Monitoring Method and Apparatus Using Asynchronous, One-Way Transmission from Sensor to Base Station
NASA Technical Reports Server (NTRS)
Drouant, George J. (Inventor); Jensen, Scott L. (Inventor)
2013-01-01
A monitoring system is disclosed, which includes a base station and at least one sensor unit that is separate from the base station. The at least one sensor unit resides in a dormant state until it is awakened by the triggering of a vibration-sensitive switch. Once awakened, the sensor may take a measurement, and then transmit to the base station the measurement. Once data is transmitted from the sensor to the base station, the sensor may return to its dormant state. There may be various sensors for each base station and the various sensors may optionally measure different quantities, such as current, voltage, single-axis and/or three-axis magnetic fields.
Chung, Yun Won; Hwang, Ho Young
2010-01-01
In sensor network, energy conservation is one of the most critical issues since sensor nodes should perform a sensing task for a long time (e.g., lasting a few years) but the battery of them cannot be replaced in most practical situations. For this purpose, numerous energy conservation schemes have been proposed and duty cycling scheme is considered the most suitable power conservation technique, where sensor nodes alternate between states having different levels of power consumption. In order to analyze the energy consumption of energy conservation scheme based on duty cycling, it is essential to obtain the probability of each state. In this paper, we analytically derive steady state probability of sensor node states, i.e., sleep, listen, and active states, based on traffic characteristics and timer values, i.e., sleep timer, listen timer, and active timer. The effect of traffic characteristics and timer values on the steady state probability and energy consumption is analyzed in detail. Our work can provide sensor network operators guideline for selecting appropriate timer values for efficient energy conservation. The analytical methodology developed in this paper can be extended to other energy conservation schemes based on duty cycling with different sensor node states, without much difficulty. PMID:22219676
Review on State-of-the-art in Polymer Based pH Sensors
Korostynska, Olga; Arshak, Khalil; Gill, Edric; Arshak, Arousian
2007-01-01
This paper reviews current state-of-the-art methods of measuring pH levels that are based on polymer materials. These include polymer-coated fibre optic sensors, devices with electrodes modified with pH-sensitive polymers, fluorescent pH indicators, potentiometric pH sensors as well as sensors that use combinatory approach for ion concentration monitoring. PMID:28903277
Self-deployable mobile sensor networks for on-demand surveillance
NASA Astrophysics Data System (ADS)
Miao, Lidan; Qi, Hairong; Wang, Feiyi
2005-05-01
This paper studies two interconnected problems in mobile sensor network deployment, the optimal placement of heterogeneous mobile sensor platforms for cost-efficient and reliable coverage purposes, and the self-organizable deployment. We first develop an optimal placement algorithm based on a "mosaicked technology" such that different types of mobile sensors form a mosaicked pattern uniquely determined by the popularity of different types of sensor nodes. The initial state is assumed to be random. In order to converge to the optimal state, we investigate the swarm intelligence (SI)-based sensor movement strategy, through which the randomly deployed sensors can self-organize themselves to reach the optimal placement state. The proposed algorithm is compared with the random movement and the centralized method using performance metrics such as network coverage, convergence time, and energy consumption. Simulation results are presented to demonstrate the effectiveness of the mosaic placement and the SI-based movement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Zhang, Yingchen
This paper proposes an approach for distribution system state forecasting, which aims to provide an accurate and high speed state forecasting with an optimal synchrophasor sensor placement (OSSP) based state estimator and an extreme learning machine (ELM) based forecaster. Specifically, considering the sensor installation cost and measurement error, an OSSP algorithm is proposed to reduce the number of synchrophasor sensor and keep the whole distribution system numerically and topologically observable. Then, the weighted least square (WLS) based system state estimator is used to produce the training data for the proposed forecaster. Traditionally, the artificial neural network (ANN) and support vectormore » regression (SVR) are widely used in forecasting due to their nonlinear modeling capabilities. However, the ANN contains heavy computation load and the best parameters for SVR are difficult to obtain. In this paper, the ELM, which overcomes these drawbacks, is used to forecast the future system states with the historical system states. The proposed approach is effective and accurate based on the testing results.« less
Improved Sensor Fault Detection, Isolation, and Mitigation Using Multiple Observers Approach
Wang, Zheng; Anand, D. M.; Moyne, J.; Tilbury, D. M.
2017-01-01
Traditional Fault Detection and Isolation (FDI) methods analyze a residual signal to detect and isolate sensor faults. The residual signal is the difference between the sensor measurements and the estimated outputs of the system based on an observer. The traditional residual-based FDI methods, however, have some limitations. First, they require that the observer has reached its steady state. In addition, residual-based methods may not detect some sensor faults, such as faults on critical sensors that result in an unobservable system. Furthermore, the system may be in jeopardy if actions required for mitigating the impact of the faulty sensors are not taken before the faulty sensors are identified. The contribution of this paper is to propose three new methods to address these limitations. Faults that occur during the observers' transient state can be detected by analyzing the convergence rate of the estimation error. Open-loop observers, which do not rely on sensor information, are used to detect faults on critical sensors. By switching among different observers, we can potentially mitigate the impact of the faulty sensor during the FDI process. These three methods are systematically integrated with a previously developed residual-based method to provide an improved FDI and mitigation capability framework. The overall approach is validated mathematically, and the effectiveness of the overall approach is demonstrated through simulation on a 5-state suspension system. PMID:28924303
Method and System for Controlling a Dexterous Robot Execution Sequence Using State Classification
NASA Technical Reports Server (NTRS)
Sanders, Adam M. (Inventor); Quillin, Nathaniel (Inventor); Platt, Robert J., Jr. (Inventor); Pfeiffer, Joseph (Inventor); Permenter, Frank Noble (Inventor)
2014-01-01
A robotic system includes a dexterous robot and a controller. The robot includes a plurality of robotic joints, actuators for moving the joints, and sensors for measuring a characteristic of the joints, and for transmitting the characteristics as sensor signals. The controller receives the sensor signals, and is configured for executing instructions from memory, classifying the sensor signals into distinct classes via the state classification module, monitoring a system state of the robot using the classes, and controlling the robot in the execution of alternative work tasks based on the system state. A method for controlling the robot in the above system includes receiving the signals via the controller, classifying the signals using the state classification module, monitoring the present system state of the robot using the classes, and controlling the robot in the execution of alternative work tasks based on the present system state.
Passive hybrid sensing tag with flexible substrate saw device
Skinner, Jack L.; Chu, Eric Y.; Ho, Harvey
2012-12-25
The integration of surface acoustic wave (SAW) filters, microfabricated transmission lines, and sensors onto polymer substrates in order to enable a passive wireless sensor platform is described herein. Incident microwave pulses on an integrated antenna are converted to an acoustic wave via a SAW filter and transmitted to an impedance based sensor, which for this work is a photodiode. Changes in the sensor state induce a corresponding change in the impedance of the sensor resulting in a reflectance profile. Data collected at a calibrated receiver is used to infer the state of the sensor. Based on this principal, light levels were passively and wirelessly demonstrated to be sensed at distances of up to about 12 feet.
Predictive sensor method and apparatus
NASA Technical Reports Server (NTRS)
Nail, William L. (Inventor); Koger, Thomas L. (Inventor); Cambridge, Vivien (Inventor)
1990-01-01
A predictive algorithm is used to determine, in near real time, the steady state response of a slow responding sensor such as hydrogen gas sensor of the type which produces an output current proportional to the partial pressure of the hydrogen present. A microprocessor connected to the sensor samples the sensor output at small regular time intervals and predicts the steady state response of the sensor in response to a perturbation in the parameter being sensed, based on the beginning and end samples of the sensor output for the current sample time interval.
Metal/Metal Oxide Differential Electrode pH Sensors
NASA Technical Reports Server (NTRS)
West, William; Buehler, Martin; Keymeulen, Didier
2007-01-01
Solid-state electrochemical sensors for measuring the degrees of acidity or alkalinity (in terms of pH values) of liquid solutions are being developed. These sensors are intended to supplant older electrochemical pH sensors that include glass electrode structures and reference solutions. The older sensors are fragile and subject to drift. The present developmental solid-state sensors are more rugged and are expected to be usable in harsh environments. The present sensors are based on a differential-electrode measurement principle. Each sensor includes two electrodes, made of different materials, in equilibrium with the solution of interest.
Vehicle Lateral State Estimation Based on Measured Tyre Forces
Tuononen, Ari J.
2009-01-01
Future active safety systems need more accurate information about the state of vehicles. This article proposes a method to evaluate the lateral state of a vehicle based on measured tyre forces. The tyre forces of two tyres are estimated from optically measured tyre carcass deflections and transmitted wirelessly to the vehicle body. The two remaining tyres are so-called virtual tyre sensors, the forces of which are calculated from the real tyre sensor estimates. The Kalman filter estimator for lateral vehicle state based on measured tyre forces is presented, together with a simple method to define adaptive measurement error covariance depending on the driving condition of the vehicle. The estimated yaw rate and lateral velocity are compared with the validation sensor measurements. PMID:22291535
Model-Based Method for Sensor Validation
NASA Technical Reports Server (NTRS)
Vatan, Farrokh
2012-01-01
Fault detection, diagnosis, and prognosis are essential tasks in the operation of autonomous spacecraft, instruments, and in situ platforms. One of NASA s key mission requirements is robust state estimation. Sensing, using a wide range of sensors and sensor fusion approaches, plays a central role in robust state estimation, and there is a need to diagnose sensor failure as well as component failure. Sensor validation can be considered to be part of the larger effort of improving reliability and safety. The standard methods for solving the sensor validation problem are based on probabilistic analysis of the system, from which the method based on Bayesian networks is most popular. Therefore, these methods can only predict the most probable faulty sensors, which are subject to the initial probabilities defined for the failures. The method developed in this work is based on a model-based approach and provides the faulty sensors (if any), which can be logically inferred from the model of the system and the sensor readings (observations). The method is also more suitable for the systems when it is hard, or even impossible, to find the probability functions of the system. The method starts by a new mathematical description of the problem and develops a very efficient and systematic algorithm for its solution. The method builds on the concepts of analytical redundant relations (ARRs).
QPA-CLIPS: A language and representation for process control
NASA Technical Reports Server (NTRS)
Freund, Thomas G.
1994-01-01
QPA-CLIPS is an extension of CLIPS oriented towards process control applications. Its constructs define a dependency network of process actions driven by sensor information. The language consists of three basic constructs: TASK, SENSOR, and FILTER. TASK's define the dependency network describing alternative state transitions for a process. SENSOR's and FILTER's define sensor information sources used to activate state transitions within the network. Deftemplate's define these constructs and their run-time environment is an interpreter knowledge base, performing pattern matching on sensor information and so activating TASK's in the dependency network. The pattern matching technique is based on the repeatable occurrence of a sensor data pattern. QPA-CIPS has been successfully tested on a SPARCStation providing supervisory control to an Allen-Bradley PLC 5 controller driving molding equipment.
Great prospects for fiber optics sensors
NASA Technical Reports Server (NTRS)
Hansen, T. E.
1983-01-01
Fiber optic sensors provide noise immunity and galvanic insulation at the measurement point. Interest in such sensors is increasing for these reasons. In the United States sales are expected to increase from 12 million dollars in 1981 to 180 million in 1991. Interferometric sensors based on single modus fibers deliver extremely high sensitivity, while sensors based on multi-modus fibers are more easily manufactured. The fiber optic sensors which are available today are based on point measurements. Development of fiber optic sensors in Norway is being carried out at the Central institute and has resulted in the development of medical manometers which are now undergoing clinical testing.
NASA Astrophysics Data System (ADS)
Korneta, Wojciech; Gomes, Iacyel
2017-11-01
Traditional bistable sensors use external bias signal to drive its response between states and their detection strategy is based on the output power spectral density or the residence time difference (RTD) in two sensor states. Recently, the noise activated nonlinear dynamic sensors driven only by noise based on RTD technique have been proposed. Here, we present experimental results of dc voltage measurements by noise-driven bistable sensor based on electronic Chua's circuit operating in a chaotic regime where two single scroll attractors coexist. The output of the sensor is quantified by the proportion of the time the sensor stays in one state to the total observation time and by the spike-count rate with spikes defined by crossings between attractors. The relationship between the stimuli and particular observable for different noise intensities is obtained, the usefulness of each coding scheme is discussed, and the optimal noise intensity for detection is indicated. It is shown that the obtained relationship is the same for any observation time when population coding is used. The optimal time window for both detection and the number of units in population coding is found. Our results may be useful for analyses and understanding of the neural activity and in designing bistable storage elements at length scales where thermal fluctuations drastically increase and the effect of noise must be taken into consideration.
Xu, Chen; Li, Zhiyuan; Jin, Weiliang
2013-01-01
The corrosion of reinforcements induced by chloride has resulted to be one of the most frequent causes of their premature damage. Most corrosion sensors were designed to monitor corrosion state in concrete, such as Anode-Ladder-System and Corrowatch System, which are widely used to monitor chloride ingress in marine concrete. However, the monitoring principle of these corrosion sensors is based on the macro-cell test method, so erroneous information may be obtained, especially from concrete under drying or saturated conditions due to concrete resistance taking control in macro-cell corrosion. In this paper, a fast weak polarization method to test corrosion state of reinforcements based on electrochemical polarization dynamics was proposed. Furthermore, a new corrosion sensor for monitoring the corrosion state of concrete cover was developed based on the proposed test method. The sensor was tested in cement mortar, with dry-wet cycle tests to accelerate the chloride ingress rate. The results show that the corrosion sensor can effectively monitor chloride penetration into concrete with little influence of the relative humidity in the concrete. With a reasonable corrosion sensor electrode arrangement, it seems the Ohm-drop effect measured by EIS can be ignored, which makes the tested electrochemical parameters more accurate. PMID:24084117
Xu, Chen; Li, Zhiyuan; Jin, Weiliang
2013-09-30
The corrosion of reinforcements induced by chloride has resulted to be one of the most frequent causes of their premature damage. Most corrosion sensors were designed to monitor corrosion state in concrete, such as Anode-Ladder-System and Corrowatch System, which are widely used to monitor chloride ingress in marine concrete. However, the monitoring principle of these corrosion sensors is based on the macro-cell test method, so erroneous information may be obtained, especially from concrete under drying or saturated conditions due to concrete resistance taking control in macro-cell corrosion. In this paper, a fast weak polarization method to test corrosion state of reinforcements based on electrochemical polarization dynamics was proposed. Furthermore, a new corrosion sensor for monitoring the corrosion state of concrete cover was developed based on the proposed test method. The sensor was tested in cement mortar, with dry-wet cycle tests to accelerate the chloride ingress rate. The results show that the corrosion sensor can effectively monitor chloride penetration into concrete with little influence of the relative humidity in the concrete. With a reasonable corrosion sensor electrode arrangement, it seems the Ohm-drop effect measured by EIS can be ignored, which makes the tested electrochemical parameters more accurate.
Electrodes for Semiconductor Gas Sensors
Lee, Sung Pil
2017-01-01
The electrodes of semiconductor gas sensors are important in characterizing sensors based on their sensitivity, selectivity, reversibility, response time, and long-term stability. The types and materials of electrodes used for semiconductor gas sensors are analyzed. In addition, the effect of interfacial zones and surface states of electrode–semiconductor interfaces on their characteristics is studied. This study describes that the gas interaction mechanism of the electrode–semiconductor interfaces should take into account the interfacial zone, surface states, image force, and tunneling effect. PMID:28346349
Fibre optic system for biochemical and microbiological sensing
NASA Astrophysics Data System (ADS)
Penwill, L. A.; Slater, J. H.; Hayes, N. W.; Tremlett, C. J.
2007-07-01
This poster will discuss state-of-the-art fibre optic sensors based on evanescent wave technology emphasising chemophotonic sensors for biochemical reactions and microbe detection. Devices based on antibody specificity and unique DNA sequences will be described. The development of simple sensor devices with disposable single use sensor probes will be illustrated with a view to providing cost effective field based or point of care analysis of major themes such as hospital acquired infections or bioterrorism events. This presentation will discuss the nature and detection thresholds required, the optical detection techniques investigated, results of sensor trials and the potential for wider commercial application.
Solid State pH Sensor Based on Light Emitting Diodes (LED) As Detector Platform
Lau, King Tong; Shepherd, R.; Diamond, Danny; Diamond, Dermot
2006-01-01
A low-power, high sensitivity, very low-cost light emitting diode (LED)-based device developed for low-cost sensor networks was modified with bromocresol green membrane to work as a solid-state pH sensor. In this approach, a reverse-biased LED functioning as a photodiode is coupled with a second LED configured in conventional emission mode. A simple timer circuit measures how long (in microsecond) it takes for the photocurrent generated on the detector LED to discharge its capacitance from logic 1 (+5 V) to logic 0 (+1.7 V). The entire instrument provides an inherently digital output of light intensity measurements for a few cents. A light dependent resistor (LDR) modified with similar sensor membrane was also used as a comparison method. Both the LED sensor and the LDR sensor responded to various pH buffer solutions in a similar way to obtain sigmoidal curves expected of the dye. The pKa value obtained for the sensors was found to agree with the literature value.
Joint sparsity based heterogeneous data-level fusion for target detection and estimation
NASA Astrophysics Data System (ADS)
Niu, Ruixin; Zulch, Peter; Distasio, Marcello; Blasch, Erik; Shen, Dan; Chen, Genshe
2017-05-01
Typical surveillance systems employ decision- or feature-level fusion approaches to integrate heterogeneous sensor data, which are sub-optimal and incur information loss. In this paper, we investigate data-level heterogeneous sensor fusion. Since the sensors monitor the common targets of interest, whose states can be determined by only a few parameters, it is reasonable to assume that the measurement domain has a low intrinsic dimensionality. For heterogeneous sensor data, we develop a joint-sparse data-level fusion (JSDLF) approach based on the emerging joint sparse signal recovery techniques by discretizing the target state space. This approach is applied to fuse signals from multiple distributed radio frequency (RF) signal sensors and a video camera for joint target detection and state estimation. The JSDLF approach is data-driven and requires minimum prior information, since there is no need to know the time-varying RF signal amplitudes, or the image intensity of the targets. It can handle non-linearity in the sensor data due to state space discretization and the use of frequency/pixel selection matrices. Furthermore, for a multi-target case with J targets, the JSDLF approach only requires discretization in a single-target state space, instead of discretization in a J-target state space, as in the case of the generalized likelihood ratio test (GLRT) or the maximum likelihood estimator (MLE). Numerical examples are provided to demonstrate that the proposed JSDLF approach achieves excellent performance with near real-time accurate target position and velocity estimates.
Liu, Yanjie; Han, Haijun; Liu, Tao; Yi, Jingang; Li, Qingguo; Inoue, Yoshio
2016-01-01
Real-time detection of contact states, such as stick-slip interaction between a robot and an object on its end effector, is crucial for the robot to grasp and manipulate the object steadily. This paper presents a novel tactile sensor based on electromagnetic induction and its application on stick-slip interaction. An equivalent cantilever-beam model of the tactile sensor was built and capable of constructing the relationship between the sensor output and the friction applied on the sensor. With the tactile sensor, a new method to detect stick-slip interaction on the contact surface between the object and the sensor is proposed based on the characteristics of friction change. Furthermore, a prototype was developed for a typical application, stable wafer transferring on a wafer transfer robot, by considering the spatial magnetic field distribution and the sensor size according to the requirements of wafer transfer. The experimental results validate the sensing mechanism of the tactile sensor and verify its feasibility of detecting stick-slip on the contact surface between the wafer and the sensor. The sensing mechanism also provides a new approach to detect the contact state on the soft-rigid surface in other robot-environment interaction systems. PMID:27023545
Unsteady flow sensing and optimal sensor placement using machine learning
NASA Astrophysics Data System (ADS)
Semaan, Richard
2016-11-01
Machine learning is used to estimate the flow state and to determine the optimal sensor placement over a two-dimensional (2D) airfoil equipped with a Coanda actuator. The analysis is based on flow field data obtained from 2D unsteady Reynolds averaged Navier-Stokes (uRANS) simulations with different jet blowing intensities and actuation frequencies, characterizing different flow separation states. This study shows how the "random forests" algorithm is utilized beyond its typical usage in fluid mechanics estimating the flow state to determine the optimal sensor placement. The results are compared against the current de-facto standard of maximum modal amplitude location and against a brute force approach that scans all possible sensor combinations. The results show that it is possible to simultaneously infer the state of flow and to determine the optimal sensor location without the need to perform proper orthogonal decomposition. Collaborative Research Center (CRC) 880, DFG.
Chen, Jie; Li, Jiahong; Yang, Shuanghua; Deng, Fang
2017-11-01
The identification of the nonlinearity and coupling is crucial in nonlinear target tracking problem in collaborative sensor networks. According to the adaptive Kalman filtering (KF) method, the nonlinearity and coupling can be regarded as the model noise covariance, and estimated by minimizing the innovation or residual errors of the states. However, the method requires large time window of data to achieve reliable covariance measurement, making it impractical for nonlinear systems which are rapidly changing. To deal with the problem, a weighted optimization-based distributed KF algorithm (WODKF) is proposed in this paper. The algorithm enlarges the data size of each sensor by the received measurements and state estimates from its connected sensors instead of the time window. A new cost function is set as the weighted sum of the bias and oscillation of the state to estimate the "best" estimate of the model noise covariance. The bias and oscillation of the state of each sensor are estimated by polynomial fitting a time window of state estimates and measurements of the sensor and its neighbors weighted by the measurement noise covariance. The best estimate of the model noise covariance is computed by minimizing the weighted cost function using the exhaustive method. The sensor selection method is in addition to the algorithm to decrease the computation load of the filter and increase the scalability of the sensor network. The existence, suboptimality and stability analysis of the algorithm are given. The local probability data association method is used in the proposed algorithm for the multitarget tracking case. The algorithm is demonstrated in simulations on tracking examples for a random signal, one nonlinear target, and four nonlinear targets. Results show the feasibility and superiority of WODKF against other filtering algorithms for a large class of systems.
Single Photon Counting Performance and Noise Analysis of CMOS SPAD-Based Image Sensors.
Dutton, Neale A W; Gyongy, Istvan; Parmesan, Luca; Henderson, Robert K
2016-07-20
SPAD-based solid state CMOS image sensors utilising analogue integrators have attained deep sub-electron read noise (DSERN) permitting single photon counting (SPC) imaging. A new method is proposed to determine the read noise in DSERN image sensors by evaluating the peak separation and width (PSW) of single photon peaks in a photon counting histogram (PCH). The technique is used to identify and analyse cumulative noise in analogue integrating SPC SPAD-based pixels. The DSERN of our SPAD image sensor is exploited to confirm recent multi-photon threshold quanta image sensor (QIS) theory. Finally, various single and multiple photon spatio-temporal oversampling techniques are reviewed.
Neural-network-based state of health diagnostics for an automated radioxenon sampler/analyzer
NASA Astrophysics Data System (ADS)
Keller, Paul E.; Kangas, Lars J.; Hayes, James C.; Schrom, Brian T.; Suarez, Reynold; Hubbard, Charles W.; Heimbigner, Tom R.; McIntyre, Justin I.
2009-05-01
Artificial neural networks (ANNs) are used to determine the state-of-health (SOH) of the Automated Radioxenon Analyzer/Sampler (ARSA). ARSA is a gas collection and analysis system used for non-proliferation monitoring in detecting radioxenon released during nuclear tests. SOH diagnostics are important for automated, unmanned sensing systems so that remote detection and identification of problems can be made without onsite staff. Both recurrent and feed-forward ANNs are presented. The recurrent ANN is trained to predict sensor values based on current valve states, which control air flow, so that with only valve states the normal SOH sensor values can be predicted. Deviation between modeled value and actual is an indication of a potential problem. The feed-forward ANN acts as a nonlinear version of principal components analysis (PCA) and is trained to replicate the normal SOH sensor values. Because of ARSA's complexity, this nonlinear PCA is better able to capture the relationships among the sensors than standard linear PCA and is applicable to both sensor validation and recognizing off-normal operating conditions. Both models provide valuable information to detect impending malfunctions before they occur to avoid unscheduled shutdown. Finally, the ability of ANN methods to predict the system state is presented.
A Review on Surface Stress-Based Miniaturized Piezoresistive SU-8 Polymeric Cantilever Sensors
NASA Astrophysics Data System (ADS)
Mathew, Ribu; Ravi Sankar, A.
2018-06-01
In the last decade, microelectromechanical systems (MEMS) SU-8 polymeric cantilevers with piezoresistive readout combined with the advances in molecular recognition techniques have found versatile applications, especially in the field of chemical and biological sensing. Compared to conventional solid-state semiconductor-based piezoresistive cantilever sensors, SU-8 polymeric cantilevers have advantages in terms of better sensitivity along with reduced material and fabrication cost. In recent times, numerous researchers have investigated their potential as a sensing platform due to high performance-to-cost ratio of SU-8 polymer-based cantilever sensors. In this article, we critically review the design, fabrication, and performance aspects of surface stress-based piezoresistive SU-8 polymeric cantilever sensors. The evolution of surface stress-based piezoresistive cantilever sensors from solid-state semiconductor materials to polymers, especially SU-8 polymer, is discussed in detail. Theoretical principles of surface stress generation and their application in cantilever sensing technology are also devised. Variants of SU-8 polymeric cantilevers with different composition of materials in cantilever stacks are explained. Furthermore, the interdependence of the material selection, geometrical design parameters, and fabrication process of piezoresistive SU-8 polymeric cantilever sensors and their cumulative impact on the sensor response are also explained in detail. In addition to the design-, fabrication-, and performance-related factors, this article also describes various challenges in engineering SU-8 polymeric cantilevers as a universal sensing platform such as temperature and moisture vulnerability. This review article would serve as a guideline for researchers to understand specifics and functionality of surface stress-based piezoresistive SU-8 cantilever sensors.[Figure not available: see fulltext.
Sleep state classification using pressure sensor mats.
Baran Pouyan, M; Nourani, M; Pompeo, M
2015-08-01
Sleep state detection is valuable in assessing patient's sleep quality and in-bed general behavior. In this paper, a novel classification approach of sleep states (sleep, pre-wake, wake) is proposed that uses only surface pressure sensors. In our method, a mobility metric is defined based on successive pressure body maps. Then, suitable statistical features are computed based on the mobility metric. Finally, a customized random forest classifier is employed to identify various classes including a new class for pre-wake state. Our algorithm achieves 96.1% and 88% accuracies for two (sleep, wake) and three (sleep, pre-wake, wake) class identification, respectively.
Optical fiber sensors: Systems and applications. Volume 2
NASA Astrophysics Data System (ADS)
Culshaw, Brian; Dakin, John
State-of-the-art fiber-optic (FO) sensors and their applications are described in chapters contributed by leading experts. Consideration is given to interferometers, FO gyros, intensity- and wavelength-based sensors and optical actuators, Si in FO sensors, point-sensor multiplexing principles, and distributed FO sensor systems. Also examined are chemical, biochemical, and medical sensors; physical and chemical sensors for process control; FO-sensor applications in the marine and aerospace industries; FO-sensor monitoring systems for security and safety, structural integrity, NDE, and the electric-power industry; and the market situation for FO-sensor technology. Diagrams, drawings, graphs, and photographs are provided.
The Coverage Problem in Video-Based Wireless Sensor Networks: A Survey
Costa, Daniel G.; Guedes, Luiz Affonso
2010-01-01
Wireless sensor networks typically consist of a great number of tiny low-cost electronic devices with limited sensing and computing capabilities which cooperatively communicate to collect some kind of information from an area of interest. When wireless nodes of such networks are equipped with a low-power camera, visual data can be retrieved, facilitating a new set of novel applications. The nature of video-based wireless sensor networks demands new algorithms and solutions, since traditional wireless sensor networks approaches are not feasible or even efficient for that specialized communication scenario. The coverage problem is a crucial issue of wireless sensor networks, requiring specific solutions when video-based sensors are employed. In this paper, it is surveyed the state of the art of this particular issue, regarding strategies, algorithms and general computational solutions. Open research areas are also discussed, envisaging promising investigation considering coverage in video-based wireless sensor networks. PMID:22163651
A comparative study of sensor fault diagnosis methods based on observer for ECAS system
NASA Astrophysics Data System (ADS)
Xu, Xing; Wang, Wei; Zou, Nannan; Chen, Long; Cui, Xiaoli
2017-03-01
The performance and practicality of electronically controlled air suspension (ECAS) system are highly dependent on the state information supplied by kinds of sensors, but faults of sensors occur frequently. Based on a non-linearized 3-DOF 1/4 vehicle model, different methods of fault detection and isolation (FDI) are used to diagnose the sensor faults for ECAS system. The considered approaches include an extended Kalman filter (EKF) with concise algorithm, a strong tracking filter (STF) with robust tracking ability, and the cubature Kalman filter (CKF) with numerical precision. We propose three filters of EKF, STF, and CKF to design a state observer of ECAS system under typical sensor faults and noise. Results show that three approaches can successfully detect and isolate faults respectively despite of the existence of environmental noise, FDI time delay and fault sensitivity of different algorithms are different, meanwhile, compared with EKF and STF, CKF method has best performing FDI of sensor faults for ECAS system.
NASA Astrophysics Data System (ADS)
Hill, Christine; Stefanos Fasoulas, -; Eberhart, Martin; Berndt, Felix
New generations of integrated closed loop systems will combine life support systems (incl. biological components) and energy systems such as fuel cell and electrolysis systems. Those systems and their test beds also contain complex safety sensor monitoring systems. Especially in fuel cells and electrolysis systems, the hydrogen and oxygen flows and exchange into other areas due to diffusion processes or leaks need to be monitored. Knowledge of predominant gas concentrations at all times is essential to avoid explosive gas mixtures. Solid state electrolyte sensors are promising for use as safety sensors. They have already been developed and produced at various institutes, but the power consumption for heating an existing solid state electrolyte sensor element still lies between 1 to 1.5 W and the operational readiness still takes about 20 to 30 s. This is partially due to the current manufacturing process for the solid state electrolyte sensor elements that is based on screen printing technology. However this technology has strong limitations in flexibility of the layout and re-designs. It is therefore suitable for mass production, but not for a flexible development and the production of specific individual sensors, e.g. for space applications. Moreover a disadvantage is the relatively high material consumption, especially in combination with the sensors need of expensive noble metal and ceramic pastes, which leads to a high sensor unit price. The Inkjet technology however opens up completely new possibilities in terms of dimensions, geometries, structures, morphologies and materials of sensors. This new approach is capable of printing finer high-resolution layers without the necessity of meshes or masks for patterning. Using the Inkjet technology a design change is possible at any time on the CAD screen. Moreover the ink is only deposited where it is needed. Custom made sensors, as they are currently demanded in space sensor applications, are thus realized simply, economically and ecologically. Based on the knowledge of the screen printing sensor production a complete solid state electrolyte oxygen sensor could be produced using Inkjet technology. First measurements in oxygen environment already show promising results. A defined oxygen concentration could be seen during exposition of the Inkjet sensors in an oxygen environment. The obtained results demonstrate the potential to use the technology development in other applications such as in situ respiratory gas analysis systems for human spaceflight. Further approaches at the Institute of Space Systems include the implementation of Inkjet printed solid state electrolyte sensors for the use as redundant safety sensors for the Institute's hybrid life support test beds including fuel cells and algal photo bioreactor elements.
Studies to design and develop improved remote manipulator systems
NASA Technical Reports Server (NTRS)
Hill, J. W.; Sword, A. J.
1973-01-01
Remote manipulator control considered is based on several levels of automatic supervision which derives manipulator commands from an analysis of sensor states and task requirements. Principle sensors are manipulator joint position, tactile, and currents. The tactile sensor states can be displayed visually in perspective or replicated in the operator's control handle of perceived by the automatic supervisor. Studies are reported on control organization, operator performance and system performance measures. Unusual hardware and software details are described.
Optical and Electronic NOx Sensors for Applications in Mechatronics
Di Franco, Cinzia; Elia, Angela; Spagnolo, Vincenzo; Scamarcio, Gaetano; Lugarà, Pietro Mario; Ieva, Eliana; Cioffi, Nicola; Torsi, Luisa; Bruno, Giovanni; Losurdo, Maria; Garcia, Michael A.; Wolter, Scott D.; Brown, April; Ricco, Mario
2009-01-01
Current production and emerging NOx sensors based on optical and nanomaterials technologies are reviewed. In view of their potential applications in mechatronics, we compared the performance of: i) Quantum cascade lasers (QCL) based photoacoustic (PA) systems; ii) gold nanoparticles as catalytically active materials in field-effect transistor (FET) sensors, and iii) functionalized III-V semiconductor based devices. QCL-based PA sensors for NOx show a detection limit in the sub part-per-million range and are characterized by high selectivity and compact set-up. Electrochemically synthesized gold-nanoparticle FET sensors are able to monitor NOx in a concentration range from 50 to 200 parts per million and are suitable for miniaturization. Porphyrin-functionalized III-V semiconductor materials can be used for the fabrication of a reliable NOx sensor platform characterized by high conductivity, corrosion resistance, and strong surface state coupling. PMID:22412315
Optically powered remote gas monitor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubaniewicz, T.H. Jr.; Chilton, J.E.
1995-12-31
Many mines rely on toxic gas sensors to help maintain a safe and healthy work environment. This report describes a prototype monitoring system developed by the US Bureau of Mines (USBM) that uses light to power and communicate with several remote toxic gas sensors. The design is based on state-of-art optical-to-electrical power converters, solid-state diode lasers, and fiber optics. This design overcomes several problems associated with conventional wire-based systems by providing complete electrical isolation between the remote sensors and the central monitor. The prototype performed well during a 2-week field trial in the USBM Pittsburgh Research Center Safety Research Coalmore » Mine.« less
Single Photon Counting Performance and Noise Analysis of CMOS SPAD-Based Image Sensors
Dutton, Neale A. W.; Gyongy, Istvan; Parmesan, Luca; Henderson, Robert K.
2016-01-01
SPAD-based solid state CMOS image sensors utilising analogue integrators have attained deep sub-electron read noise (DSERN) permitting single photon counting (SPC) imaging. A new method is proposed to determine the read noise in DSERN image sensors by evaluating the peak separation and width (PSW) of single photon peaks in a photon counting histogram (PCH). The technique is used to identify and analyse cumulative noise in analogue integrating SPC SPAD-based pixels. The DSERN of our SPAD image sensor is exploited to confirm recent multi-photon threshold quanta image sensor (QIS) theory. Finally, various single and multiple photon spatio-temporal oversampling techniques are reviewed. PMID:27447643
NO and NO2 Sensing Properties of WO3 and Co3O4 Based Gas Sensors
Akamatsu, Takafumi; Itoh, Toshio; Izu, Noriya; Shin, Woosuck
2013-01-01
Semiconductor-based gas sensors that use n-type WO3 or p-type Co3O4 powder were fabricated and their gas sensing properties toward NO2 or NO (0.5–5 ppm in air) were investigated at 100 °C or 200 °C. The resistance of the WO3-based sensor increased on exposure to NO2 and NO. On the other hand, the resistance of the Co3O4-based sensor varied depending on the operating temperature and the gas species. The chemical states of the surface of WO3 or those of the Co3O4 powder on exposure to 1 ppm NO2 and NO were investigated by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. No clear differences between the chemical states of the metal oxide surface exposed to NO2 or NO could be detected from the DRIFT spectra. PMID:24048338
Fault Diagnosis for Micro-Gas Turbine Engine Sensors via Wavelet Entropy
Yu, Bing; Liu, Dongdong; Zhang, Tianhong
2011-01-01
Sensor fault diagnosis is necessary to ensure the normal operation of a gas turbine system. However, the existing methods require too many resources and this need can’t be satisfied in some occasions. Since the sensor readings are directly affected by sensor state, sensor fault diagnosis can be performed by extracting features of the measured signals. This paper proposes a novel fault diagnosis method for sensors based on wavelet entropy. Based on the wavelet theory, wavelet decomposition is utilized to decompose the signal in different scales. Then the instantaneous wavelet energy entropy (IWEE) and instantaneous wavelet singular entropy (IWSE) are defined based on the previous wavelet entropy theory. Subsequently, a fault diagnosis method for gas turbine sensors is proposed based on the results of a numerically simulated example. Then, experiments on this method are carried out on a real micro gas turbine engine. In the experiment, four types of faults with different magnitudes are presented. The experimental results show that the proposed method for sensor fault diagnosis is efficient. PMID:22163734
Fault diagnosis for micro-gas turbine engine sensors via wavelet entropy.
Yu, Bing; Liu, Dongdong; Zhang, Tianhong
2011-01-01
Sensor fault diagnosis is necessary to ensure the normal operation of a gas turbine system. However, the existing methods require too many resources and this need can't be satisfied in some occasions. Since the sensor readings are directly affected by sensor state, sensor fault diagnosis can be performed by extracting features of the measured signals. This paper proposes a novel fault diagnosis method for sensors based on wavelet entropy. Based on the wavelet theory, wavelet decomposition is utilized to decompose the signal in different scales. Then the instantaneous wavelet energy entropy (IWEE) and instantaneous wavelet singular entropy (IWSE) are defined based on the previous wavelet entropy theory. Subsequently, a fault diagnosis method for gas turbine sensors is proposed based on the results of a numerically simulated example. Then, experiments on this method are carried out on a real micro gas turbine engine. In the experiment, four types of faults with different magnitudes are presented. The experimental results show that the proposed method for sensor fault diagnosis is efficient.
NASA Astrophysics Data System (ADS)
Yao, Deyin; Lu, Renquan; Xu, Yong; Ren, Hongru
2017-10-01
In this paper, the sliding mode control problem of Markov jump systems (MJSs) with unmeasured state, partly unknown transition rates and random sensor delays is probed. In the practical engineering control, the exact information of transition rates is hard to obtain and the measurement channel is supposed to subject to random sensor delay. Design a Luenberger observer to estimate the unmeasured system state, and an integral sliding mode surface is constructed to ensure the exponential stability of MJSs. A sliding mode controller based on estimator is proposed to drive the system state onto the sliding mode surface and render the sliding mode dynamics exponentially mean-square stable with H∞ performance index. Finally, simulation results are provided to illustrate the effectiveness of the proposed results.
Monolithic Micromachined Quartz Resonator based Infrared Focal Plane Arrays
2012-05-05
following categories: PaperReceived Ping Kao, Srinivas Tadigadapa. Micromachined quartz resonator based infrared detector array, Sensors and...0. doi: 10.1088/0957-0233/20/12/124007 2012/05/08 19:47:37 6 S Tadigadapa, K Mateti. Piezoelectric MEMS sensors : state-of-the-art and perspectives...Ping Kao, David L. Allara, Srinivas Tadigadapa. Study of Adsorption of Globular Proteins on Hydrophobic Surfaces, IEEE Sensors Journal, (11 2011): 0
Novel diode laser-based sensors for gas sensing applications
NASA Technical Reports Server (NTRS)
Tittel, F. K.; Lancaster, D. G.; Richter, D.
2000-01-01
The development of compact spectroscopic gas sensors and their applications to environmental sensing will be described. These sensors employ mid-infrared difference-frequency generation (DFG) in periodically poled lithium niobate (PPLN) crystals pumped by two single-frequency solid state lasers such as diode lasers, diode-pumped solid state, and fiber lasers. Ultrasensitive, highly selective, and real-time measurements of several important atmospheric trace gases, including carbon monoxide, nitrous oxide, carbon dioxide, formaldehyde [correction of formaldehye], and methane, have been demonstrated.
The application of smart sensor techniques to a solid-state array multispectral sensor
NASA Technical Reports Server (NTRS)
Mcfadin, L. W.
1978-01-01
The solid-state array spectroradiometer (SAS) developed at JSC for remote sensing applications is a multispectral sensor which has no moving parts, is virtually maintenance-free, and has the ability to provide data which requires a minimum of processing. The instrument is based on the 42 x 342 element charge injection device (CID) detector. This system allows the combination of spectral scanning and across-track spatial scanning along with its associated digitization electronics into a single detector.
Building SDN-Based Agricultural Vehicular Sensor Networks Based on Extended Open vSwitch.
Huang, Tao; Yan, Siyu; Yang, Fan; Pan, Tian; Liu, Jiang
2016-01-19
Software-defined vehicular sensor networks in agriculture, such as autonomous vehicle navigation based on wireless multi-sensor networks, can lead to more efficient precision agriculture. In SDN-based vehicle sensor networks, the data plane is simplified and becomes more efficient by introducing a centralized controller. However, in a wireless environment, the main controller node may leave the sensor network due to the dynamic topology change or the unstable wireless signal, leaving the rest of network devices without control, e.g., a sensor node as a switch may forward packets according to stale rules until the controller updates the flow table entries. To solve this problem, this paper proposes a novel SDN-based vehicular sensor networks architecture which can minimize the performance penalty of controller connection loss. We achieve this by designing a connection state detection and self-learning mechanism. We build prototypes based on extended Open vSwitch and Ryu. The experimental results show that the recovery time from controller connection loss is under 100 ms and it keeps rule updating in real time with a stable throughput. This architecture enhances the survivability and stability of SDN-based vehicular sensor networks in precision agriculture.
Building SDN-Based Agricultural Vehicular Sensor Networks Based on Extended Open vSwitch
Huang, Tao; Yan, Siyu; Yang, Fan; Pan, Tian; Liu, Jiang
2016-01-01
Software-defined vehicular sensor networks in agriculture, such as autonomous vehicle navigation based on wireless multi-sensor networks, can lead to more efficient precision agriculture. In SDN-based vehicle sensor networks, the data plane is simplified and becomes more efficient by introducing a centralized controller. However, in a wireless environment, the main controller node may leave the sensor network due to the dynamic topology change or the unstable wireless signal, leaving the rest of network devices without control, e.g., a sensor node as a switch may forward packets according to stale rules until the controller updates the flow table entries. To solve this problem, this paper proposes a novel SDN-based vehicular sensor networks architecture which can minimize the performance penalty of controller connection loss. We achieve this by designing a connection state detection and self-learning mechanism. We build prototypes based on extended Open vSwitch and Ryu. The experimental results show that the recovery time from controller connection loss is under 100 ms and it keeps rule updating in real time with a stable throughput. This architecture enhances the survivability and stability of SDN-based vehicular sensor networks in precision agriculture. PMID:26797616
Weng, Falu; Liu, Mingxin; Mao, Weijie; Ding, Yuanchun; Liu, Feifei
2018-05-10
The problem of sampled-data-based vibration control for structural systems with finite-time state constraint and sensor outage is investigated in this paper. The objective of designing controllers is to guarantee the stability and anti-disturbance performance of the closed-loop systems while some sensor outages happen. Firstly, based on matrix transformation, the state-space model of structural systems with sensor outages and uncertainties appearing in the mass, damping and stiffness matrices is established. Secondly, by considering most of those earthquakes or strong winds happen in a very short time, and it is often the peak values make the structures damaged, the finite-time stability analysis method is introduced to constrain the state responses in a given time interval, and the H-infinity stability is adopted in the controller design to make sure that the closed-loop system has a prescribed level of disturbance attenuation performance during the whole control process. Furthermore, all stabilization conditions are expressed in the forms of linear matrix inequalities (LMIs), whose feasibility can be easily checked by using the LMI Toolbox. Finally, numerical examples are given to demonstrate the effectiveness of the proposed theorems. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter
Gao, Bingbing; Hu, Gaoge; Gao, Shesheng; Gu, Chengfan
2018-01-01
This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and robustness of local state estimations against process-modeling error; at the top level, an unscented transformation-based multi-sensor optimal data fusion for the case of N local filters is established according to the principle of linear minimum variance to calculate globally optimal state estimation by fusion of local estimations. The proposed methodology effectively refrains from the influence of process-modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion results based on the principle of linear minimum variance. Simulation and experimental results demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite system/celestial navigation system) integrated navigation. PMID:29415509
Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter.
Gao, Bingbing; Hu, Gaoge; Gao, Shesheng; Zhong, Yongmin; Gu, Chengfan
2018-02-06
This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and robustness of local state estimations against process-modeling error; at the top level, an unscented transformation-based multi-sensor optimal data fusion for the case of N local filters is established according to the principle of linear minimum variance to calculate globally optimal state estimation by fusion of local estimations. The proposed methodology effectively refrains from the influence of process-modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion results based on the principle of linear minimum variance. Simulation and experimental results demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite system/celestial navigation system) integrated navigation.
Single stage AC-DC converter for Galfenol-based micro-power energy harvesters
NASA Astrophysics Data System (ADS)
Cavaroc, Peyton; Curtis, Chandra; Naik, Suketu; Cooper, James
2014-06-01
Military based sensor systems are often hindered in operational deployment and/or other capabilities due to limitations in their energy storage elements. Typically operating from lithium based batteries, there is a finite amount of stored energy which the sensor can use to collect and transmit data. As a result, the sensors have reduced sensing and transmission rates. However, coupled with the latest advancements in energy harvesting, these sensors could potentially operate at standard sensing and transition rates as well as dramatically extend lifetimes. Working with the magnetostrictive material Galfenol, we demonstrate the production of enough energy to supplement and recharge a solid state battery thereby overcoming the deficiencies faced by unattended sensors. As with any vibration-based energy harvester, this solution produces an alternating current which needs to be rectified and boosted to a level conducive to recharge the storage element. This paper presents a power converter capable of efficiently converting an ultra-low AC voltage to a solid state charging voltage of 4.1VDC. While we are working with Galfenol transducers as our energy source, this converter may also be applied with any AC producing energy harvester, particularly at operating levels less than 2mW and 200mVAC.
Optical and Electronic NO(x) Sensors for Applications in Mechatronics.
Di Franco, Cinzia; Elia, Angela; Spagnolo, Vincenzo; Scamarcio, Gaetano; Lugarà, Pietro Mario; Ieva, Eliana; Cioffi, Nicola; Torsi, Luisa; Bruno, Giovanni; Losurdo, Maria; Garcia, Michael A; Wolter, Scott D; Brown, April; Ricco, Mario
2009-01-01
Current production and emerging NO(x) sensors based on optical and nanomaterials technologies are reviewed. In view of their potential applications in mechatronics, we compared the performance of: i) Quantum cascade lasers (QCL) based photoacoustic (PA) systems; ii) gold nanoparticles as catalytically active materials in field-effect transistor (FET) sensors, and iii) functionalized III-V semiconductor based devices. QCL-based PA sensors for NO(x) show a detection limit in the sub part-per-million range and are characterized by high selectivity and compact set-up. Electrochemically synthesized gold-nanoparticle FET sensors are able to monitor NO(x) in a concentration range from 50 to 200 parts per million and are suitable for miniaturization. Porphyrin-functionalized III-V semiconductor materials can be used for the fabrication of a reliable NO(x) sensor platform characterized by high conductivity, corrosion resistance, and strong surface state coupling.
Robust Operation of Tendon-Driven Robot Fingers Using Force and Position-Based Control Laws
NASA Technical Reports Server (NTRS)
Hargrave, Brian (Inventor); Abdallah, Muhammad E (Inventor); Reiland, Matthew J (Inventor); Diftler, Myron A (Inventor); Strawser, Philip A (Inventor); Platt, Jr., Robert J. (Inventor); Ihrke, Chris A. (Inventor)
2013-01-01
A robotic system includes a tendon-driven finger and a control system. The system controls the finger via a force-based control law when a tension sensor is available, and via a position-based control law when a sensor is not available. Multiple tendons may each have a corresponding sensor. The system selectively injects a compliance value into the position-based control law when only some sensors are available. A control system includes a host machine and a non-transitory computer-readable medium having a control process, which is executed by the host machine to control the finger via the force- or position-based control law. A method for controlling the finger includes determining the availability of a tension sensor(s), and selectively controlling the finger, using the control system, via the force or position-based control law. The position control law allows the control system to resist disturbances while nominally maintaining the initial state of internal tendon tensions.
Nonlocally sensing the magnetic states of nanoscale antiferromagnets with an atomic spin sensor
Yan, Shichao; Malavolti, Luigi; Burgess, Jacob A. J.; Droghetti, Andrea; Rubio, Angel; Loth, Sebastian
2017-01-01
The ability to sense the magnetic state of individual magnetic nano-objects is a key capability for powerful applications ranging from readout of ultradense magnetic memory to the measurement of spins in complex structures with nanometer precision. Magnetic nano-objects require extremely sensitive sensors and detection methods. We create an atomic spin sensor consisting of three Fe atoms and show that it can detect nanoscale antiferromagnets through minute, surface-mediated magnetic interaction. Coupling, even to an object with no net spin and having vanishing dipolar stray field, modifies the transition matrix element between two spin states of the Fe atom–based spin sensor that changes the sensor’s spin relaxation time. The sensor can detect nanoscale antiferromagnets at up to a 3-nm distance and achieves an energy resolution of 10 μeV, surpassing the thermal limit of conventional scanning probe spectroscopy. This scheme permits simultaneous sensing of multiple antiferromagnets with a single-spin sensor integrated onto the surface. PMID:28560346
Dynamic Tasking of Networked Sensors Using Covariance Information
2010-09-01
has been created under an effort called TASMAN (Tasking Autonomous Sensors in a Multiple Application Network). One of the first studies utilizing this...environment was focused on a novel resource management approach, namely covariance-based tasking. Under this scheme, the state error covariance of...resident space objects (RSO), sensor characteristics, and sensor- target geometry were used to determine the effectiveness of future observations in
Integrated active sensor system for real time vibration monitoring.
Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue
2015-11-05
We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0-60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems.
Integrated active sensor system for real time vibration monitoring
Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue
2015-01-01
We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0–60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems. PMID:26538293
Selected examples of intelligent (micro) sensor systems: state-of-the-art and tendencies
NASA Astrophysics Data System (ADS)
Hauptmann, Peter R.
2006-03-01
The capability of intelligent sensors to have more intelligence built into them continues to drive their application in areas including automotive, aerospace and defense, industrial, intelligent house and wear, medical and homeland security. In principle it is difficult to overestimate the importance of intelligent (micro) sensors or sensor systems within advanced societies but one characteristic feature is the global market for sensors, which is now about 20 billion annually. Therefore sensors or sensor systems play a dominant role in many fields from the macro sensor in manufacturing industry down to the miniaturized sensor for medical applications. The diversity of sensors precludes a complete description of the state-of-the-art; selected examples will illustrate the current situation. MEMS (microelectromechanical systems) devices are of special interest in the context of micro sensor systems. In past the main requirements of a sensor were in terms of metrological performance. The electrical (or optical) signal produced by the sensor needed to match the measure relatively accurately. Such basic functionality is no longer sufficient. Data processing near the sensor, the extraction of more information than just the direct sensor information by signal analysis, system aspects and multi-sensor information are the new demands. A shifting can be observed away from aiming to design perfect single-function transducers and towards the utilization of system-based sensors as system components. In the ideal case such systems contain sensors, actuators and electronics. They can be realized in monolithic, hybrid or discrete form—which kind is used depends on the application. In this article the state-of-the-art of intelligent sensors or sensor systems is reviewed using selected examples. Future trends are deduced.
NASA Astrophysics Data System (ADS)
Melby, Jacob H.
AlGaN/GaN high electron mobility transistors (HEMT) and AlGaN/GaN diodes have promise for use as hydrogen and hydrocarbon sensors for a variety of industrial, military, and commercial applications. These semiconductor-based sensors have a number of advantages over other sensor technologies, such as the ability to operate at high temperatures, in corrosive environments, or under ionizing radiation. The high sensitivity of these devices to hydrogen-containing gases is associated with polarization differences within the AlGaN/GaN heterostructure that give rise to the formation of a two-dimensional electron gas (2DEG); exposure of the device to hydrogen changes the density of the 2DEG, which can be detected in a HEMT or diode structure. Although sensitivity to a range of gases has been reported, the factors that influence the behavior of the sensors are not well studied. The overarching goals of the research that follows were to determine how gas exposure conditions affect sensor behavior, to characterize and model the relationship between the electrical response of the sensors and the external gaseous environment, and to investigate the effects of using different metal catalysts on sensor behavior. The heterostructures used in this work were grown via metalorganic vapor phase epitaxy (MOVPE). Schottky diode and transistor devices employing platinum-group (Pd, Pt, Rh, Ir, Ru, and Os) catalysts were fabricated to allow electrical sensitivity in the presence of hydrogen and hydrogen containing gases. The generation of atomic hydrogen on the catalyst surface results in the rapid formation of hydrogen dipoles at the metal-semiconductor interface, which produces a measurable electronic response. The electrical response of Pt-gated HEMT-based sensors were measured in a flowing gaseous stream consisting of hydrogen in a pure nitrogen diluent at ambient and elevated temperatures. The transistors exhibited excellent transfer characteristics for temperatures ranging from 25°C to 125°C. The absolute current change was measured as a function of hydrogen concentration and compared with simulated curves based on the Langmuir isotherm and four other modified isotherms at a sensor temperature of 125°C. The sensor response was found to monotonically increase for a wide range of hydrogen concentrations (500 ppb to 5 vol%). It was found that the Langmuir isotherm, which treats all hydrogen binding sites as equivalent, was inadequate to describe the sensor response. A simple two-state model involving two distinct hydrogen binding states that have previously been observed in surface studies was found to adequately describe the response of these sensors from 500 ppb to 5 vol% hydrogen in nitrogen. Other modified Langmuir models were also analyzed and compared with the two-state model. While the models based on modified isotherms all yielded good fits to the data, the simpler two-state model (based upon a weakly bound and strongly bound hydrogen atom) and the Sips model (with distribution of states skewed towards higher binding energies) more closely match results from surface studies of dissociative desorption of hydrogen on Pt. Either of these models should therefore serve as a reasonable foundation for understanding and modeling the response of AlGaN/GaN-based hydrogen sensors with Pt catalysts. The electrical response of a Pt-gated HEMT-based sensor was also measured in a flowing gaseous stream consisting of hydrogen in air at elevated temperatures. The sensor response was found to monotonically increase for a narrow range of hydrogen pressures (1000 ppm to 4 vol%). Oxygen is found to decrease sensor response magnitude and increase the sensor response time. A modified Langmuir isotherm was found to adequately describe the influence of oxygen on a Pt-gated HEMT-based sensor under a narrow range of conditions. Additional sensor measurements were conducted on AlGaN/GaN diode sensors employing a variety of platinum-group catalysts. The influence of oxygen on the sensor response was found to be highly dependent upon the chemistry of hydrogen-oxygen interaction on the catalyst interface. A sensor diode array was fabricated using a ternary Pdx CuyAu1-x-y composition spread alloy catalyst and tested in a flowing gaseous stream consisting of pure hydrogen in nitrogen at room temperature. The resulting diode sensitivity was mapped as a function of composition and revealed intriguing hot spots of hydrogen sensitivity. Numerous technological challenges prevented further exploration of the ternary alloy spread; however, the preliminary results of this structure suggest that a reduction in hydrogen binding energy on the surface can result in a substantial increase in hydrogen dipoles at the metal semiconductor interface. Sensitivity to methane and ethylene was demonstrated using AlGaN/GaN-based sensors. Detection of methane and ethylene require elevated temperatures to break the C-H bond and produce atomic hydrogen. The sensor response is significantly more complicated than hydrogen and not always well-behaved with respect to temperature and time. XPS measurements conducted at CMU indicate a buildup of carbon on the platinum surface upon hydrocarbon exposure, trending toward a saturated carbon content. Lastly, operation of a diode sensor was examined in-situ under high hydrostatic pressure (2000psi) in both pure water and helium. Numerous stability issues were addressed in the course of these experiments. The steady-state influence of hydrostatic pressures on the diode sensor was found to be negligible in the absence of hydrogen. Hydrogen sensitivity was demonstrated in pure water with a hydrogen overpressure for devices employing an epoxy membrane. The same diode device failed to detect a large methane overpressure in water at room temperature and water at 80°C.
Review on the Traction System Sensor Technology of a Rail Transit Train.
Feng, Jianghua; Xu, Junfeng; Liao, Wu; Liu, Yong
2017-06-11
The development of high-speed intelligent rail transit has increased the number of sensors applied on trains. These play an important role in train state control and monitoring. These sensors generally work in a severe environment, so the key problem for sensor data acquisition is to ensure data accuracy and reliability. In this paper, we follow the sequence of sensor signal flow, present sensor signal sensing technology, sensor data acquisition, and processing technology, as well as sensor fault diagnosis technology based on the voltage, current, speed, and temperature sensors which are commonly used in train traction systems. Finally, intelligent sensors and future research directions of rail transit train sensors are discussed.
Review on the Traction System Sensor Technology of a Rail Transit Train
Feng, Jianghua; Xu, Junfeng; Liao, Wu; Liu, Yong
2017-01-01
The development of high-speed intelligent rail transit has increased the number of sensors applied on trains. These play an important role in train state control and monitoring. These sensors generally work in a severe environment, so the key problem for sensor data acquisition is to ensure data accuracy and reliability. In this paper, we follow the sequence of sensor signal flow, present sensor signal sensing technology, sensor data acquisition, and processing technology, as well as sensor fault diagnosis technology based on the voltage, current, speed, and temperature sensors which are commonly used in train traction systems. Finally, intelligent sensors and future research directions of rail transit train sensors are discussed. PMID:28604615
High-temperature optical fiber instrumentation for gas flow monitoring in gas turbine engines
NASA Astrophysics Data System (ADS)
Roberts, Adrian; May, Russell G.; Pickrell, Gary R.; Wang, Anbo
2002-02-01
In the design and testing of gas turbine engines, real-time data about such physical variables as temperature, pressure and acoustics are of critical importance. The high temperature environment experienced in the engines makes conventional electronic sensors devices difficult to apply. Therefore, there is a need for innovative sensors that can reliably operate under the high temperature conditions and with the desirable resolution and frequency response. A fiber optic high temperature sensor system for dynamic pressure measurement is presented in this paper. This sensor is based on a new sensor technology - the self-calibrated interferometric/intensity-based (SCIIB) sensor, recently developed at Virginia Tech. State-of-the-art digital signal processing (DSP) methods are applied to process the signal from the sensor to acquire high-speed frequency response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, Timothy L.; Venedam, Richard J.
2013-03-01
Sensors designed to detect the presence of methyl salicylate (MeS) have been tested. These sensors use a sensor platform based on the embedded piezoresistive microcantilever (EPM) design. Sensing materials tested in this study included the polymer poly (ethylene vinyl acetate), or PEVA as well as a composite sensing material consisting of the enzyme SA-binding protein 2, or SABP-2. The SABP-2 was immobilized within a biocompatible Hypol gel matrix. The PEVA-based sensors exhibited slower but reversible responses to MeS vapors, recovering fully to their initial state after the analyte was removed. SABP-2 sensors exhibited faster overall response to the introduction ofmore » MeS, responding nearly instantly. These sensors, however, do not recover after exposures have ended. Sensors using the SABP-2 sensing materials act instead as integrating sensors, measuring irreversibly the total MeS dose obtained.« less
Sakaguchi, Reiko; Endoh, Takashi; Yamamoto, Seigo; Tainaka, Kazuki; Sugimoto, Kenji; Fujieda, Nobutaka; Kiyonaka, Shigeki; Mori, Yasuo; Morii, Takashi
2009-10-15
A fluorescent sensor for the detection of inositol-1,3,4,5-tetrakisphosphate, Ins(1,3,4,5)P(4), was constructed from a split PH domain and a single circularly permuted GFP. A structure-based design was conducted to transduce a ligand-induced subtle structural perturbation of the split PH domain to an alteration in the population of the protonated and the deprotonated states of the GFP chromophore. Excitation of each distinct absorption band corresponding to the protonated or the deprotonated state of GFP resulted an increase and a decrease, respectively, in the intensity of emission spectra upon addition of Ins(1,3,4,5)P(4) to the split PH domain-based sensor. The Ins(1,3,4,5)P(4) sensor retained the ligand affinity and the selectivity of the parent PH domain, and realized the ratiometric fluorescence detection of Ins(1,3,4,5)P(4).
[Express diagnostics of bovine leucosis by immune sensor based on surface plasmon resonance].
Pyrohova, L V; Starodub, M F; Artiukh, V P; Nahaieva, L I; Dobrosol, H I
2002-01-01
An immune sensor based on the surface plasmon resonance (SPR) was developed for express diagnostics of bovine leucosis. The sensor was used for detection of the level of antibodies against bovine leukaemia virus (BLV) in the blood serum. The industrially manufactured BLV antigen for screening test in the agar gel immunodiffusion (AGID) required the additional purification in order to be used in immune sensor analysis. It was shown that immune sensor analysis was more sensitive, rapid and simple in comparison with the traditional AGID test. It was stated that the developed immune sensor was capable to be used for performance of bovine leucosis screening at the farms and the minimal dilution of the serum should be 1:500.
Quantum Communications Systems
2012-09-21
metrology practical. The strategy was to develop robust photonic quantum states and sensors serving as an archetype for loss-tolerant information...communications and metrology. Our strategy consisted of developing robust photonic quantum states and sensors serving as an archetype for loss-tolerant...developed atomic memories in caesium vapour, based on a stimulated Raman transition, that have demonstrated a TBP greater than 1000 and are uniquely suited
Extended active disturbance rejection controller
NASA Technical Reports Server (NTRS)
Tian, Gang (Inventor); Gao, Zhiqiang (Inventor)
2012-01-01
Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.
Extended Active Disturbance Rejection Controller
NASA Technical Reports Server (NTRS)
Gao, Zhiqiang (Inventor); Tian, Gang (Inventor)
2016-01-01
Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.
Extended Active Disturbance Rejection Controller
NASA Technical Reports Server (NTRS)
Tian, Gang (Inventor); Gao, Zhiqiang (Inventor)
2014-01-01
Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.
Space-based IR tracking bias removal using background star observations
NASA Astrophysics Data System (ADS)
Clemons, T. M., III; Chang, K. C.
2009-05-01
This paper provides the results of a proposed methodology for removing sensor bias from a space-based infrared (IR) tracking system through the use of stars detected in the background field of the tracking sensor. The tracking system consists of two satellites flying in a lead-follower formation tracking a ballistic target. Each satellite is equipped with a narrow-view IR sensor that provides azimuth and elevation to the target. The tracking problem is made more difficult due to a constant, non-varying or slowly varying bias error present in each sensor's line of sight measurements. As known stars are detected during the target tracking process, the instantaneous sensor pointing error can be calculated as the difference between star detection reading and the known position of the star. The system then utilizes a separate bias filter to estimate the bias value based on these detections and correct the target line of sight measurements to improve the target state vector. The target state vector is estimated through a Linearized Kalman Filter (LKF) for the highly non-linear problem of tracking a ballistic missile. Scenarios are created using Satellite Toolkit(C) for trajectories with associated sensor observations. Mean Square Error results are given for tracking during the period when the target is in view of the satellite IR sensors. The results of this research provide a potential solution to bias correction while simultaneously tracking a target.
Student's Uncertainty Modeling through a Multimodal Sensor-Based Approach
ERIC Educational Resources Information Center
Jraidi, Imene; Frasson, Claude
2013-01-01
Detecting the student internal state during learning is a key construct in educational environment and particularly in Intelligent Tutoring Systems (ITS). Students' uncertainty is of primary interest as it is deeply rooted in the process of knowledge construction. In this paper we propose a new sensor-based multimodal approach to model…
Apollo-NADP(+): a spectrally tunable family of genetically encoded sensors for NADP(+).
Cameron, William D; Bui, Cindy V; Hutchinson, Ashley; Loppnau, Peter; Gräslund, Susanne; Rocheleau, Jonathan V
2016-04-01
NADPH-dependent antioxidant pathways have a critical role in scavenging hydrogen peroxide (H2O2) produced by oxidative phosphorylation. Inadequate scavenging results in H2O2 accumulation and can cause disease. To measure NADPH/NADP(+) redox states, we explored genetically encoded sensors based on steady-state fluorescence anisotropy due to FRET (fluorescence resonance energy transfer) between homologous fluorescent proteins (homoFRET); we refer to these sensors as Apollo sensors. We created an Apollo sensor for NADP(+) (Apollo-NADP(+)) that exploits NADP(+)-dependent homodimerization of enzymatically inactive glucose-6-phosphate dehydrogenase (G6PD). This sensor is reversible, responsive to glucose-stimulated metabolism and spectrally tunable for compatibility with many other sensors. We used Apollo-NADP(+) to study beta cells responding to oxidative stress and demonstrated that NADPH is significantly depleted before H2O2 accumulation by imaging a Cerulean-tagged version of Apollo-NADP(+) with the H2O2 sensor HyPer.
Inertial sensor self-calibration in a visually-aided navigation approach for a micro-AUV.
Bonin-Font, Francisco; Massot-Campos, Miquel; Negre-Carrasco, Pep Lluis; Oliver-Codina, Gabriel; Beltran, Joan P
2015-01-16
This paper presents a new solution for underwater observation, image recording, mapping and 3D reconstruction in shallow waters. The platform, designed as a research and testing tool, is based on a small underwater robot equipped with a MEMS-based IMU, two stereo cameras and a pressure sensor. The data given by the sensors are fused, adjusted and corrected in a multiplicative error state Kalman filter (MESKF), which returns a single vector with the pose and twist of the vehicle and the biases of the inertial sensors (the accelerometer and the gyroscope). The inclusion of these biases in the state vector permits their self-calibration and stabilization, improving the estimates of the robot orientation. Experiments in controlled underwater scenarios and in the sea have demonstrated a satisfactory performance and the capacity of the vehicle to operate in real environments and in real time.
Inertial Sensor Self-Calibration in a Visually-Aided Navigation Approach for a Micro-AUV
Bonin-Font, Francisco; Massot-Campos, Miquel; Negre-Carrasco, Pep Lluis; Oliver-Codina, Gabriel; Beltran, Joan P.
2015-01-01
This paper presents a new solution for underwater observation, image recording, mapping and 3D reconstruction in shallow waters. The platform, designed as a research and testing tool, is based on a small underwater robot equipped with a MEMS-based IMU, two stereo cameras and a pressure sensor. The data given by the sensors are fused, adjusted and corrected in a multiplicative error state Kalman filter (MESKF), which returns a single vector with the pose and twist of the vehicle and the biases of the inertial sensors (the accelerometer and the gyroscope). The inclusion of these biases in the state vector permits their self-calibration and stabilization, improving the estimates of the robot orientation. Experiments in controlled underwater scenarios and in the sea have demonstrated a satisfactory performance and the capacity of the vehicle to operate in real environments and in real time. PMID:25602263
NASA Astrophysics Data System (ADS)
Zhuang, ShenDong; Chen, Yan; Zhang, WeiChao; Chen, Zhuo; Wang, ZhenLin
2018-01-01
We report on the experimental realization of a graphene quantum dots (GQD)-based humidity sensor and ultraviolet (UV) photodetector. We demonstrate that the conductance of the GQD increases linearly with increasing relative humidity (RH) of the surrounding environment due to the carrier trapping effect, which forms the basis of a humidity sensor. When the sensor is operated in the dark state, the sensitivity can reach as high as 0.48 nS RH -1. The GQD are also found to exhibit light intensity dependent negative photoconductivity under the UV irradiation, which can be exploited for UV detection. As a result of these carrier trapping and de-trapping processes, the performance of the photodetector can be significantly improved with the increasing RH, and the photoresponsivity can reach a high value of -418.1 μA W-1 in the high humid state of RH=90%.
Jung, Min Wook; Myung, Sung; Song, Wooseok; Kang, Min-A; Kim, Sung Ho; Yang, Cheol-Soo; Lee, Sun Sook; Lim, Jongsun; Park, Chong-Yun; Lee, Jeong-O; An, Ki-Seok
2014-08-27
We have fabricated graphene-based chemical sensors with flexible heaters for the highly sensitive detection of specific gases. We believe that increasing the temperature of the graphene surface significantly enhanced the electrical signal change of the graphene-based channel, and reduced the recovery time needed to obtain a normal state of equilibrium. In addition, a simple and efficient soft lithographic patterning process was developed via surface energy modification for advanced, graphene-based flexible devices, such as gas sensors. As a proof of concept, we demonstrated the high sensitivity of NO2 gas sensors based on graphene nanosheets. These devices were fabricated using a simple soft-lithographic patterning method, where flexible graphene heaters adjacent to the channel of sensing graphene were utilized to control graphene temperature.
USDA-ARS?s Scientific Manuscript database
The diversity of in situ soil moisture network protocols and instrumentation led to the development of a testbed for comparing in situ soil moisture sensors. Located in Marena, Oklahoma on the Oklahoma State University Range Research Station, the testbed consists of four base stations. Each station ...
Event-Based Sensing and Control for Remote Robot Guidance: An Experimental Case
Santos, Carlos; Martínez-Rey, Miguel; Santiso, Enrique
2017-01-01
This paper describes the theoretical and practical foundations for remote control of a mobile robot for nonlinear trajectory tracking using an external localisation sensor. It constitutes a classical networked control system, whereby event-based techniques for both control and state estimation contribute to efficient use of communications and reduce sensor activity. Measurement requests are dictated by an event-based state estimator by setting an upper bound to the estimation error covariance matrix. The rest of the time, state prediction is carried out with the Unscented transformation. This prediction method makes it possible to select the appropriate instants at which to perform actuations on the robot so that guidance performance does not degrade below a certain threshold. Ultimately, we obtained a combined event-based control and estimation solution that drastically reduces communication accesses. The magnitude of this reduction is set according to the tracking error margin of a P3-DX robot following a nonlinear trajectory, remotely controlled with a mini PC and whose pose is detected by a camera sensor. PMID:28878144
Virtual Mission Operations of Remote Sensors With Rapid Access To and From Space
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Stewart, Dave; Walke, Jon; Dikeman, Larry; Sage, Steven; Miller, Eric; Northam, James; Jackson, Chris; Taylor, John; Lynch, Scott;
2010-01-01
This paper describes network-centric operations, where a virtual mission operations center autonomously receives sensor triggers, and schedules space and ground assets using Internet-based technologies and service-oriented architectures. For proof-of-concept purposes, sensor triggers are received from the United States Geological Survey (USGS) to determine targets for space-based sensors. The Surrey Satellite Technology Limited (SSTL) Disaster Monitoring Constellation satellite, the United Kingdom Disaster Monitoring Constellation (UK-DMC), is used as the space-based sensor. The UK-DMC s availability is determined via machine-to-machine communications using SSTL s mission planning system. Access to/from the UK-DMC for tasking and sensor data is via SSTL s and Universal Space Network s (USN) ground assets. The availability and scheduling of USN s assets can also be performed autonomously via machine-to-machine communications. All communication, both on the ground and between ground and space, uses open Internet standards.
Lee, Kwan Woo; Yoon, Hyo Sik; Song, Jong Min; Park, Kang Ryoung
2018-03-23
Because aggressive driving often causes large-scale loss of life and property, techniques for advance detection of adverse driver emotional states have become important for the prevention of aggressive driving behaviors. Previous studies have primarily focused on systems for detecting aggressive driver emotion via smart-phone accelerometers and gyro-sensors, or they focused on methods of detecting physiological signals using electroencephalography (EEG) or electrocardiogram (ECG) sensors. Because EEG and ECG sensors cause discomfort to drivers and can be detached from the driver's body, it becomes difficult to focus on bio-signals to determine their emotional state. Gyro-sensors and accelerometers depend on the performance of GPS receivers and cannot be used in areas where GPS signals are blocked. Moreover, if driving on a mountain road with many quick turns, a driver's emotional state can easily be misrecognized as that of an aggressive driver. To resolve these problems, we propose a convolutional neural network (CNN)-based method of detecting emotion to identify aggressive driving using input images of the driver's face, obtained using near-infrared (NIR) light and thermal camera sensors. In this research, we conducted an experiment using our own database, which provides a high classification accuracy for detecting driver emotion leading to either aggressive or smooth (i.e., relaxed) driving. Our proposed method demonstrates better performance than existing methods.
Online Sensor Fault Detection Based on an Improved Strong Tracking Filter
Wang, Lijuan; Wu, Lifeng; Guan, Yong; Wang, Guohui
2015-01-01
We propose a method for online sensor fault detection that is based on the evolving Strong Tracking Filter (STCKF). The cubature rule is used to estimate states to improve the accuracy of making estimates in a nonlinear case. A residual is the difference in value between an estimated value and the true value. A residual will be regarded as a signal that includes fault information. The threshold is set at a reasonable level, and will be compared with residuals to determine whether or not the sensor is faulty. The proposed method requires only a nominal plant model and uses STCKF to estimate the original state vector. The effectiveness of the algorithm is verified by simulation on a drum-boiler model. PMID:25690553
Vision-Based SLAM System for Unmanned Aerial Vehicles
Munguía, Rodrigo; Urzua, Sarquis; Bolea, Yolanda; Grau, Antoni
2016-01-01
The present paper describes a vision-based simultaneous localization and mapping system to be applied to Unmanned Aerial Vehicles (UAVs). The main contribution of this work is to propose a novel estimator relying on an Extended Kalman Filter. The estimator is designed in order to fuse the measurements obtained from: (i) an orientation sensor (AHRS); (ii) a position sensor (GPS); and (iii) a monocular camera. The estimated state consists of the full state of the vehicle: position and orientation and their first derivatives, as well as the location of the landmarks observed by the camera. The position sensor will be used only during the initialization period in order to recover the metric scale of the world. Afterwards, the estimated map of landmarks will be used to perform a fully vision-based navigation when the position sensor is not available. Experimental results obtained with simulations and real data show the benefits of the inclusion of camera measurements into the system. In this sense the estimation of the trajectory of the vehicle is considerably improved, compared with the estimates obtained using only the measurements from the position sensor, which are commonly low-rated and highly noisy. PMID:26999131
On-Board Event-Based State Estimation for Trajectory Approaching and Tracking of a Vehicle
Martínez-Rey, Miguel; Espinosa, Felipe; Gardel, Alfredo; Santos, Carlos
2015-01-01
For the problem of pose estimation of an autonomous vehicle using networked external sensors, the processing capacity and battery consumption of these sensors, as well as the communication channel load should be optimized. Here, we report an event-based state estimator (EBSE) consisting of an unscented Kalman filter that uses a triggering mechanism based on the estimation error covariance matrix to request measurements from the external sensors. This EBSE generates the events of the estimator module on-board the vehicle and, thus, allows the sensors to remain in stand-by mode until an event is generated. The proposed algorithm requests a measurement every time the estimation distance root mean squared error (DRMS) value, obtained from the estimator's covariance matrix, exceeds a threshold value. This triggering threshold can be adapted to the vehicle's working conditions rendering the estimator even more efficient. An example of the use of the proposed EBSE is given, where the autonomous vehicle must approach and follow a reference trajectory. By making the threshold a function of the distance to the reference location, the estimator can halve the use of the sensors with a negligible deterioration in the performance of the approaching maneuver. PMID:26102489
Fluoride-selective optical sensor based on the dipyrrolyl-tetrathiafulvalene chromophore.
Rivadehi, Shadi; Reid, Ellen F; Hogan, Conor F; Bhosale, Sheshanath V; Langford, Steven J
2012-01-28
A chemosensor bearing dipyrrolyl motifs as recognition sites and a tetrathiafulvalene redox tag has been evaluated as an optical and redox sensor for a series of anions (F(-), Cl(-), Br(-), HSO(4)(-), CH(3)COO(-), and H(2)PO(4)(-)) in DCM solution. The receptor shows specific optical signaling for fluoride but little electrochemical effect in solution. The solid-state performance of the sensor leads to measurable changes in water. Design implications towards better systems based on these results and other examples are discussed.
Sun, Chunran; Wang, Muguang; Jian, Shuisheng
2017-08-21
In this paper, a novel quasi-fan Solc structure filter based on elliptical-core spun fiber for twist sensing has been experimentally investigated and theoretically analyzed. The discrete model of spun fiber has been built to analyze the transmission characteristics of proposed sensor. Both experimental and simulated results indicate that the extinction ratio of the comb spectrum based on quasi-fan Solc birefringent fiber filter varies with twist angle and agrees well with each other. Based on the intensity modulation, the proposed twist sensor exhibits a high sensitivity of 0.02219 dB/(°/m). Moreover, thanks to the invariability of the fiber birefringence and the state of polarization of the input light, the proposed twist sensor has a very low temperature and strain sensitivity, which can avoid the cross-sensitivity problem existing in most twist sensors.
A finite state machine read-out chip for integrated surface acoustic wave sensors
NASA Astrophysics Data System (ADS)
Rakshit, Sambarta; Iliadis, Agis A.
2015-01-01
A finite state machine based integrated sensor circuit suitable for the read-out module of a monolithically integrated SAW sensor on Si is reported. The primary sensor closed loop consists of a voltage controlled oscillator (VCO), a peak detecting comparator, a finite state machine (FSM), and a monolithically integrated SAW sensor device. The output of the system oscillates within a narrow voltage range that correlates with the SAW pass-band response. The period of oscillation is of the order of the SAW phase delay. We use timing information from the FSM to convert SAW phase delay to an on-chip 10 bit digital output operating on the principle of time to digital conversion (TDC). The control inputs of this digital conversion block are generated by a second finite state machine operating under a divided system clock. The average output varies with changes in SAW center frequency, thus tracking mass sensing events in real time. Based on measured VCO gain of 16 MHz/V our system will convert a 10 kHz SAW frequency shift to a corresponding mean voltage shift of 0.7 mV. A corresponding shift in phase delay is converted to a one or two bit shift in the TDC output code. The system can handle alternate SAW center frequencies and group delays simply by adjusting the VCO control and TDC delay control inputs. Because of frequency to voltage and phase to digital conversion, this topology does not require external frequency counter setups and is uniquely suitable for full monolithic integration of autonomous sensor systems and tags.
A fluidics-based impact sensor
Takahashi, Daigo; Hara, Keisuke; Okano, Taiji
2018-01-01
Microelectromechanical systems (MEMS)-based high-performance accelerometers are ubiquitously used in various electronic devices. However, there is an existing need to detect physical impacts using low-cost devices with no electronic circuits or a battery. We designed and fabricated an impact sensor prototype using a commercial stereolithography apparatus that only consists of a plastic housing and working fluids. The sensor device responds to the instantaneous acceleration (impact) by deformation and pinch off of a water droplet that is suspended in oil in a sensor cavity. We tested the various geometrical and physical parameters of the impact sensor to identify their relations to threshold acceleration values. We show that the state diagram that is plotted against the dimensionless Archimedes and Bond numbers adequately describes the response of the proposed sensor. PMID:29634750
Turn on ESPT: novel salicylaldehyde based sensor for biological important fluoride sensing.
Liu, Kai; Zhao, Xiaojun; Liu, Qingxiang; Huo, Jianzhong; Fu, Huifang; Wang, Ying
2014-09-05
A novel and simple salicylaldehyde based anion fluorescent sensor 1 has been designed, which can selectively sense fluoride by 'turn on' excited-state intermolecular proton transfer (ESPT). The binding constant and the stoichiometry were obtained by non-linear least-square analysis of the titration curves. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, T.P.
Sensors for the determination of pH have been developed which are based on the immobilization of direct dyes at hydrolyzed cellulosic films. The performance and structural characteristics of the sensors were investigated by a variety of spectroscopic methods, and applications for remote sensing were developed. Films of cellulose acetate were base hydrolyzed in 0.07 M KOH to yield a porous support structure. The structural changes resulting from the hydrolysis on cellulose acetate were probed with infrared internal reflectance spectroscopy. The progress of the hydrolysis reaction was monitored by the changes in vibrational modes of the acetyl group, and other spectralmore » changes indicated changes in film thickness as a result of solvent incorporation. Direct dyes, including Congo Red and C. I. Direct Blue 8, were then immobilized at these porous cellulosic films. The optical response characteristics of the Congo Red pH sensor were characterized, including the UV-visible absorption spectra as a function of pH, the response time as a function of ionic strength and ionic size of electrolyte, the long-term stability of the sensor, the effects of metal-ion interference, and the concentration of Congo Red in the polymer film. The structural characteristics of the sensor were investigated by internal reflectance spectroscopy and resonance-enhanced Raman spectroscopy, and the protonation sites were identified as the two azo groups of Congo Red. Infrared internal reflection spectra of immobilized Congo Red led to the development of a sensor for pH based on infrared spectroscopy. Finally, a two-wavelength fiber-optic photometer, which is based on solid-state sources and detectors, and a fiber-optic photometer, which is based on solid-state sources and detectors, and a fiber-optic probe were developed for pH determinations using Congo Red and C. I. Direct Blue 8 pH sensors.« less
NASA Technical Reports Server (NTRS)
Delaat, J. C.; Merrill, W. C.
1983-01-01
A sensor failure detection, isolation, and accommodation algorithm was developed which incorporates analytic sensor redundancy through software. This algorithm was implemented in a high level language on a microprocessor based controls computer. Parallel processing and state-of-the-art 16-bit microprocessors are used along with efficient programming practices to achieve real-time operation.
Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin.
Guo, Huayang; Lan, Changyong; Zhou, Zhifei; Sun, Peihua; Wei, Dapeng; Li, Chun
2017-05-18
Skin-mountable chemical sensors using flexible chemically sensitive nanomaterials are of great interest for electronic skin (e-skin) application. To build these sensors, the emerging atomically thin two-dimensional (2D) layered semiconductors could be a good material candidate. Herein, we show that a large-area WS 2 film synthesized by sulfurization of a tungsten film exhibits high humidity sensing performance both in natural flat and high mechanical flexible states (bending curvature down to 5 mm). The conductivity of as-synthesized WS 2 increases sensitively over a wide relative humidity range (up to 90%) with fast response and recovery times in a few seconds. By using graphene as electrodes and thin polydimethylsiloxane (PDMS) as substrate, a transparent, flexible, and stretchable humidity sensor was fabricated. This senor can be well laminated onto skin and shows stable water moisture sensing behaviors in the undeformed relaxed state as well as under compressive and tensile loadings. Furthermore, its high sensing performance enables real-time monitoring of human breath, indicating a potential mask-free breath monitoring for healthcare application. We believe that such a skin-activity compatible WS 2 humidity sensor may shed light on developing low power consumption wearable chemical sensors based on 2D semiconductors.
Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X.
2012-01-01
Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A−1, linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C−1 with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids. PMID:23202221
Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X
2012-11-09
Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A(-1), linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C(-1) with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids.
NASA Astrophysics Data System (ADS)
Chelibanov, V. P.; Ishanin, G. G.; Isaev, L. N.
2014-05-01
Role of nitrogen oxide in ambient air is described and analyzed. New method of nitrogen oxide concentration measurement in gas phase is suggested based on ozone concentration measurement with titration by nitrogen oxide. Research of chemiluminescent sensor composition is carried out on experimental stand. The sensor produced on the base of solid state non-activated chemiluminescent composition is applied as ozone sensor. Composition is put on the surface of polymer matrix with developed surface. Sensor compositions includes gallic acid with addition of rodamine-6G. Model of interaction process between sensor composition and ozone has been developed, main products appeared during reaction are identified. The product determining the speed of luminescense appearance is found. This product belongs to quinone class. Then new structure of chemiluminescent composition was suggested, with absence of activation period and with high stability of operation. Experimental model of gas analyzer was constructed and operation algorithm was developed. It was demonstrated that developed NO measuring instrument would be applied for monitoring purposes of ambient air. This work was partially financially supported by Government of Russian Federation, Grant 074-U01
Talebi, H A; Khorasani, K; Tafazoli, S
2009-01-01
This paper presents a robust fault detection and isolation (FDI) scheme for a general class of nonlinear systems using a neural-network-based observer strategy. Both actuator and sensor faults are considered. The nonlinear system considered is subject to both state and sensor uncertainties and disturbances. Two recurrent neural networks are employed to identify general unknown actuator and sensor faults, respectively. The neural network weights are updated according to a modified backpropagation scheme. Unlike many previous methods developed in the literature, our proposed FDI scheme does not rely on availability of full state measurements. The stability of the overall FDI scheme in presence of unknown sensor and actuator faults as well as plant and sensor noise and uncertainties is shown by using the Lyapunov's direct method. The stability analysis developed requires no restrictive assumptions on the system and/or the FDI algorithm. Magnetorquer-type actuators and magnetometer-type sensors that are commonly employed in the attitude control subsystem (ACS) of low-Earth orbit (LEO) satellites for attitude determination and control are considered in our case studies. The effectiveness and capabilities of our proposed fault diagnosis strategy are demonstrated and validated through extensive simulation studies.
Secure Autonomous Automated Scheduling (SAAS). Rev. 1.1
NASA Technical Reports Server (NTRS)
Walke, Jon G.; Dikeman, Larry; Sage, Stephen P.; Miller, Eric M.
2010-01-01
This report describes network-centric operations, where a virtual mission operations center autonomously receives sensor triggers, and schedules space and ground assets using Internet-based technologies and service-oriented architectures. For proof-of-concept purposes, sensor triggers are received from the United States Geological Survey (USGS) to determine targets for space-based sensors. The Surrey Satellite Technology Limited (SSTL) Disaster Monitoring Constellation satellite, the UK-DMC, is used as the space-based sensor. The UK-DMC's availability is determined via machine-to-machine communications using SSTL's mission planning system. Access to/from the UK-DMC for tasking and sensor data is via SSTL's and Universal Space Network's (USN) ground assets. The availability and scheduling of USN's assets can also be performed autonomously via machine-to-machine communications. All communication, both on the ground and between ground and space, uses open Internet standards
Berger, Dietrich; Lanza, Gisela
2017-12-21
This publication presents the realisation of a sensor concept, which is based on eddy current testing, to detect textile defects during preforming of semi-finished carbon fibre parts. The presented system has the potential for 100% control of manufactured carbon fibre based components, allowing the immediate exclusion of defective parts from further process steps. The core innovation of this system is given by the high degree of process integration, which has not been implemented in the state of the art. The publication presents the functional principle of the sensor that is based on half-transmission probes as well as the signals that can be gained by its application. Furthermore, a method to determine the optimum sensor resolution is presented as well as the sensor housing and its integration in the preforming process.
Multispectral Filter Arrays: Recent Advances and Practical Implementation
Lapray, Pierre-Jean; Wang, Xingbo; Thomas, Jean-Baptiste; Gouton, Pierre
2014-01-01
Thanks to some technical progress in interferencefilter design based on different technologies, we can finally successfully implement the concept of multispectral filter array-based sensors. This article provides the relevant state-of-the-art for multispectral imaging systems and presents the characteristics of the elements of our multispectral sensor as a case study. The spectral characteristics are based on two different spatial arrangements that distribute eight different bandpass filters in the visible and near-infrared area of the spectrum. We demonstrate that the system is viable and evaluate its performance through sensor spectral simulation. PMID:25407904
Al-Mekhlafi, Zeyad Ghaleb; Hanapi, Zurina Mohd; Othman, Mohamed; Zukarnain, Zuriati Ahmad
2017-01-01
Recently, Pulse Coupled Oscillator (PCO)-based travelling waves have attracted substantial attention by researchers in wireless sensor network (WSN) synchronization. Because WSNs are generally artificial occurrences that mimic natural phenomena, the PCO utilizes firefly synchronization of attracting mating partners for modelling the WSN. However, given that sensor nodes are unable to receive messages while transmitting data packets (due to deafness), the PCO model may not be efficient for sensor network modelling. To overcome this limitation, this paper proposed a new scheme called the Travelling Wave Pulse Coupled Oscillator (TWPCO). For this, the study used a self-organizing scheme for energy-efficient WSNs that adopted travelling wave biologically inspired network systems based on phase locking of the PCO model to counteract deafness. From the simulation, it was found that the proposed TWPCO scheme attained a steady state after a number of cycles. It also showed superior performance compared to other mechanisms, with a reduction in the total energy consumption of 25%. The results showed that the performance improved by 13% in terms of data gathering. Based on the results, the proposed scheme avoids the deafness that occurs in the transmit state in WSNs and increases the data collection throughout the transmission states in WSNs.
Hanapi, Zurina Mohd; Othman, Mohamed; Zukarnain, Zuriati Ahmad
2017-01-01
Recently, Pulse Coupled Oscillator (PCO)-based travelling waves have attracted substantial attention by researchers in wireless sensor network (WSN) synchronization. Because WSNs are generally artificial occurrences that mimic natural phenomena, the PCO utilizes firefly synchronization of attracting mating partners for modelling the WSN. However, given that sensor nodes are unable to receive messages while transmitting data packets (due to deafness), the PCO model may not be efficient for sensor network modelling. To overcome this limitation, this paper proposed a new scheme called the Travelling Wave Pulse Coupled Oscillator (TWPCO). For this, the study used a self-organizing scheme for energy-efficient WSNs that adopted travelling wave biologically inspired network systems based on phase locking of the PCO model to counteract deafness. From the simulation, it was found that the proposed TWPCO scheme attained a steady state after a number of cycles. It also showed superior performance compared to other mechanisms, with a reduction in the total energy consumption of 25%. The results showed that the performance improved by 13% in terms of data gathering. Based on the results, the proposed scheme avoids the deafness that occurs in the transmit state in WSNs and increases the data collection throughout the transmission states in WSNs. PMID:28056020
Wang, Shinn-Fwu
2009-01-01
A small-displacement sensor based on total-internal reflection theory and surface plasmon resonance technology is proposed for use in heterodyne interferometry. A small displacement can be obtained simply by measuring the variation in phase difference between s- and p-polarization states with the small-displacement sensor. The theoretical displacement resolution of the small-displacement sensor can reach 0.45 nm. The sensor has some additional advantages, e.g., a simple optical setup, high resolution, high sensitivity and rapid measurement. Its feasibility is also demonstrated.
Polarization stable plasmonic sensor based on tilted fiber Bragg grating
NASA Astrophysics Data System (ADS)
Tomyshev, Kirill A.; Chamorovskiy, Yuriy K.; Ustimchik, Vasily E.; Butov, Oleg V.
2017-04-01
This paper presents a solution to one of the major problems of plasmonic fiber Bragg grating sensors concerning their high sensitivity to changes in the polarization state of light propagating through optical fiber. For the first time these kind of sensors have been produced using polarization maintaining fibers, thereby stabilization has been achieved using mechanical action and bending the supplied fiber. Comparative experiments have demonstrated that the sensor readings stability is at least an order of magnitude higher relative to other sensors, which record in a standard fiber with an isotropic structure.
NASA Astrophysics Data System (ADS)
Adabi, Sepideh; Adabi, Sahar; Rezaee, Ali
According to the traditional definition of Wireless Sensor Networks (WSNs), static sensors have limited the feasibility of WSNs in some kind of approaches, so the mobility was introduced in WSN. Mobile nodes in a WSN come equipped with battery and from the point of deployment, this battery reserve becomes a valuable resource since it cannot be replenished. Hence, maximizing the network lifetime by minimizing the energy is an important challenge in Mobile WSN. Energy conservation can be accomplished by different approaches. In this paper, we presented an energy conservation solution based on Cellular Automata. The main objective of this solution is based on dynamically adjusting the transmission range and switching between operational states of the sensor nodes.
NASA Astrophysics Data System (ADS)
Lan, Linxin; Li, Tianduo; Wei, Tao; Pang, He; Sun, Tao; Wang, Enhua; Liu, Haixia; Niu, Qingfen
2018-03-01
An oligothiophene-based colorimetric and ratiometric fluorescence dual-channel cyanide chemosensor 3 T-2CN was reported. Sensor 3 T-2CN showed both naked-eye recognition and ratiometric fluorescence response for CN- with an excellent selectivity and high sensitivity. The sensing mechanism based on the nucleophilic attack of CN- on the vinyl Cdbnd C bond has been successfully confirmed by the optical measurements, 1H NMR titration, FT-IR spectra as well as the DFT/TD-DFT calculations. Moreover, the detection limit was calculated to be 0.19 μM, which is much lower than the maximum permission concentration in drinking water (1.9 μM). Importantly, test strips (filter paper and TLC plates) containing 3 T-2CN were fabricated, which could act as a practical and efficient solid state optical sensor for CN- in field measurements.
Manufacture and application of RuO2 solid-state metal-oxide pH sensor to common beverages.
Lonsdale, W; Wajrak, M; Alameh, K
2018-04-01
A new reproducible solid-state metal-oxide pH sensor for beverage quality monitoring is developed and characterised. The working electrode of the developed pH sensor is based on the use of laser-etched sputter-deposited RuO 2 on Al 2 O 3 substrate, modified with thin layers of sputter-deposited Ta 2 O 5 and drop-cast Nafion for minimisation of redox interference. The reference electrode is manufactured by further modifying a working electrode with a porous polyvinyl butyral layer loaded with fumed SiO 2 . The developed pH sensor shows excellent performance when applied to a selection of beverage samples, with a measured accuracy within 0.08 pH of a commercial glass pH sensor. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Grate, J. W.; O'Hara, M. J.; Egorov, O. B.; Burge, S. R.
2009-12-01
We have developed automated sensor and analyzer devices for detection and monitoring of trace radionuclides in water, using preconcentrating columns and radiometric detection. The preconcentrating minicolumn sensor concept combines selective capture and detection in a single functional unit, where the column contains tens to hundreds of milligrams of selectively sorbent material, and the entire column content is monitored with a radiometric detector. Compared to thin film sensors with a few microgram of sorbent, this approach achieves tremendous preconcentration with efficient mass transport via pumping. Furthermore, in an equilibration-based mode of operation, the preconcentration by the sensor is maximized while eliminating the need for consumable reagents to regenerate the column; it can simply be re-equilibrated. We have demonstrated quantification of radionuclides such as technetium-99 to levels below drinking water standards in an equilibration-based process that produces steady state signals, signal proportional to concentration, and easy re-equilibration to new concentration levels. Alternatively, analyzers can be developed with separate separation and detection units that are fluidically linked. We have demonstrated detection of strontium-90 to levels below drinking water standards by this approach. We are developing autonomous systems for at-site monitoring on the Hanford Site in Washington State, using the fluidic sensor and analyzer methods, with the aim of monitoring natural and accelerated attenuation processes, remediation and barrier performance, and contaminant fluxes in the environment. Figure 1. The strontium-90 monitoring method deployed as part of the Burge Environmental Universal Sensor Platform, shown on the shores of the Columbia River on the Hanford site in Washington State.
Characterization of cement-based materials using a reusable piezoelectric impedance-based sensor
NASA Astrophysics Data System (ADS)
Tawie, R.; Lee, H. K.
2011-08-01
This paper proposes a reusable sensor, which employs a piezoceramic (PZT) plate as an active sensing transducer, for non-destructive monitoring of cement-based materials based on the electromechanical impedance (EMI) sensing technique. The advantage of the sensor design is that the PZT can be easily removed from the set-up and re-used for repetitive tests. The applicability of the sensor was demonstrated for monitoring of the setting of cement mortar. EMI measurements were performed using an impedance analyzer and the transformation of the specimen from the plastic to solid state was monitored by automatically measuring the changes in the PZT conductance spectra with respect to curing time using the root mean square deviation (RMSD) algorithm. In another experiment, drying-induced moisture loss of a hardened mortar specimen at saturated surface dry (SSD) condition was measured, and monitored using the reusable sensor to establish a correlation between the RMSD values and moisture loss rate. The reusable sensor was also demonstrated for detecting progressive damages imparted on a mortar specimen attached with the sensor under several loading levels before allowing it to load to failure. Overall, the reusable sensor is an effective and efficient monitoring device that could possibly be used for field application in characterization of cement-based materials.
Electronic Thermometer Readings
NASA Technical Reports Server (NTRS)
2001-01-01
NASA Stennis' adaptive predictive algorithm for electronic thermometers uses sample readings during the initial rise in temperature and applies an algorithm that accurately and rapidly predicts the steady state temperature. The final steady state temperature of an object can be calculated based on the second-order logarithm of the temperature signals acquired by the sensor and predetermined variables from the sensor characteristics. These variables are calculated during tests of the sensor. Once the variables are determined, relatively little data acquisition and data processing time by the algorithm is required to provide a near-accurate approximation of the final temperature. This reduces the delay in the steady state response time of a temperature sensor. This advanced algorithm can be implemented in existing software or hardware with an erasable programmable read-only memory (EPROM). The capability for easy integration eliminates the expense of developing a whole new system that offers the benefits provided by NASA Stennis' technology.
The chief goal is to develop new selective solid state sensors for carcinogenic and toxic chromium(VI) and arsenic(V) in water based on redox quenching of the luminescence from nanostructured porous silicon and polysiloles.
A Large-Scale Study of Fingerprint Matching Systems for Sensor Interoperability Problem
Hussain, Muhammad; AboAlSamh, Hatim; AlZuair, Mansour
2018-01-01
The fingerprint is a commonly used biometric modality that is widely employed for authentication by law enforcement agencies and commercial applications. The designs of existing fingerprint matching methods are based on the hypothesis that the same sensor is used to capture fingerprints during enrollment and verification. Advances in fingerprint sensor technology have raised the question about the usability of current methods when different sensors are employed for enrollment and verification; this is a fingerprint sensor interoperability problem. To provide insight into this problem and assess the status of state-of-the-art matching methods to tackle this problem, we first analyze the characteristics of fingerprints captured with different sensors, which makes cross-sensor matching a challenging problem. We demonstrate the importance of fingerprint enhancement methods for cross-sensor matching. Finally, we conduct a comparative study of state-of-the-art fingerprint recognition methods and provide insight into their abilities to address this problem. We performed experiments using a public database (FingerPass) that contains nine datasets captured with different sensors. We analyzed the effects of different sensors and found that cross-sensor matching performance deteriorates when different sensors are used for enrollment and verification. In view of our analysis, we propose future research directions for this problem. PMID:29597286
A Large-Scale Study of Fingerprint Matching Systems for Sensor Interoperability Problem.
AlShehri, Helala; Hussain, Muhammad; AboAlSamh, Hatim; AlZuair, Mansour
2018-03-28
The fingerprint is a commonly used biometric modality that is widely employed for authentication by law enforcement agencies and commercial applications. The designs of existing fingerprint matching methods are based on the hypothesis that the same sensor is used to capture fingerprints during enrollment and verification. Advances in fingerprint sensor technology have raised the question about the usability of current methods when different sensors are employed for enrollment and verification; this is a fingerprint sensor interoperability problem. To provide insight into this problem and assess the status of state-of-the-art matching methods to tackle this problem, we first analyze the characteristics of fingerprints captured with different sensors, which makes cross-sensor matching a challenging problem. We demonstrate the importance of fingerprint enhancement methods for cross-sensor matching. Finally, we conduct a comparative study of state-of-the-art fingerprint recognition methods and provide insight into their abilities to address this problem. We performed experiments using a public database (FingerPass) that contains nine datasets captured with different sensors. We analyzed the effects of different sensors and found that cross-sensor matching performance deteriorates when different sensors are used for enrollment and verification. In view of our analysis, we propose future research directions for this problem.
Real-time sensor validation and fusion for distributed autonomous sensors
NASA Astrophysics Data System (ADS)
Yuan, Xiaojing; Li, Xiangshang; Buckles, Bill P.
2004-04-01
Multi-sensor data fusion has found widespread applications in industrial and research sectors. The purpose of real time multi-sensor data fusion is to dynamically estimate an improved system model from a set of different data sources, i.e., sensors. This paper presented a systematic and unified real time sensor validation and fusion framework (RTSVFF) based on distributed autonomous sensors. The RTSVFF is an open architecture which consists of four layers - the transaction layer, the process fusion layer, the control layer, and the planning layer. This paradigm facilitates distribution of intelligence to the sensor level and sharing of information among sensors, controllers, and other devices in the system. The openness of the architecture also provides a platform to test different sensor validation and fusion algorithms and thus facilitates the selection of near optimal algorithms for specific sensor fusion application. In the version of the model presented in this paper, confidence weighted averaging is employed to address the dynamic system state issue noted above. The state is computed using an adaptive estimator and dynamic validation curve for numeric data fusion and a robust diagnostic map for decision level qualitative fusion. The framework is then applied to automatic monitoring of a gas-turbine engine, including a performance comparison of the proposed real-time sensor fusion algorithms and a traditional numerical weighted average.
Graphene Squeeze-Film Pressure Sensors.
Dolleman, Robin J; Davidovikj, Dejan; Cartamil-Bueno, Santiago J; van der Zant, Herre S J; Steeneken, Peter G
2016-01-13
The operating principle of squeeze-film pressure sensors is based on the pressure dependence of a membrane's resonance frequency, caused by the compression of the surrounding gas which changes the resonator stiffness. To realize such sensors, not only strong and flexible membranes are required, but also minimization of the membrane's mass is essential to maximize responsivity. Here, we demonstrate the use of a few-layer graphene membrane as a squeeze-film pressure sensor. A clear pressure dependence of the membrane's resonant frequency is observed, with a frequency shift of 4 MHz between 8 and 1000 mbar. The sensor shows a reproducible response and no hysteresis. The measured responsivity of the device is 9000 Hz/mbar, which is a factor 45 higher than state-of-the-art MEMS-based squeeze-film pressure sensors while using a 25 times smaller membrane area.
SATware: A Semantic Approach for Building Sentient Spaces
NASA Astrophysics Data System (ADS)
Massaguer, Daniel; Mehrotra, Sharad; Vaisenberg, Ronen; Venkatasubramanian, Nalini
This chapter describes the architecture of a semantic-based middleware environment for building sensor-driven sentient spaces. The proposed middleware explicitly models sentient space semantics (i.e., entities, spaces, activities) and supports mechanisms to map sensor observations to the state of the sentient space. We argue how such a semantic approach provides a powerful programming environment for building sensor spaces. In addition, the approach provides natural ways to exploit semantics for variety of purposes including scheduling under resource constraints and sensor recalibration.
Estimation and Fusion for Tracking Over Long-Haul Links Using Artificial Neural Networks
Liu, Qiang; Brigham, Katharine; Rao, Nageswara S. V.
2017-02-01
In a long-haul sensor network, sensors are remotely deployed over a large geographical area to perform certain tasks, such as tracking and/or monitoring of one or more dynamic targets. A remote fusion center fuses the information provided by these sensors so that a final estimate of certain target characteristics – such as the position – is expected to possess much improved quality. In this paper, we pursue learning-based approaches for estimation and fusion of target states in longhaul sensor networks. In particular, we consider learning based on various implementations of artificial neural networks (ANNs). Finally, the joint effect of (i)more » imperfect communication condition, namely, link-level loss and delay, and (ii) computation constraints, in the form of low-quality sensor estimates, on ANN-based estimation and fusion, is investigated by means of analytical and simulation studies.« less
Estimation and Fusion for Tracking Over Long-Haul Links Using Artificial Neural Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Qiang; Brigham, Katharine; Rao, Nageswara S. V.
In a long-haul sensor network, sensors are remotely deployed over a large geographical area to perform certain tasks, such as tracking and/or monitoring of one or more dynamic targets. A remote fusion center fuses the information provided by these sensors so that a final estimate of certain target characteristics – such as the position – is expected to possess much improved quality. In this paper, we pursue learning-based approaches for estimation and fusion of target states in longhaul sensor networks. In particular, we consider learning based on various implementations of artificial neural networks (ANNs). Finally, the joint effect of (i)more » imperfect communication condition, namely, link-level loss and delay, and (ii) computation constraints, in the form of low-quality sensor estimates, on ANN-based estimation and fusion, is investigated by means of analytical and simulation studies.« less
A Robust Nonlinear Observer for Real-Time Attitude Estimation Using Low-Cost MEMS Inertial Sensors
Guerrero-Castellanos, José Fermi; Madrigal-Sastre, Heberto; Durand, Sylvain; Torres, Lizeth; Muñoz-Hernández, German Ardul
2013-01-01
This paper deals with the attitude estimation of a rigid body equipped with angular velocity sensors and reference vector sensors. A quaternion-based nonlinear observer is proposed in order to fuse all information sources and to obtain an accurate estimation of the attitude. It is shown that the observer error dynamics can be separated into two passive subsystems connected in “feedback”. Then, this property is used to show that the error dynamics is input-to-state stable when the measurement disturbance is seen as an input and the error as the state. These results allow one to affirm that the observer is “robustly stable”. The proposed observer is evaluated in real-time with the design and implementation of an Attitude and Heading Reference System (AHRS) based on low-cost MEMS (Micro-Electro-Mechanical Systems) Inertial Measure Unit (IMU) and magnetic sensors and a 16-bit microcontroller. The resulting estimates are compared with a high precision motion system to demonstrate its performance. PMID:24201316
Oxygen sensor signal validation for the safety of the rebreather diver.
Sieber, Arne; L'abbate, Antonio; Bedini, Remo
2009-03-01
In electronically controlled, closed-circuit rebreather diving systems, the partial pressure of oxygen inside the breathing loop is controlled with three oxygen sensors, a microcontroller and a solenoid valve - critical components that may fail. State-of-the-art detection of sensor failure, based on a voting algorithm, may fail under circumstances where two or more sensors show the same but incorrect values. The present paper details a novel rebreather controller that offers true sensor-signal validation, thus allowing efficient and reliable detection of sensor failure. The core components of this validation system are two additional solenoids, which allow an injection of oxygen or diluent gas directly across the sensor membrane.
Glenn, Tasha; Monteith, Scott
2014-12-01
With the rapid and ubiquitous acceptance of new technologies, algorithms will be used to estimate new measures of mental state and behavior based on digital data. The algorithms will analyze data collected from sensors in smartphones and wearable technology, and data collected from Internet and smartphone usage and activities. In the future, new medical measures that assist with the screening, diagnosis, and monitoring of psychiatric disorders will be available despite unresolved reliability, usability, and privacy issues. At the same time, similar non-medical commercial measures of mental state are being developed primarily for targeted advertising. There are societal and ethical implications related to the use of these measures of mental state and behavior for both medical and non-medical purposes.
Sensor fault detection and recovery in satellite attitude control
NASA Astrophysics Data System (ADS)
Nasrolahi, Seiied Saeed; Abdollahi, Farzaneh
2018-04-01
This paper proposes an integrated sensor fault detection and recovery for the satellite attitude control system. By introducing a nonlinear observer, the healthy sensor measurements are provided. Considering attitude dynamics and kinematic, a novel observer is developed to detect the fault in angular rate as well as attitude sensors individually or simultaneously. There is no limit on type and configuration of attitude sensors. By designing a state feedback based control signal and Lyapunov stability criterion, the uniformly ultimately boundedness of tracking errors in the presence of sensor faults is guaranteed. Finally, simulation results are presented to illustrate the performance of the integrated scheme.
Space based optical staring sensor LOS determination and calibration using GCPs observation
NASA Astrophysics Data System (ADS)
Chen, Jun; An, Wei; Deng, Xinpu; Yang, Jungang; Sha, Zhichao
2016-10-01
Line of sight (LOS) attitude determination and calibration is the key prerequisite of tracking and location of targets in space based infrared (IR) surveillance systems (SBIRS) and the LOS determination and calibration of staring sensor is one of the difficulties. This paper provides a novel methodology for removing staring sensor bias through the use of Ground Control Points (GCPs) detected in the background field of the sensor. Based on researching the imaging model and characteristics of the staring sensor of SBIRS geostationary earth orbit part (GEO), the real time LOS attitude determination and calibration algorithm using landmark control point is proposed. The influential factors (including the thermal distortions error, assemble error, and so on) of staring sensor LOS attitude error are equivalent to bias angle of LOS attitude. By establishing the observation equation of GCPs and the state transition equation of bias angle, and using an extend Kalman filter (EKF), the real time estimation of bias angle and the high precision sensor LOS attitude determination and calibration are achieved. The simulation results show that the precision and timeliness of the proposed algorithm meet the request of target tracking and location process in space based infrared surveillance system.
Reig, Candid; Cubells-Beltran, María-Dolores; Muñoz, Diego Ramírez
2009-01-01
The 2007 Nobel Prize in Physics can be understood as a global recognition to the rapid development of the Giant Magnetoresistance (GMR), from both the physics and engineering points of view. Behind the utilization of GMR structures as read heads for massive storage magnetic hard disks, important applications as solid state magnetic sensors have emerged. Low cost, compatibility with standard CMOS technologies and high sensitivity are common advantages of these sensors. This way, they have been successfully applied in a lot different environments. In this work, we are trying to collect the Spanish contributions to the progress of the research related to the GMR based sensors covering, among other subjects, the applications, the sensor design, the modelling and the electronic interfaces, focusing on electrical current sensing applications. PMID:22408486
Prediction-based Dynamic Energy Management in Wireless Sensor Networks
Wang, Xue; Ma, Jun-Jie; Wang, Sheng; Bi, Dao-Wei
2007-01-01
Energy consumption is a critical constraint in wireless sensor networks. Focusing on the energy efficiency problem of wireless sensor networks, this paper proposes a method of prediction-based dynamic energy management. A particle filter was introduced to predict a target state, which was adopted to awaken wireless sensor nodes so that their sleep time was prolonged. With the distributed computing capability of nodes, an optimization approach of distributed genetic algorithm and simulated annealing was proposed to minimize the energy consumption of measurement. Considering the application of target tracking, we implemented target position prediction, node sleep scheduling and optimal sensing node selection. Moreover, a routing scheme of forwarding nodes was presented to achieve extra energy conservation. Experimental results of target tracking verified that energy-efficiency is enhanced by prediction-based dynamic energy management.
SAW Sensors for Chemical Vapors and Gases
Devkota, Jagannath; Ohodnicki, Paul R.; Greve, David W.
2017-01-01
Surface acoustic wave (SAW) technology provides a sensitive platform for sensing chemicals in gaseous and fluidic states with the inherent advantages of passive and wireless operation. In this review, we provide a general overview on the fundamental aspects and some major advances of Rayleigh wave-based SAW sensors in sensing chemicals in a gaseous phase. In particular, we review the progress in general understanding of the SAW chemical sensing mechanism, optimization of the sensor characteristics, and the development of the sensors operational at different conditions. Based on previous publications, we suggest some appropriate sensing approaches for particular applications and identify new opportunities and needs for additional research in this area moving into the future. PMID:28397760
Optical Fibre Pressure Sensors in Medical Applications.
Poeggel, Sven; Tosi, Daniele; Duraibabu, DineshBabu; Leen, Gabriel; McGrath, Deirdre; Lewis, Elfed
2015-07-15
This article is focused on reviewing the current state-of-the-art of optical fibre pressure sensors for medical applications. Optical fibres have inherent advantages due to their small size, immunity to electromagnetic interferences and their suitability for remote monitoring and multiplexing. The small dimensions of optical fibre-based pressure sensors, together with being lightweight and flexible, mean that they are minimally invasive for many medical applications and, thus, particularly suited to in vivo measurement. This means that the sensor can be placed directly inside a patient, e.g., for urodynamic and cardiovascular assessment. This paper presents an overview of the recent developments in optical fibre-based pressure measurements with particular reference to these application areas.
SAW Sensors for Chemical Vapors and Gases
Devkota, Jagannath; Ohodnicki, Paul R.; Greve, David W.
2017-04-08
Here, surface acoustic wave (SAW) technology provides a sensitive platform for sensing chemicals in gaseous and fluidic states with the inherent advantages of passive and wireless operation. In this review, we provide a general overview on the fundamental aspects and some major advances of Rayleigh wave-based SAW sensors in sensing chemicals in a gaseous phase. In particular, we review the progress in general understanding of the SAW chemical sensing mechanism, optimization of the sensor characteristics, and the development of the sensors operational at different conditions. Based on previous publications, we suggest some appropriate sensing approaches for particular applications and identifymore » new opportunities and needs for additional research in this area moving into the future.« less
Optical Fibre Pressure Sensors in Medical Applications
Poeggel, Sven; Tosi, Daniele; Duraibabu, DineshBabu; Leen, Gabriel; McGrath, Deirdre; Lewis, Elfed
2015-01-01
This article is focused on reviewing the current state-of-the-art of optical fibre pressure sensors for medical applications. Optical fibres have inherent advantages due to their small size, immunity to electromagnetic interferences and their suitability for remote monitoring and multiplexing. The small dimensions of optical fibre-based pressure sensors, together with being lightweight and flexible, mean that they are minimally invasive for many medical applications and, thus, particularly suited to in vivo measurement. This means that the sensor can be placed directly inside a patient, e.g., for urodynamic and cardiovascular assessment. This paper presents an overview of the recent developments in optical fibre-based pressure measurements with particular reference to these application areas. PMID:26184228
Bagheri, Minoo; Masoomi, Mohammad Yaser; Morsali, Ali; Schoedel, Alexander
2016-08-24
A dye-sensitized metal-organic framework, TMU-5S, was synthesized based on introducing the laser dye Rhodamine B into the porous framework TMU-5. TMU-5S was investigated as a ratiometric fluorescent sensor for the detection of explosive nitro aromatic compounds and showed four times greater selectivity to picric acid than any state-of-the-art luminescent-based sensor. Moreover, it can selectively discriminate picric acid concentrations in the presence of other nitro aromatics and volatile organic compounds. Our findings indicate that using this sensor in two dimensions leads to a greatly reduced environmental interference response and thus creates exceptional sensitivity toward explosive molecules with a fast response.
SAW Sensors for Chemical Vapors and Gases.
Devkota, Jagannath; Ohodnicki, Paul R; Greve, David W
2017-04-08
Surface acoustic wave (SAW) technology provides a sensitive platform for sensing chemicals in gaseous and fluidic states with the inherent advantages of passive and wireless operation. In this review, we provide a general overview on the fundamental aspects and some major advances of Rayleigh wave-based SAW sensors in sensing chemicals in a gaseous phase. In particular, we review the progress in general understanding of the SAW chemical sensing mechanism, optimization of the sensor characteristics, and the development of the sensors operational at different conditions. Based on previous publications, we suggest some appropriate sensing approaches for particular applications and identify new opportunities and needs for additional research in this area moving into the future.
Pyrohova, L V; Starodub, M F; Nahaeva, L I
2005-01-01
An immune sensor based on the surface plasmon resonance (SPR) was developed for express diagnostics of bovine leucosis. Sensor used for detection of the level of antibodies against bovine leukaemia virus (BLV) in the milk serum. It was shown that immune sensor analysis is more sensitive, rapid and simple in comparison with the traditional AGID test. It was stated that the developed immune sensor may be used for performance of screening of bovine leucosis at the farms and the minimal dilution of the milk serum should be 1:20.
Steam distribution and energy delivery optimization using wireless sensors
NASA Astrophysics Data System (ADS)
Olama, Mohammed M.; Allgood, Glenn O.; Kuruganti, Teja P.; Sukumar, Sreenivas R.; Djouadi, Seddik M.; Lake, Joe E.
2011-05-01
The Extreme Measurement Communications Center at Oak Ridge National Laboratory (ORNL) explores the deployment of a wireless sensor system with a real-time measurement-based energy efficiency optimization framework in the ORNL campus. With particular focus on the 12-mile long steam distribution network in our campus, we propose an integrated system-level approach to optimize the energy delivery within the steam distribution system. We address the goal of achieving significant energy-saving in steam lines by monitoring and acting on leaking steam valves/traps. Our approach leverages an integrated wireless sensor and real-time monitoring capabilities. We make assessments on the real-time status of the distribution system by mounting acoustic sensors on the steam pipes/traps/valves and observe the state measurements of these sensors. Our assessments are based on analysis of the wireless sensor measurements. We describe Fourier-spectrum based algorithms that interpret acoustic vibration sensor data to characterize flows and classify the steam system status. We are able to present the sensor readings, steam flow, steam trap status and the assessed alerts as an interactive overlay within a web-based Google Earth geographic platform that enables decision makers to take remedial action. We believe our demonstration serves as an instantiation of a platform that extends implementation to include newer modalities to manage water flow, sewage and energy consumption.
Chang, Yuchao; Tang, Hongying; Cheng, Yongbo; Zhao, Qin; Yuan, Baoqing Li andXiaobing
2017-07-19
Routing protocols based on topology control are significantly important for improving network longevity in wireless sensor networks (WSNs). Traditionally, some WSN routing protocols distribute uneven network traffic load to sensor nodes, which is not optimal for improving network longevity. Differently to conventional WSN routing protocols, we propose a dynamic hierarchical protocol based on combinatorial optimization (DHCO) to balance energy consumption of sensor nodes and to improve WSN longevity. For each sensor node, the DHCO algorithm obtains the optimal route by establishing a feasible routing set instead of selecting the cluster head or the next hop node. The process of obtaining the optimal route can be formulated as a combinatorial optimization problem. Specifically, the DHCO algorithm is carried out by the following procedures. It employs a hierarchy-based connection mechanism to construct a hierarchical network structure in which each sensor node is assigned to a special hierarchical subset; it utilizes the combinatorial optimization theory to establish the feasible routing set for each sensor node, and takes advantage of the maximum-minimum criterion to obtain their optimal routes to the base station. Various results of simulation experiments show effectiveness and superiority of the DHCO algorithm in comparison with state-of-the-art WSN routing algorithms, including low-energy adaptive clustering hierarchy (LEACH), hybrid energy-efficient distributed clustering (HEED), genetic protocol-based self-organizing network clustering (GASONeC), and double cost function-based routing (DCFR) algorithms.
Time-resolved fluorescence spectroscopy for chemical sensors
NASA Astrophysics Data System (ADS)
Draxler, Sonja; Lippitsch, Max E.
1996-07-01
A family of sensors is presented with fluorescence decay-time measurements used as the sensing technique. The concept is to take a single fluorophore with a suitably long fluorescence decay time as the basic building block for numerous different sensors. Analyte recognition can be performed by different functional groups that are necessary for selective interaction with the analyte. To achieve this, the principle of excited-state electron transfer is applied with pyrene as the fluorophore. Therefore the same instrumentation based on a small, ambient air-nitrogen laser and solid-state electronics can be used to measure different analytes, for example, oxygen, pH, carbon dioxide, potassium, ammonium, lead, cadmium, zinc, and phosphate.
2012-01-01
systems . For some specific sensor requirements in the domains considered here, for example, assessing system behavior and component state in gas turbine ...Cost Objectives. In general , the implication of the suitability and life cycle cost [LCC] driven objectives for integrated instrumentation/sensor system ...section should be considered. In general , the systems engineering approach provided clear benefits in defining user significant IISS system requirements and
Wireless sensing and vibration control with increased redundancy and robustness design.
Li, Peng; Li, Luyu; Song, Gangbing; Yu, Yan
2014-11-01
Control systems with long distance sensor and actuator wiring have the problem of high system cost and increased sensor noise. Wireless sensor network (WSN)-based control systems are an alternative solution involving lower setup and maintenance costs and reduced sensor noise. However, WSN-based control systems also encounter problems such as possible data loss, irregular sampling periods (due to the uncertainty of the wireless channel), and the possibility of sensor breakdown (due to the increased complexity of the overall control system). In this paper, a wireless microcontroller-based control system is designed and implemented to wirelessly perform vibration control. The wireless microcontroller-based system is quite different from regular control systems due to its limited speed and computational power. Hardware, software, and control algorithm design are described in detail to demonstrate this prototype. Model and system state compensation is used in the wireless control system to solve the problems of data loss and sensor breakdown. A positive position feedback controller is used as the control law for the task of active vibration suppression. Both wired and wireless controllers are implemented. The results show that the WSN-based control system can be successfully used to suppress the vibration and produces resilient results in the presence of sensor failure.
Inertial sensor-based methods in walking speed estimation: a systematic review.
Yang, Shuozhi; Li, Qingguo
2012-01-01
Self-selected walking speed is an important measure of ambulation ability used in various clinical gait experiments. Inertial sensors, i.e., accelerometers and gyroscopes, have been gradually introduced to estimate walking speed. This research area has attracted a lot of attention for the past two decades, and the trend is continuing due to the improvement of performance and decrease in cost of the miniature inertial sensors. With the intention of understanding the state of the art of current development in this area, a systematic review on the exiting methods was done in the following electronic engines/databases: PubMed, ISI Web of Knowledge, SportDiscus and IEEE Xplore. Sixteen journal articles and papers in proceedings focusing on inertial sensor based walking speed estimation were fully reviewed. The existing methods were categorized by sensor specification, sensor attachment location, experimental design, and walking speed estimation algorithm.
Inertial Sensor-Based Methods in Walking Speed Estimation: A Systematic Review
Yang, Shuozhi; Li, Qingguo
2012-01-01
Self-selected walking speed is an important measure of ambulation ability used in various clinical gait experiments. Inertial sensors, i.e., accelerometers and gyroscopes, have been gradually introduced to estimate walking speed. This research area has attracted a lot of attention for the past two decades, and the trend is continuing due to the improvement of performance and decrease in cost of the miniature inertial sensors. With the intention of understanding the state of the art of current development in this area, a systematic review on the exiting methods was done in the following electronic engines/databases: PubMed, ISI Web of Knowledge, SportDiscus and IEEE Xplore. Sixteen journal articles and papers in proceedings focusing on inertial sensor based walking speed estimation were fully reviewed. The existing methods were categorized by sensor specification, sensor attachment location, experimental design, and walking speed estimation algorithm. PMID:22778632
Development and Application of Gas Sensing Technologies to Enable Boiler Balancing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dutta, Prabir
2008-12-31
Identifying gas species and their quantification is important for optimization of many industrial applications involving high temperatures, including combustion processes. CISM (Center for Industrial Sensors and Measurements) at the Ohio State University has developed CO, O{sub 2}, NO{sub x}, and CO{sub 2} sensors based on TiO{sub 2} semiconducting oxides, zirconia and lithium phosphate based electrochemical sensors and sensor arrays for high-temperature emission control. The underlying theme in our sensor development has been the use of materials science and chemistry to promote high-temperature performance with selectivity. A review article presenting key results of our studies on CO, NO{sub x}, CO{sub 2}more » and O{sub 2} sensors is described in: Akbar, Sheikh A.; Dutta, Prabir K. Development and Application of Gas Sensing Technologies for Combustion Processes, PowerPlant Chemistry, 9(1) 2006, 28-33.« less
NASA Astrophysics Data System (ADS)
Zhang, Hongtao; Wang, Pengfei
2012-06-01
The current schemes of detecting the status of passengers in airplanes cannot satisfy the more strict regulations recently released by the United States Transportation Security Administration. In basis of investigation on the current seat occupancy sensors for vehicles, in this paper we present a novel scheme of seat occupancy sensors based on Fiber Bragg Grating technology to improve the in-flight security of airplanes. This seat occupancy sensor system can be used to detect the status of passengers and to trigger the airbags to control the inflation of air bags, which have been installed in the airplanes of some major airlines under the new law. This scheme utilizes our previous research results of Weight-In- Motion sensor system based on optical fiber Bragg grating. In contrast to the current seat occupancy sensors for vehicles, this new seat occupancy sensor has so many merits that it is very suitable to be applied in aerospace industry or high speed railway system. Moreover, combined with existing Fiber Bragg Grating strain or temperature sensor systems built in airplanes, this proposed method can construct a complete airline passenger management system.
Establishing imaging sensor specifications for digital still cameras
NASA Astrophysics Data System (ADS)
Kriss, Michael A.
2007-02-01
Digital Still Cameras, DSCs, have now displaced conventional still cameras in most markets. The heart of a DSC is thought to be the imaging sensor, be it Full Frame CCD, and Interline CCD, a CMOS sensor or the newer Foveon buried photodiode sensors. There is a strong tendency by consumers to consider only the number of mega-pixels in a camera and not to consider the overall performance of the imaging system, including sharpness, artifact control, noise, color reproduction, exposure latitude and dynamic range. This paper will provide a systematic method to characterize the physical requirements of an imaging sensor and supporting system components based on the desired usage. The analysis is based on two software programs that determine the "sharpness", potential for artifacts, sensor "photographic speed", dynamic range and exposure latitude based on the physical nature of the imaging optics, sensor characteristics (including size of pixels, sensor architecture, noise characteristics, surface states that cause dark current, quantum efficiency, effective MTF, and the intrinsic full well capacity in terms of electrons per square centimeter). Examples will be given for consumer, pro-consumer, and professional camera systems. Where possible, these results will be compared to imaging system currently on the market.
NASA Astrophysics Data System (ADS)
May, J. C.; Rowley, C. D.; Meyer, H.
2017-12-01
The Naval Research Laboratory (NRL) Ocean Surface Flux System (NFLUX) is an end-to-end data processing and assimilation system used to provide near-real-time satellite-based surface heat flux fields over the global ocean. The first component of NFLUX produces near-real-time swath-level estimates of surface state parameters and downwelling radiative fluxes. The focus here will be on the satellite swath-level state parameter retrievals, namely surface air temperature, surface specific humidity, and surface scalar wind speed over the ocean. Swath-level state parameter retrievals are produced from satellite sensor data records (SDRs) from four passive microwave sensors onboard 10 platforms: the Special Sensor Microwave Imager/Sounder (SSMIS) sensor onboard the DMSP F16, F17, and F18 platforms; the Advanced Microwave Sounding Unit-A (AMSU-A) sensor onboard the NOAA-15, NOAA-18, NOAA-19, Metop-A, and Metop-B platforms; the Advanced Technology Microwave Sounder (ATMS) sensor onboard the S-NPP platform; and the Advanced Microwave Scannin Radiometer 2 (AMSR2) sensor onboard the GCOM-W1 platform. The satellite SDRs are translated into state parameter estimates using multiple polynomial regression algorithms. The coefficients to the algorithms are obtained using a bootstrapping technique with all available brightness temperature channels for a given sensor, in addition to a SST field. For each retrieved parameter for each sensor-platform combination, unique algorithms are developed for ascending and descending orbits, as well as clear vs cloudy conditions. Each of the sensors produces surface air temperature and surface specific humidity retrievals. The SSMIS and AMSR2 sensors also produce surface scalar wind speed retrievals. Improvement is seen in the SSMIS retrievals when separate algorithms are used for the even and odd scans, with the odd scans performing better than the even scans. Currently, NFLUX treats all SSMIS scans as even scans. Additional improvement in all of the surface retrievals comes from using a 3-hourly SST field, as opposed to a daily SST field.
Reactor protection system with automatic self-testing and diagnostic
Gaubatz, Donald C.
1996-01-01
A reactor protection system having four divisions, with quad redundant sensors for each scram parameter providing input to four independent microprocessor-based electronic chassis. Each electronic chassis acquires the scram parameter data from its own sensor, digitizes the information, and then transmits the sensor reading to the other three electronic chassis via optical fibers. To increase system availability and reduce false scrams, the reactor protection system employs two levels of voting on a need for reactor scram. The electronic chassis perform software divisional data processing, vote 2/3 with spare based upon information from all four sensors, and send the divisional scram signals to the hardware logic panel, which performs a 2/4 division vote on whether or not to initiate a reactor scram. Each chassis makes a divisional scram decision based on data from all sensors. Automatic detection and discrimination against failed sensors allows the reactor protection system to automatically enter a known state when sensor failures occur. Cross communication of sensor readings allows comparison of four theoretically "identical" values. This permits identification of sensor errors such as drift or malfunction. A diagnostic request for service is issued for errant sensor data. Automated self test and diagnostic monitoring, sensor input through output relay logic, virtually eliminate the need for manual surveillance testing. This provides an ability for each division to cross-check all divisions and to sense failures of the hardware logic.
Reactor protection system with automatic self-testing and diagnostic
Gaubatz, D.C.
1996-12-17
A reactor protection system is disclosed having four divisions, with quad redundant sensors for each scram parameter providing input to four independent microprocessor-based electronic chassis. Each electronic chassis acquires the scram parameter data from its own sensor, digitizes the information, and then transmits the sensor reading to the other three electronic chassis via optical fibers. To increase system availability and reduce false scrams, the reactor protection system employs two levels of voting on a need for reactor scram. The electronic chassis perform software divisional data processing, vote 2/3 with spare based upon information from all four sensors, and send the divisional scram signals to the hardware logic panel, which performs a 2/4 division vote on whether or not to initiate a reactor scram. Each chassis makes a divisional scram decision based on data from all sensors. Automatic detection and discrimination against failed sensors allows the reactor protection system to automatically enter a known state when sensor failures occur. Cross communication of sensor readings allows comparison of four theoretically ``identical`` values. This permits identification of sensor errors such as drift or malfunction. A diagnostic request for service is issued for errant sensor data. Automated self test and diagnostic monitoring, sensor input through output relay logic, virtually eliminate the need for manual surveillance testing. This provides an ability for each division to cross-check all divisions and to sense failures of the hardware logic. 16 figs.
A novel optical gating method for laser gated imaging
NASA Astrophysics Data System (ADS)
Ginat, Ran; Schneider, Ron; Zohar, Eyal; Nesher, Ofer
2013-06-01
For the past 15 years, Elbit Systems is developing time-resolved active laser-gated imaging (LGI) systems for various applications. Traditional LGI systems are based on high sensitive gated sensors, synchronized to pulsed laser sources. Elbit propriety multi-pulse per frame method, which is being implemented in LGI systems, improves significantly the imaging quality. A significant characteristic of the LGI is its ability to penetrate a disturbing media, such as rain, haze and some fog types. Current LGI systems are based on image intensifier (II) sensors, limiting the system in spectral response, image quality, reliability and cost. A novel propriety optical gating module was developed in Elbit, untying the dependency of LGI system on II. The optical gating module is not bounded to the radiance wavelength and positioned between the system optics and the sensor. This optical gating method supports the use of conventional solid state sensors. By selecting the appropriate solid state sensor, the new LGI systems can operate at any desired wavelength. In this paper we present the new gating method characteristics, performance and its advantages over the II gating method. The use of the gated imaging systems is described in a variety of applications, including results from latest field experiments.
Liquid-crystal-based switchable polarizers for sensor protection.
Wu, C S; Wu, S T
1995-11-01
Linear polarizers are generally employed in conjunction with advanced liquid-crystal filters for the protection of human eyes and optical sensors. For detection sensitivity under a no-threat condition to be maximized, the polarizer should remain in a clear state with a minimum insertion loss. When threats are present, it should be quickly switched to function as a linear polarizer with a high extinction ratio. Two types of switchable polarizer for sensor protection are demonstrated. The polarization conversion type exhibits a high optical efficiency in its clear state, a high extinction ratio in the linear polarizer state, and a fast switching speed, except that its field of view is limited to approximately ±10°. In contrast, an improved switchable dichroic polarizer functions effectively over a much wider field of view. However, its extinction ratio and optical efficiency in its clear state are lower than those of the polarization conversion type.
Liquid-crystal-based switchable polarizers for sensor protection
NASA Astrophysics Data System (ADS)
Wu, Chiung-Sheng; Wu, Shin-Tson
1995-11-01
Linear polarizers are generally employed in conjunction with advanced liquid-crystal filters for the protection of human eyes and optical sensors. For detection sensitivity under a no-threat condition to be maximized, the polarizer should remain in a clear state with a minimum insertion loss. When threats are present, it should be quickly switched to function as a linear polarizer with a high extinction ratio. Two types of switchable polarizer for sensor protection are demonstrated. The polarization conversion type exhibits a high optical efficiency in its clear state, a high extinction ratio in the linear polarizer state, and a fast switching speed, except that its field of view is limited to approximately +/-10 deg In contrast, an improved switchable dichroic polarizer functions effectively over a much wider field of view. However, its extinction ratio and optical efficiency in its clear state are lower than those of the polarization conversion type.
Swap intensified WDR CMOS module for I2/LWIR fusion
NASA Astrophysics Data System (ADS)
Ni, Yang; Noguier, Vincent
2015-05-01
The combination of high resolution visible-near-infrared low light sensor and moderate resolution uncooled thermal sensor provides an efficient way for multi-task night vision. Tremendous progress has been made on uncooled thermal sensors (a-Si, VOx, etc.). It's possible to make a miniature uncooled thermal camera module in a tiny 1cm3 cube with <1W power consumption. For silicon based solid-state low light CCD/CMOS sensors have observed also a constant progress in terms of readout noise, dark current, resolution and frame rate. In contrast to thermal sensing which is intrinsic day&night operational, the silicon based solid-state sensors are not yet capable to do the night vision performance required by defense and critical surveillance applications. Readout noise, dark current are 2 major obstacles. The low dynamic range at high sensitivity mode of silicon sensors is also an important limiting factor, which leads to recognition failure due to local or global saturations & blooming. In this context, the image intensifier based solution is still attractive for the following reasons: 1) high gain and ultra-low dark current; 2) wide dynamic range and 3) ultra-low power consumption. With high electron gain and ultra low dark current of image intensifier, the only requirement on the silicon image pickup device are resolution, dynamic range and power consumption. In this paper, we present a SWAP intensified Wide Dynamic Range CMOS module for night vision applications, especially for I2/LWIR fusion. This module is based on a dedicated CMOS image sensor using solar-cell mode photodiode logarithmic pixel design which covers a huge dynamic range (> 140dB) without saturation and blooming. The ultra-wide dynamic range image from this new generation logarithmic sensor can be used directly without any image processing and provide an instant light accommodation. The complete module is slightly bigger than a simple ANVIS format I2 tube with <500mW power consumption.
Sensor-based activity recognition using extended belief rule-based inference methodology.
Calzada, A; Liu, J; Nugent, C D; Wang, H; Martinez, L
2014-01-01
The recently developed extended belief rule-based inference methodology (RIMER+) recognizes the need of modeling different types of information and uncertainty that usually coexist in real environments. A home setting with sensors located in different rooms and on different appliances can be considered as a particularly relevant example of such an environment, which brings a range of challenges for sensor-based activity recognition. Although RIMER+ has been designed as a generic decision model that could be applied in a wide range of situations, this paper discusses how this methodology can be adapted to recognize human activities using binary sensors within smart environments. The evaluation of RIMER+ against other state-of-the-art classifiers in terms of accuracy, efficiency and applicability was found to be significantly relevant, specially in situations of input data incompleteness, and it demonstrates the potential of this methodology and underpins the basis to develop further research on the topic.
Usui, Kosuke; Ando, Mikinori; Yokogawa, Daisuke; Irle, Stephan
2015-12-24
The precise control of on-off switching is essential to the design of ideal molecular sensors. To understand the switching mechanism theoretically, we selected as representative example a 9-anthryltriphenylstibonium cation, which was reported as a fluoride ion sensor. In this molecule, the first excited singlet state exhibits two minimum geometries, where one of them is emissive and the other one dark. The excited state at the geometry with bright emission is of π-π* character, whereas it is of π-σ* character at the "dark" geometry. Geometry changes in the excited state were identified by geometry optimization and partial potential energy surface (PES) mapping. We also studied Group V homologues of this molecule. A barrierless relaxation pathway after vertical excitation to the "dark" geometry was found for the Sb-containing compound on the excited-states PES, whereas barriers appear in the case of P and As. Molecular orbital analysis suggests that the σ* orbital of the antimony compound is stabilized along such relaxation and that the excited state changes its nature correspondingly. Our results indicate that the size of the central atom is crucial for the design of fluoride sensors with this ligand framework.
Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis.
Gao, Wei; Emaminejad, Sam; Nyein, Hnin Yin Yin; Challa, Samyuktha; Chen, Kevin; Peck, Austin; Fahad, Hossain M; Ota, Hiroki; Shiraki, Hiroshi; Kiriya, Daisuke; Lien, Der-Hsien; Brooks, George A; Davis, Ronald W; Javey, Ali
2016-01-28
Wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual's state of health. Sampling human sweat, which is rich in physiological information, could enable non-invasive monitoring. Previously reported sweat-based and other non-invasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanically flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plastic-based sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing. This application could not have been realized using either of these technologies alone owing to their respective inherent limitations. The wearable system is used to measure the detailed sweat profile of human subjects engaged in prolonged indoor and outdoor physical activities, and to make a real-time assessment of the physiological state of the subjects. This platform enables a wide range of personalized diagnostic and physiological monitoring applications.
Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis
NASA Astrophysics Data System (ADS)
Gao, Wei; Emaminejad, Sam; Nyein, Hnin Yin Yin; Challa, Samyuktha; Chen, Kevin; Peck, Austin; Fahad, Hossain M.; Ota, Hiroki; Shiraki, Hiroshi; Kiriya, Daisuke; Lien, Der-Hsien; Brooks, George A.; Davis, Ronald W.; Javey, Ali
2016-01-01
Wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual’s state of health. Sampling human sweat, which is rich in physiological information, could enable non-invasive monitoring. Previously reported sweat-based and other non-invasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanically flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plastic-based sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing. This application could not have been realized using either of these technologies alone owing to their respective inherent limitations. The wearable system is used to measure the detailed sweat profile of human subjects engaged in prolonged indoor and outdoor physical activities, and to make a real-time assessment of the physiological state of the subjects. This platform enables a wide range of personalized diagnostic and physiological monitoring applications.
The Advanced Video Guidance Sensor: Orbital Express and the Next Generation
NASA Technical Reports Server (NTRS)
Howard, Richard T.; Heaton, Andrew F.; Pinson, Robin M.; Carrington, Connie L.; Lee, James E.; Bryan, Thomas C.; Robertson, Bryan A.; Spencer, Susan H.; Johnson, Jimmie E.
2008-01-01
The Orbital Express (OE) mission performed the first autonomous rendezvous and docking in the history of the United States on May 5-6, 2007 with the Advanced Video Guidance Sensor (AVGS) acting as one of the primary docking sensors. Since that event, the OE spacecraft performed four more rendezvous and docking maneuvers, each time using the AVGS as one of the docking sensors. The Marshall Space Flight Center's (MSFC's) AVGS is a nearfield proximity operations sensor that was integrated into the Autonomous Rendezvous and Capture Sensor System (ARCSS) on OE. The ARCSS provided the relative state knowledge to allow the OE spacecraft to rendezvous and dock. The AVGS is a mature sensor technology designed to support Automated Rendezvous and Docking (AR&D) operations. It is a video-based laser-illuminated sensor that can determine the relative position and attitude between itself and its target. Due to parts obsolescence, the AVGS that was flown on OE can no longer be manufactured. MSFC has been working on the next generation of AVGS for application to future Constellation missions. This paper provides an overview of the performance of the AVGS on Orbital Express and discusses the work on the Next Generation AVGS (NGAVGS).
Charge separation and charge delocalization identified in long-living states of photoexcited DNA
Bucher, Dominik B.; Pilles, Bert M.; Carell, Thomas; Zinth, Wolfgang
2014-01-01
Base stacking in DNA is related to long-living excited states whose molecular nature is still under debate. To elucidate the molecular background we study well-defined oligonucleotides with natural bases, which allow selective UV excitation of one single base in the strand. IR probing in the picosecond regime enables us to dissect the contribution of different single bases to the excited state. All investigated oligonucleotides show long-living states on the 100-ps time scale, which are not observable in a mixture of single bases. The fraction of these states is well correlated with the stacking probabilities and reaches values up to 0.4. The long-living states show characteristic absorbance bands that can be assigned to charge-transfer states by comparing them to marker bands of radical cation and anion spectra. The charge separation is directed by the redox potential of the involved bases and thus controlled by the sequence. The spatial dimension of this charge separation was investigated in longer oligonucleotides, where bridging sequences separate the excited base from a sensor base with a characteristic marker band. After excitation we observe a bleach of all involved bases. The contribution of the sensor base is observable even if the bridge is composed of several bases. This result can be explained by a charge delocalization along a well-stacked domain in the strand. The presence of charged radicals in DNA strands after light absorption may cause reactions—oxidative or reductive damage—currently not considered in DNA photochemistry. PMID:24616517
Virtual sensor models for real-time applications
NASA Astrophysics Data System (ADS)
Hirsenkorn, Nils; Hanke, Timo; Rauch, Andreas; Dehlink, Bernhard; Rasshofer, Ralph; Biebl, Erwin
2016-09-01
Increased complexity and severity of future driver assistance systems demand extensive testing and validation. As supplement to road tests, driving simulations offer various benefits. For driver assistance functions the perception of the sensors is crucial. Therefore, sensors also have to be modeled. In this contribution, a statistical data-driven sensor-model, is described. The state-space based method is capable of modeling various types behavior. In this contribution, the modeling of the position estimation of an automotive radar system, including autocorrelations, is presented. For rendering real-time capability, an efficient implementation is presented.
TAMOAS: In Situ Gasometry in the Atmosphere with Solid Electrolyte Sensors on BEXUS-19
NASA Astrophysics Data System (ADS)
Bronowski, A.; Clemens, R.; Jaster, T.; Kosel, F.; Matyash, I.; Westphal, A.
2015-09-01
A student experiment developed for testing gas sensors in the stratosphere is described. The setup consists of a measurement electronic running miniaturized in situ amperiometric gas sensors based on different solid state electrolytes dedicated for oxygen, ozone and atomic oxygen. The experiment took place at Esrange Space Center in October 2014. The setup was attached to the high-altitude balloon BEXUS-19 and reached an altitude of 27 km at night. The primary objective was to test the prototype sensors and to gain data during flight.
Using Sensor Web Processes and Protocols to Assimilate Satellite Data into a Forecast Model
NASA Technical Reports Server (NTRS)
Goodman, H. Michael; Conover, Helen; Zavodsky, Bradley; Maskey, Manil; Jedlovec, Gary; Regner, Kathryn; Li, Xiang; Lu, Jessica; Botts, Mike; Berthiau, Gregoire
2008-01-01
The goal of the Sensor Management Applied Research Technologies (SMART) On-Demand Modeling project is to develop and demonstrate the readiness of the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) capabilities to integrate both space-based Earth observations and forecast model output into new data acquisition and assimilation strategies. The project is developing sensor web-enabled processing plans to assimilate Atmospheric Infrared Sounding (AIRS) satellite temperature and moisture retrievals into a regional Weather Research and Forecast (WRF) model over the southeastern United States.
Assisted Perception, Planning and Control for Remote Mobility and Dexterous Manipulation
2017-04-01
on unmanned aerial vehicles (UAVs). The underlying algorithm is based on an Extended Kalman Filter (EKF) that simultaneously estimates robot state...and sensor biases. The filter developed provided a probabilistic fusion of sensor data from many modalities to produce a single consistent position...estimation for a walking humanoid. Given a prior map using a Gaussian particle filter , the LIDAR based system is able to provide a drift-free
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miles McQueen; Annarita Giani
2011-09-01
This paper describes a first investigation on a low cost and low false alarm, reliable mechanism for detecting manipulation of critical physical processes and falsification of system state. We call this novel mechanism Known Secure Sensor Measurements (KSSM). The method moves beyond analysis of network traffic and host based state information, in fact it uses physical measurements of the process being controlled to detect falsification of state. KSSM is intended to be incorporated into the design of new, resilient, cost effective critical infrastructure control systems. It can also be included in incremental upgrades of already in- stalled systems for enhancedmore » resilience. KSSM is based on known secure physical measurements for assessing the likelihood of an attack and will demonstrate a practical approach to creating, transmitting, and using the known secure measurements for detection.« less
Davis, Letitia; Wellman, Helen; Hart, James; Cleary, Robert; Gardstein, Betsey M; Sciuchetti, Paul
2004-09-01
This study examined whether a state surveillance system for work-related carpal tunnel syndrome (WR-CTS) based on workers' compensation claims (Sentinel Event Notification System for Occupational Risks, SENSOR) and the Annual Survey of Occupational Injuries and Illnesses (SOII) identified the same industries, occupations, sources of injury, and populations for intervention. Trends in counts, rates, and female/male ratios of WR-CTS during 1994-1997, and age distributions were compared across three data sources: SENSOR, Massachusetts SOII, and National SOII. SENSOR and National SOII data on WR-CTS were compared by industry, occupation, and injury source. Due to small sample size and subsequent gaps in available information, state SOII data on WR-CTS were of little use in identifying specific industries and occupations for intervention. SENSOR and National SOII data on the frequency of WR-CTS cases identified many similar occupations and industries, and both surveillance systems pointed to computer use as a risk factor for WR-CTS. Some high rate industries identified by SENSOR were not identified using National SOII rates even when national findings were restricted to take into account the distribution of the Massachusetts workforce. Use of national SOII data on rates of WR-CTS for identifying state industry priorities for WR-CTS prevention should be undertaken with caution. Options for improving state SOII data and use of other state data systems should be pursued.
NASA Astrophysics Data System (ADS)
Xu, Yuanhong; Liu, Jingquan; Zhang, Jizhen; Zong, Xidan; Jia, Xiaofang; Li, Dan; Wang, Erkang
2015-05-01
A portable lab-on-a-chip methodology to generate ionic liquid-functionalized carbon nanodots (CNDs) was developed via electrochemical oxidation of screen printed carbon electrodes. The CNDs can be successfully applied for efficient cell imaging and solid-state electrochemiluminescence sensor fabrication on the paper-based chips.A portable lab-on-a-chip methodology to generate ionic liquid-functionalized carbon nanodots (CNDs) was developed via electrochemical oxidation of screen printed carbon electrodes. The CNDs can be successfully applied for efficient cell imaging and solid-state electrochemiluminescence sensor fabrication on the paper-based chips. Electronic supplementary information (ESI) available: Experimental section; Fig. S1. XPS spectra of the as-prepared CNDs after being dialyzed for 72 hours; Fig. S2. LSCM images showing time-dependent fluorescence signals of HeLa cells treated by the as-prepared CNDs; Tripropylamine analysis using the Nafion/CNDs modified ECL sensor. See DOI: 10.1039/c5nr01765c
Lan, Linxin; Li, Tianduo; Wei, Tao; Pang, He; Sun, Tao; Wang, Enhua; Liu, Haixia; Niu, Qingfen
2018-03-15
An oligothiophene-based colorimetric and ratiometric fluorescence dual-channel cyanide chemosensor 3 T-2CN was reported. Sensor 3 T-2CN showed both naked-eye recognition and ratiometric fluorescence response for CN - with an excellent selectivity and high sensitivity. The sensing mechanism based on the nucleophilic attack of CN - on the vinyl CC bond has been successfully confirmed by the optical measurements, 1 H NMR titration, FT-IR spectra as well as the DFT/TD-DFT calculations. Moreover, the detection limit was calculated to be 0.19μM, which is much lower than the maximum permission concentration in drinking water (1.9μM). Importantly, test strips (filter paper and TLC plates) containing 3 T-2CN were fabricated, which could act as a practical and efficient solid state optical sensor for CN - in field measurements. Copyright © 2017 Elsevier B.V. All rights reserved.
A novel multisensor traffic state assessment system based on incomplete data.
Zeng, Yiliang; Lan, Jinhui; Ran, Bin; Jiang, Yaoliang
2014-01-01
A novel multisensor system with incomplete data is presented for traffic state assessment. The system comprises probe vehicle detection sensors, fixed detection sensors, and traffic state assessment algorithm. First of all, the validity checking of the traffic flow data is taken as preprocessing of this method. And then a new method based on the history data information is proposed to fuse and recover the incomplete data. According to the characteristics of space complementary of data based on the probe vehicle detector and fixed detector, a fusion model of space matching is presented to estimate the mean travel speed of the road. Finally, the traffic flow data include flow, speed and, occupancy rate, which are detected between Beijing Deshengmen bridge and Drum Tower bridge, are fused to assess the traffic state of the road by using the fusion decision model of rough sets and cloud. The accuracy of experiment result can reach more than 98%, and the result is in accordance with the actual road traffic state. This system is effective to assess traffic state, and it is suitable for the urban intelligent transportation system.
A Novel Multisensor Traffic State Assessment System Based on Incomplete Data
Zeng, Yiliang; Lan, Jinhui; Ran, Bin; Jiang, Yaoliang
2014-01-01
A novel multisensor system with incomplete data is presented for traffic state assessment. The system comprises probe vehicle detection sensors, fixed detection sensors, and traffic state assessment algorithm. First of all, the validity checking of the traffic flow data is taken as preprocessing of this method. And then a new method based on the history data information is proposed to fuse and recover the incomplete data. According to the characteristics of space complementary of data based on the probe vehicle detector and fixed detector, a fusion model of space matching is presented to estimate the mean travel speed of the road. Finally, the traffic flow data include flow, speed and, occupancy rate, which are detected between Beijing Deshengmen bridge and Drum Tower bridge, are fused to assess the traffic state of the road by using the fusion decision model of rough sets and cloud. The accuracy of experiment result can reach more than 98%, and the result is in accordance with the actual road traffic state. This system is effective to assess traffic state, and it is suitable for the urban intelligent transportation system. PMID:25162055
NASA Technical Reports Server (NTRS)
Yam, Y.; Lang, J. H.; Johnson, T. L.; Shih, S.; Staelin, D. H.
1983-01-01
A model reduction procedure based on aggregation with respect to sensor and actuator influences rather than modes is presented for large systems of coupled second-order differential equations. Perturbation expressions which can predict the effects of spillover on both the aggregated and residual states are derived. These expressions lead to the development of control system design constraints which are sufficient to guarantee, to within the validity of the perturbations, that the residual states are not destabilized by control systems designed from the reduced model. A numerical example is provided to illustrate the application of the aggregation and control system design method.
Current Sensor Fault Reconstruction for PMSM Drives
Huang, Gang; Luo, Yi-Ping; Zhang, Chang-Fan; He, Jing; Huang, Yi-Shan
2016-01-01
This paper deals with a current sensor fault reconstruction algorithm for the torque closed-loop drive system of an interior PMSM. First, sensor faults are equated to actuator ones by a new introduced state variable. Then, in αβ coordinates, based on the motor model with active flux linkage, a current observer is constructed with a specific sliding mode equivalent control methodology to eliminate the effects of unknown disturbances, and the phase current sensor faults are reconstructed by means of an adaptive method. Finally, an αβ axis current fault processing module is designed based on the reconstructed value. The feasibility and effectiveness of the proposed method are verified by simulation and experimental tests on the RT-LAB platform. PMID:26840317
Bimodal wireless sensing with dual-channel wide bandgap heterostructure varactors
NASA Astrophysics Data System (ADS)
Deen, David A.; Osinsky, Andrei; Miller, Ross
2014-03-01
A capacitive wireless sensing scheme is developed that utilizes an AlN/GaN-based dual-channel varactor. The dual-channel heterostructure affords two capacitance plateaus within the capacitance-voltage (CV) characteristic, owing to the two parallel two-dimensional electron gases (2DEGs) located at respective AlN/GaN interfaces. The capacitance plateaus are leveraged for the definition of two resonant states of the sensor when implemented in an inductively-coupled resonant LRC network for wireless readout. The physics-based CV model is compared with published experimental results, which serve as a basis for the sensor embodiment. The bimodal resonant sensor is befitting for a broad application space ranging from gas, electrostatic, and piezoelectric sensors to biological and chemical detection.
Xu, Jun; Wang, Jing; Li, Shiying; Cao, Binggang
2016-01-01
Recently, State of energy (SOE) has become one of the most fundamental parameters for battery management systems in electric vehicles. However, current information is critical in SOE estimation and current sensor is usually utilized to obtain the latest current information. However, if the current sensor fails, the SOE estimation may be confronted with large error. Therefore, this paper attempts to make the following contributions: Current sensor fault detection and SOE estimation method is realized simultaneously. Through using the proportional integral observer (PIO) based method, the current sensor fault could be accurately estimated. By taking advantage of the accurate estimated current sensor fault, the influence caused by the current sensor fault can be eliminated and compensated. As a result, the results of the SOE estimation will be influenced little by the fault. In addition, the simulation and experimental workbench is established to verify the proposed method. The results indicate that the current sensor fault can be estimated accurately. Simultaneously, the SOE can also be estimated accurately and the estimation error is influenced little by the fault. The maximum SOE estimation error is less than 2%, even though the large current error caused by the current sensor fault still exists. PMID:27548183
Xu, Jun; Wang, Jing; Li, Shiying; Cao, Binggang
2016-08-19
Recently, State of energy (SOE) has become one of the most fundamental parameters for battery management systems in electric vehicles. However, current information is critical in SOE estimation and current sensor is usually utilized to obtain the latest current information. However, if the current sensor fails, the SOE estimation may be confronted with large error. Therefore, this paper attempts to make the following contributions: Current sensor fault detection and SOE estimation method is realized simultaneously. Through using the proportional integral observer (PIO) based method, the current sensor fault could be accurately estimated. By taking advantage of the accurate estimated current sensor fault, the influence caused by the current sensor fault can be eliminated and compensated. As a result, the results of the SOE estimation will be influenced little by the fault. In addition, the simulation and experimental workbench is established to verify the proposed method. The results indicate that the current sensor fault can be estimated accurately. Simultaneously, the SOE can also be estimated accurately and the estimation error is influenced little by the fault. The maximum SOE estimation error is less than 2%, even though the large current error caused by the current sensor fault still exists.
Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review
Morón, Carlos; Cabrera, Carolina; Morón, Alberto; García, Alfonso; González, Mercedes
2015-01-01
Currently there are many types of sensors that are used in lots of applications. Among these, magnetic sensors are a good alternative for the detection and measurement of different phenomena because they are a “simple” and readily available technology. For the construction of such devices there are many magnetic materials available, although amorphous ferromagnetic materials are the most suitable. The existence in the market of these materials allows the production of different kinds of sensors, without requiring expensive manufacture investments for the magnetic cores. Furthermore, these are not fragile materials that require special care, favouring the construction of solid and reliable devices. Another important feature is that these sensors can be developed without electric contact between the measuring device and the sensor, making them especially fit for use in harsh environments. In this review we will look at the main types of developed magnetic sensors. This work presents the state of the art of magnetic sensors based on amorphous ferromagnetic materials used in modern technology: security devices, weapon detection, magnetic maps, car industry, credit cards, etc. PMID:26569244
Salehi, Ali; Jimenez-Berni, Jose; Deery, David M; Palmer, Doug; Holland, Edward; Rozas-Larraondo, Pablo; Chapman, Scott C; Georgakopoulos, Dimitrios; Furbank, Robert T
2015-01-01
To our knowledge, there is no software or database solution that supports large volumes of biological time series sensor data efficiently and enables data visualization and analysis in real time. Existing solutions for managing data typically use unstructured file systems or relational databases. These systems are not designed to provide instantaneous response to user queries. Furthermore, they do not support rapid data analysis and visualization to enable interactive experiments. In large scale experiments, this behaviour slows research discovery, discourages the widespread sharing and reuse of data that could otherwise inform critical decisions in a timely manner and encourage effective collaboration between groups. In this paper we present SensorDB, a web based virtual laboratory that can manage large volumes of biological time series sensor data while supporting rapid data queries and real-time user interaction. SensorDB is sensor agnostic and uses web-based, state-of-the-art cloud and storage technologies to efficiently gather, analyse and visualize data. Collaboration and data sharing between different agencies and groups is thereby facilitated. SensorDB is available online at http://sensordb.csiro.au.
Multiple incipient sensor faults diagnosis with application to high-speed railway traction devices.
Wu, Yunkai; Jiang, Bin; Lu, Ningyun; Yang, Hao; Zhou, Yang
2017-03-01
This paper deals with the problem of incipient fault diagnosis for a class of Lipschitz nonlinear systems with sensor biases and explores further results of total measurable fault information residual (ToMFIR). Firstly, state and output transformations are introduced to transform the original system into two subsystems. The first subsystem is subject to system disturbances and free from sensor faults, while the second subsystem contains sensor faults but without any system disturbances. Sensor faults in the second subsystem are then formed as actuator faults by using a pseudo-actuator based approach. Since the effects of system disturbances on the residual are completely decoupled, multiple incipient sensor faults can be detected by constructing ToMFIR, and the fault detectability condition is then derived for discriminating the detectable incipient sensor faults. Further, a sliding-mode observers (SMOs) based fault isolation scheme is designed to guarantee accurate isolation of multiple sensor faults. Finally, simulation results conducted on a CRH2 high-speed railway traction device are given to demonstrate the effectiveness of the proposed approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review.
Morón, Carlos; Cabrera, Carolina; Morón, Alberto; García, Alfonso; González, Mercedes
2015-11-11
Currently there are many types of sensors that are used in lots of applications. Among these, magnetic sensors are a good alternative for the detection and measurement of different phenomena because they are a "simple" and readily available technology. For the construction of such devices there are many magnetic materials available, although amorphous ferromagnetic materials are the most suitable. The existence in the market of these materials allows the production of different kinds of sensors, without requiring expensive manufacture investments for the magnetic cores. Furthermore, these are not fragile materials that require special care, favouring the construction of solid and reliable devices. Another important feature is that these sensors can be developed without electric contact between the measuring device and the sensor, making them especially fit for use in harsh environments. In this review we will look at the main types of developed magnetic sensors. This work presents the state of the art of magnetic sensors based on amorphous ferromagnetic materials used in modern technology: security devices, weapon detection, magnetic maps, car industry, credit cards, etc.
Liu, Hong-yue; Liang, Da-kai; Han, Xiao-lin; Zeng, Jie
2013-05-10
From the angle of sensitivity of the long period fiber grating (LPFG) resonant transmission spectrum, we demonstrate the sensitivity of LPFG resonance peak amplitude changing with transverse loads. The design of a resonant peak modulation-based LPFG rebar corrosion sensor is described by combining the spectral characteristics of LPFG with the expansion state monitoring of rebar corrosion. LPFG spectrum curves corresponding with different rebar corrosion status of the environment under test are captured by the monitoring technique of LPFG transmission spectra, and the relationship between the resonance peak amplitude change and the state of rebar corrosion is obtained, that is, the variation of LPFG resonance peak amplitude increases with the intensifying of the degree of rebar corrosion. The experimental results numerically show that the sensor response has good regularity for a wide range of travel.
Inertial Sensor-Based Gait Recognition: A Review
Sprager, Sebastijan; Juric, Matjaz B.
2015-01-01
With the recent development of microelectromechanical systems (MEMS), inertial sensors have become widely used in the research of wearable gait analysis due to several factors, such as being easy-to-use and low-cost. Considering the fact that each individual has a unique way of walking, inertial sensors can be applied to the problem of gait recognition where assessed gait can be interpreted as a biometric trait. Thus, inertial sensor-based gait recognition has a great potential to play an important role in many security-related applications. Since inertial sensors are included in smart devices that are nowadays present at every step, inertial sensor-based gait recognition has become very attractive and emerging field of research that has provided many interesting discoveries recently. This paper provides a thorough and systematic review of current state-of-the-art in this field of research. Review procedure has revealed that the latest advanced inertial sensor-based gait recognition approaches are able to sufficiently recognise the users when relying on inertial data obtained during gait by single commercially available smart device in controlled circumstances, including fixed placement and small variations in gait. Furthermore, these approaches have also revealed considerable breakthrough by realistic use in uncontrolled circumstances, showing great potential for their further development and wide applicability. PMID:26340634
Pamwani, Lavish; Habib, Anowarul; Melandsø, Frank; Ahluwalia, Balpreet Singh; Shelke, Amit
2018-06-22
The main aim of the paper is damage detection at the microscale in the anisotropic piezoelectric sensors using surface acoustic waves (SAWs). A novel technique based on the single input and multiple output of Rayleigh waves is proposed to detect the microscale cracks/flaws in the sensor. A convex-shaped interdigital transducer is fabricated for excitation of divergent SAWs in the sensor. An angularly shaped interdigital transducer (IDT) is fabricated at 0 degrees and ±20 degrees for sensing the convex shape evolution of SAWs. A precalibrated damage was introduced in the piezoelectric sensor material using a micro-indenter in the direction perpendicular to the pointing direction of the SAW. Damage detection algorithms based on empirical mode decomposition (EMD) and principal component analysis (PCA) are implemented to quantify the evolution of damage in piezoelectric sensor material. The evolution of the damage was quantified using a proposed condition indicator (CI) based on normalized Euclidean norm of the change in principal angles, corresponding to pristine and damaged states. The CI indicator provides a robust and accurate metric for detection and quantification of damage.
Rassam, Murad A.; Zainal, Anazida; Maarof, Mohd Aizaini
2013-01-01
Wireless Sensor Networks (WSNs) are important and necessary platforms for the future as the concept “Internet of Things” has emerged lately. They are used for monitoring, tracking, or controlling of many applications in industry, health care, habitat, and military. However, the quality of data collected by sensor nodes is affected by anomalies that occur due to various reasons, such as node failures, reading errors, unusual events, and malicious attacks. Therefore, anomaly detection is a necessary process to ensure the quality of sensor data before it is utilized for making decisions. In this review, we present the challenges of anomaly detection in WSNs and state the requirements to design efficient and effective anomaly detection models. We then review the latest advancements of data anomaly detection research in WSNs and classify current detection approaches in five main classes based on the detection methods used to design these approaches. Varieties of the state-of-the-art models for each class are covered and their limitations are highlighted to provide ideas for potential future works. Furthermore, the reviewed approaches are compared and evaluated based on how well they meet the stated requirements. Finally, the general limitations of current approaches are mentioned and further research opportunities are suggested and discussed. PMID:23966182
Matthews, Robert; McDonald, Neil J; Hervieux, Paul; Turner, Peter J; Steindorf, Martin A
2007-01-01
This paper describes an integrated Physiological Sensor Suite (PSS) based upon QUASAR's innovative non-invasive bioelectric sensor technologies that will provide, for the first time, a fully integrated, noninvasive methodology for physiological sensing. The PSS currently under development at QUASAR is a state-of-the-art multimodal array of sensors that, along with an ultra-low power personal area wireless network, form a comprehensive body-worn system for real-time monitoring of subject physiology and cognitive status. Applications of the PSS extend from monitoring of military personnel to long-term monitoring of patients diagnosed with cardiac or neurological conditions. Results for side-by-side comparisons between QUASAR's biosensor technology and conventional wet electrodes are presented. The signal fidelity for bioelectric measurements using QUASAR's biosensors is comparable to that for wet electrodes.
Tang, Hongying; Cheng, Yongbo; Zhao, Qin; Li, Baoqing; Yuan, Xiaobing
2017-01-01
Routing protocols based on topology control are significantly important for improving network longevity in wireless sensor networks (WSNs). Traditionally, some WSN routing protocols distribute uneven network traffic load to sensor nodes, which is not optimal for improving network longevity. Differently to conventional WSN routing protocols, we propose a dynamic hierarchical protocol based on combinatorial optimization (DHCO) to balance energy consumption of sensor nodes and to improve WSN longevity. For each sensor node, the DHCO algorithm obtains the optimal route by establishing a feasible routing set instead of selecting the cluster head or the next hop node. The process of obtaining the optimal route can be formulated as a combinatorial optimization problem. Specifically, the DHCO algorithm is carried out by the following procedures. It employs a hierarchy-based connection mechanism to construct a hierarchical network structure in which each sensor node is assigned to a special hierarchical subset; it utilizes the combinatorial optimization theory to establish the feasible routing set for each sensor node, and takes advantage of the maximum–minimum criterion to obtain their optimal routes to the base station. Various results of simulation experiments show effectiveness and superiority of the DHCO algorithm in comparison with state-of-the-art WSN routing algorithms, including low-energy adaptive clustering hierarchy (LEACH), hybrid energy-efficient distributed clustering (HEED), genetic protocol-based self-organizing network clustering (GASONeC), and double cost function-based routing (DCFR) algorithms. PMID:28753962
Ruiz-Garcia, Luis; Lunadei, Loredana; Barreiro, Pilar; Robla, Jose Ignacio
2009-01-01
The aim of the present paper is to review the technical and scientific state of the art of wireless sensor technologies and standards for wireless communications in the Agri-Food sector. These technologies are very promising in several fields such as environmental monitoring, precision agriculture, cold chain control or traceability. The paper focuses on WSN (Wireless Sensor Networks) and RFID (Radio Frequency Identification), presenting the different systems available, recent developments and examples of applications, including ZigBee based WSN and passive, semi-passive and active RFID. Future trends of wireless communications in agriculture and food industry are also discussed. PMID:22408551
Zhao, Hao; Feng, Hao
2013-01-01
An angular acceleration sensor can be used for the dynamic analysis of human and joint motions. In this paper, an angular acceleration sensor with novel structure based on the principle of electromagnetic induction is designed. The method involves the construction of a constant magnetic field by the excitation windings of sensor, and the cup-shaped rotor that cut the magnetic field. The output windings of the sensor generate an electromotive force, which is directly proportional to the angular acceleration through the electromagnetic coupling when the rotor has rotational angular acceleration. The mechanical structure and the magnetic working circuit of the sensor are described. The output properties and the mathematical model including the transfer function and state-space model of the sensor are established. The asymptotical stability of the sensor when it is working is verified by the Lyapunov Theorem. An angular acceleration calibration device based on the torsional pendulum principle is designed. The method involves the coaxial connection of the angular acceleration sensor, torsion pendulum and a high-precision angle sensor, and then an initial external force is applied to the torsion pendulum to produce a periodic damping angle oscillation. The angular acceleration sensor and the angle sensor will generate two corresponding electrical signals. The sensitivity coefficient of the angular acceleration sensor can be obtained after processing these two-channel signals. The experiment results show that the sensitivity coefficient of the sensor is about 17.29 mv/Krad·s2. Finally, the errors existing in the practical applications of the sensor are discussed and the corresponding improvement measures are proposed to provide effective technical support for the practical promotion of the novel sensor. PMID:23941911
NASA Astrophysics Data System (ADS)
Shahini Shamsabadi, Salar
A web-based PAVEment MONitoring system, PAVEMON, is a GIS oriented platform for accommodating, representing, and leveraging data from a multi-modal mobile sensor system. Stated sensor system consists of acoustic, optical, electromagnetic, and GPS sensors and is capable of producing as much as 1 Terabyte of data per day. Multi-channel raw sensor data (microphone, accelerometer, tire pressure sensor, video) and processed results (road profile, crack density, international roughness index, micro texture depth, etc.) are outputs of this sensor system. By correlating the sensor measurements and positioning data collected in tight time synchronization, PAVEMON attaches a spatial component to all the datasets. These spatially indexed outputs are placed into an Oracle database which integrates seamlessly with PAVEMON's web-based system. The web-based system of PAVEMON consists of two major modules: 1) a GIS module for visualizing and spatial analysis of pavement condition information layers, and 2) a decision-support module for managing maintenance and repair (Mℝ) activities and predicting future budget needs. PAVEMON weaves together sensor data with third-party climate and traffic information from the National Oceanic and Atmospheric Administration (NOAA) and Long Term Pavement Performance (LTPP) databases for an organized data driven approach to conduct pavement management activities. PAVEMON deals with heterogeneous and redundant observations by fusing them for jointly-derived higher-confidence results. A prominent example of the fusion algorithms developed within PAVEMON is a data fusion algorithm used for estimating the overall pavement conditions in terms of ASTM's Pavement Condition Index (PCI). PAVEMON predicts PCI by undertaking a statistical fusion approach and selecting a subset of all the sensor measurements. Other fusion algorithms include noise-removal algorithms to remove false negatives in the sensor data in addition to fusion algorithms developed for identifying features on the road. PAVEMON offers an ideal research and monitoring platform for rapid, intelligent and comprehensive evaluation of tomorrow's transportation infrastructure based on up-to-date data from heterogeneous sensor systems.
Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Bhuyan, Satyanarayan; Azrin Shah, Nabila Farhana; Radzi, Zamri; Abu Osman, Noor Azuan
2016-01-01
Despite the many attractive potential uses of ceramic materials as humidity sensors, some unavoidable drawbacks, including toxicity, poor biocompatibility, long response and recovery times, low sensitivity and high hysteresis have stymied the use of these materials in advanced applications. Therefore, in present investigation, we developed a capacitive humidity sensor using lead-free Ca,Mg,Fe,Ti-Oxide (CMFTO)-based electro-ceramics with perovskite structures synthesized by solid-state step-sintering. This technique helps maintain the submicron size porous morphology of the developed lead-free CMFTO electro-ceramics while providing enhanced water physisorption behaviour. In comparison with conventional capacitive humidity sensors, the presented CMFTO-based humidity sensor shows a high sensitivity of up to 3000% compared to other materials, even at lower signal frequency. The best also shows a rapid response (14.5 s) and recovery (34.27 s), and very low hysteresis (3.2%) in a 33%–95% relative humidity range which are much lower values than those of existing conventional sensors. Therefore, CMFTO nano-electro-ceramics appear to be very promising materials for fabricating high-performance capacitive humidity sensors. PMID:27455263
High resolution strain sensor for earthquake precursor observation and earthquake monitoring
NASA Astrophysics Data System (ADS)
Zhang, Wentao; Huang, Wenzhu; Li, Li; Liu, Wenyi; Li, Fang
2016-05-01
We propose a high-resolution static-strain sensor based on a FBG Fabry-Perot interferometer (FBG-FP) and a wavelet domain cross-correlation algorithm. This sensor is used for crust deformation measurement, which plays an important role in earthquake precursor observation. The Pound-Drever-Hall (PDH) technique based on a narrow-linewidth tunable fiber laser is used to interrogate the FBG-FPs. A demodulation algorithm based on wavelet domain cross-correlation is used to calculate the wavelength difference. The FBG-FP sensor head is fixed on the two steel alloy rods which are installed in the bedrock. The reference FBG-FP is placed in a strain-free state closely to compensate the environment temperature fluctuation. A static-strain resolution of 1.6 n(epsilon) can be achieved. As a result, clear solid tide signals and seismic signals can be recorded, which suggests that the proposed strain sensor can be applied to earthquake precursor observation and earthquake monitoring.
Staniec, Kamil; Habrych, Marcin
2016-07-19
The importance of constructing wide-area sensor networks for holistic environmental state evaluation has been demonstrated. A general structure of such a network has been presented with distinction of three segments: local (based on ZigBee, Ethernet and ModBus techniques), core (base on cellular technologies) and the storage/application. The implementation of these techniques requires knowledge of their technical limitations and electromagnetic compatibility issues. The former refer to ZigBee performance degradation in multi-hop transmission, whereas the latter are associated with the common electromagnetic spectrum sharing with other existing technologies or with undesired radiated emissions generated by the radio modules of the sensor network. In many cases, it is also necessary to provide a measurement station with autonomous energy source, such as solar. As stems from measurements of the energetic efficiency of these sources, one should apply them with care and perform detailed power budget since their real performance may turn out to be far from expected. This, in turn, may negatively affect-in particular-the operation of chemical sensors implemented in the network as they often require additional heating.
Staniec, Kamil; Habrych, Marcin
2016-01-01
The importance of constructing wide-area sensor networks for holistic environmental state evaluation has been demonstrated. A general structure of such a network has been presented with distinction of three segments: local (based on ZigBee, Ethernet and ModBus techniques), core (base on cellular technologies) and the storage/application. The implementation of these techniques requires knowledge of their technical limitations and electromagnetic compatibility issues. The former refer to ZigBee performance degradation in multi-hop transmission, whereas the latter are associated with the common electromagnetic spectrum sharing with other existing technologies or with undesired radiated emissions generated by the radio modules of the sensor network. In many cases, it is also necessary to provide a measurement station with autonomous energy source, such as solar. As stems from measurements of the energetic efficiency of these sources, one should apply them with care and perform detailed power budget since their real performance may turn out to be far from expected. This, in turn, may negatively affect—in particular—the operation of chemical sensors implemented in the network as they often require additional heating. PMID:27447633
Approach for Self-Calibrating CO2 Measurements with Linear Membrane-Based Gas Sensors
Lazik, Detlef; Sood, Pramit
2016-01-01
Linear membrane-based gas sensors that can be advantageously applied for the measurement of a single gas component in large heterogeneous systems, e.g., for representative determination of CO2 in the subsurface, can be designed depending on the properties of the observation object. A resulting disadvantage is that the permeation-based sensor response depends on operating conditions, the individual site-adapted sensor geometry, the membrane material, and the target gas component. Therefore, calibration is needed, especially of the slope, which could change over several orders of magnitude. A calibration-free approach based on an internal gas standard is developed to overcome the multi-criterial slope dependency. This results in a normalization of sensor response and enables the sensor to assess the significance of measurement. The approach was proofed on the example of CO2 analysis in dry air with tubular PDMS membranes for various CO2 concentrations of an internal standard. Negligible temperature dependency was found within an 18 K range. The transformation behavior of the measurement signal and the influence of concentration variations of the internal standard on the measurement signal were shown. Offsets that were adjusted based on the stated theory for the given measurement conditions and material data from the literature were in agreement with the experimentally determined offsets. A measurement comparison with an NDIR reference sensor shows an unexpectedly low bias (<1%) of the non-calibrated sensor response, and comparable statistical uncertainty. PMID:27869656
Event-Based Stereo Depth Estimation Using Belief Propagation.
Xie, Zhen; Chen, Shengyong; Orchard, Garrick
2017-01-01
Compared to standard frame-based cameras, biologically-inspired event-based sensors capture visual information with low latency and minimal redundancy. These event-based sensors are also far less prone to motion blur than traditional cameras, and still operate effectively in high dynamic range scenes. However, classical framed-based algorithms are not typically suitable for these event-based data and new processing algorithms are required. This paper focuses on the problem of depth estimation from a stereo pair of event-based sensors. A fully event-based stereo depth estimation algorithm which relies on message passing is proposed. The algorithm not only considers the properties of a single event but also uses a Markov Random Field (MRF) to consider the constraints between the nearby events, such as disparity uniqueness and depth continuity. The method is tested on five different scenes and compared to other state-of-art event-based stereo matching methods. The results show that the method detects more stereo matches than other methods, with each match having a higher accuracy. The method can operate in an event-driven manner where depths are reported for individual events as they are received, or the network can be queried at any time to generate a sparse depth frame which represents the current state of the network.
NASA Astrophysics Data System (ADS)
Young, A. J.; Kuiken, T. A.; Hargrove, L. J.
2014-10-01
Objective. The purpose of this study was to determine the contribution of electromyography (EMG) data, in combination with a diverse array of mechanical sensors, to locomotion mode intent recognition in transfemoral amputees using powered prostheses. Additionally, we determined the effect of adding time history information using a dynamic Bayesian network (DBN) for both the mechanical and EMG sensors. Approach. EMG signals from the residual limbs of amputees have been proposed to enhance pattern recognition-based intent recognition systems for powered lower limb prostheses, but mechanical sensors on the prosthesis—such as inertial measurement units, position and velocity sensors, and load cells—may be just as useful. EMG and mechanical sensor data were collected from 8 transfemoral amputees using a powered knee/ankle prosthesis over basic locomotion modes such as walking, slopes and stairs. An offline study was conducted to determine the benefit of different sensor sets for predicting intent. Main results. EMG information was not as accurate alone as mechanical sensor information (p < 0.05) for any classification strategy. However, EMG in combination with the mechanical sensor data did significantly reduce intent recognition errors (p < 0.05) both for transitions between locomotion modes and steady-state locomotion. The sensor time history (DBN) classifier significantly reduced error rates compared to a linear discriminant classifier for steady-state steps, without increasing the transitional error, for both EMG and mechanical sensors. Combining EMG and mechanical sensor data with sensor time history reduced the average transitional error from 18.4% to 12.2% and the average steady-state error from 3.8% to 1.0% when classifying level-ground walking, ramps, and stairs in eight transfemoral amputee subjects. Significance. These results suggest that a neural interface in combination with time history methods for locomotion mode classification can enhance intent recognition performance; this strategy should be considered for future real-time experiments.
High-efficient Unmanned Aircraft System Operations for Ecosystem Assessment
NASA Astrophysics Data System (ADS)
Xu, H.; Zhang, H.
2016-02-01
Diverse national and international agencies support the idea that incorporating Unmanned Aircraft Systems (UAS) into ecosystem assessment will improve the operations efficiency and accuracy. In this paper, a UAS will be designed to monitor the Gulf of Mexico's coastal area ecosystems intelligently and routinely. UAS onboard sensors will capture information that can be utilized to detect and geo-locate areas affected by invasive grasses. Moreover, practical ecosystem will be better assessed by analyzing the collected information. Compared with human-based/satellite-based surveillance, the proposed strategy is more efficient and accurate, and eliminates limitations and risks associated with human factors. State of the art UAS onboard sensors (e.g. high-resolution electro optical camera, night vision camera, thermal sensor etc.) will be used for monitoring coastal ecosystems. Once detected the potential risk in ecosystem, the onboard GPS data will be used to geo-locate and to store the exact coordinates of the affected area. Moreover, the UAS sensors will be used to observe and to record the daily evolution of coastal ecosystems. Further, benefitting from the data collected by the UAS, an intelligent big data processing scheme will be created to assess the ecosystem evolution effectively. Meanwhile, a cost-efficient intelligent autonomous navigation strategy will be implemented into the UAS, in order to guarantee that the UAS can fly over designated areas, and collect significant data in a safe and effective way. Furthermore, the proposed UAS-based ecosystem surveillance and assessment methodologies can be utilized for natural resources conservation. Flying UAS with multiple state of the art sensors will monitor and report the actual state of high importance natural resources frequently. Using the collected data, the ecosystem conservation strategy can be performed effectively and intelligently.
Fault detection and diagnosis in a spacecraft attitude determination system
NASA Astrophysics Data System (ADS)
Pirmoradi, F. N.; Sassani, F.; de Silva, C. W.
2009-09-01
This paper presents a new scheme for fault detection and diagnosis (FDD) in spacecraft attitude determination (AD) sensors. An integrated attitude determination system, which includes measurements of rate and angular position using rate gyros and vector sensors, is developed. Measurement data from all sensors are fused by a linearized Kalman filter, which is designed based on the system kinematics, to provide attitude estimation and the values of the gyro bias. Using this information the erroneous sensor measurements are corrected, and unbounded sensor measurement errors are avoided. The resulting bias-free data are used in the FDD scheme. The FDD algorithm uses model-based state estimation, combining the information from the rotational dynamics and kinematics of a spacecraft with the sensor measurements to predict the future sensor outputs. Fault isolation is performed through extended Kalman filters (EKFs). The innovation sequences of EKFs are monitored by several statistical tests to detect the presence of a failure and to localize the failures in all AD sensors. The isolation procedure is developed in two phases. In the first phase, two EKFs are designed, which use subsets of measurements to provide state estimates and form residuals, which are used to verify the source of the fault. In the second phase of isolation, testing of multiple hypotheses is performed. The generalized likelihood ratio test is utilized to identify the faulty components. In the scheme developed in this paper a relatively small number of hypotheses is used, which results in faster isolation and highly distinguishable fault signatures. An important feature of the developed FDD scheme is that it can provide attitude estimations even if only one type of sensors is functioning properly.
Diagnosis and sensor validation through knowledge of structure and function
NASA Technical Reports Server (NTRS)
Scarl, Ethan A.; Jamieson, John R.; Delaune, Carl I.
1987-01-01
The liquid oxygen expert system 'LES' is proposed as the first capable of diagnostic reasoning from sensor data, using model-based knowledge of structure and function to find the expected state of all system objects, including sensors. The approach is generally algorithmic rather than heuristic, and represents uncertainties as sets of possibilities. Functional relationships are inverted to determine hypothetical values for potentially faulty objects, and may include conditional functions not normally considered to have inverses.
Optoelectronic Capillary Sensors in Microfluidic and Point-of-Care Instrumentation
Borecki, Michał; Korwin-Pawlowski, Michael L.; Beblowska, Maria; Szmidt, Jan; Jakubowski, Andrzej
2010-01-01
This paper presents a review, based on the published literature and on the authors’ own research, of the current state of the art of fiber-optic capillary sensors and related instrumentation as well as their applications, with special emphasis on point-of-care chemical and biochemical sensors, systematizing the various types of sensors from the point of view of the principles of their construction and operation. Unlike classical fiber-optic sensors which rely on changes in light propagation inside the fiber as affected by outside conditions, optical capillary sensors rely on changes of light transmission in capillaries filled with the analyzed liquid, which opens the possibility of interesting new applications, while raising specific issues relating to the construction, materials and instrumentation of those sensors. PMID:22319325
Elman, Noel M; Ben-Yoav, Hadar; Sternheim, Marek; Rosen, Rachel; Krylov, Slava; Shacham-Diamand, Yosi
2008-06-15
A lab-on-chip consisting of a unique integration of whole-cell sensors, a MOEMS (Micro-Opto-Electro-Mechanical-System) modulator, and solid-state photo-detectors was implemented for the first time. Whole-cell sensors were genetically engineered to express a bioluminescent reporter (lux) as a function of the lac promoter. The MOEMS modulator was designed to overcome the inherent low frequency noise of solid-state photo-detectors by means of a previously reported modulation technique, named IHOS (Integrated Heterodyne Optical System). The bio-reporter signals were modulated prior to photo-detection, increasing the SNR of solid-state photo-detectors at least by three orders of magnitude. Experiments were performed using isopropyl-beta-d-thiogalactopyranoside (IPTG) as a preliminary step towards testing environmental toxicity. The inducer was used to trigger the expression response of the whole-cell sensors testing the sensitivity of the lab-on-chip. Low intensity bio-reporter optical signals were measured after the whole-cell sensors were exposed to IPTG concentrations of 0.1, 0.05, and 0.02mM. The experimental results reveal the potential of this technology for future implementation as an inexpensive massive method for rapid environmental toxicity detection.
Data-driven sensor placement from coherent fluid structures
NASA Astrophysics Data System (ADS)
Manohar, Krithika; Kaiser, Eurika; Brunton, Bingni W.; Kutz, J. Nathan; Brunton, Steven L.
2017-11-01
Optimal sensor placement is a central challenge in the prediction, estimation and control of fluid flows. We reinterpret sensor placement as optimizing discrete samples of coherent fluid structures for full state reconstruction. This permits a drastic reduction in the number of sensors required for faithful reconstruction, since complex fluid interactions can often be described by a small number of coherent structures. Our work optimizes point sensors using the pivoted matrix QR factorization to sample coherent structures directly computed from flow data. We apply this sampling technique in conjunction with various data-driven modal identification methods, including the proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD). In contrast to POD-based sensors, DMD demonstrably enables the optimization of sensors for prediction in systems exhibiting multiple scales of dynamics. Finally, reconstruction accuracy from pivot sensors is shown to be competitive with sensors obtained using traditional computationally prohibitive optimization methods.
NASA Technical Reports Server (NTRS)
Liu, G.
1985-01-01
One of the major concerns in the design of an active control system is obtaining the information needed for effective feedback. This involves the combination of sensing and estimation. A sensor location index is defined as the weighted sum of the mean square estimation errors in which the sensor locations can be regarded as estimator design parameters. The design goal is to choose these locations to minimize the sensor location index. The choice of the number of sensors is a tradeoff between the estimation quality based upon the same performance index and the total costs of installing and maintaining extra sensors. An experimental study for choosing the sensor location was conducted on an aeroelastic system. The system modeling which includes the unsteady aerodynamics model developed by Stephen Rock was improved. Experimental results verify the trend of the theoretical predictions of the sensor location index for different sensor locations at various wind speeds.
Chen, Fei-Fei; Zhu, Ying-Jie; Chen, Feng; Dong, Li-Ying; Yang, Ri-Long; Xiong, Zhi-Chao
2018-04-24
Wallpaper with multiple functions, such as fire resistance and an automatic alarm in fire disasters, will be attractive for the interior decoration of houses. Herein, we report a smart fire alarm wallpaper prepared using fire-resistant inorganic paper based on ultralong hydroxyapatite nanowires (HNs) and graphene oxide (GO) thermosensitive sensors. At room temperature, the GO thermosensitive sensor is in a state of electrical insulation; however, it becomes electrically conductive at high temperatures. In a fire disaster, high temperature will rapidly remove the oxygen-containing groups of GO, leading to the transformation process of GO from an electrically insulated state into an electrically conductive one. In this way, the alarm lamp and alarm buzzer connected with the GO thermosensitive sensor will send out the alerts to people immediately for taking emergency actions. After the surface modification with polydopamine of GO (PGO), the sensitivity and flame retardancy of the GO thermosensitive sensor are further improved, resulting in a low responsive temperature (126.9 °C), fast response (2 s), and sustained working time in the flame (at least 5 min). Compared with combustible commercial wallpaper, the smart fire alarm wallpaper based on HNs and GO (or PGO) is superior owing to excellent nonflammability and high-temperature resistance of HNs, which can protect the GO (or PGO) thermosensitive sensor from the flames. The smart fire alarm wallpaper can be processed into various shapes, dyed with different colors, and printed with the commercial printer and thus has promising applications in high-safety interior decoration of houses.
Chen, Wenjun; Gui, Xuchun; Liang, Binghao; Yang, Rongliang; Zheng, Yongjia; Zhao, Chengchun; Li, Xinming; Zhu, Hai; Tang, Zikang
2017-07-19
Nature-motivated pressure sensors have been greatly important components integrated into flexible electronics and applied in artificial intelligence. Here, we report a high sensitivity, ultrathin, and transparent pressure sensor based on wrinkled graphene prepared by a facile liquid-phase shrink method. Two pieces of wrinkled graphene are face to face assembled into a pressure sensor, in which a porous anodic aluminum oxide (AAO) membrane with the thickness of only 200 nm was used to insulate the two layers of graphene. The pressure sensor exhibits ultrahigh operating sensitivity (6.92 kPa -1 ), resulting from the insulation in its inactive state and conduction under compression. Formation of current pathways is attributed to the contact of graphene wrinkles through the pores of AAO membrane. In addition, the pressure sensor is also an on/off and energy saving device, due to the complete isolation between the two graphene layers when the sensor is not subjected to any pressure. We believe that our high-performance pressure sensor is an ideal candidate for integration in flexible electronics, but also paves the way for other 2D materials to be involved in the fabrication of pressure sensors.
Benchmarking for On-Scalp MEG Sensors.
Xie, Minshu; Schneiderman, Justin F; Chukharkin, Maxim L; Kalabukhov, Alexei; Riaz, Bushra; Lundqvist, Daniel; Whitmarsh, Stephen; Hamalainen, Matti; Jousmaki, Veikko; Oostenveld, Robert; Winkler, Dag
2017-06-01
We present a benchmarking protocol for quantitatively comparing emerging on-scalp magnetoencephalography (MEG) sensor technologies to their counterparts in state-of-the-art MEG systems. As a means of validation, we compare a high-critical-temperature superconducting quantum interference device (high T c SQUID) with the low- T c SQUIDs of an Elekta Neuromag TRIUX system in MEG recordings of auditory and somatosensory evoked fields (SEFs) on one human subject. We measure the expected signal gain for the auditory-evoked fields (deeper sources) and notice some unfamiliar features in the on-scalp sensor-based recordings of SEFs (shallower sources). The experimental results serve as a proof of principle for the benchmarking protocol. This approach is straightforward, general to various on-scalp MEG sensors, and convenient to use on human subjects. The unexpected features in the SEFs suggest on-scalp MEG sensors may reveal information about neuromagnetic sources that is otherwise difficult to extract from state-of-the-art MEG recordings. As the first systematically established on-scalp MEG benchmarking protocol, magnetic sensor developers can employ this method to prove the utility of their technology in MEG recordings. Further exploration of the SEFs with on-scalp MEG sensors may reveal unique information about their sources.
Analytical sensor redundancy assessment
NASA Technical Reports Server (NTRS)
Mulcare, D. B.; Downing, L. E.; Smith, M. K.
1988-01-01
The rationale and mechanization of sensor fault tolerance based on analytical redundancy principles are described. The concept involves the substitution of software procedures, such as an observer algorithm, to supplant additional hardware components. The observer synthesizes values of sensor states in lieu of their direct measurement. Such information can then be used, for example, to determine which of two disagreeing sensors is more correct, thus enhancing sensor fault survivability. Here a stability augmentation system is used as an example application, with required modifications being made to a quadruplex digital flight control system. The impact on software structure and the resultant revalidation effort are illustrated as well. Also, the use of an observer algorithm for wind gust filtering of the angle-of-attack sensor signal is presented.
Wang, Ya-Wen; Liu, Yan-Ling; Xu, Jia-Quan; Qin, Yu; Huang, Wei-Hua
2018-05-15
Stretchable electrochemical (EC) sensors have broad prospects in real-time monitoring of living cells and tissues owing to their excellent elasticity and deformability. However, the redox reaction products and cell secretions are easily adsorbed on the electrode, resulting in sensor fouling and passivation. Herein, we developed a stretchable and photocatalytically renewable EC sensor based on Au nanotubes (NTs) and TiO 2 nanowires (NWs) sandwich nanonetworks. The external Au NTs are used for EC sensing, and internal TiO 2 NWs provide photocatalytic performance to degrade contaminants, which endows the sensor with excellent EC performance, high photocatalytic activity, and favorable mechanical tensile property. This allows highly sensitive recycling monitoring of NO released from endothelial cells and 5-HT released from mast cells under their stretching states in real time, therefore providing a promising tool to unravel elastic and mechanically sensitive cells, tissues, and organs.
Selectivity of the gas sensor based on the 50%In2O3-50%Ga2O3 thin film in dynamic mode of operation
NASA Astrophysics Data System (ADS)
Demin, I. E.; Kozlov, A. G.
2018-01-01
The article considers the gas sensor with the sensitive layer based on the 50%In2O3 -50%Ga2O3 thin film. The temperature and concentration dependencies of gas-induced resistance response of this sensor and the dynamical dependencies of its resistance response on the test gases in air are investigated. The test gases were ethanol, acetone, ammonia and liquefied petroleum gas. The information parameters of the sensor in the dynamical mode of operation were considered to improve its selectivity. The presented results show that the selectivity of the sensor in this mode may be improved by using the following information parameters: gas-induced resistance response in steady state, activation energy of the response and pre-exponential factor of the temperature dependence of the response time constant.
NASA Astrophysics Data System (ADS)
Hu, Ruifen; Zhang, Kaihuan; Fan, Guokang; Luo, Zhiyuan; Li, Guang
2015-05-01
Nanostructured nickel hydroxide (nano-Ni(OH)2) was synthesized at a low temperature without annealing. Accordingly, a plasticizer sensor based on a quartz crystal microbalance (QCM) modified with the nano-Ni(OH)2 sensing film was fabricated to detect dibutyl phthalate (DBP) and its relative film thickness was optimized. The sensor worked at room temperature and exhibited a high sensitivity of 4.91 Hz ppb-1 to DBP in a low concentration range of 5-20 ppb, and an ultra-low detection limit of 5 ppb was achieved. In addition, the sensor maintained good repeatability as well as stability shown by the experimental data. The responses to five possible interferences and four other plasticizers were also measured, which indicated the excellent selectivity of the sensor and its potential use in monitoring plasticizers in a gaseous state.
Xu, Xiaobin; Li, Zhenghui; Li, Guo; Zhou, Zhe
2017-04-21
Estimating the state of a dynamic system via noisy sensor measurement is a common problem in sensor methods and applications. Most state estimation methods assume that measurement noise and state perturbations can be modeled as random variables with known statistical properties. However in some practical applications, engineers can only get the range of noises, instead of the precise statistical distributions. Hence, in the framework of Dempster-Shafer (DS) evidence theory, a novel state estimatation method by fusing dependent evidence generated from state equation, observation equation and the actual observations of the system states considering bounded noises is presented. It can be iteratively implemented to provide state estimation values calculated from fusion results at every time step. Finally, the proposed method is applied to a low-frequency acoustic resonance level gauge to obtain high-accuracy measurement results.
Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis
Nyein, Hnin Yin Yin; Challa, Samyuktha; Chen, Kevin; Peck, Austin; Fahad, Hossain M.; Ota, Hiroki; Shiraki, Hiroshi; Kiriya, Daisuke; Lien, Der-Hsien; Brooks, George A.; Davis, Ronald W.; Javey, Ali
2016-01-01
Wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual's state of health1–12. Sampling human sweat, which is rich in physiological information13, could enable non-invasive monitoring. Previously reported sweat-based and other non-invasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state14–18. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanically flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plastic-based sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing. This application could not have been realized using either of these technologies alone owing to their respective inherent limitations. The wearable system is used to measure the detailed sweat profile of human subjects engaged in prolonged indoor and outdoor physical activities, and to make a real-time assessment of the physiological state of the subjects. This platform enables a wide range of personalized diagnostic and physiological monitoring applications. PMID:26819044
Mover Position Detection for PMTLM Based on Linear Hall Sensors through EKF Processing
Yan, Leyang; Zhang, Hui; Ye, Peiqing
2017-01-01
Accurate mover position is vital for a permanent magnet tubular linear motor (PMTLM) control system. In this paper, two linear Hall sensors are utilized to detect the mover position. However, Hall sensor signals contain third-order harmonics, creating errors in mover position detection. To filter out the third-order harmonics, a signal processing method based on the extended Kalman filter (EKF) is presented. The limitation of conventional processing method is first analyzed, and then EKF is adopted to detect the mover position. In the EKF model, the amplitude of the fundamental component and the percentage of the harmonic component are taken as state variables, and they can be estimated based solely on the measured sensor signals. Then, the harmonic component can be calculated and eliminated. The proposed method has the advantages of faster convergence, better stability and higher accuracy. Finally, experimental results validate the effectiveness and superiority of the proposed method. PMID:28383505
Optical sensors based on photonic crystal: a new route
NASA Astrophysics Data System (ADS)
Romano, S.; Torino, S.; Coppola, G.; Cabrini, S.; Mocella, V.
2017-05-01
The realization of miniaturized devices able to accumulate a higher number of information in a smallest volume is a challenge of the technological development. This trend increases the request of high sensitivity and selectivity sensors which can be integrated in microsystems. In this landscape, optical sensors based on photonic crystal technology can be an appealing solution. Here, a new refractive index sensor device, based on the bound states in the continuum (BIC) resonance shift excited in a photonic crystal membrane, is presented. A microfluidic cell was used to control the injection of fluids with different refractive indices over the photonic crystal surface. The shift of very high Q-factor resonances excited into the photonic crystal open cavity was monitored as a function of the refractive index n of the test liquid. The excellent stability we found and the minimal, loss-free optical equipment requirement, provide a new route for achieving high performance in sensing applications.
Luminescent sensing and imaging of oxygen: Fierce competition to the Clark electrode
2015-01-01
Luminescence‐based sensing schemes for oxygen have experienced a fast growth and are in the process of replacing the Clark electrode in many fields. Unlike electrodes, sensing is not limited to point measurements via fiber optic microsensors, but includes additional features such as planar sensing, imaging, and intracellular assays using nanosized sensor particles. In this essay, I review and discuss the essentials of (i) common solid‐state sensor approaches based on the use of luminescent indicator dyes and host polymers; (ii) fiber optic and planar sensing schemes; (iii) nanoparticle‐based intracellular sensing; and (iv) common spectroscopies. Optical sensors are also capable of multiple simultaneous sensing (such as O2 and temperature). Sensors for O2 are produced nowadays in large quantities in industry. Fields of application include sensing of O2 in plant and animal physiology, in clinical chemistry, in marine sciences, in the chemical industry and in process biotechnology. PMID:26113255
Solid State Gas Sensor Research in Germany – a Status Report
Moos, Ralf; Sahner, Kathy; Fleischer, Maximilian; Guth, Ulrich; Barsan, Nicolae; Weimar, Udo
2009-01-01
This status report overviews activities of the German gas sensor research community. It highlights recent progress in the field of potentiometric, amperometric, conductometric, impedimetric, and field effect-based gas sensors. It is shown that besides step-by-step improvements of conventional principles, e.g. by the application of novel materials, novel principles turned out to enable new markets. In the field of mixed potential gas sensors, novel materials allow for selective detection of combustion exhaust components. The same goal can be reached by using zeolites for impedimetric gas sensors. Operando spectroscopy is a powerful tool to learn about the mechanisms in n-type and in p-type conductometric sensors and to design knowledge-based improved sensor devices. Novel deposition methods are applied to gain direct access to the material morphology as well as to obtain dense thick metal oxide films without high temperature steps. Since conductometric and impedimetric sensors have the disadvantage that a current has to pass the gas sensitive film, film morphology, electrode materials, and geometrical issues affect the sensor signal. Therefore, one tries to measure directly the Fermi level position either by measuring the gas-dependent Seebeck coefficient at high temperatures or at room temperature by applying a modified miniaturized Kelvin probe method, where surface adsorption-based work function changes drive the drain-source current of a field effect transistor. PMID:22408529
Hydrogen Research for Spaceport and Space-Based Applications: Hydrogen Sensors and Systems. Part 2
NASA Technical Reports Server (NTRS)
Anderson, Tim; Balaban, Canan
2008-01-01
The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Sensor systems research was focused on hydrogen leak detection and smart sensors with adaptive feedback control for fuel cells. The goal was to integrate multifunction smart sensors, low-power high-efficiency wireless circuits, energy harvesting devices, and power management circuits in one module. Activities were focused on testing and demonstrating sensors in a realistic environment while also bringing them closer to production and commercial viability for eventual use in the actual operating environment.
NASA Astrophysics Data System (ADS)
Kopsaftopoulos, Fotis; Nardari, Raphael; Li, Yu-Hung; Chang, Fu-Kuo
2018-01-01
In this work, a novel data-based stochastic "global" identification framework is introduced for aerospace structures operating under varying flight states and uncertainty. In this context, the term "global" refers to the identification of a model that is capable of representing the structure under any admissible flight state based on data recorded from a sample of these states. The proposed framework is based on stochastic time-series models for representing the structural dynamics and aeroelastic response under multiple flight states, with each state characterized by several variables, such as the airspeed, angle of attack, altitude and temperature, forming a flight state vector. The method's cornerstone lies in the new class of Vector-dependent Functionally Pooled (VFP) models which allow the explicit analytical inclusion of the flight state vector into the model parameters and, hence, system dynamics. This is achieved via the use of functional data pooling techniques for optimally treating - as a single entity - the data records corresponding to the various flight states. In this proof-of-concept study the flight state vector is defined by two variables, namely the airspeed and angle of attack of the vehicle. The experimental evaluation and assessment is based on a prototype bio-inspired self-sensing composite wing that is subjected to a series of wind tunnel experiments under multiple flight states. Distributed micro-sensors in the form of stretchable sensor networks are embedded in the composite layup of the wing in order to provide the sensing capabilities. Experimental data collected from piezoelectric sensors are employed for the identification of a stochastic global VFP model via appropriate parameter estimation and model structure selection methods. The estimated VFP model parameters constitute two-dimensional functions of the flight state vector defined by the airspeed and angle of attack. The identified model is able to successfully represent the wing's aeroelastic response under the admissible flight states via a minimum number of estimated parameters compared to standard identification approaches. The obtained results demonstrate the high accuracy and effectiveness of the proposed global identification framework, thus constituting a first step towards the next generation of "fly-by-feel" aerospace vehicles with state awareness capabilities.
Jin, Han; Huynh, Tan-Phat; Haick, Hossam
2016-07-13
Flexible and wearable electronic sensors are useful for the early diagnosis and monitoring of an individual's health state. Sampling of volatile organic compounds (VOCs) derived from human breath/skin or monitoring abrupt changes in heart-beat/breath rate should allow noninvasive monitoring of disease states at an early stage. Nevertheless, for many reported wearable sensing devices, interaction with the human body leads incidentally to unavoidable scratches and/or mechanical cuts and bring about malfunction of these devices. We now offer proof-of-concept of nanoparticle-based flexible sensor arrays with fascinating self-healing abilities. By integrating a self-healable polymer substrate with 5 kinds of functionalized gold nanoparticle films, a sensor array gives a fast self-healing (<3 h) and attractive healing efficiency in both the substrate and sensing films. The proposed platform was used in sensing pressure variation and 11 kinds of VOCs. The sensor array had satisfactory sensitivity, a low detection limit, and promising discrimination features in monitoring both of VOCs and pressure variation, even after full healing. These results presage a new type of smart sensing device, with a desirable performance in the possible detection and/or clinical application for a number of different purposes.
Cyclic-Voltammetry-Based Solid-State Gas Sensor for Methane and Other VOC Detection.
Gross, Pierre-Alexandre; Jaramillo, Thomas; Pruitt, Beth
2018-05-15
We present the fabrication, characterization, and testing of an electrochemical volatile organic compound (VOC) sensor operating in gaseous conditions at room temperature. It is designed to be microfabricated and to prove the sensing principle based on cyclic voltammetry (CV). It is composed of a working electrode (WE), a counter electrode (CE), a reference electrode (RE), and a Nafion solid-state electrolyte. Nafion is a polymer that conducts protons (H + ) generated from redox reactions from the WE to the CE. The sensor needs to be activated prior to exposure to gases, which consists of hydrating the Nafion layer to enable its ion conduction properties. During testing, we have shown that our sensor is not only capable of detecting methane, but it can also quantify its concentration in the gas flow as well as differentiate its signal from carbon monoxide (CO). These results have been confirmed by exposing the sensor to two different concentrations of methane (50% and 10% of methane diluted in N 2 ), as well as pure CO. Although the signal is positioned in the H ads region of Pt, because of thermodynamic reasons it cannot be directly attributed to methane oxidation into CO 2 . However, its consistency suggests the presence of a methane-related oxidation process that can be used for detection, identification, and quantification purposes.
Toneff, M J; Sreekumar, A; Tinnirello, A; Hollander, P Den; Habib, S; Li, S; Ellis, M J; Xin, L; Mani, S A; Rosen, J M
2016-06-17
The epithelial to mesenchymal transition (EMT) has been implicated in metastasis and therapy resistance of carcinomas and can endow cancer cells with cancer stem cell (CSC) properties. The ability to detect cancer cells that are undergoing or have completed EMT has typically relied on the expression of cell surface antigens that correlate with an EMT/CSC phenotype. Alternatively these cells may be permanently marked through Cre-mediated recombination or through immunostaining of fixed cells. The EMT process is dynamic, and these existing methods cannot reveal such changes within live cells. The development of fluorescent sensors that mirror the dynamic EMT state by following the expression of bona fide EMT regulators in live cells would provide a valuable new tool for characterizing EMT. In addition, these sensors will allow direct observation of cellular plasticity with respect to the epithelial/mesenchymal state to enable more effective studies of EMT in cancer and development. We generated a lentiviral-based, dual fluorescent reporter system, designated as the Z-cad dual sensor, comprising destabilized green fluorescent protein containing the ZEB1 3' UTR and red fluorescent protein driven by the E-cadherin (CDH1) promoter. Using this sensor, we robustly detected EMT and mesenchymal to epithelial transition (MET) in breast cancer cells by flow cytometry and fluorescence microscopy. Importantly, we observed dynamic changes in cellular populations undergoing MET. Additionally, we used the Z-cad sensor to identify and isolate minor subpopulations of cells displaying mesenchymal properties within a population comprising predominately epithelial-like cells. The Z-cad dual sensor identified cells with CSC-like properties more effectively than either the ZEB1 3' UTR or E-cadherin sensor alone. The Z-cad dual sensor effectively reports the activities of two factors critical in determining the epithelial/mesenchymal state of carcinoma cells. The ability of this stably integrating dual sensor system to detect dynamic fluctuations between these two states through live cell imaging offers a significant improvement over existing methods and helps facilitate the study of EMT/MET plasticity in response to different stimuli and in cancer pathogenesis. Finally, the versatile Z-cad sensor can be adapted to a variety of in vitro or in vivo systems to elucidate whether EMT/MET contributes to normal and disease phenotypes.
An efficient management system for wireless sensor networks.
Ma, Yi-Wei; Chen, Jiann-Liang; Huang, Yueh-Min; Lee, Mei-Yu
2010-01-01
Wireless sensor networks have garnered considerable attention recently. Networks typically have many sensor nodes, and are used in commercial, medical, scientific, and military applications for sensing and monitoring the physical world. Many researchers have attempted to improve wireless sensor network management efficiency. A Simple Network Management Protocol (SNMP)-based sensor network management system was developed that is a convenient and effective way for managers to monitor and control sensor network operations. This paper proposes a novel WSNManagement system that can show the connections stated of relationships among sensor nodes and can be used for monitoring, collecting, and analyzing information obtained by wireless sensor networks. The proposed network management system uses collected information for system configuration. The function of performance analysis facilitates convenient management of sensors. Experimental results show that the proposed method enhances the alive rate of an overall sensor node system, reduces the packet lost rate by roughly 5%, and reduces delay time by roughly 0.2 seconds. Performance analysis demonstrates that the proposed system is effective for wireless sensor network management.
Ultra-sensitive Hall sensors based on graphene encapsulated in hexagonal boron nitride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dauber, Jan; Stampfer, Christoph; Peter Grünberg Institute
2015-05-11
The encapsulation of graphene in hexagonal boron nitride provides graphene on substrate with excellent material quality. Here, we present the fabrication and characterization of Hall sensor elements based on graphene boron nitride heterostructures, where we gain from high mobility and low charge carrier density at room temperature. We show a detailed device characterization including Hall effect measurements under vacuum and ambient conditions. We achieve a current- and voltage-related sensitivity of up to 5700 V/AT and 3 V/VT, respectively, outpacing state-of-the-art silicon and III/V Hall sensor devices. Finally, we extract a magnetic resolution limited by low frequency electric noise of less than 50more » nT/√(Hz) making our graphene sensors highly interesting for industrial applications.« less
Li, Guang-Yue; Liu, Dong; Zhang, Hang; Li, Wei-Wei; Wang, Feng; Liang, Ying-Hua
2015-01-01
The fluoride-sensing mechanism of a reported salicylaldehyde-based sensor (J. Photochem. Photobiol. B 2014, 138, 75) has been investigated by the TDDFT method. The present theoretical study indicates that there is an excited-state proton transfer (ESPT) process from the phenolic O-H moiety to the neighbor N atom in the sensor. The added fluoride anion could capture the proton in the O-H moiety and the corresponding phenolic anion is formed, which could inhibit the ESPT process. The experimental UV/Vis and fluorescence spectra are well reproduced by the calculated vertical excitation energies. Frontier molecular orbital analysis indicates that the local excited state of phenolic anion is responsible for its enhanced fluorescence. Due to this reason, the sensor can be used to sense fluoride anion by monitoring the fluorescent change. Copyright © 2015 Elsevier B.V. All rights reserved.
High-Throughput and Label-Free Single Nanoparticle Sizing Based on Time-Resolved On-Chip Microscopy
2015-02-17
12,13 soot ,6,14 ice crystals in clouds,15 and engineered nano- materials,16 among others. While there exist various nanoparticle detection and sizing...the sample of interest is placed on an optoelectronic sensor -array with typically less than 0.5 mm gap (z2) between the sample and sensor planes such...that, under unit mag- nification, the entire sensor active area serves as the imaging FOV, easily reaching >2030 mm2 with state-of-the-art CMOS
Properties of the Central American cold surge
NASA Technical Reports Server (NTRS)
Mcguirk, James P.; Reding, Philip J.; Zhang, Yuxia
1993-01-01
The Central American cold surge (CACS) is a frontal incursion from the United States into Central America and resembles the East Asian cold surge. They occur more frequently than analyzed by NMC or by published results, based on our observations between 1979 and 1990. Climatology and structure are quantified, based on surface and upper air stations throughout Central America and satellite products from GOES visible and infrared sensors and SSM/I precipitable water and rain rate sensors.
The use of 3-D sensing techniques for on-line collision-free path planning
NASA Technical Reports Server (NTRS)
Hayward, V.; Aubry, S.; Jasiukajc, Z.
1987-01-01
The state of the art in collision prevention for manipulators with revolute joints, showing that it is a particularly computationally hard problem, is discussed. Based on the analogy with other hard or undecidable problems such as theorem proving, an extensible multi-resolution architecture for path planning, based on a collection of weak methods is proposed. Finally, the role that sensors can play for an on-line use of sensor data is examined.
Liu, Jun; Han, Jiuqiang; Lv, Hongqiang; Li, Bing
2015-04-16
With the continuing growth of highway construction and vehicle use expansion all over the world, highway vehicle traffic rule violation (TRV) detection has become more and more important so as to avoid traffic accidents and injuries in intelligent transportation systems (ITS) and vehicular ad hoc networks (VANETs). Since very few works have contributed to solve the TRV detection problem by moving vehicle measurements and surveillance devices, this paper develops a novel parallel ultrasonic sensor system that can be used to identify the TRV behavior of a host vehicle in real-time. Then a two-dimensional state method is proposed, utilizing the spacial state and time sequential states from the data of two parallel ultrasonic sensors to detect and count the highway vehicle violations. Finally, the theoretical TRV identification probability is analyzed, and actual experiments are conducted on different highway segments with various driving speeds, which indicates that the identification accuracy of the proposed method can reach about 90.97%.
Liu, Jun; Han, Jiuqiang; Lv, Hongqiang; Li, Bing
2015-01-01
With the continuing growth of highway construction and vehicle use expansion all over the world, highway vehicle traffic rule violation (TRV) detection has become more and more important so as to avoid traffic accidents and injuries in intelligent transportation systems (ITS) and vehicular ad hoc networks (VANETs). Since very few works have contributed to solve the TRV detection problem by moving vehicle measurements and surveillance devices, this paper develops a novel parallel ultrasonic sensor system that can be used to identify the TRV behavior of a host vehicle in real-time. Then a two-dimensional state method is proposed, utilizing the spacial state and time sequential states from the data of two parallel ultrasonic sensors to detect and count the highway vehicle violations. Finally, the theoretical TRV identification probability is analyzed, and actual experiments are conducted on different highway segments with various driving speeds, which indicates that the identification accuracy of the proposed method can reach about 90.97%. PMID:25894940
Design of a 15N Molecular Unit to Achieve Long Retention of Hyperpolarized Spin State
NASA Astrophysics Data System (ADS)
Nonaka, Hiroshi; Hirano, Masashi; Imakura, Yuki; Takakusagi, Yoichi; Ichikawa, Kazuhiro; Sando, Shinsuke
2017-01-01
Nuclear hyperpolarization is a phenomenon that can be used to improve the sensitivity of magnetic resonance molecular sensors. However, such sensors typically suffer from short hyperpolarization lifetime. Herein we report that [15N, D14]trimethylphenylammonium (TMPA) has a remarkably long spin-lattice relaxation time (1128 s, 14.1 T, 30 °C, D2O) on its 15N nuclei and achieves a long retention of the hyperpolarized state. [15N, D14]TMPA-based hyperpolarized sensor for carboxylesterase allowed the highly sensitive analysis of enzymatic reaction by 15N NMR for over 40 min in phophate-buffered saline (H2O, pH 7.4, 37 °C).
Output feedback control for a class of nonlinear systems with actuator degradation and sensor noise.
Ai, Weiqing; Lu, Zhenli; Li, Bin; Fei, Shumin
2016-11-01
This paper investigates the output feedback control problem of a class of nonlinear systems with sensor noise and actuator degradation. Firstly, by using the descriptor observer approach, the origin system is transformed into a descriptor system. On the basis of the descriptor system, a novel Proportional Derivative (PD) observer is developed to asymptotically estimate sensor noise and system state simultaneously. Then, by designing an adaptive law to estimate the effectiveness of actuator, an adaptive observer-based controller is constructed to ensure that system state can be regulated to the origin asymptotically. Finally, the design scheme is applied to address a flexible joint robot link problem. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Integrated quantum photonic sensor based on Hong-Ou-Mandel interference.
Basiri-Esfahani, Sahar; Myers, Casey R; Armin, Ardalan; Combes, Joshua; Milburn, Gerard J
2015-06-15
Photonic-crystal-based integrated optical systems have been used for a broad range of sensing applications with great success. This has been motivated by several advantages such as high sensitivity, miniaturization, remote sensing, selectivity and stability. Many photonic crystal sensors have been proposed with various fabrication designs that result in improved optical properties. In parallel, integrated optical systems are being pursued as a platform for photonic quantum information processing using linear optics and Fock states. Here we propose a novel integrated Fock state optical sensor architecture that can be used for force, refractive index and possibly local temperature detection. In this scheme, two coupled cavities behave as an "effective beam splitter". The sensor works based on fourth order interference (the Hong-Ou-Mandel effect) and requires a sequence of single photon pulses and consequently has low pulse power. Changes in the parameter to be measured induce variations in the effective beam splitter reflectivity and result in changes to the visibility of interference. We demonstrate this generic scheme in coupled L3 photonic crystal cavities as an example and find that this system, which only relies on photon coincidence detection and does not need any spectral resolution, can estimate forces as small as 10(-7) Newtons and can measure one part per million change in refractive index using a very low input power of 10(-10)W. Thus linear optical quantum photonic architectures can achieve comparable sensor performance to semiclassical devices.
A colorimetric turn-on optical chemosensor for Cu2+ ions and its application as solid state sensor
NASA Astrophysics Data System (ADS)
Pannipara, Mehboobali; Al-Sehemi, Abdullah G.; Assiri, Mohammed; Kalam, Abul
2018-05-01
We report a novel coumarin based optical chemosensor (Probe 1) for the selective and sensitive detection of Cu2+ ions in aqueous medium. The addition of Cu2+ ions to Probe 1 shows distinct color change from light yellow to pinkish red color under visible light with the sensing limit of 1.54 μM. Moreover, practical utility of Probe 1 as solid state optical sensor (test paper, TLC plates) for sensing Cu2+ has been demonstrated by instantaneous "naked eye" response.
A FRET system built on quartz plate as a ratiometric fluorescence sensor for mercury ions in water.
Liu, Baoyu; Zeng, Fang; Liu, Yan; Wu, Shuizhu
2012-04-07
Due to the hazardous nature of mercury ions, the development of a cost effective, sensitive and field-portable sensor is of high significance for both industry and civilian use. In this work, a FRET-based ratiometric sensor for detecting mercury ions in water was fabricated by depositing a multilayered silica structure on a quartz plate. For the preparation of the film-based sensor, a silica support layer was first deposited on the quartz plate by using the sol-gel spin-coating procedure, and three ultrathin functional layers (donor, spacer and receptor) were then deposited on the support layer by dip-coating in a stepwise manner in toluene solution. As the film-based sensor was placed into an aqueous solution of Hg(2+), the non-fluorescent receptor (a spirolactam rhodamine derivative) on the film surface could form a complex with the mercury ion and act as the acceptor of the energy transfer. Upon excitation, the donor (a nitrobenzoxadiazolyl derivative, NBD) could transfer its excited energy from the donor layer to the acceptor on the film surface via the 'through space' energy transfer process, thus realizing the FRET-based ratiometric sensing for mercury ions. The sensor can selectively detect Hg(2+) in water with the detection limit of 1 μM. This solid film sensor is capable of being easily-portable and visualized detection. This strategy may offer new approaches for constructing other FRET-based solid-state devices.
False star detection and isolation during star tracking based on improved chi-square tests.
Zhang, Hao; Niu, Yanxiong; Lu, Jiazhen; Yang, Yanqiang; Su, Guohua
2017-08-01
The star sensor is a precise attitude measurement device for a spacecraft. Star tracking is the main and key working mode for a star sensor. However, during star tracking, false stars become an inevitable interference for star sensor applications, which may result in declined measurement accuracy. A false star detection and isolation algorithm in star tracking based on improved chi-square tests is proposed in this paper. Two estimations are established based on a Kalman filter and a priori information, respectively. The false star detection is operated through adopting the global state chi-square test in a Kalman filter. The false star isolation is achieved using a local state chi-square test. Semi-physical experiments under different trajectories with various false stars are designed for verification. Experiment results show that various false stars can be detected and isolated from navigation stars during star tracking, and the attitude measurement accuracy is hardly influenced by false stars. The proposed algorithm is proved to have an excellent performance in terms of speed, stability, and robustness.
Quantum strain sensor with a topological insulator HgTe quantum dot
Korkusinski, Marek; Hawrylak, Pawel
2014-01-01
We present a theory of electronic properties of HgTe quantum dot and propose a strain sensor based on a strain-driven transition from a HgTe quantum dot with inverted bandstructure and robust topologically protected quantum edge states to a normal state without edge states in the energy gap. The presence or absence of edge states leads to large on/off ratio of conductivity across the quantum dot, tunable by adjusting the number of conduction channels in the source-drain voltage window. The electronic properties of a HgTe quantum dot as a function of size and applied strain are described using eight-band Luttinger and Bir-Pikus Hamiltonians, with surface states identified with chirality of Luttinger spinors and obtained through extensive numerical diagonalization of the Hamiltonian. PMID:24811674
Priority design parameters of industrialized optical fiber sensors in civil engineering
NASA Astrophysics Data System (ADS)
Wang, Huaping; Jiang, Lizhong; Xiang, Ping
2018-03-01
Considering the mechanical effects and the different paths for transferring deformation, optical fiber sensors commonly used in civil engineering have been systematically classified. Based on the strain transfer theory, the relationship between the strain transfer coefficient and allowable testing error is established. The proposed relationship is regarded as the optimal control equation to obtain the optimal value of sensors that satisfy the requirement of measurement precision. Furthermore, specific optimization design methods and priority design parameters of the classified sensors are presented. This research indicates that (1) strain transfer theory-based optimization design method is much suitable for the sensor that depends on the interfacial shear stress to transfer the deformation; (2) the priority design parameters are bonded (sensing) length, interfacial bonded strength, elastic modulus and radius of protective layer and thickness of adhesive layer; (3) the optimization design of sensors with two anchor pieces at two ends is independent of strain transfer theory as the strain transfer coefficient can be conveniently calibrated by test, and this kind of sensors has no obvious priority design parameters. Improved calibration test is put forward to enhance the accuracy of the calibration coefficient of end-expanding sensors. By considering the practical state of sensors and the testing accuracy, comprehensive and systematic analyses on optical fiber sensors are provided from the perspective of mechanical actions, which could scientifically instruct the application design and calibration test of industrialized optical fiber sensors.
A GdAlO3 Perovskite Oxide Electrolyte-Based NOx Solid-State Sensor.
Xiao, Yihong; Wang, Dongmei; Cai, Guohui; Zheng, Yong; Zhong, Fulan
2016-11-25
NO x is a notorious emission from motor vehicles and chemical factories as the precursor of acid rain and photochemical smog. Although zirconia-based NO x sensors have been developed and showed high sensitivity and selectivity at a high temperature of above 800 °C, they fail to show good performance, and even don't work at the typical work temperature window of the automotive engine (<500 °C). It still is a formidable challenge for development of mild-temperature NO x detector or sensor. Herein, a novel amperometric solid-state NO x sensor was developed using perovskite-type oxide Gd 1-x Ca x AlO 3-δ (GCA) as the electrolyte and NiO as the sensing electrode. NO x sensing properties of the device were investigated at the temperature region of 400-500 °C. The response current value at -300 mV was almost linearly proportional to the NO x concentration between 300 and 500 ppm at 500 °C. At such a temperature, the optimal sensor gave the highest NO 2 sensitivity of 20.15 nA/ppm, and the maximum response current value reached 5.57 μA. Furthermore, a 90% response and 90% recover time to 500 ppm NO 2 were about 119 and 92 s, respectively. The excellent selectivity and stability towards NO x sensing showed the potential application of the sensor in motor vehicles.
A GdAlO3 Perovskite Oxide Electrolyte-Based NOx Solid-State Sensor
NASA Astrophysics Data System (ADS)
Xiao, Yihong; Wang, Dongmei; Cai, Guohui; Zheng, Yong; Zhong, Fulan
2016-11-01
NOx is a notorious emission from motor vehicles and chemical factories as the precursor of acid rain and photochemical smog. Although zirconia-based NOx sensors have been developed and showed high sensitivity and selectivity at a high temperature of above 800 °C, they fail to show good performance, and even don’t work at the typical work temperature window of the automotive engine (<500 °C). It still is a formidable challenge for development of mild-temperature NOx detector or sensor. Herein, a novel amperometric solid-state NOx sensor was developed using perovskite-type oxide Gd1-xCaxAlO3-δ(GCA) as the electrolyte and NiO as the sensing electrode. NOx sensing properties of the device were investigated at the temperature region of 400-500 °C. The response current value at -300 mV was almost linearly proportional to the NOx concentration between 300 and 500 ppm at 500 °C. At such a temperature, the optimal sensor gave the highest NO2 sensitivity of 20.15 nA/ppm, and the maximum response current value reached 5.57 μA. Furthermore, a 90% response and 90% recover time to 500 ppm NO2 were about 119 and 92 s, respectively. The excellent selectivity and stability towards NOx sensing showed the potential application of the sensor in motor vehicles.
Incremental Structured Dictionary Learning for Video Sensor-Based Object Tracking
Xue, Ming; Yang, Hua; Zheng, Shibao; Zhou, Yi; Yu, Zhenghua
2014-01-01
To tackle robust object tracking for video sensor-based applications, an online discriminative algorithm based on incremental discriminative structured dictionary learning (IDSDL-VT) is presented. In our framework, a discriminative dictionary combining both positive, negative and trivial patches is designed to sparsely represent the overlapped target patches. Then, a local update (LU) strategy is proposed for sparse coefficient learning. To formulate the training and classification process, a multiple linear classifier group based on a K-combined voting (KCV) function is proposed. As the dictionary evolves, the models are also trained to timely adapt the target appearance variation. Qualitative and quantitative evaluations on challenging image sequences compared with state-of-the-art algorithms demonstrate that the proposed tracking algorithm achieves a more favorable performance. We also illustrate its relay application in visual sensor networks. PMID:24549252
Sensor failure detection for jet engines
NASA Technical Reports Server (NTRS)
Merrill, Walter C.
1988-01-01
The use of analytical redundancy to improve gas turbine engine control system reliability through sensor failure detection, isolation, and accommodation is surveyed. Both the theoretical and application papers that form the technology base of turbine engine analytical redundancy research are discussed. Also, several important application efforts are reviewed. An assessment of the state-of-the-art in analytical redundancy technology is given.
Semiconducter Optical Amplifier as a Phase Modulator for Coherent Laser Radar (Preprint)
2012-01-01
AIR FORCE RESEARCH LABORATORY SENSORS DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320 AIR FORCE MATERIEL COMMAND UNITED STATES... AIR FORCE NOTICE AND SIGNATURE PAGE Using Government drawings, specifications, or other data included in this document for any purpose other...NUMBER Multispectral Sensing and Detection Division LADAR Technology Branch (AFRL/RYMM) Air Force Research Laboratory, Sensors Directorate Wright
Feasibility study of a latchup-based particle detector exploiting commercial CMOS technologies
NASA Astrophysics Data System (ADS)
Gabrielli, A.; Matteucci, G.; Civera, P.; Demarchi, D.; Villani, G.; Weber, M.
2009-12-01
The stimulated ignition of latchup effects caused by external radiation has so far proved to be a hidden hazard. Here this effect is described as a novel approach to detect particles by means of a solid-state device susceptible to latchup effects. In addition, the device can also be used as a circuit for reading sensors devices, leaving the capability of sensing to external sensors. The paper first describes the state-of-the-art of the project and its development over the latest years, then the present and future studies are proposed. An elementary cell composed of two transistors connected in a thyristor structure is shown. The study begins using traditional bipolar transistors since the latchup effect is originated as a parasitic circuit composed of such devices. Then, an equivalent circuit built up of MOS transistors is exploited, resulting an even more promising and challenging configuration than that obtained via bipolar transistors. As the MOS transistors are widely used at present in microelectronics devices and sensors, a latchup-based cell is proposed as a novel structure for future applications in particle detection, amplification of signal sensors and radiation monitoring.
Current state of the art of vision based SLAM
NASA Astrophysics Data System (ADS)
Muhammad, Naveed; Fofi, David; Ainouz, Samia
2009-02-01
The ability of a robot to localise itself and simultaneously build a map of its environment (Simultaneous Localisation and Mapping or SLAM) is a fundamental characteristic required for autonomous operation of the robot. Vision Sensors are very attractive for application in SLAM because of their rich sensory output and cost effectiveness. Different issues are involved in the problem of vision based SLAM and many different approaches exist in order to solve these issues. This paper gives a classification of state-of-the-art vision based SLAM techniques in terms of (i) imaging systems used for performing SLAM which include single cameras, stereo pairs, multiple camera rigs and catadioptric sensors, (ii) features extracted from the environment in order to perform SLAM which include point features and line/edge features, (iii) initialisation of landmarks which can either be delayed or undelayed, (iv) SLAM techniques used which include Extended Kalman Filtering, Particle Filtering, biologically inspired techniques like RatSLAM, and other techniques like Local Bundle Adjustment, and (v) use of wheel odometry information. The paper also presents the implementation and analysis of stereo pair based EKF SLAM for synthetic data. Results prove the technique to work successfully in the presence of considerable amounts of sensor noise. We believe that state of the art presented in the paper can serve as a basis for future research in the area of vision based SLAM. It will permit further research in the area to be carried out in an efficient and application specific way.
Biodegradable optode-based nanosensors for in vivo monitoring
Balaconis, Mary K.; Clark, Heather A.
2012-01-01
Optode-based fluorescent nanosensors are being developed for monitoring important diseased states such as hyponatremia and diabetes. However, traditional optode-based sensors are composed of nonbiodegradable polymers such as polyvinyl chloride (PVC) raising toxicity concerns for long-term in vivo use. Here, we report the development of the first biodegradable optode-based nanosensors that maintain sensing characteristics identical to traditional optode sensors. The polymer matrix of these sensors is composed of polycaprolactone (PCL) and a citric acid ester plasticizer. The PCL-based nanosensors yielded a dynamic and reversible response to sodium, were tuned to respond to extracellular sodium concentrations, and had a lifetime of at least 14 days at physiological temperature. When in the presence of lipase, the nanosensors degraded within 4 hours at lipase concentrations found in the liver but were present after 3 days at lipase concentrations found in serum. This development of biodegradable nanosensors is not only necessary for future in vivo applications, but it has also created a new sensor platform that can be extended to other sensing mechanisms such as for small molecules or enzymes. PMID:22725692
Emerging GaN-based HEMTs for mechanical sensing within harsh environments
NASA Astrophysics Data System (ADS)
Köck, Helmut; Chapin, Caitlin A.; Ostermaier, Clemens; Häberlen, Oliver; Senesky, Debbie G.
2014-06-01
Gallium nitride based high-electron-mobility transistors (HEMTs) have been investigated extensively as an alternative to Si-based power transistors by academia and industry over the last decade. It is well known that GaN-based HEMTs outperform Si-based technologies in terms of power density, area specific on-state resistance and switching speed. Recently, wide band-gap material systems have stirred interest regarding their use in various sensing fields ranging from chemical, mechanical, biological to optical applications due to their superior material properties. For harsh environments, wide bandgap sensor systems are deemed to be superior when compared to conventional Si-based systems. A new monolithic sensor platform based on the GaN HEMT electronic structure will enable engineers to design highly efficient propulsion systems widely applicable to the automotive, aeronautics and astronautics industrial sectors. In this paper, the advancements of GaN-based HEMTs for mechanical sensing applications are discussed. Of particular interest are multilayered heterogeneous structures where spontaneous and piezoelectric polarization between the interface results in the formation of a 2-dimensional electron gas (2DEG). Experimental results presented focus on the signal transduction under strained operating conditions in harsh environments. It is shown that a conventional AlGaN/GaN HEMT has a strong dependence of drain current under strained conditions, thus representing a promising future sensor platform. Ultimately, this work explores the sensor performance of conventional GaN HEMTs and leverages existing technological advances available in power electronics device research. The results presented have the potential to boost GaN-based sensor development through the integration of HEMT device and sensor design research.
Review on pressure sensors for structural health monitoring
NASA Astrophysics Data System (ADS)
Sikarwar, Samiksha; Satyendra; Singh, Shakti; Yadav, Bal Chandra
2017-12-01
This paper reports the state of art in a variety of pressure and the detailed study of various matrix based pressure sensors. The performances of the bridges, buildings, etc. are threatened by earthquakes, material degradations, and other environmental effects. Structural health monitoring (SHM) is crucial to protect the people and also for assets planning. This study is a contribution in developing the knowledge about self-sensing smart materials and structures for the construction industry. It deals with the study of self-sensing as well as mechanical and electrical properties of different matrices based on pressure sensors. The relationships among the compression, tensile strain, and crack length with electrical resistance change are also reviewed.
An Extended Kalman Filter-Based Attitude Tracking Algorithm for Star Sensors
Li, Jian; Wei, Xinguo; Zhang, Guangjun
2017-01-01
Efficiency and reliability are key issues when a star sensor operates in tracking mode. In the case of high attitude dynamics, the performance of existing attitude tracking algorithms degenerates rapidly. In this paper an extended Kalman filtering-based attitude tracking algorithm is presented. The star sensor is modeled as a nonlinear stochastic system with the state estimate providing the three degree-of-freedom attitude quaternion and angular velocity. The star positions in the star image are predicted and measured to estimate the optimal attitude. Furthermore, all the cataloged stars observed in the sensor field-of-view according the predicted image motion are accessed using a catalog partition table to speed up the tracking, called star mapping. Software simulation and night-sky experiment are performed to validate the efficiency and reliability of the proposed method. PMID:28825684
An Extended Kalman Filter-Based Attitude Tracking Algorithm for Star Sensors.
Li, Jian; Wei, Xinguo; Zhang, Guangjun
2017-08-21
Efficiency and reliability are key issues when a star sensor operates in tracking mode. In the case of high attitude dynamics, the performance of existing attitude tracking algorithms degenerates rapidly. In this paper an extended Kalman filtering-based attitude tracking algorithm is presented. The star sensor is modeled as a nonlinear stochastic system with the state estimate providing the three degree-of-freedom attitude quaternion and angular velocity. The star positions in the star image are predicted and measured to estimate the optimal attitude. Furthermore, all the cataloged stars observed in the sensor field-of-view according the predicted image motion are accessed using a catalog partition table to speed up the tracking, called star mapping. Software simulation and night-sky experiment are performed to validate the efficiency and reliability of the proposed method.
Pang, Yu; Tian, He; Tao, Luqi; Li, Yuxing; Wang, Xuefeng; Deng, Ningqin; Yang, Yi; Ren, Tian-Ling
2016-10-03
A mechanical sensor with graphene porous network (GPN) combined with polydimethylsiloxane (PDMS) is demonstrated by the first time. Using the nickel foam as template and chemically etching method, the GPN can be created in the PDMS-nickel foam coated with graphene, which can achieve both pressure and strain sensing properties. Because of the pores in the GPN, the composite as pressure and strain sensor exhibit wide pressure sensing range and highest sensitivity among the graphene foam-based sensors, respectively. In addition, it shows potential applications in monitoring or even recognize the walking states, finger bending degree, and wrist blood pressure.
Peptide-based Fluorescent Sensors of Protein Kinase Activity: Design and Applications
Sharma, Vyas; Wang, Qunzhao; Lawrence, David S.
2009-01-01
Protein kinases control the flow of information through cell-signaling pathways. A detailed analysis of their behavior enhances our ability to understand normal cellular states and to devise therapeutic interventions for diseases. The design and application of “Environmentally-Sensitive”, “Deep-Quench” and “Self-Reporting” sensor systems for studying protein kinase activity are described. These sensors allow real-time activity measurements in a continuous manner for a wide variety of kinases. As these sensors can be adapted from an in vitro screen to imaging kinase activity in living cells, they support both preliminary and later stages of drug discovery. PMID:17881302
Assessing the Health of LiFePO4 Traction Batteries through Monotonic Echo State Networks
Anseán, David; Otero, José; Couso, Inés
2017-01-01
A soft sensor is presented that approximates certain health parameters of automotive rechargeable batteries from on-vehicle measurements of current and voltage. The sensor is based on a model of the open circuit voltage curve. This last model is implemented through monotonic neural networks and estimate over-potentials arising from the evolution in time of the Lithium concentration in the electrodes of the battery. The proposed soft sensor is able to exploit the information contained in operational records of the vehicle better than the alternatives, this being particularly true when the charge or discharge currents are between moderate and high. The accuracy of the neural model has been compared to different alternatives, including data-driven statistical models, first principle-based models, fuzzy observers and other recurrent neural networks with different topologies. It is concluded that monotonic echo state networks can outperform well established first-principle models. The algorithms have been validated with automotive Li-FePO4 cells. PMID:29267219
Zhao, Yuzheng; Zhang, Zhuo; Zou, Yejun; Yang, Yi
2018-01-20
Beyond their roles as redox currency in living organisms, pyridine dinucleotides (NAD + /NADH and NADP + /NADPH) are also precursors or cosubstrates of great significance in various physiologic and pathologic processes. Recent Advances: For many years, it was challenging to develop methodologies for monitoring pyridine dinucleotides in situ or in vivo. Recent advances in fluorescent protein-based sensors provide a rapid, sensitive, specific, and real-time readout of pyridine dinucleotide dynamics in single cells or in vivo, thereby opening a new era of pyridine dinucleotide bioimaging. In this article, we summarize the developments in genetically encoded fluorescent sensors for NAD + /NADH and NADP + /NADPH redox states, as well as their applications in life sciences and drug discovery. The strengths and weaknesses of individual sensors are also discussed. These sensors have the advantages of being specific and organelle targetable, enabling real-time monitoring and subcellular-level quantification of targeted molecules in living cells and in vivo. NAD + /NADH and NADP + /NADPH have distinct functions in metabolic and redox regulation, and thus, a comprehensive evaluation of metabolic and redox states must be multiplexed with a combination of various metabolite sensors in a single cell. Antioxid. Redox Signal. 28, 213-229.
NASA Astrophysics Data System (ADS)
Xu, Miao
Vapor detection has been proven as one of the practical, noninvasive methods suitable for explosives detection among current explosive detection technologies. Optical methods (especially colorimetric and fluorescence spectral methods) are low in cost, provide simple instrumentation alignment, while still maintaining high sensitivity and selectivity, these factors combined facilitate broad field applications. Trace vapor detection of hydrogen peroxide (H2O2) represents an effective approach to noninvasive detection of peroxide-based explosives, though development of such a sensor system with high reliability and sufficient sensitivity (reactivity) still remains challenging. Three vapor sensor systems for H2O2 were proposed and developed in this study, which exploited specific chemical reaction towards H2O2 to ensure the selectivity, and materials surface engineering to afford efficient air sampling. The combination of these features enables expedient, cost effective, reliable detection of peroxide explosives. First, an expedient colorimetric sensor for H2O2 vapor was developed, which utilized the specific interaction between Ti(oxo) and H2O2 to offer a yellow color development. The Ti(oxo) salt can be blended into a cellulose microfibril network to produce tunable interface that can react with H2O2. The vapor detection limit can reach 400 ppb. To further improve the detection sensitivity, a naphthalimide based fluorescence turn-on sensor was designed and developed. The sensor mechanism was based on H2O2-mediated oxidation of a boronate fluorophore, which is nonfluorescent in ICT band, but becomes strongly fluorescent upon conversion into the phenol state. The detection limit of this sensory material was improved to be below 10 ppb. However, some technical factors such as sensor concentration, local environment, and excitation intensity were found difficult to control to make the sensor system sufficiently reproducible. To solve the problem, we developed a ratiometric fluorescence sensor, which allows for dual-band emission monitoring and thus enhances the detection reliability. Moreover, the significant spectral overlap between the fluorescence of the pristine sensor and the absorption of the reacted state enables effective Foster Resonance Energy Transfer (FRET). This FRET process can significantly enhance the fluorescence sensing efficiency in comparison to the normal single-band sensor system, for which the sensing efficiency is solely determined by the stoichiometric conversion of sensor molecules.
NASA Technical Reports Server (NTRS)
1999-01-01
Jet Propulsion Laboratory's research on a second generation, solid-state image sensor technology has resulted in the Complementary Metal- Oxide Semiconductor Active Pixel Sensor (CMOS), establishing an alternative to the Charged Coupled Device (CCD). Photobit Corporation, the leading supplier of CMOS image sensors, has commercialized two products of their own based on this technology: the PB-100 and PB-300. These devices are cameras on a chip, combining all camera functions. CMOS "active-pixel" digital image sensors offer several advantages over CCDs, a technology used in video and still-camera applications for 30 years. The CMOS sensors draw less energy, they use the same manufacturing platform as most microprocessors and memory chips, and they allow on-chip programming of frame size, exposure, and other parameters.
Probabilistic objective functions for sensor management
NASA Astrophysics Data System (ADS)
Mahler, Ronald P. S.; Zajic, Tim R.
2004-08-01
This paper continues the investigation of a foundational and yet potentially practical basis for control-theoretic sensor management, using a comprehensive, intuitive, system-level Bayesian paradigm based on finite-set statistics (FISST). In this paper we report our most recent progress, focusing on multistep look-ahead -- i.e., allocation of sensor resources throughout an entire future time-window. We determine future sensor states in the time-window using a "probabilistically natural" sensor management objective function, the posterior expected number of targets (PENT). This objective function is constructed using a new "maxi-PIMS" optimization strategy that hedges against unknowable future observation-collections. PENT is used in conjuction with approximate multitarget filters: the probability hypothesis density (PHD) filter or the multi-hypothesis correlator (MHC) filter.
Pillar-structured neutron detector based multiplicity system
Murphy, John W.; Shao, Qinghui; Voss, Lars F.; ...
2017-10-04
This work demonstrates the potential of silicon pillars filled with boron-10 as a sensor technology for a compact and portable neutron multiplicity system. Solid-state, semiconductor based neutron detectors may enable completely new detector form factors, offer an alternate approach to helium-3 based systems, and reduce detector weight and volume requirements. Thirty-two pillar-structured neutron detectors were assembled into a system with an active area of over 20 cm 2 and were used in this work to demonstrate the feasibility of this sensor technology as a potential replacement for helium-3 based gas detectors. Multiplicity measurements were successfully carried out using a californium-252more » neutron source, in which the source mass, system efficiency, and die-away time were determined. As a result, this demonstration shows that these solid-state detectors could allow for a more compact and portable system that could be used for special nuclear material identification in the field.« less
Pillar-structured neutron detector based multiplicity system
NASA Astrophysics Data System (ADS)
Murphy, John W.; Shao, Qinghui; Voss, Lars F.; Kerr, Phil L.; Fabris, Lorenzo; Conway, Adam M.; Nikolic, Rebecca J.
2018-01-01
This work demonstrates the potential of silicon pillars filled with boron-10 as a sensor technology for a compact and portable neutron multiplicity system. Solid-state, semiconductor based neutron detectors may enable completely new detector form factors, offer an alternate approach to helium-3 based systems, and reduce detector weight and volume requirements. Thirty-two pillar-structured neutron detectors were assembled into a system with an active area of over 20 cm2 and were used in this work to demonstrate the feasibility of this sensor technology as a potential replacement for helium-3 based gas detectors. Multiplicity measurements were successfully carried out using a californium-252 neutron source, in which the source mass, system efficiency, and die-away time were determined. This demonstration shows that these solid-state detectors could allow for a more compact and portable system that could be used for special nuclear material identification in the field.
Entanglement-Based dc Magnetometry with Separated Ions*
NASA Astrophysics Data System (ADS)
Ruster, T.; Kaufmann, H.; Luda, M. A.; Kaushal, V.; Schmiegelow, C. T.; Schmidt-Kaler, F.; Poschinger, U. G.
2017-07-01
We demonstrate sensing of inhomogeneous dc magnetic fields by employing entangled trapped ions, which are shuttled in a segmented Paul trap. As sensor states, we use Bell states of the type |↑↓ ⟩ +ei φ|↓↑ ⟩ encoded in two 40Ca+ ions stored at different locations. The linear Zeeman effect leads to the accumulation of a relative phase φ , which serves for measuring the magnetic-field difference between the constituent locations. Common-mode magnetic-field fluctuations are rejected by the entangled sensor state, which gives rise to excellent sensitivity without employing dynamical decoupling and therefore enables accurate dc sensing. Consecutive measurements on sensor states encoded in the S1 /2 ground state and in the D5 /2 metastable state are used to separate an ac Zeeman shift from the linear dc Zeeman effect. We measure magnetic-field differences over distances of up to 6.2 mm, with accuracies down to 300 fT and sensitivities down to 12 pT /√{Hz }. Our sensing scheme features spatial resolutions in the 20-nm range. For optimizing the information gain while maintaining a high dynamic range, we implement an algorithm for Bayesian frequency estimation.
Zhu, Qingyuan; Xiao, Chunsheng; Hu, Huosheng; Liu, Yuanhui; Wu, Jinjin
2018-01-13
Articulated wheel loaders used in the construction industry are heavy vehicles and have poor stability and a high rate of accidents because of the unpredictable changes of their body posture, mass and centroid position in complex operation environments. This paper presents a novel distributed multi-sensor system for real-time attitude estimation and stability measurement of articulated wheel loaders to improve their safety and stability. Four attitude and heading reference systems (AHRS) are constructed using micro-electro-mechanical system (MEMS) sensors, and installed on the front body, rear body, rear axis and boom of an articulated wheel loader to detect its attitude. A complementary filtering algorithm is deployed for sensor data fusion in the system so that steady state margin angle (SSMA) can be measured in real time and used as the judge index of rollover stability. Experiments are conducted on a prototype wheel loader, and results show that the proposed multi-sensor system is able to detect potential unstable states of an articulated wheel loader in real-time and with high accuracy.
Xiao, Chunsheng; Liu, Yuanhui; Wu, Jinjin
2018-01-01
Articulated wheel loaders used in the construction industry are heavy vehicles and have poor stability and a high rate of accidents because of the unpredictable changes of their body posture, mass and centroid position in complex operation environments. This paper presents a novel distributed multi-sensor system for real-time attitude estimation and stability measurement of articulated wheel loaders to improve their safety and stability. Four attitude and heading reference systems (AHRS) are constructed using micro-electro-mechanical system (MEMS) sensors, and installed on the front body, rear body, rear axis and boom of an articulated wheel loader to detect its attitude. A complementary filtering algorithm is deployed for sensor data fusion in the system so that steady state margin angle (SSMA) can be measured in real time and used as the judge index of rollover stability. Experiments are conducted on a prototype wheel loader, and results show that the proposed multi-sensor system is able to detect potential unstable states of an articulated wheel loader in real-time and with high accuracy. PMID:29342850
Innovative solutions in monitoring systems in flood protection
NASA Astrophysics Data System (ADS)
Sekuła, Klaudia; Połeć, Marzena; Borecka, Aleksandra
2018-02-01
The article presents the possibilities of ISMOP - IT System of Levee Monitoring. This system is able to collecting data from the reference and experimental control and measurement network. The experimental levee is build in a 1:1 scale and located in the village of Czernichow, near Cracow. The innovation is the utilization of a series of sensors monitoring the changes in the body of levee. It can be done by comparing the results of numerical simulations with results from installed two groups of sensors: reference sensors and experimental sensors. The reference control and measurement sensors create network based on pore pressure and temperature sensors. Additionally, it contains the fiber-optic technology. The second network include design experimental sensors, constructed for the development of solutions that can be used in existing flood embankments. The results are important to create the comprehensive and inexpensive monitoring system, which could be helpful for state authorities and local governments in flood protection.
Measurement-based control of a mechanical oscillator at its thermal decoherence rate.
Wilson, D J; Sudhir, V; Piro, N; Schilling, R; Ghadimi, A; Kippenberg, T J
2015-08-20
In real-time quantum feedback protocols, the record of a continuous measurement is used to stabilize a desired quantum state. Recent years have seen successful applications of these protocols in a variety of well-isolated micro-systems, including microwave photons and superconducting qubits. However, stabilizing the quantum state of a tangibly massive object, such as a mechanical oscillator, remains very challenging: the main obstacle is environmental decoherence, which places stringent requirements on the timescale in which the state must be measured. Here we describe a position sensor that is capable of resolving the zero-point motion of a solid-state, 4.3-megahertz nanomechanical oscillator in the timescale of its thermal decoherence, a basic requirement for real-time (Markovian) quantum feedback control tasks, such as ground-state preparation. The sensor is based on evanescent optomechanical coupling to a high-Q microcavity, and achieves an imprecision four orders of magnitude below that at the standard quantum limit for a weak continuous position measurement--a 100-fold improvement over previous reports--while maintaining an imprecision-back-action product that is within a factor of five of the Heisenberg uncertainty limit. As a demonstration of its utility, we use the measurement as an error signal with which to feedback cool the oscillator. Using radiation pressure as an actuator, the oscillator is cold damped with high efficiency: from a cryogenic-bath temperature of 4.4 kelvin to an effective value of 1.1 ± 0.1 millikelvin, corresponding to a mean phonon number of 5.3 ± 0.6 (that is, a ground-state probability of 16 per cent). Our results set a new benchmark for the performance of a linear position sensor, and signal the emergence of mechanical oscillators as practical subjects for measurement-based quantum control.
Constrained State Estimation for Individual Localization in Wireless Body Sensor Networks
Feng, Xiaoxue; Snoussi, Hichem; Liang, Yan; Jiao, Lianmeng
2014-01-01
Wireless body sensor networks based on ultra-wideband radio have recently received much research attention due to its wide applications in health-care, security, sports and entertainment. Accurate localization is a fundamental problem to realize the development of effective location-aware applications above. In this paper the problem of constrained state estimation for individual localization in wireless body sensor networks is addressed. Priori knowledge about geometry among the on-body nodes as additional constraint is incorporated into the traditional filtering system. The analytical expression of state estimation with linear constraint to exploit the additional information is derived. Furthermore, for nonlinear constraint, first-order and second-order linearizations via Taylor series expansion are proposed to transform the nonlinear constraint to the linear case. Examples between the first-order and second-order nonlinear constrained filters based on interacting multiple model extended kalman filter (IMM-EKF) show that the second-order solution for higher order nonlinearity as present in this paper outperforms the first-order solution, and constrained IMM-EKF obtains superior estimation than IMM-EKF without constraint. Another brownian motion individual localization example also illustrates the effectiveness of constrained nonlinear iterative least square (NILS), which gets better filtering performance than NILS without constraint. PMID:25390408
Projection-based circular constrained state estimation and fusion over long-haul links
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Qiang; Rao, Nageswara S.
In this paper, we consider a scenario where sensors are deployed over a large geographical area for tracking a target with circular nonlinear constraints on its motion dynamics. The sensor state estimates are sent over long-haul networks to a remote fusion center for fusion. We are interested in different ways to incorporate the constraints into the estimation and fusion process in the presence of communication loss. In particular, we consider closed-form projection-based solutions, including rules for fusing the estimates and for incorporating the constraints, which jointly can guarantee timely fusion often required in realtime systems. We test the performance ofmore » these methods in the long-haul tracking environment using a simple example.« less
Cellular telephone-based radiation sensor and wide-area detection network
Craig, William W [Pittsburg, CA; Labov, Simon E [Berkeley, CA
2006-12-12
A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.
Optimal space-time attacks on system state estimation under a sparsity constraint
NASA Astrophysics Data System (ADS)
Lu, Jingyang; Niu, Ruixin; Han, Puxiao
2016-05-01
System state estimation in the presence of an adversary that injects false information into sensor readings has attracted much attention in wide application areas, such as target tracking with compromised sensors, secure monitoring of dynamic electric power systems, secure driverless cars, and radar tracking and detection in the presence of jammers. From a malicious adversary's perspective, the optimal strategy for attacking a multi-sensor dynamic system over sensors and over time is investigated. It is assumed that the system defender can perfectly detect the attacks and identify and remove sensor data once they are corrupted by false information injected by the adversary. With this in mind, the adversary's goal is to maximize the covariance matrix of the system state estimate by the end of attack period under a sparse attack constraint such that the adversary can only attack the system a few times over time and over sensors. The sparsity assumption is due to the adversary's limited resources and his/her intention to reduce the chance of being detected by the system defender. This becomes an integer programming problem and its optimal solution, the exhaustive search, is intractable with a prohibitive complexity, especially for a system with a large number of sensors and over a large number of time steps. Several suboptimal solutions, such as those based on greedy search and dynamic programming are proposed to find the attack strategies. Examples and numerical results are provided in order to illustrate the effectiveness and the reduced computational complexities of the proposed attack strategies.
Radiometric Characterization Results for the IKONOS, Quickbird, and OrbView-3 Sensor
NASA Technical Reports Server (NTRS)
Holekamp, Kara; Aaron, David; Thome, Kurtis
2006-01-01
Radiometric calibration of commercial imaging satellite products is required to ensure that science and application communities better understand commercial imaging satellite properties. Inaccurate radiometric calibrations can lead to erroneous decisions and invalid conclusions and can limit intercomparisons with other systems. To address this calibration need, the NASA Applied Sciences Directorate (ASD) at Stennis Space Center established a commercial satellite imaging radiometric calibration team consisting of three independent groups: NASA ASD, the University of Arizona Remote Sensing Group, and South Dakota State University. Each group independently determined the absolute radiometric calibration coefficients of available high-spatial-resolution commercial 4-band multispectral products, in the visible though near-infrared spectrum, from GeoEye(tradeMark) (formerly SpaceImaging(Registered TradeMark)) IKONOS, DigitalGlobe(Regitered TradeMark) QuickBird, and GeoEye (formerly ORBIMAGE(Registered TradeMark) OrbView. Each team member employed some variant of reflectance-based vicarious calibration approach, requiring ground-based measurements coincident with image acquisitions and radiative transfer calculations. Several study sites throughout the United States that covered a significant portion of the sensor's dynamic range were employed. Satellite at-sensor radiance values were compared to those estimated by each independent team member to evaluate the sensor's radiometric accuracy. The combined results of this evaluation provide the user community with an independent assessment of these sensors' absolute calibration values.
Bandodkar, Amay J; Molinnus, Denise; Mirza, Omar; Guinovart, Tomás; Windmiller, Joshua R; Valdés-Ramírez, Gabriela; Andrade, Francisco J; Schöning, Michael J; Wang, Joseph
2014-04-15
This article describes the fabrication, characterization and application of an epidermal temporary-transfer tattoo-based potentiometric sensor, coupled with a miniaturized wearable wireless transceiver, for real-time monitoring of sodium in the human perspiration. Sodium excreted during perspiration is an excellent marker for electrolyte imbalance and provides valuable information regarding an individual's physical and mental wellbeing. The realization of the new skin-worn non-invasive tattoo-like sensing device has been realized by amalgamating several state-of-the-art thick film, laser printing, solid-state potentiometry, fluidics and wireless technologies. The resulting tattoo-based potentiometric sodium sensor displays a rapid near-Nernstian response with negligible carryover effects, and good resiliency against various mechanical deformations experienced by the human epidermis. On-body testing of the tattoo sensor coupled to a wireless transceiver during exercise activity demonstrated its ability to continuously monitor sweat sodium dynamics. The real-time sweat sodium concentration was transmitted wirelessly via a body-worn transceiver from the sodium tattoo sensor to a notebook while the subjects perspired on a stationary cycle. The favorable analytical performance along with the wearable nature of the wireless transceiver makes the new epidermal potentiometric sensing system attractive for continuous monitoring the sodium dynamics in human perspiration during diverse activities relevant to the healthcare, fitness, military, healthcare and skin-care domains. © 2013 Published by Elsevier B.V.
An integrated optical sensor for GMAW feedback control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, P.L.; Watkins, A.D.; Larsen, E.D.
1992-08-01
The integrated optical sensor (IOS) is a multifunction feedback control sensor for arc welding, that is computer automated and independent of significant operator interaction. It is based on three major ``off-the-shelf`` components: a charged coupled device (CCD) camera, a diode laser, and a processing computer. The sensor head is compact and lightweight to avoid interference with weld head mobility, hardened to survive the harsh operating environment, and free of specialized cooling and power requirements. The sensor is positioned behind the GMAW torch and measures weld pool position and width, standoff distance, and postweld centerline cooling rate. Weld pool position andmore » width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint, thus allowing compensation for such phenomena as arc blow. Sensor stand off distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to infer the final metallurgical state of the weld bead and heat affected zone, thereby providing a means of controlling post weld mechanical properties.« less
An integrated optical sensor for GMAW feedback control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, P.L.; Watkins, A.D.; Larsen, E.D.
1992-01-01
The integrated optical sensor (IOS) is a multifunction feedback control sensor for arc welding, that is computer automated and independent of significant operator interaction. It is based on three major off-the-shelf'' components: a charged coupled device (CCD) camera, a diode laser, and a processing computer. The sensor head is compact and lightweight to avoid interference with weld head mobility, hardened to survive the harsh operating environment, and free of specialized cooling and power requirements. The sensor is positioned behind the GMAW torch and measures weld pool position and width, standoff distance, and postweld centerline cooling rate. Weld pool position andmore » width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint, thus allowing compensation for such phenomena as arc blow. Sensor stand off distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to infer the final metallurgical state of the weld bead and heat affected zone, thereby providing a means of controlling post weld mechanical properties.« less
Fuzzy Logic Based Autonomous Parallel Parking System with Kalman Filtering
NASA Astrophysics Data System (ADS)
Panomruttanarug, Benjamas; Higuchi, Kohji
This paper presents an emulation of fuzzy logic control schemes for an autonomous parallel parking system in a backward maneuver. There are four infrared sensors sending the distance data to a microcontroller for generating an obstacle-free parking path. Two of them mounted on the front and rear wheels on the parking side are used as the inputs to the fuzzy rules to calculate a proper steering angle while backing. The other two attached to the front and rear ends serve for avoiding collision with other cars along the parking space. At the end of parking processes, the vehicle will be in line with other parked cars and positioned in the middle of the free space. Fuzzy rules are designed based upon a wall following process. Performance of the infrared sensors is improved using Kalman filtering. The design method needs extra information from ultrasonic sensors. Starting from modeling the ultrasonic sensor in 1-D state space forms, one makes use of the infrared sensor as a measurement to update the predicted values. Experimental results demonstrate the effectiveness of sensor improvement.
High-Temperature Gas Sensor Array (Electronic Nose) Demonstrated
NASA Technical Reports Server (NTRS)
Hunter, Gary W.
2002-01-01
The ability to measure emissions from aeronautic engines and in commercial applications such as automotive emission control and chemical process monitoring is a necessary first step if one is going to actively control those emissions. One single sensor will not give all the information necessary to determine the chemical composition of a high-temperature, harsh environment. Rather, an array of gas sensor arrays--in effect, a high-temperature electronic "nose"--is necessary to characterize the chemical constituents of a diverse, high-temperature environment, such as an emissions stream. The signals produced by this nose could be analyzed to determine the constituents of the emission stream. Although commercial electronic noses for near-room temperature applications exist, they often depend significantly on lower temperature materials or only one sensor type. A separate development effort necessary for a high-temperature electronic nose is being undertaken by the NASA Glenn Research Center, Case Western Reserve University, Ohio State University, and Makel Engineering, Inc. The sensors are specially designed for hightemperature environments. A first-generation high-temperature electronic nose has been demonstrated on a modified automotive engine. This nose sensor array was composed of sensors designed for hightemperature environments fabricated using microelectromechanical-systems- (MEMS-) based technology. The array included a tin-oxide-based sensor doped for nitrogen oxide (NOx) sensitivity, a SiC-based hydrocarbon (CxHy) sensor, and an oxygen sensor (O2). These sensors operate on different principles--resistor, diode, and electrochemical cell, respectively--and each sensor has very different responses to the individual gases in the environment. A picture showing the sensor head for the array is shown in the photograph on the left and the sensors installed in the engine are shown in the photograph on the right. Electronics are interfaced with the sensors for temperature control and signal conditioning, and packaging designed for high temperatures is necessary for the array to survive the engine environment.
Evaluation of realistic layouts for next generation on-scalp MEG: spatial information density maps.
Riaz, Bushra; Pfeiffer, Christoph; Schneiderman, Justin F
2017-08-01
While commercial magnetoencephalography (MEG) systems are the functional neuroimaging state-of-the-art in terms of spatio-temporal resolution, MEG sensors have not changed significantly since the 1990s. Interest in newer sensors that operate at less extreme temperatures, e.g., high critical temperature (high-T c ) SQUIDs, optically-pumped magnetometers, etc., is growing because they enable significant reductions in head-to-sensor standoff (on-scalp MEG). Various metrics quantify the advantages of on-scalp MEG, but a single straightforward one is lacking. Previous works have furthermore been limited to arbitrary and/or unrealistic sensor layouts. We introduce spatial information density (SID) maps for quantitative and qualitative evaluations of sensor arrays. SID-maps present the spatial distribution of information a sensor array extracts from a source space while accounting for relevant source and sensor parameters. We use it in a systematic comparison of three practical on-scalp MEG sensor array layouts (based on high-T c SQUIDs) and the standard Elekta Neuromag TRIUX magnetometer array. Results strengthen the case for on-scalp and specifically high-T c SQUID-based MEG while providing a path for the practical design of future MEG systems. SID-maps are furthermore general to arbitrary magnetic sensor technologies and source spaces and can thus be used for design and evaluation of sensor arrays for magnetocardiography, magnetic particle imaging, etc.
Folding- and Dynamics-Based Electrochemical DNA Sensors.
Lai, Rebecca Y
2017-01-01
A number of electrochemical DNA sensors based on the target-induced change in the conformation and/or flexibility of surface-bound oligonucleotides have been developed in recent years. These sensors, which are often termed E-DNA sensors, are comprised of an oligonucleotide probe modified with a redox label (e.g., methylene blue) at one terminus and attached to a gold electrode via a thiol-gold bond at the other. Binding of the target to the DNA probe changes its structure and dynamics, which, in turn, influences the efficiency of electron transfer to the interrogating electrode. Since electrochemically active contaminants are less common, these sensors are resistant to false-positive signals arising from the nonspecific adsorption of contaminants and perform well even when employed directly in serum, whole blood, and other realistically complex sample matrices. Moreover, because all of the sensor components are chemisorbed to the electrode, the E-DNA sensors are essentially label-free and readily reusable. To date, these sensors have achieved state-of-the-art sensitivity, while offering the unprecedented selectivity, reusability, and the operational convenience of direct electrochemical detection. This chapter reviews the recent advances in the development of both "signal-off" and "signal-on" E-DNA sensors. Critical aspects that dictate the stability and performance of these sensors are also addressed so as to provide a realistic overview of this oligonucleotide detection platform. © 2017 Elsevier Inc. All rights reserved.
Electron-bombarded CCD detectors for ultraviolet atmospheric remote sensing
NASA Technical Reports Server (NTRS)
Carruthers, G. R.; Opal, C. B.
1983-01-01
Electronic image sensors based on charge coupled devices operated in electron-bombarded mode, yielding real-time, remote-readout, photon-limited UV imaging capability are being developed. The sensors also incorporate fast-focal-ratio Schmidt optics and opaque photocathodes, giving nearly the ultimate possible diffuse-source sensitivity. They can be used for direct imagery of atmospheric emission phenomena, and for imaging spectrography with moderate spatial and spectral resolution. The current state of instrument development, laboratory results, planned future developments and proposed applications of the sensors in space flight instrumentation is described.
Peristaltic pump-based low range pressure sensor calibration system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinayakumar, K. B.; Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 5600012; Naveen Kumar, G.
2015-11-15
Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressuremore » leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory.« less
Distributed Fiber-Optic Sensors for Vibration Detection
Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai
2016-01-01
Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach–Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications. PMID:27472334
Distributed Fiber-Optic Sensors for Vibration Detection.
Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai
2016-07-26
Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach-Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications.
Fabrication and characterization of nano-gas sensor arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassan, H. S., E-mail: hassan.shokry@gmail.com; Kashyout, A. B., E-mail: hady8@yahoo.com; Morsi, I., E-mail: drimanmorsi@yahoo.com
2015-03-30
A novel structures of Nanomaterials gas sensors array constructed using ZnO, and ZnO doped with Al via sol-gel technique. Two structure arrays are developed; the first one is a double sensor array based on doping with percentages of 1% and 5%. The second is a quadrature sensor array based on several doping ratios concentrations (0%, 1%, 5% and 10%). The morphological structures of prepared ZnO were revealed using scanning electron microscope (SEM). X-ray diffraction (XRD) patterns reveal a highly crystallized wurtzite structure and used for identifying phase structure and chemical state of both ZnO and ZnO doped with Al undermore » different preparation conditions and different doping ratios. Chemical composition of Al-doped ZnO nanopowders was performed using energy dispersive x-ray (EDS) analysis. The electrical characteristics of the sensor are determined by measuring the two terminal sensor’s output resistance for O{sub 2}, H{sub 2} and CO{sub 2} gases as a function of temperature.« less
Peristaltic pump-based low range pressure sensor calibration system
NASA Astrophysics Data System (ADS)
Vinayakumar, K. B.; Naveen Kumar, G.; Nayak, M. M.; Dinesh, N. S.; Rajanna, K.
2015-11-01
Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory.
Development of a Dual Solid-State pH-AT Sensor
NASA Astrophysics Data System (ADS)
Briggs, E.; Martz, T. R.; Kummel, A.; Sandoval, S.; Erten, A.
2016-02-01
Here we report on our progress toward development of a solid state, reagentless sensor capable of rapid and simultaneous measurement of pH and Total Alkalinity (AT) using ion sensitive field effect transistor (ISFET) technology. The goal of this work is to provide a means of continuous, direct measurement of the seawater carbon dioxide system through measurement of two "master variables" (pH and AT). ISFET-based pH sensors that achieve 0.001 precision are presently in widespread use on autonomous oceanographic platforms. Modifications to an ISFET allow a nL-scale acid-base titration of total alkalinity to be carried out in 10 s. Titrant, H+, is generated through the electrolysis of water on the surface of the chip eliminating the requirement of external reagents. Initial characterization has been performed titrating individual components (i.e. OH-, HCO3-, CO32-, PO43-) of seawater AT. Based on previous work by others in simple acid-base systems and our preliminary results in seawater we feel that it is within reach to set a benchmark goal of 10 μmol kg-1 precision in AT. The estimated resolution of this dual pH-AT sensor translates to approximately 0.5 and 0.7% error in Total Dissolved Inorganic Carbon (CT) and pCO2 respectively and would have a number of immediate applications for investigating biogeochemical processes where strong gradients exist over short distances and in rapidly changing environments.
A data management infrastructure for bridge monitoring
NASA Astrophysics Data System (ADS)
Jeong, Seongwoon; Byun, Jaewook; Kim, Daeyoung; Sohn, Hoon; Bae, In Hwan; Law, Kincho H.
2015-04-01
This paper discusses a data management infrastructure framework for bridge monitoring applications. As sensor technologies mature and become economically affordable, their deployment for bridge monitoring will continue to grow. Data management becomes a critical issue not only for storing the sensor data but also for integrating with the bridge model to support other functions, such as management, maintenance and inspection. The focus of this study is on the effective data management of bridge information and sensor data, which is crucial to structural health monitoring and life cycle management of bridge structures. We review the state-of-the-art of bridge information modeling and sensor data management, and propose a data management framework for bridge monitoring based on NoSQL database technologies that have been shown useful in handling high volume, time-series data and to flexibly deal with unstructured data schema. Specifically, Apache Cassandra and Mongo DB are deployed for the prototype implementation of the framework. This paper describes the database design for an XML-based Bridge Information Modeling (BrIM) schema, and the representation of sensor data using Sensor Model Language (SensorML). The proposed prototype data management framework is validated using data collected from the Yeongjong Bridge in Incheon, Korea.
Luminescent sensing and imaging of oxygen: fierce competition to the Clark electrode.
Wolfbeis, Otto S
2015-08-01
Luminescence-based sensing schemes for oxygen have experienced a fast growth and are in the process of replacing the Clark electrode in many fields. Unlike electrodes, sensing is not limited to point measurements via fiber optic microsensors, but includes additional features such as planar sensing, imaging, and intracellular assays using nanosized sensor particles. In this essay, I review and discuss the essentials of (i) common solid-state sensor approaches based on the use of luminescent indicator dyes and host polymers; (ii) fiber optic and planar sensing schemes; (iii) nanoparticle-based intracellular sensing; and (iv) common spectroscopies. Optical sensors are also capable of multiple simultaneous sensing (such as O2 and temperature). Sensors for O2 are produced nowadays in large quantities in industry. Fields of application include sensing of O2 in plant and animal physiology, in clinical chemistry, in marine sciences, in the chemical industry and in process biotechnology. © 2015 The Author. Bioessays published by WILEY Periodicals, Inc.
Wang, Jie-sheng; Han, Shuang; Shen, Na-na
2014-01-01
For predicting the key technology indicators (concentrate grade and tailings recovery rate) of flotation process, an echo state network (ESN) based fusion soft-sensor model optimized by the improved glowworm swarm optimization (GSO) algorithm is proposed. Firstly, the color feature (saturation and brightness) and texture features (angular second moment, sum entropy, inertia moment, etc.) based on grey-level co-occurrence matrix (GLCM) are adopted to describe the visual characteristics of the flotation froth image. Then the kernel principal component analysis (KPCA) method is used to reduce the dimensionality of the high-dimensional input vector composed by the flotation froth image characteristics and process datum and extracts the nonlinear principal components in order to reduce the ESN dimension and network complex. The ESN soft-sensor model of flotation process is optimized by the GSO algorithm with congestion factor. Simulation results show that the model has better generalization and prediction accuracy to meet the online soft-sensor requirements of the real-time control in the flotation process. PMID:24982935
NASA Technical Reports Server (NTRS)
Davis, Robert N.; Polites, Michael E.; Trevino, Luis C.
2004-01-01
This paper details a novel scheme for autonomous component health management (ACHM) with failed actuator detection and failed sensor detection, identification, and avoidance. This new scheme has features that far exceed the performance of systems with triple-redundant sensing and voting, yet requires fewer sensors and could be applied to any system with redundant sensing. Relevant background to the ACHM scheme is provided, and the simulation results for the application of that scheme to a single-axis spacecraft attitude control system with a 3rd order plant and dual-redundant measurement of system states are presented. ACHM fulfills key functions needed by an integrated vehicle health monitoring (IVHM) system. It is: autonomous; adaptive; works in realtime; provides optimal state estimation; identifies failed components; avoids failed components; reconfigures for multiple failures; reconfigures for intermittent failures; works for hard-over, soft, and zero-output failures; and works for both open- and closed-loop systems. The ACHM scheme combines a prefilter that generates preliminary state estimates, detects and identifies failed sensors and actuators, and avoids the use of failed sensors in state estimation with a fixed-gain Kalman filter that generates optimal state estimates and provides model-based state estimates that comprise an integral part of the failure detection logic. The results show that ACHM successfully isolates multiple persistent and intermittent hard-over, soft, and zero-output failures. It is now ready to be tested on a computer model of an actual system.
Research on an autonomous vision-guided helicopter
NASA Technical Reports Server (NTRS)
Amidi, Omead; Mesaki, Yuji; Kanade, Takeo
1994-01-01
Integration of computer vision with on-board sensors to autonomously fly helicopters was researched. The key components developed were custom designed vision processing hardware and an indoor testbed. The custom designed hardware provided flexible integration of on-board sensors with real-time image processing resulting in a significant improvement in vision-based state estimation. The indoor testbed provided convenient calibrated experimentation in constructing real autonomous systems.
Lessons in weather data interoperability: the National Mesonet Program
NASA Astrophysics Data System (ADS)
Evans, J. D.; Werner, B.; Cogar, C.; Heppner, P.
2015-12-01
The National Mesonet Program (NMP) links local, state, and regional surface weather observation networks (a.k.a. mesonets) to enhance the prediction of high-impact, local-scale weather events. A consortium of 23 (and counting) private firms, state agencies, and universities provides near-real-time observations from over 7,000 fixed weather stations, and over 1,000 vehicle-mounted sensors, every 15 minutes or less, together with the detailed sensor and station metadata required for effective forecasts and decision-making. In order to integrate these weather observations across the United States, and to provide full details about sensors, stations, and observations, the NMP has defined a set of conventions for observational data and sensor metadata. These conventions address the needs of users with limited bandwidth and computing resources, while also anticipating a growing variety of sensors and observations. For disseminating weather observation data, the NMP currently employs a simple ASCII format derived from the Integrated Ocean Observing System. This simplifies data ingest into common desktop software, and parsing by simple scripts; and it directly supports basic readings of temperature, pressure, etc. By extending the format to vector-valued observations, it can also convey readings taken at different altitudes (e.g. windspeed) or depths (e.g., soil moisture). Extending beyond these observations to fit a greater variety of sensors (solar irradiation, sodar, radar, lidar) may require further extensions, or a move to more complex formats (e.g., based on XML or JSON). We will discuss the tradeoffs of various conventions for different users and use cases. To convey sensor and station metadata, the NMP uses a convention known as Starfish Fungus Language (*FL), derived from the Open Geospatial Consortium's SensorML standard. *FL separates static and dynamic elements of a sensor description, allowing for relatively compact expressions that reference a library of shared definitions (e.g., sensor manufacturer's specifications) alongside time-varying and site-specific details (slope / aspect, calibration, etc.) We will discuss the tradeoffs of *FL, SensorML, and alternatives for conveying sensor details to various users and uses.
Nearest neighbor imputation using spatial–temporal correlations in wireless sensor networks
Li, YuanYuan; Parker, Lynne E.
2016-01-01
Missing data is common in Wireless Sensor Networks (WSNs), especially with multi-hop communications. There are many reasons for this phenomenon, such as unstable wireless communications, synchronization issues, and unreliable sensors. Unfortunately, missing data creates a number of problems for WSNs. First, since most sensor nodes in the network are battery-powered, it is too expensive to have the nodes retransmit missing data across the network. Data re-transmission may also cause time delays when detecting abnormal changes in an environment. Furthermore, localized reasoning techniques on sensor nodes (such as machine learning algorithms to classify states of the environment) are generally not robust enough to handle missing data. Since sensor data collected by a WSN is generally correlated in time and space, we illustrate how replacing missing sensor values with spatially and temporally correlated sensor values can significantly improve the network’s performance. However, our studies show that it is important to determine which nodes are spatially and temporally correlated with each other. Simple techniques based on Euclidean distance are not sufficient for complex environmental deployments. Thus, we have developed a novel Nearest Neighbor (NN) imputation method that estimates missing data in WSNs by learning spatial and temporal correlations between sensor nodes. To improve the search time, we utilize a kd-tree data structure, which is a non-parametric, data-driven binary search tree. Instead of using traditional mean and variance of each dimension for kd-tree construction, and Euclidean distance for kd-tree search, we use weighted variances and weighted Euclidean distances based on measured percentages of missing data. We have evaluated this approach through experiments on sensor data from a volcano dataset collected by a network of Crossbow motes, as well as experiments using sensor data from a highway traffic monitoring application. Our experimental results show that our proposed 𝒦-NN imputation method has a competitive accuracy with state-of-the-art Expectation–Maximization (EM) techniques, while using much simpler computational techniques, thus making it suitable for use in resource-constrained WSNs. PMID:28435414
IoT-based flood embankments monitoring system
NASA Astrophysics Data System (ADS)
Michta, E.; Szulim, R.; Sojka-Piotrowska, A.; Piotrowski, K.
2017-08-01
In the paper a concept of flood embankments monitoring system based on using Internet of Things approach and Cloud Computing technologies will be presented. The proposed system consists of sensors, IoT nodes, Gateways and Cloud based services. Nodes communicates with the sensors measuring certain physical parameters describing the state of the embankments and communicates with the Gateways. Gateways are specialized active devices responsible for direct communication with the nodes, collecting sensor data, preprocess the data, applying local rules and communicate with the Cloud Services using communication API delivered by cloud services providers. Architecture of all of the system components will be proposed consisting IoT devices functionalities description, their communication model, software modules and services bases on using a public cloud computing platform like Microsoft Azure will be proposed. The most important aspects of maintaining the communication in a secure way will be shown.
Quantitative Assessment of Parkinsonian Tremor Based on an Inertial Measurement Unit
Dai, Houde; Zhang, Pengyue; Lueth, Tim C.
2015-01-01
Quantitative assessment of parkinsonian tremor based on inertial sensors can provide reliable feedback on the effect of medication. In this regard, the features of parkinsonian tremor and its unique properties such as motor fluctuations and dyskinesia are taken into account. Least-square-estimation models are used to assess the severities of rest, postural, and action tremors. In addition, a time-frequency signal analysis algorithm for tremor state detection was also included in the tremor assessment method. This inertial sensor-based method was verified through comparison with an electromagnetic motion tracking system. Seven Parkinson’s disease (PD) patients were tested using this tremor assessment system. The measured tremor amplitudes correlated well with the judgments of a neurologist (r = 0.98). The systematic analysis of sensor-based tremor quantification and the corresponding experiments could be of great help in monitoring the severity of parkinsonian tremor. PMID:26426020
A Study on Wireless Charging for Prolonging the Lifetime of Wireless Sensor Networks.
Tu, Weijian; Xu, Xianghua; Ye, Tingcong; Cheng, Zongmao
2017-07-04
Wireless charging is an important issue in wireless sensor networks, since it can provide an emerging and effective solution in the absence of other power supplies. The state-of-the-art methods employ a mobile car and a predefined moving path to charge the sensor nodes in the network. Previous studies only consider a factor of the network (i.e., residual energy of sensor node) as a constraint to design the wireless charging strategy. However, other factors, such as the travelled distance of the mobile car, can also affect the effectiveness of wireless charging strategy. In this work, we study wireless charging strategy based on the analysis of a combination of two factors, including the residual energy of sensor nodes and the travelled distance of the charging car. Firstly, we theoretically analyze the limited size of the sensor network to match the capability of a charging car. Then, the networked factors are selected as the weights of traveling salesman problem (TSP) to design the moving path of the charging car. Thirdly, the charging time of each sensor node is computed based on the linear programming problem for the charging car. Finally, a charging period for the network is studied. The experimental results show that the proposed approach can significantly maximize the lifetime of the wireless sensor network.
Advanced end-to-end fiber optic sensing systems for demanding environments
NASA Astrophysics Data System (ADS)
Black, Richard J.; Moslehi, Behzad
2010-09-01
Optical fibers are small-in-diameter, light-in-weight, electromagnetic-interference immune, electrically passive, chemically inert, flexible, embeddable into different materials, and distributed-sensing enabling, and can be temperature and radiation tolerant. With appropriate processing and/or packaging, they can be very robust and well suited to demanding environments. In this paper, we review a range of complete end-to-end fiber optic sensor systems that IFOS has developed comprising not only (1) packaged sensors and mechanisms for integration with demanding environments, but (2) ruggedized sensor interrogators, and (3) intelligent decision aid algorithms software systems. We examine the following examples: " Fiber Bragg Grating (FBG) optical sensors systems supporting arrays of environmentally conditioned multiplexed FBG point sensors on single or multiple optical fibers: In conjunction with advanced signal processing, decision aid algorithms and reasoners, FBG sensor based structural health monitoring (SHM) systems are expected to play an increasing role in extending the life and reducing costs of new generations of aerospace systems. Further, FBG based structural state sensing systems have the potential to considerably enhance the performance of dynamic structures interacting with their environment (including jet aircraft, unmanned aerial vehicles (UAVs), and medical or extravehicular space robots). " Raman based distributed temperature sensing systems: The complete length of optical fiber acts as a very long distributed sensor which may be placed down an oil well or wrapped around a cryogenic tank.
Fluorescent Sensors Based on Aggregation-Induced Emission: Recent Advances and Perspectives.
Gao, Meng; Tang, Ben Zhong
2017-10-27
Fluorescent sensors with advantages of excellent sensitivity, rapid response, and easy operation are emerging as powerful tools in environmental monitoring, biological research, and disease diagnosis. However, conventional fluorophores featured with π-planar structures usually suffer from serious self-quenching in the aggregated state, poor photostability, and small Stokes' shift. In contrast to conventional aggregation-caused quenching (ACQ) fluorophores, the newly emerged aggregation-induced emission fluorogens (AIEgens) are featured with high emission efficiency in the aggregated state, which provide unique opportunities for various sensing applications with advantages of high signal-to-noise ratio, strong photostability, and large Stokes' shift. In this review, we will first briefly give an introduction of the AIE concept and the turn-on sensing principles. Then, we will discuss the recent examples of AIE sensors according to types of analytes. Finally, we will give a perspective on the future developments of AIE sensors. We hope this review will inspire more endeavors to devote to this emerging world.
System Security And Monitoring On Smart Home Using Android
NASA Astrophysics Data System (ADS)
Romadhon, A. S.
2018-01-01
Home security system is needed for homeowners who have a lot of activities, as a result, they often leave the house without locking the door and even leave the house in a state of lights that are not lit. In order to overcome this case, a system that can control and can monitor the state of the various devices contained in the house or smart home system is urgently required. The working principle of this smart home using android is when the homeowner sends a certain command using android, the command will be forwarded to the microcontroller and then it will be executed based on the parameters that have been determined. For example, it can turn off and on the light using android app. In this study, testing was conducted to a smart home prototype which is equipped with light bulbs, odour sensors, heat sensors, ultrasonic sensors, LDR, buzzer and camera. The test results indicate that the application has been able to control all the sensors of home appliances well.
A Novel Concrete-Based Sensor for Detection of Ice and Water on Roads and Bridges
Aljuboori, Mohammed
2017-01-01
Hundreds of people are killed or injured annually in the United States in accidents related to ice formation on roadways and bridge decks. In this paper, a novel embedded sensor system is proposed for the detection of black ice as well as wet, dry, and frozen pavement conditions on roads, runways, and bridges. The proposed sensor works by detecting changes in electrical resistance between two sets of stainless steel poles embedded in the concrete sensor to assess surface and near-surface conditions. A preliminary decision algorithm is developed that utilizes sensor outputs indicating resistance changes and surface temperature. The sensor consists of a 102-mm-diameter, 38-mm-high, concrete cylinder. Laboratory results indicate that the proposed sensor can effectively detect surface ice and wet conditions even in the presence of deicing chlorides and rubber residue. This sensor can further distinguish black ice from ice that may exist within concrete pores. PMID:29240710
A Web of Things-Based Emerging Sensor Network Architecture for Smart Control Systems.
Khan, Murad; Silva, Bhagya Nathali; Han, Kijun
2017-02-09
The Web of Things (WoT) plays an important role in the representation of the objects connected to the Internet of Things in a more transparent and effective way. Thus, it enables seamless and ubiquitous web communication between users and the smart things. Considering the importance of WoT, we propose a WoT-based emerging sensor network (WoT-ESN), which collects data from sensors, routes sensor data to the web, and integrate smart things into the web employing a representational state transfer (REST) architecture. A smart home scenario is introduced to evaluate the proposed WoT-ESN architecture. The smart home scenario is tested through computer simulation of the energy consumption of various household appliances, device discovery, and response time performance. The simulation results show that the proposed scheme significantly optimizes the energy consumption of the household appliances and the response time of the appliances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corre, G.; Boudergui, K.; Sannie, G.
Homeland security requests the use Radiation Portal Monitor (RPM). They must be able to detect and differentiate gamma and neutron radiation. Gamma detection is required for illicit transportation of radioactive matter detection. Neutron detection is important to control nonproliferation of enriched material. Manufacturers worldwide propose sensors based on {sup 3}He which give the actual state of art in term of neutron detection. The imminent shortage of {sup 3}He forces manufacturers to find viable alternative. From 10 years sensors providers have the challenge to replace previous {sup 3}He detectors that are known to be the most commonly deployed neutron sensor. Asmore » {sup 3}He detectors can only detect neutron, they must be completed with gamma detector. The proposed approach is based on pulse time correlation between adjacent sensors from signal collected by EJ200 plastic scintillators. Results obtained during FP7 Scintilla project test campaigns show the system relevance for replacement of today's {sup 3}He detectors. (authors)« less
Chen, Peng; Wang, Zhuyuan; Zong, Shenfei; Chen, Hui; Zhu, Dan; Zhong, Yuan; Cui, Yiping
2014-10-01
p-Aminothiophenol (pATP) functionalized multi-walled carbon nanotubes (MWCNTs) have been demonstrated as an efficient pH sensor for living cells. The proposed sensor employs gold/silver core-shell nanoparticles (Au@Ag NPs) functionalized MWCNTs hybrid structure as the surface-enhanced Raman scattering (SERS) substrate and pATP molecules as the SERS reporters, which possess a pH-dependent SERS performance. By using MWCNTs as the substrate to be in a state of aggregation, the pH sensing range could be extended to pH 3.0∼14.0, which is much wider than that using unaggregated Au@Ag NPs without MWCNTs. Furthermore, the pH-sensitive performance was well retained in living cells with a low cytotoxicity. The developed SERS-active MWCNTs-based nanocomposite is expected to be an efficient intracellular pH sensor for bio-applications.
A Web of Things-Based Emerging Sensor Network Architecture for Smart Control Systems
Khan, Murad; Silva, Bhagya Nathali; Han, Kijun
2017-01-01
The Web of Things (WoT) plays an important role in the representation of the objects connected to the Internet of Things in a more transparent and effective way. Thus, it enables seamless and ubiquitous web communication between users and the smart things. Considering the importance of WoT, we propose a WoT-based emerging sensor network (WoT-ESN), which collects data from sensors, routes sensor data to the web, and integrate smart things into the web employing a representational state transfer (REST) architecture. A smart home scenario is introduced to evaluate the proposed WoT-ESN architecture. The smart home scenario is tested through computer simulation of the energy consumption of various household appliances, device discovery, and response time performance. The simulation results show that the proposed scheme significantly optimizes the energy consumption of the household appliances and the response time of the appliances. PMID:28208787
A magneto-sensitive skin for robots in space
NASA Technical Reports Server (NTRS)
Chauhan, D. S.; Dehoff, P. H.
1991-01-01
The development of a robot arm proximity sensing skin that can sense intruding objects is described. The purpose of the sensor would be to prevent the robot from colliding with objects in space including human beings. Eventually a tri-mode system in envisioned including proximity, tactile, and thermal. To date the primary emphasis was on the proximity sensor which evolved from one based on magneto-inductive principles to the current design which is based on a capacitive-reflector system. The capacitive sensing element, backed by a reflector driven at the same voltage and in phase with the sensor, is used to reflect field lines away from the grounded robot toward the intruding object. This results in an increased sensing range of up to 12 in. with the reflector on compared with only 1 in. with it off. It is believed that this design advances the state-of-the-art in capacitive sensor performance.
Unaldi, Numan; Temel, Samil; Asari, Vijayan K.
2012-01-01
One of the most critical issues of Wireless Sensor Networks (WSNs) is the deployment of a limited number of sensors in order to achieve maximum coverage on a terrain. The optimal sensor deployment which enables one to minimize the consumed energy, communication time and manpower for the maintenance of the network has attracted interest with the increased number of studies conducted on the subject in the last decade. Most of the studies in the literature today are proposed for two dimensional (2D) surfaces; however, real world sensor deployments often arise on three dimensional (3D) environments. In this paper, a guided wavelet transform (WT) based deployment strategy (WTDS) for 3D terrains, in which the sensor movements are carried out within the mutation phase of the genetic algorithms (GAs) is proposed. The proposed algorithm aims to maximize the Quality of Coverage (QoC) of a WSN via deploying a limited number of sensors on a 3D surface by utilizing a probabilistic sensing model and the Bresenham's line of sight (LOS) algorithm. In addition, the method followed in this paper is novel to the literature and the performance of the proposed algorithm is compared with the Delaunay Triangulation (DT) method as well as a standard genetic algorithm based method and the results reveal that the proposed method is a more powerful and more successful method for sensor deployment on 3D terrains. PMID:22666078
Distributed Efficient Similarity Search Mechanism in Wireless Sensor Networks
Ahmed, Khandakar; Gregory, Mark A.
2015-01-01
The Wireless Sensor Network similarity search problem has received considerable research attention due to sensor hardware imprecision and environmental parameter variations. Most of the state-of-the-art distributed data centric storage (DCS) schemes lack optimization for similarity queries of events. In this paper, a DCS scheme with metric based similarity searching (DCSMSS) is proposed. DCSMSS takes motivation from vector distance index, called iDistance, in order to transform the issue of similarity searching into the problem of an interval search in one dimension. In addition, a sector based distance routing algorithm is used to efficiently route messages. Extensive simulation results reveal that DCSMSS is highly efficient and significantly outperforms previous approaches in processing similarity search queries. PMID:25751081
Quantum gyroscope based on Berry phase of spins in diamond
NASA Astrophysics Data System (ADS)
Song, Xuerui; Wang, Liujun; Diao, Wenting; Duan, Chongdi
2018-02-01
Gyroscope is the crucial sensor of the inertial navigation system, there is always high demand to improve the sensitivity and reduce the size of the gyroscopes. Using the NV center electronic spin and nuclear spin qubits in diamond, we introduce the research of new types of quantum gyroscopes based on the Berry phase shifts of the spin states during the rotation of the sensor systems. Compared with the performance of the traditional MEMS gyroscope, the sensitivity of the new types of quantum gyroscopes was highly improved and the spatial resolution was reduced to nano-scale. With the help of micro-manufacturing technology in the semiconductor industry, the quantum gyroscopes introduced here can be further integrated into chip-scale sensors.
Smart Braid Feedback for the Closed-Loop Control of Soft Robotic Systems.
Felt, Wyatt; Chin, Khai Yi; Remy, C David
2017-09-01
This article experimentally investigates the potential of using flexible, inductance-based contraction sensors in the closed-loop motion control of soft robots. Accurate motion control remains a highly challenging task for soft robotic systems. Precise models of the actuation dynamics and environmental interactions are often unavailable. This renders open-loop control impossible, while closed-loop control suffers from a lack of suitable feedback. Conventional motion sensors, such as linear or rotary encoders, are difficult to adapt to robots that lack discrete mechanical joints. The rigid nature of these sensors runs contrary to the aspirational benefits of soft systems. As truly soft sensor solutions are still in their infancy, motion control of soft robots has so far relied on laboratory-based sensing systems such as motion capture, electromagnetic (EM) tracking, or Fiber Bragg Gratings. In this article, we used embedded flexible sensors known as Smart Braids to sense the contraction of McKibben muscles through changes in inductance. We evaluated closed-loop control on two systems: a revolute joint and a planar, one degree of freedom continuum manipulator. In the revolute joint, our proposed controller compensated for elasticity in the actuator connections. The Smart Braid feedback allowed motion control with a steady-state root-mean-square (RMS) error of [1.5]°. In the continuum manipulator, Smart Braid feedback enabled tracking of the desired tip angle with a steady-state RMS error of [1.25]°. This work demonstrates that Smart Braid sensors can provide accurate position feedback in closed-loop motion control suitable for field applications of soft robotic systems.
Piezoelectric Actuator/Sensor Technology at Rockwell
NASA Technical Reports Server (NTRS)
Neurgaonkar, Ratnakar R.
1996-01-01
We describe the state-of-the art of piezoelectric materials based on perovskite and tungsten bronze families for sensor, actuator and smart structure applications. The microstructural defects in these materials have been eliminated to a large extent and the resulting materials exhibit exceedingly high performance for various applications. The performance of Rockwell actuators/sensors is at least 3 times better than commercially available products. These high performance actuators are being incorporated into various applications including, DOD, NASA and commercial. The multilayer actuator stacks fabricated from our piezoceramics are advantageous for sensing and high capacitance applications. In this presentation, we will describe the use of our high performance piezo-ceramics for actuators and sensors, including multilayer stacks and composite structures.
NASA Astrophysics Data System (ADS)
Hasnahena, S. T.; Roy, M.
2017-12-01
A chemical approach to fabricate a CdS-attached multiwall carbon nanotube (CdS/MWCNT) based on NH3 gas sensor is presented. During chemical assemblage the formation of the chemical composition and chemical state of CdS/MWCNT, evaluated through XPS, is also enumerated in this work. Results on NH3 gas sensitivity at room temperature with theoretical interpretation make this work noticeable. The overall finding is that the CdS/MWCNT sensor senses NH3 at room temperature as low as 10 ppb concentration. The sensor shows good reproducibility and stability, construed on the performance of the sensor over a period of six months.
Recent Progress in Technologies for Tactile Sensors
Sun, Xuguang; Xue, Ning; Li, Tong; Liu, Chang
2018-01-01
Over the last two decades, considerable scientific and technological efforts have been devoted to developing tactile sensing based on a variety of transducing mechanisms, with prospective applications in many fields such as human–machine interaction, intelligent robot tactile control and feedback, and tactile sensorized minimally invasive surgery. This paper starts with an introduction of human tactile systems, followed by a presentation of the basic demands of tactile sensors. State-of-the-art tactile sensors are reviewed in terms of their diverse sensing mechanisms, design consideration, and material selection. Subsequently, typical performances of the sensors, along with their advantages and disadvantages, are compared and analyzed. Two major potential applications of tactile sensing systems are discussed in detail. Lastly, we propose prospective research directions and market trends of tactile sensing systems. PMID:29565835
Recent Progress in Technologies for Tactile Sensors.
Chi, Cheng; Sun, Xuguang; Xue, Ning; Li, Tong; Liu, Chang
2018-03-22
Over the last two decades, considerable scientific and technological efforts have been devoted to developing tactile sensing based on a variety of transducing mechanisms, with prospective applications in many fields such as human-machine interaction, intelligent robot tactile control and feedback, and tactile sensorized minimally invasive surgery. This paper starts with an introduction of human tactile systems, followed by a presentation of the basic demands of tactile sensors. State-of-the-art tactile sensors are reviewed in terms of their diverse sensing mechanisms, design consideration, and material selection. Subsequently, typical performances of the sensors, along with their advantages and disadvantages, are compared and analyzed. Two major potential applications of tactile sensing systems are discussed in detail. Lastly, we propose prospective research directions and market trends of tactile sensing systems.
Map based localization to assist commercial fleet operations.
DOT National Transportation Integrated Search
2014-08-01
This report outlines key recent contributions to the state of the art in lane detection, lane departure warning, : and map-based sensor fusion algorithms. These key studies are used as a basis for a discussion about the : limitations of systems that ...
Modified sensing element of a fibre-optic current sensor based on a low-eigenellipticity spun fibre
DOE Office of Scientific and Technical Information (OSTI.GOV)
Przhiyalkovsky, Ya V; Morshnev, S K; Starostin, N I
2014-10-31
We have proposed and investigated a modified sensing element of a spun fibre current sensor for the case when the beat length of the built-in linear birefringence of the fibre is equal to or less than the spin pitch of its helical structure. The proposed configuration makes it possible to restore the interferometer contrast reduced because of the decrease in the ellipticity of the wavelength-averaged polarisation state of radiation propagating in such spun fibre. The modified sensing element contains two polarisation state converters: one, located at the spun fibre input, produces polarisation with ellipticity equal to the eigenellipticity of themore » fibre, and the other ensures conversion of the elliptical polarisation to an orthogonal one through mirror reflection at the fibre output. We have also demonstrated that the magneto-optical sensitivity decreases slightly for the analysed spectrum-averaged parameters of the polarisation state of radiation in the spun fibre. Experimental data lend support to the theoretical predictions. (fibre-optic sensors)« less
Visser, Cobus; Kieser, Eduard; Dellimore, Kiran; van den Heever, Dawie; Smith, Johan
2017-10-01
This study explores the feasibility of prospectively assessing infant dehydration using four non-invasive, optical sensors based on the quantitative and objective measurement of various clinical markers of dehydration. The sensors were investigated to objectively and unobtrusively assess the hydration state of an infant based on the quantification of capillary refill time (CRT), skin recoil time (SRT), skin temperature profile (STP) and skin tissue hydration by means of infrared spectrometry (ISP). To evaluate the performance of the sensors a clinical study was conducted on a cohort of 10 infants (aged 6-36 months) with acute gastroenteritis. High sensitivity and specificity were exhibited by the sensors, in particular the STP and SRT sensors, when combined into a fusion regression model (sensitivity: 0.90, specificity: 0.78). The SRT and STP sensors and the fusion model all outperformed the commonly used "gold standard" clinical dehydration scales including the Gorelick scale (sensitivity: 0.56, specificity: 0.56), CDS scale (sensitivity: 1.0, specificity: 0.2) and WHO scale (sensitivity: 0.13, specificity: 0.79). These results suggest that objective and quantitative assessment of infant dehydration may be possible using the sensors investigated. However, further evaluation of the sensors on a larger sample population is needed before deploying them in a clinical setting. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Ferreira, Mário F S; Castro-Camus, Enrique; Ottaway, David J; López-Higuera, José Miguel; Feng, Xian; Jin, Wei; Jeong, Yoonchan; Picqué, Nathalie; Tong, Limin; Reinhard, Björn M; Pellegrino, Paul M; Méndez, Alexis; Diem, Max; Vollmer, Frank; Quan, Qimin
2017-08-01
Sensors are devices or systems able to detect, measure and convert magnitudes from any domain to an electrical one. Using light as a probe for optical sensing is one of the most efficient approaches for this purpose. The history of optical sensing using some methods based on absorbance, emissive and florescence properties date back to the 16th century. The field of optical sensors evolved during the following centuries, but it did not achieve maturity until the demonstration of the first laser in 1960. The unique properties of laser light become particularly important in the case of laser-based sensors, whose operation is entirely based upon the direct detection of laser light itself, without relying on any additional mediating device. However, compared with freely propagating light beams, artificially engineered optical fields are in increasing demand for probing samples with very small sizes and/or weak light-matter interaction. Optical fiber sensors constitute a subarea of optical sensors in which fiber technologies are employed. Different types of specialty and photonic crystal fibers provide improved performance and novel sensing concepts. Actually, structurization with wavelength or subwavelength feature size appears as the most efficient way to enhance sensor sensitivity and its detection limit. This leads to the area of micro- and nano-engineered optical sensors. It is expected that the combination of better fabrication techniques and new physical effects may open new and fascinating opportunities in this area. This roadmap on optical sensors addresses different technologies and application areas of the field. Fourteen contributions authored by experts from both industry and academia provide insights into the current state-of-the-art and the challenges faced by researchers currently. Two sections of this paper provide an overview of laser-based and frequency comb-based sensors. Three sections address the area of optical fiber sensors, encompassing both conventional, specialty and photonic crystal fibers. Several other sections are dedicated to micro- and nano-engineered sensors, including whispering-gallery mode and plasmonic sensors. The uses of optical sensors in chemical, biological and biomedical areas are described in other sections. Different approaches required to satisfy applications at visible, infrared and THz spectral regions are also discussed. Advances in science and technology required to meet challenges faced in each of these areas are addressed, together with suggestions on how the field could evolve in the near future.
NASA Astrophysics Data System (ADS)
Ferreira, Mário F. S.; Castro-Camus, Enrique; Ottaway, David J.; López-Higuera, José Miguel; Feng, Xian; Jin, Wei; Jeong, Yoonchan; Picqué, Nathalie; Tong, Limin; Reinhard, Björn M.; Pellegrino, Paul M.; Méndez, Alexis; Diem, Max; Vollmer, Frank; Quan, Qimin
2017-08-01
Sensors are devices or systems able to detect, measure and convert magnitudes from any domain to an electrical one. Using light as a probe for optical sensing is one of the most efficient approaches for this purpose. The history of optical sensing using some methods based on absorbance, emissive and florescence properties date back to the 16th century. The field of optical sensors evolved during the following centuries, but it did not achieve maturity until the demonstration of the first laser in 1960. The unique properties of laser light become particularly important in the case of laser-based sensors, whose operation is entirely based upon the direct detection of laser light itself, without relying on any additional mediating device. However, compared with freely propagating light beams, artificially engineered optical fields are in increasing demand for probing samples with very small sizes and/or weak light-matter interaction. Optical fiber sensors constitute a subarea of optical sensors in which fiber technologies are employed. Different types of specialty and photonic crystal fibers provide improved performance and novel sensing concepts. Actually, structurization with wavelength or subwavelength feature size appears as the most efficient way to enhance sensor sensitivity and its detection limit. This leads to the area of micro- and nano-engineered optical sensors. It is expected that the combination of better fabrication techniques and new physical effects may open new and fascinating opportunities in this area. This roadmap on optical sensors addresses different technologies and application areas of the field. Fourteen contributions authored by experts from both industry and academia provide insights into the current state-of-the-art and the challenges faced by researchers currently. Two sections of this paper provide an overview of laser-based and frequency comb-based sensors. Three sections address the area of optical fiber sensors, encompassing both conventional, specialty and photonic crystal fibers. Several other sections are dedicated to micro- and nano-engineered sensors, including whispering-gallery mode and plasmonic sensors. The uses of optical sensors in chemical, biological and biomedical areas are described in other sections. Different approaches required to satisfy applications at visible, infrared and THz spectral regions are also discussed. Advances in science and technology required to meet challenges faced in each of these areas are addressed, together with suggestions on how the field could evolve in the near future.
Carbon Nanotube-Based Ion Selective Sensors for Wearable Applications.
Roy, Soumyendu; David-Pur, Moshe; Hanein, Yael
2017-10-11
Wearable electronics offer new opportunities in a wide range of applications, especially sweat analysis using skin sensors. A fundamental challenge in these applications is the formation of sensitive and stable electrodes. In this article we report the development of a wearable sensor based on carbon nanotube (CNT) electrode arrays for sweat sensing. Solid-state ion selective electrodes (ISEs), sensitive to Na + ions, were prepared by drop coating plasticized poly(vinyl chloride) (PVC) doped with ionophore and ion exchanger on CNT electrodes. The ion selective membrane (ISM) filled the intertubular spaces of the highly porous CNT film and formed an attachment that was stronger than that achieved with flat Au, Pt, or carbon electrodes. Concentration of the ISM solution used influenced the attachment to the CNT film, the ISM surface morphology, and the overall performance of the sensor. Sensitivity of 56 ± 3 mV/decade to Na + ions was achieved. Optimized solid-state reference electrodes (REs), suitable for wearable applications, were prepared by coating CNT electrodes with colloidal dispersion of Ag/AgCl, agarose hydrogel with 0.5 M NaCl, and a passivation layer of PVC doped with NaCl. The CNT-based REs had low sensitivity (-1.7 ± 1.2 mV/decade) toward the NaCl solution and high repeatability and were superior to bare Ag/AgCl, metals, carbon, and CNT films, reported previously as REs. CNT-based ISEs were calibrated against CNT-based REs, and the short-term stability of the system was tested. We demonstrate that CNT-based devices implemented on a flexible support are a very attractive platform for future wearable technology devices.
Solid-State Multi-Sensor Array System for Real Time Imaging of Magnetic Fields and Ferrous Objects
NASA Astrophysics Data System (ADS)
Benitez, D.; Gaydecki, P.; Quek, S.; Torres, V.
2008-02-01
In this paper the development of a solid-state sensors based system for real-time imaging of magnetic fields and ferrous objects is described. The system comprises 1089 magneto inductive solid state sensors arranged in a 2D array matrix of 33×33 files and columns, equally spaced in order to cover an approximate area of 300 by 300 mm. The sensor array is located within a large current-carrying coil. Data is sampled from the sensors by several DSP controlling units and finally streamed to a host computer via a USB 2.0 interface and the image generated and displayed at a rate of 20 frames per minute. The development of the instrumentation has been complemented by extensive numerical modeling of field distribution patterns using boundary element methods. The system was originally intended for deployment in the non-destructive evaluation (NDE) of reinforced concrete. Nevertheless, the system is not only capable of producing real-time, live video images of the metal target embedded within any opaque medium, it also allows the real-time visualization and determination of the magnetic field distribution emitted by either permanent magnets or geometries carrying current. Although this system was initially developed for the NDE arena, it could also have many potential applications in many other fields, including medicine, security, manufacturing, quality assurance and design involving magnetic fields.
Tehan, Elizabeth C; Bukowski, Rachel M; Chodavarapu, Vamsy P; Titus, Albert H; Cartwright, Alexander N; Bright, Frank V
2015-01-05
We report a new strategy for generating a continuum of response profiles from a single luminescence-based sensor element by using phase-resolved detection. This strategy yields reliable responses that depend in a predictable manner on changes in the luminescent reporter lifetime in the presence of the target analyte, the excitation modulation frequency, and the detector (lock-in amplifier) phase angle. In the traditional steady-state mode, the sensor that we evaluate exhibits a linear, positive going response to changes in the target analyte concentration. Under phase-resolved conditions the analyte-dependent response profiles: (i) can become highly non-linear; (ii) yield negative going responses; (iii) can be biphasic; and (iv) can exhibit super sensitivity (e.g., sensitivities up to 300 fold greater in comparison to steady-state conditions).
IMHRP: Improved Multi-Hop Routing Protocol for Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Huang, Jianhua; Ruan, Danwei; Hong, Yadong; Zhao, Ziming; Zheng, Hong
2017-10-01
Wireless sensor network (WSN) is a self-organizing system formed by a large number of low-cost sensor nodes through wireless communication. Sensor nodes collect environmental information and transmit it to the base station (BS). Sensor nodes usually have very limited battery energy. The batteries cannot be charged or replaced. Therefore, it is necessary to design an energy efficient routing protocol to maximize the network lifetime. This paper presents an improved multi-hop routing protocol (IMHRP) for homogeneous networks. In the IMHRP protocol, based on the distances to the BS, the CH nodes are divided into internal CH nodes and external CH nodes. The set-up phase of the protocol is based on the LEACH protocol and the minimum distance between CH nodes are limited to a special constant distance, so a more uniform distribution of CH nodes is achieved. In the steady-state phase, the routes of different CH nodes are created on the basis of the distances between the CH nodes. The energy efficiency of communication can be maximized. The simulation results show that the proposed algorithm can more effectively reduce the energy consumption of each round and prolong the network lifetime compared with LEACH protocol and MHT protocol.
Feasibility Study on a Microwave-Based Sensor for Measuring Hydration Level Using Human Skin Models
Brendtke, Rico; Wiehl, Michael; Groeber, Florian; Schwarz, Thomas; Walles, Heike; Hansmann, Jan
2016-01-01
Tissue dehydration results in three major types of exsiccosis—hyper-, hypo-, or isonatraemia. All three types entail alterations of salt concentrations leading to impaired biochemical processes, and can finally cause severe morbidity. The aim of our study was to demonstrate the feasibility of a microwave-based sensor technology for the non-invasive measurement of the hydration status. Electromagnetic waves at high frequencies interact with molecules, especially water. Hence, if a sample contains free water molecules, this can be detected in a reflected microwave signal. To develop the sensor system, human three-dimensional skin equivalents were instituted as a standardized test platform mimicking reproducible exsiccosis scenarios. Therefore, skin equivalents with a specific hydration and density of matrix components were generated and microwave measurements were performed. Hydration-specific spectra allowed deriving the hydration state of the skin models. A further advantage of the skin equivalents was the characterization of the impact of distinct skin components on the measured signals to investigate mechanisms of signal generation. The results demonstrate the feasibility of a non-invasive microwave-based hydration sensor technology. The sensor bears potential to be integrated in a wearable medical device for personal health monitoring. PMID:27046226
Feasibility Study on a Microwave-Based Sensor for Measuring Hydration Level Using Human Skin Models.
Brendtke, Rico; Wiehl, Michael; Groeber, Florian; Schwarz, Thomas; Walles, Heike; Hansmann, Jan
2016-01-01
Tissue dehydration results in three major types of exsiccosis--hyper-, hypo-, or isonatraemia. All three types entail alterations of salt concentrations leading to impaired biochemical processes, and can finally cause severe morbidity. The aim of our study was to demonstrate the feasibility of a microwave-based sensor technology for the non-invasive measurement of the hydration status. Electromagnetic waves at high frequencies interact with molecules, especially water. Hence, if a sample contains free water molecules, this can be detected in a reflected microwave signal. To develop the sensor system, human three-dimensional skin equivalents were instituted as a standardized test platform mimicking reproducible exsiccosis scenarios. Therefore, skin equivalents with a specific hydration and density of matrix components were generated and microwave measurements were performed. Hydration-specific spectra allowed deriving the hydration state of the skin models. A further advantage of the skin equivalents was the characterization of the impact of distinct skin components on the measured signals to investigate mechanisms of signal generation. The results demonstrate the feasibility of a non-invasive microwave-based hydration sensor technology. The sensor bears potential to be integrated in a wearable medical device for personal health monitoring.
Ju, Jinyong; Li, Wei; Wang, Yuqiao; Fan, Mengbao; Yang, Xuefeng
2016-01-01
Effective feedback control requires all state variable information of the system. However, in the translational flexible-link manipulator (TFM) system, it is unrealistic to measure the vibration signals and their time derivative of any points of the TFM by infinite sensors. With the rigid-flexible coupling between the global motion of the rigid base and the elastic vibration of the flexible-link manipulator considered, a two-time scale virtual sensor, which includes the speed observer and the vibration observer, is designed to achieve the estimation for the vibration signals and their time derivative of the TFM, as well as the speed observer and the vibration observer are separately designed for the slow and fast subsystems, which are decomposed from the dynamic model of the TFM by the singular perturbation. Additionally, based on the linear-quadratic differential games, the observer gains of the two-time scale virtual sensor are optimized, which aims to minimize the estimation error while keeping the observer stable. Finally, the numerical calculation and experiment verify the efficiency of the designed two-time scale virtual sensor. PMID:27801840
NASA Astrophysics Data System (ADS)
Yan, Xin; Zhang, Ling; Wu, Yang; Luo, Youlong; Zhang, Xiaoxing
2017-02-01
As more and more wireless sensor nodes and networks are employed to acquire and transmit the state information of power equipment in smart grid, we are in urgent need of some viable security solutions to ensure secure smart grid communications. Conventional information security solutions, such as encryption/decryption, digital signature and so forth, are not applicable to wireless sensor networks in smart grid any longer, where bulk messages need to be exchanged continuously. The reason is that these cryptographic solutions will account for a large portion of the extremely limited resources on sensor nodes. In this article, a security solution based on digital watermarking is adopted to achieve the secure communications for wireless sensor networks in smart grid by data and entity authentications at a low cost of operation. Our solution consists of a secure framework of digital watermarking, and two digital watermarking algorithms based on alternating electric current and time window, respectively. Both watermarking algorithms are composed of watermark generation, embedding and detection. The simulation experiments are provided to verify the correctness and practicability of our watermarking algorithms. Additionally, a new cloud-based architecture for the information integration of smart grid is proposed on the basis of our security solutions.
Gu, Xiangping; Zhou, Xiaofeng; Sun, Yanjing
2018-02-28
Compressive sensing (CS)-based data gathering is a promising method to reduce energy consumption in wireless sensor networks (WSNs). Traditional CS-based data-gathering approaches require a large number of sensor nodes to participate in each CS measurement task, resulting in high energy consumption, and do not guarantee load balance. In this paper, we propose a sparser analysis that depends on modified diffusion wavelets, which exploit sensor readings' spatial correlation in WSNs. In particular, a novel data-gathering scheme with joint routing and CS is presented. A modified ant colony algorithm is adopted, where next hop node selection takes a node's residual energy and path length into consideration simultaneously. Moreover, in order to speed up the coverage rate and avoid the local optimal of the algorithm, an improved pheromone impact factor is put forward. More importantly, theoretical proof is given that the equivalent sensing matrix generated can satisfy the restricted isometric property (RIP). The simulation results demonstrate that the modified diffusion wavelets' sparsity affects the sensor signal and has better reconstruction performance than DFT. Furthermore, our data gathering with joint routing and CS can dramatically reduce the energy consumption of WSNs, balance the load, and prolong the network lifetime in comparison to state-of-the-art CS-based methods.
Awais, Muhammad; Palmerini, Luca; Bourke, Alan K.; Ihlen, Espen A. F.; Helbostad, Jorunn L.; Chiari, Lorenzo
2016-01-01
The popularity of using wearable inertial sensors for physical activity classification has dramatically increased in the last decade due to their versatility, low form factor, and low power requirements. Consequently, various systems have been developed to automatically classify daily life activities. However, the scope and implementation of such systems is limited to laboratory-based investigations. Furthermore, these systems are not directly comparable, due to the large diversity in their design (e.g., number of sensors, placement of sensors, data collection environments, data processing techniques, features set, classifiers, cross-validation methods). Hence, the aim of this study is to propose a fair and unbiased benchmark for the field-based validation of three existing systems, highlighting the gap between laboratory and real-life conditions. For this purpose, three representative state-of-the-art systems are chosen and implemented to classify the physical activities of twenty older subjects (76.4 ± 5.6 years). The performance in classifying four basic activities of daily life (sitting, standing, walking, and lying) is analyzed in controlled and free living conditions. To observe the performance of laboratory-based systems in field-based conditions, we trained the activity classification systems using data recorded in a laboratory environment and tested them in real-life conditions in the field. The findings show that the performance of all systems trained with data in the laboratory setting highly deteriorates when tested in real-life conditions, thus highlighting the need to train and test the classification systems in the real-life setting. Moreover, we tested the sensitivity of chosen systems to window size (from 1 s to 10 s) suggesting that overall accuracy decreases with increasing window size. Finally, to evaluate the impact of the number of sensors on the performance, chosen systems are modified considering only the sensing unit worn at the lower back. The results, similarly to the multi-sensor setup, indicate substantial degradation of the performance when laboratory-trained systems are tested in the real-life setting. This degradation is higher than in the multi-sensor setup. Still, the performance provided by the single-sensor approach, when trained and tested with real data, can be acceptable (with an accuracy above 80%). PMID:27973434
NASA Astrophysics Data System (ADS)
Plattner, M. P.; Hirth, F.; Müller, M. S.; Hoffmann, L.; Buck, T. C.; Koch, A. W.
2017-11-01
Availability of reliable flight sensor data and knowledge of the structural behaviour are essential for safe operation of the Ariane launcher. The Ariane launcher is currently monitored by hundreds of electric sensors during test and qualification. Fibre optic sensors are regarded as a potential technique to overcome limitations of recent monitoring systems for the Ariane launcher [1]. These limitations include cumbersome application of sensors and harness as well as a very limited degree of distributed sensing capability. But, in order to exploit the various advantages of fibre optic sensors (high degree of multiplexing, distributed sensing capability, lower mass impact, etc.) dedicated measurement systems have to be developed and investigated. State-of-the-art fibre optic measurement systems often use free beam setups making them bulky and sensitive to vibration impact. Therefore a new measurement system is developed as part of the ESAstudy [2].
High performance flexible pH sensor based on polyaniline nanopillar array electrode.
Yoon, Jo Hee; Hong, Seok Bok; Yun, Seok-Oh; Lee, Seok Jae; Lee, Tae Jae; Lee, Kyoung G; Choi, Bong Gill
2017-03-15
Flexible pH sensor technologies have attracted a great deal of attention in many applications, such as, wearable health care devices and monitors for chemical and biological processes. Here, we fabricated flexible and thin pH sensors using a two electrode configuration comprised of a polyaniline nanopillar (PAN) array working electrode and an Ag/AgCl reference electrode. In order to provide nanostructure, soft lithography using a polymeric blend was employed to create a flexible nanopillar backbone film. Polyaniline-sensing materials were deposited on a patterned-nanopillar array by electrochemical deposition. The pH sensors produced exhibited a near-Nernstian response (∼60.3mV/pH), which was maintained in a bent state. In addition, pH sensors showed other excellent sensor performances in terms of response time, reversibility, repeatability, selectivity, and stability. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Liang; Yang, Yi; Harley, Ronald Gordon
A system is for a plurality of different electric load types. The system includes a plurality of sensors structured to sense a voltage signal and a current signal for each of the different electric loads; and a processor. The processor acquires a voltage and current waveform from the sensors for a corresponding one of the different electric load types; calculates a power or current RMS profile of the waveform; quantizes the power or current RMS profile into a set of quantized state-values; evaluates a state-duration for each of the quantized state-values; evaluates a plurality of state-types based on the powermore » or current RMS profile and the quantized state-values; generates a state-sequence that describes a corresponding finite state machine model of a generalized load start-up or transient profile for the corresponding electric load type; and identifies the corresponding electric load type.« less
Fuzzy Neural Network-Based Interacting Multiple Model for Multi-Node Target Tracking Algorithm
Sun, Baoliang; Jiang, Chunlan; Li, Ming
2016-01-01
An interacting multiple model for multi-node target tracking algorithm was proposed based on a fuzzy neural network (FNN) to solve the multi-node target tracking problem of wireless sensor networks (WSNs). Measured error variance was adaptively adjusted during the multiple model interacting output stage using the difference between the theoretical and estimated values of the measured error covariance matrix. The FNN fusion system was established during multi-node fusion to integrate with the target state estimated data from different nodes and consequently obtain network target state estimation. The feasibility of the algorithm was verified based on a network of nine detection nodes. Experimental results indicated that the proposed algorithm could trace the maneuvering target effectively under sensor failure and unknown system measurement errors. The proposed algorithm exhibited great practicability in the multi-node target tracking of WSNs. PMID:27809271
NASA Astrophysics Data System (ADS)
Wang, Xiaohua; Rong, Mingzhe; Qiu, Juan; Liu, Dingxin; Su, Biao; Wu, Yi
A new type of algorithm for predicting the mechanical faults of a vacuum circuit breaker (VCB) based on an artificial neural network (ANN) is proposed in this paper. There are two types of mechanical faults in a VCB: operation mechanism faults and tripping circuit faults. An angle displacement sensor is used to measure the main axle angle displacement which reflects the displacement of the moving contact, to obtain the state of the operation mechanism in the VCB, while a Hall current sensor is used to measure the trip coil current, which reflects the operation state of the tripping circuit. Then an ANN prediction algorithm based on a sliding time window is proposed in this paper and successfully used to predict mechanical faults in a VCB. The research results in this paper provide a theoretical basis for the realization of online monitoring and fault diagnosis of a VCB.
Noninvasive Dissection of Mouse Sleep Using a Piezoelectric Motion Sensor
Yaghouby, Farid; Donohue, Kevin D.; O’Hara, Bruce F.; Sunderam, Sridhar
2015-01-01
Background Changes in autonomic control cause regular breathing during NREM sleep to fluctuate during REM. Piezoelectric cage-floor sensors have been used to successfully discriminate sleep and wake states in mice based on signal features related to respiration and other movements. This study presents a classifier for noninvasively classifying REM and NREM using a piezoelectric sensor. New Method Vigilance state was scored manually in 4-second epochs for 24-hour EEG/EMG recordings in twenty mice. An unsupervised classifier clustered piezoelectric signal features quantifying movement and respiration into three states: one active; and two inactive with regular and irregular breathing respectively. These states were hypothesized to correspond to Wake, NREM, and REM respectively. States predicted by the classifier were compared against manual EEG/EMG scores to test this hypothesis. Results Using only piezoelectric signal features, an unsupervised classifier distinguished Wake with high (89% sensitivity, 96% specificity) and REM with moderate (73% sensitivity, 75% specificity) accuracy, but NREM with poor sensitivity (51%) and high specificity (96%). The classifier sometimes confused light NREM sleep—characterized by irregular breathing and moderate delta EEG power—with REM. A supervised classifier improved sensitivities to 90, 81, and 67% and all specificities to over 90% for Wake, NREM, and REM respectively. Comparison with Existing Methods Unlike most actigraphic techniques, which only differentiate sleep from wake, the proposed piezoelectric method further dissects sleep based on breathing regularity into states strongly correlated with REM and NREM. Conclusions This approach could facilitate large-sample screening for genes influencing different sleep traits, besides drug studies or other manipulations. PMID:26582569
Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis
Gao, Wei; Emaminejad, Sam; Nyein, Hnin Yin Yin; ...
2016-01-27
We report that wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual’s state of health. Sampling human sweat, which is rich in physiological information13, could enable non-invasive monitoring. Previously reported sweat-based and other noninvasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state14–18. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanicallymore » flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Lastly, our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plasticbased sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing.« less
Validation of a method to measure the vector fidelity of triaxial vector sensors
NASA Astrophysics Data System (ADS)
De Freitas, J. M.
2018-06-01
A method to measure the misalignment angles and vector fidelity of a mutually orthogonal arrangement of triaxial accelerometers has been validated by introducing known misalignments into the measurement procedure. The method is based on the excitation of all three accelerometers in equal measure and the determination of the second order responsivity tensor as a metric. The sensor axis misalignment angles measured using a sensor rotation technique as a reference were 1.49° ± 0.05°, 0.63° ± 0.02°, and 0.78° ± 0.04°. The resolution of the new approach against the reference was 0.03° with an accuracy of 0.2° and maximum deviation of 0.4°. An ellipticity tensor β that characterises the extent to which a triaxial system preserves the input polarisation state purity was introduced. In a careful laboratory arrangement, up to 98% input polarisation state purity was shown to be maintained. It is recommended that documentation on commercial and research grade high-precision triaxial sensor systems should give the responsivity matrix . This technique will improve the range of vector fidelity measurement tools for triaxial accelerometers and other vector sensors such as magnetometers, gyroscopes and acoustic vector sensors.
Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Wei; Emaminejad, Sam; Nyein, Hnin Yin Yin
We report that wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual’s state of health. Sampling human sweat, which is rich in physiological information13, could enable non-invasive monitoring. Previously reported sweat-based and other noninvasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state14–18. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanicallymore » flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Lastly, our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plasticbased sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing.« less
Solid-state gas sensors for breath analysis: a review.
Di Natale, Corrado; Paolesse, Roberto; Martinelli, Eugenio; Capuano, Rosamaria
2014-05-08
The analysis of volatile compounds is an efficient method to appraise information about the chemical composition of liquids and solids. This principle is applied to several practical applications, such as food analysis where many important features (e.g. freshness) can be directly inferred from the analysis of volatile compounds. The same approach can also be applied to a human body where the volatile compounds, collected from the skin, the breath or in the headspace of fluids, might contain information that could be used to diagnose several kinds of diseases. In particular, breath is widely studied and many diseases can be potentially detected from breath analysis. The most fascinating property of breath analysis is the non-invasiveness of the sample collection. Solid-state sensors are considered the natural complement to breath analysis, matching the non-invasiveness with typical sensor features such as low-cost, easiness of use, portability, and the integration with the information networks. Sensors based breath analysis is then expected to dramatically extend the diagnostic capabilities enabling the screening of large populations for the early diagnosis of pathologies. In the last years there has been an increased attention to the development of sensors specifically aimed to this purpose. These investigations involve both specific sensors designed to detect individual compounds and non-specific sensors, operated in array configurations, aimed at clustering subjects according to their health conditions. In this paper, the recent significant applications of these sensors to breath analysis are reviewed and discussed. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhao, Yanzhi; Zhang, Caifeng; Zhang, Dan; Shi, Zhongpan; Zhao, Tieshi
2016-01-01
Nowadays improving the accuracy and enlarging the measuring range of six-axis force sensors for wider applications in aircraft landing, rocket thrust, and spacecraft docking testing experiments has become an urgent objective. However, it is still difficult to achieve high accuracy and large measuring range with traditional parallel six-axis force sensors due to the influence of the gap and friction of the joints. Therefore, to overcome the mentioned limitations, this paper proposed a 6-Universal-Prismatic-Universal-Revolute (UPUR) joints parallel mechanism with flexible joints to develop a large measurement range six-axis force sensor. The structural characteristics of the sensor are analyzed in comparison with traditional parallel sensor based on the Stewart platform. The force transfer relation of the sensor is deduced, and the force Jacobian matrix is obtained using screw theory in two cases of the ideal state and the state of flexibility of each flexible joint is considered. The prototype and loading calibration system are designed and developed. The K value method and least squares method are used to process experimental data, and in errors of kind Ι and kind II linearity are obtained. The experimental results show that the calibration error of the K value method is more than 13.4%, and the calibration error of the least squares method is 2.67%. The experimental results prove the feasibility of the sensor and the correctness of the theoretical analysis which are expected to be adopted in practical applications. PMID:27529244
Robust Online Monitoring for Calibration Assessment of Transmitters and Instrumentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramuhalli, Pradeep; Coble, Jamie B.; Shumaker, Brent
Robust online monitoring (OLM) technologies are expected to enable the extension or elimination of periodic sensor calibration intervals in operating and new reactors. These advances in OLM technologies will improve the safety and reliability of current and planned nuclear power systems through improved accuracy and increased reliability of sensors used to monitor key parameters. In this article, we discuss an overview of research being performed within the Nuclear Energy Enabling Technologies (NEET)/Advanced Sensors and Instrumentation (ASI) program, for the development of OLM algorithms to use sensor outputs and, in combination with other available information, 1) determine whether one or moremore » sensors are out of calibration or failing and 2) replace a failing sensor with reliable, accurate sensor outputs. Algorithm development is focused on the following OLM functions: • Signal validation • Virtual sensing • Sensor response-time assessment These algorithms incorporate, at their base, a Gaussian Process-based uncertainty quantification (UQ) method. Various plant models (using kernel regression, GP, or hierarchical models) may be used to predict sensor responses under various plant conditions. These predicted responses can then be applied in fault detection (sensor output and response time) and in computing the correct value (virtual sensing) of a failing physical sensor. The methods being evaluated in this work can compute confidence levels along with the predicted sensor responses, and as a result, may have the potential for compensating for sensor drift in real-time (online recalibration). Evaluation was conducted using data from multiple sources (laboratory flow loops and plant data). Ongoing research in this project is focused on further evaluation of the algorithms, optimization for accuracy and computational efficiency, and integration into a suite of tools for robust OLM that are applicable to monitoring sensor calibration state in nuclear power plants.« less
Cheng, Jianhua; Wang, Tongda; Wang, Lu; Wang, Zhenmin
2017-10-23
Because of the harsh polar environment, the master strapdown inertial navigation system (SINS) has low accuracy and the system model information becomes abnormal. In this case, existing polar transfer alignment (TA) algorithms which use the measurement information provided by master SINS would lose their effectiveness. In this paper, a new polar TA algorithm with the aid of a star sensor and based on an adaptive unscented Kalman filter (AUKF) is proposed to deal with the problems. Since the measurement information provided by master SINS is inaccurate, the accurate information provided by the star sensor is chosen as the measurement. With the compensation of lever-arm effect and the model of star sensor, the nonlinear navigation equations are derived. Combined with the attitude matching method, the filter models for polar TA are designed. An AUKF is introduced to solve the abnormal information of system model. Then, the AUKF is used to estimate the states of TA. Results have demonstrated that the performance of the new polar TA algorithm is better than the state-of-the-art polar TA algorithms. Therefore, the new polar TA algorithm proposed in this paper is effectively to ensure and improve the accuracy of TA in the harsh polar environment.
Single-Photon Detectors for Time-of-Flight Range Imaging
NASA Astrophysics Data System (ADS)
Stoppa, David; Simoni, Andrea
We live in a three-dimensional (3D) world and thanks to the stereoscopic vision provided by our two eyes, in combination with the powerful neural network of the brain we are able to perceive the distance of the objects. Nevertheless, despite the huge market volume of digital cameras, solid-state image sensors can capture only a two-dimensional (2D) projection, of the scene under observation, losing a variable of paramount importance, i.e., the scene depth. On the contrary, 3D vision tools could offer amazing possibilities of improvement in many areas thanks to the increased accuracy and reliability of the models representing the environment. Among the great variety of distance measuring techniques and detection systems available, this chapter will treat only the emerging niche of solid-state, scannerless systems based on the TOF principle and using a detector SPAD-based pixels. The chapter is organized into three main parts. At first, TOF systems and measuring techniques will be described. In the second part, most meaningful sensor architectures for scannerless TOF distance measurements will be analyzed, focusing onto the circuital building blocks required by time-resolved image sensors. Finally, a performance summary is provided and a perspective view for the near future developments of SPAD-TOF sensors is given.
Cheng, Jianhua; Wang, Tongda; Wang, Lu; Wang, Zhenmin
2017-01-01
Because of the harsh polar environment, the master strapdown inertial navigation system (SINS) has low accuracy and the system model information becomes abnormal. In this case, existing polar transfer alignment (TA) algorithms which use the measurement information provided by master SINS would lose their effectiveness. In this paper, a new polar TA algorithm with the aid of a star sensor and based on an adaptive unscented Kalman filter (AUKF) is proposed to deal with the problems. Since the measurement information provided by master SINS is inaccurate, the accurate information provided by the star sensor is chosen as the measurement. With the compensation of lever-arm effect and the model of star sensor, the nonlinear navigation equations are derived. Combined with the attitude matching method, the filter models for polar TA are designed. An AUKF is introduced to solve the abnormal information of system model. Then, the AUKF is used to estimate the states of TA. Results have demonstrated that the performance of the new polar TA algorithm is better than the state-of-the-art polar TA algorithms. Therefore, the new polar TA algorithm proposed in this paper is effectively to ensure and improve the accuracy of TA in the harsh polar environment. PMID:29065521
Sainato, Michela; Strambini, Lucanos Marsilio; Rella, Simona; Mazzotta, Elisabetta; Barillaro, Giuseppe
2015-04-08
Surface doping of nano/mesostructured materials with metal nanoparticles to promote and optimize chemi-transistor sensing performance represents the most advanced research trend in the field of solid-state chemical sensing. In spite of the promising results emerging from metal-doping of a number of nanostructured semiconductors, its applicability to silicon-based chemi-transistor sensors has been hindered so far by the difficulties in integrating the composite metal-silicon nanostructures using the complementary metal-oxide-semiconductor (CMOS) technology. Here we propose a facile and effective top-down method for the high-yield fabrication of chemi-transistor sensors making use of composite porous silicon/gold nanostructures (cSiAuNs) acting as sensing gate. In particular, we investigate the integration of cSiAuNs synthesized by metal-assisted etching (MAE), using gold nanoparticles (NPs) as catalyst, in solid-state junction-field-effect transistors (JFETs), aimed at the detection of NO2 down to 100 parts per billion (ppb). The chemi-transistor sensors, namely cSiAuJFETs, are CMOS compatible, operate at room temperature, and are reliable, sensitive, and fully recoverable for the detection of NO2 at concentrations between 100 and 500 ppb, up to 48 h of continuous operation.
Two-dimensional Layered MoS2 Biosensors Enable Highly Sensitive Detection of Biomolecules
NASA Astrophysics Data System (ADS)
Lee, Joonhyung; Dak, Piyush; Lee, Yeonsung; Park, Heekyeong; Choi, Woong; Alam, Muhammad A.; Kim, Sunkook
2014-12-01
We present a MoS2 biosensor to electrically detect prostate specific antigen (PSA) in a highly sensitive and label-free manner. Unlike previous MoS2-FET-based biosensors, the device configuration of our biosensors does not require a dielectric layer such as HfO2 due to the hydrophobicity of MoS2. Such an oxide-free operation improves sensitivity and simplifies sensor design. For a quantitative and selective detection of PSA antigen, anti-PSA antibody was immobilized on the sensor surface. Then, introduction of PSA antigen, into the anti-PSA immobilized sensor surface resulted in a lable-free immunoassary format. Measured off-state current of the device showed a significant decrease as the applied PSA concentration was increased. The minimum detectable concentration of PSA is 1 pg/mL, which is several orders of magnitude below the clinical cut-off level of ~4 ng/mL. In addition, we also provide a systematic theoretical analysis of the sensor platform - including the charge state of protein at the specific pH level, and self-consistent channel transport. Taken together, the experimental demonstration and the theoretical framework provide a comprehensive description of the performance potential of dielectric-free MoS2-based biosensor technology.
Real-time in vivo uric acid biosensor system for biophysical monitoring of birds.
Gumus, A; Lee, S; Karlsson, K; Gabrielson, R; Winkler, D W; Erickson, D
2014-02-21
Research on birds has long played an important role in ecological investigations, as birds are relatively easily observed, and their high metabolic rates and diurnal habits make them quite evidently responsive to changes in their environments. A mechanistic understanding of such avian responses requires a better understanding of how variation in physiological state conditions avian behavior and integrates the effects of recent environmental changes. There is a great need for sensor systems that will allow free-flying birds to interact with their environment and make unconstrained decisions about their spatial location at the same time that their physiological state is being monitored in real time. We have developed a miniature needle-based enzymatic sensor system suitable for continuous real-time amperometric monitoring of uric acid levels in unconstrained live birds. The sensor system was constructed with Pt/Ir wire and Ag/AgCl paste. Uricase enzyme was immobilized on a 0.7 mm sensing cavity of Nafion/cellulose inner membrane to minimize the influences of background interferents. The sensor response was linear from 0.05 to 0.6 mM uric acid, which spans the normal physiological range for most avian species. We developed a two-electrode potentiostat system that drives the biosensor, reads the output current, and wirelessly transmits the data. In addition to extensive characterization of the sensor and system, we also demonstrate autonomous operation of the system by collecting in vivo extracellular uric acid measurements on a domestic chicken. The results confirm our needle-type sensor system's potential for real-time monitoring of birds' physiological state. Successful application of the sensor in migratory birds could open up a new era of studying both the physiological preparation for migration and the consequences of sustained avian flight.
Discrete Data Qualification System and Method Comprising Noise Series Fault Detection
NASA Technical Reports Server (NTRS)
Fulton, Christopher; Wong, Edmond; Melcher, Kevin; Bickford, Randall
2013-01-01
A Sensor Data Qualification (SDQ) function has been developed that allows the onboard flight computers on NASA s launch vehicles to determine the validity of sensor data to ensure that critical safety and operational decisions are not based on faulty sensor data. This SDQ function includes a novel noise series fault detection algorithm for qualification of the output data from LO2 and LH2 low-level liquid sensors. These sensors are positioned in a launch vehicle s propellant tanks in order to detect propellant depletion during a rocket engine s boost operating phase. This detection capability can prevent the catastrophic situation where the engine operates without propellant. The output from each LO2 and LH2 low-level liquid sensor is a discrete valued signal that is expected to be in either of two states, depending on whether the sensor is immersed (wet) or exposed (dry). Conventional methods for sensor data qualification, such as threshold limit checking, are not effective for this type of signal due to its discrete binary-state nature. To address this data qualification challenge, a noise computation and evaluation method, also known as a noise fault detector, was developed to detect unreasonable statistical characteristics in the discrete data stream. The method operates on a time series of discrete data observations over a moving window of data points and performs a continuous examination of the resulting observation stream to identify the presence of anomalous characteristics. If the method determines the existence of anomalous results, the data from the sensor is disqualified for use by other monitoring or control functions.
Method and system to estimate variables in an integrated gasification combined cycle (IGCC) plant
Kumar, Aditya; Shi, Ruijie; Dokucu, Mustafa
2013-09-17
System and method to estimate variables in an integrated gasification combined cycle (IGCC) plant are provided. The system includes a sensor suite to measure respective plant input and output variables. An extended Kalman filter (EKF) receives sensed plant input variables and includes a dynamic model to generate a plurality of plant state estimates and a covariance matrix for the state estimates. A preemptive-constraining processor is configured to preemptively constrain the state estimates and covariance matrix to be free of constraint violations. A measurement-correction processor may be configured to correct constrained state estimates and a constrained covariance matrix based on processing of sensed plant output variables. The measurement-correction processor is coupled to update the dynamic model with corrected state estimates and a corrected covariance matrix. The updated dynamic model may be configured to estimate values for at least one plant variable not originally sensed by the sensor suite.
Development of an optical Zn 2+ probe based on a single fluorescent protein
Qin, Yan; Sammond, Deanne W.; Braselmann, Esther; ...
2016-07-28
Various fluorescent probes have been developed to reveal the biological functions of intracellular labile Zn 2+. Here we present Green Zinc Probe (GZnP), a novel genetically encoded Zn 2+ sensor design based on a single fluorescent protein (single-FP). The GZnP sensor is generated by attaching two zinc fingers (ZF) of the transcription factor Zap1 (ZF1 and ZF2) to the two ends of a circularly permuted green fluorescent protein (cpGFP). Formation of ZF folds induces interaction between the two ZFs, which induces a change in the cpGFP conformation, leading to an increase in fluorescence. A small sensor library is created tomore » include mutations in the ZFs, cpGFP and linkers between ZF and cpGFP to improve signal stability, sensor brightness and dynamic range based on rational protein engineering and computational design by Rosetta. Using a cell-based library screen, we identify sensor GZnP1 which demonstrates a stable maximum signal, decent brightness (QY = 0.42 at apo state), as well as specific and sensitive response to Zn 2+ in HeLa cells (F max/F min = 2.6, K d = 58 pM, pH 7.4). The subcellular localizing sensors mito-GZnP1 (in mitochondria matrix) and Lck-GZnP1 (on plasma membrane) display sensitivity to Zn 2+ (F max/F min = 2.2). In conclusion, this sensor design provides freedom to be used in combination with other optical indicators and optogenetic tools for simultaneous imaging and advancing our understanding of cellular Zn 2+ function.« less
Fan, Bingfei; Li, Qingguo; Wang, Chao; Liu, Tao
2017-01-01
Magnetic and inertial sensors have been widely used to estimate the orientation of human segments due to their low cost, compact size and light weight. However, the accuracy of the estimated orientation is easily affected by external factors, especially when the sensor is used in an environment with magnetic disturbances. In this paper, we propose an adaptive method to improve the accuracy of orientation estimations in the presence of magnetic disturbances. The method is based on existing gradient descent algorithms, and it is performed prior to sensor fusion algorithms. The proposed method includes stationary state detection and magnetic disturbance severity determination. The stationary state detection makes this method immune to magnetic disturbances in stationary state, while the magnetic disturbance severity determination helps to determine the credibility of magnetometer data under dynamic conditions, so as to mitigate the negative effect of the magnetic disturbances. The proposed method was validated through experiments performed on a customized three-axis instrumented gimbal with known orientations. The error of the proposed method and the original gradient descent algorithms were calculated and compared. Experimental results demonstrate that in stationary state, the proposed method is completely immune to magnetic disturbances, and in dynamic conditions, the error caused by magnetic disturbance is reduced by 51.2% compared with original MIMU gradient descent algorithm. PMID:28534858
Applying Sensor Web Technology to Marine Sensor Data
NASA Astrophysics Data System (ADS)
Jirka, Simon; del Rio, Joaquin; Mihai Toma, Daniel; Nüst, Daniel; Stasch, Christoph; Delory, Eric
2015-04-01
In this contribution we present two activities illustrating how Sensor Web technology helps to enable a flexible and interoperable sharing of marine observation data based on standards. An important foundation is the Sensor Web Architecture developed by the European FP7 project NeXOS (Next generation Low-Cost Multifunctional Web Enabled Ocean Sensor Systems Empowering Marine, Maritime and Fisheries Management). This architecture relies on the Open Geospatial Consortium's (OGC) Sensor Web Enablement (SWE) framework. It is an exemplary solution for facilitating the interoperable exchange of marine observation data within and between (research) organisations. The architecture addresses a series of functional and non-functional requirements which are fulfilled through different types of OGC SWE components. The diverse functionalities offered by the NeXOS Sensor Web architecture are shown in the following overview: - Pull-based observation data download: This is achieved through the OGC Sensor Observation Service (SOS) 2.0 interface standard. - Push-based delivery of observation data to allow users the subscription to new measurements that are relevant for them: For this purpose there are currently several specification activities under evaluation (e.g. OGC Sensor Event Service, OGC Publish/Subscribe Standards Working Group). - (Web-based) visualisation of marine observation data: Implemented through SOS client applications. - Configuration and controlling of sensor devices: This is ensured through the OGC Sensor Planning Service 2.0 interface. - Bridging between sensors/data loggers and Sensor Web components: For this purpose several components such as the "Smart Electronic Interface for Sensor Interoperability" (SEISI) concept are developed; this is complemented by a more lightweight SOS extension (e.g. based on the W3C Efficient XML Interchange (EXI) format). To further advance this architecture, there is on-going work to develop dedicated profiles of selected OGC SWE specifications that provide stricter guidance how these standards shall be applied to marine data (e.g. SensorML 2.0 profiles stating which metadata elements are mandatory building upon the ESONET Sensor Registry developments, etc.). Within the NeXOS project the presented architecture is implemented as a set of open source components. These implementations can be re-used by all interested scientists and data providers needing tools for publishing or consuming oceanographic sensor data. In further projects such as the European project FixO3 (Fixed-point Open Ocean Observatories), these software development activities are complemented with additional efforts to provide guidance how Sensor Web technology can be applied in an efficient manner. This way, not only software components are made available but also documentation and information resources that help to understand which types of Sensor Web deployments are best suited to fulfil different types of user requirements.
Redox sensor proteins for highly sensitive direct imaging of intracellular redox state.
Sugiura, Kazunori; Nagai, Takeharu; Nakano, Masahiro; Ichinose, Hiroshi; Nakabayashi, Takakazu; Ohta, Nobuhiro; Hisabori, Toru
2015-02-13
Intracellular redox state is a critical factor for fundamental cellular functions, including regulation of the activities of various metabolic enzymes as well as ROS production and elimination. Genetically-encoded fluorescent redox sensors, such as roGFP (Hanson, G. T., et al. (2004)) and Redoxfluor (Yano, T., et al. (2010)), have been developed to investigate the redox state of living cells. However, these sensors are not useful in cells that contain, for example, other colored pigments. We therefore intended to obtain simpler redox sensor proteins, and have developed oxidation-sensitive fluorescent proteins called Oba-Q (oxidation balance sensed quenching) proteins. Our sensor proteins derived from CFP and Sirius can be used to monitor the intracellular redox state as their fluorescence is drastically quenched upon oxidation. These blue-shifted spectra of the Oba-Q proteins enable us to monitor various redox states in conjunction with other sensor proteins. Copyright © 2015 Elsevier Inc. All rights reserved.
Metallic nanoparticle-based strain sensors elaborated by atomic layer deposition
NASA Astrophysics Data System (ADS)
Puyoo, E.; Malhaire, C.; Thomas, D.; Rafaël, R.; R'Mili, M.; Malchère, A.; Roiban, L.; Koneti, S.; Bugnet, M.; Sabac, A.; Le Berre, M.
2017-03-01
Platinum nanoparticle-based strain gauges are elaborated by means of atomic layer deposition on flexible polyimide substrates. Their electro-mechanical response is tested under mechanical bending in both buckling and conformational contact configurations. A maximum gauge factor of 70 is reached at a strain level of 0.5%. Although the exponential dependence of the gauge resistance on strain is attributed to the tunneling effect, it is shown that the majority of the junctions between adjacent Pt nanoparticles are in a short circuit state. Finally, we demonstrate the feasibility of an all-plastic pressure sensor integrating Pt nanoparticle-based strain gauges in a Wheatstone bridge configuration.
Proposed Robust Entanglement-Based Magnetic Field Sensor Beyond the Standard Quantum Limit.
Tanaka, Tohru; Knott, Paul; Matsuzaki, Yuichiro; Dooley, Shane; Yamaguchi, Hiroshi; Munro, William J; Saito, Shiro
2015-10-23
Recently, there have been significant developments in entanglement-based quantum metrology. However, entanglement is fragile against experimental imperfections, and quantum sensing to beat the standard quantum limit in scaling has not yet been achieved in realistic systems. Here, we show that it is possible to overcome such restrictions so that one can sense a magnetic field with an accuracy beyond the standard quantum limit even under the effect of decoherence, by using a realistic entangled state that can be easily created even with current technology. Our scheme could pave the way for the realizations of practical entanglement-based magnetic field sensors.
Zhang, Ying; Wang, Jun; Hao, Guan
2018-01-08
With the development of autonomous unmanned intelligent systems, such as the unmanned boats, unmanned planes and autonomous underwater vehicles, studies on Wireless Sensor-Actor Networks (WSANs) have attracted more attention. Network connectivity algorithms play an important role in data exchange, collaborative detection and information fusion. Due to the harsh application environment, abnormal nodes often appear, and the network connectivity will be prone to be lost. Network self-healing mechanisms have become critical for these systems. In order to decrease the movement overhead of the sensor-actor nodes, an autonomous connectivity restoration algorithm based on finite state machine is proposed. The idea is to identify whether a node is a critical node by using a finite state machine, and update the connected dominating set in a timely way. If an abnormal node is a critical node, the nearest non-critical node will be relocated to replace the abnormal node. In the case of multiple node abnormality, a regional network restoration algorithm is introduced. It is designed to reduce the overhead of node movements while restoration happens. Simulation results indicate the proposed algorithm has better performance on the total moving distance and the number of total relocated nodes compared with some other representative restoration algorithms.
Zhang, Ying; Wang, Jun; Hao, Guan
2018-01-01
With the development of autonomous unmanned intelligent systems, such as the unmanned boats, unmanned planes and autonomous underwater vehicles, studies on Wireless Sensor-Actor Networks (WSANs) have attracted more attention. Network connectivity algorithms play an important role in data exchange, collaborative detection and information fusion. Due to the harsh application environment, abnormal nodes often appear, and the network connectivity will be prone to be lost. Network self-healing mechanisms have become critical for these systems. In order to decrease the movement overhead of the sensor-actor nodes, an autonomous connectivity restoration algorithm based on finite state machine is proposed. The idea is to identify whether a node is a critical node by using a finite state machine, and update the connected dominating set in a timely way. If an abnormal node is a critical node, the nearest non-critical node will be relocated to replace the abnormal node. In the case of multiple node abnormality, a regional network restoration algorithm is introduced. It is designed to reduce the overhead of node movements while restoration happens. Simulation results indicate the proposed algorithm has better performance on the total moving distance and the number of total relocated nodes compared with some other representative restoration algorithms. PMID:29316702
NASA Astrophysics Data System (ADS)
Despa, D.; Nama, G. F.; Muhammad, M. A.; Anwar, K.
2018-04-01
Electrical quantities such as Voltage, Current, Power, Power Factor, Energy, and Frequency in electrical power system tends to fluctuate, as a result of load changes, disturbances, or other abnormal states. The change-state in electrical quantities should be identify immediately, otherwise it can lead to serious problem for whole system. Therefore a necessity is required to determine the condition of electricity change-state quickly and appropriately in order to make effective decisions. Online monitoring of power distribution system based on Internet of Things (IoT) technology was deploy and implemented on Department of Mechanical Engineering University of Lampung (Unila), especially at three-phase main distribution panel H-building. The measurement system involve multiple sensors such current sensors and voltage sensors, while data processing conducted by Arduino, the measurement data stored in to the database server and shown in a real-time through a web-based application. This measurement system has several important features especially for realtime monitoring, robust data acquisition and logging, system reporting, so it will produce an important information that can be used for various purposes of future power analysis such estimation and planning. The result of this research shown that the condition of electrical power system at H-building performed unbalanced load, which often leads to drop-voltage condition
NASA Technical Reports Server (NTRS)
1976-01-01
Developments required to support the space power, SETI, solar system exploration and global services programs are identified. Instrumentation and calibration sensors (rather than scientific) are needed for the space power system. Highly sophisticated receivers for narrowband detection of microwave sensors and sensors for automated stellar cataloging to provide a mapping data base for SETI are needed. Various phases of solar system exploration require large area solid state imaging arrays from UV to IR; a long focal plane telescope; high energy particle detectors; advanced spectrometers; a gravitometer; and atmospheric distanalyzer; sensors for penetrometers; in-situ sensors for surface chemical analysis, life detection, spectroscopic and microscopic analyses of surface soils, and for meteorological measurements. Active and passive multiapplication sensors, advanced multispectral scanners with improved resolution in the UV and IR ranges, and laser techniques for advanced probing and oceanographic characterization will enhance for global services.
Autonomous Mission Operations for Sensor Webs
NASA Astrophysics Data System (ADS)
Underbrink, A.; Witt, K.; Stanley, J.; Mandl, D.
2008-12-01
We present interim results of a 2005 ROSES AIST project entitled, "Using Intelligent Agents to Form a Sensor Web for Autonomous Mission Operations", or SWAMO. The goal of the SWAMO project is to shift the control of spacecraft missions from a ground-based, centrally controlled architecture to a collaborative, distributed set of intelligent agents. The network of intelligent agents intends to reduce management requirements by utilizing model-based system prediction and autonomic model/agent collaboration. SWAMO agents are distributed throughout the Sensor Web environment, which may include multiple spacecraft, aircraft, ground systems, and ocean systems, as well as manned operations centers. The agents monitor and manage sensor platforms, Earth sensing systems, and Earth sensing models and processes. The SWAMO agents form a Sensor Web of agents via peer-to-peer coordination. Some of the intelligent agents are mobile and able to traverse between on-orbit and ground-based systems. Other agents in the network are responsible for encapsulating system models to perform prediction of future behavior of the modeled subsystems and components to which they are assigned. The software agents use semantic web technologies to enable improved information sharing among the operational entities of the Sensor Web. The semantics include ontological conceptualizations of the Sensor Web environment, plus conceptualizations of the SWAMO agents themselves. By conceptualizations of the agents, we mean knowledge of their state, operational capabilities, current operational capacities, Web Service search and discovery results, agent collaboration rules, etc. The need for ontological conceptualizations over the agents is to enable autonomous and autonomic operations of the Sensor Web. The SWAMO ontology enables automated decision making and responses to the dynamic Sensor Web environment and to end user science requests. The current ontology is compatible with Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) Sensor Model Language (SensorML) concepts and structures. The agents are currently deployed on the U.S. Naval Academy MidSTAR-1 satellite and are actively managing the power subsystem on-orbit without the need for human intervention.
Potocki, J K; Tharp, H S
1993-01-01
The success of treating cancerous tissue with heat depends on the temperature elevation, the amount of tissue elevated to that temperature, and the length of time that the tissue temperature is elevated. In clinical situations the temperature of most of the treated tissue volume is unknown, because only a small number of temperature sensors can be inserted into the tissue. A state space model based on a finite difference approximation of the bioheat transfer equation (BHTE) is developed for identification purposes. A full-order extended Kalman filter (EKF) is designed to estimate both the unknown blood perfusion parameters and the temperature at unmeasured locations. Two reduced-order estimators are designed as computationally less intensive alternatives to the full-order EKF. Simulation results show that the success of the estimation scheme depends strongly on the number and location of the temperature sensors. Superior results occur when a temperature sensor exists in each unknown blood perfusion zone, and the number of sensors is at least as large as the number of unknown perfusion zones. Unacceptable results occur when there are more unknown perfusion parameters than temperature sensors, or when the sensors are placed in locations that do not sample the unknown perfusion information.
Takulapalli, Bharath R
2010-02-23
Field-effect transistor-based chemical sensors fall into two broad categories based on the principle of signal transduction-chemiresistor or Schottky-type devices and MOSFET or inversion-type devices. In this paper, we report a new inversion-type device concept-fully depleted exponentially coupled (FDEC) sensor, using molecular monolayer floating gate fully depleted silicon on insulator (SOI) MOSFET. Molecular binding at the chemical-sensitive surface lowers the threshold voltage of the device inversion channel due to a unique capacitive charge-coupling mechanism involving interface defect states, causing an exponential increase in the inversion channel current. This response of the device is in opposite direction when compared to typical MOSFET-type sensors, wherein inversion current decreases in a conventional n-channel sensor device upon addition of negative charge to the chemical-sensitive device surface. The new sensor architecture enables ultrahigh sensitivity along with extraordinary selectivity. We propose the new sensor concept with the aid of analytical equations and present results from our experiments in liquid phase and gas phase to demonstrate the new principle of signal transduction. We present data from numerical simulations to further support our theory.
Metal Oxides and Ion-Exchanging Surfaces as pH Sensors in Liquids: State-of-the-Art and Outlook
Kurzweil, Peter
2009-01-01
Novel applications of online pH determinations at temperatures from -35 °C to 130 °C in technical and biological media, which are all but ideal aqueous solutions, require new approaches to pH monitoring. The glass electrode, introduced nearly hundred years ago, and chemical sensors based on field effect transistors (ISFET) show specific drawbacks with respect to handling and long-time stability. Proton sensitive metal oxides seem to be a promising and alternative to the state-of-the-art measuring methods, and might overcome some problems of classical hydrogen electrodes and reference electrodes. PMID:22408563
Feature Representations for Neuromorphic Audio Spike Streams.
Anumula, Jithendar; Neil, Daniel; Delbruck, Tobi; Liu, Shih-Chii
2018-01-01
Event-driven neuromorphic spiking sensors such as the silicon retina and the silicon cochlea encode the external sensory stimuli as asynchronous streams of spikes across different channels or pixels. Combining state-of-art deep neural networks with the asynchronous outputs of these sensors has produced encouraging results on some datasets but remains challenging. While the lack of effective spiking networks to process the spike streams is one reason, the other reason is that the pre-processing methods required to convert the spike streams to frame-based features needed for the deep networks still require further investigation. This work investigates the effectiveness of synchronous and asynchronous frame-based features generated using spike count and constant event binning in combination with the use of a recurrent neural network for solving a classification task using N-TIDIGITS18 dataset. This spike-based dataset consists of recordings from the Dynamic Audio Sensor, a spiking silicon cochlea sensor, in response to the TIDIGITS audio dataset. We also propose a new pre-processing method which applies an exponential kernel on the output cochlea spikes so that the interspike timing information is better preserved. The results from the N-TIDIGITS18 dataset show that the exponential features perform better than the spike count features, with over 91% accuracy on the digit classification task. This accuracy corresponds to an improvement of at least 2.5% over the use of spike count features, establishing a new state of the art for this dataset.
Feature Representations for Neuromorphic Audio Spike Streams
Anumula, Jithendar; Neil, Daniel; Delbruck, Tobi; Liu, Shih-Chii
2018-01-01
Event-driven neuromorphic spiking sensors such as the silicon retina and the silicon cochlea encode the external sensory stimuli as asynchronous streams of spikes across different channels or pixels. Combining state-of-art deep neural networks with the asynchronous outputs of these sensors has produced encouraging results on some datasets but remains challenging. While the lack of effective spiking networks to process the spike streams is one reason, the other reason is that the pre-processing methods required to convert the spike streams to frame-based features needed for the deep networks still require further investigation. This work investigates the effectiveness of synchronous and asynchronous frame-based features generated using spike count and constant event binning in combination with the use of a recurrent neural network for solving a classification task using N-TIDIGITS18 dataset. This spike-based dataset consists of recordings from the Dynamic Audio Sensor, a spiking silicon cochlea sensor, in response to the TIDIGITS audio dataset. We also propose a new pre-processing method which applies an exponential kernel on the output cochlea spikes so that the interspike timing information is better preserved. The results from the N-TIDIGITS18 dataset show that the exponential features perform better than the spike count features, with over 91% accuracy on the digit classification task. This accuracy corresponds to an improvement of at least 2.5% over the use of spike count features, establishing a new state of the art for this dataset. PMID:29479300
Watkins, Arthur D.; Smartt, Herschel B.; Taylor, Paul L.
1994-01-01
An integrated optical sensor for arc welding having multifunction feedback control. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties.
Watkins, A.D.; Smartt, H.B.; Taylor, P.L.
1994-01-04
An integrated optical sensor for arc welding having multifunction feedback control is described. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties. 6 figures.
Wireless Body Sensor Network for low-power motion-tolerant synchronized vital sign measurement.
Volmer, Achim; Orglmeister, Reinhold
2008-01-01
Prophylaxis and rehabilitation of cardiovascular disease require the development of biosignal acquisition and processing devices that are capable of supporting patients in their everyday life. This paper presents a Body Sensor Network (BSN) for use in Personal Healthcare applications. It consists of miniaturized sensor modules for electrocardiogram (ECG), photoplethysmogram (PPG) and phonocardiography (PCG) which are wirelessly connected with a coordinator to collect the data. Each sensor module is combined with a tri-axis accelerometer for patient's posture and activity measurement. As it is possible to extract further information about the health state by fusioning data of different biosensors, the wireless link based on IEEE 802.15.4 was extended by a synchronisation mechanism enabling synchronous sampling of the individual sensors. An adaptive application of algorithms for signal pre-processing and analysis allows the reduction of the transferred data.
State-of-the-Art of (Bio)Chemical Sensor Developments in Analytical Spanish Groups
Plata, María Reyes; Contento, Ana María; Ríos, Angel
2010-01-01
(Bio)chemical sensors are one of the most exciting fields in analytical chemistry today. The development of these analytical devices simplifies and miniaturizes the whole analytical process. Although the initial expectation of the massive incorporation of sensors in routine analytical work has been truncated to some extent, in many other cases analytical methods based on sensor technology have solved important analytical problems. Many research groups are working in this field world-wide, reporting interesting results so far. Modestly, Spanish researchers have contributed to these recent developments. In this review, we summarize the more representative achievements carried out for these groups. They cover a wide variety of sensors, including optical, electrochemical, piezoelectric or electro-mechanical devices, used for laboratory or field analyses. The capabilities to be used in different applied areas are also critically discussed. PMID:22319260
Kulkarni, A; Ha, S; Joshirao, P; Manchanda, V; Bak, M S; Kim, T
2015-06-01
A sensitive radioactive aerosols sensor has been designed and developed. Its design guidance is based on the need for a low operational cost and reliable measurements to provide daily aerosol monitoring. The exposure of diethylene-glycol bis (allylcarbonate) to radiation causes modification of its physico-chemical properties like surface roughness and reflectance. In the present study, optical sensor based on the reflectance measurement has been developed with an aim to monitor real time presence of alpha radioactive aerosols emitted from thorium nitrate hydrate. The results shows that the fabricated sensor can detect 0.0157 kBq to 0.1572 kBq of radio activity by radioactive aerosols generated from (Th(NO3)4 ⋅ 5H2O) at 0.1 ml/min flow rate. The proposed instrument will be helpful to monitor radioactive aerosols in/around a nuclear facility, building construction sites, mines, and granite polishing factories.
The Cramér-Rao Bounds and Sensor Selection for Nonlinear Systems with Uncertain Observations.
Wang, Zhiguo; Shen, Xiaojing; Wang, Ping; Zhu, Yunmin
2018-04-05
This paper considers the problems of the posterior Cramér-Rao bound and sensor selection for multi-sensor nonlinear systems with uncertain observations. In order to effectively overcome the difficulties caused by uncertainty, we investigate two methods to derive the posterior Cramér-Rao bound. The first method is based on the recursive formula of the Cramér-Rao bound and the Gaussian mixture model. Nevertheless, it needs to compute a complex integral based on the joint probability density function of the sensor measurements and the target state. The computation burden of this method is relatively high, especially in large sensor networks. Inspired by the idea of the expectation maximization algorithm, the second method is to introduce some 0-1 latent variables to deal with the Gaussian mixture model. Since the regular condition of the posterior Cramér-Rao bound is unsatisfied for the discrete uncertain system, we use some continuous variables to approximate the discrete latent variables. Then, a new Cramér-Rao bound can be achieved by a limiting process of the Cramér-Rao bound of the continuous system. It avoids the complex integral, which can reduce the computation burden. Based on the new posterior Cramér-Rao bound, the optimal solution of the sensor selection problem can be derived analytically. Thus, it can be used to deal with the sensor selection of a large-scale sensor networks. Two typical numerical examples verify the effectiveness of the proposed methods.
A Study on Wireless Charging for Prolonging the Lifetime of Wireless Sensor Networks
Tu, Weijian; Xu, Xianghua; Ye, Tingcong; Cheng, Zongmao
2017-01-01
Wireless charging is an important issue in wireless sensor networks, since it can provide an emerging and effective solution in the absence of other power supplies. The state-of-the-art methods employ a mobile car and a predefined moving path to charge the sensor nodes in the network. Previous studies only consider a factor of the network (i.e., residual energy of sensor node) as a constraint to design the wireless charging strategy. However, other factors, such as the travelled distance of the mobile car, can also affect the effectiveness of wireless charging strategy. In this work, we study wireless charging strategy based on the analysis of a combination of two factors, including the residual energy of sensor nodes and the travelled distance of the charging car. Firstly, we theoretically analyze the limited size of the sensor network to match the capability of a charging car. Then, the networked factors are selected as the weights of traveling salesman problem (TSP) to design the moving path of the charging car. Thirdly, the charging time of each sensor node is computed based on the linear programming problem for the charging car. Finally, a charging period for the network is studied. The experimental results show that the proposed approach can significantly maximize the lifetime of the wireless sensor network. PMID:28677639
Cyber-Physical Trade-Offs in Distributed Detection Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Nageswara S; Yao, David K. Y.; Chin, J. C.
2010-01-01
We consider a network of sensors that measure the scalar intensity due to the background or a source combined with background, inside a two-dimensional monitoring area. The sensor measurements may be random due to the underlying nature of the source and background or due to sensor errors or both. The detection problem is infer the presence of a source of unknown intensity and location based on sensor measurements. In the conventional approach, detection decisions are made at the individual sensors, which are then combined at the fusion center, for example using the majority rule. With increased communication and computation costs,more » we show that a more complex fusion algorithm based on measurements achieves better detection performance under smooth and non-smooth source intensity functions, Lipschitz conditions on probability ratios and a minimum packing number for the state-space. We show that these conditions for trade-offs between the cyber costs and physical detection performance are applicable for two detection problems: (i) point radiation sources amidst background radiation, and (ii) sources and background with Gaussian distributions.« less
Escobar, R F; Astorga-Zaragoza, C M; Téllez-Anguiano, A C; Juárez-Romero, D; Hernández, J A; Guerrero-Ramírez, G V
2011-07-01
This paper deals with fault detection and isolation (FDI) in sensors applied to a concentric-pipe counter-flow heat exchanger. The proposed FDI is based on the analytical redundancy implementing nonlinear high-gain observers which are used to generate residuals when a sensor fault is presented (as software sensors). By evaluating the generated residual, it is possible to switch between the sensor and the observer when a failure is detected. Experiments in a heat exchanger pilot validate the effectiveness of the approach. The FDI technique is easy to implement allowing the industries to have an excellent alternative tool to keep their heat transfer process under supervision. The main contribution of this work is based on a dynamic model with heat transfer coefficients which depend on temperature and flow used to estimate the output temperatures of a heat exchanger. This model provides a satisfactory approximation of the states of the heat exchanger in order to allow its implementation in a FDI system used to perform supervision tasks. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Fiber-optically sensorized composite wing
NASA Astrophysics Data System (ADS)
Costa, Joannes M.; Black, Richard J.; Moslehi, Behzad; Oblea, Levy; Patel, Rona; Sotoudeh, Vahid; Abouzeida, Essam; Quinones, Vladimir; Gowayed, Yasser; Soobramaney, Paul; Flowers, George
2014-04-01
Electromagnetic interference (EMI) immune and light-weight, fiber-optic sensor based Structural Health Monitoring (SHM) will find increasing application in aerospace structures ranging from aircraft wings to jet engine vanes. Intelligent Fiber Optic Systems Corporation (IFOS) has been developing multi-functional fiber Bragg grating (FBG) sensor systems including parallel processing FBG interrogators combined with advanced signal processing for SHM, structural state sensing and load monitoring applications. This paper reports work with Auburn University on embedding and testing FBG sensor arrays in a quarter scale model of a T38 composite wing. The wing was designed and manufactured using fabric reinforced polymer matrix composites. FBG sensors were embedded under the top layer of the composite. Their positions were chosen based on strain maps determined by finite element analysis. Static and dynamic testing confirmed expected response from the FBGs. The demonstrated technology has the potential to be further developed into an autonomous onboard system to perform load monitoring, SHM and Non-Destructive Evaluation (NDE) of composite aerospace structures (wings and rotorcraft blades). This platform technology could also be applied to flight testing of morphing and aero-elastic control surfaces.
Sensor-Web Operations Explorer
NASA Technical Reports Server (NTRS)
Meemong, Lee; Miller, Charles; Bowman, Kevin; Weidner, Richard
2008-01-01
Understanding the atmospheric state and its impact on air quality requires observations of trace gases, aerosols, clouds, and physical parameters across temporal and spatial scales that range from minutes to days and from meters to more than 10,000 kilometers. Observations include continuous local monitoring for particle formation; field campaigns for emissions, local transport, and chemistry; and periodic global measurements for continental transport and chemistry. Understanding includes global data assimilation framework capable of hierarchical coupling, dynamic integration of chemical data and atmospheric models, and feedback loops between models and observations. The objective of the sensor-web system is to observe trace gases, aerosols, clouds, and physical parameters, an integrated observation infrastructure composed of space-borne, air-borne, and in-situ sensors will be simulated based on their measurement physics properties. The objective of the sensor-web operation is to optimally plan for heterogeneous multiple sensors, the sampling strategies will be explored and science impact will be analyzed based on comprehensive modeling of atmospheric phenomena including convection, transport, and chemical process. Topics include system architecture, software architecture, hardware architecture, process flow, technology infusion, challenges, and future direction.
Georeferencing in Gnss-Challenged Environment: Integrating Uwb and Imu Technologies
NASA Astrophysics Data System (ADS)
Toth, C. K.; Koppanyi, Z.; Navratil, V.; Grejner-Brzezinska, D.
2017-05-01
Acquiring geospatial data in GNSS compromised environments remains a problem in mapping and positioning in general. Urban canyons, heavily vegetated areas, indoor environments represent different levels of GNSS signal availability from weak to no signal reception. Even outdoors, with multiple GNSS systems, with an ever-increasing number of satellites, there are many situations with limited or no access to GNSS signals. Independent navigation sensors, such as IMU can provide high-data rate information but their initial accuracy degrades quickly, as the measurement data drift over time unless positioning fixes are provided from another source. At The Ohio State University's Satellite Positioning and Inertial Navigation (SPIN) Laboratory, as one feasible solution, Ultra- Wideband (UWB) radio units are used to aid positioning and navigating in GNSS compromised environments, including indoor and outdoor scenarios. Here we report about experiences obtained with georeferencing a pushcart based sensor system under canopied areas. The positioning system is based on UWB and IMU sensor integration, and provides sensor platform orientation for an electromagnetic inference (EMI) sensor. Performance evaluation results are provided for various test scenarios, confirming acceptable results for applications where high accuracy is not required.
Magnetoelastic sensor for characterizing properties of thin-film/coatings
NASA Technical Reports Server (NTRS)
Bachas, Leonidas G. (Inventor); Barrett, Gary (Inventor); Grimes, Craig A. (Inventor); Kouzoudis, Dimitris (Inventor); Schmidt, Stefan (Inventor)
2004-01-01
An apparatus for determining elasticity characteristics of a thin-film layer. The apparatus comprises a sensor element having a base magnetostrictive element at least one surface of which is at least partially coated with the thin-film layer. The thin-film layer may be of a variety of materials (having a synthetic and/or bio-component) in a state or form capable of being deposited, manually or otherwise, on the base element surface, such as by way of eye-dropper, melting, dripping, brushing, sputtering, spraying, etching, evaporation, dip-coating, laminating, etc. Among suitable thin-film layers for the sensor element of the invention are fluent bio-substances, thin-film deposits used in manufacturing processes, polymeric coatings, paint, an adhesive, and so on. A receiver, preferably remotely located, is used to measure a plurality of values for magneto-elastic emission intensity of the sensor element in either characterization: (a) the measure of the plurality of values is used to identify a magneto-elastic resonant frequency value for the sensor element; and (b) the measure of the plurality of successive values is done at a preselected magneto-elastic frequency.
Introduction to the Special Issue on "State-of-the-Art Sensor Technology in Japan 2015".
Tokumitsu, Masahiro; Ishida, Yoshiteru
2016-08-23
This Special Issue, "State-of-the-Art Sensor Technology in Japan 2015", collected papers on different kinds of sensing technology: fundamental technology for intelligent sensors, information processing for monitoring humans, and information processing for adaptive and survivable sensor systems.[...].
Multi-Domain SDN Survivability for Agricultural Wireless Sensor Networks.
Huang, Tao; Yan, Siyu; Yang, Fan; Liu, Jiang
2016-11-06
Wireless sensor networks (WSNs) have been widely applied in agriculture field; meanwhile, the advent of multi-domain software-defined networks (SDNs) have improved the wireless resource utilization rate and strengthened network management. In recent times, multi-domain SDNs have been applied to agricultural sensor networks, namely multi-domain software-defined wireless sensor networks (SDWSNs). However, when the SDNs controlling agriculture networks suddenly become unavailable, whether intra-domain or inter-domain, sensor network communication is abnormal because of the loss of control. Moreover, there are controller and switch info-updating problems even if the controller becomes available again. To resolve these problems, this paper proposes a new approach based on an Open vSwitch extension for multi-domain SDWSNs, which can enhance agriculture network survivability and stability. We achieved this by designing a connection-state mechanism, a communication mechanism on both L2 and L3, and an info-updating mechanism based on Open vSwitch. The experimental results show that, whether it is agricultural inter-domain or intra-domain during the controller failure period, the sensor switches can enter failure recovery mode as soon as possible so that the sensor network keeps a stable throughput, a short failure recovery time below 300 ms, and low packet loss. Further, the domain can smoothly control the domain network again once the controller becomes available. This approach based on an Open vSwitch extension can enhance the survivability and stability of multi-domain SDWSNs in precision agriculture.
Multi-Domain SDN Survivability for Agricultural Wireless Sensor Networks
Huang, Tao; Yan, Siyu; Yang, Fan; Liu, Jiang
2016-01-01
Wireless sensor networks (WSNs) have been widely applied in agriculture field; meanwhile, the advent of multi-domain software-defined networks (SDNs) have improved the wireless resource utilization rate and strengthened network management. In recent times, multi-domain SDNs have been applied to agricultural sensor networks, namely multi-domain software-defined wireless sensor networks (SDWSNs). However, when the SDNs controlling agriculture networks suddenly become unavailable, whether intra-domain or inter-domain, sensor network communication is abnormal because of the loss of control. Moreover, there are controller and switch info-updating problems even if the controller becomes available again. To resolve these problems, this paper proposes a new approach based on an Open vSwitch extension for multi-domain SDWSNs, which can enhance agriculture network survivability and stability. We achieved this by designing a connection-state mechanism, a communication mechanism on both L2 and L3, and an info-updating mechanism based on Open vSwitch. The experimental results show that, whether it is agricultural inter-domain or intra-domain during the controller failure period, the sensor switches can enter failure recovery mode as soon as possible so that the sensor network keeps a stable throughput, a short failure recovery time below 300 ms, and low packet loss. Further, the domain can smoothly control the domain network again once the controller becomes available. This approach based on an Open vSwitch extension can enhance the survivability and stability of multi-domain SDWSNs in precision agriculture. PMID:27827971
NASA Astrophysics Data System (ADS)
Muhammad, Umar B.; Ezugwu, Absalom E.; Ofem, Paulinus O.; Rajamäki, Jyri; Aderemi, Adewumi O.
2017-06-01
Recently, researchers in the field of wireless sensor networks have resorted to energy harvesting techniques that allows energy to be harvested from the ambient environment to power sensor nodes. Using such Energy harvesting techniques together with proper routing protocols, an Energy Neutral state can be achieved so that sensor nodes can run perpetually. In this paper, we propose an Energy Neutral LEACH routing protocol which is an extension to the traditional LEACH protocol. The goal of the proposed protocol is to use Gateway node in each cluster so as to reduce the data transmission ranges of cluster head nodes. Simulation results show that the proposed routing protocol achieves a higher throughput and ensure the energy neutral status of the entire network.
TOPICAL REVIEW: GaN-based diodes and transistors for chemical, gas, biological and pressure sensing
NASA Astrophysics Data System (ADS)
Pearton, S. J.; Kang, B. S.; Kim, Suku; Ren, F.; Gila, B. P.; Abernathy, C. R.; Lin, Jenshan; Chu, S. N. G.
2004-07-01
There is renewed emphasis on development of robust solid-state sensors capable of uncooled operation in harsh environments. The sensors should be capable of detecting chemical, gas, biological or radiation releases as well as sending signals to central monitoring locations. We discuss the advances in use of GaN-based solid-state sensors for these applications. AlGaN/GaN high electron mobility transistors (HEMTs) show a strong dependence of source/drain current on the piezoelectric polarization-induced two-dimensional electron gas (2DEG). Furthermore, spontaneous and piezoelectric polarization-induced surface and interface charges can be used to develop very sensitive but robust sensors to detect gases, polar liquids and mechanical pressure. AlGaN/GaN HEMT structures have been demonstrated to exhibit large changes in source-drain current upon exposing the gate region to various block co-polymer solutions. Pt-gated GaN Schottky diodes and Sc2O3/AlGaN/GaN metal-oxide semiconductor diodes also show large change in forward currents upon exposure to H2. Of particular interest is detection of ethylene (C2H4), which has strong double bonds and hence is difficult to dissociate at modest temperatures. Apart from combustion gas sensing, the AlGaN/GaN heterostructure devices can be used as sensitive detectors of pressure changes. In addition, large changes in source-drain current of the AlGaN/GaN HEMT sensors can be detected upon adsorption of biological species on the semiconductor surface. Finally, the nitrides provide an ideal platform for fabrication of surface acoustic wave (SAW) devices. The GaN-based devices thus appear promising for a wide range of chemical, biological, combustion gas, polar liquid, strain and high temperature pressure-sensing applications. In addition, the sensors are compatible with high bit-rate wireless communication systems that facilitate their use in remote arrays.
SPARTAN: A High-Fidelity Simulation for Automated Rendezvous and Docking Applications
NASA Technical Reports Server (NTRS)
Turbe, Michael A.; McDuffie, James H.; DeKock, Brandon K.; Betts, Kevin M.; Carrington, Connie K.
2007-01-01
bd Systems (a subsidiary of SAIC) has developed the Simulation Package for Autonomous Rendezvous Test and ANalysis (SPARTAN), a high-fidelity on-orbit simulation featuring multiple six-degree-of-freedom (6DOF) vehicles. SPARTAN has been developed in a modular fashion in Matlab/Simulink to test next-generation automated rendezvous and docking guidance, navigation,and control algorithms for NASA's new Vision for Space Exploration. SPARTAN includes autonomous state-based mission manager algorithms responsible for sequencing the vehicle through various flight phases based on on-board sensor inputs and closed-loop guidance algorithms, including Lambert transfers, Clohessy-Wiltshire maneuvers, and glideslope approaches The guidance commands are implemented using an integrated translation and attitude control system to provide 6DOF control of each vehicle in the simulation. SPARTAN also includes high-fidelity representations of a variety of absolute and relative navigation sensors that maybe used for NASA missions, including radio frequency, lidar, and video-based rendezvous sensors. Proprietary navigation sensor fusion algorithms have been developed that allow the integration of these sensor measurements through an extended Kalman filter framework to create a single optimal estimate of the relative state of the vehicles. SPARTAN provides capability for Monte Carlo dispersion analysis, allowing for rigorous evaluation of the performance of the complete proposed AR&D system, including software, sensors, and mechanisms. SPARTAN also supports hardware-in-the-loop testing through conversion of the algorithms to C code using Real-Time Workshop in order to be hosted in a mission computer engineering development unit running an embedded real-time operating system. SPARTAN also contains both runtime TCP/IP socket interface and post-processing compatibility with bdStudio, a visualization tool developed by bd Systems, allowing for intuitive evaluation of simulation results. A description of the SPARTAN architecture and capabilities is provided, along with details on the models and algorithms utilized and results from representative missions.
NASA Technical Reports Server (NTRS)
Mandl, Daniel; Unger, Stephen; Ames, Troy; Frye, Stuart; Chien, Steve; Cappelaere, Pat; Tran, Danny; Derezinski, Linda; Paules, Granville
2007-01-01
This paper will describe the progress of a 3 year research award from the NASA Earth Science Technology Office (ESTO) that began October 1, 2006, in response to a NASA Announcement of Research Opportunity on the topic of sensor webs. The key goal of this research is to prototype an interoperable sensor architecture that will enable interoperability between a heterogeneous set of space-based, Unmanned Aerial System (UAS)-based and ground based sensors. Among the key capabilities being pursued is the ability to automatically discover and task the sensors via the Internet and to automatically discover and assemble the necessary science processing algorithms into workflows in order to transform the sensor data into valuable science products. Our first set of sensor web demonstrations will prototype science products useful in managing wildfires and will use such assets as the Earth Observing 1 spacecraft, managed out of NASA/GSFC, a UASbased instrument, managed out of Ames and some automated ground weather stations, managed by the Forest Service. Also, we are collaborating with some of the other ESTO awardees to expand this demonstration and create synergy between our research efforts. Finally, we are making use of Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) suite of standards and some Web 2.0 capabilities to Beverage emerging technologies and standards. This research will demonstrate and validate a path for rapid, low cost sensor integration, which is not tied to a particular system, and thus be able to absorb new assets in an easily evolvable, coordinated manner. This in turn will help to facilitate the United States contribution to the Global Earth Observation System of Systems (GEOSS), as agreed by the U.S. and 60 other countries at the third Earth Observation Summit held in February of 2005.
Eskofier, Bjoern M; Lee, Sunghoon I; Daneault, Jean-Francois; Golabchi, Fatemeh N; Ferreira-Carvalho, Gabriela; Vergara-Diaz, Gloria; Sapienza, Stefano; Costante, Gianluca; Klucken, Jochen; Kautz, Thomas; Bonato, Paolo
2016-08-01
The development of wearable sensors has opened the door for long-term assessment of movement disorders. However, there is still a need for developing methods suitable to monitor motor symptoms in and outside the clinic. The purpose of this paper was to investigate deep learning as a method for this monitoring. Deep learning recently broke records in speech and image classification, but it has not been fully investigated as a potential approach to analyze wearable sensor data. We collected data from ten patients with idiopathic Parkinson's disease using inertial measurement units. Several motor tasks were expert-labeled and used for classification. We specifically focused on the detection of bradykinesia. For this, we compared standard machine learning pipelines with deep learning based on convolutional neural networks. Our results showed that deep learning outperformed other state-of-the-art machine learning algorithms by at least 4.6 % in terms of classification rate. We contribute a discussion of the advantages and disadvantages of deep learning for sensor-based movement assessment and conclude that deep learning is a promising method for this field.
Lim, Cheol-Min; Lee, In-Kyu; Lee, Ki Joong; Oh, Young Kyoung; Shin, Yong-Beom; Cho, Won-Ju
2017-01-01
This work describes the construction of a sensitive, stable, and label-free sensor based on a dual-gate field-effect transistor (DG FET), in which uniformly distributed and size-controlled silicon nanowire (SiNW) arrays by nanoimprint lithography act as conductor channels. Compared to previous DG FETs with a planar-type silicon channel layer, the constructed SiNW DG FETs exhibited superior electrical properties including a higher capacitive-coupling ratio of 18.0 and a lower off-state leakage current under high-temperature stress. In addition, while the conventional planar single-gate (SG) FET- and planar DG FET-based pH sensors showed the sensitivities of 56.7 mV/pH and 439.3 mV/pH, respectively, the SiNW DG FET-based pH sensors showed not only a higher sensitivity of 984.1 mV/pH, but also a lower drift rate of 0.8% for pH-sensitivity. This demonstrates that the SiNW DG FETs simultaneously achieve high sensitivity and stability, with significant potential for future biosensing applications.
Vision Sensor-Based Road Detection for Field Robot Navigation
Lu, Keyu; Li, Jian; An, Xiangjing; He, Hangen
2015-01-01
Road detection is an essential component of field robot navigation systems. Vision sensors play an important role in road detection for their great potential in environmental perception. In this paper, we propose a hierarchical vision sensor-based method for robust road detection in challenging road scenes. More specifically, for a given road image captured by an on-board vision sensor, we introduce a multiple population genetic algorithm (MPGA)-based approach for efficient road vanishing point detection. Superpixel-level seeds are then selected in an unsupervised way using a clustering strategy. Then, according to the GrowCut framework, the seeds proliferate and iteratively try to occupy their neighbors. After convergence, the initial road segment is obtained. Finally, in order to achieve a globally-consistent road segment, the initial road segment is refined using the conditional random field (CRF) framework, which integrates high-level information into road detection. We perform several experiments to evaluate the common performance, scale sensitivity and noise sensitivity of the proposed method. The experimental results demonstrate that the proposed method exhibits high robustness compared to the state of the art. PMID:26610514
Ma, Lifeng; Wang, Zidong; Lam, Hak-Keung; Kyriakoulis, Nikos
2017-11-01
In this paper, the distributed set-membership filtering problem is investigated for a class of discrete time-varying system with an event-based communication mechanism over sensor networks. The system under consideration is subject to sector-bounded nonlinearity, unknown but bounded noises and sensor saturations. Each intelligent sensing node transmits the data to its neighbors only when certain triggering condition is violated. By means of a set of recursive matrix inequalities, sufficient conditions are derived for the existence of the desired distributed event-based filter which is capable of confining the system state in certain ellipsoidal regions centered at the estimates. Within the established theoretical framework, two additional optimization problems are formulated: one is to seek the minimal ellipsoids (in the sense of matrix trace) for the best filtering performance, and the other is to maximize the triggering threshold so as to reduce the triggering frequency with satisfactory filtering performance. A numerically attractive chaos algorithm is employed to solve the optimization problems. Finally, an illustrative example is presented to demonstrate the effectiveness and applicability of the proposed algorithm.
Sensor management in RADAR/IRST track fusion
NASA Astrophysics Data System (ADS)
Hu, Shi-qiang; Jing, Zhong-liang
2004-07-01
In this paper, a novel radar management strategy technique suitable for RADAR/IRST track fusion, which is based on Fisher Information Matrix (FIM) and fuzzy stochastic decision approach, is put forward. Firstly, optimal radar measurements' scheduling is obtained by the method of maximizing determinant of the Fisher information matrix of radar and IRST measurements, which is managed by the expert system. Then, suggested a "pseudo sensor" to predict the possible target position using the polynomial method based on the radar and IRST measurements, using "pseudo sensor" model to estimate the target position even if the radar is turned off. At last, based on the tracking performance and the state of target maneuver, fuzzy stochastic decision is used to adjust the optimal radar scheduling and retrieve the module parameter of "pseudo sensor". The experiment result indicates that the algorithm can not only limit Radar activity effectively but also keep the tracking accuracy of active/passive system well. And this algorithm eliminates the drawback of traditional Radar management methods that the Radar activity is fixed and not easy to control and protect.
A Protocol Layer Trust-Based Intrusion Detection Scheme for Wireless Sensor Networks
Wang, Jian; Jiang, Shuai; Fapojuwo, Abraham O.
2017-01-01
This article proposes a protocol layer trust-based intrusion detection scheme for wireless sensor networks. Unlike existing work, the trust value of a sensor node is evaluated according to the deviations of key parameters at each protocol layer considering the attacks initiated at different protocol layers will inevitably have impacts on the parameters of the corresponding protocol layers. For simplicity, the paper mainly considers three aspects of trustworthiness, namely physical layer trust, media access control layer trust and network layer trust. The per-layer trust metrics are then combined to determine the overall trust metric of a sensor node. The performance of the proposed intrusion detection mechanism is then analyzed using the t-distribution to derive analytical results of false positive and false negative probabilities. Numerical analytical results, validated by simulation results, are presented in different attack scenarios. It is shown that the proposed protocol layer trust-based intrusion detection scheme outperforms a state-of-the-art scheme in terms of detection probability and false probability, demonstrating its usefulness for detecting cross-layer attacks. PMID:28555023
A Protocol Layer Trust-Based Intrusion Detection Scheme for Wireless Sensor Networks.
Wang, Jian; Jiang, Shuai; Fapojuwo, Abraham O
2017-05-27
This article proposes a protocol layer trust-based intrusion detection scheme for wireless sensor networks. Unlike existing work, the trust value of a sensor node is evaluated according to the deviations of key parameters at each protocol layer considering the attacks initiated at different protocol layers will inevitably have impacts on the parameters of the corresponding protocol layers. For simplicity, the paper mainly considers three aspects of trustworthiness, namely physical layer trust, media access control layer trust and network layer trust. The per-layer trust metrics are then combined to determine the overall trust metric of a sensor node. The performance of the proposed intrusion detection mechanism is then analyzed using the t-distribution to derive analytical results of false positive and false negative probabilities. Numerical analytical results, validated by simulation results, are presented in different attack scenarios. It is shown that the proposed protocol layer trust-based intrusion detection scheme outperforms a state-of-the-art scheme in terms of detection probability and false probability, demonstrating its usefulness for detecting cross-layer attacks.
NASA Astrophysics Data System (ADS)
Lim, Cheol-Min; Lee, In-Kyu; Lee, Ki Joong; Oh, Young Kyoung; Shin, Yong-Beom; Cho, Won-Ju
2017-12-01
This work describes the construction of a sensitive, stable, and label-free sensor based on a dual-gate field-effect transistor (DG FET), in which uniformly distributed and size-controlled silicon nanowire (SiNW) arrays by nanoimprint lithography act as conductor channels. Compared to previous DG FETs with a planar-type silicon channel layer, the constructed SiNW DG FETs exhibited superior electrical properties including a higher capacitive-coupling ratio of 18.0 and a lower off-state leakage current under high-temperature stress. In addition, while the conventional planar single-gate (SG) FET- and planar DG FET-based pH sensors showed the sensitivities of 56.7 mV/pH and 439.3 mV/pH, respectively, the SiNW DG FET-based pH sensors showed not only a higher sensitivity of 984.1 mV/pH, but also a lower drift rate of 0.8% for pH-sensitivity. This demonstrates that the SiNW DG FETs simultaneously achieve high sensitivity and stability, with significant potential for future biosensing applications.
3D sensors and micro-fabricated detector systems
NASA Astrophysics Data System (ADS)
Da Vià, Cinzia
2014-11-01
Micro-systems based on the Micro Electro Mechanical Systems (MEMS) technology have been used in miniaturized low power and low mass smart structures in medicine, biology and space applications. Recently similar features found their way inside high energy physics with applications in vertex detectors for high-luminosity LHC Upgrades, with 3D sensors, 3D integration and efficient power management using silicon micro-channel cooling. This paper reports on the state of this development.
NASA Astrophysics Data System (ADS)
Mendoza, Edgar; Prohaska, John; Kempen, Connie; Esterkin, Yan; Sun, Sunjian; Krishnaswamy, Sridhar
2010-09-01
This paper describes preliminary results obtained under a Navy SBIR contract by Redondo Optics Inc. (ROI), in collaboration with Northwestern University towards the development and demonstration of a next generation, stand-alone and fully integrated, dynamically reconfigurable, adaptive fiber optic acoustic emission sensor (FAESense™) system for the in-situ unattended detection and localization of shock events, impact damage, cracks, voids, and delaminations in new and aging critical infrastructures found in ships, submarines, aircraft, and in next generation weapon systems. ROI's FAESense™ system is based on the integration of proven state-of-the-art technologies: 1) distributed array of in-line fiber Bragg gratings (FBGs) sensors sensitive to strain, vibration, and acoustic emissions, 2) adaptive spectral demodulation of FBG sensor dynamic signals using two-wave mixing interferometry on photorefractive semiconductors, and 3) integration of all the sensor system passive and active optoelectronic components within a 0.5-cm x 1-cm photonic integrated circuit microchip. The adaptive TWM demodulation methodology allows the measurement of dynamic high frequnency acoustic emission events, while compensating for passive quasi-static strain and temperature drifts. It features a compact, low power, environmentally robust 1-inch x 1-inch x 4-inch small form factor (SFF) package with no moving parts. The FAESense™ interrogation system is microprocessor-controlled using high data rate signal processing electronics for the FBG sensors calibration, temperature compensation and the detection and analysis of acoustic emission signals. Its miniaturized package, low power operation, state-of-the-art data communications, and low cost makes it a very attractive solution for a large number of applications in naval and maritime industries, aerospace, civil structures, the oil and chemical industry, and for homeland security applications.
Carbon Nanotube Based Chemical Sensors for Space and Terrestrial Applications
NASA Technical Reports Server (NTRS)
Li, Jing; Lu, Yijiang
2009-01-01
A nanosensor technology has been developed using nanostructures, such as single walled carbon nanotubes (SWNTs), on a pair of interdigitated electrodes (IDE) processed with a silicon-based microfabrication and micromachining technique. The IDE fingers were fabricated using photolithography and thin film metallization techniques. Both in-situ growth of nanostructure materials and casting of the nanostructure dispersions were used to make chemical sensing devices. These sensors have been exposed to nitrogen dioxide, acetone, benzene, nitrotoluene, chlorine, and ammonia in the concentration range of ppm to ppb at room temperature. The electronic molecular sensing of carbon nanotubes in our sensor platform can be understood by intra- and inter-tube electron modulation in terms of charge transfer mechanisms. As a result of the charge transfer, the conductance of p-type or hole-richer SWNTs in air will change. Due to the large surface area, low surface energy barrier and high thermal and mechanical stability, nanostructured chemical sensors potentially can offer higher sensitivity, lower power consumption and better robustness than the state-of-the-art systems, which make them more attractive for defense and space applications. Combined with MEMS technology, light weight and compact size sensors can be made in wafer scale with low cost. Additionally, a wireless capability of such a sensor chip can be used for networked mobile and fixed-site detection and warning systems for military bases, facilities and battlefield areas.
Multimodel Kalman filtering for adaptive nonuniformity correction in infrared sensors.
Pezoa, Jorge E; Hayat, Majeed M; Torres, Sergio N; Rahman, Md Saifur
2006-06-01
We present an adaptive technique for the estimation of nonuniformity parameters of infrared focal-plane arrays that is robust with respect to changes and uncertainties in scene and sensor characteristics. The proposed algorithm is based on using a bank of Kalman filters in parallel. Each filter independently estimates state variables comprising the gain and the bias matrices of the sensor, according to its own dynamic-model parameters. The supervising component of the algorithm then generates the final estimates of the state variables by forming a weighted superposition of all the estimates rendered by each Kalman filter. The weights are computed and updated iteratively, according to the a posteriori-likelihood principle. The performance of the estimator and its ability to compensate for fixed-pattern noise is tested using both simulated and real data obtained from two cameras operating in the mid- and long-wave infrared regime.
Link-state-estimation-based transmission power control in wireless body area networks.
Kim, Seungku; Eom, Doo-Seop
2014-07-01
This paper presents a novel transmission power control protocol to extend the lifetime of sensor nodes and to increase the link reliability in wireless body area networks (WBANs). We first experimentally investigate the properties of the link states using the received signal strength indicator (RSSI). We then propose a practical transmission power control protocol based on both short- and long-term link-state estimations. Both the short- and long-term link-state estimations enable the transceiver to adapt the transmission power level and target the RSSI threshold range, respectively, to simultaneously satisfy the requirements of energy efficiency and link reliability. Finally, the performance of the proposed protocol is experimentally evaluated in two experimental scenarios-body posture change and dynamic body motion-and compared with the typical WBAN transmission power control protocols, a real-time reactive scheme, and a dynamic postural position inference mechanism. From the experimental results, it is found that the proposed protocol increases the lifetime of the sensor nodes by a maximum of 9.86% and enhances the link reliability by reducing the packet loss by a maximum of 3.02%.
Enhanced chemical weapon warning via sensor fusion
NASA Astrophysics Data System (ADS)
Flaherty, Michael; Pritchett, Daniel; Cothren, Brian; Schwaiger, James
2011-05-01
Torch Technologies Inc., is actively involved in chemical sensor networking and data fusion via multi-year efforts with Dugway Proving Ground (DPG) and the Defense Threat Reduction Agency (DTRA). The objective of these efforts is to develop innovative concepts and advanced algorithms that enhance our national Chemical Warfare (CW) test and warning capabilities via the fusion of traditional and non-traditional CW sensor data. Under Phase I, II, and III Small Business Innovative Research (SBIR) contracts with DPG, Torch developed the Advanced Chemical Release Evaluation System (ACRES) software to support non real-time CW sensor data fusion. Under Phase I and II SBIRs with DTRA in conjunction with the Edgewood Chemical Biological Center (ECBC), Torch is using the DPG ACRES CW sensor data fuser as a framework from which to develop the Cloud state Estimation in a Networked Sensor Environment (CENSE) data fusion system. Torch is currently developing CENSE to implement and test innovative real-time sensor network based data fusion concepts using CW and non-CW ancillary sensor data to improve CW warning and detection in tactical scenarios.
A flexible slip sensor using triboelectric nanogenerator approach
NASA Astrophysics Data System (ADS)
Wang, Xudong; Liang, Jiaming; Xiao, Yuxiang; Wu, Yichuan; Deng, Yang; Wang, Xiaohao; Zhang, Min
2018-03-01
With the rapid development of robotic technology, tactile sensors for robots have gained great attention from academic and industry researchers. Tactile sensors for slip detection are essential for human-like steady control in dexterous robot hand. In this paper, we propose and demonstrate a flexible slip sensor based on triboelectric nanogenerator with a seesaw structure. The sensor is composed of two porous PDMS layers separated by an inverted trapezoid structure with a height of 500 μm. In order to customize the sensitivity of the sensor, porous PDMS was fabricated by mixing PDMS with deionized water thoroughly and then removing water with heat. Laser-induced porous graphene and aluminium are served as the pair of contact materials. To detect slip from different directions, two sets of the electrode pair were used. Experimental results show a distinct difference between static state and the moment when a slip happens was detected. In addition, the output voltage of the sensors increased as the increase of slip velocity from 0.25 mm/s to 2.5 mm/s. The flexible slip sensor proposed here shows the potential applications in smart robotics and prosthesis.
Zhao, Kaihui; Li, Peng; Zhang, Changfan; Li, Xiangfei; He, Jing; Lin, Yuliang
2017-12-06
This paper proposes a new scheme of reconstructing current sensor faults and estimating unknown load disturbance for a permanent magnet synchronous motor (PMSM)-driven system. First, the original PMSM system is transformed into two subsystems; the first subsystem has unknown system load disturbances, which are unrelated to sensor faults, and the second subsystem has sensor faults, but is free from unknown load disturbances. Introducing a new state variable, the augmented subsystem that has sensor faults can be transformed into having actuator faults. Second, two sliding mode observers (SMOs) are designed: the unknown load disturbance is estimated by the first SMO in the subsystem, which has unknown load disturbance, and the sensor faults can be reconstructed using the second SMO in the augmented subsystem, which has sensor faults. The gains of the proposed SMOs and their stability analysis are developed via the solution of linear matrix inequality (LMI). Finally, the effectiveness of the proposed scheme was verified by simulations and experiments. The results demonstrate that the proposed scheme can reconstruct current sensor faults and estimate unknown load disturbance for the PMSM-driven system.
Smart sensor systems for human health breath monitoring applications.
Hunter, G W; Xu, J C; Biaggi-Labiosa, A M; Laskowski, D; Dutta, P K; Mondal, S P; Ward, B J; Makel, D B; Liu, C C; Chang, C W; Dweik, R A
2011-09-01
Breath analysis techniques offer a potential revolution in health care diagnostics, especially if these techniques can be brought into standard use in the clinic and at home. The advent of microsensors combined with smart sensor system technology enables a new generation of sensor systems with significantly enhanced capabilities and minimal size, weight and power consumption. This paper discusses the microsensor/smart sensor system approach and provides a summary of efforts to migrate this technology into human health breath monitoring applications. First, the basic capability of this approach to measure exhaled breath associated with exercise physiology is demonstrated. Building from this foundation, the development of a system for a portable asthma home health care system is described. A solid-state nitric oxide (NO) sensor for asthma monitoring has been identified, and efforts are underway to miniaturize this NO sensor technology and integrate it into a smart sensor system. It is concluded that base platform microsensor technology combined with smart sensor systems can address the needs of a range of breath monitoring applications and enable new capabilities for healthcare.
A Tensor-Based Structural Damage Identification and Severity Assessment
Anaissi, Ali; Makki Alamdari, Mehrisadat; Rakotoarivelo, Thierry; Khoa, Nguyen Lu Dang
2018-01-01
Early damage detection is critical for a large set of global ageing infrastructure. Structural Health Monitoring systems provide a sensor-based quantitative and objective approach to continuously monitor these structures, as opposed to traditional engineering visual inspection. Analysing these sensed data is one of the major Structural Health Monitoring (SHM) challenges. This paper presents a novel algorithm to detect and assess damage in structures such as bridges. This method applies tensor analysis for data fusion and feature extraction, and further uses one-class support vector machine on this feature to detect anomalies, i.e., structural damage. To evaluate this approach, we collected acceleration data from a sensor-based SHM system, which we deployed on a real bridge and on a laboratory specimen. The results show that our tensor method outperforms a state-of-the-art approach using the wavelet energy spectrum of the measured data. In the specimen case, our approach succeeded in detecting 92.5% of induced damage cases, as opposed to 61.1% for the wavelet-based approach. While our method was applied to bridges, its algorithm and computation can be used on other structures or sensor-data analysis problems, which involve large series of correlated data from multiple sensors. PMID:29301314
Design and characterization of a piezoelectric sensor for monitoring scour hole evolution
NASA Astrophysics Data System (ADS)
Azhari, Faezeh; Tom, Caroline; Benassini, Joseph; Loh, Kenneth J.; Bombardelli, Fabian A.
2014-03-01
Scour occurring near bridge piers and abutments jeopardizes the stability and safety of overwater bridges. In fact, bridge scour is responsible for a significant portion of overwater bridge failures in the United States and around the world. As a result, numerous methods have been developed for monitoring bridge scour by measuring scour depth at locations near bridge piers and foundations. Besides visual inspections conducted by trained divers, other technologies include sonar, float-out devices, magnetic sliding collars, tilt sensors, and fiber optics, to name a few. These systems each offer unique advantages, but most of them share fundamental limitations (e.g., high costs, low reliability, limited accuracy, low reliability, etc.) that have limited their implementation in practice. Thus, the goal of this study is to present a low-cost and simple scour depth sensor fabricated using piezoelectric poly(vinylidene fluoride) (PVDF) polymer strips. Unlike current piezoelectric scour sensors that are based on mounting multiple and equidistantly spaced transducers on a rod, the proposed sensor is formed by coating one continuous PVDF film onto a substrate, followed by waterproofing the sensor. The PVDF-based sensor can then be buried in the streambed and at a location where scour depth measurements are desired. When scour occurs and exposes a portion of the PVDF sensor, water flow excites the sensor to cause the generation of a time-varying voltage signal. Since the dynamics of the voltage time history response is related to the exposed length of the sensor, scour depth can be determined. This work presents the design and fabrication of the sensor. Then, the sensor's performance and accuracy is characterized through extensive laboratory testing.
Sensor selection cost optimisation for tracking structurally cyclic systems: a P-order solution
NASA Astrophysics Data System (ADS)
Doostmohammadian, M.; Zarrabi, H.; Rabiee, H. R.
2017-08-01
Measurements and sensing implementations impose certain cost in sensor networks. The sensor selection cost optimisation is the problem of minimising the sensing cost of monitoring a physical (or cyber-physical) system. Consider a given set of sensors tracking states of a dynamical system for estimation purposes. For each sensor assume different costs to measure different (realisable) states. The idea is to assign sensors to measure states such that the global cost is minimised. The number and selection of sensor measurements need to ensure the observability to track the dynamic state of the system with bounded estimation error. The main question we address is how to select the state measurements to minimise the cost while satisfying the observability conditions. Relaxing the observability condition for structurally cyclic systems, the main contribution is to propose a graph theoretic approach to solve the problem in polynomial time. Note that polynomial time algorithms are suitable for large-scale systems as their running time is upper-bounded by a polynomial expression in the size of input for the algorithm. We frame the problem as a linear sum assignment with solution complexity of ?.
NASA Technical Reports Server (NTRS)
Bishop, Robert H.; DeMars, Kyle; Trawny, Nikolas; Crain, Tim; Hanak, Chad; Carson, John M.; Christian, John
2016-01-01
The navigation filter architecture successfully deployed on the Morpheus flight vehicle is presented. The filter was developed as a key element of the NASA Autonomous Landing and Hazard Avoidance Technology (ALHAT) project and over the course of 15 free fights was integrated into the Morpheus vehicle, operations, and flight control loop. Flight testing completed by demonstrating autonomous hazard detection and avoidance, integration of an altimeter, surface relative velocity (velocimeter) and hazard relative navigation (HRN) measurements into the onboard dual-state inertial estimator Kalman flter software, and landing within 2 meters of the vertical testbed GPS-based navigation solution at the safe landing site target. Morpheus followed a trajectory that included an ascent phase followed by a partial descent-to-landing, although the proposed filter architecture is applicable to more general planetary precision entry, descent, and landings. The main new contribution is the incorporation of a sophisticated hazard relative navigation sensor-originally intended to locate safe landing sites-into the navigation system and employed as a navigation sensor. The formulation of a dual-state inertial extended Kalman filter was designed to address the precision planetary landing problem when viewed as a rendezvous problem with an intended landing site. For the required precision navigation system that is capable of navigating along a descent-to-landing trajectory to a precise landing, the impact of attitude errors on the translational state estimation are included in a fully integrated navigation structure in which translation state estimation is combined with attitude state estimation. The map tie errors are estimated as part of the process, thereby creating a dual-state filter implementation. Also, the filter is implemented using inertial states rather than states relative to the target. External measurements include altimeter, velocimeter, star camera, terrain relative navigation sensor, and a hazard relative navigation sensor providing information regarding hazards on a map generated on-the-fly.
A stress sensor based on Galvanic Skin Response (GSR) controlled by ZigBee.
Villarejo, María Viqueira; Zapirain, Begoña García; Zorrilla, Amaia Méndez
2012-01-01
Sometimes, one needs to control different emotional situations which can lead the person suffering them to dangerous situations, in both the medium and short term. There are studies which indicate that stress increases the risk of cardiac problems. In this study we have designed and built a stress sensor based on Galvanic Skin Response (GSR), and controlled by ZigBee. In order to check the device's performance, we have used 16 adults (eight women and eight men) who completed different tests requiring a certain degree of effort, such as mathematical operations or breathing deeply. On completion, we appreciated that GSR is able to detect the different states of each user with a success rate of 76.56%. In the future, we plan to create an algorithm which is able to differentiate between each state.
Providing Self-Healing Ability for Wireless Sensor Node by Using Reconfigurable Hardware
Yuan, Shenfang; Qiu, Lei; Gao, Shang; Tong, Yao; Yang, Weiwei
2012-01-01
Wireless sensor networks (WSNs) have received tremendous attention over the past ten years. In engineering applications of WSNs, a number of sensor nodes are usually spread across some specific geographical area. Some of these nodes have to work in harsh environments. Dependability of the Wireless Sensor Network (WSN) is very important for its successful applications in the engineering area. In ordinary research, when a node has a failure, it is usually discarded and the network is reorganized to ensure the normal operation of the WSN. Using appropriate WSN re-organization methods, though the sensor networks can be reorganized, this causes additional maintenance costs and sometimes still decreases the function of the networks. In those situations where the sensor networks cannot be reorganized, the performance of the whole WSN will surely be degraded. In order to ensure the reliable and low cost operation of WSNs, a method to develop a wireless sensor node with self-healing ability based on reconfigurable hardware is proposed in this paper. Two self-healing WSN node realization paradigms based on reconfigurable hardware are presented, including a redundancy-based self-healing paradigm and a whole FPAA/FPGA based self-healing paradigm. The nodes designed with the self-healing ability can dynamically change their node configurations to repair the nodes' hardware failures. To demonstrate these two paradigms, a strain sensor node is adopted as an illustration to show the concepts. Two strain WSN sensor nodes with self-healing ability are developed respectively according to the proposed self-healing paradigms. Evaluation experiments on self-healing ability and power consumption are performed. Experimental results show that the developed nodes can self-diagnose the failures and recover to a normal state automatically. The research presented can improve the robustness of WSNs and reduce the maintenance cost of WSNs in engineering applications. PMID:23202176
Liu, Jianqiao; Gao, Yinglin; Wu, Xu; Jin, Guohua; Zhai, Zhaoxia; Liu, Huan
2017-01-01
The density of oxygen vacancies in semiconductor gas sensors was often assumed to be identical throughout the grain in the numerical discussion of the gas-sensing mechanism of the devices. In contrast, the actual devices had grains with inhomogeneous distribution of oxygen vacancy under non-ideal conditions. This conflict between reality and discussion drove us to study the formation and migration of the oxygen defects in semiconductor grains. A model of the gradient-distributed oxygen vacancy was proposed based on the effects of cooling rate and re-annealing on semiconductive thin films. The model established the diffusion equations of oxygen vacancy according to the defect kinetics of diffusion and exclusion. We described that the steady-state and transient-state oxygen vacancy distributions, which were used to calculate the gas-sensing characteristics of the sensor resistance and response to reducing gases under two different conditions. The gradient-distributed oxygen vacancy model had the applications in simulating the sensor performances, such as the power law, the grain size effect and the effect of depletion layer width. PMID:28796167
Liu, Jianqiao; Gao, Yinglin; Wu, Xu; Jin, Guohua; Zhai, Zhaoxia; Liu, Huan
2017-08-10
The density of oxygen vacancies in semiconductor gas sensors was often assumed to be identical throughout the grain in the numerical discussion of the gas-sensing mechanism of the devices. In contrast, the actual devices had grains with inhomogeneous distribution of oxygen vacancy under non-ideal conditions. This conflict between reality and discussion drove us to study the formation and migration of the oxygen defects in semiconductor grains. A model of the gradient-distributed oxygen vacancy was proposed based on the effects of cooling rate and re-annealing on semiconductive thin films. The model established the diffusion equations of oxygen vacancy according to the defect kinetics of diffusion and exclusion. We described that the steady-state and transient-state oxygen vacancy distributions, which were used to calculate the gas-sensing characteristics of the sensor resistance and response to reducing gases under two different conditions. The gradient-distributed oxygen vacancy model had the applications in simulating the sensor performances, such as the power law, the grain size effect and the effect of depletion layer width.
NASA Astrophysics Data System (ADS)
Chang, Song-Lin
There are only a few solid state humidity sensors available today. Most of those sensors use a porous oxide material as a principal part of the device. The devices work on the basis of a change in resistance as the moisture in the air varies. In this experiment, two solid state humidity sensors have been developed for use under practical conditions. One is a Polymer Oxide Semiconductor device with a POLYOX film that absorbs the moisture from the air. The amount of water dipoles absorbed by the polymer is a function of relative humidity. This sensor can measure relative humidity from 20% to 90%. The other is a Dew Point sensor. The sensor is in contact with the upper surface of a miniature Peltier cooler. Water molecules deposited on the sensor surface cause the electrical current through the sensor to increase. The operator adjusts the temperature of the Peltier cooler until a saturated current through the sensor is reached. About one min. is required to measure low relative humidities. The Dew Point sensor can measure a range of relative humidities of 30% to 80%.
Rana, Md Masud
2017-01-01
This paper proposes an innovative internet of things (IoT) based communication framework for monitoring microgrid under the condition of packet dropouts in measurements. First of all, the microgrid incorporating the renewable distributed energy resources is represented by a state-space model. The IoT embedded wireless sensor network is adopted to sense the system states. Afterwards, the information is transmitted to the energy management system using the communication network. Finally, the least mean square fourth algorithm is explored for estimating the system states. The effectiveness of the developed approach is verified through numerical simulations.
NASA Astrophysics Data System (ADS)
Baranova, A. A.; Khokhlov, K. O.
2014-11-01
The aim of this study was to design a device for explosives detection. The study design is based on excited steady-state luminescence quenching registration. Sensor's material luminescence intensity reduction occurs due to an interaction of explosives vapours contained in the air. The decrease rate of the luminescence intensity indicates the concentration of vapours. To study the luminescent properties of the sensor element, its luminescence spectra excited by photons with energies in the range 280 - 425 nm were measured. The excitation photoluminescence spectra for luminescence bands of the sensor element were also measured. Excitation source was light emitting diode (375 nm) and luminescent signal receiver was a photodiode (430 - 650 nm) in device designed. The device is operated under control of a program. The algorithm provides multiple operating modes (configuration, calibration, measurement etc.). Thus this device is referred to the class of devices with increased sensitivity to the explosives vapors. The advantages of device are autonomic power, small weight and sizes, simplicity of device operation for measurements.
Failure detection and correction for turbofan engines
NASA Technical Reports Server (NTRS)
Corley, R. C.; Spang, H. A., III
1977-01-01
In this paper, a failure detection and correction strategy for turbofan engines is discussed. This strategy allows continuing control of the engines in the event of a sensor failure. An extended Kalman filter is used to provide the best estimate of the state of the engine based on currently available sensor outputs. Should a sensor failure occur the control is based on the best estimate rather than the sensor output. The extended Kalman filter consists of essentially two parts, a nonlinear model of the engine and up-date logic which causes the model to track the actual engine. Details on the model and up-date logic are presented. To allow implementation, approximations are made to the feedback gain matrix which result in a single feedback matrix which is suitable for use over the entire flight envelope. The effect of these approximations on stability and response is discussed. Results from a detailed nonlinear simulation indicate that good control can be maintained even under multiple failures.
Computer-Guided Deep Brain Stimulation Programming for Parkinson's Disease.
Heldman, Dustin A; Pulliam, Christopher L; Urrea Mendoza, Enrique; Gartner, Maureen; Giuffrida, Joseph P; Montgomery, Erwin B; Espay, Alberto J; Revilla, Fredy J
2016-02-01
Pilot study to evaluate computer-guided deep brain stimulation (DBS) programming designed to optimize stimulation settings using objective motion sensor-based motor assessments. Seven subjects (five males; 54-71 years) with Parkinson's disease (PD) and recently implanted DBS systems participated in this pilot study. Within two months of lead implantation, the subject returned to the clinic to undergo computer-guided programming and parameter selection. A motion sensor was placed on the index finger of the more affected hand. Software guided a monopolar survey during which monopolar stimulation on each contact was iteratively increased followed by an automated assessment of tremor and bradykinesia. After completing assessments at each setting, a software algorithm determined stimulation settings designed to minimize symptom severities, side effects, and battery usage. Optimal DBS settings were chosen based on average severity of motor symptoms measured by the motion sensor. Settings chosen by the software algorithm identified a therapeutic window and improved tremor and bradykinesia by an average of 35.7% compared with baseline in the "off" state (p < 0.01). Motion sensor-based computer-guided DBS programming identified stimulation parameters that significantly improved tremor and bradykinesia with minimal clinician involvement. Automated motion sensor-based mapping is worthy of further investigation and may one day serve to extend programming to populations without access to specialized DBS centers. © 2015 International Neuromodulation Society.
SNDR Limits of Oscillator-Based Sensor Readout Circuits.
Cardes, Fernando; Quintero, Andres; Gutierrez, Eric; Buffa, Cesare; Wiesbauer, Andreas; Hernandez, Luis
2018-02-03
This paper analyzes the influence of phase noise and distortion on the performance of oscillator-based sensor data acquisition systems. Circuit noise inherent to the oscillator circuit manifests as phase noise and limits the SNR. Moreover, oscillator nonlinearity generates distortion for large input signals. Phase noise analysis of oscillators is well known in the literature, but the relationship between phase noise and the SNR of an oscillator-based sensor is not straightforward. This paper proposes a model to estimate the influence of phase noise in the performance of an oscillator-based system by reflecting the phase noise to the oscillator input. The proposed model is based on periodic steady-state analysis tools to predict the SNR of the oscillator. The accuracy of this model has been validated by both simulation and experiment in a 130 nm CMOS prototype. We also propose a method to estimate the SNDR and the dynamic range of an oscillator-based readout circuit that improves by more than one order of magnitude the simulation time compared to standard time domain simulations. This speed up enables the optimization and verification of this kind of systems with iterative algorithms.
Sensor Selection and Data Validation for Reliable Integrated System Health Management
NASA Technical Reports Server (NTRS)
Garg, Sanjay; Melcher, Kevin J.
2008-01-01
For new access to space systems with challenging mission requirements, effective implementation of integrated system health management (ISHM) must be available early in the program to support the design of systems that are safe, reliable, highly autonomous. Early ISHM availability is also needed to promote design for affordable operations; increased knowledge of functional health provided by ISHM supports construction of more efficient operations infrastructure. Lack of early ISHM inclusion in the system design process could result in retrofitting health management systems to augment and expand operational and safety requirements; thereby increasing program cost and risk due to increased instrumentation and computational complexity. Having the right sensors generating the required data to perform condition assessment, such as fault detection and isolation, with a high degree of confidence is critical to reliable operation of ISHM. Also, the data being generated by the sensors needs to be qualified to ensure that the assessments made by the ISHM is not based on faulty data. NASA Glenn Research Center has been developing technologies for sensor selection and data validation as part of the FDDR (Fault Detection, Diagnosis, and Response) element of the Upper Stage project of the Ares 1 launch vehicle development. This presentation will provide an overview of the GRC approach to sensor selection and data quality validation and will present recent results from applications that are representative of the complexity of propulsion systems for access to space vehicles. A brief overview of the sensor selection and data quality validation approaches is provided below. The NASA GRC developed Systematic Sensor Selection Strategy (S4) is a model-based procedure for systematically and quantitatively selecting an optimal sensor suite to provide overall health assessment of a host system. S4 can be logically partitioned into three major subdivisions: the knowledge base, the down-select iteration, and the final selection analysis. The knowledge base required for productive use of S4 consists of system design information and heritage experience together with a focus on components with health implications. The sensor suite down-selection is an iterative process for identifying a group of sensors that provide good fault detection and isolation for targeted fault scenarios. In the final selection analysis, a statistical evaluation algorithm provides the final robustness test for each down-selected sensor suite. NASA GRC has developed an approach to sensor data qualification that applies empirical relationships, threshold detection techniques, and Bayesian belief theory to a network of sensors related by physics (i.e., analytical redundancy) in order to identify the failure of a given sensor within the network. This data quality validation approach extends the state-of-the-art, from red-lines and reasonableness checks that flag a sensor after it fails, to include analytical redundancy-based methods that can identify a sensor in the process of failing. The focus of this effort is on understanding the proper application of analytical redundancy-based data qualification methods for onboard use in monitoring Upper Stage sensors.
NASA Tech Briefs, September 2003
NASA Technical Reports Server (NTRS)
2003-01-01
Topics include: Oxygen-Partial-Pressure Sensor for Aircraft Oxygen Mask; Three-Dimensional Venturi Sensor for Measuring Extreme Winds; Swarms of Micron-Sized Sensors; Monitoring Volcanoes by Use of Air-Dropped Sensor Packages; Capacitive Sensors for Measuring Masses of Cryogenic Fluids; UHF Microstrip Antenna Array for Synthetic- Aperture Radar; Multimode Broad-Band Patch Antennas; 164-GHz MMIC HEMT Frequency Doubler; GPS Position and Heading Circuitry for Ships; Software for Managing Parametric Studies; Software Aids Visualization of Computed Unsteady Flow; Software for Testing Electroactive Structural Components; Advanced Software for Analysis of High-Speed Rolling-Element Bearings; Web Program for Development of GUIs for Cluster Computers; XML-Based Generator of C++ Code for Integration With GUIs; Oxide Protective Coats for Ir/Re Rocket Combustion Chambers; Simplified Waterproofing of Aerogels; Improved Thermal-Insulation Systems for Low Temperatures; Device for Automated Cutting and Transfer of Plant Shoots; Extension of Liouville Formalism to Postinstability Dynamics; Advances in Thrust-Based Emergency Control of an Airplane; Ultrasonic/Sonic Mechanisms for Drilling and Coring; Exercise Device Would Exert Selectable Constant Resistance; Improved Apparatus for Measuring Distance Between Axles; Six Classes of Diffraction-Based Optoelectronic Instruments; Modernizing Fortran 77 Legacy Codes; Active State Model for Autonomous Systems; Shields for Enhanced Protection Against High-Speed Debris; Scaling of Two-Phase Flows to Partial-Earth Gravity; Neutral-Axis Springs for Thin-Wall Integral Boom Hinges.
INS/GNSS Integration for Aerobatic Flight Applications and Aircraft Motion Surveying.
V Hinüber, Edgar L; Reimer, Christian; Schneider, Tim; Stock, Michael
2017-04-26
This paper presents field tests of challenging flight applications obtained with a new family of lightweight low-power INS/GNSS ( inertial navigation system/global satellite navigation system ) solutions based on MEMS ( micro-electro-mechanical- sensor ) machined sensors, being used for UAV ( unmanned aerial vehicle ) navigation and control as well as for aircraft motion dynamics analysis and trajectory surveying. One key is a 42+ state extended Kalman-filter-based powerful data fusion, which also allows the estimation and correction of parameters that are typically affected by sensor aging, especially when applying MEMS-based inertial sensors, and which is not yet deeply considered in the literature. The paper presents the general system architecture, which allows iMAR Navigation the integration of all classes of inertial sensors and GNSS ( global navigation satellite system ) receivers from very-low-cost MEMS and high performance MEMS over FOG ( fiber optical gyro ) and RLG ( ring laser gyro ) up to HRG ( hemispherical resonator gyro ) technology, and presents detailed flight test results obtained under extreme flight conditions. As a real-world example, the aerobatic maneuvers of the World Champion 2016 (Red Bull Air Race) are presented. Short consideration is also given to surveying applications, where the ultimate performance of the same data fusion, but applied on gravimetric surveying, is discussed.
INS/GNSS Integration for Aerobatic Flight Applications and Aircraft Motion Surveying
v. Hinüber, Edgar L.; Reimer, Christian; Schneider, Tim; Stock, Michael
2017-01-01
This paper presents field tests of challenging flight applications obtained with a new family of lightweight low-power INS/GNSS (inertial navigation system/global satellite navigation system) solutions based on MEMS (micro-electro-mechanical- sensor) machined sensors, being used for UAV (unmanned aerial vehicle) navigation and control as well as for aircraft motion dynamics analysis and trajectory surveying. One key is a 42+ state extended Kalman-filter-based powerful data fusion, which also allows the estimation and correction of parameters that are typically affected by sensor aging, especially when applying MEMS-based inertial sensors, and which is not yet deeply considered in the literature. The paper presents the general system architecture, which allows iMAR Navigation the integration of all classes of inertial sensors and GNSS (global navigation satellite system) receivers from very-low-cost MEMS and high performance MEMS over FOG (fiber optical gyro) and RLG (ring laser gyro) up to HRG (hemispherical resonator gyro) technology, and presents detailed flight test results obtained under extreme flight conditions. As a real-world example, the aerobatic maneuvers of the World Champion 2016 (Red Bull Air Race) are presented. Short consideration is also given to surveying applications, where the ultimate performance of the same data fusion, but applied on gravimetric surveying, is discussed. PMID:28445417
NASA Astrophysics Data System (ADS)
Shinar, Joseph; Shinar, Ruth
2008-07-01
The basic photophysics, transport properties, state of the art, and challenges in OLED science and technology, and the major developments in structurally integrated OLED-based luminescent chemical and biological sensors are reviewed briefly. The dramatic advances in OLED performance have resulted in devices with projected continuous operating lifetimes of ~2 × 105 h (~23 yr) at ~150 Cd m-2 (the typical brightness of a computer monitor or TV). Consequently, commercial products incorporating OLEDs, e.g., cell phones, MP3 players, and, most recently, OLED TVs, are rapidly proliferating. The progress in elucidating the photophysics and transport properties, occurring in tandem with the development of OLEDs, has been no less dramatic. It has resulted in a detailed understanding of the dynamics of trapped and mobile negative and positive polarons (to which the electrons and holes, respectively, relax upon injection), and of singlet and triplet excitons. It has also yielded a detailed understanding of the spin dynamics of polarons and triplet excitons, which affects their overall dynamics significantly. Despite the aforementioned progress, there are outstanding challenges in OLED science and technology, notably in improving the efficiency of the devices and their stability at high brightness (>1000 Cd m-2). One of the most recent emerging OLED-based technologies is that of structurally integrated photoluminescence-based chemical and biological sensors. This sensor platform, pioneered by the authors, yields uniquely simple and potentially very low-cost sensor (micro)arrays. The second part of this review describes the recent developments in implementing this platform for gas phase oxygen, dissolved oxygen (DO), anthrax lethal factor, and hydrazine sensors, and for a DO, glucose, lactate, and ethanol multianalyte sensor.
Salazar-Serrano, L J; Barrera, D; Amaya, W; Sales, S; Pruneri, V; Capmany, J; Torres, J P
2015-09-01
We present a proof-of-concept experiment aimed at increasing the sensitivity of Fiber-Bragg-gratings temperature sensors by making use of a weak-value-amplification scheme. The technique requires only linear optics elements for its implementation and appears as a promising method for increasing the sensitivity than state-of the-art sensors can currently provide. The device implemented here is able to generate a shift of the centroid of the spectrum of a pulse of ∼0.035 nm/°C, a nearly fourfold increase in sensitivity over the same fiber-Bragg-grating system interrogated using standard methods.
NASA Astrophysics Data System (ADS)
McEvoy, Thomas Richard; Wolthusen, Stephen D.
Recent research on intrusion detection in supervisory data acquisition and control (SCADA) and DCS systems has focused on anomaly detection at protocol level based on the well-defined nature of traffic on such networks. Here, we consider attacks which compromise sensors or actuators (including physical manipulation), where intrusion may not be readily apparent as data and computational states can be controlled to give an appearance of normality, and sensor and control systems have limited accuracy. To counter these, we propose to consider indirect relations between sensor readings to detect such attacks through concurrent observations as determined by control laws and constraints.
Multispectral Linear Array detector technology
NASA Astrophysics Data System (ADS)
Tower, J. R.; McCarthy, B. M.; Pellon, L. E.; Strong, R. T.; Elabd, H.
1984-01-01
The Multispectral Linear Array (MLA) program sponsored by NASA has the aim to extend space-based remote sensor capabilities. The technology development effort involves the realization of very large, all-solid-state, pushbroom focal planes. The pushbroom, staring focal planes will contain thousands of detectors with the objective to provide two orders of magnitude improvement in detector dwell time compared to present Landsat mechanically scanned systems. Attenton is given to visible and near-infrared sensor development, the shortwave infrared sensor, aspects of filter technology development, the packaging concept, and questions of system performance. First-sample, four-band interference filters have been fabricated successfully, and a hybrid packaging technology is being developed.
Identifiability of Additive, Time-Varying Actuator and Sensor Faults by State Augmentation
NASA Technical Reports Server (NTRS)
Upchurch, Jason M.; Gonzalez, Oscar R.; Joshi, Suresh M.
2014-01-01
Recent work has provided a set of necessary and sucient conditions for identifiability of additive step faults (e.g., lock-in-place actuator faults, constant bias in the sensors) using state augmentation. This paper extends these results to an important class of faults which may affect linear, time-invariant systems. In particular, the faults under consideration are those which vary with time and affect the system dynamics additively. Such faults may manifest themselves in aircraft as, for example, control surface oscillations, control surface runaway, and sensor drift. The set of necessary and sucient conditions presented in this paper are general, and apply when a class of time-varying faults affects arbitrary combinations of actuators and sensors. The results in the main theorems are illustrated by two case studies, which provide some insight into how the conditions may be used to check the theoretical identifiability of fault configurations of interest for a given system. It is shown that while state augmentation can be used to identify certain fault configurations, other fault configurations are theoretically impossible to identify using state augmentation, giving practitioners valuable insight into such situations. That is, the limitations of state augmentation for a given system and configuration of faults are made explicit. Another limitation of model-based methods is that there can be large numbers of fault configurations, thus making identification of all possible configurations impractical. However, the theoretical identifiability of known, credible fault configurations can be tested using the theorems presented in this paper, which can then assist the efforts of fault identification practitioners.
Potentiometric Sensor for Real-Time Remote Surveillance of Actinides in Molten Salts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Natalie J. Gese; Jan-Fong Jue; Brenda E. Serrano
2012-07-01
A potentiometric sensor is being developed at the Idaho National Laboratory for real-time remote surveillance of actinides during electrorefining of spent nuclear fuel. During electrorefining, fuel in metallic form is oxidized at the anode while refined uranium metal is reduced at the cathode in a high temperature electrochemical cell containing LiCl-KCl-UCl3 electrolyte. Actinides present in the fuel chemically react with UCl3 and form stable metal chlorides that accumulate in the electrolyte. This sensor will be used for process control and safeguarding of activities in the electrorefiner by monitoring the concentrations of actinides in the electrolyte. The work presented focuses onmore » developing a solid-state cation conducting ceramic sensor for detecting varying concentrations of trivalent actinide metal cations in eutectic LiCl-KCl molten salt. To understand the basic mechanisms for actinide sensor applications in molten salts, gadolinium was used as a surrogate for actinides. The ß?-Al2O3 was selected as the solid-state electrolyte for sensor fabrication based on cationic conductivity and other factors. In the present work Gd3+-ß?-Al2O3 was prepared by ion exchange reactions between trivalent Gd3+ from GdCl3 and K+-, Na+-, and Sr2+-ß?-Al2O3 precursors. Scanning electron microscopy (SEM) was used for characterization of Gd3+-ß?-Al2O3 samples. Microfocus X-ray Diffraction (µ-XRD) was used in conjunction with SEM energy dispersive X-ray spectroscopy (EDS) to identify phase content and elemental composition. The Gd3+-ß?-Al2O3 materials were tested for mechanical and chemical stability by exposing them to molten LiCl-KCl based salts. The effect of annealing on the exchanged material was studied to determine improvements in material integrity post ion exchange. The stability of the ß?-Al2O3 phase after annealing was verified by µ-XRD. Preliminary sensor tests with different assembly designs will also be presented.« less
Development and Application of Wide Bandwidth Magneto-Resistive Sensor Based Eddy Current Probe
NASA Technical Reports Server (NTRS)
Wincheski, Russell A.; Simpson, John
2010-01-01
The integration of magneto-resistive sensors into eddy current probes can significantly expand the capabilities of conventional eddy current nondestructive evaluation techniques. The room temperature solid-state sensors have typical bandwidths in the megahertz range and resolutions of tens of microgauss. The low frequency sensitivity of magneto-resistive sensors has been capitalized upon in previous research to fabricate very low frequency eddy current sensors for deep flaw detection in multilayer conductors. In this work a modified probe design is presented to expand the capabilities of the device. The new probe design incorporates a dual induction source enabling operation from low frequency deep flaw detection to high frequency high resolution near surface material characterization. Applications of the probe for the detection of localized near surface conductivity anomalies are presented. Finite element modeling of the probe is shown to be in good agreement with experimental measurements.
A Survey on the Taxonomy of Cluster-Based Routing Protocols for Homogeneous Wireless Sensor Networks
Naeimi, Soroush; Ghafghazi, Hamidreza; Chow, Chee-Onn; Ishii, Hiroshi
2012-01-01
The past few years have witnessed increased interest among researchers in cluster-based protocols for homogeneous networks because of their better scalability and higher energy efficiency than other routing protocols. Given the limited capabilities of sensor nodes in terms of energy resources, processing and communication range, the cluster-based protocols should be compatible with these constraints in either the setup state or steady data transmission state. With focus on these constraints, we classify routing protocols according to their objectives and methods towards addressing the shortcomings of clustering process on each stage of cluster head selection, cluster formation, data aggregation and data communication. We summarize the techniques and methods used in these categories, while the weakness and strength of each protocol is pointed out in details. Furthermore, taxonomy of the protocols in each phase is given to provide a deeper understanding of current clustering approaches. Ultimately based on the existing research, a summary of the issues and solutions of the attributes and characteristics of clustering approaches and some open research areas in cluster-based routing protocols that can be further pursued are provided. PMID:22969350
Naeimi, Soroush; Ghafghazi, Hamidreza; Chow, Chee-Onn; Ishii, Hiroshi
2012-01-01
The past few years have witnessed increased interest among researchers in cluster-based protocols for homogeneous networks because of their better scalability and higher energy efficiency than other routing protocols. Given the limited capabilities of sensor nodes in terms of energy resources, processing and communication range, the cluster-based protocols should be compatible with these constraints in either the setup state or steady data transmission state. With focus on these constraints, we classify routing protocols according to their objectives and methods towards addressing the shortcomings of clustering process on each stage of cluster head selection, cluster formation, data aggregation and data communication. We summarize the techniques and methods used in these categories, while the weakness and strength of each protocol is pointed out in details. Furthermore, taxonomy of the protocols in each phase is given to provide a deeper understanding of current clustering approaches. Ultimately based on the existing research, a summary of the issues and solutions of the attributes and characteristics of clustering approaches and some open research areas in cluster-based routing protocols that can be further pursued are provided.
NASA Astrophysics Data System (ADS)
Yuldashev, M. N.; Vlasov, A. I.; Novikov, A. N.
2018-05-01
This paper focuses on the development of an energy-efficient algorithm for classification of states of a wireless sensor network using machine learning methods. The proposed algorithm reduces energy consumption by: 1) elimination of monitoring of parameters that do not affect the state of the sensor network, 2) reduction of communication sessions over the network (the data are transmitted only if their values can affect the state of the sensor network). The studies of the proposed algorithm have shown that at classification accuracy close to 100%, the number of communication sessions can be reduced by 80%.
Design and performance of an integrated ground and space sensor web for monitoring active volcanoes.
NASA Astrophysics Data System (ADS)
Lahusen, Richard; Song, Wenzhan; Kedar, Sharon; Shirazi, Behrooz; Chien, Steve; Doubleday, Joshua; Davies, Ashley; Webb, Frank; Dzurisin, Dan; Pallister, John
2010-05-01
An interdisciplinary team of computer, earth and space scientists collaborated to develop a sensor web system for rapid deployment at active volcanoes. The primary goals of this Optimized Autonomous Space In situ Sensorweb (OASIS) are to: 1) integrate complementary space and in situ (ground-based) elements into an interactive, autonomous sensor web; 2) advance sensor web power and communication resource management technology; and 3) enable scalability for seamless addition sensors and other satellites into the sensor web. This three-year project began with a rigorous multidisciplinary interchange that resulted in definition of system requirements to guide the design of the OASIS network and to achieve the stated project goals. Based on those guidelines, we have developed fully self-contained in situ nodes that integrate GPS, seismic, infrasonic and lightning (ash) detection sensors. The nodes in the wireless sensor network are linked to the ground control center through a mesh network that is highly optimized for remote geophysical monitoring. OASIS also features an autonomous bidirectional interaction between ground nodes and instruments on the EO-1 space platform through continuous analysis and messaging capabilities at the command and control center. Data from both the in situ sensors and satellite-borne hyperspectral imaging sensors stream into a common database for real-time visualization and analysis by earth scientists. We have successfully completed a field deployment of 15 nodes within the crater and on the flanks of Mount St. Helens, Washington. The demonstration that sensor web technology facilitates rapid network deployments and that we can achieve real-time continuous data acquisition. We are now optimizing component performance and improving user interaction for additional deployments at erupting volcanoes in 2010.
Hu, Keke; Wang, Yixian; Cai, Huijing; Mirkin, Michael V; Gao, Yang; Friedman, Gary; Gogotsi, Yury
2014-09-16
Nanometer-sized glass and quartz pipettes have been widely used as a core of chemical sensors, patch clamps, and scanning probe microscope tips. Many of those applications require the control of the surface charge and chemical state of the inner pipette wall. Both objectives can be attained by coating the inner wall of a quartz pipette with a nanometer-thick layer of carbon. In this letter, we demonstrate the possibility of using open carbon nanopipettes (CNP) produced by chemical vapor deposition as resistive-pulse sensors, rectification sensors, and electrochemical nanoprobes. By applying a potential to the carbon layer, one can change the surface charge and electrical double-layer at the pipette wall, which, in turn, affect the ion current rectification and adsorption/desorption processes essential for resistive-pulse sensors. CNPs can also be used as versatile electrochemical probes such as asymmetric bipolar nanoelectrodes and dual electrodes based on simultaneous recording of the ion current through the pipette and the current produced by oxidation/reduction of molecules at the carbon nanoring.
Wang, Rui; Li, Yanxiao; Sun, Hui; Chen, Zengqiang
2017-11-01
The modern civil aircrafts use air ventilation pressurized cabins subject to the limited space. In order to monitor multiple contaminants and overcome the hypersensitivity of the single sensor, the paper constructs an output correction integrated sensor configuration using sensors with different measurement theories after comparing to other two different configurations. This proposed configuration works as a node in the contaminant distributed wireless sensor monitoring network. The corresponding measurement error models of integrated sensors are also proposed by using the Kalman consensus filter to estimate states and conduct data fusion in order to regulate the single sensor measurement results. The paper develops the sufficient proof of the Kalman consensus filter stability when considering the system and the observation noises and compares the mean estimation and the mean consensus errors between Kalman consensus filter and local Kalman filter. The numerical example analyses show the effectiveness of the algorithm. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Doppler radar sensor positioning in a fall detection system.
Liu, Liang; Popescu, Mihail; Ho, K C; Skubic, Marjorie; Rantz, Marilyn
2012-01-01
Falling is a common health problem for more than a third of the United States population over 65. We are currently developing a Doppler radar based fall detection system that already has showed promising results. In this paper, we study the sensor positioning in the environment with respect to the subject. We investigate three sensor positions, floor, wall and ceiling of the room, in two experimental configurations. Within each system configuration, subjects performed falls towards or across the radar sensors. We collected 90 falls and 341 non falls for the first configuration and 126 falls and 817 non falls for the second one. Radar signature classification was performed using a SVM classifier. Fall detection performance was evaluated using the area under the ROC curves (AUCs) for each sensor deployment. We found that a fall is more likely to be detected if the subject is falling toward or away from the sensor and a ceiling Doppler radar is more reliable for fall detection than a wall mounted one.
Guimarães, Dayan Adionel; Sakai, Lucas Jun; Alberti, Antonio Marcos; de Souza, Rausley Adriano Amaral
2016-09-20
In this paper, a simple and flexible method for increasing the lifetime of fixed or mobile wireless sensor networks is proposed. Based on past residual energy information reported by the sensor nodes, the sink node or another central node dynamically optimizes the communication activity levels of the sensor nodes to save energy without sacrificing the data throughput. The activity levels are defined to represent portions of time or time-frequency slots in a frame, during which the sensor nodes are scheduled to communicate with the sink node to report sensory measurements. Besides node mobility, it is considered that sensors' batteries may be recharged via a wireless power transmission or equivalent energy harvesting scheme, bringing to the optimization problem an even more dynamic character. We report large increased lifetimes over the non-optimized network and comparable or even larger lifetime improvements with respect to an idealized greedy algorithm that uses both the real-time channel state and the residual energy information.
Brückner, Hans-Peter; Spindeldreier, Christian; Blume, Holger
2013-01-01
A common approach for high accuracy sensor fusion based on 9D inertial measurement unit data is Kalman filtering. State of the art floating-point filter algorithms differ in their computational complexity nevertheless, real-time operation on a low-power microcontroller at high sampling rates is not possible. This work presents algorithmic modifications to reduce the computational demands of a two-step minimum order Kalman filter. Furthermore, the required bit-width of a fixed-point filter version is explored. For evaluation real-world data captured using an Xsens MTx inertial sensor is used. Changes in computational latency and orientation estimation accuracy due to the proposed algorithmic modifications and fixed-point number representation are evaluated in detail on a variety of processing platforms enabling on-board processing on wearable sensor platforms.
Optimal SSN Tasking to Enhance Real-time Space Situational Awareness
NASA Astrophysics Data System (ADS)
Ferreira, J., III; Hussein, I.; Gerber, J.; Sivilli, R.
2016-09-01
Space Situational Awareness (SSA) is currently constrained by an overwhelming number of resident space objects (RSOs) that need to be tracked and the amount of data these observations produce. The Joint Centralized Autonomous Tasking System (JCATS) is an autonomous, net-centric tool that approaches these SSA concerns from an agile, information-based stance. Finite set statistics and stochastic optimization are used to maintain an RSO catalog and develop sensor tasking schedules based on operator configured, state information-gain metrics to determine observation priorities. This improves the efficiency of sensors to target objects as awareness changes and new information is needed, not at predefined frequencies solely. A net-centric, service-oriented architecture (SOA) allows for JCATS integration into existing SSA systems. Testing has shown operationally-relevant performance improvements and scalability across multiple types of scenarios and against current sensor tasking tools.
The Integrated Radiation Mapper Assistant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlton, R.E.; Tripp, L.R.
1995-03-01
The Integrated Radiation Mapper Assistant (IRMA) system combines state-of-the-art radiation sensors and microprocessor based analysis techniques to perform radiation surveys. Control of the survey function is from a control station located outside the radiation thus reducing time spent in radiation areas performing radiation surveys. The system consists of a directional radiation sensor, a laser range finder, two area radiation sensors, and a video camera mounted on a pan and tilt platform. THis sensor package is deployable on a remotely operated vehicle. The outputs of the system are radiation intensity maps identifying both radiation source intensities and radiation levels throughout themore » room being surveyed. After completion of the survey, the data can be removed from the control station computer for further analysis or archiving.« less
David, Hamilton P; Carey, Cayelan C.; Arvola, Lauri; Arzberger, Peter; Brewer, Carol A.; Cole, Jon J; Gaiser, Evelyn; Hanson, Paul C.; Ibelings, Bas W; Jennings, Eleanor; Kratz, Tim K; Lin, Fang-Pang; McBride, Christopher G.; de Motta Marques, David; Muraoka, Kohji; Nishri, Ami; Qin, Boqiang; Read, Jordan S.; Rose, Kevin C.; Ryder, Elizabeth; Weathers, Kathleen C.; Zhu, Guangwei; Trolle, Dennis; Brookes, Justin D
2014-01-01
A Global Lake Ecological Observatory Network (GLEON; www.gleon.org) has formed to provide a coordinated response to the need for scientific understanding of lake processes, utilising technological advances available from autonomous sensors. The organisation embraces a grassroots approach to engage researchers from varying disciplines, sites spanning geographic and ecological gradients, and novel sensor and cyberinfrastructure to synthesise high-frequency lake data at scales ranging from local to global. The high-frequency data provide a platform to rigorously validate process- based ecological models because model simulation time steps are better aligned with sensor measurements than with lower-frequency, manual samples. Two case studies from Trout Bog, Wisconsin, USA, and Lake Rotoehu, North Island, New Zealand, are presented to demonstrate that in the past, ecological model outputs (e.g., temperature, chlorophyll) have been relatively poorly validated based on a limited number of directly comparable measurements, both in time and space. The case studies demonstrate some of the difficulties of mapping sensor measurements directly to model state variable outputs as well as the opportunities to use deviations between sensor measurements and model simulations to better inform process understanding. Well-validated ecological models provide a mechanism to extrapolate high-frequency sensor data in space and time, thereby potentially creating a fully 3-dimensional simulation of key variables of interest.
Zero-power infrared digitizers based on plasmonically enhanced micromechanical photoswitches
NASA Astrophysics Data System (ADS)
Qian, Zhenyun; Kang, Sungho; Rajaram, Vageeswar; Cassella, Cristian; McGruer, Nicol E.; Rinaldi, Matteo
2017-10-01
State-of-the-art sensors use active electronics to detect and discriminate light, sound, vibration and other signals. They consume power constantly, even when there is no relevant data to be detected, which limits their lifetime and results in high costs of deployment and maintenance for unattended sensor networks. Here we propose a device concept that fundamentally breaks this paradigm—the sensors remain dormant with near-zero power consumption until awakened by a specific physical signature associated with an event of interest. In particular, we demonstrate infrared digitizing sensors that consist of plasmonically enhanced micromechanical photoswitches (PMPs) that selectively harvest the impinging electromagnetic energy in design-defined spectral bands of interest, and use it to create mechanically a conducting channel between two electrical contacts, without the need for any additional power source. Our zero-power digitizing sensor prototypes produce a digitized output bit (that is, a large and sharp off-to-on state transition with an on/off conductance ratio >1012 and subthreshold slope >9 dec nW-1) when exposed to infrared radiation in a specific narrow spectral band (∼900 nm bandwidth in the mid-infrared) with the intensity above a power threshold of only ∼500 nW, which is not achievable with any existing photoswitch technologies.
Effect of retransmission and retrodiction on estimation and fusion in long-haul sensor networks
Liu, Qiang; Wang, Xin; Rao, Nageswara S. V.; ...
2016-01-01
In a long-haul sensor network, sensors are remotely deployed over a large geographical area to perform certain tasks, such as target tracking. In this work, we study the scenario where sensors take measurements of one or more dynamic targets and send state estimates of the targets to a fusion center via satellite links. The severe loss and delay inherent over the satellite channels reduce the number of estimates successfully arriving at the fusion center, thereby limiting the potential fusion gain and resulting in suboptimal accuracy performance of the fused estimates. In addition, the errors in target-sensor data association can alsomore » degrade the estimation performance. To mitigate the effect of imperfect communications on state estimation and fusion, we consider retransmission and retrodiction. The system adopts certain retransmission-based transport protocols so that lost messages can be recovered over time. Besides, retrodiction/smoothing techniques are applied so that the chances of incurring excess delay due to retransmission are greatly reduced. We analyze the extent to which retransmission and retrodiction can improve the performance of delay-sensitive target tracking tasks under variable communication loss and delay conditions. Lastly, simulation results of a ballistic target tracking application are shown in the end to demonstrate the validity of our analysis.« less
Zhu, Dong; Li, Wei; Wen, Hong-Mei; Yu, Sheng; Miao, Zhao-Yi; Kang, An; Zhang, Aihua
2015-12-15
A silver nanoparticles (AgNPs)-enhanced time-resolved fluorescence (TR-FL) sensor based on long-lived fluorescent Mn-doped ZnS quantum dots (QDs) is developed for the sensitive detection of vascular endothelial growth factor-165 (VEGF165), a predominant cancer biomarker in cancer angiogenesis. The aptamers bond with the Mn-doped ZnS QDs and the BHQ-2 quencher-labelling strands hybridized in duplex are coupled with streptavidin (SA)-functionalized AgNPs to form the AgNPs-enhanced TR-FL sensor, showing lower fluorescence intensity in the duplex state due to the fluorescence resonance energy transfer (FRET) between the Mn-doped ZnS QDs and quenchers. Upon the addition of VEGF165, the BHQ-2 quencher-labelling strands of the duplex are displaced, leading to the disruption of the FRET. As a result, the fluorescence of the Mn-doped QDs within the proximity of the AgNPs is recovered. The FL signal can be measured free of the interference of short-lived background by setting appropriate delay time and gate time, which offers a signal with high signal-to-noise ratio in photoluminescent biodetection. Compared with the bare TR-FL sensor, the AgNPs-based TR-FL sensor showed a huge improvement in fluorescence based on metal-enhanced fluorescence (MEF) effect, and the sensitivity increased 11-fold with the detection limit of 0.08 nM. In addition, the sensor provided a wide range of linear detection from 0.1 nM to 16 nM. Copyright © 2015 Elsevier B.V. All rights reserved.
Optic fiber sensor-based smart bridge cable with functionality of self-sensing
NASA Astrophysics Data System (ADS)
He, Jianping; Zhou, Zhi; Jinping, Ou
2013-02-01
Bridge cables, characterized by distributed large span, serving in harsh environment and vulnerability to random damage, are the key load-sustaining components of cable-based bridges. To ensure the safety of the bridge structure, it is critical to monitor the loading conditions of these cables under lengthwise random damages. Aiming at obtaining accurate monitoring at the critical points as well as the general information of the cable force distributed along the entire cable, this paper presents a study on cable force monitoring by combining optical fiber Bragg grating (FBG) sensors and Brillouin optical time domain analysis/reflectory (BOTDA/R) sensing technique in one single optical fiber. A smart FRP-OF-FBG rebar based cable was fabricated by protruding a FRP packaged OF-FBG sensor into the bridge cable. And its sensing characteristics, stability under high stress state temperature self-compensation as well as BOTDA/R distributed data improvement by local FBG sensors have been investigated. The results show that FRP-OF-FBG rebar in the smart cable can deform consistantly along with the steel wire and the cable force obtained from the optical fiber sensors agree well with theoretical value with relative error less than ±5%. Besides, the temperature self-compensation method provides a significant cost-effective technique for the FRP-OF-FBG based cables' in situ cable force measurement. And furthermore, potential damages of the bridge cable, e.g. wire breaking and corrosion, can be characterized and symbolized by the discontinuity and fluctuation of the distributed BOTDA data thereafter accuracy improved by local FBG sensors.
#2) Sensor Technology-State of the Science
Establish market surveys of commercially-available air quality sensorsConduct an extensive literature survey describing the state of sensor technologiesInvestigate emerging technologies and their potential to meet future air quality monitoring needs for the Agency as well as othe...
Humidity-Responsive Gold Aerogel for Real-Time Monitoring of Human Breath.
Ali, Israt; Chen, Liming; Huang, Youju; Song, Liping; Lu, Xuefei; Liu, Baoqing; Zhang, Lei; Zhang, Jiawei; Hou, Linxi; Chen, Tao
2018-04-24
Humidity sensors have received considerable attention in recent years because of their significance and wide applications in agriculture, industries, goods stores, and medical fields. However, the conventional humidity sensors usually possessed a complex sensing mechanism and low sensitivity and required a time-consuming, labor-intensive process. The exploration for an ideal sensing material to amplify the sensitivity of humidity sensors is still a big challenge. Herein, we developed a simple, low-cost, and scalable fabrication strategy to construct a highly sensitive humidity sensor based on polymer/gold nanoparticle (AuNP) hybrid materials. The hybrid polymer/AuNP aerogel was prepared by a simple freeze-drying method. By taking advantage of the conductivity of AuNPs and high surface area of the highly porous structure, the hybrid poly- N-isopropylacrylamide (PNIPAm)/AuNP aerogel showed high sensitivity to water molecules. Interestingly, the hybrid PNIPAm/AuNP aerogel-based humidity sensor can be used to detect human breath in different states, such as normal breath, fast breath, and deep breath, or in different individuals such as persons with illness, persons who are smoking, and persons who are normal, which is promising in practical flexible wearable devices for human health monitoring. In addition, the humidity sensor can be used in whistle tune recognition.
Ma, Christina Zong-Hao; Wong, Duo Wai-Chi; Lam, Wing Kai; Wan, Anson Hong-Ping; Lee, Winson Chiu-Chun
2016-03-25
Falls and fall-induced injuries are major global public health problems. Balance and gait disorders have been the second leading cause of falls. Inertial motion sensors and force sensors have been widely used to monitor both static and dynamic balance performance. Based on the detected performance, instant visual, auditory, electrotactile and vibrotactile biofeedback could be provided to augment the somatosensory input and enhance balance control. This review aims to synthesize the research examining the effect of biofeedback systems, with wearable inertial motion sensors and force sensors, on balance performance. Randomized and non-randomized clinical trials were included in this review. All studies were evaluated based on the methodological quality. Sample characteristics, device design and study characteristics were summarized. Most previous studies suggested that biofeedback devices were effective in enhancing static and dynamic balance in healthy young and older adults, and patients with balance and gait disorders. Attention should be paid to the choice of appropriate types of sensors and biofeedback for different intended purposes. Maximizing the computing capacity of the micro-processer, while minimizing the size of the electronic components, appears to be the future direction of optimizing the devices. Wearable balance-improving devices have their potential of serving as balance aids in daily life, which can be used indoors and outdoors.
Kim, Kang-Hyun; Hong, Soon Kyu; Jang, Nam-Su; Ha, Sung-Hun; Lee, Hyung Woo; Kim, Jong-Man
2017-05-24
Wearable pressure sensors are crucial building blocks for potential applications in real-time health monitoring, artificial electronic skins, and human-to-machine interfaces. Here we present a highly sensitive, simple-architectured wearable resistive pressure sensor based on highly compliant yet robust carbon composite conductors made of a vertically aligned carbon nanotube (VACNT) forest embedded in a polydimethylsiloxane (PDMS) matrix with irregular surface morphology. A roughened surface of the VACNT/PDMS composite conductor is simply formed using a sandblasted silicon master in a low-cost and potentially scalable manner and plays an important role in improving the sensitivity of resistive pressure sensor. After assembling two of the roughened composite conductors, our sensor shows considerable pressure sensitivity of ∼0.3 kPa -1 up to 0.7 kPa as well as stable steady-state responses under various pressures, a wide detectable range of up to 5 kPa before saturation, a relatively fast response time of ∼162 ms, and good reproducibility over 5000 cycles of pressure loading/unloading. The fabricated pressure sensor can be used to detect a wide range of human motions ranging from subtle blood pulses to dynamic joint movements, and it can also be used to map spatial pressure distribution in a multipixel platform (in a 4 × 4 pixel array).
Tunneling magnetoresistance sensor with pT level 1/f magnetic noise
NASA Astrophysics Data System (ADS)
Deak, James G.; Zhou, Zhimin; Shen, Weifeng
2017-05-01
Magnetoresistive devices are important components in a large number of commercial electronic products in a wide range of applications including industrial position sensors, automotive sensors, hard disk read heads, cell phone compasses, and solid state memories. These devices are commonly based on anisotropic magnetoresistance (AMR) and giant magnetoresistance (GMR), but over the past few years tunneling magnetoresistance (TMR) has been emerging in more applications. Here we focus on recent work that has enabled the development of TMR magnetic field sensors with 1/f noise of less than 100 pT/rtHz at 1 Hz. Of the commercially available sensors, the lowest noise devices have typically been AMR, but they generally have the largest die size. Based on this observation and modeling of experimental data size and geometry dependence, we find that there is an optimal design rule that produces minimum 1/f noise. This design rule requires maximizing the areal coverage of an on-chip flux concentrator, providing it with a minimum possible total gap width, and tightly packing the gaps with MTJ elements, which increases the effective volume and decreases the saturation field of the MTJ freelayers. When properly optimized using this rule, these sensors have noise below 60 pT/rtHz, and could possibly replace fluxgate magnetometers in some applications.
Organic-on-silicon complementary metal-oxide-semiconductor colour image sensors.
Lim, Seon-Jeong; Leem, Dong-Seok; Park, Kyung-Bae; Kim, Kyu-Sik; Sul, Sangchul; Na, Kyoungwon; Lee, Gae Hwang; Heo, Chul-Joon; Lee, Kwang-Hee; Bulliard, Xavier; Satoh, Ryu-Ichi; Yagi, Tadao; Ro, Takkyun; Im, Dongmo; Jung, Jungkyu; Lee, Myungwon; Lee, Tae-Yon; Han, Moon Gyu; Jin, Yong Wan; Lee, Sangyoon
2015-01-12
Complementary metal-oxide-semiconductor (CMOS) colour image sensors are representative examples of light-detection devices. To achieve extremely high resolutions, the pixel sizes of the CMOS image sensors must be reduced to less than a micron, which in turn significantly limits the number of photons that can be captured by each pixel using silicon (Si)-based technology (i.e., this reduction in pixel size results in a loss of sensitivity). Here, we demonstrate a novel and efficient method of increasing the sensitivity and resolution of the CMOS image sensors by superposing an organic photodiode (OPD) onto a CMOS circuit with Si photodiodes, which consequently doubles the light-input surface area of each pixel. To realise this concept, we developed organic semiconductor materials with absorption properties selective to green light and successfully fabricated highly efficient green-light-sensitive OPDs without colour filters. We found that such a top light-receiving OPD, which is selective to specific green wavelengths, demonstrates great potential when combined with a newly designed Si-based CMOS circuit containing only blue and red colour filters. To demonstrate the effectiveness of this state-of-the-art hybrid colour image sensor, we acquired a real full-colour image using a camera that contained the organic-on-Si hybrid CMOS colour image sensor.
Organic-on-silicon complementary metal–oxide–semiconductor colour image sensors
Lim, Seon-Jeong; Leem, Dong-Seok; Park, Kyung-Bae; Kim, Kyu-Sik; Sul, Sangchul; Na, Kyoungwon; Lee, Gae Hwang; Heo, Chul-Joon; Lee, Kwang-Hee; Bulliard, Xavier; Satoh, Ryu-Ichi; Yagi, Tadao; Ro, Takkyun; Im, Dongmo; Jung, Jungkyu; Lee, Myungwon; Lee, Tae-Yon; Han, Moon Gyu; Jin, Yong Wan; Lee, Sangyoon
2015-01-01
Complementary metal–oxide–semiconductor (CMOS) colour image sensors are representative examples of light-detection devices. To achieve extremely high resolutions, the pixel sizes of the CMOS image sensors must be reduced to less than a micron, which in turn significantly limits the number of photons that can be captured by each pixel using silicon (Si)-based technology (i.e., this reduction in pixel size results in a loss of sensitivity). Here, we demonstrate a novel and efficient method of increasing the sensitivity and resolution of the CMOS image sensors by superposing an organic photodiode (OPD) onto a CMOS circuit with Si photodiodes, which consequently doubles the light-input surface area of each pixel. To realise this concept, we developed organic semiconductor materials with absorption properties selective to green light and successfully fabricated highly efficient green-light-sensitive OPDs without colour filters. We found that such a top light-receiving OPD, which is selective to specific green wavelengths, demonstrates great potential when combined with a newly designed Si-based CMOS circuit containing only blue and red colour filters. To demonstrate the effectiveness of this state-of-the-art hybrid colour image sensor, we acquired a real full-colour image using a camera that contained the organic-on-Si hybrid CMOS colour image sensor. PMID:25578322
Ma, Christina Zong-Hao; Wong, Duo Wai-Chi; Lam, Wing Kai; Wan, Anson Hong-Ping; Lee, Winson Chiu-Chun
2016-01-01
Falls and fall-induced injuries are major global public health problems. Balance and gait disorders have been the second leading cause of falls. Inertial motion sensors and force sensors have been widely used to monitor both static and dynamic balance performance. Based on the detected performance, instant visual, auditory, electrotactile and vibrotactile biofeedback could be provided to augment the somatosensory input and enhance balance control. This review aims to synthesize the research examining the effect of biofeedback systems, with wearable inertial motion sensors and force sensors, on balance performance. Randomized and non-randomized clinical trials were included in this review. All studies were evaluated based on the methodological quality. Sample characteristics, device design and study characteristics were summarized. Most previous studies suggested that biofeedback devices were effective in enhancing static and dynamic balance in healthy young and older adults, and patients with balance and gait disorders. Attention should be paid to the choice of appropriate types of sensors and biofeedback for different intended purposes. Maximizing the computing capacity of the micro-processer, while minimizing the size of the electronic components, appears to be the future direction of optimizing the devices. Wearable balance-improving devices have their potential of serving as balance aids in daily life, which can be used indoors and outdoors. PMID:27023558
Gas Sensors Based on One Dimensional Nanostructured Metal-Oxides: A Review
Arafat, M. M.; Dinan, B.; Akbar, Sheikh A.; Haseeb, A. S. M. A.
2012-01-01
Recently one dimensional (1-D) nanostructured metal-oxides have attracted much attention because of their potential applications in gas sensors. 1-D nanostructured metal-oxides provide high surface to volume ratio, while maintaining good chemical and thermal stabilities with minimal power consumption and low weight. In recent years, various processing routes have been developed for the synthesis of 1-D nanostructured metal-oxides such as hydrothermal, ultrasonic irradiation, electrospinning, anodization, sol-gel, molten-salt, carbothermal reduction, solid-state chemical reaction, thermal evaporation, vapor-phase transport, aerosol, RF sputtering, molecular beam epitaxy, chemical vapor deposition, gas-phase assisted nanocarving, UV lithography and dry plasma etching. A variety of sensor fabrication processing routes have also been developed. Depending on the materials, morphology and fabrication process the performance of the sensor towards a specific gas shows a varying degree of success. This article reviews and evaluates the performance of 1-D nanostructured metal-oxide gas sensors based on ZnO, SnO2, TiO2, In2O3, WOx, AgVO3, CdO, MoO3, CuO, TeO2 and Fe2O3. Advantages and disadvantages of each sensor are summarized, along with the associated sensing mechanism. Finally, the article concludes with some future directions of research. PMID:22969344
Determining postural stability
NASA Technical Reports Server (NTRS)
Forth, Katharine E. (Inventor); Paloski, William H. (Inventor); Lieberman, Erez (Inventor)
2011-01-01
A method for determining postural stability of a person can include acquiring a plurality of pressure data points over a period of time from at least one pressure sensor. The method can also include the step of identifying a postural state for each pressure data point to generate a plurality of postural states. The method can include the step of determining a postural state of the person at a point in time based on at least the plurality of postural states.
Improved Battery State Estimation Using Novel Sensing Techniques
NASA Astrophysics Data System (ADS)
Abdul Samad, Nassim
Lithium-ion batteries have been considered a great complement or substitute for gasoline engines due to their high energy and power density capabilities among other advantages. However, these types of energy storage devices are still yet not widespread, mainly because of their relatively high cost and safety issues, especially at elevated temperatures. This thesis extends existing methods of estimating critical battery states using model-based techniques augmented by real-time measurements from novel temperature and force sensors. Typically, temperature sensors are located near the edge of the battery, and away from the hottest core cell regions, which leads to slower response times and increased errors in the prediction of core temperatures. New sensor technology allows for flexible sensor placement at the cell surface between cells in a pack. This raises questions about the optimal locations of these sensors for best observability and temperature estimation. Using a validated model, which is developed and verified using experiments in laboratory fixtures that replicate vehicle pack conditions, it is shown that optimal sensor placement can lead to better and faster temperature estimation. Another equally important state is the state of health or the capacity fading of the cell. This thesis introduces a novel method of using force measurements for capacity fade estimation. Monitoring capacity is important for defining the range of electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). Current capacity estimation techniques require a full discharge to monitor capacity. The proposed method can complement or replace current methods because it only requires a shallow discharge, which is especially useful in EVs and PHEVs. Using the accurate state estimation accomplished earlier, a method for downsizing a battery pack is shown to effectively reduce the number of cells in a pack without compromising safety. The influence on the battery performance (e.g. temperature, utilization, capacity fade, and cost) while downsizing and shifting the nominal operating SOC is demonstrated via simulations. The contributions in this thesis aim to make EVs, HEVs and PHEVs less costly while maintaining safety and reliability as more people are transitioning towards more environmentally friendly means of transportation.
Robust Fault Detection for Aircraft Using Mixed Structured Singular Value Theory and Fuzzy Logic
NASA Technical Reports Server (NTRS)
Collins, Emmanuel G.
2000-01-01
The purpose of fault detection is to identify when a fault or failure has occurred in a system such as an aircraft or expendable launch vehicle. The faults may occur in sensors, actuators, structural components, etc. One of the primary approaches to model-based fault detection relies on analytical redundancy. That is the output of a computer-based model (actually a state estimator) is compared with the sensor measurements of the actual system to determine when a fault has occurred. Unfortunately, the state estimator is based on an idealized mathematical description of the underlying plant that is never totally accurate. As a result of these modeling errors, false alarms can occur. This research uses mixed structured singular value theory, a relatively recent and powerful robustness analysis tool, to develop robust estimators and demonstrates the use of these estimators in fault detection. To allow qualitative human experience to be effectively incorporated into the detection process fuzzy logic is used to predict the seriousness of the fault that has occurred.
Artificial Roughness Encoding with a Bio-inspired MEMS- based Tactile Sensor Array
Oddo, Calogero Maria; Beccai, Lucia; Felder, Martin; Giovacchini, Francesco; Carrozza, Maria Chiara
2009-01-01
A compliant 2×2 tactile sensor array was developed and investigated for roughness encoding. State of the art cross shape 3D MEMS sensors were integrated with polymeric packaging providing in total 16 sensitive elements to external mechanical stimuli in an area of about 20 mm2, similarly to the SA1 innervation density in humans. Experimental analysis of the bio-inspired tactile sensor array was performed by using ridged surfaces, with spatial periods from 2.6 mm to 4.1 mm, which were indented with regulated 1N normal force and stroked at constant sliding velocity from 15 mm/s to 48 mm/s. A repeatable and expected frequency shift of the sensor outputs depending on the applied stimulus and on its scanning velocity was observed between 3.66 Hz and 18.46 Hz with an overall maximum error of 1.7%. The tactile sensor could also perform contact imaging during static stimulus indentation. The experiments demonstrated the suitability of this approach for the design of a roughness encoding tactile sensor for an artificial fingerpad. PMID:22412304
Ampoule failure sensor time response testing: Experiment 1
NASA Technical Reports Server (NTRS)
Johnson, M. L.; Watring, D. A.
1994-01-01
The response time of an ampoule failure sensor exposed to a liquid or vapor gallium-arsenide (GaAs) is investigated. The experimental configuration represents the sample/ampoule cartridge assembly used in NASA's Crystal Growth Furnace (CGF). The sensor is a chemical fuse made from a metal with which the semiconductor material reacts more rapidly than it does with the containing cartridge. For the III-IV compound of GaAs, a platinum metal was chosen based on the reaction of platinum and arsenic at elevated temperatures which forms a low melting eutectic. Ampoule failure is indicated by a step change in resistance of the failure sensor on the order of megohms. The sensors will increase the safety of crystal growth experiments by providing an indication that an ampoule has failed. Experimental results indicate that the response times (after a known ampoule failure) for the 0.003 and 0.010 inch ampoule failure sensors are 2.4 and 3.6 minutes, respectively. This ampoule failure sensor will be utilized in the CGF during the second United States Microgravity Laboratory Mission (USML-2) and is the subject of a NASA patent application.
Sensor data security level estimation scheme for wireless sensor networks.
Ramos, Alex; Filho, Raimir Holanda
2015-01-19
Due to their increasing dissemination, wireless sensor networks (WSNs) have become the target of more and more sophisticated attacks, even capable of circumventing both attack detection and prevention mechanisms. This may cause WSN users, who totally trust these security mechanisms, to think that a sensor reading is secure, even when an adversary has corrupted it. For that reason, a scheme capable of estimating the security level (SL) that these mechanisms provide to sensor data is needed, so that users can be aware of the actual security state of this data and can make better decisions on its use. However, existing security estimation schemes proposed for WSNs fully ignore detection mechanisms and analyze solely the security provided by prevention mechanisms. In this context, this work presents the sensor data security estimator (SDSE), a new comprehensive security estimation scheme for WSNs. SDSE is designed for estimating the sensor data security level based on security metrics that analyze both attack prevention and detection mechanisms. In order to validate our proposed scheme, we have carried out extensive simulations that show the high accuracy of SDSE estimates.
Sensor Data Security Level Estimation Scheme for Wireless Sensor Networks
Ramos, Alex; Filho, Raimir Holanda
2015-01-01
Due to their increasing dissemination, wireless sensor networks (WSNs) have become the target of more and more sophisticated attacks, even capable of circumventing both attack detection and prevention mechanisms. This may cause WSN users, who totally trust these security mechanisms, to think that a sensor reading is secure, even when an adversary has corrupted it. For that reason, a scheme capable of estimating the security level (SL) that these mechanisms provide to sensor data is needed, so that users can be aware of the actual security state of this data and can make better decisions on its use. However, existing security estimation schemes proposed for WSNs fully ignore detection mechanisms and analyze solely the security provided by prevention mechanisms. In this context, this work presents the sensor data security estimator (SDSE), a new comprehensive security estimation scheme for WSNs. SDSE is designed for estimating the sensor data security level based on security metrics that analyze both attack prevention and detection mechanisms. In order to validate our proposed scheme, we have carried out extensive simulations that show the high accuracy of SDSE estimates. PMID:25608215
Novel texture-based descriptors for tool wear condition monitoring
NASA Astrophysics Data System (ADS)
Antić, Aco; Popović, Branislav; Krstanović, Lidija; Obradović, Ratko; Milošević, Mijodrag
2018-01-01
All state-of-the-art tool condition monitoring systems (TCM) in the tool wear recognition task, especially those that use vibration sensors, heavily depend on the choice of descriptors containing information about the tool wear state which are extracted from the particular sensor signals. All other post-processing techniques do not manage to increase the recognition precision if those descriptors are not discriminative enough. In this work, we propose a tool wear monitoring strategy which relies on the novel texture based descriptors. We consider the module of the Short Term Discrete Fourier Transform (STDFT) spectra obtained from the particular vibration sensors signal utterance as the 2D textured image. This is done by identifying the time scale of STDFT as the first dimension, and the frequency scale as the second dimension of the particular textured image. The obtained textured image is then divided into particular 2D texture patches, covering a part of the frequency range of interest. After applying the appropriate filter bank, 2D textons are extracted for each predefined frequency band. By averaging in time, we extract from the textons for each band of interest the information regarding the Probability Density Function (PDF) in the form of lower order moments, thus obtaining robust tool wear state descriptors. We validate the proposed features by the experiments conducted on the real TCM system, obtaining the high recognition accuracy.
Evaluation of Aeroservoelastic Effects on Flutter
NASA Technical Reports Server (NTRS)
Nagaraja, K. S.; Kraft, raymond; Felt, Larry
1998-01-01
The HSCT Flight Controls Group is developing a longitudinal control law, known as Gamma-dot / V, for the NASA HSR program. Currently, this control law is based on a quasi-steady aeroelastic (QSAE) model of the vehicle. This control law was implemented into the p-k flutter analysis process for closed loop aeroservoelastic analysis. The available flexible models, developed for the TCA aeroelastic analysis, were used to assess the effect of control laws on flutter at several different Mach numbers and mass conditions. Significant structures and flight control system interaction was observed during the initial assessment. Figures 1 and 2 present a summary of the effect of total closed loop gain and phase on flutter mechanisms, based on ideal sensors and real sensors, for Mach 0.95 and mass M02 condition. Control laws based on ideal sensors gave rise to increased coupling between the rigid body short period mode and the first symmetric elastic mode. This reduced the stability margins for the first elastic mode and does not meet the required 6 dB gain margin requirement. The effect of "real" sensors significantly increased the structures and control system interactions. This caused the elastic,modes to be highly unstable throughout most of the flight envelope. State-space models were developed for several conditions and then MATLAB program was used for the aeroservoelastic stability analysis. These results provided an independent verification of the p-k flutter analysis findings. Good overall agreement was observed between the p-k flutter analysis and state-space model results for both damping and frequency comparisons. These results are also included in this document.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, P.; Bhattacharyya, D.; Turton, R.
2012-01-01
Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In thismore » work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics® (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel Computing® toolbox from Mathworks®. In this presentation, we will share our experience in setting up parallel computing using GA in the MATLAB® environment and present the overall approach for achieving higher computational efficiency in this framework.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, P.; Bhattacharyya, D.; Turton, R.
2012-01-01
Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In thismore » work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics® (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel Computing® toolbox from Mathworks®. In this presentation, we will share our experience in setting up parallel computing using GA in the MATLAB® environment and present the overall approach for achieving higher computational efficiency in this framework.« less
Using vehicle-based sensors of driver behavior to detect alcohol impairment.
DOT National Transportation Integrated Search
2011-06-13
Despite persistent efforts at the local, state, : and federal levels, alcohol-impaired crashes : still contribute to approximately 30% of all : traffic fatalities. Although enforcement and : educational approaches have helped to : reduce alcohol-impa...
NASA Astrophysics Data System (ADS)
Qian, Jun
This research work contains two main parts: the theoretical study of confined phonon modes and electron states in confined graphene nanostructures; the experimental part including two topics about fabricating a graphene-FET aptamer-sensor for cocaine detection and the study of the electronic transport properties of dsDNA. In the theory part, we study the confined optical phonon modes in graphene nanoribbons (GNR) and rectangular graphene quantum dots (RGQD) by the elastic continuum model. The carrier states are studied by effective mass approximation. The phonon bottleneck effect is expected in general for RGQDs. The scattering rates are calculated for specific RGQDs with carefully chosen dimensions to fulfill the momentum and energy conservation conditions. In the experimental part, we have developed a combined technique of semiconductor processes and molecular biological protocols to fabricate a signal-off graphene-FET aptamer-sensor for cocaine. In addition, DNA transport properties were studied by STM on GNP-dsDNA-Au conjugates in atmospheric condition. The dsDNA-complexes exhibit as a slightly n-type semiconductor by simulated with a Landauer-type model. A geometrical model is proposed to explain the distinct I-V spectra.
Research on FBG-Based CFRP Structural Damage Identification Using BP Neural Network
NASA Astrophysics Data System (ADS)
Geng, Xiangyi; Lu, Shizeng; Jiang, Mingshun; Sui, Qingmei; Lv, Shanshan; Xiao, Hang; Jia, Yuxi; Jia, Lei
2018-06-01
A damage identification system of carbon fiber reinforced plastics (CFRP) structures is investigated using fiber Bragg grating (FBG) sensors and back propagation (BP) neural network. FBG sensors are applied to construct the sensing network to detect the structural dynamic response signals generated by active actuation. The damage identification model is built based on the BP neural network. The dynamic signal characteristics extracted by the Fourier transform are the inputs, and the damage states are the outputs of the model. Besides, damages are simulated by placing lumped masses with different weights instead of inducing real damages, which is confirmed to be feasible by finite element analysis (FEA). At last, the damage identification system is verified on a CFRP plate with 300 mm × 300 mm experimental area, with the accurate identification of varied damage states. The system provides a practical way for CFRP structural damage identification.
Fusion of radar and satellite target measurements
NASA Astrophysics Data System (ADS)
Moy, Gabriel; Blaty, Donald; Farber, Morton; Nealy, Carlton
2011-06-01
A potentially high payoff for the ballistic missile defense system (BMDS) is the ability to fuse the information gathered by various sensor systems. In particular, it may be valuable in the future to fuse measurements made using ground based radars with passive measurements obtained from satellite-based EO/IR sensors. This task can be challenging in a multitarget environment in view of the widely differing resolution between active ground-based radar and an observation made by a sensor at long range from a satellite platform. Additionally, each sensor system could have a residual pointing bias which has not been calibrated out. The problem is further compounded by the possibility that an EO/IR sensor may not see exactly the same set of targets as a microwave radar. In order to better understand the problems involved in performing the fusion of metric information from EO/IR satellite measurements with active microwave radar measurements, we have undertaken a study of this data fusion issue and of the associated data processing techniques. To carry out this analysis, we have made use of high fidelity simulations to model the radar observations from a missile target and the observations of the same simulated target, as gathered by a constellation of satellites. In the paper, we discuss the improvements seen in our tests when fusing the state vectors, along with the improvements in sensor bias estimation. The limitations in performance due to the differing phenomenology between IR and microwave radar are discussed as well.
#2) Sensor Technology-State of the Science | Science ...
Establish market surveys of commercially-available air quality sensorsConduct an extensive literature survey describing the state of sensor technologiesInvestigate emerging technologies and their potential to meet future air quality monitoring needs for the Agency as well as other partners/stakeholders Develop sensor user guidesEducate sensor developers/sensors users on the state of low cost censorsFacilitate knowledge transfer to Federal/Regional/State air quality associatesWork directly with sensor developers to dramatically speed up the development of next generation air monitoring Support ORD’s Sensor Roadmap by focusing on areas of highest priority (NAAQS, Air Toxics, Citizen Science)Establish highly integrated research efforts across ORD and its partners (internal/external) to ensure consistent The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose.
Simulations of Propane and Butane Gas Sensor Based on Pristine Armchair Graphene Nanoribbon
NASA Astrophysics Data System (ADS)
Rashid, Haroon; Koel, Ants; Rang, Toomas
2018-05-01
Over the last decade graphene and its derivatives have gained a remarkable place in research field. As silicon technology is approaching to its geometrical limits so there is a need of alternate that can replace it. Graphene has emerged as a potential candidate for future nano-electronics applications due to its exceptional and extraordinary chemical, optical, electrical and mechanical properties. Graphene based sensors have gained significance for a wide range of sensing applications like detection of biomolecules, chemicals and gas molecules. It can be easily used to make electrical contacts and manipulate them according to the requirements as compared to the other nanomaterials. The intention of the work presented in this article is to contribute in this field by simulating a novel and cheap graphene nanoribbon sensor for the household gas leakage detection. QuantumWise Atomistix (ATK) software is used for the simulations of propane and butane gas sensor. Projected device density of the states (PDDOS) and the transmission spectrum of the device in the proximity of gas molecules are calculated and discussed. The change in the electric current through the device in the presence of the gas molecules is used as a gas detection mechanism for the simulated sensor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Eric; Teng, Chu; van Kessel, Theodore
We present a portable optical spectrometer for fugitive emissions monitoring of methane (CH4). The sensor operation is based on tunable diode laser absorption spectroscopy (TDLAS), using a 5 cm open path design, and targets the 2ν3 R(4) CH4 transition at 6057.1 cm-1 (1651 nm) to avoid cross-talk with common interfering atmospheric constituents. Sensitivity analysis indicates a normalized precision of 2.0 ppmv∙Hz-1/2, corresponding to a noise-equivalent absorption (NEA) of 4.4×10-6 Hz-1/2 and minimum detectible absorption (MDA) coefficient of αmin = 8.8×10-7 cm-1∙Hz-1/2. Our TDLAS sensor is deployed at the Methane Emissions Technology Evaluation Center (METEC) at Colorado State University (CSU) formore » initial demonstration of single-sensor based source localization and quantification of CH4 fugitive emissions. The TDLAS sensor is concurrently deployed with a customized chemi-resistive metal-oxide (MOX) sensor for accuracy benchmarking, demonstrating good visual correlation of the concentration time-series. Initial angle-of-arrival (AOA) results will be shown, and development towards source magnitude estimation will be described.« less
Cui, Yong; Wang, Qiusheng; Yuan, Haiwen; Song, Xiao; Hu, Xuemin; Zhao, Luxing
2015-01-01
In the wireless sensor networks (WSNs) for electric field measurement system under the High-Voltage Direct Current (HVDC) transmission lines, it is necessary to obtain the electric field distribution with multiple sensors. The location information of each sensor is essential to the correct analysis of measurement results. Compared with the existing approach which gathers the location information by manually labelling sensors during deployment, the automatic localization can reduce the workload and improve the measurement efficiency. A novel and practical range-free localization algorithm for the localization of one-dimensional linear topology wireless networks in the electric field measurement system is presented. The algorithm utilizes unknown nodes' neighbor lists based on the Received Signal Strength Indicator (RSSI) values to determine the relative locations of nodes. The algorithm is able to handle the exceptional situation of the output permutation which can effectively improve the accuracy of localization. The performance of this algorithm under real circumstances has been evaluated through several experiments with different numbers of nodes and different node deployments in the China State Grid HVDC test base. Results show that the proposed algorithm achieves an accuracy of over 96% under different conditions. PMID:25658390
Cui, Yong; Wang, Qiusheng; Yuan, Haiwen; Song, Xiao; Hu, Xuemin; Zhao, Luxing
2015-02-04
In the wireless sensor networks (WSNs) for electric field measurement system under the High-Voltage Direct Current (HVDC) transmission lines, it is necessary to obtain the electric field distribution with multiple sensors. The location information of each sensor is essential to the correct analysis of measurement results. Compared with the existing approach which gathers the location information by manually labelling sensors during deployment, the automatic localization can reduce the workload and improve the measurement efficiency. A novel and practical range-free localization algorithm for the localization of one-dimensional linear topology wireless networks in the electric field measurement system is presented. The algorithm utilizes unknown nodes' neighbor lists based on the Received Signal Strength Indicator (RSSI) values to determine the relative locations of nodes. The algorithm is able to handle the exceptional situation of the output permutation which can effectively improve the accuracy of localization. The performance of this algorithm under real circumstances has been evaluated through several experiments with different numbers of nodes and different node deployments in the China State Grid HVDC test base. Results show that the proposed algorithm achieves an accuracy of over 96% under different conditions.
NASA Astrophysics Data System (ADS)
Ramadan, A. B. A.
Air pollution is a serious problem in thickly populated and industrialized areas in Egypt, especially in greater Cairo area. Economic growth and industrialization are proceeding at a rapid pace, accompanied by increasing emissions of air polluting sources. Furthermore, though the variety and quantities of polluting sources have increased dramatically, the development of a suitable method for monitoring the pollution causing sources has not followed at the same pace. Environmental impacts of air pollutants have impact on public health, vegetation, material deterioration etc. To prevent or minimize the damage caused by atmospheric pollution, suitable monitoring systems are urgently needed that can rapidly and reliably detect and quantify polluting sources for monitoring by regulating authorities in order to prevent further deterioration of the current pollution levels. Consequently, it is important that the current real-time air quality monitoring system, controlled by the Egyptian Environmental Affairs Agency (EEAA), should be adapted or extended to aid in alleviating this problem. Nanotechnology has been applied to several industrial and domestic fields, for example, applications for gas monitoring systems, gas leak detectors in factories, fire and toxic gas detectors, ventilation control, breath alcohol detectors, and the like. Here we report an application example of studying air quality monitoring based on nanotechnology `solid state gas sensors'. So as to carry out air pollution monitoring over an extensive area, a combination of ground measurements through inexpensive sensors and wireless GIS will be used for this purpose. This portable device, comprising solid state gas sensors integrated to a Personal Digital Assistant (PDA) linked through Bluetooth communication tools and Global Positioning System (GPS), will allow rapid dissemination of information on pollution levels at multiple sites simultaneously.
Advanced Sensors Boost Optical Communication, Imaging
NASA Technical Reports Server (NTRS)
2009-01-01
Brooklyn, New York-based Amplification Technologies Inc. (ATI), employed Phase I and II SBIR funding from NASA s Jet Propulsion Laboratory to forward the company's solid-state photomultiplier technology. Under the SBIR, ATI developed a small, energy-efficient, extremely high-gain sensor capable of detecting light down to single photons in the near infrared wavelength range. The company has commercialized this technology in the form of its NIRDAPD photomultiplier, ideal for use in free space optical communications, lidar and ladar, night vision goggles, and other light sensing applications.
Bias estimation for moving optical sensor measurements with targets of opportunity
NASA Astrophysics Data System (ADS)
Belfadel, Djedjiga; Osborne, Richard W.; Bar-Shalom, Yaakov
2014-06-01
Integration of space based sensors into a Ballistic Missile Defense System (BMDS) allows for detection and tracking of threats over a larger area than ground based sensors [1]. This paper examines the effect of sensor bias error on the tracking quality of a Space Tracking and Surveillance System (STSS) for the highly non-linear problem of tracking a ballistic missile. The STSS constellation consists of two or more satellites (on known trajectories) for tracking ballistic targets. Each satellite is equipped with an IR sensor that provides azimuth and elevation to the target. The tracking problem is made more difficult due to a constant or slowly varying bias error present in each sensor's line of sight measurements. It is important to correct for these bias errors so that the multiple sensor measurements and/or tracks can be referenced as accurately as possible to a common tracking coordinate system. The measurements provided by these sensors are assumed time-coincident (synchronous) and perfectly associated. The line of sight (LOS) measurements from the sensors can be fused into measurements which are the Cartesian target position, i.e., linear in the target state. We evaluate the Cramér-Rao Lower Bound (CRLB) on the covariance of the bias estimates, which serves as a quantification of the available information about the biases. Statistical tests on the results of simulations show that this method is statistically efficient, even for small sample sizes (as few as two sensors and six points on the (unknown) trajectory of a single target of opportunity). We also show that the RMS position error is significantly improved with bias estimation compared with the target position estimation using the original biased measurements.
Harnessing the potential of the Kinect sensor for psychiatric rehabilitation for stroke survivors.
Zhang, Melvyn W B; Ho, Roger C M
2016-03-04
Dominques et al. in their recent article described how low-cost sensors, such as Microsoft Kinect could be utilized for the measurement of various anthropometric measures. With the recent advances in sensors and sensor based technology, along with the rapid advancement in E-health, Microsoft Kinect has been increasingly recognized by researchers and bioengineers to be a low-cost sensor that could help in the collation of various measurements and various data. A recent systematic review done by Da Gama et al. (2015) have looked into the potential of Kinect in terms of motor rehabilitation. The systematic review highlighted the tremendous potential of the sensors and has clearly stated that there is a need for further studies evaluating its potential for rehabilitation. Zhang et al. (2015) in their recent article have advocated several reasons as to why biosensors are pertinent for stroke rehabilitation. Of note, recent studies done by the World Health Organization have highlighted that stroke is a growing epidemic. Aside to the utilization of smartphone based sensors for stroke rehabilitation, as proposed by Zhang et al. (2015), researchers have also investigated the use of other low cost alternatives, such as Kinect, to facilitate the rehabilitation of stroke survivors. Whilst it may seemed like that has been quite extensive evaluation of the Kinect sensor for stroke rehabilitation, one core area that bio-engineers and researchers have not looked into is that of the psychiatric and mental health issues that might at times arise following a stroke. It is thus the aim of this letter to address how such a sensor could be tapped upon for psychiatric rehabilitation amongst stroke survivors. To this end, the authors have thus conceptualized a game that could help in the cognitive remediation for stroke survivors using low cost Kinect sensors.
Anni, M; Rella, R
2010-02-04
We investigated the fluorescence (FL) dependence on the environment oxygen content of poly(9,9-dioctylfluorene) (PF8) thin films. We show that the PF8 interactions with oxygen are not limited to the known irreversible photo-oxidation, resulting in the formation of Keto defects, but also reversible FL quenching is observed. This effect, which is stronger for the Keto defects than for the PF8, has been exploited for the realization of a prototype oxygen sensor based on FL quenching. The sensing sensitivity of Keto defects is comparable with the state of the art organic oxygen sensors based on phosphorescence quenching.
Optical sensors based on plastic fibers.
Bilro, Lúcia; Alberto, Nélia; Pinto, João L; Nogueira, Rogério
2012-01-01
The recent advances of polymer technology allowed the introduction of plastic optical fiber in sensor design. The advantages of optical metrology with plastic optical fiber have attracted the attention of the scientific community, as they allow the development of low-cost or cost competitive systems compared with conventional technologies. In this paper, the current state of the art of plastic optical fiber technology will be reviewed, namely its main characteristics and sensing advantages. Several measurement techniques will be described, with a strong focus on interrogation approaches based on intensity variation in transmission and reflection. The potential applications involving structural health monitoring, medicine, environment and the biological and chemical area are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulsson, Bjorn N.P.
2015-02-28
To address the critical site characterization and monitoring needs for CCS programs, US Department of Energy (DOE) awarded Paulsson, Inc. in 2010 a contract to design, build and test a fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying up to one thousand 3C sensor pods suitable for deployment into high temperature and high pressure boreholes. Paulsson, Inc. has completed a design or a unique borehole seismic system consisting of a novel drill pipe based deployment system that includes a hydraulic clamping mechanism for the sensor pods, a new sensor pod design and most important –more » a unique fiber optic seismic vector sensor with technical specifications and capabilities that far exceed the state of the art seismic sensor technologies. These novel technologies were all applied to the new borehole seismic system. In combination these technologies will allow for the deployment of up to 1,000 3C sensor pods in vertical, deviated or horizontal wells. Laboratory tests of the fiber optic seismic vector sensors developed during this project have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown that the system can record events at magnitudes much smaller than M-2.3 at frequencies up to 2,000 Hz. The sensors have also proved to be about 100 times more sensitive than the regular coil geophones that are used in borehole seismic systems today. The fiber optic seismic sensors have furthermore been qualified to operate at temperatures over 300°C (572°F). The fibers used for the seismic sensors in the system are used to record Distributed Temperature Sensor (DTS) data allowing additional value added data to be recorded simultaneously with the seismic vector sensor data.« less
Li, Xiangfei; Lin, Yuliang
2017-01-01
This paper proposes a new scheme of reconstructing current sensor faults and estimating unknown load disturbance for a permanent magnet synchronous motor (PMSM)-driven system. First, the original PMSM system is transformed into two subsystems; the first subsystem has unknown system load disturbances, which are unrelated to sensor faults, and the second subsystem has sensor faults, but is free from unknown load disturbances. Introducing a new state variable, the augmented subsystem that has sensor faults can be transformed into having actuator faults. Second, two sliding mode observers (SMOs) are designed: the unknown load disturbance is estimated by the first SMO in the subsystem, which has unknown load disturbance, and the sensor faults can be reconstructed using the second SMO in the augmented subsystem, which has sensor faults. The gains of the proposed SMOs and their stability analysis are developed via the solution of linear matrix inequality (LMI). Finally, the effectiveness of the proposed scheme was verified by simulations and experiments. The results demonstrate that the proposed scheme can reconstruct current sensor faults and estimate unknown load disturbance for the PMSM-driven system. PMID:29211017
Humidity Sensors Principle, Mechanism, and Fabrication Technologies: A Comprehensive Review
Farahani, Hamid; Wagiran, Rahman; Hamidon, Mohd Nizar
2014-01-01
Humidity measurement is one of the most significant issues in various areas of applications such as instrumentation, automated systems, agriculture, climatology and GIS. Numerous sorts of humidity sensors fabricated and developed for industrial and laboratory applications are reviewed and presented in this article. The survey frequently concentrates on the RH sensors based upon their organic and inorganic functional materials, e.g., porous ceramics (semiconductors), polymers, ceramic/polymer and electrolytes, as well as conduction mechanism and fabrication technologies. A significant aim of this review is to provide a distinct categorization pursuant to state of the art humidity sensor types, principles of work, sensing substances, transduction mechanisms, and production technologies. Furthermore, performance characteristics of the different humidity sensors such as electrical and statistical data will be detailed and gives an added value to the report. By comparison of overall prospects of the sensors it was revealed that there are still drawbacks as to efficiency of sensing elements and conduction values. The flexibility offered by thick film and thin film processes either in the preparation of materials or in the choice of shape and size of the sensor structure provides advantages over other technologies. These ceramic sensors show faster response than other types. PMID:24784036
Ghosh, Rajib; Kushwaha, Archana; Das, Dipanwita
2017-09-21
Fluorescent molecular rotors find widespread application in sensing and imaging of microscopic viscosity in complex chemical and biological media. Development of viscosity-sensitive ultrafast molecular rotor (UMR) relies upon the understanding of the excited-state dynamics and their implications for viscosity-dependent fluorescence signaling. Unraveling the structure-property relationship of UMR behavior is of significance toward development of an ultrasensitive fluorescence microviscosity sensor. Herein we show that the ground-state equilibrium conformation has an important role in the ultrafast twisting dynamics of UMRs and consequent viscosity sensing efficiency. Synthesis, photophysics, and ultrafast spectroscopic experiments in conjunction with quantum chemical calculation of a series of UMRs based on dimethylaniline donor and benzimidazolium acceptor with predefined ground-state torsion angle led us to unravel that the ultrafast torsional dynamics around the bond connecting donor and acceptor groups profoundly influences the molecular rotor efficiency. This is the first experimental demonstration of conformational control of small-molecule-based UMR efficiencies which can have wider implication toward development of fluorescence sensors based on the UMR principle. Conformation-controlled UMR efficiency has been shown to exhibit commensurate fluorescence enhancement upon DNA binding.
Measuring Gait Quality in Parkinson’s Disease through Real-Time Gait Phase Recognition
Mileti, Ilaria; Germanotta, Marco; Di Sipio, Enrica; Imbimbo, Isabella; Pacilli, Alessandra; Erra, Carmen; Petracca, Martina; Del Prete, Zaccaria; Bentivoglio, Anna Rita; Padua, Luca
2018-01-01
Monitoring gait quality in daily activities through wearable sensors has the potential to improve medical assessment in Parkinson’s Disease (PD). In this study, four gait partitioning methods, two based on thresholds and two based on a machine learning approach, considering the four-phase model, were compared. The methods were tested on 26 PD patients, both in OFF and ON levodopa conditions, and 11 healthy subjects, during walking tasks. All subjects were equipped with inertial sensors placed on feet. Force resistive sensors were used to assess reference time sequence of gait phases. Goodness Index (G) was evaluated to assess accuracy in gait phases estimation. A novel synthetic index called Gait Phase Quality Index (GPQI) was proposed for gait quality assessment. Results revealed optimum performance (G < 0.25) for three tested methods and good performance (0.25 < G < 0.70) for one threshold method. The GPQI resulted significantly higher in PD patients than in healthy subjects, showing a moderate correlation with clinical scales score. Furthermore, in patients with severe gait impairment, GPQI was found higher in OFF than in ON state. Our results unveil the possibility of monitoring gait quality in PD through real-time gait partitioning based on wearable sensors. PMID:29558410
A Comparison of Video-Based and Interaction-Based Affect Detectors in Physics Playground
ERIC Educational Resources Information Center
Kai, Shiming; Paquette, Luc; Baker, Ryan S.; Bosch, Nigel; D'Mello, Sidney; Ocumpaugh, Jaclyn; Shute, Valerie; Ventura, Matthew
2015-01-01
Increased attention to the relationships between affect and learning has led to the development of machine-learned models that are able to identify students' affective states in computerized learning environments. Data for these affect detectors have been collected from multiple modalities including physical sensors, dialogue logs, and logs of…
Recognition of dual targets by a molecular beacon-based sensor: subtyping of influenza A virus.
Lee, Chun-Ching; Liao, Yu-Chieh; Lai, Yu-Hsuan; Lee, Chang-Chun David; Chuang, Min-Chieh
2015-01-01
A molecular beacon (MB)-based sensor to offer a decisive answer in combination with information originated from dual-target inputs is designed. The system harnesses an assistant strand and thermodynamically favored designation of unpaired nucleotides (UNs) to process the binary targets in "AND-gate" format and report fluorescence in "off-on" mechanism via a formation of a DNA four-way junction (4WJ). By manipulating composition of the UNs, the dynamic fluorescence difference between the binary targets-coexisting circumstance and any other scenario was maximized. Characteristic equilibrium constant (K), change of entropy (ΔS), and association rate constant (k) between the association ("on") and dissociation ("off") states of the 4WJ were evaluated to understand unfolding behavior of MB in connection to its sensing capability. Favorable MB and UNs were furthermore designed toward analysis of genuine genetic sequences of hemagglutinin (HA) and neuraminidase (NA) in an influenza A H5N2 isolate. The MB-based sensor was demonstrated to yield a linear calibration range from 1.2 to 240 nM and detection limit of 120 pM. Furthermore, high-fidelity subtyping of influenza virus was implemented in a sample of unpurified amplicons. The strategy opens an alternative avenue of MB-based sensors for dual targets toward applications in clinical diagnosis.
A Neuron-Based Screening Platform for Optimizing Genetically-Encoded Calcium Indicators
Schreiter, Eric R.; Hasseman, Jeremy P.; Tsegaye, Getahun; Fosque, Benjamin F.; Behnam, Reza; Shields, Brenda C.; Ramirez, Melissa; Kimmel, Bruce E.; Kerr, Rex A.; Jayaraman, Vivek; Looger, Loren L.; Svoboda, Karel; Kim, Douglas S.
2013-01-01
Fluorescent protein-based sensors for detecting neuronal activity have been developed largely based on non-neuronal screening systems. However, the dynamics of neuronal state variables (e.g., voltage, calcium, etc.) are typically very rapid compared to those of non-excitable cells. We developed an electrical stimulation and fluorescence imaging platform based on dissociated rat primary neuronal cultures. We describe its use in testing genetically-encoded calcium indicators (GECIs). Efficient neuronal GECI expression was achieved using lentiviruses containing a neuronal-selective gene promoter. Action potentials (APs) and thus neuronal calcium levels were quantitatively controlled by electrical field stimulation, and fluorescence images were recorded. Images were segmented to extract fluorescence signals corresponding to individual GECI-expressing neurons, which improved sensitivity over full-field measurements. We demonstrate the superiority of screening GECIs in neurons compared with solution measurements. Neuronal screening was useful for efficient identification of variants with both improved response kinetics and high signal amplitudes. This platform can be used to screen many types of sensors with cellular resolution under realistic conditions where neuronal state variables are in relevant ranges with respect to timing and amplitude. PMID:24155972
Lithographically defined few-electron silicon quantum dots based on a silicon-on-insulator substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horibe, Kosuke; Oda, Shunri; Kodera, Tetsuo, E-mail: kodera.t.ac@m.titech.ac.jp
2015-02-23
Silicon quantum dot (QD) devices with a proximal single-electron transistor (SET) charge sensor have been fabricated in a metal-oxide-semiconductor structure based on a silicon-on-insulator substrate. The charge state of the QDs was clearly read out using the charge sensor via the SET current. The lithographically defined small QDs enabled clear observation of the few-electron regime of a single QD and a double QD by charge sensing. Tunnel coupling on tunnel barriers of the QDs can be controlled by tuning the top-gate voltages, which can be used for manipulation of the spin quantum bit via exchange interaction between tunnel-coupled QDs. Themore » lithographically defined silicon QD device reported here is technologically simple and does not require electrical gates to create QD confinement potentials, which is advantageous for the integration of complicated constructs such as multiple QD structures with SET charge sensors for the purpose of spin-based quantum computing.« less
Planar implantable sensor for in vivo measurement of cellular oxygen metabolism in brain tissue.
Tsytsarev, Vassiliy; Akkentli, Fatih; Pumbo, Elena; Tang, Qinggong; Chen, Yu; Erzurumlu, Reha S; Papkovsky, Dmitri B
2017-04-01
Brain imaging methods are continually improving. Imaging of the cerebral cortex is widely used in both animal experiments and charting human brain function in health and disease. Among the animal models, the rodent cerebral cortex has been widely used because of patterned neural representation of the whiskers on the snout and relative ease of activating cortical tissue with whisker stimulation. We tested a new planar solid-state oxygen sensor comprising a polymeric film with a phosphorescent oxygen-sensitive coating on the working side, to monitor dynamics of oxygen metabolism in the cerebral cortex following sensory stimulation. Sensory stimulation led to changes in oxygenation and deoxygenation processes of activated areas in the barrel cortex. We demonstrate the possibility of dynamic mapping of relative changes in oxygenation in live mouse brain tissue with such a sensor. Oxygenation-based functional magnetic resonance imaging (fMRI) is very effective method for functional brain mapping but have high costs and limited spatial resolution. Optical imaging of intrinsic signal (IOS) does not provide the required sensitivity, and voltage-sensitive dye optical imaging (VSDi) has limited applicability due to significant toxicity of the voltage-sensitive dye. Our planar solid-state oxygen sensor imaging approach circumvents these limitations, providing a simple optical contrast agent with low toxicity and rapid application. The planar solid-state oxygen sensor described here can be used as a tool in visualization and real-time analysis of sensory-evoked neural activity in vivo. Further, this approach allows visualization of local neural activity with high temporal and spatial resolution. Copyright © 2017 Elsevier B.V. All rights reserved.
2017-01-01
This paper proposes an innovative internet of things (IoT) based communication framework for monitoring microgrid under the condition of packet dropouts in measurements. First of all, the microgrid incorporating the renewable distributed energy resources is represented by a state-space model. The IoT embedded wireless sensor network is adopted to sense the system states. Afterwards, the information is transmitted to the energy management system using the communication network. Finally, the least mean square fourth algorithm is explored for estimating the system states. The effectiveness of the developed approach is verified through numerical simulations. PMID:28459848
Structural health management of aerospace hotspots under fatigue loading
NASA Astrophysics Data System (ADS)
Soni, Sunilkumar
Sustainability and life-cycle assessments of aerospace systems, such as aircraft structures and propulsion systems, represent growing challenges in engineering. Hence, there has been an increasing demand in using structural health monitoring (SHM) techniques for continuous monitoring of these systems in an effort to improve safety and reduce maintenance costs. The current research is part of an ongoing multidisciplinary effort to develop a robust SHM framework resulting in improved models for damage-state awareness and life prediction, and enhancing capability of future aircraft systems. Lug joints, a typical structural hotspot, were chosen as the test article for the current study. The thesis focuses on integrated SHM techniques for damage detection and characterization in lug joints. Piezoelectric wafer sensors (PZTs) are used to generate guided Lamb waves as they can be easily used for onboard applications. Sensor placement in certain regions of a structural component is not feasible due to the inaccessibility of the area to be monitored. Therefore, a virtual sensing concept is introduced to acquire sensor data from finite element (FE) models. A full three dimensional FE analysis of lug joints with piezoelectric transducers, accounting for piezoelectrical-mechanical coupling, was performed in Abaqus and the sensor signals were simulated. These modeled sensors are called virtual sensors. A combination of real data from PZTs and virtual sensing data from FE analysis is used to monitor and detect fatigue damage in aluminum lug joints. Experiments were conducted on lug joints under fatigue loads and sensor signals collected were used to validate the simulated sensor response. An optimal sensor placement methodology for lug joints is developed based on a detection theory framework to maximize the detection rate and minimize the false alarm rate. The placement technique is such that the sensor features can be directly correlated to damage. The technique accounts for a number of factors, such as actuation frequency and strength, minimum damage size, damage detection scheme, material damping, signal to noise ratio and sensing radius. Advanced information processing methodologies are discussed for damage diagnosis. A new, instantaneous approach for damage detection, localization and quantification is proposed for applications to practical problems associated with changes in reference states under different environmental and operational conditions. Such an approach improves feature extraction for state awareness, resulting in robust life prediction capabilities.
Perception for mobile robot navigation: A survey of the state of the art
NASA Technical Reports Server (NTRS)
Kortenkamp, David
1994-01-01
In order for mobile robots to navigate safely in unmapped and dynamic environments they must perceive their environment and decide on actions based on those perceptions. There are many different sensing modalities that can be used for mobile robot perception; the two most popular are ultrasonic sonar sensors and vision sensors. This paper examines the state-of-the-art in sensory-based mobile robot navigation. The first issue in mobile robot navigation is safety. This paper summarizes several competing sonar-based obstacle avoidance techniques and compares them. Another issue in mobile robot navigation is determining the robot's position and orientation (sometimes called the robot's pose) in the environment. This paper examines several different classes of vision-based approaches to pose determination. One class of approaches uses detailed, a prior models of the robot's environment. Another class of approaches triangulates using fixed, artificial landmarks. A third class of approaches builds maps using natural landmarks. Example implementations from each of these three classes are described and compared. Finally, the paper presents a completely implemented mobile robot system that integrates sonar-based obstacle avoidance with vision-based pose determination to perform a simple task.
Sensing Responses Based on Transfer Characteristics of InAs Nanowire Field-Effect Transistors
Savelyev, Igor; Blumin, Marina; Wang, Shiliang; Ruda, Harry E.
2017-01-01
Nanowire-based field-effect transistors (FETs) have demonstrated considerable promise for a new generation of chemical and biological sensors. Indium arsenide (InAs), by virtue of its high electron mobility and intrinsic surface accumulation layer of electrons, holds properties beneficial for creating high performance sensors that can be used in applications such as point-of-care testing for patients diagnosed with chronic diseases. Here, we propose devices based on a parallel configuration of InAs nanowires and investigate sensor responses from measurements of conductance over time and FET characteristics. The devices were tested in controlled concentrations of vapour containing acetic acid, 2-butanone and methanol. After adsorption of analyte molecules, trends in the transient current and transfer curves are correlated with the nature of the surface interaction. Specifically, we observed proportionality between acetic acid concentration and relative conductance change, off current and surface charge density extracted from subthreshold behaviour. We suggest the origin of the sensing response to acetic acid as a two-part, reversible acid-base and redox reaction between acetic acid, InAs and its native oxide that forms slow, donor-like states at the nanowire surface. We further describe a simple model that is able to distinguish the occurrence of physical versus chemical adsorption by comparing the values of the extracted surface charge density. These studies demonstrate that InAs nanowires can produce a multitude of sensor responses for the purpose of developing next generation, multi-dimensional sensor applications. PMID:28714903
ESB-based Sensor Web integration for the prediction of electric power supply system vulnerability.
Stoimenov, Leonid; Bogdanovic, Milos; Bogdanovic-Dinic, Sanja
2013-08-15
Electric power supply companies increasingly rely on enterprise IT systems to provide them with a comprehensive view of the state of the distribution network. Within a utility-wide network, enterprise IT systems collect data from various metering devices. Such data can be effectively used for the prediction of power supply network vulnerability. The purpose of this paper is to present the Enterprise Service Bus (ESB)-based Sensor Web integration solution that we have developed with the purpose of enabling prediction of power supply network vulnerability, in terms of a prediction of defect probability for a particular network element. We will give an example of its usage and demonstrate our vulnerability prediction model on data collected from two different power supply companies. The proposed solution is an extension of the GinisSense Sensor Web-based architecture for collecting, processing, analyzing, decision making and alerting based on the data received from heterogeneous data sources. In this case, GinisSense has been upgraded to be capable of operating in an ESB environment and combine Sensor Web and GIS technologies to enable prediction of electric power supply system vulnerability. Aside from electrical values, the proposed solution gathers ambient values from additional sensors installed in the existing power supply network infrastructure. GinisSense aggregates gathered data according to an adapted Omnibus data fusion model and applies decision-making logic on the aggregated data. Detected vulnerabilities are visualized to end-users through means of a specialized Web GIS application.
ESB-Based Sensor Web Integration for the Prediction of Electric Power Supply System Vulnerability
Stoimenov, Leonid; Bogdanovic, Milos; Bogdanovic-Dinic, Sanja
2013-01-01
Electric power supply companies increasingly rely on enterprise IT systems to provide them with a comprehensive view of the state of the distribution network. Within a utility-wide network, enterprise IT systems collect data from various metering devices. Such data can be effectively used for the prediction of power supply network vulnerability. The purpose of this paper is to present the Enterprise Service Bus (ESB)-based Sensor Web integration solution that we have developed with the purpose of enabling prediction of power supply network vulnerability, in terms of a prediction of defect probability for a particular network element. We will give an example of its usage and demonstrate our vulnerability prediction model on data collected from two different power supply companies. The proposed solution is an extension of the GinisSense Sensor Web-based architecture for collecting, processing, analyzing, decision making and alerting based on the data received from heterogeneous data sources. In this case, GinisSense has been upgraded to be capable of operating in an ESB environment and combine Sensor Web and GIS technologies to enable prediction of electric power supply system vulnerability. Aside from electrical values, the proposed solution gathers ambient values from additional sensors installed in the existing power supply network infrastructure. GinisSense aggregates gathered data according to an adapted Omnibus data fusion model and applies decision-making logic on the aggregated data. Detected vulnerabilities are visualized to end-users through means of a specialized Web GIS application. PMID:23955435
Connecting Hazard Analysts and Risk Managers to Sensor Information.
Le Cozannet, Gonéri; Hosford, Steven; Douglas, John; Serrano, Jean-Jacques; Coraboeuf, Damien; Comte, Jérémie
2008-06-11
Hazard analysts and risk managers of natural perils, such as earthquakes, landslides and floods, need to access information from sensor networks surveying their regions of interest. However, currently information about these networks is difficult to obtain and is available in varying formats, thereby restricting accesses and consequently possibly leading to decision-making based on limited information. As a response to this issue, state-of-the-art interoperable catalogues are being currently developed within the framework of the Group on Earth Observations (GEO) workplan. This article provides an overview of the prototype catalogue that was developed to improve access to information about the sensor networks surveying geological hazards (geohazards), such as earthquakes, landslides and volcanoes.
Connecting Hazard Analysts and Risk Managers to Sensor Information
Le Cozannet, Gonéri; Hosford, Steven; Douglas, John; Serrano, Jean-Jacques; Coraboeuf, Damien; Comte, Jérémie
2008-01-01
Hazard analysts and risk managers of natural perils, such as earthquakes, landslides and floods, need to access information from sensor networks surveying their regions of interest. However, currently information about these networks is difficult to obtain and is available in varying formats, thereby restricting accesses and consequently possibly leading to decision-making based on limited information. As a response to this issue, state-of-the-art interoperable catalogues are being currently developed within the framework of the Group on Earth Observations (GEO) workplan. This article provides an overview of the prototype catalogue that was developed to improve access to information about the sensor networks surveying geological hazards (geohazards), such as earthquakes, landslides and volcanoes. PMID:27879915
Elimination of the acetaminophen interference in an implantable glucose sensor.
Zhang, Y; Hu, Y; Wilson, G S; Moatti-Sirat, D; Poitout, V; Reach, G
1994-04-01
Acetaminophen has been one of the most serious electrochemical interferences to oxidase-based amperometric biosensors that measure H2O2. A study was carried out to investigate various polymer materials for their selectivity as the sensor inner membrane. A composite membrane of cellulose acetate and Nafion was found to eliminate acetaminophen and other electrochemical interferences effectively while at the same time maintaining reasonable diffusivity for hydrogen peroxide. The excellent in vivo performance of the sensor was attributed not only to significantly reduced steady-state sensitivity to acetaminophen but also to very slow acetaminophen response. These features, combined with rapid acetaminophen clearance pharmacokinetics, led to the decreased response as demonstrated in the rat.
Graphene-Based Reversible Nano-Switch/Sensor Schottky Diode
NASA Technical Reports Server (NTRS)
Miranda, Felix A.; Meador, Michael A.; Theofylaktos, Onoufrios; Pinto, Nicholas J.; Mueller, Carl H.; Santos-Perez, Javier
2010-01-01
This proof-of-concept device consists of a thin film of graphene deposited on an electrodized doped silicon wafer. The graphene film acts as a conductive path between a gold electrode deposited on top of a silicon dioxide layer and the reversible side of the silicon wafer, so as to form a Schottky diode. By virtue of the two-dimensional nature of graphene, this device has extreme sensitivity to different gaseous species, thereby serving as a building block for a volatile species sensor, with the attribute of having reversibility properties. That is, the sensor cycles between active and passive sensing states in response to the presence or absence of the gaseous species.
Passive alcohol sensors tested in 3 states for youth alcohol enforcement
DOT National Transportation Integrated Search
1996-05-01
Passive alcohol sensors were tested in three states to determine their effectiveness in enforcing zero tolerance or low BAC laws for under 21 age drivers. The passive alcohol sensor was designed to sample the air immediately around the suspect for si...
Accommodating Sensor Bias in MRAC for State Tracking
NASA Technical Reports Server (NTRS)
Patre, Parag; Joshi, Suresh M.
2011-01-01
The problem of accommodating unknown sensor bias is considered in a direct model reference adaptive control (MRAC) setting for state tracking using state feedback. Sensor faults can occur during operation, and if the biased state measurements are directly used with a standard MRAC control law, neither closed-loop signal boundedness, nor asymptotic tracking can be guaranteed and the resulting tracking errors may be unbounded or unacceptably large. A modified MRAC law is proposed, which combines a bias estimator with control gain adaptation, and it is shown that signal boundedness can be accomplished, although the tracking error may not go to zero. Further, for the case wherein an asymptotically stable sensor bias estimator is available, an MRAC control law is proposed to accomplish asymptotic tracking and signal boundedness. Such a sensor bias estimator can be designed if additional sensor measurements are available, as illustrated for the case wherein bias is present in the rate gyro and airspeed measurements. Numerical example results are presented to illustrate each of the schemes.
Adaptive Control in the Presence of Simultaneous Sensor Bias and Actuator Failures
NASA Technical Reports Server (NTRS)
Joshi, Suresh M.
2012-01-01
The problem of simultaneously accommodating unknown sensor biases and unknown actuator failures in uncertain systems is considered in a direct model reference adaptive control (MRAC) setting for state tracking using state feedback. Sensor biases and actuator faults may be present at the outset or may occur at unknown instants of time during operation. A modified MRAC law is proposed, which combines sensor bias estimation with control gain adaptation for accommodation of sensor biases and actuator failures. This control law is shown to provide signal boundedness in the resulting system. For the case when an external asymptotically stable sensor bias estimator is available, an MRAC law is developed to accomplish asymptotic state tracking and signal boundedness. For a special case wherein biases are only present in the rate measurements and bias-free position measurements are available, an MRAC law is developed using a model-independent bias estimator, and is shown to provide asymptotic state tracking with signal boundedness.
Convolution- and Fourier-transform-based reconstructors for pyramid wavefront sensor.
Shatokhina, Iuliia; Ramlau, Ronny
2017-08-01
In this paper, we present two novel algorithms for wavefront reconstruction from pyramid-type wavefront sensor data. An overview of the current state-of-the-art in the application of pyramid-type wavefront sensors shows that the novel algorithms can be applied in various scientific fields such as astronomy, ophthalmology, and microscopy. Assuming a computationally very challenging setting corresponding to the extreme adaptive optics (XAO) on the European Extremely Large Telescope, we present the results of the performed end-to-end simulations and compare the achieved AO correction quality (in terms of the long-exposure Strehl ratio) to other methods, such as matrix-vector multiplication and preprocessed cumulative reconstructor with domain decomposition. Also, we provide a comparison in terms of applicability and computational complexity and closed-loop performance of our novel algorithms to other methods existing for this type of sensor.
An Overview of Carbon Nanotubes and Graphene for Biosensing Applications
NASA Astrophysics Data System (ADS)
Zhu, Zanzan
2017-07-01
With the development of carbon nanomaterials in recent years, there has been an explosion of interests in using carbon nanotubes (CNTs) and graphene for developing new biosensors. It is believed that employing CNTs and graphene as sensor components can make sensors more reliable, accurate, and fast due to their remarkable properties. Depending on the types of target molecular, different strategies can be applied to design sensor device. This review article summarized the important progress in developing CNT- and graphene-based electrochemical biosensors, field-effect transistor biosensors, and optical biosensors. Although CNTs and graphene have led to some groundbreaking discoveries, challenges are still remained and the state-of-the-art sensors are far from a practical application. As a conclusion, future effort has to be made through an interdisciplinary platform, including materials science, biology, and electric engineering.
Turbine rotor disk health monitoring assessment based on sensor technology and spin tests data.
Abdul-Aziz, Ali; Woike, Mark
2013-01-01
The paper focuses on presenting data obtained from spin test experiments of a turbine engine like rotor disk and assessing their correlation to the development of a structural health monitoring and fault detection system. The data were obtained under various operating conditions such as the rotor disk being artificially induced with and without a notch and rotated at a rotational speed of up to 10,000 rpm under balanced and imbalanced state. The data collected included blade tip clearance, blade tip timing measurements, and shaft displacements. Two different sensor technologies were employed in the testing: microwave and capacitive sensors, respectively. The experimental tests were conducted at the NASA Glenn Research Center's Rotordynamics Laboratory using a high precision spin system. Disk flaw observations and related assessments from the collected data for both sensors are reported and discussed.
Reimagining Building Sensing and Control (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polese, L.
2014-06-01
Buildings are responsible for 40% of US energy consumption, and sensing and control technologies are an important element in creating a truly sustainable built environment. Motion-based occupancy sensors are often part of these control systems, but are usually altered or disabled in response to occupants' complaints, at the expense of energy savings. Can we leverage commodity hardware developed for other sectors and embedded software to produce more capable sensors for robust building controls? The National Renewable Energy Laboratory's (NREL) 'Image Processing Occupancy Sensor (IPOS)' is one example of leveraging embedded systems to create smarter, more reliable, multi-function sensors that openmore » the door to new control strategies for building heating, cooling, ventilation, and lighting control. In this keynote, we will discuss how cost-effective embedded systems are changing the state-of-the-art of building sensing and control.« less
Capone, S; Manera, M G; Taurino, A; Siciliano, P; Rella, R; Luby, S; Benkovicova, M; Siffalovic, P; Majkova, E
2014-02-04
Fe3O4/γ-Fe2O3 nanoparticles (NPs) based thin films were used as active layers in solid state resistive chemical sensors. NPs were synthesized by high temperature solution phase reaction. Sensing NP monolayers (ML) were deposited by Langmuir-Blodgett (LB) techniques onto chemoresistive transduction platforms. The sensing ML were UV treated to remove NP insulating capping. Sensors surface was characterized by scanning electron microscopy (SEM). Systematic gas sensing tests in controlled atmosphere were carried out toward NO2, CO, and acetone at different concentrations and working temperatures of the sensing layers. The best sensing performance results were obtained for sensors with higher NPs coverage (10 ML), mainly for NO2 gas showing interesting selectivity toward nitrogen oxides. Electrical properties and conduction mechanisms are discussed.
NASA Astrophysics Data System (ADS)
Belbachir, A. N.; Hofstätter, M.; Litzenberger, M.; Schön, P.
2009-10-01
A synchronous communication interface for neuromorphic temporal contrast vision sensors is described and evaluated in this paper. This interface has been designed for ultra high-speed synchronous arbitration of a temporal contrast image sensors pixels' data. Enabling high-precision timestamping, this system demonstrates its uniqueness for handling peak data rates and preserving the main advantage of the neuromorphic electronic systems, that is high and accurate temporal resolution. Based on a synchronous arbitration concept, the timestamping has a resolution of 100 ns. Both synchronous and (state-of-the-art) asynchronous arbiters have been implemented in a neuromorphic dual-line vision sensor chip in a standard 0.35 µm CMOS process. The performance analysis of both arbiters and the advantages of the synchronous arbitration over asynchronous arbitration in capturing high-speed objects are discussed in detail.
Greenhouse intelligent control system based on microcontroller
NASA Astrophysics Data System (ADS)
Zhang, Congwei
2018-04-01
As one of the hallmarks of agricultural modernization, intelligent greenhouse has the advantages of high yield, excellent quality, no pollution and continuous planting. Taking AT89S52 microcontroller as the main controller, the greenhouse intelligent control system uses soil moisture sensor, temperature and humidity sensors, light intensity sensor and CO2 concentration sensor to collect measurements and display them on the 12864 LCD screen real-time. Meantime, climate parameter values can be manually set online. The collected measured values are compared with the set standard values, and then the lighting, ventilation fans, warming lamps, water pumps and other facilities automatically start to adjust the climate such as light intensity, CO2 concentration, temperature, air humidity and soil moisture of the greenhouse parameter. So, the state of the environment in the greenhouse Stabilizes and the crop grows in a suitable environment.
Model-Based Wavefront Control for CCAT
NASA Technical Reports Server (NTRS)
Redding, David; Lou, John Z.; Kissil, Andy; Bradford, Matt; Padin, Steve; Woody, David
2011-01-01
The 25-m aperture CCAT submillimeter-wave telescope will have a primary mirror that is divided into 162 individual segments, each of which is provided with 3 positioning actuators. CCAT will be equipped with innovative Imaging Displacement Sensors (IDS) inexpensive optical edge sensors capable of accurately measuring all segment relative motions. These measurements are used in a Kalman-filter-based Optical State Estimator to estimate wavefront errors, permitting use of a minimum-wavefront controller without direct wavefront measurement. This controller corrects the optical impact of errors in 6 degrees of freedom per segment, including lateral translations of the segments, using only the 3 actuated degrees of freedom per segment. The global motions of the Primary and Secondary Mirrors are not measured by the edge sensors. These are controlled using a gravity-sag look-up table. Predicted performance is illustrated by simulated response to errors such as gravity sag.
NASA Astrophysics Data System (ADS)
Mousavi, Monireh Sadat; Ashrafi, Khosro; Motlagh, Majid Shafie Pour; Niksokhan, Mohhamad Hosein; Vosoughifar, HamidReza
2018-02-01
In this study, coupled method for simulation of flow pattern based on computational methods for fluid dynamics with optimization technique using genetic algorithms is presented to determine the optimal location and number of sensors in an enclosed residential complex parking in Tehran. The main objective of this research is costs reduction and maximum coverage with regard to distribution of existing concentrations in different scenarios. In this study, considering all the different scenarios for simulation of pollution distribution using CFD simulations has been challenging due to extent of parking and number of cars available. To solve this problem, some scenarios have been selected based on random method. Then, maximum concentrations of scenarios are chosen for performing optimization. CFD simulation outputs are inserted as input in the optimization model using genetic algorithm. The obtained results stated optimal number and location of sensors.
Electrodes for solid state gas sensor
Mukundan, Rangachary [Santa Fe, NM; Brosha, Eric L [Los Alamos, NM; Garzon, Fernando [Santa Fe, NM
2007-05-08
A mixed potential electrochemical sensor for the detection of gases has a ceria-based electrolyte with a surface for exposing to the gases to be detected, and with a reference wire electrode and a sensing wire electrode extending through the surface and fixed within the electrolyte as the electrolyte is compressed and sintered. The electrochemical sensor is formed by placing a wire reference electrode and a wire sensing electrode in a die, where each electrode has a first compressed planar section and a second section depending from the first section with the second section of each electrode extending axially within the die. The die is filled with an oxide-electrolyte powder and the powder is pressed within the die with the wire electrodes. The wire-electrodes and the pressed oxide-electrolyte powder are sintered to form a ceramic electrolyte base with a reference wire electrode and a sensing wire electrode depending therefrom.
Electrodes for solid state gas sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukundan, Rangachary; Brosha, Eric L; Garzon, Fernando
2007-05-08
A mixed potential electrochemical sensor for the detection of gases has a ceria-based electrolyte with a surface for exposing to the gases to be detected, and with a reference wire electrode and a sensing wire electrode extending through the surface and fixed within the electrolyte as the electrolyte is compressed and sintered. The electrochemical sensor is formed by placing a wire reference electrode and a wire sensing electrode in a die, where each electrode has a first compressed planar section and a second section depending from the first section with the second section of each electrode extending axially within themore » die. The die is filled with an oxide-electrolyte powder and the powder is pressed within the die with the wire electrodes. The wire-electrodes and the pressed oxide-electrolyte powder are sintered to form a ceramic electrolyte base with a reference wire electrode and a sensing wire electrode depending therefrom.« less
Electrodes for solid state gas sensor
Mukundan, Rangachary; Brosha, Eric L.; Garzon, Fernando
2003-08-12
A mixed potential electrochemical sensor for the detection of gases has a ceria-based electrolyte with a surface for exposing to the gases to be detected, and with a reference wire electrode and a sensing wire electrode extending through the surface and fixed within the electrolyte as the electrolyte is compressed and sintered. The electrochemical sensor is formed by placing a wire reference electrode and a wire sensing electrode in a die, where each electrode has a first compressed planar section and a second section depending from the first section with the second section of each electrode extending axially within the die. The die is filled with an oxide-electrolyte powder and the powder is pressed within the die with the wire electrodes. The wire-electrodes and the pressed oxide-electrolyte powder are sintered to form a ceramic electrolyte base with a reference wire electrode and a sensing wire electrode depending therefrom.
Spatio-temporal alignment of multiple sensors
NASA Astrophysics Data System (ADS)
Zhang, Tinghua; Ni, Guoqiang; Fan, Guihua; Sun, Huayan; Yang, Biao
2018-01-01
Aiming to achieve the spatio-temporal alignment of multi sensor on the same platform for space target observation, a joint spatio-temporal alignment method is proposed. To calibrate the parameters and measure the attitude of cameras, an astronomical calibration method is proposed based on star chart simulation and collinear invariant features of quadrilateral diagonal between the observed star chart. In order to satisfy a temporal correspondence and spatial alignment similarity simultaneously, the method based on the astronomical calibration and attitude measurement in this paper formulates the video alignment to fold the spatial and temporal alignment into a joint alignment framework. The advantage of this method is reinforced by exploiting the similarities and prior knowledge of velocity vector field between adjacent frames, which is calculated by the SIFT Flow algorithm. The proposed method provides the highest spatio-temporal alignment accuracy compared to the state-of-the-art methods on sequences recorded from multi sensor at different times.
Function-based Biosensor for Hazardous Waste Toxin Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
James J Hickman
There is a need for new types of toxicity sensors in the DOE and other agencies that are based on biological function as the toxins encountered during decontamination or waste remediation may be previously unknown or their effects subtle. Many times the contents of the environmental waste, especially the minor components, have not been fully identified and characterized. New sensors of this type could target unknown toxins that cause death as well as intermediate levels of toxicity that impair function or cause long term impairment that may eventually lead to death. The primary question posed in this grant was tomore » create an electronically coupled neuronal cellular circuit to be used as sensor elements for a hybrid non-biological/biological toxin sensor system. A sensor based on the electrical signals transmitted between two mammalian neurons would allow the marriage of advances in solid state electronics with a functioning biological system to develop a new type of biosensor. Sensors of this type would be a unique addition to the field of sensor technology but would also be complementary to existing sensor technology that depends on knowledge of what is to be detected beforehand. We integrated physics, electronics, surface chemistry, biotechnology, and fundamental neuroscience in the development of this biosensor. Methods were developed to create artificial surfaces that enabled the patterning of discrete cells, and networks of cells, in culture; the networks were then aligned with transducers. The transducers were designed to measure electromagnetic fields (EMF) at low field strength. We have achieved all of the primary goals of the project. We can now pattern neurons routinely in our labs as well as align them with transducers. We have also shown the signals between neurons can be modulated by different biochemicals. In addition, we have made another significant advance where we have repeated the patterning results with adult hippocampal cells. Finally, we demonstrated that patterned cardiac cells on microelectrode arrays could act as sensors as well.« less