper describes a new approach to this problem using resonance ionization spectroscopy in collinear geometry, combined with classical mass separation. After collection and chemical separation, the strontium from a sample is surface-ionized and the ions are accelerated to an energy of about 30 keV. Initially, a magnetic mass separator provides an isotopic selectivity of about 10 6. The ions are then neutralized by charge exchange and the resulting fast strontium atoms are selectively excited into high-lying atomic Rydberg states by narrow-band cw laser light in collinear geometry. The Rydberg atoms are then field-ionized and detected. Thus far, a total isotopic selectivity of S > 10 10 and an overall efficiency of ξ = 5 × 10 -6 have been achieved. The desired detection limit of 10 8 atoms 90Sr has been demonstrated with synthetic samples.

  12. Occurrence of pesticides in water and sediment collected from amphibian habitats located throughout the United States, 2009-10

    USGS Publications Warehouse

    Smalling, Kelly L.; Orlando, James L.; Calhoun, Daniel; Battaglin, William A.; Kuivila, Kathryn

    2012-01-01

    Water and bed-sediment samples were collected by the U.S. Geological Survey (USGS) in 2009 and 2010 from 11 sites within California and 18 sites total in Colorado, Georgia, Idaho, Louisiana, Maine, and Oregon, and were analyzed for a suite of pesticides by the USGS. Water samples and bed-sediment samples were collected from perennial or seasonal ponds located in amphibian habitats in conjunction with research conducted by the USGS Amphibian Research and Monitoring Initiative and the USGS Toxic Substances Hydrology Program. Sites selected for this study in three of the states (California, Colorado, and Orgeon) have no direct pesticide application and are considered undeveloped and remote. Sites selected in Georgia, Idaho, Louisiana, and Maine were in close proximity to either agricultural or suburban areas. Water and sediment samples were collected once in 2009 during amphibian breeding seasons. In 2010, water samples were collected twice. The first sampling event coincided with the beginning of the frog breeding season for the species of interest, and the second event occurred 10-12 weeks later when pesticides were being applied to the surrounding areas. Additionally, water was collected during each sampling event to measure dissolved organic carbon, nutrients, and the fungus, Batrachochytrium dendrobatidis, which has been linked to amphibian declines worldwide. Bed-sediment samples were collected once during the beginning of the frog breeding season, when the amphibians are thought to be most at risk to pesticides. Results of this study are reported for the following two geographic scales: (1) for a national scale, by using data from the 29 sites that were sampled from seven states, and (2) for California, by using data from the 11 sampled sites in that state. Water samples were analyzed for 96 pesticides by using gas chromatography/mass spectrometry. A total of 24 pesticides were detected in one or more of the 54 water samples, including 7 fungicides, 10 herbicides, 4 insecticides, 1 synergist, and 2 pesticide degradates. On a national scale, aminomethylphosphonic acid (AMPA), the primary degradate of the herbicide glyphosate, which is the active ingredient in Roundup®, was the most frequently detected pesticide in water (16 of 54 samples) followed by glyphosate (8 of 54 samples). The maximum number of pesticides observed at a single site was nine compounds in a water sample from a site in Louisiana. The maximum concentration of a pesticide or degradate observed in water was 2,880 nanograms per liter of clomazone (a herbicide) at a site in Louisiana. In California, a total of eight pesticides were detected among all of the low and high elevation sites; AMPA was the most frequently detected pesticide, but glyphosate was detected at the highest concentrations (1.1 micrograms per liter). Bed-sediment samples were analyzed for 94 pesticides by using accelerated solvent extraction, gel permeation chromatography for sulfur removal, and carbon/alumina stacked solid-phase extraction cartridges to remove interfering sediment matrices. In bed sediment, 22 pesticides were detected in one or more of the samples, including 9 fungicides, 3 pyrethroid insecticides, p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT) and its major degradates, as well as several herbicides. Pyraclostrobin, a strobilurin fungicide, and bifenthrin, a pyrethroid insecticide, were detected most frequently. Maximum pesticide concentrations ranged from less than their respective method detection limits to 1,380 micrograms per kilogram (tebuconazole in California). The number of pesticides detected in samples from each site ranged from zero to six compounds. The sites with the greatest number of pesticides were in Maine and Oregon with six pesticides detected in one sample from each state, followed by Georgia with four pesticides in one sample. For California, a total of 10 pesticides were detected among all sites, and 4 pesticides were detected at both low and high elevation sites; tebuconazole and pyraclostrobin were the two most frequently detected pesticides in California. For the other six selected states, the most frequently detected pesticides in bed sediment were pyraclostrobin (detected in 17 of 42 samples), bifenthrin (detected in 14 of 42 samples), and tebuconazole (detected in 10 of 42 samples). The fungus, Batrachochytrium dendrobatidis (Bd), was detected in water samples in sites from four of the seven states during 2009 and 2010, and the number of zoospore equivalents per liter of water in samples where Bd was detected ranged from 1.6 to 343. Bd was not detected in water samples from sites in Georgia, Louisiana, and Oregon.

  13. Use of Selective Fungal Culture Media Increases Rates of Detection of Fungi in the Respiratory Tract of Cystic Fibrosis Patients.

    PubMed

    Hong, Gina; Miller, Heather B; Allgood, Sarah; Lee, Richard; Lechtzin, Noah; Zhang, Sean X

    2017-04-01

    The prevalence of fungi in the respiratory tracts of cystic fibrosis (CF) patients has risen. However, fungal surveillance is not routinely performed in most clinical centers in the United States, which may lead to an underestimation of the true prevalence of the problem. We conducted a prospective study comparing the rates of detection for clinically important fungi (CIF), defined as Aspergillus , Scedosporium , and Trichosporon species and Exophiala dermatitidis , in CF sputa using standard bacterial and selective fungal culture media, including Sabouraud dextrose agar with gentamicin (SDA), inhibitory mold agar (IMA), and brain heart infusion (BHI) agar with chloramphenicol and gentamicin. We described the prevalence of these fungi in an adult CF population. A total of 487 CF respiratory samples were collected from 211 unique participants. CIF were detected in 184 (37.8%) samples. Only 26.1% of CIF-positive samples were detected in bacterial culture medium, whereas greater rates of detection for fungi were found in IMA (65.8%; P < 0.001), in SDA (at 30°C, 64.7%; P = 0.005), and in BHI agar (63.0%; P = 0.001). The prevalences of Aspergillus and Scedosporium species were 40.8% and 5.2%, respectively, which are greater than the nationally reported prevalence numbers of 20.4% and 1.9%. Selective fungal culture media and longer incubation periods yielded higher rates of detection for CIF in CF sputum samples compared with that detected in bacterial culture medium, resulting in an underdetection of fungi by bacterial culture alone. The prevalence of fungi in CF may be better estimated by using selective fungal culture media, and this may translate to important clinical decisions. Copyright © 2017 American Society for Microbiology.

  14. Use of Selective Fungal Culture Media Increases Rates of Detection of Fungi in the Respiratory Tract of Cystic Fibrosis Patients

    PubMed Central

    Hong, Gina; Miller, Heather B.; Allgood, Sarah; Lee, Richard; Lechtzin, Noah

    2017-01-01

    ABSTRACT The prevalence of fungi in the respiratory tracts of cystic fibrosis (CF) patients has risen. However, fungal surveillance is not routinely performed in most clinical centers in the United States, which may lead to an underestimation of the true prevalence of the problem. We conducted a prospective study comparing the rates of detection for clinically important fungi (CIF), defined as Aspergillus, Scedosporium, and Trichosporon species and Exophiala dermatitidis, in CF sputa using standard bacterial and selective fungal culture media, including Sabouraud dextrose agar with gentamicin (SDA), inhibitory mold agar (IMA), and brain heart infusion (BHI) agar with chloramphenicol and gentamicin. We described the prevalence of these fungi in an adult CF population. A total of 487 CF respiratory samples were collected from 211 unique participants. CIF were detected in 184 (37.8%) samples. Only 26.1% of CIF-positive samples were detected in bacterial culture medium, whereas greater rates of detection for fungi were found in IMA (65.8%; P < 0.001), in SDA (at 30°C, 64.7%; P = 0.005), and in BHI agar (63.0%; P = 0.001). The prevalences of Aspergillus and Scedosporium species were 40.8% and 5.2%, respectively, which are greater than the nationally reported prevalence numbers of 20.4% and 1.9%. Selective fungal culture media and longer incubation periods yielded higher rates of detection for CIF in CF sputum samples compared with that detected in bacterial culture medium, resulting in an underdetection of fungi by bacterial culture alone. The prevalence of fungi in CF may be better estimated by using selective fungal culture media, and this may translate to important clinical decisions. PMID:28100601

  15. Detecting Lyme disease using antibody-functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Dailey, Jennifer; Lerner, Mitchell; Goldsmith, Brett; Brisson, Dustin; Johnson, A. T. Charlie

    2011-03-01

    We combine antibodies for Lyme flagellar protein with carbon nanotube transistors to create an electronic sensor capable of definitive detection of Lyme disease. Over 35,000 cases of Lyme disease are reported in the United States each year, of which more than 23 percent are originally misdiagnosed. Rational design of the coupling of the biological system to the electronic system gives us a flexible sensor platform which we can apply to several biological systems. By coupling these antibodies to carbon nanotubes in particular, we allow for fast, sensitive, highly selective, electronic detection. Unlike antibody or biomarker detection, bacterial protein detection leads to positive identification of both early and late stage bacterial infections, and is easily expandable to environmental monitoring.

  16. Continuous operation of four-state continuous-variable quantum key distribution system

    NASA Astrophysics Data System (ADS)

    Matsubara, Takuto; Ono, Motoharu; Oguri, Yusuke; Ichikawa, Tsubasa; Hirano, Takuya; Kasai, Kenta; Matsumoto, Ryutaroh; Tsurumaru, Toyohiro

    2016-10-01

    We report on the development of continuous-variable quantum key distribution (CV-QKD) system that are based on discrete quadrature amplitude modulation (QAM) and homodyne detection of coherent states of light. We use a pulsed light source whose wavelength is 1550 nm and repetition rate is 10 MHz. The CV-QKD system can continuously generate secret key which is secure against entangling cloner attack. Key generation rate is 50 kbps when the quantum channel is a 10 km optical fiber. The CV-QKD system we have developed utilizes the four-state and post-selection protocol [T. Hirano, et al., Phys. Rev. A 68, 042331 (2003).]; Alice randomly sends one of four states {|+/-α⟩,|+/-𝑖α⟩}, and Bob randomly performs x- or p- measurement by homodyne detection. A commercially available balanced receiver is used to realize shot-noise-limited pulsed homodyne detection. GPU cards are used to accelerate the software-based post-processing. We use a non-binary LDPC code for error correction (reverse reconciliation) and the Toeplitz matrix multiplication for privacy amplification.

  17. To select or to wait? The importance of criterion setting in debates of competitive lexical selection.

    PubMed

    Nozari, Nazbanou; Hepner, Christopher R

    2018-06-05

    Competitive accounts of lexical selection propose that the activation of competitors slows down the selection of the target. Non-competitive accounts, on the other hand, posit that target response latencies are independent of the activation of competing items. In this paper, we propose a signal detection framework for lexical selection and show how a flexible selection criterion affects claims of competitive selection. Specifically, we review evidence from neurotypical and brain-damaged speakers and demonstrate that task goals and the state of the production system determine whether a competitive or a non-competitive selection profile arises. We end by arguing that there is conclusive evidence for a flexible criterion in lexical selection, and that integrating criterion shifts into models of language production is critical for evaluating theoretical claims regarding (non-)competitive selection.

  18. Spin-dependent recombination probed through the dielectric polarizability

    PubMed Central

    Bayliss, Sam L.; Greenham, Neil C.; Friend, Richard H.; Bouchiat, Hélène; Chepelianskii, Alexei D

    2015-01-01

    Despite residing in an energetically and structurally disordered landscape, the spin degree of freedom remains a robust quantity in organic semiconductor materials due to the weak coupling of spin and orbital states. This enforces spin-selectivity in recombination processes which plays a crucial role in optoelectronic devices, for example, in the spin-dependent recombination of weakly bound electron-hole pairs, or charge-transfer states, which form in a photovoltaic blend. Here, we implement a detection scheme to probe the spin-selective recombination of these states through changes in their dielectric polarizability under magnetic resonance. Using this technique, we access a regime in which the usual mixing of spin-singlet and spin-triplet states due to hyperfine fields is suppressed by microwave driving. We present a quantitative model for this behaviour which allows us to estimate the spin-dependent recombination rate, and draw parallels with the Majorana–Brossel resonances observed in atomic physics experiments. PMID:26439933

  19. Proton triggered emission and selective sensing of picric acid by the fluorescent aggregates of 6,7-dimethyl-2,3-bis-(2-pyridyl)-quinoxaline.

    PubMed

    Mazumdar, Prativa; Maity, Samir; Shyamal, Milan; Das, Debasish; Sahoo, Gobinda Prasad; Misra, Ajay

    2016-03-14

    A heteroatom containing organic fluorophore 6,7-dimethyl-2,3-bis-(2-pyridyl)-quinoxaline (BPQ) is weakly emissive in solution but its emission properties are highly enhanced in the aggregated state due to the restriction of intramolecular rotation (RIR) and large amplitude vibrational modes, demonstrating the phenomenon, aggregation induced emission enhancement (AIEE). It has strong proton capture capability, allowing reversible fluorescence switching in basic and acidic medium and the emission color changes from blue to green in the aggregated state through protonation. It has been explained as a competition between intramolecular charge transfers (ICTs) and the AIEE phenomena at a lower pH range (pH ∼1-4). Such behavior enables it as a fluorescent pH sensor for detection in acidic and basic medium. Morphologies of the particles are characterized using optical and field emission scanning electron microscopic (FESEM) studies. The turn off fluorescence properties of aggregated BPQ have been utilized for the selective detection of picric acid and the fluorescence quenching is explained due to ground state complexation with a strong quenching constant, 7.81 × 10(4) M(-1).

  20. ADVANCED TOOLS FOR ASSESSING SELECTED PRESCRIPTION AND ILLICIT DRUGS IN TREATED SEWAGE EFFLUENTS AND SOURCE WATERS

    EPA Science Inventory

    The purpose of this poster is to present the application and assessment of advanced state-of-the-art technologies in a real-world environment - wastewater effluent and source waters - for detecting six drugs [azithromycin, fluoxetine, omeprazole, levothyroxine, methamphetamine, m...

  1. Benchmarking of state-of-the-art needle detection algorithms in 3D ultrasound data volumes

    NASA Astrophysics Data System (ADS)

    Pourtaherian, Arash; Zinger, Svitlana; de With, Peter H. N.; Korsten, Hendrikus H. M.; Mihajlovic, Nenad

    2015-03-01

    Ultrasound-guided needle interventions are widely practiced in medical diagnostics and therapy, i.e. for biopsy guidance, regional anesthesia or for brachytherapy. Needle guidance using 2D ultrasound can be very challenging due to the poor needle visibility and the limited field of view. Since 3D ultrasound transducers are becoming more widely used, needle guidance can be improved and simplified with appropriate computer-aided analyses. In this paper, we compare two state-of-the-art 3D needle detection techniques: a technique based on line filtering from literature and a system employing Gabor transformation. Both algorithms utilize supervised classification to pre-select candidate needle voxels in the volume and then fit a model of the needle on the selected voxels. The major differences between the two approaches are in extracting the feature vectors for classification and selecting the criterion for fitting. We evaluate the performance of the two techniques using manually-annotated ground truth in several ex-vivo situations of different complexities, containing three different needle types with various insertion angles. This extensive evaluation provides better understanding on the limitations and advantages of each technique under different acquisition conditions, which is leading to the development of improved techniques for more reliable and accurate localization. Benchmarking results that the Gabor features are better capable of distinguishing the needle voxels in all datasets. Moreover, it is shown that the complete processing chain of the Gabor-based method outperforms the line filtering in accuracy and stability of the detection results.

  2. Sensitive fluorescence on-off probes for the fast detection of a chemical warfare agent mimic.

    PubMed

    Khan, Muhammad Shar Jhahan; Wang, Ya-Wen; Senge, Mathias O; Peng, Yu

    2018-01-15

    Two highly sensitive probes bearing a nucleophilic imine moiety have been utilized for the selective detection of chemical warfare agent (CWA) mimics. Diethyl chlorophosphate (DCP) was used as mimic CWAs. Both iminocoumarin-benzothiazole-based probes not only demonstrated a remarkable fluorescence ON-OFF response and good recognition, but also exhibited fast response times (10s) along with color changes upon addition of DCP. Limits of detection for the two sensors 1 and 2 were calculated as 0.065μM and 0.21μM, respectively, which are much lower than most other reported probes. These two probes not only show high sensitivity and selectivity in solution, but can also be applied for the recognition of DCP in the gas state, with significant color changes easily observed by the naked eye. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Stress-induced chemical detection using flexible metal-organic frameworks.

    PubMed

    Allendorf, Mark D; Houk, Ronald J T; Andruszkiewicz, Leanne; Talin, A Alec; Pikarsky, Joel; Choudhury, Arnab; Gall, Kenneth A; Hesketh, Peter J

    2008-11-05

    In this work we demonstrate the concept of stress-induced chemical detection using metal-organic frameworks (MOFs) by integrating a thin film of the MOF HKUST-1 with a microcantilever surface. The results show that the energy of molecular adsorption, which causes slight distortions in the MOF crystal structure, can be converted to mechanical energy to create a highly responsive, reversible, and selective sensor. This sensor responds to water, methanol, and ethanol vapors, but yields no response to either N2 or O2. The magnitude of the signal, which is measured by a built-in piezoresistor, is correlated with the concentration and can be fitted to a Langmuir isotherm. Furthermore, we show that the hydration state of the MOF layer can be used to impart selectivity to CO2. Finally, we report the first use of surface-enhanced Raman spectroscopy to characterize the structure of a MOF film. We conclude that the synthetic versatility of these nanoporous materials holds great promise for creating recognition chemistries to enable selective detection of a wide range of analytes.

  4. Highly selective detection of individual nuclear spins with rotary echo on an electron spin probe

    PubMed Central

    Mkhitaryan, V. V.; Jelezko, F.; Dobrovitski, V. V.

    2015-01-01

    We consider an electronic spin, such as a nitrogen-vacancy center in diamond, weakly coupled to a large number of nuclear spins, and subjected to the Rabi driving with a periodically alternating phase. We show that by switching the driving phase synchronously with the precession of a given nuclear spin, the interaction to this spin is selectively enhanced, while the rest of the bath remains decoupled. The enhancement is of resonant character. The key feature of the suggested scheme is that the width of the resonance is adjustable, and can be greatly decreased by increasing the driving strength. Thus, the resonance can be significantly narrowed, by a factor of 10–100 in comparison with the existing detection methods. Significant improvement in selectivity is explained analytically and confirmed by direct numerical many-spin simulations. The method can be applied to a wide range of solid-state systems. PMID:26497777

  5. Detection of stress/anxiety state from EEG features during video watching.

    PubMed

    Giannakakis, Giorgos; Grigoriadis, Dimitris; Tsiknakis, Manolis

    2015-01-01

    This paper studies the effect of stress/anxiety states on EEG signals during video sessions. The levels of arousal and valence that are induced to each subject while watching each video are self rated. These levels are mapped in stress and relaxed states and subjects that fufill criteria of adequate anxiety/stress scale were chosen leading to a subset of 18 subjects. Then, temporal, spectral and non linear EEG features are evaluated for being able to represent accurately states under investigation. Feature selection schemes choose the most significant of them in order to provide increased discrimination ability between relaxed and anxiety/stress states.

  6. Application of Fault Management Theory to the Quantitative Selection of a Launch Vehicle Abort Trigger Suite

    NASA Technical Reports Server (NTRS)

    Lo, Yunnhon; Johnson, Stephen B.; Breckenridge, Jonathan T.

    2014-01-01

    This paper describes the quantitative application of the theory of System Health Management and its operational subset, Fault Management, to the selection of abort triggers for a human-rated launch vehicle, the United States' National Aeronautics and Space Administration's (NASA) Space Launch System (SLS). The results demonstrate the efficacy of the theory to assess the effectiveness of candidate failure detection and response mechanisms to protect humans from time-critical and severe hazards. The quantitative method was successfully used on the SLS to aid selection of its suite of abort triggers.

  7. Application of Fault Management Theory to the Quantitative Selection of a Launch Vehicle Abort Trigger Suite

    NASA Technical Reports Server (NTRS)

    Lo, Yunnhon; Johnson, Stephen B.; Breckenridge, Jonathan T.

    2014-01-01

    This paper describes the quantitative application of the theory of System Health Management and its operational subset, Fault Management, to the selection of Abort Triggers for a human-rated launch vehicle, the United States' National Aeronautics and Space Administration's (NASA) Space Launch System (SLS). The results demonstrate the efficacy of the theory to assess the effectiveness of candidate failure detection and response mechanisms to protect humans from time-critical and severe hazards. The quantitative method was successfully used on the SLS to aid selection of its suite of Abort Triggers.

  8. Spacecraft Fire Detection and Extinguishment: A Bibliography

    NASA Technical Reports Server (NTRS)

    Jason, Nora H.

    1988-01-01

    Pertinent fire detection and extinguishment references have been identified to further the knowledge of spacecraft fire safety. To broaden the scope of the bibliography, other unusual environments, e.g., aircraft, submarine, ship, have been included. In addition, for a more comprehensive view of the spacecraft fire safety problem, selected subjects are included, e.g., materials flammability, smoke, human behavior. The references will provide the researcher with access to state-of-the-art and historic works. Selected references from the 1960's have been included, but the emphasis is on references published from 1975 to 1987. The references are arranged by very broad categories. Often a paper will cover more than one topic, but for the purposes of this bibliography it will be cited only once.

  9. Coaxial cable sensors and sensing instrument for crack detection in bridge structures--phase I : field qualification/validation planning.

    DOT National Transportation Integrated Search

    2009-11-01

    The objectives of this study are to pre-test analyze a decommissioned reinforced concrete (RC) bridge that is selected in consultation with the New York State Department of Transportation (NYSDOT), and design and plan the field tests of the bridge fo...

  10. Considerations in Physiological Metric Selection for Online Detection of Operator State: A Case Study

    DTIC Science & Technology

    2016-07-17

    e.g., we omit functional magnetic resonance imaging; fMRI ). Researchers have investigated fatigue and related constructs using several different...integration and links to underlying memory systems. Personality and So- cial Psychology Review, 4(2), 108–131. 26. Prinzel, L. J., Freeman, F. G

  11. Distribution majorization of corner points by reinforcement learning for moving object detection

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Yu, Hao; Zhou, Dongxiang; Cheng, Yongqiang

    2018-04-01

    Corner points play an important role in moving object detection, especially in the case of free-moving camera. Corner points provide more accurate information than other pixels and reduce the computation which is unnecessary. Previous works only use intensity information to locate the corner points, however, the information that former and the last frames provided also can be used. We utilize the information to focus on more valuable area and ignore the invaluable area. The proposed algorithm is based on reinforcement learning, which regards the detection of corner points as a Markov process. In the Markov model, the video to be detected is regarded as environment, the selections of blocks for one corner point are regarded as actions and the performance of detection is regarded as state. Corner points are assigned to be the blocks which are seperated from original whole image. Experimentally, we select a conventional method which uses marching and Random Sample Consensus algorithm to obtain objects as the main framework and utilize our algorithm to improve the result. The comparison between the conventional method and the same one with our algorithm show that our algorithm reduce 70% of the false detection.

  12. Automatic Hazard Detection for Landers

    NASA Technical Reports Server (NTRS)

    Huertas, Andres; Cheng, Yang; Matthies, Larry H.

    2008-01-01

    Unmanned planetary landers to date have landed 'blind'; that is, without the benefit of onboard landing hazard detection and avoidance systems. This constrains landing site selection to very benign terrain,which in turn constrains the scientific agenda of missions. The state of the art Entry, Descent, and Landing (EDL) technology can land a spacecraft on Mars somewhere within a 20-100km landing ellipse.Landing ellipses are very likely to contain hazards such as craters, discontinuities, steep slopes, and large rocks, than can cause mission-fatal damage. We briefly review sensor options for landing hazard detection and identify a perception approach based on stereo vision and shadow analysis that addresses the broadest set of missions. Our approach fuses stereo vision and monocular shadow-based rock detection to maximize spacecraft safety. We summarize performance models for slope estimation and rock detection within this approach and validate those models experimentally. Instantiating our model of rock detection reliability for Mars predicts that this approach can reduce the probability of failed landing by at least a factor of 4 in any given terrain. We also describe a rock detector/mapper applied to large-high-resolution images from the Mars Reconnaissance Orbiter (MRO) for landing site characterization and selection for Mars missions.

  13. Highly Sensitive and Selective Uranium Detection in Natural Water Systems Using a Luminescent Mesoporous Metal-Organic Framework Equipped with Abundant Lewis Basic Sites: A Combined Batch, X-ray Absorption Spectroscopy, and First Principles Simulation Investigation.

    PubMed

    Liu, Wei; Dai, Xing; Bai, Zhuanling; Wang, Yanlong; Yang, Zaixing; Zhang, Linjuan; Xu, Lin; Chen, Lanhua; Li, Yuxiang; Gui, Daxiang; Diwu, Juan; Wang, Jianqiang; Zhou, Ruhong; Chai, Zhifang; Wang, Shuao

    2017-04-04

    Uranium is not only a strategic resource for the nuclear industry but also a global contaminant with high toxicity. Although several strategies have been established for detecting uranyl ions in water, searching for new uranium sensor material with great sensitivity, selectivity, and stability remains a challenge. We introduce here a hydrolytically stable mesoporous terbium(III)-based MOF material compound 1, whose channels are as large as 27 Å × 23 Å and are equipped with abundant exposed Lewis basic sites, the luminescence intensity of which can be efficiently and selectively quenched by uranyl ions. The detection limit in deionized water reaches 0.9 μg/L, far below the maximum contamination standard of 30 μg/L in drinking water defined by the United States Environmental Protection Agency, making compound 1 currently the only MOF material that can achieve this goal. More importantly, this material exhibits great capability in detecting uranyl ions in natural water systems such as lake water and seawater with pH being adjusted to 4, where huge excesses of competing ions are present. The uranyl detection limits in Dushu Lake water and in seawater were calculated to be 14.0 and 3.5 μg/L, respectively. This great detection capability originates from the selective binding of uranyl ions onto the Lewis basic sites of the MOF material, as demonstrated by synchrotron radiation extended X-ray adsorption fine structure, X-ray adsorption near edge structure, and first principles calculations, further leading to an effective energy transfer between the uranyl ions and the MOF skeleton.

  14. Trace metal contents of selected seeds and vegetables from oil producing areas of Nigeria.

    PubMed

    Wegwu, Matthew O; Omeodu, Stephen I

    2010-07-01

    The concentrations of accumulated trace metals in selected seeds and vegetables collected in the oil producing Rivers State of Nigeria were investigated. The values were compared with those of seeds and vegetables cultivated in Owerri, a less industrialized area in Nigeria. The lead (Pb) and cadmium (Cd) contents of the seeds obtained from Rivers State ranged between 0.10 and 0.23 microg/g dry weight, while those of the seeds cultivated in Owerri fell below the detection limit of 0.01 microg/g dry weight. The highest manganese (Mn) level (902 microg/g dry weight) was found in Irvingia garbonesis seeds cultivated in Rivers State. Similarly, the highest nickel (Ni) value (199 microg/g dry weight) was also obtained in I. garbonesis, however, in the seeds sampled in Owerri. The highest copper (Cu), zinc (Zn), and iron (Fe) levels (16.8, 5.27, and 26.2 microg/g dry weight, resp.) were detected in seeds collected in Rivers State. With the exception of Talinum triangulae, Ocinum gratissimum, and Piper guineese, with Pb levels of 0.09, 0.10, and 0.11 microg/g dry weight, respectively, the Pb and Cd levels in the vegetables grown in Owerri fell below the detection limit of 0.01 microg/g dry weight. The trace metal with the highest levels in all the vegetables studied was Mn, followed by Fe. The highest concentrations of Ni and Cu occurred in vegetables collected from Rivers State, while the highest level of Zn was observed in Piper guineese collected in Owerri, with a value of 21.4 microg/g dry weight. Although the trace metal concentrations of the seeds and vegetables collected in Rivers State tended to be higher than those of the seeds and vegetables grown in Owerri, the average levels of trace metals obtained in this study fell far below the WHO specifications for metals in foods.

  15. Detection of shielded nuclear material in a cargo container

    NASA Astrophysics Data System (ADS)

    Jones, James L.; Norman, Daren R.; Haskell, Kevin J.; Sterbentz, James W.; Yoon, Woo Y.; Watson, Scott M.; Johnson, James T.; Zabriskie, John M.; Bennett, Brion D.; Watson, Richard W.; Moss, Cavin E.; Frank Harmon, J.

    2006-06-01

    The Idaho National Laboratory, along with Los Alamos National Laboratory and the Idaho State University's Idaho Accelerator Center, are developing electron accelerator-based, photonuclear inspection technologies for the detection of shielded nuclear material within air-, rail-, and especially, maritime-cargo transportation containers. This paper describes a developing prototypical cargo container inspection system utilizing the Pulsed Photonuclear Assessment (PPA) technology, incorporates interchangeable, well-defined, contraband shielding structures (i.e., "calibration" pallets) providing realistic detection data for induced radiation signatures from smuggled nuclear material, and provides various shielded nuclear material detection results. Using a 4.8-kg quantity of depleted uranium, neutron and gamma-ray detection responses are presented for well-defined shielded and unshielded configurations evaluated in a selected cargo container inspection configuration.

  16. Global-Context Based Salient Region Detection in Nature Images

    NASA Astrophysics Data System (ADS)

    Bao, Hong; Xu, De; Tang, Yingjun

    Visually saliency detection provides an alternative methodology to image description in many applications such as adaptive content delivery and image retrieval. One of the main aims of visual attention in computer vision is to detect and segment the salient regions in an image. In this paper, we employ matrix decomposition to detect salient object in nature images. To efficiently eliminate high contrast noise regions in the background, we integrate global context information into saliency detection. Therefore, the most salient region can be easily selected as the one which is globally most isolated. The proposed approach intrinsically provides an alternative methodology to model attention with low implementation complexity. Experiments show that our approach achieves much better performance than that from the existing state-of-art methods.

  17. A hexa-quinoline based C3-symmetric chemosensor for dual sensing of zinc(ii) and PPi in an aqueous medium via chelation induced "OFF-ON-OFF" emission.

    PubMed

    Sinha, Sanghamitra; Chowdhury, Bijit; Adarsh, Nayarassery N; Ghosh, Pradyut

    2018-05-15

    A quinoline-based C3-symmetric fluorescent probe (1), N,N',N''-((2,4,6-trimethylbenzene-1,3,5-triyl)tris(methylene))tris(1-(quinolin-2-yl)-N-(quinolin-2-ylmethyl)methanamine), has been developed which can selectively detect Zn2+ without the interference of Cd2+via significant enhancement in emission intensity (fluorescence "turn-ON") associated with distinct fluorescence colour changes and very low detection limits (35.60 × 10-9 M in acetonitrile and 29.45 × 10-8 M in 50% aqueous buffer (10 mM HEPES, pH = 7.4) acetonitrile media). Importantly, this sensor is operative with a broad pH window (pH 4-10). The sensing phenomenon has been duly studied through UV-vis, steady-state, and time-resolved fluorescence spectroscopic methods indicating 1 : 3 stoichiometric binding between 1 and Zn2+ which is further corroborated by 1H NMR studies. Density functional theoretical (DFT) calculations provide the optimized molecular geometry and properties of the zinc complex, 1[Zn(ClO4)]33+, which is proposed to be formed in acetonitrile. The results are in line with the solution-state experimental findings. The single crystal X-ray study provides the solid state structure of the trinuclear Zn2+ complex showing solubility in an aqueous buffer (10 mM HEPES, pH = 7.4). Finally, the resulting trinuclear Zn2+ complex has been utilized as a fluorescence "turn-OFF" sensor for the selective detection of pyrophosphate in a 70% aqueous buffer (10 mM HEPES, pH = 7.4) acetonitrile solvent with a nanomolar detection limit (45.37 × 10-9 M).

  18. Methods, media, and systems for detecting attack on a digital processing device

    DOEpatents

    Stolfo, Salvatore J.; Li, Wei-Jen; Keromylis, Angelos D.; Androulaki, Elli

    2014-07-22

    Methods, media, and systems for detecting attack are provided. In some embodiments, the methods include: comparing at least part of a document to a static detection model; determining whether attacking code is included in the document based on the comparison of the document to the static detection model; executing at least part of the document; determining whether attacking code is included in the document based on the execution of the at least part of the document; and if attacking code is determined to be included in the document based on at least one of the comparison of the document to the static detection model and the execution of the at least part of the document, reporting the presence of an attack. In some embodiments, the methods include: selecting a data segment in at least one portion of an electronic document; determining whether the arbitrarily selected data segment can be altered without causing the electronic document to result in an error when processed by a corresponding program; in response to determining that the arbitrarily selected data segment can be altered, arbitrarily altering the data segment in the at least one portion of the electronic document to produce an altered electronic document; and determining whether the corresponding program produces an error state when the altered electronic document is processed by the corresponding program.

  19. Methods, media, and systems for detecting attack on a digital processing device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolfo, Salvatore J.; Li, Wei-Jen; Keromytis, Angelos D.

    Methods, media, and systems for detecting attack are provided. In some embodiments, the methods include: comparing at least part of a document to a static detection model; determining whether attacking code is included in the document based on the comparison of the document to the static detection model; executing at least part of the document; determining whether attacking code is included in the document based on the execution of the at least part of the document; and if attacking code is determined to be included in the document based on at least one of the comparison of the document tomore » the static detection model and the execution of the at least part of the document, reporting the presence of an attack. In some embodiments, the methods include: selecting a data segment in at least one portion of an electronic document; determining whether the arbitrarily selected data segment can be altered without causing the electronic document to result in an error when processed by a corresponding program; in response to determining that the arbitrarily selected data segment can be altered, arbitrarily altering the data segment in the at least one portion of the electronic document to produce an altered electronic document; and determining whether the corresponding program produces an error state when the altered electronic document is processed by the corresponding program.« less

  20. DNA as Sensors and Imaging Agents for Metal Ions

    PubMed Central

    Xiang, Yu

    2014-01-01

    Increasing interests in detecting metal ions in many chemical and biomedical fields have created demands for developing sensors and imaging agents for metal ions with high sensitivity and selectivity. This review covers recent progress in DNA-based sensors and imaging agents for metal ions. Through both combinatorial selection and rational design, a number of metal ion-dependent DNAzymes and metal ion-binding DNA structures that can selectively recognize specific metal ions have been obtained. By attaching these DNA molecules with signal reporters such as fluorophores, chromophores, electrochemical tags, and Raman tags, a number of DNA-based sensors for both diamagnetic and paramagnetic metal ions have been developed for fluorescent, colorimetric, electrochemical, and surface Raman detections. These sensors are highly sensitive (with detection limit down to 11 ppt) and selective (with selectivity up to millions-fold) toward specific metal ions. In addition, through further development to simplify the operation, such as the use of “dipstick tests”, portable fluorometers, computer-readable discs, and widely available glucose meters, these sensors have been applied for on-site and real-time environmental monitoring and point-of-care medical diagnostics. The use of these sensors for in situ cellular imaging has also been reported. The generality of the combinatorial selection to obtain DNAzymes for almost any metal ion in any oxidation state, and the ease of modification of the DNA with different signal reporters make DNA an emerging and promising class of molecules for metal ion sensing and imaging in many fields of applications. PMID:24359450

  1. Robust Speech Processing & Recognition: Speaker ID, Language ID, Speech Recognition/Keyword Spotting, Diarization/Co-Channel/Environmental Characterization, Speaker State Assessment

    DTIC Science & Technology

    2015-10-01

    Scoring, Gaussian Backend , etc.) as shown in Fig. 39. The methods in this domain also emphasized the ability to perform data purification for both...investigation using the same infrastructure was undertaken to explore Lombard effect “flavor” detection for improved speaker ID. The study The presence of...dimension selection and compared to a common N-gram frequency based selection. 2.1.2: Exploration on NN/DBN backend : Since Deep Neural Networks (DNN) have

  2. Optimized detection of steering via linear criteria for arbitrary-dimensional states

    NASA Astrophysics Data System (ADS)

    Zheng, Yu-Lin; Zhen, Yi-Zheng; Cao, Wen-Fei; Li, Li; Chen, Zeng-Bing; Liu, Nai-Le; Chen, Kai

    2017-03-01

    Einstein-Podolsky-Rosen (EPR) steering, as a new form of nonlocality, stands between entanglement and Bell nonlocality, implying promising applications for quantum information tasks. The problem of detecting EPR steering plays an important role in characterization of quantum nonlocality. Despite some significant progress, one still faces a practical issue: how to detect EPR steering in an experimentally friendly fashion. Resorting to an EPR steering inequality, one is required to apply a strategy as efficiently as possible for any selected measurement settings on the two subsystems, one of which may not be trusted. Inspired by the recent powerful linear criteria proposed by Saunders et al. [D. J. Saunders, S. J. Jones, H. M. Wiseman, and G. J. Pryde, Nat. Phys. 6, 845 (2010)., 10.1038/nphys1766], we present an optimized method of certifying steering for an arbitrary-dimensional state in a cost-effective manner. We provide a practical way to signify steering via only a few settings to optimally violate the steering inequality. Our method leads to steering detections in a highly efficient way, and can be performed with any number of settings, for an arbitrary bipartite mixed state, which can reduce experimental overheads significantly.

  3. Adaptive hidden Markov model with anomaly States for price manipulation detection.

    PubMed

    Cao, Yi; Li, Yuhua; Coleman, Sonya; Belatreche, Ammar; McGinnity, Thomas Martin

    2015-02-01

    Price manipulation refers to the activities of those traders who use carefully designed trading behaviors to manually push up or down the underlying equity prices for making profits. With increasing volumes and frequency of trading, price manipulation can be extremely damaging to the proper functioning and integrity of capital markets. The existing literature focuses on either empirical studies of market abuse cases or analysis of particular manipulation types based on certain assumptions. Effective approaches for analyzing and detecting price manipulation in real time are yet to be developed. This paper proposes a novel approach, called adaptive hidden Markov model with anomaly states (AHMMAS) for modeling and detecting price manipulation activities. Together with wavelet transformations and gradients as the feature extraction methods, the AHMMAS model caters to price manipulation detection and basic manipulation type recognition. The evaluation experiments conducted on seven stock tick data from NASDAQ and the London Stock Exchange and 10 simulated stock prices by stochastic differential equation show that the proposed AHMMAS model can effectively detect price manipulation patterns and outperforms the selected benchmark models.

  4. Gallium metal affinity capture tandem mass spectrometry for the selective detection of phosphopeptides in complex mixtures

    PubMed Central

    Blacken, Grady R.; Sadílek, Martin; Tureček, František

    2008-01-01

    Metal affinity capture tandem mass spectrometry (MAC-MSMS) is evaluated in a comparative study of a lysine-derived nitrilotriacetic acid (Nα, Nα-bis-(carboxymethyl)lysine, LysNTA) and an aspartic-acid-related iminodiacetic acid (N-(4-aminobutyl)aspartic acid, AspIDA) as selective phosphopeptide detection reagents. Both LysNTA and AspIDA spontaneously form ternary complexes with GaIII and phosphorylated amino acids and phosphopeptides upon mixing in solution. Collision-induced dissociation of positive complex ions produced by electrospray produces common fragments (LysNTA + H)+ or (AspIDA + H)+ at m/z 263 and 205, respectively. MSMS precursor scans using these fragments as reporter ions allow one to selectively detect multiple charge states of phosphopeptides in mixtures. It follows from this comparative study that LysNTA is superior to AspIDA in detecting phosphopeptides, possibly because of the higher coordination number and greater stability constant for GaIII – phosphopeptide complexation of the former reagent. In a continuing development of MAC-MSMS for proteomics applications, we demonstrate its utility in a post-column reaction format. Using a simple post-column-reaction ‘T’ and syringe pump to deliver our chelating reagents, α-casein tryptic phosphopeptides can be selectively analyzed from a solution containing a twofold molar excess of bovine serum albumin. The MAC-MSMS method is shown to be superior to the commonly used neutral loss scan for the common loss of phosphoric acid. PMID:18265438

  5. Selectivity of Electronic Coherence and Attosecond Ionization Delays in Strong-Field Double Ionization

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yuki; Reduzzi, Maurizio; Chang, Kristina F.; Timmers, Henry; Neumark, Daniel M.; Leone, Stephen R.

    2018-06-01

    Experiments are presented on real-time probing of coherent electron dynamics in xenon initiated by strong-field double ionization. Attosecond transient absorption measurements allow for characterization of electronic coherences as well as relative ionization timings in multiple electronic states of Xe+ and Xe2 + . A high degree of coherence g =0.4 is observed between P3 2 0-P3 0 0 of Xe2 + , whereas for other possible pairs of states the coherences are below the detection limits of the experiments. A comparison of the experimental results with numerical simulations based on an uncorrelated electron-emission model shows that the coherences produced by strong-field double ionization are more selective than predicted. Surprisingly short ionization time delays, 0.85 fs, 0.64 fs, and 0.75 fs relative to Xe+ formation, are also measured for the P2 3 , P0 3 , and P1 3 states of Xe2 + , respectively. Both the unpredicted selectivity in the formation of coherence and the subfemtosecond time delays of specific states provide new insight into correlated electron dynamics in strong-field double ionization.

  6. Molecular switches from benzene derivatives adsorbed on metal surfaces

    PubMed Central

    Liu, Wei; Filimonov, Sergey N.; Carrasco, Javier; Tkatchenko, Alexandre

    2013-01-01

    Transient precursor states are often experimentally observed for molecules adsorbing on surfaces. However, such precursor states are typically rather short-lived, quickly yielding to more stable adsorption configurations. Here we employ first-principles calculations to systematically explore the interaction mechanism for benzene derivatives on metal surfaces, enabling us to selectively tune the stability and the barrier between two metastable adsorption states. In particular, in the case of the tetrachloropyrazine molecule, two equally stable adsorption states are identified with a moderate and conceivably reversible barrier between them. We address the feasibility of experimentally detecting the predicted bistable behaviour and discuss its potential usefulness in a molecular switch. PMID:24157660

  7. Detection of the default mode network by an anisotropic analysis

    NASA Astrophysics Data System (ADS)

    Forero, Aura; Romero, Eduardo

    2017-11-01

    This document presents a proposal devoted to improve the detection of the default mode network (DMN) in resting state functional magnetic resonance imaging in noisy conditions caused by head movement. The proposed approach is inspired by the hierarchical treatment of information, in particular at the level of the brain basal ganglia. Essentially, the fact that information must be selected and reduced suggests propagation of information in the Central Nervous System (CNS) is anisotropic. Under this hypothesis, the reconstruction of information of activation should follow an anisotropic pattern. In this work, an anisotropic filter is used to recover the DMN that is perturbed by simulated motion artifacts. Results obtained show this approach outperforms the state-of-the-art methods by 5.93% PSNR.

  8. Detection of multipartite entanglement in spin rings by use of exchange energy

    NASA Astrophysics Data System (ADS)

    Siloi, I.; Troiani, F.

    2014-10-01

    We investigate multipartite entanglement in rings of arbitrary spins with antiferromagnetic interactions between nearest neighbors. In particular, we show that the nondegenerate ground state of rings formed by an even number (N ) of spins is N -partite entangled, and exchange energy can thus be used as a multipartite-entanglement witness. We develop a general approach to compute the energy minima corresponding to biseparable states, and provide numerical results for a representative set of systems. Despite its global character, exchange energy also allows a spin-selective characterization of entanglement. In particular, in the presence of a magnetic defect, one can derive separability criteria for each individual spin, and use exchange energy for detecting entanglement between this and all the other spins.

  9. Multiresidue screening of milk withheld for sale at dairy farms in central New York State.

    PubMed

    Pereira, R V; Siler, J D; Bicalho, R C; Warnick, L D

    2014-03-01

    Many of the drugs commonly used in lactating dairy cows result in residues in the milk, prohibiting its sale for human consumption. Milk withheld for sale because of drug treatment or from cows with high somatic cell counts is commonly called "waste milk." One-third of dairy farms in the United States use waste milk to feed preweaned dairy calves. Limited information is currently available on the effect of this practice on the selection and dissemination of antibiotic-resistant bacteria. Pooled waste milk samples were collected from 34 dairy farms in central New York State with the objective of detecting the presence and quantity of drug residues in these samples. Samples were collected and refrigerated using ice packs and then stored at 4°C upon arrival at the Cornell laboratory (Ithaca, NY). Screening for β-lactam, tetracycline, and sulfonamide residues in the milk was performed using commercial enzyme-linked receptor-binding assay (SNAP) tests (Idexx Laboratories Inc., Westbrook, ME). Samples with a positive SNAP test were selected for screening using a multiresidue liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. The SNAP tests revealed that 75, 14.3, and 7.1% of waste milk samples (n=34) contained β-lactam, tetracycline, and sulfamethazine residues, respectively. Of the samples sent for LC-MS/MS (n=28), half had detectable quantities of drug residues. The most prevalent drugs detected by LC-MS/MS were ceftiofur (39.2%; mean ± SE concentration=0.151 ± 0.042 μg/mL), penicillin G (14.2%; mean ± SE concentration=0.008 ± 0.001 µg/mL), and ampicillin (7.1%; mean ± SE concentration=0.472 ± 0.43 µg/mL). In addition, one sample had detectable concentrations of oxytetracycline and one sample had detectable concentrations of sulfadimethoxine. These results provide insight on drug residues present in waste milk from select farm in upstate New York, and additionally indicate the need for additional studies targeting on-farm treatments that could degrade drug residues present in waste milk and reduce the potential effects on the biosphere from the disposal and use of waste milk as a feed source. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Coaxial cable sensors and sensing instrument for crack detection in bridge structures--phase I : field qualification/validation planning : final report.

    DOT National Transportation Integrated Search

    2009-11-06

    The objectives of this study are to pre-test analyze a decommissioned RC bridge that is selected in consultation : with New York State Department of Transportation (NYSDOT), and design and plan the field tests of the bridge : for the performance qual...

  11. High resolution resonance ionization imaging detector and method

    DOEpatents

    Winefordner, James D.; Matveev, Oleg I.; Smith, Benjamin W.

    1999-01-01

    A resonance ionization imaging device (RIID) and method for imaging objects using the RIID are provided, the RIID system including a RIID cell containing an ionizable vapor including monoisotopic atoms or molecules, the cell being positioned to intercept scattered radiation of a resonance wavelength .lambda..sub.1 from the object which is to be detected or imaged, a laser source disposed to illuminate the RIID cell with laser radiation having a wavelength .lambda..sub.2 or wavelengths .lambda..sub.2, .lambda..sub.3 selected to ionize atoms in the cell that are in an excited state by virtue of having absorbed the scattered resonance laser radiation, and a luminescent screen at the back surface of the RIID cell which presents an image of the number and position of charged particles present in the RIID cell as a result of the ionization of the excited state atoms. The method of the invention further includes the step of initially illuminating the object to be detected or imaged with a laser having a wavelength selected such that the object will scatter laser radiation having the resonance wavelength .lambda..sub.1.

  12. A simple fluorescent probe for the fast sequential detection of copper and biothiols based on a benzothiazole derivative

    NASA Astrophysics Data System (ADS)

    Shen, Youming; Zhang, Xiangyang; Zhang, Chunxiang; Zhang, Youyu; Jin, Junling; Li, Haitao

    2018-02-01

    A simple benzothiazole fluorescent chemosensor was developed for the fast sequential detection of Cu2 + and biothiols through modulating the excited-state intramolecular proton transfer (ESIPT) process. The compound 1 exhibits highly selective and sensitive fluorescence ;on-off; recognition to Cu2 + with a 1:1 binding stoichiometry by ESIPT hinder. The in situ generated 1-Cu2 + complex can serve as an ;on-off; fluorescent probe for high selectivity toward biothiols via Cu2 + displacement approach, which exerts ESIPT recovery. It is worth pointing out that the 1-Cu2 + complex shows faster for cysteins (within 1 min) than other biothiols such as homocysteine (25 min) and glutathione (25 min). Moreover, the compound 1 displays 160 nm Stoke-shift for reversibly monitoring Cu2 + and biothiols. In addition, the probe is successfully used for fluorescent cellular imaging. This strategy via modulation the ESIPT state has been used for determination of Cu2 + and Cys with satisfactory results, which further demonstrates its value of practical applications.

  13. A novel pixellated solid-state photon detector for enhancing the Everhart-Thornley detector.

    PubMed

    Chuah, Joon Huang; Holburn, David

    2013-06-01

    This article presents a pixellated solid-state photon detector designed specifically to improve certain aspects of the existing Everhart-Thornley detector. The photon detector was constructed and fabricated in an Austriamicrosystems 0.35 µm complementary metal-oxide-semiconductor process technology. This integrated circuit consists of an array of high-responsivity photodiodes coupled to corresponding low-noise transimpedance amplifiers, a selector-combiner circuit and a variable-gain postamplifier. Simulated and experimental results show that the photon detector can achieve a maximum transimpedance gain of 170 dBΩ and minimum bandwidth of 3.6 MHz. It is able to detect signals with optical power as low as 10 nW and produces a minimum signal-to-noise ratio (SNR) of 24 dB regardless of gain configuration. The detector has been proven to be able to effectively select and combine signals from different pixels. The key advantages of this detector are smaller dimensions, higher cost effectiveness, lower voltage and power requirements and better integration. The photon detector supports pixel-selection configurability which may improve overall SNR and also potentially generate images for different analyses. This work has contributed to the future research of system-level integration of a pixellated solid-state detector for secondary electron detection in the scanning electron microscope. Copyright © 2013 Wiley Periodicals, Inc.

  14. ADVANCED TOOLS FOR ASSESSING SELECTED ...

    EPA Pesticide Factsheets

    The purpose of this poster is to present the application and assessment of advanced technologies in a real-world environment - wastewater effluent and source waters - for detecting six drugs (azithromycin, fluoxetine, omeprazole, levothyroxine, methamphetamine, and methylenedioxymethamphetamine). The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various research projects being performed in support of this Task and more in-depth coverage of each project. Briefly, each project's objective is stated below.Subtask 1: To integrate state-of-the-art technologies (polar organic chemical integrative samplers, advanced solid-phase extraction methodologies with liquid chromatography/electrospray/mass spectrometry) and apply them to studying the sources and fate of a select list of PPCPs. Application and improvement of analytical methodologies that can detect non-volatile, polar, water-soluble pharmaceuticals in source waters at levels that could be environmentally significant (at concentrations less than parts per billion, ppb). IAG with USGS ends in FY05. APM 20 due in FY05.Subtask 2: Coordination of interagency research and public outreach activities for PPCPs. Participate on NSTC Health and Environment subcommittee working group on PPCPs. Web site maintenance and expansion, invited technica

  15. Detection of some volatile degradation products released during photoexposition of ranitidine in a solid state.

    PubMed

    Jamrógiewicz, Marzena; Wielgomas, Bartosz

    2013-03-25

    Ranitidine (RAN) is on top of the list of prescribed drugs, due to its popularity as a selective H2-receptor antagonist, which efficiently decreases the amount of acid produced in the stomach. RAN is not stable both in a solid state and in a solution, which creates manufacturing problems, requires appropriate storage conditions, and results in a short drug shelf-life. The aim of this work was to study the emission of volatile degradation products generated during photoexposition of ranitidine hydrochloride in a solid state. Significant changes in volatile profile of irradiated RAN were detected using HS-SPME-GC-MS. Sixteen major peaks were noticed on the chromatograms of irradiated ranitidine and the structures of some compounds were elucidated, while the presence of acetaldoxime, thiazole, dimethylformamide, dimethylacetamide and 5-methylfurfural was confirmed by means of the analysis of the authentic standards. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Multi-Target State Extraction for the SMC-PHD Filter

    PubMed Central

    Si, Weijian; Wang, Liwei; Qu, Zhiyu

    2016-01-01

    The sequential Monte Carlo probability hypothesis density (SMC-PHD) filter has been demonstrated to be a favorable method for multi-target tracking. However, the time-varying target states need to be extracted from the particle approximation of the posterior PHD, which is difficult to implement due to the unknown relations between the large amount of particles and the PHD peaks representing potential target locations. To address this problem, a novel multi-target state extraction algorithm is proposed in this paper. By exploiting the information of measurements and particle likelihoods in the filtering stage, we propose a validation mechanism which aims at selecting effective measurements and particles corresponding to detected targets. Subsequently, the state estimates of the detected and undetected targets are performed separately: the former are obtained from the particle clusters directed by effective measurements, while the latter are obtained from the particles corresponding to undetected targets via clustering method. Simulation results demonstrate that the proposed method yields better estimation accuracy and reliability compared to existing methods. PMID:27322274

  17. Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states.

    PubMed

    Konstantatos, Gerasimos; Levina, Larissa; Fischer, Armin; Sargent, Edward H

    2008-05-01

    Photoconductive photodetectors fabricated using simple solution-processing have recently been shown to exhibit high gains (>1000) and outstanding sensitivities ( D* > 10(13) Jones). One ostensible disadvantage of exploiting photoconductive gain is that the temporal response is limited by the release of carriers from trap states. Here we show that it is possible to introduce specific chemical species onto the surfaces of colloidal quantum dots to produce only a single, desired trap state having a carefully selected lifetime. In this way we demonstrate a device that exhibits an attractive photoconductive gain (>10) combined with a response time ( approximately 25 ms) useful in imaging. We achieve this by preserving a single surface species, lead sulfite, while eliminating lead sulfate and lead carboxylate. In doing so we preserve the outstanding sensitivity of these devices, achieving a specific detectivity of 10(12) Jones in the visible, while generating a temporal response suited to imaging applications.

  18. Luminescent Li-based metal-organic framework tailored for the selective detection of explosive nitroaromatic compounds: direct observation of interaction sites.

    PubMed

    Kim, Tae Kyung; Lee, Jae Hwa; Moon, Dohyun; Moon, Hoi Ri

    2013-01-18

    A luminescent lithium metal-organic framework (MOF) is constructed from the solvothermal reaction of Li(+) and a well-designed organic ligand, bis(4-carboxyphenyl)-N-methylamine (H(2)CPMA). A Li-based MOF can detect an explosive aromatic compound containing nitro groups as an explosophore, by showing a dramatic color change with concurrent luminescence quenching in the solid state. The detection sites are proven directly through single-crystal-to-single-crystal transformations, which show strong interactions between the aromatic rings of the electron-rich CPMA(2-) molecules and the electron-deficient nitrobenzene.

  19. Economic Outcomes among Latino Migrants to Spain and the United States: Differences by Source Region and Legal Status

    PubMed Central

    Connor, Phillip; Massey, Douglas S.

    2011-01-01

    Using representative national surveys, this paper compares economic outcomes among Latin American migrants to Spain and the United States in the first cross-national comparison using quantitative data. Considering the geographic location and social proximity of each country with respect to Latin America, we detect a critical selection effect whereby the majority of Latin American migrants to Spain originate in South America from middle class backgrounds, whereas most migrants to the United States are Central Americans of lower class origins. This selection effect accounts for cross-national differences in the probability of employment, occupational attainment, and wages earned. Despite differences in the origins and characteristics of Latino immigrants to each country, demographic and human and social capital factors appear to operate similarly in both places; and when models are estimated separately by legal status, we find that effects are more accentuated for undocumented compared with documented migrants, especially in the United States. PMID:21776179

  20. Evaluation of uranium transitions for isotopically-selective laser induced fluorescence with diode lasers (technical report for ST064)

    NASA Astrophysics Data System (ADS)

    Cannon, B. D.

    1993-10-01

    Isotopically-selective excitation of uranium atoms by diode lasers can be the basis for a portable instrument to perform uranium isotopic assays in the field. Such an instrument would improve the ability of on-site inspections to detect and deter nuclear proliferation. Published and unpublished spectroscopic data on atomic uranium were examined to identify candidate transitions for isotopically-selective laser excitation with diode lasers. Eleven candidate transitions were identified and evaluated for their potential usefulness for a portable uranium assay instrument. Eight of these transitions are suitable for laser induced fluorescence using different excitation and detection wavelengths, which will improve sensitivity and elemental selectivity. Data sheets on the 25 uranium transitions in the wavelength range 629 nm to 1,000 nm that originate in the ground or first excited states of neutral atomic uranium are included. Each data sheet provides the wavelength, upper and lower energy levels, angular momentum quantum numbers, U-235 isotope shift (relative to U-238, and high-resolution spectra of weapons-grade uranium (93% U-235 and 7% U-238).

  1. Microfluidic systems with ion-selective membranes.

    PubMed

    Slouka, Zdenek; Senapati, Satyajyoti; Chang, Hsueh-Chia

    2014-01-01

    When integrated into microfluidic chips, ion-selective nanoporous polymer and solid-state membranes can be used for on-chip pumping, pH actuation, analyte concentration, molecular separation, reactive mixing, and molecular sensing. They offer numerous functionalities and are hence superior to paper-based devices for point-of-care biochips, with only slightly more investment in fabrication and material costs required. In this review, we first discuss the fundamentals of several nonequilibrium ion current phenomena associated with ion-selective membranes, many of them revealed by studies with fabricated single nanochannels/nanopores. We then focus on how the plethora of phenomena has been applied for transport, separation, concentration, and detection of biomolecules on biochips.

  2. Microfluidic Systems with Ion-Selective Membranes

    NASA Astrophysics Data System (ADS)

    Slouka, Zdenek; Senapati, Satyajyoti; Chang, Hsueh-Chia

    2014-06-01

    When integrated into microfluidic chips, ion-selective nanoporous polymer and solid-state membranes can be used for on-chip pumping, pH actuation, analyte concentration, molecular separation, reactive mixing, and molecular sensing. They offer numerous functionalities and are hence superior to paper-based devices for point-of-care biochips, with only slightly more investment in fabrication and material costs required. In this review, we first discuss the fundamentals of several nonequilibrium ion current phenomena associated with ion-selective membranes, many of them revealed by studies with fabricated single nanochannels/nanopores. We then focus on how the plethora of phenomena has been applied for transport, separation, concentration, and detection of biomolecules on biochips.

  3. Direct evidence of ionic fluxes across ion-selective membranes: a scanning electrochemical microscopic and potentiometric study.

    PubMed

    Gyurcsányi, R E; Pergel, E; Nagy, R; Kapui, I; Lan, B T; Tóth, K; Bitter, I; Lindner, E

    2001-05-01

    Scanning electrochemical microscopy (SECM) supplemented with potentiometric measurements was used to follow the time-dependent buildup of a steady-state diffusion layer at the aqueous-phase boundary of lead ion-selective electrodes (ISEs). Differential pulse voltammetry is adapted to SECM for probing the local concentration profiles at the sample side of solvent polymeric membranes. Major factors affecting the membrane transport-related surface concentrations were identified from SECM data and the potentiometric transients obtained under different experimental conditions (inner filling solution composition, membrane thickness, surface pretreatment). The amperometrically determined surface concentrations correlated well with the lower detection limits of the lead ion-selective electrodes.

  4. Orthoclinostatic test as one of the methods for evaluating the human functional state

    NASA Technical Reports Server (NTRS)

    Doskin, V. A.; Gissen, L. D.; Bomshteyn, O. Z.; Merkin, E. N.; Sarychev, S. B.

    1980-01-01

    The possible use of different methods to evaluate the autonomic regulation in hygienic studies were examined. The simplest and most objective tests were selected. It is shown that the use of the optimized standards not only makes it possible to detect earlier unfavorables shifts, but also permits a quantitative characterization of the degree of impairment in the state of the organism. Precise interpretation of the observed shifts is possible. Results indicate that the standards can serve as one of the criteria for evaluating the state and can be widely used in hygienic practice.

  5. Faint Debris Detection by Particle Based Track-Before-Detect Method

    NASA Astrophysics Data System (ADS)

    Uetsuhara, M.; Ikoma, N.

    2014-09-01

    This study proposes a particle method to detect faint debris, which is hardly seen in single frame, from an image sequence based on the concept of track-before-detect (TBD). The most widely used detection method is detect-before-track (DBT), which firstly detects signals of targets from single frame by distinguishing difference of intensity between foreground and background then associate the signals for each target between frames. DBT is capable of tracking bright targets but limited. DBT is necessary to consider presence of false signals and is difficult to recover from false association. On the other hand, TBD methods try to track targets without explicitly detecting the signals followed by evaluation of goodness of each track and obtaining detection results. TBD has an advantage over DBT in detecting weak signals around background level in single frame. However, conventional TBD methods for debris detection apply brute-force search over candidate tracks then manually select true one from the candidates. To reduce those significant drawbacks of brute-force search and not-fully automated process, this study proposes a faint debris detection algorithm by a particle based TBD method consisting of sequential update of target state and heuristic search of initial state. The state consists of position, velocity direction and magnitude, and size of debris over the image at a single frame. The sequential update process is implemented by a particle filter (PF). PF is an optimal filtering technique that requires initial distribution of target state as a prior knowledge. An evolutional algorithm (EA) is utilized to search the initial distribution. The EA iteratively applies propagation and likelihood evaluation of particles for the same image sequences and resulting set of particles is used as an initial distribution of PF. This paper describes the algorithm of the proposed faint debris detection method. The algorithm demonstrates performance on image sequences acquired during observation campaigns dedicated to GEO breakup fragments, which would contain a sufficient number of faint debris images. The results indicate the proposed method is capable of tracking faint debris with moderate computational costs at operational level.

  6. Photooxidation of 3-substituted pyrroles:  a postcolumn reaction detection system for singlet molecular oxygen in HPLC.

    PubMed

    Denham, K; Milofsky, R E

    1998-10-01

    A postcolumn photochemical reaction detection scheme, based on the reaction of 3-substituted pyrroles with singlet molecular oxygen ((1)O(2)), has been developed. The method is selective and sensitive for the determination of a class of organic compounds called (1)O(2)-sensitizers and is readily coupled to HPLC. Following separation by HPLC, analytes ((1)O(2)-sensitizers) are excited by a Hg pen-ray lamp. Analytes that are efficient (1)O(2)-sensitizers promote ground-state O(2) ((3)Σ(g)(-)) to an excited state ((1)Σ(g)(+) or (1)Δ(g)), which reacts rapidly with tert-butyl-3,4,5-trimethylpyrrolecarboxylate (BTMPC) or N-benzyl-3-methoxypyrrole-2-tert-carboxylate (BMPC), which is added to the mobile phase. Detection is based on the loss of pyrrole (BTMPC or BMPC). The reaction is catalytic in nature since one analyte molecule may absorb light many times, producing large amounts of (1)O(2). Detection limits for several (1)O(2)-sensitizers were improved by 1-2 orders of magnitude over optimized UV-absorbance detection. This paper discusses the optimization of the reaction conditions for this photochemical reaction detection scheme and its application to the detection of PCBs, nitrogen heterocycles, nitro and chloro aromatics, and other substituted aromatic compounds.

  7. Self-locked aptamer probe mediated cascade amplification strategy for highly sensitive and selective detection of protein and small molecule.

    PubMed

    Li, Wei; Jiang, Wei; Wang, Lei

    2016-10-12

    In this work, a novel self-locked aptamer probe mediated cascade amplification strategy has been constructed for highly sensitive and specific detection of protein. First, the self-locked aptamer probe was designed with three functions: one was specific molecular recognition attributed to the aptamer sequence, the second was signal transduction owing to the transduction sequence, and the third was self-locking through the hybridization of the transduction sequence and part of the aptamer sequence. Then, the aptamer sequence specific recognized the target and folded into a three-way helix junction, leading to the release of the transduction sequence. Next, the 3'-end of this three-way junction acted as primer to trigger the strand displacement amplification (SDA), yielding a large amount of primers. Finally, the primers initiated the dual-exponential rolling circle amplification (DE-RCA) and generated numerous G-quadruples sequences. By inserting the fluorescent dye N-methyl mesoporphyrin IX (NMM), enhanced fluorescence signal was achieved. In this strategy, the self-locked aptamer probe was more stable to reduce the interference signals generated by the uncontrollable folding in unbounded state. Through the cascade amplification of SDA and DE-RCA, the sensitivity was further improved with a detection limit of 3.8 × 10(-16) mol/L for protein detection. Furthermore, by changing the aptamer sequence of the probe, sensitive and selective detection of adenosine has been also achieved, suggesting that the proposed strategy has good versatility and can be widely used in sensitive and selective detection of biomolecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations.

    PubMed

    Lin, Yao-Cheng; Boone, Morgane; Meuris, Leander; Lemmens, Irma; Van Roy, Nadine; Soete, Arne; Reumers, Joke; Moisse, Matthieu; Plaisance, Stéphane; Drmanac, Radoje; Chen, Jason; Speleman, Frank; Lambrechts, Diether; Van de Peer, Yves; Tavernier, Jan; Callewaert, Nico

    2014-09-03

    The HEK293 human cell lineage is widely used in cell biology and biotechnology. Here we use whole-genome resequencing of six 293 cell lines to study the dynamics of this aneuploid genome in response to the manipulations used to generate common 293 cell derivatives, such as transformation and stable clone generation (293T); suspension growth adaptation (293S); and cytotoxic lectin selection (293SG). Remarkably, we observe that copy number alteration detection could identify the genomic region that enabled cell survival under selective conditions (i.c. ricin selection). Furthermore, we present methods to detect human/vector genome breakpoints and a user-friendly visualization tool for the 293 genome data. We also establish that the genome structure composition is in steady state for most of these cell lines when standard cell culturing conditions are used. This resource enables novel and more informed studies with 293 cells, and we will distribute the sequenced cell lines to this effect.

  9. Highly selective detection of individual nuclear spins with rotary echo on an electron spin probe

    DOE PAGES

    Mkhitaryan, V. V.; Jelezko, F.; Dobrovitski, V. V.

    2015-10-26

    We consider an electronic spin, such as a nitrogen-vacancy center in diamond, weakly coupled to a large number of nuclear spins, and subjected to the Rabi driving with a periodically alternating phase. We show that by switching the driving phase synchronously with the precession of a given nuclear spin, the interaction to this spin is selectively enhanced, while the rest of the bath remains decoupled. The enhancement is of resonant character. The key feature of the suggested scheme is that the width of the resonance is adjustable, and can be greatly decreased by increasing the driving strength. Thus, the resonancemore » can be significantly narrowed, by a factor of 10–100 in comparison with the existing detection methods. Significant improvement in selectivity is explained analytically and confirmed by direct numerical many-spin simulations. As a result, the method can be applied to a wide range of solid-state systems.« less

  10. Functionalized Gold Nanoparticles for the Detection of C-Reactive Protein

    PubMed Central

    António, Maria

    2018-01-01

    C-reactive protein (CRP) is a very important biomarker of infection and inflammation for a number of diseases. Routine CRP measurements with high sensitivity and reliability are highly relevant to the assessment of states of inflammation and the efficacy of treatment intervention, and require the development of very sensitive, selective, fast, robust and reproducible assays. Gold nanoparticles (Au NPs) are distinguished for their unique electrical and optical properties and the ability to conjugate with biomolecules. Au NP-based probes have attracted considerable attention in the last decade in the analysis of biological samples due to their simplicity, high sensitivity and selectivity. Thus, this article aims to be a critical and constructive analysis of the literature of the last three years regarding the advances made in the development of bioanalytical assays based on gold nanoparticles for the in vitro detection and quantification of C-reactive protein from biological samples. Current methods for Au NP synthesis and the strategies for surface modification aiming at selectivity towards CRP are highlighted. PMID:29597295

  11. Breast Self Examination Practice among Female Students of Tertiary Institutions

    ERIC Educational Resources Information Center

    Agbonifoh, Julia Adesua

    2016-01-01

    Against the background of the dangers posed by breast cancer world-wide, and the importance of its early detection and therefore breast self examination (BSE), this study investigated the practice of BSE among female students in tertiary institutions in Edo state. A sample of 723 participants selected through a combination of multi-stage,…

  12. Transient Distraction and Attentional Control during a Sustained Selective Attention Task.

    PubMed

    Demeter, Elise; Woldorff, Marty G

    2016-07-01

    Distracting stimuli in the environment can pull our attention away from our goal-directed tasks. fMRI studies have implicated regions in right frontal cortex as being particularly important for processing distractors [e.g., de Fockert, J. W., & Theeuwes, J. Role of frontal cortex in attentional capture by singleton distractors. Brain and Cognition, 80, 367-373, 2012; Demeter, E., Hernandez-Garcia, L., Sarter, M., & Lustig, C. Challenges to attention: A continuous arterial spin labeling (ASL) study of the effects of distraction on sustained attention. Neuroimage, 54, 1518-1529, 2011]. Less is known, however, about the timing and sequence of how right frontal or other brain regions respond selectively to distractors and how distractors impinge upon the cascade of processes related to detecting and processing behaviorally relevant target stimuli. Here we used EEG and ERPs to investigate the neural consequences of a perceptually salient but task-irrelevant distractor on the detection of rare target stimuli embedded in a rapid, serial visual presentation (RSVP) stream. We found that distractors that occur during the presentation of a target interfere behaviorally with detection of those targets, reflected by reduced detection rates, and that these missed targets show a reduced amplitude of the long-latency, detection-related P3 component. We also found that distractors elicited a right-lateralized frontal negativity beginning at 100 msec, whose amplitude negatively correlated across participants with their distraction-related behavioral impairment. Finally, we also quantified the instantaneous amplitude of the steady-state visual evoked potentials elicited by the RSVP stream and found that the occurrence of a distractor resulted in a transient amplitude decrement of the steady-state visual evoked potential, presumably reflecting the pull of attention away from the RSVP stream when distracting stimuli occur in the environment.

  13. Self-organizing map classifier for stressed speech recognition

    NASA Astrophysics Data System (ADS)

    Partila, Pavol; Tovarek, Jaromir; Voznak, Miroslav

    2016-05-01

    This paper presents a method for detecting speech under stress using Self-Organizing Maps. Most people who are exposed to stressful situations can not adequately respond to stimuli. Army, police, and fire department occupy the largest part of the environment that are typical of an increased number of stressful situations. The role of men in action is controlled by the control center. Control commands should be adapted to the psychological state of a man in action. It is known that the psychological changes of the human body are also reflected physiologically, which consequently means the stress effected speech. Therefore, it is clear that the speech stress recognizing system is required in the security forces. One of the possible classifiers, which are popular for its flexibility, is a self-organizing map. It is one type of the artificial neural networks. Flexibility means independence classifier on the character of the input data. This feature is suitable for speech processing. Human Stress can be seen as a kind of emotional state. Mel-frequency cepstral coefficients, LPC coefficients, and prosody features were selected for input data. These coefficients were selected for their sensitivity to emotional changes. The calculation of the parameters was performed on speech recordings, which can be divided into two classes, namely the stress state recordings and normal state recordings. The benefit of the experiment is a method using SOM classifier for stress speech detection. Results showed the advantage of this method, which is input data flexibility.

  14. Review: Microbial Analysis in Dielectrophoretic Microfluidic Systems

    PubMed Central

    Fernandez, Renny E.; Rohani, Ali; Farmehini, Vahid; Swami, Nathan S.

    2017-01-01

    Infections caused by various known and emerging pathogenic microorganisms, including antibiotic-resistant strains, are a major threat to global health and well-being. This highlights the urgent need for detection systems for microbial identification, quantification and characterization towards assessing infections, prescribing therapies and understanding the dynamic cellular modifications. Current state-of-the-art microbial detection systems exhibit a trade-off between sensitivity and assay time, which could be alleviated by selective and label-free microbial capture onto the sensor surface from dilute samples. AC electrokinetic methods, such as dielectrophoresis, enable frequency-selective capture of viable microbial cells and spores due to polarization based on their distinguishing size, shape and sub-cellular compositional characteristics, for downstream coupling to various detection modalities. Following elucidation of the polarization mechanisms that distinguish bacterial cells from each other, as well as from mammalian cells, this review compares the microfluidic platforms for dielectrophoretic manipulation of microbials and their coupling to various detection modalities, including immuno-capture, impedance measurement, Raman spectroscopy and nucleic acid amplification methods, as well as for phenotypic assessment of microbial viability and antibiotic susceptibility. Based on the urgent need within point-of-care diagnostics towards reducing assay times and enhancing capture of the target organism, as well as the emerging interest in isolating intact microbials based on their phenotype and subcellular features, we envision widespread adoption of these label-free and selective electrokinetic techniques. PMID:28372723

  15. Driver fatigue detection through multiple entropy fusion analysis in an EEG-based system.

    PubMed

    Min, Jianliang; Wang, Ping; Hu, Jianfeng

    2017-01-01

    Driver fatigue is an important contributor to road accidents, and fatigue detection has major implications for transportation safety. The aim of this research is to analyze the multiple entropy fusion method and evaluate several channel regions to effectively detect a driver's fatigue state based on electroencephalogram (EEG) records. First, we fused multiple entropies, i.e., spectral entropy, approximate entropy, sample entropy and fuzzy entropy, as features compared with autoregressive (AR) modeling by four classifiers. Second, we captured four significant channel regions according to weight-based electrodes via a simplified channel selection method. Finally, the evaluation model for detecting driver fatigue was established with four classifiers based on the EEG data from four channel regions. Twelve healthy subjects performed continuous simulated driving for 1-2 hours with EEG monitoring on a static simulator. The leave-one-out cross-validation approach obtained an accuracy of 98.3%, a sensitivity of 98.3% and a specificity of 98.2%. The experimental results verified the effectiveness of the proposed method, indicating that the multiple entropy fusion features are significant factors for inferring the fatigue state of a driver.

  16. Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores

    NASA Astrophysics Data System (ADS)

    Bell, Nicholas A. W.; Keyser, Ulrich F.

    2016-07-01

    The simultaneous detection of a large number of different analytes is important in bionanotechnology research and in diagnostic applications. Nanopore sensing is an attractive method in this regard as the approach can be integrated into small, portable device architectures, and there is significant potential for detecting multiple sub-populations in a sample. Here, we show that highly multiplexed sensing of single molecules can be achieved with solid-state nanopores by using digitally encoded DNA nanostructures. Based on the principles of DNA origami, we designed a library of DNA nanostructures in which each member contains a unique barcode; each bit in the barcode is signalled by the presence or absence of multiple DNA dumbbell hairpins. We show that a 3-bit barcode can be assigned with 94% accuracy by electrophoretically driving the DNA structures through a solid-state nanopore. Select members of the library were then functionalized to detect a single, specific antibody through antigen presentation at designed positions on the DNA. This allows us to simultaneously detect four different antibodies of the same isotype at nanomolar concentration levels.

  17. Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores.

    PubMed

    Bell, Nicholas A W; Keyser, Ulrich F

    2016-07-01

    The simultaneous detection of a large number of different analytes is important in bionanotechnology research and in diagnostic applications. Nanopore sensing is an attractive method in this regard as the approach can be integrated into small, portable device architectures, and there is significant potential for detecting multiple sub-populations in a sample. Here, we show that highly multiplexed sensing of single molecules can be achieved with solid-state nanopores by using digitally encoded DNA nanostructures. Based on the principles of DNA origami, we designed a library of DNA nanostructures in which each member contains a unique barcode; each bit in the barcode is signalled by the presence or absence of multiple DNA dumbbell hairpins. We show that a 3-bit barcode can be assigned with 94% accuracy by electrophoretically driving the DNA structures through a solid-state nanopore. Select members of the library were then functionalized to detect a single, specific antibody through antigen presentation at designed positions on the DNA. This allows us to simultaneously detect four different antibodies of the same isotype at nanomolar concentration levels.

  18. Optimal electrode selection for multi-channel electroencephalogram based detection of auditory steady-state responses.

    PubMed

    Van Dun, Bram; Wouters, Jan; Moonen, Marc

    2009-07-01

    Auditory steady-state responses (ASSRs) are used for hearing threshold estimation at audiometric frequencies. Hearing impaired newborns, in particular, benefit from this technique as it allows for a more precise diagnosis than traditional techniques, and a hearing aid can be better fitted at an early age. However, measurement duration of current single-channel techniques is still too long for clinical widespread use. This paper evaluates the practical performance of a multi-channel electroencephalogram (EEG) processing strategy based on a detection theory approach. A minimum electrode set is determined for ASSRs with frequencies between 80 and 110 Hz using eight-channel EEG measurements of ten normal-hearing adults. This set provides a near-optimal hearing threshold estimate for all subjects and improves response detection significantly for EEG data with numerous artifacts. Multi-channel processing does not significantly improve response detection for EEG data with few artifacts. In this case, best response detection is obtained when noise-weighted averaging is applied on single-channel data. The same test setup (eight channels, ten normal-hearing subjects) is also used to determine a minimum electrode setup for 10-Hz ASSRs. This configuration allows to record near-optimal signal-to-noise ratios for 80% of subjects.

  19. Detection of Shielded Nuclear Material in a Cargo Container

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. L. Jones; D. R. Norman; K. J. Haskell

    The Idaho National Laboratory, along with Los Alamos National Laboratory and the Idaho State University’s Idaho Accelerator Center, are developing electron accelerator-based, photonuclear inspection technologies for the detection of shielded nuclear material within air-, rail-, and especially, maritime-cargo transportation containers. This paper describes a developing prototypical cargo container inspection system utilizing the Pulsed Photonuclear Assessment (PPA) technology, incorporates interchangeable, well-defined, contraband shielding structures (i.e., "calibration" pallets) providing realistic detection data for induced radiation signatures from smuggled nuclear material, and provides various shielded nuclear material detection results. Using a 4.8-kg quantity of depleted uranium, neutron and gamma-ray detection responses are presentedmore » for well-defined shielded and unshielded configurations evaluated in a selected cargo container inspection configuration. © 2001 Elsevier Science. All rights reserved« less

  20. Sensor failure detection for jet engines

    NASA Technical Reports Server (NTRS)

    Beattie, E. C.; Laprad, R. F.; Akhter, M. M.; Rock, S. M.

    1983-01-01

    Revisions to the advanced sensor failure detection, isolation, and accommodation (DIA) algorithm, developed under the sensor failure detection system program were studied to eliminate the steady state errors due to estimation filter biases. Three algorithm revisions were formulated and one revision for detailed evaluation was chosen. The selected version modifies the DIA algorithm to feedback the actual sensor outputs to the integral portion of the control for the nofailure case. In case of a failure, the estimates of the failed sensor output is fed back to the integral portion. The estimator outputs are fed back to the linear regulator portion of the control all the time. The revised algorithm is evaluated and compared to the baseline algorithm developed previously.

  1. Nanoscale potentiometry.

    PubMed

    Bakker, Eric; Pretsch, Ernö

    2008-01-01

    Potentiometric sensors share unique characteristics that set them apart from other electrochemical sensors. Potentiometric nanoelectrodes have been reported and successfully used for many decades, and we review these developments. Current research chiefly focuses on nanoscale films at the outer or the inner side of the membrane, with outer layers for increasing biocompatibility, expanding the sensor response, or improving the limit of detection (LOD). Inner layers are mainly used for stabilizing the response and eliminating inner aqueous contacts or undesired nanoscale layers of water. We also discuss the ultimate detectability of ions with such sensors and the power of coupling the ultra-low LODs of ion-selective electrodes with nanoparticle labels to give attractive bioassays that can compete with state-of-the-art electrochemical detection.

  2. Electrocardiologic and related methods of non-invasive detection and risk stratification in myocardial ischemia: state of the art and perspectives

    PubMed Central

    Huebner, Thomas; Goernig, Matthias; Schuepbach, Michael; Sanz, Ernst; Pilgram, Roland; Seeck, Andrea; Voss, Andreas

    2010-01-01

    Background: Electrocardiographic methods still provide the bulk of cardiovascular diagnostics. Cardiac ischemia is associated with typical alterations in cardiac biosignals that have to be measured, analyzed by mathematical algorithms and allegorized for further clinical diagnostics. The fast growing fields of biomedical engineering and applied sciences are intensely focused on generating new approaches to cardiac biosignal analysis for diagnosis and risk stratification in myocardial ischemia. Objectives: To present and review the state of the art in and new approaches to electrocardiologic methods for non-invasive detection and risk stratification in coronary artery disease (CAD) and myocardial ischemia; secondarily, to explore the future perspectives of these methods. Methods: In follow-up to the Expert Discussion at the 2008 Workshop on "Biosignal Analysis" of the German Society of Biomedical Engineering in Potsdam, Germany, we comprehensively searched the pertinent literature and databases and compiled the results into this review. Then, we categorized the state-of-the-art methods and selected new approaches based on their applications in detection and risk stratification of myocardial ischemia. Finally, we compared the pros and cons of the methods and explored their future potentials for cardiology. Results: Resting ECG, particularly suited for detecting ST-elevation myocardial infarctions, and exercise ECG, for the diagnosis of stable CAD, are state-of-the-art methods. New exercise-free methods for detecting stable CAD include cardiogoniometry (CGM); methods for detecting acute coronary syndrome without ST elevation are Body Surface Potential Mapping, functional imaging and CGM. Heart rate variability and blood pressure variability analyses, microvolt T-wave alternans and signal-averaged ECG mainly serve in detecting and stratifying the risk for lethal arrythmias in patients with myocardial ischemia or previous myocardial infarctions. Telemedicine and ambient-assisted living support the electrocardiological monitoring of at-risk patients. Conclusions: There are many promising methods for the exercise-free, non-invasive detection of CAD and myocardial ischemia in the stable and acute phases. In the coming years, these new methods will help enhance state-of-the-art procedures in routine diagnostics. The future can expect that equally novel methods for risk stratification and telemedicine will transition into clinical routine. PMID:21063467

  3. Two Dimensional Host-Guest Metal-Organic Framework Sensor with High Selectivity and Sensitivity to Picric Acid.

    PubMed

    Bagheri, Minoo; Masoomi, Mohammad Yaser; Morsali, Ali; Schoedel, Alexander

    2016-08-24

    A dye-sensitized metal-organic framework, TMU-5S, was synthesized based on introducing the laser dye Rhodamine B into the porous framework TMU-5. TMU-5S was investigated as a ratiometric fluorescent sensor for the detection of explosive nitro aromatic compounds and showed four times greater selectivity to picric acid than any state-of-the-art luminescent-based sensor. Moreover, it can selectively discriminate picric acid concentrations in the presence of other nitro aromatics and volatile organic compounds. Our findings indicate that using this sensor in two dimensions leads to a greatly reduced environmental interference response and thus creates exceptional sensitivity toward explosive molecules with a fast response.

  4. Decoy-state quantum key distribution with more than three types of photon intensity pulses

    NASA Astrophysics Data System (ADS)

    Chau, H. F.

    2018-04-01

    The decoy-state method closes source security loopholes in quantum key distribution (QKD) using a laser source. In this method, accurate estimates of the detection rates of vacuum and single-photon events plus the error rate of single-photon events are needed to give a good enough lower bound of the secret key rate. Nonetheless, the current estimation method for these detection and error rates, which uses three types of photon intensities, is accurate up to about 1 % relative error. Here I report an experimentally feasible way that greatly improves these estimates and hence increases the one-way key rate of the BB84 QKD protocol with unbiased bases selection by at least 20% on average in realistic settings. The major tricks are the use of more than three types of photon intensities plus the fact that estimating bounds of the above detection and error rates is numerically stable, although these bounds are related to the inversion of a high condition number matrix.

  5. Probability of detecting atrazine/desethyl-atrazine and elevated concentrations of nitrate in ground water in Colorado

    USGS Publications Warehouse

    Rupert, Michael G.

    2003-01-01

    Draft Federal regulations may require that each State develop a State Pesticide Management Plan for the herbicides atrazine, alachlor, metolachlor, and simazine. Maps were developed that the State of Colorado could use to predict the probability of detecting atrazine and desethyl-atrazine (a breakdown product of atrazine) in ground water in Colorado. These maps can be incorporated into the State Pesticide Management Plan and can help provide a sound hydrogeologic basis for atrazine management in Colorado. Maps showing the probability of detecting elevated nitrite plus nitrate as nitrogen (nitrate) concentrations in ground water in Colorado also were developed because nitrate is a contaminant of concern in many areas of Colorado. Maps showing the probability of detecting atrazine and(or) desethyl-atrazine (atrazine/DEA) at or greater than concentrations of 0.1 microgram per liter and nitrate concentrations in ground water greater than 5 milligrams per liter were developed as follows: (1) Ground-water quality data were overlaid with anthropogenic and hydrogeologic data using a geographic information system to produce a data set in which each well had corresponding data on atrazine use, fertilizer use, geology, hydrogeomorphic regions, land cover, precipitation, soils, and well construction. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Relations were observed between ground-water quality and the percentage of land-cover categories within circular regions (buffers) around wells. Several buffer sizes were evaluated; the buffer size that provided the strongest relation was selected for use in the logistic regression models. (3) Relations between concentrations of atrazine/DEA and nitrate in ground water and atrazine use, fertilizer use, geology, hydrogeomorphic regions, land cover, precipitation, soils, and well-construction data were evaluated, and several preliminary multivariate models with various combinations of independent variables were constructed. (4) The multivariate models that best predicted the presence of atrazine/DEA and elevated concentrations of nitrate in ground water were selected. (5) The accuracy of the multivariate models was confirmed by validating the models with an independent set of ground-water quality data. (6) The multivariate models were entered into a geographic information system and the probability maps were constructed.

  6. The monitoring of pesticides and alkylphenols in selected rivers in the State of Selangor, Malaysia.

    PubMed

    Tan, B L L; Mustafa, A M

    2004-01-01

    Alkylphenols and most pesticides, especially organochlorine pesticides are endocrine-disrupting chemicals and they usually mimic the female hormone, estrogen. Using these chemicals in our environment would eventually lead us to consume them somehow in the food web. Several rivers in the State of Selangor, Malaysia were selected to monitor the level of alkylphenols and pesticides contamination for several months. The compounds were extracted from the water samples using liquid-liquid extraction method with dichloromethane and ethyl acetate as the extracting solvents. The alkylphenols and pesticides were analyzed by selected ion monitoring (SIM) mode using the quadrapole detector in Shimadzu QP-5000 gas chromatograph-mass spectrometer (GCMS). Recovery of most alkylphenols and pesticides were in the range of 50% to 120%. Trace amounts of the compounds were detected in the river water samples, mainly in the range of parts per trillion. This technique of monitoring the levels of endocrine-disruptors in river water is consistent and cost effective.

  7. A colorimetric turn-on optical chemosensor for Cu2+ ions and its application as solid state sensor

    NASA Astrophysics Data System (ADS)

    Pannipara, Mehboobali; Al-Sehemi, Abdullah G.; Assiri, Mohammed; Kalam, Abul

    2018-05-01

    We report a novel coumarin based optical chemosensor (Probe 1) for the selective and sensitive detection of Cu2+ ions in aqueous medium. The addition of Cu2+ ions to Probe 1 shows distinct color change from light yellow to pinkish red color under visible light with the sensing limit of 1.54 μM. Moreover, practical utility of Probe 1 as solid state optical sensor (test paper, TLC plates) for sensing Cu2+ has been demonstrated by instantaneous "naked eye" response.

  8. Pesticides detected in surface waters and fish of the Red River of the North drainage basin

    USGS Publications Warehouse

    Brigham, Mark E.

    1994-01-01

    Pesticide data have been collected in the Red River Basin by various Federal, State, and local agencies. Tornes and Brigham (1994) recently summarized many of these historical data. This paper summarizes selected data collected as part of the NAWQA program during 1992-93, and briefly compares these data to historical data and to pesticide usage.

  9. Crystallization of Stretched Polyimides: A Structure-Property Study

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A.; Dezern, James F.

    2002-01-01

    A simple rotational isomeric state model was used to detect the degree to which polyimide repeat units might align to give an extended crystal. It was found experimentally that the hallmarks of stretch-crystallization were more likely to occur in materials whose molecules could readily give extended, aligned conformations. A proposed screening criterion was 84% accurate in selecting crystallizing molecules.

  10. QUANTITATION OF PERCHLORATE ION BY ELECTROSPRAY IONIZATION MASS SPECTROMETRY (ESI-MS) USING STABLE ASSOCIATION COMPLEXES WITH ORGANIC CATIONS AND BASES TO ENHANCE SELECTIVITY

    EPA Science Inventory

    Quantitation of trace levels of perchlorate ion in water has become a key issue since this species was discovered in water supplies around the United States. Although ion chromatographic methods presently offer the lowest limit of detection, =40 nm (4ngm1-1), chromatographic ret...

  11. Evaluation of rapid SYS system as screen for Yersinia enterocolitica in the United States.

    PubMed Central

    Mele, L; Nadler, H; Gomez, S

    1987-01-01

    Clinical isolates (n = 150) from stool specimens were selected for evaluation of the Rapid SYS system (Analytab Products, Plainview, N.Y.) as a screening test for Shigella spp., Yersinia enterocolitica, and Salmonella spp. The Gram-Negative Identification Card (Vitek Systems, Inc., Hazelwood, Mo.) was used for identification. Although acceptable performance of the Rapid SYS system was described, the interpretative criteria provided by the vendor for previous studies led to inappropriate screening for Y. enterocolitica, particularly biotype 1. When corrected screening criteria were used for the present study, the sensitivity for the detection of 76 enteric pathogens was 98.7%. Of the 76 pathogens, 1 of 21 Shigella spp. was not detected. However, specificity was only 16.6% when 72 selected nonpathogens frequently encountered in stools were eliminated. Although the Rapid SYS system can identify Shigella spp., Y. enterocolitica, and Salmonella spp., only phenylalanine deaminase-producing and cytochrome oxidase-producing organisms can be eliminated from additional testing. Therefore, the Rapid SYS system cannot be used as a three-pathogen screen in the United States or in other geographic locales where Y. enterocolitica biotype 1 may be encountered. PMID:3323232

  12. Temperature modulation and quadrature detection for selective titration of two-state exchanging reactants.

    PubMed

    Zrelli, K; Barilero, T; Cavatore, E; Berthoumieux, H; Le Saux, T; Croquette, V; Lemarchand, A; Gosse, C; Jullien, L

    2011-04-01

    Biological samples exhibit huge molecular diversity over large concentration ranges. Titrating a given compound in such mixtures is often difficult, and innovative strategies emphasizing selectivity are thus demanded. To overcome limitations inherent to thermodynamics, we here present a generic technique where discrimination relies on the dynamics of interaction between the target of interest and a probe introduced in excess. Considering an ensemble of two-state exchanging reactants submitted to temperature modulation, we first demonstrate that the amplitude of the out-of-phase concentration oscillations is maximum for every compound involved in a reaction whose equilibrium constant is equal to unity and whose relaxation time is equal to the inverse of the excitation angular frequency. Taking advantage of this feature, we next devise a highly specific detection protocol and validate it using a microfabricated resistive heater and an epifluorescence microscope, as well as labeled oligonucleotides to model species displaying various dynamic properties. As expected, quantification of a sought for strand is obtained even if interfering reagents are present in similar amounts. Moreover, our approach does not require any separation and is compatible with imaging. It could then benefit some of the numerous binding assays performed every day in life sciences.

  13. Joint Dictionary Learning for Multispectral Change Detection.

    PubMed

    Lu, Xiaoqiang; Yuan, Yuan; Zheng, Xiangtao

    2017-04-01

    Change detection is one of the most important applications of remote sensing technology. It is a challenging task due to the obvious variations in the radiometric value of spectral signature and the limited capability of utilizing spectral information. In this paper, an improved sparse coding method for change detection is proposed. The intuition of the proposed method is that unchanged pixels in different images can be well reconstructed by the joint dictionary, which corresponds to knowledge of unchanged pixels, while changed pixels cannot. First, a query image pair is projected onto the joint dictionary to constitute the knowledge of unchanged pixels. Then reconstruction error is obtained to discriminate between the changed and unchanged pixels in the different images. To select the proper thresholds for determining changed regions, an automatic threshold selection strategy is presented by minimizing the reconstruction errors of the changed pixels. Adequate experiments on multispectral data have been tested, and the experimental results compared with the state-of-the-art methods prove the superiority of the proposed method. Contributions of the proposed method can be summarized as follows: 1) joint dictionary learning is proposed to explore the intrinsic information of different images for change detection. In this case, change detection can be transformed as a sparse representation problem. To the authors' knowledge, few publications utilize joint learning dictionary in change detection; 2) an automatic threshold selection strategy is presented, which minimizes the reconstruction errors of the changed pixels without the prior assumption of the spectral signature. As a result, the threshold value provided by the proposed method can adapt to different data due to the characteristic of joint dictionary learning; and 3) the proposed method makes no prior assumption of the modeling and the handling of the spectral signature, which can be adapted to different data.

  14. Feature-selective attention: evidence for a decline in old age.

    PubMed

    Quigley, Cliodhna; Andersen, Søren K; Schulze, Lars; Grunwald, Martin; Müller, Matthias M

    2010-04-19

    Although attention in older adults is an active research area, feature-selective aspects have not yet been explicitly studied. Here we report the results of an exploratory study involving directed changes in feature-selective attention. The stimuli used were two random dot kinematograms (RDKs) of different colours, superimposed and centrally presented. A colour cue with random onset after the beginning of each trial instructed young and older subjects to attend to one of the RDKs and detect short intervals of coherent motion while ignoring analogous motion events in the non-cued RDK. Behavioural data show that older adults could detect motion, but discriminated target from distracter motion less reliably than young adults. The method of frequency tagging allowed us to separate the EEG responses to the attended and ignored stimuli and directly compare steady-state visual evoked potential (SSVEP) amplitudes elicited by each stimulus before and after cue onset. We found that younger adults show a clear attentional enhancement of SSVEP amplitude in the post-cue interval, while older adults' SSVEP responses to attended and ignored stimuli do not differ. Thus, in situations where attentional selection cannot be spatially resolved, older adults show a deficit in selection that is not shared by young adults. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  15. Detection method for dissociation of multiple-charged ions

    DOEpatents

    Smith, Richard D.; Udseth, Harold R.; Rockwood, Alan L.

    1991-01-01

    Dissociations of multiple-charged ions are detected and analyzed by charge-separation tandem mass spectrometry. Analyte molecules are ionized to form multiple-charged parent ions. A particular charge parent ion state is selected in a first-stage mass spectrometer and its mass-to-charge ratio (M/Z) is detected to determine its mass and charge. The selected parent ions are then dissociated, each into a plurality of fragments including a set of daughter ions each having a mass of at least one molecular weight and a charge of at least one. Sets of daughter ions resulting from the dissociation of one parent ion (sibling ions) vary in number but typically include two to four ions, one or more multiply-charged. A second stage mass spectrometer detects mass-to-charge ratio (m/z) of the daughter ions and a temporal or temporo-spatial relationship among them. This relationship is used to correlate the daughter ions to determine which (m/z) ratios belong to a set of sibling ions. Values of mass and charge of each of the sibling ions are determined simultaneously from their respective (m/z) ratios such that the sibling ion charges are integers and sum to the parent ion charge.

  16. Microbial pathogens in source and treated waters from drinking water treatment plants in the United States and implications for human health

    USGS Publications Warehouse

    King, Dawn N.; Donohue, Maura J.; Vesper, Stephen J.; Villegas, Eric N.; Ware, Michael W.; Vogel, Megan E.; Furlong, Edward; Kolpin, Dana W.; Glassmeyer, Susan T.; Pfaller, Stacy

    2016-01-01

    An occurrence survey was conducted on selected pathogens in source and treated drinking water collected from 25 drinking water treatment plants (DWTPs) in the United States. Water samples were analyzed for the protozoa Giardia and Cryptosporidium (EPA Method 1623); the fungi Aspergillus fumigatus, Aspergillus niger and Aspergillus terreus (quantitative PCR [qPCR]); and the bacteria Legionella pneumophila (qPCR), Mycobacterium avium, M. avium subspecies paratuberculosis, and Mycobacterium intracellulare (qPCR and culture). Cryptosporidium and Giardia were detected in 25% and in 46% of the source water samples, respectively (treated waters were not tested). Aspergillus fumigatus was the most commonly detected fungus in source waters (48%) but none of the three fungi were detected in treated water. Legionella pneumophila was detected in 25% of the source water samples but in only 4% of treated water samples. M. avium and M. intracellulare were both detected in 25% of source water, while all three mycobacteria were detected in 36% of treated water samples. Five species of mycobacteria, Mycobacterium mucogenicum, Mycobacterium phocaicum, Mycobacterium triplex, Mycobacterium fortuitum, and Mycobacterium lentiflavum were cultured from treated water samples. Although these DWTPs represent a fraction of those in the U.S., the results suggest that many of these pathogens are widespread in source waters but that treatment is generally effective in reducing them to below detection limits. The one exception is the mycobacteria, which were commonly detected in treated water, even when not detected in source waters.

  17. Cross-shell excitations in Si 31

    DOE PAGES

    Tai, P. -L.; Tabor, S. L.; Lubna, R. S.; ...

    2017-07-28

    The Si-31 nucleus was produced through the O-18(18O, an) fusion-evaporation reaction at E-lab = 24 MeV. Evaporated a particles from the reaction were detected and identified in the Microball detector array for channel selection. Multiple gamma-ray coincidence events were detected in Gammasphere. The energy and angle information for the alpha particles was used to determine the Si-31 recoil kinematics on an event-by-event basis for a more accurate Doppler correction. A total of 22 new states and 52 new gamma transitions were observed, including 14 from states above the neutron separation energy. The positive-parity states predicted by the shell-model calculations inmore » the sd model space agree well with experiment. The negative-parity states were compared with shell-model calculations in the psdpf model space with some variations in the N = 20 shell gap. The best agreement was found with a shell gap intermediate between that originally used for A approximate to 20 nuclei and that previously adapted for P-32,P-34. This variation suggests the need for a more universal cross-shell interaction.« less

  18. Constraining the equation of state of neutron stars from binary mergers.

    PubMed

    Takami, Kentaro; Rezzolla, Luciano; Baiotti, Luca

    2014-08-29

    Determining the equation of state of matter at nuclear density and hence the structure of neutron stars has been a riddle for decades. We show how the imminent detection of gravitational waves from merging neutron star binaries can be used to solve this riddle. Using a large number of accurate numerical-relativity simulations of binaries with nuclear equations of state, we find that the postmerger emission is characterized by two distinct and robust spectral features. While the high-frequency peak has already been associated with the oscillations of the hypermassive neutron star produced by the merger and depends on the equation of state, a new correlation emerges between the low-frequency peak, related to the merger process, and the total compactness of the stars in the binary. More importantly, such a correlation is essentially universal, thus providing a powerful tool to set tight constraints on the equation of state. If the mass of the binary is known from the inspiral signal, the combined use of the two frequency peaks sets four simultaneous constraints to be satisfied. Ideally, even a single detection would be sufficient to select one equation of state over the others. We test our approach with simulated data and verify it works well for all the equations of state considered.

  19. Quantitative PCR: an appropriate tool to detect viable but not culturable Brettanomyces bruxellensis in wine.

    PubMed

    Willenburg, Elize; Divol, Benoit

    2012-11-15

    Quantitative PCR as a tool has been used to detect Brettanomyces bruxellensis directly from wine samples. Accurate and timely detection of this yeast is important to prevent unwanted spoilage of wines and beverages. The aim of this study was to distinguish differences between DNA and mRNA as template for the detection of this yeast. The study was also used to determine if it is possible to accurately detect cells in the viable but not culturable (VBNC) state of B. bruxellensis by qPCR. Several methods including traditional plating, epifluorescence counts and qPCR were used to amplify DNA and mRNA. It was observed that mRNA was a better template for the detection in terms of standard curve analysis and qPCR efficiencies. Various primers previously published were tested for their specificity, qPCR efficiency and accuracy of enumeration. A single primer set was selected which amplified a region of the actin-encoding gene. The detection limit for this assay was 10cellsmL(-1). B. bruxellensis could also be quantified in naturally contaminated wines with this assay. The mRNA gave a better indication of the viability of the cells which compared favourably to fluorescent microscopy and traditional cell counts. The ability of the assay to accurately estimate the number of cells in the VBNC state was also demonstrated. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Sources and preparation of data for assessing trends in concentrations of pesticides in streams of the United States, 1992–2010

    USGS Publications Warehouse

    Martin, Jeffrey D.; Eberle, Michael; Nakagaki, Naomi

    2011-01-01

    This report updates a previously published water-quality dataset of 44 commonly used pesticides and 8 pesticide degradates suitable for a national assessment of trends in pesticide concentrations in streams of the United States. Water-quality samples collected from January 1992 through September 2010 at stream-water sites of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program and the National Stream Quality Accounting Network (NASQAN) were compiled, reviewed, selected, and prepared for trend analysis. The principal steps in data review for trend analysis were to (1) identify analytical schedule, (2) verify sample-level coding, (3) exclude inappropriate samples or results, (4) review pesticide detections per sample, (5) review high pesticide concentrations, and (6) review the spatial and temporal extent of NAWQA pesticide data and selection of analytical methods for trend analysis. The principal steps in data preparation for trend analysis were to (1) select stream-water sites for trend analysis, (2) round concentrations to a consistent level of precision for the concentration range, (3) identify routine reporting levels used to report nondetections unaffected by matrix interference, (4) reassign the concentration value for routine nondetections to the maximum value of the long-term method detection level (maxLT-MDL), (5) adjust concentrations to compensate for temporal changes in bias of recovery of the gas chromatography/mass spectrometry (GCMS) analytical method, and (6) identify samples considered inappropriate for trend analysis. Samples analyzed at the USGS National Water Quality Laboratory (NWQL) by the GCMS analytical method were the most extensive in time and space and, consequently, were selected for trend analysis. Stream-water sites with 3 or more water years of data with six or more samples per year were selected for pesticide trend analysis. The selection criteria described in the report produced a dataset of 21,988 pesticide samples at 212 stream-water sites. Only 21,144 pesticide samples, however, are considered appropriate for trend analysis.

  1. Optically Unraveling the Edge Chirality-Dependent Band Structure and Plasmon Damping in Graphene Edges.

    PubMed

    Duan, Jiahua; Chen, Runkun; Cheng, Yuan; Yang, Tianzhong; Zhai, Feng; Dai, Qing; Chen, Jianing

    2018-05-01

    The nontrivial topological origin and pseudospinorial character of electron wavefunctions make edge states possess unusual electronic properties. Twenty years ago, the tight-binding model calculation predicted that zigzag termination of 2D sheets of carbon atoms have peculiar edge states, which show potential application in spintronics and modern information technologies. Although scanning probe microscopy is employed to capture this phenomenon, the experimental demonstration of its optical response remains challenging. Here, the propagating graphene plasmon provides an edge-selective polaritonic probe to directly detect and control the electronic edge state at ambient condition. Compared with armchair, the edge-band structure in the bandgap gives rise to additional optical absorption and strongly absorbed rim at zigzag edge. Furthermore, the optical conductivity is reconstructed and the anisotropic plasmon damping in graphene systems is revealed. The reported approach paves the way for detecting edge-specific phenomena in other van der Waals materials and topological insulators. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Task 1: Correlation of satellite and ground data in air pollution studies. Task 2: Investigation to relate the chlorophyll and suspended sediment content in the waters of the lower Chesapeake Bay to ERTS-1 imagery. Task 3: The use of ERTS-1 to more fully utilize and apply marine station data to the study of productivity along the Eastern Shelf expanded waters of the United States

    NASA Technical Reports Server (NTRS)

    Copeland, G. E. (Principal Investigator); Bandy, A. R.; Fleischer, P.; Ludwick, J. C. (Principal Investigator); Hanna, W. J.; Gosink, T. A.; Bowker, D. W.; Marshall, H. G. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. Analysis of U-2 imagery of CARETS site indicates smoke plumes can be easily detected. First look at selected ERTS-1 color composites demonstrates plumes from forest fires can be detected.

  3. Immunocytochemical detection of astrocytes in brain slices in combination with Nissl staining.

    PubMed

    Korzhevskii, D E; Otellin, V A

    2005-07-01

    The present study was performed to develop a simple and reliable method for the combined staining of specimens to allow the advantages of immunocytochemical detection of astrocytes and assessment of the functional state of neurons by the Nissl method to be assessed simultaneously. The protocol suggested for processing paraffin sections allows preservation of tissue structure at high quality and allows the selective identification of astrocytes with counterstaining of neurons by the Nissl method. The protocol can be used without modification for processing brain specimens from humans and various mammals--except mice and rabbits.

  4. Trace vapor detection of hydrogen peroxide: An effective approach to identification of improvised explosive devices

    NASA Astrophysics Data System (ADS)

    Xu, Miao

    Vapor detection has been proven as one of the practical, noninvasive methods suitable for explosives detection among current explosive detection technologies. Optical methods (especially colorimetric and fluorescence spectral methods) are low in cost, provide simple instrumentation alignment, while still maintaining high sensitivity and selectivity, these factors combined facilitate broad field applications. Trace vapor detection of hydrogen peroxide (H2O2) represents an effective approach to noninvasive detection of peroxide-based explosives, though development of such a sensor system with high reliability and sufficient sensitivity (reactivity) still remains challenging. Three vapor sensor systems for H2O2 were proposed and developed in this study, which exploited specific chemical reaction towards H2O2 to ensure the selectivity, and materials surface engineering to afford efficient air sampling. The combination of these features enables expedient, cost effective, reliable detection of peroxide explosives. First, an expedient colorimetric sensor for H2O2 vapor was developed, which utilized the specific interaction between Ti(oxo) and H2O2 to offer a yellow color development. The Ti(oxo) salt can be blended into a cellulose microfibril network to produce tunable interface that can react with H2O2. The vapor detection limit can reach 400 ppb. To further improve the detection sensitivity, a naphthalimide based fluorescence turn-on sensor was designed and developed. The sensor mechanism was based on H2O2-mediated oxidation of a boronate fluorophore, which is nonfluorescent in ICT band, but becomes strongly fluorescent upon conversion into the phenol state. The detection limit of this sensory material was improved to be below 10 ppb. However, some technical factors such as sensor concentration, local environment, and excitation intensity were found difficult to control to make the sensor system sufficiently reproducible. To solve the problem, we developed a ratiometric fluorescence sensor, which allows for dual-band emission monitoring and thus enhances the detection reliability. Moreover, the significant spectral overlap between the fluorescence of the pristine sensor and the absorption of the reacted state enables effective Foster Resonance Energy Transfer (FRET). This FRET process can significantly enhance the fluorescence sensing efficiency in comparison to the normal single-band sensor system, for which the sensing efficiency is solely determined by the stoichiometric conversion of sensor molecules.

  5. Implementation of continuous-variable quantum key distribution with discrete modulation

    NASA Astrophysics Data System (ADS)

    Hirano, Takuya; Ichikawa, Tsubasa; Matsubara, Takuto; Ono, Motoharu; Oguri, Yusuke; Namiki, Ryo; Kasai, Kenta; Matsumoto, Ryutaroh; Tsurumaru, Toyohiro

    2017-06-01

    We have developed a continuous-variable quantum key distribution (CV-QKD) system that employs discrete quadrature-amplitude modulation and homodyne detection of coherent states of light. We experimentally demonstrated automated secure key generation with a rate of 50 kbps when a quantum channel is a 10 km optical fibre. The CV-QKD system utilises a four-state and post-selection protocol and generates a secure key against the entangling cloner attack. We used a pulsed light source of 1550 nm wavelength with a repetition rate of 10 MHz. A commercially available balanced receiver is used to realise shot-noise-limited pulsed homodyne detection. We used a non-binary LDPC code for error correction (reverse reconciliation) and the Toeplitz matrix multiplication for privacy amplification. A graphical processing unit card is used to accelerate the software-based post-processing.

  6. Solid-State Gas Sensors: Sensor System Challenges in the Civil Security Domain.

    PubMed

    Müller, Gerhard; Hackner, Angelika; Beer, Sebastian; Göbel, Johann

    2016-01-20

    The detection of military high explosives and illicit drugs presents problems of paramount importance in the fields of counter terrorism and criminal investigation. Effectively dealing with such threats requires hand-portable, mobile and affordable instruments. The paper shows that solid-state gas sensors can contribute to the development of such instruments provided the sensors are incorporated into integrated sensor systems, which acquire the target substances in the form of particle residue from suspect objects and which process the collected residue through a sequence of particle sampling, solid-vapor conversion, vapor detection and signal treatment steps. Considering sensor systems with metal oxide gas sensors at the backend, it is demonstrated that significant gains in sensitivity, selectivity and speed of response can be attained when the threat substances are sampled in particle as opposed to vapor form.

  7. Solid-State Gas Sensors: Sensor System Challenges in the Civil Security Domain

    PubMed Central

    Müller, Gerhard; Hackner, Angelika; Beer, Sebastian; Göbel, Johann

    2016-01-01

    The detection of military high explosives and illicit drugs presents problems of paramount importance in the fields of counter terrorism and criminal investigation. Effectively dealing with such threats requires hand-portable, mobile and affordable instruments. The paper shows that solid-state gas sensors can contribute to the development of such instruments provided the sensors are incorporated into integrated sensor systems, which acquire the target substances in the form of particle residue from suspect objects and which process the collected residue through a sequence of particle sampling, solid-vapor conversion, vapor detection and signal treatment steps. Considering sensor systems with metal oxide gas sensors at the backend, it is demonstrated that significant gains in sensitivity, selectivity and speed of response can be attained when the threat substances are sampled in particle as opposed to vapor form. PMID:28787865

  8. Hardware support for software controlled fast reconfiguration of performance counters

    DOEpatents

    Salapura, Valentina; Wisniewski, Robert W.

    2013-06-18

    Hardware support for software controlled reconfiguration of performance counters may include a plurality of performance counters collecting one or more counts of one or more selected activities. A storage element stores data value representing a time interval, and a timer element reads the data value and detects expiration of the time interval based on the data value and generates a signal. A plurality of configuration registers stores a set of performance counter configurations. A state machine receives the signal and selects a configuration register from the plurality of configuration registers for reconfiguring the one or more performance counters.

  9. Hardware support for software controlled fast reconfiguration of performance counters

    DOEpatents

    Salapura, Valentina; Wisniewski, Robert W

    2013-09-24

    Hardware support for software controlled reconfiguration of performance counters may include a plurality of performance counters collecting one or more counts of one or more selected activities. A storage element stores data value representing a time interval, and a timer element reads the data value and detects expiration of the time interval based on the data value and generates a signal. A plurality of configuration registers stores a set of performance counter configurations. A state machine receives the signal and selects a configuration register from the plurality of configuration registers for reconfiguring the one or more performance counters.

  10. Expert system constant false alarm rate processor

    NASA Astrophysics Data System (ADS)

    Baldygo, William J., Jr.; Wicks, Michael C.

    1993-10-01

    The requirements for high detection probability and low false alarm probability in modern wide area surveillance radars are rarely met due to spatial variations in clutter characteristics. Many filtering and CFAR detection algorithms have been developed to effectively deal with these variations; however, any single algorithm is likely to exhibit excessive false alarms and intolerably low detection probabilities in a dynamically changing environment. A great deal of research has led to advances in the state of the art in Artificial Intelligence (AI) and numerous areas have been identified for application to radar signal processing. The approach suggested here, discussed in a patent application submitted by the authors, is to intelligently select the filtering and CFAR detection algorithms being executed at any given time, based upon the observed characteristics of the interference environment. This approach requires sensing the environment, employing the most suitable algorithms, and applying an appropriate multiple algorithm fusion scheme or consensus algorithm to produce a global detection decision.

  11. Simultaneous manipulation and observation of multiple ro-vibrational eigenstates in solid para-hydrogen.

    PubMed

    Katsuki, Hiroyuki; Ohmori, Kenji

    2016-09-28

    We have experimentally performed the coherent control of delocalized ro-vibrational wave packets (RVWs) of solid para-hydrogen (p-H 2 ) by the wave packet interferometry (WPI) combined with coherent anti-Stokes Raman scattering (CARS). RVWs of solid p-H 2 are delocalized in the crystal, and the wave function with wave vector k ∼ 0 is selectively excited via the stimulated Raman process. We have excited the RVW twice by a pair of femtosecond laser pulses with delay controlled by a stabilized Michelson interferometer. Using a broad-band laser pulse, multiple ro-vibrational states can be excited simultaneously. We have observed the time-dependent Ramsey fringe spectra as a function of the inter-pulse delay by a spectrally resolved CARS technique using a narrow-band probe pulse, resolving the different intermediate states. Due to the different fringe oscillation periods among those intermediate states, we can manipulate their amplitude ratio by tuning the inter-pulse delay on the sub-femtosecond time scale. The state-selective manipulation and detection of the CARS signal combined with the WPI is a general and efficient protocol for the control of the interference of multiple quantum states in various quantum systems.

  12. Selected trace metals and organic compounds and bioavailability of selected organic compounds in soils, Hackberry Flat, Tillman County, Oklahoma, 1994-95

    USGS Publications Warehouse

    Becker, M.F.

    1997-01-01

    In 1995 the Oklahoma Department of Wildlife Conservation acquired a drained wetland in southwest Oklahoma known as Hackberry Flat. Following restoration by Wildlife Conservation the wetland will be used by migratory birds and waterfowl. If naturally occurring trace metals and residual organic compounds from agriculture and industry were present, they may have posed a potential biohazard and were a concern for Wildlife Conservation. The U. S. Geological Survey, in cooperation with Wildlife Conservation and the Oklahoma Geological Survey, examined the soils of Hackberry Flat to determine trace metal concentrations, presence of selected organic compounds, and the bioavailability of selected organic compounds in the soils. The purpose of this report is to present the data that establish the baseline concentrations of selected trace metals and organic compounds in the soils of Hackberry Flat prior to wetland restoration. Sampling and analysis were performed using two approaches. One was to collect soil samples and analyze the composition with standard laboratory practices. The second exposed composite soils samples to organic-free water and a semipermeable membrane device that mimics an organism and then analyzed the device. Ten soil samples were collected in 1994 to be analyzed for trace metals, organochlorine pesticides, and polychlorinated biphenyls. Soil samples tested for bioavailability of selected organic compounds were collected in 1995. Most of the 182 soil samples collected were from the center of every 40-acre quarter-quarter section owned by the Wildlife Conservation. The samples were grouped by geographical area with a maximum of 16 sample sites per group. Concentrations of most selected trace metals measured from soils in Hackberry Flat are within the range of mean concentrations measured in cultivated soils within the United States. Organochlorine pesticides, polychlorinated biphenyls, and polyaromatic hydrocarbons were not found at concentrations above the analytical detection levels and, if present, in the soil samples are at concentrations below the detection level of the analytical method used. Organochlorine pesticides, total polychlorinated biphenyls, and polyaromatic hydrocarbons were not detected in any of the semipermeable membrane devices at the analytical detection levels.

  13. Influence of argon and oxygen on charge-state-resolved ion energy distributions of filtered aluminum arcs

    NASA Astrophysics Data System (ADS)

    Rosén, Johanna; Anders, André; Mráz, Stanislav; Atiser, Adil; Schneider, Jochen M.

    2006-06-01

    The charge-state-resolved ion energy distributions (IEDs) in filtered aluminum vacuum arc plasmas were measured and analyzed at different oxygen and argon pressures in the range of 0.5-8.0 mTorr. A significant reduction of the ion energy was detected as the pressure was increased, most pronounced in an argon environment and for the higher charge states. The corresponding average charge state decreased from 1.87 to 1.0 with increasing pressure. The IEDs of all metal ions in oxygen were fitted with shifted Maxwellian distributions. The results show that it is possible to obtain a plasma composition with a narrow charge-state distribution as well as a narrow IED. These data may enable tailoring thin film properties through selecting growth conditions that are characterized by predefined charge state and energy distributions.

  14. Need total sulfur content? Use chemiluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubala, S.W.; Campbell, D.N.; DiSanzo, F.P.

    Regulations issued by the United States Environmental Protection Agency require petroleum refineries to reduce or control the amount of total sulfur present in their refined products. These legislative requirements have led many refineries to search for online instrumentation that can produce accurate and repeatable total sulfur measurements within allowed levels. Several analytical methods currently exist to measure total sulfur content. They include X-ray fluorescence (XRF), microcoulometry, lead acetate tape, and pyrofluorescence techniques. Sulfur-specific chemiluminescence detection (SSCD) has recently received much attention due to its linearity, selectivity, sensitivity, and equimolar response. However, its use has been largely confined to the areamore » of gas chromatography. This article focuses on the special design considerations and analytical utility of an SSCD system developed to determine total sulfur content in gasoline. The system exhibits excellent linearity and selectivity, the ability to detect low minimum levels, and an equimolar response to various sulfur compounds. 2 figs., 2 tabs.« less

  15. Citrus huanglongbing in São Paulo State, Brazil: PCR detection of the 'Candidatus' Liberibacter species associated with the disease.

    PubMed

    do Carmo Teixeira, Diva; Luc Danet, Jean; Eveillard, Sandrine; Cristina Martins, Elaine; de Jesus Junior, Waldir Cintra; Takao Yamamoto, Pedro; Aparecido Lopes, Silvio; Beozzo Bassanezi, Renato; Juliano Ayres, Antonio; Saillard, Colette; Bové, Joseph Marie

    2005-06-01

    Symptoms of huanglongbing (HLB), one of the most serious diseases of citrus in Asia and Africa, have been noticed in March 2004 in the Araraquara region of São Paulo State, Brazil. HLB has not been reported previously from America. The causal HLB bacteria, Candidatus Liberibacter africanus in Africa and Candidatus Liberibacter asiaticus in Asia, can be detected in symptomatic citrus leaves by PCR amplification of their 16S rDNA with previously described primers. When this technique was applied to 43 symptomatic leaf samples from the Araraquara region, all PCR reactions were negative. This suggested that a new pathogen, not detected by the above primers, could be involved in HLB in the State of São Paulo. Indeed, by using universal primers for amplification of bacterial 16S rDNA, a new liberibacter species, Candidatus Liberibacter americanus, has recently been identified. Specific primers for PCR amplification of the 16S rDNA of Ca. L. americanus have been selected. Using these primers, the new liberibacter could be detected in 214 symptomatic leaf samples tested. The leaves of two additional samples were infected with Candidatus Liberibacter asiaticus, and two further samples contained both Ca. L. americanus and Ca. L. asiaticus. The samples came from 47 farms in 35 municipalities. The psyllid vector of Ca. L. asiaticus, Diaphorina citri, is established in South, Central, and North America (Florida and Texas). Ca. L. americanus could be detected by PCR in several batches of D. citri psyllids collected on symptomatic sweet orange trees infected with Ca. L. americanus, strongly suggesting that D. citri is the vector of Ca. L. americanus. The results reported here confirm the presence of HLB in the State of São Paulo. Ca. L. americanus is the most widely distributed pathogen.

  16. Measuring the Sensitivity of Single-locus “Neutrality Tests” Using a Direct Perturbation Approach

    PubMed Central

    Garrigan, Daniel; Lewontin, Richard; Wakeley, John

    2010-01-01

    A large number of statistical tests have been proposed to detect natural selection based on a sample of variation at a single genetic locus. These tests measure the deviation of the allelic frequency distribution observed within populations from the distribution expected under a set of assumptions that includes both neutral evolution and equilibrium population demography. The present study considers a new way to assess the statistical properties of these tests of selection, by their behavior in response to direct perturbations of the steady-state allelic frequency distribution, unconstrained by any particular nonequilibrium demographic scenario. Results from Monte Carlo computer simulations indicate that most tests of selection are more sensitive to perturbations of the allele frequency distribution that increase the variance in allele frequencies than to perturbations that decrease the variance. Simulations also demonstrate that it requires, on average, 4N generations (N is the diploid effective population size) for tests of selection to relax to their theoretical, steady-state distributions following different perturbations of the allele frequency distribution to its extremes. This relatively long relaxation time highlights the fact that these tests are not robust to violations of the other assumptions of the null model besides neutrality. Lastly, genetic variation arising under an example of a regularly cycling demographic scenario is simulated. Tests of selection performed on this last set of simulated data confirm the confounding nature of these tests for the inference of natural selection, under a demographic scenario that likely holds for many species. The utility of using empirical, genomic distributions of test statistics, instead of the theoretical steady-state distribution, is discussed as an alternative for improving the statistical inference of natural selection. PMID:19744997

  17. Determination of secondary and tertiary amines as N-nitrosamine precursors in drinking water system using ultra-fast liquid chromatography-tandem mass spectrometry.

    PubMed

    Wu, Qihua; Shi, Honglan; Ma, Yinfa; Adams, Craig; Eichholz, Todd; Timmons, Terry; Jiang, Hua

    2015-01-01

    N-Nitrosamines are potent mutagenic and carcinogenic emerging water disinfection by-products (DBPs). The most effective strategy to control the formation of these DBPs is minimizing their precursors from source water. Secondary and tertiary amines are dominating precursors of N-nitrosamines formation during drinking water disinfection process. Therefore, the screening and removal of these amines in source water are very essential for preventing the formation of N-nitrosamines. A rapid, simple, and sensitive ultrafast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS) method has been developed in this study to determine seven amines, including dimethylamine, ethylmethylamine, diethylamine, dipropylamine, trimethylamine, 3-(dimethylaminomethyl)indole, and 4-dimethylaminoantipyrine, as major precursors of N-nitrosamines in drinking water system. No sample preparation process is needed except a simple filtration. Separation and detection can be achieved in 11 min per sample. The method detection limits of selected amines are ranging from 0.02 μg/L to 1 μg/L except EMA (5 μg/L), and good calibration linearity was achieved. The developed method was applied to determine the selected precursors in source water and drinking water samples collected from Midwest area of the United States. In most of water samples, the concentrations of selected precursors of N-nitrosamines were below their method detection limits. Dimethylamine was detected in some of water samples at the concentration up to 25.4 μg/L. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Double-observer approach to estimating egg mass abundance of vernal pool breeding amphibians

    USGS Publications Warehouse

    Grant, E.H.C.; Jung, R.E.; Nichols, J.D.; Hines, J.E.

    2005-01-01

    Interest in seasonally flooded pools, and the status of associated amphibian populations, has initiated programs in the northeastern United States to document and monitor these habitats. Counting egg masses is an effective way to determine the population size of pool-breeding amphibians, such as wood frogs (Rana sylvatica) and spotted salamanders (Ambystoma maculatum). However, bias is associated with counts if egg masses are missed. Counts unadjusted for the proportion missed (i.e., without adjustment for detection probability) could lead to false assessments of population trends. We used a dependent double-observer method in 2002-2003 to estimate numbers of wood frog and spotted salamander egg masses at seasonal forest pools in 13 National Wildlife Refuges, 1 National Park, 1 National Seashore, and 1 State Park in the northeastern United States. We calculated detection probabilities for egg masses and examined whether detection probabilities varied by species, observers, pools, and in relation to pool characteristics (pool area, pool maximum depth, within-pool vegetation). For the 2 years, model selection indicated that no consistent set of variables explained the variation in data sets from individual Refuges and Parks. Because our results indicated that egg mass detection probabilities vary spatially and temporally, we conclude that it is essential to use estimation procedures, such as double-observer methods with egg mass surveys, to determine population sizes and trends of these species.

  19. Highly selective and sensitive turn-on fluorescent sensor for detection of Al3+ based on quinoline-base Schiff base

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Ma, Zhong-Ying; Zhang, De-Long; Deng, Jia-Li; Chen, Xiong; Xie, Cheng-Zhi; Qiao, Xin; Li, Qing-Zhong; Xu, Jing-Yuan

    2018-04-01

    A new aluminum ion fluorescent probe (4-(diethylamino)-2-hydroxybenzylidene)isoquinoline-1-carbohydrazide (HL1) has been conveniently synthesized and characterized. HL1 exhibited a highly selective and pronounced enhancement for Al3+ in the fluorescence emission over other common cations by forming a 2:1 complex, with a recognition mechanism based on excited-state intramolecular proton transfer (ESIPT) and intramolecular charge transfer (ICT). The strong fluorescent emission can be observed even at ppm level concentration of the probe in the presence of Al3+ with 41 fold intensity enhancement at 545 nm. HL1 displays good linear relationship with Al3+ in the low concentration and the limit of detection is 8.08 × 10-8 mol/L. Similar molecules with different substituents on salicylaldehyde phenyl ring were synthesized for studying the structure-activity relationship. Density-functional theory (DFT) calculations are in agreement with the proposed mechanism. It is confirmed that HL1 could be used to detect Al3+ ions in real sample by fluorescence spectrometry and Al3+ ions in cells by bioimaging.

  20. Contamination Event Detection with Multivariate Time-Series Data in Agricultural Water Monitoring †

    PubMed Central

    Mao, Yingchi; Qi, Hai; Ping, Ping; Li, Xiaofang

    2017-01-01

    Time series data of multiple water quality parameters are obtained from the water sensor networks deployed in the agricultural water supply network. The accurate and efficient detection and warning of contamination events to prevent pollution from spreading is one of the most important issues when pollution occurs. In order to comprehensively reduce the event detection deviation, a spatial–temporal-based event detection approach with multivariate time-series data for water quality monitoring (M-STED) was proposed. The M-STED approach includes three parts. The first part is that M-STED adopts a Rule K algorithm to select backbone nodes as the nodes in the CDS, and forward the sensed data of multiple water parameters. The second part is to determine the state of each backbone node with back propagation neural network models and the sequential Bayesian analysis in the current timestamp. The third part is to establish a spatial model with Bayesian networks to estimate the state of the backbones in the next timestamp and trace the “outlier” node to its neighborhoods to detect a contamination event. The experimental results indicate that the average detection rate is more than 80% with M-STED and the false detection rate is lower than 9%, respectively. The M-STED approach can improve the rate of detection by about 40% and reduce the false alarm rate by about 45%, compared with the event detection with a single water parameter algorithm, S-STED. Moreover, the proposed M-STED can exhibit better performance in terms of detection delay and scalability. PMID:29207535

  1. Quantum key distribution using continuous-variable non-Gaussian states

    NASA Astrophysics Data System (ADS)

    Borelli, L. F. M.; Aguiar, L. S.; Roversi, J. A.; Vidiella-Barranco, A.

    2016-02-01

    In this work, we present a quantum key distribution protocol using continuous-variable non-Gaussian states, homodyne detection and post-selection. The employed signal states are the photon added then subtracted coherent states (PASCS) in which one photon is added and subsequently one photon is subtracted from the field. We analyze the performance of our protocol, compared with a coherent state-based protocol, for two different attacks that could be carried out by the eavesdropper (Eve). We calculate the secret key rate transmission in a lossy line for a superior channel (beam-splitter) attack, and we show that we may increase the secret key generation rate by using the non-Gaussian PASCS rather than coherent states. We also consider the simultaneous quadrature measurement (intercept-resend) attack, and we show that the efficiency of Eve's attack is substantially reduced if PASCS are used as signal states.

  2. Using estimates of natural variation to detect ecologically important change in forest spatial patterns: a case study, Cascade Range, eastern Washington.

    Treesearch

    Paul F. Hessburg; Bradley G. Smith; R. Brion Salter

    1999-01-01

    Using hierarchical clustering techniques, we grouped subwatersheds on the eastern slope of the Cascade Range in Washington State into ecological subregions by similarity of area in potential vegetation and climate attributes. We then built spatially continuous historical and current vegetation maps for 48 randomly selected subwatersheds from interpretations of 1938-49...

  3. Surface-imprinted nanofilaments for europium-amplified luminescent detection of fluoroquinolone antibiotics.

    PubMed

    Zdunek, Jolanta; Benito-Peña, Elena; Linares, Ana; Falcimaigne-Cordin, Aude; Orellana, Guillermo; Haupt, Karsten; Moreno-Bondi, María C

    2013-07-29

    The development and characterization of novel, molecularly imprinted polymer nanofilament-based optical sensors for the analysis of enrofloxacin, an antibiotic widely used for human and veterinary applications, is reported. The polymers were prepared by nanomolding in porous alumina by using enrofloxacin as the template. The antibiotic was covalently immobilized on to the pore walls of the alumina by using different spacers, and the prepolymerization mixture was cast in the pores and the polymer synthesized anchored onto a glass support through UV polymerization. Various parameters affecting polymer selectivity were evaluated to achieve optimal recognition, namely, the spacer arm length and the binding solvent. The results of morphological characterization, binding kinetics, and selectivity of the optimized polymer material for ENR and its derivatives are reported. For sensing purposes, the nanofilaments were incubated in solutions of the target molecule in acetonitrile/HEPES buffer (100 mM, pH 7.5, 50:50, v/v) for 20 min followed by incubation in a 10 mM solution of europium(III) ions to generate a europium(III)-enrofloxacin complex on the polymer surface. The detection event was based on the luminescence of the rare-earth ion (λexc=340 nm; λem=612 nm) that results from energy transfer from the antibiotic excited state to the metal-ion emitting excited state. The limit of detection of the enrofloxacin antibiotic was found to be 0.58 μM. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Carbon-Based Solid-State Calcium Ion-Selective Microelectrode and Scanning Electrochemical Microscopy: A Quantitative Study of pH-Dependent Release of Calcium Ions from Bioactive Glass.

    PubMed

    Ummadi, Jyothir Ganesh; Downs, Corey J; Joshi, Vrushali S; Ferracane, Jack L; Koley, Dipankar

    2016-03-15

    Solid-state ion-selective electrodes are used as scanning electrochemical microscope (SECM) probes because of their inherent fast response time and ease of miniaturization. In this study, we report the development of a solid-state, low-poly(vinyl chloride), carbon-based calcium ion-selective microelectrode (Ca(2+)-ISME), 25 μm in diameter, capable of performing an amperometric approach curve and serving as a potentiometric sensor. The Ca(2+)-ISME has a broad linear response range of 5 μM to 200 mM with a near Nernstian slope of 28 mV/log[a(Ca(2+))]. The calculated detection limit for Ca(2+)-ISME is 1 μM. The selectivity coefficients of this Ca(2+)-ISME are log K(Ca(2+),A) = -5.88, -5.54, and -6.31 for Mg(2+), Na(+), and K(+), respectively. We used this new type of Ca(2+)-ISME as an SECM probe to quantitatively map the chemical microenvironment produced by a model substrate, bioactive glass (BAG). In acidic conditions (pH 4.5), BAG was found to increase the calcium ion concentration from 0.7 mM ([Ca(2+)] in artificial saliva) to 1.4 mM at 20 μm above the surface. In addition, a solid-state dual SECM pH probe was used to correlate the release of calcium ions with the change in local pH. Three-dimensional pH and calcium ion distribution mapping were also obtained by using these solid-state probes. The quantitative mapping of pH and Ca(2+) above the BAG elucidates the effectiveness of BAG in neutralizing and releasing calcium ions in acidic conditions.

  5. Method and apparatus for executing a shift in a hybrid transmission

    DOEpatents

    Gupta, Pinaki; Kaminsky, Lawrence A; Demirovic, Besim

    2013-09-03

    A method for executing a transmission shift in a hybrid transmission including first and second electric machines includes executing a shift-through-neutral sequence from an initial transmission state to a target transmission state including executing an intermediate shift to neutral. Upon detecting a change in an output torque request while executing the shift-through-neutral sequence, possible recovery shift paths are identified. Available ones of the possible recovery shift paths are identified and a shift cost for each said available recovery shift path is evaluated. The available recovery shift path having a minimum shift cost is selected as a preferred recovery shift path and is executed to achieve a non-neutral transmission state.

  6. Active optical sensors for tree stem detection and classification in nurseries.

    PubMed

    Garrido, Miguel; Perez-Ruiz, Manuel; Valero, Constantino; Gliever, Chris J; Hanson, Bradley D; Slaughter, David C

    2014-06-19

    Active optical sensing (LIDAR and light curtain transmission) devices mounted on a mobile platform can correctly detect, localize, and classify trees. To conduct an evaluation and comparison of the different sensors, an optical encoder wheel was used for vehicle odometry and provided a measurement of the linear displacement of the prototype vehicle along a row of tree seedlings as a reference for each recorded sensor measurement. The field trials were conducted in a juvenile tree nursery with one-year-old grafted almond trees at Sierra Gold Nurseries, Yuba City, CA, United States. Through these tests and subsequent data processing, each sensor was individually evaluated to characterize their reliability, as well as their advantages and disadvantages for the proposed task. Test results indicated that 95.7% and 99.48% of the trees were successfully detected with the LIDAR and light curtain sensors, respectively. LIDAR correctly classified, between alive or dead tree states at a 93.75% success rate compared to 94.16% for the light curtain sensor. These results can help system designers select the most reliable sensor for the accurate detection and localization of each tree in a nursery, which might allow labor-intensive tasks, such as weeding, to be automated without damaging crops.

  7. Driver fatigue detection through multiple entropy fusion analysis in an EEG-based system

    PubMed Central

    Min, Jianliang; Wang, Ping

    2017-01-01

    Driver fatigue is an important contributor to road accidents, and fatigue detection has major implications for transportation safety. The aim of this research is to analyze the multiple entropy fusion method and evaluate several channel regions to effectively detect a driver's fatigue state based on electroencephalogram (EEG) records. First, we fused multiple entropies, i.e., spectral entropy, approximate entropy, sample entropy and fuzzy entropy, as features compared with autoregressive (AR) modeling by four classifiers. Second, we captured four significant channel regions according to weight-based electrodes via a simplified channel selection method. Finally, the evaluation model for detecting driver fatigue was established with four classifiers based on the EEG data from four channel regions. Twelve healthy subjects performed continuous simulated driving for 1–2 hours with EEG monitoring on a static simulator. The leave-one-out cross-validation approach obtained an accuracy of 98.3%, a sensitivity of 98.3% and a specificity of 98.2%. The experimental results verified the effectiveness of the proposed method, indicating that the multiple entropy fusion features are significant factors for inferring the fatigue state of a driver. PMID:29220351

  8. Detecting overlapping instances in microscopy images using extremal region trees.

    PubMed

    Arteta, Carlos; Lempitsky, Victor; Noble, J Alison; Zisserman, Andrew

    2016-01-01

    In many microscopy applications the images may contain both regions of low and high cell densities corresponding to different tissues or colonies at different stages of growth. This poses a challenge to most previously developed automated cell detection and counting methods, which are designed to handle either the low-density scenario (through cell detection) or the high-density scenario (through density estimation or texture analysis). The objective of this work is to detect all the instances of an object of interest in microscopy images. The instances may be partially overlapping and clustered. To this end we introduce a tree-structured discrete graphical model that is used to select and label a set of non-overlapping regions in the image by a global optimization of a classification score. Each region is labeled with the number of instances it contains - for example regions can be selected that contain two or three object instances, by defining separate classes for tuples of objects in the detection process. We show that this formulation can be learned within the structured output SVM framework and that the inference in such a model can be accomplished using dynamic programming on a tree structured region graph. Furthermore, the learning only requires weak annotations - a dot on each instance. The candidate regions for the selection are obtained as extremal region of a surface computed from the microscopy image, and we show that the performance of the model can be improved by considering a proxy problem for learning the surface that allows better selection of the extremal regions. Furthermore, we consider a number of variations for the loss function used in the structured output learning. The model is applied and evaluated over six quite disparate data sets of images covering: fluorescence microscopy, weak-fluorescence molecular images, phase contrast microscopy and histopathology images, and is shown to exceed the state of the art in performance. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. The solid state physics programme at ISOLDE: recent developments and perspectives

    NASA Astrophysics Data System (ADS)

    Johnston, Karl; Schell, Juliana; Correia, J. G.; Deicher, M.; Gunnlaugsson, H. P.; Fenta, A. S.; David-Bosne, E.; Costa, A. R. G.; Lupascu, Doru C.

    2017-10-01

    Solid state physics (SSP) research at ISOLDE has been running since the mid-1970s and accounts for about 10%-15% of the overall physics programme. ISOLDE is the world flagship for the on-line production of exotic radioactive isotopes, with high yields, high elemental selectivity and isotopic purity. Consequently, it hosts a panoply of state-of-the-art nuclear techniques which apply nuclear methods to research on life sciences, material science and bio-chemical physics. The ease of detecting radioactivity—<1 ppm concentrations—is one of the features which distinguishes the use of radioisotopes for materials science research. The manner in which nuclear momenta of excited nuclear states interact with their local electronic and magnetic environment, or how charged emitted particles interact with the crystalline lattices allow the determination of the location, its action and the role of the selected impurity element at the nanoscopic state. ISOLDE offers an unrivalled range of available radioactive elements and this is attracting an increasing user community in the field of nuclear SSP research and brings together a community of materials scientists and specialists in nuclear solid state techniques. This article describes the current status of this programme along with recent illustrative results, predicting a bright future for these unique research methods and collaborations.

  10. Presence and distribution of chlorinated organic compounds in streambed sediments, new jersey

    USGS Publications Warehouse

    Stackelberg, P.E.

    1997-01-01

    Concentrations of 18 hydrophobic chlorinated organic compounds in streambed sediments from 100 sites throughout New Jersey were examined to determine (1) which compounds were detected most frequently, (2) whether detection frequencies differed among selected drainage basins, and (3) whether concentrations differed significantly among selected drainage basins. Twelve drainage basins across New Jersey that contain a range of land-use patterns and population densities were selected to represent various types and degrees of development. To ensure an adequate number of samples for statistical comparison among drainage basins, the 12 selected basins were consolidated into seven drainage areas on the basis of similarities in land- use patterns and population densities. Additionally, data for three classes of chlorinated organic compounds in streambed sediments from 255 sites throughout New Jersey were examined to determine whether the presence of these compounds in streambed sediments is related to the type and degree of development within the drainage area of each sampling site. Chlorinated organic compounds detected most frequently within the seven representative drainage areas were DDT, DDE, DDD, chlordane, dieldrin, and PCBs. DDT, DDE, and DDD, which were the most widely distributed organic compounds, were detected in about 60 to 100 percent of the samples from all drainage areas hut one (where the detection rate for these compounds was about 20 to 40 percent). Chlordane and dieldrin were detected in about 80 to 100 percent of samples from highly urbanized and populated drainage areas; detection frequencies for these compounds tended to be smaller in less developed and populated areas. PCBs were detected in about 40 to 85 percent of samples from all drainage areas; detection frequencies were highest in the most heavily developed and populated areas. Analysis of variance on rank-transformed organic compound concentrations normalized to sediment organic carbon content was used to evaluate differences in concentrations among the seven representative drainage areas. Chlordane and PCBs were the chlorinated organic compounds with the most highly elevated concentrations in streambed sediments across the State. Median normalized COncentrations of all six of the most frequently detected chlorinated organic compounds were highest in the most heavily urbanized and populated drainage area and lowest in the less populated, predominantly agricultural or forested areas. Concentrations of DDT and DDE, however, did not differ significantly among most of the drainage areas. Concentrations of DDD, chlordane, dieldrin, and PCBs differed significantly among drainage areas. The highest median normalized concentrations were found in samples from the most heavily urbanized and populated areas, and the lowest were in samples from the least developed, most heavily forested area. Logistic regression was used to examine relations between the presence of hydrophobic chlorinated organic compounds in streambed sediments at specified concentrations and variables that characterize the type and degree of development within the drainage areas of 255 sites across New Jersey. The explanatory variables found most useful for predicting the presence of chlorinated organic compounds in streambed sediments include total population and amounts (in square kilometers) of various land-use categories. Logistic regression equations were developed to identify significant relations between population and amounts of specific land-use categories within drainage areas and the probability of detecting chlorinated organic contaminants in streambed sediments. These relations can be used to assist in the identification of geographic regions of primary concern for contamination of bed sediments by chlorinated organic compounds across the State.

  11. Proton clouds to measure long-range contacts between nonexchangeable side chain protons in solid-state NMR.

    PubMed

    Sinnige, Tessa; Daniëls, Mark; Baldus, Marc; Weingarth, Markus

    2014-03-26

    We show that selective labeling of proteins with protonated amino acids embedded in a perdeuterated matrix, dubbed 'proton clouds', provides general access to long-range contacts between nonexchangeable side chain protons in proton-detected solid-state NMR, which is important to study protein tertiary structure. Proton-cloud labeling significantly improves spectral resolution by simultaneously reducing proton line width and spectral crowding despite a high local proton density in clouds. The approach is amenable to almost all canonical amino acids. Our method is demonstrated on ubiquitin and the β-barrel membrane protein BamA.

  12. Microbial pathogens in source and treated waters from drinking water treatment plants in the United States and implications for human health.

    PubMed

    King, Dawn N; Donohue, Maura J; Vesper, Stephen J; Villegas, Eric N; Ware, Michael W; Vogel, Megan E; Furlong, Edward F; Kolpin, Dana W; Glassmeyer, Susan T; Pfaller, Stacy

    2016-08-15

    An occurrence survey was conducted on selected pathogens in source and treated drinking water collected from 25 drinking water treatment plants (DWTPs) in the United States. Water samples were analyzed for the protozoa Giardia and Cryptosporidium (EPA Method 1623); the fungi Aspergillus fumigatus, Aspergillus niger and Aspergillus terreus (quantitative PCR [qPCR]); and the bacteria Legionella pneumophila (qPCR), Mycobacterium avium, M. avium subspecies paratuberculosis, and Mycobacterium intracellulare (qPCR and culture). Cryptosporidium and Giardia were detected in 25% and in 46% of the source water samples, respectively (treated waters were not tested). Aspergillus fumigatus was the most commonly detected fungus in source waters (48%) but none of the three fungi were detected in treated water. Legionella pneumophila was detected in 25% of the source water samples but in only 4% of treated water samples. M. avium and M. intracellulare were both detected in 25% of source water, while all three mycobacteria were detected in 36% of treated water samples. Five species of mycobacteria, Mycobacterium mucogenicum, Mycobacterium phocaicum, Mycobacterium triplex, Mycobacterium fortuitum, and Mycobacterium lentiflavum were cultured from treated water samples. Although these DWTPs represent a fraction of those in the U.S., the results suggest that many of these pathogens are widespread in source waters but that treatment is generally effective in reducing them to below detection limits. The one exception is the mycobacteria, which were commonly detected in treated water, even when not detected in source waters. Published by Elsevier B.V.

  13. Finding Direction in the Search for Selection.

    PubMed

    Thiltgen, Grant; Dos Reis, Mario; Goldstein, Richard A

    2017-01-01

    Tests for positive selection have mostly been developed to look for diversifying selection where change away from the current amino acid is often favorable. However, in many cases we are interested in directional selection where there is a shift toward specific amino acids, resulting in increased fitness in the species. Recently, a few methods have been developed to detect and characterize directional selection on a molecular level. Using the results of evolutionary simulations as well as HIV drug resistance data as models of directional selection, we compare two such methods with each other, as well as against a standard method for detecting diversifying selection. We find that the method to detect diversifying selection also detects directional selection under certain conditions. One method developed for detecting directional selection is powerful and accurate for a wide range of conditions, while the other can generate an excessive number of false positives.

  14. Fluorescent Sensing of Fluoride in Cellular System

    PubMed Central

    Jiao, Yang; Zhu, Baocun; Chen, Jihua; Duan, Xiaohong

    2015-01-01

    Fluoride ions have the important roles in a lot of physiological activities related with biological and medical system, such as water fluoridation, caries treatment, and bone disease treatment. Great efforts have been made to develop new methods and strategies for F- detection in the past decades. Traditional methods for the detection of F- including ion chromatography, ion-selective electrodes, and spectroscopic techniques have the limitations in the biomedicine research. The fluorescent probes for F- are very promising that overcome some drawbacks of traditional fluoride detection methods. These probes exhibit high selectivity, high sensitivity as well as quick response to the detection of fluoride anions. The review commences with a brief description of photophysical mechanisms for fluorescent probes for fluoride, including photo induced electron transfer (PET), intramolecular charge transfer (ICT), fluorescence resonance energy transfer (FRET), and excited-state intramolecular proton transfer (ESIPT). Followed by a discussion about common dyes for fluorescent fluoride probes, such as anthracene, naphalimide, pyrene, BODIPY, fluorescein, rhodamine, resorufin, coumarin, cyanine, and near-infrared (NIR) dyes. We divide the fluorescent probes for fluoride in cellular application systems into nine groups, for example, type of hydrogen bonds, type of cleavage of Si-O bonds, type of Si-O bond cleavage and cylization reactions, etc. We also review the recent reported carriers in the delivery of fluorescent fluoride probes. Seventy-four typical fluorescent fluoride probes are listed and compared in detail, including quantum yield, reaction medium, excitation and emission wavelengths, linear detection range, selectivity for F-, mechanism, and analytical applications. Finally, we discuss the future challenges of the application of fluorescent fluoride probes in cellular system and in vivo. We wish that more and more excellent fluorescent fluoride probes will be developed and applied in the biomedicine field in the future. PMID:25553106

  15. A PEGylated fluorescent turn-on sensor for detecting fluoride ions in totally aqueous media and its imaging in live cells.

    PubMed

    Zheng, Fangyuan; Zeng, Fang; Yu, Changmin; Hou, Xianfeng; Wu, Shuizhu

    2013-01-14

    Owing to the considerable significance of fluoride anions for health and environmental issues, it is of great importance to develop methods that can rapidly, sensitively and selectively detect the fluoride anion in aqueous media and biological samples. Herein, we demonstrate a robust fluorescent turn-on sensor for detecting the fluoride ion in a totally aqueous solution. In this study, a biocompatible hydrophilic polymer poly(ethylene glycol) (PEG) is incorporated into the sensing system to ensure water solubility and to enhance biocompatibility. tert-Butyldiphenylsilyl (TBDPS) groups were then covalently introduced onto the fluorescein moiety, which effectively quenched the fluorescence of the sensor. Upon addition of fluoride ion, the selective fluoride-mediated cleavage of the Si-O bond leads to the recovery of the fluorescein moiety, resulting in a dramatic increase in fluorescence intensity under visible light excitation. The sensor is responsive and highly selective for the fluoride anion over other common anions; it also exhibits a very low detection limit of 19 ppb. In addition, this sensor is operative in some real samples such as running water, urine, and serum and can accurately detect fluoride ions in these samples. The cytotoxicity of the sensor was determined to be Grade I toxicity according to United States Pharmacopoeia and ISO 10993-5, suggesting the very low cytotoxicity of the sensor. Moreover, it was found that the senor could be readily internalized by both HeLa and L929 cells and the sensor could be utilized to track fluoride level changes inside the cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The use of Skylab data to study the early detection of insect infestations and density and distribution of host plants

    NASA Technical Reports Server (NTRS)

    Hart, W. G.; Ingle, S. J.; Davis, M. R.

    1975-01-01

    The detection of insect infestations and the density and distribution of host plants were studied using Skylab data, aerial photography and ground truth simultaneously. Additional ground truth and aerial photography were acquired between Skylab passes. Three test areas were selected: area 1, of high density citrus, was located northwest of Mission, Texas; area 2, 20 miles north of Weslaco, Texas, irrigated pastures and brush-covered land; area 3 covered the entire Lower Rio Grande Valley and adjacent areas of Mexico. A color composite picture of S-190A data showed patterns of vegetation on both sides of the Rio Grande River clearly delineating the possible avenues of entry of pest insects from Mexico into the United States or from the United States into Mexico. Vegetation that could be identified with conventional color and color IR film included: citrus, brush, sugarcane, alfalfa, irrigated and unimproved pastures.

  17. Regional Patterns and Spatial Clusters of Nonstationarities in Annual Peak Instantaneous Streamflow

    NASA Astrophysics Data System (ADS)

    White, K. D.; Baker, B.; Mueller, C.; Villarini, G.; Foley, P.; Friedman, D.

    2017-12-01

    Information about hydrologic changes resulting from changes in climate, land use, and land cover is a necessity planning and design or water resources infrastructure. The United States Army Corps of Engineers (USACE) evaluated and selected 12 methods to detect abrupt and slowly varying nonstationarities in records of maximum peak annual flows. They deployed a publicly available tool[1]in 2016 and a guidance document in 2017 to support identification of nonstationarities in a reproducible manner using a robust statistical framework. This statistical framework has now been applied to streamflow records across the continental United States to explore the presence of regional patterns and spatial clusters of nonstationarities in peak annual flow. Incorporating this geographic dimension into the detection of nonstationarities provides valuable insight for the process of attribution of these significant changes. This poster summarizes the methods used and provides the results of the regional analysis. [1] Available here - http://www.corpsclimate.us/ptcih.cfm

  18. Site-selective detection of vibrational modes of an iron atom in a trinuclear complex

    NASA Astrophysics Data System (ADS)

    Faus, Isabelle; Rackwitz, Sergej; Wolny, Juliusz A.; Banerjee, Atanu; Kelm, Harald; Krüger, Hans-Jörg; Schlage, Kai; Wille, Hans-Christian; Schünemann, Volker

    2016-12-01

    Nuclear inelastic scattering (NIS) experiments on the trinuclear complex [57Fe{L-N4(CH2Fc)2} (CH3CN)2](ClO4)2 have been performed. The octahedral iron ion in the complex was labelled with 57Fe and thereby exclusively the vibrational modes of this iron ion have been detected with NIS. The analysis of nuclear forward scattering (NFS) data yields a ferrous low-spin state for the 57Fe labelled iron ion. The simulation of the partial density of states (pDOS) for the octahedral low-spin iron(II) ion of the complex by density functional theory (DFT) calculations is in excellent agreement with the experimental pDOS of the complex determined from the NIS data obtained at 80 K. Thereby it was possible to assign almost each of the experimentally observed NIS bands to the corresponding molecular vibrational modes.

  19. In Vitro and In Vivo SERS Biosensing for Disease Diagnosis.

    PubMed

    Moore, T Joshua; Moody, Amber S; Payne, Taylor D; Sarabia, Grace M; Daniel, Alyssa R; Sharma, Bhavya

    2018-05-11

    For many disease states, positive outcomes are directly linked to early diagnosis, where therapeutic intervention would be most effective. Recently, trends in disease diagnosis have focused on the development of label-free sensing techniques that are sensitive to low analyte concentrations found in the physiological environment. Surface-enhanced Raman spectroscopy (SERS) is a powerful vibrational spectroscopy that allows for label-free, highly sensitive, and selective detection of analytes through the amplification of localized electric fields on the surface of a plasmonic material when excited with monochromatic light. This results in enhancement of the Raman scattering signal, which allows for the detection of low concentration analytes, giving rise to the use of SERS as a diagnostic tool for disease. Here, we present a review of recent developments in the field of in vivo and in vitro SERS biosensing for a range of disease states including neurological disease, diabetes, cardiovascular disease, cancer, and viral disease.

  20. Detection of drug active ingredients by chemometric processing of solid-state NMR spectrometry data -- the case of acetaminophen.

    PubMed

    Paradowska, Katarzyna; Jamróz, Marta Katarzyna; Kobyłka, Mariola; Gowin, Ewelina; Maczka, Paulina; Skibiński, Robert; Komsta, Łukasz

    2012-01-01

    This paper presents a preliminary study in building discriminant models from solid-state NMR spectrometry data to detect the presence of acetaminophen in over-the-counter pharmaceutical formulations. The dataset, containing 11 spectra of pure substances and 21 spectra of various formulations, was processed by partial least squares discriminant analysis (PLS-DA). The model found coped with the discrimination, and its quality parameters were acceptable. It was found that standard normal variate preprocessing had almost no influence on unsupervised investigation of the dataset. The influence of variable selection with the uninformative variable elimination by PLS method was studied, reducing the dataset from 7601 variables to around 300 informative variables, but not improving the model performance. The results showed the possibility to construct well-working PLS-DA models from such small datasets without a full experimental design.

  1. Detecting awareness in patients with disorders of consciousness using a hybrid brain-computer interface

    NASA Astrophysics Data System (ADS)

    Pan, Jiahui; Xie, Qiuyou; He, Yanbin; Wang, Fei; Di, Haibo; Laureys, Steven; Yu, Ronghao; Li, Yuanqing

    2014-10-01

    Objective. The bedside detection of potential awareness in patients with disorders of consciousness (DOC) currently relies only on behavioral observations and tests; however, the misdiagnosis rates in this patient group are historically relatively high. In this study, we proposed a visual hybrid brain-computer interface (BCI) combining P300 and steady-state evoked potential (SSVEP) responses to detect awareness in severely brain injured patients. Approach. Four healthy subjects, seven DOC patients who were in a vegetative state (VS, n = 4) or minimally conscious state (MCS, n = 3), and one locked-in syndrome (LIS) patient attempted a command-following experiment. In each experimental trial, two photos were presented to each patient; one was the patient's own photo, and the other photo was unfamiliar. The patients were instructed to focus on their own or the unfamiliar photos. The BCI system determined which photo the patient focused on with both P300 and SSVEP detections. Main results. Four healthy subjects, one of the 4 VS, one of the 3 MCS, and the LIS patient were able to selectively attend to their own or the unfamiliar photos (classification accuracy, 66-100%). Two additional patients (one VS and one MCS) failed to attend the unfamiliar photo (50-52%) but achieved significant accuracies for their own photo (64-68%). All other patients failed to show any significant response to commands (46-55%). Significance. Through the hybrid BCI system, command following was detected in four healthy subjects, two of 7 DOC patients, and one LIS patient. We suggest that the hybrid BCI system could be used as a supportive bedside tool to detect awareness in patients with DOC.

  2. Influence of argon and oxygen on charge-state-resolved ion energydistributions of filtered aluminum arcs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosen, Johanna; Anders, Andre; Mraz, Stanislav

    2006-03-23

    The charge-state-resolved ion energy distributions (IEDs) in filtered aluminum vacuum arc plasmas were measured and analyzed at different oxygen and argon pressures in the range 0.5 8.0 mTorr. A significant reduction of the ion energy was detected as the pressure was increased, most pronounced in an argon environment and for the higher charge states. The corresponding average charge state decreased from 1.87 to 1.0 with increasing pressure. The IEDs of all metal ions in oxygen were fitted with shifted Maxwellian distributions. The results show that it is possible to obtain a plasma composition with a narrow charge-state distribution as wellmore » as a narrow IED. These data may enable tailoring thin-film properties through selecting growth conditions that are characterized by predefined charge state and energy distributions.« less

  3. 8-aminoquinoline functionalized silica nanoparticles: a fluorescent nanosensor for detection of divalent zinc in aqueous and in yeast cell suspension.

    PubMed

    Rastogi, Shiva K; Pal, Parul; Aston, D Eric; Bitterwolf, Thomas E; Branen, A Larry

    2011-05-01

    Zinc is one of the most important transition metal of physiological importance, existing primarily as a divalent cation. A number of sensors have been developed for Zn(II) detection. Here, we present a novel fluorescent nanosensor for Zn(II) detection using a derivative of 8-aminoquinoline (N-(quinolin-8-yl)-2-(3 (triethoxysilyl)propylamino)acetamide (QTEPA) grafted on silica nanoparticles (SiNPs). These functionalized SiNPs were used to demonstrate specific detection of Zn(II) in tris-HCl buffer (pH 7.22), in yeast cell (Saccharomyces cerevisiae) suspension, and in tap water. The silane QTEPA, SiNPs and final product were characterized using solution and solid state nuclear magnetic resonance, Fourier transform infrared, ultraviolet-visible absorption spectroscopy, transmission electron microscopy, elemental analysis, thermogravimetric techniques, and fluorescence spectroscopy. The nanosensor shows almost 2.8-fold fluorescence emission enhancement and about 55 nm red-shift upon excitation with 330 ± 5 nm wavelength in presence of 1 μM Zn(II) ions in tris-HCl (pH 7.22). The presence of other metal ions has no observable effect on the sensitivity and selectivity of nanosensor. This sensor selectively detects Zn(II) ions with submicromolar detection to a limit of 0.1 μM. The sensor shows good applicability in the determination of Zn(II) in tris-HCl buffer and yeast cell environment. Further, it shows enhancement in fluorescence intensity in tap water samples.

  4. Evaluation of methods for detection of fluorescence labeled subcellular objects in microscope images.

    PubMed

    Ruusuvuori, Pekka; Aijö, Tarmo; Chowdhury, Sharif; Garmendia-Torres, Cecilia; Selinummi, Jyrki; Birbaumer, Mirko; Dudley, Aimée M; Pelkmans, Lucas; Yli-Harja, Olli

    2010-05-13

    Several algorithms have been proposed for detecting fluorescently labeled subcellular objects in microscope images. Many of these algorithms have been designed for specific tasks and validated with limited image data. But despite the potential of using extensive comparisons between algorithms to provide useful information to guide method selection and thus more accurate results, relatively few studies have been performed. To better understand algorithm performance under different conditions, we have carried out a comparative study including eleven spot detection or segmentation algorithms from various application fields. We used microscope images from well plate experiments with a human osteosarcoma cell line and frames from image stacks of yeast cells in different focal planes. These experimentally derived images permit a comparison of method performance in realistic situations where the number of objects varies within image set. We also used simulated microscope images in order to compare the methods and validate them against a ground truth reference result. Our study finds major differences in the performance of different algorithms, in terms of both object counts and segmentation accuracies. These results suggest that the selection of detection algorithms for image based screens should be done carefully and take into account different conditions, such as the possibility of acquiring empty images or images with very few spots. Our inclusion of methods that have not been used before in this context broadens the set of available detection methods and compares them against the current state-of-the-art methods for subcellular particle detection.

  5. Identification of SSR and retrotransposon-based molecular markers linked to morphological characters in oily sunfl ower (Helianthus annuus L.) under natural and water-limited states.

    PubMed

    Ali, Soleimani Gezeljeh; Darvishzadeh, Reza; Ebrahimi, Asa; Bihamta, Mohammad Reza

    2018-03-01

    Sunflower is an important source of edible oil. Drought is known as an important factor limiting the growth and productivity of field crops in most parts of the world. Agricultural biotechnology mainly aims at developing crops with higher tolerance to the challenging environmental conditions, such as drought. This study examined a number of morphological characters, along with relative water content (RWC) in 100 inbred sunflower lines. A 10 × 10 simple lattice design with two replications was employed to measure the mentioned parameters under natural and water-limited states during two successive years. In molecular trial, 30 simple sequence repeat (SSR) primer pairs, as well as 14 inter-retrotransposon amplified polymorphism (IRAP) and 14 retrotransposon-microsatellite amplified polymorphism (REMAP) primer combinations were used for DNA fingerprinting of the lines. Most of the examined characters had lower average values under water-limited than natural states. Maximum and minimum reductions were observed in the cases of yield and oil percentage, respectively. The broad-sense heritabilities for all the examined characters were 0.20-0.73 and 0.10-0.34 under natural and water-limited states, respectively. In the studied samples, 8.97% of the 435 possible locus pairs of the SSRs represented significant linkage disequilibrium (LD) levels. In the association analysis using SSR markers, 22 and 21 markers were identified (P ≤ 0.05) for the studied characters under natural and water-limited states, respectively. The corresponding values were 50 and 37 using retrotransposon-based molecular markers. Some detected markers were communal between the characters under water-limited and natural states. This was in line with the phenotypic correlations detected between the characters. Communal markers facilitate the simultaneous selection of several characters and can thus improve the efficacy of selection based on markers in the plant-breeding activities.

  6. Prediction of Cognitive States During Flight Simulation Using Multimodal Psychophysiological Sensing

    NASA Technical Reports Server (NTRS)

    Harrivel, Angela R.; Stephens, Chad L.; Milletich, Robert J.; Heinich, Christina M.; Last, Mary Carolyn; Napoli, Nicholas J.; Abraham, Nijo A.; Prinzel, Lawrence J.; Motter, Mark A.; Pope, Alan T.

    2017-01-01

    The Commercial Aviation Safety Team found the majority of recent international commercial aviation accidents attributable to loss of control inflight involved flight crew loss of airplane state awareness (ASA), and distraction was involved in all of them. Research on attention-related human performance limiting states (AHPLS) such as channelized attention, diverted attention, startle/surprise, and confirmation bias, has been recommended in a Safety Enhancement (SE) entitled "Training for Attention Management." To accomplish the detection of such cognitive and psychophysiological states, a broad suite of sensors was implemented to simultaneously measure their physiological markers during a high fidelity flight simulation human subject study. Twenty-four pilot participants were asked to wear the sensors while they performed benchmark tasks and motion-based flight scenarios designed to induce AHPLS. Pattern classification was employed to predict the occurrence of AHPLS during flight simulation also designed to induce those states. Classifier training data were collected during performance of the benchmark tasks. Multimodal classification was performed, using pre-processed electroencephalography, galvanic skin response, electrocardiogram, and respiration signals as input features. A combination of one, some or all modalities were used. Extreme gradient boosting, random forest and two support vector machine classifiers were implemented. The best accuracy for each modality-classifier combination is reported. Results using a select set of features and using the full set of available features are presented. Further, results are presented for training one classifier with the combined features and for training multiple classifiers with features from each modality separately. Using the select set of features and combined training, multistate prediction accuracy averaged 0.64 +/- 0.14 across thirteen participants and was significantly higher than that for the separate training case. These results support the goal of demonstrating simultaneous real-time classification of multiple states using multiple sensing modalities in high fidelity flight simulators. This detection is intended to support and inform training methods under development to mitigate the loss of ASA and thus reduce accidents and incidents.

  7. Inferring Stop-Locations from WiFi.

    PubMed

    Wind, David Kofoed; Sapiezynski, Piotr; Furman, Magdalena Anna; Lehmann, Sune

    2016-01-01

    Human mobility patterns are inherently complex. In terms of understanding these patterns, the process of converting raw data into series of stop-locations and transitions is an important first step which greatly reduces the volume of data, thus simplifying the subsequent analyses. Previous research into the mobility of individuals has focused on inferring 'stop locations' (places of stationarity) from GPS or CDR data, or on detection of state (static/active). In this paper we bridge the gap between the two approaches: we introduce methods for detecting both mobility state and stop-locations. In addition, our methods are based exclusively on WiFi data. We study two months of WiFi data collected every two minutes by a smartphone, and infer stop-locations in the form of labelled time-intervals. For this purpose, we investigate two algorithms, both of which scale to large datasets: a greedy approach to select the most important routers and one which uses a density-based clustering algorithm to detect router fingerprints. We validate our results using participants' GPS data as well as ground truth data collected during a two month period.

  8. Inferring Stop-Locations from WiFi

    PubMed Central

    Wind, David Kofoed; Sapiezynski, Piotr; Furman, Magdalena Anna; Lehmann, Sune

    2016-01-01

    Human mobility patterns are inherently complex. In terms of understanding these patterns, the process of converting raw data into series of stop-locations and transitions is an important first step which greatly reduces the volume of data, thus simplifying the subsequent analyses. Previous research into the mobility of individuals has focused on inferring ‘stop locations’ (places of stationarity) from GPS or CDR data, or on detection of state (static/active). In this paper we bridge the gap between the two approaches: we introduce methods for detecting both mobility state and stop-locations. In addition, our methods are based exclusively on WiFi data. We study two months of WiFi data collected every two minutes by a smartphone, and infer stop-locations in the form of labelled time-intervals. For this purpose, we investigate two algorithms, both of which scale to large datasets: a greedy approach to select the most important routers and one which uses a density-based clustering algorithm to detect router fingerprints. We validate our results using participants’ GPS data as well as ground truth data collected during a two month period. PMID:26901663

  9. Automated detection of microaneurysms using robust blob descriptors

    NASA Astrophysics Data System (ADS)

    Adal, K.; Ali, S.; Sidibé, D.; Karnowski, T.; Chaum, E.; Mériaudeau, F.

    2013-03-01

    Microaneurysms (MAs) are among the first signs of diabetic retinopathy (DR) that can be seen as round dark-red structures in digital color fundus photographs of retina. In recent years, automated computer-aided detection and diagnosis (CAD) of MAs has attracted many researchers due to its low-cost and versatile nature. In this paper, the MA detection problem is modeled as finding interest points from a given image and several interest point descriptors are introduced and integrated with machine learning techniques to detect MAs. The proposed approach starts by applying a novel fundus image contrast enhancement technique using Singular Value Decomposition (SVD) of fundus images. Then, Hessian-based candidate selection algorithm is applied to extract image regions which are more likely to be MAs. For each candidate region, robust low-level blob descriptors such as Speeded Up Robust Features (SURF) and Intensity Normalized Radon Transform are extracted to characterize candidate MA regions. The combined features are then classified using SVM which has been trained using ten manually annotated training images. The performance of the overall system is evaluated on Retinopathy Online Challenge (ROC) competition database. Preliminary results show the competitiveness of the proposed candidate selection techniques against state-of-the art methods as well as the promising future for the proposed descriptors to be used in the localization of MAs from fundus images.

  10. Search for pulsations in M dwarfs in the Kepler short-cadence data base

    NASA Astrophysics Data System (ADS)

    Rodríguez, E.; Rodríguez-López, C.; López-González, M. J.; Amado, P. J.; Ocando, S.; Berdiñas, Z. M.

    2016-04-01

    The results of a search for stellar pulsations in M dwarf stars in the Kepler short-cadence (SC) data base are presented. This investigation covers all the cool and dwarf stars in the list of Dressing & Charbonneau, which were also observed in SC mode by the Kepler satellite. The sample has been enlarged via selection of stellar parameters (temperature, surface gravity and radius) with available Kepler Input Catalogue values together with JHK and riz photometry. In total, 87 objects observed by the Kepler mission in SC mode were selected and analysed using Fourier techniques. The detection threshold is below 10 μmag for the brightest objects and below 20 μmag for about 40 per cent of the stars in the sample. However, no significant signal in the [˜10,100] cd-1 frequency domain that can be reliably attributable to stellar pulsations has been detected. The periodograms have also been investigated for solar-like oscillations in the >100 cd-1 region, but with unsuccessful results too. Despite these inconclusive photometric results, M dwarfs pulsation amplitudes may still be detected in radial velocity searches. State-of-the-art coming instruments, like CARMENES near-infrared high-precision spectrograph, will play a key role in the possible detection.

  11. Chloroacetanilide herbicide metabolites in Wisconsin groundwater: 2001 survey results.

    PubMed

    Postle, Jeffrey K; Rheineck, Bruce D; Allen, Paula E; Baldock, Jon O; Cook, Cody J; Zogbaum, Randy; Vandenbrook, James P

    2004-10-15

    A survey of agricultural chemicals in Wisconsin groundwater was conducted between October 2000 and April 2001 to obtain a current picture of agricultural chemicals in groundwater used for private drinking water. A stratified, random sampling procedure was used to select 336 sampling locations. Water from private drinking water wells randomly selected from within the 336 sampling locations was analyzed for 18 compounds including herbicides, herbicide metabolites, and nitrate. This report focuses on the frequency and concentration of chloroacetanilide herbicides and their metabolites. Analysis of data resulted in an estimated proportion of 38+/-5.0% of wells that contained detectable levels of a herbicide or herbicide metabolite. The most commonly detected compound was alachlor ESA with a proportion estimate of 28+/-4.6%. Other detected compounds in order of prevalence were metolachlor ESA, metolachlor OA, alachlor OA, acetochlor ESA, and parent alachlor. Estimates of the mean concentration for the detects ranged from 0.15+/-0.082 microg/L for acetochlor ESA to 1.8+/-0.60 microg/L for alachlor OA. Water quality standards have not been developed for these chloroacetanilide herbicide metabolites. The results of this survey emphasize the need for toxicological assessments of herbicide metabolite compounds and establishment of water quality standards at the state and federal levels.

  12. Blazar Duty-Cycle at Gamma-Ray Frequecies: Constraints From Extragalactic Background Radiation And Prospects for AGILE And GLAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pittori, Carlotta; Cavazzuti, Elisabetta; Colafrancesco, Sergio

    2011-11-29

    We take into account the constraints from the observed extragalactic {gamma}-ray background to estimate the maximum duty cycle allowed for a selected sample of WMAP Blazars, in order to be detectable by AGILE and GLAST {gamma}-ray experiments. For the nominal sensitivity values of both instruments, we identify a subset of sources which can in principle be detectable also in a steady state without over-predicting the extragalactic background. This work is based on the results of a recently derived Blazar radio LogN-LogS obtained by combining several multi-frequency surveys.

  13. Highly Selective and Rapid Breath Isoprene Sensing Enabled by Activated Alumina Filter.

    PubMed

    van den Broek, Jan; Güntner, Andreas T; Pratsinis, Sotiris E

    2018-03-23

    Isoprene is a versatile breath marker for noninvasive monitoring of high blood cholesterol levels as well as for influenza, end-stage renal disease, muscle activity, lung cancer, and liver disease with advanced fibrosis. Its selective detection in complex human breath by portable devices (e.g., metal-oxide gas sensors), however, is still challenging. Here, we present a new filter concept based on activated alumina powder enabling fast and highly selective detection of isoprene at the ppb level and high humidity. The filter contains high surface area adsorbents that retain hydrophilic compounds (e.g., ketones, alcohols, ammonia) representing major interferants in breath while hydrophobic isoprene is not affected. As a proof-of-concept, filters of commercial activated alumina powder are combined with highly sensitive but rather nonspecific, nanostructured Pt-doped SnO 2 sensors. This results in fast (10 s) measurement of isoprene down to 5 ppb at 90% relative humidity with outstanding selectivity (>100) to breath-relevant acetone, ammonia, ethanol, and methanol, superior to state-of-the-art isoprene sensors. Most importantly, when exposed continuously to simulated breath mixtures (four analytes) for 8 days, this filter-sensor system showed stable performance. It can be incorporated readily into a portable breath isoprene analyzer promising for simple-in-use monitoring of blood cholesterol or other patho/physiological conditions.

  14. Evolution of synchrotron-radiation-based Mössbauer absorption spectroscopy for various isotopes

    NASA Astrophysics Data System (ADS)

    Seto, Makoto; Masuda, Ryo; Kobayashi, Yasuhiro; Kitao, Shinji; Kurokuzu, Masayuki; Saito, Makina; Hosokawa, Shuuich; Ishibashi, Hiroki; Mitsui, Takaya; Yoda, Yoshitaka; Mibu, Ko

    2017-11-01

    Synchrotron-radiation-based Mössbauer spectroscopy that yields absorption type Mössbauer spectra has been applied to various isotopes. This method enables the advanced measurement by using the excellent features of synchrotron radiation, such as Mössbauer spectroscopic measurement under high-pressures. Furthermore, energy selectivity of synchrotron radiation allows us to measure 40K Mössbauer spectra, of which observation is impossible by using ordinary radioactive sources because the first excited state of 40K is not populated by any radioactive parent nuclides. Moreover, this method has flexibility of the experimental setup that the measured sample can be used as a transmitter or a scatterer, depending on the sample conditions. To enhance the measurement efficiency of the spectroscopy, we developed a detection system in which a windowless avalanche photodiode (APD) detector is combined with a vacuum cryostat to detect internal conversion electrons adding to X-rays accompanied by nuclear de-excitation. In particular, by selecting the emission from the scatterer sample, depth selective synchrotron-radiation-based Mössbauer spectroscopy is possible. Furthermore, limitation of the time window in the delayed components enables us to obtain narrow linewidth in Mössbauer spectra. Measurement system that records velocity dependent time spectra and energy information simultaneously realizes the depth selective and narrow linewidth measurement.

  15. An excited-state intramolecular photon transfer fluorescence probe for localizable live cell imaging of cysteine

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Chen, Wen; Liu, Si-Jia; Jiang, Jian-Hui

    2017-03-01

    Small molecule probes suitable for selective and specific fluorescence imaging of some important but low-concentration intracellular reactive sulfur species such as cysteine (Cys) pose a challenge in chemical biology. We present a readily available, fast-response fluorescence probe CHCQ-Ac, with 2-(5‧-chloro-2-hydroxyl-phenyl)-6-chloro-4(3 H)-quinazolinone (CHCQ) as the fluorophore and acrylate group as the functional moiety, that enables high-selectivity and high-sensitivity for detecting Cys in both solution and biological system. After specifically reacted with Cys, the probe undergoes a seven-membered intramolecular cyclization and released the fluorophore CHCQ with excited-state intramolecular photon transfer effect. A highly fluorescent, insoluble aggregate was then formed to facilitate high-sensitivity and high-resolution imaging. The results showed that probe CHCQ-Ac affords a remarkably large Stokes shift and can detect Cys under physiological pH condition with no interference from other analytes. Moreover, this probe was proved to have excellent chemical stability, low cytotoxicity and good cell permeability. Our design of this probe provides a novel potential tool to visualize and localize cysteine in bioimaging of live cells that would greatly help to explore various Cys-related physiological and pathological cellular processes in cell biology and diagnostics.

  16. Polyoxyethylene Tallow Amine, a Glyphosate Formulation Adjuvant: Soil Adsorption Characteristics, Degradation Profile, and Occurrence on Selected Soils from Agricultural Fields in Iowa, Illinois, Indiana, Kansas, Mississippi, and Missouri.

    PubMed

    Tush, Daniel; Meyer, Michael T

    2016-06-07

    Polyoxyethylene tallow amine (POEA) is an inert ingredient added to formulations of glyphosate, the most widely applied agricultural herbicide. POEA has been shown to have toxic effects to some aquatic organisms making the potential transport of POEA from the application site into the environment an important concern. This study characterized the adsorption of POEA to soils and assessed its occurrence and homologue distribution in agricultural soils from six states. Adsorption experiments of POEA to selected soils showed that POEA adsorbed much stronger than glyphosate; calcium chloride increased the binding of POEA; and the binding of POEA was stronger in low pH conditions. POEA was detected on a soil sample from an agricultural field near Lawrence, Kansas, but with a loss of homologues that contain alkenes. POEA was also detected on soil samples collected between February and early March from corn and soybean fields from ten different sites in five other states (Iowa, Illinois, Indiana, Missouri, Mississippi). This is the first study to characterize the adsorption of POEA to soil, the potential widespread occurrence of POEA on agricultural soils, and the persistence of the POEA homologues on agricultural soils into the following growing season.

  17. Polyoxyethylene tallow amine, a glyphosate formulation adjuvant: Soil adsorption characteristics, degradation profile, and occurrence on selected soils from agricultural fields in Iowa, Illinois, Indiana, Kansas, Mississippi, and Missouri

    USGS Publications Warehouse

    Tush, Daniel L.; Meyer, Michael T.

    2016-01-01

    Polyoxyethylene tallow amine (POEA) is an inert ingredient added to formulations of glyphosate, the most widely applied agricultural herbicide. POEA has been shown to have toxic effects to some aquatic organisms making the potential transport of POEA from the application site into the environment an important concern. This study characterized the adsorption of POEA to soils and assessed its occurrence and homologue distribution in agricultural soils from six states. Adsorption experiments of POEA to selected soils showed that POEA adsorbed much stronger than glyphosate; calcium chloride increased the binding of POEA; and the binding of POEA was stronger in low pH conditions. POEA was detected on a soil sample from an agricultural field near Lawrence, Kansas, but with a loss of homologues that contain alkenes. POEA was also detected on soil samples collected between February and early March from corn and soybean fields from ten different sites in five other states (Iowa, Illinois, Indiana, Missouri, Mississippi). This is the first study to characterize the adsorption of POEA to soil, the potential widespread occurrence of POEA on agricultural soils, and the persistence of the POEA homologues on agricultural soils into the following growing season.

  18. Microbiological quality assessment of sand and water from three selected beaches of South Coast, São Paulo State, Brazil.

    PubMed

    Pinto, K C; Hachich, E M; Sato, M I Z; Di Bari, M; Coelho, M C L S; Matté, M H; Lamparelli, C C; Razzolini, M T P

    2012-01-01

    This study aimed to assess the sanitary quality of water, and wet and dry sand from three beaches located in the South Coast region of São Paulo State, Brazil, selected taking into account the frequency of tourists and the water quality (good, fair and poor). Thirty-six water samples each of wet and dry sand and seawater were collected monthly over a period of one year and analyzed for fecal indicator bacteria (FIB: thermotolerant coliforms, Escherichia coli, and enterococci), presumptive Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans and dermatophytes. The results revealed FIB concentrations more elevated in dry sand followed by wet sand and water. P. aeruginosa and presumptive S. aureus were detected with a similar frequency in water and sand samples, but maximum concentrations and geometric means were higher in dry sand. C. albicans was detected only in water samples whereas the dermatophyte Microsporum sp. was isolated exclusively from dry and wet sand samples. This evaluation showed also that the environment had a significant influence on P. aeruginosa but not on presumptive S. aureus concentrations. According to threshold values proposed in the literature for E. coli and enterococci dry sand densities, none of the beaches would be considered of sufficient quality for recreational activities.

  19. Selectively active markers for solving of the partial occlusion problem in matchmoving and chromakeying workflow

    NASA Astrophysics Data System (ADS)

    Mazurek, Przemysław

    2013-09-01

    Matchmoving (Match Moving) is the process used for the estimation of camera movements for further integration of acquired video image with computer graphics. The estimation of movements is possible using pattern recognition, 2D and 3D tracking algorithms. The main problem for the workflow is the partial occlusion of markers by the actor, because manual rotoscoping is necessary for fixing of the chroma-keyed footage. In the paper, the partial occlusion problem is solved using the invented, selectively active electronic markers. The sensor network with multiple infrared links detects occlusion state (no-occlusion, partial, full) and switch LED's based markers.

  20. Hardware support for collecting performance counters directly to memory

    DOEpatents

    Gara, Alan; Salapura, Valentina; Wisniewski, Robert W.

    2012-09-25

    Hardware support for collecting performance counters directly to memory, in one aspect, may include a plurality of performance counters operable to collect one or more counts of one or more selected activities. A first storage element may be operable to store an address of a memory location. A second storage element may be operable to store a value indicating whether the hardware should begin copying. A state machine may be operable to detect the value in the second storage element and trigger hardware copying of data in selected one or more of the plurality of performance counters to the memory location whose address is stored in the first storage element.

  1. A National survey of methyl tert-butyl ether and other volatile organic compounds in drinking-water sources: Results of the random source-water survey

    USGS Publications Warehouse

    Grady, Stephen J.

    2002-01-01

    Methyl tert-butyl ether (MTBE) was detected in source water used by 8.7 percent of randomly selected community water systems (CWSs) in the United States at concentrations that ranged from 0.2 to 20 micrograms per liter (μg/L). The Random Survey conducted by the U.S. Geological Survey, in cooperation with the Metropolitan Water District of Southern California and the Oregon Health & Science University, was designed to provide an assessment of the frequency of detection, concentration, and distribution of MTBE, three other ether gasoline oxygenates, and 62 other volatile organic compounds (VOCs) in ground- and surface-water sources used for drinking-water supplies. The Random Survey was the first of two components of a national assessment of the quality of source water supplying CWSs sponsored by the American Water Works Association Research Foundation. A total of 954 CWSs were selected for VOC sampling from the population of nearly 47,000 active, self-supplied CWSs in all 50 States, Native American Lands, and Puerto Rico based on a statistical design that stratified on CWS size (population served), type of source water (ground and surface water), and geographic distribution (State).At a reporting level of 0.2 μg/L, VOCs were detected in 27 percent of source-water samples collected from May 3, 1999 through October 23, 2000. Chloroform (in 13 percent of samples) was the most frequently detected of 42 VOCs present in the source-water samples, followed by MTBE. VOC concentrations were generally less than 10 μg/L 95 percent of the 530 detections and 63 percent were less than 1.0 μg/L. Concentrations of 1,1-dichloroethene, tetrachloroethene, trichloroethene, vinyl chloride, and total trihalomethanes (TTHMs), however, exceeded drinking-water regulations in eight samples.Detections of most VOCs were more frequent in surface-water sources than in ground-water sources, with gasoline compounds collectively and MTBE individually detected significantly more often in surface water. Use of personal and commercial motorized watercraft on surface-water bodies that are drinking-water sources is probably the reason for the elevated detections of gasoline contaminants relative to ground water. MTBE detections demonstrated a seasonal pattern with more frequent detections in surface water in summer months, which is consistent with seasonal watercraft use.The detection frequency of most VOCs was significantly related to urban land use and population density. Detections of any VOC, non-trihalo-methane compounds, gasoline compounds collectively, the specific gasoline compounds benzene, toluene, ethylbenzene, and xylenes (BTEX), MTBE, solvents, and refrigerants were significantly greater in areas with more than 60 percent urban land use and (or) population density greater than 1,000 people per square mile than in source waters from less urbanized or lower population-density areas. MTBE detections were five times more frequent in source waters from areas with high MTBE use than in source waters from low or no MTBE use, but, unlike other gasoline compounds, MTBE detections were not significantly related to the density of gasoline storage tanks near drinking-water sources.

  2. Towards Detection and Diagnosis of Ebola Virus Disease at Point-of-Care

    PubMed Central

    Kaushik, Ajeet; Tiwari, Sneham; Jayant, Rahul Dev; Marty, Aileen; Nair, Madhavan

    2015-01-01

    Ebola outbreak-2014 (mainly Zaire strain related Ebola virus) has been declared most widely spread deadly persistent epidemic due to unavailability of rapid diagnostic, detection, and therapeutics. Ebola virus disease (EVD), a severe viral hemorrhagic fever syndrome caused by Ebola virus (EBOV) is transmitted by direct contact with the body fluids of infected person and objects contaminated with virus or infected animals. World Health Organization (WHO) has declared EVD epidemic as public health emergency of international concern with severe global economic burden. At fatal EBOV infection stage, patients usually die before the antibody response. Currently, rapid blood tests to diagnose EBOV infection include the antigen or antibodies capture using ELISA and RNA detection using RT/Q-PCR within 3–10 days after the onset of symptoms. Moreover, few nanotechnology-based colorimetric and paper-based immunoassay methods have been recently reported to detect Ebola virus. Unfortunately, these methods are limited to laboratory only. As state-of-the art (SoA) diagnostics time to confirm Ebola infection, varies from 6 hours to about 3 days, it causes delay in therapeutic approaches. Thus developing a cost-effective, rapid, sensitive, and selective sensor to detect EVD at point-of-care (POC) is certainly worth exploring to establish rapid diagnostics to decide therapeutics. This review highlights SoA of Ebola diagnostics and also a call to develop rapid, selective and sensitive POC detection of EBOV for global health care. We propose that adopting miniaturized electrochemical EBOV immunosensing can detect virus level at pM concentration within ~40 minute compared to 3 days of ELISA test at nM levels. PMID:26319169

  3. Evaluation of the 3M™ Molecular Detection Assay (MDA) 2 - Salmonella for the Detection of Salmonella spp. in Select Foods and Environmental Surfaces: Collaborative Study, First Action 2016.01.

    PubMed

    Bird, Patrick; Flannery, Jonathan; Crowley, Erin; Agin, James R; Goins, David; Monteroso, Lisa

    2016-07-01

    The 3M™ Molecular Detection Assay (MDA) 2 - Salmonella uses real-time isothermal technology for the rapid and accurate detection of Salmonella spp. from enriched select food, feed, and food-process environmental samples. The 3M MDA 2 - Salmonella was evaluated in a multilaboratory collaborative study using an unpaired study design. The 3M MDA 2 - Salmonella was compared to the U.S. Food and Drug Administration Bacteriological Analytical Manual Chapter 5 reference method for the detection of Salmonella in creamy peanut butter, and to the U.S. Department of Agriculture, Food Safety and Inspection Service Microbiology Laboratory Guidebook Chapter 4.08 reference method "Isolation and Identification of Salmonella from Meat, Poultry, Pasteurized Egg and Catfish Products and Carcass and Environmental Samples" for the detection of Salmonella in raw ground beef (73% lean). Technicians from 16 laboratories located within the continental United States participated. Each matrix was evaluated at three levels of contamination: an uninoculated control level (0 CFU/test portion), a low inoculum level (0.2-2 CFU/test portion), and a high inoculum level (2-5 CFU/test portion). Statistical analysis was conducted according to the probability of detection (POD) statistical model. Results obtained for the low inoculum level test portions produced difference in collaborator POD values of 0.03 (95% confidence interval, -0.10 to 0.16) for raw ground beef and 0.06 (95% confidence interval, -0.06 to 0.18) for creamy peanut butter, indicating no statistically significant difference between the candidate and reference methods.

  4. Widespread molecular detection of Legionella pneumophila Serogroup 1 in cold water taps across the United States.

    PubMed

    Donohue, Maura J; O'Connell, Katharine; Vesper, Stephen J; Mistry, Jatin H; King, Dawn; Kostich, Mitch; Pfaller, Stacy

    2014-03-18

    In the United States, 6,868 cases of legionellosis were reported to the Center for Disease Control and Prevention in 2009-2010. Of these reports, it is estimated that 84% are caused by the microorganism Legionella pneumophila Serogroup (Sg) 1. Legionella spp. have been isolated and recovered from a variety of natural freshwater environments. Human exposure to L. pneumophila Sg1 may occur from aerosolization and subsequent inhalation of household and facility water. In this study, two primer/probe sets (one able to detect L. pneumophila and the other L. pneumophila Sg1) were determined to be highly sensitive and selective for their respective targets. Over 272 water samples, collected in 2009 and 2010 from 68 public and private water taps across the United States, were analyzed using the two qPCR assays to evaluate the incidence of L. pneumophila Sg1. Nearly half of the taps showed the presence of L. pneumophila Sg1 in one sampling event, and 16% of taps were positive in more than one sampling event. This study is the first United States survey to document the occurrence and colonization of L. pneumophila Sg1 in cold water delivered from point of use taps.

  5. Biosensor-based microRNA detection: techniques, design, performance, and challenges.

    PubMed

    Johnson, Blake N; Mutharasan, Raj

    2014-04-07

    The current state of biosensor-based techniques for amplification-free microRNA (miRNA) detection is critically reviewed. Comparison with non-sensor and amplification-based molecular techniques (MTs), such as polymerase-based methods, is made in terms of transduction mechanism, associated protocol, and sensitivity. Challenges associated with miRNA hybridization thermodynamics which affect assay selectivity and amplification bias are briefly discussed. Electrochemical, electromechanical, and optical classes of miRNA biosensors are reviewed in terms of transduction mechanism, limit of detection (LOD), time-to-results (TTR), multiplexing potential, and measurement robustness. Current trends suggest that biosensor-based techniques (BTs) for miRNA assay will complement MTs due to the advantages of amplification-free detection, LOD being femtomolar (fM)-attomolar (aM), short TTR, multiplexing capability, and minimal sample preparation requirement. Areas of future importance in miRNA BT development are presented which include focus on achieving high measurement confidence and multiplexing capabilities.

  6. A highly sensitive and selective fluorimetric probe for intracellular peroxynitrite based on photoinduced electron transfer from ferrocene to carbon dots.

    PubMed

    Zhu, Jiali; Sun, Shan; Jiang, Kai; Wang, Yuhui; Liu, Wenqing; Lin, Hengwei

    2017-11-15

    Herein, a highly sensitive and selective fluorimetric nanoprobe for peroxynitrite (ONOO - ) detection based on photoinduced electron transfer (PET) from ferrocene (Fc) to carbon dots (CDs) is reported. The nanoprobe (named CDs-Fc) can be facilely constructed through covalently conjugating CDs and ferrocenecarboxylic acid. Further studies reveal that the energy level of highest occupied molecular orbital (HOMO) of the CDs is lowered with the addition of ONOO - due to its oxidation and nitration capabilities. Thus, an efficient electron transfer from Fc to the excited states of CDs could occur, leading to obvious fluorescence quenching. The fluorescence quenching of the nanoprobe was determined to be peroxynitrite concentrations dependence with a linear range between 4nM to 0.12μM. Thanks to the excellent optical properties of the CDs and efficient electron transfer efficiency from Fc to the excited CDs, the nanoprobe exhibits very high sensitivity to ONOO - with a limit of detection (LOD) of 2.9nM. To the best of our knowledge, this LOD is the highest reported value till today for the detection of peroxynitrite. Besides, the nanoprobe also shows excellent selectivity to ONOO - among a broad range of substances, even including other reactive oxygen/nitrogen species (ROS/RNS). Finally, the nanoprobe was verified to be very low cytotoxicity, and was successfully applied for intracellular ONOO - detection. This work would provide a promising tool for the research of ONOO - in cytobiology and disease diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Herpes Simplex Virus Type 2 Suppressive Therapy with Acyclovir or Valacyclovir Does Not Select for Specific HIV-1 Resistance in HIV-1/HSV-2 Dually Infected Persons

    PubMed Central

    Lingappa, Jairam; Beck, Ingrid; Frenkel, Lisa M.; Pepper, Gregory; Celum, Connie; Wald, Anna; Fife, Kenneth H.; Were, Edwin; Mugo, Nelly; Sanchez, Jorge; Essex, Myron; Makhema, Joseph; Kiarie, James; Farquhar, Carey; Corey, Lawrence

    2011-01-01

    Recent in vitro studies suggest that acyclovir may directly inhibit HIV-1 replication and can select for a specific HIV-1 reverse transcriptase mutation (V75I) with concomitant loss of an anti-HIV-1 effect. We tested for HIV-1 genotypic resistance at reverse transcriptase codon 75 in plasma from 168 HIV-1–infected persons from Botswana, Kenya, Peru, and the United States taking daily acyclovir or valacyclovir for between 8 weeks and 24 months. No V75I cases were detected (95% confidence interval, 0%–2.2%). These prospective in vivo studies suggest that standard-dose acyclovir or valacyclovir does not select for HIV-1 resistance. PMID:21148504

  8. Flood-inundation maps and updated components for a flood-warning system or the City of Marietta, Ohio and selected communities along the Lower Muskingum River and Ohio River

    USGS Publications Warehouse

    Whitehead, Matthew T.; Ostheimer, Chad J.

    2014-01-01

    Flood profiles for selected reaches were prepared by calibrating steady-state step-backwater models to selected streamgage rating curves. The step-backwater models were used to determine water-surface-elevation profiles for up to 12 flood stages at a streamgage with corresponding stream-flows ranging from approximately the 10- to 0.2-percent chance annual-exceedance probabilities for each of the 3 streamgages that correspond to the flood-inundation maps. Additional hydraulic modeling was used to account for the effects of backwater from the Ohio River on water levels in the Muskingum River. The computed longitudinal profiles of flood levels were used with a Geographic Information System digital elevation model (derived from light detection and ranging) to delineate flood-inundation areas. Digital maps showing flood-inundation areas overlain on digital orthophotographs were prepared for the selected floods.

  9. Automatic Detection of Previously-Unseen Application States for Deployment Environment Testing and Analysis

    PubMed Central

    Murphy, Christian; Vaughan, Moses; Ilahi, Waseem; Kaiser, Gail

    2010-01-01

    For large, complex software systems, it is typically impossible in terms of time and cost to reliably test the application in all possible execution states and configurations before releasing it into production. One proposed way of addressing this problem has been to continue testing and analysis of the application in the field, after it has been deployed. A practical limitation of many such automated approaches is the potentially high performance overhead incurred by the necessary instrumentation. However, it may be possible to reduce this overhead by selecting test cases and performing analysis only in previously-unseen application states, thus reducing the number of redundant tests and analyses that are run. Solutions for fault detection, model checking, security testing, and fault localization in deployed software may all benefit from a technique that ignores application states that have already been tested or explored. In this paper, we present a solution that ensures that deployment environment tests are only executed in states that the application has not previously encountered. In addition to discussing our implementation, we present the results of an empirical study that demonstrates its effectiveness, and explain how the new approach can be generalized to assist other automated testing and analysis techniques intended for the deployment environment. PMID:21197140

  10. Making every word count for nonresponsive patients.

    PubMed

    Naci, Lorina; Owen, Adrian M

    2013-10-01

    Despite the apparent absence of external signs of consciousness, a significant small proportion of patients with disorders of consciousness can respond to commands by willfully modulating their brain activity, even respond to yes or no questions, by performing mental imagery tasks. However, little is known about the mental life of such responsive patients, for example, with regard to whether they can have coherent thoughts or selectively maintain attention to specific events in their environment. The ability to selectively pay attention would provide evidence of a patient's preserved cognition and a method for brain-based communication, thus far untested with functional magnetic resonance imaging in this patient group. To test whether selective auditory attention can be used to detect conscious awareness and communicate with behaviorally nonresponsive patients. Case study performed in 3 patients with severe brain injury, 2 diagnosed as being in a minimally conscious state and 1 as being in a vegetative state. The patients constituted a convenience sample. Functional magnetic resonance imaging data were acquired as the patients were asked to selectively attend to auditory stimuli, thereby conveying their ability to follow commands and communicate. All patients demonstrated command following according to instructions. Two patients (1 in a minimally conscious state and 1 in a vegetative state) were also able to guide their attention to repeatedly communicate correct answers to binary (yes or no) questions. To our knowledge, we show for the first time with functional magnetic resonance imaging that behaviorally nonresponsive patients can use selective auditory attention to convey their ability to follow commands and communicate. One patient in a minimally conscious state was able to use attention to establish functional communication in the scanner, despite his inability to produce any communication responses in repeated bedside examinations. More important, 1 patient, who had been in a vegetative state for 12 years before the scanning and subsequent to it, was able to use attention to correctly communicate answers to several binary questions. The technique may be useful in establishing basic communication with patients who appear unresponsive to bedside examinations and cannot respond with existing neuroimaging methods.

  11. Differential sea-state bias: A case study using TOPEX/POSEIDON data

    NASA Technical Reports Server (NTRS)

    Stewart, Robert H.; Devalla, B.

    1994-01-01

    We used selected data from the NASA altimeter TOPEX/POSEIDON to calculate differences in range measured by the C and Ku-band altimeters when the satellite overflew 5 to 15 m waves late at night. The range difference is due to free electrons in the ionosphere and to errors in sea-state bias. For the selected data the ionospheric influence on Ku range is less than 2 cm. Any difference in range over short horizontal distances is due only to a small along-track variability of the ionosphere and to errors in calculating the differential sea-state bias. We find that there is a barely detectable error in the bias in the geophysical data records. The wave-induced error in the ionospheric correction is less than 0.2% of significant wave height. The equivalent error in differential range is less than 1% of wave height. Errors in the differential sea-state bias calculations appear to be small even for extreme wave heights that greatly exceed the conditions on which the bias is based. The results also improved our confidence in the sea-state bias correction used for calculating the geophysical data records. Any error in the correction must influence Ku and C-band ranges almost equally.

  12. β-Dicyanovinyl substituted porphyrinogen: synthesis, a reversible sensor for picric acid among explosives and a unique sensor for cyanide and fluoride ions by switching between various porphyrinoid states.

    PubMed

    Chahal, Mandeep K; Sankar, Muniappan

    2017-09-12

    β-Dicyanovinyl substituted porphyrinogen (OxP-MN) was synthesized and utilized as a novel multifunctional sensor for the detection of biologically and environmentally important analytes. OxP-MN (1) acts as a selective and reversible probe for rapid colorimetric detection of picric acid (PA) among other nitroaromatics by switching between two porphyrinoid states. This system displayed a higher β 2 value of 1.7 × 10 8 M -2 and was able to detect PA down to 1.12 ppm (4.99 μM). β-Dicyanovinyl substituted porphyrinogen (OxP-MN) reported here contains a porphyrinogen anion binding site and a dicyanovinyl group as a cyanide-dependent reactive subunit. OxP-MN displayed the first evidence that a β-electron acceptor through a vinyl linker in the case of porphyrinogen results in only an abated shift in the spectrum in contrast to its porphyrin analogues. Porphyrinogen OxP-MN (1) can be switched between a number of porphyrinoid states such as metalloporphodimethene, metalloporphyrin, porphyrinogen, etc. by using CN - , F - and other basic anions. In addition, OxP-MN unveils the unique property of detecting toxic cyanide ions and fluoride ions when "hidden" within a mixture of other anions. Also, OxP-MN behaves as a dual sensor for picric acid and basic anions such as F - , CN - , OAc - , and H 2 PO 4 - via the indicator displacement assay under the unrestricted queue.

  13. Robust Cell Detection of Histopathological Brain Tumor Images Using Sparse Reconstruction and Adaptive Dictionary Selection

    PubMed Central

    Su, Hai; Xing, Fuyong; Yang, Lin

    2016-01-01

    Successful diagnostic and prognostic stratification, treatment outcome prediction, and therapy planning depend on reproducible and accurate pathology analysis. Computer aided diagnosis (CAD) is a useful tool to help doctors make better decisions in cancer diagnosis and treatment. Accurate cell detection is often an essential prerequisite for subsequent cellular analysis. The major challenge of robust brain tumor nuclei/cell detection is to handle significant variations in cell appearance and to split touching cells. In this paper, we present an automatic cell detection framework using sparse reconstruction and adaptive dictionary learning. The main contributions of our method are: 1) A sparse reconstruction based approach to split touching cells; 2) An adaptive dictionary learning method used to handle cell appearance variations. The proposed method has been extensively tested on a data set with more than 2000 cells extracted from 32 whole slide scanned images. The automatic cell detection results are compared with the manually annotated ground truth and other state-of-the-art cell detection algorithms. The proposed method achieves the best cell detection accuracy with a F1 score = 0.96. PMID:26812706

  14. Solid state gas sensors for detection of explosives and explosive precursors

    NASA Astrophysics Data System (ADS)

    Chu, Yun

    The increased number of terrorist attacks using improvised explosive devices (IEDs) over the past few years has made the trace detection of explosives a priority for the Department of Homeland Security. Considerable advances in early detection of trace explosives employing spectroscopic detection systems and other sensing devices have been made and have demonstrated outstanding performance. However, modern IEDs are not easily detectable by conventional methods and terrorists have adapted to avoid using metallic or nitro groups in the manufacturing of IEDs. Instead, more powerful but smaller compounds, such as TATP are being more frequently used. In addition, conventional detection techniques usually require large capital investment, labor costs and energy input and are incapable of real-time identification, limiting their application. Thus, a low cost detection system which is capable of continuous online monitoring in a passive mode is needed for explosive detection. In this dissertation, a thermodynamic based thin film gas sensor which can reliably detect various explosive compounds was developed and demonstrated. The principle of the sensors is based on measuring the heat effect associated with the catalytic decomposition of explosive compounds present in the vapor phase. The decomposition mechanism is complicated and not well known, but it can be affected by many parameters including catalyst, reaction temperature and humidity. Explosives that have relatively high vapor pressure and readily sublime at room temperature, like TATP and 2, 6-DNT, are ideal candidate for vapor phase detection using the thermodynamic gas sensor. ZnO, W2O 3, V2O5 and SnO2 were employed as catalysts. This sensor exhibited promising sensitivity results for TATP, but poor selectivity among peroxide based compounds. In order to improve the sensitivity and selectivity of the thermodynamic sensor, a Pd:SnO2 nanocomposite was fabricated and tested as part of this dissertation. A combinatorial chemistry techniques were used for catalyst discovery. Specially, a series of tin oxide catalysts with continuous varying composition of palladium were fabricated to screen for the optimum Pd loading to maximize specificity. Experimental results suggested that sensors with a 12 wt.% palladium loading generated the highest sensitivity while a 8 wt.% palladium loading provided greatest selectivity. XPS and XRD were used to study how palladium doping level affects the oxidation state and crystal structure of the nanocomposite catalyst. As with any passive detection system, a necessary theme of this dissertation was the mitigation of false positive. Toward this end, an orthogonal detection system comprised of two independent sensing platforms sharing one catalyst was demonstrated using TATP, 2, 6-DNT and ammonium nitrate as target molecules. The orthogonal sensor incorporated a thermodynamic based sensing platform to measure the heat effect associated with the decomposition of explosive molecules, and a conductometric sensing platform that monitors the change in electrical conductivity of the same catalyst when exposed to the explosive substances. Results indicate that the orthogonal sensor generates an effective response to explosives presented at part per billion level. In addition, with two independent sensing platforms, a built-in redundancy of results could be expected to minimize false positive.

  15. Viscoelasticity and texture of spreadable cheeses with different fat contents at refrigeration and room temperatures.

    PubMed

    Bayarri, S; Carbonell, I; Costell, E

    2012-12-01

    The effect of the 2 common consumption temperatures, refrigeration temperature (10°C) and room temperature (22°C), on the viscoelasticity, mechanical properties, and perceived texture of commercial cream cheeses was studied. Two samples with different fat contents, regular and low fat, from each of 4 selected commercial brands were analyzed. The selection criteria were based on identification of brands with different percentages of fat content reduction between the regular- and low-fat samples (35, 50, 84, and 98.5%). The fat content of regular-fat samples ranged from 19.8 to 26.0% (wt/wt), and that of low-fat samples ranged from 0.3 to 13.0% (wt/wt). Viscoelasticity was measured in a controlled-stress rheometer using parallel-plate geometry, and the mechanical characteristics of samples were measured using the spreadability test. Differences in the intensity of thickness, creaminess, and roughness between the regular- and low-fat samples of each commercial brand were evaluated at each of the selected temperatures by using the paired comparisons test. At 10°C, all samples showed higher viscoelastic modulus values, firmness, and stickiness, and lower spreadability than when they were measured at 22°C. Differences in viscoelasticity and mechanical properties between each pair of samples of the same brand were greater at 10°C than at 22°C because of the influence not only of fat content but also of fat state. Ingestion temperature did not modify the sensory differences detected between each pair of samples in terms of creaminess and roughness, but it did modify the differences detected in thickness. The joint consideration of sample composition, fat state, and product behavior during oral processing could explain the differences detected in thickness perceived because of measurement temperatures. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Gossip and Distributed Kalman Filtering: Weak Consensus Under Weak Detectability

    NASA Astrophysics Data System (ADS)

    Kar, Soummya; Moura, José M. F.

    2011-04-01

    The paper presents the gossip interactive Kalman filter (GIKF) for distributed Kalman filtering for networked systems and sensor networks, where inter-sensor communication and observations occur at the same time-scale. The communication among sensors is random; each sensor occasionally exchanges its filtering state information with a neighbor depending on the availability of the appropriate network link. We show that under a weak distributed detectability condition: 1. the GIKF error process remains stochastically bounded, irrespective of the instability properties of the random process dynamics; and 2. the network achieves \\emph{weak consensus}, i.e., the conditional estimation error covariance at a (uniformly) randomly selected sensor converges in distribution to a unique invariant measure on the space of positive semi-definite matrices (independent of the initial state.) To prove these results, we interpret the filtered states (estimates and error covariances) at each node in the GIKF as stochastic particles with local interactions. We analyze the asymptotic properties of the error process by studying as a random dynamical system the associated switched (random) Riccati equation, the switching being dictated by a non-stationary Markov chain on the network graph.

  17. Color-selective attention need not be mediated by spatial attention.

    PubMed

    Andersen, Søren K; Müller, Matthias M; Hillyard, Steven A

    2009-06-08

    It is well-established that attention can select stimuli for preferential processing on the basis of non-spatial features such as color, orientation, or direction of motion. Evidence is mixed, however, as to whether feature-selective attention acts by increasing the signal strength of to-be-attended features irrespective of their spatial locations or whether it acts by guiding the spotlight of spatial attention to locations containing the relevant feature. To address this question, we designed a task in which feature-selective attention could not be mediated by spatial selection. Participants observed a display of intermingled dots of two colors, which rapidly and unpredictably changed positions, with the task of detecting brief intervals of reduced luminance of 20% of the dots of one or the other color. Both behavioral indices and electrophysiological measures of steady-state visual evoked potentials showed selectively enhanced processing of the attended-color items. The results demonstrate that feature-selective attention produces a sensory gain enhancement at early levels of the visual cortex that occurs without mediation by spatial attention.

  18. Wave packet interferometry and quantum state reconstruction by acousto-optic phase modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tekavec, Patrick F.; Dyke, Thomas R.; Marcus, Andrew H.

    2006-11-21

    Studies of wave packet dynamics often involve phase-selective measurements of coherent optical signals generated from sequences of ultrashort laser pulses. In wave packet interferometry (WPI), the separation between the temporal envelopes of the pulses must be precisely monitored or maintained. Here we introduce a new (and easy to implement) experimental scheme for phase-selective measurements that combines acousto-optic phase modulation with ultrashort laser excitation to produce an intensity-modulated fluorescence signal. Synchronous detection, with respect to an appropriately constructed reference, allows the signal to be simultaneously measured at two phases differing by 90 deg. Our method effectively decouples the relative temporal phasemore » from the pulse envelopes of a collinear train of optical pulse pairs. We thus achieve a robust and high signal-to-noise scheme for WPI applications, such as quantum state reconstruction and electronic spectroscopy. The validity of the method is demonstrated, and state reconstruction is performed, on a model quantum system - atomic Rb vapor. Moreover, we show that our measurements recover the correct separation between the absorptive and dispersive contributions to the system susceptibility.« less

  19. One step beyond the electric dipole approximation: An experiment to observe the 5p → 6p forbidden transition in atomic rubidium

    NASA Astrophysics Data System (ADS)

    Ponciano-Ojeda, F.; Hernández-Gómez, S.; Mojica-Casique, C.; Ruiz-Martínez, E.; López-Hernández, O.; Colín-Rodríguez, R.; Ramírez-Martínez, F.; Flores-Mijangos, J.; Sahagún, D.; Jáuregui, R.; Jiménez-Mier, J.

    2018-01-01

    An advanced undergraduate experiment to study the 5 P 3 / 2 → 6 P 3 / 2 electric quadrupole transition in rubidium atoms is presented. The experiment uses two external cavity diode lasers, one operating at the D2 rubidium resonance line and the other built with commercial parts to emit at 911 nm. The lasers produce the 5 s → 5 p → 6 p excitation sequence in which the second step is the forbidden transition. Production of atoms in the 6 P 3 / 2 state is observed by detection of the 420 nm fluorescence that results from electric dipole decay into the ground state. Lines whose widths are significantly narrower than the Doppler width are used to study the hyperfine structure of the 6 P 3 / 2 state in rubidium. The spectra illustrate characteristics unique to electric dipole forbidden transitions, like the electric quadrupole selection rules; they are also used to show general aspects of two-color laser spectroscopy such as velocity selection and hyperfine pumping.

  20. 46 CFR 108.404 - Selection of fire detection system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Selection of fire detection system. 108.404 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.404 Selection of fire detection system. (a) If a... space. (b) The fire detection system must be designed to minimize false alarms. ...

  1. Impedance biosensor for the rapid detection of Listeria spp. based on aptamer functionalized Pt-interdigitated microelectrodes array

    NASA Astrophysics Data System (ADS)

    Sidhu, R.; Rong, Y.; Vanegas, D. C.; Claussen, J.; McLamore, E. S.; Gomes, C.

    2016-05-01

    Listeria monocytogenes is one of the most common causes of food illness deaths worldwide, with multiple outbreaks in the United States alone. Current methods to detect foodborne pathogens are laborious and can take several hours to days to produce results. Thus, faster techniques are needed to detect bacteria within the same reliability level as traditional techniques. This study reports on a rapid, accurate, and sensitive aptamer biosensor device for Listeria spp. detection based on platinum interdigitated array microelectrodes (Pt-IDEs). Pt-IDEs with different geometric electrode gaps were fabricated by lithographic techniques and characterized by cyclic voltammetric (CV), electrochemical impedance spectroscopy (EIS), and potential amperometry (DCPA) measurements of reversible redox species. Based on these results, 50 μm Pt-IDE was chosen to further functionalize with a Listeria monocytogenes DNA aptamer selective to the cell surface protein internalin A, via metal-thiol self-assembly at the 5' end of the 47-mer's. EIS analysis was used to detect Listeria spp. without the need for label amplification and pre-concentration steps. The optimized aptamer concentration of 800 nM was selected to capture the bacteria through internalin A binding and the aptamer hairpin structure near the 3' end. The aptasensor was capable of detecting a wide range of bacteria concentration from 10 to 106 CFU/mL at lower detection limit of 5.39 +/- 0.21 CFU/mL with sensitivity of 268.1 +/- 25.40 (Ohms/log [CFU/mL]) in 17 min. The aptamer based biosensor offers a portable, rapid and sensitive alternative for food safety applications with one of the lowest detection limits reported to date.

  2. Temporal trends in water-quality constituent concentrations and annual loads of chemical constituents in Michigan watersheds, 1998–2013

    USGS Publications Warehouse

    Hoard, Christopher J.; Fogarty, Lisa R.; Duris, Joseph W.

    2018-02-21

    In 1998, the Michigan Department of Environmental Quality and the U.S. Geological Survey began the Water Chemistry Monitoring Program for select streams in the State of Michigan. Objectives of this program were to provide assistance with (1) statewide water-quality assessments, (2) the National Pollutant Discharge Elimination System permitting process, and (3) water-resource management decisions. As part of this program, water-quality data collected from 1998 to 2013 were analyzed to identify potential trends for select constituents that were sampled. Sixteen water-quality constituents were analyzed at 32 stations throughout Michigan. Trend analysis on the various water-quality data was done using either the uncensored Seasonal Kendall test or through Tobit regression. In total, 79 trends were detected in the constituents analyzed for 32 river stations sampled for the study period—53 downward trends and 26 upward trends were detected. The most prevalent trend detected throughout the State was for ammonia, with 11 downward trends and 1 upward trend estimated.In addition to trends, constituent loads were estimated for 31 stations from 2002 to 2013 for stations that were sampled 12 times per year. Loads were computed using the Autobeale load computation program, which used the Beale ratio estimator approach to estimate an annual load. Constituent loads were the largest in large watershed streams with the highest annual flows such as the Saginaw and Grand Rivers. Likewise, constituent loads were the smallest in smaller tributaries that were sampled as part of this program such as the Boardman and Thunder Bay Rivers.

  3. Reliable quantum certification of photonic state preparations

    PubMed Central

    Aolita, Leandro; Gogolin, Christian; Kliesch, Martin; Eisert, Jens

    2015-01-01

    Quantum technologies promise a variety of exciting applications. Even though impressive progress has been achieved recently, a major bottleneck currently is the lack of practical certification techniques. The challenge consists of ensuring that classically intractable quantum devices perform as expected. Here we present an experimentally friendly and reliable certification tool for photonic quantum technologies: an efficient certification test for experimental preparations of multimode pure Gaussian states, pure non-Gaussian states generated by linear-optical circuits with Fock-basis states of constant boson number as inputs, and pure states generated from the latter class by post-selecting with Fock-basis measurements on ancillary modes. Only classical computing capabilities and homodyne or hetorodyne detection are required. Minimal assumptions are made on the noise or experimental capabilities of the preparation. The method constitutes a step forward in many-body quantum certification, which is ultimately about testing quantum mechanics at large scales. PMID:26577800

  4. Highly selective and sensitive turn-on fluorescent sensor for detection of Al3+ based on quinoline-base Schiff base.

    PubMed

    Wang, Yang; Ma, Zhong-Ying; Zhang, De-Long; Deng, Jia-Li; Chen, Xiong; Xie, Cheng-Zhi; Qiao, Xin; Li, Qing-Zhong; Xu, Jing-Yuan

    2018-04-15

    A new aluminum ion fluorescent probe (4-(diethylamino)-2-hydroxybenzylidene)isoquinoline-1-carbohydrazide (HL 1 ) has been conveniently synthesized and characterized. HL 1 exhibited a highly selective and pronounced enhancement for Al 3+ in the fluorescence emission over other common cations by forming a 2:1 complex, with a recognition mechanism based on excited-state intramolecular proton transfer (ESIPT) and intramolecular charge transfer (ICT). The strong fluorescent emission can be observed even at ppm level concentration of the probe in the presence of Al 3+ with 41 fold intensity enhancement at 545 nm. HL 1 displays good linear relationship with Al 3+ in the low concentration and the limit of detection is 8.08 × 10 -8  mol/L. Similar molecules with different substituents on salicylaldehyde phenyl ring were synthesized for studying the structure-activity relationship. Density-functional theory (DFT) calculations are in agreement with the proposed mechanism. It is confirmed that HL 1 could be used to detect Al 3+ ions in real sample by fluorescence spectrometry and Al 3+ ions in cells by bioimaging. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Aptamer-Based Methods for Detection of Circulating Tumor Cells and Their Potential for Personalized Diagnostics.

    PubMed

    Zamay, Anna S; Zamay, Galina S; Kolovskaya, Olga S; Zamay, Tatiana N; Berezovski, Maxim V

    2017-01-01

    Cancer diagnostics and treatment monitoring rely on sensing and counting of rare cells such as cancer circulating tumor cells (CTCs) in blood. Many analytical techniques have been developed to reliably detect and quantify CTCs using unique physical shape and size of tumor cells and/or distinctive patterns of cell surface biomarkers. Main problems of CTC bioanalysis are in the small number of cells that are present in the circulation and heterogeneity of CTCs. In this chapter, we describe recent progress towards the selection and application of synthetic DNA or RNA aptamers to capture and detect CTCs in blood. Antibody-based approaches for cell isolation and purification are limited because of an antibody's negative effect on cell viability and purity. Aptamers transform cell isolation technology, because they bind and release cells on-demand. The unique feature of anti-CTC aptamers is that the aptamers are selected for cell surface biomarkers in their native state, and conformation without previous knowledge of their biomarkers. Once aptamers are produced, they can be used to identify CTC biomarkers using mass spectrometry. The biomarkers and corresponding aptamers can be exploited to improve cancer diagnostics and therapies .

  6. Adsorption of gas molecules on a manganese phthalocyanine molecular device and its possibility as a gas sensor.

    PubMed

    Zou, Dongqing; Zhao, Wenkai; Cui, Bin; Li, Dongmei; Liu, Desheng

    2018-01-17

    A theoretical investigation of the gas detection performance of manganese(ii) phthalocyanine (MnPc) molecular junctions for six different gases (NO, CO, O 2 , CO 2 , NO 2 , and NH 3 ) is executed through a non-equilibrium Green's function technique in combination with spin density functional theory. Herein, we systematically studied the adsorption structural configurations, the adsorption energy, the charge transfer, and the spin transport properties of the MnPc molecular junctions with these gas adsorbates. Remarkably, NO adsorption can achieve an off-state of the Mn spin; this may be an effective measure to switch the molecular spin. In addition, our results indicate that by measuring spin filter efficiency and the changes in total current through the molecular junctions, the CO, NO, O 2 , and NO 2 gas molecules can be detected selectively. However, the CO 2 and NH 3 gas adsorptions are difficult to be detected due to weak van der Waals interaction between these two gases and central Mn atom. Our findings provide important clues to the application of nanosensors for highly sensitive and selective based on MnPc molecular junction systems.

  7. Subcarrier multiplexing with dispersion reduction and direct detection

    DOEpatents

    Sargis, Paul D.; Haigh, Ronald E.; McCammon, Kent G.

    1997-01-01

    An SCM system for simultaneously reducing the concomitant problems of receiver complexity and dispersion penalty and without requiring the use of an expensive, high-bandwidth optical detector. The system provides both a dispersion reduction and a direct detection to the receiver, with microwave mixers and lithium niobate external modulators that produce sidebands that are only separated by a few gigahertz from a principal laser optical carrier. Digital data streams are independently impressed upon these sidebands for transmission over an ordinary single-mode fiber. Independent high-speed data streams are upconverted to microwave frequencies. These subcarriers are then combined with a microwave power combiner and amplified with a microwave amplifier. A solid-state 1550-nm laser carrier is modulated by the microwave subcarriers. An erbium-doped fiber amplifier (EDFA) is used just prior to long-distance transmission over ordinary single-mode fiber. The transmitted optical signal may then traverse multiple EDFAs to compensate for long-haul optical fiber losses prior to detection. At a receiving end, the optical signal is split into multiple paths. The subcarrier channels are optically pre-selected using a narrowband optical filter, such as a fiber Fabry-Perot (FFP) filter. An optical detector converts the selected optical signal into a baseband electrical data stream.

  8. Emotion and anxiety potentiate the way attention alters visual appearance.

    PubMed

    Barbot, Antoine; Carrasco, Marisa

    2018-04-12

    The ability to swiftly detect and prioritize the processing of relevant information around us is critical for the way we interact with our environment. Selective attention is a key mechanism that serves this purpose, improving performance in numerous visual tasks. Reflexively attending to sudden information helps detect impeding threat or danger, a possible reason why emotion modulates the way selective attention affects perception. For instance, the sudden appearance of a fearful face potentiates the effects of exogenous (involuntary, stimulus-driven) attention on performance. Internal states such as trait anxiety can also modulate the impact of attention on early visual processing. However, attention does not only improve performance; it also alters the way visual information appears to us, e.g. by enhancing perceived contrast. Here we show that emotion potentiates the effects of exogenous attention on both performance and perceived contrast. Moreover, we found that trait anxiety mediates these effects, with stronger influences of attention and emotion in anxious observers. Finally, changes in performance and appearance correlated with each other, likely reflecting common attentional modulations. Altogether, our findings show that emotion and anxiety interact with selective attention to truly alter how we see.

  9. A Negative Selection Immune System Inspired Methodology for Fault Diagnosis of Wind Turbines.

    PubMed

    Alizadeh, Esmaeil; Meskin, Nader; Khorasani, Khashayar

    2017-11-01

    High operational and maintenance costs represent as major economic constraints in the wind turbine (WT) industry. These concerns have made investigation into fault diagnosis of WT systems an extremely important and active area of research. In this paper, an immune system (IS) inspired methodology for performing fault detection and isolation (FDI) of a WT system is proposed and developed. The proposed scheme is based on a self nonself discrimination paradigm of a biological IS. Specifically, the negative selection mechanism [negative selection algorithm (NSA)] of the human body is utilized. In this paper, a hierarchical bank of NSAs are designed to detect and isolate both individual as well as simultaneously occurring faults common to the WTs. A smoothing moving window filter is then utilized to further improve the reliability and performance of the FDI scheme. Moreover, the performance of our proposed scheme is compared with another state-of-the-art data-driven technique, namely the support vector machines (SVMs) to demonstrate and illustrate the superiority and advantages of our proposed NSA-based FDI scheme. Finally, a nonparametric statistical comparison test is implemented to evaluate our proposed methodology with that of the SVM under various fault severities.

  10. T-DNA-genome junctions form early after infection and are influenced by the chromatin state of the host genome

    PubMed Central

    Tripathi, Pooja; Muth, Theodore R.

    2017-01-01

    Agrobacterium tumefaciens mediated T-DNA integration is a common tool for plant genome manipulation. However, there is controversy regarding whether T-DNA integration is biased towards genes or randomly distributed throughout the genome. In order to address this question, we performed high-throughput mapping of T-DNA-genome junctions obtained in the absence of selection at several time points after infection. T-DNA-genome junctions were detected as early as 6 hours post-infection. T-DNA distribution was apparently uniform throughout the chromosomes, yet local biases toward AT-rich motifs and T-DNA border sequence micro-homology were detected. Analysis of the epigenetic landscape of previously isolated sites of T-DNA integration in Kanamycin-selected transgenic plants showed an association with extremely low methylation and nucleosome occupancy. Conversely, non-selected junctions from this study showed no correlation with methylation and had chromatin marks, such as high nucleosome occupancy and high H3K27me3, that correspond to three-dimensional-interacting heterochromatin islands embedded within euchromatin. Such structures may play a role in capturing and silencing invading T-DNA. PMID:28742090

  11. Ion-selective detection by plasticized poly(vinyl chloride) membrane in glass nanopipette with alternating voltage modulation.

    PubMed

    Deng, Xiao Long; Takami, Tomohide; Son, Jong Wan; Kang, Eun Ji; Kawai, Tomoji; Park, Bae Ho

    2013-08-01

    An alternating current (AC) voltage modulation was applied to ion-selective observations with plasticized poly(vinyl chloride) membranes in glass nanopipettes. The liquid confronting the membranes in the nanopipettes, the conditioning process, and AC voltage modulation play important roles in the ion-selective detection. In the AC detection system developed by us, where distilled water was used as the liquid within the nanopipettes, potassium ions were selectively detected in the sample solution of sodium and potassium ions because sodium ions were captured at the membrane containing bis(12-crown-4) ionophores, before the saturation of the ionophores. The membrane lost the selectivity after the saturation. On using sodium chloride as the liquid within the nanopipette, the membrane selectively detected potassium and sodium ions before and after the saturation of ionophores, respectively. The ion-selective detection of our system can be explained by the ion extraction-diffusion-dissolution mechanism through the bis(12-crown-4) ionophores with AC voltage modulation.

  12. Micro Ring Grating Spectrometer with Adjustable Aperture

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor); Choi, Sang H. (Inventor)

    2012-01-01

    A spectrometer includes a micro-ring grating device having coaxially-aligned ring gratings for diffracting incident light onto a target focal point, a detection device for detecting light intensity, one or more actuators, and an adjustable aperture device defining a circular aperture. The aperture circumscribes a target focal point, and directs a light to the detection device. The aperture device is selectively adjustable using the actuators to select a portion of a frequency band for transmission to the detection device. A method of detecting intensity of a selected band of incident light includes directing incident light onto coaxially-aligned ring gratings of a micro-ring grating device, and diffracting the selected band onto a target focal point using the ring gratings. The method includes using an actuator to adjust an aperture device and pass a selected portion of the frequency band to a detection device for measuring the intensity of the selected portion.

  13. A Robust Shape Reconstruction Method for Facial Feature Point Detection.

    PubMed

    Tan, Shuqiu; Chen, Dongyi; Guo, Chenggang; Huang, Zhiqi

    2017-01-01

    Facial feature point detection has been receiving great research advances in recent years. Numerous methods have been developed and applied in practical face analysis systems. However, it is still a quite challenging task because of the large variability in expression and gestures and the existence of occlusions in real-world photo shoot. In this paper, we present a robust sparse reconstruction method for the face alignment problems. Instead of a direct regression between the feature space and the shape space, the concept of shape increment reconstruction is introduced. Moreover, a set of coupled overcomplete dictionaries termed the shape increment dictionary and the local appearance dictionary are learned in a regressive manner to select robust features and fit shape increments. Additionally, to make the learned model more generalized, we select the best matched parameter set through extensive validation tests. Experimental results on three public datasets demonstrate that the proposed method achieves a better robustness over the state-of-the-art methods.

  14. Delayed entanglement echo for individual control of a large number of nuclear spins

    PubMed Central

    Wang, Zhen-Yu; Casanova, Jorge; Plenio, Martin B.

    2017-01-01

    Methods to selectively detect and manipulate nuclear spins by single electrons of solid-state defects play a central role for quantum information processing and nanoscale nuclear magnetic resonance (NMR). However, with standard techniques, no more than eight nuclear spins have been resolved by a single defect centre. Here we develop a method that improves significantly the ability to detect, address and manipulate nuclear spins unambiguously and individually in a broad frequency band by using a nitrogen-vacancy (NV) centre as model system. On the basis of delayed entanglement control, a technique combining microwave and radio frequency fields, our method allows to selectively perform robust high-fidelity entangling gates between hardly resolved nuclear spins and the NV electron. Long-lived qubit memories can be naturally incorporated to our method for improved performance. The application of our ideas will increase the number of useful register qubits accessible to a defect centre and improve the signal of nanoscale NMR. PMID:28256508

  15. Delayed entanglement echo for individual control of a large number of nuclear spins.

    PubMed

    Wang, Zhen-Yu; Casanova, Jorge; Plenio, Martin B

    2017-03-03

    Methods to selectively detect and manipulate nuclear spins by single electrons of solid-state defects play a central role for quantum information processing and nanoscale nuclear magnetic resonance (NMR). However, with standard techniques, no more than eight nuclear spins have been resolved by a single defect centre. Here we develop a method that improves significantly the ability to detect, address and manipulate nuclear spins unambiguously and individually in a broad frequency band by using a nitrogen-vacancy (NV) centre as model system. On the basis of delayed entanglement control, a technique combining microwave and radio frequency fields, our method allows to selectively perform robust high-fidelity entangling gates between hardly resolved nuclear spins and the NV electron. Long-lived qubit memories can be naturally incorporated to our method for improved performance. The application of our ideas will increase the number of useful register qubits accessible to a defect centre and improve the signal of nanoscale NMR.

  16. Self-selection and earnings assimilation: immigrants from the former Soviet Union in Israel and the United States.

    PubMed

    Cohen, Yinon; Haberfeld, Yitchak

    2007-08-01

    Drawing on U.S. decennial census data and on Israeli census and longitudinal data, we compare the educational levels and earnings assimilation of Jewish immigrants from the former Soviet Union (FSU) in the United States and Israel during 1968-2000. Because the doors to both countries were practically open to FSU immigrants between 1968 and 1989, when FSU immigrants were entitled to refugee visas in the United States, the comparison can be viewed as a natural experiment in immigrants' destination choices. The results suggest that FSU immigrants to the United States are of significantly higher educational level and experience significantly faster rates of earnings assimilation in their new destination than their counterparts who immigrated to Israel. We present evidence that patterns of self-selection in immigration to Israel and the United States--on both measured and unmeasured productivity-related traits--is the main reason for these results. When the immigration regulations in the United States changed in 1989, and FSU Jewish immigrants to the United States had to rely on family reunification for obtaining immigrant visas, the adverse effects of the policy change on the type of FSU immigrants coming to the United States were minor and short-lived As early as 1992, the gaps in the educational levels between FSU immigrants coming to Israel and to the United States returned to their pre-1989 levels, and the differences in earnings assimilation of post-1989 immigrants in the United States and Israel are similar to the differences detected in the 1980s.

  17. A study of two unsupervised data driven statistical methodologies for detecting and classifying damages in structural health monitoring

    NASA Astrophysics Data System (ADS)

    Tibaduiza, D.-A.; Torres-Arredondo, M.-A.; Mujica, L. E.; Rodellar, J.; Fritzen, C.-P.

    2013-12-01

    This article is concerned with the practical use of Multiway Principal Component Analysis (MPCA), Discrete Wavelet Transform (DWT), Squared Prediction Error (SPE) measures and Self-Organizing Maps (SOM) to detect and classify damages in mechanical structures. The formalism is based on a distributed piezoelectric active sensor network for the excitation and detection of structural dynamic responses. Statistical models are built using PCA when the structure is known to be healthy either directly from the dynamic responses or from wavelet coefficients at different scales representing Time-frequency information. Different damages on the tested structures are simulated by adding masses at different positions. The data from the structure in different states (damaged or not) are then projected into the different principal component models by each actuator in order to obtain the input feature vectors for a SOM from the scores and the SPE measures. An aircraft fuselage from an Airbus A320 and a multi-layered carbon fiber reinforced plastic (CFRP) plate are used as examples to test the approaches. Results are presented, compared and discussed in order to determine their potential in structural health monitoring. These results showed that all the simulated damages were detectable and the selected features proved capable of separating all damage conditions from the undamaged state for both approaches.

  18. Active Optical Sensors for Tree Stem Detection and Classification in Nurseries

    PubMed Central

    Garrido, Miguel; Perez-Ruiz, Manuel; Valero, Constantino; Gliever, Chris J.; Hanson, Bradley D.; Slaughter, David C.

    2014-01-01

    Active optical sensing (LIDAR and light curtain transmission) devices mounted on a mobile platform can correctly detect, localize, and classify trees. To conduct an evaluation and comparison of the different sensors, an optical encoder wheel was used for vehicle odometry and provided a measurement of the linear displacement of the prototype vehicle along a row of tree seedlings as a reference for each recorded sensor measurement. The field trials were conducted in a juvenile tree nursery with one-year-old grafted almond trees at Sierra Gold Nurseries, Yuba City, CA, United States. Through these tests and subsequent data processing, each sensor was individually evaluated to characterize their reliability, as well as their advantages and disadvantages for the proposed task. Test results indicated that 95.7% and 99.48% of the trees were successfully detected with the LIDAR and light curtain sensors, respectively. LIDAR correctly classified, between alive or dead tree states at a 93.75% success rate compared to 94.16% for the light curtain sensor. These results can help system designers select the most reliable sensor for the accurate detection and localization of each tree in a nursery, which might allow labor-intensive tasks, such as weeding, to be automated without damaging crops. PMID:24949638

  19. Two-dimensional Layered MoS2 Biosensors Enable Highly Sensitive Detection of Biomolecules

    NASA Astrophysics Data System (ADS)

    Lee, Joonhyung; Dak, Piyush; Lee, Yeonsung; Park, Heekyeong; Choi, Woong; Alam, Muhammad A.; Kim, Sunkook

    2014-12-01

    We present a MoS2 biosensor to electrically detect prostate specific antigen (PSA) in a highly sensitive and label-free manner. Unlike previous MoS2-FET-based biosensors, the device configuration of our biosensors does not require a dielectric layer such as HfO2 due to the hydrophobicity of MoS2. Such an oxide-free operation improves sensitivity and simplifies sensor design. For a quantitative and selective detection of PSA antigen, anti-PSA antibody was immobilized on the sensor surface. Then, introduction of PSA antigen, into the anti-PSA immobilized sensor surface resulted in a lable-free immunoassary format. Measured off-state current of the device showed a significant decrease as the applied PSA concentration was increased. The minimum detectable concentration of PSA is 1 pg/mL, which is several orders of magnitude below the clinical cut-off level of ~4 ng/mL. In addition, we also provide a systematic theoretical analysis of the sensor platform - including the charge state of protein at the specific pH level, and self-consistent channel transport. Taken together, the experimental demonstration and the theoretical framework provide a comprehensive description of the performance potential of dielectric-free MoS2-based biosensor technology.

  20. Assessment of Arbovirus Surveillance 13 Years after Introduction of West Nile Virus, United States1

    PubMed Central

    Patel, Dhara; Nasci, Roger S.; Petersen, Lyle R.; Hughes, James M.; Bradley, Kristy; Etkind, Paul; Kan, Lilly; Engel, Jeffrey

    2015-01-01

    Before 1999, the United States had no appropriated funding for arboviral surveillance, and many states conducted no such surveillance. After emergence of West Nile virus (WNV), federal funding was distributed to state and selected local health departments to build WNV surveillance systems. The Council of State and Territorial Epidemiologists conducted assessments of surveillance capacity of resulting systems in 2004 and in 2012; the assessment in 2012 was conducted after a 61% decrease in federal funding. In 2004, nearly all states and assessed local health departments had well-developed animal, mosquito, and human surveillance systems to monitor WNV activity and anticipate outbreaks. In 2012, many health departments had decreased mosquito surveillance and laboratory testing capacity and had no systematic disease-based surveillance for other arboviruses. Arboviral surveillance in many states might no longer be sufficient to rapidly detect and provide information needed to fully respond to WNV outbreaks and other arboviral threats (e.g., dengue, chikungunya). PMID:26079471

  1. A novel onset detection technique for brain-computer interfaces using sound-production related cognitive tasks in simulated-online system

    NASA Astrophysics Data System (ADS)

    Song, YoungJae; Sepulveda, Francisco

    2017-02-01

    Objective. Self-paced EEG-based BCIs (SP-BCIs) have traditionally been avoided due to two sources of uncertainty: (1) precisely when an intentional command is sent by the brain, i.e., the command onset detection problem, and (2) how different the intentional command is when compared to non-specific (or idle) states. Performance evaluation is also a problem and there are no suitable standard metrics available. In this paper we attempted to tackle these issues. Approach. Self-paced covert sound-production cognitive tasks (i.e., high pitch and siren-like sounds) were used to distinguish between intentional commands (IC) and idle states. The IC states were chosen for their ease of execution and negligible overlap with common cognitive states. Band power and a digital wavelet transform were used for feature extraction, and the Davies-Bouldin index was used for feature selection. Classification was performed using linear discriminant analysis. Main results. Performance was evaluated under offline and simulated-online conditions. For the latter, a performance score called true-false-positive (TFP) rate, ranging from 0 (poor) to 100 (perfect), was created to take into account both classification performance and onset timing errors. Averaging the results from the best performing IC task for all seven participants, an 77.7% true-positive (TP) rate was achieved in offline testing. For simulated-online analysis the best IC average TFP score was 76.67% (87.61% TP rate, 4.05% false-positive rate). Significance. Results were promising when compared to previous IC onset detection studies using motor imagery, in which best TP rates were reported as 72.0% and 79.7%, and which, crucially, did not take timing errors into account. Moreover, based on our literature review, there is no previous covert sound-production onset detection system for spBCIs. Results showed that the proposed onset detection technique and TFP performance metric have good potential for use in SP-BCIs.

  2. A Single-Channel EOG-Based Speller.

    PubMed

    He, Shenghong; Li, Yuanqing

    2017-11-01

    Electrooculography (EOG) signals, which can be used to infer the intentions of a user based on eye movements, are widely used in human-computer interface (HCI) systems. Most existing EOG-based HCI systems incorporate a limited number of commands because they generally associate different commands with a few different types of eye movements, such as looking up, down, left, or right. This paper presents a novel single-channel EOG-based HCI that allows users to spell asynchronously by only blinking. Forty buttons corresponding to 40 characters displayed to the user via a graphical user interface are intensified in a random order. To select a button, the user must blink his/her eyes in synchrony as the target button is flashed. Two data processing procedures, specifically support vector machine (SVM) classification and waveform detection, are combined to detect eye blinks. During detection, we simultaneously feed the feature vectors extracted from the ongoing EOG signal into the SVM classification and waveform detection modules. Decisions are made based on the results of the SVM classification and waveform detection. Three online experiments were conducted with eight healthy subjects. We achieved an average accuracy of 94.4% and a response time of 4.14 s for selecting a character in synchronous mode, as well as an average accuracy of 93.43% and a false positive rate of 0.03/min in the idle state in asynchronous mode. The experimental results, therefore, demonstrated the effectiveness of this single-channel EOG-based speller.

  3. Solid-state devices for detection of DNA, protein biomarkers and cells

    NASA Astrophysics Data System (ADS)

    Asghar, Waseem

    Nanobiotechnology and BioMEMS have had tremendous impact on biosensing in the areas of cancer cell detection and therapeutics, disease diagnostics, proteomics and DNA analysis. Diseases are expressed on all levels including DNA, protein, cell and tissue. Therefore it is very critical to develop biosensors at each level. The power of the nanotechnology lies in the fact that we can fabricate devices on all scales from micro to nano. This dissertation focuses on four areas: 1) Development of nanopore sensors for DNA analysis; 2) Development of micropore sensors for early detection of circulating tumor cells (CTCs) from whole blood; 3) Synthesis of nano-textured substrates for cancer isolation and tissue culture applications; 4) Fabrication of nanoscale break-junctions. All of these sensors are fabricated using standard silicon processing techniques. Pulsed plasma polymer deposition is also utilized to control the density of the biosensor surface charges. These devices are then used for efficient detection of DNA, proteins and cells, and can be potentially used in point-of-care systems. Overall, our designed biosensing platforms offer improved selectivity, yield and reliability. Novel approaches to nanopore shrinking are simple, reliable and do not change the material composition around the pore boundary. The micropores provide a direct interface to distinguish CTCs from normal cell without requiring fluorescent dyes and surface functionalization. Nano-textured surfaces and break-junctions can be used for enhanced adhesion of cells and selective detection of proteins respectively.

  4. Methods of automated absence seizure detection, interference by stimulation, and possibilities for prediction in genetic absence models.

    PubMed

    van Luijtelaar, Gilles; Lüttjohann, Annika; Makarov, Vladimir V; Maksimenko, Vladimir A; Koronovskii, Alexei A; Hramov, Alexander E

    2016-02-15

    Genetic rat models for childhood absence epilepsy have become instrumental in developing theories on the origin of absence epilepsy, the evaluation of new and experimental treatments, as well as in developing new methods for automatic seizure detection, prediction, and/or interference of seizures. Various methods for automated off and on-line analyses of ECoG in rodent models are reviewed, as well as data on how to interfere with the spike-wave discharges by different types of invasive and non-invasive electrical, magnetic, and optical brain stimulation. Also a new method for seizure prediction is proposed. Many selective and specific methods for off- and on-line spike-wave discharge detection seem excellent, with possibilities to overcome the issue of individual differences. Moreover, electrical deep brain stimulation is rather effective in interrupting ongoing spike-wave discharges with low stimulation intensity. A network based method is proposed for absence seizures prediction with a high sensitivity but a low selectivity. Solutions that prevent false alarms, integrated in a closed loop brain stimulation system open the ways for experimental seizure control. The presence of preictal cursor activity detected with state of the art time frequency and network analyses shows that spike-wave discharges are not caused by sudden and abrupt transitions but that there are detectable dynamic events. Their changes in time-space-frequency characteristics might yield new options for seizure prediction and seizure control. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Vision Sensor-Based Road Detection for Field Robot Navigation

    PubMed Central

    Lu, Keyu; Li, Jian; An, Xiangjing; He, Hangen

    2015-01-01

    Road detection is an essential component of field robot navigation systems. Vision sensors play an important role in road detection for their great potential in environmental perception. In this paper, we propose a hierarchical vision sensor-based method for robust road detection in challenging road scenes. More specifically, for a given road image captured by an on-board vision sensor, we introduce a multiple population genetic algorithm (MPGA)-based approach for efficient road vanishing point detection. Superpixel-level seeds are then selected in an unsupervised way using a clustering strategy. Then, according to the GrowCut framework, the seeds proliferate and iteratively try to occupy their neighbors. After convergence, the initial road segment is obtained. Finally, in order to achieve a globally-consistent road segment, the initial road segment is refined using the conditional random field (CRF) framework, which integrates high-level information into road detection. We perform several experiments to evaluate the common performance, scale sensitivity and noise sensitivity of the proposed method. The experimental results demonstrate that the proposed method exhibits high robustness compared to the state of the art. PMID:26610514

  6. Pedestrian detection in crowded scenes with the histogram of gradients principle

    NASA Astrophysics Data System (ADS)

    Sidla, O.; Rosner, M.; Lypetskyy, Y.

    2006-10-01

    This paper describes a close to real-time scale invariant implementation of a pedestrian detector system which is based on the Histogram of Oriented Gradients (HOG) principle. Salient HOG features are first selected from a manually created very large database of samples with an evolutionary optimization procedure that directly trains a polynomial Support Vector Machine (SVM). Real-time operation is achieved by a cascaded 2-step classifier which uses first a very fast linear SVM (with the same features as the polynomial SVM) to reject most of the irrelevant detections and then computes the decision function with a polynomial SVM on the remaining set of candidate detections. Scale invariance is achieved by running the detector of constant size on scaled versions of the original input images and by clustering the results over all resolutions. The pedestrian detection system has been implemented in two versions: i) fully body detection, and ii) upper body only detection. The latter is especially suited for very busy and crowded scenarios. On a state-of-the-art PC it is able to run at a frequency of 8 - 20 frames/sec.

  7. Development of a secondary electron energy analyzer for a transmission electron microscope.

    PubMed

    Magara, Hideyuki; Tomita, Takeshi; Kondo, Yukihito; Sato, Takafumi; Akase, Zentaro; Shindo, Daisuke

    2018-04-01

    A secondary electron (SE) energy analyzer was developed for a transmission electron microscope. The analyzer comprises a microchannel plate (MCP) for detecting electrons, a coil for collecting SEs emitted from the specimen, a tube for reducing the number of backscattered electrons incident on the MCP, and a retarding mesh for selecting the energy of SEs incident on the MCP. The detection of the SEs associated with charging phenomena around a charged specimen was attempted by performing electron holography and SE spectroscopy using the energy analyzer. The results suggest that it is possible to obtain the energy spectra of SEs using the analyzer and the charging states of a specimen by electron holography simultaneously.

  8. Cancer screening and early detection in the 21st century

    PubMed Central

    Murphy, Jeanne

    2017-01-01

    Objective To review the trends in and principles of cancer screening and early detection. Data Sources Journal articles, United States Preventive Services Task Force (U SPSTF) publications, professional organization position statements, evidence-based summaries Conclusion Cancer screening has contributed to decreasing the morbidity and mortality of cancer. Efforts to improve the selection of candidates for cancer screening, to understand the biological basis of carcinogenesis, and the development of new technologies for cancer screening will allow for improvements in the cancer screening over time. Implications for Nursing Practice Nurses are well-positioned to lead the implementation of cancer screening recommendations in the 21st Century through their practice, research, educational efforts and advocacy. PMID:28343835

  9. Application of a geographic information system in analyzing the occurrence of atrazine in groundwater of the mid-continental United States

    USGS Publications Warehouse

    Burkart, M.R.; Kolpin, D.W.

    1993-01-01

    The US Geological Survey, US Department of Agriculture, and US Environmental Protection Agency are conducting research and regional assessments in support of policy alternatives intended to protect water resources from agricultural chemical contamination. The mid-continent was selected because of the intense row crop agriculture and associated herbicide application in this region. An application of a geographic information system is demonstrated for analyzing and comparing the distribution of estimated atrazine use to the detection rate of atrazine in groundwater. Understanding the relations between atrazine use and detection in groundwater is important in policy deliberations to protect water resources. Relational analyses between measures of chemical use and detection rate by natural resource units may provide insight into critical factors controlling the processes that result in groundwater contamination from agricultural chemicals. 

  10. Emergency First Responders' Experience with Colorimetric Detection Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandra L. Fox; Keith A. Daum; Carla J. Miller

    2007-10-01

    Nationwide, first responders from state and federal support teams respond to hazardous materials incidents, industrial chemical spills, and potential weapons of mass destruction (WMD) attacks. Although first responders have sophisticated chemical, biological, radiological, and explosive detectors available for assessment of the incident scene, simple colorimetric detectors have a role in response actions. The large number of colorimetric chemical detection methods available on the market can make the selection of the proper methods difficult. Although each detector has unique aspects to provide qualitative or quantitative data about the unknown chemicals present, not all detectors provide consistent, accurate, and reliable results. Includedmore » here, in a consumer-report-style format, we provide “boots on the ground” information directly from first responders about how well colorimetric chemical detection methods meet their needs in the field and how they procure these methods.« less

  11. Synthesis of reduced graphene oxide intercalated ZnO quantum dots nanoballs for selective biosensing detection

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Zhao, Minggang; Li, Yingchun; Fan, Sisi; Ding, Longjiang; Liang, Jingjing; Chen, Shougang

    2016-07-01

    ZnO quantum dots (QDs), reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs) are always used in sensors due to their excellent electrochemical characteristics. In this work, ZnO QDs were intercalated by rGO sheets with cross-linked MWCNTs to construct intercalation nanoballs. A MWCNTs/rGO/ZnO QDs 3D hierarchical architecture was fabricated on supporting Ni foam, which exhibited excellent mechanical, kinetic and electrochemical properties. The intercalation construction can introduce strong interfacial effects to improve the surface electronic state. The selectively determinate of uric acid, dopamine, and ascorbic acid by an electrode material using distinct applied potentials was realized.

  12. Psychological issues relevant to astronaut selection for long-duration space flight: a review of the literature.

    PubMed

    Collins, Daniel L

    2003-01-01

    This technical paper reviews the current literature on psychological issues relevant to astronaut selection for long-duration space flights. Interpersonal problems have been and remain a recurring problem for both short and long-duration space flights. Even after completion of the space mission, intense psychological aftereffects are reported. The specific behavioral problems experienced during United States and Soviet Union space flights are reviewed, specifically addressing contentious episodes and impaired judgments that occurred during the Mercury, Apollo, and Skylab missions. Psychological tests used in the selection process for the space program have focused primarily on the detection of gross psychopathologies in potential candidates. Although these psychological instruments excluded some people from becoming astronauts, the battery of tests failed to predict which individuals would manifest behavioral aberrations in judgment, cooperative functioning, overt irritability, or destructive interpersonal actions.

  13. Concentrations of selected organochlorine compounds in fish tissue in the Mississippi Embayment Study Unit : Arkansas, Kentucky, Louisiana, Mississippi, Missouri, and Tennessee, 1995-99

    USGS Publications Warehouse

    Femmer, Suzanne R.; Coupe, Richard H.; Justus, B.G.; Kleiss, Barbara A.

    2004-01-01

    Whole fish were collected at 52 sites during 1995-99 to evaluate the occurrence and distribution of selected organochlorine compounds in the Mississippi Embayment Study Unit. Samples were collected as part of the U.S. Geological Survey National Water Quality Assessment Program. From 5 to 8 fish were collected at each site; the fish were composited, and an aliquot of the tissue was analyzed for 28 organo-chlorine compounds, which included pesticides, pesticide degradates, and polychlorinated biphenyls. The use of these organochlorine compounds has been discontinued or severely restricted within the United States, but the continued detection of these compounds or their degradates in the air, water, soil, and biota in national surveys, coupled with known environmental problems associated with these compounds (such as a long half-life and the propensity to accumulate in living tissue), is cause for continued interest in their environmental fate. At least one organochlorine compound was detected in every fish-tissue sample, and as many as 15 different compounds were detected in some. The most frequently detected com-pounds were the degradates of p,p'-dichlorodiphenyltrichlo-roethane (p,p'-DDT); p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) was detected in every sample above the method reporting limit, and p,p'-dichlorodiphenyldichloroethane (p,p'-DDD), was detected in 94 percent of the samples. Polychlorinated biphenyl compounds and dieldrin were detected in 83 and 78 percent of fish-tissue samples, respectively. Because these were whole fish samples, the results are not directly comparable to human health standards, which are based on fish fillets. Comparison of these results, however, to the guidelines for the protection of fish-eating wildlife indicates that concentrations of the p,p'-DDT degradates and toxaphene continue to be of environmental concern.

  14. Detection of motor imagery of swallow EEG signals based on the dual-tree complex wavelet transform and adaptive model selection

    NASA Astrophysics Data System (ADS)

    Yang, Huijuan; Guan, Cuntai; Sui Geok Chua, Karen; San Chok, See; Wang, Chuan Chu; Kok Soon, Phua; Tang, Christina Ka Yin; Keng Ang, Kai

    2014-06-01

    Objective. Detection of motor imagery of hand/arm has been extensively studied for stroke rehabilitation. This paper firstly investigates the detection of motor imagery of swallow (MI-SW) and motor imagery of tongue protrusion (MI-Ton) in an attempt to find a novel solution for post-stroke dysphagia rehabilitation. Detection of MI-SW from a simple yet relevant modality such as MI-Ton is then investigated, motivated by the similarity in activation patterns between tongue movements and swallowing and there being fewer movement artifacts in performing tongue movements compared to swallowing. Approach. Novel features were extracted based on the coefficients of the dual-tree complex wavelet transform to build multiple training models for detecting MI-SW. The session-to-session classification accuracy was boosted by adaptively selecting the training model to maximize the ratio of between-classes distances versus within-class distances, using features of training and evaluation data. Main results. Our proposed method yielded averaged cross-validation (CV) classification accuracies of 70.89% and 73.79% for MI-SW and MI-Ton for ten healthy subjects, which are significantly better than the results from existing methods. In addition, averaged CV accuracies of 66.40% and 70.24% for MI-SW and MI-Ton were obtained for one stroke patient, demonstrating the detectability of MI-SW and MI-Ton from the idle state. Furthermore, averaged session-to-session classification accuracies of 72.08% and 70% were achieved for ten healthy subjects and one stroke patient using the MI-Ton model. Significance. These results and the subjectwise strong correlations in classification accuracies between MI-SW and MI-Ton demonstrated the feasibility of detecting MI-SW from MI-Ton models.

  15. Groundwater Quality in Central New York, 2007

    USGS Publications Warehouse

    Eckhardt, David A.V.; Reddy, J.E.; Shaw, Stephen B.

    2009-01-01

    Water samples were collected from 7 production wells and 28 private residential wells in central New York from August through December 2007 and analyzed to characterize the chemical quality of groundwater. Seventeen wells are screened in sand and gravel aquifers, and 18 are finished in bedrock aquifers. The wells were selected to represent areas of greatest groundwater use and to provide a geographical sampling from the 5,799-square-mile study area. Samples were analyzed for 6 physical properties and 216 constituents, including nutrients, major inorganic ions, trace elements, radionuclides, pesticides, volatile organic compounds, phenolic compounds, organic carbon, and 4 types of bacteria. Results indicate that groundwater used for drinking supply is generally of acceptable quality, although concentrations of some constituents or bacteria exceeded at least one drinking-water standard at several wells. The cations detected in the highest concentrations were calcium, magnesium, and sodium; anions detected in the highest concentrations were bicarbonate, chloride, and sulfate. The predominant nutrients were nitrate and ammonia, but no nutrients exceeded Maximum Contaminant Levels (MCLs). The trace elements barium, boron, lithium, and strontium were detected in every sample; the trace elements present in the highest concentrations were barium, boron, iron, lithium, manganese, and strontium. Fifteen pesticides, including seven pesticide degradates, were detected in water from 17 of the 35 wells, but none of the concentrations exceeded State or Federal MCLs. Sixteen volatile organic compounds were detected in water from 15 of the 35 wells. Nine analytes and three types of bacteria were detected in concentrations that exceeded Federal and State drinking-water standards, which typically are identical. One sample had a water color that exceeded the U.S. Environmental Protection Agency (USEPA) Secondary Maximum Contaminant Level (SMCL) and the New York State MCL of 10 color units. Sulfate concentrations exceeded the USEPA SMCL and the New York State MCL of 250 milligrams per liter (mg/L) in two samples, and chloride concentrations exceeded the USEPA SMCL and the New York State MCL of 250 mg/L in two samples. Sodium concentrations exceeded the USEPA Drinking Water Health Advisory of 60 mg/L in eight samples. Iron concentrations exceeded the USEPA SMCL and the New York State MCL of 300 micrograms per liter (ug/L) in 10 filtered samples. Manganese exceeded the USEPA SMCL of 50 ug/L in 10 filtered samples and the New York State MCL of 300 ug/L in 1 filtered sample. Barium exceeded the MCL of 2,000 ug/L in one sample, and aluminum exceeded the SMCL of 50 ug/L in three samples. Radon-222 exceeded the proposed USEPA MCL of 300 picocuries per liter in 12 samples. One sample from a private residential well had a trichloroethene concentration of 50.8 ug/L, which exceeded the MCL of 5 ug/L. Any detection of coliform bacteria indicates a potential violation of New York State health regulations; total coliform bacteria were detected in 19 samples, and fecal coliform bacteria were detected in one sample. The plate counts for heterotrophic bacteria exceeded the MCL (500 colony-forming units per milliliter) in three samples.

  16. Spectroelectrochemistry as a Strategy for Improving Selectivity of Sensors for Security and Defense Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heineman, William R.; Seliskar, Carl J.; Morris, Laura K.

    2012-12-19

    Spectroelectrochemistry provides improved selectivity for sensors by electrochemically modulating the optical signal associated with the analyte. The sensor consists of an optically transparent electrode (OTE) coated with a film that preconcentrates the target analyte. The OTE functions as an optical waveguide for attenuated total reflectance (ATR) spectroscopy, which detects the analyte by absorption. Alternatively, the OTE can serve as the excitation light for fluorescence detection, which is generally more sensitive than absorption. The analyte partitions into the film, undergoes an electrochemical redox reaction at the OTE surface, and absorbs or emits light in its oxidized or reduced state. The changemore » in the optical response associated with electrochemical oxidation or reduction at the OTE is used to quantify the analyte. Absorption sensors for metal ion complexes such as [Fe(CN)6]4- and [Ru(bpy)3]2+ and fluorescence sensors for [Ru(bpy)3]2+ and the polycyclic aromatic hydrocarbon 1-hydroxypyrene have been developed. The sensor concept has been extended to binding assays for a protein using avidin–biotin and 17β-estradiol–anti-estradiol antibodies. The sensor has been demonstrated to measure metal complexes in complex samples such as nuclear waste and natural water. This sensor has qualities needed for security and defense applications that require a high level of selectivity and good detection limits for target analytes in complex samples. Quickly monitoring and designating intent of a nuclear program by measuring the Ru/Tc fission product ratio is such an application.« less

  17. The Early Detection of the Emerald Ash Borer (eab) Using Multi-Source Remotely Sensed Data

    NASA Astrophysics Data System (ADS)

    Hu, B.; Naveed, F.; Tasneem, F.; Xing, C.

    2018-04-01

    The objectives of this study were to exploit the synergy of hyperspectral imagery, Light Detection And Ranging (LiDAR) and high spatial resolution data and their synergy in the early detection of the EAB (Emerald Ash Borer) presence in trees within urban areas and to develop a framework to combine information extracted from multiple data sources. To achieve these, an object-oriented framework was developed to combine information derived from available data sets to characterize ash trees. Within this framework, an advanced individual tree delineation method was developed to delineate individual trees using the combined high-spatial resolution worldview-3 imagery was used together with LiDAR data. Individual trees were then classified to ash and non-ash trees using spectral and spatial information. In order to characterize the health state of individual ash trees, leaves from ash trees with various health states were sampled and measured using a field spectrometer. Based on the field measurements, the best indices that sensitive to leaf chlorophyll content were selected. The developed framework and methods were tested using worldview-3, airborne LiDAR data over the Keele campus of York University Toronto Canada. Satisfactory results in terms of individual tree crown delineation, ash tree identification and characterization of the health state of individual ash trees. Quantitative evaluations is being carried out.

  18. Occurrence of selected pesticides and their metabolites in near-surface aquifers of the midwestern United States

    USGS Publications Warehouse

    Kolpin, D.W.; Michael, Thurman E.; Goolsby, D.A.

    1996-01-01

    The occurrence and distribution of selected pesticides and their metabolites were investigated through the collection of 837 water-quality samples from 303 wells across the Midwest. Results of this study showed that five of the six most frequently detected compounds were pesticide metabolites. Thus, it was common for a metabolite to be found more frequently in groundwater than its parent compound. The metabolite alachlor ethanesulfonic acid (alachlor-ESA; 2-[(2,6-diethylphenyl)(methoxymethyl)amino]-2-oxoethanesulfonic acid) was detected almost 10 times as frequently and at much higher concentrations than its parent compound alachlor (2-chloro-2‘,6‘-diethyl-N-(methoxymethyl)acetamide). The median detectable atrazine (2-chloro-4-ethylamino-6- isopropylamino-s-triazine) concentration was almost half that of atrazine residue (atrazine plus the two atrazine metabolites analyzed). Cyanazine amide [2-chloro-4-(1-carbamoyl-1-methylethylamino)-6-ethylamino-s-triazine] was detected almost twice as frequently as cyanazine (2-chloro-4-ethylamino-6-methylpropionitrileamino-s-triazine). Results show that information on pesticide metabolites is necessary to understand the environmental fate of pesticides. Consequently, if pesticide metabolites are not quantified, the effects of chemical use on groundwater quality would be substantially underestimated. Thus, continued research is needed to identify major degradation pathways for all pesticides and to develop analytical methods to determine their concentrations in water and other environmental media.

  19. Macromolecular Systems with MSA-Capped CdTe and CdTe/ZnS Core/Shell Quantum Dots as Superselective and Ultrasensitive Optical Sensors for Picric Acid Explosive.

    PubMed

    Dutta, Priyanka; Saikia, Dilip; Adhikary, Nirab Chandra; Sarma, Neelotpal Sen

    2015-11-11

    This work reports the development of highly fluorescent materials for the selective and efficient detection of picric acid explosive in the nanomolar range by fluorescence quenching phenomenon. Poly(vinyl alcohol) grafted polyaniline (PPA) and its nanocomposites with 2-mercaptosuccinic acid (MSA)-capped CdTe quantum dots (PPA-Q) and with MSA-capped CdTe/ZnS core/shell quantum dots (PPA-CSQ) are synthesized in a single step free radical polymerization reaction. The thermal stability and photo stability of the polymer increases in the order of PPA < PPA-Q < PPA-CSQ. The polymers show remarkably high selectivity and efficient sensitivity toward picric acid, and the quenching efficiency for PPA-CSQ reaches up to 99%. The detection limits of PPA, PPA-Q, and PPA-CSQ for picric acid are found to be 23, 1.6, and 0.65 nM, respectively, which are remarkably low. The mechanism operating in the quenching phenomenon is proposed to be a combination of a strong inner filter effect and ground state electrostatic interaction between the polymers and picric acid. A portable and cost-effective electronic device for the visual detection of picric acid by the sensory system is successfully fabricated. The device is further employed for quantitative detection of picric acid in real water samples.

  20. Cascading reaction of arginase and urease on a graphene-based FET for ultrasensitive, real-time detection of arginine.

    PubMed

    Berninger, Teresa; Bliem, Christina; Piccinini, Esteban; Azzaroni, Omar; Knoll, Wolfgang

    2018-09-15

    Herein, a biosensor based on a reduced graphene oxide field effect transistor (rGO-FET) functionalized with the cascading enzymes arginase and urease was developed for the detection of L-arginine. Arginase and urease were immobilized on the rGO-FET sensing surface via electrostatic layer-by-layer assembly using polyethylenimine (PEI) as cationic building block. The signal transduction mechanism is based on the ability of the cascading enzymes to selectively perform chemical transformations and prompt local pH changes, that are sensitively detected by the rGO-FET. In the presence of L-arginine, the transistors modified with (PEI/urease(arginase)) multilayers showed a shift in the Dirac point due to the change in the local pH close to the graphene surface, produced by the catalyzed urea hydrolysis. The transistors were able to monitor L-arginine in the 10-1000 μM linear range with a LOD of 10 μM, displaying a fast response and a good long-term stability. The sensor showed stereospecificity and high selectivity in the presence of non-target amino acids. Taking into account the label-free, real-time measurement capabilities and the easily quantifiable, electronic output signal, this biosensor offers advantages over state-of-the-art L-arginine detection methods. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Covalent functionalization of MoS2 nanosheets synthesized by liquid phase exfoliation to construct electrochemical sensors for Cd (II) detection.

    PubMed

    Gan, Xiaorong; Zhao, Huimin; Wong, Kwok-Yin; Lei, Dang Yuan; Zhang, Yaobin; Quan, Xie

    2018-05-15

    Surface functionalization is an effective strategy in the precise control of electronic surface states of two-dimensional materials for promoting their applications. In this study, based on the strong coordination interaction between the transition-metal centers and N atoms, the surface functionalization of few-layer MoS 2 nanosheets was successfully prepared by liquid phase exfoliation method in N, N-dimethylformamide (DMF), 1-methyl-2-pyrrolidinone, and formamide. The cytotoxicity of surface-functionalized MoS 2 nanosheets was for the first time evaluated by the methylthiazolyldiphenyl-tetrazoliumbromide assays. An electrochemical sensor was constructed based on glass carbon electrode (GCE) modified by MoS 2 nanosheets obtained in DMF, which exhibits relatively higher sensitivity to Cd 2+ detection and lower cytotoxicity against MCF-7 cells. The mechanisms of surface functionalization and selectively detecting Cd 2+ were investigated by density functional theory calculations together with various spectroscopic measurements. It was found that surface-functionalized MoS 2 nanosheets could be generated through Mo-N covalent bonds due to the orbital hybridization between the 5 s orbitals of Mo atoms and the 2p orbitals of N atoms of the solvent molecules. The high selectivity of the sensor is attributed to the coordination reaction between Cd 2+ and O donor atoms of DMF adsorbed on MoS 2 nanosheets. The robust anti-interference is ascribed to the strong binding energy of Cd 2+ and O atoms of DMF. Under the optimum conditions, the electrochemical sensor exhibits highly sensitive and selective assaying of Cd 2+ with a measured detection limit of 0.2 nM and a linear range from 2 nM to 20 μM. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Potential and range of application of elastic backscatter lidar systems using polarization selection to minimize detected skylight noise

    NASA Astrophysics Data System (ADS)

    Ahmed, S. A.; Hassebo, Y. Y.; Gross, B.; Oo, M.; Moshary, F.

    2006-09-01

    We examine the potential, range of application, and limiting factors of a polarization selection technique, recently devised by us, which takes advantage of naturally occurring polarization properties of scattered sky light to minimize the detected sky background signal and which can be used in conjunction with linearly polarized elastic backscatter lidars to maximize lidar receiver SNR. In this approach, a polarization selective lidar receiver is aligned to minimize detected skylight, while the polarization of the transmitted lidar signal is rotated to maintain maximum lidar backscatter signal throughput to the receiver detector, consequently maximizing detected signal to noise ratio. Results presented include lidar elastic backscatter measurements, at 532 nm which show as much as a factor of √10 improvement in signal-to-noise ratio over conventional un-polarized schemes. For vertically pointing lidars, the largest improvements are limited to symmetric early morning and late afternoon hours. For non-vertical scanning lidars, significant improvements are achievable over much more extended time periods, depending on the specific angle between the lidar and solar axes. A theoretical model that simulates the background skylight within the single scattering approximation showed good agreement with measured SNR improvement factors. Diurnally asymmetric improvement factors, sometimes observed, are explained by measured increases in PWV and subsequent modification of aerosol optical depth by dehydration from morning to afternoon. Finally, since the polarization axis follows the solar azimuth angle even for high aerosol loading, as demonstrated using radiative transfer simulations, it is possible to conceive automation of the technique. In addition, it is shown that while multiple scattering reduces the SNR improvement, the orientation of the minimum noise state remains the same.

  3. Detection and Tracking of Dynamic Objects by Using a Multirobot System: Application to Critical Infrastructures Surveillance

    PubMed Central

    Rodríguez-Canosa, Gonzalo; Giner, Jaime del Cerro; Barrientos, Antonio

    2014-01-01

    The detection and tracking of mobile objects (DATMO) is progressively gaining importance for security and surveillance applications. This article proposes a set of new algorithms and procedures for detecting and tracking mobile objects by robots that work collaboratively as part of a multirobot system. These surveillance algorithms are conceived of to work with data provided by long distance range sensors and are intended for highly reliable object detection in wide outdoor environments. Contrary to most common approaches, in which detection and tracking are done by an integrated procedure, the approach proposed here relies on a modular structure, in which detection and tracking are carried out independently, and the latter might accept input data from different detection algorithms. Two movement detection algorithms have been developed for the detection of dynamic objects by using both static and/or mobile robots. The solution to the overall problem is based on the use of a Kalman filter to predict the next state of each tracked object. Additionally, new tracking algorithms capable of combining dynamic objects lists coming from either one or various sources complete the solution. The complementary performance of the separated modular structure for detection and identification is evaluated and, finally, a selection of test examples discussed. PMID:24526305

  4. Modelling gene expression profiles related to prostate tumor progression using binary states

    PubMed Central

    2013-01-01

    Background Cancer is a complex disease commonly characterized by the disrupted activity of several cancer-related genes such as oncogenes and tumor-suppressor genes. Previous studies suggest that the process of tumor progression to malignancy is dynamic and can be traced by changes in gene expression. Despite the enormous efforts made for differential expression detection and biomarker discovery, few methods have been designed to model the gene expression level to tumor stage during malignancy progression. Such models could help us understand the dynamics and simplify or reveal the complexity of tumor progression. Methods We have modeled an on-off state of gene activation per sample then per stage to select gene expression profiles associated to tumor progression. The selection is guided by statistical significance of profiles based on random permutated datasets. Results We show that our method identifies expected profiles corresponding to oncogenes and tumor suppressor genes in a prostate tumor progression dataset. Comparisons with other methods support our findings and indicate that a considerable proportion of significant profiles is not found by other statistical tests commonly used to detect differential expression between tumor stages nor found by other tailored methods. Ontology and pathway analysis concurred with these findings. Conclusions Results suggest that our methodology may be a valuable tool to study tumor malignancy progression, which might reveal novel cancer therapies. PMID:23721350

  5. Spermine selectively inhibits high-conductance, but not low-conductance calcium-induced permeability transition pore.

    PubMed

    Elustondo, Pia A; Negoda, Alexander; Kane, Constance L; Kane, Daniel A; Pavlov, Evgeny V

    2015-02-01

    The permeability transition pore (PTP) is a large channel of the mitochondrial inner membrane, the opening of which is the central event in many types of stress-induced cell death. PTP opening is induced by elevated concentrations of mitochondrial calcium. It has been demonstrated that spermine and other polyamines can delay calcium-induced swelling of isolated mitochondria, suggesting their role as inhibitors of the mitochondrial PTP. Here we further investigated the mechanism by which spermine inhibits the calcium-induced, cyclosporine A (CSA) -sensitive PTP by using three indicators: 1) calcium release from the mitochondria detected with calcium green, 2) mitochondrial membrane depolarization using TMRM, and 3) mitochondrial swelling by measuring light absorbance. We found that despite calcium release and membrane depolarization, indicative of PTP activation, mitochondria underwent only partial swelling in the presence of spermine. This was in striking contrast to the high-amplitude swelling detected in control mitochondria and in mitochondria treated with the PTP inhibitor CSA. We conclude that spermine selectively prevents opening of the high-conductance state, while allowing activation of the lower conductance state of the PTP. We propose that the existence of lower conductance, stress-induced PTP might play an important physiological role, as it is expected to allow the release of toxic levels of calcium, while keeping important molecules (e.g., NAD) within the mitochondrial matrix. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Left Gastric Vein Visualization with Hepatopetal Flow Information in Healthy Subjects Using Non-Contrast-Enhanced Magnetic Resonance Angiography with Balanced Steady-State Free-Precession Sequence and Time-Spatial Labeling Inversion Pulse.

    PubMed

    Furuta, Akihiro; Isoda, Hiroyoshi; Ohno, Tsuyoshi; Ono, Ayako; Yamashita, Rikiya; Arizono, Shigeki; Kido, Aki; Sakashita, Naotaka; Togashi, Kaori

    2018-01-01

    To selectively visualize the left gastric vein (LGV) with hepatopetal flow information by non-contrast-enhanced magnetic resonance angiography under a hypothesis that change in the LGV flow direction can predict the development of esophageal varices; and to optimize the acquisition protocol in healthy subjects. Respiratory-gated three-dimensional balanced steady-state free-precession scans were conducted on 31 healthy subjects using two methods (A and B) for visualizing the LGV with hepatopetal flow. In method A, two time-spatial labeling inversion pulses (Time-SLIP) were placed on the whole abdomen and the area from the gastric fornix to the upper body, excluding the LGV area. In method B, nonselective inversion recovery pulse was used and one Time-SLIP was placed on the esophagogastric junction. The detectability and consistency of LGV were evaluated using the two methods and ultrasonography (US). Left gastric veins by method A, B, and US were detected in 30 (97%), 24 (77%), and 23 (74%) subjects, respectively. LGV flow by US was hepatopetal in 22 subjects and stagnant in one subject. All hepatopetal LGVs by US coincided with the visualized vessels in both methods. One subject with non-visualized LGV in method A showed stagnant LGV by US. Hepatopetal LGV could be selectively visualized by method A in healthy subjects.

  7. A tripolar-electrode ionization gas sensor using a carbon nanotube cathode for NO detection

    NASA Astrophysics Data System (ADS)

    Song, Hui; Li, Kun; Li, Quanfu

    2018-06-01

    Nitric oxide accounts for more than 95% of the total NO X emission from power plants, which is a major air pollutant. Therefore, it is imperative to accurately detect NO for environmental protection. A tripolar-electrode ionization sensor with a carbon nanotube (CNT) cathode is proposed for NO detection. The non-self-sustaining discharge state and the tripolar-electrode configuration ensures a long nanotube life, which ensures a good stability and fast response of the sensor. Experimental results demonstrate that the tripolar-electrode ionization sensor with 120 µm separations has an intrinsic monotonously decreasing response to NO and exhibits a fast response time of 7 s and recovery time of 8 s. More consumption of the two metastable states N2(A3  ∑  u +) and N2(aʹ1  ∑  u +) of N2 with the increasing of NO concentration is responsible for this. The tripolar-electrode ionization sensor also shows excellent long-term stability of at least one month due to the long CNT life. In addition, the weak effect of SO2 introduction on NO response indicates a good selectivity of the sensor to NO.

  8. Hippocampal theta activity is selectively associated with contingency detection but not discrimination in rabbit discrimination-reversal eyeblink conditioning.

    PubMed

    Nokia, Miriam S; Wikgren, Jan

    2010-04-01

    The relative power of the hippocampal theta-band ( approximately 6 Hz) activity (theta ratio) is thought to reflect a distinct neural state and has been shown to affect learning rate in classical eyeblink conditioning in rabbits. We sought to determine if the theta ratio is mostly related to the detection of the contingency between the stimuli used in conditioning or also to the learning of more complex inhibitory associations when a highly demanding delay discrimination-reversal eyeblink conditioning paradigm is used. A high hippocampal theta ratio was not only associated with a fast increase in conditioned responding in general but also correlated with slow emergence of discriminative responding due to sustained responding to the conditioned stimulus not paired with an unconditioned stimulus. The results indicate that the neural state reflected by the hippocampal theta ratio is specifically linked to forming associations between stimuli rather than to the learning of inhibitory associations needed for successful discrimination. This is in line with the view that the hippocampus is responsible for contingency detection in the early phase of learning in eyeblink conditioning. (c) 2009 Wiley-Liss, Inc.

  9. Occurrence and persistence of fungicides in bed sediments and suspended solids from three targeted use areas in the United States

    USGS Publications Warehouse

    Smalling, Kelly L.; Reilly, Timothy J.; Sandstrom, Mark W.; Kuivila, Kathryn

    2013-01-01

    To document the environmental occurrence and persistence of fungicides, a robust and sensitive analytical method was used to measure 34 fungicides and an additional 57 current-use pesticides in bed sediments and suspended solids collected from areas of intense fungicide use within three geographic areas across the United States. Sampling sites were selected near or within agricultural research farms using prophylactic fungicides at rates and types typical of their geographic location. At least two fungicides were detected in 55% of the bed and 83% of the suspended solid samples and were detected in conjunction with herbicides and insecticides. Six fungicides were detected in all samples including pyraclostrobin (75%), boscalid (53%), chlorothalonil (41%) and zoxamide (22%). Pyraclostrobin, a strobilurin fungicide, used frequently in the United States on a variety of crops, was detected more frequently than p,p′-DDE, the primary degradate of p,p′-DDT, which is typically one of the most frequently occurring pesticides in sediments collected within highly agricultural areas. Maximum fungicide concentrations in bed sediments and suspended solids were 198 and 56.7 μg/kg dry weight, respectively. There is limited information on the occurrence, fate, and persistence of many fungicides in sediment and the environmental impacts are largely unknown. The results of this study indicate the importance of documenting the persistence of fungicides in the environment and the need for a better understanding of off-site transport mechanisms, particularly in areas where crops are grown that require frequent treatments to prevent fungal diseases.

  10. Molecular Epidemiology of Carbapenem-Resistant Acinetobacter baumannii Isolates in the Gulf Cooperation Council States: Dominance of OXA-23-Type Producers

    PubMed Central

    Sartor, Anna L.; Sidjabat, Hanna E.; Balkhy, Hanan H.; Walsh, Timothy R.; Al Johani, Sameera M.; AlJindan, Reem Y.; Alfaresi, Mubarak; Ibrahim, Emad; Al-Jardani, Amina; Al Salman, Jameela; Dashti, Ali A.; Johani, Khalid; Paterson, David L.

    2015-01-01

    The molecular epidemiology and mechanisms of resistance of carbapenem-resistant Acinetobacter baumannii (CRAB) were determined in hospitals in the states of the Cooperation Council for the Arab States of the Gulf (Gulf Cooperation Council [GCC]), namely, Saudi Arabia, United Arab Emirates, Oman, Qatar, Bahrain, and Kuwait. Isolates were subjected to PCR-based detection of antibiotic resistance genes and repetitive sequence-based PCR (rep-PCR) assessments of clonality. Selected isolates were subjected to multilocus sequence typing (MLST). We investigated 117 isolates resistant to carbapenem antibiotics (either imipenem or meropenem). All isolates were positive for OXA-51. The most common carbapenemases were the OXA-23-type, found in 107 isolates, followed by OXA-40-type (OXA-24-type), found in 5 isolates; 3 isolates carried the ISAba1 element upstream of blaOXA-51-type. No OXA-58-type, NDM-type, VIM-type, or IMP-type producers were detected. Multiple clones were detected with 16 clusters of clonally related CRAB. Some clusters involved hospitals in different states. MLST analysis of 15 representative isolates from different clusters identified seven different sequence types (ST195, ST208, ST229, ST436, ST450, ST452, and ST499), as well as three novel STs. The vast majority (84%) of the isolates in this study were associated with health care exposure. Awareness of multidrug-resistant organisms in GCC states has important implications for optimizing infection control practices; establishing antimicrobial stewardship programs within hospital, community, and agricultural settings; and emphasizing the need for establishing regional active surveillance systems. This will help to control the spread of CRAB in the Middle East and in hospitals accommodating transferred patients from this region. PMID:25568439

  11. Molecular epidemiology of carbapenem-resistant Acinetobacter baumannii isolates in the Gulf Cooperation Council States: dominance of OXA-23-type producers.

    PubMed

    Zowawi, Hosam M; Sartor, Anna L; Sidjabat, Hanna E; Balkhy, Hanan H; Walsh, Timothy R; Al Johani, Sameera M; AlJindan, Reem Y; Alfaresi, Mubarak; Ibrahim, Emad; Al-Jardani, Amina; Al Salman, Jameela; Dashti, Ali A; Johani, Khalid; Paterson, David L

    2015-03-01

    The molecular epidemiology and mechanisms of resistance of carbapenem-resistant Acinetobacter baumannii (CRAB) were determined in hospitals in the states of the Cooperation Council for the Arab States of the Gulf (Gulf Cooperation Council [GCC]), namely, Saudi Arabia, United Arab Emirates, Oman, Qatar, Bahrain, and Kuwait. Isolates were subjected to PCR-based detection of antibiotic resistance genes and repetitive sequence-based PCR (rep-PCR) assessments of clonality. Selected isolates were subjected to multilocus sequence typing (MLST). We investigated 117 isolates resistant to carbapenem antibiotics (either imipenem or meropenem). All isolates were positive for OXA-51. The most common carbapenemases were the OXA-23-type, found in 107 isolates, followed by OXA-40-type (OXA-24-type), found in 5 isolates; 3 isolates carried the ISAba1 element upstream of blaOXA-51-type. No OXA-58-type, NDM-type, VIM-type, or IMP-type producers were detected. Multiple clones were detected with 16 clusters of clonally related CRAB. Some clusters involved hospitals in different states. MLST analysis of 15 representative isolates from different clusters identified seven different sequence types (ST195, ST208, ST229, ST436, ST450, ST452, and ST499), as well as three novel STs. The vast majority (84%) of the isolates in this study were associated with health care exposure. Awareness of multidrug-resistant organisms in GCC states has important implications for optimizing infection control practices; establishing antimicrobial stewardship programs within hospital, community, and agricultural settings; and emphasizing the need for establishing regional active surveillance systems. This will help to control the spread of CRAB in the Middle East and in hospitals accommodating transferred patients from this region. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Multiwavelength observations of a VHE gamma-ray flare from PKS 1510-089 in 2015

    NASA Astrophysics Data System (ADS)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Ishio, K.; Konno, Y.; Kubo, H.; Kushida, J.; Kuveždić, D.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Majumdar, P.; Makariev, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Toyama, T.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zarić, D.; Desiante, R.; Becerra González, J.; D'Ammando, F.; Larsson, S.; Raiteri, C. M.; Reinthal, R.; Lähteenmäki, A.; Järvelä, E.; Tornikoski, M.; Ramakrishnan, V.; Jorstad, S. G.; Marscher, A. P.; Bala, V.; MacDonald, N. R.; Kaur, N.; Sameer; Baliyan, K.; Acosta-Pulido, J. A.; Lazaro, C.; Martí-nez-Lombilla, C.; Grinon-Marin, A. B.; Pastor Yabar, A.; Protasio, C.; Carnerero, M. I.; Jermak, H.; Steele, I. A.; Larionov, V. M.; Borman, G. A.; Grishina, T. S.

    2017-07-01

    Context. PKS 1510-089 is one of only a few flat spectrum radio quasars detected in the very-high-energy (VHE, > 100 GeV) gamma-ray band. Aims: We study the broadband spectral and temporal properties of the PKS 1510-089 emission during a high gamma-ray state. Methods: We performed VHE gamma-ray observations of PKS 1510-089 with the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescopes during a long, high gamma-ray state in May 2015. In order to perform broadband modeling of the source, we have also gathered contemporaneous multiwavelength data in radio, IR, optical photometry and polarization, UV, X-ray, and GeV gamma-ray ranges. We construct a broadband spectral energy distribution (SED) in two periods, selected according to VHE gamma-ray state. Results: PKS 1510-089 was detected by MAGIC during a few day-long observations performed in the middle of a long, high optical and gamma-ray state, showing for the first time a significant VHE gamma-ray variability. Similarly to the optical and gamma-ray high state of the source detected in 2012, it was accompanied by a rotation of the optical polarization angle and the emission of a new jet component observed in radio. However, owing to large uncertainty on the knot separation time, the association with the VHE gamma-ray emission cannot be firmly established. The spectral shape in the VHE band during the flare is similar to those obtained during previous measurements of the source. The observed flux variability sets constraints for the first time on the size of the region from which VHE gamma rays are emitted. We model the broadband SED in the framework of the external Compton scenario and discuss the possible emission site in view of multiwavelength data and alternative emission models.

  13. An Automatic Prediction of Epileptic Seizures Using Cloud Computing and Wireless Sensor Networks.

    PubMed

    Sareen, Sanjay; Sood, Sandeep K; Gupta, Sunil Kumar

    2016-11-01

    Epilepsy is one of the most common neurological disorders which is characterized by the spontaneous and unforeseeable occurrence of seizures. An automatic prediction of seizure can protect the patients from accidents and save their life. In this article, we proposed a mobile-based framework that automatically predict seizures using the information contained in electroencephalography (EEG) signals. The wireless sensor technology is used to capture the EEG signals of patients. The cloud-based services are used to collect and analyze the EEG data from the patient's mobile phone. The features from the EEG signal are extracted using the fast Walsh-Hadamard transform (FWHT). The Higher Order Spectral Analysis (HOSA) is applied to FWHT coefficients in order to select the features set relevant to normal, preictal and ictal states of seizure. We subsequently exploit the selected features as input to a k-means classifier to detect epileptic seizure states in a reasonable time. The performance of the proposed model is tested on Amazon EC2 cloud and compared in terms of execution time and accuracy. The findings show that with selected HOS based features, we were able to achieve a classification accuracy of 94.6 %.

  14. Solving the relativistic inverse stellar problem through gravitational waves observation of binary neutron stars

    NASA Astrophysics Data System (ADS)

    Abdelsalhin, Tiziano; Maselli, Andrea; Ferrari, Valeria

    2018-04-01

    The LIGO/Virgo Collaboration has recently announced the direct detection of gravitational waves emitted in the coalescence of a neutron star binary. This discovery allows, for the first time, to set new constraints on the behavior of matter at supranuclear density, complementary with those coming from astrophysical observations in the electromagnetic band. In this paper we demonstrate the feasibility of using gravitational signals to solve the relativistic inverse stellar problem, i.e., to reconstruct the parameters of the equation of state (EoS) from measurements of the stellar mass and tidal Love number. We perform Bayesian inference of mock data, based on different models of the star internal composition, modeled through piecewise polytropes. Our analysis shows that the detection of a small number of sources by a network of advanced interferometers would allow to put accurate bounds on the EoS parameters, and to perform a model selection among the realistic equations of state proposed in the literature.

  15. A single circularly permuted GFP sensor for inositol-1,3,4,5-tetrakisphosphate based on a split PH domain.

    PubMed

    Sakaguchi, Reiko; Endoh, Takashi; Yamamoto, Seigo; Tainaka, Kazuki; Sugimoto, Kenji; Fujieda, Nobutaka; Kiyonaka, Shigeki; Mori, Yasuo; Morii, Takashi

    2009-10-15

    A fluorescent sensor for the detection of inositol-1,3,4,5-tetrakisphosphate, Ins(1,3,4,5)P(4), was constructed from a split PH domain and a single circularly permuted GFP. A structure-based design was conducted to transduce a ligand-induced subtle structural perturbation of the split PH domain to an alteration in the population of the protonated and the deprotonated states of the GFP chromophore. Excitation of each distinct absorption band corresponding to the protonated or the deprotonated state of GFP resulted an increase and a decrease, respectively, in the intensity of emission spectra upon addition of Ins(1,3,4,5)P(4) to the split PH domain-based sensor. The Ins(1,3,4,5)P(4) sensor retained the ligand affinity and the selectivity of the parent PH domain, and realized the ratiometric fluorescence detection of Ins(1,3,4,5)P(4).

  16. Large strain cruciform biaxial testing for FLC detection

    NASA Astrophysics Data System (ADS)

    Güler, Baran; Efe, Mert

    2017-10-01

    Selection of proper test method, specimen design and analysis method are key issues for studying formability of sheet metals and detection of their forming limit curves (FLC). Materials with complex microstructures may need an additional micro-mechanical investigation and accurate modelling. Cruciform biaxial test stands as an alternative to standard tests as it achieves frictionless, in-plane, multi-axial stress states with a single sample geometry. In this study, we introduce a small-scale (less than 10 cm) cruciform sample allowing micro-mechanical investigation at stress states ranging from plane strain to equibiaxial. With successful specimen design and surface finish, large forming limit strains are obtained at the test region of the sample. The large forming limit strains obtained by experiments are compared to the values obtained from Marciniak-Kuczynski (M-K) local necking model and Cockroft-Latham damage model. This comparison shows that the experimental limiting strains are beyond the theoretical values, approaching to the fracture strain of the two test materials: Al-6061-T6 aluminum alloy and DC-04 high formability steel.

  17. Plasmonics-enabled metal-semiconductor-metal photodiodes for high-speed interconnects and polarization sensitive detectors

    NASA Astrophysics Data System (ADS)

    Panchenko, Evgeniy; Cadusch, Jasper J.; James, Timothy D.; Roberts, Ann

    2017-02-01

    Metal-semiconductor-metal (MSM) photodiodes are commonly used in ultrafast photoelectronic devices. Recently it was shown that localized surface plasmons can sufficiently enhance photodetector capabilities at both infrared and visible wavelengths. Such structures are of great interest since they can be used for fast, broadband detection. By utilizing the properties of plasmonic structures it is possible to design photodetectors that are sensitive to the polarization state of the incident wave. The direct electrical readout of the polarization state of an incident optical beam has many important applications, especially in telecommunications, bio-imaging and photonic computing. Furthermore, the fact that surface plasmon polaritons can circumvent the diffraction limit, opens up significant opportunities to use them to guide signals between logic gates in modern integrated circuits where small dimensions are highly desirable. Here we demonstrate two MSM photodetectors integrated with aluminum nanoantennas capable of distinguishing orthogonal states of either linearly or circularly polarized light with no additional filters. The localized plasmon resonances of the antennas lead to selective screening of the underlying silicon from light with a particular polarization state. The non-null response of the devices to each of the basis states expands the potential utility of the photodetectors while improving precision. We also demonstrate a design of waveguide-coupled MSM photodetector suitable for planar detection of surface plasmons.

  18. Multivariate pattern analysis strategies in detection of remitted major depressive disorder using resting state functional connectivity.

    PubMed

    Bhaumik, Runa; Jenkins, Lisanne M; Gowins, Jennifer R; Jacobs, Rachel H; Barba, Alyssa; Bhaumik, Dulal K; Langenecker, Scott A

    2017-01-01

    Understanding abnormal resting-state functional connectivity of distributed brain networks may aid in probing and targeting mechanisms involved in major depressive disorder (MDD). To date, few studies have used resting state functional magnetic resonance imaging (rs-fMRI) to attempt to discriminate individuals with MDD from individuals without MDD, and to our knowledge no investigations have examined a remitted (r) population. In this study, we examined the efficiency of support vector machine (SVM) classifier to successfully discriminate rMDD individuals from healthy controls (HCs) in a narrow early-adult age range. We empirically evaluated four feature selection methods including multivariate Least Absolute Shrinkage and Selection Operator (LASSO) and Elastic Net feature selection algorithms. Our results showed that SVM classification with Elastic Net feature selection achieved the highest classification accuracy of 76.1% (sensitivity of 81.5% and specificity of 68.9%) by leave-one-out cross-validation across subjects from a dataset consisting of 38 rMDD individuals and 29 healthy controls. The highest discriminating functional connections were between the left amygdala, left posterior cingulate cortex, bilateral dorso-lateral prefrontal cortex, and right ventral striatum. These appear to be key nodes in the etiopathophysiology of MDD, within and between default mode, salience and cognitive control networks. This technique demonstrates early promise for using rs-fMRI connectivity as a putative neurobiological marker capable of distinguishing between individuals with and without rMDD. These methods may be extended to periods of risk prior to illness onset, thereby allowing for earlier diagnosis, prevention, and intervention.

  19. Creation of Excitons Excited by Light with a Spatial Mode

    NASA Astrophysics Data System (ADS)

    Syouji, Atsushi; Saito, Shingo; Otomo, Akira

    2017-12-01

    When light is absorbed into matter, its degrees of freedom (i.e., energy, polarization, and phase) are transferred to the matter and conserved. In this study, we demonstrate that elementary excitations in matter, which are one-photon-forbidden transition states, become allowed states because of the phase conservation across the entire cross section of excitation light. In particular, when 1S orthoexcitons of the yellow series in the semiconductor cuprous oxide (Cu2O) were resonantly excited by light with a spatial mode, an increase in the Γ 3 - -phonon-emission peak intensity of the excitons was detected depending on the spatial mode. Using group-theory-based analysis, we show that the irreducible representation of a one-photon-forbidden exciton, which is one of the orthoexcitons, can be transmuted to an allowed state by taking the direct product with the polar vector produced from the spatial mode of the light. Although the transition process of the exciton is locally characterized by the usual quadrupole interaction, the phase conservation at each position at which the sample is irradiated causes the exciton to be in the same spatial-mode state. That causes a change in the transition selection rule. The selection rule relaxation due to the spatial mode of the light was also applied for paraexciton creation.

  20. Occipital TMS at phosphene detection threshold captures attention automatically.

    PubMed

    Rangelov, Dragan; Müller, Hermann J; Taylor, Paul C J

    2015-04-01

    Strong stimuli may capture attention automatically, suggesting that attentional selection is determined primarily by physical stimulus properties. The mechanisms underlying capture remain controversial, in particular, whether feedforward subcortical processes are its main source. Also, it remains unclear whether only physical stimulus properties determine capture strength. Here, we demonstrate strong capture in the absence of feedforward input to subcortical structures such as the superior colliculus, by using transcranial magnetic stimulation (TMS) over occipital visual cortex as an attention cue. This implies that the feedforward sweep through subcortex is not necessary for capture to occur but rather provides an additional source of capture. Furthermore, seen cues captured attention more strongly than (physically identical) unseen cues, suggesting that the momentary state of the nervous system modulates attentional selection. In summary, we demonstrate the existence of several sources of attentional capture, and that both physical stimulus properties and the state of the nervous system influence capture. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Brain State Effects on Layer 4 of the Awake Visual Cortex

    PubMed Central

    Zhuang, Jun; Bereshpolova, Yulia; Stoelzel, Carl R.; Huff, Joseph M.; Hei, Xiaojuan; Alonso, Jose-Manuel

    2014-01-01

    Awake mammals can switch between alert and nonalert brain states hundreds of times per day. Here, we study the effects of alertness on two cell classes in layer 4 of primary visual cortex of awake rabbits: presumptive excitatory “simple” cells and presumptive fast-spike inhibitory neurons (suspected inhibitory interneurons). We show that in both cell classes, alertness increases the strength and greatly enhances the reliability of visual responses. In simple cells, alertness also increases the temporal frequency bandwidth, but preserves contrast sensitivity, orientation tuning, and selectivity for direction and spatial frequency. Finally, alertness selectively suppresses the simple cell responses to high-contrast stimuli and stimuli moving orthogonal to the preferred direction, effectively enhancing mid-contrast borders. Using a population coding model, we show that these effects of alertness in simple cells—enhanced reliability, higher gain, and increased suppression in orthogonal orientation—could play a major role at increasing the speed of cortical feature detection. PMID:24623767

  2. Antibody Prevalence of Select Arboviruses in Mute Swans (Cygnus olor) in the Great Lakes Region and Atlantic Coast of the United States

    PubMed Central

    Pedersen, Kerri; Marks, David R.; Arsnoe, Dustin M.; Bevins, Sarah N.; Wang, Eryu; Weaver, Scott C.; Mickley, Randall M.; DeLiberto, Thomas J.

    2014-01-01

    Mute swans (Cygnus olor) are an invasive species in the United States. The dramatic increase in their populations in localized areas has led to various problems, among them competition with native species and attacks on humans by aggressive swans. However, very little is known about the ability of these swans to transmit pathogens to humans, domestic birds, or wildlife or participate in enzootic maintenance. To learn more about select pathogens that mute swans may harbor, a survey was conducted from April of 2011 to August of 2012 in the Great Lakes region and localized areas of the Atlantic coast, which revealed serologic evidence of arbovirus exposure in mute swans. Of 497 mute swans tested, antibodies were detected for eastern equine encephalitis (4.8%), St. Louis encephalitis (1.4%), West Nile (1.2%), and Turlock (0.6%) viruses. Samples were also tested for evidence of antibodies to La Crosse virus, but none were positive. PMID:25266351

  3. Ground-water quality for Grainger County, Tennessee

    USGS Publications Warehouse

    Weaver, J.D.; Patel, A.R.; Hickey, A.C.

    1994-01-01

    The residents of Grainger County depend on ground water for many of their daily needs including personal consumption and crop irrigation. To address concerns associated with ground-water quality related to domestic use, the U.S. Geological Survey collected water samples from 35 wells throughout the county during the summer 1992. The water samples were analyzed to determine if pesticides, nutrients, bacteria, and other selected constituents were present in the ground water. Wells selected for the study were between 100 and 250 feet deep and yielded 10 to 50 gallons of water per minute. Laboratory analyses of the water found no organic pesticides at concentrations exceeding the primary maximum contaminant levels established by the State of Tennessee for wells used for public supply. However, fecal coliform bacteria were detected at concentrations exceeding the State's maximum contaminant level in water from 15 of the 35 wells sampled. Analyses also indicated several inorganic compounds were present in the water samples at concentrations exceeding the secondary maximum contaminant level.

  4. Selective cultivation and rapid detection of Staphylococcus aureus by computer vision.

    PubMed

    Wang, Yong; Yin, Yongguang; Zhang, Chaonan

    2014-03-01

    In this paper, we developed a selective growth medium and a more rapid detection method based on computer vision for selective isolation and identification of Staphylococcus aureus from foods. The selective medium consisted of tryptic soy broth basal medium, 3 inhibitors (NaCl, K2 TeO3 , and phenethyl alcohol), and 2 accelerators (sodium pyruvate and glycine). After 4 h of selective cultivation, bacterial detection was accomplished using computer vision. The total analysis time was 5 h. Compared to the Baird-Parker plate count method, which requires 4 to 5 d, this new detection method offers great time savings. Moreover, our novel method had a correlation coefficient of greater than 0.998 when compared with the Baird-Parker plate count method. The detection range for S. aureus was 10 to 10(7) CFU/mL. Our new, rapid detection method for microorganisms in foods has great potential for routine food safety control and microbiological detection applications. © 2014 Institute of Food Technologists®

  5. Selection of Reference Gene Expression in a Schizophrenia Brain Cohort

    PubMed Central

    Weickert, Cynthia Shannon; Sheedy, Donna; Rothmond, Debora A.; Dedova, Irina; Fung, Samantha; Garrick, Therese; Wong, Jenny; Harding, Antony J.; Sivagnanansundaram, Sinthuja; Hunt, Clare; Duncan, Carlotta; Sundqvist, Nina; Tsai, Shan-Yuan; Anand, Jasna; Draganic, Daren; Harper, Clive

    2010-01-01

    Objective To conduct postmortem human brain research into the neuropathological basis of schizophrenia, it is critical to establish cohorts that are well-characterised and well-matched. Our objective was to determine if specimen characteristics, including: diagnosis, age, postmortem interval (PMI), brain acidity (pH), and/or the agonal state of the subject at death related to RNA quality, and to determine the most appropriate reference gene mRNAs. Methods We selected a matched cohort of 74 cases (37 schizophrenia / schizoaffective disorder cases and 37 controls cases). Middle frontal gyrus tissue was pulverised, tissue pH was measured, RNA isolated for cDNA from each case, and RNA integrity number (RIN) measurements were assessed. Using RT-PCR, we measured nine housekeeper genes and calculated a geomean in each diagnostic group. Results We found that the RINs were very good (mean 7.3) and all nine housekeeper control genes were significantly correlated with RIN. Seven of nine housekeeper genes were also correlated with pH, and two clinical variables, agonal state and duration of illness did have an effect on some control mRNAs. No major impact of PMI or freezer time on housekeeper mRNAs was detected. Our results show that people with schizophrenia had significantly less PPIA, and SDHA and tended to have less GUSB and B2M mRNA suggesting that these control genes may not be good candidates for normalisation. Conclusions In our cohort, less than 10% variability in RIN values was detected and the diagnostic groups were well matched overall. Our cohort was adequately powered (0.80–0.90) to detect mRNA differences (25%) due to disease. Our study suggests that multiple factors should be considered in mRNA expression studies of human brain tissues. When schizophrenia cases are adequately matched to control cases subtle differences in gene expression can be reliably detected. PMID:20073568

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaGory, K. E.; Walston, L. J.; Goulet, C

    The decline of many snake populations is attributable to habitat loss, and knowledge of habitat use is critical to their conservation. Resource characteristics (e.g., relative availability of different habitat types, soils, and slopes) within a landscape are scale-dependent and may not be equal across multiple spatial scales. Thus, it is important to identify the relevant spatial scales at which resource selection occurs. We conducted a radiotelemetry study of eastern hognose snake (Heterodon platirhinos) home range size and resource use at different hierarchical spatial scales. We present the results for 8 snakes radiotracked during a 2-year study at New Boston Airmore » Force Station (NBAFS) in southern New Hampshire, USA, where the species is listed by the state as endangered. Mean home range size (minimum convex polygon) at NBAFS (51.7 {+-} 14.7 ha) was similar to that reported in other parts of the species range. Radiotracked snakes exhibited different patterns of resource use at different spatial scales. At the landscape scale (selection of locations within the landscape), snakes overutilized old-field and forest edge habitats and underutilized forested habitats and wetlands relative to availability. At this scale, snakes also overutilized areas containing sandy loam soils and areas with lower slope (mean slope = 5.2% at snake locations vs. 6.7% at random locations). We failed to detect some of these patterns of resource use at the home range scale (i.e., within the home range). Our ability to detect resource selection by the snakes only at the landscape scale is likely the result of greater heterogeneity in macrohabitat features at the broader landscape scale. From a management perspective, future studies of habitat selection for rare species should include measurement of available habitat at spatial scales larger than the home range. We suggest that the maintenance of open early successional habitats as a component of forested landscapes will be critical for the persistence of eastern hognose snake populations in the northeastern United States.« less

  7. Coupling photochemical reaction detection based on singlet oxygen sensitization to capillary electrochromatography

    PubMed

    Dickson; Odom; Ducheneaux; Murray; Milofsky

    2000-07-15

    Despite the impressive separation efficiency afforded by capillary electrochromatography (CEC), the detection of UV-absorbing compounds following separation in capillary dimensions remains limited by the short path length (5-75 microm) through the column. Moreover, analytes that are poor chromophores present an additional challenge with respect to sensitive detection in CEC. This paper illustrates a new photochemical reaction detection scheme for CEC that takes advantage of the catalytic nature of type II photooxidation reactions. The sensitive detection scheme is selective toward molecules capable of photosensitizing the formation of singlet molecular oxygen (1O2). Following separation by CEC, UV-absorbing analytes promote groundstate 3O2 to an excited state (1O2) which reacts rapidly with tert-butyl-3,4,5-trimethylpyrrolecarboxylate, which is added to the running buffer. Detection is based on the loss of pyrrole. The reaction is catalytic in nature since one analyte molecule may absorb light many times, producing large amounts of 1O2. The detection limit for 9-acetylanthracene, following separation by CEC, is approximately 6 x 10(-9) M (S/N = 3). Optimization of the factors effecting the S/N for four model compounds is discussed.

  8. Highly selective luminescent sensing of picric acid based on a water-stable europium metal-organic framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Tifeng; Zhu, Fengliang; Cui, Yuanjing, E-mail: cuiyj@zju.edu.cn

    A water-stable metal-organic framework (MOF) EuNDC has been synthesized for selective detection of the well-known contaminant and toxicant picric acid (PA) in aqueous solution. Due to the photo-induced electron transfer and self-absorption mechanism, EuNDC displayed rapid, selective and sensitive detection of PA with a detection limit of 37.6 ppb. Recyclability experiments revealed that EuNDC retains its initial luminescent intensity and same quenching efficiency in each cycle, suggesting high photostability and reusability for long-term sensing applications. The excellent detection performance of EuNDC makes it a promising PA sensing material for practical applications. - Graphical abstract: A water-stable europium-based metal-organic framework hasmore » been reported for highly selective sensing of picric acid (PA) with a detection limit of 37.6 ppb in aqueous solution. - Highlights: • A water-stable metal-organic framework (MOF) EuNDC was synthesized. • The highly selective detection of picric acid with a detection limit of 37.6 ppb was realized. • The detection mechanism were also presented and discussed.« less

  9. 46 CFR 108.404 - Selection of fire detection system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Selection of fire detection system. 108.404 Section 108.404 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.404 Selection of fire detection system. (a) If a...

  10. 46 CFR 108.404 - Selection of fire detection system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Selection of fire detection system. 108.404 Section 108.404 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.404 Selection of fire detection system. (a) If a...

  11. 46 CFR 108.404 - Selection of fire detection system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Selection of fire detection system. 108.404 Section 108.404 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.404 Selection of fire detection system. (a) If a...

  12. 46 CFR 108.404 - Selection of fire detection system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Selection of fire detection system. 108.404 Section 108.404 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.404 Selection of fire detection system. (a) If a...

  13. Selectivity/Specificity Improvement Strategies in Surface-Enhanced Raman Spectroscopy Analysis

    PubMed Central

    Wang, Feng; Cao, Shiyu; Yan, Ruxia; Wang, Zewei; Wang, Dan; Yang, Haifeng

    2017-01-01

    Surface-enhanced Raman spectroscopy (SERS) is a powerful technique for the discrimination, identification, and potential quantification of certain compounds/organisms. However, its real application is challenging due to the multiple interference from the complicated detection matrix. Therefore, selective/specific detection is crucial for the real application of SERS technique. We summarize in this review five selective/specific detection techniques (chemical reaction, antibody, aptamer, molecularly imprinted polymers and microfluidics), which can be applied for the rapid and reliable selective/specific detection when coupled with SERS technique. PMID:29160798

  14. Overlapping communities from dense disjoint and high total degree clusters

    NASA Astrophysics Data System (ADS)

    Zhang, Hongli; Gao, Yang; Zhang, Yue

    2018-04-01

    Community plays an important role in the field of sociology, biology and especially in domains of computer science, where systems are often represented as networks. And community detection is of great importance in the domains. A community is a dense subgraph of the whole graph with more links between its members than between its members to the outside nodes, and nodes in the same community probably share common properties or play similar roles in the graph. Communities overlap when nodes in a graph belong to multiple communities. A vast variety of overlapping community detection methods have been proposed in the literature, and the local expansion method is one of the most successful techniques dealing with large networks. The paper presents a density-based seeding method, in which dense disjoint local clusters are searched and selected as seeds. The proposed method selects a seed by the total degree and density of local clusters utilizing merely local structures of the network. Furthermore, this paper proposes a novel community refining phase via minimizing the conductance of each community, through which the quality of identified communities is largely improved in linear time. Experimental results in synthetic networks show that the proposed seeding method outperforms other seeding methods in the state of the art and the proposed refining method largely enhances the quality of the identified communities. Experimental results in real graphs with ground-truth communities show that the proposed approach outperforms other state of the art overlapping community detection algorithms, in particular, it is more than two orders of magnitude faster than the existing global algorithms with higher quality, and it obtains much more accurate community structure than the current local algorithms without any priori information.

  15. Impact of expanded newborn screening--United States, 2006.

    PubMed

    2008-09-19

    Universal newborn screening for selected metabolic, endocrine, hematologic, and functional disorders is a well-established practice of state public health programs. Recent developments in tandem mass spectrometry (MS/MS), which is now capable of multi-analyte analysis in a high throughput capacity, has enabled newborn screening to include many more disorders detectable from a newborn blood spot. In 2006, to address the substantial variation that existed from state to state in the number of disorders included in newborn screening panels, the American College of Medical Genetics (ACMG), under guidance from the Health Resources and Services Administration, recommended a uniform panel of 29 disorders, which was subsequently endorsed by the federal Advisory Committee on Heritable Disorders in Newborns and Children. After 2006, most states began to expand their panels to include all 29 disorders; currently, 21 states and the District of Columbia have fully implemented the ACMG panel. To estimate the burden to state newborn screening programs resulting from this expansion, CDC used 2001-2006 data from those states with well-established MS/MS screening programs to estimate the number of children in the United States who would have been identified with disorders in 2006 if all 50 states and the District of Columbia had been using the ACMG panel. This report describes the results of that analysis, which indicated that, although such an expansion would have increased the number of children identified by only 32% (from 4,370 to 6,439), these children would have had many rare disorders that require local or regional capacity to deliver expertise in screening, diagnosis, and management. The findings underscore the need for public health and health-care delivery systems to build or expand the programs required to manage the rare disorders detected through expanded newborn screening, while also continuing programs to address more common disorders.

  16. Genetic structure and molecular variability of Cucumber mosaic virus isolates in the United States.

    PubMed

    Nouri, Shahideh; Arevalo, Rafael; Falk, Bryce W; Groves, Russell L

    2014-01-01

    Cucumber mosaic virus (CMV) has a worldwide distribution and the widest host range of any known plant virus. From 2000 to 2012, epidemics of CMV severely affected the production of snap bean (Phaseulos vulgaris L.) in the Midwest and Northeastern United States. Virus diversity leading to emergence of new strains is often considered a significant factor in virus epidemics. In addition to epidemics, new disease phenotypes arising from genetic exchanges or mutation can compromise effectiveness of plant disease management strategies. Here, we captured a snapshot of genetic variation of 32 CMV isolates collected from different regions of the U.S including new field as well as historic isolates. Nucleotide diversity (π) was low for U.S. CMV isolates. Sequence and phylogenetic analyses revealed that CMV subgroup I is predominant in the US and further showed that the CMV population is a mixture of subgroups IA and IB. Furthermore, phylogenetic analysis suggests likely reassortment between subgroups IA and IB within five CMV isolates. Based on phylogenetic and computational analysis, recombination between subgroups I and II as well as IA and IB in RNA 3 was detected. This is the first report of recombination between CMV subgroups I and II. Neutrality tests illustrated that negative selection was the major force operating upon the CMV genome, although some positively selected sites were detected for all encoded proteins. Together, these data suggest that different regions of the CMV genome are under different evolutionary constraints. These results also delineate composition of the CMV population in the US, and further suggest that recombination and reassortment among strain subgroups does occur but at a low frequency, and point towards CMV genomic regions that differ in types of selection pressure.

  17. Genetic Structure and Molecular Variability of Cucumber mosaic virus Isolates in the United States

    PubMed Central

    Nouri, Shahideh; Arevalo, Rafael; Falk, Bryce W.; Groves, Russell L.

    2014-01-01

    Cucumber mosaic virus (CMV) has a worldwide distribution and the widest host range of any known plant virus. From 2000 to 2012, epidemics of CMV severely affected the production of snap bean (Phaseulos vulgaris L.) in the Midwest and Northeastern United States. Virus diversity leading to emergence of new strains is often considered a significant factor in virus epidemics. In addition to epidemics, new disease phenotypes arising from genetic exchanges or mutation can compromise effectiveness of plant disease management strategies. Here, we captured a snapshot of genetic variation of 32 CMV isolates collected from different regions of the U.S including new field as well as historic isolates. Nucleotide diversity (π) was low for U.S. CMV isolates. Sequence and phylogenetic analyses revealed that CMV subgroup I is predominant in the US and further showed that the CMV population is a mixture of subgroups IA and IB. Furthermore, phylogenetic analysis suggests likely reassortment between subgroups IA and IB within five CMV isolates. Based on phylogenetic and computational analysis, recombination between subgroups I and II as well as IA and IB in RNA 3 was detected. This is the first report of recombination between CMV subgroups I and II. Neutrality tests illustrated that negative selection was the major force operating upon the CMV genome, although some positively selected sites were detected for all encoded proteins. Together, these data suggest that different regions of the CMV genome are under different evolutionary constraints. These results also delineate composition of the CMV population in the US, and further suggest that recombination and reassortment among strain subgroups does occur but at a low frequency, and point towards CMV genomic regions that differ in types of selection pressure. PMID:24801880

  18. Automated Detection of Selective Logging in Amazon Forests Using Airborne Lidar Data and Pattern Recognition Algorithms

    NASA Astrophysics Data System (ADS)

    Keller, M. M.; d'Oliveira, M. N.; Takemura, C. M.; Vitoria, D.; Araujo, L. S.; Morton, D. C.

    2012-12-01

    Selective logging, the removal of several valuable timber trees per hectare, is an important land use in the Brazilian Amazon and may degrade forests through long term changes in structure, loss of forest carbon and species diversity. Similar to deforestation, the annual area affected by selected logging has declined significantly in the past decade. Nonetheless, this land use affects several thousand km2 per year in Brazil. We studied a 1000 ha area of the Antimary State Forest (FEA) in the State of Acre, Brazil (9.304 ○S, 68.281 ○W) that has a basal area of 22.5 m2 ha-1 and an above-ground biomass of 231 Mg ha-1. Logging intensity was low, approximately 10 to 15 m3 ha-1. We collected small-footprint airborne lidar data using an Optech ALTM 3100EA over the study area once each in 2010 and 2011. The study area contained both recent and older logging that used both conventional and technologically advanced logging techniques. Lidar return density averaged over 20 m-2 for both collection periods with estimated horizontal and vertical precision of 0.30 and 0.15 m. A relative density model comparing returns from 0 to 1 m elevation to returns in 1-5 m elevation range revealed the pattern of roads and skid trails. These patterns were confirmed by ground-based GPS survey. A GIS model of the road and skid network was built using lidar and ground data. We tested and compared two pattern recognition approaches used to automate logging detection. Both segmentation using commercial eCognition segmentation and a Frangi filter algorithm identified the road and skid trail network compared to the GIS model. We report on the effectiveness of these two techniques.

  19. Classification of multipartite entanglement via negativity fonts

    NASA Astrophysics Data System (ADS)

    Sharma, S. Shelly; Sharma, N. K.

    2012-04-01

    Partial transposition of state operator is a well-known tool to detect quantum correlations between two parts of a composite system. In this paper, the global partial transpose (GPT) is linked to conceptually multipartite underlying structures in a state—the negativity fonts. If K-way negativity fonts with nonzero determinants exist, then selective partial transposition of a pure state, involving K of the N qubits (K⩽N), yields an operator with negative eigenvalues, identifying K-body correlations in the state. Expansion of GPT in terms of K-way partially transposed (KPT) operators reveals the nature of intricate intrinsic correlations in the state. Classification criteria for multipartite entangled states based on the underlying structure of global partial transpose of canonical state are proposed. The number of N-partite entanglement types for an N-qubit system is found to be 2N-1-N+2, while the number of major entanglement classes is 2N-1-1. Major classes for three- and four-qubit states are listed. Subclasses are determined by the number and type of negativity fonts in canonical states.

  20. An electrochemiluminescence biosensor for endonuclease EcoRI detection.

    PubMed

    Li, Yingjie; Li, Yuqin; Wu, Yaoyu; Lu, Fushen; Chen, Yaowen; Gao, Wenhua

    2017-03-15

    Endonucleases cleavage of DNA plays an important role in biological and medicinal chemistry. This work was going to develop a reliable and sensitive electrochemiluminescent (ECL) biosensor for detecting endonucleases by using gold nanoparticles graphene composite (GNPs-graphene) as a signal amplifier. Firstly, the GNPs and graphene were simultaneously deposited on the glassy carbon electrode (GCE) by cyclic voltammetry. Then a stem DNA was anchored on the surface of GCE. And with a modifying DNA introduced into the electrode by DNA assembly, a strong ECL signal was obtained. After a DNA modified with ferrocene assembly to the stem DNA, the ECL signal had a sharp decrease due to the quench effect of ferrocene to and the biosensor comes into being a "off" state. With the effect of endonuclease, the ECL signal had a recovery because of the ferrocene being released and the biosensor formed a "on" state. Moreover, the recovery of ECL signal was related to the concentration of endonucleases. Combining specific defined DNA and endonuclease, this method has a potential to detect different endonucleases. In this work, we took the EcoRI as an example to identify the feasibility of ECL biosensor in applying in sensitive detection of endonucleases using a GNPs-graphene signal amplifier. Under optimal condition, the proposed biosensor obtained a low limit of detection (LOD) 5.6×10 -5 UmL -1 . And the stability, selectivity and reproducibility of the biosensor also were researched. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Detection of driving fatigue by using noncontact EMG and ECG signals measurement system.

    PubMed

    Fu, Rongrong; Wang, Hong

    2014-05-01

    Driver fatigue can be detected by constructing a discriminant mode using some features obtained from physiological signals. There exist two major challenges of this kind of methods. One is how to collect physiological signals from subjects while they are driving without any interruption. The other is to find features of physiological signals that are of corresponding change with the loss of attention caused by driver fatigue. Driving fatigue is detected based on the study of surface electromyography (EMG) and electrocardiograph (ECG) during the driving period. The noncontact data acquisition system was used to collect physiological signals from the biceps femoris of each subject to tackle the first challenge. Fast independent component analysis (FastICA) and digital filter were utilized to process the original signals. Based on the statistical analysis results given by Kolmogorov-Smirnov Z test, the peak factor of EMG (p < 0.001) and the maximum of the cross-relation curve of EMG and ECG (p < 0.001) were selected as the combined characteristic to detect fatigue of drivers. The discriminant criterion of fatigue was obtained from the training samples by using Mahalanobis distance, and then the average classification accuracy was given by 10-fold cross-validation. The results showed that the method proposed in this paper can give well performance in distinguishing the normal state and fatigue state. The noncontact, onboard vehicle drivers' fatigue detection system was developed to reduce fatigue-related risks.

  2. Relations between sinkhole density and anthropogenic contaminants in selected carbonate aquifers in the eastern United States

    USGS Publications Warehouse

    Lindsey, Bruce D.; Katz, Brian G.; Berndt, Marian P.; Ardis, Ann F.; Skach, Kenneth A.

    2009-01-01

    The relation between sinkhole density and water quality was investigated in seven selected carbonate aquifers in the eastern United States. Sinkhole density for these aquifers was grouped into high (>25 sinkholes/100 km2), medium (1–25 sinkholes/100 km2), or low (2) categories using a geographical information system that included four independent databases covering parts of Alabama, Florida, Missouri, Pennsylvania, and Tennessee. Field measurements and concentrations of major ions, nitrate, and selected pesticides in samples from 451 wells and 70 springs were included in the water-quality database. Data were collected as a part of the US Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program. Areas with high and medium sinkhole density had the greatest well depths and depths to water, the lowest concentrations of total dissolved solids and bicarbonate, the highest concentrations of dissolved oxygen, and the lowest partial pressure of CO2 compared to areas with low sinkhole density. These chemical indicators are consistent conceptually with a conduit-flow-dominated system in areas with a high density of sinkholes and a diffuse-flow-dominated system in areas with a low density of sinkholes. Higher cave density and spring discharge in Pennsylvania also support the concept that the high sinkhole density areas are dominated by conduit-flow systems. Concentrations of nitrate-N were significantly higher (p < 0.05) in areas with high and medium sinkhole density than in low sinkhole-density areas; when accounting for the variations in land use near the sampling sites, the high sinkhole-density area still had higher concentrations of nitrate-N than the low sinkhole-density area. Detection frequencies of atrazine, simazine, metolachlor, prometon, and the atrazine degradate deethylatrazine indicated a pattern similar to nitrate; highest pesticide detections were associated with high sinkhole-density areas. These patterns generally persisted when analyzing the detection frequency by land-use groups, particularly for agricultural land-use areas where pesticide use would be expected to be higher and more uniform areally compared to urban and forested areas. Although areas with agricultural land use and a high sinkhole density were most vulnerable (median nitrate-N concentration was 3.7 mg/L, 11% of samples exceeded 10 mg/L, and had the highest frequencies of pesticide detection), areas with agricultural land use and low sinkhole density still were vulnerable to contamination (median nitrate-N concentration was 1.5 mg/L, 8% of samples exceeded 10 mg/L, and had some of the highest frequencies of detections of pesticides). This may be due in part to incomplete or missing data regarding karst features (such as buried sinkholes, low-permeability material in bottom of sinkholes) that do not show up at the scales used for regional mapping and to inconsistent methods among states in karst feature delineation.

  3. Electrokinetic detection for X-ray spectra of weakly interacting liquids: n-decane and n-nonane.

    PubMed

    Lam, Royce K; Shih, Orion; Smith, Jacob W; Sheardy, Alex T; Rizzuto, Anthony M; Prendergast, David; Saykally, Richard J

    2014-06-21

    The introduction of liquid microjets into soft X-ray absorption spectroscopy enabled the windowless study of liquids by this powerful atom-selective high vacuum methodology. However, weakly interacting liquids produce large vapor backgrounds that strongly perturb the liquid signal. Consequently, solvents (e.g., hydrocarbons, ethers, ketones, etc.) and solutions of central importance in chemistry and biology have been inaccessible by this technology. Here we describe a new detection method, upstream detection, which greatly reduces the vapor phase contribution to the X-ray absorption signal while retaining important advantages of liquid microjet sample introduction (e.g., minimal radiation damage). The effectiveness of the upstream detection method is demonstrated in this first study of room temperature liquid hydrocarbons: n-nonane and n-decane. Good agreement with first principles' calculations indicates that the eXcited electron and Core Hole theory adequately describes the subtle interactions in these liquids that perturb the electronic structure of the unoccupied states probed in core-level experiments.

  4. Occurrence of Pharmaceuticals in Shallow Ground-Water of Suffolk County, New York, 2002-05

    USGS Publications Warehouse

    Benotti, Mark J.; Fisher, Shawn; Terracciano, Stephen

    2006-01-01

    Seventy (70) water samples were collected from 61 wells in the upper glacial and Magothy aquifers (9 wells were sampled twice) during 2002-05 and analyzed for 24 pharmaceuticals. Wells were selected for their proximity to known wastewater-treatment facilities that discharge to the shallow upper glacial aquifer. Pharmaceuticals were detected in 28 of the 70 samples, 19 of which contained one compound, and 9 of which contained two or more compounds. Concentrations of detected compounds were extremely low; most ranged from 0.001 to 0.1 microgram per liter (part per billion). The two most commonly detected compounds were carbamazepine (an antiepileptic drug) and sulfamethoxazole (an antibiotic). Occurrence of pharmaceutical compounds in Suffolk County ground-water is less prevalent than in susceptible streams of the United States that were tested in 1998-2000, but the similarity of median concentrations of the detected compounds of the two data sets indicates that current wastewater practices can serve to introduce pharmaceuticals to this shallow aquifer.

  5. Automated Detection of Microaneurysms Using Scale-Adapted Blob Analysis and Semi-Supervised Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adal, Kedir M.; Sidebe, Desire; Ali, Sharib

    2014-01-07

    Despite several attempts, automated detection of microaneurysm (MA) from digital fundus images still remains to be an open issue. This is due to the subtle nature of MAs against the surrounding tissues. In this paper, the microaneurysm detection problem is modeled as finding interest regions or blobs from an image and an automatic local-scale selection technique is presented. Several scale-adapted region descriptors are then introduced to characterize these blob regions. A semi-supervised based learning approach, which requires few manually annotated learning examples, is also proposed to train a classifier to detect true MAs. The developed system is built using onlymore » few manually labeled and a large number of unlabeled retinal color fundus images. The performance of the overall system is evaluated on Retinopathy Online Challenge (ROC) competition database. A competition performance measure (CPM) of 0.364 shows the competitiveness of the proposed system against state-of-the art techniques as well as the applicability of the proposed features to analyze fundus images.« less

  6. Detection of the barium daughter in 136Xe -->136Ba + 2e- by in situ single-molecule fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Nygren, David

    2015-10-01

    To proceed toward effective ``discovery class'' ton-scale detectors in the search for neutrino-less double beta decay, a robust technique for rejection of all radioactivity-induced backgrounds is urgently needed. An efficient technique for detection of the barium daughter in the decay 136Xe -->136Ba + 2e- would provide a long-sought pathway toward this goal. Single-molecule fluorescent imaging appears to offer a new way to detect the barium daughter atom, which emerges naturally in an ionized state in pure xenon. A doubly charged barium ion can initiate a chelation process with a non-fluorescent precursor molecule, leading to a highly fluorescent complex. Repeated photo-excitation of the complex can reveal both presence and location of a single ionized atom with high precision and selectivity. Detection within the active volume of a xenon gas Time Projection Chamber operating at high pressure would be automatic, and with a capability for redundant confirmation.

  7. Joint sparsity based heterogeneous data-level fusion for target detection and estimation

    NASA Astrophysics Data System (ADS)

    Niu, Ruixin; Zulch, Peter; Distasio, Marcello; Blasch, Erik; Shen, Dan; Chen, Genshe

    2017-05-01

    Typical surveillance systems employ decision- or feature-level fusion approaches to integrate heterogeneous sensor data, which are sub-optimal and incur information loss. In this paper, we investigate data-level heterogeneous sensor fusion. Since the sensors monitor the common targets of interest, whose states can be determined by only a few parameters, it is reasonable to assume that the measurement domain has a low intrinsic dimensionality. For heterogeneous sensor data, we develop a joint-sparse data-level fusion (JSDLF) approach based on the emerging joint sparse signal recovery techniques by discretizing the target state space. This approach is applied to fuse signals from multiple distributed radio frequency (RF) signal sensors and a video camera for joint target detection and state estimation. The JSDLF approach is data-driven and requires minimum prior information, since there is no need to know the time-varying RF signal amplitudes, or the image intensity of the targets. It can handle non-linearity in the sensor data due to state space discretization and the use of frequency/pixel selection matrices. Furthermore, for a multi-target case with J targets, the JSDLF approach only requires discretization in a single-target state space, instead of discretization in a J-target state space, as in the case of the generalized likelihood ratio test (GLRT) or the maximum likelihood estimator (MLE). Numerical examples are provided to demonstrate that the proposed JSDLF approach achieves excellent performance with near real-time accurate target position and velocity estimates.

  8. [Research on fast detecting tomato seedlings nitrogen content based on NIR characteristic spectrum selection].

    PubMed

    Wu, Jing-zhu; Wang, Feng-zhu; Wang, Li-li; Zhang, Xiao-chao; Mao, Wen-hua

    2015-01-01

    In order to improve the accuracy and robustness of detecting tomato seedlings nitrogen content based on near-infrared spectroscopy (NIR), 4 kinds of characteristic spectrum selecting methods were studied in the present paper, i. e. competitive adaptive reweighted sampling (CARS), Monte Carlo uninformative variables elimination (MCUVE), backward interval partial least squares (BiPLS) and synergy interval partial least squares (SiPLS). There were totally 60 tomato seedlings cultivated at 10 different nitrogen-treatment levels (urea concentration from 0 to 120 mg . L-1), with 6 samples at each nitrogen-treatment level. They are in different degrees of over nitrogen, moderate nitrogen, lack of nitrogen and no nitrogen status. Each sample leaves were collected to scan near-infrared spectroscopy from 12 500 to 3 600 cm-1. The quantitative models based on the above 4 methods were established. According to the experimental result, the calibration model based on CARS and MCUVE selecting methods show better performance than those based on BiPLS and SiPLS selecting methods, but their prediction ability is much lower than that of the latter. Among them, the model built by BiPLS has the best prediction performance. The correlation coefficient (r), root mean square error of prediction (RMSEP) and ratio of performance to standard derivate (RPD) is 0. 952 7, 0. 118 3 and 3. 291, respectively. Therefore, NIR technology combined with characteristic spectrum selecting methods can improve the model performance. But the characteristic spectrum selecting methods are not universal. For the built model based or single wavelength variables selection is more sensitive, it is more suitable for the uniform object. While the anti-interference ability of the model built based on wavelength interval selection is much stronger, it is more suitable for the uneven and poor reproducibility object. Therefore, the characteristic spectrum selection will only play a better role in building model, combined with the consideration of sample state and the model indexes.

  9. Molecular sieve sensors for selective detection at the nanogram level

    DOEpatents

    Bein, Thomas; Brown, Kelly D.; Frye, Gregory C.; Brinker, Charles J.

    1992-01-01

    The invention relates to a selective chemical sensor for selective detection of chemical entities even at the nanogram level. The invention further relates to methods of using the sensor. The sensor comprises: (a) a piezoelectric substrate capable of detecting mass changes resulting from adsorption of material thereon; and (b) a coating applied to the substrate, which selectively sorbs chemical entities of a size smaller than a preselected magnitude.

  10. Clover: Compiler directed lightweight soft error resilience

    DOE PAGES

    Liu, Qingrui; Lee, Dongyoon; Jung, Changhee; ...

    2015-05-01

    This paper presents Clover, a compiler directed soft error detection and recovery scheme for lightweight soft error resilience. The compiler carefully generates soft error tolerant code based on idem-potent processing without explicit checkpoint. During program execution, Clover relies on a small number of acoustic wave detectors deployed in the processor to identify soft errors by sensing the wave made by a particle strike. To cope with DUE (detected unrecoverable errors) caused by the sensing latency of error detection, Clover leverages a novel selective instruction duplication technique called tail-DMR (dual modular redundancy). Once a soft error is detected by either themore » sensor or the tail-DMR, Clover takes care of the error as in the case of exception handling. To recover from the error, Clover simply redirects program control to the beginning of the code region where the error is detected. Lastly, the experiment results demonstrate that the average runtime overhead is only 26%, which is a 75% reduction compared to that of the state-of-the-art soft error resilience technique.« less

  11. Qualitative and Quantitative Analysis of Histone Deacetylases in Kidney Tissue Sections.

    PubMed

    Ververis, Katherine; Marzully, Selly; Samuel, Chrishan S; Hewitson, Tim D; Karagiannis, Tom C

    2016-01-01

    Fluorescent microscope imaging technologies are increasing in their applications and are being used on a wide scale. However methods used to quantify the level of fluorescence intensity are often not utilized-perhaps given the result may be immediately seen, quantification of the data may not seem necessary. However there are a number of reasons given to quantify fluorescent images including the importance of removing potential bias in the data upon observation as well as quantification of large numbers of images gives statistical power to detect subtle changes in experiments. In addition discreet localization of a protein could be detected without selection bias that may not be detectable by eye. Such data will be deemed useful when detecting the levels of HDAC enzymes within cells in order to develop more effective HDAC inhibitor compounds for use against multiple diseased states. Hence, we discuss a methodology devised to analyze fluorescent images using Image J to detect the mean fluorescence intensity of the 11 metal-dependent HDAC enzymes using murine kidney tissue sections as an example.

  12. Evaluation of a New Chromogenic Medium (StrepB Select) for Detection of Group B Streptococcus from Vaginal-Rectal Specimens ▿

    PubMed Central

    Louie, L.; Kotowich, L.; Meaney, H.; Vearncombe, M.; Simor, A. E.

    2010-01-01

    We compared StrepB Select medium (Select) after enrichment with conventional culture for the detection of Group B Streptococcus (GBS). Postenrichment sensitivities of Select and conventional culture were 98.8% and 92.2%, respectively (P < 0.05). Select was superior for detection of GBS from vaginal-rectal specimens. Growth of non-GBS colonies required additional work to exclude the presence of GBS, especially after 48 h of incubation. Incubation of Select beyond 24 h did not significantly increase the yield of GBS. PMID:20962144

  13. Distributed multi-level supervision to effectively monitor the operations of a fleet of autonomous vehicles in agricultural tasks.

    PubMed

    Conesa-Muñoz, Jesús; Gonzalez-de-Soto, Mariano; Gonzalez-de-Santos, Pablo; Ribeiro, Angela

    2015-03-05

    This paper describes a supervisor system for monitoring the operation of automated agricultural vehicles. The system analyses all of the information provided by the sensors and subsystems on the vehicles in real time and notifies the user when a failure or potentially dangerous situation is detected. In some situations, it is even able to execute a neutralising protocol to remedy the failure. The system is based on a distributed and multi-level architecture that divides the supervision into different subsystems, allowing for better management of the detection and repair of failures. The proposed supervision system was developed to perform well in several scenarios, such as spraying canopy treatments against insects and diseases and selective weed treatments, by either spraying herbicide or burning pests with a mechanical-thermal actuator. Results are presented for selective weed treatment by the spraying of herbicide. The system successfully supervised the task; it detected failures such as service disruptions, incorrect working speeds, incorrect implement states, and potential collisions. Moreover, the system was able to prevent collisions between vehicles by taking action to avoid intersecting trajectories. The results show that the proposed system is a highly useful tool for managing fleets of autonomous vehicles. In particular, it can be used to manage agricultural vehicles during treatment operations.

  14. Distributed Multi-Level Supervision to Effectively Monitor the Operations of a Fleet of Autonomous Vehicles in Agricultural Tasks

    PubMed Central

    Conesa-Muñoz, Jesús; Gonzalez-de-Soto, Mariano; Gonzalez-de-Santos, Pablo; Ribeiro, Angela

    2015-01-01

    This paper describes a supervisor system for monitoring the operation of automated agricultural vehicles. The system analyses all of the information provided by the sensors and subsystems on the vehicles in real time and notifies the user when a failure or potentially dangerous situation is detected. In some situations, it is even able to execute a neutralising protocol to remedy the failure. The system is based on a distributed and multi-level architecture that divides the supervision into different subsystems, allowing for better management of the detection and repair of failures. The proposed supervision system was developed to perform well in several scenarios, such as spraying canopy treatments against insects and diseases and selective weed treatments, by either spraying herbicide or burning pests with a mechanical-thermal actuator. Results are presented for selective weed treatment by the spraying of herbicide. The system successfully supervised the task; it detected failures such as service disruptions, incorrect working speeds, incorrect implement states, and potential collisions. Moreover, the system was able to prevent collisions between vehicles by taking action to avoid intersecting trajectories. The results show that the proposed system is a highly useful tool for managing fleets of autonomous vehicles. In particular, it can be used to manage agricultural vehicles during treatment operations. PMID:25751079

  15. Subcarrier multiplexing with dispersion reduction and direct detection

    DOEpatents

    Sargis, P.D.; Haigh, R.E.; McCammon, K.G.

    1997-01-21

    An SCM system is disclosed for simultaneously reducing the concomitant problems of receiver complexity and dispersion penalty and without requiring the use of an expensive, high-bandwidth optical detector. The system provides both a dispersion reduction and a direct detection to the receiver, with microwave mixers and lithium niobate external modulators that produce sidebands that are only separated by a few gigahertz from a principal laser optical carrier. Digital data streams are independently impressed upon these sidebands for transmission over an ordinary single-mode fiber. Independent high-speed data streams are upconverted to microwave frequencies. These subcarriers are then combined with a microwave power combiner and amplified with a microwave amplifier. A solid-state 1550-nm laser carrier is modulated by the microwave subcarriers. An erbium-doped fiber amplifier (EDFA) is used just prior to long-distance transmission over ordinary single-mode fiber. The transmitted optical signal may then traverse multiple EDFAs to compensate for long-haul optical fiber losses prior to detection. At a receiving end, the optical signal is split into multiple paths. The subcarrier channels are optically pre-selected using a narrowband optical filter, such as a fiber Fabry-Perot (FFP) filter. An optical detector converts the selected optical signal into a baseband electrical data stream. 2 figs.

  16. Single-atom detection of isotopes

    DOEpatents

    Meyer, Fred W.

    2002-01-01

    A method for performing accelerator mass spectrometry, includes producing a beam of positive ions having different multiple charges from a multicharged ion source; selecting positive ions having a charge state of from +2 to +4 to define a portion of the beam of positive ions; and scattering at least a portion of the portion of the beam of positive ions off a surface of a target to directly convert a portion of the positive ions in the portion of the beam of positive ions to negative ions.

  17. Contaminants in fish tissue from US lakes and reservoirs: A ...

    EPA Pesticide Factsheets

    An unequal probability design was used to develop national estimates for 268 persistent, bioaccumulative, and toxic chemicals in fish tissue from lakes and reservoirs of the conterminous United States (excluding the Laurentian Great Lakes and Great Salt Lake). Predator (fillet) and bottom-dweller (whole-body) composites were collected from 500 lakes selected randomly from the target population of 147,343 lakes in the lower 48 states. Each of these composite types comprised nationally representative samples whose results were extrapolated to the sampled population of an estimated 76,559 lakes for predators and 46,190 lakes for bottom dwellers. Mercury and PCBs were detected in all fish samples. Dioxins and furans were detected in 81% and 99% of predator and bottom-dweller samples, respectively. Cumulative frequency distributions showed that mercury concentrations exceeded the EPA 300 ppb mercury fish tissue criterion at nearly half of the lakes in the sampled population. Total PCB concentrations exceeded a 12 ppb human health risk-based consumption limit at nearly 17% of lakes, and dioxins and furans exceeded a 0.15 ppt (toxic equivalent or TEQ) risk-based threshold at nearly 8% of lakes in the sampled population. In contrast, 43 target chemicals were not detected in any samples. No detections were reported for nine organophosphate pesticides, one PCB congener, 16 polycyclic aromatic hydrocarbons, or 17 other semivolatile organic chemicals. An unequal prob

  18. Analysis of Water-Quality Trends for Selected Streams in the Water Chemistry Monitoring Program, Michigan, 1998-2005

    USGS Publications Warehouse

    Hoard, C.J.; Fuller, Lori M.; Fogarty, Lisa R.

    2009-01-01

    In 1998, the Michigan Department of Environmental Quality and the U.S. Geological Survey began a long-term monitoring program to evaluate the water quality of most watersheds in Michigan. Major goals of this Water-Chemistry Monitoring Program were to identify streams exceeding or not meeting State or Federal water-quality standards and to assess if constituent concentrations reflecting water quality in these streams were increasing or decreasing over time. As part of this program, water-quality data collected from 1998 to 2005 were analyzed to identify potential trends. Sixteen water-quality constituents were analyzed at 31 sites across Michigan, 28 of which had sufficient data to analyze for trends. Trend analysis on the various water-quality data was done using the uncensored Seasonal Kendall test within the computer program ESTREND. The most prevalent trend detected throughout the state was for chloride. Chloride trends were detected at 8 of the 28 sites; trends at 7 sites were increasing and the trend at 1 site was decreasing. Although no trends were detected for various nitrogen species or phosphorus, these constituents were detected at levels greater than the U.S. Environmental Protection Agency recommendations for nutrients in water. The results of the trend analysis will help to establish a baseline to evaluate future changes in water quality in Michigan streams.

  19. Contaminants in fish tissue from US lakes and reservoirs: a national probabilistic study.

    PubMed

    Stahl, Leanne L; Snyder, Blaine D; Olsen, Anthony R; Pitt, Jennifer L

    2009-03-01

    An unequal probability design was used to develop national estimates for 268 persistent, bioaccumulative, and toxic chemicals in fish tissue from lakes and reservoirs of the conterminous United States (excluding the Laurentian Great Lakes and Great Salt Lake). Predator (fillet) and bottom-dweller (whole body) composites were collected from 500 lakes selected randomly from the target population of 147,343 lakes in the lower 48 states. Each of these composite types comprised nationally representative samples whose results were extrapolated to the sampled population of an estimated 76,559 lakes for predators and 46,190 lakes for bottom dwellers. Mercury and PCBs were detected in all fish samples. Dioxins and furans were detected in 81% and 99% of predator and bottom-dweller samples, respectively. Cumulative frequency distributions showed that mercury concentrations exceeded the EPA 300 ppb mercury fish tissue criterion at nearly half of the lakes in the sampled population. Total PCB concentrations exceeded a 12 ppb human health risk-based consumption limit at nearly 17% of lakes, and dioxins and furans exceeded a 0.15 ppt (toxic equivalent or TEQ) risk-based threshold at nearly 8% of lakes in the sampled population. In contrast, 43 target chemicals were not detected in any samples. No detections were reported for nine organophosphate pesticides, one PCB congener, 16 polycyclic aromatic hydrocarbons, or 17 other semivolatile organic chemicals.

  20. Dynamic surface-enhanced Raman spectroscopy and Chemometric methods for fast detection and intelligent identification of methamphetamine and 3, 4-Methylenedioxy methamphetamine in human urine

    NASA Astrophysics Data System (ADS)

    Weng, Shizhuang; Dong, Ronglu; Zhu, Zede; Zhang, Dongyan; Zhao, Jinling; Huang, Linsheng; Liang, Dong

    2018-01-01

    Conventional Surface-Enhanced Raman Spectroscopy (SERS) for fast detection of drugs in urine on the portable Raman spectrometer remains challenges because of low sensitivity and unreliable Raman signal, and spectra process with manual intervention. Here, we develop a novel detection method of drugs in urine using chemometric methods and dynamic SERS (D-SERS) with mPEG-SH coated gold nanorods (GNRs). D-SERS combined with the uniform GNRs can obtain giant enhancement, and the signal is also of high reproducibility. On the basis of the above advantages, we obtained the spectra of urine, urine with methamphetamine (MAMP), urine with 3, 4-Methylenedioxy Methamphetamine (MDMA) using D-SERS. Simultaneously, some chemometric methods were introduced for the intelligent and automatic analysis of spectra. Firstly, the spectra at the critical state were selected through using K-means. Then, the spectra were proposed by random forest (RF) with feature selection and principal component analysis (PCA) to develop the recognition model. And the identification accuracy of model were 100%, 98.7% and 96.7%, respectively. To validate the effect in practical issue further, the drug abusers'urine samples with 0.4, 3, 30 ppm MAMP were detected using D-SERS and identified by the classification model. The high recognition accuracy of > 92.0% can meet the demand of practical application. Additionally, the parameter optimization of RF classification model was simple. Compared with the general laboratory method, the detection process of urine's spectra using D-SERS only need 2 mins and 2 μL samples volume, and the identification of spectra based on chemometric methods can be finish in seconds. It is verified that the proposed approach can provide the accurate, convenient and rapid detection of drugs in urine.

  1. Sensor Selection and Data Validation for Reliable Integrated System Health Management

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Melcher, Kevin J.

    2008-01-01

    For new access to space systems with challenging mission requirements, effective implementation of integrated system health management (ISHM) must be available early in the program to support the design of systems that are safe, reliable, highly autonomous. Early ISHM availability is also needed to promote design for affordable operations; increased knowledge of functional health provided by ISHM supports construction of more efficient operations infrastructure. Lack of early ISHM inclusion in the system design process could result in retrofitting health management systems to augment and expand operational and safety requirements; thereby increasing program cost and risk due to increased instrumentation and computational complexity. Having the right sensors generating the required data to perform condition assessment, such as fault detection and isolation, with a high degree of confidence is critical to reliable operation of ISHM. Also, the data being generated by the sensors needs to be qualified to ensure that the assessments made by the ISHM is not based on faulty data. NASA Glenn Research Center has been developing technologies for sensor selection and data validation as part of the FDDR (Fault Detection, Diagnosis, and Response) element of the Upper Stage project of the Ares 1 launch vehicle development. This presentation will provide an overview of the GRC approach to sensor selection and data quality validation and will present recent results from applications that are representative of the complexity of propulsion systems for access to space vehicles. A brief overview of the sensor selection and data quality validation approaches is provided below. The NASA GRC developed Systematic Sensor Selection Strategy (S4) is a model-based procedure for systematically and quantitatively selecting an optimal sensor suite to provide overall health assessment of a host system. S4 can be logically partitioned into three major subdivisions: the knowledge base, the down-select iteration, and the final selection analysis. The knowledge base required for productive use of S4 consists of system design information and heritage experience together with a focus on components with health implications. The sensor suite down-selection is an iterative process for identifying a group of sensors that provide good fault detection and isolation for targeted fault scenarios. In the final selection analysis, a statistical evaluation algorithm provides the final robustness test for each down-selected sensor suite. NASA GRC has developed an approach to sensor data qualification that applies empirical relationships, threshold detection techniques, and Bayesian belief theory to a network of sensors related by physics (i.e., analytical redundancy) in order to identify the failure of a given sensor within the network. This data quality validation approach extends the state-of-the-art, from red-lines and reasonableness checks that flag a sensor after it fails, to include analytical redundancy-based methods that can identify a sensor in the process of failing. The focus of this effort is on understanding the proper application of analytical redundancy-based data qualification methods for onboard use in monitoring Upper Stage sensors.

  2. Focal Suppression of Distractor Sounds by Selective Attention in Auditory Cortex.

    PubMed

    Schwartz, Zachary P; David, Stephen V

    2018-01-01

    Auditory selective attention is required for parsing crowded acoustic environments, but cortical systems mediating the influence of behavioral state on auditory perception are not well characterized. Previous neurophysiological studies suggest that attention produces a general enhancement of neural responses to important target sounds versus irrelevant distractors. However, behavioral studies suggest that in the presence of masking noise, attention provides a focal suppression of distractors that compete with targets. Here, we compared effects of attention on cortical responses to masking versus non-masking distractors, controlling for effects of listening effort and general task engagement. We recorded single-unit activity from primary auditory cortex (A1) of ferrets during behavior and found that selective attention decreased responses to distractors masking targets in the same spectral band, compared with spectrally distinct distractors. This suppression enhanced neural target detection thresholds, suggesting that limited attention resources serve to focally suppress responses to distractors that interfere with target detection. Changing effort by manipulating target salience consistently modulated spontaneous but not evoked activity. Task engagement and changing effort tended to affect the same neurons, while attention affected an independent population, suggesting that distinct feedback circuits mediate effects of attention and effort in A1. © The Author 2017. Published by Oxford University Press.

  3. Human dopamine receptor nanovesicles for gate-potential modulators in high-performance field-effect transistor biosensors

    NASA Astrophysics Data System (ADS)

    Park, Seon Joo; Song, Hyun Seok; Kwon, Oh Seok; Chung, Ji Hyun; Lee, Seung Hwan; An, Ji Hyun; Ahn, Sae Ryun; Lee, Ji Eun; Yoon, Hyeonseok; Park, Tai Hyun; Jang, Jyongsik

    2014-03-01

    The development of molecular detection that allows rapid responses with high sensitivity and selectivity remains challenging. Herein, we demonstrate the strategy of novel bio-nanotechnology to successfully fabricate high-performance dopamine (DA) biosensor using DA Receptor-containing uniform-particle-shaped Nanovesicles-immobilized Carboxylated poly(3,4-ethylenedioxythiophene) (CPEDOT) NTs (DRNCNs). DA molecules are commonly associated with serious diseases, such as Parkinson's and Alzheimer's diseases. For the first time, nanovesicles containing a human DA receptor D1 (hDRD1) were successfully constructed from HEK-293 cells, stably expressing hDRD1. The nanovesicles containing hDRD1 as gate-potential modulator on the conducting polymer (CP) nanomaterial transistors provided high-performance responses to DA molecule owing to their uniform, monodispersive morphologies and outstanding discrimination ability. Specifically, the DRNCNs were integrated into a liquid-ion gated field-effect transistor (FET) system via immobilization and attachment processes, leading to high sensitivity and excellent selectivity toward DA in liquid state. Unprecedentedly, the minimum detectable level (MDL) from the field-induced DA responses was as low as 10 pM in real- time, which is 10 times more sensitive than that of previously reported CP based-DA biosensors. Moreover, the FET-type DRNCN biosensor had a rapid response time (<1 s) and showed excellent selectivity in human serum.

  4. Trace elements content in the selected medicinal plants traditionally used for curing skin diseases by the natives of Mizoram, India.

    PubMed

    Rajan, Jay Prakash; Singh, Kshetrimayum Birla; Kumar, Sanjiv; Mishra, Raj Kumar

    2014-09-01

    To determine the trace elements content in the selected medicinal plants, namely, Eryngium foetidum L., Mimosa pudica L., Polygonum plebeium, and Prunus cerasoides D. Don traditionally used by the natives of the Mizoram, one of the north eastern states in India as their folklore medicines for curing skin diseases like eczema, leg and fingers infection, swelling and wound. A 3 MeV proton beam of proton induced X-ray emission technique, one of the most powerful techniques for its quick multi elemental trace analysis capability and high sensitivity was used to detect and characterized for trace elements. The studies revealed that six trace elements, namely, Fe, Zn, Cu, Mn, V, and Co detected in mg/L unit were present in varying concentrations in the selected medicinal plants with high and notable concentration of Fe, Zn, Mn and appreciable amount of the Cu, Co and V in all the plants. The results of the present study support the therapeutic usage of these medicinal plants in the traditional practices for curing skin diseases since they are found to contain appreciable amount of the Fe, Zn, Cu, Mn, V and Co. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  5. Selective detection and recovery of gold at tannin-immobilized non-conducting electrode.

    PubMed

    Banu, Khaleda; Shimura, Takayoshi; Sadeghi, Saman

    2015-01-01

    A tannin-immobilized glassy carbon electrode (TIGC) was prepared via electrochemical oxidation of the naturally occurring polyphenolic mimosa tannin, which generated a non-conducting polymeric film (NCPF) on the electrode surface. The fouling of the electrode surface by the electropolymerized film was evaluated by monitoring the electrode response of ferricyanide ions as a redox marker. The NCPF was permselective to HAuCl4, and the electrochemical reduction of HAuCl4 to metallic gold at the TIGC electrode was evaluated by recording the reduction current during cyclic voltammetry measurement. In the mixed electrolyte containing HAuCl4 along with FeCl3 and/or CuCl2, the NCPF remained selective toward the electrochemical reduction of HAuCl4 into the metallic state. The chemical reduction of HAuCl4 into metallic gold was also observed when the NCPF was inserted into an acidic gold solution overnight. The adsorption capacity of Au(III) on tannin-immobilized carbon fiber was 29±1.45 mg g(-1) at 60°C. In the presence of excess Cu(II) and Fe(III), tannin-immobilized NCPF proved to be an excellent candidate for the selective detection and recovery of gold through both electrochemical and chemical processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Reversible interactions with para-hydrogen enhance NMR sensitivity by polarization transfer.

    PubMed

    Adams, Ralph W; Aguilar, Juan A; Atkinson, Kevin D; Cowley, Michael J; Elliott, Paul I P; Duckett, Simon B; Green, Gary G R; Khazal, Iman G; López-Serrano, Joaquín; Williamson, David C

    2009-03-27

    The sensitivity of both nuclear magnetic resonance spectroscopy and magnetic resonance imaging is very low because the detected signal strength depends on the small population difference between spin states even in high magnetic fields. Hyperpolarization methods can be used to increase this difference and thereby enhance signal strength. This has been achieved previously by incorporating the molecular spin singlet para-hydrogen into hydrogenation reaction products. We show here that a metal complex can facilitate the reversible interaction of para-hydrogen with a suitable organic substrate such that up to an 800-fold increase in proton, carbon, and nitrogen signal strengths are seen for the substrate without its hydrogenation. These polarized signals can be selectively detected when combined with methods that suppress background signals.

  7. Chemical and physical quality of selected public water supplies in Florida, August-September 1976

    USGS Publications Warehouse

    Irwin, G.A.; Healy, Henry G.

    1978-01-01

    Results of a 1976 water-quality reconnaissance made by the U.S. Geological Survey indicated that, with few exceptions, all public water supplies in Florida are of high quality and meet the standards set forth in the National Interim Primary Drinking Water Regulations. Occasionally the concentrations of fluoride, turbidity, cadmium, chromium, and lead approximated, equaled, or exceeded maximum contaminant levels with exceedences occurring very infrequently. The pesticides 2,4-D and silvex, were detected in some public supplies throughout the State mainly in surface water. Although pesticides were not detected in concentrations approaching the maximum levels established in the regulations, their presence does signal that the activities of man are beginning to affect some water resources. (Woodard-USGS)

  8. The detection of improvised nonmilitary peroxide based explosives using a titania nanotube array sensor.

    PubMed

    Banerjee, Subarna; Mohapatra, Susanta K; Misra, Mano; Mishra, Indu B

    2009-02-18

    There is a critical need to develop an efficient, reliable and highly selective sensor for the detection of improvised nonmilitary explosives. This paper describes the utilization of functionalized titania nanotube arrays for sensing improvised organic peroxide explosives such as triacetone triperoxide (TATP). TATP forms complexes with titania nanotube arrays (prepared by anodization and sensitized with zinc ions) and thus affects the electron state of the nanosensing device, which is signaled as a change in current of the overall nanotube material. The response is rapid and a signal of five to eight orders of magnitude is observed. These nanotube array sensors can be used as hand-held miniaturized devices as well as large scale portable units for military and homeland security applications.

  9. Spectroelectrochemical Sensors: New Polymer Films for Improved Sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, Laura K.; Seliskar, Carl J.; Bryan, Samuel A.

    2014-10-31

    The selectivity of an optical sensor can be improved by combining optical detection with electrochemical oxidation or reduction of the target analyte to change its spectral properties. The changing signal can distinguish the analyte from interferences with similar spectral properties that would otherwise interfere. The analyte is detected by measuring the intensity of the electrochemically modulated signal. In one form this spectroelectrochemical sensor consists of an optically transparent electrode (OTE) coated with a film that preconcentrates the target analyte. The OTE functions as an optical waveguide for attenuated total reflectance (ATR) spectroscopy, which detects the analyte by absorption. Sensitivity reliesmore » in part on a large change in molar absorptivity between the two oxidation states used for electrochemical modulation of the optical signal. A critical part of the sensor is the ion selective film. It should preconcentrate the analyte and exclude some interferences. At the same time the film must not interfere with the electrochemistry or the optical detection. Therefore, since the debut of the sensor’s concept one major focus of our group has been developing appropriate films for different analytes. Here we report the development of a series of quaternized poly(vinylpyridine)-co-styrene (QPVP-co-S) anion exchange films for use in spectroelectrochemical sensors to enable sensitive detection of target anionic analytes in complex samples. The films were either 10% or 20% styrene and were prepared with varying degrees of quaternized pyridine groups, up to 70%. Films were characterized with respect to thickness with spectroscopic ellipsometry, degree of quaternization with FTIR, and electrochemically and spectroelectrochemically using the anions ferrocyanide and pertechnetate.« less

  10. Evaluation of mericon E. coli O157 Screen Plus and mericon E. coli STEC O-Type Pathogen Detection Assays in Select Foods: Collaborative Study, First Action 2017.05.

    PubMed

    Bird, Patrick; Benzinger, M Joseph; Bastin, Benjamin; Crowley, Erin; Agin, James; Goins, David; Armstrong, Marcia

    2018-05-01

    QIAGEN mericon Escherichia coli O157 Screen Plus and mericon E. coli Shiga toxin-producing E. coli (STEC) O-Type Pathogen Detection Assays use Real-Time PCR technology for the rapid, accurate detection of E. coli O157 and the "big six" (O26, O45, O103, O111, O121, O145) (non-O157 STEC) in select food types. Using a paired study design, the assays were compared with the U.S. Department of Agriculture, Food Safety Inspection Service Microbiology Laboratory Guidebook Chapter 5.09 reference method for the detection of E. coli O157:H7 in raw ground beef. Both mericon assays were evaluated using the manual and an automated DNA extraction method. Thirteen technicians from five laboratories located within the continental United States participated in the collaborative study. Three levels of contamination were evaluated. Statistical analysis was conducted according to the probability of detection (POD) statistical model. Results obtained for the low-inoculum level test portions produced a difference between laboratories POD (dLPOD) value with a 95% confidence interval of 0.00 (-0.12, 0.12) for the mericon E. coli O157 Screen Plus with manual and automated extraction and mericon E. coli STEC O-Type with manual extraction and -0.01 (-0.13, 0.10) for the mericon E. coli STEC O-Type with automated extraction. The dLPOD results indicate equivalence between the candidate methods and the reference method.

  11. Movement patterns of exhibition swine and associations of influenza A virus infection with swine management practices.

    PubMed

    Bliss, Nola; Stull, Jason W; Moeller, Steven J; Rajala-Schultz, Päivi J; Bowman, Andrew S

    2017-09-15

    OBJECTIVE To identify the geographic distribution of exhibition swine in the Midwestern United States, characterize management practices used for exhibition swine, and identify associations between those practices and influenza A virus (IAV) detection in exhibition swine arriving at county or state agricultural fairs. DESIGN Cross-sectional survey. SAMPLE 480 swine exhibitors and 641 exhibition swine. PROCEDURES Inventories of swine exhibited at fairs in 6 selected Midwestern states during 2013 and of the total swine population (including commercial swine) in these regions in 2012 were obtained and mapped. In 2014, snout wipe samples were collected from swine on arrival at 9 selected fairs in Indiana (n = 5) and Ohio (4) and tested for the presence of IAV. Also at fair arrival, swine exhibitors completed a survey regarding swine management practices. RESULTS Contrary to the total swine population, the exhibition swine population was heavily concentrated in Indiana and Ohio. Many swine exhibitors reported attending multiple exhibitions within a season (median number, 2; range, 0 to 50), with exhibited swine often returned to their farm of origin. Rearing of commercial and exhibition swine on the same premises was reported by 13.3% (56/422) of exhibitors. Hosting an on-farm open house or sale was associated with an increased odds of IAV detection in snout wipe samples. CONCLUSIONS AND CLINICAL RELEVANCE The exhibition swine population was highly variable and differed from the commercial swine population in terms of pig density across geographic locations, population integrity, and on-farm management practices. Exhibition swine may be important in IAV transmission, and identified biosecurity deficiencies may have important public and animal health consequences.

  12. Randomized Prediction Games for Adversarial Machine Learning.

    PubMed

    Rota Bulo, Samuel; Biggio, Battista; Pillai, Ignazio; Pelillo, Marcello; Roli, Fabio

    In spam and malware detection, attackers exploit randomization to obfuscate malicious data and increase their chances of evading detection at test time, e.g., malware code is typically obfuscated using random strings or byte sequences to hide known exploits. Interestingly, randomization has also been proposed to improve security of learning algorithms against evasion attacks, as it results in hiding information about the classifier to the attacker. Recent work has proposed game-theoretical formulations to learn secure classifiers, by simulating different evasion attacks and modifying the classification function accordingly. However, both the classification function and the simulated data manipulations have been modeled in a deterministic manner, without accounting for any form of randomization. In this paper, we overcome this limitation by proposing a randomized prediction game, namely, a noncooperative game-theoretic formulation in which the classifier and the attacker make randomized strategy selections according to some probability distribution defined over the respective strategy set. We show that our approach allows one to improve the tradeoff between attack detection and false alarms with respect to the state-of-the-art secure classifiers, even against attacks that are different from those hypothesized during design, on application examples including handwritten digit recognition, spam, and malware detection.In spam and malware detection, attackers exploit randomization to obfuscate malicious data and increase their chances of evading detection at test time, e.g., malware code is typically obfuscated using random strings or byte sequences to hide known exploits. Interestingly, randomization has also been proposed to improve security of learning algorithms against evasion attacks, as it results in hiding information about the classifier to the attacker. Recent work has proposed game-theoretical formulations to learn secure classifiers, by simulating different evasion attacks and modifying the classification function accordingly. However, both the classification function and the simulated data manipulations have been modeled in a deterministic manner, without accounting for any form of randomization. In this paper, we overcome this limitation by proposing a randomized prediction game, namely, a noncooperative game-theoretic formulation in which the classifier and the attacker make randomized strategy selections according to some probability distribution defined over the respective strategy set. We show that our approach allows one to improve the tradeoff between attack detection and false alarms with respect to the state-of-the-art secure classifiers, even against attacks that are different from those hypothesized during design, on application examples including handwritten digit recognition, spam, and malware detection.

  13. All optical quantum control of a spin-quantum state and ultrafast transduction into an electric current.

    PubMed

    Müller, K; Kaldewey, T; Ripszam, R; Wildmann, J S; Bechtold, A; Bichler, M; Koblmüller, G; Abstreiter, G; Finley, J J

    2013-01-01

    The ability to control and exploit quantum coherence and entanglement drives research across many fields ranging from ultra-cold quantum gases to spin systems in condensed matter. Transcending different physical systems, optical approaches have proven themselves to be particularly powerful, since they profit from the established toolbox of quantum optical techniques, are state-selective, contact-less and can be extremely fast. Here, we demonstrate how a precisely timed sequence of monochromatic ultrafast (~ 2-5 ps) optical pulses, with a well defined polarisation can be used to prepare arbitrary superpositions of exciton spin states in a semiconductor quantum dot, achieve ultrafast control of the spin-wavefunction without an applied magnetic field and make high fidelity read-out the quantum state in an arbitrary basis simply by detecting a strong (~ 2-10 pA) electric current flowing in an external circuit. The results obtained show that the combined quantum state preparation, control and read-out can be performed with a near-unity (≥97%) fidelity.

  14. Evaluating the performance of selection scans to detect selective sweeps in domestic dogs

    PubMed Central

    Schlamp, Florencia; van der Made, Julian; Stambler, Rebecca; Chesebrough, Lewis; Boyko, Adam R.; Messer, Philipp W.

    2015-01-01

    Selective breeding of dogs has resulted in repeated artificial selection on breed-specific morphological phenotypes. A number of quantitative trait loci associated with these phenotypes have been identified in genetic mapping studies. We analyzed the population genomic signatures observed around the causal mutations for 12 of these loci in 25 dog breeds, for which we genotyped 25 individuals in each breed. By measuring the population frequencies of the causal mutations in each breed, we identified those breeds in which specific mutations most likely experienced positive selection. These instances were then used as positive controls for assessing the performance of popular statistics to detect selection from population genomic data. We found that artificial selection during dog domestication has left characteristic signatures in the haplotype and nucleotide polymorphism patterns around selected loci that can be detected in the genotype data from a single population sample. However, the sensitivity and accuracy at which such signatures were detected varied widely between loci, the particular statistic used, and the choice of analysis parameters. We observed examples of both hard and soft selective sweeps and detected strong selective events that removed genetic diversity almost entirely over regions >10 Mbp. Our study demonstrates the power and limitations of selection scans in populations with high levels of linkage disequilibrium due to severe founder effects and recent population bottlenecks. PMID:26589239

  15. Evaluating the performance of selection scans to detect selective sweeps in domestic dogs.

    PubMed

    Schlamp, Florencia; van der Made, Julian; Stambler, Rebecca; Chesebrough, Lewis; Boyko, Adam R; Messer, Philipp W

    2016-01-01

    Selective breeding of dogs has resulted in repeated artificial selection on breed-specific morphological phenotypes. A number of quantitative trait loci associated with these phenotypes have been identified in genetic mapping studies. We analysed the population genomic signatures observed around the causal mutations for 12 of these loci in 25 dog breeds, for which we genotyped 25 individuals in each breed. By measuring the population frequencies of the causal mutations in each breed, we identified those breeds in which specific mutations most likely experienced positive selection. These instances were then used as positive controls for assessing the performance of popular statistics to detect selection from population genomic data. We found that artificial selection during dog domestication has left characteristic signatures in the haplotype and nucleotide polymorphism patterns around selected loci that can be detected in the genotype data from a single population sample. However, the sensitivity and accuracy at which such signatures were detected varied widely between loci, the particular statistic used and the choice of analysis parameters. We observed examples of both hard and soft selective sweeps and detected strong selective events that removed genetic diversity almost entirely over regions >10 Mbp. Our study demonstrates the power and limitations of selection scans in populations with high levels of linkage disequilibrium due to severe founder effects and recent population bottlenecks. © 2015 John Wiley & Sons Ltd.

  16. Portable receiver for radar detection

    DOEpatents

    Lopes, Christopher D.; Kotter, Dale K.

    2008-10-14

    Various embodiments are described relating to a portable antenna-equipped device for multi-band radar detection. The detection device includes a plurality of antennas on a flexible substrate, a detection-and-control circuit, an indicator and a power source. The antenna may include one or more planar lithographic antennas that may be fabricated on a thin-film substrate. Each antenna may be tuned to a different selection frequency or band. The antennas may include a bolometer for radar detection. Each antenna may include a frequency selective surface for tuning to the selection frequency.

  17. Advances in developing rapid, reliable and portable detection systems for alcohol.

    PubMed

    Thungon, Phurpa Dema; Kakoti, Ankana; Ngashangva, Lightson; Goswami, Pranab

    2017-11-15

    Development of portable, reliable, sensitive, simple, and inexpensive detection system for alcohol has been an instinctive demand not only in traditional brewing, pharmaceutical, food and clinical industries but also in rapidly growing alcohol based fuel industries. Highly sensitive, selective, and reliable alcohol detections are currently amenable typically through the sophisticated instrument based analyses confined mostly to the state-of-art analytical laboratory facilities. With the growing demand of rapid and reliable alcohol detection systems, an all-round attempt has been made over the past decade encompassing various disciplines from basic and engineering sciences. Of late, the research for developing small-scale portable alcohol detection system has been accelerated with the advent of emerging miniaturization techniques, advanced materials and sensing platforms such as lab-on-chip, lab-on-CD, lab-on-paper etc. With these new inter-disciplinary approaches along with the support from the parallel knowledge growth on rapid detection systems being pursued for various targets, the progress on translating the proof-of-concepts to commercially viable and environment friendly portable alcohol detection systems is gaining pace. Here, we summarize the progress made over the years on the alcohol detection systems, with a focus on recent advancement towards developing portable, simple and efficient alcohol sensors. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Comparing Natural Gas Leakage Detection Technologies Using an Open-Source "Virtual Gas Field" Simulator.

    PubMed

    Kemp, Chandler E; Ravikumar, Arvind P; Brandt, Adam R

    2016-04-19

    We present a tool for modeling the performance of methane leak detection and repair programs that can be used to evaluate the effectiveness of detection technologies and proposed mitigation policies. The tool uses a two-state Markov model to simulate the evolution of methane leakage from an artificial natural gas field. Leaks are created stochastically, drawing from the current understanding of the frequency and size distributions at production facilities. Various leak detection and repair programs can be simulated to determine the rate at which each would identify and repair leaks. Integrating the methane leakage over time enables a meaningful comparison between technologies, using both economic and environmental metrics. We simulate four existing or proposed detection technologies: flame ionization detection, manual infrared camera, automated infrared drone, and distributed detectors. Comparing these four technologies, we found that over 80% of simulated leakage could be mitigated with a positive net present value, although the maximum benefit is realized by selectively targeting larger leaks. Our results show that low-cost leak detection programs can rely on high-cost technology, as long as it is applied in a way that allows for rapid detection of large leaks. Any strategy to reduce leakage should require a careful consideration of the differences between low-cost technologies and low-cost programs.

  19. Coherence area profiling in multi-spatial-mode squeezed states

    DOE PAGES

    Lawrie, Benjamin J.; Pooser, Raphael C.; Otterstrom, Nils T.

    2015-09-12

    The presence of multiple bipartite entangled modes in squeezed states generated by four-wave mixing enables ultra-trace sensing, imaging, and metrology applications that are impossible to achieve with single-spatial-mode squeezed states. For Gaussian seed beams, the spatial distribution of these bipartite entangled modes, or coherence areas, across each beam is largely dependent on the spatial modes present in the pump beam, but it has proven difficult to map the distribution of these coherence areas in frequency and space. We demonstrate an accessible method to map the distribution of the coherence areas within these twin beams. In addition, we also show thatmore » the pump shape can impart different noise properties to each coherence area, and that it is possible to select and detect coherence areas with optimal squeezing with this approach.« less

  20. Competition-Mediated Pyrene-Switching Aptasensor: Probing Lysozyme in Human Serum with a Monomer-Excimer Fluorescence Switch

    PubMed Central

    Huang, Jin; Zhu, Zhi; Bamrungsap, Suwussa; Zhu, Guizhi; You, Mingxu; He, Xiaoxiao; Wang, Kemin; Tan, Weihong

    2010-01-01

    Lysozyme (Lys) plays crucial roles in the innate immune system, and the detection of Lys in urine and serum has considerable clinical importance. Traditionally, the presence of Lys has been detected by immunoassays; however, these assays are limited by the availability of commercial antibodies and tedious protein modification, and prior sample purification. To address these limitations, we report here the design, synthesis and application of a competition-mediated pyrene-switching aptasensor for selective detection of Lys in buffer and human serum. The detection strategy is based on the attachment of pyrene molecules to both ends of a hairpin DNA strand, which becomes the partially complementary competitor to an anti-Lys aptamer. In the presence of target Lys, the aptamer hybridizes with part of the competitor, which opens the hairpin such that both pyrene molecules are spatially separated. In the presence of target Lys, however, the competitor is displaced from the aptamer by the target, subsequently forming an initial hairpin structure. This brings the two pyrene moieties into close proximity to generate an excimer, which, in turn, results in a shift of fluorescence emission from ca. 400 nm (pyrene monomer) to 495 nm (pyrene excimer). The proposed method for Lys detection showed sensitivity as low as 200 pM and high selectivity in buffer. When measured by steady-state fluorescence spectrum, the detection of Lys in human serum showed a strong fluorescent background, which obscured detection of the excimer signal. However, time-resolved emission measurement (TREM) supported the potential of the method in complex environments with background fluorescence by demonstrating the temporal separation of probe fluorescence emission decay from the intense background signal. We have also demonstrated that the same strategy can be applied to the detection of small biomolecules such as adenosine triphosphate (ATP), sowing the generality of our approach. Therefore, the competition-mediated pyrene-switching aptasensor is promising to have potential for clinical and forensic applications. PMID:21080638

  1. Layered double hydroxide-enhanced luminescence in a Fenton-like system for selective sensing of cobalt in Hela cells

    NASA Astrophysics Data System (ADS)

    Yu, Mei; Yuan, Zhiqin; Lu, Chao

    2017-09-01

    This work presented a facile and eco-friendly method for the determination of cobalt ions (Co(II)) in living cells based on layered double hydroxides (Mg-Al CO3-LDHs) enhanced chemiluminescence (CL) emission of a Co(II)-hydrogen peroxide-sodium hydroxide system. The enhanced CL emission was attributed to the large specific surface area of Mg-Al CO3-LDHs, which facilitates the generation of an excited-stated intermediate. The proposed method displayed high selectivity toward Co(II) over other metal ions. Under the optimal conditions, the increased CL intensity showed a linear response versus Co(II) concentration in the range of 5.0-1000 nM with a detection limit of 3.7 nM (S/N = 3). The relative standard deviation for nine repeated measurements of 100 nM Co(II) was 3.2%. Furthermore, the proposed method was successfully applied to detect Co(II) in living cell samples, and the results were agreed with those obtained by the standard ICP-MS method.

  2. “Turn-on” fluorescence probe integrated polymer nanoparticles for sensing biological thiol molecules

    NASA Astrophysics Data System (ADS)

    Ang, Chung Yen; Tan, Si Yu; Lu, Yunpeng; Bai, Linyi; Li, Menghuan; Li, Peizhou; Zhang, Quan; Selvan, Subramanian Tamil; Zhao, Yanli

    2014-11-01

    A ``turn-on'' thiol-responsive fluorescence probe was synthesized and integrated into polymeric nanoparticles for sensing intracellular thiols. There is a photo-induced electron transfer process in the off state of the probe, and this process is terminated upon the reaction with thiol compounds. Configuration interaction singles (CIS) calculation was performed to confirm the mechanism of this process. A series of sensing studies were carried out, showing that the probe-integrated nanoparticles were highly selective towards biological thiol compounds over non-thiolated amino acids. Kinetic studies were also performed to investigate the relative reaction rate between the probe and the thiolated amino acids. Subsequently, the Gibbs free energy of the reactions was explored by means of the electrochemical method. Finally, the detection system was employed for sensing intracellular thiols in cancer cells, and the sensing selectivity could be further enhanced with the use of a cancer cell-targeting ligand in the nanoparticles. This development paves a path for the sensing and detection of biological thiols, serving as a potential diagnostic tool in the future.

  3. Charge-Transfer-Induced Fluorescence Quenching of Anthracene Derivatives and Selective Detection of Picric Acid.

    PubMed

    Santra, Dines Chandra; Bera, Manas Kumar; Sukul, Pradip Kumar; Malik, Sudip

    2016-02-01

    2,6-Divinylpyridine-appended anthracene derivatives flanked by two alkyl chains at the 9,10-position of the core have been designed, synthesized, and characterized by NMR, MALDI-TOF, FTIR, and single-crystal XRD. These anthracene derivatives are able to recognize picric acid (2,4,6-trinitrophenol, PA) selectively down to parts per billion (ppb) level in aqueous as well as nonaqueous medium. Fluorescence emission of these derivatives in solution is significantly quenched by adding trace amounts of PA, even in the presence of other competing analogues, such as 2,4-dinitrophenol (2,4-DNP), 4-nitrophenol (NP), nitrobenzene (NB), benzoic acid (BA), and phenol (PH). The high sensitivity of these derivatives toward PA is considered as a combined effect of the proton-induced intramolecular charge transfer (ICT) as well as electron transfer from the electron-rich anthracene to the electron-deficient PA. Moreover, visual detection of PA has been successfully demonstrated in the solid state by using different substrates. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Quantum dots as optical labels for ultrasensitive detection of polyphenols.

    PubMed

    Akshath, Uchangi Satyaprasad; Shubha, Likitha R; Bhatt, Praveena; Thakur, Munna Singh

    2014-07-15

    Considering the fact that polyphenols have versatile activity in-vivo, its detection and quantification is very much important for a healthy diet. Laccase enzyme can convert polyphenols to yield mono/polyquinones which can quench Quantum dots fluorescence. This phenomenon of charge transfer from quinones to QDs was exploited as optical labels to detect polyphenols. CdTe QD may undergo dipolar interaction with quinones as a result of broad spectral absorption due to multiple excitonic states resulting from quantum confinement effects. Thus, "turn-off" fluorescence method was applied for ultrasensitive detection of polyphenols by using laccase. We observed proportionate quenching of QDs fluorescence with respect to polyphenol concentration in the range of 100 µg to 1 ng/mL. Also, quenching of the photoluminescence was highly efficient and stable and could detect individual and total polyphenols with high sensitivity (LOD-1 ng/mL). Moreover, proposed method was highly efficient than any other reported methods in terms of sensitivity, specificity and selectivity. Therefore, a novel optical sensor was developed for the detection of polyphenols at a sensitive level based on the charge transfer mechanism. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Infrared laser induced population transfer and parity selection in 14NH3: A proof of principle experiment towards detecting parity violation in chiral molecules

    NASA Astrophysics Data System (ADS)

    Dietiker, P.; Miloglyadov, E.; Quack, M.; Schneider, A.; Seyfang, G.

    2015-12-01

    We have set up an experiment for the efficient population transfer by a sequential two photon—absorption and stimulated emission—process in a molecular beam to prepare quantum states of well defined parity and their subsequent sensitive detection. This provides a proof of principle for an experiment which would allow for parity selection and measurement of the time evolution of parity in chiral molecules, resulting in a measurement of the parity violating energy difference ΔpvE between enantiomers of chiral molecules. Here, we present first results on a simple achiral molecule demonstrating efficient population transfer (about 80% on the average for each step) and unperturbed persistence of a selected excited parity level over flight times of about 1.3 ms in the beam. In agreement with model calculations with and without including nuclear hyperfine structure, efficient population transfer can be achieved by a rather simple implementation of the rapid adiabatic passage method of Reuss and coworkers and considering also the stimulated Raman adiabatic passage technique of Bergmann and coworkers as an alternative. The preparation step uses two powerful single mode continuous wave optical parametric oscillators of high frequency stability and accuracy. The detection uses a sensitive resonantly enhanced multiphoton ionization method after free flight lengths of up to 0.8 m in the molecular beam. Using this technique, we were able to also resolve the nuclear hyperfine structure in the rovibrational levels of the ν1 and ν3 fundamentals as well as the 2ν4 overtone of 14NH3, for which no previous data with hyperfine resolution were available. We present our new results on the quadrupole coupling constants for the ν1, ν3, and 2ν4 levels in the context of previously known data for ν2 and its overtone, as well as ν4, and the ground state. Thus, now, 14N quadrupole coupling constants for all fundamentals and some overtones of 14NH3 are known and can be used for further theoretical analysis.

  6. Infrared laser induced population transfer and parity selection in (14)NH3: A proof of principle experiment towards detecting parity violation in chiral molecules.

    PubMed

    Dietiker, P; Miloglyadov, E; Quack, M; Schneider, A; Seyfang, G

    2015-12-28

    We have set up an experiment for the efficient population transfer by a sequential two photon-absorption and stimulated emission-process in a molecular beam to prepare quantum states of well defined parity and their subsequent sensitive detection. This provides a proof of principle for an experiment which would allow for parity selection and measurement of the time evolution of parity in chiral molecules, resulting in a measurement of the parity violating energy difference ΔpvE between enantiomers of chiral molecules. Here, we present first results on a simple achiral molecule demonstrating efficient population transfer (about 80% on the average for each step) and unperturbed persistence of a selected excited parity level over flight times of about 1.3 ms in the beam. In agreement with model calculations with and without including nuclear hyperfine structure, efficient population transfer can be achieved by a rather simple implementation of the rapid adiabatic passage method of Reuss and coworkers and considering also the stimulated Raman adiabatic passage technique of Bergmann and coworkers as an alternative. The preparation step uses two powerful single mode continuous wave optical parametric oscillators of high frequency stability and accuracy. The detection uses a sensitive resonantly enhanced multiphoton ionization method after free flight lengths of up to 0.8 m in the molecular beam. Using this technique, we were able to also resolve the nuclear hyperfine structure in the rovibrational levels of the ν1 and ν3 fundamentals as well as the 2ν4 overtone of (14)NH3, for which no previous data with hyperfine resolution were available. We present our new results on the quadrupole coupling constants for the ν1, ν3, and 2ν4 levels in the context of previously known data for ν2 and its overtone, as well as ν4, and the ground state. Thus, now, (14)N quadrupole coupling constants for all fundamentals and some overtones of (14)NH3 are known and can be used for further theoretical analysis.

  7. A novel pyrimidine derivative as a fluorescent chemosensor for highly selective detection of Aluminum (III) in aqueous media

    NASA Astrophysics Data System (ADS)

    Suryawanshi, Vishwas D.; Gore, Anil H.; Dongare, Pravin R.; Anbhule, Prashant V.; Patil, Shivajirao R.; Kolekar, Govind B.

    2013-10-01

    An efficient fluorescent chemosensor Al3+ receptor based on pyrimidine derivative,2-amino-6-hydroxy-4-(4-N,N-dimethylaminophenyl)-pyrimidine-5-carbonitrile (DMAB), has been synthesized by three-component condensation of aromatic aldehyde, ethyl cyanoacetate and guanidine hydrochloride in ethanol under alkaline medium. High selectivity and sensitivity of DMAB towards Aluminum ion (Al3+) in water: ethanol and acetate buffer at pH 4.0 makes it suitable to detect Al3+ with steady-state UV-vis and fluorescence spectroscopy. Method shows good selectivity towards Al3+ over other coexisting metal ions tested, viz. Fe2+, Ni2+, Cu2+, Co2+, Pb2+, Sb3+, Na+, Ca2+, Mg2+, Zn2+, Hg2+, Ba2+, Cd2+ and K+. A good linearity between the Stern-Volmer plots of F0/F versus concentration of Al3+ was observed over the range from 10 to 60 μg mL-1 with correlation coefficient of 0.991. The accuracy and reliability of the method were further confirmed by recovery studies via standard addition method with percent recoveries in the range of 101.03-103.44% and lowest detection limit (LOD = 7.35 μg mL-1) for Al3+ was established. This method may offer a new cost-effective, rapid, and simple key to the inspection of Al3+ ions in water samples in the presence of a complex matrix and can be capable of evaluating the exceeding standard of Al3+ in environmental water samples. The probable mechanism for fluorescence quenching was also discussed.

  8. One-step sonochemical synthesis of 1D β-stannous tungstate nanorods: An efficient and excellent electrocatalyst for the selective electrochemical detection of antipsychotic drug chlorpromazine.

    PubMed

    Kokulnathan, Thangavelu; Kumar, Jeyaraj Vinoth; Chen, Shen-Ming; Karthik, Raj; Elangovan, Arumugam; Muthuraj, Velluchamy

    2018-06-01

    In the modern world, the contamination of ecosystem by human and veterinary pharmaceutical drugs through the metabolic excretion, improper disposal/industrial waste has been subjected to a hot issue. Therefore, exploitation of exclusive structured material and reliable technique is a necessary task to the precise detection of drugs. With this regards, we made an effort for the fabrication of novel one-dimensional (1D) stannous tungstate nanorods (β-SnW NRs) via simple sonochemical approach and used as an electrochemical sensor for the detection of antipsychotic drug chlorpromazine (CPZ) for the first time. The crystallographic structure, surface topology, elemental compositions and their distributions and ionic states were enquired by different spectroscopic techniques such as XRD, FTIR, SEM, EDS, elemental mapping and XPS analysis. The developed β-SnW NRs/GCE sensor exhibits a rapid and sensitive electrochemical response towards CPZ sensing with wide linear response range (0.01-457 µM), high sensitivity (2.487 µA µM -1  cm -2 ), low detection limit (0.003 µM) and excellent selectivity. Besides, the as-proposed electrochemical sensor was successfully applied to real sample analysis in commercial CPZ drug and biological fluids and the acquired recovery results are quite satisfactory. The proposed sonochemical method for the preparation of β-SnW NRs is low cost, very simple, fast and efficient for sensor applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. A velocity-map imaging study of methyl non-resonant multiphoton ionization from the photodissociation of CH3I in the A-band

    PubMed Central

    Poullain, Sonia Marggi; Chicharro, David V.; Rubio-Lago, Luis; García-Vela, Alberto

    2017-01-01

    Chemical reaction dynamics and, particularly, photodissociation in the gas phase are generally studied using pump–probe schemes where a first laser pulse induces the process under study and a second one detects the produced fragments. Providing an efficient detection of ro-vibrationally state-selected photofragments, the resonance enhanced multiphoton ionization (REMPI) technique is, without question, the most popular approach used for the probe step, while non-resonant multiphoton ionization (NRMPI) detection of the products is scarce. The main goal of this work is to test the sensitivity of the NRMPI technique to fragment vibrational distributions arising from molecular photodissociation processes. We revisit the well-known process of methyl iodide photodissociation in the A-band at around 280 nm, using the velocity-map imaging technique in conjunction with NRMPI of the methyl fragment. The detection wavelength, carefully selected to avoid any REMPI transition, was scanned between 325 and 335 nm seeking correlations between the different observables—the product vibrational, translational and angular distributions—and the excitation wavelength of the probe laser pulse. The experimental results have been discussed on the base of quantum dynamics calculations of photofragment vibrational populations carried out on available ab initio potential-energy surfaces using a four-dimensional model. This article is part of the themed issue ‘Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces’. PMID:28320907

  10. Evaluation of criteria for selecting the spectral attributes of digital LANDSAT MSS imagery for discriminating lithological units in the lower Curaca River Valley, Bahia. [Brazil

    NASA Technical Reports Server (NTRS)

    Paradella, W. R. (Principal Investigator)

    1984-01-01

    The use of spectral attributes criteria was investigated, based on measures of statistical distance of separability between thematic classes in MSS digital LANDSAT imagery, in order to select the best subsets of channels in composite colors for the detection and discrimination of lithological units in the lower valley of Curaca River, State of Bahia, Brazil. Three situations were investigated: (1) selection of the three best channels, considering all of the original bands (channels 4, 5, 6, and 7); (2) selection of the three best bands, considering the six MSS band-ratios (channels 4/5, 4/6. 4/7, 5/6, 5/7, and 6/7); and (3) selection of the three best bands in a hybrid approach (the four original bands and the six ratios). A visual analysis was done on color composite images using the selected sets. Results show that the hybrid product (bands 4, 5/7, and 7 with green, blue, and red respectively) and the Normal Color Composite (bands 4, 5, and 7 with blue, green, and red colors respectively) had the best performance.

  11. Effects of feature-selective and spatial attention at different stages of visual processing.

    PubMed

    Andersen, Søren K; Fuchs, Sandra; Müller, Matthias M

    2011-01-01

    We investigated mechanisms of concurrent attentional selection of location and color using electrophysiological measures in human subjects. Two completely overlapping random dot kinematograms (RDKs) of two different colors were presented on either side of a central fixation cross. On each trial, participants attended one of these four RDKs, defined by its specific combination of color and location, in order to detect coherent motion targets. Sustained attentional selection while monitoring for targets was measured by means of steady-state visual evoked potentials (SSVEPs) elicited by the frequency-tagged RDKs. Attentional selection of transient targets and distractors was assessed by behavioral responses and by recording event-related potentials to these stimuli. Spatial attention and attention to color had independent and largely additive effects on the amplitudes of SSVEPs elicited in early visual areas. In contrast, behavioral false alarms and feature-selective modulation of P3 amplitudes to targets and distractors were limited to the attended location. These results suggest that feature-selective attention produces an early, global facilitation of stimuli having the attended feature throughout the visual field, whereas the discrimination of target events takes place at a later stage of processing that is only applied to stimuli at the attended position.

  12. Analysis of selected herbicide metabolites in surface and ground water of the United States

    USGS Publications Warehouse

    Scribner, E.A.; Thurman, E.M.; Zimmerman, L.R.

    2000-01-01

    One of the primary goals of the US Geological Survey (USGS) Laboratory in Lawrence, Kansas, is to develop analytical methods for the analysis of herbicide metabolites in surface and ground water that are vital to the study of herbicide fate and degradation pathways in the environment. Methods to measure metabolite concentrations from three major classes of herbicides - triazine, chloroacetanilide and phenyl-urea - have been developed. Methods for triazine metabolite detection cover nine compounds: six compounds are detected by gas chromatography/mass spectrometry; one is detected by high-performance liquid chromatography with diode-array detection; and eight are detected by liquid chromatography/mass spectrometry. Two metabolites of the chloroacetanilide herbicides - ethane sulfonic acid and oxanilic acid - are detected by high-performance liquid chromatography with diode-array detection and liquid chromatography/mass spectrometry. Alachlor ethane sulfonic acid also has been detected by solid-phase extraction and enzyme-linked immunosorbent assay. Six phenylurea metabolites are all detected by liquid chromatography/mass spectrometry; four of the six metabolites also are detected by gas chromatography/mass spectrometry. Additionally, surveys of herbicides and their metabolites in surface water, ground water, lakes, reservoirs, and rainfall have been conducted through the USGS laboratory in Lawrence. These surveys have been useful in determining herbicide and metabolite occurrence and temporal distribution and have shown that metabolites may be useful in evaluation of non-point-source contamination. Copyright (C) 2000 Elsevier Science B.V.

  13. Reconnaissance data for glyphosate, other selected herbicides, their degradation products, and antibiotics in 51 streams in nine midwestern states, 2002

    USGS Publications Warehouse

    Scribner, Elisabeth A.; Battaglin, William A.; Dietze, Julie E.; Thurman, E.M.

    2003-01-01

    Since 1989, the U.S. Geological Survey has conducted periodic reconnaissance studies of streams in the Midwestern United States to determine the geographic and seasonal distribution of herbicide compounds. These studies have documented that large amounts of acetochlor, alachlor, atrazine, cyanazine, metolachlor, and their degradation products are flushed into streams during post-application runoff. Additional studies show that peak herbicide concentrations tend to occur during the first runoff after herbicide application and that herbicide flushes can occur during runoff for several weeks to months following application. Since the first stream study conducted in 1989, several significant changes in herbicide use have occurred. The most substantial change is the tripling in the use of glyphosate during the past 5 years. Over this same time period (1997-2001), usage of acetochlor and atrazine increased slightly, whereas alachlor, cyanazine, and metolachlor usage decreased. During 2002, 154 samples were collected from 51 streams in nine Midwestern States during three periods of runoff. This report provides a compilation of the analytical results of five laboratory methods. Results show that glyphosate was detected in 55 (36 percent) of the samples, and aminomethylphosphonic acid (a degradation product of glyphosate) was detected in 107 (69 percent) of the samples. Atrazine, the most frequently detected herbicide, was found in 93 percent of the samples, followed by metolachlor, found in 73 percent of the samples; metolachlor ethanesulfonic acid (ESA) and oxanilic acid (OXA) were the most frequently detected herbicide degradation products, both being found in more than 95 percent of the samples. The data presented here are valuable for comparison with results from the earlier reconnaissance studies.

  14. Pattern, correlates and implications of non-communicable disease multimorbidity among older adults in selected Indian states: a cross-sectional study.

    PubMed

    Mini, G K; Thankappan, K R

    2017-03-08

    The objective of the present study was to estimate the proportion of older adults with non-communicable disease (NCD) multimorbidity, its correlates and implications in selected Indian states. The study used data of 9852 older adults (≥60 years) (men 47%, mean age 68 years) collected by the United Nations Population Fund from seven selected Indian states. Multiple logistic regression analysis was used to assess the correlates of NCD multimorbidity and hospitalisation. NCD multimorbidity was reported by 30.7% (95% CI 29.8 to 31.7). Those in the highest wealth group, aged ≥70 years, alcohol users, women and tobacco users were more likely to report NCD multimorbidity compared to those without any NCD and single NCD. Those with multimorbidity, the wealthiest, ever tobacco users and those who had formal education were more likely to be hospitalised compared to their counterparts after adjusting for age, sex and ever use of alcohol. Multimorbidity needs to be considered for planning NCD healthcare services provision particularly inpatient facilities focusing on alcohol users, tobacco users and women. Further studies are required to find out reasons for higher rates of multimorbidity among the wealthier group other than higher healthcare services usage and detection rates. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  15. Landsat Based Woody Vegetation Loss Detection in Queensland, Australia Using the Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Johansen, K.; Phinn, S. R.; Taylor, M.

    2014-12-01

    Land clearing detection and woody Foliage Projective Cover (FPC) monitoring at the state and national level in Australia has mainly been undertaken by state governments and the Terrestrial Ecosystem Research Network (TERN) because of the considerable expense, expertise, sustained duration of activities and staffing levels needed. Only recently have services become available, providing low budget, generalized access to change detection tools suited to this task. The objective of this research was to examine if a globally available service, Google Earth Engine Beta, could be used to predict woody vegetation loss with accuracies approaching the methods used by TERN and the government of the state of Queensland, Australia. Two change detection approaches were investigated using Landsat Thematic Mapper time series and the Google Earth Engine Application Programming Interface: (1) CART and Random Forest classifiers; and (2) a normalized time series of Foliage Projective Cover (FPC) and NDVI combined with a spectral index. The CART and Random Forest classifiers produced high user's and producer's mapping accuracies of clearing (77-92% and 54-77%, respectively) when detecting change within epochs for which training data were available, but extrapolation to epochs without training data reduced the mapping accuracies. The use of FPC and NDVI time series provided a more robust approach for calculation of a clearing probability, as it did not rely on training data but instead on the difference of the normalized FPC / NDVI mean and standard deviation of a single year at the change point in relation to the remaining time series. However, the FPC and NDVI time series approach represented a trade-off between user's and producer's accuracies. Both change detection approaches explored in this research were sensitive to ephemeral greening and drying of the landscape. However, the developed normalized FPC and NDVI time series approach can be tuned to provide automated alerts for large woody vegetation clearing events by selecting suitable thresholds to identify very likely clearing. This research provides a comprehensive foundation to build further capacity to use globally accessible, free, online image datasets and processing tools to accurately detect woody vegetation clearing in an automated and rapid manner.

  16. Bovine tuberculosis in South Darfur State, Sudan: an abattoir study based on microscopy and molecular detection methods.

    PubMed

    Asil, El Tigani A; El Sanousi, Sulieman M; Gameel, Ahmed; El Beir, Haytham; Fathelrahman, Maha; Terab, Nasir M; Muaz, Magzoub A; Hamid, Mohamed E

    2013-02-01

    Bovine tuberculosis (BTB) is a widespread zoonosis in developing countries but has received little attention in many sub-Saharan African countries including Sudan and particularly in some parts such as Darfur states. This study aimed to detect bovine tuberculosis among caseous materials of cattle slaughtered in abattoirs in South Darfur State, Sudan by using microscopic and PCR-based methods. The study was a cross-sectional abattoir-based study which examined a total of 6,680 bovine carcasses for caseous lesions in South Darfur State between 2007 and 2009. Collected specimens were examined for the presence of acid-fast bacilli (AFB) by using microscopic and culture techniques. Isolated mycobacteria were identified by selected conventional cultural and biochemical tests in comparison to a single tube multiplex PCR (m-PCR) assay which detect Mycobacterium bovis-specific 168-bp amplicons. Of the total 6,680 slaughtered cattle examined in South Darfur, 400 (6 %) showed caseations restricted to lymph nodes (86.8 %) or generalized (13.2 %). Bovine tuberculosis was diagnosed in 12 (0.18 %), bovine farcy in 59 (0.88 %), unidentified mycobacteria in 6 (0.09 %), and missed or contaminated cultures in 7 (0.1 %). Out of 18 cultures with nonbranching acid-fast rods, 12 amplified unique 168-bp sequence specific for M. bovis and subsequently confirmed as M. bovis. With the exception of the reference M. tuberculosis strains, none of the remaining AFB amplified the 337-bp amplicon specific for M. tuberculosis. It could be concluded that bovine tuberculosis is prevalent among cattle in South Darfur representing 4.5 % from all slaughtered cattle with caseous lesions. The study sustains microscopy as a useful and accessible technique for detecting AFB. m-PCR assay proved to be valuable for confirmation of BTB and its differentiation from other related mycobacteriosis, notably bovine farcy.

  17. Development of a HIV-1 Virus Detection System Based on Nanotechnology.

    PubMed

    Lee, Jin-Ho; Oh, Byung-Keun; Choi, Jeong-Woo

    2015-04-27

    Development of a sensitive and selective detection system for pathogenic viral agents is essential for medical healthcare from diagnostics to therapeutics. However, conventional detection systems are time consuming, resource-intensive and tedious to perform. Hence, the demand for sensitive and selective detection system for virus are highly increasing. To attain this aim, different aspects and techniques have been applied to develop virus sensor with improved sensitivity and selectivity. Here, among those aspects and techniques, this article reviews HIV virus particle detection systems incorporated with nanotechnology to enhance the sensitivity. This review mainly focused on four different detection system including vertically configured electrical detection based on scanning tunneling microscopy (STM), electrochemical detection based on direct electron transfer in virus, optical detection system based on localized surface plasmon resonance (LSPR) and surface enhanced Raman spectroscopy (SERS) using plasmonic nanoparticle.

  18. The Emotion Recognition System Based on Autoregressive Model and Sequential Forward Feature Selection of Electroencephalogram Signals

    PubMed Central

    Hatamikia, Sepideh; Maghooli, Keivan; Nasrabadi, Ali Motie

    2014-01-01

    Electroencephalogram (EEG) is one of the useful biological signals to distinguish different brain diseases and mental states. In recent years, detecting different emotional states from biological signals has been merged more attention by researchers and several feature extraction methods and classifiers are suggested to recognize emotions from EEG signals. In this research, we introduce an emotion recognition system using autoregressive (AR) model, sequential forward feature selection (SFS) and K-nearest neighbor (KNN) classifier using EEG signals during emotional audio-visual inductions. The main purpose of this paper is to investigate the performance of AR features in the classification of emotional states. To achieve this goal, a distinguished AR method (Burg's method) based on Levinson-Durbin's recursive algorithm is used and AR coefficients are extracted as feature vectors. In the next step, two different feature selection methods based on SFS algorithm and Davies–Bouldin index are used in order to decrease the complexity of computing and redundancy of features; then, three different classifiers include KNN, quadratic discriminant analysis and linear discriminant analysis are used to discriminate two and three different classes of valence and arousal levels. The proposed method is evaluated with EEG signals of available database for emotion analysis using physiological signals, which are recorded from 32 participants during 40 1 min audio visual inductions. According to the results, AR features are efficient to recognize emotional states from EEG signals, and KNN performs better than two other classifiers in discriminating of both two and three valence/arousal classes. The results also show that SFS method improves accuracies by almost 10-15% as compared to Davies–Bouldin based feature selection. The best accuracies are %72.33 and %74.20 for two classes of valence and arousal and %61.10 and %65.16 for three classes, respectively. PMID:25298928

  19. A causal relationship between face-patch activity and face-detection behavior.

    PubMed

    Sadagopan, Srivatsun; Zarco, Wilbert; Freiwald, Winrich A

    2017-04-04

    The primate brain contains distinct areas densely populated by face-selective neurons. One of these, face-patch ML, contains neurons selective for contrast relationships between face parts. Such contrast-relationships can serve as powerful heuristics for face detection. However, it is unknown whether neurons with such selectivity actually support face-detection behavior. Here, we devised a naturalistic face-detection task and combined it with fMRI-guided pharmacological inactivation of ML to test whether ML is of critical importance for real-world face detection. We found that inactivation of ML impairs face detection. The effect was anatomically specific, as inactivation of areas outside ML did not affect face detection, and it was categorically specific, as inactivation of ML impaired face detection while sparing body and object detection. These results establish that ML function is crucial for detection of faces in natural scenes, performing a critical first step on which other face processing operations can build.

  20. Screening for the Pesticides Atrazine, Chlorpyrifos, Diazinon, Metolachlor, and Simazine in Selected Michigan Streams, March-November 2005

    USGS Publications Warehouse

    Fogarty, Lisa R.; Duris, Joseph W.

    2007-01-01

    From March through November 2005, the U.S. Geological Survey, in cooperation with the Michigan Department of Environmental Quality (MDEQ), did a statewide screening to aid in understanding the occurrence and distribution of selected pesticides in Michigan streams. Stream-water samples were collected from 23 sites throughout Michigan. In all, 320 water samples were analyzed by use of rapid immunoassay methods for the herbicides atrazine, metolachlor, and simazine and the insecticides chlorpyrifos and diazinon. On one occasion (June, 2005), atrazine concentrations exceeded the Michigan water-quality value (7.3 micrograms per liter) at the Black River in St. Clair County. Neither chlorpyrifos nor diazinon was detected during April through September. MDEQ detected chlorpyrifos in streams throughout the state in November. Herbicide concentrations were highest in samples influenced by intensive agriculture; however, median herbicide concentrations were similar among agricultural and urban sites. Concentrations of herbicides were very low to undetected in undeveloped areas. Seasonal patterns were also evident during the sampling period. Increased concentrations generally occurred in late spring to early summer. At 11 sites, daily sampling was done every day for 5 days following a rainfall after herbicide application in the area. Substantial changes in concentrations of herbicides - greater than tenfold from the previous day - were observed during the daily sampling. No consistent relation was found between concentration and streamflow. Results of this study may be used to aid in the development of a more comprehensive pesticide monitoring study for the State of Michigan.

  1. Cholinergic Modulation of Frontoparietal Cortical Network Dynamics Supporting Supramodal Attention.

    PubMed

    Ljubojevic, Vladimir; Luu, Paul; Gill, Patrick Robert; Beckett, Lee-Anne; Takehara-Nishiuchi, Kaori; De Rosa, Eve

    2018-04-18

    A critical function of attention is to support a state of readiness to enhance stimulus detection, independent of stimulus modality. The nucleus basalis magnocellularis (NBM) is the major source of the neurochemical acetylcholine (ACh) for frontoparietal cortical networks thought to support attention. We examined a potential supramodal role of ACh in a frontoparietal cortical attentional network supporting target detection. We recorded local field potentials (LFPs) in the prelimbic frontal cortex (PFC) and the posterior parietal cortex (PPC) to assess whether ACh contributed to a state of readiness to alert rats to an impending presentation of visual or olfactory targets in one of five locations. Twenty male Long-Evans rats underwent training and then lesions of the NBM using the selective cholinergic immunotoxin 192 IgG-saporin (0.3 μg/μl; ACh-NBM-lesion) to reduce cholinergic afferentation of the cortical mantle. Postsurgery, ACh-NBM-lesioned rats had less correct responses and more omissions than sham-lesioned rats, which changed parametrically as we increased the attentional demands of the task with decreased target duration. This parametric deficit was found equally for both sensory targets. Accurate detection of visual and olfactory targets was associated specifically with increased LFP coherence, in the beta range, between the PFC and PPC, and with increased beta power in the PPC before the target's appearance in sham-lesioned rats. Readiness-associated changes in brain activity and visual and olfactory target detection were attenuated in the ACh-NBM-lesioned group. Accordingly, ACh may support supramodal attention via modulating activity in a frontoparietal cortical network, orchestrating a state of readiness to enhance target detection. SIGNIFICANCE STATEMENT We examined whether the neurochemical acetylcholine (ACh) contributes to a state of readiness for target detection, by engaging frontoparietal cortical attentional networks independent of modality. We show that ACh supported alerting attention to an impending presentation of either visual or olfactory targets. Using local field potentials, enhanced stimulus detection was associated with an anticipatory increase in power in the beta oscillation range before the target's appearance within the posterior parietal cortex (PPC) as well as increased synchrony, also in beta, between the prefrontal cortex and PPC. These readiness-associated changes in brain activity and behavior were attenuated in rats with reduced cortical ACh. Thus, ACh may act, in a supramodal manner, to prepare frontoparietal cortical attentional networks for target detection. Copyright © 2018 the authors 0270-6474/18/383988-18$15.00/0.

  2. Dissociation energy and dynamics of water clusters

    NASA Astrophysics Data System (ADS)

    Ch'ng, Lee Chiat

    The state-to-state vibrational predissociation (VP) dynamics of water clusters were studied following excitation of a vibrational mode of each cluster. Velocity-map imaging (VMI) and resonance-enhanced multiphoton ionization (REMPI) were used to determine pair-correlated center-of-mass translational energy distributions. Product energy distributions and dissociation energies were determined. Following vibrational excitation of the HCl stretch fundamental of the HCl-H2O dimer, HCl fragments were detected by 2 + 1 REMPI via the f 3□2(nu' = 0) ← X 1Sigma+(nu'' = 0) and V1Sigma + (nu' = 11 and 12) ← X1Sigma+ (nu'' = 0) transitions. REMPI spectra clearly show HCl from dissociation produced in the ground vibrational state with J'' up to 11. The fragments' center-of-mass translational energy distributions were determined from images of selected rotational states of HCl and were converted to rotational state distributions of the water cofragment. All the distributions could be fit well when using a dimer dissociation energy of bond dissociation energy D0 = 1334 +/- 10 cm--1. The rotational distributions in the water cofragment pair-correlated with specific rotational states of HCl appear nonstatistical when compared to predictions of the statistical phase space theory. A detailed analysis of pair-correlated state distributions was complicated by the large number of water rotational states available, but the data show that the water rotational populations increase with decreasing translational energy. H2O fragments of this dimer were detected by 2 + 1 REMPI via the C˜1B1(000) ← X˜1A1(000) transition. REMPI clearly shows that H2O from dissociation is produced in the ground vibrational state. The fragment's center-of-mass translational energy distributions were determined from images of selected rotational states of H2O and were converted to rotational state distributions of the HCl cofragment. The distributions gave D0 = 1334 +/- 10 cm --1 and show a clear preference for rotational levels in the HCl fragment that minimize translational energy release. The usefulness of 2 + 1 REMPI detection of water fragment is discussed. The hydrogen bonding in water is dominated by pair-wise dimer interactions, and the predissociation of the water dimer following vibrational excitation is reported. The measured D0 values of (H 2O)2 and (D2O)2, 1105 and 1244 +/- 10 cm--1, respectively, are in excellent agreement with the calculated values of 1103 and 1244 +/- 5 cm--1. Pair-correlated water fragment rovibrational state distributions following vibrational predissociation of (H2O)2 and (D2O) 2 were obtained upon excitation of the hydrogen bonded OH and OD stretch fundamentals, respectively. Quasiclassical trajectory calculations, using an accurate full-dimensional potential energy surface, are in accord with and help to elucidate experiment. Experiment and theory find predominant excitation of the fragment bending mode upon hydrogen bond breaking. A minor channel is also observed in which both fragments are in the ground vibrational state and are highly rotationally excited. The theoretical calculations reveal equal probability of bending excitation in the donor and acceptor subunits, which is a result of interchange of donor and acceptor roles. The rotational distributions associated with the major channel, in which one water fragment has one quantum of bend, and the minor channel with both water fragments in the ground vibrational state are calculated, and are in agreement with experiment. (Abstract shortened by UMI.)

  3. Spectroscopic and TDDFT investigation on highly selective fluorogenic chemosensor and construction of molecular logic gates.

    PubMed

    Basheer, Sabeel M; Kumar, Saravana Loganathan Ashok; Kumar, Moorthy Saravana; Sreekanth, Anandaram

    2017-03-01

    1,5-Bis(2-fluorene)thiocarbohydrazone (FBTC) was designed and synthesized for selective sensing of fluoride and copper ions. The binding constants of FBTC towards fluoride and copper ions have been calculated using the Benesi-Hildebrand equation, and FBTC has more binding affinity towards copper ion than fluoride ion. The 1 H NMR and 13 C NMR titration studies strongly support the deprotonation was taken from the N-H protons followed by the formation of hydrogen bond via N-H … F. To understand the fluoride ion sensing mechanism, theoretical investigation had been carried out using the density functional theory and time-dependent density functional theory. The theoretical data well reproduced the experimental results. The deprotonation process has a moderate transition barrier (481.55kcal/mol). The calculated ΔE and ΔG values (-253.92 and -192.41kcal/mol respectively) suggest the feasibility of sensing process. The potential energy curves give the optimized structures of FBTC-F complex in the ground state and excited state, which states the proton transition occurs at the excited state. The excited state proton transition mechanism was further confirmed with natural bond orbital analysis. The reversibility of the sensor was monitored by the alternate addition of F - and Cu 2+ ions, which was explained with "Read-Erase-Write-Read" behaviour. The multi-ion detection of sensor used to construct the molecular logic gate, such as AND, OR, NOR and INHIBITION logic gates. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. 32 CFR 1605.13 - Staff of State Headquarters for Selective Service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Staff of State Headquarters for Selective... SERVICE SYSTEM SELECTIVE SERVICE SYSTEM ORGANIZATION State Administration § 1605.13 Staff of State... staff of each State Headquarters for Selective Service shall consist of as many officers, either...

  5. Photostable and Low-Toxic Yellow-Green Carbon Dots for Highly Selective Detection of Explosive 2,4,6-Trinitrophenol Based on the Dual Electron Transfer Mechanism.

    PubMed

    Ju, Bo; Wang, Yi; Zhang, Yu-Mo; Zhang, Ting; Liu, Zhihe; Li, Minjie; Xiao-An Zhang, Sean

    2018-04-18

    Advances in the development of fluorescent carbon dots (CDs) for detecting nitro-explosives have attracted great interest. However, developing long-wavelength luminescence CDs for highly selective determination of 2,4,6-trinitrophenol (TNP) and getting insight into the detection mechanism remain further to be investigated. Here, excitation-independent yellow-green emission CDs with good photostability and low biotoxicity were introduced for detecting TNP selectively. Then, two types of electron transfer (ET) processes including hydrogen-bond interaction-assisted ET and proton transfer-assisted ET are suggested to be responsible for their photophysical behavior. Finally, the visual detection of TNP has been successfully developed by a CD-based indicator paper. The facile, highly sensitive, and selective detection for TNP in both of a solution and a solid phase makes CDs potentially useful in environmental sensor applications.

  6. Detecting Selection on Temporal and Spatial Scales: A Genomic Time-Series Assessment of Selective Responses to Devil Facial Tumor Disease

    PubMed Central

    Brüniche-Olsen, Anna; Austin, Jeremy J.; Jones, Menna E.; Holland, Barbara R.; Burridge, Christopher P.

    2016-01-01

    Detecting loci under selection is an important task in evolutionary biology. In conservation genetics detecting selection is key to investigating adaptation to the spread of infectious disease. Loci under selection can be detected on a spatial scale, accounting for differences in demographic history among populations, or on a temporal scale, tracing changes in allele frequencies over time. Here we use these two approaches to investigate selective responses to the spread of an infectious cancer—devil facial tumor disease (DFTD)—that since 1996 has ravaged the Tasmanian devil (Sarcophilus harrisii). Using time-series ‘restriction site associated DNA’ (RAD) markers from populations pre- and post DFTD arrival, and DFTD free populations, we infer loci under selection due to DFTD and investigate signatures of selection that are incongruent among methods, populations, and times. The lack of congruence among populations influenced by DFTD with respect to inferred loci under selection, and the direction of that selection, fail to implicate a consistent selective role for DFTD. Instead genetic drift is more likely driving the observed allele frequency changes over time. Our study illustrates the importance of applying methods with different performance optima e.g. accounting for population structure and background selection, and assessing congruence of the results. PMID:26930198

  7. Survey parameters for detecting 21cm - Lyα emitter cross correlations with the Square Kilometre Array

    NASA Astrophysics Data System (ADS)

    Hutter, Anne; Trott, Cathryn M.; Dayal, Pratika

    2018-06-01

    Detections of the cross correlation signal between the 21cm signal during reionization and high-redshift Lyman Alpha emitters (LAEs) are subject to observational uncertainties which mainly include systematics associated with radio interferometers and LAE selection. These uncertainties can be reduced by increasing the survey volume and/or the survey luminosity limit, i.e. the faintest detectable Lyman Alpha (Lyα) luminosity. We use our model of high-redshift LAEs and the underlying reionization state to compute the uncertainties of the 21cm-LAE cross correlation function at z ≃ 6.6 for observations with SKA1-Low and LAE surveys with Δz = 0.1 for three different values of the average IGM ionization state (⟨χHI⟩≃ 0.1, 0.25, 0.5). At z ≃ 6.6, we find SILVERRUSH type surveys, with a field of view of 21 deg2 and survey luminosity limits of Lα ≥ 7.9 × 1042erg s-1, to be optimal to distinguish between an inter-galactic medium (IGM) that is 50%, 25% and 10% neutral, while surveys with smaller fields of view and lower survey luminosity limits, such as the 5 and 10 deg2 surveys with WFIRST, can only discriminate between a 50% and 10% neutral IGM.

  8. A survey of Australian oysters for the presence of human noroviruses.

    PubMed

    Brake, Felicity; Ross, Tom; Holds, Geoffrey; Kiermeier, Andreas; McLeod, Catherine

    2014-12-01

    Impending international policies for norovirus in oysters and the lack of Australian data suggested there was a need to undertake a national survey of norovirus in oysters. Two geographically distinct oyster-growing areas from each of three Australian states were sampled on 4 occasions during 2010 and 2011. The sites selected were considered by state shellfish authorities to be the most compromised with respect to the potential for human faecal contamination as identified by shoreline surveys. The oysters were tested for norovirus GI, GII and Escherichia coli. Norovirus GII was detected in two of 120 (1.7%) samples and norovirus GI was not detected. One of the norovirus positive samples was cloned and sequenced as GII.3. Five of 120 (4.2%) samples were found to have more than the guidance concentration of 230 E. coli per 100 g of shellfish but these samples did not contain detectable concentrations of norovirus. The apparently low prevalence of norovirus in oysters from Australian growing areas supports epidemiological data that suggests norovirus contamination of Australian oysters is rare. The results from this study emphasise the need for future norovirus control measures for shellfish to be commensurate with the risk associated with the growing area. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Solid-state NMR detection of 14N-13C dipolar couplings between amino acid side groups provides constraints on amyloid fibril architecture.

    PubMed

    Middleton, David A

    2011-02-01

    Solid-state nuclear magnetic resonance (SSNMR) is a powerful technique for the structural analysis of amyloid fibrils. With suitable isotope labelling patterns, SSNMR can provide constraints on the secondary structure, alignment and registration of β-strands within amyloid fibrils and identify the tertiary and quaternary contacts defining the packing of the β-sheet layers. Detection of (14)N-(13)C dipolar couplings may provide potentially useful additional structural constraints on β-sheet packing within amyloid fibrils but has not until now been exploited for this purpose. Here a frequency-selective, transfer of population in double resonance SSNMR experiment is used to detect a weak (14)N-(13)C dipolar coupling in amyloid-like fibrils of the peptide H(2)N-SNNFGAILSS-COOH, which was uniformly (13)C and (15)N labelled across the four C-terminal amino acids. The (14)N-(13)C interatomic distance between leucine and asparagine side groups is constrained between 2.4 and 3.8 Å, which allows current structural models of the β-spine arrangement within the fibrils to be refined. This procedure could be useful for the general structural analysis of other proteins in condensed phases and environments, such as biological membranes. Copyright © 2011 John Wiley & Sons, Ltd.

  10. Increasing selectivity for TNT-based explosive detection by synchronous luminescence and derivative spectroscopy with quantum yields of selected aromatic amines.

    PubMed

    Sheaff, Chrystal N; Eastwood, Delyle; Wai, Chien M

    2007-01-01

    The detection of explosive material is at the forefront of current analytical problems. A detection method is desired that is not restricted to detecting only explosive materials, but is also capable of identifying the origin and type of explosive. It is essential that a detection method have the selectivity to distinguish among compounds in a mixture of explosives. The nitro compounds found in explosives have low fluorescent yields or are considered to be non-fluorescent; however, after reduction, the amino compounds exhibit relatively high fluorescence. We discuss how to increase selectivity of explosive detection using fluorescence; this includes synchronous luminescence and derivative spectroscopy with appropriate smoothing. By implementing synchronous luminescence and derivative spectroscopy, we were able to resolve the reduction products of one major TNT-based explosive compound, 2,4-diaminotoluene, and the reduction products of other minor TNT-based explosives in a mixture. We also report for the first time the quantum yields of these important compounds. Relative quantum yields are useful in establishing relative fluorescence intensities and are an important spectroscopic measurement of molecules. Our approach allows for rapid, sensitive, and selective detection with the discrimination necessary to distinguish among various explosives.

  11. Spin Polarization Spectroscopy of Alkali-Noble Gas Interatomic Potentials

    NASA Astrophysics Data System (ADS)

    Mironov, Andrey E.; Goldshlag, William; Eden, J. Gary

    2017-06-01

    We report a new laser spectroscopic technique capable of detecting weak state-state interactions in diatomic molecules. Specifically, a weak interaction has been observed between the 6pσ antibonding orbital of the CsXe (B ^2Σ^+_{1/2}) state and a 5dσ MO associated with a 5dΛ (Λ = 0, 1) state. Thermal Cs-rare gas collision pairs are photoexcited by a circularly-polarized optical field having a wavelength within the B ^2Σ^+_{1/2} \\longleftarrow X ^2Σ^+_{1/2} (free\\longleftarrowfree) continuum. Subsequent dissociation of the B ^2Σ^+_{1/2} transient diatomic selectively populates the F= 4, 5 hyperfine levels of the Cs 6p ^2P_{3/2} state, and circularly-polarized (σ^+) amplified spontaneous emission (ASE) is generated on the Cs D_2 line. The dependence of Cs 6p spin polarization on the Cs(6p)-Xe internuclear separation (R), clearly shows an interaction between the CsXe(B ^2Σ^+_{1/2}) state and a 5dΛ (Λ = 0, 1) potential of the diatomic molecule.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zongchao; Wang, Fengqin, E-mail: wangfengqin@tjpu.edu.cn; Lin, Xiangyi

    Metal-organic frameworks (MOFs) are porous crystalline materials with high potential for applications in fluorescence sensors. In this work, two solvent-induced Zn(II)–based metal-organic frameworks, Zn{sub 3}L{sub 3}(DMF){sub 2} (1) and Zn{sub 3}L{sub 3}(DMA){sub 2}(H{sub 2}O){sub 3} (2) (L=4,4′-stilbenedicarboxylic acid), were investigated as selective sensing materials for detection of nitroaromatic compounds and metal ions. The sensing experiments show that 1 and 2 both exhibit selective fluorescence quenching toward nitroaniline with a low detection limit. In addition, 1 exhibits high selectivity for detection of Fe{sup 3+} and Al{sup 3+} by significant fluorescence quenching or enhancement effect. While for 2, it only exhibits significantmore » fluorescence quenching effect for Fe{sup 3+}. The results indicate that 1 and 2 are both promising fluorescence sensors for detecting and recognizing nitroaniline and metal ions with high sensitivity and selectivity. - Graphical abstract: Two MOFs have been selected as the fluorescence sensing materials for selectively sensing mitroaromatic compounds and metal ions. The high selectivity makes them promising fluorescence sensors for detecting and recognizing nitroaniline and Fe{sup 3+} or Al{sup 3+}.« less

  13. Integrated optical biosensor for rapid detection of bacteria

    NASA Astrophysics Data System (ADS)

    Mathesz, Anna; Valkai, Sándor; Újvárosy, Attila; Aekbote, Badri; Sipos, Orsolya; Stercz, Balázs; Kocsis, Béla; Szabó, Dóra; Dér, András

    2016-02-01

    In medical diagnostics, rapid detection of pathogenic bacteria from body fluids is one of the basic issues. Most state-of-the-art methods require optical labeling, increasing the complexity, duration and cost of the analysis. Therefore, there is a strong need for developing selective sensory devices based on label-free techniques, in order to increase the speed, and reduce the cost of detection. In a recent paper, we have shown that an integrated optical Mach-Zehnder interferometer, a highly sensitive all-optical device made of a cheap photopolymer, can be used as a powerful lab-on-a-chip tool for specific, labelfree detection of proteins. By proper modifications of this technique, our interferometric biosensor was combined with a microfluidic system allowing the rapid and specific detection of bacteria from solutions, having the surface of the sensor functionalized by bacterium-specific antibodies. The experiments proved that the biosensor was able to detect Escherichia coli bacteria at concentrations of 106 cfu/ml within a few minutes, that makes our device an appropriate tool for fast, label-free detection of bacteria from body fluids such as urine or sputum. On the other hand, possible applications of the device may not be restricted to medical microbiology, since bacterial identification is an important task in microbial forensics, criminal investigations, bio-terrorism threats and in environmental studies, as well.

  14. Integrated optical biosensor for rapid detection of bacteria

    NASA Astrophysics Data System (ADS)

    Mathesz, Anna; Valkai, Sándor; Újvárosy, Attila; Aekbote, Badri; Sipos, Orsolya; Stercz, Balázs; Kocsis, Béla; Szabó, Dóra; Dér, András

    2015-12-01

    In medical diagnostics, rapid detection of pathogenic bacteria from body fluids is one of the basic issues. Most state-of-the-art methods require optical labeling, increasing the complexity, duration and cost of the analysis. Therefore, there is a strong need for developing selective sensory devices based on label-free techniques, in order to increase the speed, and reduce the cost of detection. In a recent paper, we have shown that an integrated optical Mach-Zehnder interferometer, a highly sensitive all-optical device made of a cheap photopolymer, can be used as a powerful lab-on-a-chip tool for specific, labelfree detection of proteins. By proper modifications of this technique, our interferometric biosensor was combined with a microfluidic system allowing the rapid and specific detection of bacteria from solutions, having the surface of the sensor functionalized by bacterium-specific antibodies. The experiments proved that the biosensor was able to detect Escherichia coli bacteria at concentrations of 106 cfu/ml within a few minutes, that makes our device an appropriate tool for fast, label-free detection of bacteria from body fluids such as urine or sputum. On the other hand, possible applications of the device may not be restricted to medical microbiology, since bacterial identification is an important task in microbial forensics, criminal investigations, bio-terrorism threats and in environmental studies, as well.

  15. Organic compounds in Elm Fork Trinity River water used for public supply near Carrollton, Texas, 2002-05

    USGS Publications Warehouse

    Ging, Patricia B.; Delzer, Gregory C.; Hamilton, Pixie A.

    2009-01-01

    Organic compounds studied in this U.S. Geological Survey (USGS) assessment generally are man-made, including pesticides, solvents, gasoline hydrocarbons, personal-care and domestic-use products, refrigerants, and propellants. A total of 103 of 277 compounds were detected at least once among the 30 samples of source water for a community water system on the Elm Fork Trinity River near Carrollton, Texas, collected approximately monthly during 2002-05. The diversity of compounds detected indicates a variety of different sources and uses (including wastewater discharge, industrial, agricultural, domestic, and others) and different pathways (including overland runoff and groundwater discharge) to drinking-water supplies. Nine compounds were detected year-round in source-water samples, including chloroform, methyl tert-butyl ether (MTBE), and selected herbicide compounds commonly used in the Trinity River Basin and in other urban areas across the United States. About 90 percent of the 42 compounds detected most frequently in source water (in at least 20 percent of the samples) also were detected most frequently in finished water (after treatment but before distribution). Concentrations for all detected compounds in source and finished water generally were less than 0.1 microgram per liter and always less than human-health benchmarks, which are available for about one-half of the detected compounds.

  16. X-ray backscatter imaging for radiography by selective detection and snapshot: Evolution, development, and optimization

    NASA Astrophysics Data System (ADS)

    Shedlock, Daniel

    Compton backscatter imaging (CBI) is a single-sided imaging technique that uses the penetrating power of radiation and unique interaction properties of radiation with matter to image subsurface features. CBI has a variety of applications that include non-destructive interrogation, medical imaging, security and military applications. Radiography by selective detection (RSD), lateral migration radiography (LMR) and shadow aperture backscatter radiography (SABR) are different CBI techniques that are being optimized and developed. Radiography by selective detection (RSD) is a pencil beam Compton backscatter imaging technique that falls between highly collimated and uncollimated techniques. Radiography by selective detection uses a combination of single- and multiple-scatter photons from a projected area below a collimation plane to generate an image. As a result, the image has a combination of first- and multiple-scatter components. RSD techniques offer greater subsurface resolution than uncollimated techniques, at speeds at least an order of magnitude faster than highly collimated techniques. RSD scanning systems have evolved from a prototype into near market-ready scanning devices for use in a variety of single-sided imaging applications. The design has changed to incorporate state-of-the-art detectors and electronics optimized for backscatter imaging with an emphasis on versatility, efficiency and speed. The RSD system has become more stable, about 4 times faster, and 60% lighter while maintaining or improving image quality and contrast over the past 3 years. A new snapshot backscatter radiography (SBR) CBI technique, shadow aperture backscatter radiography (SABR), has been developed from concept and proof-of-principle to a functional laboratory prototype. SABR radiography uses digital detection media and shaded aperture configurations to generate near-surface Compton backscatter images without scanning, similar to how transmission radiographs are taken. Finally, a more inclusive theory of the factors affecting CBI contrast generation has tied together the past work of LMR with the more recent research in RSD. A variety of factors that induce changes in the backscatter photon field intensity (resulting in contrast changes in images) include: changes in the electron density field, attenuation changes along the entrance and exit paths, changes in the relative geometric positioning of the target, feature, illumination beam, and detectors. Understanding the interplay of how changes in each of these factors affects image contrast becomes essential to utilizing and optimizing RSD for different applications.

  17. An ultracold potassium Rydberg source for experiments in quantum optics and many-body physics

    NASA Astrophysics Data System (ADS)

    Conover, Charles; Dupre, Pamela; Tong, Ai Phuong; Sanon, Carlvin; Clarke, Kevin; Doolittle, Brian; Louria, Stephen; Adamson, Philip

    2017-04-01

    We report on the development of an apparatus for the study of quantum dynamics of Rydberg atoms of potassium. Samples of Rydberg atoms at 1 mK and varying density are excited in a magneto-optical trap of 107 K-39 atoms. The atoms are excited to Rydberg states in a steps from 4s to 5p and from 5p to ns and nd states using stabilized external-cavity diode lasers at 405 nm and 980 nm. Selective field ionization and detection with microchannel plates provides a platform for spectroscopic measurements in potassium, exploration of multiphoton processes, and experiments on cold atom collisions. This research was supported by the National Science Foundation under Grant PHY-1126599.

  18. Probing the internal composition of neutron stars with gravitational waves

    NASA Astrophysics Data System (ADS)

    Chatziioannou, Katerina; Yagi, Kent; Klein, Antoine; Cornish, Neil; Yunes, Nicolás

    2015-11-01

    Gravitational waves from neutron star binary inspirals contain information about the as yet unknown equation of state of supranuclear matter. In the absence of definitive experimental evidence that determines the correct equation of state, a number of diverse models that give the pressure inside a neutron star as function of its density have been constructed by nuclear physicists. These models differ not only in the approximations and techniques they employ to solve the many-body Schrödinger equation, but also in the internal neutron star composition they assume. We study whether gravitational wave observations of neutron star binaries in quasicircular inspirals up to contact will allow us to distinguish between equations of state of differing internal composition, thereby providing important information about the properties and behavior of extremely high density matter. We carry out a Bayesian model selection analysis, and find that second generation gravitational wave detectors can heavily constrain equations of state that contain only quark matter, but hybrid stars containing both normal and quark matter are typically harder to distinguish from normal matter stars. A gravitational wave detection with a signal-to-noise ratio of 20 and masses around 1.4 M⊙ would provide indications of the existence or absence of strange quark stars, while a signal-to-noise ratio 30 detection could either detect or rule out strange quark stars with a 20 to 1 confidence. The presence of kaon condensates or hyperons in neutron star inner cores cannot be easily confirmed. For example, for the equations of state studied in this paper, even a gravitational wave signal with a signal-to-noise ratio as high as 60 would not allow us to claim a detection of kaon condensates or hyperons with confidence greater than 5 to 1. On the other hand, if kaon condensates and hyperons do not form in neutron stars, a gravitational wave signal with similar signal-to-noise ratio would be able to constrain their existence with an 11 to 1 confidence for high-mass systems. We, finally, find that combining multiple lower signal-to-noise ratio detections (stacking) must be handled with caution since it could fail in cases where the prior information dominates over new information from the data.

  19. A Novel Image Recuperation Approach for Diagnosing and Ranking Retinopathy Disease Level Using Diabetic Fundus Image

    PubMed Central

    2015-01-01

    Retinal fundus images are widely used in diagnosing and providing treatment for several eye diseases. Prior works using retinal fundus images detected the presence of exudation with the aid of publicly available dataset using extensive segmentation process. Though it was proved to be computationally efficient, it failed to create a diabetic retinopathy feature selection system for transparently diagnosing the disease state. Also the diagnosis of diseases did not employ machine learning methods to categorize candidate fundus images into true positive and true negative ratio. Several candidate fundus images did not include more detailed feature selection technique for diabetic retinopathy. To apply machine learning methods and classify the candidate fundus images on the basis of sliding window a method called, Diabetic Fundus Image Recuperation (DFIR) is designed in this paper. The initial phase of DFIR method select the feature of optic cup in digital retinal fundus images based on Sliding Window Approach. With this, the disease state for diabetic retinopathy is assessed. The feature selection in DFIR method uses collection of sliding windows to obtain the features based on the histogram value. The histogram based feature selection with the aid of Group Sparsity Non-overlapping function provides more detailed information of features. Using Support Vector Model in the second phase, the DFIR method based on Spiral Basis Function effectively ranks the diabetic retinopathy diseases. The ranking of disease level for each candidate set provides a much promising result for developing practically automated diabetic retinopathy diagnosis system. Experimental work on digital fundus images using the DFIR method performs research on the factors such as sensitivity, specificity rate, ranking efficiency and feature selection time. PMID:25974230

  20. Electrochemical Selective and Simultaneous Detection of Diclofenac and Ibuprofen in Aqueous Solution Using HKUST-1 Metal-Organic Framework-Carbon Nanofiber Composite Electrode.

    PubMed

    Motoc, Sorina; Manea, Florica; Iacob, Adriana; Martinez-Joaristi, Alberto; Gascon, Jorge; Pop, Aniela; Schoonman, Joop

    2016-10-17

    In this study, the detection protocols for the individual, selective, and simultaneous determination of ibuprofen (IBP) and diclofenac (DCF) in aqueous solutions have been developed using HKUST-1 metal-organic framework-carbon nanofiber composite (HKUST-CNF) electrode. The morphological and electrical characterization of modified composite electrode prepared by film casting was studied by scanning electronic microscopy and four-point-probe methods. The electrochemical characterization of the electrode by cyclic voltammetry (CV) was considered the reference basis for the optimization of the operating conditions for chronoamperometry (CA) and multiple-pulsed amperometry (MPA). This electrode exhibited the possibility to selectively detect IBP and DCF by simple switching the detection potential using CA. However, the MPA operated under optimum working conditions of four potential levels selected based on CV shape in relation to the potential value, pulse time, and potential level number, and order allowed the selective/simultaneous detection of IBP and DCF characterized by the enhanced detection performance. For this application, the HKUST-CNF electrode exhibited a good stability and reproducibility of the results was achieved.

  1. Electrochemical Selective and Simultaneous Detection of Diclofenac and Ibuprofen in Aqueous Solution Using HKUST-1 Metal-Organic Framework-Carbon Nanofiber Composite Electrode

    PubMed Central

    Motoc, Sorina; Manea, Florica; Iacob, Adriana; Martinez-Joaristi, Alberto; Gascon, Jorge; Pop, Aniela; Schoonman, Joop

    2016-01-01

    In this study, the detection protocols for the individual, selective, and simultaneous determination of ibuprofen (IBP) and diclofenac (DCF) in aqueous solutions have been developed using HKUST-1 metal-organic framework-carbon nanofiber composite (HKUST-CNF) electrode. The morphological and electrical characterization of modified composite electrode prepared by film casting was studied by scanning electronic microscopy and four-point-probe methods. The electrochemical characterization of the electrode by cyclic voltammetry (CV) was considered the reference basis for the optimization of the operating conditions for chronoamperometry (CA) and multiple-pulsed amperometry (MPA). This electrode exhibited the possibility to selectively detect IBP and DCF by simple switching the detection potential using CA. However, the MPA operated under optimum working conditions of four potential levels selected based on CV shape in relation to the potential value, pulse time, and potential level number, and order allowed the selective/simultaneous detection of IBP and DCF characterized by the enhanced detection performance. For this application, the HKUST-CNF electrode exhibited a good stability and reproducibility of the results was achieved. PMID:27763509

  2. Hybrid feature selection for supporting lightweight intrusion detection systems

    NASA Astrophysics Data System (ADS)

    Song, Jianglong; Zhao, Wentao; Liu, Qiang; Wang, Xin

    2017-08-01

    Redundant and irrelevant features not only cause high resource consumption but also degrade the performance of Intrusion Detection Systems (IDS), especially when coping with big data. These features slow down the process of training and testing in network traffic classification. Therefore, a hybrid feature selection approach in combination with wrapper and filter selection is designed in this paper to build a lightweight intrusion detection system. Two main phases are involved in this method. The first phase conducts a preliminary search for an optimal subset of features, in which the chi-square feature selection is utilized. The selected set of features from the previous phase is further refined in the second phase in a wrapper manner, in which the Random Forest(RF) is used to guide the selection process and retain an optimized set of features. After that, we build an RF-based detection model and make a fair comparison with other approaches. The experimental results on NSL-KDD datasets show that our approach results are in higher detection accuracy as well as faster training and testing processes.

  3. Rapid Detection of an ABT-737-Sensitive Primed for Death State in Cells Using Microplate-Based Respirometry

    PubMed Central

    Clerc, Pascaline; Carey, Gregory B.; Mehrabian, Zara; Wei, Michael; Hwang, Hyehyun; Girnun, Geoffrey D.; Chen, Hegang; Martin, Stuart S.; Polster, Brian M.

    2012-01-01

    Cells that exhibit an absolute dependence on the anti-apoptotic BCL-2 protein for survival are termed “primed for death” and are killed by the BCL-2 antagonist ABT-737. Many cancers exhibit a primed phenotype, including some that are resistant to conventional chemotherapy due to high BCL-2 expression. We show here that 1) stable BCL-2 overexpression alone can induce a primed for death state and 2) that an ABT-737-induced loss of functional cytochrome c from the electron transport chain causes a reduction in maximal respiration that is readily detectable by microplate-based respirometry. Stable BCL-2 overexpression sensitized non-tumorigenic MCF10A mammary epithelial cells to ABT-737-induced caspase-dependent apoptosis. Mitochondria within permeabilized BCL-2 overexpressing cells were selectively vulnerable to ABT-737-induced cytochrome c release compared to those from control-transfected cells, consistent with a primed state. ABT-737 treatment caused a dose-dependent impairment of maximal O2 consumption in MCF10A BCL-2 overexpressing cells but not in control-transfected cells or in immortalized mouse embryonic fibroblasts lacking both BAX and BAK. This impairment was rescued by delivering exogenous cytochrome c to mitochondria via saponin-mediated plasma membrane permeabilization. An ABT-737-induced reduction in maximal O2 consumption was also detectable in SP53, JeKo-1, and WEHI-231 B-cell lymphoma cell lines, with sensitivity correlating with BCL-2:MCL-1 ratio and with susceptibility (SP53 and JeKo-1) or resistance (WEHI-231) to ABT-737-induced apoptosis. Multiplexing respirometry assays to ELISA-based determination of cytochrome c redistribution confirmed that respiratory inhibition was associated with cytochrome c release. In summary, cell-based respiration assays were able to rapidly identify a primed for death state in cells with either artificially overexpressed or high endogenous BCL-2. Rapid detection of a primed for death state in individual cancers by “bioenergetics-based profiling” may eventually help identify the subset of patients with chemoresistant but primed tumors who can benefit from treatment that incorporates a BCL-2 antagonist. PMID:22880001

  4. Time-resolved singlet-oxygen luminescence detection with an efficient and practical semiconductor single-photon detector

    PubMed Central

    Boso, Gianluca; Ke, Damei; Korzh, Boris; Bouilloux, Jordan; Lange, Norbert; Zbinden, Hugo

    2015-01-01

    In clinical applications, such as PhotoDynamic Therapy, direct singlet-oxygen detection through its luminescence in the near-infrared range (1270 nm) has been a challenging task due to its low emission probability and the lack of suitable single-photon detectors. Here, we propose a practical setup based on a negative-feedback avalanche diode detector that is a viable alternative to the current state-of-the art for different clinical scenarios, especially where geometric collection efficiency is limited (e.g. fiber-based systems, confocal microscopy, scanning systems etc.). The proposed setup is characterized with Rose Bengal as a standard photosensitizer and it is used to measure the singlet-oxygen quantum yield of a new set of photosensitizers for site-selective photodynamic therapy. PMID:26819830

  5. Towards a portable Raman spectrometer using a concave grating and a time-gated CMOS SPAD.

    PubMed

    Li, Zhiyun; Deen, M Jamal

    2014-07-28

    A low-cost, compact Raman spectrometer suitable for the on-line water monitoring applications is explored. A custom-designed concave grating for wavelength selection was fabricated and tested. The detection of the Raman signal is accomplished with a time-gated single photon avalanche diode (TG-SPAD). A fixed gate window of 3.5ns is designed and applied to the TG-SPAD. The temporal resolution of the SPAD was ~60ps when tested with a 7ps, 532nm solid-state laser. To test the efficiency of the gating in fluorescence signal suppression, different detection windows (3ns-0.25ns) within the 3.5ns gate window are used to measure the Raman spectra of Rhodamine B. Strong Raman peaks are resolved with this low-cost system.

  6. Origins of Solar Systems Workshop: The Origin, Evolution, and Detectability of Short Period Comets

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1993-01-01

    The origin of the short period comets (SPC) (periods less than 200 years), the dynamical formation of their present reservoir(s), the cause and rate of their transport to the inner planetary region where they can be detected, and the magnitude of selection effects in their discovery are important research questions directly coupled to the goals of understanding the origin and evolution of the Solar System. To address these questions in an intensive way, an interdisciplinary, five month long Workshop from Jan. to May 1993 at Southwest Research Institute (SwRI) in San Antonio was convened. The goal of this Workshop was to advance the state of understanding about the origins, dynamical evolution, and present location of short period comets and their reservoir(s).

  7. Single-walled carbon nanotube/metalloporphyrin composites for the chemiresistive detection of amines and meat spoilage.

    PubMed

    Liu, Sophie F; Petty, Alexander R; Sazama, Graham T; Swager, Timothy M

    2015-05-26

    Chemiresistive detectors for amine vapors were made from single-walled carbon nanotubes by noncovalent modification with cobalt meso-arylporphyrin complexes. We show that through changes in the oxidation state of the metal, the electron-withdrawing character of the porphyrinato ligand, and the counteranion, the magnitude of the chemiresistive response to ammonia could be improved. The devices exhibited sub-ppm sensitivity and high selectivity toward amines as well as good stability to air, moisture, and time. The application of these chemiresistors in the detection of various biogenic amines (i.e. putrescine, cadaverine) and in the monitoring of spoilage in raw meat and fish samples (chicken, pork, salmon, cod) over several days was also demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Blood detection in wireless capsule endoscope images based on salient superpixels.

    PubMed

    Iakovidis, Dimitris K; Chatzis, Dimitris; Chrysanthopoulos, Panos; Koulaouzidis, Anastasios

    2015-08-01

    Wireless capsule endoscopy (WCE) enables screening of the gastrointestinal (GI) tract with a miniature, optical endoscope packed within a small swallowable capsule, wirelessly transmitting color images. In this paper we propose a novel method for automatic blood detection in contemporary WCE images. Blood is an alarming indication for the presence of pathologies requiring further treatment. The proposed method is based on a new definition of superpixel saliency. The saliency of superpixels is assessed upon their color, enabling the identification of image regions that are likely to contain blood. The blood patterns are recognized by their color features using a supervised learning machine. Experiments performed on a public dataset using automatically selected first-order statistical features from various color components indicate that the proposed method outperforms state-of-the-art methods.

  9. Efficient methods for joint estimation of multiple fundamental frequencies in music signals

    NASA Astrophysics Data System (ADS)

    Pertusa, Antonio; Iñesta, José M.

    2012-12-01

    This study presents efficient techniques for multiple fundamental frequency estimation in music signals. The proposed methodology can infer harmonic patterns from a mixture considering interactions with other sources and evaluate them in a joint estimation scheme. For this purpose, a set of fundamental frequency candidates are first selected at each frame, and several hypothetical combinations of them are generated. Combinations are independently evaluated, and the most likely is selected taking into account the intensity and spectral smoothness of its inferred patterns. The method is extended considering adjacent frames in order to smooth the detection in time, and a pitch tracking stage is finally performed to increase the temporal coherence. The proposed algorithms were evaluated in MIREX contests yielding state of the art results with a very low computational burden.

  10. Probability of detecting atrazine/desethyl-atrazine and elevated concentrations of nitrate (NO2+NO3-N) in ground water in the Idaho part of the upper Snake River basin

    USGS Publications Warehouse

    Rupert, Michael G.

    1998-01-01

    Draft Federal regulations may require that each State develop a State Pesticide Management Plan for the herbicides atrazine, alachlor, cyanazine, metolachlor, and simazine. This study developed maps that the Idaho State Department of Agriculture might use to predict the probability of detecting atrazine and desethyl-atrazine (a breakdown product of atrazine) in ground water in the Idaho part of the upper Snake River Basin. These maps can be incorporated in the State Pesticide Management Plan and help provide a sound hydrogeologic basis for atrazine management in the study area. Maps showing the probability of detecting atrazine/desethyl-atrazine in ground water were developed as follows: (1) Ground-water monitoring data were overlaid with hydrogeologic and anthropogenic data using a geographic information system to produce a data set in which each well had corresponding data on atrazine use, depth to ground water, geology, land use, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Individual (univariate) relations between atrazine/desethyl-atrazine in ground water and atrazine use, depth to ground water, geology, land use, precipitation, soils, and well depth data were evaluated to identify those independent variables significantly related to atrazine/ desethyl-atrazine detections. (3) Several preliminary multivariate models with various combinations of independent variables were constructed. (4) The multivariate models which best predicted the presence of atrazine/desethyl-atrazine in ground water were selected. (5) The multivariate models were entered into the geographic information system and the probability maps were constructed. Two models which best predicted the presence of atrazine/desethyl-atrazine in ground water were selected; one with and one without atrazine use. Correlations of the predicted probabilities of atrazine/desethyl-atrazine in ground water with the percent of actual detections were good; r-squared values were 0.91 and 0.96, respectively. Models were verified using a second set of groundwater quality data. Verification showed that wells with water containing atrazine/desethyl-atrazine had significantly higher probability ratings than wells with water containing no atrazine/desethylatrazine (p <0.002). Logistic regression also was used to develop a preliminary model to predict the probability of nitrite plus nitrate as nitrogen concentrations greater than background levels of 2 milligrams per liter. A direct comparison between the atrazine/ desethyl-atrazine and nitrite plus nitrate as nitrogen probability maps was possible because the same ground-water monitoring, hydrogeologic, and anthropogenic data were used to develop both maps. Land use, precipitation, soil hydrologic group, and well depth were significantly related with atrazine/desethyl-atrazine detections. Depth to water, land use, and soil drainage were signifi- cantly related with elevated nitrite plus nitrate as nitrogen concentrations. The differences between atrazine/desethyl-atrazine and nitrite plus nitrate as nitrogen relations were attributed to differences in chemical behavior of these compounds in the environment and possibly to differences in the extent of use and rates of their application.

  11. Evaluation of two outlier-detection-based methods for detecting tissue-selective genes from microarray data.

    PubMed

    Kadota, Koji; Konishi, Tomokazu; Shimizu, Kentaro

    2007-05-01

    Large-scale expression profiling using DNA microarrays enables identification of tissue-selective genes for which expression is considerably higher and/or lower in some tissues than in others. Among numerous possible methods, only two outlier-detection-based methods (an AIC-based method and Sprent's non-parametric method) can treat equally various types of selective patterns, but they produce substantially different results. We investigated the performance of these two methods for different parameter settings and for a reduced number of samples. We focused on their ability to detect selective expression patterns robustly. We applied them to public microarray data collected from 36 normal human tissue samples and analyzed the effects of both changing the parameter settings and reducing the number of samples. The AIC-based method was more robust in both cases. The findings confirm that the use of the AIC-based method in the recently proposed ROKU method for detecting tissue-selective expression patterns is correct and that Sprent's method is not suitable for ROKU.

  12. Short report: Antibody prevalence of select arboviruses in mute swans (Cygnus olor) in the Great Lakes region and Atlantic coast of the United States.

    PubMed

    Pedersen, Kerri; Marks, David R; Arsnoe, Dustin M; Bevins, Sarah N; Wang, Eryu; Weaver, Scott C; Mickley, Randall M; DeLiberto, Thomas J

    2014-12-01

    Mute swans (Cygnus olor) are an invasive species in the United States. The dramatic increase in their populations in localized areas has led to various problems, among them competition with native species and attacks on humans by aggressive swans. However, very little is known about the ability of these swans to transmit pathogens to humans, domestic birds, or wildlife or participate in enzootic maintenance. To learn more about select pathogens that mute swans may harbor, a survey was conducted from April of 2011 to August of 2012 in the Great Lakes region and localized areas of the Atlantic coast, which revealed serologic evidence of arbovirus exposure in mute swans. Of 497 mute swans tested, antibodies were detected for eastern equine encephalitis (4.8%), St. Louis encephalitis (1.4%), West Nile (1.2%), and Turlock (0.6%) viruses. Samples were also tested for evidence of antibodies to La Crosse virus, but none were positive. © The American Society of Tropical Medicine and Hygiene.

  13. Fluorination Effects on NOS Inhibitory Activity of Pyrazoles Related to Curcumin.

    PubMed

    Nieto, Carla I; Cabildo, María Pilar; Cornago, María Pilar; Sanz, Dionisia; Claramunt, Rosa M; Torralba, María Carmen; Torres, María Rosario; Elguero, José; García, José A; López, Ana; Acuña-Castroviejo, Darío

    2015-08-28

    A series of new (E)-3(5)-[β-(aryl)-ethenyl]-5(3)-phenyl-1H-pyrazoles bearing fluorine atoms at different positions of the aryl group have been synthesized starting from the corresponding β-diketones. All compounds have been characterized by elemental analysis, DSC as well as NMR (¹H, (13)C, (19)F and (15)N) spectroscopy in solution and in solid state. Three structures have been solved by X-ray diffraction analysis, confirming the tautomeric forms detected by solid state NMR. The in vitro study of their inhibitory potency and selectivity on the activity of nNOS and eNOS (calcium-calmodulin dependent) as well as iNOS (calcium-calmodulin independent) isoenzymes is presented. A qualitative structure-activity analysis allowed the establishment of a correlation between the presence/ absence of different substituents with the inhibition data proving that fluorine groups enhance the biological activity. (E)-3(5)-[β-(3-Fluoro-4-hydroxyphenyl)-ethenyl]-5(3)-phenyl-1H-pyrazole (13), is the best inhibitor of iNOS, being also more selective towards the other two isoforms.

  14. Crystal nucleation and metastable bcc phase in charged colloids: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Ji, Xinqiang; Sun, Zhiwei; Ouyang, Wenze; Xu, Shenghua

    2018-05-01

    The dynamic process of homogenous nucleation in charged colloids is investigated by brute-force molecular dynamics simulation. To check if the liquid-solid transition will pass through metastable bcc, simulations are performed at the state points that definitely lie in the phase region of thermodynamically stable fcc. The simulation results confirm that, in all of these cases, the preordered precursors, acting as the seeds of nucleation, always have predominant bcc symmetry consistent with Ostwald's step rule and the Alexander-McTague mechanism. However, the polymorph selection is not straightforward because the crystal structures formed are not often determined by the symmetry of intermediate precursors but have different characters under different state points. The region of the state point where bcc crystal structures of large enough size are formed during crystallization is narrow, which gives a reasonable explanation as to why the metastable bcc phase in charged colloidal suspensions is rarely detected in macroscopic experiments.

  15. Ultrafast quantum control of ionization dynamics in krypton.

    PubMed

    Hütten, Konrad; Mittermair, Michael; Stock, Sebastian O; Beerwerth, Randolf; Shirvanyan, Vahe; Riemensberger, Johann; Duensing, Andreas; Heider, Rupert; Wagner, Martin S; Guggenmos, Alexander; Fritzsche, Stephan; Kabachnik, Nikolay M; Kienberger, Reinhard; Bernhardt, Birgitta

    2018-02-19

    Ultrafast spectroscopy with attosecond resolution has enabled the real time observation of ultrafast electron dynamics in atoms, molecules and solids. These experiments employ attosecond pulses or pulse trains and explore dynamical processes in a pump-probe scheme that is selectively sensitive to electronic state of matter via photoelectron or XUV absorption spectroscopy or that includes changes of the ionic state detected via photo-ion mass spectrometry. Here, we demonstrate how the implementation of combined photo-ion and absorption spectroscopy with attosecond resolution enables tracking the complex multidimensional excitation and decay cascade of an Auger auto-ionization process of a few femtoseconds in highly excited krypton. In tandem with theory, our study reveals the role of intermediate electronic states in the formation of multiply charged ions. Amplitude tuning of a dressing laser field addresses different groups of decay channels and allows exerting temporal and quantitative control over the ionization dynamics in rare gas atoms.

  16. Force-Manipulation Single-Molecule Spectroscopy Studies of Enzymatic Dynamics

    NASA Astrophysics Data System (ADS)

    Lu, H. Peter; He, Yufan; Lu, Maolin; Cao, Jin; Guo, Qing

    2014-03-01

    Subtle conformational changes play a crucial role in protein functions, especially in enzymatic reactions involving complex substrate-enzyme interactions and chemical reactions. We applied AFM-enhanced and magnetic tweezers-correlated single-molecule spectroscopy to study the mechanisms and dynamics of enzymatic reactions involved with kinase and lysozyme proteins. Enzymatic reaction turnovers and the associated structure changes of individual protein molecules were observed simultaneously in real-time by single-molecule FRET detections. Our single-molecule spectroscopy measurements of enzymatic conformational dynamics have revealed time bunching effect and intermittent coherence in conformational state change dynamics involving in enzymatic reaction cycles. The coherent conformational state dynamics suggests that the enzymatic catalysis involves a multi-step conformational motion along the coordinates of substrate-enzyme complex formation and product releasing. Our results support a multiple-conformational state model, being consistent with a complementary conformation selection and induced-fit enzymatic loop-gated conformational change mechanism in substrate-enzyme active complex formation.

  17. An advanced molecule-surface scattering instrument for study of vibrational energy transfer in gas-solid collisions.

    PubMed

    Ran, Qin; Matsiev, Daniel; Wodtke, Alec M; Auerbach, Daniel J

    2007-10-01

    We describe an advanced and highly sensitive instrument for quantum state-resolved molecule-surface energy transfer studies under ultrahigh vacuum (UHV) conditions. The apparatus includes a beam source chamber, two differential pumping chambers, and a UHV chamber for surface preparation, surface characterization, and molecular beam scattering. Pulsed and collimated supersonic molecular beams are generated by expanding target molecule mixtures through a home-built pulsed nozzle, and excited quantum state-selected molecules were prepared via tunable, narrow-band laser overtone pumping. Detection systems have been designed to measure specific vibrational-rotational state, time-of-flight, angular and velocity distributions of molecular beams coming to and scattered off the surface. Facilities are provided to clean and characterize the surface under UHV conditions. Initial experiments on the scattering of HCl(v = 0) from Au(111) show many advantages of this new instrument for fundamental studies of the energy transfer at the gas-surface interface.

  18. Nanofluidic Pre-Concentration Devices for Enhancing the Detection Sensitivity and Selectivity of Biomarkers for Human Performance Monitoring

    DTIC Science & Technology

    2016-10-17

    AFRL-AFOSR-JP-TR-2016-0082 Nanofluidic Pre -Concentration Devices for Enhancing the Detection Sensitivity and Selectivity of Biomarkers for Human...Nanofluidic Pre -Concentration Devices for Enhancing the Detection Sensitivity and Selectivity of Biomarkers for Human Performance Monitoring 5a...SUBJECT TERMS Biomarkers, Nanofluidics, Pre -concentration Devices, Sensing, AOARD 16.  SECURITY CLASSIFICATION OF: 17.  LIMITATION OF ABSTRACT SAR 18

  19. Liquid- and solid-state high-resolution NMR methods for the investigation of aging processes of silicone breast implants.

    PubMed

    Birkefeld, Anja Britta; Bertermann, Rüdiger; Eckert, Hellmut; Pfleiderer, Bettina

    2003-01-01

    To investigate aging processes of silicone gel breast implants, which may include migration of free unreacted material from the gel and rubber to local (e.g. connective tissue capsule) or distant sites in the body, chemical alteration of the polymer and infiltration of body compounds, various approaches of multinuclear nuclear magnetic resonance (NMR) experiments (29Si, 13C, 1H) were evaluated. While 29Si, 13C, and 1H solid-state magic angle spinning (MAS) NMR techniques performed on virgin and explanted envelopes of silicone prostheses provided only limited information, high-resolution liquid-state NMR techniques of CDCl(3) extracts were highly sensitive analytical tools for the detection of aging related changes in the materials. Using 2D 1H, 1H correlation spectroscopy (COSY) and 29Si, 1H heteronuclear multiple bond coherence (HMBC) experiments with gradient selection, it was possible to detect lipids (mainly phospholipids) as well as silicone oligomer species in explanted envelopes and gels. Silicone oligomers were also found in connective tissue capsules, indicating that cyclic polysiloxanes can migrate from intact implants to adjacent and distant sites. Furthermore, lipids can permeate the implant and modify its chemical composition. Copyright 2002 Elsevier Science Ltd.

  20. Detecting Target Objects by Natural Language Instructions Using an RGB-D Camera

    PubMed Central

    Bao, Jiatong; Jia, Yunyi; Cheng, Yu; Tang, Hongru; Xi, Ning

    2016-01-01

    Controlling robots by natural language (NL) is increasingly attracting attention for its versatility, convenience and no need of extensive training for users. Grounding is a crucial challenge of this problem to enable robots to understand NL instructions from humans. This paper mainly explores the object grounding problem and concretely studies how to detect target objects by the NL instructions using an RGB-D camera in robotic manipulation applications. In particular, a simple yet robust vision algorithm is applied to segment objects of interest. With the metric information of all segmented objects, the object attributes and relations between objects are further extracted. The NL instructions that incorporate multiple cues for object specifications are parsed into domain-specific annotations. The annotations from NL and extracted information from the RGB-D camera are matched in a computational state estimation framework to search all possible object grounding states. The final grounding is accomplished by selecting the states which have the maximum probabilities. An RGB-D scene dataset associated with different groups of NL instructions based on different cognition levels of the robot are collected. Quantitative evaluations on the dataset illustrate the advantages of the proposed method. The experiments of NL controlled object manipulation and NL-based task programming using a mobile manipulator show its effectiveness and practicability in robotic applications. PMID:27983604

  1. DETECTION OF ILLCIT DRUGS IN MUNICIPAL ...

    EPA Pesticide Factsheets

    There is no abstract available for this product. If further information is requested, please refer to the bibliographic citation and contact the person listed under Contact field. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various research projects being performed in support of this Task and more in-depth coverage of each project. Briefly, each project's objective is stated below.Subtask 1: To integrate state-of-the-art technologies (polar organic chemical integrative samplers, advanced solid-phase extraction methodologies with liquid chromatography/electrospray/mass spectrometry) and apply them to studying the sources and fate of a select list of PPCPs. Application and improvement of analytical methodologies that can detect non-volatile, polar, water-soluble pharmaceuticals in source waters at levels that could be environmentally significant (at concentrations less than parts per billion, ppb). IAG with USGS ends in FY05. APM 20 due in FY05.Subtask 2: Coordination of interagency research and public outreach activities for PPCPs. Participate on NSTC Health and Environment subcommittee working group on PPCPs. Web site maintenance and expansion, invited technical presentations, invited articles for peer-reviewed journals, interviews for media, responding to public inquiries. S

  2. SPECIATION AND DETECTION OF ORGANOTINS FROM ...

    EPA Pesticide Factsheets

    There is no abstract available for this product. If further information is requested, please refer to the bibliographic citation and contact the person listed under Contact field. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various research projects being performed in support of this Task and more in-depth coverage of each project. Briefly, each project's objective is stated below.Subtask 1: To integrate state-of-the-art technologies (polar organic chemical integrative samplers, advanced solid-phase extraction methodologies with liquid chromatography/electrospray/mass spectrometry) and apply them to studying the sources and fate of a select list of PPCPs. Application and improvement of analytical methodologies that can detect non-volatile, polar, water-soluble pharmaceuticals in source waters at levels that could be environmentally significant (at concentrations less than parts per billion, ppb). IAG with USGS ends in FY05. APM 20 due in FY05.Subtask 2: Coordination of interagency research and public outreach activities for PPCPs. Participate on NSTC Health and Environment subcommittee working group on PPCPs. Web site maintenance and expansion, invited technical presentations, invited articles for peer-reviewed journals, interviews for media, responding to public inquiries. S

  3. A hybrid method for classifying cognitive states from fMRI data.

    PubMed

    Parida, S; Dehuri, S; Cho, S-B; Cacha, L A; Poznanski, R R

    2015-09-01

    Functional magnetic resonance imaging (fMRI) makes it possible to detect brain activities in order to elucidate cognitive-states. The complex nature of fMRI data requires under-standing of the analyses applied to produce possible avenues for developing models of cognitive state classification and improving brain activity prediction. While many models of classification task of fMRI data analysis have been developed, in this paper, we present a novel hybrid technique through combining the best attributes of genetic algorithms (GAs) and ensemble decision tree technique that consistently outperforms all other methods which are being used for cognitive-state classification. Specifically, this paper illustrates the combined effort of decision-trees ensemble and GAs for feature selection through an extensive simulation study and discusses the classification performance with respect to fMRI data. We have shown that our proposed method exhibits significant reduction of the number of features with clear edge classification accuracy over ensemble of decision-trees.

  4. Automated detection of microaneurysms using scale-adapted blob analysis and semi-supervised learning.

    PubMed

    Adal, Kedir M; Sidibé, Désiré; Ali, Sharib; Chaum, Edward; Karnowski, Thomas P; Mériaudeau, Fabrice

    2014-04-01

    Despite several attempts, automated detection of microaneurysm (MA) from digital fundus images still remains to be an open issue. This is due to the subtle nature of MAs against the surrounding tissues. In this paper, the microaneurysm detection problem is modeled as finding interest regions or blobs from an image and an automatic local-scale selection technique is presented. Several scale-adapted region descriptors are introduced to characterize these blob regions. A semi-supervised based learning approach, which requires few manually annotated learning examples, is also proposed to train a classifier which can detect true MAs. The developed system is built using only few manually labeled and a large number of unlabeled retinal color fundus images. The performance of the overall system is evaluated on Retinopathy Online Challenge (ROC) competition database. A competition performance measure (CPM) of 0.364 shows the competitiveness of the proposed system against state-of-the art techniques as well as the applicability of the proposed features to analyze fundus images. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Real-Time, Non-Intrusive Detection of Liquid Nitrogen in Liquid Oxygen at High Pressure and High Flow

    NASA Technical Reports Server (NTRS)

    Singh, Jagdish P.; Yueh, Fang-Yu; Kalluru, Rajamohan R.; Harrison, Louie

    2012-01-01

    An integrated fiber-optic Raman sensor has been designed for real-time, nonintrusive detection of liquid nitrogen in liquid oxygen (LOX) at high pressures and high flow rates in order to monitor the quality of LOX used during rocket engine ground testing. The integrated sensor employs a high-power (3-W) Melles Griot diode-pumped, solid-state (DPSS), frequency-doubled Nd:YAG 532- nm laser; a modified Raman probe that has built-in Raman signal filter optics; two high-resolution spectrometers; and photomultiplier tubes (PMTs) with selected bandpass filters to collect both N2 and O2 Raman signals. The PMT detection units are interfaced with National Instruments Lab- VIEW for fast data acquisition. Studies of sensor performance with different detection systems (i.e., spectrometer and PMT) were carried out. The concentration ratio of N2 and O2 can be inferred by comparing the intensities of the N2 and O2 Raman signals. The final system was fabricated to measure N2 and O2 gas mixtures as well as mixtures of liquid N2 and LOX

  6. Captured by the pain: pain steady-state evoked potentials are not modulated by selective spatial attention.

    PubMed

    Blöchl, Maria; Franz, Marcel; Miltner, Wolfgang H R; Weiss, Thomas

    2015-04-07

    Attention has been shown to affect the neural processing of pain. However, the exact mechanisms underlying this modulation remain unknown. Here, we used a new method called pain steady-state evoked potentials (PSSEPs) to investigate whether selective spatial attention affects EEG responses to tonic painful stimuli. In general, steady-state evoked potentials reflect changes in the EEG spectrum at a certain frequency that correspond to the frequency of a train of applied stimuli. In this study, high intensity transcutaneous electrical stimulation was delivered to both hands simultaneously with 31 Hz and 37 Hz, respectively. Subject׳s attention was directed to one of the two trains of stimulation in order to detect a small gap that was occasionally interspersed into the stimulus trains. Thereby, they had to ignore the stimulation applied to the other hand. Results show that PSSEPs were induced at 31 Hz and 37 Hz at frontal and central electrodes. PSSEPs occurred contralaterally to the respective hand stimulated with that frequency. Surprisingly, the magnitude of PSSEPs was not modulated by spatial attention towards one of the two stimuli. Our results indicate that attention can hardly be shifted between two simultaneously applied tonic painful stimulations. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Cancer screening in the United States, 2018: A review of current American Cancer Society guidelines and current issues in cancer screening.

    PubMed

    Smith, Robert A; Andrews, Kimberly S; Brooks, Durado; Fedewa, Stacey A; Manassaram-Baptiste, Deana; Saslow, Debbie; Brawley, Otis W; Wender, Richard C

    2018-05-30

    Each year, the American Cancer Society publishes a summary of its guidelines for early cancer detection, data and trends in cancer screening rates from the National Health Interview Survey, and select issues related to cancer screening. In this 2018 update, we also summarize the new American Cancer Society colorectal cancer screening guideline and include a clarification in the language of the 2013 lung cancer screening guideline. CA Cancer J Clin 2018. © 2018 American Cancer Society. © 2018 American Cancer Society.

  8. Absence of subtelomeric rearrangements in selected patients with mental retardation as assessed by multiprobe T FISH

    PubMed Central

    2012-01-01

    Background Mental retardation (MR) is a heterogeneous condition that affects 2-3% of the general population and is a public health problem in developing countries. Chromosomal abnormalities are an important cause of MR and subtelomeric rearrangements (STR) have been reported in 4-35% of individuals with idiopathic MR or an unexplained developmental delay, depending on the screening tests and patient selection criteria used. Clinical checklists such as that suggested by de Vries et al. have been used to improve the predictive value of subtelomeric screening. Findings Fifteen patients (1–20 years old; five females and ten males) with moderate to severe MR from a genetics outpatient clinic of the Gaffrée and Guinle Teaching Hospital (HUGG) of the Federal University of Rio de Janeiro State (UNIRIO) were screened with Multiprobe T FISH after normal high resolution karyotyping. No subtelomeric rearrangements were detected even though the clinical score of the patients ranged from four to seven. Conclusion In developing countries, FISH-based techniques such as Multiprobe T FISH are still expensive. Although Multiprobe T FISH is a good tool for detecting STR, in this study it did not detect STR in patients with unexplained MR/developmental delay even though these patients had a marked chromosomal imbalance. Our findings also show that clinical scores are not reliable predictors of STR. PMID:23259705

  9. Detection and characterisation of coronaviruses in migratory and non-migratory Australian wild birds.

    PubMed

    Chamings, Anthony; Nelson, Tiffanie M; Vibin, Jessy; Wille, Michelle; Klaassen, Marcel; Alexandersen, Soren

    2018-04-13

    We evaluated the presence of coronaviruses by PCR in 918 Australian wild bird samples collected during 2016-17. Coronaviruses were detected in 141 samples (15.3%) from species of ducks, shorebirds and herons and from multiple sampling locations. Sequencing of selected positive samples found mainly gammacoronaviruses, but also some deltacoronaviruses. The detection rate of coronaviruses was improved by using multiple PCR assays, as no single assay could detect all coronavirus positive samples. Sequencing of the relatively conserved Orf1 PCR amplicons found that Australian duck gammacoronaviruses were similar to duck gammacoronaviruses around the world. Some sequenced shorebird gammacoronaviruses belonged to Charadriiformes lineages, but others were more closely related to duck gammacoronaviruses. Australian duck and heron deltacoronaviruses belonged to lineages with other duck and heron deltacoronaviruses, but were almost 20% different in nucleotide sequence to other deltacoronavirus sequences available. Deltacoronavirus sequences from shorebirds formed a lineage with a deltacoronavirus from a ruddy turnstone detected in the United States. Given that Australian duck gammacoronaviruses are highly similar to those found in other regions, and Australian ducks rarely come into contact with migratory Palearctic duck species, we hypothesise that migratory shorebirds are the important vector for moving wild bird coronaviruses into and out of Australia.

  10. Ultrasensitive Detection of Ricin Toxin in Multiple Sample Matrixes Using Single-Domain Antibodies.

    PubMed

    Gaylord, Shonda T; Dinh, Trinh L; Goldman, Ellen R; Anderson, George P; Ngan, Kevin C; Walt, David R

    2015-07-07

    Ricin is an extremely potent ribosomal inactivating protein listed as a Category B select agent. Although ricin intoxication is not transmittable from person to person, even a single ricin molecule can lead to cell necrosis because it inactivates 1500 ribosomes/min. Since there is currently no vaccine or therapeutic treatment for ricin intoxication, ultrasensitive analytical assays capable of detecting ricin in a variety of matrixes are urgently needed to limit exposure to individuals as well as communities. In this paper, we present the development and application of a single-molecule array (Simoa) for the detection of ricin toxin in human urine and serum. Single-domain antibodies (sdAbs), among the smallest engineered binding fragments, were chemically coupled to the surface of paramagnetic beads for the sensitive detection of ricin toxin. The Simoa was able to detect ricin at levels of 10 fg/mL, 100 fg/mL, and 1 pg/mL in buffer, urine and serum, respectively, in a fraction of the assay time need using immuno-polymerase chain reaction (IPCR). Using a fully automated state-of-the-art platform, the Simoa HD-1 analyzer, the assay time was reduced to 64 min.

  11. Discriminative detection of deposited radon daughters on CR-39 track detectors using TRIAC II code

    NASA Astrophysics Data System (ADS)

    Patiris, D. L.; Ioannides, K. G.

    2009-07-01

    A method for detecting deposited 218Po and 214Po by a spectrometric study of CR-39 solid state nuclear track detectors is described. The method is based on the application of software imposed selection criteria, concerning the geometrical and optical properties of the tracks, which correspond to tracks created by alpha particles of specific energy falling on the detector at given angles of incidence. The selection criteria were based on a preliminary study of tracks' parameters (major and minor axes and mean value of brightness), using the TRIAC II code. Since no linear relation was found between the energy and the geometric characteristics of the tracks (major and minor axes), we resorted to the use of an additional parameter in order to classify the tracks according to the particles' energy. Since the brightness of tracks is associated with the tracks' depth, the mean value of brightness was chosen as the parameter of choice. To reduce the energy of the particles, which are emitted by deposited 218Po and 214Po into a quantifiable range, the detectors were covered with an aluminum absorber material. In this way, the discrimination of radon's daughters was finally accomplished by properly selecting amongst all registered tracks. This method could be applied as a low cost tool for the study of the radon's daughters behavior in air.

  12. Residues of chlortetracycline, doxycycline and sulfadiazine-trimethoprim in intestinal content and feces of pigs due to cross-contamination of feed.

    PubMed

    Peeters, Laura E J; Daeseleire, Els; Devreese, Mathias; Rasschaert, Geertrui; Smet, Annemieke; Dewulf, Jeroen; Heyndrickx, Marc; Imberechts, Hein; Haesebrouck, Freddy; Butaye, Patrick; Croubels, Siska

    2016-09-20

    Cross-contamination of feed with low concentrations of antimicrobials can occur at production, transport and/or farm level. Concerns are rising about possible effects of this contaminated feed on resistance selection in the intestinal microbiota. Therefore, an experiment with pigs was set up, in which intestinal and fecal concentrations of chlortetracycline (CTC), doxycycline (DOX) and sulfadiazine-trimethoprim (SDZ-TRIM) were determined after administration of feed containing a 3 % carry-over level of these antimicrobials. The poor oral bioavailability of tetracyclines resulted in rather high concentrations in cecal and colonic content and feces at steady-state conditions. A mean concentration of 10 mg/kg CTC and 4 mg/kg DOX in the feces was reached, which is higher than concentrations that were shown to cause resistance selection. On the other hand, lower mean levels of SDZ (0.7 mg/kg) and TRIM (< limit of detection of 0.016 mg/kg) were found in the feces, corresponding with the high oral bioavailability of SDZ and TRIM in pigs. The relation between the oral bioavailability and intestinal concentrations of the tested antimicrobials, may be of help in assessing the risks of cross-contaminated feed. However, future research is needed to confirm our results and to evaluate the effects of these detected concentrations on resistance selection in the intestinal microbiota of pigs.

  13. Ground-Water Quality in the Genesee River Basin, New York, 2005-2006

    USGS Publications Warehouse

    Eckhardt, David A.V.; Reddy, J.E.; Tamulonis, Kathryn L.

    2007-01-01

    Water samples were collected from 7 community water system wells and 15 private domestic wells throughout the Genesee River Basin in New York State (downstream from the Pennsylvania border) from October 2005 through March 2006 and analyzed to characterize the chemical quality of ground water in the basin. The wells were selected to represent areas of greatest ground-water use and to provide a representative sampling from the 2,439 square-mile basin area in New York. Samples were analyzed for five physical properties and 226 constituents that included nutrients, major inorganic ions, trace elements, radionuclides, pesticides, volatile organic compounds, and bacteria. The results show that ground water used for drinking water is generally of good quality in the Genesee River Basin, although concentrations of seven constituents exceeded drinking water standards. The cations that were detected in the highest concentrations were calcium, magnesium, and sodium; the anions that were detected in the greatest concentrations were bicarbonate, chloride, and sulfate. The predominant nutrient was nitrate, and nitrate concentrations were greater in samples from sand and gravel aquifers than in samples from bedrock aquifers. The trace elements barium, boron, cobalt, copper, and nickel were detected in every sample; the highest concentrations were barium, boron, chromium, iron, manganese, strontium, and lithium. Fourteen pesticides including seven pesticide degradates were detected in water from 12 of the 22 wells, but none of the concentrations exceeded Maximum Contaminant Levels (MCLs). Eight volatile organic compounds (VOCs) were detected in six samples, but none of the concentrations exceeded MCLs. Seven chemical analytes and three types of bacteria were present in concentrations that exceeded Federal and New York State water-quality standards, which are typically identical. Sulfate concentrations exceeded the U.S. Environmental Protection Agency (USEPA) Secondary Maximum Contaminant Level (SMCL) of 250 milligrams per liter (mg/L) in three samples; the chloride SMCL (250 mg/L) was exceeded in one sample. Sodium concentrations exceeded the USEPA Drinking Water Health Advisory of 60 mg/L in five samples. The SMCL for iron (300 ug/L) was exceeded in 11 filtered samples; the USEPA SMCL for manganese (50 ug/L) was exceeded in 10 filtered samples, and the New York State MCL (300 ug/L) was exceeded in 1 filtered sample. The MCL for aluminum (200 ug/L) was exceeded in 1 sample, and the MCL for arsenic (10 ug/L) was exceeded in 1 sample. Radon-222 exceeded the proposed USEPA MCL of 300 picocuries per liter in 16 samples. Any detection of total coliform or fecal coliform bacteria is considered a violation of New York State health regulations; in this study, total coliform was detected in eight samples; fecal coliform was detected in two samples, and Escherichia coli was detected in one sample.

  14. Detection of Listeria monocytogenes from selective enrichment broth using MALDI-TOF Mass Spectrometry.

    PubMed

    Jadhav, Snehal; Sevior, Danielle; Bhave, Mrinal; Palombo, Enzo A

    2014-01-31

    Conventional methods used for primary detection of Listeria monocytogenes from foods and subsequent confirmation of presumptive positive samples involve prolonged incubation and biochemical testing which generally require four to five days to obtain a result. In the current study, a simple and rapid proteomics-based MALDI-TOF MS approach was developed to detect L. monocytogenes directly from selective enrichment broths. Milk samples spiked with single species and multiple species cultures were incubated in a selective enrichment broth for 24h, followed by an additional 6h secondary enrichment. As few as 1 colony-forming unit (cfu) of L. monocytogenes per mL of initial selective broth culture could be detected within 30h. On applying the same approach to solid foods previously implicated in listeriosis, namely chicken pâté, cantaloupe and Camembert cheese, detection was achieved within the same time interval at inoculation levels of 10cfu/mL. Unlike the routine application of MALDI-TOF MS for identification of bacteria from solid media, this study proposes a cost-effective and time-saving detection scheme for direct identification of L. monocytogenes from broth cultures.This article is part of a Special Issue entitled: Trends in Microbial Proteomics. Globally, foodborne diseases are major causes of illness and fatalities in humans. Hence, there is a continual need for reliable and rapid means for pathogen detection from food samples. Recent applications of MALDI-TOF MS for diagnostic microbiology focused on detection of microbes from clinical specimens. However, the current study has emphasized its use as a tool for detecting the major foodborne pathogen, Listeria monocytogenes, directly from selective enrichment broths. This proof-of-concept study proposes a detection scheme that is more rapid and simple compared to conventional methods of Listeria detection. Very low levels of the pathogen could be identified from different food samples post-enrichment in selective enrichment broths. Use of this scheme will facilitate rapid and cost-effective testing for this important foodborne pathogen. © 2013.

  15. Recognition unit-free and self-cleaning photoelectrochemical sensing platform on TiO2 nanotube photonic crystals for sensitive and selective detection of dopamine release from mouse brain.

    PubMed

    Xin, Yanmei; Li, Zhenzhen; Wu, Wenlong; Fu, Baihe; Wu, Hongjun; Zhang, Zhonghai

    2017-01-15

    For implementing sensitive and selective detection of biological molecules, the biosensors are been designed more and more complicated. The exploration of detection platform in a simple way without loss their sensitivity and selectivity is always a big challenge. Herein, a prototype of recognition biomolecule unit-free photoelectrochemical (PEC) sensing platform with self-cleaning activity is proposed with TiO 2 nanotube photonic crystal (TiO 2 NTPCs) materials as photoelectrode, and dopamine (DA) molecule as both sensitizer and target analyte. The unique adsorption between DA and TiO 2 NTPCs induces the formation of charge transfer complex, which not only expends the optical absorption of TiO 2 into visible light region, thus significantly boosts the PEC performance under illumination of visible light, but also implements the selective detection of DA on TiO 2 photoelectrode. This simple but efficient PEC analysis platform presents a low detection limit of 0.15nm for detection of DA, which allows to realize the sensitive and selective determination of DA release from the mouse brain for its practical application after coupled with a microdialysis probe. The DA functionalized TiO 2 NTPCs PEC sensing platform opens up a new PEC detection model, without using extra-biomolecule auxiliary, just with target molecule naturally adsorbed on the electrode for sensitive and selective detection, and paves a new avenue for biosensors design with minimalism idea. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Highly sensitive and selective lateral flow immunoassay based on magnetic nanoparticles for quantitative detection of carcinoembryonic antigen.

    PubMed

    Liu, Fangming; Zhang, Honglian; Wu, Zhenhua; Dong, Haidao; Zhou, Lin; Yang, Dawei; Ge, Yuqing; Jia, Chunping; Liu, Huiying; Jin, Qinghui; Zhao, Jianlong; Zhang, Qiqing; Mao, Hongju

    2016-12-01

    Carcinoembryonic antigen (CEA) is an important biomarker in cancer diagnosis. Here, we present an efficient, selective lateral-flow immunoassay (LFIA) based on magnetic nanoparticles (MNPs) for in situ sensitive and accurate point-of-care detection of CEA. Signal amplification mechanism involved linking of detection MNPs with signal MNPs through biotin-modified single-stranded DNA (ssDNA) and streptavidin. To verify the effectiveness of this modified LFIA system, the sensitivity and specificity were evaluated. Sensitivity evaluation showed a broad detection range of 0.25-1000ng/ml for CEA protein by the modified LFIA, and the limit of detection (LOD) of the modified LFIA was 0.25ng/ml, thus producing significant increase in detection threshold compared with the traditional LFIA. The modified LFIA could selectively recognize CEA in presence of several interfering proteins. In addition, this newly developed assay was applied for quantitative detection of CEA in human serum specimens collected from 10 randomly selected patients. The modified LFIA system detected minimum 0.27ng/ml of CEA concentration in serum samples. The results were consistent with the clinical data obtained using commercial electrochemiluminescence immunoassay (ECLIA) (p<0.01). In conclusion, the MNPs based LFIA system not only demonstrated enhanced signal to noise ratio, it also detected CEA with higher sensitivity and selectivity, and thus has great potential to be commercially applied as a sensitive tumor marker filtration system. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Continental-scale footprint of balancing and positive selection in a small rodent (Microtus arvalis).

    PubMed

    Fischer, Martin C; Foll, Matthieu; Heckel, Gerald; Excoffier, Laurent

    2014-01-01

    Genetic adaptation to different environmental conditions is expected to lead to large differences between populations at selected loci, thus providing a signature of positive selection. Whereas balancing selection can maintain polymorphisms over long evolutionary periods and even geographic scale, thus leads to low levels of divergence between populations at selected loci. However, little is known about the relative importance of these two selective forces in shaping genomic diversity, partly due to difficulties in recognizing balancing selection in species showing low levels of differentiation. Here we address this problem by studying genomic diversity in the European common vole (Microtus arvalis) presenting high levels of differentiation between populations (average F ST = 0.31). We studied 3,839 Amplified Fragment Length Polymorphism (AFLP) markers genotyped in 444 individuals from 21 populations distributed across the European continent and hence over different environmental conditions. Our statistical approach to detect markers under selection is based on a Bayesian method specifically developed for AFLP markers, which treats AFLPs as a nearly codominant marker system, and therefore has increased power to detect selection. The high number of screened populations allowed us to detect the signature of balancing selection across a large geographic area. We detected 33 markers potentially under balancing selection, hence strong evidence of stabilizing selection in 21 populations across Europe. However, our analyses identified four-times more markers (138) being under positive selection, and geographical patterns suggest that some of these markers are probably associated with alpine regions, which seem to have environmental conditions that favour adaptation. We conclude that despite favourable conditions in this study for the detection of balancing selection, this evolutionary force seems to play a relatively minor role in shaping the genomic diversity of the common vole, which is more influenced by positive selection and neutral processes like drift and demographic history.

  18. Structure-property study of the Raman spectroscopy detection of fusaric acid and analogs

    USDA-ARS?s Scientific Manuscript database

    Food security can benefit from the development of selective methods to detect toxins. Fusaric acid is a mycotoxin produced by certain fungi occasionally found in agricultural commodities. Raman spectroscopy allows selective detection of analytes associated with certain spectral characteristics relat...

  19. Highly sensitive and selective liquid crystal optical sensor for detection of ammonia.

    PubMed

    Niu, Xiaofang; Zhong, Yuanbo; Chen, Rui; Wang, Fei; Luo, Dan

    2017-06-12

    Ammonia detection technologies are very important in environment monitoring. However, most existing technologies are complex and expensive, which limit the useful range of real-time application. Here, we propose a highly sensitive and selective optical sensor for detection of ammonia (NH 3 ) based on liquid crystals (LCs). This optical sensor is realized through the competitive binding between ammonia and liquid crystals on chitosan-Cu 2+ that decorated on glass substrate. We achieve a broad detection range of ammonia from 50 ppm to 1250 ppm, with a low detection limit of 16.6 ppm. This sensor is low-cost, simple, fast, and highly sensitive and selective for detection of ammonia. The proposal LC sensing method can be a sensitive detection platform for other molecule monitors such as proteins, DNAs and other heavy metal ions by modifying sensing molecules.

  20. Theory of the Protein Equilibrium Population Snapshot by H/D Exchange Electrospray Ionization Mass Spectrometry (PEPS-HDX-ESI-MS) Method used to obtain Protein Folding Energies/Rates and Selected Supporting Experimental Evidence.

    PubMed

    Liyanage, Rohana; Devarapalli, Nagarjuna; Pyland, Derek B; Puckett, Latisha M; Phan, N H; Starch, Joel A; Okimoto, Mark R; Gidden, Jennifer; Stites, Wesley E; Lay, Jackson O

    2012-12-15

    Protein equilibrium snapshot by hydrogen/deuterium exchange electrospray ionization mass spectrometry (PEPS-HDX-ESI-MS or PEPS) is a method recently introduced for estimating protein folding energies and rates. Herein we describe the basis for this method using both theory and new experiments. Benchmark experiments were conducted using ubiquitin because of the availability of reference data for folding and unfolding rates from NMR studies. A second set of experiments was also conducted to illustrate the surprising resilience of the PEPS to changes in HDX time, using staphylococcal nuclease and time frames ranging from a few seconds to several minutes. Theory suggests that PEPS experiments should be conducted at relatively high denaturant concentrations, where the protein folding/unfolding rates are slow with respect to HDX and the life times of both the closed and open states are long enough to be sampled experimentally. Upon deliberate denaturation, changes in folding/unfolding are correlated with associated changes in the ESI-MS signal upon fast HDX. When experiments are done quickly, typically within a few seconds, ESI-MS signals, corresponding to the equilibrium population of the native (closed) and denatured (open) states can both be detected. The interior of folded proteins remains largely un-exchanged. Amongst MS methods, the simultaneous detection of both states in the spectrum is unique to PEPS and provides a "snapshot" of these populations. The associated ion intensities are used to estimate the protein folding equilibrium constant (or the free energy change, ΔG). Linear extrapolation method (LEM) plots of derived ΔG values for each denaturant concentration can then be used to calculate ΔG in the absence of denaturant, ΔG(H(2)O). In accordance with the requirement for detection of signals for both the folded and unfolded states, this theoretical framework predicts that PEPS experiments work best at the middle of the denaturation curve where natured and denatured protein molecules are equilibrated at easily detectable ratios, namely 1:1. It also requires that closed and open states have lifetimes measurable in the time frame of the HDX experiment. Because both conditions are met by PEPS, these measurements can provide an accurate assessment of closed/open state populations and thus protein folding energies/rates.

  1. Research on intrusion detection based on Kohonen network and support vector machine

    NASA Astrophysics Data System (ADS)

    Shuai, Chunyan; Yang, Hengcheng; Gong, Zeweiyi

    2018-05-01

    In view of the problem of low detection accuracy and the long detection time of support vector machine, which directly applied to the network intrusion detection system. Optimization of SVM parameters can greatly improve the detection accuracy, but it can not be applied to high-speed network because of the long detection time. a method based on Kohonen neural network feature selection is proposed to reduce the optimization time of support vector machine parameters. Firstly, this paper is to calculate the weights of the KDD99 network intrusion data by Kohonen network and select feature by weight. Then, after the feature selection is completed, genetic algorithm (GA) and grid search method are used for parameter optimization to find the appropriate parameters and classify them by support vector machines. By comparing experiments, it is concluded that feature selection can reduce the time of parameter optimization, which has little influence on the accuracy of classification. The experiments suggest that the support vector machine can be used in the network intrusion detection system and reduce the missing rate.

  2. A review of channel selection algorithms for EEG signal processing

    NASA Astrophysics Data System (ADS)

    Alotaiby, Turky; El-Samie, Fathi E. Abd; Alshebeili, Saleh A.; Ahmad, Ishtiaq

    2015-12-01

    Digital processing of electroencephalography (EEG) signals has now been popularly used in a wide variety of applications such as seizure detection/prediction, motor imagery classification, mental task classification, emotion classification, sleep state classification, and drug effects diagnosis. With the large number of EEG channels acquired, it has become apparent that efficient channel selection algorithms are needed with varying importance from one application to another. The main purpose of the channel selection process is threefold: (i) to reduce the computational complexity of any processing task performed on EEG signals by selecting the relevant channels and hence extracting the features of major importance, (ii) to reduce the amount of overfitting that may arise due to the utilization of unnecessary channels, for the purpose of improving the performance, and (iii) to reduce the setup time in some applications. Signal processing tools such as time-domain analysis, power spectral estimation, and wavelet transform have been used for feature extraction and hence for channel selection in most of channel selection algorithms. In addition, different evaluation approaches such as filtering, wrapper, embedded, hybrid, and human-based techniques have been widely used for the evaluation of the selected subset of channels. In this paper, we survey the recent developments in the field of EEG channel selection methods along with their applications and classify these methods according to the evaluation approach.

  3. [Prevalence of trachoma in Brazilian schoolchildren].

    PubMed

    Lopes, Maria de Fátima Costa; Luna, Expedito José de Albuquerque; Medina, Norma Helen; Cardoso, Maria Regina Alves; Freitas, Helen Selma de Abreu; Koizumi, Inês Kazue; Bernardes, Neusa Aparecida Ferreira Alves; Guimarães, José Alfredo

    2013-06-01

    To estimate the prevalence and describe the distribution of trachoma among schoolchildren in Brazilian municipalities. Cross-sectional study, using cluster sampling, of the schoolchildren population of the Brazilian municipalities with Human Development Index - Municipal lower than the national average. This trachoma prevalence survey was conducted by the Ministry of Health, in the period 2002-2007. There were 119,531 schoolchildren selected from 2,270 schools located in 1,156 municipalities. The selected schoolchildren underwent an external ocular examination, with a magnifying glass (2.5X), to detect clinical signs of trachoma according to the WHO criteria. The prevalence of trachoma, by state and national level, and their respective 95% confidence intervals were estimated. Chi-square and Chi-square for trends tests were used to compare categorical variables. There were 6,030 cases of trachoma detected, resulting in a prevalence of 5.0% (95%CI 4.5;5.4). There was no significant difference between the sexes. The prevalence of trachoma was 8.2% among children under 5 years of age, decreasing among higher age groups (p < 0.01). There was a significant difference in prevalence between urban and rural areas, 4.3% versus 6.2% respectively (p < 0.01). Cases were detected in 901 municipalities (77.7% of the sample), in all regions of the country. In 36.8% of the selected municipalities, the prevalence was higher than 5%. The study shows that trachoma is a significant public health problem in Brazil, contradicting the belief that the disease had been controlled in the country. The survey provides a baseline for evaluating planned interventions aimed at achieving the goal of global certification of elimination of trachoma as a cause of blindness in Brazil by 2020.

  4. A novel pyrimidine derivative as a fluorescent chemosensor for highly selective detection of aluminum (III) in aqueous media.

    PubMed

    Suryawanshi, Vishwas D; Gore, Anil H; Dongare, Pravin R; Anbhule, Prashant V; Patil, Shivajirao R; Kolekar, Govind B

    2013-10-01

    An efficient fluorescent chemosensor Al(3+) receptor based on pyrimidine derivative,2-amino-6-hydroxy-4-(4-N,N-dimethylaminophenyl)-pyrimidine-5-carbonitrile (DMAB), has been synthesized by three-component condensation of aromatic aldehyde, ethyl cyanoacetate and guanidine hydrochloride in ethanol under alkaline medium. High selectivity and sensitivity of DMAB towards Aluminum ion (Al(3+)) in water: ethanol and acetate buffer at pH 4.0 makes it suitable to detect Al(3+) with steady-state UV-vis and fluorescence spectroscopy. Method shows good selectivity towards Al(3+) over other coexisting metal ions tested, viz. Fe(2+), Ni(2+), Cu(2+), Co(2+), Pb(2+), Sb(3+), Na(+), Ca(2+), Mg(2+), Zn(2+), Hg(2+), Ba(2+), Cd(2+) and K(+). A good linearity between the Stern-Volmer plots of F0/F versus concentration of Al(3+) was observed over the range from 10 to 60 μg mL(-1) with correlation coefficient of 0.991. The accuracy and reliability of the method were further confirmed by recovery studies via standard addition method with percent recoveries in the range of 101.03-103.44% and lowest detection limit (LOD=7.35 μg mL(-1)) for Al(3+) was established. This method may offer a new cost-effective, rapid, and simple key to the inspection of Al(3+) ions in water samples in the presence of a complex matrix and can be capable of evaluating the exceeding standard of Al(3+) in environmental water samples. The probable mechanism for fluorescence quenching was also discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Signatures of triaxiality in low-spin spectra of 86Ge

    NASA Astrophysics Data System (ADS)

    Lettmann, M.; Werner, V.; Pietralla, N.; Doornenbal, P.; Obertelli, A.; Rodríguez, T. R.; Sieja, K.; Authelet, G.; Baba, H.; Calvet, D.; Château, F.; Chen, S.; Corsi, A.; Delbart, A.; Gheller, J.-M.; Giganon, A.; Gillibert, A.; Lapoux, V.; Motobayashi, T.; Niikura, M.; Paul, N.; Roussé, J.-Y.; Sakurai, H.; Santamaria, C.; Steppenbeck, D.; Taniuchi, R.; Uesaka, T.; Ando, T.; Arici, T.; Blazhev, A.; Browne, F.; Bruce, A.; Caroll, R. J.; Chung, L. X.; Cortés, M. L.; Dewald, M.; Ding, B.; Flavigny, F.; Franchoo, S.; Górska, M.; Gottardo, A.; Jungclaus, A.; Lee, J.; Linh, B. D.; Liu, J.; Liu, Z.; Lizarazo, C.; Momiyama, S.; Moschner, K.; Nagamine, S.; Nakatsuka, N.; Nita, C.; Nobs, C. R.; Olivier, L.; Patel, Z.; Podolyák, Zs.; Rudigier, M.; Saito, T.; Shand, C.; Söderström, P.-A.; Stefan, I.; Vaquero, V.; Wimmer, K.; Xu, Z.

    2018-05-01

    Low-spin states of neutron-rich 84,86,88Ge were measured by in-flight γ-ray spectroscopy at 270 MeV/u at the RIKEN-RIBF facility. The exotic beams have been produced by primary 238U in-flight fission reactions and impinged on the MINOS device. MINOS combines a 10-cm long LH2 target with a Time Projection Chamber (TPC) to reconstruct the reaction vertices. The reactions were selected by the BigRIPS and the ZeroDegree spectrometers for the incoming and outgoing channels, respectively. Emitted γ radiation was detected by the NaI-array DALI2. De-excitations from the {6}1+, {4}1,2+, and {2}1,2+ states of 84,86Ge and {4}1+ and {2}1,2+ states of 88Ge were observed. The data are compared to state-of-the-art shell model and beyond-mean-field calculations. Furthermore, a candidate for a {3}1+ state of 86Ge was identified. This state plays a key role in the discussion of ground-state triaxiality of 86Ge, along with other features of the low-energy level scheme. This work was published in [1].

  6. Multi-Layer Approach for the Detection of Selective Forwarding Attacks

    PubMed Central

    Alajmi, Naser; Elleithy, Khaled

    2015-01-01

    Security breaches are a major threat in wireless sensor networks (WSNs). WSNs are increasingly used due to their broad range of important applications in both military and civilian domains. WSNs are prone to several types of security attacks. Sensor nodes have limited capacities and are often deployed in dangerous locations; therefore, they are vulnerable to different types of attacks, including wormhole, sinkhole, and selective forwarding attacks. Security attacks are classified as data traffic and routing attacks. These security attacks could affect the most significant applications of WSNs, namely, military surveillance, traffic monitoring, and healthcare. Therefore, there are different approaches to detecting security attacks on the network layer in WSNs. Reliability, energy efficiency, and scalability are strong constraints on sensor nodes that affect the security of WSNs. Because sensor nodes have limited capabilities in most of these areas, selective forwarding attacks cannot be easily detected in networks. In this paper, we propose an approach to selective forwarding detection (SFD). The approach has three layers: MAC pool IDs, rule-based processing, and anomaly detection. It maintains the safety of data transmission between a source node and base station while detecting selective forwarding attacks. Furthermore, the approach is reliable, energy efficient, and scalable. PMID:26610499

  7. Multi-Layer Approach for the Detection of Selective Forwarding Attacks.

    PubMed

    Alajmi, Naser; Elleithy, Khaled

    2015-11-19

    Security breaches are a major threat in wireless sensor networks (WSNs). WSNs are increasingly used due to their broad range of important applications in both military and civilian domains. WSNs are prone to several types of security attacks. Sensor nodes have limited capacities and are often deployed in dangerous locations; therefore, they are vulnerable to different types of attacks, including wormhole, sinkhole, and selective forwarding attacks. Security attacks are classified as data traffic and routing attacks. These security attacks could affect the most significant applications of WSNs, namely, military surveillance, traffic monitoring, and healthcare. Therefore, there are different approaches to detecting security attacks on the network layer in WSNs. Reliability, energy efficiency, and scalability are strong constraints on sensor nodes that affect the security of WSNs. Because sensor nodes have limited capabilities in most of these areas, selective forwarding attacks cannot be easily detected in networks. In this paper, we propose an approach to selective forwarding detection (SFD). The approach has three layers: MAC pool IDs, rule-based processing, and anomaly detection. It maintains the safety of data transmission between a source node and base station while detecting selective forwarding attacks. Furthermore, the approach is reliable, energy efficient, and scalable.

  8. Recurrent bottlenecks in the malaria life cycle obscure signals of positive selection.

    PubMed

    Chang, Hsiao-Han; Hartl, Daniel L

    2015-02-01

    Detecting signals of selection in the genome of malaria parasites is a key to identify targets for drug and vaccine development. Malaria parasites have a unique life cycle alternating between vector and host organism with a population bottleneck at each transition. These recurrent bottlenecks could influence the patterns of genetic diversity and the power of existing population genetic tools to identify sites under positive selection. We therefore simulated the site-frequency spectrum of a beneficial mutant allele through time under the malaria life cycle. We investigated the power of current population genetic methods to detect positive selection based on the site-frequency spectrum as well as temporal changes in allele frequency. We found that a within-host selective advantage is difficult to detect using these methods. Although a between-host transmission advantage could be detected, the power is decreased when compared with the classical Wright-Fisher (WF) population model. Using an adjusted null site-frequency spectrum that takes the malaria life cycle into account, the power of tests based on the site-frequency spectrum to detect positive selection is greatly improved. Our study demonstrates the importance of considering the life cycle in genetic analysis, especially in parasites with complex life cycles.

  9. Occurrence and distribution of selected contaminants in public drinking-water supplies in the surficial aquifer in Delaware

    USGS Publications Warehouse

    Ferrari, Matthew J.

    2001-01-01

    Water samples were collected from August through November 2000 from 30 randomly selected public drinking-water supply wells screened in the unconfined aquifer in Delaware, and analyzed to assess the occurrence and distribution of selected pesticide compounds, volatile organic compounds, major inorganic ions, and nutrients. Water from a subset of 10 wells was sampled and analyzed for radium and radon. The average age of ground water entering the well screens in all the wells was determined to be generally less than 20 years. Low concentrations of pesticide compounds and volatile organic compounds were detected throughout the State of Delaware, with several compounds often detected in each water sample. Pesticide and metabolite (pesticide degradation products) concentrations were generally less than 1 microgram per liter, and were detected in sam-ples from 27 of 30 wells. Of the 45 pesticides and 13 metabolites analyzed, 19 compounds (13 pesticides and 6 metabolites) were detected in at least 1 of the 30 samples. Desethylatrazine, alachlor ethane sulfonic acid, metolachlor ethane sulfonic acid, metolachlor, and atrazine were the most frequently detected pesticide compounds, and were present in at least half the samples. None of the pesticide detections was above the U.S. Environmental Protection Agency's Primary Maximum Contaminant Levels or Health Advisories. Volatile organic compounds also were present at low concentrations (generally less than 1 microgram per liter) in samples from all 30 wells. Of the 85 volatile organic com-pounds analyzed, 34 compounds were detected in at least 1 of the 30 samples. Chloroform, tetrachloroethene, and methyl tert-butyl ether were the most frequently detected volatile organic compounds, and were found in at least half the samples. None of the volatile organic compound detections was above U.S. Environmental Protection Agency's Primary Maximum Contaminant Levels or Health Advisories. A few samples contained compounds with concentrations above the U.S. Environmental Protection Agency's Primary Maximum Contaminant Levels or Secondary Maximum Contaminant Levels for inorganic compounds and radionuclides. One sample out of 30 contained a concentration of nitrite plus nitrate above the U.S. Environmental Protection Agency's Primary Maximum Contaminant Level of 10 milligrams per liter as nitrogen. Iron and manganese concentrations above the U.S. Environmental Protection Agency's Secondary Maximum Contaminant Levels were found in 7 of 30 ground-water samples, most of them from Sussex County. In the 10 wells sampled for radionuclides, only one sample had detectable levels of radium-224 and -226, and another sample contained detectable levels of radium-228; both of these samples also had detectable gross-alpha and gross-beta activities. None of these activities were above the U.S. Environ-mental Protection Agency's Primary Maximum Contaminant Levels or Secondary Maximum Contaminant Levels. Radon was detected in all 10 samples, but was above the current U.S. Environmental Protection Agency's proposed Primary Maximum Contaminant Level of 300 picocuries per liter in only one sample.

  10. Method and system for evaluating integrity of adherence of a conductor bond to a mating surface of a substrate

    DOEpatents

    Telschow, K.L.; Siu, B.K.

    1996-07-09

    A method of evaluating integrity of adherence of a conductor bond to a substrate includes: (a) impinging a plurality of light sources onto a substrate; (b) detecting optical reflective signatures emanating from the substrate from the impinged light; (c) determining location of a selected conductor bond on the substrate from the detected reflective signatures; (d) determining a target site on the selected conductor bond from the detected reflective signatures; (e) optically imparting an elastic wave at the target site through the selected conductor bond and into the substrate; (f) optically detecting an elastic wave signature emanating from the substrate resulting from the optically imparting step; and (g) determining integrity of adherence of the selected conductor bond to the substrate from the detected elastic wave signature emanating from the substrate. A system is disclosed which is capable of conducting the method. 13 figs.

  11. Method and system for evaluating integrity of adherence of a conductor bond to a mating surface of a substrate

    DOEpatents

    Telschow, Kenneth L.; Siu, Bernard K.

    1996-01-01

    A method of evaluating integrity of adherence of a conductor bond to a substrate includes: a) impinging a plurality of light sources onto a substrate; b) detecting optical reflective signatures emanating from the substrate from the impinged light; c) determining location of a selected conductor bond on the substrate from the detected reflective signatures; d) determining a target site on the selected conductor bond from the detected reflective signatures; e) optically imparting an elastic wave at the target site through the selected conductor bond and into the substrate; f) optically detecting an elastic wave signature emanating from the substrate resulting from the optically imparting step; and g) determining integrity of adherence of the selected conductor bond to the substrate from the detected elastic wave signature emanating from the substrate. A system is disclosed which is capable of conducting the method.

  12. Structural damage detection in wind turbine blades based on time series representations of dynamic responses

    NASA Astrophysics Data System (ADS)

    Hoell, Simon; Omenzetter, Piotr

    2015-03-01

    The development of large wind turbines that enable to harvest energy more efficiently is a consequence of the increasing demand for renewables in the world. To optimize the potential energy output, light and flexible wind turbine blades (WTBs) are designed. However, the higher flexibilities and lower buckling capacities adversely affect the long-term safety and reliability of WTBs, and thus the increased operation and maintenance costs reduce the expected revenue. Effective structural health monitoring techniques can help to counteract this by limiting inspection efforts and avoiding unplanned maintenance actions. Vibration-based methods deserve high attention due to the moderate instrumentation efforts and the applicability for in-service measurements. The present paper proposes the use of cross-correlations (CCs) of acceleration responses between sensors at different locations for structural damage detection in WTBs. CCs were in the past successfully applied for damage detection in numerical and experimental beam structures while utilizing only single lags between the signals. The present approach uses vectors of CC coefficients for multiple lags between measurements of two selected sensors taken from multiple possible combinations of sensors. To reduce the dimensionality of the damage sensitive feature (DSF) vectors, principal component analysis is performed. The optimal number of principal components (PCs) is chosen with respect to a statistical threshold. Finally, the detection phase uses the selected PCs of the healthy structure to calculate scores from a current DSF vector, where statistical hypothesis testing is performed for making a decision about the current structural state. The method is applied to laboratory experiments conducted on a small WTB with non-destructive damage scenarios.

  13. Hypochlorite-Mediated Modulation of Photoinduced Electron Transfer in a Phenothiazine-Boron dipyrromethene Electron Donor-Acceptor Dyad: A Highly Water Soluble "Turn-On" Fluorescent Probe for Hypochlorite.

    PubMed

    Soni, Disha; Duvva, Naresh; Badgurjar, Deepak; Roy, Tapta Kanchan; Nimesh, Surendra; Arya, Geeta; Giribabu, Lingamallu; Chitta, Raghu

    2018-04-16

    A highly water-soluble phenothiazine (PTZ)-boron dipyrromethene (BODIPY)-based electron donor-acceptor dyad (WS-Probe), which contains BODIPY as the signaling antennae and PTZ as the OCl - reactive group, was designed and used as a fluorescent chemosensor for the detection of OCl - . Upon addition of incremental amounts of NaOCl, the quenched fluorescence of WS-Probe was enhanced drastically, which indicated the inhibition of reductive photoinduced electron transfer (PET) from PTZ to 1 BODIPY*; the detection limit was calculated to be 26.7 nm. Selectivity studies with various reactive oxygen species, cations, and anions revealed that WS-Probe was able to detect OCl - selectively. Steady-state fluorescence studies performed at varied pH suggested that WS-Probe can detect NaOCl and exhibits maximum fluorescence in the pH range of 7 to 8, similar to physiological conditions. ESI-MS analysis and 1 H NMR spectroscopy titrations showed the formation of sulfoxide as the major oxidized product upon addition of hypochlorite. More interestingly, when WS-Probe was treated with real water samples, the fluorescence response was clearly visible with tap water and disinfectant, which indicated the presence of OCl - in these samples. The in vitro cell viability assay performed with human embryonic kidney 293 (HEK 293) cells suggested that WS-probe is non-toxic up to 10 μm and implicates the use of the probe for biological applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Advances in simultaneous DSC-FTIR microspectroscopy for rapid solid-state chemical stability studies: some dipeptide drugs as examples.

    PubMed

    Lin, Shan-Yang; Wang, Shun-Li

    2012-04-01

    The solid-state chemistry of drugs has seen growing importance in the pharmaceutical industry for the development of useful API (active pharmaceutical ingredients) of drugs and stable dosage forms. The stability of drugs in various solid dosage forms is an important issue because solid dosage forms are the most common pharmaceutical formulation in clinical use. In solid-state stability studies of drugs, an ideal accelerated method must not only be selected by different complicated methods, but must also detect the formation of degraded product. In this review article, an analytical technique combining differential scanning calorimetry and Fourier-transform infrared (DSC-FTIR) microspectroscopy simulates the accelerated stability test, and simultaneously detects the decomposed products in real time. The pharmaceutical dipeptides aspartame hemihydrate, lisinopril dihydrate, and enalapril maleate either with or without Eudragit E were used as testing examples. This one-step simultaneous DSC-FTIR technique for real-time detection of diketopiperazine (DKP) directly evidenced the dehydration process and DKP formation as an impurity common in pharmaceutical dipeptides. DKP formation in various dipeptides determined by different analytical methods had been collected and compiled. Although many analytical methods have been applied, the combined DSC-FTIR technique is an easy and fast analytical method which not only can simulate the accelerated drug stability testing but also at the same time enable to explore phase transformation as well as degradation due to thermal-related reactions. This technique offers quick and proper interpretations. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Geography and host species shape the evolutionary dynamics of U genogroup infectious hematopoietic necrosis virus.

    PubMed

    Black, Allison; Breyta, Rachel; Bedford, Trevor; Kurath, Gael

    2016-07-01

    Infectious hematopoietic necrosis virus (IHNV) is a negative-sense RNA virus that infects wild and cultured salmonids throughout the Pacific Coastal United States and Canada, from California to Alaska. Although infection of adult fish is usually asymptomatic, juvenile infections can result in high mortality events that impact salmon hatchery programs and commercial aquaculture. We used epidemiological case data and genetic sequence data from a 303 nt portion of the viral glycoprotein gene to study the evolutionary dynamics of U genogroup IHNV in the Pacific Northwestern United States from 1971 to 2013. We identified 114 unique genotypes among 1,219 U genogroup IHNV isolates representing 619 virus detection events. We found evidence for two previously unidentified, broad subgroups within the U genogroup, which we designated 'UC' and 'UP'. Epidemiologic records indicated that UP viruses were detected more frequently in sockeye salmon ( Oncorhynchus nerka ) and in coastal waters of Washington and Oregon, whereas UC viruses were detected primarily in Chinook salmon ( Oncorhynchus tshawytscha ) and steelhead trout ( Oncorhynchus mykiss ) in the Columbia River Basin, which is a large, complex watershed extending throughout much of interior Washington, Oregon, and Idaho. These findings were supported by phylogenetic analysis and by F ST . Ancestral state reconstruction indicated that early UC viruses in the Columbia River Basin initially infected sockeye salmon but then emerged via host shifts into Chinook salmon and steelhead trout sometime during the 1980s. We postulate that the development of these subgroups within U genogroup was driven by selection pressure for viral adaptation to Chinook salmon and steelhead trout within the Columbia River Basin.

  16. Biparametric potentiometric analytical microsystem for nitrate and potassium monitoring in water recycling processes for manned space missions.

    PubMed

    Calvo-López, Antonio; Arasa-Puig, Eva; Puyol, Mar; Casalta, Joan Manel; Alonso-Chamarro, Julián

    2013-12-04

    The construction and evaluation of a Low Temperature Co-fired Ceramics (LTCC)-based continuous flow potentiometric microanalyzer prototype to simultaneously monitor the presence of two ions (potassium and nitrate) in samples from the water recycling process for future manned space missions is presented. The microsystem integrates microfluidics and the detection system in a single substrate and it is smaller than a credit card. The detection system is based on two ion-selective electrodes (ISEs), which are built using all-solid state nitrate and potassium polymeric membranes, and a screen-printed Ag/AgCl reference electrode. The obtained analytical features after the optimization of the microfluidic design and hydrodynamics are a linear range from 10 to 1000 mg L(-1) and from 1.9 to 155 mg L(-1) and a detection limit of 9.56 mg L(-1) and 0.81 mg L(-1) for nitrate and potassium ions respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Retinal imaging analysis based on vessel detection.

    PubMed

    Jamal, Arshad; Hazim Alkawaz, Mohammed; Rehman, Amjad; Saba, Tanzila

    2017-07-01

    With an increase in the advancement of digital imaging and computing power, computationally intelligent technologies are in high demand to be used in ophthalmology cure and treatment. In current research, Retina Image Analysis (RIA) is developed for optometrist at Eye Care Center in Management and Science University. This research aims to analyze the retina through vessel detection. The RIA assists in the analysis of the retinal images and specialists are served with various options like saving, processing and analyzing retinal images through its advanced interface layout. Additionally, RIA assists in the selection process of vessel segment; processing these vessels by calculating its diameter, standard deviation, length, and displaying detected vessel on the retina. The Agile Unified Process is adopted as the methodology in developing this research. To conclude, Retina Image Analysis might help the optometrist to get better understanding in analyzing the patient's retina. Finally, the Retina Image Analysis procedure is developed using MATLAB (R2011b). Promising results are attained that are comparable in the state of art. © 2017 Wiley Periodicals, Inc.

  18. Step Detection Robust against the Dynamics of Smartphones

    PubMed Central

    Lee, Hwan-hee; Choi, Suji; Lee, Myeong-jin

    2015-01-01

    A novel algorithm is proposed for robust step detection irrespective of step mode and device pose in smartphone usage environments. The dynamics of smartphones are decoupled into a peak-valley relationship with adaptive magnitude and temporal thresholds. For extracted peaks and valleys in the magnitude of acceleration, a step is defined as consisting of a peak and its adjacent valley. Adaptive magnitude thresholds consisting of step average and step deviation are applied to suppress pseudo peaks or valleys that mostly occur during the transition among step modes or device poses. Adaptive temporal thresholds are applied to time intervals between peaks or valleys to consider the time-varying pace of human walking or running for the correct selection of peaks or valleys. From the experimental results, it can be seen that the proposed step detection algorithm shows more than 98.6% average accuracy for any combination of step mode and device pose and outperforms state-of-the-art algorithms. PMID:26516857

  19. Development of Fire Detection Algorithm at Its Early Stage Using Fire Colour and Shape Information

    NASA Astrophysics Data System (ADS)

    Suleiman Abdullahi, Zainab; Hamisu Dalhatu, Shehu; Hassan Abdullahi, Zakariyya

    2018-04-01

    Fire can be defined as a state in which substances combined chemically with oxygen from the air and give out heat, smoke and flame. Most of the conventional fire detection techniques such as smoke, fire and heat detectors respectively have a problem of travelling delay and also give a high false alarm. The algorithm begins by loading the selected video clip from the database developed to identify the present or absence of fire in a frame. In this approach, background subtraction was employed. If the result of subtraction is less than the set threshold, the difference is ignored and the next frame is taken. However, if the difference is equal to or greater than the set threshold then it subjected to colour and shape test. This is done by using combined RGB colour model and shape signature. The proposed technique was very effective in detecting fire compared to those technique using only motion or colour clues.

  20. New method for monitoring nitric oxide in vivo using microdialysis sampling and chemiluminescence reaction

    NASA Astrophysics Data System (ADS)

    Yao, Dachun; Evmiridis, Nick P.; Zhou, Yikai; Xu, Shunqing; Zhou, Huarong

    2001-09-01

    A new method employing a combination of micro dialysis sampling and chemiluminescence reaction was developed to monitor nitric oxide (NO) in vivo. A special probe was designed with an interference-free membrane to achieve a very high selectivity for NO. High sensitivity was achieved by optimizing the working system and improving the NO sampling time. This system was used in vivo to monitor blood and brain tissue in rats and rabbits. We have established that this system is sensitive enough to detect variations in NO production in difference physiological state. The system can detect NO in the linear range of 5nM-1(mu) M, with a detection limit of 1nM, and real NO concentrations in our experimental animals were found to be in the range of 1-5 nM or even less. Finally, the effects of body temperature, NO donors, Viagra, NO activators, NO cofactors, NO interference were investigated carefully in different physiological situations.

  1. Advancing Peptide-Based Biorecognition Elements for Biosensors Using in-Silico Evolution.

    PubMed

    Xiao, Xingqing; Kuang, Zhifeng; Slocik, Joseph M; Tadepalli, Sirimuvva; Brothers, Michael; Kim, Steve; Mirau, Peter A; Butkus, Claire; Farmer, Barry L; Singamaneni, Srikanth; Hall, Carol K; Naik, Rajesh R

    2018-05-25

    Sensors for human health and performance monitoring require biological recognition elements (BREs) at device interfaces for the detection of key molecular biomarkers that are measurable biological state indicators. BREs, including peptides, antibodies, and nucleic acids, bind to biomarkers in the vicinity of the sensor surface to create a signal proportional to the biomarker concentration. The discovery of BREs with the required sensitivity and selectivity to bind biomarkers at low concentrations remains a fundamental challenge. In this study, we describe an in-silico approach to evolve higher sensitivity peptide-based BREs for the detection of cardiac event marker protein troponin I (cTnI) from a previously identified BRE as the parental affinity peptide. The P2 affinity peptide, evolved using our in-silico method, was found to have ∼16-fold higher affinity compared to the parent BRE and ∼10 fM (0.23 pg/mL) limit of detection. The approach described here can be applied towards designing BREs for other biomarkers for human health monitoring.

  2. Potentiometric analytical microsystem based on the integration of a gas-diffusion step for on-line ammonium determination in water recycling processes in manned space missions.

    PubMed

    Calvo-López, Antonio; Ymbern, Oriol; Puyol, Mar; Casalta, Joan Manel; Alonso-Chamarro, Julián

    2015-05-18

    The design, construction and evaluation of a versatile cyclic olefin copolymer (COC)-based continuous flow potentiometric microanalyzer to monitor the presence of ammonium ion in recycling water processes for future manned space missions is presented. The microsystem integrates microfluidics, a gas-diffusion module and a detection system in a single substrate. The gas-diffusion module was integrated by a hydrophobic polyvinylidene fluoride (PVDF) membrane. The potentiometric detection system is based on an all-solid state ammonium selective electrode and a screen-printed Ag/AgCl reference electrode. The analytical features provided by the analytical microsystem after the optimization process were a linear range from 0.15 to 500 mg L(-1) and a detection limit of 0.07 ± 0.01 mg L(-1). Nevertheless, the operational features can be easily adapted to other applications through the modification of the hydrodynamic variables of the microfluidic platform. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Detection of Acetaminophen-Protein Adducts in Decedents with Suspected Opioid-Acetaminophen Combination Product Overdose.

    PubMed

    Thomas, Karen C; Wilkins, Diana G; Curry, Steven C; Grey, Todd C; Andrenyak, David M; McGill, Lawrence D; Rollins, Douglas E

    2016-09-01

    Acetaminophen overdose is a leading cause of drug-induced liver failure in the United States. Acetaminophen-protein adducts have been suggested as a biomarker of hepatotoxicity. The purpose of this study was to determine whether protein-derived acetaminophen-protein adducts are quantifiable in postmortem samples. Heart blood, femoral blood, and liver tissue were collected at autopsy from 22 decedents suspected of opioid-acetaminophen overdose. Samples were assayed for protein-derived acetaminophen-protein adducts, acetaminophen, and selected opioids found in combination products containing acetaminophen. Protein-derived APAP-CYS was detected in 17 of 22 decedents and was measurable in blood that was not degraded or hemolyzed. Heart blood concentrations ranged from 11 ng/mL (0.1 μM) to 7817 ng/mL (28.9 μM). Protein-derived acetaminophen-protein adducts were detectable in liver tissue for 20 of 22 decedents. Liver histology was also performed for all decedents, and no evidence of centrilobular hepatic necrosis was observed. © 2016 American Academy of Forensic Sciences.

  4. Toxicological relevance of pharmaceuticals in drinking water.

    PubMed

    Bruce, Gretchen M; Pleus, Richard C; Snyder, Shane A

    2010-07-15

    Interest in the public health significance of trace levels of pharmaceuticals in potable water is increasing, particularly with regard to the effects of long-term, low-dose exposures. To assess health risks and establish target concentrations for water treatment, human health risk-based screening levels for 15 pharmaceutically active ingredients and four metabolites were compared to concentrations detected at 19 drinking water treatment plants across the United States. Compounds were selected based on rate of use, likelihood of occurrence, and potential for toxicity. Screening levels were established based on animal toxicity data and adverse effects at therapeutic doses, focusing largely on reproductive and developmental toxicity and carcinogenicity. Calculated drinking water equivalent levels (DWELs) ranged from 0.49 microg/L (risperidone) to 20,000 microg/L (naproxen). None of the 10 detected compounds exceeded their DWEL. Ratios of DWELs to maximum detected concentrations ranged from 110 (phenytoin) to 6,000,000 (sulfamethoxazole). Based on this evaluation, adverse health effects from targeted pharmaceuticals occurring in U.S. drinking water are not expected.

  5. Theory of mind in early psychosis.

    PubMed

    Langdon, Robyn; Still, Megan; Connors, Michael H; Ward, Philip B; Catts, Stanley V

    2014-08-01

    A deficit in theory of mind--the ability to infer and reason about the mental states of others - might underpin the poor social functioning of patients with psychosis. Unfortunately, however, there is considerable variation in how such a deficit is assessed. The current study compared three classic tests of theory of mind in terms of their ability to detect impairment in patients in the early stages of psychosis. Twenty-three patients within 2 years of their first psychotic episode and 19 healthy controls received picture-sequencing, joke-appreciation and story-comprehension tests of theory of mind. Whereas the picture-sequencing and joke-appreciation tests successfully detected a selective theory-of-mind deficit in patients, the story-comprehension test did not. The findings suggest that tests that place minimal demands on language processing and involve indirect, rather than explicit, instructions to assess theory of mind might be best suited to detecting theory-of-mind impairment in early stages of psychosis. © 2013 Wiley Publishing Asia Pty Ltd.

  6. Gas Sensitivity and Sensing Mechanism Studies on Au-Doped TiO2 Nanotube Arrays for Detecting SF6 Decomposed Components

    PubMed Central

    Zhang, Xiaoxing; Yu, Lei; Tie, Jing; Dong, Xingchen

    2014-01-01

    The analysis to SF6 decomposed component gases is an efficient diagnostic approach to detect the partial discharge in gas-insulated switchgear (GIS) for the purpose of accessing the operating state of power equipment. This paper applied the Au-doped TiO2 nanotube array sensor (Au-TiO2 NTAs) to detect SF6 decomposed components. The electrochemical constant potential method was adopted in the Au-TiO2 NTAs' fabrication, and a series of experiments were conducted to test the characteristic SF6 decomposed gases for a thorough investigation of sensing performances. The sensing characteristic curves of intrinsic and Au-doped TiO2 NTAs were compared to study the mechanism of the gas sensing response. The results indicated that the doped Au could change the TiO2 nanotube arrays' performances of gas sensing selectivity in SF6 decomposed components, as well as reducing the working temperature of TiO2 NTAs. PMID:25330053

  7. LP-LPA: A link influence-based label propagation algorithm for discovering community structures in networks

    NASA Astrophysics Data System (ADS)

    Berahmand, Kamal; Bouyer, Asgarali

    2018-03-01

    Community detection is an essential approach for analyzing the structural and functional properties of complex networks. Although many community detection algorithms have been recently presented, most of them are weak and limited in different ways. Label Propagation Algorithm (LPA) is a well-known and efficient community detection technique which is characterized by the merits of nearly-linear running time and easy implementation. However, LPA has some significant problems such as instability, randomness, and monster community detection. In this paper, an algorithm, namely node’s label influence policy for label propagation algorithm (LP-LPA) was proposed for detecting efficient community structures. LP-LPA measures link strength value for edges and nodes’ label influence value for nodes in a new label propagation strategy with preference on link strength and for initial nodes selection, avoid of random behavior in tiebreak states, and efficient updating order and rule update. These procedures can sort out the randomness issue in an original LPA and stabilize the discovered communities in all runs of the same network. Experiments on synthetic networks and a wide range of real-world social networks indicated that the proposed method achieves significant accuracy and high stability. Indeed, it can obviously solve monster community problem with regard to detecting communities in networks.

  8. Enhancing early detection of exotic pests in agricultural and forest ecosystems using an urban-gradient framework.

    PubMed

    Colunga-Garcia, Manuel; Magarey, Roger A; Haack, Robert A; Gage, Stuart H; Qi, Jiaquo

    2010-03-01

    Urban areas are hubs of international transport and therefore are major gateways for exotic pests. Applying an urban gradient to analyze this pathway could provide insight into the ecological processes involved in human-mediated invasions. We defined an urban gradient for agricultural and forest ecosystems in the contiguous United States to (1) assess whether ecosystems nearer more urbanized areas were at greater risk of invasion, and (2) apply this knowledge to enhance early detection of exotic pests. We defined the gradient using the tonnage of imported products in adjacent urban areas and their distance to nearby agricultural or forest land. County-level detection reports for 39 exotic agricultural and forest pests of major economic importance were used to characterize invasions along the gradient. We found that counties with more exotic pests were nearer the urban end of the gradient. Assuming that the exotic species we analyzed represent typical invaders, then early detection efforts directed at 21-26% of U.S. agricultural and forest land would likely be able to detect 70% of invaded counties and 90% of the selected species. Applying an urban-gradient framework to current monitoring strategies should enhance early detection efforts of exotic pests, facilitating optimization in allocating resources to areas at greater risk of future invasions.

  9. A selective-update affine projection algorithm with selective input vectors

    NASA Astrophysics Data System (ADS)

    Kong, NamWoong; Shin, JaeWook; Park, PooGyeon

    2011-10-01

    This paper proposes an affine projection algorithm (APA) with selective input vectors, which based on the concept of selective-update in order to reduce estimation errors and computations. The algorithm consists of two procedures: input- vector-selection and state-decision. The input-vector-selection procedure determines the number of input vectors by checking with mean square error (MSE) whether the input vectors have enough information for update. The state-decision procedure determines the current state of the adaptive filter by using the state-decision criterion. As the adaptive filter is in transient state, the algorithm updates the filter coefficients with the selected input vectors. On the other hand, as soon as the adaptive filter reaches the steady state, the update procedure is not performed. Through these two procedures, the proposed algorithm achieves small steady-state estimation errors, low computational complexity and low update complexity for colored input signals.

  10. Dark States in the Light-Harvesting complex 2 Revealed by Two-dimensional Electronic Spectroscopy

    PubMed Central

    Ferretti, Marco; Hendrikx, Ruud; Romero, Elisabet; Southall, June; Cogdell, Richard J.; Novoderezhkin, Vladimir I.; Scholes, Gregory D.; van Grondelle, Rienk

    2016-01-01

    Energy transfer and trapping in the light harvesting antennae of purple photosynthetic bacteria is an ultrafast process, which occurs with a quantum efficiency close to unity. However the mechanisms behind this process have not yet been fully understood. Recently it was proposed that low-lying energy dark states, such as charge transfer states and polaron pairs, play an important role in the dynamics and directionality of energy transfer. However, it is difficult to directly detect those states because of their small transition dipole moment and overlap with the B850/B870 exciton bands. Here we present a new experimental approach, which combines the selectivity of two-dimensional electronic spectroscopy with the availability of genetically modified light harvesting complexes, to reveal the presence of those dark states in both the genetically modified and the wild-type light harvesting 2 complexes of Rhodopseudomonas palustris. We suggest that Nature has used the unavoidable charge transfer processes that occur when LH pigments are concentrated to enhance and direct the flow of energy. PMID:26857477

  11. Dark States in the Light-Harvesting complex 2 Revealed by Two-dimensional Electronic Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferretti, Marco; Hendrikx, Ruud; Romero, Elisabet

    Energy transfer and trapping in the light harvesting antennae of purple photosynthetic bacteria is an ultrafast process, which occurs with a quantum efficiency close to unity. However the mechanisms behind this process have not yet been fully understood. Recently it was proposed that low-lying energy dark states, such as charge transfer states and polaron pairs, play an important role in the dynamics and directionality of energy transfer. However, it is difficult to directly detect those states because of their small transition dipole moment and overlap with the B850/B870 exciton bands. Here we present a new experimental approach, which combines themore » selectivity of two-dimensional electronic spectroscopy with the availability of genetically modified light harvesting complexes, to reveal the presence of those dark states in both the genetically modified and the wild-type light harvesting 2 complexes of Rhodopseudomonas palustris. In conclusion, we suggest that Nature has used the unavoidable charge transfer processes that occur when LH pigments are concentrated to enhance and direct the flow of energy.« less

  12. Dark States in the Light-Harvesting complex 2 Revealed by Two-dimensional Electronic Spectroscopy

    DOE PAGES

    Ferretti, Marco; Hendrikx, Ruud; Romero, Elisabet; ...

    2016-02-09

    Energy transfer and trapping in the light harvesting antennae of purple photosynthetic bacteria is an ultrafast process, which occurs with a quantum efficiency close to unity. However the mechanisms behind this process have not yet been fully understood. Recently it was proposed that low-lying energy dark states, such as charge transfer states and polaron pairs, play an important role in the dynamics and directionality of energy transfer. However, it is difficult to directly detect those states because of their small transition dipole moment and overlap with the B850/B870 exciton bands. Here we present a new experimental approach, which combines themore » selectivity of two-dimensional electronic spectroscopy with the availability of genetically modified light harvesting complexes, to reveal the presence of those dark states in both the genetically modified and the wild-type light harvesting 2 complexes of Rhodopseudomonas palustris. In conclusion, we suggest that Nature has used the unavoidable charge transfer processes that occur when LH pigments are concentrated to enhance and direct the flow of energy.« less

  13. Unpredictable evolution in a 30-year study of Darwin's finches.

    PubMed

    Grant, Peter R; Grant, B Rosemary

    2002-04-26

    Evolution can be predicted in the short term from a knowledge of selection and inheritance. However, in the long term evolution is unpredictable because environments, which determine the directions and magnitudes of selection coefficients, fluctuate unpredictably. These two features of evolution, the predictable and unpredictable, are demonstrated in a study of two populations of Darwin's finches on the Galápagos island of Daphne Major. From 1972 to 2001, Geospiza fortis (medium ground finch) and Geospiza scandens (cactus finch) changed several times in body size and two beak traits. Natural selection occurred frequently in both species and varied from unidirectional to oscillating, episodic to gradual. Hybridization occurred repeatedly though rarely, resulting in elevated phenotypic variances in G. scandens and a change in beak shape. The phenotypic states of both species at the end of the 30-year study could not have been predicted at the beginning. Continuous, long-term studies are needed to detect and interpret rare but important events and nonuniform evolutionary change.

  14. Towards Real-Time Maneuver Detection: Automatic State and Dynamics Estimation with the Adaptive Optimal Control Based Estimator

    NASA Astrophysics Data System (ADS)

    Lubey, D.; Scheeres, D.

    Tracking objects in Earth orbit is fraught with complications. This is due to the large population of orbiting spacecraft and debris that continues to grow, passive (i.e. no direct communication) and data-sparse observations, and the presence of maneuvers and dynamics mismodeling. Accurate orbit determination in this environment requires an algorithm to capture both a system's state and its state dynamics in order to account for mismodelings. Previous studies by the authors yielded an algorithm called the Optimal Control Based Estimator (OCBE) - an algorithm that simultaneously estimates a system's state and optimal control policies that represent dynamic mismodeling in the system for an arbitrary orbit-observer setup. The stochastic properties of these estimated controls are then used to determine the presence of mismodelings (maneuver detection), as well as characterize and reconstruct the mismodelings. The purpose of this paper is to develop the OCBE into an accurate real-time orbit tracking and maneuver detection algorithm by automating the algorithm and removing its linear assumptions. This results in a nonlinear adaptive estimator. In its original form the OCBE had a parameter called the assumed dynamic uncertainty, which is selected by the user with each new measurement to reflect the level of dynamic mismodeling in the system. This human-in-the-loop approach precludes real-time application to orbit tracking problems due to their complexity. This paper focuses on the Adaptive OCBE, a version of the estimator where the assumed dynamic uncertainty is chosen automatically with each new measurement using maneuver detection results to ensure that state uncertainties are properly adjusted to account for all dynamic mismodelings. The paper also focuses on a nonlinear implementation of the estimator. Originally, the OCBE was derived from a nonlinear cost function then linearized about a nominal trajectory, which is assumed to be ballistic (i.e. the nominal optimal control policy is zero for all times). In this paper, we relax this assumption on the nominal trajectory in order to allow for controlled nominal trajectories. This allows the estimator to be iterated to obtain a more accurate nonlinear solution for both the state and control estimates. Beyond these developments to the estimator, this paper also introduces a modified distance metric for maneuver detection. The original metric used in the OCBE only accounted for the estimated control and its uncertainty. This new metric accounts for measurement deviation and a priori state deviations, such that it accounts for all three major forms of uncertainty in orbit determination. This allows the user to understand the contributions of each source of uncertainty toward the total system mismodeling so that the user can properly account for them. Together these developments create an accurate orbit determination algorithm that is automated, robust to mismodeling, and capable of detecting and reconstructing the presence of mismodeling. These qualities make this algorithm a good foundation from which to approach the problem of real-time maneuver detection and reconstruction for Space Situational Awareness applications. This is further strengthened by the algorithm's general formulation that allows it to be applied to problems with an arbitrary target and observer.

  15. Signatures of selection in tilapia revealed by whole genome resequencing.

    PubMed

    Xia, Jun Hong; Bai, Zhiyi; Meng, Zining; Zhang, Yong; Wang, Le; Liu, Feng; Jing, Wu; Wan, Zi Yi; Li, Jiale; Lin, Haoran; Yue, Gen Hua

    2015-09-16

    Natural selection and selective breeding for genetic improvement have left detectable signatures within the genome of a species. Identification of selection signatures is important in evolutionary biology and for detecting genes that facilitate to accelerate genetic improvement. However, selection signatures, including artificial selection and natural selection, have only been identified at the whole genome level in several genetically improved fish species. Tilapia is one of the most important genetically improved fish species in the world. Using next-generation sequencing, we sequenced the genomes of 47 tilapia individuals. We identified a total of 1.43 million high-quality SNPs and found that the LD block sizes ranged from 10-100 kb in tilapia. We detected over a hundred putative selective sweep regions in each line of tilapia. Most selection signatures were located in non-coding regions of the tilapia genome. The Wnt signaling, gonadotropin-releasing hormone receptor and integrin signaling pathways were under positive selection in all improved tilapia lines. Our study provides a genome-wide map of genetic variation and selection footprints in tilapia, which could be important for genetic studies and accelerating genetic improvement of tilapia.

  16. Tetracoordinate Imidazole-Based Boron Complexes for the Selective Detection of Picric Acid.

    PubMed

    Dhanunjayarao, Kunchala; Mukundam, Vanga; Venkatasubbaiah, Krishnan

    2016-11-07

    N,N-Dimethylamine and N,N-diphenylamine-decorated highly fluorescent imidazole borates have been synthesized and investigated as new fluorophores for the selective detection of trinitrophenol/picric acid (PA). Structural studies of a probe 1 and PA (1·PA) complex revealed that the adduct formed by the deprotonation of PA by the -NMe 2 group along with weak interactions is responsible for the selective detection of PA over other polynitrated organic compounds.

  17. Designing occupancy studies when false-positive detections occur

    USGS Publications Warehouse

    Clement, Matthew

    2016-01-01

    1.Recently, estimators have been developed to estimate occupancy probabilities when false-positive detections occur during presence-absence surveys. Some of these estimators combine different types of survey data to improve estimates of occupancy. With these estimators, there is a tradeoff between the number of sample units surveyed, and the number and type of surveys at each sample unit. Guidance on efficient design of studies when false positives occur is unavailable. 2.For a range of scenarios, I identified survey designs that minimized the mean square error of the estimate of occupancy. I considered an approach that uses one survey method and two observation states and an approach that uses two survey methods. For each approach, I used numerical methods to identify optimal survey designs when model assumptions were met and parameter values were correctly anticipated, when parameter values were not correctly anticipated, and when the assumption of no unmodelled detection heterogeneity was violated. 3.Under the approach with two observation states, false positive detections increased the number of recommended surveys, relative to standard occupancy models. If parameter values could not be anticipated, pessimism about detection probabilities avoided poor designs. Detection heterogeneity could require more or fewer repeat surveys, depending on parameter values. If model assumptions were met, the approach with two survey methods was inefficient. However, with poor anticipation of parameter values, with detection heterogeneity, or with removal sampling schemes, combining two survey methods could improve estimates of occupancy. 4.Ignoring false positives can yield biased parameter estimates, yet false positives greatly complicate the design of occupancy studies. Specific guidance for major types of false-positive occupancy models, and for two assumption violations common in field data, can conserve survey resources. This guidance can be used to design efficient monitoring programs and studies of species occurrence, species distribution, or habitat selection, when false positives occur during surveys.

  18. Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: A systematic review.

    PubMed

    Yassin, Nisreen I R; Omran, Shaimaa; El Houby, Enas M F; Allam, Hemat

    2018-03-01

    The high incidence of breast cancer in women has increased significantly in the recent years. Physician experience of diagnosing and detecting breast cancer can be assisted by using some computerized features extraction and classification algorithms. This paper presents the conduction and results of a systematic review (SR) that aims to investigate the state of the art regarding the computer aided diagnosis/detection (CAD) systems for breast cancer. The SR was conducted using a comprehensive selection of scientific databases as reference sources, allowing access to diverse publications in the field. The scientific databases used are Springer Link (SL), Science Direct (SD), IEEE Xplore Digital Library, and PubMed. Inclusion and exclusion criteria were defined and applied to each retrieved work to select those of interest. From 320 studies retrieved, 154 studies were included. However, the scope of this research is limited to scientific and academic works and excludes commercial interests. This survey provides a general analysis of the current status of CAD systems according to the used image modalities and the machine learning based classifiers. Potential research studies have been discussed to create a more objective and efficient CAD systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. An Innovative Metal Ions Sensitive “Test Paper” Based on Virgin Nanoporous Silicon Wafer: Highly Selective to Copper(II)

    NASA Astrophysics Data System (ADS)

    Li, Shaoyuan; Chen, Xiuhua; Ma, Wenhui; Ding, Zhao; Zhang, Cong; Chen, Zhengjie; He, Xiao; Shang, Yudong; Zou, Yuxin

    2016-11-01

    Developing an innovative “Test Paper” based on virgin nanoporous silicon (NPSi) which shows intense visible emission and excellent fluorescence stability. The visual fluorescence quenching “Test Paper” was highly selective and sensitive recognizing Cu2+ at μmol/L level. Within the concentration range of 5 × 10-7 ~50 × 10-7mol/L, the linear regression equation of IPL = 1226.3-13.6[CCu2+] (R = 0.99) was established for Cu2+ quantitative detection. And finally, Cu2+ fluorescence quenching mechanism of NPSi prober was proposed by studying the surface chemistry change of NPSi and metal ions immersed-NPSi using XPS characterization. The results indicate that SiHx species obviously contribute to the PL emission of NPSi, and the introduce of oxidization state and the nonradiative recombination center are responsible for the PL quenching. These results demonstrate how virgin NPSi wafer can serve as Cu2+ sensor. This work is of great significant to promote the development of simple instruments that could realize rapid, visible and real-time detection of various toxic metal ions.

  20. Wearable Therapy - Detecting Information from Wearables and Mobiles that are Relevant to Clinical and Self-directed Therapy.

    PubMed

    Arnrich, Bert; Ersoy, Cem; Mayora, Oscar; Dey, Anind; Berthouze, Nadia; Kunze, Kai

    2017-01-09

    This accompanying editorial provides a brief introduction into the focus theme "Wearable Therapy". The focus theme "Wearable Therapy" aims to present contributions which target wearable and mobile technologies to support clinical and self-directed therapy. A call for papers was announced to all participants of the "9th International Conference on Pervasive Computing Technologies for Healthcare" and was published in November 2015. A peer review process was conducted to select the papers for the focus theme. Six papers were selected to be included in this focus theme. The paper topics cover a broad range including an approach to build a health informatics research program, a comprehensive literature review of self-quantification for health self-management, methods for affective state detection of informal care givers, social-aware handling of falls, smart shoes for supporting self-directed therapy of alcohol addicts, and reference information model for pervasive health systems. More empirical evidence is needed that confirms sustainable effects of employing wearable and mobile technology for clinical and self-directed therapy. Inconsistencies between different conceptual approaches need to be revealed in order to enable more systematic investigations and comparisons.

Top