Sample records for state variable feedback

  1. Calibration of visually guided reaching is driven by error-corrective learning and internal dynamics.

    PubMed

    Cheng, Sen; Sabes, Philip N

    2007-04-01

    The sensorimotor calibration of visually guided reaching changes on a trial-to-trial basis in response to random shifts in the visual feedback of the hand. We show that a simple linear dynamical system is sufficient to model the dynamics of this adaptive process. In this model, an internal variable represents the current state of sensorimotor calibration. Changes in this state are driven by error feedback signals, which consist of the visually perceived reach error, the artificial shift in visual feedback, or both. Subjects correct for > or =20% of the error observed on each movement, despite being unaware of the visual shift. The state of adaptation is also driven by internal dynamics, consisting of a decay back to a baseline state and a "state noise" process. State noise includes any source of variability that directly affects the state of adaptation, such as variability in sensory feedback processing, the computations that drive learning, or the maintenance of the state. This noise is accumulated in the state across trials, creating temporal correlations in the sequence of reach errors. These correlations allow us to distinguish state noise from sensorimotor performance noise, which arises independently on each trial from random fluctuations in the sensorimotor pathway. We show that these two noise sources contribute comparably to the overall magnitude of movement variability. Finally, the dynamics of adaptation measured with random feedback shifts generalizes to the case of constant feedback shifts, allowing for a direct comparison of our results with more traditional blocked-exposure experiments.

  2. Animal personality and state-behaviour feedbacks: a review and guide for empiricists.

    PubMed

    Sih, Andrew; Mathot, Kimberley J; Moirón, María; Montiglio, Pierre-Olivier; Wolf, Max; Dingemanse, Niels J

    2015-01-01

    An exciting area in behavioural ecology focuses on understanding why animals exhibit consistent among-individual differences in behaviour (animal personalities). Animal personality has been proposed to emerge as an adaptation to individual differences in state variables, leading to the question of why individuals differ consistently in state. Recent theory emphasizes the role that positive feedbacks between state and behaviour can play in producing consistent among-individual covariance between state and behaviour, hence state-dependent personality. We review the role of feedbacks in recent models of adaptive personalities, and provide guidelines for empirical testing of model assumptions and predictions. We discuss the importance of the mediating effects of ecology on these feedbacks, and provide a roadmap for including state-behaviour feedbacks in behavioural ecology research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Microprocessor based implementation of attitude and shape control of large space structures

    NASA Technical Reports Server (NTRS)

    Reddy, A. S. S. R.

    1984-01-01

    The feasibility of off the shelf eight bit and 16 bit microprocessors to implement linear state variable feedback control laws and assessing the real time response to spacecraft dynamics is studied. The complexity of the dynamic model is described along with the appropriate software. An experimental setup of a beam, microprocessor system for implementing the control laws and the needed generalized software to implement any state variable feedback control system is included.

  4. Output Feedback Distributed Containment Control for High-Order Nonlinear Multiagent Systems.

    PubMed

    Li, Yafeng; Hua, Changchun; Wu, Shuangshuang; Guan, Xinping

    2017-01-31

    In this paper, we study the problem of output feedback distributed containment control for a class of high-order nonlinear multiagent systems under a fixed undirected graph and a fixed directed graph, respectively. Only the output signals of the systems can be measured. The novel reduced order dynamic gain observer is constructed to estimate the unmeasured state variables of the system with the less conservative condition on nonlinear terms than traditional Lipschitz one. Via the backstepping method, output feedback distributed nonlinear controllers for the followers are designed. By means of the novel first virtual controllers, we separate the estimated state variables of different agents from each other. Consequently, the designed controllers show independence on the estimated state variables of neighbors except outputs information, and the dynamics of each agent can be greatly different, which make the design method have a wider class of applications. Finally, a numerical simulation is presented to illustrate the effectiveness of the proposed method.

  5. Adaptive neural network output feedback control for stochastic nonlinear systems with unknown dead-zone and unmodeled dynamics.

    PubMed

    Tong, Shaocheng; Wang, Tong; Li, Yongming; Zhang, Huaguang

    2014-06-01

    This paper discusses the problem of adaptive neural network output feedback control for a class of stochastic nonlinear strict-feedback systems. The concerned systems have certain characteristics, such as unknown nonlinear uncertainties, unknown dead-zones, unmodeled dynamics and without the direct measurements of state variables. In this paper, the neural networks (NNs) are employed to approximate the unknown nonlinear uncertainties, and then by representing the dead-zone as a time-varying system with a bounded disturbance. An NN state observer is designed to estimate the unmeasured states. Based on both backstepping design technique and a stochastic small-gain theorem, a robust adaptive NN output feedback control scheme is developed. It is proved that all the variables involved in the closed-loop system are input-state-practically stable in probability, and also have robustness to the unmodeled dynamics. Meanwhile, the observer errors and the output of the system can be regulated to a small neighborhood of the origin by selecting appropriate design parameters. Simulation examples are also provided to illustrate the effectiveness of the proposed approach.

  6. System properties, feedback control and effector coordination of human temperature regulation.

    PubMed

    Werner, Jürgen

    2010-05-01

    The aim of human temperature regulation is to protect body processes by establishing a relative constancy of deep body temperature (regulated variable), in spite of external and internal influences on it. This is basically achieved by a distributed multi-sensor, multi-processor, multi-effector proportional feedback control system. The paper explains why proportional control implies inherent deviations of the regulated variable from the value in the thermoneutral zone. The concept of feedback of the thermal state of the body, conveniently represented by a high-weighted core temperature (T (c)) and low-weighted peripheral temperatures (T (s)) is equivalent to the control concept of "auxiliary feedback control", using a main (regulated) variable (T (c)), supported by an auxiliary variable (T (s)). This concept implies neither regulation of T (s) nor feedforward control. Steady-states result in the closed control-loop, when the open-loop properties of the (heat transfer) process are compatible with those of the thermoregulatory processors. They are called operating points or balance points and are achieved due to the inherent property of dynamical stability of the thermoregulatory feedback loop. No set-point and no comparison of signals (e.g. actual-set value) are necessary. Metabolic heat production and sweat production, though receiving the same information about the thermal state of the body, are independent effectors with different thresholds and gains. Coordination between one of these effectors and the vasomotor effector is achieved by the fact that changes in the (heat transfer) process evoked by vasomotor control are taken into account by the metabolic/sweat processor.

  7. Observer-Based Adaptive Neural Network Control for Nonlinear Systems in Nonstrict-Feedback Form.

    PubMed

    Chen, Bing; Zhang, Huaguang; Lin, Chong

    2016-01-01

    This paper focuses on the problem of adaptive neural network (NN) control for a class of nonlinear nonstrict-feedback systems via output feedback. A novel adaptive NN backstepping output-feedback control approach is first proposed for nonlinear nonstrict-feedback systems. The monotonicity of system bounding functions and the structure character of radial basis function (RBF) NNs are used to overcome the difficulties that arise from nonstrict-feedback structure. A state observer is constructed to estimate the immeasurable state variables. By combining adaptive backstepping technique with approximation capability of radial basis function NNs, an output-feedback adaptive NN controller is designed through backstepping approach. It is shown that the proposed controller guarantees semiglobal boundedness of all the signals in the closed-loop systems. Two examples are used to illustrate the effectiveness of the proposed approach.

  8. Delay compensation in integrated communication and control systems. I - Conceptual development and analysis

    NASA Technical Reports Server (NTRS)

    Luck, Rogelio; Ray, Asok

    1990-01-01

    A procedure for compensating for the effects of distributed network-induced delays in integrated communication and control systems (ICCS) is proposed. The problem of analyzing systems with time-varying and possibly stochastic delays could be circumvented by use of a deterministic observer which is designed to perform under certain restrictive but realistic assumptions. The proposed delay-compensation algorithm is based on a deterministic state estimator and a linear state-variable-feedback control law. The deterministic observer can be replaced by a stochastic observer without any structural modifications of the delay compensation algorithm. However, if a feedforward-feedback control law is chosen instead of the state-variable feedback control law, the observer must be modified as a conventional nondelayed system would be. Under these circumstances, the delay compensation algorithm would be accordingly changed. The separation principle of the classical Luenberger observer holds true for the proposed delay compensator. The algorithm is suitable for ICCS in advanced aircraft, spacecraft, manufacturing automation, and chemical process applications.

  9. Design of state-feedback controllers including sensitivity reduction, with applications to precision pointing

    NASA Technical Reports Server (NTRS)

    Hadass, Z.

    1974-01-01

    The design procedure of feedback controllers was described and the considerations for the selection of the design parameters were given. The frequency domain properties of single-input single-output systems using state feedback controllers are analyzed, and desirable phase and gain margin properties are demonstrated. Special consideration is given to the design of controllers for tracking systems, especially those designed to track polynomial commands. As an example, a controller was designed for a tracking telescope with a polynomial tracking requirement and some special features such as actuator saturation and multiple measurements, one of which is sampled. The resulting system has a tracking performance comparing favorably with a much more complicated digital aided tracker. The parameter sensitivity reduction was treated by considering the variable parameters as random variables. A performance index is defined as a weighted sum of the state and control convariances that sum from both the random system disturbances and the parameter uncertainties, and is minimized numerically by adjusting a set of free parameters.

  10. Comparative study of flare control laws. [optimal control of b-737 aircraft approach and landing

    NASA Technical Reports Server (NTRS)

    Nadkarni, A. A.; Breedlove, W. J., Jr.

    1979-01-01

    A digital 3-D automatic control law was developed to achieve an optimal transition of a B-737 aircraft between various initial glid slope conditions and the desired final touchdown condition. A discrete, time-invariant, optimal, closed-loop control law presented for a linear regulator problem, was extended to include a system being acted upon by a constant disturbance. Two forms of control laws were derived to solve this problem. One method utilized the feedback of integral states defined appropriately and augmented with the original system equations. The second method formulated the problem as a control variable constraint, and the control variables were augmented with the original system. The control variable constraint control law yielded a better performance compared to feedback control law for the integral states chosen.

  11. Decoupling in linear time-varying multivariable systems

    NASA Technical Reports Server (NTRS)

    Sankaran, V.

    1973-01-01

    The necessary and sufficient conditions for the decoupling of an m-input, m-output, linear time varying dynamical system by state variable feedback is described. The class of feedback matrices which decouple the system are illustrated. Systems which do not satisfy these results are described and systems with disturbances are considered. Some examples are illustrated to clarify the results.

  12. The Dependence of Cloud-SST Feedback on Circulation Regime and Timescale

    NASA Astrophysics Data System (ADS)

    Middlemas, E.; Clement, A. C.; Medeiros, B.

    2017-12-01

    Studies suggest cloud radiative feedback amplifies internal variability of Pacific sea surface temperature (SST) on interannual-and-longer timescales, though only a few modeling studies have tested the quantitative importance of this feedback (Bellomo et al. 2014b, Brown et al. 2016, Radel et al. 2016 Burgman et al. 2017). We prescribe clouds from a previous control run in the radiation module in Community Atmospheric Model (CAM5-slab), a method called "cloud-locking". By comparing this run to a control run, in which cloud radiative forcing can feedback on the climate system, we isolate the effect of cloud radiative forcing on SST variability. Cloud-locking prevents clouds from radiatively interacting with atmospheric circulation, water vapor, and SST, while maintaining a similar mean state to the control. On all timescales, cloud radiative forcing's influence on SST variance is modulated by the circulation regime. Cloud radiative forcing amplifies SST variance in subsiding regimes and dampens SST variance in convecting regimes. In this particular model, a tug of war between latent heat flux and cloud radiative forcing determines the variance of SST, and the winner depends on the timescale. On decadal-and-longer timescales, cloud radiative forcing plays a relatively larger role than on interannual-and-shorter timescales, while latent heat flux plays a smaller role. On longer timescales, the absence of cloud radiative feedback changes SST variance in a zonally asymmetric pattern in the Pacific Ocean that resembles an IPO-like pattern. We also present an analysis of cloud feedback's role on Pacific SST variability among preindustrial control CMIP5 models to test the model robustness of our results. Our results suggest that circulation plays a crucial role in cloud-SST feedbacks across the globe and cloud radiative feedbacks cannot be ignored when studying SST variability on decadal-and-longer timescales.

  13. Flocking with connectivity preservation for disturbed nonlinear multi-agent systems by output feedback

    NASA Astrophysics Data System (ADS)

    Li, Ping; Zhang, Baoyong; Ma, Qian; Xu, Shengyuan; Chen, Weimin; Zhang, Zhengqiang

    2018-05-01

    This paper considers the problem of flocking with connectivity preservation for a class of disturbed nonlinear multi-agent systems. In order to deal with the nonlinearities in the dynamic of all agents, some auxiliary variables are introduced into the state observer for stability analysis. By proposing a bounded potential function and using adaptive theory, a novel output feedback consensus algorithm is developed to guarantee that the states of all agents achieve flocking with connectivity preservation.

  14. Synthesis of hover autopilots for rotary-wing VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Hall, W. E.; Bryson, A. E., Jr.

    1972-01-01

    The practical situation is considered where imperfect information on only a few rotor and fuselage state variables is available. Filters are designed to estimate all the state variables from noisy measurements of fuselage pitch/roll angles and from noisy measurements of both fuselage and rotor pitch/roll angles. The mean square response of the vehicle to a very gusty, random wind is computed using various filter/controllers and is found to be quite satisfactory although, of course, not so good as when one has perfect information (idealized case). The second part of the report considers precision hover over a point on the ground. A vehicle model without rotor dynamics is used and feedback signals in position and integral of position error are added. The mean square response of the vehicle to a very gusty, random wind is computed, assuming perfect information feedback, and is found to be excellent. The integral error feedback gives zero position error for a steady wind, and smaller position error for a random wind.

  15. Shock and Vibration Control of a Golf-Swing Robot at Impacting the Ball

    NASA Astrophysics Data System (ADS)

    Hoshino, Yohei; Kobayashi, Yukinori

    A golf swing robot is a kind of fast motion manipulator with a flexible link. A robot manipulator is greatly affected by Corioli's and centrifugal forces during fast motion. Nonlinearity due to these forces can have an adverse effect on the performance of feedback control. In the same way, ordinary state observers of a linear system cannot accurately estimate the states of nonlinear systems. This paper uses a state observer that considers disturbances to improve the performance of state estimation and feedback control. A mathematical model of the golf robot is derived by Hamilton's principle. A linear quadratic regulator (LQR) that considers the vibration of the club shaft is used to stop the robot during the follow-through action. The state observer that considers disturbances estimates accurate state variables when the disturbances due to Corioli's and centrifugal forces, and impact forces work on the robot. As a result, the performance of the state feedback control is improved. The study compares the results of the numerical simulations with experimental results.

  16. Differential Flatness and Cooperative Tracking in the Lorenz System

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.

    2002-01-01

    In this paper the control of the Lorenz system for both stabilization and tracking problems is studied via feedback linearization and differential flatness. By using the Rayleigh number as the control, only variable physically tunable, a barrier in the controllability of the system is incidentally imposed. This is reflected in the appearance of a singularity in the state transformation. Composite controllers that overcome this difficulty are designed and evaluated. The transition through the manifold defined by such a singularity is achieved by inducing a chaotic response within a boundary layer that contains it. Outside this region, a conventional feedback nonlinear control is applied. In this fashion, the authority of the control is enlarged to the whole. state space and the need for high control efforts is mitigated. In addition, the differential parametrization of the problem is used to track nonlinear functions of one state variable (single tracking) as well as several state variables (cooperative tracking). Control tasks that lead to integrable and non-integrable differential equations for the nominal flat output in steady-state are considered. In particular, a novel numerical strategy to deal with the non-integrable case is proposed. Numerical results validate very well the control design.

  17. Flatness-based control and Kalman filtering for a continuous-time macroeconomic model

    NASA Astrophysics Data System (ADS)

    Rigatos, G.; Siano, P.; Ghosh, T.; Busawon, K.; Binns, R.

    2017-11-01

    The article proposes flatness-based control for a nonlinear macro-economic model of the UK economy. The differential flatness properties of the model are proven. This enables to introduce a transformation (diffeomorphism) of the system's state variables and to express the state-space description of the model in the linear canonical (Brunowsky) form in which both the feedback control and the state estimation problem can be solved. For the linearized equivalent model of the macroeconomic system, stabilizing feedback control can be achieved using pole placement methods. Moreover, to implement stabilizing feedback control of the system by measuring only a subset of its state vector elements the Derivative-free nonlinear Kalman Filter is used. This consists of the Kalman Filter recursion applied on the linearized equivalent model of the financial system and of an inverse transformation that is based again on differential flatness theory. The asymptotic stability properties of the control scheme are confirmed.

  18. Dynamics of the Coupled Human-climate System Resulting from Closed-loop Control of Solar Geoengineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacMartin, Douglas; Kravitz, Benjamin S.; Keith, David

    2014-07-08

    If solar radiation management (SRM) were ever implemented, feedback of the observed climate state might be used to adjust the radiative forcing of SRM, in order to compensate for uncertainty in either the forcing or the climate response; this would also compensate for unexpected changes in the system, e.g. a nonlinear change in climate sensitivity. This feedback creates an emergent coupled human-climate system, with entirely new dynamics. In addition to the intended response to greenhouse-gas induced changes, the use of feedback would also result in a geoengineering response to natural climate variability. We use a simple box-diffusion dynamic model tomore » understand how changing feedback-control parameters and time delay affect the behavior of this coupled natural-human system, and verify these predictions using the HadCM3L general circulation model. In particular, some amplification of natural variability is unavoidable; any time delay (e.g., to average out natural variability, or due to decision-making) exacerbates this amplification, with oscillatory behavior possible if there is a desire for rapid correction (high feedback gain), but a delayed response needed for decision making. Conversely, the need for feedback to compensate for uncertainty, combined with a desire to avoid excessive amplification, results in a limit on how rapidly SRM could respond to uncertain changes.« less

  19. Stationary average consensus protocol for a class of heterogeneous high-order multi-agent systems with application for aircraft

    NASA Astrophysics Data System (ADS)

    Rezaei, Mohammad Hadi; Menhaj, Mohammad Bagher

    2018-01-01

    This paper investigates the stationary average consensus problem for a class of heterogeneous-order multi-agent systems. The goal is to bring the positions of agents to the average of their initial positions while letting the other states converge to zero. To this end, three different consensus protocols are proposed. First, based on the auxiliary variables information among the agents under switching directed networks and state-feedback control, a protocol is proposed whereby all the agents achieve stationary average consensus. In the second and third protocols, by resorting to only measurements of relative positions of neighbouring agents under fixed balanced directed networks, two control frameworks are presented with two strategies based on state-feedback and output-feedback control. Finally, simulation results are given to illustrate the effectiveness of the proposed protocols.

  20. Study to eliminate ground resonance using active controls

    NASA Technical Reports Server (NTRS)

    Straub, F. K.

    1984-01-01

    The effectiveness of active control blade feathering in increasing rotor body damping and the possibility to eliminate ground resonance instabilities were investigated. An analytical model representing rotor flapping and lead-lag degrees of freedom and body pitch, roll, longitudinal and lateral motion is developed. Active control blade feathering is implemented as state variable feedback through a conventional swashplate. The influence of various feedback states, feedback gain, and weighting between the cyclic controls is studied through stability and response analyses. It is shown that blade cyclic inplane motion, roll rate and roll acceleration feedback can add considerable damping to the system and eliminate ground resonance instabilities, which the feedback phase is also a powerful parameter, if chosen properly, it maximizes augmentation of the inherent regressing lag mode damping. It is shown that rotor configuration parameters, like blade root hinge offset, flapping stiffness, and precone considerably influence the control effectiveness. It is found that active control is particularly powerful for hingeless and bearingless rotor systems.

  1. Evidence for a Time-Invariant Phase Variable in Human Ankle Control

    PubMed Central

    Gregg, Robert D.; Rouse, Elliott J.; Hargrove, Levi J.; Sensinger, Jonathon W.

    2014-01-01

    Human locomotion is a rhythmic task in which patterns of muscle activity are modulated by state-dependent feedback to accommodate perturbations. Two popular theories have been proposed for the underlying embodiment of phase in the human pattern generator: a time-dependent internal representation or a time-invariant feedback representation (i.e., reflex mechanisms). In either case the neuromuscular system must update or represent the phase of locomotor patterns based on the system state, which can include measurements of hundreds of variables. However, a much simpler representation of phase has emerged in recent designs for legged robots, which control joint patterns as functions of a single monotonic mechanical variable, termed a phase variable. We propose that human joint patterns may similarly depend on a physical phase variable, specifically the heel-to-toe movement of the Center of Pressure under the foot. We found that when the ankle is unexpectedly rotated to a position it would have encountered later in the step, the Center of Pressure also shifts forward to the corresponding later position, and the remaining portion of the gait pattern ensues. This phase shift suggests that the progression of the stance ankle is controlled by a biomechanical phase variable, motivating future investigations of phase variables in human locomotor control. PMID:24558485

  2. A modulating effect of Tropical Instability Wave (TIW)-induced surface wind feedback in a hybrid coupled model of the tropical Pacific

    NASA Astrophysics Data System (ADS)

    Zhang, Rong-Hua

    2016-10-01

    Tropical Instability Waves (TIWs) and the El Niño-Southern Oscillation (ENSO) are two air-sea coupling phenomena that are prominent in the tropical Pacific, occurring at vastly different space-time scales. It has been challenging to adequately represent both of these processes within a large-scale coupled climate model, which has led to a poor understanding of the interactions between TIW-induced feedback and ENSO. In this study, a novel modeling system was developed that allows representation of TIW-scale air-sea coupling and its interaction with ENSO. Satellite data were first used to derive an empirical model for TIW-induced sea surface wind stress perturbations (τTIW). The model was then embedded in a basin-wide hybrid-coupled model (HCM) of the tropical Pacific. Because τTIW were internally determined from TIW-scale sea surface temperatures (SSTTIW) simulated in the ocean model, the wind-SST coupling at TIW scales was interactively represented within the large-scale coupled model. Because the τTIW-SSTTIW coupling part of the model can be turned on or off in the HCM simulations, the related TIW wind feedback effects can be isolated and examined in a straightforward way. Then, the TIW-scale wind feedback effects on the large-scale mean ocean state and interannual variability in the tropical Pacific were investigated based on this embedded system. The interactively represented TIW-scale wind forcing exerted an asymmetric influence on SSTs in the HCM, characterized by a mean-state cooling and by a positive feedback on interannual variability, acting to enhance ENSO amplitude. Roughly speaking, the feedback tends to increase interannual SST variability by approximately 9%. Additionally, there is a tendency for TIW wind to have an effect on the phase transition during ENSO evolution, with slightly shortened interannual oscillation periods. Additional sensitivity experiments were performed to elucidate the details of TIW wind effects on SST evolution during ENSO cycles.

  3. Stabilizing detached Bridgman melt crystal growth: Proportional-integral feedback control

    NASA Astrophysics Data System (ADS)

    Yeckel, Andrew; Daoutidis, Prodromos; Derby, Jeffrey J.

    2012-10-01

    The dynamics, operability limits, and tuning of a proportional-integral feedback controller to stabilize detached vertical Bridgman crystal growth are analyzed using a capillary model of shape stability. The manipulated variable is the pressure difference between upper and lower vapor spaces, and the controlled variable is the gap width at the triple-phase line. Open and closed loop dynamics of step changes in these state variables are analyzed under both shape stable and shape unstable growth conditions. Effects of step changes in static contact angle and growth angle are also studied. Proportional and proportional-integral control can stabilize unstable growth, but only within tight operability limits imposed by the narrow range of allowed meniscus shapes. These limits are used to establish safe operating ranges of controller gain. Strong nonlinearity of the capillary model restricts the range of perturbations that can be stabilized, and under some circumstances, stabilizes a spurious operating state far from the set point. Stabilizing detachment at low growth angle proves difficult and becomes impossible at zero growth angle.

  4. Perturbed cooperative-state feedback strategy for model predictive networked control of interconnected systems.

    PubMed

    Tran, Tri; Ha, Q P

    2018-01-01

    A perturbed cooperative-state feedback (PSF) strategy is presented for the control of interconnected systems in this paper. The subsystems of an interconnected system can exchange data via the communication network that has multiple connection topologies. The PSF strategy can resolve both issues, the sensor data losses and the communication network breaks, thanks to the two components of the control including a cooperative-state feedback and a perturbation variable, e.g., u i =K ij x j +w i . The PSF is implemented in a decentralized model predictive control scheme with a stability constraint and a non-monotonic storage function (ΔV(x(k))≥0), derived from the dissipative systems theory. Numerical simulation for the automatic generation control problem in power systems is studied to illustrate the effectiveness of the presented PSF strategy. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Observed-Based Adaptive Fuzzy Tracking Control for Switched Nonlinear Systems With Dead-Zone.

    PubMed

    Tong, Shaocheng; Sui, Shuai; Li, Yongming

    2015-12-01

    In this paper, the problem of adaptive fuzzy output-feedback control is investigated for a class of uncertain switched nonlinear systems in strict-feedback form. The considered switched systems contain unknown nonlinearities, dead-zone, and immeasurable states. Fuzzy logic systems are utilized to approximate the unknown nonlinear functions, a switched fuzzy state observer is designed and thus the immeasurable states are obtained by it. By applying the adaptive backstepping design principle and the average dwell time method, an adaptive fuzzy output-feedback tracking control approach is developed. It is proved that the proposed control approach can guarantee that all the variables in the closed-loop system are bounded under a class of switching signals with average dwell time, and also that the system output can track a given reference signal as closely as possible. The simulation results are given to check the effectiveness of the proposed approach.

  6. Optimal output fast feedback in two-time scale control of flexible arms

    NASA Technical Reports Server (NTRS)

    Siciliano, B.; Calise, A. J.; Jonnalagadda, V. R. P.

    1986-01-01

    Control of lightweight flexible arms moving along predefined paths can be successfully synthesized on the basis of a two-time scale approach. A model following control can be designed for the reduced order slow subsystem. The fast subsystem is a linear system in which the slow variables act as parameters. The flexible fast variables which model the deflections of the arm along the trajectory can be sensed through strain gage measurements. For full state feedback design the derivatives of the deflections need to be estimated. The main contribution of this work is the design of an output feedback controller which includes a fixed order dynamic compensator, based on a recent convergent numerical algorithm for calculating LQ optimal gains. The design procedure is tested by means of simulation results for the one link flexible arm prototype in the laboratory.

  7. Nonlinear Dynamic Models in Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2002-01-01

    To facilitate analysis, ALS systems are often assumed to be linear and time invariant, but they usually have important nonlinear and dynamic aspects. Nonlinear dynamic behavior can be caused by time varying inputs, changes in system parameters, nonlinear system functions, closed loop feedback delays, and limits on buffer storage or processing rates. Dynamic models are usually cataloged according to the number of state variables. The simplest dynamic models are linear, using only integration, multiplication, addition, and subtraction of the state variables. A general linear model with only two state variables can produce all the possible dynamic behavior of linear systems with many state variables, including stability, oscillation, or exponential growth and decay. Linear systems can be described using mathematical analysis. Nonlinear dynamics can be fully explored only by computer simulations of models. Unexpected behavior is produced by simple models having only two or three state variables with simple mathematical relations between them. Closed loop feedback delays are a major source of system instability. Exceeding limits on buffer storage or processing rates forces systems to change operating mode. Different equilibrium points may be reached from different initial conditions. Instead of one stable equilibrium point, the system may have several equilibrium points, oscillate at different frequencies, or even behave chaotically, depending on the system inputs and initial conditions. The frequency spectrum of an output oscillation may contain harmonics and the sums and differences of input frequencies, but it may also contain a stable limit cycle oscillation not related to input frequencies. We must investigate the nonlinear dynamic aspects of advanced life support systems to understand and counter undesirable behavior.

  8. Unsteady steady-states: Central causes of unintentional force drift

    PubMed Central

    Ambike, Satyajit; Mattos, Daniela; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2016-01-01

    We applied the theory of synergies to analyze the processes that lead to unintentional decline in isometric fingertip force when visual feedback of the produced force is removed. We tracked the changes in hypothetical control variables involved in single fingertip force production based on the equilibrium-point hypothesis, namely, the fingertip referent coordinate (RFT) and its apparent stiffness (CFT). The system's state is defined by a point in the {RFT; CFT} space. We tested the hypothesis that, after visual feedback removal, this point (1) moves along directions leading to drop in the output fingertip force, and (2) has even greater motion along directions that leaves the force unchanged. Subjects produced a prescribed fingertip force using visual feedback, and attempted to maintain this force for 15 s after the feedback was removed. We used the “inverse piano” apparatus to apply small and smooth positional perturbations to fingers at various times after visual feedback removal. The time courses of RFT and CFT showed that force drop was mostly due to a drift in RFT towards the actual fingertip position. Three analysis techniques, namely, hyperbolic regression, surrogate data analysis, and computation of motor-equivalent and non-motor-equivalent motions, suggested strong co-variation in RFT and CFT stabilizing the force magnitude. Finally, the changes in the two hypothetical control variables {RFT; CFT} relative to their average trends also displayed covariation. On the whole the findings suggest that unintentional force drop is associated with (a) a slow drift of the referent coordinate that pulls the system towards a low-energy state, and (b) a faster synergic motion of RFT and CFT that tends to stabilize the output fingertip force about the slowly-drifting equilibrium point. PMID:27540726

  9. Unsteady steady-states: central causes of unintentional force drift.

    PubMed

    Ambike, Satyajit; Mattos, Daniela; Zatsiorsky, Vladimir M; Latash, Mark L

    2016-12-01

    We applied the theory of synergies to analyze the processes that lead to unintentional decline in isometric fingertip force when visual feedback of the produced force is removed. We tracked the changes in hypothetical control variables involved in single fingertip force production based on the equilibrium-point hypothesis, namely the fingertip referent coordinate (R FT ) and its apparent stiffness (C FT ). The system's state is defined by a point in the {R FT ; C FT } space. We tested the hypothesis that, after visual feedback removal, this point (1) moves along directions leading to drop in the output fingertip force, and (2) has even greater motion along directions that leaves the force unchanged. Subjects produced a prescribed fingertip force using visual feedback and attempted to maintain this force for 15 s after the feedback was removed. We used the "inverse piano" apparatus to apply small and smooth positional perturbations to fingers at various times after visual feedback removal. The time courses of R FT and C FT showed that force drop was mostly due to a drift in R FT toward the actual fingertip position. Three analysis techniques, namely hyperbolic regression, surrogate data analysis, and computation of motor-equivalent and non-motor-equivalent motions, suggested strong covariation in R FT and C FT stabilizing the force magnitude. Finally, the changes in the two hypothetical control variables {R FT ; C FT } relative to their average trends also displayed covariation. On the whole, the findings suggest that unintentional force drop is associated with (a) a slow drift of the referent coordinate that pulls the system toward a low-energy state and (b) a faster synergic motion of R FT and C FT that tends to stabilize the output fingertip force about the slowly drifting equilibrium point.

  10. A model for helicopter guidance on spiral trajectories

    NASA Technical Reports Server (NTRS)

    Mendenhall, S.; Slater, G. L.

    1980-01-01

    A point mass model is developed for helicopter guidance on spiral trajectories. A fully coupled set of state equations is developed and perturbation equations suitable for 3-D and 4-D guidance are derived and shown to be amenable to conventional state variable feedback methods. Control variables are chosen to be the magnitude and orientation of the net rotor thrust. Using these variables reference controls for nonlevel accelerating trajectories are easily determined. The effects of constant wind are shown to require significant feedforward correction to some of the reference controls and to the time. Although not easily measured themselves, the controls variables chosen are shown to be easily related to the physical variables available in the cockpit.

  11. Who wants feedback? An investigation of the variables influencing residents' feedback-seeking behavior in relation to night shifts.

    PubMed

    Teunissen, Pim W; Stapel, Diederik A; van der Vleuten, Cees; Scherpbier, Albert; Boor, Klarke; Scheele, Fedde

    2009-07-01

    The literature on feedback in clinical medical education has predominantly treated trainees as passive recipients. Past research has focused on how clinical supervisors can use feedback to improve a trainee's performance. On the basis of research in social and organizational psychology, the authors reconceptualized residents as active seekers of feedback. They investigated what individual and situational variables influence residents' feedback-seeking behavior on night shifts. Early in 2008, the authors sent obstetrics-gynecology residents in the Netherlands--both those in their first two years of graduate training and those gaining experience between undergraduate and graduate training--a questionnaire that assessed four predictor variables (learning and performance goal orientation, and instrumental and supportive leadership), two mediator variables (perceived feedback benefits and costs), and two outcome variables (frequency of feedback inquiry and monitoring). They used structural equation modeling software to test a hypothesized model of relationships between variables. The response rate was 76.5%. Results showed that residents who perceive more feedback benefits report a higher frequency of feedback inquiry and monitoring. More perceived feedback costs result mainly in more feedback monitoring. Residents with a higher learning goal orientation perceive more feedback benefits and fewer costs. Residents with a higher performance goal orientation perceive more feedback costs. Supportive physicians lead residents to perceive more feedback benefits and fewer costs. This study showed that some residents actively seek feedback. Residents' feedback-seeking behavior partially depends on attending physicians' supervisory style. Residents' goal orientations influence their perceptions of the benefits and costs of feedback-seeking.

  12. Effects of visual feedback-induced variability on motor learning of handrim wheelchair propulsion.

    PubMed

    Leving, Marika T; Vegter, Riemer J K; Hartog, Johanneke; Lamoth, Claudine J C; de Groot, Sonja; van der Woude, Lucas H V

    2015-01-01

    It has been suggested that a higher intra-individual variability benefits the motor learning of wheelchair propulsion. The present study evaluated whether feedback-induced variability on wheelchair propulsion technique variables would also enhance the motor learning process. Learning was operationalized as an improvement in mechanical efficiency and propulsion technique, which are thought to be closely related during the learning process. 17 Participants received visual feedback-based practice (feedback group) and 15 participants received regular practice (natural learning group). Both groups received equal practice dose of 80 min, over 3 weeks, at 0.24 W/kg at a treadmill speed of 1.11 m/s. To compare both groups the pre- and post-test were performed without feedback. The feedback group received real-time visual feedback on seven propulsion variables with instruction to manipulate the presented variable to achieve the highest possible variability (1st 4-min block) and optimize it in the prescribed direction (2nd 4-min block). To increase motor exploration the participants were unaware of the exact variable they received feedback on. Energy consumption and the propulsion technique variables with their respective coefficient of variation were calculated to evaluate the amount of intra-individual variability. The feedback group, which practiced with higher intra-individual variability, improved the propulsion technique between pre- and post-test to the same extent as the natural learning group. Mechanical efficiency improved between pre- and post-test in the natural learning group but remained unchanged in the feedback group. These results suggest that feedback-induced variability inhibited the improvement in mechanical efficiency. Moreover, since both groups improved propulsion technique but only the natural learning group improved mechanical efficiency, it can be concluded that the improvement in mechanical efficiency and propulsion technique do not always appear simultaneously during the motor learning process. Their relationship is most likely modified by other factors such as the amount of the intra-individual variability.

  13. Effects of Visual Feedback-Induced Variability on Motor Learning of Handrim Wheelchair Propulsion

    PubMed Central

    Leving, Marika T.; Vegter, Riemer J. K.; Hartog, Johanneke; Lamoth, Claudine J. C.; de Groot, Sonja; van der Woude, Lucas H. V.

    2015-01-01

    Background It has been suggested that a higher intra-individual variability benefits the motor learning of wheelchair propulsion. The present study evaluated whether feedback-induced variability on wheelchair propulsion technique variables would also enhance the motor learning process. Learning was operationalized as an improvement in mechanical efficiency and propulsion technique, which are thought to be closely related during the learning process. Methods 17 Participants received visual feedback-based practice (feedback group) and 15 participants received regular practice (natural learning group). Both groups received equal practice dose of 80 min, over 3 weeks, at 0.24 W/kg at a treadmill speed of 1.11 m/s. To compare both groups the pre- and post-test were performed without feedback. The feedback group received real-time visual feedback on seven propulsion variables with instruction to manipulate the presented variable to achieve the highest possible variability (1st 4-min block) and optimize it in the prescribed direction (2nd 4-min block). To increase motor exploration the participants were unaware of the exact variable they received feedback on. Energy consumption and the propulsion technique variables with their respective coefficient of variation were calculated to evaluate the amount of intra-individual variability. Results The feedback group, which practiced with higher intra-individual variability, improved the propulsion technique between pre- and post-test to the same extent as the natural learning group. Mechanical efficiency improved between pre- and post-test in the natural learning group but remained unchanged in the feedback group. Conclusion These results suggest that feedback-induced variability inhibited the improvement in mechanical efficiency. Moreover, since both groups improved propulsion technique but only the natural learning group improved mechanical efficiency, it can be concluded that the improvement in mechanical efficiency and propulsion technique do not always appear simultaneously during the motor learning process. Their relationship is most likely modified by other factors such as the amount of the intra-individual variability. PMID:25992626

  14. Sensitivity of system stability to model structure

    USGS Publications Warehouse

    Hosack, G.R.; Li, H.W.; Rossignol, P.A.

    2009-01-01

    A community is stable, and resilient, if the levels of all community variables can return to the original steady state following a perturbation. The stability properties of a community depend on its structure, which is the network of direct effects (interactions) among the variables within the community. These direct effects form feedback cycles (loops) that determine community stability. Although feedback cycles have an intuitive interpretation, identifying how they form the feedback properties of a particular community can be intractable. Furthermore, determining the role that any specific direct effect plays in the stability of a system is even more daunting. Such information, however, would identify important direct effects for targeted experimental and management manipulation even in complex communities for which quantitative information is lacking. We therefore provide a method that determines the sensitivity of community stability to model structure, and identifies the relative role of particular direct effects, indirect effects, and feedback cycles in determining stability. Structural sensitivities summarize the degree to which each direct effect contributes to stabilizing feedback or destabilizing feedback or both. Structural sensitivities prove useful in identifying ecologically important feedback cycles within the community structure and for detecting direct effects that have strong, or weak, influences on community stability. The approach may guide the development of management intervention and research design. We demonstrate its value with two theoretical models and two empirical examples of different levels of complexity. ?? 2009 Elsevier B.V. All rights reserved.

  15. Digital adaptive control of a VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Reid, G. F.

    1976-01-01

    A technique has been developed for calculating feedback and feedforward gain matrices that stabilize a VTOL aircraft while enabling it to track input commands of forward and vertical velocity. Leverrier's algorithm is used in a procedure for determining a set of state variable, feedback gains that force the closed loop poles and zeroes of one pilot input transfer function to be at preselected positions in the s plane. This set of feedback gains is then used to calculate the feedback and feedforward gains for the velocity command controller. The method is computationally attractive since the gains are determined by solving systems of linear, simultaneous equations. Responses obtained using a digital simulation of the longitudinal dynamics of the CH-47 helicopter are presented.

  16. A study on M/G/1 retrial G - queue with two phases of service, immediate feedback and working vacations

    NASA Astrophysics Data System (ADS)

    Varalakshmi, M.; Chandrasekaran, V. M.; Saravanarajan, M. C.

    2017-11-01

    In this paper, we discuss about the steady state behaviour of M/G/1 retrial queueing system with two phases of services and immediate feedbacks under working vacation policy where the regular busy server is affected due to the arrival of negative customers. Upon arrival if the customer finds the server busy, breakdown or on working vacation it enters an orbit; otherwise the customer enters into the service area immediately. After service completion, the customer is allowed to make finite number of immediate feedback. The feedback service also consists of two phases. At the service completion epoch of a positive customer, if the orbit is empty the server goes for a working vacation. The server works at a lower service rate during working vacation (WV) period. Using the supplementary variable technique, we found out the steady state probability generating function for the system and in orbit. System performance measures and reliability measures are discussed. Finally, some numerical examples are presented to validate the analyticalresults.

  17. An iterative technique to stabilize a linear time invariant multivariable system with output feedback

    NASA Technical Reports Server (NTRS)

    Sankaran, V.

    1974-01-01

    An iterative procedure for determining the constant gain matrix that will stabilize a linear constant multivariable system using output feedback is described. The use of this procedure avoids the transformation of variables which is required in other procedures. For the case in which the product of the output and input vector dimensions is greater than the number of states of the plant, general solution is given. In the case in which the states exceed the product of input and output vector dimensions, a least square solution which may not be stable in all cases is presented. The results are illustrated with examples.

  18. A nonlinear Kalman filtering approach to embedded control of turbocharged diesel engines

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Siano, Pierluigi; Arsie, Ivan

    2014-10-01

    The development of efficient embedded control for turbocharged Diesel engines, requires the programming of elaborated nonlinear control and filtering methods. To this end, in this paper nonlinear control for turbocharged Diesel engines is developed with the use of Differential flatness theory and the Derivative-free nonlinear Kalman Filter. It is shown that the dynamic model of the turbocharged Diesel engine is differentially flat and admits dynamic feedback linearization. It is also shown that the dynamic model can be written in the linear Brunovsky canonical form for which a state feedback controller can be easily designed. To compensate for modeling errors and external disturbances the Derivative-free nonlinear Kalman Filter is used and redesigned as a disturbance observer. The filter consists of the Kalman Filter recursion on the linearized equivalent of the Diesel engine model and of an inverse transformation based on differential flatness theory which enables to obtain estimates for the state variables of the initial nonlinear model. Once the disturbances variables are identified it is possible to compensate them by including an additional control term in the feedback loop. The efficiency of the proposed control method is tested through simulation experiments.

  19. Regional robust stabilisation and domain-of-attraction estimation for MIMO uncertain nonlinear systems with input saturation

    NASA Astrophysics Data System (ADS)

    Azizi, S.; Torres, L. A. B.; Palhares, R. M.

    2018-01-01

    The regional robust stabilisation by means of linear time-invariant state feedback control for a class of uncertain MIMO nonlinear systems with parametric uncertainties and control input saturation is investigated. The nonlinear systems are described in a differential algebraic representation and the regional stability is handled considering the largest ellipsoidal domain-of-attraction (DOA) inside a given polytopic region in the state space. A novel set of sufficient Linear Matrix Inequality (LMI) conditions with new auxiliary decision variables are developed aiming to design less conservative linear state feedback controllers with corresponding larger DOAs, by considering the polytopic description of the saturated inputs. A few examples are presented showing favourable comparisons with recently published similar control design methodologies.

  20. Optimality and stability of intentional and unintentional actions: I. Origins of drifts in performance.

    PubMed

    Parsa, Behnoosh; Terekhov, Alexander; Zatsiorsky, Vladimir M; Latash, Mark L

    2017-02-01

    We address the nature of unintentional changes in performance in two papers. This first paper tested a hypothesis that unintentional changes in performance variables during continuous tasks without visual feedback are due to two processes. First, there is a drift of the referent coordinate for the salient performance variable toward the actual coordinate of the effector. Second, there is a drift toward minimum of a cost function. We tested this hypothesis in four-finger isometric pressing tasks that required the accurate production of a combination of total moment and total force with natural and modified finger involvement. Subjects performed accurate force-moment production tasks under visual feedback, and then visual feedback was removed for some or all of the salient variables. Analytical inverse optimization was used to compute a cost function. Without visual feedback, both force and moment drifted slowly toward lower absolute magnitudes. Over 15 s, the force drop could reach 20% of its initial magnitude while moment drop could reach 30% of its initial magnitude. Individual finger forces could show drifts toward both higher and lower forces. The cost function estimated using the analytical inverse optimization reduced its value as a consequence of the drift. We interpret the results within the framework of hierarchical control with referent spatial coordinates for salient variables at each level of the hierarchy combined with synergic control of salient variables. The force drift is discussed as a natural relaxation process toward states with lower potential energy in the physical (physiological) system involved in the task.

  1. Optimality and stability of intentional and unintentional actions: I. Origins of drifts in performance

    PubMed Central

    Parsa, Behnoosh; Terekhov, Alexander; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2016-01-01

    We address the nature of unintentional changes in performance in two papers. This first paper tested a hypothesis that unintentional changes in performance variables during continuous tasks without visual feedback are due to two processes. First, there is a drift of the referent coordinate for the salient performance variable toward the actual coordinate of the effector. Second, there is a drift toward minimum of a cost function. We tested this hypothesis in four-finger isometric pressing tasks that required the accurate production of a combination of total moment and total force with natural and modified finger involvement. Subjects performed accurate force/moment production tasks under visual feedback, and then visual feedback was removed for some or all of the salient variables. Analytical inverse optimization was used to compute a cost function. Without visual feedback, both force and moment drifted slowly toward lower absolute magnitudes. Over 15 s, the force drop could reach 20% of its initial magnitude while moment drop could reach 30% of its initial magnitude. Individual finger forces could show drifts toward both higher and lower forces. The cost function estimated using the analytical inverse optimization reduced its value as a consequence of the drift. We interpret the results within the framework of hierarchical control with referent spatial coordinates for salient variables at each level of the hierarchy combined with synergic control of salient variables. The force drift is discussed as a natural relaxation process toward states with lower potential energy in the physical (physiological) system involved in the task. PMID:27785549

  2. Observations of Local Positive Low Cloud Feedback Patterns and Their Role in Internal Variability and Climate Sensitivity

    NASA Astrophysics Data System (ADS)

    Yuan, Tianle; Oreopoulos, Lazaros; Platnick, Steven E.; Meyer, Kerry

    2018-05-01

    Modeling studies have shown that cloud feedbacks are sensitive to the spatial pattern of sea surface temperature (SST) anomalies, while cloud feedbacks themselves strongly influence the magnitude of SST anomalies. Observational counterparts to such patterned interactions are still needed. Here we show that distinct large-scale patterns of SST and low-cloud cover (LCC) emerge naturally from objective analyses of observations and demonstrate their close coupling in a positive local SST-LCC feedback loop that may be important for both internal variability and climate change. The two patterns that explain the maximum amount of covariance between SST and LCC correspond to the Interdecadal Pacific Oscillation and the Atlantic Multidecadal Oscillation, leading modes of multidecadal internal variability. Spatial patterns and time series of SST and LCC anomalies associated with both modes point to a strong positive local SST-LCC feedback. In many current climate models, our analyses suggest that SST-LCC feedback strength is too weak compared to observations. Modeled local SST-LCC feedback strength affects simulated internal variability so that stronger feedback produces more intense and more realistic patterns of internal variability. To the extent that the physics of the local positive SST-LCC feedback inferred from observed climate variability applies to future greenhouse warming, we anticipate significant amount of delayed warming because of SST-LCC feedback when anthropogenic SST warming eventually overwhelm the effects of internal variability that may mute anthropogenic warming over parts of the ocean. We postulate that many climate models may be underestimating both future warming and the magnitude of modeled internal variability because of their weak SST-LCC feedback.

  3. Steady-State Solutions Originating from an Enhanced Nonlinear Feedback in a Hybrid Opto-mechanical System

    NASA Astrophysics Data System (ADS)

    Fan, Qiu-Bo; Wang, Yi-Ru; Chen, Jin; Pan, Yue-Wu; Han, Bai-Ping; Fu, Chang-Bao; Sun, Yan

    2017-06-01

    The steady-state properties of a hybrid system are investigated in this paper. Many cold atoms in the four-level tripod configuration are confined in an optical cavity with a movable end mirror. The confined cold atoms are driven with two external classical fields and an internal cavity field. The internal cavity field is excited by an external driving field and shows a radiation pressure upon the movable end mirror. The coupling of atom-light and opto-mechanical interactions is enhanced by embedding a four-level atomic system in a typical opto-mechanical cavity. And an enhanced nonlinear feedback mechanism is offered by the enhanced coupling, which permits the observation of five and three steady-state solutions for relevant variables near two-photon resonance. The enhanced nonlinear feedback mechanism also allows us to observe the obvious difference in the double-EIT phenomenon between the atom-assisted opto-mechanical system and usual atom-field system.

  4. Invited Article: Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Jun-ichi; Yokoyama, Shota; Kaji, Toshiyuki; Sornphiphatphong, Chanond; Shiozawa, Yu; Makino, Kenzo; Furusawa, Akira

    2016-09-01

    In recent quantum optical continuous-variable experiments, the number of fully inseparable light modes has drastically increased by introducing a multiplexing scheme either in the time domain or in the frequency domain. Here, modifying the time-domain multiplexing experiment reported in the work of Yokoyama et al. [Nat. Photonics 7, 982 (2013)], we demonstrate the successive generation of fully inseparable light modes for more than one million modes. The resulting multi-mode state is useful as a dual-rail continuous variable cluster state. We circumvent the previous problem of optical phase drifts, which has limited the number of fully inseparable light modes to around ten thousands, by continuous feedback control of the optical system.

  5. Non-linear feedback control of the p53 protein-mdm2 inhibitor system using the derivative-free non-linear Kalman filter.

    PubMed

    Rigatos, Gerasimos G

    2016-06-01

    It is proven that the model of the p53-mdm2 protein synthesis loop is a differentially flat one and using a diffeomorphism (change of state variables) that is proposed by differential flatness theory it is shown that the protein synthesis model can be transformed into the canonical (Brunovsky) form. This enables the design of a feedback control law that maintains the concentration of the p53 protein at the desirable levels. To estimate the non-measurable elements of the state vector describing the p53-mdm2 system dynamics, the derivative-free non-linear Kalman filter is used. Moreover, to compensate for modelling uncertainties and external disturbances that affect the p53-mdm2 system, the derivative-free non-linear Kalman filter is re-designed as a disturbance observer. The derivative-free non-linear Kalman filter consists of the Kalman filter recursion applied on the linearised equivalent of the protein synthesis model together with an inverse transformation based on differential flatness theory that enables to retrieve estimates for the state variables of the initial non-linear model. The proposed non-linear feedback control and perturbations compensation method for the p53-mdm2 system can result in more efficient chemotherapy schemes where the infusion of medication will be better administered.

  6. Event-Triggered Distributed Approximate Optimal State and Output Control of Affine Nonlinear Interconnected Systems.

    PubMed

    Narayanan, Vignesh; Jagannathan, Sarangapani

    2017-06-08

    This paper presents an approximate optimal distributed control scheme for a known interconnected system composed of input affine nonlinear subsystems using event-triggered state and output feedback via a novel hybrid learning scheme. First, the cost function for the overall system is redefined as the sum of cost functions of individual subsystems. A distributed optimal control policy for the interconnected system is developed using the optimal value function of each subsystem. To generate the optimal control policy, forward-in-time, neural networks are employed to reconstruct the unknown optimal value function at each subsystem online. In order to retain the advantages of event-triggered feedback for an adaptive optimal controller, a novel hybrid learning scheme is proposed to reduce the convergence time for the learning algorithm. The development is based on the observation that, in the event-triggered feedback, the sampling instants are dynamic and results in variable interevent time. To relax the requirement of entire state measurements, an extended nonlinear observer is designed at each subsystem to recover the system internal states from the measurable feedback. Using a Lyapunov-based analysis, it is demonstrated that the system states and the observer errors remain locally uniformly ultimately bounded and the control policy converges to a neighborhood of the optimal policy. Simulation results are presented to demonstrate the performance of the developed controller.

  7. Distinct promoter activation mechanisms modulate noise-driven HIV gene expression

    NASA Astrophysics Data System (ADS)

    Chavali, Arvind K.; Wong, Victor C.; Miller-Jensen, Kathryn

    2015-12-01

    Latent human immunodeficiency virus (HIV) infections occur when the virus occupies a transcriptionally silent but reversible state, presenting a major obstacle to cure. There is experimental evidence that random fluctuations in gene expression, when coupled to the strong positive feedback encoded by the HIV genetic circuit, act as a ‘molecular switch’ controlling cell fate, i.e., viral replication versus latency. Here, we implemented a stochastic computational modeling approach to explore how different promoter activation mechanisms in the presence of positive feedback would affect noise-driven activation from latency. We modeled the HIV promoter as existing in one, two, or three states that are representative of increasingly complex mechanisms of promoter repression underlying latency. We demonstrate that two-state and three-state models are associated with greater variability in noisy activation behaviors, and we find that Fano factor (defined as variance over mean) proves to be a useful noise metric to compare variability across model structures and parameter values. Finally, we show how three-state promoter models can be used to qualitatively describe complex reactivation phenotypes in response to therapeutic perturbations that we observe experimentally. Ultimately, our analysis suggests that multi-state models more accurately reflect observed heterogeneous reactivation and may be better suited to evaluate how noise affects viral clearance.

  8. Decoupled and linear quadratic regulator control of a large, flexible space antenna with an observer in the control loop

    NASA Technical Reports Server (NTRS)

    Hamer, H. A.; Johnson, K. G.; Young, J. W.

    1985-01-01

    An analysis is performed to compare decoupled and linear quadratic regulator (LQR) procedures for the control of a large, flexible space antenna. Control objectives involve: (1) commanding changes in the rigid-body modes, (2) nulling initial disturbances in the rigid-body modes, or (3) nulling initial disturbances in the first three flexible modes. Control is achieved with two three-axis control-moment gyros located on the antenna column. Results are presented to illustrate various effects on control requirements for the two procedures. These effects include errors in the initial estimates of state variables, variations in the type, number, and location of sensors, and deletions of state-variable estimates for certain flexible modes after control activation. The advantages of incorporating a time lag in the control feedback are also illustrated. In addition, the effects of inoperative-control situations are analyzed with regard to control requirements and resultant modal responses. Comparisons are included which show the effects of perfect state feedback with no residual modes (ideal case). Time-history responses are presented to illustrate the various effects on the control procedures.

  9. Reduced-order dynamic output feedback control of uncertain discrete-time Markov jump linear systems

    NASA Astrophysics Data System (ADS)

    Morais, Cecília F.; Braga, Márcio F.; Oliveira, Ricardo C. L. F.; Peres, Pedro L. D.

    2017-11-01

    This paper deals with the problem of designing reduced-order robust dynamic output feedback controllers for discrete-time Markov jump linear systems (MJLS) with polytopic state space matrices and uncertain transition probabilities. Starting from a full order, mode-dependent and polynomially parameter-dependent dynamic output feedback controller, sufficient linear matrix inequality based conditions are provided for the existence of a robust reduced-order dynamic output feedback stabilising controller with complete, partial or none mode dependency assuring an upper bound to the ? or the ? norm of the closed-loop system. The main advantage of the proposed method when compared to the existing approaches is the fact that the dynamic controllers are exclusively expressed in terms of the decision variables of the problem. In other words, the matrices that define the controller realisation do not depend explicitly on the state space matrices associated with the modes of the MJLS. As a consequence, the method is specially suitable to handle order reduction or cluster availability constraints in the context of ? or ? dynamic output feedback control of discrete-time MJLS. Additionally, as illustrated by means of numerical examples, the proposed approach can provide less conservative results than other conditions in the literature.

  10. Evaluation of feedforward and feedback contributions to hand stiffness and variability in multijoint arm control.

    PubMed

    He, Xin; Du, Yu-Fan; Lan, Ning

    2013-07-01

    The purpose of this study is to validate a neuromechanical model of the virtual arm (VA) by comparing emerging behaviors of the model to those of experimental observations. Hand stiffness of the VA model was obtained by either theoretical computation or simulated perturbations. Variability in hand position of the VA was generated by adding signal dependent noise (SDN) to the motoneuron pools of muscles. Reflex circuits of Ia, Ib and Renshaw cells were included to regulate the motoneuron pool outputs. Evaluation of hand stiffness and variability was conducted in simulations with and without afferent feedback under different patterns of muscle activations during postural maintenance. The simulated hand stiffness and variability ellipses captured the experimentally observed features in shape, magnitude and orientation. Steady state afferent feedback contributed significantly to the increase in hand stiffness by 35.75±16.99% in area, 18.37±7.80% and 16.15±7.15% in major and minor axes; and to the reduction of hand variability by 49.41±21.19% in area, 36.89±12.78% and 18.87±23.32% in major and minor axes. The VA model reproduced the neuromechanical behaviors that were consistent with experimental data, and it could be a useful tool for study of neural control of posture and movement, as well as for application to rehabilitation.

  11. A further assessment of vegetation feedback on decadal Sahel rainfall variability

    NASA Astrophysics Data System (ADS)

    Kucharski, Fred; Zeng, Ning; Kalnay, Eugenia

    2013-03-01

    The effect of vegetation feedback on decadal-scale Sahel rainfall variability is analyzed using an ensemble of climate model simulations in which the atmospheric general circulation model ICTPAGCM ("SPEEDY") is coupled to the dynamic vegetation model VEGAS to represent feedbacks from surface albedo change and evapotranspiration, forced externally by observed sea surface temperature (SST) changes. In the control experiment, where the full vegetation feedback is included, the ensemble is consistent with the observed decadal rainfall variability, with a forced component 60 % of the observed variability. In a sensitivity experiment where climatological vegetation cover and albedo are prescribed from the control experiment, the ensemble of simulations is not consistent with the observations because of strongly reduced amplitude of decadal rainfall variability, and the forced component drops to 35 % of the observed variability. The decadal rainfall variability is driven by SST forcing, but significantly enhanced by land-surface feedbacks. Both, local evaporation and moisture flux convergence changes are important for the total rainfall response. Also the internal decadal variability across the ensemble members (not SST-forced) is much stronger in the control experiment compared with the one where vegetation cover and albedo are prescribed. It is further shown that this positive vegetation feedback is physically related to the albedo feedback, supporting the Charney hypothesis.

  12. Speed but not amplitude of visual feedback exacerbates force variability in older adults.

    PubMed

    Kim, Changki; Yacoubi, Basma; Christou, Evangelos A

    2018-06-23

    Magnification of visual feedback (VF) impairs force control in older adults. In this study, we aimed to determine whether the age-associated increase in force variability with magnification of visual feedback is a consequence of increased amplitude or speed of visual feedback. Seventeen young and 18 older adults performed a constant isometric force task with the index finger at 5% of MVC. We manipulated the vertical (force gain) and horizontal (time gain) aspect of the visual feedback so participants performed the task with the following VF conditions: (1) high amplitude-fast speed; (2) low amplitude-slow speed; (3) high amplitude-slow speed. Changing the visual feedback from low amplitude-slow speed to high amplitude-fast speed increased force variability in older adults but decreased it in young adults (P < 0.01). Changing the visual feedback from low amplitude-slow speed to high amplitude-slow speed did not alter force variability in older adults (P > 0.2), but decreased it in young adults (P < 0.01). Changing the visual feedback from high amplitude-slow speed to high amplitude-fast speed increased force variability in older adults (P < 0.01) but did not alter force variability in young adults (P > 0.2). In summary, increased force variability in older adults with magnification of visual feedback was evident only when the speed of visual feedback increased. Thus, we conclude that in older adults deficits in the rate of processing visual information and not deficits in the processing of more visual information impair force control.

  13. The Impact of Air-Sea Interactions on the Representation of Tropical Precipitation Extremes

    NASA Astrophysics Data System (ADS)

    Hirons, L. C.; Klingaman, N. P.; Woolnough, S. J.

    2018-02-01

    The impacts of air-sea interactions on the representation of tropical precipitation extremes are investigated using an atmosphere-ocean-mixed-layer coupled model. The coupled model is compared to two atmosphere-only simulations driven by the coupled-model sea-surface temperatures (SSTs): one with 31 day running means (31 d), the other with a repeating mean annual cycle. This allows separation of the effects of interannual SST variability from those of coupled feedbacks on shorter timescales. Crucially, all simulations have a consistent mean state with very small SST biases against present-day climatology. 31d overestimates the frequency, intensity, and persistence of extreme tropical precipitation relative to the coupled model, likely due to excessive SST-forced precipitation variability. This implies that atmosphere-only attribution and time-slice experiments may overestimate the strength and duration of precipitation extremes. In the coupled model, air-sea feedbacks damp extreme precipitation, through negative local thermodynamic feedbacks between convection, surface fluxes, and SST.

  14. Large space structures control algorithm characterization

    NASA Technical Reports Server (NTRS)

    Fogel, E.

    1983-01-01

    Feedback control algorithms are developed for sensor/actuator pairs on large space systems. These algorithms have been sized in terms of (1) floating point operation (FLOP) demands; (2) storage for variables; and (3) input/output data flow. FLOP sizing (per control cycle) was done as a function of the number of control states and the number of sensor/actuator pairs. Storage for variables and I/O sizing was done for specific structure examples.

  15. Control logic to track the outputs of a command generator or randomly forced target

    NASA Technical Reports Server (NTRS)

    Trankle, T. L.; Bryson, A. E., Jr.

    1977-01-01

    A procedure is presented for synthesizing time-invariant control logic to cause the outputs of a linear plant to track the outputs of an unforced (or randomly forced) linear dynamic system. The control logic uses feed-forward of the reference system state variables and feedback of the plant state variables. The feed-forward gains are obtained from the solution of a linear algebraic matrix equation of the Liapunov type. The feedback gains are the usual regulator gains, determined to stabilize (or augment the stability of) the plant, possibly including integral control. The method is applied here to the design of control logic for a second-order servomechanism to follow a linearly increasing (ramp) signal, an unstable third-order system with two controls to track two separate ramp signals, and a sixth-order system with two controls to track a constant signal and an exponentially decreasing signal (aircraft landing-flare or glide-slope-capture with constant velocity).

  16. Evaluation of Offline Models Used to Simulate Components of the Permafrost Carbon Feedback: Experience from the Permafrost Carbon Network Model Integration Group

    NASA Astrophysics Data System (ADS)

    McGuire, A. D.

    2016-12-01

    The Model Integration Group of the Permafrost Carbon Network (see http://www.permafrostcarbon.org/) has conducted studies to evaluate the sensitivity of offline terrestrial permafrost and carbon models to both historical and projected climate change. These studies indicate that there is a wide range of (1) initial states permafrost extend and carbon stocks simulated by these models and (2) responses of permafrost extent and carbon stocks to both historical and projected climate change. In this study, we synthesize what has been learned about the variability in initial states among models and the driving factors that contribute to variability in the sensitivity of responses. We conclude the talk with a discussion of efforts needed by (1) the modeling community to standardize structural representation of permafrost and carbon dynamics among models that are used to evaluate the permafrost carbon feedback and (2) the modeling and observational communities to jointly develop data sets and methodologies to more effectively benchmark models.

  17. Do state-of-the-art CMIP5 ESMs accurately represent observed vegetation-rainfall feedbacks? Focus on the Sahel

    NASA Astrophysics Data System (ADS)

    Notaro, M.; Wang, F.; Yu, Y.; Mao, J.; Shi, X.; Wei, Y.

    2017-12-01

    The semi-arid Sahel ecoregion is an established hotspot of land-atmosphere coupling. Ocean-land-atmosphere interactions received considerable attention by modeling studies in response to the devastating 1970s-90s Sahel drought, which models suggest was driven by sea-surface temperature (SST) anomalies and amplified by local vegetation-atmosphere feedbacks. Vegetation affects the atmosphere through biophysical feedbacks by altering the albedo, roughness, and transpiration and thereby modifying exchanges of energy, momentum, and moisture with the atmosphere. The current understanding of these potentially competing processes is primarily based on modeling studies, with biophysical feedbacks serving as a key uncertainty source in regional climate change projections among Earth System Models (ESMs). In order to reduce this uncertainty, it is critical to rigorously evaluate the representation of vegetation feedbacks in ESMs against an observational benchmark in order to diagnose systematic biases and their sources. However, it is challenging to successfully isolate vegetation's feedbacks on the atmosphere, since the atmospheric control on vegetation growth dominates the atmospheric feedback response to vegetation anomalies and the atmosphere is simultaneously influenced by oceanic and terrestrial anomalies. In response to this challenge, a model-validated multivariate statistical method, Stepwise Generalized Equilibrium Feedback Assessment (SGEFA), is developed, which extracts the forcing of a slowly-evolving environmental variable [e.g. SST or leaf area index (LAI)] on the rapidly-evolving atmosphere. By applying SGEFA to observational and remotely-sensed data, an observational benchmark is established for Sahel vegetation feedbacks. In this work, the simulated responses in key atmospheric variables, including evapotranspiration, albedo, wind speed, vertical motion, temperature, stability, and rainfall, to Sahel LAI anomalies are statistically assessed in Coupled Model Intercomparison Project Phase 5 (CMIP5) ESMs through SGEFA. The dominant mechanism, such as albedo feedback, moisture recycling, or momentum feedback, in each ESM is evaluated against the observed benchmark. SGEFA facilitates a systematic assessment of model biases in land-atmosphere interactions.

  18. Adaptive Neural Output Feedback Control for Nonstrict-Feedback Stochastic Nonlinear Systems With Unknown Backlash-Like Hysteresis and Unknown Control Directions.

    PubMed

    Yu, Zhaoxu; Li, Shugang; Yu, Zhaosheng; Li, Fangfei

    2018-04-01

    This paper investigates the problem of output feedback adaptive stabilization for a class of nonstrict-feedback stochastic nonlinear systems with both unknown backlashlike hysteresis and unknown control directions. A new linear state transformation is applied to the original system, and then, control design for the new system becomes feasible. By combining the neural network's (NN's) parameterization, variable separation technique, and Nussbaum gain function method, an input-driven observer-based adaptive NN control scheme, which involves only one parameter to be updated, is developed for such systems. All closed-loop signals are bounded in probability and the error signals remain semiglobally bounded in the fourth moment (or mean square). Finally, the effectiveness and the applicability of the proposed control design are verified by two simulation examples.

  19. Collaborative Research: Process-resolving Decomposition of the Global Temperature Response to Modes of Low Frequency Variability in a Changing Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Ming; Deng, Yi

    2015-02-06

    El Niño-Southern Oscillation (ENSO) and Annular Modes (AMs) represent respectively the most important modes of low frequency variability in the tropical and extratropical circulations. The future projection of the ENSO and AM variability, however, remains highly uncertain with the state-of-the-art coupled general circulation models. A comprehensive understanding of the factors responsible for the inter-model discrepancies in projecting future changes in the ENSO and AM variability, in terms of multiple feedback processes involved, has yet to be achieved. The proposed research aims to identify sources of such uncertainty and establish a set of process-resolving quantitative evaluations of the existing predictions ofmore » the future ENSO and AM variability. The proposed process-resolving evaluations are based on a feedback analysis method formulated in Lu and Cai (2009), which is capable of partitioning 3D temperature anomalies/perturbations into components linked to 1) radiation-related thermodynamic processes such as cloud and water vapor feedbacks, 2) local dynamical processes including convection and turbulent/diffusive energy transfer and 3) non-local dynamical processes such as the horizontal energy transport in the oceans and atmosphere. Taking advantage of the high-resolution, multi-model ensemble products from the Coupled Model Intercomparison Project Phase 5 (CMIP5) soon to be available at the Lawrence Livermore National Lab, we will conduct a process-resolving decomposition of the global three-dimensional (3D) temperature (including SST) response to the ENSO and AM variability in the preindustrial, historical and future climate simulated by these models. Specific research tasks include 1) identifying the model-observation discrepancies in the global temperature response to ENSO and AM variability and attributing such discrepancies to specific feedback processes, 2) delineating the influence of anthropogenic radiative forcing on the key feedback processes operating on ENSO and AM variability and quantifying their relative contributions to the changes in the temperature anomalies associated with different phases of ENSO and AMs, and 3) investigating the linkages between model feedback processes that lead to inter-model differences in time-mean temperature projection and model feedback processes that cause inter-model differences in the simulated ENSO and AM temperature response. Through a thorough model-observation and inter-model comparison of the multiple energetic processes associated with ENSO and AM variability, the proposed research serves to identify key uncertainties in model representation of ENSO and AM variability, and investigate how the model uncertainty in predicting time-mean response is related to the uncertainty in predicting response of the low-frequency modes. The proposal is thus a direct response to the first topical area of the solicitation: Interaction of Climate Change and Low Frequency Modes of Natural Climate Variability. It ultimately supports the accomplishment of the BER climate science activity Long Term Measure (LTM): "Deliver improved scientific data and models about the potential response of the Earth's climate and terrestrial biosphere to increased greenhouse gas levels for policy makers to determine safe levels of greenhouse gases in the atmosphere."« less

  20. Adaptive Neural Output-Feedback Control for a Class of Nonlower Triangular Nonlinear Systems With Unmodeled Dynamics.

    PubMed

    Wang, Huanqing; Liu, Peter Xiaoping; Li, Shuai; Wang, Ding

    2017-08-29

    This paper presents the development of an adaptive neural controller for a class of nonlinear systems with unmodeled dynamics and immeasurable states. An observer is designed to estimate system states. The structure consistency of virtual control signals and the variable partition technique are combined to overcome the difficulties appearing in a nonlower triangular form. An adaptive neural output-feedback controller is developed based on the backstepping technique and the universal approximation property of the radial basis function (RBF) neural networks. By using the Lyapunov stability analysis, the semiglobally and uniformly ultimate boundedness of all signals within the closed-loop system is guaranteed. The simulation results show that the controlled system converges quickly, and all the signals are bounded. This paper is novel at least in the two aspects: 1) an output-feedback control strategy is developed for a class of nonlower triangular nonlinear systems with unmodeled dynamics and 2) the nonlinear disturbances and their bounds are the functions of all states, which is in a more general form than existing results.

  1. Interresponse Time Structures in Variable-Ratio and Variable-Interval Schedules

    ERIC Educational Resources Information Center

    Bowers, Matthew T.; Hill, Jade; Palya, William L.

    2008-01-01

    The interresponse-time structures of pigeon key pecking were examined under variable-ratio, variable-interval, and variable-interval plus linear feedback schedules. Whereas the variable-ratio and variable-interval plus linear feedback schedules generally resulted in a distinct group of short interresponse times and a broad distribution of longer…

  2. Least-rattling feedback from strong time-scale separation

    NASA Astrophysics Data System (ADS)

    Chvykov, Pavel; England, Jeremy

    2018-03-01

    In most interacting many-body systems associated with some "emergent phenomena," we can identify subgroups of degrees of freedom that relax on dramatically different time scales. Time-scale separation of this kind is particularly helpful in nonequilibrium systems where only the fast variables are subjected to external driving; in such a case, it may be shown through elimination of fast variables that the slow coordinates effectively experience a thermal bath of spatially varying temperature. In this paper, we investigate how such a temperature landscape arises according to how the slow variables affect the character of the driven quasisteady state reached by the fast variables. Brownian motion in the presence of spatial temperature gradients is known to lead to the accumulation of probability density in low-temperature regions. Here, we focus on the implications of attraction to low effective temperature for the long-term evolution of slow variables. After quantitatively deriving the temperature landscape for a general class of overdamped systems using a path-integral technique, we then illustrate in a simple dynamical system how the attraction to low effective temperature has a fine-tuning effect on the slow variable, selecting configurations that bring about exceptionally low force fluctuation in the fast-variable steady state. We furthermore demonstrate that a particularly strong effect of this kind can take place when the slow variable is tuned to bring about orderly, integrable motion in the fast dynamics that avoids thermalizing energy absorbed from the drive. We thus point to a potentially general feedback mechanism in multi-time-scale active systems, that leads to the exploration of slow variable space, as if in search of fine tuning for a "least-rattling" response in the fast coordinates.

  3. A Coupled Modeling Framework of the Co-evolution of Humans and Water: Case Study of Tarim River Basin, Western China

    NASA Astrophysics Data System (ADS)

    Liu, D.; Tian, F.; Lin, M.; Sivapalan, M.

    2014-12-01

    The complex interactions and feedbacks between humans and water are very essential issues but are poorly understood in the newly proposed discipline of socio-hydrology (Sivapalan et al., 2012). An exploratory model with the appropriate level of simplification can be valuable to improve our understanding of the co-evolution and self-organization of socio-hydrological systems driven by interactions and feedbacks operating at different scales. In this study, a simple coupled modeling framework for socio-hydrology co-evolution is developed for the Tarim River Basin in Western China, and is used to illustrate the explanatory power of such a model. The study area is the mainstream of the Tarim River, which is divided into two modeling units. The socio-hydrological system is composed of four parts, i.e., social sub-system, economic sub-system, ecological sub-system, and hydrological sub-system. In each modeling unit, four coupled ordinary differential equations are used to simulate the dynamics of the social sub-system represented by human population, the economic sub-system represented by irrigated crop area, the ecological sub-system represented by natural vegetation cover and the hydrological sub-system represented by stream discharge. The coupling and feedback processes of the four dominant sub-systems (and correspondingly four state variables) are integrated into several internal system characteristics interactively and jointly determined by themselves and by other coupled systems. For example, the stream discharge is coupled to the irrigated crop area by the colonization rate and mortality rate of the irrigated crop area in the upper reach and the irrigated area is coupled to stream discharge through irrigation water consumption. The co-evolution of the Tarim socio-hydrological system is then analyzed within this modeling framework to gain insights into the overall system dynamics and its sensitivity to the external drivers and internal system variables. In the modeling framework, the state of each subsystem is holistically described by one state variable and the framework is flexible enough to comprise more processes and constitutive relationships if they are needed to illustrate the interaction and feedback mechanisms of the human-water system.

  4. Feedback linearization of singularly perturbed systems based on canonical similarity transformations

    NASA Astrophysics Data System (ADS)

    Kabanov, A. A.

    2018-05-01

    This paper discusses the problem of feedback linearization of a singularly perturbed system in a state-dependent coefficient form. The result is based on the introduction of a canonical similarity transformation. The transformation matrix is constructed from separate blocks for fast and slow part of an original singularly perturbed system. The transformed singular perturbed system has a linear canonical form that significantly simplifies a control design problem. Proposed similarity transformation allows accomplishing linearization of the system without considering the virtual output (as it is needed for normal form method), a technique of a transition from phase coordinates of the transformed system to state variables of the original system is simpler. The application of the proposed approach is illustrated through example.

  5. The clinical relevance of advanced artificial feedback in the control of a multi-functional myoelectric prosthesis.

    PubMed

    Markovic, Marko; Schweisfurth, Meike A; Engels, Leonard F; Bentz, Tashina; Wüstefeld, Daniela; Farina, Dario; Dosen, Strahinja

    2018-03-27

    To effectively replace the human hand, a prosthesis should seamlessly respond to user intentions but also convey sensory information back to the user. Restoration of sensory feedback is rated highly by the prosthesis users, and feedback is critical for grasping in able-bodied subjects. Nonetheless, the benefits of feedback in prosthetics are still debated. The lack of consensus is likely due to the complex nature of sensory feedback during prosthesis control, so that its effectiveness depends on multiple factors (e.g., task complexity, user learning). We evaluated the impact of these factors with a longitudinal assessment in six amputee subjects, using a clinical setup (socket, embedded control) and a range of tasks (box and blocks, block turn, clothespin and cups relocation). To provide feedback, we have proposed a novel vibrotactile stimulation scheme capable of transmitting multiple variables from a multifunction prosthesis. The subjects wore a bracelet with four by two uniformly placed vibro-tactors providing information on contact, prosthesis state (active function), and grasping force. The subjects also completed a questionnaire for the subjective evaluation of the feedback. The tests demonstrated that feedback was beneficial only in the complex tasks (block turn, clothespin and cups relocation), and that the training had an important, task-dependent impact. In the clothespin relocation and block turn tasks, training allowed the subjects to establish successful feedforward control, and therefore, the feedback became redundant. In the cups relocation task, however, the subjects needed some training to learn how to properly exploit the feedback. The subjective evaluation of the feedback was consistently positive, regardless of the objective benefits. These results underline the multifaceted nature of closed-loop prosthesis control as, depending on the context, the same feedback interface can have different impact on performance. Finally, even if the closed-loop control does not improve the performance, it could be beneficial as it seems to improve the subjective experience. Therefore, in this study we demonstrate, for the first time, the relevance of an advanced, multi-variable feedback interface for dexterous, multi-functional prosthesis control in a clinically relevant setting.

  6. Nutrient management planners feedback on New York and Pennsylvania phosphorus indices

    USDA-ARS?s Scientific Manuscript database

    State Phosphorus Indices (PIs) are being evaluated across the US due to variability in P management recommendations and questions about the lack of water quality improvement in some watersheds. Nutrient management planners in New York (NY) and Pennsylvania (PA) were surveyed via two separate but rel...

  7. Formula Feedback and Central Cities: The Case of the Comprehensive Employment and Training Act.

    ERIC Educational Resources Information Center

    Jones, E. Terrence; Phares, Donald

    1978-01-01

    This study critically examines the measurement of the Comprehesive Employment and Training Act's key allocation variable, unemployment. The analysis indicates (1) unemployment rates are higher than government estimates and (2) methods used to measure state and local umemployment have several weaknesses. (Author/RLV)

  8. Approximation-based adaptive tracking control of pure-feedback nonlinear systems with multiple unknown time-varying delays.

    PubMed

    Wang, Min; Ge, Shuzhi Sam; Hong, Keum-Shik

    2010-11-01

    This paper presents adaptive neural tracking control for a class of non-affine pure-feedback systems with multiple unknown state time-varying delays. To overcome the design difficulty from non-affine structure of pure-feedback system, mean value theorem is exploited to deduce affine appearance of state variables x(i) as virtual controls α(i), and of the actual control u. The separation technique is introduced to decompose unknown functions of all time-varying delayed states into a series of continuous functions of each delayed state. The novel Lyapunov-Krasovskii functionals are employed to compensate for the unknown functions of current delayed state, which is effectively free from any restriction on unknown time-delay functions and overcomes the circular construction of controller caused by the neural approximation of a function of u and [Formula: see text] . Novel continuous functions are introduced to overcome the design difficulty deduced from the use of one adaptive parameter. To achieve uniformly ultimate boundedness of all the signals in the closed-loop system and tracking performance, control gains are effectively modified as a dynamic form with a class of even function, which makes stability analysis be carried out at the present of multiple time-varying delays. Simulation studies are provided to demonstrate the effectiveness of the proposed scheme.

  9. Reinforcement learning state estimator.

    PubMed

    Morimoto, Jun; Doya, Kenji

    2007-03-01

    In this study, we propose a novel use of reinforcement learning for estimating hidden variables and parameters of nonlinear dynamical systems. A critical issue in hidden-state estimation is that we cannot directly observe estimation errors. However, by defining errors of observable variables as a delayed penalty, we can apply a reinforcement learning frame-work to state estimation problems. Specifically, we derive a method to construct a nonlinear state estimator by finding an appropriate feedback input gain using the policy gradient method. We tested the proposed method on single pendulum dynamics and show that the joint angle variable could be successfully estimated by observing only the angular velocity, and vice versa. In addition, we show that we could acquire a state estimator for the pendulum swing-up task in which a swing-up controller is also acquired by reinforcement learning simultaneously. Furthermore, we demonstrate that it is possible to estimate the dynamics of the pendulum itself while the hidden variables are estimated in the pendulum swing-up task. Application of the proposed method to a two-linked biped model is also presented.

  10. Closed-loop control of anesthesia: a primer for anesthesiologists.

    PubMed

    Dumont, Guy A; Ansermino, J Mark

    2013-11-01

    Feedback control is ubiquitous in nature and engineering and has revolutionized safety in fields from space travel to the automobile. In anesthesia, automated feedback control holds the promise of limiting the effects on performance of individual patient variability, optimizing the workload of the anesthesiologist, increasing the time spent in a more desirable clinical state, and ultimately improving the safety and quality of anesthesia care. The benefits of control systems will not be realized without widespread support from the health care team in close collaboration with industrial partners. In this review, we provide an introduction to the established field of control systems research for the everyday anesthesiologist. We introduce important concepts such as feedback and modeling specific to control problems and provide insight into design requirements for guaranteeing the safety and performance of feedback control systems. We focus our discussion on the optimization of anesthetic drug administration.

  11. Comparing the Degree of Land-Atmosphere Interaction in Four Atmospheric General Circulation Models

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Dirmeyer, Paul A.; Hahmann, Andrea N.; Ijpelaar, Ruben; Tyahla, Lori; Cox, Peter; Suarez, Max J.; Houser, Paul R. (Technical Monitor)

    2001-01-01

    Land-atmosphere feedback, by which (for example) precipitation-induced moisture anomalies at the land surface affect the overlying atmosphere and thereby the subsequent generation of precipitation, has been examined and quantified with many atmospheric general circulation models (AGCMs). Generally missing from such studies, however, is an indication of the extent to which the simulated feedback strength is model dependent. Four modeling groups have recently performed a highly controlled numerical experiment that allows an objective inter-model comparison of land-atmosphere feedback strength. The experiment essentially consists of an ensemble of simulations in which each member simulation artificially maintains the same time series of surface prognostic variables. Differences in atmospheric behavior between the ensemble members then indicates the degree to which the state of the land surface controls atmospheric processes in that model. A comparison of the four sets of experimental results shows that feedback strength does indeed vary significantly between the AGCMs.

  12. Adaptive NN control for discrete-time pure-feedback systems with unknown control direction under amplitude and rate actuator constraints.

    PubMed

    Chen, Weisheng

    2009-07-01

    This paper focuses on the problem of adaptive neural network tracking control for a class of discrete-time pure-feedback systems with unknown control direction under amplitude and rate actuator constraints. Two novel state-feedback and output-feedback dynamic control laws are established where the function tanh(.) is employed to solve the saturation constraint problem. Implicit function theorem and mean value theorem are exploited to deal with non-affine variables that are used as actual control. Radial basis function neural networks are used to approximate the desired input function. Discrete Nussbaum gain is used to estimate the unknown sign of control gain. The uniform boundedness of all closed-loop signals is guaranteed. The tracking error is proved to converge to a small residual set around the origin. A simulation example is provided to illustrate the effectiveness of control schemes proposed in this paper.

  13. Using Instructive Feedback to Increase Response Variability During Intraverbal Training for Children with Autism Spectrum Disorder.

    PubMed

    Carroll, Regina A; Kodak, Tiffany

    2015-10-01

    We evaluated the effects of instructive feedback on the variability of intraverbal responses for two children with autism spectrum disorder. Specifically, we used an adapted alternating treatments design to compare participants' novel responses and response combinations during an intraverbal category program across conditions with and without instructive feedback. During instructive feedback, secondary targets were presented during the consequence event of the learning trial and consisted of a therapist's model of response variability. The results showed that participants engaged in more novel response combinations during instructive feedback conditions. We discussed the clinical implications of these results as well as areas for future research.

  14. Computer-generated tailored feedback letters for smoking cessation: theoretical and empirical variability of tailoring.

    PubMed

    Schumann, Anja; John, Ulrich; Ulbricht, Sabina; Rüge, Jeannette; Bischof, Gallus; Meyer, Christian

    2008-11-01

    This study examines tailored feedback letters of a smoking cessation intervention that is conceptually based on the transtheoretical model, from a content-based perspective. Data of 2 population-based intervention studies, both randomized controlled trials, with total N=1044 were used. The procedure of the intervention, the tailoring principle for the feedback letters, and the content of the intervention materials are described in detail. Theoretical and empirical frequencies of unique feedback letters are presented. The intervention system was able to generate a total of 1040 unique letters with normative feedback only, and almost half a million unique letters with normative and ipsative feedback. Almost every single smoker in contemplation, preparation, action, and maintenance had an empirically unique combination of tailoring variables and received a unique letter. In contrast, many smokers in precontemplation shared a combination of tailoring variables and received identical letters. The transtheoretical model provides an enormous theoretical and empirical variability of tailoring. However, tailoring for a major subgroup of smokers, i.e. those who do not intend to quit, needs improvement. Conceptual ideas for additional tailoring variables are discussed.

  15. Control Augmented Structural Synthesis

    NASA Technical Reports Server (NTRS)

    Lust, Robert V.; Schmit, Lucien A.

    1988-01-01

    A methodology for control augmented structural synthesis is proposed for a class of structures which can be modeled as an assemblage of frame and/or truss elements. It is assumed that both the plant (structure) and the active control system dynamics can be adequately represented with a linear model. The structural sizing variables, active control system feedback gains and nonstructural lumped masses are treated simultaneously as independent design variables. Design constraints are imposed on static and dynamic displacements, static stresses, actuator forces and natural frequencies to ensure acceptable system behavior. Multiple static and dynamic loading conditions are considered. Side constraints imposed on the design variables protect against the generation of unrealizable designs. While the proposed approach is fundamentally more general, here the methodology is developed and demonstrated for the case where: (1) the dynamic loading is harmonic and thus the steady state response is of primary interest; (2) direct output feedback is used for the control system model; and (3) the actuators and sensors are collocated.

  16. Differential flatness properties and adaptive control of the hypothalamic-pituitary-adrenal axis model

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos

    2016-12-01

    It is shown that the model of the hypothalamic-pituitary-adrenal gland axis is a differentially flat one and this permits to transform it to the so-called linear canonical form. For the new description of the system's dynamics the transformed control inputs contain unknown terms which depend on the system's parameters. To identify these terms an adaptive fuzzy approximator is used in the control loop. Thus an adaptive fuzzy control scheme is implemented in which the unknown or unmodeled system dynamics is approximated by neurofuzzy networks and next this information is used by a feedback controller that makes the state variables (CRH - corticotropin releasing hormone, adenocortocotropic hormone - ACTH, cortisol) of the hypothalamic-pituitary-adrenal gland axis model converge to the desirable levels (setpoints). This adaptive control scheme is exclusively implemented with the use of output feedback, while the state vector elements which are not directly measured are estimated with the use of a state observer that operates in the control loop. The learning rate of the adaptive fuzzy system is suitably computed from Lyapunov analysis, so as to assure that both the learning procedure for the unknown system's parameters, the dynamics of the observer and the dynamics of the control loop will remain stable. The performed Lyapunov stability analysis depends on two Riccati equations, one associated with the feedback controller and one associated with the state observer. Finally, it is proven that for the control scheme that comprises the feedback controller, the state observer and the neurofuzzy approximator, an H-infinity tracking performance can be succeeded.

  17. Comparison of MERRA-2 and ECCO-v4 ocean surface heat fluxes: Consequences of different forcing feedbacks on ocean circulation and implications for climate data assimilation.

    NASA Astrophysics Data System (ADS)

    Strobach, E.; Molod, A.; Menemenlis, D.; Forget, G.; Hill, C. N.; Campin, J. M.; Heimbach, P.

    2017-12-01

    Forcing ocean models with reanalysis data is a common practice in ocean modeling. As part of this practice, prescribed atmospheric state variables and interactive ocean SST are used to calculate fluxes between the ocean and the atmosphere. When forcing an ocean model with reanalysis fields, errors in the reanalysis data, errors in the ocean model and errors in the forcing formulation will generate a different solution compared to other ocean reanalysis solutions (which also have their own errors). As a first step towards a consistent coupled ocean-atmosphere reanalysis, we compare surface heat fluxes from a state-of-the-art atmospheric reanalysis, the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), to heat fluxes from a state-of-the-art oceanic reanalysis, the Estimating the Circulation and Climate of the Ocean Version 4, Release 2 (ECCO-v4). Then, we investigate the errors associated with the MITgcm ocean model in its ECCO-v4 ocean reanalysis configuration (1992-2011) when it is forced with MERRA-2 atmospheric reanalysis fields instead of with the ECCO-v4 adjoint optimized ERA-interim state variables. This is done by forcing ECCO-v4 ocean with and without feedbacks from MERRA-2 related to turbulent fluxes of heat and moisture and the outgoing long wave radiation. In addition, we introduce an intermediate forcing method that includes only the feedback from the interactive outgoing long wave radiation. The resulting ocean circulation is compared with ECCO-v4 reanalysis and in-situ observations. We show that, without feedbacks, imbalances in the energy and the hydrological cycles of MERRA-2 (which are directly related to the fact it was created without interactive ocean) result in considerable SST drifts and a large reduction in sea level. The bulk formulae and interactive outgoing long wave radiation, although providing air-sea feedbacks and reducing model-data misfit, strongly relax the ocean to observed SST and may result in unwanted features such as large change in the water budget. These features have implications in on desired forcing recipe to be used. The results strongly and unambiguously argue for next generation data assimilation climate studies to involve fully coupled systems.

  18. Reliable video transmission over fading channels via channel state estimation

    NASA Astrophysics Data System (ADS)

    Kumwilaisak, Wuttipong; Kim, JongWon; Kuo, C.-C. Jay

    2000-04-01

    Transmission of continuous media such as video over time- varying wireless communication channels can benefit from the use of adaptation techniques in both source and channel coding. An adaptive feedback-based wireless video transmission scheme is investigated in this research with special emphasis on feedback-based adaptation. To be more specific, an interactive adaptive transmission scheme is developed by letting the receiver estimate the channel state information and send it back to the transmitter. By utilizing the feedback information, the transmitter is capable of adapting the level of protection by changing the flexible RCPC (rate-compatible punctured convolutional) code ratio depending on the instantaneous channel condition. The wireless channel is modeled as a fading channel, where the long-term and short- term fading effects are modeled as the log-normal fading and the Rayleigh flat fading, respectively. Then, its state (mainly the long term fading portion) is tracked and predicted by using an adaptive LMS (least mean squares) algorithm. By utilizing the delayed feedback on the channel condition, the adaptation performance of the proposed scheme is first evaluated in terms of the error probability and the throughput. It is then extended to incorporate variable size packets of ITU-T H.263+ video with the error resilience option. Finally, the end-to-end performance of wireless video transmission is compared against several non-adaptive protection schemes.

  19. A direct method for synthesizing low-order optimal feedback control laws with application to flutter suppression

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, V.; Newsom, J. R.; Abel, I.

    1980-01-01

    A direct method of synthesizing a low-order optimal feedback control law for a high order system is presented. A nonlinear programming algorithm is employed to search for the control law design variables that minimize a performance index defined by a weighted sum of mean square steady state responses and control inputs. The controller is shown to be equivalent to a partial state estimator. The method is applied to the problem of active flutter suppression. Numerical results are presented for a 20th order system representing an aeroelastic wind-tunnel wing model. Low-order controllers (fourth and sixth order) are compared with a full order (20th order) optimal controller and found to provide near optimal performance with adequate stability margins.

  20. Reciprocal Markov Modeling of Feedback Mechanisms Between Emotion and Dietary Choice Using Experience-Sampling Data.

    PubMed

    Lu, Ji; Pan, Junhao; Zhang, Qiang; Dubé, Laurette; Ip, Edward H

    2015-01-01

    With intensively collected longitudinal data, recent advances in the experience-sampling method (ESM) benefit social science empirical research, but also pose important methodological challenges. As traditional statistical models are not generally well equipped to analyze a system of variables that contain feedback loops, this paper proposes the utility of an extended hidden Markov model to model reciprocal the relationship between momentary emotion and eating behavior. This paper revisited an ESM data set (Lu, Huet, & Dube, 2011) that observed 160 participants' food consumption and momentary emotions 6 times per day in 10 days. Focusing on the analyses on feedback loop between mood and meal-healthiness decision, the proposed reciprocal Markov model (RMM) can accommodate both hidden ("general" emotional states: positive vs. negative state) and observed states (meal: healthier, same or less healthy than usual) without presuming independence between observations and smooth trajectories of mood or behavior changes. The results of RMM analyses illustrated the reciprocal chains of meal consumption and mood as well as the effect of contextual factors that moderate the interrelationship between eating and emotion. A simulation experiment that generated data consistent with the empirical study further demonstrated that the procedure is promising in terms of recovering the parameters.

  1. Influence of surface nudging on climatological mean and ENSO feedbacks in a coupled model

    NASA Astrophysics Data System (ADS)

    Zhu, Jieshun; Kumar, Arun

    2018-01-01

    Studies have suggested that surface nudging could be an efficient way to reconstruct the subsurface ocean variability, and thus a useful method for initializing climate predictions (e.g., seasonal and decadal predictions). Surface nudging is also the basis for climate models with flux adjustments. In this study, however, some negative aspects of surface nudging on climate simulations in a coupled model are identified. Specifically, a low-resolution version of the NCEP Climate Forecast System, version 2 (CFSv2L) is used to examine the influence of nudging on simulations of climatological mean and on the coupled feedbacks during ENSO. The effect on ENSO feedbacks is diagnosed following a heat budget analysis of mixed layer temperature anomalies. Diagnostics of the climatological mean state indicates that, even though SST biases in all ocean basins, as expected, are eliminated, the fidelity of climatological precipitation, surface winds and subsurface temperature (or the thermocline depth) could be highly ocean basin dependent. This is exemplified by improvements in the climatology of these variables in the tropical Atlantic, but degradations in the tropical Pacific. Furthermore, surface nudging also distorts the dynamical feedbacks during ENSO. For example, while the thermocline feedback played a critical role during the evolution of ENSO in a free simulation, it only played a minor role in the nudged simulation. These results imply that, even though the simulation of surface temperature could be improved in a climate model with surface nudging, the physics behind might be unrealistic.

  2. Stability of hand force production. I. Hand level control variables and multifinger synergies.

    PubMed

    Reschechtko, Sasha; Latash, Mark L

    2017-12-01

    We combined the theory of neural control of movement with referent coordinates and the uncontrolled manifold hypothesis to explore synergies stabilizing the hand action in accurate four-finger pressing tasks. In particular, we tested a hypothesis on two classes of synergies, those among the four fingers and those within a pair of control variables, stabilizing hand action under visual feedback and disappearing without visual feedback. Subjects performed four-finger total force and moment production tasks under visual feedback; the feedback was later partially or completely removed. The "inverse piano" device was used to lift and lower the fingers smoothly at the beginning and at the end of each trial. These data were used to compute pairs of hypothetical control variables. Intertrial analysis of variance within the finger force space was used to quantify multifinger synergies stabilizing both force and moment. A data permutation method was used to quantify synergies among control variables. Under visual feedback, synergies in the spaces of finger forces and hypothetical control variables were found to stabilize total force. Without visual feedback, the subjects showed a force drift to lower magnitudes and a moment drift toward pronation. This was accompanied by disappearance of the four-finger synergies and strong attenuation of the control variable synergies. The indexes of the two types of synergies correlated with each other. The findings are interpreted within the scheme with multiple levels of abundant variables. NEW & NOTEWORTHY We extended the idea of hierarchical control with referent spatial coordinates for the effectors and explored two types of synergies stabilizing multifinger force production tasks. We observed synergies among finger forces and synergies between hypothetical control variables that stabilized performance under visual feedback but failed to stabilize it after visual feedback had been removed. Indexes of two types of synergies correlated with each other. The data suggest the existence of multiple mechanisms stabilizing motor actions. Copyright © 2017 the American Physiological Society.

  3. Interdecadal Change in the Tropical Pacific Precipitation Anomaly Pattern around the Late 1990s during Boreal Spring

    NASA Astrophysics Data System (ADS)

    Wen, Zhiping; Guo, Yuanyuan; Wu, Renguang

    2017-04-01

    The leading mode of boreal spring precipitation variability over the tropical Pacific experienced a pronounced interdecadal change around the late 1990s. The pattern before 1998 features positive precipitation anomalies over the equatorial eastern Pacific (EP) with positive principle component years. The counterpart after 1998 exhibits a westward shift of the positive center to the equatorial central Pacific (CP). Observational evidence shows that this interdecadal change in the leading mode of precipitation variability is closely associated with a distinctive sea surface temperature (SST) anomaly pattern. The westward shift of the anomalous precipitation center after 1998 is in tandem with a similar shift of maximum warming from the EP to CP. Diagnostic analyses based on a linear equation of the mixed layer temperature anomaly exhibit that an interdecadal enhancement of zonal advection (ZA) feedback process plays a vital role in the shift in the leading mode of both the tropical Pacific SST and the precipitation anomaly during spring. Moreover, the variability of the anomalous zonal current at the upper ocean dominates the ZA feedback change, while the mean zonal SST gradient associated with a La Niña-like pattern of the mean state only accounts for a relatively trivial proportion of the ZA feedback change. It was found that both the relatively rapid decaying of the SST anomalies in the EP and the La Niña-like mean state make it conceivable that the shift of the leading mode of the tropical precipitation anomaly only occurs in spring. In addition, the largest variance of the anomalous zonal current in spring might contribute to the unique interdecadal change in the tropical spring precipitation anomaly pattern.

  4. Quality of HIV Testing Data Before and After the Implementation of a National Data Quality Assessment and Feedback System.

    PubMed

    Beltrami, John; Wang, Guoshen; Usman, Hussain R; Lin, Lillian S

    In 2010, the Centers for Disease Control and Prevention (CDC) implemented a national data quality assessment and feedback system for CDC-funded HIV testing program data. Our objective was to analyze data quality before and after feedback. Coinciding with required quarterly data submissions to CDC, each health department received data quality feedback reports and a call with CDC to discuss the reports. Data from 2008 to 2011 were analyzed. Fifty-nine state and local health departments that were funded for comprehensive HIV prevention services. Data collected by a service provider in conjunction with a client receiving HIV testing. National data quality assessment and feedback system. Before and after intervention implementation, quality was assessed through the number of new test records reported and the percentage of data values that were neither missing nor invalid. Generalized estimating equations were used to assess the effect of feedback in improving the completeness of variables. Data were included from 44 health departments. The average number of new records per submission period increased from 197 907 before feedback implementation to 497 753 afterward. Completeness was high before and after feedback for race/ethnicity (99.3% vs 99.3%), current test results (99.1% vs 99.7%), prior testing and results (97.4% vs 97.7%), and receipt of results (91.4% vs 91.2%). Completeness improved for HIV risk (83.6% vs 89.5%), linkage to HIV care (56.0% vs 64.0%), referral to HIV partner services (58.9% vs 62.8%), and referral to HIV prevention services (55.3% vs 63.9%). Calls as part of feedback were associated with improved completeness for HIV risk (adjusted odds ratio [AOR] = 2.28; 95% confidence interval [CI], 1.75-2.96), linkage to HIV care (AOR = 1.60; 95% CI, 1.31-1.96), referral to HIV partner services (AOR = 1.73; 95% CI, 1.43-2.09), and referral to HIV prevention services (AOR = 1.74; 95% CI, 1.43-2.10). Feedback contributed to increased data quality. CDC and health departments should continue monitoring the data and implement measures to improve variables of low completeness.

  5. Differential flatness properties and multivariable adaptive control of ovarian system dynamics

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos

    2016-12-01

    The ovarian system exhibits nonlinear dynamics which is modeled by a set of coupled nonlinear differential equations. The paper proposes adaptive fuzzy control based on differential flatness theory for the complex dynamics of the ovarian system. It is proven that the dynamic model of the ovarian system, having as state variables the LH and the FSH hormones and their derivatives, is a differentially flat one. This means that all its state variables and its control inputs can be described as differential functions of the flat output. By exploiting differential flatness properties the system's dynamic model is written in the multivariable linear canonical (Brunovsky) form, for which the design of a state feedback controller becomes possible. After this transformation, the new control inputs of the system contain unknown nonlinear parts, which are identified with the use of neurofuzzy approximators. The learning procedure for these estimators is determined by the requirement the first derivative of the closed-loop's Lyapunov function to be a negative one. Moreover, Lyapunov stability analysis shows that H-infinity tracking performance is succeeded for the feedback control loop and this assures improved robustness to the aforementioned model uncertainty as well as to external perturbations. The efficiency of the proposed adaptive fuzzy control scheme is confirmed through simulation experiments.

  6. High frequency inductive lamp and power oscillator

    DOEpatents

    Kirkpatrick, Douglas A.; Gitsevich, Aleksandr

    2005-09-27

    An oscillator includes an amplifier having an input and an output, a feedback network connected between the input of the amplifier and the output of the amplifier, the feedback network being configured to provide suitable positive feedback from the output of the amplifier to the input of the amplifier to initiate and sustain an oscillating condition, and a tuning circuit connected to the input of the amplifier, wherein the tuning circuit is continuously variable and consists of solid state electrical components with no mechanically adjustable devices including a pair of diodes connected to each other at their respective cathodes with a control voltage connected at the junction of the diodes. Another oscillator includes an amplifier having an input and an output, a feedback network connected between the input of the amplifier and the output of the amplifier, the feedback network being configured to provide suitable positive feedback from the output of the amplifier to the input of the amplifier to initiate and sustain an oscillating condition, and transmission lines connected to the input of the amplifier with an input pad and a perpendicular transmission line extending from the input pad and forming a leg of a resonant "T", and wherein the feedback network is coupled to the leg of the resonant "T".

  7. Application of modern control theory to the design of optimum aircraft controllers

    NASA Technical Reports Server (NTRS)

    Power, L. J.

    1973-01-01

    The synthesis procedure presented is based on the solution of the output regulator problem of linear optimal control theory for time-invariant systems. By this technique, solution of the matrix Riccati equation leads to a constant linear feedback control law for an output regulator which will maintain a plant in a particular equilibrium condition in the presence of impulse disturbances. Two simple algorithms are presented that can be used in an automatic synthesis procedure for the design of maneuverable output regulators requiring only selected state variables for feedback. The first algorithm is for the construction of optimal feedforward control laws that can be superimposed upon a Kalman output regulator and that will drive the output of a plant to a desired constant value on command. The second algorithm is for the construction of optimal Luenberger observers that can be used to obtain feedback control laws for the output regulator requiring measurement of only part of the state vector. This algorithm constructs observers which have minimum response time under the constraint that the magnitude of the gains in the observer filter be less than some arbitrary limit.

  8. Intelligent robust tracking control for a class of uncertain strict-feedback nonlinear systems.

    PubMed

    Chang, Yeong-Chan

    2009-02-01

    This paper addresses the problem of designing robust tracking controls for a large class of strict-feedback nonlinear systems involving plant uncertainties and external disturbances. The input and virtual input weighting matrices are perturbed by bounded time-varying uncertainties. An adaptive fuzzy-based (or neural-network-based) dynamic feedback tracking controller will be developed such that all the states and signals of the closed-loop system are bounded and the trajectory tracking error should be as small as possible. First, the adaptive approximators with linearly parameterized models are designed, and a partitioned procedure with respect to the developed adaptive approximators is proposed such that the implementation of the fuzzy (or neural network) basis functions depends only on the state variables but does not depend on the tuning approximation parameters. Furthermore, we extend to design the nonlinearly parameterized adaptive approximators. Consequently, the intelligent robust tracking control schemes developed in this paper possess the properties of computational simplicity and easy implementation. Finally, simulation examples are presented to demonstrate the effectiveness of the proposed control algorithms.

  9. Fuzzy Adaptive Decentralized Optimal Control for Strict Feedback Nonlinear Large-Scale Systems.

    PubMed

    Sun, Kangkang; Sui, Shuai; Tong, Shaocheng

    2018-04-01

    This paper considers the optimal decentralized fuzzy adaptive control design problem for a class of interconnected large-scale nonlinear systems in strict feedback form and with unknown nonlinear functions. The fuzzy logic systems are introduced to learn the unknown dynamics and cost functions, respectively, and a state estimator is developed. By applying the state estimator and the backstepping recursive design algorithm, a decentralized feedforward controller is established. By using the backstepping decentralized feedforward control scheme, the considered interconnected large-scale nonlinear system in strict feedback form is changed into an equivalent affine large-scale nonlinear system. Subsequently, an optimal decentralized fuzzy adaptive control scheme is constructed. The whole optimal decentralized fuzzy adaptive controller is composed of a decentralized feedforward control and an optimal decentralized control. It is proved that the developed optimal decentralized controller can ensure that all the variables of the control system are uniformly ultimately bounded, and the cost functions are the smallest. Two simulation examples are provided to illustrate the validity of the developed optimal decentralized fuzzy adaptive control scheme.

  10. Adaptive disengagement buffers self-esteem from negative social feedback.

    PubMed

    Leitner, Jordan B; Hehman, Eric; Deegan, Matthew P; Jones, James M

    2014-11-01

    The degree to which self-esteem hinges on feedback in a domain is known as a contingency of self-worth, or engagement. Although previous research has conceptualized engagement as stable, it would be advantageous for individuals to dynamically regulate engagement. The current research examined whether the tendency to disengage from negative feedback accounts for variability in self-esteem. We created the Adaptive Disengagement Scale (ADS) to capture individual differences in the tendency to disengage self-esteem from negative outcomes. Results demonstrated that the ADS is reliable and valid (Studies 1 and 2). Furthermore, in response to negative social feedback, higher scores on the ADS predicted greater state self-esteem (Study 3), and this relationship was mediated by disengagement (Study 4). These findings demonstrate that adaptive disengagement protects self-esteem from negative outcomes and that the ADS is a valid measure of individual differences in the implementation of this process. © 2014 by the Society for Personality and Social Psychology, Inc.

  11. Time-delay signature of chaos in 1550 nm VCSELs with variable-polarization FBG feedback.

    PubMed

    Li, Yan; Wu, Zheng-Mao; Zhong, Zhu-Qiang; Yang, Xian-Jie; Mao, Song; Xia, Guang-Qiong

    2014-08-11

    Based on the framework of spin-flip model (SFM), the output characteristics of a 1550 nm vertical-cavity surface-emitting laser (VCSEL) subject to variable-polarization fiber Bragg grating (FBG) feedback (VPFBGF) have been investigated. With the aid of the self-correlation function (SF) and the permutation entropy (PE) function, the time-delay signature (TDS) of chaos in the VPFBGF-VCSEL is evaluated, and then the influences of the operation parameters on the TDS of chaos are analyzed. The results show that the TDS of chaos can be suppressed efficiently through selecting suitable coupling coefficient and feedback rate of the FBG, and is weaker than that of chaos generated by traditional variable-polarization mirror feedback VCSELs (VPMF-VCSELs) or polarization-preserved FBG feedback VCSELs (PPFBGF-VCSELs).

  12. Ocean Heat Uptake Slows 21st Century Surface Warming Driven by Extratropical Cloud Feedbacks

    NASA Astrophysics Data System (ADS)

    Frey, W.; Maroon, E.; Pendergrass, A. G.; Kay, J. E.

    2017-12-01

    Equilibrium climate sensitivity (ECS), the warming in response to instantaneously doubled CO2, has long been used to compare climate models. In many models, ECS is well correlated with warming produced by transient forcing experiments. Modifications to cloud phase at high latitudes in a state-of-the-art climate model, the Community Earth System Model (CESM), produce a large increase in ECS (1.5 K) via extratropical cloud feedbacks. However, only a small surface warming increase occurs in a realistic 21st century simulation including a full-depth dynamic ocean and the "business as usual" RCP8.5 emissions scenario. In fact, the increase in surface warming is only barely above the internal variability-generated range in the CESM Large Ensemble. The small change in 21st century warming is attributed to subpolar ocean heat uptake in both hemispheres. In the Southern Ocean, the mean-state circulation takes up heat while in the North Atlantic a slowdown in circulation acts as a feedback to slow surface warming. These results show the importance of subpolar ocean heat uptake in controlling the pace of warming and demonstrate that ECS cannot be used to reliably infer transient warming when it is driven by extratropical feedbacks.

  13. Self-controlled concurrent feedback facilitates the learning of the final approach phase in a fixed-base flight simulator.

    PubMed

    Huet, Michaël; Jacobs, David M; Camachon, Cyril; Goulon, Cedric; Montagne, Gilles

    2009-12-01

    This study (a) compares the effectiveness of different types of feedback for novices who learn to land a virtual aircraft in a fixed-base flight simulator and (b) analyzes the informational variables that learners come to use after practice. An extensive body of research exists concerning the informational variables that allow successful landing. In contrast, few studies have examined how the attention of pilots can be directed toward these sources of information. In this study, 15 participants were asked to land a virtual Cessna 172 on 245 trials while trying to follow the glide-slope area as accurately as possible. Three groups of participants practiced under different feedback conditions: with self-controlled concurrent feedback (the self-controlled group), with imposed concurrent feedback (the yoked group), or without concurrent feedback (the control group). The self-controlled group outperformed the yoked group, which in turn outperformed the control group. Removing or manipulating specific sources of information during transfer tests had different effects for different individuals. However, removing the cockpit from the visual scene had a detrimental effect on the performance of the majority of the participants. Self-controlled concurrent feedback helps learners to more quickly attune to the informational variables that allow them to control the aircraft during the approach phase. Knowledge concerning feedback schedules can be used for the design of optimal practice methods for student pilots, and knowledge about the informational variables used by expert performers has implications for the design of cockpits and runways that facilitate the detection of these variables.

  14. Improvements in force variability and structure from vision- to memory-guided submaximal isometric knee extension in subacute stroke.

    PubMed

    Chow, John W; Stokic, Dobrivoje S

    2018-03-01

    We examined changes in variability, accuracy, frequency composition, and temporal regularity of force signal from vision-guided to memory-guided force-matching tasks in 17 subacute stroke and 17 age-matched healthy subjects. Subjects performed a unilateral isometric knee extension at 10, 30, and 50% of peak torque [maximum voluntary contraction (MVC)] for 10 s (3 trials each). Visual feedback was removed at the 5-s mark in the first two trials (feedback withdrawal), and 30 s after the second trial the subjects were asked to produce the target force without visual feedback (force recall). The coefficient of variation and constant error were used to quantify force variability and accuracy. Force structure was assessed by the median frequency, relative spectral power in the 0-3-Hz band, and sample entropy of the force signal. At 10% MVC, the force signal in subacute stroke subjects became steadier, more broadband, and temporally more irregular after the withdrawal of visual feedback, with progressively larger error at higher contraction levels. Also, the lack of modulation in the spectral frequency at higher force levels with visual feedback persisted in both the withdrawal and recall conditions. In terms of changes from the visual feedback condition, the feedback withdrawal produced a greater difference between the paretic, nonparetic, and control legs than the force recall. The overall results suggest improvements in force variability and structure from vision- to memory-guided force control in subacute stroke despite decreased accuracy. Different sensory-motor memory retrieval mechanisms seem to be involved in the feedback withdrawal and force recall conditions, which deserves further study. NEW & NOTEWORTHY We demonstrate that in the subacute phase of stroke, force signals during a low-level isometric knee extension become steadier, more broadband in spectral power, and more complex after removal of visual feedback. Larger force errors are produced when recalling target forces than immediately after withdrawing visual feedback. Although visual feedback offers better accuracy, it worsens force variability and structure in subacute stroke. The feedback withdrawal and force recall conditions seem to involve different memory retrieval mechanisms.

  15. Does visual feedback during walking result in similar improvements in trunk control for young and older healthy adults?

    PubMed

    Anson, Eric; Rosenberg, Russell; Agada, Peter; Kiemel, Tim; Jeka, John

    2013-11-26

    Most current applications of visual feedback to improve postural control are limited to a fixed base of support and produce mixed results regarding improved postural control and transfer to functional tasks. Currently there are few options available to provide visual feedback regarding trunk motion while walking. We have developed a low cost platform to provide visual feedback of trunk motion during walking. Here we investigated whether augmented visual position feedback would reduce trunk movement variability in both young and older healthy adults. The subjects who participated were 10 young and 10 older adults. Subjects walked on a treadmill under conditions of visual position feedback and no feedback. The visual feedback consisted of anterior-posterior (AP) and medial-lateral (ML) position of the subject's trunk during treadmill walking. Fourier transforms of the AP and ML trunk kinematics were used to calculate power spectral densities which were integrated as frequency bins "below the gait cycle" and "gait cycle and above" for analysis purposes. Visual feedback reduced movement power at very low frequencies for lumbar and neck translation but not trunk angle in both age groups. At very low frequencies of body movement, older adults had equivalent levels of movement variability with feedback as young adults without feedback. Lower variability was specific to translational (not angular) trunk movement. Visual feedback did not affect any of the measured lower extremity gait pattern characteristics of either group, suggesting that changes were not invoked by a different gait pattern. Reduced translational variability while walking on the treadmill reflects more precise control maintaining a central position on the treadmill. Such feedback may provide an important technique to augment rehabilitation to minimize body translation while walking. Individuals with poor balance during walking may benefit from this type of training to enhance path consistency during over-ground locomotion.

  16. Adaptive neural output-feedback control for nonstrict-feedback time-delay fractional-order systems with output constraints and actuator nonlinearities.

    PubMed

    Zouari, Farouk; Ibeas, Asier; Boulkroune, Abdesselem; Cao, Jinde; Mehdi Arefi, Mohammad

    2018-06-01

    This study addresses the issue of the adaptive output tracking control for a category of uncertain nonstrict-feedback delayed incommensurate fractional-order systems in the presence of nonaffine structures, unmeasured pseudo-states, unknown control directions, unknown actuator nonlinearities and output constraints. Firstly, the mean value theorem and the Gaussian error function are introduced to eliminate the difficulties that arise from the nonaffine structures and the unknown actuator nonlinearities, respectively. Secondly, the immeasurable tracking error variables are suitably estimated by constructing a fractional-order linear observer. Thirdly, the neural network, the Razumikhin Lemma, the variable separation approach, and the smooth Nussbaum-type function are used to deal with the uncertain nonlinear dynamics, the unknown time-varying delays, the nonstrict feedback and the unknown control directions, respectively. Fourthly, asymmetric barrier Lyapunov functions are employed to overcome the violation of the output constraints and to tune online the parameters of the adaptive neural controller. Through rigorous analysis, it is proved that the boundedness of all variables in the closed-loop system and the semi global asymptotic tracking are ensured without transgression of the constraints. The principal contributions of this study can be summarized as follows: (1) based on Caputo's definitions and new lemmas, methods concerning the controllability, observability and stability analysis of integer-order systems are extended to fractional-order ones, (2) the output tracking objective for a relatively large class of uncertain systems is achieved with a simple controller and less tuning parameters. Finally, computer-simulation studies from the robotic field are given to demonstrate the effectiveness of the proposed controller. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Uncertainty in Indian Ocean Dipole response to global warming: the role of internal variability

    NASA Astrophysics Data System (ADS)

    Hui, Chang; Zheng, Xiao-Tong

    2018-01-01

    The Indian Ocean Dipole (IOD) is one of the leading modes of interannual sea surface temperature (SST) variability in the tropical Indian Ocean (TIO). The response of IOD to global warming is quite uncertain in climate model projections. In this study, the uncertainty in IOD change under global warming, especially that resulting from internal variability, is investigated based on the community earth system model large ensemble (CESM-LE). For the IOD amplitude change, the inter-member uncertainty in CESM-LE is about 50% of the intermodel uncertainty in the phase 5 of the coupled model intercomparison project (CMIP5) multimodel ensemble, indicating the important role of internal variability in IOD future projection. In CESM-LE, both the ensemble mean and spread in mean SST warming show a zonal positive IOD-like (pIOD-like) pattern in the TIO. This pIOD-like mean warming regulates ocean-atmospheric feedbacks of the interannual IOD mode, and weakens the skewness of the interannual variability. However, as the changes in oceanic and atmospheric feedbacks counteract each other, the inter-member variability in IOD amplitude change is not correlated with that of the mean state change. Instead, the ensemble spread in IOD amplitude change is correlated with that in ENSO amplitude change in CESM-LE, reflecting the close inter-basin relationship between the tropical Pacific and Indian Ocean in this model.

  18. Reciprocal Markov modeling of feedback mechanisms between emotion and dietary choice using experience sampling data

    PubMed Central

    Lu, Ji; Pan, Junhao; Zhang, Qiang; Dubé, Laurette; Ip, Edward H.

    2015-01-01

    With intensively collected longitudinal data, recent advances in Experience Sampling Method (ESM) benefit social science empirical research, but also pose important methodological challenges. As traditional statistical models are not generally well-equipped to analyze a system of variables that contain feedback loops, this paper proposes the utility of an extended hidden Markov model to model reciprocal relationship between momentary emotion and eating behavior. This paper revisited an ESM data set (Lu, Huet & Dube, 2011) that observed 160 participants’ food consumption and momentary emotions six times per day in 10 days. Focusing on the analyses on feedback loop between mood and meal healthiness decision, the proposed Reciprocal Markov Model (RMM) can accommodate both hidden (“general” emotional states: positive vs. negative state) and observed states (meal: healthier, same or less healthy than usual) without presuming independence between observations and smooth trajectories of mood or behavior changes. The results of RMM analyses illustrated the reciprocal chains of meal consumption and mood as well as the effect of contextual factors that moderate the interrelationship between eating and emotion. A simulation experiment that generated data consistent to the empirical study further demonstrated that the procedure is promising in terms of recovering the parameters. PMID:26717120

  19. Framing of feedback impacts student's satisfaction, self-efficacy and performance.

    PubMed

    van de Ridder, J M Monica; Peters, Claudia M M; Stokking, Karel M; de Ru, J Alexander; Ten Cate, Olle Th J

    2015-08-01

    Feedback is considered important to acquire clinical skills. Research evidence shows that feedback does not always improve learning and its effects may be small. In many studies, a variety of variables involved in feedback provision may mask either one of their effects. E.g., there is reason to believe that the way oral feedback is framed may affect its effect if other variables are held constant. In a randomised controlled trial we investigated the effect of positively and negatively framed feedback messages on satisfaction, self-efficacy, and performance. A single blind randomised controlled between-subject design was used, with framing of the feedback message (positively-negatively) as independent variable and examination of hearing abilities as the task. First year medical students' (n = 59) satisfaction, self-efficacy, and performance were the dependent variables and were measured both directly after the intervention and after a 2 weeks delay. Students in the positively framed feedback condition were significantly more satisfied and showed significantly higher self-efficacy measured directly after the performance. Effect sizes found were large, i.e., partial η (2) = 0.43 and η (2) = 0.32 respectively. They showed a better performance throughout the whole study. Significant performance differences were found both at the initial performance and when measured 2 weeks after the intervention: effects were of medium size, respectively r = -.31 and r = -.32. Over time in both conditions performance and self-efficacy decreased. Framing the feedback message in either a positive or negative manner affects students' satisfaction and self-efficacy directly after the intervention be it that these effects seem to fade out over time. Performance may be enhanced by positive framing, but additional studies need to confirm this. We recommend using a positive frame when giving feedback on clinical skills.

  20. Quantifying the Relative Contributions of Divisive and Subtractive Feedback to Rhythm Generation

    PubMed Central

    Tabak, Joël; Rinzel, John; Bertram, Richard

    2011-01-01

    Biological systems are characterized by a high number of interacting components. Determining the role of each component is difficult, addressed here in the context of biological oscillations. Rhythmic behavior can result from the interplay of positive feedback that promotes bistability between high and low activity, and slow negative feedback that switches the system between the high and low activity states. Many biological oscillators include two types of negative feedback processes: divisive (decreases the gain of the positive feedback loop) and subtractive (increases the input threshold) that both contribute to slowly move the system between the high- and low-activity states. Can we determine the relative contribution of each type of negative feedback process to the rhythmic activity? Does one dominate? Do they control the active and silent phase equally? To answer these questions we use a neural network model with excitatory coupling, regulated by synaptic depression (divisive) and cellular adaptation (subtractive feedback). We first attempt to apply standard experimental methodologies: either passive observation to correlate the variations of a variable of interest to system behavior, or deletion of a component to establish whether a component is critical for the system. We find that these two strategies can lead to contradictory conclusions, and at best their interpretive power is limited. We instead develop a computational measure of the contribution of a process, by evaluating the sensitivity of the active (high activity) and silent (low activity) phase durations to the time constant of the process. The measure shows that both processes control the active phase, in proportion to their speed and relative weight. However, only the subtractive process plays a major role in setting the duration of the silent phase. This computational method can be used to analyze the role of negative feedback processes in a wide range of biological rhythms. PMID:21533065

  1. Mental models of audit and feedback in primary care settings.

    PubMed

    Hysong, Sylvia J; Smitham, Kristen; SoRelle, Richard; Amspoker, Amber; Hughes, Ashley M; Haidet, Paul

    2018-05-30

    Audit and feedback has been shown to be instrumental in improving quality of care, particularly in outpatient settings. The mental model individuals and organizations hold regarding audit and feedback can moderate its effectiveness, yet this has received limited study in the quality improvement literature. In this study we sought to uncover patterns in mental models of current feedback practices within high- and low-performing healthcare facilities. We purposively sampled 16 geographically dispersed VA hospitals based on high and low performance on a set of chronic and preventive care measures. We interviewed up to 4 personnel from each location (n = 48) to determine the facility's receptivity to audit and feedback practices. Interview transcripts were analyzed via content and framework analysis to identify emergent themes. We found high variability in the mental models of audit and feedback, which we organized into positive and negative themes. We were unable to associate mental models of audit and feedback with clinical performance due to high variance in facility performance over time. Positive mental models exhibit perceived utility of audit and feedback practices in improving performance; whereas, negative mental models did not. Results speak to the variability of mental models of feedback, highlighting how facilities perceive current audit and feedback practices. Findings are consistent with prior research  in that variability in feedback mental models is associated with lower performance.; Future research should seek to empirically link mental models revealed in this paper to high and low levels of clinical performance.

  2. Spring snow albedo feedback in daily data over Russia: Comparing in-situ measurements with reanalysis products.

    NASA Astrophysics Data System (ADS)

    Wegmann, M.; Zolina, O.; Jacobi, H. W.

    2016-12-01

    Global warming is enhanced at high northern latitudes where the Arctic surface air temperature has risen at twice the rate of the global average in recent decades - a feature called Arctic amplification. This recent Arctic warming signal likely results from several factors such as the albedo feedback due to a diminishing cryosphere, enhanced poleward atmospheric and oceanic heat transport, and changes in humidity. Surface albedo feedback is stating that the additional amount of shortwave radiation at the top of the atmosphere decreases with decreasing surface albedo whereas surface air temperature increases with decreasing surface albedo. It is considered a positive feedback in that an initial warming perturbation than kicks off a strengthening warming. Looking at the Northern Hemisphere with its large landmasses, snow albedo feedback is especially strong since most of these landmasses experience snow cover during boreal wintertime. Unfortunately, so far there remains a lack of reliable observational data over large parts of the cryosphere. Satellite products cover large parts of the NH, however lack high temporal resolution and have problems with large solar zenith angles as well as over complex terrain (eg. Wang et al. 2014). Our analysis focuses at the Russian territory where we utilize in-situ radiation and snow depth measurements. We found 50 stations which measure both variables on a daily basis for the period 2000-2013. Since Hall (2004) found that 50% of the notal NH snow albedo feedback caused by global warming occurs during NH spring, we focus on the transition period of March to June (MAMJ). Thackeray & Fletcher 2006 compared albedo feedback processes CMIP3 and CMIP5 model families and found while the models represent the feedback process accurately, there are still inherent biases and outdated parameterizations. Therefore we use the daily observations and state of the art reanalysis products to 1) evaluate reanalysis and model products in respect to radiation properties, 2) investigate snow albedo feedbacks on a daily scale during spring and 3) to suggest climate change signals over Russia in albedo feedback between 2000 - 2013 based on in-situ measurements.

  3. Adaptive Fuzzy Tracking Control for a Class of MIMO Nonlinear Systems in Nonstrict-Feedback Form.

    PubMed

    Chen, Bing; Lin, Chong; Liu, Xiaoping; Liu, Kefu

    2015-12-01

    This paper focuses on the problem of fuzzy adaptive control for a class of multiinput and multioutput (MIMO) nonlinear systems in nonstrict-feedback form, which contains the strict-feedback form as a special case. By the condition of variable partition, a new fuzzy adaptive backstepping is proposed for such a class of nonlinear MIMO systems. The suggested fuzzy adaptive controller guarantees that the proposed control scheme can guarantee that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded and the tracking errors eventually converge to a small neighborhood around the origin. The main advantage of this paper is that a control approach is systematically derived for nonlinear systems with strong interconnected terms which are the functions of all states of the whole system. Simulation results further illustrate the effectiveness of the suggested approach.

  4. Black holes on FIRE: stellar feedback limits early feeding of galactic nuclei

    NASA Astrophysics Data System (ADS)

    Anglés-Alcázar, Daniel; Faucher-Giguère, Claude-André; Quataert, Eliot; Hopkins, Philip F.; Feldmann, Robert; Torrey, Paul; Wetzel, Andrew; Kereš, Dušan

    2017-11-01

    We introduce massive black holes (BHs) in the Feedback In Realistic Environments (FIRE) project and perform high-resolution cosmological hydrodynamic simulations of quasar-mass haloes [Mhalo(z = 2) ≈ 1012.5 M⊙] down to z = 1. These simulations model stellar feedback by supernovae, stellar winds and radiation, and BH growth using a gravitational torque-based prescription tied to the resolved properties of galactic nuclei. We do not include BH feedback. We show that early BH growth occurs through short (≲1 Myr) accretion episodes that can reach or even exceed the Eddington rate. In this regime, BH growth is limited by bursty stellar feedback continuously evacuating gas from galactic nuclei, and BHs remain undermassive in low-mass galaxies relative to the local MBH-Mbulgerelation. BH growth is more efficient at later times, when the nuclear stellar potential retains a significant gas reservoir, star formation becomes less bursty and galaxies settle into a more ordered state. BHs rapidly converge on to the observed scaling relations when the host reaches Mbulge ∼ 1010 M⊙. We show that resolving the effects of stellar feedback on the gas supply in the inner ∼100 pc of galaxies is necessary to accurately capture the growth of central BHs. Our simulations imply that bursty stellar feedback has important implications for BH-galaxy relations, AGN demographics and time variability, the formation of early quasars and massive BH mergers.

  5. A technique for pole-zero placement for dual-input control systems. [computer simulation of CH-47 helicopter longitudinal dynamics

    NASA Technical Reports Server (NTRS)

    Reid, G. F.

    1976-01-01

    A technique is presented for determining state variable feedback gains that will place both the poles and zeros of a selected transfer function of a dual-input control system at pre-determined locations in the s-plane. Leverrier's algorithm is used to determine the numerator and denominator coefficients of the closed-loop transfer function as functions of the feedback gains. The values of gain that match these coefficients to those of a pre-selected model are found by solving two systems of linear simultaneous equations. The algorithm has been used in a computer simulation of the CH-47 helicopter to control longitudinal dynamics.

  6. Identifying Mentors' Observations for Providing Feedback

    ERIC Educational Resources Information Center

    Hudson, Peter

    2016-01-01

    Mentors' feedback can assist preservice teachers' development; yet feedback tends to be variable from one mentor to the next. What do mentors observe for providing feedback? In this study, 24 mentors observed a final-year preservice teacher through a professionally video-recorded lesson and provided written notes for feedback. They observed the…

  7. Feedback of Client-Relevant Information and Clinical Practice

    ERIC Educational Resources Information Center

    Dana, Richard H.; Graham, E. Diane

    1976-01-01

    The literature suggests that how one reacts to feedback is influenced by kind of feedback, conditions under which feedback is presented, and a variety of relevant subject variables. The most frequent design has resulted in acceptance of false feedback by college students leading to derogation of instruments and assessors. (Author/MV)

  8. Erratum: Correction to: On the relative strength of radiative feedbacks under climate variability and change

    NASA Astrophysics Data System (ADS)

    Colman, Robert; Hanson, Lawson

    2018-06-01

    Two errors were discovered in the calculation of decadal feedbacks under RCP8.5: (i) cloud short wave (SW) and total feedbacks were miscalculated; and (ii) surface albedo and SW water vapour feedbacks were swapped when calculating regressions with climate change feedbacks.

  9. Control of AUVs using differential flatness theory and the derivative-free nonlinear Kalman Filter

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Raffo, Guilerme

    2015-12-01

    The paper proposes nonlinear control and filtering for Autonomous Underwater Vessels (AUVs) based on differential flatness theory and on the use of the Derivative-free nonlinear Kalman Filter. First, it is shown that the 6-DOF dynamic model of the AUV is a differentially flat one. This enables its transformation into the linear canonical (Brunovsky) form and facilitates the design of a state feedback controller. A problem that has to be dealt with is the uncertainty about the parameters of the AUV's dynamic model, as well the external perturbations which affect its motion. To cope with this, it is proposed to use a disturbance observer which is based on the Derivative-free nonlinear Kalman Filter. The considered filtering method consists of the standard Kalman Filter recursion applied on the linearized model of the vessel and of an inverse transformation based on differential flatness theory, which enables to obtain estimates of the state variables of the initial nonlinear model of the vessel. The Kalman Filter-based disturbance observer performs simultaneous estimation of the non-measurable state variables of the AUV and of the perturbation terms that affect its dynamics. By estimating such disturbances, their compensation is also succeeded through suitable modification of the feedback control input. The efficiency of the proposed AUV control and estimation scheme is confirmed through simulation experiments.

  10. Improving the effectiveness of performance feedback by considering personality traits and task demands

    PubMed Central

    Peterson, Jordan B.

    2018-01-01

    Although performance feedback is widely employed as a means to improve motivation, the efficacy and reliability of performance feedback is often obscured by individual differences and situational variables. The joint role of these moderating variables remains unknown. Accordingly, we investigate how the motivational impact of feedback is moderated by personality and task-difficulty. Utilizing three samples (total N = 916), we explore how Big Five personality traits moderate the motivational impact of false positive and negative feedback on playful, neutral, and frustrating puzzle tasks, respectively. Conscientious and Neurotic individuals together appear particularly sensitive to task difficulty, becoming significantly more motivated by negative feedback on playful tasks and demotivated by negative feedback on frustrating tasks. Results are discussed in terms of Goal-Setting and Self Determination Theory. Implications for industry and education are considered. PMID:29787593

  11. A m-ary linear feedback shift register with binary logic

    NASA Technical Reports Server (NTRS)

    Perlman, M. (Inventor)

    1973-01-01

    A family of m-ary linear feedback shift registers with binary logic is disclosed. Each m-ary linear feedback shift register with binary logic generates a binary representation of a nonbinary recurring sequence, producible with a m-ary linear feedback shift register without binary logic in which m is greater than 2. The state table of a m-ary linear feedback shift register without binary logic, utilizing sum modulo m feedback, is first tubulated for a given initial state. The entries in the state table are coded in binary and the binary entries are used to set the initial states of the stages of a plurality of binary shift registers. A single feedback logic unit is employed which provides a separate feedback binary digit to each binary register as a function of the states of corresponding stages of the binary registers.

  12. Towards a high resolution, integrated hydrology model of North America: Diagnosis of feedbacks between groundwater and land energy fluxes at continental scales.

    NASA Astrophysics Data System (ADS)

    Maxwell, Reed; Condon, Laura

    2016-04-01

    Recent studies demonstrate feedbacks between groundwater dynamics, overland flow, land surface and vegetation processes, and atmospheric boundary layer development that significantly affect local and regional climate across a range of climatic conditions. Furthermore, the type and distribution of vegetation cover alters land-atmosphere water and energy fluxes, as well as runoff generation and overland flow processes. These interactions can result in significant feedbacks on local and regional climate. In mountainous regions, recent research has shown that spatial and temporal variability in annual evapotranspiration, and thus water budgets, is strongly dependent on lateral groundwater flow; however, the full effects of these feedbacks across varied terrain (e.g. from plains to mountains) are not well understood. Here, we present a high-resolution, integrated hydrology model that covers much of continental North America and encompasses the Mississippi and Colorado watersheds. The model is run in a fully-transient manner at hourly temporal resolution incorporating fully-coupled land energy states and fluxes with integrated surface and subsurface hydrology. Connections are seen between hydrologic variables (such as water table depth) and land energy fluxes (such as latent heat) and spatial and temporal scaling is shown to span many orders of magnitude. Model results suggest that partitioning of plant transpiration to bare soil evaporation is a function of water table depth and later groundwater flow. Using these transient simulations as a proof of concept, we present a vision for future integrated simulation capabilities.

  13. Variables in Human Consequation/Feedback.

    DTIC Science & Technology

    1979-07-31

    that make consequators effective , in each case listed according to the aspects that characterize them and their relationships with consequators ; another...category consists of the purposes and effects of consequated actions. The compilation draws variables from both cognitive research in information...This report presents salient variables in consequation or feedback processes that affect human behavior. As comprehensive a compilation has not been

  14. A variable-gain output feedback control design methodology

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim; Moerder, Daniel D.; Broussard, John R.; Taylor, Deborah B.

    1989-01-01

    A digital control system design technique is developed in which the control system gain matrix varies with the plant operating point parameters. The design technique is obtained by formulating the problem as an optimal stochastic output feedback control law with variable gains. This approach provides a control theory framework within which the operating range of a control law can be significantly extended. Furthermore, the approach avoids the major shortcomings of the conventional gain-scheduling techniques. The optimal variable gain output feedback control problem is solved by embedding the Multi-Configuration Control (MCC) problem, previously solved at ICS. An algorithm to compute the optimal variable gain output feedback control gain matrices is developed. The algorithm is a modified version of the MCC algorithm improved so as to handle the large dimensionality which arises particularly in variable-gain control problems. The design methodology developed is applied to a reconfigurable aircraft control problem. A variable-gain output feedback control problem was formulated to design a flight control law for an AFTI F-16 aircraft which can automatically reconfigure its control strategy to accommodate failures in the horizontal tail control surface. Simulations of the closed-loop reconfigurable system show that the approach produces a control design which can accommodate such failures with relative ease. The technique can be applied to many other problems including sensor failure accommodation, mode switching control laws and super agility.

  15. Data-Driven User Feedback: An Improved Neurofeedback Strategy considering the Interindividual Variability of EEG Features.

    PubMed

    Han, Chang-Hee; Lim, Jeong-Hwan; Lee, Jun-Hak; Kim, Kangsan; Im, Chang-Hwan

    2016-01-01

    It has frequently been reported that some users of conventional neurofeedback systems can experience only a small portion of the total feedback range due to the large interindividual variability of EEG features. In this study, we proposed a data-driven neurofeedback strategy considering the individual variability of electroencephalography (EEG) features to permit users of the neurofeedback system to experience a wider range of auditory or visual feedback without a customization process. The main idea of the proposed strategy is to adjust the ranges of each feedback level using the density in the offline EEG database acquired from a group of individuals. Twenty-two healthy subjects participated in offline experiments to construct an EEG database, and five subjects participated in online experiments to validate the performance of the proposed data-driven user feedback strategy. Using the optimized bin sizes, the number of feedback levels that each individual experienced was significantly increased to 139% and 144% of the original results with uniform bin sizes in the offline and online experiments, respectively. Our results demonstrated that the use of our data-driven neurofeedback strategy could effectively increase the overall range of feedback levels that each individual experienced during neurofeedback training.

  16. Data-Driven User Feedback: An Improved Neurofeedback Strategy considering the Interindividual Variability of EEG Features

    PubMed Central

    Lim, Jeong-Hwan; Lee, Jun-Hak; Kim, Kangsan

    2016-01-01

    It has frequently been reported that some users of conventional neurofeedback systems can experience only a small portion of the total feedback range due to the large interindividual variability of EEG features. In this study, we proposed a data-driven neurofeedback strategy considering the individual variability of electroencephalography (EEG) features to permit users of the neurofeedback system to experience a wider range of auditory or visual feedback without a customization process. The main idea of the proposed strategy is to adjust the ranges of each feedback level using the density in the offline EEG database acquired from a group of individuals. Twenty-two healthy subjects participated in offline experiments to construct an EEG database, and five subjects participated in online experiments to validate the performance of the proposed data-driven user feedback strategy. Using the optimized bin sizes, the number of feedback levels that each individual experienced was significantly increased to 139% and 144% of the original results with uniform bin sizes in the offline and online experiments, respectively. Our results demonstrated that the use of our data-driven neurofeedback strategy could effectively increase the overall range of feedback levels that each individual experienced during neurofeedback training. PMID:27631005

  17. Does a Relationship Between Arctic Low Clouds and Sea Ice Matter?

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick C.

    2016-01-01

    Arctic low clouds strongly affect the Arctic surface energy budget. Through this impact Arctic low clouds influence important aspects of the Arctic climate system, namely surface and atmospheric temperature, sea ice extent and thickness, and atmospheric circulation. Arctic clouds are in turn influenced by these elements of the Arctic climate system, and these interactions create the potential for Arctic cloud-climate feedbacks. To further our understanding of potential Arctic cloudclimate feedbacks, the goal of this paper is to quantify the influence of atmospheric state on the surface cloud radiative effect (CRE) and its covariation with sea ice concentration (SIC). We build on previous research using instantaneous, active remote sensing satellite footprint data from the NASA A-Train. First, the results indicate significant differences in the surface CRE when stratified by atmospheric state. Second, there is a weak covariation between CRE and SIC for most atmospheric conditions. Third, the results show statistically significant differences in the average surface CRE under different SIC values in fall indicating a 3-5 W m(exp -2) larger LW CRE in 0% versus 100% SIC footprints. Because systematic changes on the order of 1 W m(exp -2) are sufficient to explain the observed long-term reductions in sea ice extent, our results indicate a potentially significant amplifying sea ice-cloud feedback, under certain meteorological conditions, that could delay the fall freeze-up and influence the variability in sea ice extent and volume. Lastly, a small change in the frequency of occurrence of atmosphere states may yield a larger Arctic cloud feedback than any cloud response to sea ice.

  18. Enhancement of vegetation-rainfall feedbacks on the Australian summer monsoon by the Madden-Julian Oscillation

    NASA Astrophysics Data System (ADS)

    Notaro, Michael

    2018-01-01

    A regional climate modeling analysis of the Australian monsoon system reveals a substantial modulation of vegetation-rainfall feedbacks by the Madden Julian Oscillation (MJO), both of which operate at similar sub-seasonal time scales, as evidence that the intensity of land-atmosphere interactions is sensitive to the background atmospheric state. Based on ensemble experiments with imposed modification of northern Australian leaf area index (LAI), the atmospheric responses to LAI anomalies are composited for negative and positive modes of the propagating MJO. In the regional climate model (RCM), northern Australian vegetation feedbacks are characterized by evapotranspiration (ET)-driven rainfall responses, with the moisture feedback mechanism dominating over albedo and roughness feedback mechanisms. During November-April, both Tropical Rainfall Measuring Mission and RCM data reveal MJO's pronounced influence on rainfall patterns across northern Australia, tropical Indian Ocean, Timor Sea, Arafura Sea, and Gulf of Carpentaria, with the MJO dominating over vegetation feedbacks in terms of regulating monsoon rainfall variability. Convectively-active MJO phases support an enhancement of positive vegetation feedbacks on monsoon rainfall. While the MJO imposes minimal regulation of ET responses to LAI anomalies, the vegetation feedback-induced responses in precipitable water, cloud water, and rainfall are greatly enhanced during convectively-active MJO phases over northern Australia, which are characterized by intense low-level convergence and efficient precipitable water conversion. The sub-seasonal response of vegetation-rainfall feedback intensity to the MJO is complex, with significant enhancement of rainfall responses to LAI anomalies in February during convectively-active MJO phases compared to minimal modulation by the MJO during prior and subsequent calendar months.

  19. Reduced cooling following future volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Hopcroft, Peter O.; Kandlbauer, Jessy; Valdes, Paul J.; Sparks, R. Stephen J.

    2017-11-01

    Volcanic eruptions are an important influence on decadal to centennial climate variability. Large eruptions lead to the formation of a stratospheric sulphate aerosol layer which can cause short-term global cooling. This response is modulated by feedback processes in the earth system, but the influence from future warming has not been assessed before. Using earth system model simulations we find that the eruption-induced cooling is significantly weaker in the future state. This is predominantly due to an increase in planetary albedo caused by increased tropospheric aerosol loading with a contribution from associated changes in cloud properties. The increased albedo of the troposphere reduces the effective volcanic aerosol radiative forcing. Reduced sea-ice coverage and hence feedbacks also contribute over high-latitudes, and an enhanced winter warming signal emerges in the future eruption ensemble. These findings show that the eruption response is a complex function of the environmental conditions, which has implications for the role of eruptions in climate variability in the future and potentially in the past.

  20. Soil Moisture Controls on Rainfall and Temperature Variability: A Modeler Searches Through Observational Data

    NASA Technical Reports Server (NTRS)

    Koster, Randal

    2010-01-01

    The degree to which atmospheric processes respond to variations in soil moisture - a potentially important but largely untapped element of subseasonal to seasonal prediction - can be determined easily and directly for an atmospheric model but cannot be determined directly for nature through an analysis of observations. In atmospheric models) directions of causality can be artificially manipulated; we can avoid difficulties associated with the fact that atmospheric variations have a much larger impact on land state variations than vice-versa. In nature) on the other hand) the dominant direction of causality (the atmosphere forcing the ground) cannot be artificially "turned off") and the statistics associated with this dominant direction overwhelm those of the feedback signal. Observational data) however) do allow a number of indirect measures of landatmosphere feedback. This seminar reports on a series of joint analyses of observational and model data designed to illuminate the degree of land-atmosphere feedback present in the real world. The indirect measures do in fact suggest that feedback in nature, though small) is significant - enough to warrant the development of realistic land initialization strategies for subseasonal and seasonal forecasts.

  1. Thrust control system design of ducted rockets

    NASA Astrophysics Data System (ADS)

    Chang, Juntao; Li, Bin; Bao, Wen; Niu, Wenyu; Yu, Daren

    2011-07-01

    The investigation of the thrust control system is aroused by the need for propulsion system of ducted rockets. Firstly the dynamic mathematical models of gas flow regulating system, pneumatic servo system and ducted rocket engine were established and analyzed. Then, to conquer the discussed problems of thrust control, the idea of information fusion was proposed to construct a new feedback variable. With this fused feedback variable, the thrust control system was designed. According to the simulation results, the introduction of the new fused feedback variable is valid in eliminating the contradiction between rapid response and stability for the thrust control system of ducted rockets.

  2. From Wang-Chen System with Only One Stable Equilibrium to a New Chaotic System Without Equilibrium

    NASA Astrophysics Data System (ADS)

    Pham, Viet-Thanh; Wang, Xiong; Jafari, Sajad; Volos, Christos; Kapitaniak, Tomasz

    2017-06-01

    Wang-Chen system with only one stable equilibrium as well as the coexistence of hidden attractors has attracted increasing interest due to its striking features. In this work, the effect of state feedback on Wang-Chen system is investigated by introducing a further state variable. It is worth noting that a new chaotic system without equilibrium is obtained. We believe that the system is an interesting example to illustrate the conversion of hidden attractors with one stable equilibrium to hidden attractors without equilibrium.

  3. Understanding the role of ecohydrological feedbacks in ecosystem state change in drylands

    USGS Publications Warehouse

    Turnbull, L.; Wilcox, B.P.; Belnap, J.; Ravi, S.; D'Odorico, P.; Childers, D.; Gwenzi, W.; Okin, G.; Wainwright, J.; Caylor, K.K.; Sankey, T.

    2012-01-01

    Ecohydrological feedbacks are likely to be critical for understanding the mechanisms by which changes in exogenous forces result in ecosystem state change. We propose that in drylands, the dynamics of ecosystem state change are determined by changes in the type (stabilizing vs amplifying) and strength of ecohydrological feedbacks following a change in exogenous forces. Using a selection of five case studies from drylands, we explore the characteristics of ecohydrological feedbacks and resulting dynamics of ecosystem state change. We surmise that stabilizing feedbacks are critical for the provision of plant-essential resources in drylands. Exogenous forces that break these stabilizing feedbacks can alter the state of the system, although such changes are potentially reversible if strong amplifying ecohydrological feedbacks do not develop. The case studies indicate that if amplifying ecohydrological feedbacks do develop, they are typically associated with abiotic processes such as runoff, erosion (by wind and water), and fire. These amplifying ecohydrological feedbacks progressively modify the system in ways that are long-lasting and possibly irreversible on human timescales.

  4. The evolution of El Niño through the Pliocene

    NASA Astrophysics Data System (ADS)

    White, S. M.; Ravelo, A. C.

    2017-12-01

    ENSO is an important source of variability in the hydrological cycle, but its dependence on mean SSTs, thermocline depth, and other aspects of mean climate state remains unclear. The Pliocene (2.6-5.3 Ma) is an excellent test case because the tropical Pacific was markedly different than today, with much warmer SSTs in the eastern equatorial Pacific, a much lower east-west temperature difference, and a deeper thermocline across the entire basin [e.g. Ford et al., 2015; Lawrence et al., 2006; Wara et al., 2005]. This would be expected to weaken the Bjerknes and thermocline feedbacks, thus strongly dampening ENSO. However, paleoclimate data from the Pliocene show ENSO-like variability [Scroxton et al., 2011; Watanabe et al., 2011; Weiss et al., 2017], implying that opposing feedbacks may have counteracted changes in the Bjerknes and thermocline feedbacks, as suggested by Manucharyan and Fedorov [2014]. As of yet, however, reconstructions of Pliocene ENSO are too sparse to confidently ascribe changes in ENSO to changes in mean state parameters such as SST and thermocline depth. To generate a record of SST variability spanning the Pliocene, we analyzed individual planktonic foraminifera for Mg/Ca, yielding a distribution of temperatures representing monthly SST variability from each selected time interval. We used marine sediments from ODP 849 in the eastern equatorial Pacific, in ENSO's center of action. To compare Pliocene temperature distributions to those of the late Holocene, we use quantile-quantile plots. Differences in the warm "tail" of the distribution are attributable to changes in El Niño. We find that at 5.5 Ma, possibly before closure of the Panamanian seaway, the amplitude of El Niño events appears similar to those of the late Holocene, in agreement with contemporaneous coral data [Weiss et al., 2017]. During most of the Pliocene, El Niño was dampened, and strengthened to its present amplitude by 3.1 Ma, in concert with a long-term shoaling of the thermocline and development of the eastern Pacific cold tongue.

  5. Towards a high resolution, integrated hydrology model of North America.

    NASA Astrophysics Data System (ADS)

    Maxwell, R. M.; Condon, L. E.

    2015-12-01

    Recent studies demonstrate feedbacks between groundwater dynamics, overland flow, land surface and vegetation processes, and atmospheric boundary layer development that significantly affect local and regional climate across a range of climatic conditions. Furthermore, the type and distribution of vegetation cover alters land-atmosphere water and energy fluxes, as well as runoff generation and overland flow processes. These interactions can result in significant feedbacks on local and regional climate. In mountainous regions, recent research has shown that spatial and temporal variability in annual evapotranspiration, and thus water budgets, is strongly dependent on lateral groundwater flow; however, the full effects of these feedbacks across varied terrain (e.g. from plains to mountains) are not well understood. Here, we present a high-resolution, integrated hydrology model that covers much of continental North America and encompasses the Mississippi and Colorado watersheds. The model is run in a fully-transient manner at hourly temporal resolution incorporating fully-coupled land energy states and fluxes with integrated surface and subsurface hydrology. Connections are seen between hydrologic variables (such as water table depth) and land energy fluxes (such as latent heat) and spatial and temporal scaling is shown to span many orders of magnitude. Using these transient simulations as a proof of concept, we present a vision for future integrated simulation capabilities.

  6. Framing of Feedback Impacts Student's Satisfaction, Self-Efficacy and Performance

    ERIC Educational Resources Information Center

    van de Ridder, J. M. Monica; Peters, Claudia M. M.; Stokking, Karel M.; de Ru, J. Alexander; ten Cate, Olle Th. J.

    2015-01-01

    Feedback is considered important to acquire clinical skills. Research evidence shows that feedback does not always improve learning and its effects may be small. In many studies, a variety of variables involved in feedback provision may mask either one of their effects. E.g., there is reason to believe that the way oral feedback is framed may…

  7. The role of feedback information for calibration and attunement in perceiving length by dynamic touch.

    PubMed

    Withagen, Rob; Michaels, Claire F

    2005-12-01

    Two processes have been hypothesized to underlie improvement in perception: attunement and calibration. These processes were examined in a dynamic touch paradigm in which participants were asked to report the lengths of unseen, wielded rods differing in length, diameter, and material. Two experiments addressed whether feedback informs about the need for reattunement and recalibration. Feedback indicating actual length induced both recalibration and reattunement. Recalibration did not occur when feedback indicated only whether 2 rods were of the same length or of different lengths. Such feedback, however, did induce reattunement. These results suggest that attunement and calibration are dissociable processes and that feedback informs which is needed. The observed change in variable use has implications also for research on what mechanical variables underlie length perception by dynamic touch. (c) 2005 APA, all rights reserved.

  8. Positive Feedback Keeps Duration of Mitosis Temporally Insulated from Upstream Cell-Cycle Events.

    PubMed

    Araujo, Ana Rita; Gelens, Lendert; Sheriff, Rahuman S M; Santos, Silvia D M

    2016-10-20

    Cell division is characterized by a sequence of events by which a cell gives rise to two daughter cells. Quantitative measurements of cell-cycle dynamics in single cells showed that despite variability in G1-, S-, and G2 phases, duration of mitosis is short and remarkably constant. Surprisingly, there is no correlation between cell-cycle length and mitotic duration, suggesting that mitosis is temporally insulated from variability in earlier cell-cycle phases. By combining live cell imaging and computational modeling, we showed that positive feedback is the molecular mechanism underlying the temporal insulation of mitosis. Perturbing positive feedback gave rise to a sluggish, variable entry and progression through mitosis and uncoupled duration of mitosis from variability in cell cycle length. We show that positive feedback is important to keep mitosis short, constant, and temporally insulated and anticipate it might be a commonly used regulatory strategy to create modularity in other biological systems. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Reliability of performance velocity for jump squats under feedback and nonfeedback conditions.

    PubMed

    Randell, Aaron D; Cronin, John B; Keogh, Justin Wl; Gill, Nicholas D; Pedersen, Murray C

    2011-12-01

    Randell, AD, Cronin, JB, Keogh, JWL, Gill, ND, and Pedersen, MC. Reliability of performance velocity for jump squats under feedback and nonfeedback conditions. J Strength Cond Res 25(12): 3514-3518, 2011-Advancements in the monitoring of kinematic and kinetic variables during resistance training have resulted in the ability to continuously monitor performance and provide feedback during training. If equipment and software can provide reliable instantaneous feedback related to the variable of interest during training, it is thought that this may result in goal-oriented movement tasks that increase the likelihood of transference to on-field performance or at the very least improve the mechanical variable of interest. The purpose of this study was to determine the reliability of performance velocity for jump squats under feedback and nonfeedback conditions over 3 consecutive training sessions. Twenty subjects were randomly allocated to a feedback or nonfeedback group, and each group performed a total of 3 "jump squat" training sessions with the velocity of each repetition measured using a linear position transducer. There was less change in mean velocities between sessions 1-2 and sessions 2-3 (0.07 and 0.02 vs. 0.13 and -0.04 m·s), less random variation (TE = 0.06 and 0.06 vs. 0.10 and 0.07 m·s) and greater consistency (intraclass correlation coefficient = 0.83 and 0.87 vs. 0.53 and 0.74) between sessions for the feedback condition as compared to the nonfeedback condition. It was concluded that there is approximately a 50-50 probability that the provision of feedback was beneficial to the performance in the squat jump over multiple sessions. It is suggested that this has the potential for increasing transference to on-field performance or at the very least improving the mechanical variable of interest.

  10. A study of the application of singular perturbation theory. [development of a real time algorithm for optimal three dimensional aircraft maneuvers

    NASA Technical Reports Server (NTRS)

    Mehra, R. K.; Washburn, R. B.; Sajan, S.; Carroll, J. V.

    1979-01-01

    A hierarchical real time algorithm for optimal three dimensional control of aircraft is described. Systematic methods are developed for real time computation of nonlinear feedback controls by means of singular perturbation theory. The results are applied to a six state, three control variable, point mass model of an F-4 aircraft. Nonlinear feedback laws are presented for computing the optimal control of throttle, bank angle, and angle of attack. Real Time capability is assessed on a TI 9900 microcomputer. The breakdown of the singular perturbation approximation near the terminal point is examined Continuation methods are examined to obtain exact optimal trajectories starting from the singular perturbation solutions.

  11. A prototype framework for models of socio-hydrology: identification of key feedback loops and parameterisation approach

    NASA Astrophysics Data System (ADS)

    Elshafei, Y.; Sivapalan, M.; Tonts, M.; Hipsey, M. R.

    2014-06-01

    It is increasingly acknowledged that, in order to sustainably manage global freshwater resources, it is critical that we better understand the nature of human-hydrology interactions at the broader catchment system scale. Yet to date, a generic conceptual framework for building models of catchment systems that include adequate representation of socioeconomic systems - and the dynamic feedbacks between human and natural systems - has remained elusive. In an attempt to work towards such a model, this paper outlines a generic framework for models of socio-hydrology applicable to agricultural catchments, made up of six key components that combine to form the coupled system dynamics: namely, catchment hydrology, population, economics, environment, socioeconomic sensitivity and collective response. The conceptual framework posits two novel constructs: (i) a composite socioeconomic driving variable, termed the Community Sensitivity state variable, which seeks to capture the perceived level of threat to a community's quality of life, and acts as a key link tying together one of the fundamental feedback loops of the coupled system, and (ii) a Behavioural Response variable as the observable feedback mechanism, which reflects land and water management decisions relevant to the hydrological context. The framework makes a further contribution through the introduction of three macro-scale parameters that enable it to normalise for differences in climate, socioeconomic and political gradients across study sites. In this way, the framework provides for both macro-scale contextual parameters, which allow for comparative studies to be undertaken, and catchment-specific conditions, by way of tailored "closure relationships", in order to ensure that site-specific and application-specific contexts of socio-hydrologic problems can be accommodated. To demonstrate how such a framework would be applied, two socio-hydrological case studies, taken from the Australian experience, are presented and the parameterisation approach that would be taken in each case is discussed. Preliminary findings in the case studies lend support to the conceptual theories outlined in the framework. It is envisioned that the application of this framework across study sites and gradients will aid in developing our understanding of the fundamental interactions and feedbacks in such complex human-hydrology systems, and allow hydrologists to improve social-ecological systems modelling through better representation of human feedbacks on hydrological processes.

  12. Influence of the optimization methods on neural state estimation quality of the drive system with elasticity.

    PubMed

    Orlowska-Kowalska, Teresa; Kaminski, Marcin

    2014-01-01

    The paper deals with the implementation of optimized neural networks (NNs) for state variable estimation of the drive system with an elastic joint. The signals estimated by NNs are used in the control structure with a state-space controller and additional feedbacks from the shaft torque and the load speed. High estimation quality is very important for the correct operation of a closed-loop system. The precision of state variables estimation depends on the generalization properties of NNs. A short review of optimization methods of the NN is presented. Two techniques typical for regularization and pruning methods are described and tested in detail: the Bayesian regularization and the Optimal Brain Damage methods. Simulation results show good precision of both optimized neural estimators for a wide range of changes of the load speed and the load torque, not only for nominal but also changed parameters of the drive system. The simulation results are verified in a laboratory setup.

  13. A meta-analytic examination of the goal orientation nomological net.

    PubMed

    Payne, Stephanie C; Youngcourt, Satoris S; Beaubien, J Matthew

    2007-01-01

    The authors present an empirical review of the literature concerning trait and state goal orientation (GO). Three dimensions of GO were examined: learning, prove performance, and avoid performance along with presumed antecedents and proximal and distal consequences of these dimensions. Antecedent variables included cognitive ability, implicit theory of intelligence, need for achievement, self-esteem, general self-efficacy, and the Big Five personality characteristics. Proximal consequences included state GO, task-specific self-efficacy, self-set goal level, learning strategies, feedback seeking, and state anxiety. Distal consequences included learning, academic performance, task performance, and job performance. Generally speaking, learning GO was positively correlated, avoid performance GO was negatively correlated, and prove performance GO was uncorrelated with these variables. Consistent with theory, state GO tended to have stronger relationships with the distal consequences than did trait GO. Finally, using a meta-correlation matrix, the authors found that trait GO predicted job performance above and beyond cognitive ability and personality. These results demonstrate the value of GO to organizational researchers. 2007 APA, all rights reserved

  14. Evaluating Land-Atmosphere Moisture Feedbacks in Earth System Models With Spaceborne Observations

    NASA Astrophysics Data System (ADS)

    Levine, P. A.; Randerson, J. T.; Lawrence, D. M.; Swenson, S. C.

    2016-12-01

    We have developed a set of metrics for measuring the feedback loop between the land surface moisture state and the atmosphere globally on an interannual time scale. These metrics consider both the forcing of terrestrial water storage (TWS) on subsequent atmospheric conditions as well as the response of TWS to antecedent atmospheric conditions. We designed our metrics to take advantage of more than one decade's worth of satellite observations of TWS from the Gravity Recovery and Climate Experiment (GRACE) along with atmospheric variables from the Atmospheric Infrared Sounder (AIRS), the Global Precipitation Climatology Project (GPCP), and Clouds and the Earths Radiant Energy System (CERES). Metrics derived from spaceborne observations were used to evaluate the strength of the feedback loop in the Community Earth System Model (CESM) Large Ensemble (LENS) and in several models that contributed simulations to Phase 5 of the Coupled Model Intercomparison Project (CMIP5). We found that both forcing and response limbs of the feedback loop were generally stronger in tropical and temperate regions in CMIP5 models and even more so in LENS compared to satellite observations. Our analysis suggests that models may overestimate the strength of the feedbacks between the land surface and the atmosphere, which is consistent with previous studies conducted across different spatial and temporal scales.

  15. Optimal run-and-tumble-based transportation of a Janus particle with active steering

    NASA Astrophysics Data System (ADS)

    Mano, Tomoyuki; Delfau, Jean-Baptiste; Iwasawa, Junichiro; Sano, Masaki

    2017-03-01

    Although making artificial micrometric swimmers has been made possible by using various propulsion mechanisms, guiding their motion in the presence of thermal fluctuations still remains a great challenge. Such a task is essential in biological systems, which present a number of intriguing solutions that are robust against noisy environmental conditions as well as variability in individual genetic makeup. Using synthetic Janus particles driven by an electric field, we present a feedback-based particle-guiding method quite analogous to the “run-and-tumbling” behavior of Escherichia coli but with a deterministic steering in the tumbling phase: the particle is set to the run state when its orientation vector aligns with the target, whereas the transition to the “steering” state is triggered when it exceeds a tolerance angle αα. The active and deterministic reorientation of the particle is achieved by a characteristic rotational motion that can be switched on and off by modulating the ac frequency of the electric field, which is reported in this work. Relying on numerical simulations and analytical results, we show that this feedback algorithm can be optimized by tuning the tolerance angle αα. The optimal resetting angle depends on signal to noise ratio in the steering state, and it is shown in the experiment. The proposed method is simple and robust for targeting, despite variability in self-propelling speeds and angular velocities of individual particles.

  16. Variables affecting athletes' retention of coaches' feedback.

    PubMed

    Januário, Nuno M S; Rosado, Antonio F; Mesquita, Isabel

    2013-10-01

    Athletes' retention of information conveyed in coaches' feedback during training was examined, considering the nature of the information transmitted by each coach (extensions, total number of ideas transmitted, and total number of repeated ideas), athletes' characteristics, (ages, genders, school levels, and practice levels), and athletes' perceptions (relevance and acceptance of coaches' information, task motivational levels, and athletes' attention levels). Participants were 193 athletes (79 boys, 114 girls; 9 to 13 years of age) and 6 coaches. Feedback was both audio and video recorded and all athletes were interviewed. All coaches' feedback and athletes' recollections were subjected to content analysis. Information was completely retained in 31.60% of feedback episodes. Athletes' mean per-episode information retention was 63.0%. Three variables appeared to b e predictiveathletes' retention: athletes' practice levels (p = -.25), attention to coaches' provision of feedback (P = .17), and the number of different ideas transmitted by each coach (P = -.90).

  17. Equicontrollability and the model following problem

    NASA Technical Reports Server (NTRS)

    Curran, R. T.

    1971-01-01

    Equicontrollability and its application to the linear time-invariant model-following problem are discussed. The problem is presented in the form of two systems, the plant and the model. The requirement is to find a controller to apply to the plant so that the resultant compensated plant behaves, in an input-output sense, the same as the model. All systems are assumed to be linear and time-invariant. The basic approach is to find suitable equicontrollable realizations of the plant and model and to utilize feedback so as to produce a controller of minimal state dimension. The concept of equicontrollability is a generalization of control canonical (phase variable) form applied to multivariable systems. It allows one to visualize clearly the effects of feedback and to pinpoint the parameters of a multivariable system which are invariant under feedback. The basic contributions are the development of equicontrollable form; solution of the model-following problem in an entirely algorithmic way, suitable for computer programming; and resolution of questions on system decoupling.

  18. Benthic metabolic feedbacks to carbonate chemistry on coral reefs:implications for ocean acidification

    NASA Astrophysics Data System (ADS)

    Price, N.; Rohwer, F. L.; Stuart, S. A.; Andersson, A.; Smith, J.

    2012-12-01

    The metabolic activity of resident organisms can cause spatio-temporal variability in carbonate chemistry within the benthic boundary layer, and thus potentially buffer the global impacts of ocean acidification. But, little is known about the capacity for particular species assemblages to contribute to natural daily variability in carbonate chemistry. We encapsulated replicate areas (~3m2) of reef across six Northern Line Islands in the central Pacific for 24 hrs to quantify feedbacks to carbonate chemistry within the benthic boundary layer from community metabolism. Underneath each 'tent', we quantified relative abundance and biomass of each species of corals and algae. We coupled high temporal resolution time series data on the natural diurnal variability in pH, dissolved oxygen, salinity, and temperature (using autonomous sensors) with resident organisms' net community calcification and productivity rates (using change in total dissolved carbon and total alkalinity over time) to examine feedbacks from reef metabolism to boundary layer carbonate chemistry. These reefs experienced large ranges in pH (> 0.2 amplitude) each day, similar to the magnitude of 'acidification' expected over the next century. Daily benthic pH, pCO2, and aragonite saturation state (Ωaragonite) were contrasted with seasonal threshold values estimated from open ocean climatological data extrapolated at each island to determine relative inter-island feedbacks. Diurnal amplitude in pH, pCO2, and Ωaragonite at each island was dependent upon the resident species assemblage of the benthos and was particularly reliant upon the biomass, productivity, and calcification rate of Halimeda. Net primary productivity of fleshy algae (algal turfs and Lobophora spp.) predominated on degraded, inhabited islands where net community calcification was negligible. In contrast, the chemistry over reefs on 'pristine', uninhabited islands was driven largely by net calcification of calcareous algae and stony corals. Knowledge about species specific physiological rates and relative abundances of key taxa whose metabolism significantly alters carbonate chemistry may give insight to the ability for a reef to buffer against or exacerbate ocean acidification.

  19. Adaptive Neural Networks Prescribed Performance Control Design for Switched Interconnected Uncertain Nonlinear Systems.

    PubMed

    Li, Yongming; Tong, Shaocheng

    2017-06-28

    In this paper, an adaptive neural networks (NNs)-based decentralized control scheme with the prescribed performance is proposed for uncertain switched nonstrict-feedback interconnected nonlinear systems. It is assumed that nonlinear interconnected terms and nonlinear functions of the concerned systems are unknown, and also the switching signals are unknown and arbitrary. A linear state estimator is constructed to solve the problem of unmeasured states. The NNs are employed to approximate unknown interconnected terms and nonlinear functions. A new output feedback decentralized control scheme is developed by using the adaptive backstepping design technique. The control design problem of nonlinear interconnected switched systems with unknown switching signals can be solved by the proposed scheme, and only a tuning parameter is needed for each subsystem. The proposed scheme can ensure that all variables of the control systems are semi-globally uniformly ultimately bounded and the tracking errors converge to a small residual set with the prescribed performance bound. The effectiveness of the proposed control approach is verified by some simulation results.

  20. Performance limitations of joint variable-feedback controllers due to manipulator structural flexibility

    NASA Technical Reports Server (NTRS)

    Cetinkunt, Sabri; Book, Wayne J.

    1990-01-01

    The performance limitations of manipulators under joint variable-feedback control are studied as a function of the mechanical flexibility inherent in the manipulator structure. A finite-dimensional time-domain dynamic model of a two-link two-joint planar manipulator is used in the study. Emphasis is placed on determining the limitations of control algorithms that use only joint variable-feedback information in calculations of control decisions, since most motion control systems in practice are of this kind. Both fine and gross motion cases are studied. Results for fine motion agree well with previously reported results in the literature and are also helpful in explaining the performance limitations in fast gross motions.

  1. Ecosystem functioning is enveloped by hydrometeorological variability.

    PubMed

    Pappas, Christoforos; Mahecha, Miguel D; Frank, David C; Babst, Flurin; Koutsoyiannis, Demetris

    2017-09-01

    Terrestrial ecosystem processes, and the associated vegetation carbon dynamics, respond differently to hydrometeorological variability across timescales, and so does our scientific understanding of the underlying mechanisms. Long-term variability of the terrestrial carbon cycle is not yet well constrained and the resulting climate-biosphere feedbacks are highly uncertain. Here we present a comprehensive overview of hydrometeorological and ecosystem variability from hourly to decadal timescales integrating multiple in situ and remote-sensing datasets characterizing extra-tropical forest sites. We find that ecosystem variability at all sites is confined within a hydrometeorological envelope across sites and timescales. Furthermore, ecosystem variability demonstrates long-term persistence, highlighting ecological memory and slow ecosystem recovery rates after disturbances. However, simulation results with state-of-the-art process-based models do not reflect this long-term persistent behaviour in ecosystem functioning. Accordingly, we develop a cross-time-scale stochastic framework that captures hydrometeorological and ecosystem variability. Our analysis offers a perspective for terrestrial ecosystem modelling and paves the way for new model-data integration opportunities in Earth system sciences.

  2. A decadal tropical Pacific condition unfavorable to central Pacific El Niño

    NASA Astrophysics Data System (ADS)

    Zhong, Wenxiu; Zheng, Xiao-Tong; Cai, Wenju

    2017-08-01

    The frequency of central Pacific (CP) El Niño events displays strong decadal variability but the associated dynamics are unclear. The Interdecadal Pacific Oscillation (IPO) and the tropical Pacific decadal variability (TPDV) are two dominant modes of tropical Pacific decadal variability that can interact with high-frequency activities. Using a 500 year control integration from the Geophysical Fluid Dynamics Laboratory Earth System Model, we find that the difference in mean state between the low-frequency and high-frequency CP El Niño periods is similar to the decadal background condition concurrently contributed by a negative IPO and a positive TPDV. This decadal state features strengthened trade winds west of the International Date Line and anomalous cool sea surface temperatures across the central tropical Pacific. As such, positive zonal advection feedback is difficult to be generated over the central to western tropical Pacific during the CP El Niño developing season, resulting in the low CP El Niño frequency.

  3. Wind turbine power tracking using an improved multimodel quadratic approach.

    PubMed

    Khezami, Nadhira; Benhadj Braiek, Naceur; Guillaud, Xavier

    2010-07-01

    In this paper, an improved multimodel optimal quadratic control structure for variable speed, pitch regulated wind turbines (operating at high wind speeds) is proposed in order to integrate high levels of wind power to actively provide a primary reserve for frequency control. On the basis of the nonlinear model of the studied plant, and taking into account the wind speed fluctuations, and the electrical power variation, a multimodel linear description is derived for the wind turbine, and is used for the synthesis of an optimal control law involving a state feedback, an integral action and an output reference model. This new control structure allows a rapid transition of the wind turbine generated power between different desired set values. This electrical power tracking is ensured with a high-performance behavior for all other state variables: turbine and generator rotational speeds and mechanical shaft torque; and smooth and adequate evolution of the control variables. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Neural-network-based state feedback control of a nonlinear discrete-time system in nonstrict feedback form.

    PubMed

    Jagannathan, Sarangapani; He, Pingan

    2008-12-01

    In this paper, a suite of adaptive neural network (NN) controllers is designed to deliver a desired tracking performance for the control of an unknown, second-order, nonlinear discrete-time system expressed in nonstrict feedback form. In the first approach, two feedforward NNs are employed in the controller with tracking error as the feedback variable whereas in the adaptive critic NN architecture, three feedforward NNs are used. In the adaptive critic architecture, two action NNs produce virtual and actual control inputs, respectively, whereas the third critic NN approximates certain strategic utility function and its output is employed for tuning action NN weights in order to attain the near-optimal control action. Both the NN control methods present a well-defined controller design and the noncausal problem in discrete-time backstepping design is avoided via NN approximation. A comparison between the controller methodologies is highlighted. The stability analysis of the closed-loop control schemes is demonstrated. The NN controller schemes do not require an offline learning phase and the NN weights can be initialized at zero or random. Results show that the performance of the proposed controller schemes is highly satisfactory while meeting the closed-loop stability.

  5. Promoting Increased Pitch Variation in Oral Presentations with Transient Visual Feedback

    ERIC Educational Resources Information Center

    Hincks, Rebecca; Edlund, Jens

    2009-01-01

    This paper investigates learner response to a novel kind of intonation feedback generated from speech analysis. Instead of displays of pitch curves, our feedback is flashing lights that show how much pitch variation the speaker has produced. The variable used to generate the feedback is the standard deviation of fundamental frequency as measured…

  6. The interaction of respiration and visual feedback on the control of force and neural activation of the agonist muscle

    PubMed Central

    Baweja, Harsimran S.; Patel, Bhavini K.; Neto, Osmar P.; Christou, Evangelos A.

    2011-01-01

    The purpose of this study was to compare force variability and the neural activation of the agonist muscle during constant isometric contractions at different force levels when the amplitude of respiration and visual feedback were varied. Twenty young adults (20–32 years, 10 men and 10 women) were instructed to accurately match a target force at 15 and 50% of their maximal voluntary contraction (MVC) with abduction of the index finger while controlling their respiration at different amplitudes (85, 100 and 125% normal) in the presence and absence of visual feedback. Each trial lasted 22 s and visual feedback was removed from 8–12 to 16–20 s. Each subject performed 3 trials with each respiratory condition at each force level. Force variability was quantified as the standard deviation of the detrended force data. The neural activation of the first dorsal interosseus (FDI) was measured with bipolar surface electrodes placed distal to the innervation zone. Relative to normal respiration, force variability increased significantly only during high-amplitude respiration (~63%). The increase in force variability from normal- to high-amplitude respiration was strongly associated with amplified force oscillations from 0–3 Hz (R2 ranged from .68 – .84; p < .001). Furthermore, the increase in force variability was exacerbated in the presence of visual feedback at 50% MVC (vision vs. no-vision: .97 vs. .87 N) and was strongly associated with amplified force oscillations from 0–1 Hz (R2 = .82) and weakly associated with greater power from 12–30 Hz (R2 = .24) in the EMG of the agonist muscle. Our findings demonstrate that high-amplitude respiration and visual feedback of force interact and amplify force variability in young adults during moderate levels of effort. PMID:21546109

  7. Development of a two-dimensional skin friction balance nulling circuit using multivariable control theory

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Patek, Stephen D.

    1988-01-01

    Measurement of planar skin friction forces in aerodynamic testing currently requires installation of two perpendicularly mounted, single-axis balances; consequently, force components must be sensed at two distinct locations. A two-axis instrument developed at the Langley Research Center to overcome this disadvantage allows measurement of a two-dimensional force at one location. This paper describes a feedback-controlled nulling circuit developed for the NASA two-axis balance which, without external compensation, is inherently unstable because of its low friction mechanical design. Linear multivariable control theory is applied to an experimentally validated mathematical model of the balance to synthesize a state-variable feedback control law. Pole placement techniques and computer simulation studies are employed to select eigenvalues which provide ideal transient response with decoupled sensing dynamics.

  8. SOS based robust H(∞) fuzzy dynamic output feedback control of nonlinear networked control systems.

    PubMed

    Chae, Seunghwan; Nguang, Sing Kiong

    2014-07-01

    In this paper, a methodology for designing a fuzzy dynamic output feedback controller for discrete-time nonlinear networked control systems is presented where the nonlinear plant is modelled by a Takagi-Sugeno fuzzy model and the network-induced delays by a finite state Markov process. The transition probability matrix for the Markov process is allowed to be partially known, providing a more practical consideration of the real world. Furthermore, the fuzzy controller's membership functions and premise variables are not assumed to be the same as the plant's membership functions and premise variables, that is, the proposed approach can handle the case, when the premise of the plant are not measurable or delayed. The membership functions of the plant and the controller are approximated as polynomial functions, then incorporated into the controller design. Sufficient conditions for the existence of the controller are derived in terms of sum of square inequalities, which are then solved by YALMIP. Finally, a numerical example is used to demonstrate the validity of the proposed methodology.

  9. Linear feedback stabilization of a dispersively monitored qubit

    NASA Astrophysics Data System (ADS)

    Patti, Taylor Lee; Chantasri, Areeya; García-Pintos, Luis Pedro; Jordan, Andrew N.; Dressel, Justin

    2017-08-01

    The state of a continuously monitored qubit evolves stochastically, exhibiting competition between coherent Hamiltonian dynamics and diffusive partial collapse dynamics that follow the measurement record. We couple these distinct types of dynamics together by linearly feeding the collected record for dispersive energy measurements directly back into a coherent Rabi drive amplitude. Such feedback turns the competition cooperative and effectively stabilizes the qubit state near a target state. We derive the conditions for obtaining such dispersive state stabilization and verify the stabilization conditions numerically. We include common experimental nonidealities, such as energy decay, environmental dephasing, detector efficiency, and feedback delay, and show that the feedback delay has the most significant negative effect on the feedback protocol. Setting the measurement collapse time scale to be long compared to the feedback delay yields the best stabilization.

  10. Variable force and visual feedback effects on teleoperator man/machine performance

    NASA Technical Reports Server (NTRS)

    Massimino, Michael J.; Sheridan, Thomas B.

    1989-01-01

    An experimental study was conducted to determine the effects of various forms of visual and force feedback on human performance for several telemanipulation tasks. Experiments were conducted with varying frame rates and subtended visual angles, with and without force feedback.

  11. Digital current regulator for proportional electro-hydraulic valves with unknown disturbance rejection.

    PubMed

    Canuto, Enrico; Acuña-Bravo, Wilber; Agostani, Marco; Bonadei, Marco

    2014-07-01

    Solenoid current regulation is well-known and standard in any proportional electro-hydraulic valve. The goal is to provide a wide-band transfer function from the reference to the measured current, thus making the solenoid a fast and ideal force actuator within the limits of the power supplier. The power supplier is usually a Pulse Width Modulation (PWM) amplifier fixing the voltage bound and the Nyquist frequency of the regulator. Typical analog regulators include three main terms: a feedforward channel, a proportional feedback channel and the electromotive force compensation. The latter compensation may be accomplished by integrative feedback. Here the problem is faced through a model-based design (Embedded Model Control), on the basis of a wide-band embedded model of the solenoid which includes the effect of eddy currents. To this end model parameters must be identified. The embedded model includes a stochastic disturbance dynamics capable of estimating and correcting the electromotive contribution together with parametric uncertainty, variability and state dependence. The embedded model which is fed by the measured current and the supplied voltage becomes a state predictor of the controllable and disturbance dynamics. The control law combines reference generator, state feedback and disturbance rejection to dispatch the PWM amplifier with the appropriate duty cycle. Modeling, identification and control design are outlined together with experimental result. Comparison with an existing analog regulator is also provided. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  12. A coupled modeling framework of the co-evolution of humans and water: case study of Tarim River Basin, western China

    NASA Astrophysics Data System (ADS)

    Liu, D.; Tian, F.; Lin, M.; Sivapalan, M.

    2014-04-01

    The complex interactions and feedbacks between humans and water are very essential issues but are poorly understood in the newly proposed discipline of socio-hydrology (Sivapalan et al., 2012). An exploratory model with the appropriate level of simplification can be valuable to improve our understanding of the co-evolution and self-organization of socio-hydrological systems driven by interactions and feedbacks operating at different scales. In this study, a simple coupled modeling framework for socio-hydrology co-evolution is developed for the Tarim River Basin in Western China, and is used to illustrate the explanatory power of such a model. The study area is the mainstream of the Tarim River, which is divided into two modeling units. The socio-hydrological system is composed of four parts, i.e. social sub-system, economic sub-system, ecological sub-system, and hydrological sub-system. In each modeling unit, four coupled ordinary differential equations are used to simulate the dynamics of the social sub-system represented by human population, the economic sub-system represented by irrigated crop area, the ecological sub-system represented by natural vegetation cover and the hydrological sub-system represented by stream discharge. The coupling and feedback processes of the four dominant sub-systems (and correspondingly four state variables) are integrated into several internal system characteristics interactively and jointly determined by themselves and by other coupled systems. For example, the stream discharge is coupled to the irrigated crop area by the colonization rate and mortality rate of the irrigated crop area in the upper reach and the irrigated area is coupled to stream discharge through irrigation water consumption. In a similar way, the stream discharge and natural vegetation cover are coupled together. The irrigated crop area is coupled to human population by the colonization rate and mortality rate of the population. The inflow of the lower reach is determined by the outflow from the upper reach. The natural vegetation cover in the lower reach is coupled to the outflow from the upper reach and governed by regional water resources management policy. The co-evolution of the Tarim socio-hydrological system is then analyzed within this modeling framework to gain insights into the overall system dynamics and its sensitivity to the external drivers and internal system variables. In the modeling framework, the state of each subsystem is holistically described by one state variable and the framework is flexible enough to comprise more processes and constitutive relationships if they are needed to illustrate the interaction and feedback mechanisms of the human-water system.

  13. Perpetual extraction of work from a nonequilibrium dynamical system under Markovian feedback control

    NASA Astrophysics Data System (ADS)

    Kosugi, Taichi

    2013-09-01

    By treating both control parameters and dynamical variables as probabilistic variables, we develop a succinct theory of perpetual extraction of work from a generic classical nonequilibrium system subject to a heat bath via repeated measurements under a Markovian feedback control. It is demonstrated that a problem for perpetual extraction of work in a nonequilibrium system is reduced to a problem of Markov chain in the higher-dimensional phase space. We derive a version of the detailed fluctuation theorem, which was originally derived for classical nonequilibrium systems by Horowitz and Vaikuntanathan [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.82.061120 82, 061120 (2010)], in a form suitable for the analyses of perpetual extraction of work. Since our theory is formulated for generic dynamics of probability distribution function in phase space, its application to a physical system is straightforward. As simple applications of the theory, two exactly solvable models are analyzed. The one is a nonequilibrium two-state system and the other is a particle confined to a one-dimensional harmonic potential in thermal equilibrium. For the former example, it is demonstrated that the observer on the transitory steps to the stationary state can lose energy and that work larger than that achieved in the stationary state can be extracted. For the latter example, it is demonstrated that the optimal protocol for the extraction of work via repeated measurements can differ from that via a single measurement. The validity of our version of the detailed fluctuation theorem, which determines the upper bound of the expected work in the stationary state, is also confirmed for both examples. These observations provide useful insights into exploration for realistic modeling of a machine that extracts work from its environment.

  14. Determinants of cell-to-cell variability in protein kinase signaling.

    PubMed

    Jeschke, Matthias; Baumgärtner, Stephan; Legewie, Stefan

    2013-01-01

    Cells reliably sense environmental changes despite internal and external fluctuations, but the mechanisms underlying robustness remain unclear. We analyzed how fluctuations in signaling protein concentrations give rise to cell-to-cell variability in protein kinase signaling using analytical theory and numerical simulations. We characterized the dose-response behavior of signaling cascades by calculating the stimulus level at which a pathway responds ('pathway sensitivity') and the maximal activation level upon strong stimulation. Minimal kinase cascades with gradual dose-response behavior show strong variability, because the pathway sensitivity and the maximal activation level cannot be simultaneously invariant. Negative feedback regulation resolves this trade-off and coordinately reduces fluctuations in the pathway sensitivity and maximal activation. Feedbacks acting at different levels in the cascade control different aspects of the dose-response curve, thereby synergistically reducing the variability. We also investigated more complex, ultrasensitive signaling cascades capable of switch-like decision making, and found that these can be inherently robust to protein concentration fluctuations. We describe how the cell-to-cell variability of ultrasensitive signaling systems can be actively regulated, e.g., by altering the expression of phosphatase(s) or by feedback/feedforward loops. Our calculations reveal that slow transcriptional negative feedback loops allow for variability suppression while maintaining switch-like decision making. Taken together, we describe design principles of signaling cascades that promote robustness. Our results may explain why certain signaling cascades like the yeast pheromone pathway show switch-like decision making with little cell-to-cell variability.

  15. Some Classes of Imperfect Information Finite State-Space Stochastic Games with Finite-Dimensional Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McEneaney, William M.

    2004-08-15

    Stochastic games under imperfect information are typically computationally intractable even in the discrete-time/discrete-state case considered here. We consider a problem where one player has perfect information.A function of a conditional probability distribution is proposed as an information state.In the problem form here, the payoff is only a function of the terminal state of the system,and the initial information state is either linear ora sum of max-plus delta functions.When the initial information state belongs to these classes, its propagation is finite-dimensional.The state feedback value function is also finite-dimensional,and obtained via dynamic programming,but has a nonstandard form due to the necessity ofmore » an expanded state variable.Under a saddle point assumption,Certainty Equivalence is obtained and the proposed function is indeed an information state.« less

  16. Consensus positive position feedback control for vibration attenuation of smart structures

    NASA Astrophysics Data System (ADS)

    Omidi, Ehsan; Nima Mahmoodi, S.

    2015-04-01

    This paper presents a new network-based approach for active vibration control in smart structures. In this approach, a network with known topology connects collocated actuator/sensor elements of the smart structure to one another. Each of these actuators/sensors, i.e., agent or node, is enhanced by a separate multi-mode positive position feedback (PPF) controller. The decentralized PPF controlled agents collaborate with each other in the designed network, under a certain consensus dynamics. The consensus constraint forces neighboring agents to cooperate with each other such that the disagreement between the time-domain actuation of the agents is driven to zero. The controller output of each agent is calculated using state-space variables; hence, optimal state estimators are designed first for the proposed observer-based consensus PPF control. The consensus controller is numerically investigated for a flexible smart structure, i.e., a thin aluminum beam that is clamped at its both ends. Results demonstrate that the consensus law successfully imposes synchronization between the independently controlled agents, as the disagreements between the decentralized PPF controller variables converge to zero in a short time. The new consensus PPF controller brings extra robustness to vibration suppression in smart structures, where malfunctions of an agent can be compensated for by referencing the neighboring agents’ performance. This is demonstrated in the results by comparing the new controller with former centralized PPF approach.

  17. The Relation of College Student Self-Efficacy toward Writing and Writing Self-Regulation Aptitude: Writing Feedback Perceptions as a Mediating Variable

    ERIC Educational Resources Information Center

    Ekholm, Eric; Zumbrunn, Sharon; Conklin, Sarah

    2015-01-01

    Despite the powerful effect feedback often has on student writing success more research is needed on how students emotionally react to the feedback they receive. This study tested the predictive and mediational roles of college student writing self-efficacy beliefs and feedback perceptions on writing self-regulation aptitude. Results suggested…

  18. Conveying the Science of Climate Change: Explaining Natural Variability

    NASA Astrophysics Data System (ADS)

    Chanton, J.

    2011-12-01

    One of the main problems in climate change education is reconciling the role of humans and natural variability. The climate is always changing, so how can humans have a role in causing change? How do we reconcile and differentiate the anthropogenic effect from natural variability? This talk will offer several approaches that have been successful for the author. First, the context of climate change during the Pleistocene must be addressed. Second, is the role of the industrial revolution in significantly altering Pleistocene cycles, and introduction of the concept of the Anthropocene. Finally the positive feedbacks between climatic nudging due to increased insolation and greenhouse gas forcing can be likened to a rock rolling down a hill, without a leading cause. This approach has proven successful in presentations to undergraduates to state agencies.

  19. Incorporation of feedback during beat synchronization is an index of neural maturation and reading skills.

    PubMed

    Woodruff Carr, Kali; Fitzroy, Ahren B; Tierney, Adam; White-Schwoch, Travis; Kraus, Nina

    2017-01-01

    Speech communication involves integration and coordination of sensory perception and motor production, requiring precise temporal coupling. Beat synchronization, the coordination of movement with a pacing sound, can be used as an index of this sensorimotor timing. We assessed adolescents' synchronization and capacity to correct asynchronies when given online visual feedback. Variability of synchronization while receiving feedback predicted phonological memory and reading sub-skills, as well as maturation of cortical auditory processing; less variable synchronization during the presence of feedback tracked with maturation of cortical processing of sound onsets and resting gamma activity. We suggest the ability to incorporate feedback during synchronization is an index of intentional, multimodal timing-based integration in the maturing adolescent brain. Precision of temporal coding across modalities is important for speech processing and literacy skills that rely on dynamic interactions with sound. Synchronization employing feedback may prove useful as a remedial strategy for individuals who struggle with timing-based language learning impairments. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Microelectromechanical accelerometer with resonance-cancelling control circuit including an idle state

    DOEpatents

    Chu, Dahlon D.; Thelen, Jr., Donald C.; Campbell, David V.

    2001-01-01

    A digital feedback control circuit is disclosed for use in an accelerometer (e.g. a microelectromechanical accelerometer). The digital feedback control circuit, which periodically re-centers a proof mass in response to a sensed acceleration, is based on a sigma-delta (.SIGMA..DELTA.) configuration that includes a notch filter (e.g. a digital switched-capacitor filter) for rejecting signals due to mechanical resonances of the proof mass and further includes a comparator (e.g. a three-level comparator). The comparator generates one of three possible feedback states, with two of the feedback states acting to re-center the proof mass when that is needed, and with a third feedback state being an "idle" state which does not act to move the proof mass when no re-centering is needed. Additionally, the digital feedback control system includes an auto-zero trim capability for calibration of the accelerometer for accurate sensing of acceleration. The digital feedback control circuit can be fabricated using complementary metal-oxide semiconductor (CMOS) technology, bi-CMOS technology or bipolar technology and used in single- and dual-proof-mass accelerometers.

  1. Study of dynamics of X-14B VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Loscutoff, W. V.; Mitchiner, J. L.; Roesener, R. A.; Seevers, J. A.

    1973-01-01

    Research was initiated to investigate certain facets of modern control theory and their integration with a digital computer to provide a tractable flight control system for a VTOL aircraft. Since the hover mode is the most demanding phase in the operation of a VTOL aircraft, the research efforts were concentrated in this mode of aircraft operation. Research work on three different aspects of the operation of the X-14B VTOL aircraft is discussed. A general theory for optimal, prespecified, closed-loop control is developed. The ultimate goal was optimal decoupling of the modes of the VTOL aircraft to simplify the pilot's task of handling the aircraft. Modern control theory is used to design deterministic state estimators which provide state variables not measured directly, but which are needed for state variable feedback control. The effect of atmospheric turbulence on the X-14B is investigated. A maximum magnitude gust envelope within which the aircraft could operate stably with the available control power is determined.

  2. Investigating the Effects of Multimodal Feedback through Tracking State in Pen-Based Interfaces

    ERIC Educational Resources Information Center

    Sun, Minghui; Ren, Xiangshi

    2011-01-01

    A tracking state increases the bandwidth of pen-based interfaces. However, this state is difficult to detect with default visual feedback. This paper reports on two experiments that are designed to evaluate multimodal feedback for pointing tasks (both 1D and 2D) in tracking state. In 1D pointing experiments, results show that there is a…

  3. State feedback controller design for the synchronization of Boolean networks with time delays

    NASA Astrophysics Data System (ADS)

    Li, Fangfei; Li, Jianning; Shen, Lijuan

    2018-01-01

    State feedback control design to make the response Boolean network synchronize with the drive Boolean network is far from being solved in the literature. Motivated by this, this paper studies the feedback control design for the complete synchronization of two coupled Boolean networks with time delays. A necessary condition for the existence of a state feedback controller is derived first. Then the feedback control design procedure for the complete synchronization of two coupled Boolean networks is provided based on the necessary condition. Finally, an example is given to illustrate the proposed design procedure.

  4. Assisted closed-loop optimization of SSVEP-BCI efficiency

    PubMed Central

    Fernandez-Vargas, Jacobo; Pfaff, Hanns U.; Rodríguez, Francisco B.; Varona, Pablo

    2012-01-01

    We designed a novel assisted closed-loop optimization protocol to improve the efficiency of brain-computer interfaces (BCI) based on steady state visually evoked potentials (SSVEP). In traditional paradigms, the control over the BCI-performance completely depends on the subjects' ability to learn from the given feedback cues. By contrast, in the proposed protocol both the subject and the machine share information and control over the BCI goal. Generally, the innovative assistance consists in the delivery of online information together with the online adaptation of BCI stimuli properties. In our case, this adaptive optimization process is realized by (1) a closed-loop search for the best set of SSVEP flicker frequencies and (2) feedback of actual SSVEP magnitudes to both the subject and the machine. These closed-loop interactions between subject and machine are evaluated in real-time by continuous measurement of their efficiencies, which are used as online criteria to adapt the BCI control parameters. The proposed protocol aims to compensate for variability in possibly unknown subjects' state and trait dimensions. In a study with N = 18 subjects, we found significant evidence that our protocol outperformed classic SSVEP-BCI control paradigms. Evidence is presented that it takes indeed into account interindividual variabilities: e.g., under the new protocol, baseline resting state EEG measures predict subjects' BCI performances. This paper illustrates the promising potential of assisted closed-loop protocols in BCI systems. Probably their applicability might be expanded to innovative uses, e.g., as possible new diagnostic/therapeutic tools for clinical contexts and as new paradigms for basic research. PMID:23443214

  5. Assisted closed-loop optimization of SSVEP-BCI efficiency.

    PubMed

    Fernandez-Vargas, Jacobo; Pfaff, Hanns U; Rodríguez, Francisco B; Varona, Pablo

    2013-01-01

    We designed a novel assisted closed-loop optimization protocol to improve the efficiency of brain-computer interfaces (BCI) based on steady state visually evoked potentials (SSVEP). In traditional paradigms, the control over the BCI-performance completely depends on the subjects' ability to learn from the given feedback cues. By contrast, in the proposed protocol both the subject and the machine share information and control over the BCI goal. Generally, the innovative assistance consists in the delivery of online information together with the online adaptation of BCI stimuli properties. In our case, this adaptive optimization process is realized by (1) a closed-loop search for the best set of SSVEP flicker frequencies and (2) feedback of actual SSVEP magnitudes to both the subject and the machine. These closed-loop interactions between subject and machine are evaluated in real-time by continuous measurement of their efficiencies, which are used as online criteria to adapt the BCI control parameters. The proposed protocol aims to compensate for variability in possibly unknown subjects' state and trait dimensions. In a study with N = 18 subjects, we found significant evidence that our protocol outperformed classic SSVEP-BCI control paradigms. Evidence is presented that it takes indeed into account interindividual variabilities: e.g., under the new protocol, baseline resting state EEG measures predict subjects' BCI performances. This paper illustrates the promising potential of assisted closed-loop protocols in BCI systems. Probably their applicability might be expanded to innovative uses, e.g., as possible new diagnostic/therapeutic tools for clinical contexts and as new paradigms for basic research.

  6. Improving the Acquisition of Basic Technical Surgical Skills with VR-Based Simulation Coupled with Computer-Based Video Instruction.

    PubMed

    Rojas, David; Kapralos, Bill; Dubrowski, Adam

    2016-01-01

    Next to practice, feedback is the most important variable in skill acquisition. Feedback can vary in content and the way that it is used for delivery. Health professions education research has extensively examined the different effects provided by the different feedback methodologies. In this paper we compared two different types of knowledge of performance (KP) feedback. The first type was video-based KP feedback while the second type consisted of computer generated KP feedback. Results of this study showed that computer generated performance feedback is more effective than video based performance feedback. The combination of the two feedback methodologies provides trainees with a better understanding.

  7. Flight test results for the Digital Integrated Automatic Landing Systems (DIALS): A modern control full-state feedback design

    NASA Technical Reports Server (NTRS)

    Hueschen, R. M.

    1984-01-01

    The Digital Integrated Automatic Landing System (DIALS) is discussed. The DIALS is a modern control theory design performing all the maneuver modes associated with current autoland systems: localizer capture and track, glideslope capture and track, decrab, and flare. The DIALS is an integrated full-state feedback system which was designed using direct-digital methods. The DIALS uses standard aircraft sensors and the digital Microwave Landing System (MLS) signals as measurements. It consists of separately designed longitudinal and lateral channels although some cross-coupling variables are fed between channels for improved state estimates and trajectory commands. The DIALS was implemented within the 16-bit fixed-point flight computers of the ATOPS research aircraft, a small twin jet commercial transport outfitted with a second research cockpit and a fly-by-wire system. The DIALS became the first modern control theory design to be successfully flight tested on a commercial-type aircraft. Flight tests were conducted in late 1981 using a wide coverage MLS on Runway 22 at Wallops Flight Center. All the modes were exercised including the capture and track of steep glidescopes up to 5 degrees.

  8. Integrated Control Using the SOFFT Control Structure

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim

    1996-01-01

    The need for integrated/constrained control systems has become clearer as advanced aircraft introduced new coupled subsystems such as new propulsion subsystems with thrust vectoring and new aerodynamic designs. In this study, we develop an integrated control design methodology which accomodates constraints among subsystem variables while using the Stochastic Optimal Feedforward/Feedback Control Technique (SOFFT) thus maintaining all the advantages of the SOFFT approach. The Integrated SOFFT Control methodology uses a centralized feedforward control and a constrained feedback control law. The control thus takes advantage of the known coupling among the subsystems while maintaining the identity of subsystems for validation purposes and the simplicity of the feedback law to understand the system response in complicated nonlinear scenarios. The Variable-Gain Output Feedback Control methodology (including constant gain output feedback) is extended to accommodate equality constraints. A gain computation algorithm is developed. The designer can set the cross-gains between two variables or subsystems to zero or another value and optimize the remaining gains subject to the constraint. An integrated control law is designed for a modified F-15 SMTD aircraft model with coupled airframe and propulsion subsystems using the Integrated SOFFT Control methodology to produce a set of desired flying qualities.

  9. The Effect of Feedback Delay and Feedback Type on Perceptual Category Learning: The Limits of Multiple Systems

    ERIC Educational Resources Information Center

    Dunn, John C.; Newell, Ben R.; Kalish, Michael L.

    2012-01-01

    Evidence that learning rule-based (RB) and information-integration (II) category structures can be dissociated across different experimental variables has been used to support the view that such learning is supported by multiple learning systems. Across 4 experiments, we examined the effects of 2 variables, the delay between response and feedback…

  10. Learning in Noise: Dynamic Decision-Making in a Variable Environment

    PubMed Central

    Gureckis, Todd M.; Love, Bradley C.

    2009-01-01

    In engineering systems, noise is a curse, obscuring important signals and increasing the uncertainty associated with measurement. However, the negative effects of noise and uncertainty are not universal. In this paper, we examine how people learn sequential control strategies given different sources and amounts of feedback variability. In particular, we consider people’s behavior in a task where short- and long-term rewards are placed in conflict (i.e., the best option in the short-term is worst in the long-term). Consistent with a model based on reinforcement learning principles (Gureckis & Love, in press), we find that learners differentially weight information predictive of the current task state. In particular, when cues that signal state are noisy and uncertain, we find that participants’ ability to identify an optimal strategy is strongly impaired relative to equivalent amounts of uncertainty that obscure the rewards/valuations of those states. In other situations, we find that noise and uncertainty in reward signals may paradoxically improve performance by encouraging exploration. Our results demonstrate how experimentally-manipulated task variability can be used to test predictions about the mechanisms that learners engage in dynamic decision making tasks. PMID:20161328

  11. The Effect of Combination of Video Feedback and Audience Feedback on Social Anxiety: Preliminary Findings.

    PubMed

    Chen, Junwen; Mak, Rebecca; Fujita, Satoko

    2015-09-01

    Although video feedback (VF) is shown to improve appraisals of social performance in socially anxious individuals, its impact on state anxiety during a social situation is mixed. The current study investigated the effect of combined video feedback and audience feedback (AF) on self-perceptions of performance and bodily sensations as well as state anxiety pertaining to a speech task. Forty-one socially anxious students were randomly allocated to combined video feedback with audience feedback (VF + AF), video feedback only (VF), audience feedback only (AF), or a control condition. Following a 3-min speech, participants in the VF + AF, VF, and AF conditions watched the videotape of their speech with cognitive preparation in the presence of three confederates who served as audience, and/or received feedback from the confederates, while the control group watched their videotaped speech without cognitive preparation. Both VF + AF and AF conditions improved distorted appraisal of performance and bodily sensations as well as state anxiety. The clinical implications of these findings are discussed. © The Author(s) 2015.

  12. Strong feedback limit of the Goodwin circadian oscillator

    NASA Astrophysics Data System (ADS)

    Woller, Aurore; Gonze, Didier; Erneux, Thomas

    2013-03-01

    The three-variable Goodwin model constitutes a prototypical oscillator based on a negative feedback loop. It was used as a minimal model for circadian oscillations. Other core models for circadian clocks are variants of the Goodwin model. The Goodwin oscillator also appears in many studies of coupled oscillator networks because of its relative simplicity compared to other biophysical models involving a large number of variables and parameters. Because the synchronization properties of Goodwin oscillators still remain difficult to explore mathematically, further simplifications of the Goodwin model have been sought. In this paper, we investigate the strong negative feedback limit of Goodwin equations by using asymptotic techniques. We find that Goodwin oscillations approach a sequence of decaying exponentials that can be described in terms of a single-variable leaky integrated-and-fire model.

  13. Slab Ocean El Niño atmospheric feedbacks in Coupled Climate Models and its relationship to the Recharge Oscillator

    NASA Astrophysics Data System (ADS)

    Bayr, Tobias; Wengel, Christian; Latif, Mojib

    2016-04-01

    Dommenget (2010) found that El Niño-like variability, termed Slab Ocean El Niño, can exist in the absence of ocean dynamics and is driven by the interaction of the atmospheric surface heat fluxes and the heat content of the upper ocean. Further, Dommenget et al. (2014) report the Slab Ocean El Niño is not an artefact of the ECHAM5-AGCM coupled to a slab ocean model. In fact, atmospheric feedbacks crucial to the Slab Ocean El Niño can also be found in many state-of-the-art coupled climate models participating in CMIP3 and CMIP5, so that ENSO in many CMIP models can be understood as a mixed recharge oscillator/Slab Ocean El Niño mode. Here we show further analysis of the Slab Ocean El Niño atmospheric feedbacks in coupled models. The BCCR_CM2.0 climate model from the CMIP3 data base, which has a very large equatorial cold bias, has an El Niño that is mostly driven by Slab Ocean El Niño atmospheric feedbacks and is used as an example to describe Slab Ocean El Niño atmospheric feedbacks in a coupled model. In the BCCR_CM2.0, the ENSO-related variability in the 20°C isotherm (Z20), a measure of upper ocean heat content, is decoupled from the first mode of the seasonal cycle-related variability, while the two are coupled in observations, with ENSO being phase-locked to the seasonal cycle. Further analysis of the seasonal cycle in Z20 using SODA Ocean Reanalysis reveals two different regimes in the seasonal cycle along the equator: The first regime, to which ENSO is phase-locked, extends over the west and central equatorial Pacific and is driven by subsurface ocean dynamics. The second regime, extending in observations only over the cold tongue region, is driven by the seasonal cycle at the sea surface and is shifted by roughly six months relative to the first regime. In a series of experiments with the Kiel Climate Model (KCM) with different mean states due to tuning in the convection parameters, we can show that the strength of the equatorial cold bias and the coupling strength between the seasonal cycle of Z20 and ENSO are anti-correlated, i.e. a strong equatorial cold bias suppresses recharge oscillator dynamics and enhances Slab Ocean El Niño atmospheric feedbacks, supporting the results from the BCCR_CM2.0. This can be explained as with a stronger cold bias the second regime of the seasonal cycle in Z20, which extends in observations only over the small cold tongue region, expands westward and becomes more important, so that it decouples ENSO from the seasonal cycle in Z20. This has implications for some major characteristics of the ENSO like the propagation of SST anomalies, the phase locking of SST to the seasonal cycle, or the nonlinearity of ENSO. Dommenget, D., 2010: The slab ocean El Niño. Geophys. Res. Lett., 37, L20701, doi:10.1029/2010GL044888. - - , S. Haase, T. Bayr, and C. Frauen, 2014: Analysis of the Slab Ocean El Niño atmospheric feedbacks in observed and simulated ENSO dynamics. Clim. Dyn., doi:10.1007/s00382-014-2057-0.

  14. A systematic review of the use of theory in randomized controlled trials of audit and feedback

    PubMed Central

    2013-01-01

    Background Audit and feedback is one of the most widely used and promising interventions in implementation research, yet also one of the most variably effective. Understanding this variability has been limited in part by lack of attention to the theoretical and conceptual basis underlying audit and feedback. Examining the extent of theory use in studies of audit and feedback will yield better understanding of the causal pathways of audit and feedback effectiveness and inform efforts to optimize this important intervention. Methods A total of 140 studies in the 2012 Cochrane update on audit and feedback interventions were independently reviewed by two investigators. Variables were extracted related to theory use in the study design, measurement, implementation or interpretation. Theory name, associated reference, and the location of theory use as reported in the study were extracted. Theories were organized by type (e.g., education, diffusion, organization, psychology), and theory utilization was classified into seven categories (justification, intervention design, pilot testing, evaluation, predictions, post hoc, other). Results A total of 20 studies (14%) reported use of theory in any aspect of the study design, measurement, implementation or interpretation. In only 13 studies (9%) was a theory reportedly used to inform development of the intervention. A total of 18 different theories across educational, psychological, organizational and diffusion of innovation perspectives were identified. Rogers’ Diffusion of Innovations and Bandura’s Social Cognitive Theory were the most widely used (3.6% and 3%, respectively). Conclusions The explicit use of theory in studies of audit and feedback was rare. A range of theories was found, but not consistency of theory use. Advancing our understanding of audit and feedback will require more attention to theoretically informed studies and intervention design. PMID:23759034

  15. A systematic review of the use of theory in randomized controlled trials of audit and feedback.

    PubMed

    Colquhoun, Heather L; Brehaut, Jamie C; Sales, Anne; Ivers, Noah; Grimshaw, Jeremy; Michie, Susan; Carroll, Kelly; Chalifoux, Mathieu; Eva, Kevin W

    2013-06-10

    Audit and feedback is one of the most widely used and promising interventions in implementation research, yet also one of the most variably effective. Understanding this variability has been limited in part by lack of attention to the theoretical and conceptual basis underlying audit and feedback. Examining the extent of theory use in studies of audit and feedback will yield better understanding of the causal pathways of audit and feedback effectiveness and inform efforts to optimize this important intervention. A total of 140 studies in the 2012 Cochrane update on audit and feedback interventions were independently reviewed by two investigators. Variables were extracted related to theory use in the study design, measurement, implementation or interpretation. Theory name, associated reference, and the location of theory use as reported in the study were extracted. Theories were organized by type (e.g., education, diffusion, organization, psychology), and theory utilization was classified into seven categories (justification, intervention design, pilot testing, evaluation, predictions, post hoc, other). A total of 20 studies (14%) reported use of theory in any aspect of the study design, measurement, implementation or interpretation. In only 13 studies (9%) was a theory reportedly used to inform development of the intervention. A total of 18 different theories across educational, psychological, organizational and diffusion of innovation perspectives were identified. Rogers' Diffusion of Innovations and Bandura's Social Cognitive Theory were the most widely used (3.6% and 3%, respectively). The explicit use of theory in studies of audit and feedback was rare. A range of theories was found, but not consistency of theory use. Advancing our understanding of audit and feedback will require more attention to theoretically informed studies and intervention design.

  16. Hybrid Solution of Stochastic Optimal Control Problems Using Gauss Pseudospectral Method and Generalized Polynomial Chaos Algorithms

    DTIC Science & Technology

    2012-03-01

    0-486-41183-4. 15. Brown , Robert G. and Patrick Y. C. Hwang . Introduction to Random Signals and Applied Kalman Filtering. Wiley, New York, 1996. ISBN...stability and perfor- mance criteria. In the 1960’s, Kalman introduced the Linear Quadratic Regulator (LQR) method using an integral performance index...feedback of the state variables and was able to apply this method to time-varying and Multi-Input Multi-Output (MIMO) systems. Kalman further showed

  17. Attitude estimation of earth orbiting satellites by decomposed linear recursive filters

    NASA Technical Reports Server (NTRS)

    Kou, S. R.

    1975-01-01

    Attitude estimation of earth orbiting satellites (including Large Space Telescope) subjected to environmental disturbances and noises was investigated. Modern control and estimation theory is used as a tool to design an efficient estimator for attitude estimation. Decomposed linear recursive filters for both continuous-time systems and discrete-time systems are derived. By using this accurate estimation of the attitude of spacecrafts, state variable feedback controller may be designed to achieve (or satisfy) high requirements of system performance.

  18. Sub-optimal control of fuzzy linear dynamical systems under granular differentiability concept.

    PubMed

    Mazandarani, Mehran; Pariz, Naser

    2018-05-01

    This paper deals with sub-optimal control of a fuzzy linear dynamical system. The aim is to keep the state variables of the fuzzy linear dynamical system close to zero in an optimal manner. In the fuzzy dynamical system, the fuzzy derivative is considered as the granular derivative; and all the coefficients and initial conditions can be uncertain. The criterion for assessing the optimality is regarded as a granular integral whose integrand is a quadratic function of the state variables and control inputs. Using the relative-distance-measure (RDM) fuzzy interval arithmetic and calculus of variations, the optimal control law is presented as the fuzzy state variables feedback. Since the optimal feedback gains are obtained as fuzzy functions, they need to be defuzzified. This will result in the sub-optimal control law. This paper also sheds light on the restrictions imposed by the approaches which are based on fuzzy standard interval arithmetic (FSIA), and use strongly generalized Hukuhara and generalized Hukuhara differentiability concepts for obtaining the optimal control law. The granular eigenvalues notion is also defined. Using an RLC circuit mathematical model, it is shown that, due to their unnatural behavior in the modeling phenomenon, the FSIA-based approaches may obtain some eigenvalues sets that might be different from the inherent eigenvalues set of the fuzzy dynamical system. This is, however, not the case with the approach proposed in this study. The notions of granular controllability and granular stabilizability of the fuzzy linear dynamical system are also presented in this paper. Moreover, a sub-optimal control for regulating a Boeing 747 in longitudinal direction with uncertain initial conditions and parameters is gained. In addition, an uncertain suspension system of one of the four wheels of a bus is regulated using the sub-optimal control introduced in this paper. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Control of cardiac alternans by mechanical and electrical feedback.

    PubMed

    Yapari, Felicia; Deshpande, Dipen; Belhamadia, Youssef; Dubljevic, Stevan

    2014-07-01

    A persistent alternation in the cardiac action potential duration has been linked to the onset of ventricular arrhythmia, which may lead to sudden cardiac death. A coupling between these cardiac alternans and the intracellular calcium dynamics has also been identified in previous studies. In this paper, the system of PDEs describing the small amplitude of alternans and the alternation of peak intracellular Ca(2+) are stabilized by optimal boundary and spatially distributed actuation. A simulation study demonstrating the successful annihilation of both alternans on a one-dimensional cable of cardiac cells by utilizing the full-state feedback controller is presented. Complimentary to these studies, a three variable Nash-Panfilov model is used to investigate alternans annihilation via mechanical (or stretch) perturbations. The coupled model includes the active stress which defines the mechanical properties of the tissue and is utilized in the feedback algorithm as an independent input from the pacing based controller realization in alternans annihilation. Simulation studies of both control methods demonstrate that the proposed methods can successfully annihilate alternans in cables that are significantly longer than 1 cm, thus overcoming the limitations of earlier control efforts.

  20. Corticothalamic feedback enhances stimulus response precision in the visual system

    PubMed Central

    Andolina, Ian M.; Jones, Helen E.; Wang, Wei; Sillito, Adam M.

    2007-01-01

    There is a tightly coupled bidirectional interaction between visual cortex and visual thalamus [lateral geniculate nucleus (LGN)]. Using drifting sinusoidal grating stimuli, we compared the response of cells in the LGN with and without feedback from the visual cortex. Raster plots revealed a striking difference in the response pattern of cells with and without feedback. This difference was reflected in the results from computing vector sum plots and the ratio of zero harmonic to the fundamental harmonic of the fast Fourier transform (FFT) for these responses. The variability of responses assessed by using the Fano factor was also different for the two groups, with the cells without feedback showing higher variability. We examined the covariance of these measures between pairs of simultaneously recorded cells with and without feedback, and they were much more strongly positively correlated with feedback. We constructed orientation tuning curves from the central 5 ms in the raw cross-correlograms of the outputs of pairs of LGN cells, and these curves revealed much sharper tuning with feedback. We discuss the significance of these data for cortical function and suggest that the precision in stimulus-linked firing in the LGN appears as an emergent factor from the corticothalamic interaction. PMID:17237220

  1. Substantial large-scale feedbacks between natural aerosols and climate

    NASA Astrophysics Data System (ADS)

    Scott, C. E.; Arnold, S. R.; Monks, S. A.; Asmi, A.; Paasonen, P.; Spracklen, D. V.

    2018-01-01

    The terrestrial biosphere is an important source of natural aerosol. Natural aerosol sources alter climate, but are also strongly controlled by climate, leading to the potential for natural aerosol-climate feedbacks. Here we use a global aerosol model to make an assessment of terrestrial natural aerosol-climate feedbacks, constrained by observations of aerosol number. We find that warmer-than-average temperatures are associated with higher-than-average number concentrations of large (>100 nm diameter) particles, particularly during the summer. This relationship is well reproduced by the model and is driven by both meteorological variability and variability in natural aerosol from biogenic and landscape fire sources. We find that the calculated extratropical annual mean aerosol radiative effect (both direct and indirect) is negatively related to the observed global temperature anomaly, and is driven by a positive relationship between temperature and the emission of natural aerosol. The extratropical aerosol-climate feedback is estimated to be -0.14 W m-2 K-1 for landscape fire aerosol, greater than the -0.03 W m-2 K-1 estimated for biogenic secondary organic aerosol. These feedbacks are comparable in magnitude to other biogeochemical feedbacks, highlighting the need for natural aerosol feedbacks to be included in climate simulations.

  2. Reinforcement learning for partially observable dynamic processes: adaptive dynamic programming using measured output data.

    PubMed

    Lewis, F L; Vamvoudakis, Kyriakos G

    2011-02-01

    Approximate dynamic programming (ADP) is a class of reinforcement learning methods that have shown their importance in a variety of applications, including feedback control of dynamical systems. ADP generally requires full information about the system internal states, which is usually not available in practical situations. In this paper, we show how to implement ADP methods using only measured input/output data from the system. Linear dynamical systems with deterministic behavior are considered herein, which are systems of great interest in the control system community. In control system theory, these types of methods are referred to as output feedback (OPFB). The stochastic equivalent of the systems dealt with in this paper is a class of partially observable Markov decision processes. We develop both policy iteration and value iteration algorithms that converge to an optimal controller that requires only OPFB. It is shown that, similar to Q -learning, the new methods have the important advantage that knowledge of the system dynamics is not needed for the implementation of these learning algorithms or for the OPFB control. Only the order of the system, as well as an upper bound on its "observability index," must be known. The learned OPFB controller is in the form of a polynomial autoregressive moving-average controller that has equivalent performance with the optimal state variable feedback gain.

  3. State dependent arrival in bulk retrial queueing system with immediate Bernoulli feedback, multiple vacations and threshold

    NASA Astrophysics Data System (ADS)

    Niranjan, S. P.; Chandrasekaran, V. M.; Indhira, K.

    2017-11-01

    The objective of this paper is to analyse state dependent arrival in bulk retrial queueing system with immediate Bernoulli feedback, multiple vacations, threshold and constant retrial policy. Primary customers are arriving into the system in bulk with different arrival rates λ a and λ b . If arriving customers find the server is busy then the entire batch will join to orbit. Customer from orbit request service one by one with constant retrial rate γ. On the other hand if an arrival of customers finds the server is idle then customers will be served in batches according to general bulk service rule. After service completion, customers may request service again with probability δ as feedback or leave from the system with probability 1 - δ. In the service completion epoch, if the orbit size is zero then the server leaves for multiple vacations. The server continues the vacation until the orbit size reaches the value ‘N’ (N > b). At the vacation completion, if the orbit size is ‘N’ then the server becomes ready to provide service for customers from the main pool or from the orbit. For the designed queueing model, probability generating function of the queue size at an arbitrary time will be obtained by using supplementary variable technique. Various performance measures will be derived with suitable numerical illustrations.

  4. Remembrance of ecohydrologic extremes past

    NASA Astrophysics Data System (ADS)

    Band, L. E.; Hwang, T.

    2013-12-01

    Ecohydrological systems operate at time scales that span several orders of magnitude. Significant processes and feedbacks range from subdaily physiologic response to meteorological drivers, to soil forming and geomorphic processes ranging up through 10^3-10^4 years. While much attention in ecohydrology has focused on ecosystem optimization paradigms, these systems can show significant transience in structure and function, with apparent memory of hydroclimate extremes and regime shifts. While optimization feedbacks can be reconciled with system transience, a better understanding of the time scales and mechanisms of adjustment to increased hydroclimate variability and to specific events is required to understand and predict dynamics and vulnerability of ecosystems. Under certain circumstances of slowly varying hydroclimate, we hypothesize that ecosystems can remain adjusted to changing climate regimes, without displaying apparent system memory. Alternatively, rapid changes in hydroclimate and increased hydroclimate variability, amplified with well expressed non-linearity in the processes controlling feedbacks between water, carbon and nutrients, can move ecosystems far from adjusted states. The Coweeta Hydrological Laboratory is typical of humid, broadleaf forests in eastern North America, with a range of forest biomes from northern hardwoods at higher elevations, to oak-pine assemblages at lower elevations. The site provides almost 80 years of rainfall-runoff records for a set of watersheds under different management, along with multi-decadal forest plot structural information, soil moisture conditions and stream chemistry. An initial period of multi-decadal cooling, was followed by three decades of warming and increased hydroclimate variability. While mean temperature has risen over this time period, precipitation shows no long term trends in the mean, but has had a significant rise in variability with repeated extreme drought and wet periods. Over this latter period, intra and interannual shifts of canopy structure and phenology are discernable, along with long term canopy adjustment. We use a combination of field observations, long term remote sensing records and distributed ecohydrological modeling to investigate transient behavior, apparent memory and mechanisms of ecosystem adjustment to hydroclimate variability and change over the range of biomes in the watershed.

  5. A new decentralised controller design method for a class of strongly interconnected systems

    NASA Astrophysics Data System (ADS)

    Duan, Zhisheng; Jiang, Zhong-Ping; Huang, Lin

    2017-02-01

    In this paper, two interconnected structures are first discussed, under which some closed-loop subsystems must be unstable to make the whole interconnected system stable, which can be viewed as a kind of strongly interconnected systems. Then, comparisons with small gain theorem are discussed and large gain interconnected characteristics are shown. A new approach for the design of decentralised controllers is presented by determining the Lyapunov function structure previously, which allows the existence of unstable subsystems. By fully utilising the orthogonal space information of input matrix, some new understandings are presented for the construction of Lyapunov matrix. This new method can deal with decentralised state feedback, static output feedback and dynamic output feedback controllers in a unified framework. Furthermore, in order to reduce the design conservativeness and deal with robustness, a new robust decentralised controller design method is given by combining with the parameter-dependent Lyapunov function method. Some basic rules are provided for the choice of initial variables in Lyapunov matrix or new introduced slack matrices. As byproducts, some linear matrix inequality based sufficient conditions are established for centralised static output feedback stabilisation. Effects of unstable subsystems in nonlinear Lur'e systems are further discussed. The corresponding decentralised controller design method is presented for absolute stability. The examples illustrate that the new method is significantly effective.

  6. Topographic Signatures of Meandering Rivers with Differences in Outer Bank Cohesion

    NASA Astrophysics Data System (ADS)

    Kelly, S. A.; Belmont, P.

    2014-12-01

    Within a given valley setting, interactions between river hydraulics, sediment, topography, and vegetation determine attributes of channel morphology, including planform, width and depth, slope, and bed and bank properties. These feedbacks also govern river behavior, including migration and avulsion. Bank cohesion, from the addition of fine sediment and/or vegetation has been recognized in flume experiments as a necessary component to create and maintain a meandering channel planform. Greater bank cohesion slows bank erosion, limiting the rate at which a river can adjust laterally and preventing so-called "runaway widening" to a braided state. Feedbacks of bank cohesion on channel hydraulics and sediment transport may thus produce distinct topographic signatures, or patterns in channel width, depth, and point bar transverse slope. We expect that in bends of greater outer bank cohesion the channel will be narrower, deeper, and bars will have greater transverse slopes. Only recently have we recognized that biotic processes may imprint distinct topographic signatures on the landscape. This study explores topographic signatures of three US rivers: the lower Minnesota River, near Mankato, MN, the Le Sueur River, south central MN, and the Fall River, Rocky Mountain National Park, CO. Each of these rivers has variability in outer bank cohesion, quantified based on geotechnical and vegetation properties, and in-channel topography, which was derived from rtkGPS and acoustic bathymetry surveys. We present methods for incorporating biophysical feedbacks into geomorphic transport laws so that models can better simulate the spatial patterns and variability of topographic signatures.

  7. A qualitative study of the variable effects of audit and feedback in the ICU.

    PubMed

    Sinuff, Tasnim; Muscedere, John; Rozmovits, Linda; Dale, Craig M; Scales, Damon C

    2015-06-01

    Audit and feedback is integral to performance improvement and behaviour change in the intensive care unit (ICU). However, there remain large gaps in our understanding of the social experience of audit and feedback and the mechanisms whereby it can be optimised as a quality improvement strategy in the ICU setting. We conducted a modified grounded theory qualitative study. Seventy-two clinicians from five academic and five community ICUs in Ontario, Canada, were interviewed. Team members reviewed interview transcripts independently. Data analysis used constant comparative methods. Clinicians interviewed experienced audit and feedback as fragmented and variable in its effectiveness. Moreover, clinicians felt disconnected from the process. The audit process was perceived as being insufficiently transparent. Feedback was often untimely, incomplete and not actionable. Specific groups such as respiratory therapists and night-shift clinicians felt marginalised. Suggestions for improvement included improving information sharing about the rationale for change and the audit process, tools and metrics; implementing peer-to-peer quality discussions to avoid a top-down approach (eg, incorporating feedback into discussions at daily rounds); providing effective feedback which contains specific, transparent and actionable information; delivering timely feedback (ie, balancing feedback proximate to events with trends over time) and increasing engagement by senior management. ICU clinicians experience audit and feedback as fragmented communication with feedback being especially problematic. Attention to improving communication, integration of the process into daily clinical activities and making feedback timely, specific and actionable may increase the effectiveness of audit and feedback to affect desired change. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  8. Reducing wait time in a hospital pharmacy to promote customer service.

    PubMed

    Slowiak, Julie M; Huitema, Bradley E; Dickinson, Alyce M

    2008-01-01

    The purpose of this study was to compare the effects of 2 different interventions on wait times at a hospital outpatient pharmacy: (1) giving feedback to employees about customer satisfaction with wait times and (2) giving a combined intervention package that included giving more specific feedback about actual wait times and goal setting for wait time reduction in addition to the customer satisfaction feedback. The relationship between customer satisfaction ratings and wait times was examined to determine whether wait times affected customer service satisfaction. Participants were 10 employees (4 pharmacists and 6 technicians) of an outpatient pharmacy. Wait times and customer satisfaction ratings were collected for "waiting customers." An ABCBA' within-subjects design was used to assess the effects of the interventions on both wait time and customer satisfaction, where A was the baseline (no feedback and no goal setting); B was the customer satisfaction feedback; C was the customer satisfaction feedback, the wait time feedback, and the goal setting for wait time reduction; and A' was a follow-up condition that was similar to the original baseline condition. Wait times were reduced by approximately 20%, and there was concomitant increased shift in levels of customer satisfaction, as indicated by the correlation between these variables (r = -0.57 and P < .05). Given the current prescription-filling process, we do not expect that major, additional reductions in wait times could be produced. Many variables may account for the variability in any individual customer's wait time. Data from this study may provide useful preliminary benchmarking data for standard pharmacy wait times.

  9. Sea Ice and Hydrographic Variability in the Northwest North Atlantic

    NASA Astrophysics Data System (ADS)

    Fenty, I. G.; Heimbach, P.; Wunsch, C. I.

    2010-12-01

    Sea ice anomalies in the Northwest North Atlantic's Labrador Sea are of climatic interest because of known and hypothesized feedbacks with hydrographic anomalies, deep convection/mode water formation, and Northern Hemisphere atmospheric patterns. As greenhouse gas concentrations increase, hydrographic anomalies formed in the Arctic Ocean associated with warming will propagate into the Labrador Sea via the Fram Strait/West Greenland Current and the Canadian Archipelago/Baffin Island Current. Therefore, understanding the dynamical response of sea ice in the basin to hydrographic anomalies is essential for the prediction and interpretation of future high-latitude climate change. Historically, efforts to quantify the link between the observed sea ice and hydrographic variability in the region has been limited due to in situ observation paucity and technical challenges associated with synthesizing ocean and sea ice observations with numerical models. To elaborate the relationship between sea ice and ocean variability, we create three one-year (1992-1993, 1996-1997, 2003-2004) three-dimensional time-varying reconstructions of the ocean and sea ice state in Labrador Sea and Baffin Bay. The reconstructions are syntheses of a regional coupled 32 km ocean-sea ice model with a suite of contemporary in situ and satellite hydrographic and ice data using the adjoint method. The model and data are made consistent, in a least-squares sense, by iteratively adjusting several model control variables (e.g., ocean initial and lateral boundary conditions and the atmospheric state) to minimize an uncertainty-weighted model-data misfit cost function. The reconstructions reveal that the ice pack attains a state of quasi-equilibrium in mid-March (the annual sea ice maximum) in which the total ice-covered area reaches a steady state -ice production and dynamical divergence along the coasts balances dynamical convergence and melt along the pack’s seaward edge. Sea ice advected to the marginal ice zone is mainly ablated via large sustained turbulent ocean enthalpy fluxes. The sensible heat required for these sustained fluxes is drawn from a reservoir of warm subsurface waters of subtropical origin entrained into the mixed layer via convective mixing. Analysis of ocean surface buoyancy fluxes during the period preceding quasi-equilibrium reveals that low-salinity upper ocean anomalies are required for ice to advance seaward of the Arctic Water/Irminger Water thermohaline front in the northern Labrador Sea. Anomalous low-salinity waters inhibit mixed layer deepening, shielding the advancing ice pack from the subsurface heat reservoir, and are conducive to a positive surface stratification enhancement feedback from ice meltwater release. Interestingly, the climatological location of the front coincides with the minimum observed wintertime ice extent; positive ice extent anomalies may require hydrographic preconditioning. If true, the export of low-salinity anomalies from melting Arctic ice associated with future warming may be predicted to lead positive ice extent anomalies in Labrador Sea via the positive surface stratification enhancement mechanism feedback outlined above.

  10. Distributions in the error space: goal-directed movements described in time and state-space representations.

    PubMed

    Fisher, Moria E; Huang, Felix C; Wright, Zachary A; Patton, James L

    2014-01-01

    Manipulation of error feedback has been of great interest to recent studies in motor control and rehabilitation. Typically, motor adaptation is shown as a change in performance with a single scalar metric for each trial, yet such an approach might overlook details about how error evolves through the movement. We believe that statistical distributions of movement error through the extent of the trajectory can reveal unique patterns of adaption and possibly reveal clues to how the motor system processes information about error. This paper describes different possible ordinate domains, focusing on representations in time and state-space, used to quantify reaching errors. We hypothesized that the domain with the lowest amount of variability would lead to a predictive model of reaching error with the highest accuracy. Here we showed that errors represented in a time domain demonstrate the least variance and allow for the highest predictive model of reaching errors. These predictive models will give rise to more specialized methods of robotic feedback and improve previous techniques of error augmentation.

  11. The Mediating Role of Affective Commitment in the Relation of the Feedback Environment to Work Outcomes

    ERIC Educational Resources Information Center

    Norris-Watts, Christina; Levy, Paul E.

    2004-01-01

    The Feedback Environment, as opposed to the formal performance appraisal process, is comprised of the daily interactions between members of an organization (Steelman, Levy, & Snell, in press). Relations between the feedback environment and work outcome variables such as Organizational Citizenship Behavior (OCB) were examined through the mediating…

  12. Effect of Integrated Feedback on Classroom Climate of Secondary School Teachers

    ERIC Educational Resources Information Center

    Patel, Nilesh Kumar

    2018-01-01

    This study aimed at finding out the effect of Integrated feedback on Classroom climate of secondary school teachers. This research is experimental in nature. Non-equivalent control group design suggested by Stanley and Campbell (1963) was used for the experiment. Integrated feedback was treatment and independent variable, Classroom climate was…

  13. Motivated or Paralyzed? Individuals' Beliefs about Intelligence Influence Performance Outcome of Expecting Rapid Feedback

    ERIC Educational Resources Information Center

    Zhao, Qin; Zhang, Jie; Vance, Kaleigh

    2013-01-01

    The current research examines whether and how beliefs about intelligence moderate the effects of expecting rapid feedback on exam performance. Thirty-six undergraduates participated in a field experiment with two between-subjects independent variables: anticipated feedback proximity and beliefs about intelligence. The results show that expecting…

  14. Effect of Animated Graphic Annotations and Immediate Visual Feedback in Aiding Japanese Pronunciation Learning: A Comparative Study

    ERIC Educational Resources Information Center

    Hew, Soon-Hin; Ohki, Mitsuru

    2004-01-01

    This study examines the effectiveness of imagery and electronic visual feedback in facilitating students' acquisition of Japanese pronunciation skills. The independent variables, animated graphic annotation (AGA) and immediate visual feedback (IVF) were integrated into a Japanese computer-assisted language learning (JCALL) program focused on the…

  15. SST Patterns, Atmospheric Variability, and Inferred Sensitivities in the CMIP5 Model Archive

    NASA Astrophysics Data System (ADS)

    Marvel, K.; Pincus, R.; Schmidt, G. A.

    2017-12-01

    An emerging consensus suggests that global mean feedbacks to increasing temperature are not constant in time. If feedbacks become more positive in the future, the equilibrium climate sensitivity (ECS) inferred from recent observed global energy budget constraints is likely to be biased low. Time-varying feedbacks are largely tied to evolving sea-surface temperature patterns. In particular, recent anomalously cool conditions in the tropical Pacific may have triggered feedbacks that are not reproduced in equilibrium simulations where the tropical Pacific and Southern Ocean have had time to warm. Here, we use AMIP and CMIP5 historical simulations to explore the ECS that may be inferred over the recent historical period. We find that in all but one CMIP5 model, the feedbacks triggered by observed SST patterns are significantly less positive than those arising from historical simulations in which SST patterns are allowed to evolve unconstrained. However, there are substantial variations in feedbacks even when the SST pattern is held fixed, suggesting that atmospheric and land variability contribute to uncertainty in the estimates of ECS obtained from recent observations of the global energy budget.

  16. The magnetosphere as system

    NASA Astrophysics Data System (ADS)

    Siscoe, G. L.

    2012-12-01

    What is a system? A group of elements interacting with each other so as to create feedback loops. A system gets complex as the number of feedback loops increases and as the feedback loops exhibit time delays. Positive and negative feedback loops with time delays can give a system intrinsic time dependence and emergent properties. A system generally has input and output flows of something (matter, energy, money), which, if time variable, add an extrinsic component to its behavior. The magnetosphere is a group of elements interacting through feedback loops, some with time delays, driven by energy and mass inflow from a variable solar wind and outflow into the atmosphere and solar wind. The magnetosphere is a complex system. With no solar wind, there is no behavior. With solar wind, there is behavior from intrinsic and extrinsic causes. As a contribution to taking a macroscopic view of magnetospheric dynamics, to treating the magnetosphere as a globally integrated, complex entity, I will discus the magnetosphere as a system, its feedback loops, time delays, emergent behavior, and intrinsic and extrinsic behavior modes.

  17. Confounding factors in determining causal soil moisture-precipitation feedback

    NASA Astrophysics Data System (ADS)

    Tuttle, Samuel E.; Salvucci, Guido D.

    2017-07-01

    Identification of causal links in the land-atmosphere system is important for construction and testing of land surface and general circulation models. However, the land and atmosphere are highly coupled and linked by a vast number of complex, interdependent processes. Statistical methods, such as Granger causality, can help to identify feedbacks from observational data, independent of the different parameterizations of physical processes and spatiotemporal resolution effects that influence feedbacks in models. However, statistical causal identification methods can easily be misapplied, leading to erroneous conclusions about feedback strength and sign. Here, we discuss three factors that must be accounted for in determination of causal soil moisture-precipitation feedback in observations and model output: seasonal and interannual variability, precipitation persistence, and endogeneity. The effect of neglecting these factors is demonstrated in simulated and observational data. The results show that long-timescale variability and precipitation persistence can have a substantial effect on detected soil moisture-precipitation feedback strength, while endogeneity has a smaller effect that is often masked by measurement error and thus is more likely to be an issue when analyzing model data or highly accurate observational data.

  18. Combined Audience and Video Feedback With Cognitive Review Improves State Anxiety and Self-Perceptions During Speech Tasks in Socially Anxious Individuals.

    PubMed

    Chen, Junwen; McLean, Jordan E; Kemps, Eva

    2018-03-01

    This study investigated the effects of combined audience feedback with video feedback plus cognitive preparation, and cognitive review (enabling deeper processing of feedback) on state anxiety and self-perceptions including perception of performance and perceived probability of negative evaluation in socially anxious individuals during a speech performance. One hundred and forty socially anxious students were randomly assigned to four conditions: Cognitive Preparation + Video Feedback + Audience Feedback + Cognitive Review (CP+VF+AF+CR), Cognitive Preparation + Video Feedback + Cognitive Review (CP+VF+CR), Cognitive Preparation + Video Feedback only (CP+VF), and Control. They were asked to deliver two impromptu speeches that were evaluated by confederates. Participants' levels of anxiety and self-perceptions pertaining to the speech task were assessed before and after feedback, and after the second speech. Compared to participants in the other conditions, participants in the CP+VF+AF+CR condition reported a significant decrease in their state anxiety and perceived probability of negative evaluation scores, and a significant increase in their positive perception of speech performance from before to after the feedback. These effects generalized to the second speech. Our results suggest that adding audience feedback to video feedback plus cognitive preparation and cognitive review may improve the effects of existing video feedback procedures in reducing anxiety symptoms and distorted self-representations in socially anxious individuals. Copyright © 2017. Published by Elsevier Ltd.

  19. Meta-analysis: audit and feedback features impact effectiveness on care quality.

    PubMed

    Hysong, Sylvia J

    2009-03-01

    Audit and feedback (A&F) has long been used to improve quality of care, albeit with variable results. This meta-analytic study tested whether Feedback Intervention Theory, a framework from industrial/organizational psychology, explains the observed variability in health care A&F research. studies cited by Jamtvedt's 2006 Cochrane systematic review of A&F, followed by database searches using the Cochrane review's search strategy to identify more recent studies. Cochrane review criteria, plus: presence of a treatment group receiving only A & F; a control group receiving no intervention; a quantitatively measurable outcome; minimum n of 10 per arm; sufficient statistics for effect size calculations. Moderators: presence of discouragement and praise; correct solution, attainment level, velocity, frequency, and normative information; feedback format (verbal, textual, graphic, public, computerized, group vs. individual); goal setting activity. meta-analytic procedures using the Hedges-Olkin method. Of 519 studies initially identified, 19 met all inclusion criteria. Studies were most often excluded due to the lack of a feedback-only arm. A&F has a modest, though significant positive effect on quality outcomes (d = 0.40, 95% confidence interval = +/-0.20); providing specific suggestions for improvement, written, and more frequent feedback strengthened this effect, whereas graphical and verbal feedback attenuated this effect. A&F effectiveness is improved when feedback is delivered with specific suggestions for improvement, in writing, and frequently. Other feedback characteristics could also potentially improve effectiveness; however, research with stricter experimental controls is needed to identify the specific feedback characteristics that maximize its effectiveness.

  20. Vegetation-rainfall feedbacks across the Sahel: a combined observational and modeling study

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Notaro, M.; Wang, F.; Mao, J.; Shi, X.; Wei, Y.

    2016-12-01

    The Sahel rainfall is characterized by large interannual variability. Past modeling studies have concluded that the Sahel rainfall variability is primarily driven by oceanic forcings and amplified by land-atmosphere interactions. However, the relative importance of oceanic versus terrestrial drivers has never been assessed from observations. The current understanding of vegetation's impacts on climate, i.e. positive vegetation-rainfall feedback through the albedo, moisture, and momentum mechanisms, comes from untested models. Neither the positive vegetation-rainfall feedback, nor the underlying mechanisms, has been fully resolved in observations. The current study fills the knowledge gap about the observed vegetation-rainfall feedbacks, through the application of the multivariate statistical method Generalized Equilibrium Feedback Assessment (GEFA) to observational data. According to GEFA, the observed oceanic impacts dominate over terrestrial impacts on Sahel rainfall, except in the post-monsoon period. Positive leaf area index (LAI) anomalies favor an extended, wetter monsoon across the Sahel, largely due to moisture recycling. The albedo mechanism is not responsible for this positive vegetation feedback on the seasonal-interannual time scale, which is too short for a grass-desert transition. A low-level stabilization and subsidence is observed in response to increased LAI - potentially responsible for a negative vegetation-rainfall feedback. However, the positive moisture feedback overwhelms the negative momentum feedback, resulting in an observed positive vegetation-rainfall feedback. We further applied GEFA to a fully-coupled Community Earth System Model (CESM) control run, as an example of evaluating climate models against the GEFA-based observational benchmark. In contrast to the observed positive vegetation-rainfall feedbacks, CESM simulates a negative vegetation-rainfall feedback across Sahel, peaking in the pre-monsoon season. The simulated negative feedback is largely due to the low-level stabilization caused by increased LAI. Positive moisture feedback is present in the CESM simulation, but an order weaker than the observed and weaker than the negative momentum feedback, thereby leading to the simulated negative vegetation-rainfall feedbacks.

  1. When money is not enough: awareness, success, and variability in motor learning.

    PubMed

    Manley, Harry; Dayan, Peter; Diedrichsen, Jörn

    2014-01-01

    When performing a skill such as throwing a dart, many different combinations of joint motions suffice to hit the target. The motor system adapts rapidly to reduce bias in the desired outcome (i.e., the first-order moment of the error); however, the essence of skill is to produce movements with less variability (i.e., to reduce the second-order moment). It is easy to see how feedback about success or failure could sculpt performance to achieve this aim. However, it is unclear whether the dimensions responsible for success or failure need to be known explicitly by the subjects, or whether learning can proceed without explicit awareness of the movement parameters that need to change. Here, we designed a redundant, two-dimensional reaching task in which we could selectively manipulate task success and the variability of action outcomes, whilst also manipulating awareness of the dimension along which performance could be improved. Variability was manipulated either by amplifying natural errors, leaving the correlation between the executed movement and the visual feedback intact, or by adding extrinsic noise, decorrelating movement and feedback. We found that explicit, binary, feedback about success or failure was only sufficient for learning when participants were aware of the dimension along which motor behavior had to change. Without such awareness, learning was only present when extrinsic noise was added to the feedback, but not when task success or variability was manipulated in isolation; learning was also much slower. Our results highlight the importance of conscious awareness of the relevant dimension during motor learning, and suggest that higher-order moments of outcome signals are likely to play a significant role in skill learning in complex tasks.

  2. Adaptive optimal stochastic state feedback control of resistive wall modes in tokamaks

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Sen, A. K.; Longman, R. W.

    2006-01-01

    An adaptive optimal stochastic state feedback control is developed to stabilize the resistive wall mode (RWM) instability in tokamaks. The extended least-square method with exponential forgetting factor and covariance resetting is used to identify (experimentally determine) the time-varying stochastic system model. A Kalman filter is used to estimate the system states. The estimated system states are passed on to an optimal state feedback controller to construct control inputs. The Kalman filter and the optimal state feedback controller are periodically redesigned online based on the identified system model. This adaptive controller can stabilize the time-dependent RWM in a slowly evolving tokamak discharge. This is accomplished within a time delay of roughly four times the inverse of the growth rate for the time-invariant model used.

  3. Adaptive Optimal Stochastic State Feedback Control of Resistive Wall Modes in Tokamaks

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Sen, A. K.; Longman, R. W.

    2007-06-01

    An adaptive optimal stochastic state feedback control is developed to stabilize the resistive wall mode (RWM) instability in tokamaks. The extended least square method with exponential forgetting factor and covariance resetting is used to identify the time-varying stochastic system model. A Kalman filter is used to estimate the system states. The estimated system states are passed on to an optimal state feedback controller to construct control inputs. The Kalman filter and the optimal state feedback controller are periodically redesigned online based on the identified system model. This adaptive controller can stabilize the time dependent RWM in a slowly evolving tokamak discharge. This is accomplished within a time delay of roughly four times the inverse of the growth rate for the time-invariant model used.

  4. ENSO Modulations due to Interannual Variability of Freshwater Forcing and Ocean Biology-induced Heating in the Tropical Pacific

    PubMed Central

    Zhang, Rong-Hua; Gao, Chuan; Kang, Xianbiao; Zhi, Hai; Wang, Zhanggui; Feng, Licheng

    2015-01-01

    Recent studies have identified clear climate feedbacks associated with interannual variations in freshwater forcing (FWF) and ocean biology-induced heating (OBH) in the tropical Pacific. The interrelationships among the related anomaly fields are analyzed using hybrid coupled model (HCM) simulations to illustrate their combined roles in modulating the El Niño-Southern Oscillation (ENSO). The HCM-based supporting experiments are performed to isolate the related feedbacks, with interannually varying FWF and OBH being represented individually or collectively, which allows their effects to be examined in a clear way. It is demonstrated that the interannual freshwater forcing enhances ENSO variability and slightly prolongs the simulated ENSO period, while the interannual OBH reduces ENSO variability and slightly shortens the ENSO period, with their feedback effects tending to counteract each other. PMID:26678931

  5. Flight investigation of rotor/vehicle state feedback

    NASA Technical Reports Server (NTRS)

    Briczinski, S. J.; Cooper, D. E.

    1975-01-01

    The feasibility of using control feedback or rotor tip-path-plane motion or body state as a means of altering rotor and fuselage response in a prescribed manner was investigated to determine the practical limitations of in-flight utilization of a digital computer which conditions and shapes rotor flapping and fuselage state information as feedback signals, before routing these signals to the differential servo actuators. The analysis and test of various feedback schemes are discussed. Test results show that a Kalman estimator routine which is based on only the first harmonic contributions of blade flapping yields tip-path-plane coefficients which are adequate for use in feedback systems, at speeds up to 150 kts.

  6. Feedback linearization for control of air breathing engines

    NASA Technical Reports Server (NTRS)

    Phillips, Stephen; Mattern, Duane

    1991-01-01

    The method of feedback linearization for control of the nonlinear nozzle and compressor components of an air breathing engine is presented. This method overcomes the need for a large number of scheduling variables and operating points to accurately model highly nonlinear plants. Feedback linearization also results in linear closed loop system performance simplifying subsequent control design. Feedback linearization is used for the nonlinear partial engine model and performance is verified through simulation.

  7. Continuous variables logic via coupled automata using a DNAzyme cascade with feedback.

    PubMed

    Lilienthal, S; Klein, M; Orbach, R; Willner, I; Remacle, F; Levine, R D

    2017-03-01

    The concentration of molecules can be changed by chemical reactions and thereby offer a continuous readout. Yet computer architecture is cast in textbooks in terms of binary valued, Boolean variables. To enable reactive chemical systems to compute we show how, using the Cox interpretation of probability theory, one can transcribe the equations of chemical kinetics as a sequence of coupled logic gates operating on continuous variables. It is discussed how the distinct chemical identity of a molecule allows us to create a common language for chemical kinetics and Boolean logic. Specifically, the logic AND operation is shown to be equivalent to a bimolecular process. The logic XOR operation represents chemical processes that take place concurrently. The values of the rate constants enter the logic scheme as inputs. By designing a reaction scheme with a feedback we endow the logic gates with a built in memory because their output then depends on the input and also on the present state of the system. Technically such a logic machine is an automaton. We report an experimental realization of three such coupled automata using a DNAzyme multilayer signaling cascade. A simple model verifies analytically that our experimental scheme provides an integrator generating a power series that is third order in time. The model identifies two parameters that govern the kinetics and shows how the initial concentrations of the substrates are the coefficients in the power series.

  8. GASICA: generic automated stress induction and control application design of an application for controlling the stress state.

    PubMed

    van der Vijgh, Benny; Beun, Robbert J; van Rood, Maarten; Werkhoven, Peter

    2014-01-01

    In a multitude of research and therapy paradigms it is relevant to know, and desirably to control, the stress state of a patient or participant. Examples include research paradigms in which the stress state is the dependent or independent variable, or therapy paradigms where this state indicates the boundaries of the therapy. To our knowledge, no application currently exists that focuses specifically on the automated control of the stress state while at the same time being generic enough to be used in various therapy and research purposes. Therefore, we introduce GASICA, an application aimed at the automated control of the stress state in a multitude of therapy and research paradigms. The application consists of three components: a digital stressor game, a set of measurement devices, and a feedback model. These three components form a closed loop (called a biocybernetic loop by Pope et al. (1995) and Fairclough (2009) that continuously presents an acute psychological stressor, measures several physiological responses to this stressor, and adjusts the stressor intensity based on these measurements by means of the feedback model, hereby aiming to control the stress state. In this manner GASICA presents multidimensional and ecological valid stressors, whilst continuously in control of the form and intensity of the presented stressors, aiming at the automated control of the stress state. Furthermore, the application is designed as a modular open-source application to easily implement different therapy and research tasks using a high-level programming interface and configuration file, and allows for the addition of (existing) measurement equipment, making it usable for various paradigms.

  9. GASICA: generic automated stress induction and control application design of an application for controlling the stress state

    PubMed Central

    van der Vijgh, Benny; Beun, Robbert J.; van Rood, Maarten; Werkhoven, Peter

    2014-01-01

    In a multitude of research and therapy paradigms it is relevant to know, and desirably to control, the stress state of a patient or participant. Examples include research paradigms in which the stress state is the dependent or independent variable, or therapy paradigms where this state indicates the boundaries of the therapy. To our knowledge, no application currently exists that focuses specifically on the automated control of the stress state while at the same time being generic enough to be used in various therapy and research purposes. Therefore, we introduce GASICA, an application aimed at the automated control of the stress state in a multitude of therapy and research paradigms. The application consists of three components: a digital stressor game, a set of measurement devices, and a feedback model. These three components form a closed loop (called a biocybernetic loop by Pope et al. (1995) and Fairclough (2009) that continuously presents an acute psychological stressor, measures several physiological responses to this stressor, and adjusts the stressor intensity based on these measurements by means of the feedback model, hereby aiming to control the stress state. In this manner GASICA presents multidimensional and ecological valid stressors, whilst continuously in control of the form and intensity of the presented stressors, aiming at the automated control of the stress state. Furthermore, the application is designed as a modular open-source application to easily implement different therapy and research tasks using a high-level programming interface and configuration file, and allows for the addition of (existing) measurement equipment, making it usable for various paradigms. PMID:25538554

  10. Closed-loop control of grasping with a myoelectric hand prosthesis: which are the relevant feedback variables for force control?

    PubMed

    Ninu, Andrei; Dosen, Strahinja; Muceli, Silvia; Rattay, Frank; Dietl, Hans; Farina, Dario

    2014-09-01

    In closed-loop control of grasping by hand prostheses, the feedback information sent to the user is usually the actual controlled variable, i.e., the grasp force. Although this choice is intuitive and logical, the force production is only the last step in the process of grasping. Therefore, this study evaluated the performance in controlling grasp strength using a hand prosthesis operated through a complete grasping sequence while varying the feedback variables (e.g., closing velocity, grasping force), which were provided to the user visually or through vibrotactile stimulation. The experiments were conducted on 13 volunteers who controlled the Otto Bock Sensor Hand Speed prosthesis. Results showed that vibrotactile patterns were able to replace the visual feedback. Interestingly, the experiments demonstrated that direct force feedback was not essential for the control of grasping force. The subjects were indeed able to control the grip strength, predictively, by estimating the grasping force from the prosthesis velocity of closing. Therefore, grasping without explicit force feedback is not completely blind, contrary to what is usually assumed. In our study we analyzed grasping with a specific prosthetic device, but the outcomes are also applicable for other devices, with one or more degrees-of-freedom. The necessary condition is that the electromyography (EMG) signal directly and proportionally controls the velocity/grasp force of the hand, which is a common approach among EMG controlled prosthetic devices. The results provide important indications on the design of closed-loop EMG controlled prosthetic systems.

  11. The Utility of the Real-Time NASA Land Information System Data for Drought Monitoring Applications

    NASA Technical Reports Server (NTRS)

    White, Kristopher D.; Case, Jonathan L.

    2013-01-01

    Measurements of soil moisture are a crucial component for the proper monitoring of drought conditions. The large spatial variability of soil moisture complicates the problem. Unfortunately, in situ soil moisture observing networks typically consist of sparse point observations, and conventional numerical model analyses of soil moisture used to diagnose drought are of coarse spatial resolution. Decision support systems such as the U.S. Drought Monitor contain drought impact resolution on sub-county scales, which may not be supported by the existing soil moisture networks or analyses. The NASA Land Information System, which is run with 3 km grid spacing over the eastern United States, has demonstrated utility for monitoring soil moisture. Some of the more useful output fields from the Land Information System are volumetric soil moisture in the 0-10 cm and 40-100 cm layers, column-integrated relative soil moisture, and the real-time green vegetation fraction derived from MODIS (Moderate Resolution Imaging Spectroradiometer) swath data that are run within the Land Information System in place of the monthly climatological vegetation fraction. While these and other variables have primarily been used in local weather models and other operational forecasting applications at National Weather Service offices, the use of the Land Information System for drought monitoring has demonstrated utility for feedback to the Drought Monitor. Output from the Land Information System is currently being used at NWS Huntsville to assess soil moisture, and to provide input to the Drought Monitor. Since feedback to the Drought Monitor takes place on a weekly basis, weekly difference plots of column-integrated relative soil moisture are being produced by the NASA Short-term Prediction Research and Transition Center and analyzed to facilitate the process. In addition to the Drought Monitor, these data are used to assess drought conditions for monthly feedback to the Alabama Drought Monitoring and Impact Group and the Tennessee Drought Task Force, which are comprised of federal, state, and local agencies and other water resources professionals.

  12. The Effects of Field Experience on Delivery of Feedback

    ERIC Educational Resources Information Center

    Ramos, Adolfo R.; Esslinger, Kerry; Pyle, Elizabeth

    2015-01-01

    The purpose of this study was to examine pre-service teachers' (PTs) ability to deliver feedback, which has been used as a process variable in identifying teacher-effectiveness and an established NASPE standard for beginning teachers. These questions guided the study: 1. Will overall feedback interactions delivered by PTs reach 45 per video? 2.…

  13. Fundamental Principles of Coherent-Feedback Quantum Control

    DTIC Science & Technology

    2014-12-08

    in metrology (acceleration sensing, vibrometry, gravity wave detection) and in quantum information processing (continuous-variables quantum ...AFRL-OSR-VA-TR-2015-0009 FUNDAMENTAL PRINCIPLES OF COHERENT-FEEDBACK QUANTUM CONTROL Hideo Mabuchi LELAND STANFORD JUNIOR UNIV CA Final Report 12/08...foundations and potential applications of coherent-feedback quantum control. We have focused on potential applications in quantum -enhanced metrology and

  14. Luck and Learning: Feedback Contingencies and Initial Success in Verbal Discrimination Learning.

    ERIC Educational Resources Information Center

    Schneider, H. G.; Ferrante, A. P.

    1983-01-01

    A total of 90 undergraduate volunteers learned a 12-pair, low-frequency verbal discrimination list. Independent variables were feedback (positive only, negative only, or both) and initial success (17, 50, or 83 percent correct on the first trial). While the main effect of feedback was not significant, that of initial success was. (Author/RH)

  15. The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6

    DOE PAGES

    Webb, Mark J.; Andrews, Timothy; Bodas-Salcedo, Alejandro; ...

    2017-01-01

    Our primary objective of CFMIP is to inform future assessments of cloud feedbacks through improved understanding of cloud–climate feedback mechanisms and better evaluation of cloud processes and cloud feedbacks in climate models. But, the CFMIP approach is also increasingly being used to understand other aspects of climate change, and so a second objective has now been introduced, to improve understanding of circulation, regional-scale precipitation, and non-linear changes. CFMIP is supporting ongoing model inter-comparison activities by coordinating a hierarchy of targeted experiments for CMIP6, along with a set of cloud-related output diagnostics. CFMIP contributes primarily to addressing the CMIP6 questions Howmore » does the Earth system respond to forcing? and What are the origins and consequences of systematic model biases? and supports the activities of the WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity.A compact set of Tier 1 experiments is proposed for CMIP6 to address this question: (1) what are the physical mechanisms underlying the range of cloud feedbacks and cloud adjustments predicted by climate models, and which models have the most credible cloud feedbacks? Additional Tier 2 experiments are proposed to address the following questions. (2) Are cloud feedbacks consistent for climate cooling and warming, and if not, why? (3) How do cloud-radiative effects impact the structure, the strength and the variability of the general atmospheric circulation in present and future climates? (4) How do responses in the climate system due to changes in solar forcing differ from changes due to CO 2, and is the response sensitive to the sign of the forcing? (5) To what extent is regional climate change per CO 2 doubling state-dependent (non-linear), and why? (6) Are climate feedbacks during the 20th century different to those acting on long-term climate change and climate sensitivity? (7) How do regional climate responses (e.g. in precipitation) and their uncertainties in coupled models arise from the combination of different aspects of CO 2 forcing and sea surface warming?CFMIP also proposes a number of additional model outputs in the CMIP DECK, CMIP6 Historical and CMIP6 CFMIP experiments, including COSP simulator outputs and process diagnostics to address the following questions. How well do clouds and other relevant variables simulated by models agree with observations?What physical processes and mechanisms are important for a credible simulation of clouds, cloud feedbacks and cloud adjustments in climate models?Which models have the most credible representations of processes relevant to the simulation of clouds?How do clouds and their changes interact with other elements of the climate system?« less

  16. The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6.

    NASA Technical Reports Server (NTRS)

    Webb, Mark J.; Andrews, Timothy; Bodas-Salcedo, Alejandro; Bony, Sandrine; Bretherton, Christopher S.; Chadwick, Robin; Chepfer, Helene; Douville, Herve; Good, Peter; Kay, Jennifer E.; hide

    2017-01-01

    The primary objective of CFMIP is to inform future assessments of cloud feedbacks through improved understanding of cloud-climate feedback mechanisms and better evaluation of cloud processes and cloud feedbacks in climate models. However, the CFMIP approach is also increasingly being used to understand other aspects of climate change, and so a second objective has now been introduced, to improve understanding of circulation, regional-scale precipitation, and non-linear changes. CFMIP is supporting ongoing model inter-comparison activities by coordinating a hierarchy of targeted experiments for CMIP6, along with a set of cloud-related output diagnostics. CFMIP contributes primarily to addressing the CMIP6 questions 'How does the Earth system respond to forcing?' and 'What are the origins and consequences of systematic model biases?' and supports the activities of the WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity. A compact set of Tier 1 experiments is proposed for CMIP6 to address this question: (1) what are the physical mechanisms underlying the range of cloud feedbacks and cloud adjustments predicted by climate models, and which models have the most credible cloud feedbacks? Additional Tier 2 experiments are proposed to address the following questions. (2) Are cloud feedbacks consistent for climate cooling and warming, and if not, why? (3) How do cloud-radiative effects impact the structure, the strength and the variability of the general atmospheric circulation in present and future climates? (4) How do responses in the climate system due to changes in solar forcing differ from changes due to CO2, and is the response sensitive to the sign of the forcing? (5) To what extent is regional climate change per CO2 doubling state-dependent (non-linear), and why? (6) Are climate feedbacks during the 20th century different to those acting on long-term climate change and climate sensitivity? (7) How do regional climate responses (e.g. in precipitation) and their uncertainties in coupled models arise from the combination of different aspects of CO2 forcing and sea surface warming? CFMIP also proposes a number of additional model outputs in the CMIP DECK, CMIP6 Historical and CMIP6 CFMIP experiments, including COSP simulator outputs and process diagnostics to address the following questions. 1. How well do clouds and other relevant variables simulated by models agree with observations? 2. What physical processes and mechanisms are important for a credible simulation of clouds, cloud feedbacks and cloud adjustments in climate models? 3. Which models have the most credible representations of processes relevant to the simulation of clouds? 4. How do clouds and their changes interact with other elements of the climate system?

  17. The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, Mark J.; Andrews, Timothy; Bodas-Salcedo, Alejandro

    Our primary objective of CFMIP is to inform future assessments of cloud feedbacks through improved understanding of cloud–climate feedback mechanisms and better evaluation of cloud processes and cloud feedbacks in climate models. But, the CFMIP approach is also increasingly being used to understand other aspects of climate change, and so a second objective has now been introduced, to improve understanding of circulation, regional-scale precipitation, and non-linear changes. CFMIP is supporting ongoing model inter-comparison activities by coordinating a hierarchy of targeted experiments for CMIP6, along with a set of cloud-related output diagnostics. CFMIP contributes primarily to addressing the CMIP6 questions Howmore » does the Earth system respond to forcing? and What are the origins and consequences of systematic model biases? and supports the activities of the WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity.A compact set of Tier 1 experiments is proposed for CMIP6 to address this question: (1) what are the physical mechanisms underlying the range of cloud feedbacks and cloud adjustments predicted by climate models, and which models have the most credible cloud feedbacks? Additional Tier 2 experiments are proposed to address the following questions. (2) Are cloud feedbacks consistent for climate cooling and warming, and if not, why? (3) How do cloud-radiative effects impact the structure, the strength and the variability of the general atmospheric circulation in present and future climates? (4) How do responses in the climate system due to changes in solar forcing differ from changes due to CO 2, and is the response sensitive to the sign of the forcing? (5) To what extent is regional climate change per CO 2 doubling state-dependent (non-linear), and why? (6) Are climate feedbacks during the 20th century different to those acting on long-term climate change and climate sensitivity? (7) How do regional climate responses (e.g. in precipitation) and their uncertainties in coupled models arise from the combination of different aspects of CO 2 forcing and sea surface warming?CFMIP also proposes a number of additional model outputs in the CMIP DECK, CMIP6 Historical and CMIP6 CFMIP experiments, including COSP simulator outputs and process diagnostics to address the following questions. How well do clouds and other relevant variables simulated by models agree with observations?What physical processes and mechanisms are important for a credible simulation of clouds, cloud feedbacks and cloud adjustments in climate models?Which models have the most credible representations of processes relevant to the simulation of clouds?How do clouds and their changes interact with other elements of the climate system?« less

  18. Feedback: Implications for Further Research and Study.

    ERIC Educational Resources Information Center

    Nishikawa, Sue S.

    This report reviews current literature on feedback and suggests practical implications of feedback research for educators. A definition of feedback is offered, and past definitions in prior research are noted. An analysis of the current state of knowledge of feedback discusses the historical development of feedback theory and suggests that…

  19. Feedback controlled optics with wavefront compensation

    NASA Technical Reports Server (NTRS)

    Breckenridge, William G. (Inventor); Redding, David C. (Inventor)

    1993-01-01

    The sensitivity model of a complex optical system obtained by linear ray tracing is used to compute a control gain matrix by imposing the mathematical condition for minimizing the total wavefront error at the optical system's exit pupil. The most recent deformations or error states of the controlled segments or optical surfaces of the system are then assembled as an error vector, and the error vector is transformed by the control gain matrix to produce the exact control variables which will minimize the total wavefront error at the exit pupil of the optical system. These exact control variables are then applied to the actuators controlling the various optical surfaces in the system causing the immediate reduction in total wavefront error observed at the exit pupil of the optical system.

  20. Summer U.S. Surface Air Temperature Variability: Controlling Factors and AMIP Simulation Biases

    NASA Astrophysics Data System (ADS)

    Merrifield, A.; Xie, S. P.

    2016-02-01

    This study documents and investigates biases in simulating summer surface air temperature (SAT) variability over the continental U.S. in the Coupled Model Intercomparison Project (CMIP5) Atmospheric Model Intercomparison Project (AMIP). Empirical orthogonal function (EOF) and multivariate regression analyses are used to assess the relative importance of circulation and the land surface feedback at setting summer SAT over a 30-year period (1979-2008). In observations, regions of high SAT variability are closely associated with midtropospheric highs and subsidence, consistent with adiabatic theory (Meehl and Tebaldi 2004, Lau and Nath 2012). Preliminary analysis shows the majority of the AMIP models feature high SAT variability over the central U.S., displaced south and/or west of observed centers of action (COAs). SAT COAs in models tend to be concomitant with regions of high sensible heat flux variability, suggesting an excessive land surface feedback in these models modulate U.S. summer SAT. Additionally, tropical sea surface temperatures (SSTs) play a role in forcing the leading EOF mode for summer SAT, in concert with internal atmospheric variability. There is evidence that models respond to different SST patterns than observed. Addressing issues with the bulk land surface feedback and the SST-forced component of atmospheric variability may be key to improving model skill in simulating summer SAT variability over the U.S.

  1. Multivariable control of the Space Shuttle Remote Manipulator System using linearization by state feedback. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Gettman, Chang-Ching LO

    1993-01-01

    This thesis develops and demonstrates an approach to nonlinear control system design using linearization by state feedback. The design provides improved transient response behavior allowing faster maneuvering of payloads by the SRMS. Modeling uncertainty is accounted for by using a second feedback loop designed around the feedback linearized dynamics. A classical feedback loop is developed to provide the easy implementation required for the relatively small on board computers. Feedback linearization also allows the use of higher bandwidth model based compensation in the outer loop, since it helps maintain stability in the presence of the nonlinearities typically neglected in model based designs.

  2. Realizing actual feedback control of complex network

    NASA Astrophysics Data System (ADS)

    Tu, Chengyi; Cheng, Yuhua

    2014-06-01

    In this paper, we present the concept of feedbackability and how to identify the Minimum Feedbackability Set of an arbitrary complex directed network. Furthermore, we design an estimator and a feedback controller accessing one MFS to realize actual feedback control, i.e. control the system to our desired state according to the estimated system internal state from the output of estimator. Last but not least, we perform numerical simulations of a small linear time-invariant dynamics network and a real simple food network to verify the theoretical results. The framework presented here could make an arbitrary complex directed network realize actual feedback control and deepen our understanding of complex systems.

  3. CARVE: The Carbon in Arctic Reservoirs Vulnerability Experiment

    NASA Technical Reports Server (NTRS)

    Miller, Charles E.; Dinardo, Steven J.

    2012-01-01

    The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) is a NASA Earth Ventures (EV-1) investigation designed to quantify correlations between atmospheric and surface state variables for the Alaskan terrestrial ecosystems through intensive seasonal aircraft campaigns, ground-based observations, and analysis sustained over a 5-year mission. CARVE bridges critical gaps in our knowledge and understanding of Arctic ecosystems, linkages between the Arctic hydrologic and terrestrial carbon cycles, and the feedbacks from fires and thawing permafrost. CARVE's objectives are to: (1) Directly test hypotheses attributing the mobilization of vulnerable Arctic carbon reservoirs to climate warming; (2) Deliver the first direct measurements and detailed maps of CO2 and CH4 sources on regional scales in the Alaskan Arctic; and (3) Demonstrate new remote sensing and modeling capabilities to quantify feedbacks between carbon fluxes and carbon cycle-climate processes in the Arctic (Figure 1). We describe the investigation design and results from 2011 test flights in Alaska.

  4. Coexisting synchronous and asynchronous states in locally coupled array of oscillators by partial self-feedback control

    NASA Astrophysics Data System (ADS)

    Bera, Bidesh K.; Ghosh, Dibakar; Parmananda, Punit; Osipov, G. V.; Dana, Syamal K.

    2017-07-01

    We report the emergence of coexisting synchronous and asynchronous subpopulations of oscillators in one dimensional arrays of identical oscillators by applying a self-feedback control. When a self-feedback is applied to a subpopulation of the array, similar to chimera states, it splits into two/more sub-subpopulations coexisting in coherent and incoherent states for a range of self-feedback strength. By tuning the coupling between the nearest neighbors and the amount of self-feedback in the perturbed subpopulation, the size of the coherent and the incoherent sub-subpopulations in the array can be controlled, although the exact size of them is unpredictable. We present numerical evidence using the Landau-Stuart system and the Kuramoto-Sakaguchi phase model.

  5. Spring snow albedo feedback over northern Eurasia: Comparing in situ measurements with reanalysis products

    NASA Astrophysics Data System (ADS)

    Wegmann, Martin; Dutra, Emanuel; Jacobi, Hans-Werner; Zolina, Olga

    2018-06-01

    This study uses daily observations and modern reanalyses in order to evaluate reanalysis products over northern Eurasia regarding the spring snow albedo feedback (SAF) during the period from 2000 to 2013. We used the state-of-the-art reanalyses from ERA-Interim/Land and the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) as well as an experimental set-up of ERA-Interim/Land with prescribed short grass as land cover to enhance the comparability with the station data while underlining the caveats of comparing in situ observations with gridded data. Snow depth statistics derived from daily station data are well reproduced in all three reanalyses. However day-to-day albedo variability is notably higher at the stations than for any reanalysis product. The ERA-Interim grass set-up shows improved performance when representing albedo variability and generates comparable estimates for the snow albedo in spring. We find that modern reanalyses show a physically consistent representation of SAF, with realistic spatial patterns and area-averaged sensitivity estimates. However, station-based SAF values are significantly higher than in the reanalyses, which is mostly driven by the stronger contrast between snow and snow-free albedo. Switching to grass-only vegetation in ERA-Interim/Land increases the SAF values up to the level of station-based estimates. We found no significant trend in the examined 14-year time series of SAF, but interannual changes of about 0.5 % K-1 in both station-based and reanalysis estimates were derived. This interannual variability is primarily dominated by the variability in the snowmelt sensitivity, which is correctly captured in reanalysis products. Although modern reanalyses perform well for snow variables, efforts should be made to improve the representation of dynamic albedo changes.

  6. EKF-Based Enhanced Performance Controller Design for Nonlinear Stochastic Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yuyang; Zhang, Qichun; Wang, Hong

    In this paper, a novel control algorithm is presented to enhance the performance of tracking property for a class of non-linear dynamic stochastic systems with unmeasurable variables. To minimize the entropy of tracking errors without changing the existing closed loop with PI controller, the enhanced performance loop is constructed based on the state estimation by extended Kalman Filter and the new controller is designed by full state feedback following this presented control algorithm. Besides, the conditions are obtained for the stability analysis in the mean square sense. In the end, the comparative simulation results are given to illustrate the effectivenessmore » of proposed control algorithm.« less

  7. Digital flight control systems

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Vanlandingham, H. F.

    1977-01-01

    The design of stable feedback control laws for sampled-data systems with variable rate sampling was investigated. These types of sampled-data systems arise naturally in digital flight control systems which use digital actuators where it is desirable to decrease the number of control computer output commands in order to save wear and tear of the associated equipment. The design of aircraft control systems which are optimally tolerant of sensor and actuator failures was also studied. Detection of the failed sensor or actuator must be resolved and if the estimate of the state is used in the control law, then it is also desirable to have an estimator which will give the optimal state estimate even under the failed conditions.

  8. Ride comfort control in large flexible aircraft. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Warren, M. E.

    1971-01-01

    The problem of ameliorating the discomfort of passengers on a large air transport subject to flight disturbances is examined. The longitudinal dynamics of the aircraft, including effects of body flexing, are developed in terms of linear, constant coefficient differential equations in state variables. A cost functional, penalizing the rigid body displacements and flexure accelerations over the surface of the aircraft is formulated as a quadratic form. The resulting control problem, to minimize the cost subject to the state equation constraints, is of a class whose solutions are well known. The feedback gains for the optimal controller are calculated digitally, and the resulting autopilot is simulated on an analog computer and its performance evaluated.

  9. Stabilization of memory States by stochastic facilitating synapses.

    PubMed

    Miller, Paul

    2013-12-06

    Bistability within a small neural circuit can arise through an appropriate strength of excitatory recurrent feedback. The stability of a state of neural activity, measured by the mean dwelling time before a noise-induced transition to another state, depends on the neural firing-rate curves, the net strength of excitatory feedback, the statistics of spike times, and increases exponentially with the number of equivalent neurons in the circuit. Here, we show that such stability is greatly enhanced by synaptic facilitation and reduced by synaptic depression. We take into account the alteration in times of synaptic vesicle release, by calculating distributions of inter-release intervals of a synapse, which differ from the distribution of its incoming interspike intervals when the synapse is dynamic. In particular, release intervals produced by a Poisson spike train have a coefficient of variation greater than one when synapses are probabilistic and facilitating, whereas the coefficient of variation is less than one when synapses are depressing. However, in spite of the increased variability in postsynaptic input produced by facilitating synapses, their dominant effect is reduced synaptic efficacy at low input rates compared to high rates, which increases the curvature of neural input-output functions, leading to wider regions of bistability in parameter space and enhanced lifetimes of memory states. Our results are based on analytic methods with approximate formulae and bolstered by simulations of both Poisson processes and of circuits of noisy spiking model neurons.

  10. A Bayesian Account of Vocal Adaptation to Pitch-Shifted Auditory Feedback

    PubMed Central

    Hahnloser, Richard H. R.

    2017-01-01

    Motor systems are highly adaptive. Both birds and humans compensate for synthetically induced shifts in the pitch (fundamental frequency) of auditory feedback stemming from their vocalizations. Pitch-shift compensation is partial in the sense that large shifts lead to smaller relative compensatory adjustments of vocal pitch than small shifts. Also, compensation is larger in subjects with high motor variability. To formulate a mechanistic description of these findings, we adapt a Bayesian model of error relevance. We assume that vocal-auditory feedback loops in the brain cope optimally with known sensory and motor variability. Based on measurements of motor variability, optimal compensatory responses in our model provide accurate fits to published experimental data. Optimal compensation correctly predicts sensory acuity, which has been estimated in psychophysical experiments as just-noticeable pitch differences. Our model extends the utility of Bayesian approaches to adaptive vocal behaviors. PMID:28135267

  11. [The influence of affect on satisfaction with conversations and interpersonal impressions from the perspective of dyadic affective combinations].

    PubMed

    Ken, Fujiwara; Daibo, Ikuo

    2013-12-01

    This study examined the influence of affect on interpersonal relationships in a dyadic communication context. The combination of speakers' affective states was considered, as compared to previous studies which considered only the individual's affective state. The independent variables, in a between-subjects design, were affective condition (positive vs. negative) and affective combination (similar vs. dissimilar). Participants (N = 86) took a test on creative thinking and were given false feedback. Then they had a 6-minute conversation and answered questions about their satisfaction with the conversation and their impressions of their partner. Results showed that the two-factor interactions were significant for satisfaction with the conversation and interpersonal impressions (social desirability) of the partner. The scores for these variables in the positive affect condition were higher than in the negative affect condition only when the affective combination was dissimilar. These results show that individual's affect could not predict conversational outcomes. The results were discussed in terms of incorrect inferences about the partner's affective state and imbalanced conversation activity.

  12. Dynamical predictors of an imminent phenotypic switch in bacteria

    NASA Astrophysics Data System (ADS)

    Wang, Huijing; Ray, J. Christian J.

    2017-08-01

    Single cells can stochastically switch across thresholds imposed by regulatory networks. Such thresholds can act as a tipping point, drastically changing global phenotypic states. In ecology and economics, imminent transitions across such tipping points can be predicted using dynamical early warning indicators. A typical example is ‘flickering’ of a fast variable, predicting a longer-lasting switch from a low to a high state or vice versa. Considering the different timescales between metabolite and protein fluctuations in bacteria, we hypothesized that metabolic early warning indicators predict imminent transitions across a network threshold caused by enzyme saturation. We used stochastic simulations to determine if flickering predicts phenotypic transitions, accounting for a variety of molecular physiological parameters, including enzyme affinity, burstiness of enzyme gene expression, homeostatic feedback, and rates of metabolic precursor influx. In most cases, we found that metabolic flickering rates are robustly peaked near the enzyme saturation threshold. The degree of fluctuation was amplified by product inhibition of the enzyme. We conclude that sensitivity to flickering in fast variables may be a possible natural or synthetic strategy to prepare physiological states for an imminent transition.

  13. Unregulated provider perceptions of audit and feedback reports in long-term care: cross-sectional survey findings from a quality improvement intervention.

    PubMed

    Fraser, Kimberly D; O'Rourke, Hannah M; Baylon, Melba Andrea B; Boström, Anne-Marie; Sales, Anne E

    2013-02-13

    Audit with feedback is a moderately effective approach for improving professional practice in other health care settings. Although unregulated caregivers give the majority of direct care in long-term care settings, little is known about how they understand and perceive feedback reports because unregulated providers have not been directly targeted to receive audit with feedback in quality improvement interventions in long-term care. The purpose of this paper is to describe unregulated care providers' perceptions of usefulness of a feedback report in four Canadian long-term care facilities. We delivered monthly feedback reports to unregulated care providers for 13 months in 2009-2010. The feedback reports described a unit's performance in relation to falls, depression, and pain as compared to eight other units in the study. Follow-up surveys captured participant perceptions of the feedback report. We conducted descriptive analyses of the variables related to participant perceptions and multivariable logistic regression to assess the association between perceived usefulness of the feedback report and a set of independent variables. The vast majority (80%) of unregulated care providers (n = 171) who responded said they understood the reports. Those who discussed the report with others and were interested in other forms of data were more likely to find the feedback report useful for making changes in resident care. This work suggests that unregulated care providers can understand and feel positively about using audit with feedback reports to make changes to resident care. Further research should explore ways to promote fuller engagement of unregulated care providers in decision-making to improve quality of care in long-term care settings.

  14. Unregulated provider perceptions of audit and feedback reports in long-term care: cross-sectional survey findings from a quality improvement intervention

    PubMed Central

    2013-01-01

    Background Audit with feedback is a moderately effective approach for improving professional practice in other health care settings. Although unregulated caregivers give the majority of direct care in long-term care settings, little is known about how they understand and perceive feedback reports because unregulated providers have not been directly targeted to receive audit with feedback in quality improvement interventions in long-term care. The purpose of this paper is to describe unregulated care providers’ perceptions of usefulness of a feedback report in four Canadian long-term care facilities. Methods We delivered monthly feedback reports to unregulated care providers for 13 months in 2009–2010. The feedback reports described a unit’s performance in relation to falls, depression, and pain as compared to eight other units in the study. Follow-up surveys captured participant perceptions of the feedback report. We conducted descriptive analyses of the variables related to participant perceptions and multivariable logistic regression to assess the association between perceived usefulness of the feedback report and a set of independent variables. Results The vast majority (80%) of unregulated care providers (n = 171) who responded said they understood the reports. Those who discussed the report with others and were interested in other forms of data were more likely to find the feedback report useful for making changes in resident care. Conclusions This work suggests that unregulated care providers can understand and feel positively about using audit with feedback reports to make changes to resident care. Further research should explore ways to promote fuller engagement of unregulated care providers in decision-making to improve quality of care in long-term care settings. PMID:23402382

  15. Sensorimotor learning in children and adults: Exposure to frequency-altered auditory feedback during speech production.

    PubMed

    Scheerer, N E; Jacobson, D S; Jones, J A

    2016-02-09

    Auditory feedback plays an important role in the acquisition of fluent speech; however, this role may change once speech is acquired and individuals no longer experience persistent developmental changes to the brain and vocal tract. For this reason, we investigated whether the role of auditory feedback in sensorimotor learning differs across children and adult speakers. Participants produced vocalizations while they heard their vocal pitch predictably or unpredictably shifted downward one semitone. The participants' vocal pitches were measured at the beginning of each vocalization, before auditory feedback was available, to assess the extent to which the deviant auditory feedback modified subsequent speech motor commands. Sensorimotor learning was observed in both children and adults, with participants' initial vocal pitch increasing following trials where they were exposed to predictable, but not unpredictable, frequency-altered feedback. Participants' vocal pitch was also measured across each vocalization, to index the extent to which the deviant auditory feedback was used to modify ongoing vocalizations. While both children and adults were found to increase their vocal pitch following predictable and unpredictable changes to their auditory feedback, adults produced larger compensatory responses. The results of the current study demonstrate that both children and adults rapidly integrate information derived from their auditory feedback to modify subsequent speech motor commands. However, these results also demonstrate that children and adults differ in their ability to use auditory feedback to generate compensatory vocal responses during ongoing vocalization. Since vocal variability also differed across the children and adult groups, these results also suggest that compensatory vocal responses to frequency-altered feedback manipulations initiated at vocalization onset may be modulated by vocal variability. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Interrogative suggestibility: its relationship with assertiveness, social-evaluative anxiety, state anxiety and method of coping.

    PubMed

    Gudjonsson, G H

    1988-05-01

    This paper attempts to investigate empirically in 30 subjects some of the theoretical components related to individual differences that are thought by Gudjonsson & Clark (1986) to mediate interrogative suggestibility as measured by the Gudjonsson Suggestibility Scale (GSS; Gudjonsson, 1984a). The variables studied were: assertiveness, social-evaluative anxiety, state anxiety and the coping methods subjects are able to generate and implement during interrogation. Low assertiveness and high evaluative anxiety were found to correlate moderately with suggestibility, but no significant correlations emerged for 'social avoidance and distress'. State anxiety correlated significantly with suggestibility, particularly after negative feedback had been administered. Coping methods (active-cognitive/behavioural vs. avoidance) significantly predicted suggestibility scores. The findings give strong support to the theoretical model of Gudjonsson & Clark.

  17. The spectral details of observed and simulated short-term water vapor feedbacks of El Niño-Southern Oscillation

    NASA Astrophysics Data System (ADS)

    Pan, F.; Huang, X.; Chen, X.

    2015-12-01

    Radiative kernel method has been validated and widely used in the study of climate feedbacks. This study uses spectrally resolved longwave radiative kernels to examine the short-term water vapor feedbacks associated with the ENSO cycles. Using a 500-year GFDL CM3 and a 100-year NCAR CCSM4 pre-industry control simulation, we have constructed two sets of longwave spectral radiative kernels. We then composite El Niño, La Niña and ENSO-neutral states and estimate the water vapor feedbacks associated with the El Niño and La Niña phases of ENSO cycles in both simulations. Similar analysis is also applied to 35-year (1979-2014) ECMWF ERA-interim reanalysis data, which is deemed as observational results here. When modeled and observed broadband feedbacks are compared to each other, they show similar geographic patterns but with noticeable discrepancies in the contrast between the tropics and extra-tropics. Especially, in El Niño phase, the feedback estimated from reanalysis is much greater than those from the model simulations. Considering the observational data span, we carry out a sensitivity test to explore the variability of feedback-deriving using 35-year data. To do so, we calculate the water vapor feedback within every 35-year segment of the GFDL CM3 control run by two methods: one is to composite El Nino or La Nina phases as mentioned above and the other is to regressing the TOA flux perturbation caused by water vapor change (δR_H­2O) against the global-mean surface temperature a­­­­nomaly. We find that the short-term feedback strengths derived from composite method can change considerably from one segment to another segment, while the feedbacks by regression method are less sensitive to the choice of segment and their strengths are also much smaller than those from composite analysis. This study suggests that caution is warranted in order to infer long-term feedbacks from a few decades of observations. When spectral details of the global-mean feedbacks are examined, more inconsistencies can be revealed in many spectral bands, especially H2O continuum absorption bands and window regions. These discrepancies can be attributed back to differences in observed and modeled water vapor profiles in responses to tropical SST.

  18. Feedback linearization based control of a variable air volume air conditioning system for cooling applications.

    PubMed

    Thosar, Archana; Patra, Amit; Bhattacharyya, Souvik

    2008-07-01

    Design of a nonlinear control system for a Variable Air Volume Air Conditioning (VAVAC) plant through feedback linearization is presented in this article. VAVAC systems attempt to reduce building energy consumption while maintaining the primary role of air conditioning. The temperature of the space is maintained at a constant level by establishing a balance between the cooling load generated in the space and the air supply delivered to meet the load. The dynamic model of a VAVAC plant is derived and formulated as a MIMO bilinear system. Feedback linearization is applied for decoupling and linearization of the nonlinear model. Simulation results for a laboratory scale plant are presented to demonstrate the potential of keeping comfort and maintaining energy optimal performance by this methodology. Results obtained with a conventional PI controller and a feedback linearizing controller are compared and the superiority of the proposed approach is clearly established.

  19. Unifying Views of Autism Spectrum Disorders: A Consideration of Autoregulatory Feedback Loops

    PubMed Central

    Mullins, Caitlin; Fishell, Gord

    2017-01-01

    Understanding the mechanisms underlying autism spectrum disorders (ASD) is a challenging goal. Here we review recent progress on several fronts, including genetics, proteomics, biochemistry and electrophysiology, that raise motivation for forming a viable pathophysiological hypothesis. In place of a traditionally unidirectional progression, we put forward a framework that extends homeostatic hypotheses by explicitly emphasizing autoregulatory feedback loops and known synaptic biology. The regulated biological feature can be neuronal electrical activity, the collective strength of synapses onto a dendritic branch, the local concentration of a signaling molecule, or the relative strengths of synaptic excitation and inhibition. The sensor of the biological variable (which we have termed the homeostat) engages mechanisms that operate as negative feedback elements to keep the biological variable tightly confined. We categorize known ASD-associated gene products according to their roles in such feedback loops, and provide detailed commentary for exemplar genes within each module. PMID:26985722

  20. Physics-model-based nonlinear actuator trajectory optimization and safety factor profile feedback control for advanced scenario development in DIII-D

    DOE PAGES

    Barton, Justin E.; Boyer, Mark D.; Shi, Wenyu; ...

    2015-07-30

    DIII-D experimental results are reported to demonstrate the potential of physics-model-based safety factor profile control for robust and reproducible sustainment of advanced scenarios. In the absence of feedback control, variability in wall conditions and plasma impurities, as well as drifts due to external disturbances, can limit the reproducibility of discharges with simple pre-programmed scenario trajectories. The control architecture utilized is a feedforward + feedback scheme where the feedforward commands are computed off-line and the feedback commands are computed on-line. In this work, firstly a first-principles-driven (FPD), physics-based model of the q profile and normalized beta (β N) dynamics is embeddedmore » into a numerical optimization algorithm to design feedforward actuator trajectories that sheer the plasma through the tokamak operating space to reach a desired stationary target state that is characterized by the achieved q profile and β N. Good agreement between experimental results and simulations demonstrates the accuracy of the models employed for physics-model-based control design. Secondly, a feedback algorithm for q profile control is designed following a FPD approach, and the ability of the controller to achieve and maintain a target q profile evolution is tested in DIII-D high confinement (H-mode) experiments. The controller is shown to be able to effectively control the q profile when β N is relatively close to the target, indicating the need for integrated q profile and β N control to further enhance the ability to achieve robust scenario execution. Furthermore, the ability of an integrated q profile + β N feedback controller to track a desired target is demonstrated through simulation.« less

  1. Spatial climate patterns explain negligible variation in strength of compensatory density feedbacks in birds and mammals.

    PubMed

    Herrando-Pérez, Salvador; Delean, Steven; Brook, Barry W; Cassey, Phillip; Bradshaw, Corey J A

    2014-01-01

    The use of long-term population data to separate the demographic role of climate from density-modified demographic processes has become a major topic of ecological investigation over the last two decades. Although the ecological and evolutionary mechanisms that determine the strength of density feedbacks are now well understood, the degree to which climate gradients shape those processes across taxa and broad spatial scales remains unclear. Intuitively, harsh or highly variable environmental conditions should weaken compensatory density feedbacks because populations are hypothetically unable to achieve or maintain densities at which social and trophic interactions (e.g., competition, parasitism, predation, disease) might systematically reduce population growth. Here we investigate variation in the strength of compensatory density feedback, from long-term time series of abundance over 146 species of birds and mammals, in response to spatial gradients of broad-scale temperature precipitation variables covering 97 localities in 28 countries. We use information-theoretic metrics to rank phylogenetic generalized least-squares regression models that control for sample size (time-series length) and phylogenetic non-independence. Climatic factors explained < 1% of the remaining variation in density-feedback strength across species, with the highest non-control, model-averaged effect sizes related to extreme precipitation variables. We could not link our results directly to other published studies, because ecologists use contrasting responses, predictors and statistical approaches to correlate density feedback and climate--at the expense of comparability in a macroecological context. Censuses of multiple populations within a given species, and a priori knowledge of the spatial scales at which density feedbacks interact with climate, seem to be necessary to determine cross-taxa variation in this phenomenon. Despite the availability of robust modelling tools, the appropriate data have not yet been gathered for most species, meaning that we cannot yet make any robust generalisations about how demographic feedbacks interact with climate.

  2. Spatial Climate Patterns Explain Negligible Variation in Strength of Compensatory Density Feedbacks in Birds and Mammals

    PubMed Central

    Herrando-Pérez, Salvador; Delean, Steven; Brook, Barry W.; Cassey, Phillip; Bradshaw, Corey J. A.

    2014-01-01

    The use of long-term population data to separate the demographic role of climate from density-modified demographic processes has become a major topic of ecological investigation over the last two decades. Although the ecological and evolutionary mechanisms that determine the strength of density feedbacks are now well understood, the degree to which climate gradients shape those processes across taxa and broad spatial scales remains unclear. Intuitively, harsh or highly variable environmental conditions should weaken compensatory density feedbacks because populations are hypothetically unable to achieve or maintain densities at which social and trophic interactions (e.g., competition, parasitism, predation, disease) might systematically reduce population growth. Here we investigate variation in the strength of compensatory density feedback, from long-term time series of abundance over 146 species of birds and mammals, in response to spatial gradients of broad-scale temperature precipitation variables covering 97 localities in 28 countries. We use information-theoretic metrics to rank phylogenetic generalized least-squares regression models that control for sample size (time-series length) and phylogenetic non-independence. Climatic factors explained < 1% of the remaining variation in density-feedback strength across species, with the highest non-control, model-averaged effect sizes related to extreme precipitation variables. We could not link our results directly to other published studies, because ecologists use contrasting responses, predictors and statistical approaches to correlate density feedback and climate – at the expense of comparability in a macroecological context. Censuses of multiple populations within a given species, and a priori knowledge of the spatial scales at which density feedbacks interact with climate, seem to be necessary to determine cross-taxa variation in this phenomenon. Despite the availability of robust modelling tools, the appropriate data have not yet been gathered for most species, meaning that we cannot yet make any robust generalisations about how demographic feedbacks interact with climate. PMID:24618822

  3. Synchronization in node of complex networks consist of complex chaotic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Qiang, E-mail: qiangweibeihua@163.com; Digital Images Processing Institute of Beihua University, BeiHua University, Jilin, 132011, Jilin; Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116024

    2014-07-15

    A new synchronization method is investigated for node of complex networks consists of complex chaotic system. When complex networks realize synchronization, different component of complex state variable synchronize up to different scaling complex function by a designed complex feedback controller. This paper change synchronization scaling function from real field to complex field for synchronization in node of complex networks with complex chaotic system. Synchronization in constant delay and time-varying coupling delay complex networks are investigated, respectively. Numerical simulations are provided to show the effectiveness of the proposed method.

  4. Finite-time state feedback stabilisation of stochastic high-order nonlinear feedforward systems

    NASA Astrophysics Data System (ADS)

    Xie, Xue-Jun; Zhang, Xing-Hui; Zhang, Kemei

    2016-07-01

    This paper studies the finite-time state feedback stabilisation of stochastic high-order nonlinear feedforward systems. Based on the stochastic Lyapunov theorem on finite-time stability, by using the homogeneous domination method, the adding one power integrator and sign function method, constructing a ? Lyapunov function and verifying the existence and uniqueness of solution, a continuous state feedback controller is designed to guarantee the closed-loop system finite-time stable in probability.

  5. Soil Moisture-Atmosphere Feedbacks on Atmospheric Tracers: The Effects of Soil Moisture on Precipitation and Near-Surface Chemistry

    NASA Astrophysics Data System (ADS)

    Tawfik, Ahmed B.

    The atmospheric component is described by rapid fluctuations in typical state variables, such as temperature and water vapor, on timescales of hours to days and the land component evolves on daily to yearly timescales. This dissertation examines the connection between soil moisture and atmospheric tracers under varying degrees of soil moisture-atmosphere coupling. Land-atmosphere coupling is defined over the United States using a regional climate model. A newly examined soil moisture-precipitation feedback is identified for winter months extending the previous summer feedback to colder temperature climates. This feedback is driven by the freezing and thawing of soil moisture, leading to coupled land-atmosphere conditions near the freezing line. Soil moisture can also affect the composition of the troposphere through modifying biogenic emissions of isoprene (C5H8). A novel first-order Taylor series decomposition indicates that isoprene emissions are jointly driven by temperature and soil moisture in models. These compounds are important precursors for ozone formation, an air pollutant and a short-lived forcing agent for climate. A mechanistic description of commonly observed relationships between ground-level ozone and meteorology is presented using the concept of soil moisture-temperature coupling regimes. The extent of surface drying was found to be a better predictor of ozone concentrations than temperature or humidity for the Eastern U.S. This relationship is evaluated in a coupled regional chemistry-climate model under several land-atmosphere coupling and isoprene emissions cases. The coupled chemistry-climate model can reproduce the observed soil moisture-temperature coupling pattern, yet modeled ozone is insensitive to changes in meteorology due to the balance between isoprene and the primary atmospheric oxidant, the hydroxyl radical (OH). Overall, this work highlights the importance of soil moisture-atmosphere coupling for previously neglected cold climate regimes, controlling isoprene emissions variability, and providing a processed-based description of observed ozone-meteorology relationships. From the perspective of ozone air quality, the lack of sensitivity of ozone to meteorology suggests a systematic deficiency in chemistry models in high isoprene emission regions. This shortcoming must be addressed to better estimate tropospheric ozone radiative forcing and to understanding how ozone air quality may respond to future warming.

  6. Modeling heart rate variability by stochastic feedback

    NASA Technical Reports Server (NTRS)

    Amaral, L. A.; Goldberger, A. L.; Stanley, H. E.

    1999-01-01

    We consider the question of how the cardiac rhythm spontaneously self-regulates and propose a new mechanism as a possible answer. We model the neuroautonomic regulation of the heart rate as a stochastic feedback system and find that the model successfully accounts for key characteristics of cardiac variability, including the 1/f power spectrum, the functional form and scaling of the distribution of variations of the interbeat intervals, and the correlations in the Fourier phases which indicate nonlinear dynamics.

  7. Reciprocal relationships and potential feedbacks between biodiversity and disturbance.

    PubMed

    Hughes, A Randall; Byrnes, Jarrett E; Kimbro, David L; Stachowicz, John J

    2007-09-01

    Two major foci of ecological research involve reciprocal views of the relationship between biodiversity and disturbance: disturbance determines community diversity or diversity determines realized disturbance severity. Here, we present an initial attempt to synthesize these two approaches in order to understand whether feedbacks occur, and what their effects on patterns of diversity might be. Our review of published experiments shows that (i) disturbance severity can be both a cause and a consequence of local diversity in a wide range of ecosystems and (ii) shapes of the unidirectional relationships between diversity and disturbance can be quite variable. To explore how feedbacks between diversity and disturbance might operate to alter expected patterns of diversity in nature, we develop and then evaluate a conceptual model that decomposes the relationships into component parts, considering sequentially the effect of diversity on disturbance severity, and the effect of realized disturbance on diversity loss, subsequent recruitment, and competitive exclusion. Our model suggests that feedbacks can increase mean values of richness, decrease variability, and alter the patterns of correlation between diversity and disturbance in nature. We close by offering ideas for future research to help fill gaps in our understanding of reciprocal relationships among ecological variables like diversity and disturbance.

  8. Pluripotency, Differentiation, and Reprogramming: A Gene Expression Dynamics Model with Epigenetic Feedback Regulation

    PubMed Central

    Miyamoto, Tadashi; Furusawa, Chikara; Kaneko, Kunihiko

    2015-01-01

    Embryonic stem cells exhibit pluripotency: they can differentiate into all types of somatic cells. Pluripotent genes such as Oct4 and Nanog are activated in the pluripotent state, and their expression decreases during cell differentiation. Inversely, expression of differentiation genes such as Gata6 and Gata4 is promoted during differentiation. The gene regulatory network controlling the expression of these genes has been described, and slower-scale epigenetic modifications have been uncovered. Although the differentiation of pluripotent stem cells is normally irreversible, reprogramming of cells can be experimentally manipulated to regain pluripotency via overexpression of certain genes. Despite these experimental advances, the dynamics and mechanisms of differentiation and reprogramming are not yet fully understood. Based on recent experimental findings, we constructed a simple gene regulatory network including pluripotent and differentiation genes, and we demonstrated the existence of pluripotent and differentiated states from the resultant dynamical-systems model. Two differentiation mechanisms, interaction-induced switching from an expression oscillatory state and noise-assisted transition between bistable stationary states, were tested in the model. The former was found to be relevant to the differentiation process. We also introduced variables representing epigenetic modifications, which controlled the threshold for gene expression. By assuming positive feedback between expression levels and the epigenetic variables, we observed differentiation in expression dynamics. Additionally, with numerical reprogramming experiments for differentiated cells, we showed that pluripotency was recovered in cells by imposing overexpression of two pluripotent genes and external factors to control expression of differentiation genes. Interestingly, these factors were consistent with the four Yamanaka factors, Oct4, Sox2, Klf4, and Myc, which were necessary for the establishment of induced pluripotent stem cells. These results, based on a gene regulatory network and expression dynamics, contribute to our wider understanding of pluripotency, differentiation, and reprogramming of cells, and they provide a fresh viewpoint on robustness and control during development. PMID:26308610

  9. Effectiveness of a smartphone app in increasing physical activity amongst male adults: a randomised controlled trial.

    PubMed

    Harries, Tim; Eslambolchilar, Parisa; Rettie, Ruth; Stride, Chris; Walton, Simon; van Woerden, Hugo C

    2016-09-02

    Smartphones are ideal for promoting physical activity in those with little intrinsic motivation for exercise. This study tested three hypotheses: H1 - receipt of social feedback generates higher step-counts than receipt of no feedback; H2 - receipt of social feedback generates higher step-counts than only receiving feedback on one's own walking; H3 - receipt of feedback on one's own walking generates higher step-counts than no feedback (H3). A parallel group randomised controlled trial measured the impact of feedback on steps-counts. Healthy male participants (n = 165) aged 18-40 were given phones pre-installed with an app that recorded steps continuously, without the need for user activation. Participants carried these with them as their main phones for a two-week run-in and six-week trial. Randomisation was to three groups: no feedback (control); personal feedback on step-counts; group feedback comparing step-counts against those taken by others in their group. The primary outcome measure, steps per day, was assessed using longitudinal multilevel regression analysis. Control variables included attitude to physical activity and perceived barriers to physical activity. Fifty-five participants were allocated to each group; 152 completed the study and were included in the analysis: n = 49, no feedback; n = 53, individual feedback; n = 50, individual and social feedback. The study provided support for H1 and H3 but not H2. Receipt of either form of feedback explained 7.7 % of between-subject variability in step-count (F = 6.626, p < 0.0005). Compared to the control, the expected step-count for the individual feedback group was 60 % higher (effect on log step-count = 0.474, 95 % CI = 0.166-0.782) and that for the social feedback group, 69 % higher (effect on log step-count = 0.526, 95 % CI = 0.212-0.840). The difference between the two feedback groups (individual vs social feedback) was not statistically significant. Always-on smartphone apps that provide step-counts can increase physical activity in young to early-middle-aged men but the provision of social feedback has no apparent incremental impact. This approach may be particularly suitable for inactive people with low levels of physical activity; it should now be tested with this population.

  10. Safety implications of providing real-time feedback to distracted drivers.

    PubMed

    Donmez, Birsen; Boyle, Linda Ng; Lee, John D

    2007-05-01

    A driving simulator study was conducted to assess whether real-time feedback on a driver's state can influence the driver's interaction with in-vehicle information systems (IVIS). Previous studies have shown that IVIS tasks can undermine driver safety by increasing driver distraction. Thus, mitigating driver distraction using a feedback mechanism appears promising. This study was designed to test real-time feedback that alerts drivers based on their off-road eye glances. Feedback was displayed in two display locations (vehicle-centered, and IVIS-centered) to 16 young and 13 middle-aged drivers. Distraction was observed as problematic for both age groups with delayed responses to a lead vehicle-braking event as indicated by delayed accelerator releases. Significant benefits were not observed for braking and steering behavior for this experiment, but there was a significant change in drivers' interaction with IVIS. When given feedback on their distracted state, drivers looked at the in-vehicle display less frequently regardless of where feedback was displayed in the vehicle. This indicates that real-time feedback based on the driver state can positively alter driver's engagement in distracting activities, helping them attend better to the roadway.

  11. Switching of the positive feedback for RAS activation by a concerted function of SOS membrane association domains.

    PubMed

    Nakamura, Yuki; Hibino, Kayo; Yanagida, Toshio; Sako, Yasushi

    2016-01-01

    Son of sevenless (SOS) is a guanine nucleotide exchange factor that regulates cell behavior by activating the small GTPase RAS. Recent in vitro studies have suggested that an interaction between SOS and the GTP-bound active form of RAS generates a positive feedback loop that propagates RAS activation. However, it remains unclear how the multiple domains of SOS contribute to the regulation of the feedback loop in living cells. Here, we observed single molecules of SOS in living cells to analyze the kinetics and dynamics of SOS behavior. The results indicate that the histone fold and Grb2-binding domains of SOS concertedly produce an intermediate state of SOS on the cell surface. The fraction of the intermediated state was reduced in positive feedback mutants, suggesting that the feedback loop functions during the intermediate state. Translocation of RAF, recognizing the active form of RAS, to the cell surface was almost abolished in the positive feedback mutants. Thus, the concerted functions of multiple membrane-associating domains of SOS governed the positive feedback loop, which is crucial for cell fate decision regulated by RAS.

  12. Integrated and flexible multichannel interface for electrotactile stimulation

    NASA Astrophysics Data System (ADS)

    Štrbac, Matija; Belić, Minja; Isaković, Milica; Kojić, Vladimir; Bijelić, Goran; Popović, Igor; Radotić, Milutin; Došen, Strahinja; Marković, Marko; Farina, Dario; Keller, Thierry

    2016-08-01

    Objective. The aim of the present work was to develop and test a flexible electrotactile stimulation system to provide real-time feedback to the prosthesis user. The system requirements were to accommodate the capabilities of advanced multi-DOF myoelectric hand prostheses and transmit the feedback variables (proprioception and force) using intuitive coding, with high resolution and after minimal training. Approach. We developed a fully-programmable and integrated electrotactile interface supporting time and space distributed stimulation over custom designed flexible array electrodes. The system implements low-level access to individual stimulation channels as well as a set of high-level mapping functions translating the state of a multi-DoF prosthesis (aperture, grasping force, wrist rotation) into a set of predefined dynamic stimulation profiles. The system was evaluated using discrimination tests employing spatial and frequency coding (10 able-bodied subjects) and dynamic patterns (10 able-bodied and 6 amputee subjects). The outcome measure was the success rate (SR) in discrimination. Main results. The more practical electrode with the common anode configuration performed similarly to the more usual concentric arrangement. The subjects could discriminate six spatial and four frequency levels with SR >90% after a few minutes of training, whereas the performance significantly deteriorated for more levels. The dynamic patterns were intuitive for the subjects, although amputees showed lower SR than able-bodied individuals (86% ± 10% versus 99% ± 3%). Significance. The tests demonstrated that the system was easy to setup and apply. The design and resolution of the multipad electrode was evaluated. Importantly, the novel dynamic patterns, which were successfully tested, can be superimposed to transmit multiple feedback variables intuitively and simultaneously. This is especially relevant for closing the loop in modern multifunction prostheses. Therefore, the proposed system is convenient for practical applications and can be used to implement sensory perception training and/or closed-loop control of myoelectric prostheses, providing grasping force and proprioceptive feedback.

  13. Time-delayed feedback control of coherence resonance chimeras

    NASA Astrophysics Data System (ADS)

    Zakharova, Anna; Semenova, Nadezhda; Anishchenko, Vadim; Schöll, Eckehard

    2017-11-01

    Using the model of a FitzHugh-Nagumo system in the excitable regime, we investigate the influence of time-delayed feedback on noise-induced chimera states in a network with nonlocal coupling, i.e., coherence resonance chimeras. It is shown that time-delayed feedback allows for the control of the range of parameter values where these chimera states occur. Moreover, for the feedback delay close to the intrinsic period of the system, we find a novel regime which we call period-two coherence resonance chimera.

  14. Why do high-redshift galaxies show diverse gas-phase metallicity gradients?

    NASA Astrophysics Data System (ADS)

    Ma, Xiangcheng; Hopkins, Philip F.; Feldmann, Robert; Torrey, Paul; Faucher-Giguère, Claude-André; Kereš, Dušan

    2017-04-01

    Recent spatially resolved observations of galaxies at z ˜ 0.6-3 reveal that high-redshift galaxies show complex kinematics and a broad distribution of gas-phase metallicity gradients. To understand these results, we use a suite of high-resolution cosmological zoom-in simulations from the Feedback in Realistic Environments project, which include physically motivated models of the multiphase interstellar medium, star formation and stellar feedback. Our simulations reproduce the observed diversity of kinematic properties and metallicity gradients, broadly consistent with observations at z ˜ 0-3. Strong negative metallicity gradients only appear in galaxies with a rotating disc, but not all rotationally supported galaxies have significant gradients. Strongly perturbed galaxies with little rotation always have flat gradients. The kinematic properties and metallicity gradient of a high-redshift galaxy can vary significantly on short time-scales, associated with starburst episodes. Feedback from a starburst can destroy the gas disc, drive strong outflows and flatten a pre-existing negative metallicity gradient. The time variability of a single galaxy is statistically similar to the entire simulated sample, indicating that the observed metallicity gradients in high-redshift galaxies reflect the instantaneous state of the galaxy rather than the accretion and growth history on cosmological time-scales. We find weak dependence of metallicity gradient on stellar mass and specific star formation rate (sSFR). Low-mass galaxies and galaxies with high sSFR tend to have flat gradients, likely due to the fact that feedback is more efficient in these galaxies. We argue that it is important to resolve feedback on small scales in order to produce the diverse metallicity gradients observed.

  15. Feedback control in planarian stem cell systems.

    PubMed

    Mangel, Marc; Bonsall, Michael B; Aboobaker, Aziz

    2016-02-13

    In planarian flatworms, the mechanisms underlying the activity of collectively pluripotent adult stem cells (neoblasts) and their descendants can now be studied from the level of the individual gene to the entire animal. Flatworms maintain startling developmental plasticity and regenerative capacity in response to variable nutrient conditions or injury. We develop a model for cell dynamics in such animals, assuming that fully differentiated cells exert feedback control on neoblast activity. Our model predicts a number of whole organism level and general cell biological and behaviours, some of which have been empirically observed or inferred in planarians and others that have not. As previously observed empirically we find: 1) a curvilinear relationship between external food and planarian steady state size; 2) the fraction of neoblasts in the steady state is constant regardless of planarian size; 3) a burst of controlled apoptosis during regeneration after amputation as the number of differentiated cells are adjusted towards their homeostatic/steady state level. In addition our model describes the following properties that can inform and be tested by future experiments: 4) the strength of feedback control from differentiated cells to neoblasts (i.e. the activity of the signalling system) and from neoblasts on themselves in relation to absolute number depends upon the level of food in the environment; 5) planarians adjust size when food level reduces initially through increased apoptosis and then through a reduction in neoblast self-renewal activity; 6) following wounding or excision of differentiated cells, different time scales characterize both recovery of size and the two feedback functions; 7) the temporal pattern of feedback controls differs noticeably during recovery from a removal or neoblasts or a removal of differentiated cells; 8) the signaling strength for apoptosis of differentiated cells depends upon both the absolute and relative deviations of the number of differentiated cells from their homeostatic level; and 9) planaria prioritize resource use for cell divisions. We offer the first analytical framework for organizing experiments on planarian flatworm stem cell dynamics in a form that allows models to be compared with quantitative cell data based on underlying molecular mechanisms and thus facilitate the interplay between empirical studies and modeling. This framework is the foundation for studying cell migration during wound repair, the determination of homeostatic levels of differentiated cells by natural selection, and stochastic effects.

  16. A flatness-based control approach to drug infusion for cardiac function regulation

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Zervos, Nikolaos; Melkikh, Alexey

    2016-12-01

    A new control method based on differential flatness theory is developed in this article, aiming at solving the problem of regulation of haemodynamic parameters, Actually control of the cardiac output (volume of blood pumped out by heart per unit of time) and of the arterial blood pressure is achieved through the administered infusion of cardiovascular drugs, such as dopamine and sodium nitroprusside. Time delays between the control inputs and the system's outputs are taken into account. Using the principle of dynamic extension, which means that by considering certain control inputs and their derivatives as additional state variables, a state-space description for the heart's function is obtained. It is proven that the dynamic model of the heart is a differentially flat one. This enables its transformation into a linear canonical and decoupled form, for which the design of a stabilizing feedback controller becomes possible. The proposed feedback controller is of proven stability and assures fast and accurate tracking of the reference setpoints by the outputs of the heart's dynamic model. Moreover, by using a Kalman Filter-based disturbances' estimator, it becomes possible to estimate in real-time and compensate for the model uncertainty and external perturbation inputs that affect the heart's model.

  17. Energy management of three-dimensional minimum-time intercept. [for aircraft flight optimization

    NASA Technical Reports Server (NTRS)

    Kelley, H. J.; Cliff, E. M.; Visser, H. G.

    1985-01-01

    A real-time computer algorithm to control and optimize aircraft flight profiles is described and applied to a three-dimensional minimum-time intercept mission. The proposed scheme has roots in two well known techniques: singular perturbations and neighboring-optimal guidance. Use of singular-perturbation ideas is made in terms of the assumed trajectory-family structure. A heading/energy family of prestored point-mass-model state-Euler solutions is used as the baseline in this scheme. The next step is to generate a near-optimal guidance law that will transfer the aircraft to the vicinity of this reference family. The control commands fed to the autopilot (bank angle and load factor) consist of the reference controls plus correction terms which are linear combinations of the altitude and path-angle deviations from reference values, weighted by a set of precalculated gains. In this respect the proposed scheme resembles neighboring-optimal guidance. However, in contrast to the neighboring-optimal guidance scheme, the reference control and state variables as well as the feedback gains are stored as functions of energy and heading in the present approach. Some numerical results comparing open-loop optimal and approximate feedback solutions are presented.

  18. Low-Latency Digital Signal Processing for Feedback and Feedforward in Quantum Computing and Communication

    NASA Astrophysics Data System (ADS)

    Salathé, Yves; Kurpiers, Philipp; Karg, Thomas; Lang, Christian; Andersen, Christian Kraglund; Akin, Abdulkadir; Krinner, Sebastian; Eichler, Christopher; Wallraff, Andreas

    2018-03-01

    Quantum computing architectures rely on classical electronics for control and readout. Employing classical electronics in a feedback loop with the quantum system allows us to stabilize states, correct errors, and realize specific feedforward-based quantum computing and communication schemes such as deterministic quantum teleportation. These feedback and feedforward operations are required to be fast compared to the coherence time of the quantum system to minimize the probability of errors. We present a field-programmable-gate-array-based digital signal processing system capable of real-time quadrature demodulation, a determination of the qubit state, and a generation of state-dependent feedback trigger signals. The feedback trigger is generated with a latency of 110 ns with respect to the timing of the analog input signal. We characterize the performance of the system for an active qubit initialization protocol based on the dispersive readout of a superconducting qubit and discuss potential applications in feedback and feedforward algorithms.

  19. Using SMAP Data to Investigate the Role of Soil Moisture Variability on Realtime Flood Forecasting

    NASA Astrophysics Data System (ADS)

    Krajewski, W. F.; Jadidoleslam, N.; Mantilla, R.

    2017-12-01

    The Iowa Flood Center has developed a regional high-resolution flood-forecasting model for the state of Iowa that decomposes the landscape into hillslopes of about 0.1 km2. For the model to benefit, through data assimilation, from SMAP observations of soil moisture (SM) at scales of approximately 100 km2, we are testing a framework to connect SMAP-scale observations to the small-scale SM variability calculated by our rainfall-runoff models. As a step in this direction, we performed data analyses of 15-min point SM observations using a network of about 30 TDR instruments spread throughout the state. We developed a stochastic point-scale SM model that captures 1) SM increases due to rainfall inputs, and 2) SM decay during dry periods. We use a power law model to describe soil moisture decay during dry periods, and a single parameter logistic curve to describe precipitation feedback on soil moisture. We find that the parameters of the models behave as time-independent random variables with stationary distributions. Using data-based simulation, we explore differences in the dynamical range of variability of hillslope and SMAP-scale domains. The simulations allow us to predict the runoff field and streamflow hydrographs for the state of Iowa during the three largest flooding periods (2008, 2014, and 2016). We also use the results to determine the reduction in forecast uncertainty from assimilation of unbiased SMAP-scale soil moisture observations.

  20. Period locking due to delayed feedback in a laser with saturable absorber.

    PubMed

    Carr, T W

    2003-08-01

    We consider laser with saturable absorber operating in the pulsating regime that is subject to delayed feedback. Alone, both the saturable absorber and delayed feedback cause the clockwise output to become unstable to periodic output via Hopf bifurcations. The delay feedback causes the laser pulse period to lock to an integer fraction of the feedback time. We derive a map from the original model to describe the periodic pulsations of the laser. Equations for the period of the laser predict the occurrence of the different locking states as well as the value of the pump when there is a switch between the locked states.

  1. Dynamics of Team Reflexivity after Feedback

    ERIC Educational Resources Information Center

    Gabelica, Catherine; Van den Bossche, Piet; Segers, Mien; Gijselaers, Wim

    2014-01-01

    A great deal of work has been generated on feedback in teams and has shown that giving performance feedback to teams is not sufficient to improve performance. To achieve the potential of feedback, it is stated that teams need to proactively process this feedback and thus collectively evaluate their performance and strategies, look for…

  2. Movement goals and feedback and feedforward control mechanisms in speech production

    PubMed Central

    Perkell, Joseph S.

    2010-01-01

    Studies of speech motor control are described that support a theoretical framework in which fundamental control variables for phonemic movements are multi-dimensional regions in auditory and somatosensory spaces. Auditory feedback is used to acquire and maintain auditory goals and in the development and function of feedback and feedforward control mechanisms. Several lines of evidence support the idea that speakers with more acute sensory discrimination acquire more distinct goal regions and therefore produce speech sounds with greater contrast. Feedback modification findings indicate that fluently produced sound sequences are encoded as feedforward commands, and feedback control serves to correct mismatches between expected and produced sensory consequences. PMID:22661828

  3. Movement goals and feedback and feedforward control mechanisms in speech production.

    PubMed

    Perkell, Joseph S

    2012-09-01

    Studies of speech motor control are described that support a theoretical framework in which fundamental control variables for phonemic movements are multi-dimensional regions in auditory and somatosensory spaces. Auditory feedback is used to acquire and maintain auditory goals and in the development and function of feedback and feedforward control mechanisms. Several lines of evidence support the idea that speakers with more acute sensory discrimination acquire more distinct goal regions and therefore produce speech sounds with greater contrast. Feedback modification findings indicate that fluently produced sound sequences are encoded as feedforward commands, and feedback control serves to correct mismatches between expected and produced sensory consequences.

  4. Cardinal features of involuntary force variability can arise from the closed-loop control of viscoelastic afferented muscles

    PubMed Central

    Laine, Christopher M.; Valero-Cuevas, Francisco J.

    2018-01-01

    Involuntary force variability below 15 Hz arises from, and is influenced by, many factors including descending neural drive, proprioceptive feedback, and mechanical properties of muscles and tendons. However, their potential interactions that give rise to the well-structured spectrum of involuntary force variability are not well understood due to a lack of experimental techniques. Here, we investigated the generation, modulation, and interactions among different sources of force variability using a physiologically-grounded closed-loop simulation of an afferented muscle model. The closed-loop simulation included a musculotendon model, muscle spindle, Golgi tendon organ (GTO), and a tracking controller which enabled target-guided force tracking. We demonstrate that closed-loop control of an afferented musculotendon suffices to replicate and explain surprisingly many cardinal features of involuntary force variability. Specifically, we present 1) a potential origin of low-frequency force variability associated with co-modulation of motor unit firing rates (i.e.,‘common drive’), 2) an in-depth characterization of how proprioceptive feedback pathways suffice to generate 5-12 Hz physiological tremor, and 3) evidence that modulation of those feedback pathways (i.e., presynaptic inhibition of Ia and Ib afferents, and spindle sensitivity via fusimotor drive) influence the full spectrum of force variability. These results highlight the previously underestimated importance of closed-loop neuromechanical interactions in explaining involuntary force variability during voluntary ‘isometric’ force control. Furthermore, these results provide the basis for a unifying theory that relates spinal circuitry to various manifestations of altered involuntary force variability in fatigue, aging and neurological disease. PMID:29309405

  5. Cardinal features of involuntary force variability can arise from the closed-loop control of viscoelastic afferented muscles.

    PubMed

    Nagamori, Akira; Laine, Christopher M; Valero-Cuevas, Francisco J

    2018-01-01

    Involuntary force variability below 15 Hz arises from, and is influenced by, many factors including descending neural drive, proprioceptive feedback, and mechanical properties of muscles and tendons. However, their potential interactions that give rise to the well-structured spectrum of involuntary force variability are not well understood due to a lack of experimental techniques. Here, we investigated the generation, modulation, and interactions among different sources of force variability using a physiologically-grounded closed-loop simulation of an afferented muscle model. The closed-loop simulation included a musculotendon model, muscle spindle, Golgi tendon organ (GTO), and a tracking controller which enabled target-guided force tracking. We demonstrate that closed-loop control of an afferented musculotendon suffices to replicate and explain surprisingly many cardinal features of involuntary force variability. Specifically, we present 1) a potential origin of low-frequency force variability associated with co-modulation of motor unit firing rates (i.e.,'common drive'), 2) an in-depth characterization of how proprioceptive feedback pathways suffice to generate 5-12 Hz physiological tremor, and 3) evidence that modulation of those feedback pathways (i.e., presynaptic inhibition of Ia and Ib afferents, and spindle sensitivity via fusimotor drive) influence the full spectrum of force variability. These results highlight the previously underestimated importance of closed-loop neuromechanical interactions in explaining involuntary force variability during voluntary 'isometric' force control. Furthermore, these results provide the basis for a unifying theory that relates spinal circuitry to various manifestations of altered involuntary force variability in fatigue, aging and neurological disease.

  6. The critical role of fire in catchment coevolution in South Eastern Australia

    NASA Astrophysics Data System (ADS)

    Nyman, P.; Inbar, A.; Lane, P. N. J.; Sheridan, G. J.

    2016-12-01

    Temperate south east Australian forested uplands are characterised by complex spatial patterns in forest types, soils and fire regimes, even within areas with similar geologies and landscape position. Preliminary measurements and experiments suggest that positive and negative feedbacks between the vegetation, fuels, fire frequency and soil erosion may control the coevolution of these observed system states. Here we propose the hypotheses that in this landscape post-fire soil erosion has played a dominant role in the coevolved system-state combinations of standing biomass, fire frequency and soil depth. To test the hypothesis a 1D simulation model was developed that links together an ecohydrological model to drive the biomass production and water and energy partitioning, a stochastic fire model that is controlled by climate, fuel load and moisture conditions, and a geomorphic model that controls soil production and fluvial and diffusive sediment transport rates. The model was calibrated to the range of existing observed quasi-equalibrium system-states of soil depth, standing biomass, fuel loading and fire frequency using field measurements from 12 instrumented eco-hydrologic microclimate research sites. The long-term partitioning of rainfall into evaporation, transpiration, and streamflow was calibrated against field and literature values. Fuel moisture and micro-climate variables were calibrated to the field microclimate stations. The calibrated model was able to reasonably replicate the observed quasi-equilibrium system-states and hydrologic outputs using current climate forcings operating over a 10,000 year period, providing confidence in the model structure and performance. The model was then used to test the hypothesis stated above, by alternatively including or excluding the post fire erosion process. An alternate hypothesis, whereby the observed system states are dominated by climate related differences in soil production rates was also tested in this way. The results support the hypothesis that feedbacks between fire, ecology, hydrology and geomorphology have played a critical role in the coevolution of south east Australian forested uplands. Similar pyro-eco-hydrologic feedbacks may play a critical role in catchment coevolution in other forested systems globally.

  7. A guidance and navigation system for continuous low-thrust vehicles. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Jack-Chingtse, C.

    1973-01-01

    A midcourse guidance and navigation system for continuous low thrust vehicles was developed. The equinoctial elements are the state variables. Uncertainties are modelled statistically by random vector and stochastic processes. The motion of the vehicle and the measurements are described by nonlinear stochastic differential and difference equations respectively. A minimum time trajectory is defined; equations of motion and measurements are linearized about this trajectory. An exponential cost criterion is constructed and a linear feedback quidance law is derived. An extended Kalman filter is used for state estimation. A short mission using this system is simulated. It is indicated that this system is efficient for short missions, but longer missions require accurate trajectory and ground based measurements.

  8. The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6

    NASA Astrophysics Data System (ADS)

    Webb, Mark J.; Andrews, Timothy; Bodas-Salcedo, Alejandro; Bony, Sandrine; Bretherton, Christopher S.; Chadwick, Robin; Chepfer, Hélène; Douville, Hervé; Good, Peter; Kay, Jennifer E.; Klein, Stephen A.; Marchand, Roger; Medeiros, Brian; Pier Siebesma, A.; Skinner, Christopher B.; Stevens, Bjorn; Tselioudis, George; Tsushima, Yoko; Watanabe, Masahiro

    2017-01-01

    The primary objective of CFMIP is to inform future assessments of cloud feedbacks through improved understanding of cloud-climate feedback mechanisms and better evaluation of cloud processes and cloud feedbacks in climate models. However, the CFMIP approach is also increasingly being used to understand other aspects of climate change, and so a second objective has now been introduced, to improve understanding of circulation, regional-scale precipitation, and non-linear changes. CFMIP is supporting ongoing model inter-comparison activities by coordinating a hierarchy of targeted experiments for CMIP6, along with a set of cloud-related output diagnostics. CFMIP contributes primarily to addressing the CMIP6 questions How does the Earth system respond to forcing? and What are the origins and consequences of systematic model biases? and supports the activities of the WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity.A compact set of Tier 1 experiments is proposed for CMIP6 to address this question: (1) what are the physical mechanisms underlying the range of cloud feedbacks and cloud adjustments predicted by climate models, and which models have the most credible cloud feedbacks? Additional Tier 2 experiments are proposed to address the following questions. (2) Are cloud feedbacks consistent for climate cooling and warming, and if not, why? (3) How do cloud-radiative effects impact the structure, the strength and the variability of the general atmospheric circulation in present and future climates? (4) How do responses in the climate system due to changes in solar forcing differ from changes due to CO2, and is the response sensitive to the sign of the forcing? (5) To what extent is regional climate change per CO2 doubling state-dependent (non-linear), and why? (6) Are climate feedbacks during the 20th century different to those acting on long-term climate change and climate sensitivity? (7) How do regional climate responses (e.g. in precipitation) and their uncertainties in coupled models arise from the combination of different aspects of CO2 forcing and sea surface warming?CFMIP also proposes a number of additional model outputs in the CMIP DECK, CMIP6 Historical and CMIP6 CFMIP experiments, including COSP simulator outputs and process diagnostics to address the following questions.

    1. How well do clouds and other relevant variables simulated by models agree with observations?

    2. What physical processes and mechanisms are important for a credible simulation of clouds, cloud feedbacks and cloud adjustments in climate models?

    3. Which models have the most credible representations of processes relevant to the simulation of clouds?

    4. How do clouds and their changes interact with other elements of the climate system?

  9. Parallel arrangements of positive feedback loops limit cell-to-cell variability in differentiation.

    PubMed

    Dey, Anupam; Barik, Debashis

    2017-01-01

    Cellular differentiations are often regulated by bistable switches resulting from specific arrangements of multiple positive feedback loops (PFL) fused to one another. Although bistability generates digital responses at the cellular level, stochasticity in chemical reactions causes population heterogeneity in terms of its differentiated states. We hypothesized that the specific arrangements of PFLs may have evolved to minimize the cellular heterogeneity in differentiation. In order to test this we investigated variability in cellular differentiation controlled either by parallel or serial arrangements of multiple PFLs having similar average properties under extrinsic and intrinsic noises. We find that motifs with PFLs fused in parallel to one another around a central regulator are less susceptible to noise as compared to the motifs with PFLs arranged serially. Our calculations suggest that the increased resistance to noise in parallel motifs originate from the less sensitivity of bifurcation points to the extrinsic noise. Whereas estimation of mean residence times indicate that stable branches of bifurcations are robust to intrinsic noise in parallel motifs as compared to serial motifs. Model conclusions are consistent both in AND- and OR-gate input signal configurations and also with two different modeling strategies. Our investigations provide some insight into recent findings that differentiation of preadipocyte to mature adipocyte is controlled by network of parallel PFLs.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, Paul A.; Randerson, James T.; Swenson, Sean C.

    The relationship between terrestrial water storage (TWS) and atmospheric processes has important implications for predictability of climatic extremes and projection of future climate change. In places where moisture availability limits evapotranspiration (ET), variability in TWS has the potential to influence surface energy fluxes and atmospheric conditions. Where atmospheric conditions, in turn, influence moisture availability, a full feedback loop exists. Here we developed a novel approach for measuring the strength of both components of this feedback loop, i.e., the forcing of the atmosphere by variability in TWS and the response of TWS to atmospheric variability, using satellite observations of TWS, precipitation,more » solar radiation, and vapor pressure deficit during 2002–2014. Our approach defines metrics to quantify the relationship between TWS anomalies and climate globally on a seasonal to interannual timescale. Metrics derived from the satellite data were used to evaluate the strength of the feedback loop in 38 members of the Community Earth System Model (CESM) Large Ensemble (LENS) and in six models that contributed simulations to phase 5 of the Coupled Model Intercomparison Project (CMIP5). We found that both forcing and response limbs of the feedback loop in LENS were stronger than in the satellite observations in tropical and temperate regions. Feedbacks in the selected CMIP5 models were not as strong as those found in LENS, but were still generally stronger than those estimated from the satellite measurements. Consistent with previous studies conducted across different spatial and temporal scales, our analysis suggests that models may overestimate the strength of the feedbacks between the land surface and the atmosphere. Lastly, we describe several possible mechanisms that may contribute to this bias, and discuss pathways through which models may overestimate ET or overestimate the sensitivity of ET to TWS.« less

  11. Identifying the relationship between feedback provided in computer-assisted instructional modules, science self-efficacy, and academic achievement

    NASA Astrophysics Data System (ADS)

    Mazingo, Diann Etsuko

    Feedback has been identified as a key variable in developing academic self-efficacy. The types of feedback can vary from a traditional, objectivist approach that focuses on minimizing learner errors to a more constructivist approach, focusing on facilitating understanding. The influx of computer-based courses, whether online or through a series of computer-assisted instruction (CAI) modules require that the current research of effective feedback techniques in the classroom be extended to computer environments in order to impact their instructional design. In this study, exposure to different types of feedback during a chemistry CAI module was studied in relation to science self-efficacy (SSE) and performance on an objective-driven assessment (ODA) of the chemistry concepts covered in the unit. The quantitative analysis consisted of two separate ANCOVAs on the dependent variables, using pretest as the covariate and group as the fixed factor. No significant differences were found for either variable between the three groups on adjusted posttest means for the ODA and SSE measures (.95F(2, 106) = 1.311, p = 0.274 and .95F(2, 106) = 1.080, p = 0.344, respectively). However, a mixed methods approach yielded valuable qualitative insights into why only one overall quantitative effect was observed. These findings are discussed in relation to the need to further refine the instruments and methods used in order to more fully explore the possibility that type of feedback might play a role in developing SSE, and consequently, improve academic performance in science. Future research building on this study may reveal significance that could impact instructional design practices for developing online and computer-based instruction.

  12. Can You Hear That Peak? Utilization of Auditory and Visual Feedback at Peak Limb Velocity.

    PubMed

    Loria, Tristan; de Grosbois, John; Tremblay, Luc

    2016-09-01

    At rest, the central nervous system combines and integrates multisensory cues to yield an optimal percept. When engaging in action, the relative weighing of sensory modalities has been shown to be altered. Because the timing of peak velocity is the critical moment in some goal-directed movements (e.g., overarm throwing), the current study sought to test whether visual and auditory cues are optimally integrated at that specific kinematic marker when it is the critical part of the trajectory. Participants performed an upper-limb movement in which they were required to reach their peak limb velocity when the right index finger intersected a virtual target (i.e., a flinging movement). Brief auditory, visual, or audiovisual feedback (i.e., 20 ms in duration) was provided to participants at peak limb velocity. Performance was assessed primarily through the resultant position of peak limb velocity and the variability of that position. Relative to when no feedback was provided, auditory feedback significantly reduced the resultant endpoint variability of the finger position at peak limb velocity. However, no such reductions were found for the visual or audiovisual feedback conditions. Further, providing both auditory and visual cues concurrently also failed to yield the theoretically predicted improvements in endpoint variability. Overall, the central nervous system can make significant use of an auditory cue but may not optimally integrate a visual and auditory cue at peak limb velocity, when peak velocity is the critical part of the trajectory.

  13. Feedback-Equivalence of Nonlinear Systems with Applications to Power System Equations.

    NASA Astrophysics Data System (ADS)

    Marino, Riccardo

    The key concept of the dissertation is feedback equivalence among systems affine in control. Feedback equivalence to linear systems in Brunovsky canonical form and the construction of the corresponding feedback transformation are used to: (i) design a nonlinear regulator for a detailed nonlinear model of a synchronous generator connected to an infinite bus; (ii) establish which power system network structures enjoy the feedback linearizability property and design a stabilizing control law for these networks with a constraint on the control space which comes from the use of d.c. lines. It is also shown that the feedback linearizability property allows the use of state feedback to contruct a linear controllable system with a positive definite linear Hamiltonian structure for the uncontrolled part if the state space is even; a stabilizing control law is derived for such systems. Feedback linearizability property is characterized by the involutivity of certain nested distributions for strongly accessible analytic systems; if the system is defined on a manifold M diffeomorphic to the Euclidean space, it is established that the set where the property holds is a submanifold open and dense in M. If an analytic output map is defined, a set of nested involutive distributions can be always defined and that allows the introduction of an observability property which is the dual concept, in some sense, to feedback linearizability: the goal is to investigate when a nonlinear system affine in control with an analytic output map is feedback equivalent to a linear controllable and observable system. Finally a nested involutive structure of distributions is shown to guarantee the existence of a state feedback that takes a nonlinear system affine in control to a single input one, both feedback equivalent to linear controllable systems, preserving one controlled vector field.

  14. When Optimal Feedback Control Is Not Enough: Feedforward Strategies Are Required for Optimal Control with Active Sensing.

    PubMed

    Yeo, Sang-Hoon; Franklin, David W; Wolpert, Daniel M

    2016-12-01

    Movement planning is thought to be primarily determined by motor costs such as inaccuracy and effort. Solving for the optimal plan that minimizes these costs typically leads to specifying a time-varying feedback controller which both generates the movement and can optimally correct for errors that arise within a movement. However, the quality of the sensory feedback during a movement can depend substantially on the generated movement. We show that by incorporating such state-dependent sensory feedback, the optimal solution incorporates active sensing and is no longer a pure feedback process but includes a significant feedforward component. To examine whether people take into account such state-dependency in sensory feedback we asked people to make movements in which we controlled the reliability of sensory feedback. We made the visibility of the hand state-dependent, such that the visibility was proportional to the component of hand velocity in a particular direction. Subjects gradually adapted to such a sensory perturbation by making curved hand movements. In particular, they appeared to control the late visibility of the movement matching predictions of the optimal controller with state-dependent sensory noise. Our results show that trajectory planning is not only sensitive to motor costs but takes sensory costs into account and argues for optimal control of movement in which feedforward commands can play a significant role.

  15. Central Tropical Pacific Variability And ENSO Response To Changing Climate Boundary Conditions: Evidence From Individual Line Island Foraminifera

    NASA Astrophysics Data System (ADS)

    Rustic, G. T.; Polissar, P. J.; Ravelo, A. C.; White, S. M.

    2017-12-01

    The El Niño Southern Oscillation (ENSO) plays a dominant role in Earth's climate variability. Paleoceanographic evidence suggests that ENSO has changed in the past, and these changes have been linked to large-scale climatic shifts. While a close relationship between ENSO evolution and climate boundary conditions has been predicted, testing these predictions remains challenging. These climate boundary conditions, including insolation, the mean surface temperature gradient of the tropical Pacific, global ice volume, and tropical thermocline depth, often co-vary and may work together to suppress or enhance the ocean-atmosphere feedbacks that drive ENSO variability. Furthermore, suitable paleo-archives spanning multiple climate states are sparse. We have aimed to test ENSO response to changing climate boundary conditions by generating new reconstructions of mixed-layer variability from sedimentary archives spanning the last three glacial-interglacial cycles from the Central Tropical Pacific Line Islands, where El Niño is strongly expressed. We analyzed Mg/Ca ratios from individual foraminifera to reconstruct mixed-layer variability at discrete time intervals representing combinations of climatic boundary conditions from the middle Holocene to Marine Isotope Stage (MIS) 8. We observe changes in the mixed-layer temperature variability during MIS 5 and during the previous interglacial (MIS 7) showing significant reductions in ENSO amplitude. Differences in variability during glacial and interglacial intervals are also observed. Additionally, we reconstructed mixed-layer and thermocline conditions using multi-species Mg/Ca and stable isotope measurements to more fully characterize the state of the Central Tropical Pacific during these intervals. These reconstructions provide us with a unique view of Central Tropical Pacific variability and water-column structure at discrete intervals under varying boundary climate conditions with which to assess factors that shape ENSO variability.

  16. Evaluating the strength of the land$-$atmosphere moisture feedback in Earth system models using satellite observations

    DOE PAGES

    Levine, Paul A.; Randerson, James T.; Swenson, Sean C.; ...

    2016-12-09

    The relationship between terrestrial water storage (TWS) and atmospheric processes has important implications for predictability of climatic extremes and projection of future climate change. In places where moisture availability limits evapotranspiration (ET), variability in TWS has the potential to influence surface energy fluxes and atmospheric conditions. Where atmospheric conditions, in turn, influence moisture availability, a full feedback loop exists. Here we developed a novel approach for measuring the strength of both components of this feedback loop, i.e., the forcing of the atmosphere by variability in TWS and the response of TWS to atmospheric variability, using satellite observations of TWS, precipitation,more » solar radiation, and vapor pressure deficit during 2002–2014. Our approach defines metrics to quantify the relationship between TWS anomalies and climate globally on a seasonal to interannual timescale. Metrics derived from the satellite data were used to evaluate the strength of the feedback loop in 38 members of the Community Earth System Model (CESM) Large Ensemble (LENS) and in six models that contributed simulations to phase 5 of the Coupled Model Intercomparison Project (CMIP5). We found that both forcing and response limbs of the feedback loop in LENS were stronger than in the satellite observations in tropical and temperate regions. Feedbacks in the selected CMIP5 models were not as strong as those found in LENS, but were still generally stronger than those estimated from the satellite measurements. Consistent with previous studies conducted across different spatial and temporal scales, our analysis suggests that models may overestimate the strength of the feedbacks between the land surface and the atmosphere. Lastly, we describe several possible mechanisms that may contribute to this bias, and discuss pathways through which models may overestimate ET or overestimate the sensitivity of ET to TWS.« less

  17. Learning from adaptive neural dynamic surface control of strict-feedback systems.

    PubMed

    Wang, Min; Wang, Cong

    2015-06-01

    Learning plays an essential role in autonomous control systems. However, how to achieve learning in the nonstationary environment for nonlinear systems is a challenging problem. In this paper, we present learning method for a class of n th-order strict-feedback systems by adaptive dynamic surface control (DSC) technology, which achieves the human-like ability of learning by doing and doing with learned knowledge. To achieve the learning, this paper first proposes stable adaptive DSC with auxiliary first-order filters, which ensures the boundedness of all the signals in the closed-loop system and the convergence of tracking errors in a finite time. With the help of DSC, the derivative of the filter output variable is used as the neural network (NN) input instead of traditional intermediate variables. As a result, the proposed adaptive DSC method reduces greatly the dimension of NN inputs, especially for high-order systems. After the stable DSC design, we decompose the stable closed-loop system into a series of linear time-varying perturbed subsystems. Using a recursive design, the recurrent property of NN input variables is easily verified since the complexity is overcome using DSC. Subsequently, the partial persistent excitation condition of the radial basis function NN is satisfied. By combining a state transformation, accurate approximations of the closed-loop system dynamics are recursively achieved in a local region along recurrent orbits. Then, the learning control method using the learned knowledge is proposed to achieve the closed-loop stability and the improved control performance. Simulation studies are performed to demonstrate the proposed scheme can not only reuse the learned knowledge to achieve the better control performance with the faster tracking convergence rate and the smaller tracking error but also greatly alleviate the computational burden because of reducing the number and complexity of NN input variables.

  18. Variance decomposition shows the importance of human-climate feedbacks in the Earth system

    NASA Astrophysics Data System (ADS)

    Calvin, K. V.; Bond-Lamberty, B. P.; Jones, A. D.; Shi, X.; Di Vittorio, A. V.; Thornton, P. E.

    2017-12-01

    The human and Earth systems are intricately linked: climate influences agricultural production, renewable energy potential, and water availability, for example, while anthropogenic emissions from industry and land use change alter temperature and precipitation. Such feedbacks have the potential to significantly alter future climate change. Current climate change projections contain significant uncertainties, however, and because Earth System Models do not generally include dynamic human (demography, economy, energy, water, land use) components, little is known about how climate feedbacks contribute to that uncertainty. Here we use variance decomposition of a novel coupled human-earth system model to show that the influence of human-climate feedbacks can be as large as 17% of the total variance in the near term for global mean temperature rise, and 11% in the long term for cropland area. The near-term contribution of energy and land use feedbacks to the climate on global mean temperature rise is as large as that from model internal variability, a factor typically considered in modeling studies. Conversely, the contribution of climate feedbacks to cropland extent, while non-negligible, is less than that from socioeconomics, policy, or model. Previous assessments have largely excluded these feedbacks, with the climate community focusing on uncertainty due to internal variability, scenario, and model and the integrated assessment community focusing on uncertainty due to socioeconomics, technology, policy, and model. Our results set the stage for a new generation of models and hypothesis testing to determine when and how bidirectional feedbacks between human and Earth systems should be considered in future assessments of climate change.

  19. Switching of the positive feedback for RAS activation by a concerted function of SOS membrane association domains

    PubMed Central

    Nakamura, Yuki; Hibino, Kayo; Yanagida, Toshio; Sako, Yasushi

    2016-01-01

    Son of sevenless (SOS) is a guanine nucleotide exchange factor that regulates cell behavior by activating the small GTPase RAS. Recent in vitro studies have suggested that an interaction between SOS and the GTP-bound active form of RAS generates a positive feedback loop that propagates RAS activation. However, it remains unclear how the multiple domains of SOS contribute to the regulation of the feedback loop in living cells. Here, we observed single molecules of SOS in living cells to analyze the kinetics and dynamics of SOS behavior. The results indicate that the histone fold and Grb2-binding domains of SOS concertedly produce an intermediate state of SOS on the cell surface. The fraction of the intermediated state was reduced in positive feedback mutants, suggesting that the feedback loop functions during the intermediate state. Translocation of RAF, recognizing the active form of RAS, to the cell surface was almost abolished in the positive feedback mutants. Thus, the concerted functions of multiple membrane-associating domains of SOS governed the positive feedback loop, which is crucial for cell fate decision regulated by RAS. PMID:27924253

  20. Thermocline Temperature Variability Reveals Shifts in the Tropical Pacific Mean State across Marine Isotope Stage 3

    NASA Astrophysics Data System (ADS)

    Hertzberg, J. E.; Schmidt, M. W.

    2014-12-01

    The eastern equatorial Pacific (EEP) is one of the most dynamic oceanographic regions, making it a critical area for understanding past climate change. Despite this, there remains uncertainty on the climatic evolution of the EEP through the last glacial period. According to the ocean dynamical thermostat theory, warming (cooling) of the tropical Pacific Ocean may lead to a more La Niña (El Niño)-like mean state due to zonally asymmetric heating and subsequent easterly (westerly) wind anomalies at the equator (Clement and Cane, 1999). Attempts to understand these feedbacks on millennial timescales across Marine Isotope Stage 3 (MIS 3) have proven to be fruitful in the western equatorial Pacific (WEP) (Stott et al., 2002), yet complimentary, high-resolution records from the EEP are lacking. To provide a more complete understanding of the feedback mechanisms of the dynamical thermostat across periods of abrupt climate change, we reconstruct thermocline temperature variability across MIS 3 from a sediment core located in the EEP, directly within the equatorial cold tongue upwelling region (core MV1014-02-17JC). Temperature anomalies in thermocline waters of the EEP are integrally linked to the ENSO system, with large positive and negative anomalies recorded during El Niño and La Niña events, respectively. Mg/Ca ratios in the thermocline-dwelling planktonic foraminifera Neogloboquadrina dutertrei were measured at 2 cm intervals, resulting in a temporal resolution of <200 years. Preliminary results across Interstadials 5-7 reveal warmer thermocline temperatures (an increase in Mg/Ca of .25 ± .02 mmol/mol) during periods of cooling following peak Interstadial warmth over Greenland, as seen from the NGRIP δ18O record. Thus, periods of cooling over Greenland appear to correspond to an El Niño-like mean state in the tropical Pacific, in line with predictions of an ocean dynamical thermostat. Interestingly, Heinrich Event 3 corresponds to cooler thermocline temperatures, suggesting a different forcing mechanism of tropical Pacific mean state variability across Heinrich Events. The record will be extended back to 80 kyr BP, and we will also measure Globigerinoides ruber Mg/Ca ratios across MIS 3 to calculate the zonal E-W sea surface temperature gradient using published records from the WEP.

  1. Full State Feedback Control for Virtual Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jay Tillay

    This report presents an object-oriented implementation of full state feedback control for virtual power plants (VPP). The components of the VPP full state feedback control are (1) objectoriented high-fidelity modeling for all devices in the VPP; (2) Distribution System Distributed Quasi-Dynamic State Estimation (DS-DQSE) that enables full observability of the VPP by augmenting actual measurements with virtual, derived and pseudo measurements and performing the Quasi-Dynamic State Estimation (QSE) in a distributed manner, and (3) automated formulation of the Optimal Power Flow (OPF) in real time using the output of the DS-DQSE, and solving the distributed OPF to provide the optimalmore » control commands to the DERs of the VPP.« less

  2. Factors influencing crime rates: an econometric analysis approach

    NASA Astrophysics Data System (ADS)

    Bothos, John M. A.; Thomopoulos, Stelios C. A.

    2016-05-01

    The scope of the present study is to research the dynamics that determine the commission of crimes in the US society. Our study is part of a model we are developing to understand urban crime dynamics and to enhance citizens' "perception of security" in large urban environments. The main targets of our research are to highlight dependence of crime rates on certain social and economic factors and basic elements of state anticrime policies. In conducting our research, we use as guides previous relevant studies on crime dependence, that have been performed with similar quantitative analyses in mind, regarding the dependence of crime on certain social and economic factors using statistics and econometric modelling. Our first approach consists of conceptual state space dynamic cross-sectional econometric models that incorporate a feedback loop that describes crime as a feedback process. In order to define dynamically the model variables, we use statistical analysis on crime records and on records about social and economic conditions and policing characteristics (like police force and policing results - crime arrests), to determine their influence as independent variables on crime, as the dependent variable of our model. The econometric models we apply in this first approach are an exponential log linear model and a logit model. In a second approach, we try to study the evolvement of violent crime through time in the US, independently as an autonomous social phenomenon, using autoregressive and moving average time-series econometric models. Our findings show that there are certain social and economic characteristics that affect the formation of crime rates in the US, either positively or negatively. Furthermore, the results of our time-series econometric modelling show that violent crime, viewed solely and independently as a social phenomenon, correlates with previous years crime rates and depends on the social and economic environment's conditions during previous years.

  3. Indirect Identification of Linear Stochastic Systems with Known Feedback Dynamics

    NASA Technical Reports Server (NTRS)

    Huang, Jen-Kuang; Hsiao, Min-Hung; Cox, David E.

    1996-01-01

    An algorithm is presented for identifying a state-space model of linear stochastic systems operating under known feedback controller. In this algorithm, only the reference input and output of closed-loop data are required. No feedback signal needs to be recorded. The overall closed-loop system dynamics is first identified. Then a recursive formulation is derived to compute the open-loop plant dynamics from the identified closed-loop system dynamics and known feedback controller dynamics. The controller can be a dynamic or constant-gain full-state feedback controller. Numerical simulations and test data of a highly unstable large-gap magnetic suspension system are presented to demonstrate the feasibility of this indirect identification method.

  4. Feedforward and feedback control in apraxia of speech: effects of noise masking on vowel production.

    PubMed

    Maas, Edwin; Mailend, Marja-Liisa; Guenther, Frank H

    2015-04-01

    This study was designed to test two hypotheses about apraxia of speech (AOS) derived from the Directions Into Velocities of Articulators (DIVA) model (Guenther et al., 2006): the feedforward system deficit hypothesis and the feedback system deficit hypothesis. The authors used noise masking to minimize auditory feedback during speech. Six speakers with AOS and aphasia, 4 with aphasia without AOS, and 2 groups of speakers without impairment (younger and older adults) participated. Acoustic measures of vowel contrast, variability, and duration were analyzed. Younger, but not older, speakers without impairment showed significantly reduced vowel contrast with noise masking. Relative to older controls, the AOS group showed longer vowel durations overall (regardless of masking condition) and a greater reduction in vowel contrast under masking conditions. There were no significant differences in variability. Three of the 6 speakers with AOS demonstrated the group pattern. Speakers with aphasia without AOS did not differ from controls in contrast, duration, or variability. The greater reduction in vowel contrast with masking noise for the AOS group is consistent with the feedforward system deficit hypothesis but not with the feedback system deficit hypothesis; however, effects were small and not present in all individual speakers with AOS. Theoretical implications and alternative interpretations of these findings are discussed.

  5. Feedforward and Feedback Control in Apraxia of Speech: Effects of Noise Masking on Vowel Production

    PubMed Central

    Mailend, Marja-Liisa; Guenther, Frank H.

    2015-01-01

    Purpose This study was designed to test two hypotheses about apraxia of speech (AOS) derived from the Directions Into Velocities of Articulators (DIVA) model (Guenther et al., 2006): the feedforward system deficit hypothesis and the feedback system deficit hypothesis. Method The authors used noise masking to minimize auditory feedback during speech. Six speakers with AOS and aphasia, 4 with aphasia without AOS, and 2 groups of speakers without impairment (younger and older adults) participated. Acoustic measures of vowel contrast, variability, and duration were analyzed. Results Younger, but not older, speakers without impairment showed significantly reduced vowel contrast with noise masking. Relative to older controls, the AOS group showed longer vowel durations overall (regardless of masking condition) and a greater reduction in vowel contrast under masking conditions. There were no significant differences in variability. Three of the 6 speakers with AOS demonstrated the group pattern. Speakers with aphasia without AOS did not differ from controls in contrast, duration, or variability. Conclusion The greater reduction in vowel contrast with masking noise for the AOS group is consistent with the feedforward system deficit hypothesis but not with the feedback system deficit hypothesis; however, effects were small and not present in all individual speakers with AOS. Theoretical implications and alternative interpretations of these findings are discussed. PMID:25565143

  6. Computational motor control: feedback and accuracy.

    PubMed

    Guigon, Emmanuel; Baraduc, Pierre; Desmurget, Michel

    2008-02-01

    Speed/accuracy trade-off is a ubiquitous phenomenon in motor behaviour, which has been ascribed to the presence of signal-dependent noise (SDN) in motor commands. Although this explanation can provide a quantitative account of many aspects of motor variability, including Fitts' law, the fact that this law is frequently violated, e.g. during the acquisition of new motor skills, remains unexplained. Here, we describe a principled approach to the influence of noise on motor behaviour, in which motor variability results from the interplay between sensory and motor execution noises in an optimal feedback-controlled system. In this framework, we first show that Fitts' law arises due to signal-dependent motor noise (SDN(m)) when sensory (proprioceptive) noise is low, e.g. under visual feedback. Then we show that the terminal variability of non-visually guided movement can be explained by the presence of signal-dependent proprioceptive noise. Finally, we show that movement accuracy can be controlled by opposite changes in signal-dependent sensory (SDN(s)) and SDN(m), a phenomenon that could be ascribed to muscular co-contraction. As the model also explains kinematics, kinetics, muscular and neural characteristics of reaching movements, it provides a unified framework to address motor variability.

  7. Weaker soil carbon-climate feedbacks resulting from microbial and abiotic interactions

    NASA Astrophysics Data System (ADS)

    Tang, Jinyun; Riley, William J.

    2015-01-01

    The large uncertainty in soil carbon-climate feedback predictions has been attributed to the incorrect parameterization of decomposition temperature sensitivity (Q10; ref. ) and microbial carbon use efficiency. Empirical experiments have found that these parameters vary spatiotemporally, but such variability is not included in current ecosystem models. Here we use a thermodynamically based decomposition model to test the hypothesis that this observed variability arises from interactions between temperature, microbial biogeochemistry, and mineral surface sorptive reactions. We show that because mineral surfaces interact with substrates, enzymes and microbes, both Q10 and microbial carbon use efficiency are hysteretic (so that neither can be represented by a single static function) and the conventional labile and recalcitrant substrate characterization with static temperature sensitivity is flawed. In a 4-K temperature perturbation experiment, our fully dynamic model predicted more variable but weaker soil carbon-climate feedbacks than did the static Q10 and static carbon use efficiency model when forced with yearly, daily and hourly variable temperatures. These results imply that current Earth system models probably overestimate the response of soil carbon stocks to global warming. Future ecosystem models should therefore consider the dynamic interactions between sorptive mineral surfaces, substrates and microbial processes.

  8. Feedback control of acoustic musical instruments: collocated control using physical analogs.

    PubMed

    Berdahl, Edgar; Smith, Julius O; Niemeyer, Günter

    2012-01-01

    Traditionally, the average professional musician has owned numerous acoustic musical instruments, many of them having distinctive acoustic qualities. However, a modern musician could prefer to have a single musical instrument whose acoustics are programmable by feedback control, where acoustic variables are estimated from sensor measurements in real time and then fed back in order to influence the controlled variables. In this paper, theory is presented that describes stable feedback control of an acoustic musical instrument. The presentation should be accessible to members of the musical acoustics community who may have limited or no experience with feedback control. First, the only control strategy guaranteed to be stable subject to any musical instrument mobility is described: the sensors and actuators must be collocated, and the controller must emulate a physical analog system. Next, the most fundamental feedback controllers and the corresponding physical analog systems are presented. The effects that these controllers have on acoustic musical instruments are described. Finally, practical design challenges are discussed. A proof explains why changing the resonance frequency of a musical resonance requires much more control power than changing the decay time of the resonance. © 2012 Acoustical Society of America.

  9. Universal photonic quantum computation via time-delayed feedback

    PubMed Central

    Pichler, Hannes; Choi, Soonwon; Zoller, Peter; Lukin, Mikhail D.

    2017-01-01

    We propose and analyze a deterministic protocol to generate two-dimensional photonic cluster states using a single quantum emitter via time-delayed quantum feedback. As a physical implementation, we consider a single atom or atom-like system coupled to a 1D waveguide with a distant mirror, where guided photons represent the qubits, while the mirror allows the implementation of feedback. We identify the class of many-body quantum states that can be produced using this approach and characterize them in terms of 2D tensor network states. PMID:29073057

  10. Towards the Prediction of Decadal to Centennial Climate Processes in the Coupled Earth System Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhengyu; Kutzbach, J.; Jacob, R.

    2011-12-05

    In this proposal, we have made major advances in the understanding of decadal and long term climate variability. (a) We performed a systematic study of multidecadal climate variability in FOAM-LPJ and CCSM-T31, and are starting exploring decadal variability in the IPCC AR4 models. (b) We develop several novel methods for the assessment of climate feedbacks in the observation. (c) We also developed a new initialization scheme DAI (Dynamical Analogue Initialization) for ensemble decadal prediction. (d) We also studied climate-vegetation feedback in the observation and models. (e) Finally, we started a pilot program using Ensemble Kalman Filter in CGCM for decadalmore » climate prediction.« less

  11. A modern control theory based algorithm for control of the NASA/JPL 70-meter antenna axis servos

    NASA Technical Reports Server (NTRS)

    Hill, R. E.

    1987-01-01

    A digital computer-based state variable controller was designed and applied to the 70-m antenna axis servos. The general equations and structure of the algorithm and provisions for alternate position error feedback modes to accommodate intertarget slew, encoder referenced tracking, and precision tracking modes are descibed. Development of the discrete time domain control model and computation of estimator and control gain parameters based on closed loop pole placement criteria are discussed. The new algorithm was successfully implemented and tested in the 70-m antenna at Deep Space Network station 63 in Spain.

  12. Fractional State Feedback Control of Undamped and Viscoelastically-Damped Structures

    DTIC Science & Technology

    1990-03-01

    and apply the inverse transform to Eq (99) then 0 DaO zt z In t (n -a ) (1)te = r(n-as+) n=O Eq (101) is the fractional derivative of a complex...s)] 2 ( [F(s)] es t d (110) the inverse transform of Eq (109) may be expressed as 40 D a e t ] =13 e at.. s z do t L 7-ZJ 27i = iW 1-i j and Eq...Il) can be evaluated using the residue theorem from the calculus of complex variables. The closed contour of integration for the inverse transform , in

  13. Using Quality Management Tools to Enhance Feedback from Student Evaluations

    ERIC Educational Resources Information Center

    Jensen, John B.; Artz, Nancy

    2005-01-01

    Statistical tools found in the service quality assessment literature--the "T"[superscript 2] statistic combined with factor analysis--can enhance the feedback instructors receive from student ratings. "T"[superscript 2] examines variability across multiple sets of ratings to isolate individual respondents with aberrant response…

  14. El Niño in the Pliocene

    NASA Astrophysics Data System (ADS)

    White, S. M.; Ravelo, A. C.

    2016-12-01

    It is unclear to what extent ENSO depends on mean climatic state. The Pliocene is an excellent test case because the tropical Pacific was markedly different than today, with a zonal temperature gradient as low as 1.5°C [Wara et al., 2005] and a deeper thermocline across the entire basin [Ford et al., 2015]. This would be expected to weaken the Bjerknes and thermocline feedbacks, thus strongly damping ENSO variability. However, it is possible that other relevant feedbacks evolved along with the Bjerknes and thermocline feedbacks, such that the net effect was only a small change in ENSO [Manucharyan and Fedorov, 2014]. Existing reconstructions of Pliocene ENSO [Scroxton et al., 2011; Watanabe et al., 2011] support the latter view, though not conclusively; a reanalysis of the Scroxton et al. data reveals lower Pliocene ENSO variability compared to the late Holocene. To reconstruct Pliocene ENSO, we perform Mg/Ca analyses on individual planktonic foraminifera from ODP 849 in the eastern equatorial Pacific, yielding a distribution of temperatures from each selected time interval. We use quantile-quantile plots to compare Pliocene temperature distributions to the late Holocene; differences in the warm tail are attributable to changes in El Niño events. Preliminary data show that the amplitude of El Niño events was similar to the late Holocene at 3.1 Ma, but was reduced at 4.5 Ma and at 5.0 Ma. At 5.5 Ma, El Niño amplitude appears similar to the late Holocene, though La Niña amplitude appears lower. These findings, along with additional data, will be discussed in the context of long-term trends in thermocline depth, zonal SST gradient, and Panamanian gateway throughflow.

  15. The Moral Self-Image Scale: Measuring and Understanding the Malleability of the Moral Self.

    PubMed

    Jordan, Jennifer; Leliveld, Marijke C; Tenbrunsel, Ann E

    2015-01-01

    Recent ethical decision-making models suggest that individuals' own view of their morality is malleable rather than static, responding to their (im)moral actions and reflections about the world around them. Yet no construct currently exists to represent the malleable state of a person's moral self-image (MSI). In this investigation, we define this construct, as well as develop a scale to measure it. Across five studies, we show that feedback about the moral self alters an individual's MSI as measured by our scale. We also find that the MSI is related to, but distinct from, related constructs, including moral identity, self-esteem, and moral disengagement. In Study 1, we administered the MSI scale and several other relevant scales to demonstrate convergent and discriminant validity. In Study 2, we examine the relationship between the MSI and one's ought versus ideal self. In Studies 3 and 4, we find that one's MSI is affected in the predicted directions by manipulated feedback about the moral self, including feedback related to social comparisons of moral behavior (Study 3) and feedback relative to one's own moral ideal (Study 4). Lastly, Study 5 provides evidence that the recall of one's moral or immoral behavior alters people's MSI in the predicted directions. Taken together, these studies suggest that the MSI is malleable and responds to individuals' moral and immoral actions in the outside world. As such, the MSI is an important variable to consider in the study of moral and immoral behavior.

  16. The Moral Self-Image Scale: Measuring and Understanding the Malleability of the Moral Self

    PubMed Central

    Jordan, Jennifer; Leliveld, Marijke C.; Tenbrunsel, Ann E.

    2015-01-01

    Recent ethical decision-making models suggest that individuals' own view of their morality is malleable rather than static, responding to their (im)moral actions and reflections about the world around them. Yet no construct currently exists to represent the malleable state of a person's moral self-image (MSI). In this investigation, we define this construct, as well as develop a scale to measure it. Across five studies, we show that feedback about the moral self alters an individual's MSI as measured by our scale. We also find that the MSI is related to, but distinct from, related constructs, including moral identity, self-esteem, and moral disengagement. In Study 1, we administered the MSI scale and several other relevant scales to demonstrate convergent and discriminant validity. In Study 2, we examine the relationship between the MSI and one's ought versus ideal self. In Studies 3 and 4, we find that one's MSI is affected in the predicted directions by manipulated feedback about the moral self, including feedback related to social comparisons of moral behavior (Study 3) and feedback relative to one's own moral ideal (Study 4). Lastly, Study 5 provides evidence that the recall of one's moral or immoral behavior alters people's MSI in the predicted directions. Taken together, these studies suggest that the MSI is malleable and responds to individuals' moral and immoral actions in the outside world. As such, the MSI is an important variable to consider in the study of moral and immoral behavior. PMID:26696941

  17. Output Containment Control of Linear Heterogeneous Multi-Agent Systems Using Internal Model Principle.

    PubMed

    Zuo, Shan; Song, Yongduan; Lewis, Frank L; Davoudi, Ali

    2017-01-04

    This paper studies the output containment control of linear heterogeneous multi-agent systems, where the system dynamics and even the state dimensions can generally be different. Since the states can have different dimensions, standard results from state containment control do not apply. Therefore, the control objective is to guarantee the convergence of the output of each follower to the dynamic convex hull spanned by the outputs of leaders. This can be achieved by making certain output containment errors go to zero asymptotically. Based on this formulation, two different control protocols, namely, full-state feedback and static output-feedback, are designed based on internal model principles. Sufficient local conditions for the existence of the proposed control protocols are developed in terms of stabilizing the local followers' dynamics and satisfying a certain H∞ criterion. Unified design procedures to solve the proposed two control protocols are presented by formulation and solution of certain local state-feedback and static output-feedback problems, respectively. Numerical simulations are given to validate the proposed control protocols.

  18. Adaptive servo control for umbilical mating

    NASA Technical Reports Server (NTRS)

    Zia, Omar

    1988-01-01

    Robotic applications at Kennedy Space Center are unique and in many cases require the fime positioning of heavy loads in dynamic environments. Performing such operations is beyond the capabilities of an off-the-shelf industrial robot. Therefore Robotics Applications Development Laboratory at Kennedy Space Center has put together an integrated system that coordinates state of the art robotic system providing an excellent easy to use testbed for NASA sensor integration experiments. This paper reviews the ways of improving the dynamic response of the robot operating under force feedback with varying dynamic internal perturbations in order to provide continuous stable operations under variable load conditions. The goal is to improve the stability of the system with force feedback using the adaptive control feature of existing system over a wide range of random motions. The effect of load variations on the dynamics and the transfer function (order or values of the parameters) of the system has been investigated, more accurate models of the system have been determined and analyzed.

  19. Nonlinear dynamics of attractive magnetic bearings

    NASA Technical Reports Server (NTRS)

    Hebbale, K. V.; Taylor, D. L.

    1987-01-01

    The nonlinear dynamics of a ferromagnetic shaft suspended by the force of attraction of 1, 2, or 4 independent electromagnets is presented. Each model includes a state variable feedback controller which has been designed using the pole placement method. The constitutive relationships for the magnets are derived analytically from magnetic circuit theory, and the effects of induced eddy currents due to the rotation of the journal are included using Maxwell's field relations. A rotor suspended by four electro-magnets with closed loop feedback is shown to have nine equilibrium points within the bearing clearance space. As the rotor spin speed increases, the system is shown to pass through a Hopf bifurcation (a flutter instability). Using center manifold theory, this bifurcation can be shown to be of the subcritical type, indicating an unstable limit cycle below the critical speed. The bearing is very sensitive to initial conditions, and the equilibrium position is easily upset by transient excitation. The results are confirmed by numerical simulation.

  20. International conference on the role of the polar regions in global change: Proceedings. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weller, G.; Wilson, C.L.; Severin, B.A.B.

    1991-12-01

    The International Conference on the Role of the Polar Regions in Global Change took place on the campus of the University of Alaska Fairbanks on June 11--15, 1990. The goal of the conference was to define and summarize the state of knowledge on the role of the polar regions in global change, and to identify gaps in knowledge. To this purpose experts in a wide variety of relevant disciplines were invited to present papers and hold panel discussions. While there are numerous conferences on global change, this conference dealt specifically with the polar regions which occupy key positions in themore » global system. These two volumes of conference proceedings include papers on (1) detection and monitoring of change; (2) climate variability and climate forcing; (3) ocean, sea ice, and atmosphere interactions and processes; and (4) effects on biota and biological feedbacks; (5) ice sheet, glacier and permafrost responses and feedbacks, (6) paleoenvironmental studies; and, (7) aerosol and trace gases.« less

  1. Canonical formalism for modelling and control of rigid body dynamics.

    PubMed

    Gurfil, P

    2005-12-01

    This paper develops a new paradigm for stabilization of rigid-body dynamics. The state-space model is formulated using canonical elements, known as the Serret-Andoyer (SA) variables, thus far scarcely used for engineering applications. The main feature of the SA formalism is the reduction of the dynamics via the underlying symmetry stemming from conservation of angular momentum and rotational kinetic energy. The controllability of the system model is examined using the notion of accessibility, and is shown to be accessible from all points. Based on the accessibility proof, two nonlinear asymptotic feedback stabilizers are developed: a damping feedback is designed based on the Jurdjevic-Quinn method, and a Hamiltonian controller is derived by using the Hamiltonian as a natural Lyapunov function for the closed-loop dynamics. It is shown that the Hamiltonian control is both passive and inverse optimal with respect to a meaningful performance index. The performance of the new controllers is examined and compared using simulations of realistic scenarios from the satellite attitude dynamics field.

  2. Hierarchical cluster-based partial least squares regression (HC-PLSR) is an efficient tool for metamodelling of nonlinear dynamic models.

    PubMed

    Tøndel, Kristin; Indahl, Ulf G; Gjuvsland, Arne B; Vik, Jon Olav; Hunter, Peter; Omholt, Stig W; Martens, Harald

    2011-06-01

    Deterministic dynamic models of complex biological systems contain a large number of parameters and state variables, related through nonlinear differential equations with various types of feedback. A metamodel of such a dynamic model is a statistical approximation model that maps variation in parameters and initial conditions (inputs) to variation in features of the trajectories of the state variables (outputs) throughout the entire biologically relevant input space. A sufficiently accurate mapping can be exploited both instrumentally and epistemically. Multivariate regression methodology is a commonly used approach for emulating dynamic models. However, when the input-output relations are highly nonlinear or non-monotone, a standard linear regression approach is prone to give suboptimal results. We therefore hypothesised that a more accurate mapping can be obtained by locally linear or locally polynomial regression. We present here a new method for local regression modelling, Hierarchical Cluster-based PLS regression (HC-PLSR), where fuzzy C-means clustering is used to separate the data set into parts according to the structure of the response surface. We compare the metamodelling performance of HC-PLSR with polynomial partial least squares regression (PLSR) and ordinary least squares (OLS) regression on various systems: six different gene regulatory network models with various types of feedback, a deterministic mathematical model of the mammalian circadian clock and a model of the mouse ventricular myocyte function. Our results indicate that multivariate regression is well suited for emulating dynamic models in systems biology. The hierarchical approach turned out to be superior to both polynomial PLSR and OLS regression in all three test cases. The advantage, in terms of explained variance and prediction accuracy, was largest in systems with highly nonlinear functional relationships and in systems with positive feedback loops. HC-PLSR is a promising approach for metamodelling in systems biology, especially for highly nonlinear or non-monotone parameter to phenotype maps. The algorithm can be flexibly adjusted to suit the complexity of the dynamic model behaviour, inviting automation in the metamodelling of complex systems.

  3. Hierarchical Cluster-based Partial Least Squares Regression (HC-PLSR) is an efficient tool for metamodelling of nonlinear dynamic models

    PubMed Central

    2011-01-01

    Background Deterministic dynamic models of complex biological systems contain a large number of parameters and state variables, related through nonlinear differential equations with various types of feedback. A metamodel of such a dynamic model is a statistical approximation model that maps variation in parameters and initial conditions (inputs) to variation in features of the trajectories of the state variables (outputs) throughout the entire biologically relevant input space. A sufficiently accurate mapping can be exploited both instrumentally and epistemically. Multivariate regression methodology is a commonly used approach for emulating dynamic models. However, when the input-output relations are highly nonlinear or non-monotone, a standard linear regression approach is prone to give suboptimal results. We therefore hypothesised that a more accurate mapping can be obtained by locally linear or locally polynomial regression. We present here a new method for local regression modelling, Hierarchical Cluster-based PLS regression (HC-PLSR), where fuzzy C-means clustering is used to separate the data set into parts according to the structure of the response surface. We compare the metamodelling performance of HC-PLSR with polynomial partial least squares regression (PLSR) and ordinary least squares (OLS) regression on various systems: six different gene regulatory network models with various types of feedback, a deterministic mathematical model of the mammalian circadian clock and a model of the mouse ventricular myocyte function. Results Our results indicate that multivariate regression is well suited for emulating dynamic models in systems biology. The hierarchical approach turned out to be superior to both polynomial PLSR and OLS regression in all three test cases. The advantage, in terms of explained variance and prediction accuracy, was largest in systems with highly nonlinear functional relationships and in systems with positive feedback loops. Conclusions HC-PLSR is a promising approach for metamodelling in systems biology, especially for highly nonlinear or non-monotone parameter to phenotype maps. The algorithm can be flexibly adjusted to suit the complexity of the dynamic model behaviour, inviting automation in the metamodelling of complex systems. PMID:21627852

  4. Effects of head movement and proprioceptive feedback in training of sound localization

    PubMed Central

    Honda, Akio; Shibata, Hiroshi; Hidaka, Souta; Gyoba, Jiro; Iwaya, Yukio; Suzuki, Yôiti

    2013-01-01

    We investigated the effects of listeners' head movements and proprioceptive feedback during sound localization practice on the subsequent accuracy of sound localization performance. The effects were examined under both restricted and unrestricted head movement conditions in the practice stage. In both cases, the participants were divided into two groups: a feedback group performed a sound localization drill with accurate proprioceptive feedback; a control group conducted it without the feedback. Results showed that (1) sound localization practice, while allowing for free head movement, led to improvement in sound localization performance and decreased actual angular errors along the horizontal plane, and that (2) proprioceptive feedback during practice decreased actual angular errors in the vertical plane. Our findings suggest that unrestricted head movement and proprioceptive feedback during sound localization training enhance perceptual motor learning by enabling listeners to use variable auditory cues and proprioceptive information. PMID:24349686

  5. Risk-Taking and the Feedback Negativity Response to Loss among At-Risk Adolescents

    PubMed Central

    Crowley, Michael J.; Wu, Jia; Crutcher, Clifford; Bailey, Christopher A.; Lejuez, C.W.; Mayes, Linda C.

    2009-01-01

    Event-related brain potentials were examined in 32 adolescents (50% female) from a high-risk sample, who were exposed to cocaine and other drugs prenatally. Adolescents were selected for extreme high- or low-risk behavior on the Balloon Analog Risk Task, a measure of real-world risk-taking propensity. The feedback error-related negativity (fERN), an event-related potential (ERP) that occurs when an expected reward does not occur, was examined in a game in which choices lead to monetary gains and losses with feedback delayed 1 or 2 s. The fERN was clearly visible in the fronto-central scalp region in this adolescent sample. Feedback type, feedback delay, risk status, and sex were all associated with fERN variability. Monetary feedback also elicited a P300-like component, moderated by delay and sex. Delaying reward feedback may provide a means for studying complementary functioning of dopamine and norepinephrine systems. PMID:19372694

  6. Effects of Subject Self-Esteem, Test Performance Feedback, and Counselor Attractiveness on Influence in Counseling

    ERIC Educational Resources Information Center

    Sell, John M.

    1974-01-01

    Counselor attractiveness, subject self-esteem, and subject receipt of test performance feedback were manipulated in a counseling analogue experiment. The results demonstrated no relationship between the independent variables and counselor influence, although the experimental induction of attractiveness was successful. Implications for a theory of…

  7. Instructive Feedback Embedded within Group Instruction for Children Diagnosed with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Leaf, Justin B.; Cihon, Joseph H.; Alcalay, Aditt; Mitchell, Erin; Townley-Cochran, Donna; Miller, Kevin; Leaf, Ronald; Taubman, Mitchell; McEachin, John

    2017-01-01

    The present study evaluated the effects of instructive feedback embedded within a group discrete trial teaching to teach tact relations to nine children diagnosed with autism spectrum disorder using a nonconcurrent multiple-baseline design. Dependent variables included correct responses for: primary targets (directly taught), secondary targets…

  8. Keep calm! Gender differences in mental rotation performance are modulated by habitual expressive suppression.

    PubMed

    Fladung, Anne-Katharina; Kiefer, Markus

    2016-11-01

    Men have been frequently found to perform more accurately than women in mental rotation tasks. However, men and women also differ with regard to the habitual use of emotion regulation strategies, particularly with regard to expressive suppression, i.e., the suppression of emotional expression in behavior. As emotional suppression is more often used by men, emotion regulation strategies might be a variable modulating gender differences in mental rotation performance. The present study, therefore, examined the influences of gender and emotion regulation strategies on mental rotation performance accuracy and feedback processing. Twenty-eight men and 28 women matched for relevant demographic variables performed mental rotation tasks of varying difficulty over a prolonged time. Emotional feedback was given immediately after each trial. Results showed that women reported to use expressive suppression less frequently than men. Women made more errors in the mental rotation task than men confirming earlier demonstrations of gender differences. Furthermore, women were more impaired by the negative feedback as indicated by the increased likelihood of subsequent errors compared with men. Task performance of women not habitually using expressive suppression was most inferior and most strongly influenced by failure feedback compared with men. Women using expressive suppression more habitually did not significantly differ in mental rotation accuracy and feedback processing from men. Hence, expressive suppression reduces gender differences in mental rotation accuracy by improving cognitive performance following failure feedback.

  9. Study of positive and negative feedback sensitivity in psychosis using the Wisconsin Card Sorting Test.

    PubMed

    Farreny, Aida; Del Rey-Mejías, Ángel; Escartin, Gemma; Usall, Judith; Tous, Núria; Haro, Josep Maria; Ochoa, Susana

    2016-07-01

    Schizophrenia involves marked motivational and learning deficits that may reflect abnormalities in reward processing. The purpose of this study was to examine positive and negative feedback sensitivity in schizophrenia using computational modeling derived from the Wisconsin Card Sorting Test (WCST). We also aimed to explore feedback sensitivity in a sample with bipolar disorder. Eighty-three individuals with schizophrenia and 27 with bipolar disorder were included. Demographic, clinical and cognitive outcomes, together with the WCST, were considered in both samples. Computational modeling was performed using the R syntax to calculate 3 parameters based on trial-by-trial execution on the WCST: reward sensitivity (R), punishment sensitivity (P), and choice consistency (D). The associations between outcome variables and the parameters were investigated. Positive and negative sensitivity showed deficits, but P parameter was clearly diminished in schizophrenia. Cognitive variables, age, and symptoms were associated with R, P, and D parameters in schizophrenia. The sample with bipolar disorder would show cognitive deficits and feedback abnormalities to a lesser extent than individuals with schizophrenia. Negative feedback sensitivity demonstrated greater deficit in both samples. Idiosyncratic cognitive requirements in the WCST might introduce confusion when supposing model-free reinforcement learning. Negative symptoms of schizophrenia were related to lower feedback sensitivity and less goal-directed patterns of choice. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. A Model for the Epigenetic Switch Linking Inflammation to Cell Transformation: Deterministic and Stochastic Approaches

    PubMed Central

    Gérard, Claude; Gonze, Didier; Lemaigre, Frédéric; Novák, Béla

    2014-01-01

    Recently, a molecular pathway linking inflammation to cell transformation has been discovered. This molecular pathway rests on a positive inflammatory feedback loop between NF-κB, Lin28, Let-7 microRNA and IL6, which leads to an epigenetic switch allowing cell transformation. A transient activation of an inflammatory signal, mediated by the oncoprotein Src, activates NF-κB, which elicits the expression of Lin28. Lin28 decreases the expression of Let-7 microRNA, which results in higher level of IL6 than achieved directly by NF-κB. In turn, IL6 can promote NF-κB activation. Finally, IL6 also elicits the synthesis of STAT3, which is a crucial activator for cell transformation. Here, we propose a computational model to account for the dynamical behavior of this positive inflammatory feedback loop. By means of a deterministic model, we show that an irreversible bistable switch between a transformed and a non-transformed state of the cell is at the core of the dynamical behavior of the positive feedback loop linking inflammation to cell transformation. The model indicates that inhibitors (tumor suppressors) or activators (oncogenes) of this positive feedback loop regulate the occurrence of the epigenetic switch by modulating the threshold of inflammatory signal (Src) needed to promote cell transformation. Both stochastic simulations and deterministic simulations of a heterogeneous cell population suggest that random fluctuations (due to molecular noise or cell-to-cell variability) are able to trigger cell transformation. Moreover, the model predicts that oncogenes/tumor suppressors respectively decrease/increase the robustness of the non-transformed state of the cell towards random fluctuations. Finally, the model accounts for the potential effect of competing endogenous RNAs, ceRNAs, on the dynamics of the epigenetic switch. Depending on their microRNA targets, the model predicts that ceRNAs could act as oncogenes or tumor suppressors by regulating the occurrence of cell transformation. PMID:24499937

  11. Can Performance Feedback during Instruction Boost Knowledge Acquisition? Contrasting Criterion-Based and Social Comparison Feedback

    ERIC Educational Resources Information Center

    Kollöffel, Bas; de Jong, Ton

    2016-01-01

    Feedback indicating how well students are performing during a learning task can be very stimulating. In this study with a pre- and post-test design, the effects of two types of performance feedback on learning results were compared: feedback during a learning task was either stated in terms of how well the students were performing relative to…

  12. Application of variable-gain output feedback for high-alpha control

    NASA Technical Reports Server (NTRS)

    Ostroff, Aaron J.

    1990-01-01

    A variable-gain, optimal, discrete, output feedback design approach that is applied to a nonlinear flight regime is described. The flight regime covers a wide angle-of-attack range that includes stall and post stall. The paper includes brief descriptions of the variable-gain formulation, the discrete-control structure and flight equations used to apply the design approach, and the high performance airplane model used in the application. Both linear and nonlinear analysis are shown for a longitudinal four-model design case with angles of attack of 5, 15, 35, and 60 deg. Linear and nonlinear simulations are compared for a single-point longitudinal design at 60 deg angle of attack. Nonlinear simulations for the four-model, multi-mode, variable-gain design include a longitudinal pitch-up and pitch-down maneuver and high angle-of-attack regulation during a lateral maneuver.

  13. Stability of Hand Force Production: II. Ascending and Descending Synergies.

    PubMed

    Reschechtko, Sasha; Latash, Mark L

    2018-06-06

    We combined the theory of neural control of movement with referent coordinates and the uncontrolled manifold hypothesis to investigate multi-finger coordination. We tested hypotheses related to stabilization of performance by co-varying control variables, translated into apparent stiffness and referent coordinate, at different levels of an assumed hierarchy of control. Subjects produced an accurate combination of total force and total moment of force with the four fingers under visual feedback on both variables and after feedback was partly or completely removed. The "inverse piano" device was used to estimate control variables. We observed strong synergies in the space of hypothetical control variables which stabilized total force and moment of force, as well as weaker synergies stabilizing individual finger forces; while the former were attenuated by alteration of visual feedback, the latter were much less affected. In addition, we investigated the organization of "ascending synergies" stabilizing task-level control variables by co-varied adjustments of finger-level control variables. We observed inter-trial co-variation of individual fingers' referent coordinates stabilizing hand-level referent coordinate, but observed no such co-variation for apparent stiffness. The observations suggest the existence of both descending and ascending synergies in a hierarchical control system. They confirm a trade-off between synergies at different levels of control and corroborate the hypothesis on specialization of different fingers for the control of force and moment. The results provide strong evidence for the importance of central back-coupling loops in ensuring stability of action.

  14. Development and evaluation of a local grid refinement method for block-centered finite-difference groundwater models using shared nodes

    USGS Publications Warehouse

    Mehl, S.; Hill, M.C.

    2002-01-01

    A new method of local grid refinement for two-dimensional block-centered finite-difference meshes is presented in the context of steady-state groundwater-flow modeling. The method uses an iteration-based feedback with shared nodes to couple two separate grids. The new method is evaluated by comparison with results using a uniform fine mesh, a variably spaced mesh, and a traditional method of local grid refinement without a feedback. Results indicate: (1) The new method exhibits quadratic convergence for homogeneous systems and convergence equivalent to uniform-grid refinement for heterogeneous systems. (2) Coupling the coarse grid with the refined grid in a numerically rigorous way allowed for improvement in the coarse-grid results. (3) For heterogeneous systems, commonly used linear interpolation of heads from the large model onto the boundary of the refined model produced heads that are inconsistent with the physics of the flow field. (4) The traditional method works well in situations where the better resolution of the locally refined grid has little influence on the overall flow-system dynamics, but if this is not true, lack of a feedback mechanism produced errors in head up to 3.6% and errors in cell-to-cell flows up to 25%. ?? 2002 Elsevier Science Ltd. All rights reserved.

  15. Relatively slow stochastic gene-state switching in the presence of positive feedback significantly broadens the region of bimodality through stabilizing the uninduced phenotypic state.

    PubMed

    Ge, Hao; Wu, Pingping; Qian, Hong; Xie, Xiaoliang Sunney

    2018-03-01

    Within an isogenic population, even in the same extracellular environment, individual cells can exhibit various phenotypic states. The exact role of stochastic gene-state switching regulating the transition among these phenotypic states in a single cell is not fully understood, especially in the presence of positive feedback. Recent high-precision single-cell measurements showed that, at least in bacteria, switching in gene states is slow relative to the typical rates of active transcription and translation. Hence using the lac operon as an archetype, in such a region of operon-state switching, we present a fluctuating-rate model for this classical gene regulation module, incorporating the more realistic operon-state switching mechanism that was recently elucidated. We found that the positive feedback mechanism induces bistability (referred to as deterministic bistability), and that the parameter range for its occurrence is significantly broadened by stochastic operon-state switching. We further show that in the absence of positive feedback, operon-state switching must be extremely slow to trigger bistability by itself. However, in the presence of positive feedback, which stabilizes the induced state, the relatively slow operon-state switching kinetics within the physiological region are sufficient to stabilize the uninduced state, together generating a broadened parameter region of bistability (referred to as stochastic bistability). We illustrate the opposite phenotype-transition rate dependence upon the operon-state switching rates in the two types of bistability, with the aid of a recently proposed rate formula for fluctuating-rate models. The rate formula also predicts a maximal transition rate in the intermediate region of operon-state switching, which is validated by numerical simulations in our model. Overall, our findings suggest a biological function of transcriptional "variations" among genetically identical cells, for the emergence of bistability and transition between phenotypic states.

  16. Continental Growth and Mantle Hydration as Earth System Feedback Cycles and possible Effects of the Biosphere

    NASA Astrophysics Data System (ADS)

    Höning, D.; Spohn, T.

    2016-12-01

    The evolution of Earth is charcterized by intertwined feedback cycles. We focus on two feedback cycles that include the mantle water budget and the continental crust and study possible effects of the Earth's biosphere. The first feedback loop includes cycling of water into the mantle at subduction zones and outgassing at volcanic chains and mid-ocean ridges. Water will reduce the viscosity of mantle rock, and therefore the speed of mantle convection and plate subduction will increase with the mantle water concentration, eventually enhancing the rates of mantle water regassing and outgassing. A second feedback loop includes the production and erosion of continental crust. Continents grow by volcanism above subduction zones, whose total length is determined by the total area of the continents. Furthermore, the erosion rate of the continents is proportional to the total surface area of continental crust. The rate of sediment subduction affects the rate of transport of water to the mantle and the production rate of new continental crust. We present a model that includes both cycles and show how the system develops stable and unstable fixed points in a plane defined by mantle water concentration and surface are of continents. The stable points represent either an Earth mostly covered by continents and a wet mantle or an Earth mostly covered by oceans with a dry mantle. The presently observed Earth is inbetween these extreme states but the state is intrinsically unstable. We couple the feedback model to a parameterized thermal evolution model. We show how Earth evolved towards its present unstable state. We argue that other feedback cycles such as the carbonate silicate cycle may act to stabilize the present state, however. By enhancing continental weathering and erosion, and eventually the sediment transport into subduction zones, the biosphere impacts both feedback cycles and might play a crucial role in regulating Earth's system and keep continental crust coverage and mantle water budget at its present day state.

  17. Adaptive Neural Network Control of a Flapping Wing Micro Aerial Vehicle With Disturbance Observer.

    PubMed

    He, Wei; Yan, Zichen; Sun, Changyin; Chen, Yunan

    2017-10-01

    The research of this paper works out the attitude and position control of the flapping wing micro aerial vehicle (FWMAV). Neural network control with full state and output feedback are designed to deal with uncertainties in this complex nonlinear FWMAV dynamic system and enhance the system robustness. Meanwhile, we design disturbance observers which are exerted into the FWMAV system via feedforward loops to counteract the bad influence of disturbances. Then, a Lyapunov function is proposed to prove the closed-loop system stability and the semi-global uniform ultimate boundedness of all state variables. Finally, a series of simulation results indicate that proposed controllers can track desired trajectories well via selecting appropriate control gains. And the designed controllers possess potential applications in FWMAVs.

  18. Modulation of dynamic modes by interplay between positive and negative feedback loops in gene regulatory networks

    NASA Astrophysics Data System (ADS)

    Wang, Liu-Suo; Li, Ning-Xi; Chen, Jing-Jia; Zhang, Xiao-Peng; Liu, Feng; Wang, Wei

    2018-04-01

    A positive and a negative feedback loop can induce bistability and oscillation, respectively, in biological networks. Nevertheless, they are frequently interlinked to perform more elaborate functions in many gene regulatory networks. Coupled positive and negative feedback loops may exhibit either oscillation or bistability depending on the intensity of the stimulus in some particular networks. It is less understood how the transition between the two dynamic modes is modulated by the positive and negative feedback loops. We developed an abstract model of such systems, largely based on the core p53 pathway, to explore the mechanism for the transformation of dynamic behaviors. Our results show that enhancing the positive feedback may promote or suppress oscillations depending on the strength of both feedback loops. We found that the system oscillates with low amplitudes in response to a moderate stimulus and switches to the on state upon a strong stimulus. When the positive feedback is activated much later than the negative one in response to a strong stimulus, the system exhibits long-term oscillations before switching to the on state. We explain this intriguing phenomenon using quasistatic approximation. Moreover, early switching to the on state may occur when the system starts from a steady state in the absence of stimuli. The interplay between the positive and negative feedback plays a key role in the transitions between oscillation and bistability. Of note, our conclusions should be applicable only to some specific gene regulatory networks, especially the p53 network, in which both oscillation and bistability exist in response to a certain type of stimulus. Our work also underscores the significance of transient dynamics in determining cellular outcome.

  19. Does manipulating the speed of visual flow in virtual reality change distance estimation while walking in Parkinson's disease?

    PubMed

    Ehgoetz Martens, Kaylena A; Ellard, Colin G; Almeida, Quincy J

    2015-03-01

    Although dopaminergic replacement therapy is believed to improve sensory processing in PD, while delayed perceptual speed is thought to be caused by a predominantly cholinergic deficit, it is unclear whether sensory-perceptual deficits are a result of corrupt sensory processing, or a delay in updating perceived feedback during movement. The current study aimed to examine these two hypotheses by manipulating visual flow speed and dopaminergic medication to examine which influenced distance estimation in PD. Fourteen PD and sixteen HC participants were instructed to estimate the distance of a remembered target by walking to the position the target formerly occupied. This task was completed in virtual reality in order to manipulate the visual flow (VF) speed in real time. Three conditions were carried out: (1) BASELINE: VF speed was equal to participants' real-time movement speed; (2) SLOW: VF speed was reduced by 50 %; (2) FAST: VF speed was increased by 30 %. Individuals with PD performed the experiment in their ON and OFF state. PD demonstrated significantly greater judgement error during BASELINE and FAST conditions compared to HC, although PD did not improve their judgement error during the SLOW condition. Additionally, PD had greater variable error during baseline compared to HC; however, during the SLOW conditions, PD had significantly less variable error compared to baseline and similar variable error to HC participants. Overall, dopaminergic medication did not significantly influence judgement error. Therefore, these results suggest that corrupt processing of sensory information is the main contributor to sensory-perceptual deficits during movement in PD rather than delayed updating of sensory feedback.

  20. UAV State Estimation Modeling Techniques in AHRS

    NASA Astrophysics Data System (ADS)

    Razali, Shikin; Zhahir, Amzari

    2017-11-01

    Autonomous unmanned aerial vehicle (UAV) system is depending on state estimation feedback to control flight operation. Estimation on the correct state improves navigation accuracy and achieves flight mission safely. One of the sensors configuration used in UAV state is Attitude Heading and Reference System (AHRS) with application of Extended Kalman Filter (EKF) or feedback controller. The results of these two different techniques in estimating UAV states in AHRS configuration are displayed through position and attitude graphs.

  1. THE EFFECT OF FEEDBACK ON THE ACCURACY OF CHECKLIST COMPLETION DURING INSTRUMENT FLIGHT TRAINING

    PubMed Central

    Rantz, William G; Dickinson, Alyce M; Sinclair, Gilbert A; Van Houten, Ron

    2009-01-01

    This study examined whether pilots completed airplane checklists more accurately when they receive postflight graphic and verbal feedback. Participants were 8 college students who are pilots with an instrument rating. The task consisted of flying a designated flight pattern using a personal computer aviation training device (PCATD). The dependent variables were the number of checklist items completed correctly. A multiple baseline design across pairs of participants with withdrawal of treatment was employed in this study. During baseline, participants were given postflight technical feedback. During intervention, participants were given postflight graphic feedback on checklist use and praise for improvements along with technical feedback. The intervention produced near perfect checklist performance, which was maintained following a return to the baseline conditions. PMID:20190914

  2. Patient-focused and feedback research in psychotherapy: Where are we and where do we want to go?

    PubMed

    Lutz, Wolfgang; De Jong, Kim; Rubel, Julian

    2015-01-01

    In the last 15 years feedback interventions have had a significant impact on the field of psychotherapy research and have demonstrated their potential to enhance treatment outcomes, especially for patients with an increased risk of treatment failure. This article serves as an introduction to the special issue on "Patient-focused and feedback research in psychotherapy: Where are we and where do we want to go?" Current investigations on feedback research are concerned with potential moderators and mediators of these effects, as well as the design and the implementation of feedback into routine care. This introduction summarizes the current state of feedback research and provides an overview of the three main research topics in this issue: (1) How to implement feedback systems into routine practice and how do therapist and patient attitudes influence its effects?, (2) How to design feedback reports and decision support tools?, and (3) What are the reasons for patients to become at risk of treatment failure and how should therapists intervene with these patients? We believe that the studies included in this special issue reflect the current state of feedback research and provide promising pathways for future endeavors that will enhance our understanding of feedback effects.

  3. Feedback control of plasma instabilities with charged particle beams and study of plasma turbulence

    NASA Technical Reports Server (NTRS)

    Tham, Philip Kin-Wah

    1994-01-01

    A new non-perturbing technique for feedback control of plasma instabilities has been developed in the Columbia Linear Machine (CLM). The feedback control scheme involves the injection of a feedback modulated ion beam as a remote suppressor. The ion beam was obtained from a compact ion beam source which was developed for this purpose. A Langmuir probe was used as the feedback sensor. The feedback controller consisted of a phase-shifter and amplifiers. This technique was demonstrated by stabilizing various plasma instabilities to the background noise level, like the trapped particle instability, the ExB instability and the ion-temperature-gradient (ITG) driven instability. An important feature of this scheme is that the injected ion beam is non-perturbing to the plasma equilibrium parameters. The robustness of this feedback stabilization scheme was also investigated. The principal result is that the scheme is fairly robust, tolerating about 100% variation about the nominal parameter values. Next, this scheme is extended to the unsolved general problem of controlling multimode plasma instabilities simultaneously with a single sensor-suppressor pair. A single sensor-suppressor pair of feedback probes is desirable to reduce the perturbation caused by the probes. Two plasma instabilities the ExB and the ITG modes, were simultaneously stabilized. A simple 'state' feedback type method was used where more state information was generated from the single sensor Langmuir probe by appropriate signal processing, in this case, by differentiation. This proof-of-principle experiment demonstrated for the first time that by designing a more sophisticated electronic feedback controller, many plasma instabilities may be simultaneously controlled. Simple theoretical models showed generally good agreement with the feedback experimental results. On a parallel research front, a better understanding of the saturated state of a plasma instability was sought partly with the help of feedback. A plasma instability is usually observed in its saturated state and appears as a single feature in the frequency spectrum with a single azimuthal and parallel wavenumbers. The physics of the non-zero spectral width was investigated in detail because the finite spectral width can cause "turbulent" transport. One aspect of the "turbulence" was investigated by obtaining the scaling of the linear growth rate of the instabilities with the fluctuation levels. The linear growth rates were measured with the established gated feedback technique. The research showed that the ExB instability evolves into a quasi-coherent state when the fluctuation level is high. The coherent aspects were studied with a bispectral analysis. Moreover, the single spectral feature was discovered to be actually composed of a few radial harmonics. The radial harmonics play a role in the nonlinear saturation of the instability via three-wave coupling.

  4. Extraction of Lateral-Directional Stability and Control Derivatives for the Basic F-18 Aircraft at High Angles of Attack

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.; Wang, Kon-Sheng Charles

    1997-01-01

    The results of parameter identification to determine the lateral-directional stability and control derivatives of an F-18 research aircraft in its basic hardware and software configuration are presented. The derivatives are estimated from dynamic flight data using a specialized identification program developed at NASA Dryden Flight Research Center. The formulation uses the linearized aircraft equations of motions in their continuous/discrete form and a maximum likelihood estimator that accounts for both state and measurement noise. State noise is used to model the uncommanded forcing function caused by unsteady aerodynamics, such as separated and vortical flows, over the aircraft. The derivatives are plotted as functions of angle of attack between 3 deg and 47 deg and compared with wind-tunnel predictions. The quality of the derivative estimates obtained by parameter identification is somewhat degraded because the maneuvers were flown with the aircraft's control augmentation system engaged, which introduced relatively high correlations between the control variables and response variables as a result of control motions from the feedback control system.

  5. Noise-induced transitions and shifts in a climate-vegetation feedback model.

    PubMed

    Alexandrov, Dmitri V; Bashkirtseva, Irina A; Ryashko, Lev B

    2018-04-01

    Motivated by the extremely important role of the Earth's vegetation dynamics in climate changes, we study the stochastic variability of a simple climate-vegetation system. In the case of deterministic dynamics, the system has one stable equilibrium and limit cycle or two stable equilibria corresponding to two opposite (cold and warm) climate-vegetation states. These states are divided by a separatrix going across a point of unstable equilibrium. Some possible stochastic scenarios caused by different externally induced natural and anthropogenic processes inherit properties of deterministic behaviour and drastically change the system dynamics. We demonstrate that the system transitions across its separatrix occur with increasing noise intensity. The climate-vegetation system therewith fluctuates, transits and localizes in the vicinity of its attractor. We show that this phenomenon occurs within some critical range of noise intensities. A noise-induced shift into the range of smaller global average temperatures corresponding to substantial oscillations of the Earth's vegetation cover is revealed. Our analysis demonstrates that the climate-vegetation interactions essentially contribute to climate dynamics and should be taken into account in more precise and complex models of climate variability.

  6. Understanding constructive feedback: a commitment between teachers and students for academic and professional development.

    PubMed

    Hamid, Yasir; Mahmood, Sajid

    2010-03-01

    This review highlights the need in the Pakistani medical education system for teachers and students to be able to: define constructive feedback; provide constructive feedback; identify standards for constructive feedback; identify a suitable model for the provision of constructive feedback and evaluate the use of constructive feedback. For the purpose of literature review we had defined the key word glossary as: feedback, constructive feedback, teaching constructive feedback, models for feedback, models for constructive feedback and giving and receiving feedback. The data bases for the search include: Medline (EBSCO), Web of Knowledge, SCOPUS, TRIP, ScienceDirect, Pubmed, U.K. Pubmed Central, ZETOC, University of Dundee Library catalogue, SCIRUS (Elsevier) and Google Scholar. This article states that the Pakistani medical schools do not reflect on or use the benefits of the constructive feedback process. The discussion about constructive feedback suggests that in the context of Pakistan, constructive feedback will facilitate the teaching and learning activities.

  7. Adaptive Neural Networks Decentralized FTC Design for Nonstrict-Feedback Nonlinear Interconnected Large-Scale Systems Against Actuator Faults.

    PubMed

    Li, Yongming; Tong, Shaocheng

    The problem of active fault-tolerant control (FTC) is investigated for the large-scale nonlinear systems in nonstrict-feedback form. The nonstrict-feedback nonlinear systems considered in this paper consist of unstructured uncertainties, unmeasured states, unknown interconnected terms, and actuator faults (e.g., bias fault and gain fault). A state observer is designed to solve the unmeasurable state problem. Neural networks (NNs) are used to identify the unknown lumped nonlinear functions so that the problems of unstructured uncertainties and unknown interconnected terms can be solved. By combining the adaptive backstepping design principle with the combination Nussbaum gain function property, a novel NN adaptive output-feedback FTC approach is developed. The proposed FTC controller can guarantee that all signals in all subsystems are bounded, and the tracking errors for each subsystem converge to a small neighborhood of zero. Finally, numerical results of practical examples are presented to further demonstrate the effectiveness of the proposed control strategy.The problem of active fault-tolerant control (FTC) is investigated for the large-scale nonlinear systems in nonstrict-feedback form. The nonstrict-feedback nonlinear systems considered in this paper consist of unstructured uncertainties, unmeasured states, unknown interconnected terms, and actuator faults (e.g., bias fault and gain fault). A state observer is designed to solve the unmeasurable state problem. Neural networks (NNs) are used to identify the unknown lumped nonlinear functions so that the problems of unstructured uncertainties and unknown interconnected terms can be solved. By combining the adaptive backstepping design principle with the combination Nussbaum gain function property, a novel NN adaptive output-feedback FTC approach is developed. The proposed FTC controller can guarantee that all signals in all subsystems are bounded, and the tracking errors for each subsystem converge to a small neighborhood of zero. Finally, numerical results of practical examples are presented to further demonstrate the effectiveness of the proposed control strategy.

  8. A feedback intervention to increase digital and paper checklist performance in technically advanced aircraft simulation.

    PubMed

    Rantz, William G; Van Houten, Ron

    2011-01-01

    This study examined whether pilots operating a flight simulator completed digital or paper flight checklists more accurately after receiving postflight graphic and verbal feedback. The dependent variable was the number of checklist items completed correctly per flight. Following treatment, checklist completion with paper and digital checklists increased from 38% and 39%, respectively, to nearly 100% and remained close to 100% after feedback and praise for improvement were withdrawn. Performance was maintained at or near 100% during follow-up probes.

  9. Validation of zero-order feedback strategies for medium range air-to-air interception in a horizontal plane

    NASA Technical Reports Server (NTRS)

    Shinar, J.

    1982-01-01

    A zero order feedback solution of a variable speed interception game between two aircraft in the horizontal plane, obtained by using the method of forced singular perturbation (FSP), is compared with the exact open loop solution. The comparison indicates that for initial distances of separation larger than eight turning radii of the evader, the accuracy of the feedback approximation is better than one percent. The result validates the zero order FSP approximation for medium range air combat analysis.

  10. Feedback interventions and driving speed: A parametric and comparative analysis

    PubMed Central

    Houten, Ron Van; Nau, Paul A.

    1983-01-01

    Five experiments were conducted to assess the effects of several variables on the efficacy of feedback in reducing driving speed. Experiment 1 systematically varied the criterion used to define speeding, and results showed that the use of a lenient criterion (20 km/hr over the speed limit), which allowed for the posting of high percentages of drivers not speeding, was more effective in reducing speeding than the use of a stringent criterion (10 km/hr over the speed limit). In Experiment 2 an analysis revealed that posting feedback reduced speeding on a limited access highway and the effects persisted to some degree up to 6 km. Experiments 3 and 4 compared the effectiveness of an unmanned parked police vehicle (Experiment 3) and a police air patrol speeding program (Experiment 4) with the feedback sign and determined whether the presence of either of these enforcement variables could potentiate the efficacy of the sign. The results of both experiments demonstrated that although the two enforcement programs initially produced larger effects than the feedback sign, the magnitude of their effect attenuated over time. Experiment 5 compared the effectiveness of a traditional enforcement program with a warning program which included handing out a flier providing feedback on the number and types of accidents occuring on the road during the past year. This experiment demonstrated that the warning program produced a marked reduction in speeding and the traditional enforcement program did not. Furthermore, the warning program and a feedback sign together produced an even greater reduction in speeding than either alone. PMID:16795666

  11. The consecutive dry days to trigger rainfall over West Africa

    NASA Astrophysics Data System (ADS)

    Lee, J. H.

    2018-01-01

    In order to resolve contradictions in addressing a soil moisture-precipitation feedback mechanism over West Africa and to clarify the impact of antecedent soil moisture on subsequent rainfall evolution, we first validated various data sets (SMOS satellite soil moisture observations, NOAH land surface model, TRMM rainfall, CMORPH rainfall and HadGEM climate models) with the Analyses Multidisciplinaires de la Mousson Africaine (AMMA) field campaign data. Based on this analysis, it was suggested that biases of data sets might cause contradictions in studying mechanisms. Thus, by taking into account uncertainties in data, it was found that the approach of consecutive dry days (i.e. a relative comparison of time-series) showed consistency across various data sets, while the direct comparison approach for soil moisture state and rainfall did not. Thus, it was discussed that it may be difficult to directly relate rain with soil moisture as the absolute value, however, it may be reasonable to compare a temporal progress of the variables. Based upon the results consistently showing a positive relationship between the consecutive dry days and rainfall, this study supports a negative feedback often neglected by climate model structure. This approach is less sensitive to interpretation errors arising from systematic errors in data sets, as this measures a temporal gradient of soil moisture state.

  12. Causes of Long-Term Drought in the United States Great Plains

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried D.; Suarez, Max J.; Pegion, Philip J.; Koster, Randal D.; Bacmeister, Julio T.

    2003-01-01

    This study examines the causes of long term droughts in the United States Great Plains (USGP). The focus is on the relative roles of slowly varying SSTs and interactions with soil moisture. The results from ensembles of long term (1930-1999) simulations carried out with the NASA Seasonal-to- Interannual Prediction Project (NSIPP-1) atmospheric general circulation model (AGCM) show that the SSTs account for about 1/3 of the total low frequency rainfall variance in the USGP. Results from idealized experiments with climatological SST suggest that the remaining low frequency variance in the USGP precipitation is the result of interactions with soil moisture. In particular, simulations with soil moisture feedback show a five-fold increase in the variance in annual USGP precipitation compared with simulations in which the soil feedback is excluded. In addition to increasing variance, the interactions with the soil introduce year-to-year memory in the hydrological cycle that is consistent with a red noise process, in which the deep soil is forced by white noise and damped with a time scale of about 2 years. As such, the role of low frequency SST variability is to introduce a bias to the net forcing on the soil moisture that drives the random process preferentially to either wet or dry conditions.

  13. Discrete-Time Mapping for an Impulsive Goodwin Oscillator with Three Delays

    NASA Astrophysics Data System (ADS)

    Churilov, Alexander N.; Medvedev, Alexander; Zhusubaliyev, Zhanybai T.

    A popular biomathematics model of the Goodwin oscillator has been previously generalized to a more biologically plausible construct by introducing three time delays to portray the transport phenomena arising due to the spatial distribution of the model states. The present paper addresses a similar conversion of an impulsive version of the Goodwin oscillator that has found application in mathematical modeling, e.g. in endocrine systems with pulsatile hormone secretion. While the cascade structure of the linear continuous part pertinent to the Goodwin oscillator is preserved in the impulsive Goodwin oscillator, the static nonlinear feedback of the former is substituted with a pulse modulation mechanism thus resulting in hybrid dynamics of the closed-loop system. To facilitate the analysis of the mathematical model under investigation, a discrete mapping propagating the continuous state variables through the firing times of the impulsive feedback is derived. Due to the presence of multiple time delays in the considered model, previously developed mapping derivation approaches are not applicable here and a novel technique is proposed and applied. The mapping captures the dynamics of the original hybrid system and is instrumental in studying complex nonlinear phenomena arising in the impulsive Goodwin oscillator. A simulation example is presented to demonstrate the utility of the proposed approach in bifurcation analysis.

  14. Variable-Structure Control of a Model Glider Airplane

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Anderson, Mark R.

    2008-01-01

    A variable-structure control system designed to enable a fuselage-heavy airplane to recover from spin has been demonstrated in a hand-launched, instrumented model glider airplane. Variable-structure control is a high-speed switching feedback control technique that has been developed for control of nonlinear dynamic systems.

  15. Reinforcement Sensitivity and Responsiveness to Performance Feedback: A Preliminary Investigation

    ERIC Educational Resources Information Center

    Lovett, Benjamin J.; Eckert, Tanya L.

    2009-01-01

    Variability in responsiveness to academic interventions is a common phenomenon in school psychology practice, but the variables associated with this responsiveness are not well understood. Reinforcement sensitivity, a generalized tendency to learn quickly in reward contingency situations, is one variable for increased understanding. In the present…

  16. Dynamics of gene expression with positive feedback to histone modifications at bivalent domains

    NASA Astrophysics Data System (ADS)

    Huang, Rongsheng; Lei, Jinzhi

    2018-03-01

    Experiments have shown that in embryonic stem cells, the promoters of many lineage-control genes contain “bivalent domains”, within which the nucleosomes possess both active (H3K4me3) and repressive (H3K27me3) marks. Such bivalent modifications play important roles in maintaining pluripotency in embryonic stem cells. Here, to investigate gene expression dynamics when there are regulations in bivalent histone modifications and random partition in cell divisions, we study how positive feedback to histone methylation/demethylation controls the transition dynamics of the histone modification patterns along with cell cycles. We constructed a computational model that includes dynamics of histone marks, three-stage chromatin state transitions, transcription and translation, feedbacks from protein product to enzymes to regulate the addition and removal of histone marks, and the inheritance of nucleosome state between cell cycles. The model reveals how dynamics of both nucleosome state transition and gene expression are dependent on the enzyme activities and feedback regulations. Results show that the combination of stochastic histone modification at each cell division and the deterministic feedback regulation work together to adjust the dynamics of chromatin state transition in stem cell regenerations.

  17. A Feedback Intervention to Increase Digital and Paper Checklist Performance in Technically Advanced Aircraft Simulation

    ERIC Educational Resources Information Center

    Rantz, William G.; Van Houten, Ron

    2011-01-01

    This study examined whether pilots operating a flight simulator completed digital or paper flight checklists more accurately after receiving postflight graphic and verbal feedback. The dependent variable was the number of checklist items completed correctly per flight. Following treatment, checklist completion with paper and digital checklists…

  18. Upward Feedback and Its Contribution to Employees' Feeling of Self-Determination

    ERIC Educational Resources Information Center

    Bauer, Johannes; Mulder, Regina H.

    2006-01-01

    Purpose--The paper seeks to show that self-determination is a widely regarded motivational variable in educational research that relates to intrinsically motivated, self-directed learning at work. This study aimed to find out whether the possibility to provide upward feedback to supervisors contributes to employees' feelings of self-determination.…

  19. Team Creativity: The Effects of Perceived Learning Culture, Developmental Feedback and Team Cohesion

    ERIC Educational Resources Information Center

    Joo, Baek-Kyoo; Song, Ji Hoon; Lim, Doo Hun; Yoon, Seung Won

    2012-01-01

    This study investigates the influence of perceived learning culture, developmental feedback and team cohesion on team creativity. The results showed that the demographic variables, the three antecedents and their interactions explained 41 per cent of variance in team creativity. Team creativity was positively correlated with a higher level of…

  20. Effects of OCR Errors on Ranking and Feedback Using the Vector Space Model.

    ERIC Educational Resources Information Center

    Taghva, Kazem; And Others

    1996-01-01

    Reports on the performance of the vector space model in the presence of OCR (optical character recognition) errors in information retrieval. Highlights include precision and recall, a full-text test collection, smart vector representation, impact of weighting parameters, ranking variability, and the effect of relevance feedback. (Author/LRW)

  1. State-Dependent Riccati Equation Regulation of Systems with State and Control Nonlinearities

    NASA Technical Reports Server (NTRS)

    Beeler, Scott C.; Cox, David E. (Technical Monitor)

    2004-01-01

    The state-dependent Riccati equations (SDRE) is the basis of a technique for suboptimal feedback control of a nonlinear quadratic regulator (NQR) problem. It is an extension of the Riccati equation used for feedback control of linear problems, with the addition of nonlinearities in the state dynamics of the system resulting in a state-dependent gain matrix as the solution of the equation. In this paper several variations on the SDRE-based method will be considered for the feedback control problem with control nonlinearities. The control nonlinearities may result in complications in the numerical implementation of the control, which the different versions of the SDRE method must try to overcome. The control methods will be applied to three test problems and their resulting performance analyzed.

  2. Nonlinear Feedback Controllers and Compensators: A State-Dependent Riccati Equation Approach

    DTIC Science & Technology

    2003-01-01

    Nonlinear Feedback Controllers and Compensators: A State-Dependent Riccati Equation Approach H. T. Banks∗ B. M. Lewis † H. T. Tran‡ Department of...Mathematics Center for Research in Scientific Computation North Carolina State University Raleigh, NC 27695 Abstract State-dependent Riccati equation ...estimating the solution of the Hamilton- Jacobi-Bellman (HJB) equation can be found in a comprehensive review article [5]. Each of these ∗htbanks

  3. Salinity anomaly as a trigger for ENSO events

    PubMed Central

    Zhu, Jieshun; Huang, Bohua; Zhang, Rong-Hua; Hu, Zeng-Zhen; Kumar, Arun; Balmaseda, Magdalena A.; Marx, Lawrence; Kinter III, James L.

    2014-01-01

    According to the classical theories of ENSO, subsurface anomalies in ocean thermal structure are precursors for ENSO events and their initial specification is essential for skillful ENSO forecast. Although ocean salinity in the tropical Pacific (particularly in the western Pacific warm pool) can vary in response to El Niño events, its effect on ENSO evolution and forecasts of ENSO has been less explored. Here we present evidence that, in addition to the passive response, salinity variability may also play an active role in ENSO evolution, and thus important in forecasting El Niño events. By comparing two forecast experiments in which the interannually variability of salinity in the ocean initial states is either included or excluded, the salinity variability is shown to be essential to correctly forecast the 2007/08 La Niña starting from April 2007. With realistic salinity initial states, the tendency to decay of the subsurface cold condition during the spring and early summer 2007 was interrupted by positive salinity anomalies in the upper central Pacific, which working together with the Bjerknes positive feedback, contributed to the development of the La Niña event. Our study suggests that ENSO forecasts will benefit from more accurate salinity observations with large-scale spatial coverage. PMID:25352285

  4. Salinity anomaly as a trigger for ENSO events.

    PubMed

    Zhu, Jieshun; Huang, Bohua; Zhang, Rong-Hua; Hu, Zeng-Zhen; Kumar, Arun; Balmaseda, Magdalena A; Marx, Lawrence; Kinter, James L

    2014-10-29

    According to the classical theories of ENSO, subsurface anomalies in ocean thermal structure are precursors for ENSO events and their initial specification is essential for skillful ENSO forecast. Although ocean salinity in the tropical Pacific (particularly in the western Pacific warm pool) can vary in response to El Niño events, its effect on ENSO evolution and forecasts of ENSO has been less explored. Here we present evidence that, in addition to the passive response, salinity variability may also play an active role in ENSO evolution, and thus important in forecasting El Niño events. By comparing two forecast experiments in which the interannually variability of salinity in the ocean initial states is either included or excluded, the salinity variability is shown to be essential to correctly forecast the 2007/08 La Niña starting from April 2007. With realistic salinity initial states, the tendency to decay of the subsurface cold condition during the spring and early summer 2007 was interrupted by positive salinity anomalies in the upper central Pacific, which working together with the Bjerknes positive feedback, contributed to the development of the La Niña event. Our study suggests that ENSO forecasts will benefit from more accurate salinity observations with large-scale spatial coverage.

  5. Psychophysiological Control of Acognitive Task Using Adaptive Automation

    NASA Technical Reports Server (NTRS)

    Freeman, Frederick; Pope, Alan T. (Technical Monitor)

    2001-01-01

    The major focus of the present proposal was to examine psychophysiological variables related to hazardous states of awareness induced by monitoring automated systems. With the increased use of automation in today's work environment, people's roles in the work place are being redefined from that of active participant to one of passive monitor. Although the introduction of automated systems has a number of benefits, there are also a number of disadvantages regarding worker performance. Byrne and Parasuraman have argued for the use of psychophysiological measures in the development and the implementation of adaptive automation. While both performance based and model based adaptive automation have been studied, the use of psychophysiological measures, especially EEG, offers the advantage of real time evaluation of the state of the subject. The current study used the closed-loop system, developed at NASA-Langley Research Center, to control the state of awareness of subjects while they performed a cognitive vigilance task. Previous research in our laboratory, supported by NASA, has demonstrated that, in an adaptive automation, closed-loop environment, subjects perform a tracking task better under a negative than a positive, feedback condition. In addition, this condition produces less subjective workload and larger P300 event related potentials to auditory stimuli presented in a concurrent oddball task. We have also recently shown that the closed-loop system used to control the level of automation in a tracking task can also be used to control the event rate of stimuli in a vigilance monitoring task. By changing the event rate based on the subject's index of arousal, we have been able to produce improved monitoring, relative to various control groups. We have demonstrated in our initial closed-loop experiments with the the vigilance paradigm that using a negative feedback contingency (i.e. increasing event rates when the EEG index is low and decreasing event rates when the EEG index is high) results in a marked decrease of the vigilance decrement over a 40 minute session. This effect is in direct contrast to performance of a positive feedback group, as well as a number of other control groups which demonstrated the typical vigilance decrement. Interestingly, however, the negative feedback group performed at virtually the same level as a yoked control group. The yoked control group received the same order of changes in event rate that were generated by the negative feedback subjects using the closed-loop system. Thus it would appear to be possible to optimize vigilance performance by controlling the stimuli which subjects are asked to process.

  6. Concepts of scientific integrative medicine applied to the physiology and pathophysiology of catecholamine systems.

    PubMed

    Goldstein, David S

    2013-10-01

    This review presents concepts of scientific integrative medicine and relates them to the physiology of catecholamine systems and to the pathophysiology of catecholamine-related disorders. The applications to catecholamine systems exemplify how scientific integrative medicine links systems biology with integrative physiology. Concepts of scientific integrative medicine include (i) negative feedback regulation, maintaining stability of the body's monitored variables; (ii) homeostats, which compare information about monitored variables with algorithms for responding; (iii) multiple effectors, enabling compensatory activation of alternative effectors and primitive specificity of stress response patterns; (iv) effector sharing, accounting for interactions among homeostats and phenomena such as hyperglycemia attending gastrointestinal bleeding and hyponatremia attending congestive heart failure; (v) stress, applying a definition as a state rather than as an environmental stimulus or stereotyped response; (vi) distress, using a noncircular definition that does not presume pathology; (vii) allostasis, corresponding to adaptive plasticity of feedback-regulated systems; and (viii) allostatic load, explaining chronic degenerative diseases in terms of effects of cumulative wear and tear. From computer models one can predict mathematically the effects of stress and allostatic load on the transition from wellness to symptomatic disease. The review describes acute and chronic clinical disorders involving catecholamine systems-especially Parkinson disease-and how these concepts relate to pathophysiology, early detection, and treatment and prevention strategies in the post-genome era. Published 2013. Compr Physiol 3:1569-1610, 2013.

  7. Ultrafast outflows disappear in high-radiation fields

    NASA Astrophysics Data System (ADS)

    Pinto, C.; Alston, W.; Parker, M. L.; Fabian, A. C.; Gallo, L. C.; Buisson, D. J. K.; Walton, D. J.; Kara, E.; Jiang, J.; Lohfink, A.; Reynolds, C. S.

    2018-05-01

    Ultrafast outflows (UFOs) are the most extreme winds launched by active galactic nuclei (AGN) due to their mildly relativistic speeds (˜0.1-0.3c) and are thought to significantly contribute to galactic evolution via AGN feedback. Their nature and launching mechanism are however not well understood. Recently, we have discovered the presence of a variable UFO in the narrow-line Seyfert 1 IRAS 13224-3809. The UFO varies in response to the brightness of the source. In this work we perform flux-resolved X-ray spectroscopy to study the variability of the UFO and found that the ionization parameter is correlated with the luminosity. In the brightest states the gas is almost completely ionized by the powerful radiation field and the UFO is hardly detected. This agrees with our recent results obtained with principal component analysis. We might have found the tip of the iceberg: the high ionization of the outflowing gas may explain why it is commonly difficult to detect UFOs in AGN and possibly suggest that we may underestimate their actual feedback. We have also found a tentative correlation between the outflow velocity and the luminosity, which is expected from theoretical predictions of radiation-pressure-driven winds. This trend is rather marginal due to the Fe XXV-XXVI degeneracy. Further work is needed to break such degeneracy through time-resolved spectroscopy.

  8. Concepts of Scientific Integrative Medicine Applied to the Physiology and Pathophysiology of Catecholamine Systems

    PubMed Central

    Goldstein, David S.

    2016-01-01

    This review presents concepts of scientific integrative medicine and relates them to the physiology of catecholamine systems and to the pathophysiology of catecholamine-related disorders. The applications to catecholamine systems exemplify how scientific integrative medicine links systems biology with integrative physiology. Concepts of scientific integrative medicine include (i) negative feedback regulation, maintaining stability of the body’s monitored variables; (ii) homeostats, which compare information about monitored variables with algorithms for responding; (iii) multiple effectors, enabling compensatory activation of alternative effectors and primitive specificity of stress response patterns; (iv) effector sharing, accounting for interactions among homeostats and phenomena such as hyperglycemia attending gastrointestinal bleeding and hyponatremia attending congestive heart failure; (v) stress, applying a definition as a state rather than as an environmental stimulus or stereotyped response; (vi) distress, using a noncircular definition that does not presume pathology; (vii) allostasis, corresponding to adaptive plasticity of feedback-regulated systems; and (viii) allostatic load, explaining chronic degenerative diseases in terms of effects of cumulative wear and tear. From computer models one can predict mathematically the effects of stress and allostatic load on the transition from wellness to symptomatic disease. The review describes acute and chronic clinical disorders involving catecholamine systems—especially Parkinson disease—and how these concepts relate to pathophysiology, early detection, and treatment and prevention strategies in the post-genome era. PMID:24265239

  9. Software feedback for monochromator tuning at UNICAT (abstract)

    NASA Astrophysics Data System (ADS)

    Jemian, Pete R.

    2002-03-01

    Automatic tuning of double-crystal monochromators presents an interesting challenge in software. The goal is to either maximize, or hold constant, the throughput of the monochromator. An additional goal of the software feedback is to disable itself when there is no beam and then, at the user's discretion, re-enable itself when the beam returns. These and other routine goals, such as adherence to limits of travel for positioners, are maintained by software controls. Many solutions exist to lock in and maintain a fixed throughput. Among these include a hardware solution involving a wave form generator, and a lock-in amplifier to autocorrelate the movement of a piezoelectric transducer (PZT) providing fine adjustment of the second crystal Bragg angle. This solution does not work when the positioner is a slow acting device such as a stepping motor. Proportional integral differential (PID) loops have been used to provide feedback through software but additional controls must be provided to maximize the monochromator throughput. Presented here is a software variation of the PID loop which meets the above goals. By using two floating point variables as inputs, representing the intensity of x rays measured before and after the monochromator, it attempts to maximize (or hold constant) the ratio of these two inputs by adjusting an output floating point variable. These floating point variables are connected to hardware channels corresponding to detectors and positioners. When the inputs go out of range, the software will stop making adjustments to the control output. Not limited to monochromator feedback, the software could be used, with beam steering positioners, to maintain a measure of beam position. Advantages of this software feedback are the flexibility of its various components. It has been used with stepping motors and PZTs as positioners. Various devices such as ion chambers, scintillation counters, photodiodes, and photoelectron collectors have been used as detectors. The software provides significant cost savings over hardware feedback methods. Presently implemented in EPICS, the software is sufficiently general to any automated instrument control system.

  10. Arctic sea ice trends, variability and implications for seasonal ice forecasting

    PubMed Central

    Serreze, Mark C.; Stroeve, Julienne

    2015-01-01

    September Arctic sea ice extent over the period of satellite observations has a strong downward trend, accompanied by pronounced interannual variability with a detrended 1 year lag autocorrelation of essentially zero. We argue that through a combination of thinning and associated processes related to a warming climate (a stronger albedo feedback, a longer melt season, the lack of especially cold winters) the downward trend itself is steepening. The lack of autocorrelation manifests both the inherent large variability in summer atmospheric circulation patterns and that oceanic heat loss in winter acts as a negative (stabilizing) feedback, albeit insufficient to counter the steepening trend. These findings have implications for seasonal ice forecasting. In particular, while advances in observing sea ice thickness and assimilating thickness into coupled forecast systems have improved forecast skill, there remains an inherent limit to predictability owing to the largely chaotic nature of atmospheric variability. PMID:26032315

  11. Analysis of Water Conflicts across Natural and Societal Boundaries: Integration of Quantitative Modeling and Qualitative Reasoning

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Balaram, P.; Islam, S.

    2009-12-01

    Water issues and problems have bewildered humankind for a long time yet a systematic approach for understanding such issues remain elusive. This is partly because many water-related problems are framed from a contested terrain in which many actors (individuals, communities, businesses, NGOs, states, and countries) compete to protect their own and often conflicting interests. We argue that origin of many water problems may be understood as a dynamic consequence of competition, interconnections, and feedback among variables in the Natural and Societal Systems (NSSs). Within the natural system, we recognize that triple constraints on water- water quantity (Q), water quality (P), and ecosystem (E)- and their interdependencies and feedback may lead to conflicts. Such inherent and multifaceted constraints of the natural water system are exacerbated often at the societal boundaries. Within the societal system, interdependencies and feedback among values and norms (V), economy (C), and governance (G) interact in various ways to create intractable contextual differences. The observation that natural and societal systems are linked is not novel. Our argument here, however, is that rigid disciplinary boundaries between these two domains will not produce solutions to the water problems we are facing today. The knowledge needed to address water problems need to go beyond scientific assessment in which societal variables (C, G, and V) are treated as exogenous or largely ignored, and policy research that does not consider the impact of natural variables (E, P, and Q) and that coupling among them. Consequently, traditional quantitative methods alone are not appropriate to address the dynamics of water conflicts, because we cannot quantify the societal variables and the exact mathematical relationships among the variables are not fully known. On the other hand, conventional qualitative study in societal domain has mainly been in the form of individual case studies and therefore, the knowledge generated from these studies cannot be easily generalized or transferred to other basins. Here, we present an approach to integrate the quantitative and qualitative methods to study water issues and capture the contextual knowledge of water management- by combining the NSSs framework and an area of artificial intelligence called qualitative reasoning. Using the Apalachicola-Chattahoochee-Flint (ACF) River Basin dispute as an example, we demonstrate how quantitative modeling and qualitative reasoning can be integrated to examine the impact of over abstraction of water from the river on the ecosystem and the role of governance in shaping the evolution of the ACF water dispute.

  12. First Results of the Land Atmosphere Feedback Experiment

    NASA Astrophysics Data System (ADS)

    Wulfmeyer, V.; Turner, D. D.

    2017-12-01

    The Land-Atmosphere Feedback Experiment (LAFE) deployed several state-of-the-art scanning lidar and remote sensing systems to the ARM SGP site during August 2017. A novel synergy of remote sensing systems was applied for simultaneous measurements of land-surface fluxes and horizontal and vertical transport processes in the atmospheric boundary layer (ABL). The impact of spatial inhomogeneities of the soil-vegetation continuum on LA feedback was studied using the scanning capability of the instrumentation as well as soil, vegetation, and surface flux measurements. The synergy of remote sensing and in-situ instruments consisted of three components: 1) The SGP water-vapor and temperature Raman lidar, the SGP Doppler lidar, the University of Hohenheim (UHOH) Doppler lidar, and the NCAR water-vapor DIAL to measure mean profiles and gradients of moisture, temperature, and horizontal wind. Due to their high vertical and temporal resolutions, also profiles of higher-order turbulent moments in the water vapor and wind fields as well as of profiles of the latent heat flux, the sensible heat flux, TKE, and momentum flux were observed. 2) A novel scanning lidar system synergy consisting of the NOAA High-Resolution Doppler lidar, the UHOH water-vapor differential absorption lidar, and the UHOH temperature rotational Raman lidar. These systems performed coordinated range-height indicator (RHI) scans from just above the canopy level to the lower troposphere including the interfacial layer at the ABL top. This component was augmented by three energy balance closure towers of NOAA and one EBC station of UHOH. 3) The University of Wisconsin SPARC and the University of Oklahoma CLAMPS systems operating two vertically pointing atmospheric emitted radiance interferometers and two Doppler lidar systems scanning cross track to the central RHI for determining the surface friction velocity and the horizontal variability of temperature, moisture, and wind. NOAA ARL also provided UAS and aircraft measurements (Navajo Piper) in accordance with the surface scans. Thus, both the variability of surface fluxes and CBL dynamics and thermodynamics over the SGP site was studied for the first time. This is essential for advanced observation and understanding of LA feedback. First results are presented at the conference.

  13. Greenland ice sheet albedo variability and feedback: 2000-2015

    NASA Astrophysics Data System (ADS)

    Box, J. E.; van As, D.; Fausto, R. S.; Mottram, R.; Langen, P. P.; Steffen, K.

    2015-12-01

    Absorbed solar irradiance represents the dominant source of surface melt energy for Greenland ice. Surface melting has increased as part of a positive feedback amplifier due to surface darkening. The 16 most recent summers of observations from the NASA MODIS sensor indicate a darkening exceeding 6% in July when most melting occurs. Without the darkening, the increase in surface melting would be roughly half as large. A minority of the albedo decline signal may be from sensor degradation. So, in this study, MOD10A1 and MCD43 albedo products from MODIS are evaluated for sensor degradation and anisotropic reflectance errors. Errors are minimized through calibration to GC-Net and PROMICE Greenland snow and ice ground control data. The seasonal and spatial variability in Greenland snow and ice albedo over a 16 year period is presented, including quantifying changing absorbed solar irradiance and melt enhancement due to albedo feedback using the DMI HIRHAM5 5 km model.

  14. An exact algebraic solution of the infimum in H-infinity optimization with output feedback

    NASA Technical Reports Server (NTRS)

    Chen, Ben M.; Saberi, Ali; Ly, Uy-Loi

    1991-01-01

    This paper presents a simple and noniterative procedure for the computation of the exact value of the infimum in the standard H-infinity-optimal control with output feedback. The problem formulation is general and does not place any restrictions on the direct feedthrough terms between the control input and the controlled output variables, and between the disturbance input and the measurement output variables. The method is applicable to systems that satisfy (1) the transfer function from the control input to the controlled output is right-invertible and has no invariant zeros on the j(w) axis and, (2) the transfer function from the disturbance to the measurement output is left-invertible and has no invariant zeros on the j(w) axis. A set of necessary and sufficient conditions for the solvability of H-infinity-almost disturbance decoupling problem via measurement feedback with internal stability is also given.

  15. Arctic Sea Ice: Trends, Stability and Variability

    NASA Astrophysics Data System (ADS)

    Moon, Woosok

    A stochastic Arctic sea-ice model is derived and analyzed in detail to interpret the recent decay and associated variability of Arctic sea-ice under changes in greenhouse gas forcing widely referred to as global warming. The approach begins from a deterministic model of the heat flux balance through the air/sea/ice system, which uses observed monthly-averaged heat fluxes to drive a time evolution of sea-ice thickness. This model reproduces the observed seasonal cycle of the ice cover and it is to this that stochastic noise---representing high frequency variability---is introduced. The model takes the form of a single periodic non-autonomous stochastic ordinary differential equation. Following an introductory chapter, the two that follow focus principally on the properties of the deterministic model in order to identify the main properties governing the stability of the ice cover. In chapter 2 the underlying time-dependent solutions to the deterministic model are analyzed for their stability. It is found that the response time-scale of the system to perturbations is dominated by the destabilizing sea-ice albedo feedback, which is operative in the summer, and the stabilizing long wave radiative cooling of the ice surface, which is operative in the winter. This basic competition is found throughout the thesis to define the governing dynamics of the system. In particular, as greenhouse gas forcing increases, the sea-ice albedo feedback becomes more effective at destabilizing the system. Thus, any projections of the future state of Arctic sea-ice will depend sensitively on the treatment of the ice-albedo feedback. This in turn implies that the treatment a fractional ice cover as the ice areal extent changes rapidly, must be handled with the utmost care. In chapter 3, the idea of a two-season model, with just winter and summer, is revisited. By breaking the seasonal cycle up in this manner one can simplify the interpretation of the basic dynamics. Whereas in the fully time-dependent seasonal model one finds stable seasonal ice cover (vanishing in the summer but reappearing in the winter), in previous two-season models such a state could not be found. In this chapter the sufficient conditions are found for a stable seasonal ice cover, which reside in including a time variation in the shortwave radiance during summer. This provides a qualitative interpretation of the continuous and reversible shift from perennial to seasonally-varying states in the more complex deterministic model. In order to put the stochastic model into a realistic observational framework, in chapter 4, the analysis of daily satellite retrievals of ice albedo and ice extent is described. Both the basic statistics are examined and a new method, called multi-fractal temporally weighted detrended fluctuation analysis, is applied. Because the basic data are taken on daily time scales, the full fidelity of the retrieved data is accessed and we find time scales from days and weeks to seasonal and decadal. Importantly, the data show a white-noise structure on annual to biannual time scales and this provides the basis for using a Wiener process for the noise in the stochastic Arctic sea-ice model. In chapter 5 a generalized perturbation analysis of a non-autonomous stochastic differential equation is developed and then applied to interpreting the variability of Arctic sea-ice as greenhouse gas forcing increases. The resulting analytic expressions of the statistical moments provide insight into the transient and memory-delay effects associated with the basic competition in the system: the ice-albedo feedback and long wave radiative stabilization along with the asymmetry in the nonlinearity of the deterministic contributions to the model and the magnitude and structure of the stochastic noise. A systematic study of the impact of the noise structure, from additive to multiplicative, is undertaken in chapters 6 and 7. Finally, in chapter 8 the matter of including a fractional ice cover into a deterministic model is addressed. It is found that a simple but crucial mistake is made in one of the most widely used model schemes and this has a major impact given the important role of areal fraction in the ice-albedo feedback in such a model. The thesis is summarized in chapter 9.

  16. Output transformations and separation results for feedback linearisable delay systems

    NASA Astrophysics Data System (ADS)

    Cacace, F.; Conte, F.; Germani, A.

    2018-04-01

    The class of strict-feedback systems enjoys special properties that make it similar to linear systems. This paper proves that such a class is equivalent, under a change of coordinates, to the wider class of feedback linearisable systems with multiplicative input, when the multiplicative terms are functions of the measured variables only. We apply this result to the control problem of feedback linearisable nonlinear MIMO systems with input and/or output delays. In this way, we provide sufficient conditions under which a separation result holds for output feedback control and moreover a predictor-based controller exists. When these conditions are satisfied, we obtain that the existence of stabilising controllers for arbitrarily large delays in the input and/or the output can be proved for a wider class of systems than previously known.

  17. Geometric foundations of the theory of feedback equivalence

    NASA Technical Reports Server (NTRS)

    Hermann, R.

    1987-01-01

    A description of feedback control is presented within the context of differential equations, differential geometry, and Lie theory. Work related to the integration of differential geometry with the control techniques of feedback linearization is summarized. Particular attention is given to the application of the theory of vector field systems. Feedback invariants for control systems in state space form are also addressed.

  18. Theoretical modeling of the dynamics of a semiconductor laser subject to double-reflector optical feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakry, A.; Abdulrhmann, S.; Ahmed, M., E-mail: mostafa.farghal@mu.edu.eg

    2016-06-15

    We theoretically model the dynamics of semiconductor lasers subject to the double-reflector feedback. The proposed model is a new modification of the time-delay rate equations of semiconductor lasers under the optical feedback to account for this type of the double-reflector feedback. We examine the influence of adding the second reflector to dynamical states induced by the single-reflector feedback: periodic oscillations, period doubling, and chaos. Regimes of both short and long external cavities are considered. The present analyses are done using the bifurcation diagram, temporal trajectory, phase portrait, and fast Fourier transform of the laser intensity. We show that adding themore » second reflector attracts the periodic and perioddoubling oscillations, and chaos induced by the first reflector to a route-to-continuous-wave operation. During this operation, the periodic-oscillation frequency increases with strengthening the optical feedback. We show that the chaos induced by the double-reflector feedback is more irregular than that induced by the single-reflector feedback. The power spectrum of this chaos state does not reflect information on the geometry of the optical system, which then has potential for use in chaotic (secure) optical data encryption.« less

  19. Negative plant-phyllosphere feedbacks in native Asteraceae hosts - a novel extension of the plant-soil feedback framework.

    PubMed

    Whitaker, Briana K; Bauer, Jonathan T; Bever, James D; Clay, Keith

    2017-08-01

    Over the past 25 years, the plant-soil feedback (PSF) framework has catalyzed our understanding of how belowground microbiota impact plant fitness and species coexistence. Here, we apply a novel extension of this framework to microbiota associated with aboveground tissues, termed 'plant-phyllosphere feedback (PPFs)'. In parallel greenhouse experiments, rhizosphere and phyllosphere microbiota of con- and heterospecific hosts from four species were independently manipulated. In a third experiment, we tested the combined effects of soil and phyllosphere feedback under field conditions. We found that three of four species experienced weak negative PSF whereas, in contrast, all four species experienced strong negative PPFs. Field-based feedback estimates were highly negative for all four species, though variable in magnitude. Our results suggest that phyllosphere microbiota, like rhizosphere microbiota, can potentially mediate plant species coexistence via negative feedbacks. Extension of the PSF framework to the phyllosphere is needed to more fully elucidate plant-microbiota interactions. © 2017 John Wiley & Sons Ltd/CNRS.

  20. Global stabilization analysis of inertial memristive recurrent neural networks with discrete and distributed delays.

    PubMed

    Wang, Leimin; Zeng, Zhigang; Ge, Ming-Feng; Hu, Junhao

    2018-05-02

    This paper deals with the stabilization problem of memristive recurrent neural networks with inertial items, discrete delays, bounded and unbounded distributed delays. First, for inertial memristive recurrent neural networks (IMRNNs) with second-order derivatives of states, an appropriate variable substitution method is invoked to transfer IMRNNs into a first-order differential form. Then, based on nonsmooth analysis theory, several algebraic criteria are established for the global stabilizability of IMRNNs under proposed feedback control, where the cases with both bounded and unbounded distributed delays are successfully addressed. Finally, the theoretical results are illustrated via the numerical simulations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. The Influence of Sea Ice on Arctic Low Cloud Properties and Radiative Effects

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick C.

    2015-01-01

    The Arctic is one of the most climatically sensitive regions of the Earth. Climate models robustly project the Arctic to warm 2-3 times faster than the global mean surface temperature, termed polar warming amplification (PWA), but also display the widest range of surface temperature projections in this region. The response of the Arctic to increased CO2 modulates the response in tropical and extra-tropical regions through teleconnections in the atmospheric circulation. An increased frequency of extreme precipitation events in the northern mid-latitudes, for example, has been linked to the change in the background equator-to-pole temperature gradient implied by PWA. Understanding the Arctic climate system is therefore important for predicting global climate change. The ice albedo feedback is the primary mechanism driving PWA, however cloud and dynamical feedbacks significantly contribute. These feedback mechanisms, however, do not operate independently. How do clouds respond to variations in sea ice? This critical question is addressed by combining sea ice, cloud, and radiation observations from satellites, including CERES, CloudSAT, CALIPSO, MODIS, and microwave radiometers, to investigate sea ice-cloud interactions at the interannual timescale in the Arctic. Cloud characteristics are strongly tied to the atmospheric dynamic and thermodynamic state. Therefore, the sensitivity of Arctic cloud characteristics, vertical distribution and optical properties, to sea ice anomalies is computed within atmospheric dynamic and thermodynamic regimes. Results indicate that the cloud response to changes in sea ice concentration differs significantly between atmospheric state regimes. This suggests that (1) the atmospheric dynamic and thermodynamic characteristics and (2) the characteristics of the marginal ice zone are important for determining the seasonal forcing by cloud on sea ice variability.

  2. Robust decentralised stabilisation of uncertain large-scale interconnected nonlinear descriptor systems via proportional plus derivative feedback

    NASA Astrophysics Data System (ADS)

    Li, Jian; Zhang, Qingling; Ren, Junchao; Zhang, Yanhao

    2017-10-01

    This paper studies the problem of robust stability and stabilisation for uncertain large-scale interconnected nonlinear descriptor systems via proportional plus derivative state feedback or proportional plus derivative output feedback. The basic idea of this work is to use the well-known differential mean value theorem to deal with the nonlinear model such that the considered nonlinear descriptor systems can be transformed into linear parameter varying systems. By using a parameter-dependent Lyapunov function, a decentralised proportional plus derivative state feedback controller and decentralised proportional plus derivative output feedback controller are designed, respectively such that the closed-loop system is quadratically normal and quadratically stable. Finally, a hypersonic vehicle practical simulation example and numerical example are given to illustrate the effectiveness of the results obtained in this paper.

  3. CSMP (Continuous System Modeling Program) modeling of brushless DC motors

    NASA Astrophysics Data System (ADS)

    Thomas, S. M.

    1984-09-01

    Recent improvements in rare earth magnets have made it possible to construct strong, lightweight, high horsepower DC motors. This has occasioned a reassessment of electromechanical actuators as alternatives to comparable pneumatic and hydraulic systems for use in flight control actuators for tactical missiles. This thesis develops a low-order mathematical model for the simulation and analysis of brushless DC motor performance. This model is implemented in CSMP language. It is used to predict such motor performance curves as speed, current and power versus torque. Electronic commutation based on Hall effect sensor positional feedback is simulated. Steady state motor behavior is studied under both constant and variable air gap flux conditions. The variable flux takes two different forms. In the first case, the flux is varied as a simple sinusoid. In the second case, the flux is varied as the sum of a sinusoid and one of its harmonics.

  4. A planar comparison of actuators for vibration control of flexible structures

    NASA Technical Reports Server (NTRS)

    Clark, William W.; Robertshaw, Harry H.; Warrington, Thomas J.

    1989-01-01

    The methods and results of an analytical study comparing the effectiveness of four actuators in damping the vibrations of a planar clamped-free beam are presented. The actuators studied are two inertia-type actuators, the proof mass and reaction wheel, and two variable geometry trusses, the planar truss and the planar truss proof mass (a combination variable geometry truss/inertia-type actuator). Actuator parameters used in the models were chosen based on the results of a parametric study. A full-state, LQR optimal feedback control law was used for control in each system. Numerical simulations of each beam/actuator system were performed in response to initial condition inputs. These simulations provided information such as time response of the closed-loop system and damping provided to the beam. This information can be used to determine the 'best' actuator for a given purpose.

  5. The Impact of Public Feedback on Three Recycling-Related Behaviors in South Korea

    ERIC Educational Resources Information Center

    Kim, Sungbum; Oah, Shezeen; Dickinson, Alyce M.

    2005-01-01

    The effectiveness of posted feedback on recycling in a lounge area at a South Korean university was studied. Participants were college students, professors, and staff members. The dependent variables were the percentage and number of correctly separated aluminum cans, the percentage and number of correctly separated paper cups, and the weight of…

  6. The Use of Feedback in Lab Energy Conservation: Fume Hoods at MIT

    ERIC Educational Resources Information Center

    Wesolowski, Daniel; Olivetti, Elsa; Graham, Amanda; Lanou, Steve; Cooper, Peter; Doughty, Jim; Wilk, Rich; Glicksman, Leon

    2010-01-01

    Purpose: The purpose of this paper is to report on the results of an Massachusetts Institute of Technology Chemistry Department campaign to reduce energy consumption in chemical fume hoods. Hood use feedback to lab users is a crucial component of this campaign. Design/methodology/approach: Sash position sensor data on variable air volume fume…

  7. An Analysis of School Principals' Listening Skills According to Teacher Feedback

    ERIC Educational Resources Information Center

    Yavuz, Mustafa

    2010-01-01

    This study investigates school principals' listening skills according to teacher feedback in terms of a number of variables. The study is conducted according to a general survey model. The sample consists of 477 elementary, general and vocational secondary school teachers working in Konya, Turkey, in the 2007-2008 education year. The sample was…

  8. The Effects of Feedback and Selected Personality Variables on Aesthetic Judgment.

    ERIC Educational Resources Information Center

    West, Charles K.; And Others

    This study is an attempt to investigate the extent of which knowledge of results in various forms (true, none, and false) may modify aesthetic judgment. Seventy-two graduate students were administered an aesthetic judgment test of fifty items. On half of the test, twenty-four subjects received correct feedback and twenty-four received false…

  9. Individual Variability in Delayed Auditory Feedback Effects on Speech Fluency and Rate in Normally Fluent Adults

    ERIC Educational Resources Information Center

    Chon, HeeCheong; Kraft, Shelly Jo; Zhang, Jingfei; Loucks, Torrey; Ambrose, Nicoline G.

    2013-01-01

    Purpose: Delayed auditory feedback (DAF) is known to induce stuttering-like disfluencies (SLDs) and cause speech rate reductions in normally fluent adults, but the reason for speech disruptions is not fully known, and individual variation has not been well characterized. Studying individual variation in susceptibility to DAF may identify factors…

  10. Differential Effectiveness of Electromyograph Feedback, Verbal Relaxation Instructions, and Medication Placebo with Tension Headaches

    ERIC Educational Resources Information Center

    Cox, Daniel J.; And Others

    1975-01-01

    Adults with chronic tension headaches were assigned to auditory electromyograph (EMG) feedback (N=9), to progressive relaxation (N=9), and to placebo treatment (N=9). Data indicated that biofeedback and verbal relaxation instructions were equally superior to the medicine placebo on all measured variables in the direction of clinical improvement,…

  11. An Evaluation of the Effectiveness of an Automated Observation and Feedback System on Safe Sitting Postures

    ERIC Educational Resources Information Center

    Yu, Eunjeong; Moon, Kwangsu; Oah, Shezeen; Lee, Yohaeng

    2013-01-01

    This study evaluated the effectiveness of an automated observation and feedback system in improving safe sitting postures. Participants were four office workers. The dependent variables were the percentages of time participants spent in five safe body positions during experimental sessions. We used a multiple-baseline design counterbalanced across…

  12. Delayed Auditory Feedback in the Treatment of Stuttering: Clients as Consumers

    ERIC Educational Resources Information Center

    Van Borsel, John; Reunes, Gert; Van den Bergh, Nathalie

    2003-01-01

    Purpose: To investigate the effect of repeated exposure to delayed auditory feedback (DAF) during a 3-month period outside a clinical environment and with only minimal clinical guidance on speech fluency in people who stutter. Method: A pretest-post-test design was used with repeated exposure to DAF during 3 months as the independent variable.…

  13. Differential effects of absent visual feedback control on gait variability during different locomotion speeds.

    PubMed

    Wuehr, M; Schniepp, R; Pradhan, C; Ilmberger, J; Strupp, M; Brandt, T; Jahn, K

    2013-01-01

    Healthy persons exhibit relatively small temporal and spatial gait variability when walking unimpeded. In contrast, patients with a sensory deficit (e.g., polyneuropathy) show an increased gait variability that depends on speed and is associated with an increased fall risk. The purpose of this study was to investigate the role of vision in gait stabilization by determining the effects of withdrawing visual information (eyes closed) on gait variability at different locomotion speeds. Ten healthy subjects (32.2 ± 7.9 years, 5 women) walked on a treadmill for 5-min periods at their preferred walking speed and at 20, 40, 70, and 80 % of maximal walking speed during the conditions of walking with eyes open (EO) and with eyes closed (EC). The coefficient of variation (CV) and fractal dimension (α) of the fluctuations in stride time, stride length, and base width were computed and analyzed. Withdrawing visual information increased the base width CV for all walking velocities (p < 0.001). The effects of absent visual information on CV and α of stride time and stride length were most pronounced during slow locomotion (p < 0.001) and declined during fast walking speeds. The results indicate that visual feedback control is used to stabilize the medio-lateral (i.e., base width) gait parameters at all speed sections. In contrast, sensory feedback control in the fore-aft direction (i.e., stride time and stride length) depends on speed. Sensory feedback contributes most to fore-aft gait stabilization during slow locomotion, whereas passive biomechanical mechanisms and an automated central pattern generation appear to control fast locomotion.

  14. Bubble mass center and fluid feedback force fluctuations activated by constant lateral impulse with variable thrust

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Long, Y. T.

    1995-01-01

    Sloshing dynamics within a partially filled rotating dewar of superfluid helium 2 are investigated in response to constant lateral impulse with variable thrust. The study, including how the rotating bubble of superfluid helium 2 reacts to the constant impulse with variable time period of thrust action in microgravity, how amplitudes of bubble mass center fluctuates with growth and decay of disturbances, and how fluid feedback forces fluctuates in activating on the rotating dewar through the dynamics of sloshing waves are investigated. The numerical computation of sloshing dynamics is based on the non-inertial frame spacecraft bound coordinate with lateral impulses actuating on the rotating dewar in both inertial and non-inertial frames of thrust. Results of the simulations are illustrated.

  15. Project Management Using Modern Guidance, Navigation and Control Theory

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.

    2011-01-01

    Implementing guidance, navigation, and control (GN&C) theory principles and applying them to the human element of project management and control is not a new concept. As both the literature on the subject and the real-world applications are neither readily available nor comprehensive with regard to how such principles might be applied, this paper has been written to educate the project manager on the "laws of physics" of his or her project (not to teach a GN&C engineer how to become a project manager) and to provide an intuitive, mathematical explanation as to the control and behavior of projects. This paper will also address how the fundamental principles of modern GN&C were applied to the National Aeronautics and Space Administration's (NASA) Constellation Program (CxP) space suit project, ensuring the project was managed within cost, schedule, and budget. A project that is akin to a physical system can be modeled and managed using the same over arching principles of GN&C that would be used if that project were a complex vehicle, a complex system(s), or complex software with time-varying processes (at times nonlinear) containing multiple data inputs of varying accuracy and a range of operating points. The classic GN&C theory approach could thus be applied to small, well-defined projects; yet when working with larger, multiyear projects necessitating multiple organizational structures, numerous external influences, and a multitude of diverse resources, modern GN&C principles are required to model and manage the project. The fundamental principles of a GN&C system incorporate these basic concepts: State, Behavior, Feedback Control, Navigation, Guidance and Planning Logic systems. The State of a system defines the aspects of the system that can change over time; e.g., position, velocity, acceleration, coordinate-based attitude, and temperature, etc. The Behavior of the system focuses more on what changes are possible within the system; this is denoted in the state of the system. The behavior of a system, as captured in the system modeling, when properly done will aid in accurately predicting future system performance. The Feedback Control system understands the state and behavior of the system and uses feedback to adjust control inputs into the system. The feedback, which is the right arm of the Control system, allows change to be affected in the overall system; it therefore is important to not only correctly identify the system feedback inputs, but also the system response to the feedback inputs. The Navigation system takes multiple data inputs and based on a priori knowledge of the inputs, develops a statistically based weighting of the inputs and measurements to determine the system's state. Guidance and Planning Logic of the system, complete with an understanding of where the system is (provided by the Navigation system), will in turn determine where the system needs to be and how to get it there. With any system/project, it is critical that the objective of the system/project be clearly defined -- not only to plan but to measure performance and to aid in guiding the system or the project. The system principles discussed above, which can be and have been applied to the current CxP space suit development project, can also be mapped to real-world constituents, thus allowing project managers to apply systems theories that are well defined in engineering and mathematics to a discipline (i.e., Project Management) that historically has been based in personal experience and intuition. This mapping of GN&C theory to Project Management will, in turn, permit a direct, methodical approach to Project Management, planning and control providing a tool to help predict (and guide) performance and an understanding of the project constraints, how the project can be controlled, and the impacts to external influences and inputs. This approach, to a project manager, flows down to the three bottom-line variables of cost, schedule, and scope ando the needed control of these three variables to successfully perform and complete a project.

  16. Generalized fast feedback system in the SLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendrickson, L.; Allison, S.; Gromme, T.

    A generalized fast feedback system has been developed to stabilize beams at various locations in the SLC. The system is designed to perform measurements and change actuator settings to control beam states such as position, angle and energy on a pulse to pulse basis. The software design is based on the state space formalism of digital control theory. The system is database-driven, facilitating the addition of new loops without requiring additional software. A communications system, KISNet, provides fast communications links between microprocessors for feedback loops which involve multiple micros. Feedback loops have been installed in seventeen locations throughout the SLCmore » and have proven to be invaluable in stabilizing the machine.« less

  17. Response of microchip solid-state laser to external frequency-shifted feedback and its applications

    PubMed Central

    Tan, Yidong; Zhang, Shulian; Zhang, Song; Zhang, Yongqing; Liu, Ning

    2013-01-01

    The response of the microchip solid-state Nd:YAG laser, which is subjected to external frequency-shifted feedback, is experimentally and theoretically analysed. The continuous weak response of the laser to the phase and amplitude of the feedback light is achieved by controlling the feedback power level, and this system can be used to achieve contact-free measurement of displacement, vibration, liquid evaporation and thermal expansion with nanometre accuracy in common room conditions without precise environmental control. Furthermore, a strong response, including chaotic harmonic and parametric oscillation, is observed, and the spectrum of this response, as examined by a frequency-stabilised Nd:YAG laser, indicates laser spectral linewidth broadening. PMID:24105389

  18. Response of microchip solid-state laser to external frequency-shifted feedback and its applications.

    PubMed

    Tan, Yidong; Zhang, Shulian; Zhang, Song; Zhang, Yongqing; Liu, Ning

    2013-10-09

    The response of the microchip solid-state Nd:YAG laser, which is subjected to external frequency-shifted feedback, is experimentally and theoretically analysed. The continuous weak response of the laser to the phase and amplitude of the feedback light is achieved by controlling the feedback power level, and this system can be used to achieve contact-free measurement of displacement, vibration, liquid evaporation and thermal expansion with nanometre accuracy in common room conditions without precise environmental control. Furthermore, a strong response, including chaotic harmonic and parametric oscillation, is observed, and the spectrum of this response, as examined by a frequency-stabilised Nd:YAG laser, indicates laser spectral linewidth broadening.

  19. Adaptive Fuzzy Control for Nonstrict Feedback Systems With Unmodeled Dynamics and Fuzzy Dead Zone via Output Feedback.

    PubMed

    Wang, Lijie; Li, Hongyi; Zhou, Qi; Lu, Renquan

    2017-09-01

    This paper investigates the problem of observer-based adaptive fuzzy control for a category of nonstrict feedback systems subject to both unmodeled dynamics and fuzzy dead zone. Through constructing a fuzzy state observer and introducing a center of gravity method, unmeasurable states are estimated and the fuzzy dead zone is defuzzified, respectively. By employing fuzzy logic systems to identify the unknown functions. And combining small-gain approach with adaptive backstepping control technique, a novel adaptive fuzzy output feedback control strategy is developed, which ensures that all signals involved are semi-globally uniformly bounded. Simulation results are given to demonstrate the effectiveness of the presented method.

  20. North Tropical Atlantic Climate Variability and Model Biases

    NASA Astrophysics Data System (ADS)

    Yang, Y.

    2017-12-01

    Remote forcing from El Niño-Southern Oscillation (ENSO) and local ocean-atmosphere feedback are important for climate variability over the North Tropical Atlantic. These two factors are extracted by the ensemble mean and inter-member difference of a 10-member Pacific Ocean-Global Atmosphere (POGA) experiment, in which sea surface temperatures (SSTs) are restored to the observed anomalies over the tropical Pacific but fully coupled to the atmosphere elsewhere. POGA reasonably captures main features of observed North Tropical Atlantic variability. ENSO forced and local North Tropical Atlantic modes (NTAMs) develop with wind-evaporation-SST feedback, explaining one third and two thirds of total variance respectively. Notable biases, however, exist. The seasonality of the simulated NTAM is delayed by one month, due to the late development of the North Atlantic Oscillation (NAO) in the model. A spurious band of enhanced sea surface temperature (SST) variance (SBEV) is identified over the northern equatorial Atlantic in POGA and 14 out of 23 CMIP5 models. The SBEV is especially pronounced in boreal spring and due to the combined effect of both anomalous atmospheric thermal forcing and oceanic vertical upwelling. While the tropical North Atlantic variability is only weakly correlated with the Atlantic Zonal Mode (AZM) in observations, the SBEV in CMIP5 produces conditions that drive and intensify the AZM variability via triggering the Bjerknes feedback. This partially explains why AZM is strong in some CMIP5 models even though the equatorial cold tongue and easterly trades are biased low.

  1. Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels.

    PubMed

    De Nunzio, Alessandro Marco; Dosen, Strahinja; Lemling, Sabrina; Markovic, Marko; Schweisfurth, Meike Annika; Ge, Nan; Graimann, Bernhard; Falla, Deborah; Farina, Dario

    2017-08-01

    Grasping is a complex task routinely performed in an anticipatory (feedforward) manner, where sensory feedback is responsible for learning and updating the internal model of grasp dynamics. This study aims at evaluating whether providing a proportional tactile force feedback during the myoelectric control of a prosthesis facilitates learning a stable internal model of the prosthesis force control. Ten able-bodied subjects controlled a sensorized myoelectric prosthesis performing four blocks of consecutive grasps at three levels of target force (30, 50, and 70%), repeatedly closing the fully opened hand. In the first and third block, the subjects received tactile and visual feedback, respectively, while during the second and fourth block, the feedback was removed. The subjects also performed an additional block with no feedback 1 day after the training (Retest). The median and interquartile range of the generated forces was computed to assess the accuracy and precision of force control. The results demonstrated that the feedback was indeed an effective instrument for the training of prosthesis control. After the training, the subjects were still able to accurately generate the desired force for the low and medium target (30 and 50% of maximum force available in a prosthesis), despite the feedback being removed within the session and during the retest (low target force). However, the training was substantially less successful for high forces (70% of prosthesis maximum force), where subjects exhibited a substantial loss of accuracy as soon as the feedback was removed. The precision of control decreased with higher forces and it was consistent across conditions, determined by an intrinsic variability of repeated myoelectric grasping. This study demonstrated that the subject could rely on the tactile feedback to adjust the motor command to the prosthesis across trials. The subjects adjusted the mean level of muscle activation (accuracy), whereas the precision could not be modulated as it depends on the intrinsic myoelectric variability. They were also able to maintain the feedforward command even after the feedback was removed, demonstrating thereby a stable learning, but the retention depended on the level of the target force. This is an important insight into the role of feedback as an instrument for learning of anticipatory prosthesis force control.

  2. Latent resilience in ponderosa pine forest: effects of resumed frequent fire

    Treesearch

    Andrew J. Larson; R. Travis Belote; C. Alina Cansler; Sean A. Parks; Matthew S. Dietz

    2013-01-01

    Ecological systems often exhibit resilient states that are maintained through negative feedbacks. In ponderosa pine forests, fire historically represented the negative feedback mechanism that maintained ecosystem resilience; fire exclusion reduced that resilience, predisposing the transition to an alternative ecosystem state upon reintroduction of fire. We evaluated...

  3. Linear system theory

    NASA Technical Reports Server (NTRS)

    Callier, Frank M.; Desoer, Charles A.

    1991-01-01

    The aim of this book is to provide a systematic and rigorous access to the main topics of linear state-space system theory in both the continuous-time case and the discrete-time case; and the I/O description of linear systems. The main thrusts of the work are the analysis of system descriptions and derivations of their properties, LQ-optimal control, state feedback and state estimation, and MIMO unity-feedback systems.

  4. Applications of Nonlinear Control Using the State-Dependent Riccati Equation.

    DTIC Science & Technology

    1995-12-01

    method, and do not address noise rejection or robustness issues. xi Applications of Nonlinear Control Using the State-Dependent Riccati Equation I...construct a stabilizing nonlinear feedback controller. This method will be referred to as nonlinear quadratic regulation (NQR). The original intention...involves nding a state-dependent coe- cient (SDC) linear structure for which a stabilizing nonlinear feedback controller can be constructed. The

  5. Variations in Static Force Control and Motor Unit Behavior with Error Amplification Feedback in the Elderly.

    PubMed

    Chen, Yi-Ching; Lin, Linda L; Lin, Yen-Ting; Hu, Chia-Ling; Hwang, Ing-Shiou

    2017-01-01

    Error amplification (EA) feedback is a promising approach to advance visuomotor skill. As error detection and visuomotor processing at short time scales decline with age, this study examined whether older adults could benefit from EA feedback that included higher-frequency information to guide a force-tracking task. Fourteen young and 14 older adults performed low-level static isometric force-tracking with visual guidance of typical visual feedback and EA feedback containing augmented high-frequency errors. Stabilogram diffusion analysis was used to characterize force fluctuation dynamics. Also, the discharge behaviors of motor units and pooled motor unit coherence were assessed following the decomposition of multi-channel surface electromyography (EMG). EA produced different behavioral and neurophysiological impacts on young and older adults. Older adults exhibited inferior task accuracy with EA feedback than with typical visual feedback, but not young adults. Although stabilogram diffusion analysis revealed that EA led to a significant decrease in critical time points for both groups, EA potentiated the critical point of force fluctuations [Formula: see text], short-term effective diffusion coefficients (Ds), and short-term exponent scaling only for the older adults. Moreover, in older adults, EA added to the size of discharge variability of motor units and discharge regularity of cumulative discharge rate, but suppressed the pooled motor unit coherence in the 13-35 Hz band. Virtual EA alters the strategic balance between open-loop and closed-loop controls for force-tracking. Contrary to expectations, the prevailing use of closed-loop control with EA that contained high-frequency error information enhanced the motor unit discharge variability and undermined the force steadiness in the older group, concerning declines in physiological complexity in the neurobehavioral system and the common drive to the motoneuronal pool against force destabilization.

  6. Variations in Static Force Control and Motor Unit Behavior with Error Amplification Feedback in the Elderly

    PubMed Central

    Chen, Yi-Ching; Lin, Linda L.; Lin, Yen-Ting; Hu, Chia-Ling; Hwang, Ing-Shiou

    2017-01-01

    Error amplification (EA) feedback is a promising approach to advance visuomotor skill. As error detection and visuomotor processing at short time scales decline with age, this study examined whether older adults could benefit from EA feedback that included higher-frequency information to guide a force-tracking task. Fourteen young and 14 older adults performed low-level static isometric force-tracking with visual guidance of typical visual feedback and EA feedback containing augmented high-frequency errors. Stabilogram diffusion analysis was used to characterize force fluctuation dynamics. Also, the discharge behaviors of motor units and pooled motor unit coherence were assessed following the decomposition of multi-channel surface electromyography (EMG). EA produced different behavioral and neurophysiological impacts on young and older adults. Older adults exhibited inferior task accuracy with EA feedback than with typical visual feedback, but not young adults. Although stabilogram diffusion analysis revealed that EA led to a significant decrease in critical time points for both groups, EA potentiated the critical point of force fluctuations <ΔFc2>, short-term effective diffusion coefficients (Ds), and short-term exponent scaling only for the older adults. Moreover, in older adults, EA added to the size of discharge variability of motor units and discharge regularity of cumulative discharge rate, but suppressed the pooled motor unit coherence in the 13–35 Hz band. Virtual EA alters the strategic balance between open-loop and closed-loop controls for force-tracking. Contrary to expectations, the prevailing use of closed-loop control with EA that contained high-frequency error information enhanced the motor unit discharge variability and undermined the force steadiness in the older group, concerning declines in physiological complexity in the neurobehavioral system and the common drive to the motoneuronal pool against force destabilization. PMID:29167637

  7. Climate forcings and feedbacks

    NASA Technical Reports Server (NTRS)

    Hansen, James

    1993-01-01

    Global temperature has increased significantly during the past century. Understanding the causes of observed global temperature change is impossible in the absence of adequate monitoring of changes in global climate forcings and radiative feedbacks. Climate forcings are changes imposed on the planet's energy balance, such as change of incoming sunlight or a human-induced change of surface properties due to deforestation. Radiative feedbacks are radiative changes induced by climate change, such as alteration of cloud properties or the extent of sea ice. Monitoring of global climate forcings and feedbacks, if sufficiently precise and long-term, can provide a very strong constraint on interpretation of observed temperature change. Such monitoring is essential to eliminate uncertainties about the relative importance of various climate change mechanisms including tropospheric sulfate aerosols from burning of coal and oil smoke from slash and burn agriculture, changes of solar irradiance changes of several greenhouse gases, and many other mechanisms. The considerable variability of observed temperature, together with evidence that a substantial portion of this variability is unforced indicates that observations of climate forcings and feedbacks must be continued for decades. Since the climate system responds to the time integral of the forcing, a further requirement is that the observations be carried out continuously. However, precise observations of forcings and feedbacks will also be able to provide valuable conclusions on shorter time scales. For example, knowledge of the climate forcing by increasing CFC's relative to the forcing by changing ozone is important to policymakers, as is information on the forcing by CO2 relative to the forcing by sulfate aerosols. It will also be possible to obtain valuable tests of climate models on short time scales, if there is precise monitoring of all forcings and feedbacks during and after events such as a large volcanic eruption or an El Nino.

  8. Unintentional force changes in cyclical tasks performed by an abundant system: Empirical observations and a dynamical model.

    PubMed

    Reschechtko, Sasha; Hasanbarani, Fariba; Akulin, Vladimir M; Latash, Mark L

    2017-05-14

    The study explored unintentional force changes elicited by removing visual feedback during cyclical, two-finger isometric force production tasks. Subjects performed two types of tasks at 1Hz, paced by an auditory metronome. One - Force task - required cyclical changes in total force while maintaining the sharing, defined as relative contribution of a finger to total force. The other task - Share task - required cyclical changes in sharing while keeping total force unchanged. Each trial started under full visual feedback on both force and sharing; subsequently, feedback on the variable that was instructed to stay constant was frozen, and finally feedback on the other variable was also removed. In both tasks, turning off visual feedback on total force elicited a drop in the mid-point of the force cycle and an increase in the peak-to-peak force amplitude. Turning off visual feedback on sharing led to a drift of mean share toward 50:50 across both tasks. Without visual feedback there was consistent deviation of the two force time series from the in-phase pattern (typical of the Force task) and from the out-of-phase pattern (typical of the Share task). This finding is in contrast to most earlier studies that demonstrated only two stable patterns, in-phase and out-of-phase. We interpret the results as consequences of drifts of parameters in a dynamical system leading in particular to drifts in the referent finger coordinates toward their actual coordinates. The relative phase desynchronization is caused by the right-left differences in the hypothesized drift processes, consistent with the dynamic dominance hypothesis. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Unintentional force changes in cyclical tasks performed by an abundant system: Empirical observations and a dynamical model

    PubMed Central

    Reschechtko, Sasha; Hasanbarani, Fariba; Akulin, Vladimir M.; Latash, Mark L.

    2017-01-01

    The study explored unintentional force changes elicited by removing visual feedback during cyclical, two-finger isometric force production tasks. Subjects performed two types of tasks at 1 Hz, paced by an auditory metronome. One – Force task – required cyclical changes in total force while maintaining the sharing, defined as relative contribution of a finger to total force. The other task – Share task – required cyclical changes in sharing while keeping total force unchanged. Each trial started under full visual feedback on both force and sharing; subsequently, feedback on the variable that was instructed to stay constant was frozen, and finally feedback on the other variable was also removed. In both tasks, turning off visual feedback on total force elicited a drop in the mid-point of the force cycle and an increase in the peak-to-peak force amplitude. Turning off visual feedback on sharing led to a drift of mean share toward 50:50 across both tasks. Without visual feedback there was consistent deviation of the two force time series from the in-phase pattern (typical of the Force task) and from the out-of-phase pattern (typical of the Share task). This finding is in contrast to most earlier studies that demonstrated only two stable patterns, in-phase and out-of-phase. We interpret the results as consequences of drifts of parameters in a dynamical system leading in particular to drifts in the referent finger coordinates toward their actual coordinates. The relative phase desynchronization is caused by the right-left differences in the hypothesized drift processes, consistent with the dynamic dominance hypothesis. PMID:28344070

  10. Data-driven model reference control of MIMO vertical tank systems with model-free VRFT and Q-Learning.

    PubMed

    Radac, Mircea-Bogdan; Precup, Radu-Emil; Roman, Raul-Cristian

    2018-02-01

    This paper proposes a combined Virtual Reference Feedback Tuning-Q-learning model-free control approach, which tunes nonlinear static state feedback controllers to achieve output model reference tracking in an optimal control framework. The novel iterative Batch Fitted Q-learning strategy uses two neural networks to represent the value function (critic) and the controller (actor), and it is referred to as a mixed Virtual Reference Feedback Tuning-Batch Fitted Q-learning approach. Learning convergence of the Q-learning schemes generally depends, among other settings, on the efficient exploration of the state-action space. Handcrafting test signals for efficient exploration is difficult even for input-output stable unknown processes. Virtual Reference Feedback Tuning can ensure an initial stabilizing controller to be learned from few input-output data and it can be next used to collect substantially more input-state data in a controlled mode, in a constrained environment, by compensating the process dynamics. This data is used to learn significantly superior nonlinear state feedback neural networks controllers for model reference tracking, using the proposed Batch Fitted Q-learning iterative tuning strategy, motivating the original combination of the two techniques. The mixed Virtual Reference Feedback Tuning-Batch Fitted Q-learning approach is experimentally validated for water level control of a multi input-multi output nonlinear constrained coupled two-tank system. Discussions on the observed control behavior are offered. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Within-individual correlations reveal link between a behavioral syndrome, condition and cortisol in free-ranging Belding's ground squirrels

    PubMed Central

    Brooks, Katherine C.; Mateo, Jill. M.

    2014-01-01

    Animals often exhibit consistent individual differences in behavior (i.e. animal personality) and correlations between behaviors (i.e. behavioral syndromes), yet the causes of those patterns of behavioral variation remain insufficiently understood. Many authors hypothesize that state-dependent behavior produces animal personality and behavioral syndromes. However, empirical studies assessing patterns of covariation among behavioral traits and state variables have produced mixed results. New statistical methods that partition correlations into between-individual and residual within-individual correlations offer an opportunity to more sufficiently quantify relationships among behaviors and state variables to assess hypotheses of animal personality and behavioral syndromes. In a population of wild Belding's ground squirrels (Urocitellus beldingi) we repeatedly measured activity, exploration, and response to restraint behaviors alongside glucocorticoids and nutritional condition. We used multivariate mixed models to determine whether between-individual or within-individual correlations drive phenotypic relationships among traits. Squirrels had consistent individual differences for all five traits. At the between-individual level, activity and exploration were positively correlated whereas both traits negatively correlated with response to restraint, demonstrating a behavioral syndrome. At the within-individual level, condition negatively correlated with cortisol, activity and exploration. Importantly, this indicates that although behavior is state-dependent, which may play a role in animal personality and behavioral syndromes, feedback mechanisms between condition and behavior appear not to produce consistent individual differences in behavior and correlations between them. PMID:25598565

  12. AIRS Observations Based Evaluation of Relative Climate Feedback Strengths on a GCM Grid-Scale

    NASA Astrophysics Data System (ADS)

    Molnar, G. I.; Susskind, J.

    2012-12-01

    Climate feedback strengths, especially those associated with moist processes, still have a rather wide range in GCMs, the primary tools to predict future climate changes associated with man's ever increasing influences on our planet. Here, we make use of the first 10 years of AIRS observations to evaluate interrelationships/correlations of atmospheric moist parameter anomalies computed from AIRS Version 5 Level-3 products, and demonstrate their usefulness to assess relative feedback strengths. Although one may argue about the possible usability of shorter-term, observed climate parameter anomalies for estimating the strength of various (mostly moist processes related) feedbacks, recent works, in particular analyses by Dessler [2008, 2010], have demonstrated their usefulness in assessing global water vapor and cloud feedbacks. First, we create AIRS-observed monthly anomaly time-series (ATs) of outgoing longwave radiation, water vapor, clouds and temperature profile over a 10-year long (Sept. 2002 through Aug. 2012) period using 1x1 degree resolution (a common GCM grid-scale). Next, we evaluate the interrelationships of ATs of the above parameters with the corresponding 1x1 degree, as well as global surface temperature ATs. The latter provides insight comparable with more traditional climate feedback definitions (e. g., Zelinka and Hartmann, 2012) whilst the former is related to a new definition of "local (in surface temperature too) feedback strengths" on a GCM grid-scale. Comparing the correlation maps generated provides valuable new information on the spatial distribution of relative climate feedback strengths. We argue that for GCMs to be trusted for predicting longer-term climate variability, they should be able to reproduce these observed relationships/metrics as closely as possible. For this time period the main climate "forcing" was associated with the El Niño/La Niña variability (e. g., Dessler, 2010), so these assessments may not be descriptive of longer-term climate feedbacks due to global warming, for example. Nevertheless, one should take more confidence of greenhouse warming predictions of those GCMs that reproduce the (high quality observations-based) shorter-term feedback-relationships the best.

  13. Inferential modeling and predictive feedback control in real-time motion compensation using the treatment couch during radiotherapy

    NASA Astrophysics Data System (ADS)

    Qiu, Peng; D'Souza, Warren D.; McAvoy, Thomas J.; Liu, K. J. Ray

    2007-09-01

    Tumor motion induced by respiration presents a challenge to the reliable delivery of conformal radiation treatments. Real-time motion compensation represents the technologically most challenging clinical solution but has the potential to overcome the limitations of existing methods. The performance of a real-time couch-based motion compensation system is mainly dependent on two aspects: the ability to infer the internal anatomical position and the performance of the feedback control system. In this paper, we propose two novel methods for the two aspects respectively, and then combine the proposed methods into one system. To accurately estimate the internal tumor position, we present partial-least squares (PLS) regression to predict the position of the diaphragm using skin-based motion surrogates. Four radio-opaque markers were placed on the abdomen of patients who underwent fluoroscopic imaging of the diaphragm. The coordinates of the markers served as input variables and the position of the diaphragm served as the output variable. PLS resulted in lower prediction errors compared with standard multiple linear regression (MLR). The performance of the feedback control system depends on the system dynamics and dead time (delay between the initiation and execution of the control action). While the dynamics of the system can be inverted in a feedback control system, the dead time cannot be inverted. To overcome the dead time of the system, we propose a predictive feedback control system by incorporating forward prediction using least-mean-square (LMS) and recursive least square (RLS) filtering into the couch-based control system. Motion data were obtained using a skin-based marker. The proposed predictive feedback control system was benchmarked against pure feedback control (no forward prediction) and resulted in a significant performance gain. Finally, we combined the PLS inference model and the predictive feedback control to evaluate the overall performance of the feedback control system. Our results show that, with the tumor motion unknown but inferred by skin-based markers through the PLS model, the predictive feedback control system was able to effectively compensate intra-fraction motion.

  14. Tropical Ocean Surface Energy Balance Variability: Linking Weather to Climate Scales

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Clayson, Carol Anne

    2013-01-01

    Radiative and turbulent surface exchanges of heat and moisture across the atmosphere-ocean interface are fundamental components of the Earth s energy and water balance. Characterizing the spatiotemporal variability of these exchanges of heat and moisture is critical to understanding the global water and energy cycle variations, quantifying atmosphere-ocean feedbacks, and improving model predictability. These fluxes are integral components to tropical ocean-atmosphere variability; they can drive ocean mixed layer variations and modify the atmospheric boundary layer properties including moist static stability, thereby influencing larger-scale tropical dynamics. Non-parametric cluster-based classification of atmospheric and ocean surface properties has shown an ability to identify coherent weather regimes, each typically associated with similar properties and processes. Using satellite-based observational radiative and turbulent energy flux products, this study investigates the relationship between these weather states and surface energy processes within the context of tropical climate variability. Investigations of surface energy variations accompanying intraseasonal and interannual tropical variability often use composite-based analyses of the mean quantities of interest. Here, a similar compositing technique is employed, but the focus is on the distribution of the heat and moisture fluxes within their weather regimes. Are the observed changes in surface energy components dominated by changes in the frequency of the weather regimes or through changes in the associated fluxes within those regimes? It is this question that the presented work intends to address. The distribution of the surface heat and moisture fluxes is evaluated for both normal and non-normal states. By examining both phases of the climatic oscillations, the symmetry of energy and water cycle responses are considered.

  15. A FEEDBACK INTERVENTION TO INCREASE DIGITAL AND PAPER CHECKLIST PERFORMANCE IN TECHNICALLY ADVANCED AIRCRAFT SIMULATION

    PubMed Central

    Rantz, William G; Van Houten, Ron

    2011-01-01

    This study examined whether pilots operating a flight simulator completed digital or paper flight checklists more accurately after receiving postflight graphic and verbal feedback. The dependent variable was the number of checklist items completed correctly per flight. Following treatment, checklist completion with paper and digital checklists increased from 38% and 39%, respectively, to nearly 100% and remained close to 100% after feedback and praise for improvement were withdrawn. Performance was maintained at or near 100% during follow-up probes. PMID:21541133

  16. On the dynamic forcing of short-term climate fluctuations by feedback mechanisms

    NASA Technical Reports Server (NTRS)

    Reiter, E. R.

    1979-01-01

    Various internal feedback mechanisms in the ocean atmosphere system were studied. A variability pattern of sea surface temperature with a quasibiennial oscillation (QBO) was detected off the coast of Senegal, in the Gulf of Guinea and even in the Gulf Stream as it leaves the North American continental shelf. Possible physical connections between some of these QBO's were pointed out by a hypothetical feedback model. Interaction of a QBO with the annual cycle may lead to beating frequencies resembling climatic trends of a duration of several years.

  17. Flight-test experience in digital control of a remotely piloted vehicle.

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1972-01-01

    The development of a remotely piloted vehicle system consisting of a remote pilot cockpit and a ground-based digital computer coupled to the aircraft through telemetry data links is described. The feedback control laws are implemented in a FORTRAN program. Flight-test experience involving high feedback gain limits for attitude and attitude rate feedback variables, filtering of sampled data, and system operation during intermittent telemetry data link loss is discussed. Comparisons of closed-loop flight tests with analytical calculations, and pilot comments on system operation are included.

  18. The neural representation of typical and atypical experiences of negative images: comparing fear, disgust and morbid fascination

    PubMed Central

    Lindquist, Kristen A.; Adebayo, Morenikeji; Barrett, Lisa Feldman

    2016-01-01

    Negative stimuli do not only evoke fear or disgust, but can also evoke a state of ‘morbid fascination’ which is an urge to approach and explore a negative stimulus. In the present neuroimaging study, we applied an innovative method to investigate the neural systems involved in typical and atypical conceptualizations of negative images. Participants received false feedback labeling their mental experience as fear, disgust or morbid fascination. This manipulation was successful; participants judged the false feedback correct for 70% of the trials on average. The neuroimaging results demonstrated differential activity within regions in the ‘neural reference space for discrete emotion’ depending on the type of feedback. We found robust differences in the ventrolateral prefrontal cortex, the dorsomedial prefrontal cortex and the lateral orbitofrontal cortex comparing morbid fascination to control feedback. More subtle differences in the dorsomedial prefrontal cortex and the lateral orbitofrontal cortex were also found between morbid fascination feedback and the other emotion feedback conditions. This study is the first to forward evidence about the neural representation of the experimentally unexplored state of morbid fascination. In line with a constructionist framework, our findings suggest that neural resources associated with the process of conceptualization contribute to the neural representation of this state. PMID:26180088

  19. Robust decentralized hybrid adaptive output feedback fuzzy control for a class of large-scale MIMO nonlinear systems and its application to AHS.

    PubMed

    Huang, Yi-Shao; Liu, Wel-Ping; Wu, Min; Wang, Zheng-Wu

    2014-09-01

    This paper presents a novel observer-based decentralized hybrid adaptive fuzzy control scheme for a class of large-scale continuous-time multiple-input multiple-output (MIMO) uncertain nonlinear systems whose state variables are unmeasurable. The scheme integrates fuzzy logic systems, state observers, and strictly positive real conditions to deal with three issues in the control of a large-scale MIMO uncertain nonlinear system: algorithm design, controller singularity, and transient response. Then, the design of the hybrid adaptive fuzzy controller is extended to address a general large-scale uncertain nonlinear system. It is shown that the resultant closed-loop large-scale system keeps asymptotically stable and the tracking error converges to zero. The better characteristics of our scheme are demonstrated by simulations. Copyright © 2014. Published by Elsevier Ltd.

  20. Asymptotic Eigenstructures

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.; Stein, G.

    1980-01-01

    The behavior of the closed loop eigenstructure of a linear system with output feedback is analyzed as a single parameter multiplying the feedback gain is varied. An algorithm is presented that computes the asymptotically infinite eigenstructure, and it is shown how a system with high gain, feedback decouples into single input, single output systems. Then a synthesis algorithm is presented which uses full state feedback to achieve a desired asymptotic eigenstructure.

  1. Delayed Intermodal Contingency Affects Young Children's Recognition of Their Current Self

    ERIC Educational Resources Information Center

    Miyazaki, Michiko; Hiraki, Kazuo

    2006-01-01

    This study investigated whether 2-, 3-, and 4-year-olds use their video feedback as a reflection of their current state, even when their feedback was presented with a short temporal delay. In Experiment 1, the effects of 1- and 2-s delayed feedback were examined on an analog of the mark test. In the case of live and 1-s delayed feedback,…

  2. Effect of feedback mode and task difficulty on quality of timing decisions in a zero-sum game.

    PubMed

    Tikuisis, Peter; Vartanian, Oshin; Mandel, David R

    2014-09-01

    The objective was to investigate the interaction between the mode of performance outcome feedback and task difficulty on timing decisions (i.e., when to act). Feedback is widely acknowledged to affect task performance. However, the extent to which feedback display mode and its impact on timing decisions is moderated by task difficulty remains largely unknown. Participants repeatedly engaged a zero-sum game involving silent duels with a computerized opponent and were given visual performance feedback after each engagement. They were sequentially tested on three different levels of task difficulty (low, intermediate, and high) in counterbalanced order. Half received relatively simple "inside view" binary outcome feedback, and the other half received complex "outside view" hit rate probability feedback. The key dependent variables were response time (i.e., time taken to make a decision) and survival outcome. When task difficulty was low to moderate, participants were more likely to learn and perform better from hit rate probability feedback than binary outcome feedback. However, better performance with hit rate feedback exacted a higher cognitive cost manifested by higher decision response time. The beneficial effect of hit rate probability feedback on timing decisions is partially moderated by task difficulty. Performance feedback mode should be judiciously chosen in relation to task difficulty for optimal performance in tasks involving timing decisions.

  3. Delayed coherent quantum feedback from a scattering theory and a matrix product state perspective

    NASA Astrophysics Data System (ADS)

    Guimond, P.-O.; Pletyukhov, M.; Pichler, H.; Zoller, P.

    2017-12-01

    We study the scattering of photons propagating in a semi-infinite waveguide terminated by a mirror and interacting with a quantum emitter. This paradigm constitutes an example of coherent quantum feedback, where light emitted towards the mirror gets redirected back to the emitter. We derive an analytical solution for the scattering of two-photon states, which is based on an exact resummation of the perturbative expansion of the scattering matrix, in a regime where the time delay of the coherent feedback is comparable to the timescale of the quantum emitter’s dynamics. We compare the results with numerical simulations based on matrix product state techniques simulating the full dynamics of the system, and extend the study to the scattering of coherent states beyond the low-power limit.

  4. Tropical cloud feedbacks and natural variability of climate

    NASA Technical Reports Server (NTRS)

    Miller, R. L.; Del Genio, A. D.

    1994-01-01

    Simulations of natural variability by two general circulation models (GCMs) are examined. One GCM is a sector model, allowing relatively rapid integration without simplification of the model physics, which would potentially exclude mechanisms of variability. Two mechanisms are found in which tropical surface temperature and sea surface temperature (SST) vary on interannual and longer timescales. Both are related to changes in cloud cover that modulate SST through the surface radiative flux. Over the equatorial ocean, SST and surface temperature vary on an interannual timescale, which is determined by the magnitude of the associated cloud cover anomalies. Over the subtropical ocean, variations in low cloud cover drive SST variations. In the sector model, the variability has no preferred timescale, but instead is characterized by a 'red' spectrum with increasing power at longer periods. In the terrestrial GCM, SST variability associated with low cloud anomalies has a decadal timescale and is the dominant form of global temperature variability. Both GCMs are coupled to a mixed layer ocean model, where dynamical heat transports are prescribed, thus filtering out El Nino-Southern Oscillation (ENSO) and thermohaline circulation variability. The occurrence of variability in the absence of dynamical ocean feedbacks suggests that climatic variability on long timescales can arise from atmospheric processes alone.

  5. Impedance modulation and feedback corrections in tracking targets of variable size and frequency.

    PubMed

    Selen, Luc P J; van Dieën, Jaap H; Beek, Peter J

    2006-11-01

    Humans are able to adjust the accuracy of their movements to the demands posed by the task at hand. The variability in task execution caused by the inherent noisiness of the neuromuscular system can be tuned to task demands by both feedforward (e.g., impedance modulation) and feedback mechanisms. In this experiment, we studied both mechanisms, using mechanical perturbations to estimate stiffness and damping as indices of impedance modulation and submovement scaling as an index of feedback driven corrections. Eight subjects tracked three differently sized targets (0.0135, 0.0270, and 0.0405 rad) moving at three different frequencies (0.20, 0.25, and 0.33 Hz). Movement variability decreased with both decreasing target size and movement frequency, whereas stiffness and damping increased with decreasing target size, independent of movement frequency. These results are consistent with the theory that mechanical impedance acts as a filter of noisy neuromuscular signals but challenge stochastic theories of motor control that do not account for impedance modulation and only partially for feedback control. Submovements during unperturbed cycles were quantified in terms of their gain, i.e., the slope between their duration and amplitude in the speed profile. Submovement gain decreased with decreasing movement frequency and increasing target size. The results were interpreted to imply that submovement gain is related to observed tracking errors and that those tracking errors are expressed in units of target size. We conclude that impedance and submovement gain modulation contribute additively to tracking accuracy.

  6. Spatial variability in acoustic backscatter as an indicator of tissue homogenate production in pulsed cavitational ultrasound therapy.

    PubMed

    Parsons, Jessica E; Cain, Charles A; Fowlkes, J Brian

    2007-03-01

    Spatial variability in acoustic backscatter is investigated as a potential feedback metric for assessment of lesion morphology during cavitation-mediated mechanical tissue disruption ("histotripsy"). A 750-kHz annular array was aligned confocally with a 4.5 MHz passive backscatter receiver during ex vivo insonation of porcine myocardium. Various exposure conditions were used to elicit a range of damage morphologies and backscatter characteristics [pulse duration = 14 micros, pulse repetition frequency (PRF) = 0.07-3.1 kHz, average I(SPPA) = 22-44 kW/cm2]. Variability in backscatter spatial localization was quantified by tracking the lag required to achieve peak correlation between sequential RF A-lines received. Mean spatial variability was observed to be significantly higher when damage morphology consisted of mechanically disrupted tissue homogenate versus mechanically intact coagulation necrosis (2.35 +/- 1.59 mm versus 0.067 +/- 0.054 mm, p < 0.025). Statistics from these variability distributions were used as the basis for selecting a threshold variability level to identify the onset of homogenate formation via an abrupt, sustained increase in spatially dynamic backscatter activity. Specific indices indicative of the state of the homogenization process were quantified as a function of acoustic input conditions. The prevalence of backscatter spatial variability was observed to scale with the amount of homogenate produced for various PRFs and acoustic intensities.

  7. Feedback control for manipulating magnetization in spin-exchange optical pumping system

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Li, Jun; Jiang, Min; Zhao, Nan; Peng, XinHua

    2018-08-01

    Control of magnetization plays an important role in the scientific and technological field of manipulating spin systems. In this work, we study the problem of manipulating nuclear magnetization in the spin-exchange optical pumping system, including accelerating the recovery of nuclear polarization and fixing it on a specific desired state. A real-time feedback control strategy is exploited here. We have also done some numerical simulations, with the results clearly demonstrating the effectiveness of our method, that the nuclear magnetization is able to be driven towards the equilibrium state at a much faster speed and also can be stabilized to a target state. We expect that our feedback control method can find applications in gyro experiments.

  8. Output Feedback Stabilization for a Class of Multi-Variable Bilinear Stochastic Systems with Stochastic Coupling Attenuation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qichun; Zhou, Jinglin; Wang, Hong

    In this paper, stochastic coupling attenuation is investigated for a class of multi-variable bilinear stochastic systems and a novel output feedback m-block backstepping controller with linear estimator is designed, where gradient descent optimization is used to tune the design parameters of the controller. It has been shown that the trajectories of the closed-loop stochastic systems are bounded in probability sense and the stochastic coupling of the system outputs can be effectively attenuated by the proposed control algorithm. Moreover, the stability of the stochastic systems is analyzed and the effectiveness of the proposed method has been demonstrated using a simulated example.

  9. Simulating a Dynamic Antarctic Ice Sheet in the Early to Middle Miocene

    NASA Astrophysics Data System (ADS)

    Gasson, E.; DeConto, R.; Pollard, D.; Levy, R. H.

    2015-12-01

    There are a variety of sources of geological data that suggest major variations in the volume and extent of the Antarctic ice sheet during the early to middle Miocene. Simulating such variability using coupled climate-ice sheet models is problematic due to a strong hysteresis effect caused by height-mass balance feedback and albedo feedback. This results in limited retreat of the ice sheet once it has reached the continental size, as likely occurred prior to the Miocene. Proxy records suggest a relatively narrow range of atmospheric CO2 during the early to middle Miocene, which exacerbates this problem. We use a new climate forcing which accounts for ice sheet-climate feedbacks through an asynchronous GCM-RCM coupling, which is able to better resolve the narrow Antarctic ablation zone in warm climate simulations. When combined with recently suggested mechanisms for retreat into subglacial basins due to ice shelf hydrofracture and ice cliff failure, we are able to simulate large-scale variability of the Antarctic ice sheet in the Miocene. This variability is equivalent to a seawater oxygen isotope signal of ~0.5 ‰, or a sea level equivalent change of ~35 m, for a range of atmospheric CO2 between 280 - 500 ppm.

  10. Role of the Indonesian Throughflow in controlling regional mean climate and rainfall variability

    NASA Astrophysics Data System (ADS)

    England, Matthew H.; Santoso, Agus; Phipps, Steven; Ummenhofer, Caroline

    2017-04-01

    The role of the Indonesian Throughflow (ITF) in controlling regional mean climate and rainfall is examined using a coupled ocean-atmosphere general circulation model. Experiments employing both a closed and open ITF are equilibrated to steady state and then 200 years of natural climatic variability is assessed within each model run, with a particular focus on the Indian Ocean region. Opening of the ITF results in a mean Pacific-to-Indian throughflow of 21 Sv (1 Sv = 106 m3 sec-1), which advects warm west Pacific waters into the east Indian Ocean. This warm signature is propagated westward by the mean ocean flow, however it never reaches the west Indian Ocean, as an ocean-atmosphere feedback in the tropics generates a weakened trade wind field that is reminiscent of the negative phase of the Indian Ocean Dipole (IOD). This is in marked contrast to the Indian Ocean response to an open ITF when examined in ocean-only model experiments; which sees a strengthening of both the Indian Ocean South Equatorial Current and the Agulhas Current. The coupled feedback in contrast leads to cooler conditions over the west Indian Ocean, and an anomalous zonal atmospheric pressure gradient that enhances the advection of warm moist air toward south Asia and Australia. This leaves the African continent significantly drier, and much of Australia and southern Asia significantly wetter, in response to the opening of the ITF. Given the substantial interannual variability that the ITF exhibits in the present-day climate system, and the restriction of the ITF gateway in past climate eras, this could have important implications for understanding past and present regional rainfall patterns around the Indian Ocean and over neighbouring land-masses.

  11. Inertial sensor real-time feedback enhances the learning of cervical spine manipulation: a prospective study

    PubMed Central

    2014-01-01

    Background Cervical Spinal Manipulation (CSM) is considered a high-level skill of the central nervous system because it requires bimanual coordinated rhythmical movements therefore necessitating training to achieve proficiency. The objective of the present study was to investigate the effect of real-time feedback on the performance of CSM. Methods Six postgraduate physiotherapy students attending a training workshop on Cervical Spine Manipulation Technique (CSMT) using inertial sensor derived real-time feedback participated in this study. The key variables were pre-manipulative position, angular displacement of the thrust and angular velocity of the thrust. Differences between variables before and after training were investigated using t-tests. Results There were no significant differences after training for the pre-manipulative position (rotation p = 0.549; side bending p = 0.312) or for thrust displacement (rotation p = 0.247; side bending p = 0.314). Thrust angular velocity demonstrated a significant difference following training for rotation (pre-training mean (sd) 48.9°/s (35.1); post-training mean (sd) 96.9°/s (53.9); p = 0.027) but not for side bending (p = 0.521). Conclusion Real-time feedback using an inertial sensor may be valuable in the development of specific manipulative skill. Future studies investigating manipulation could consider a randomized controlled trial using inertial sensor real time feedback compared to traditional training. PMID:24942483

  12. Rotor-state feedback in the design of flight control laws for a hovering helicopter

    NASA Technical Reports Server (NTRS)

    Takahashi, Marc D.

    1994-01-01

    The use of rigid-body and rotor-state feedback gains in the design of helicopter flight control laws was investigated analytically on a blade element, articulated rotor, helicopter model. The study was conducted while designing a control law to meet an existing military rotorcraft handling qualities design specification (ADS-33C) in low-speed flight. A systematic approach to meet this specification was developed along with an assessment of the function of these gains in the feedback loops. Using the results of this assessment, the pitch and roll crossover behavior was easily modified by adjusting the body attitude and rotor-flap feedback gains. Critical to understanding the feedback gains is that the roll and pitch rate dynamics each have second-order behavior, not the classic first-order behavior, which arises from a quasi-static rotor, six degree-of-freedom model.

  13. Landscape fires dominate terrestrial natural aerosol - climate feedbacks

    NASA Astrophysics Data System (ADS)

    Scott, C.; Arnold, S.; Monks, S. A.; Asmi, A.; Paasonen, P.; Spracklen, D. V.

    2017-12-01

    The terrestrial biosphere is an important source of natural aerosol including landscape fire emissions and secondary organic aerosol (SOA) formed from biogenic volatile organic compounds (BVOCs). Atmospheric aerosol alters the Earth's climate by absorbing and scattering radiation (direct radiative effect; DRE) and by perturbing the properties of clouds (aerosol indirect effect; AIE). Natural aerosol sources are strongly controlled by, and can influence, climate; giving rise to potential natural aerosol-climate feedbacks. Earth System Models (ESMs) include a description of some of these natural aerosol-climate feedbacks, predicting substantial changes in natural aerosol over the coming century with associated radiative perturbations. Despite this, the sensitivity of natural aerosols simulated by ESMs to changes in climate or emissions has not been robustly tested against observations. Here we combine long-term observations of aerosol number and a global aerosol microphysics model to assess terrestrial natural aerosol-climate feedbacks. We find a strong positive relationship between the summertime anomaly in observed concentration of particles greater than 100 nm diameter and the anomaly in local air temperature. This relationship is reproduced by the model and driven by variability in dynamics and meteorology, as well as natural sources of aerosol. We use an offline radiative transfer model to determine radiative effects due to changes in two natural aerosol sources: landscape fire and biogenic SOA. We find that interannual variability in the simulated global natural aerosol radiative effect (RE) is negatively related to the global temperature anomaly. The magnitude of global aerosol-climate feedback (sum of DRE and AIE) is estimated to be -0.15 Wm-2 K-1 for landscape fire aerosol and -0.06 Wm-2 K-1 for biogenic SOA. These feedbacks are comparable in magnitude, but opposite in sign to the snow albedo feedback, highlighting the need for natural aerosol feedbacks to be included in climate simulations.

  14. Modeling Inter-trial Variability of Saccade Trajectories: Effects of Lesions of the Oculomotor Part of the Fastigial Nucleus

    PubMed Central

    Eggert, Thomas; Straube, Andreas

    2016-01-01

    This study investigates the inter-trial variability of saccade trajectories observed in five rhesus macaques (Macaca mulatta). For each time point during a saccade, the inter-trial variance of eye position and its covariance with eye end position were evaluated. Data were modeled by a superposition of three noise components due to 1) planning noise, 2) signal-dependent motor noise, and 3) signal-dependent premotor noise entering within an internal feedback loop. Both planning noise and signal-dependent motor noise (together called accumulating noise) predict a simple S-shaped variance increase during saccades, which was not sufficient to explain the data. Adding noise within an internal feedback loop enabled the model to mimic variance/covariance structure in each monkey, and to estimate the noise amplitudes and the feedback gain. Feedback noise had little effect on end point noise, which was dominated by accumulating noise. This analysis was further extended to saccades executed during inactivation of the caudal fastigial nucleus (cFN) on one side of the cerebellum. Saccades ipsiversive to an inactivated cFN showed more end point variance than did normal saccades. During cFN inactivation, eye position during saccades was statistically more strongly coupled to eye position at saccade end. The proposed model could fit the variance/covariance structure of ipsiversive and contraversive saccades. Inactivation effects on saccade noise are explained by a decrease of the feedback gain and an increase of planning and/or signal-dependent motor noise. The decrease of the fitted feedback gain is consistent with previous studies suggesting a role for the cerebellum in an internal feedback mechanism. Increased end point variance did not result from impaired feedback but from the increase of accumulating noise. The effects of cFN inactivation on saccade noise indicate that the effects of cFN inactivation cannot be explained entirely with the cFN’s direct connections to the saccade-related premotor centers in the brainstem. PMID:27351741

  15. The Effects of a Local Negative Feedback Function between Choice and Relative Reinforcer Rate

    ERIC Educational Resources Information Center

    Davison, Michael; Elliffe, Douglas; Marr, M. Jackson

    2010-01-01

    Four pigeons were trained on two-key concurrent variable-interval schedules with no changeover delay. In Phase 1, relative reinforcers on the two alternatives were varied over five conditions from 0.1 to 0.9. In Phases 2 and 3, we instituted a molar feedback function between relative choice in an interreinforcer interval and the probability of…

  16. Using Stimulated Recall to Investigate Native Speaker Perceptions in Native-Nonnative Speaker Interaction

    ERIC Educational Resources Information Center

    Polio, Charlene; Gass, Susan; Chapin, Laura

    2006-01-01

    Implicit negative feedback has been shown to facilitate SLA, and the extent to which such feedback is given is related to a variety of task and interlocutor variables. The background of a native speaker (NS), in terms of amount of experience in interactions with nonnative speakers (NNSs), has been shown to affect the quantity of implicit negative…

  17. The Examining Evaluator Feedback Survey. REL 2016-100

    ERIC Educational Resources Information Center

    Cherasaro, Trudy L.; Brodersen, R. Marc; Yanoski, David C.; Welp, Laura C.; Reale, Marianne L.

    2015-01-01

    This report presents a survey tool, developed by REL Central at Marzano Research, designed to gather information from teachers about their perceptions of and responses to evaluator feedback. District or state administrators can use this survey to systematically collect teacher perceptions on five key aspects of evaluation feedback: (1) feedback…

  18. 76 FR 13255 - Office of Directives Management (A/GIS/DIR); Agency Information Collection Activities: Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-10

    ... of Qualitative Feedback on Agency Service Delivery AGENCY: Department of State. ACTION: 30-Day notice... Collection Request (Generic ICR): ``Generic Clearance for the Collection of Qualitative Feedback on Agency... INFORMATION: Title: Generic Clearance for the Collection of Qualitative Feedback on Agency Service Delivery...

  19. Comment on "Synchronization of chaotic systems with delay using intermittent linear state feedback" [Chaos 18, 033122 (2008)].

    PubMed

    Zhang, Yinping; Wang, Qing-Guo

    2008-12-01

    In the referenced paper, there is technical carelessness in the third lemma and in the main result. Hence, it is a possible failure when the result is used to design the intermittent linear state feedback controller for exponential synchronization of two chaotic delayed systems.

  20. High School Feedback: An Analysis of States' Current Efforts

    ERIC Educational Resources Information Center

    Data Quality Campaign, 2011

    2011-01-01

    There is increased demand from multiple stakeholders for information about K-12 students' success after high school. When this information is provided back to high schools, it is often referred to as "high school feedback" information. This working document captures knowledge about states' capacity to and progress in providing high school feedback…

  1. The influence of ice sheets on temperature during the past 38 million years inferred from a one-dimensional ice sheet-climate model

    NASA Astrophysics Data System (ADS)

    Stap, Lennert B.; van de Wal, Roderik S. W.; de Boer, Bas; Bintanja, Richard; Lourens, Lucas J.

    2017-09-01

    Since the inception of the Antarctic ice sheet at the Eocene-Oligocene transition (˜ 34 Myr ago), land ice has played a crucial role in Earth's climate. Through feedbacks in the climate system, land ice variability modifies atmospheric temperature changes induced by orbital, topographical, and greenhouse gas variations. Quantification of these feedbacks on long timescales has hitherto scarcely been undertaken. In this study, we use a zonally averaged energy balance climate model bidirectionally coupled to a one-dimensional ice sheet model, capturing the ice-albedo and surface-height-temperature feedbacks. Potentially important transient changes in topographic boundary conditions by tectonics and erosion are not taken into account but are briefly discussed. The relative simplicity of the coupled model allows us to perform integrations over the past 38 Myr in a fully transient fashion using a benthic oxygen isotope record as forcing to inversely simulate CO2. Firstly, we find that the results of the simulations over the past 5 Myr are dependent on whether the model run is started at 5 or 38 Myr ago. This is because the relation between CO2 and temperature is subject to hysteresis. When the climate cools from very high CO2 levels, as in the longer transient 38 Myr run, temperatures in the lower CO2 range of the past 5 Myr are higher than when the climate is initialised at low temperatures. Consequently, the modelled CO2 concentrations depend on the initial state. Taking the realistic warm initialisation into account, we come to a best estimate of CO2, temperature, ice-volume-equivalent sea level, and benthic δ18O over the past 38 Myr. Secondly, we study the influence of ice sheets on the evolution of global temperature and polar amplification by comparing runs with ice sheet-climate interaction switched on and off. By passing only albedo or surface height changes to the climate model, we can distinguish the separate effects of the ice-albedo and surface-height-temperature feedbacks. We find that ice volume variability has a strong enhancing effect on atmospheric temperature changes, particularly in the regions where the ice sheets are located. As a result, polar amplification in the Northern Hemisphere decreases towards warmer climates as there is little land ice left to melt. Conversely, decay of the Antarctic ice sheet increases polar amplification in the Southern Hemisphere in the high-CO2 regime. Our results also show that in cooler climates than the pre-industrial, the ice-albedo feedback predominates the surface-height-temperature feedback, while in warmer climates they are more equal in strength.

  2. Adaptive Control Based Harvesting Strategy for a Predator-Prey Dynamical System.

    PubMed

    Sen, Moitri; Simha, Ashutosh; Raha, Soumyendu

    2018-04-23

    This paper deals with designing a harvesting control strategy for a predator-prey dynamical system, with parametric uncertainties and exogenous disturbances. A feedback control law for the harvesting rate of the predator is formulated such that the population dynamics is asymptotically stabilized at a positive operating point, while maintaining a positive, steady state harvesting rate. The hierarchical block strict feedback structure of the dynamics is exploited in designing a backstepping control law, based on Lyapunov theory. In order to account for unknown parameters, an adaptive control strategy has been proposed in which the control law depends on an adaptive variable which tracks the unknown parameter. Further, a switching component has been incorporated to robustify the control performance against bounded disturbances. Proofs have been provided to show that the proposed adaptive control strategy ensures asymptotic stability of the dynamics at a desired operating point, as well as exact parameter learning in the disturbance-free case and learning with bounded error in the disturbance prone case. The dynamics, with uncertainty in the death rate of the predator, subjected to a bounded disturbance has been simulated with the proposed control strategy.

  3. Novel sensor for color control in solid state lighting applications

    NASA Astrophysics Data System (ADS)

    Gourevitch, Alex; Thurston, Thomas; Singh, Rajiv; Banachowicz, Bartosz; Korobov, Vladimir; Drowley, Cliff

    2010-02-01

    LED wavelength and luminosity shifts due to temperature, dimming, aging, and binning uncertainty can cause large color errors in open-loop light-mixing illuminators. Multispectral color light sensors combined with feedback circuits can compensate for these LED shifts. Typical color light sensor design variables include the choice of light-sensing material, filter configuration, and read-out circuitry. Cypress Semiconductor has designed and prototyped a color sensor chip that consists of photodiode arrays connected to a I/F (Current to Frequency) converter. This architecture has been chosen to achieve high dynamic range (~100dB) and provide flexibility for tailoring sensor response. Several different optical filter configurations were evaluated in this prototype. The color-sensor chip was incorporated into an RGB light color mixing system with closed-loop optical feedback. Color mixing accuracy was determined by calculating the difference between (u',v') set point values and CIE coordinates measured with a reference colorimeter. A typical color precision ▵u'v' less than 0.0055 has been demonstrated over a wide range of colors, a temperature range of 50C, and light dimming up to 80%.

  4. FY2017 Updates to the SAS4A/SASSYS-1 Safety Analysis Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fanning, T. H.

    The SAS4A/SASSYS-1 safety analysis software is used to perform deterministic analysis of anticipated events as well as design-basis and beyond-design-basis accidents for advanced fast reactors. It plays a central role in the analysis of U.S. DOE conceptual designs, proposed test and demonstration reactors, and in domestic and international collaborations. This report summarizes the code development activities that have taken place during FY2017. Extensions to the void and cladding reactivity feedback models have been implemented, and Control System capabilities have been improved through a new virtual data acquisition system for plant state variables and an additional Block Signal for a variablemore » lag compensator to represent reactivity feedback for novel shutdown devices. Current code development and maintenance needs are also summarized in three key areas: software quality assurance, modeling improvements, and maintenance of related tools. With ongoing support, SAS4A/SASSYS-1 can continue to fulfill its growing role in fast reactor safety analysis and help solidify DOE’s leadership role in fast reactor safety both domestically and in international collaborations.« less

  5. A chemometric method to identify enzymatic reactions leading to the transition from glycolytic oscillations to waves

    NASA Astrophysics Data System (ADS)

    Zimányi, László; Khoroshyy, Petro; Mair, Thomas

    2010-06-01

    In the present work we demonstrate that FTIR-spectroscopy is a powerful tool for the time resolved and noninvasive measurement of multi-substrate/product interactions in complex metabolic networks as exemplified by the oscillating glycolysis in a yeast extract. Based on a spectral library constructed from the pure glycolytic intermediates, chemometric analysis of the complex spectra allowed us the identification of many of these intermediates. Singular value decomposition and multiple level wavelet decomposition were used to separate drifting substances from oscillating ones. This enabled us to identify slow and fast variables of glycolytic oscillations. Most importantly, we can attribute a qualitative change in the positive feedback regulation of the autocatalytic reaction to the transition from homogeneous oscillations to travelling waves. During the oscillatory phase the enzyme phosphofructokinase is mainly activated by its own product ADP, whereas the transition to waves is accompanied with a shift of the positive feedback from ADP to AMP. This indicates that the overall energetic state of the yeast extract determines the transition between spatially homogeneous oscillations and travelling waves.

  6. Direct Observation of Clinical Skills Feedback Scale: Development and Validity Evidence.

    PubMed

    Halman, Samantha; Dudek, Nancy; Wood, Timothy; Pugh, Debra; Touchie, Claire; McAleer, Sean; Humphrey-Murto, Susan

    2016-01-01

    Construct: This article describes the development and validity evidence behind a new rating scale to assess feedback quality in the clinical workplace. Competency-based medical education has mandated a shift to learner-centeredness, authentic observation, and frequent formative assessments with a focus on the delivery of effective feedback. Because feedback has been shown to be of variable quality and effectiveness, an assessment of feedback quality in the workplace is important to ensure we are providing trainees with optimal learning opportunities. The purposes of this project were to develop a rating scale for the quality of verbal feedback in the workplace (the Direct Observation of Clinical Skills Feedback Scale [DOCS-FBS]) and to gather validity evidence for its use. Two panels of experts (local and national) took part in a nominal group technique to identify features of high-quality feedback. Through multiple iterations and review, 9 features were developed into the DOCS-FBS. Four rater types (residents n = 21, medical students n = 8, faculty n = 12, and educators n = 12) used the DOCS-FBS to rate videotaped feedback encounters of variable quality. The psychometric properties of the scale were determined using a generalizability analysis. Participants also completed a survey to gather data on a 5-point Likert scale to inform the ease of use, clarity, knowledge acquisition, and acceptability of the scale. Mean video ratings ranged from 1.38 to 2.96 out of 3 and followed the intended pattern suggesting that the tool allowed raters to distinguish between examples of higher and lower quality feedback. There were no significant differences between rater type (range = 2.36-2.49), suggesting that all groups of raters used the tool in the same way. The generalizability coefficients for the scale ranged from 0.97 to 0.99. Item-total correlations were all above 0.80, suggesting some redundancy in items. Participants found the scale easy to use (M = 4.31/5) and clear (M = 4.23/5), and most would recommend its use (M = 4.15/5). Use of DOCS-FBS was acceptable to both trainees (M = 4.34/5) and supervisors (M = 4.22/5). The DOCS-FBS can reliably differentiate between feedback encounters of higher and lower quality. The scale has been shown to have excellent internal consistency. We foresee the DOCS-FBS being used as a means to provide objective evidence that faculty development efforts aimed at improving feedback skills can yield results through formal assessment of feedback quality.

  7. Feedback in Plastic and Reconstructive Surgery Education: Past, Present, and Future.

    PubMed

    Connolly, Katharine A; Azouz, Solomon M; Smith, Anthony A

    2015-11-01

    Education is to be provided efficiently and effectively according to guidelines in the United States by the Accreditation Council for Graduate Medical Education as core competencies and in Canada by the Royal College according to the CanMEDS framework. This article defines formative feedback, reviews the currently available validated feedback tools, and describes the future use of technology to enhance feedback in plastic surgery education.

  8. Using Arrays of Microelectrodes Implanted in Residual Peripheral Nerves to Provide Dextrous Control of, and Modulated Sensory Feedback from, a Hand Prosthesis

    DTIC Science & Technology

    2015-10-01

    Modulated Sensory Feedback from, a Hand Prosthesis PRINCIPAL INVESTIGATOR: Bradley Greger, PhD CONTRACTING ORGANIZATION: Arizona State University...Residual Peripheral Nerves to Provide Dextrous Control of, and Modulated Sensory Feedback from, a Hand Prosthesis 5a. CONTRACT NUMBER 5b. GRANT...Peripheral Nerve Interface, Prosthetic Hand, Neural Prosthesis , Sensory Feedback, Micro-stimulation, Electrophysiology, Action Potentials, Micro

  9. Multiple steps of phosphorylation of activated rhodopsin can account for the reproducibility of vertebrate rod single-photon responses.

    PubMed

    Hamer, R D; Nicholas, S C; Tranchina, D; Liebman, P A; Lamb, T D

    2003-10-01

    Single-photon responses (SPRs) in vertebrate rods are considerably less variable than expected if isomerized rhodopsin (R*) inactivated in a single, memoryless step, and no other variability-reducing mechanisms were available. We present a new stochastic model, the core of which is the successive ratcheting down of R* activity, and a concomitant increase in the probability of quenching of R* by arrestin (Arr), with each phosphorylation of R* (Gibson, S.K., J.H. Parkes, and P.A. Liebman. 2000. Biochemistry. 39:5738-5749.). We evaluated the model by means of Monte-Carlo simulations of dim-flash responses, and compared the response statistics derived from them with those obtained from empirical dim-flash data (Whitlock, G.G., and T.D. Lamb. 1999. Neuron. 23:337-351.). The model accounts for four quantitative measures of SPR reproducibility. It also reproduces qualitative features of rod responses obtained with altered nucleotide levels, and thus contradicts the conclusion that such responses imply that phosphorylation cannot dominate R* inactivation (Rieke, F., and D.A. Baylor. 1998a. Biophys. J. 75:1836-1857; Field, G.D., and F. Rieke. 2002. Neuron. 35:733-747.). Moreover, the model is able to reproduce the salient qualitative features of SPRs obtained from mouse rods that had been genetically modified with specific pathways of R* inactivation or Ca2+ feedback disabled. We present a theoretical analysis showing that the variability of the area under the SPR estimates the variability of integrated R* activity, and can provide a valid gauge of the number of R* inactivation steps. We show that there is a heretofore unappreciated tradeoff between variability of SPR amplitude and SPR duration that depends critically on the kinetics of inactivation of R* relative to the net kinetics of the downstream reactions in the cascade. Because of this dependence, neither the variability of SPR amplitude nor duration provides a reliable estimate of the underlying variability of integrated R* activity, and cannot be used to estimate the minimum number of R* inactivation steps. We conclude that multiple phosphorylation-dependent decrements in R* activity (with Arr-quench) can confer the observed reproducibility of rod SPRs; there is no compelling need to invoke a long series of non-phosphorylation dependent state changes in R* (as in Rieke, F., and D.A. Baylor. 1998a. Biophys. J. 75:1836-1857; Field, G.D., and F. Rieke. 2002. Neuron. 35:733-747.). Our analyses, plus data and modeling of others (Rieke, F., and D.A. Baylor. 1998a. Biophys. J. 75:1836-1857; Field, G.D., and F. Rieke. 2002. Neuron. 35:733-747.), also argue strongly against either feedback (including Ca2+-feedback) or depletion of any molecular species downstream to R* as the dominant cause of SPR reproducibility.

  10. The synergic control of multi-finger force production: Stability of explicit and implicit task components

    PubMed Central

    Reschechtko, Sasha; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2016-01-01

    Manipulating objects with the hands requires the accurate production of resultant forces including shear forces; effective control of these shear forces also requires the production of internal forces normal to the surface of the object(s) being manipulated. In the present study, we investigated multi-finger synergies stabilizing shear and normal components of force, as well as drifts in both components of force, during isometric pressing tasks requiring a specific magnitude of shear force production. We hypothesized that shear and normal forces would evolve similarly in time, and also show similar stability properties as assessed by the decomposition of inter-trial variance within the uncontrolled manifold hypothesis. Healthy subjects were required to accurately produce total shear and total normal forces with four fingers of the hand during a steady-state force task (with and without visual feedback) and a self-paced force pulse task. The two force components showed similar time profiles during both shear force pulse production and unintentional drift induced by turning the visual feedback off. Only the explicitly instructed components of force, however, were stabilized with multi-finger synergies. No force-stabilizing synergies and no anticipatory synergy adjustments were seen for the normal force in shear force production trials. These unexpected qualitative differences in the control of the two force components – which are produced by some of the same muscles and show high degree of temporal coupling – are interpreted within the theory of control with referent coordinates for salient variables. These observations suggest the existence of two classes of neural variables: one that translates into shifts of referent coordinates and defines changes in magnitude of salient variables, and the other controlling gains in back-coupling loops that define stability of the salient variables. Only the former are shared between the explicit and implicit task components. PMID:27601252

  11. Promoting response variability and stimulus generalization in martial arts training.

    PubMed Central

    Harding, Jay W; Wacker, David P; Berg, Wendy K; Rick, Gary; Lee, John F

    2004-01-01

    The effects of reinforcement and extinction on response variability and stimulus generalization in the punching and kicking techniques of 2 martial arts students were evaluated across drill and sparring conditions. During both conditions, the students were asked to demonstrate different techniques in response to an instructor's punching attack. During baseline, the students received no feedback on their responses in either condition. During the intervention phase, the students received differential reinforcement in the form of instructor feedback for each different punching or kicking technique they performed during a session of the drill condition, but no reinforcement was provided for techniques in the sparring condition. Results showed that both students increased the number of different techniques they performed when reinforcement and extinction procedures were conducted during the drill condition, and that this increase in response variability generalized to the sparring condition. PMID:15293637

  12. Deterministic Squeezed States with Collective Measurements and Feedback.

    PubMed

    Cox, Kevin C; Greve, Graham P; Weiner, Joshua M; Thompson, James K

    2016-03-04

    We demonstrate the creation of entangled, spin-squeezed states using a collective, or joint, measurement and real-time feedback. The pseudospin state of an ensemble of N=5×10^{4} laser-cooled ^{87}Rb atoms is deterministically driven to a specified population state with angular resolution that is a factor of 5.5(8) [7.4(6) dB] in variance below the standard quantum limit for unentangled atoms-comparable to the best enhancements using only unitary evolution. Without feedback, conditioning on the outcome of the joint premeasurement, we directly observe up to 59(8) times [17.7(6) dB] improvement in quantum phase variance relative to the standard quantum limit for N=4×10^{5}  atoms. This is one of the largest reported entanglement enhancements to date in any system.

  13. Incremental passivity and output regulation for switched nonlinear systems

    NASA Astrophysics Data System (ADS)

    Pang, Hongbo; Zhao, Jun

    2017-10-01

    This paper studies incremental passivity and global output regulation for switched nonlinear systems, whose subsystems are not required to be incrementally passive. A concept of incremental passivity for switched systems is put forward. First, a switched system is rendered incrementally passive by the design of a state-dependent switching law. Second, the feedback incremental passification is achieved by the design of a state-dependent switching law and a set of state feedback controllers. Finally, we show that once the incremental passivity for switched nonlinear systems is assured, the output regulation problem is solved by the design of global nonlinear regulator controllers comprising two components: the steady-state control and the linear output feedback stabilising controllers, even though the problem for none of subsystems is solvable. Two examples are presented to illustrate the effectiveness of the proposed approach.

  14. The Effects of a Local Negative Feedback Function between Choice and Relative Reinforcer Rate

    PubMed Central

    Davison, Michael; Elliffe, Douglas; Marr, M. Jackson

    2010-01-01

    Four pigeons were trained on two-key concurrent variable-interval schedules with no changeover delay. In Phase 1, relative reinforcers on the two alternatives were varied over five conditions from .1 to .9. In Phases 2 and 3, we instituted a molar feedback function between relative choice in an interreinforcer interval and the probability of reinforcers on the two keys ending the next interreinforcer interval. The feedback function was linear, and was negatively sloped so that more extreme choice in an interreinforcer interval made it more likely that a reinforcer would be available on the other key at the end of the next interval. The slope of the feedback function was −1 in Phase 2 and −3 in Phase 3. We varied relative reinforcers in each of these phases by changing the intercept of the feedback function. Little effect of the feedback functions was discernible at the local (interreinforcer interval) level, but choice measured at an extended level across sessions was strongly and significantly decreased by increasing the negative slope of the feedback function. PMID:21451748

  15. The damaging effect of confirming feedback on the relation between eyewitness certainty and identification accuracy.

    PubMed

    Bradfield, Amy L; Wells, Gary L; Olson, Elizabeth A

    2002-02-01

    The authors investigated eyewitnesses' retrospective certainty (see G. L. Wells & A. L. Bradfield, 1999). The authors hypothesized that extemal influence from the lineup administrator would damage the certainty-accuracy relation by inflating the retrospective certainty of inaccurate eyewitnesses more than that of accurate eyewitnesses (N = 245). Two variables were manipulated: eyewitness accuracy (through the presence or absence of the culprit in the lineup) and feedback (confirming vs. control). Confirming feedback inflated retrospective certainty more for inaccurate eyewitnesses than for accurate eyewitnesses, significantly reducing the certainty-accuracy relation (from r = .58 in the control condition to r = .37 in the confirming feedback condition). Double-blind testing is recommended for lineups to prevent these external influences on eyewitnesses.

  16. Rapid feedback control and stabilization of an optical tweezers with a budget microcontroller

    NASA Astrophysics Data System (ADS)

    Nino, Daniel; Wang, Haowei; Milstein, Joshua N.

    2014-09-01

    Laboratories ranging the scientific disciplines employ feedback control to regulate variables within their experiments, from the flow of liquids within a microfluidic device to the temperature within a cell incubator. We have built an inexpensive, yet fast and rapidly deployed, feedback control system that is straightforward and flexible to implement from a commercially available Arduino Due microcontroller. This is in comparison with the complex, time-consuming and often expensive electronics that are commonly implemented. As an example of its utility, we apply our feedback controller to the task of stabilizing the main trapping laser of an optical tweezers. The feedback controller, which is inexpensive yet fast and rapidly deployed, was implemented from hacking an open source Arduino Due microcontroller. Our microcontroller based feedback system can stabilize the laser intensity to a few tenths of a per cent at 200 kHz, which is an order of magnitude better than the laser's base specifications, illustrating the utility of these devices.

  17. Mesolimbic confidence signals guide perceptual learning in the absence of external feedback

    PubMed Central

    Guggenmos, Matthias; Wilbertz, Gregor; Hebart, Martin N; Sterzer, Philipp

    2016-01-01

    It is well established that learning can occur without external feedback, yet normative reinforcement learning theories have difficulties explaining such instances of learning. Here, we propose that human observers are capable of generating their own feedback signals by monitoring internal decision variables. We investigated this hypothesis in a visual perceptual learning task using fMRI and confidence reports as a measure for this monitoring process. Employing a novel computational model in which learning is guided by confidence-based reinforcement signals, we found that mesolimbic brain areas encoded both anticipation and prediction error of confidence—in remarkable similarity to previous findings for external reward-based feedback. We demonstrate that the model accounts for choice and confidence reports and show that the mesolimbic confidence prediction error modulation derived through the model predicts individual learning success. These results provide a mechanistic neurobiological explanation for learning without external feedback by augmenting reinforcement models with confidence-based feedback. DOI: http://dx.doi.org/10.7554/eLife.13388.001 PMID:27021283

  18. Push-Pull and Feedback Mechanisms Can Align Signaling System Outputs with Inputs.

    PubMed

    Andrews, Steven S; Peria, William J; Yu, Richard C; Colman-Lerner, Alejandro; Brent, Roger

    2016-11-23

    Many cell signaling systems, including the yeast pheromone response system, exhibit "dose-response alignment" (DoRA), in which output of one or more downstream steps closely matches the fraction of occupied receptors. DoRA can improve the fidelity of transmitted dose information. Here, we searched systematically for biochemical network topologies that produced DoRA. Most networks, including many containing feedback and feedforward loops, could not produce DoRA. However, networks including "push-pull" mechanisms, in which the active form of a signaling species stimulates downstream activity and the nominally inactive form reduces downstream activity, enabled perfect DoRA. Networks containing feedbacks enabled DoRA, but only if they also compared feedback to input and adjusted output to match. Our results establish push-pull as a non-feedback mechanism to align output with variable input and maximize information transfer in signaling systems. They also suggest genetic approaches to determine whether particular signaling systems use feedback or push-pull control. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Effects of practice on variability in an isochronous serial interval production task: asymptotical levels of tapping variability after training are similar to those of musicians.

    PubMed

    Madison, Guy; Karampela, Olympia; Ullén, Fredrik; Holm, Linus

    2013-05-01

    Timing permeates everyday activities such as walking, dancing and music, yet the effect of short-term practice in this ubiquitous activity is largely unknown. In two training experiments involving sessions spread across several days, we examined short-term practice effects on timing variability in a sequential interval production task. In Experiment 1, we varied the mode of response (e.g., drumstick and finger tapping) and the level of sensory feedback. In Experiment 2 we varied the interval in 18 levels ranging from 500 ms to 1624 ms. Both experiments showed a substantial decrease in variability within the first hour of practice, but little thereafter. This effect was similar across mode of response, amount of feedback, and interval duration, and was manifested as a reduction in both local variability (between neighboring intervals) and drift (fluctuation across multiple intervals). The results suggest mainly effects on motor implementation rather than on cognitive timing processes, and have methodological implications for timing studies that have not controlled for practice. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Barriers to effective feedback in undergraduate medical education: Case study from Saudi Arabia.

    PubMed

    Alrebish, Saleh Ali

    2018-01-01

    Students' feedback is an essential source of data for evaluation and improvement of the quality of education. Nonetheless, feedback may be routinely practised for accreditation purposes, and it is considered as a ritual employed by students, which makes its effectiveness questionable. The aim of this study is to explore and analyze the students' perceptions about the importance of feedback and the barriers for effective feedback and suggest proper ways to overcome these barriers. This cross-sectional, anonymous, questionnaire-based study was conducted in the College of Medicine, Qassim University. A total of 299 medical students, composed of 185 male and 114 female, from different levels during December 2015 participated. Mean value, standard deviation, and proportion were used to quantify the quantitative and categorical study and outcome variables. 47% of students responded to the questionnaire with more participation of juniors and females. Half of the students believed that feedback is not important and agreed for the presence of barriers for effective feedback. 5 th level students exhibited higher resistance for participation in feedback, and there was a significant difference between male and female students. Promisingly, most of the participant did not believe the presence cultural barrier for feedback. Saudi medical students are willing to involve in effective feedback. Some barriers that make feedback practised as tokenistic is present. They can be overcome through proper orientation and appropriate closing the loop with response to the feedback declared to students. Further investigation is needed to explore barriers to feedback in higher education settings and help designing an approach to enhance the effectiveness of feedback on a national level.

  1. Experimental tree removal in tallgrass prairie: variable responses of flora and fauna along a woody cover gradient.

    PubMed

    Alford, Aaron L; Hellgren, Eric C; Limb, Ryan; Engle, David M

    2012-04-01

    Woody plant encroachment is a worldwide phenomenon in grassland and savanna systems whose consequence is often the development of an alternate woodland state. Theoretically, an alternate state may be associated with changes in system state variables (e.g., species composition) or abiotic parameter shifts (e.g., nutrient availability). When state-variable changes are cumulative, such as in woody plant encroachment, the probability of parameter shifts increases as system feedbacks intensify over time. Using a Before-After Control-Impact (BACI) design, we studied eight pairs of grassland sites undergoing various levels of eastern redcedar (Juniperus virginiana) encroachment to determine whether responses of flora and fauna to experimental redcedar removal differed according to the level of pretreatment redcedar cover. In the first year after removal, herbaceous plant species diversity and evenness, woody plant evenness, and invertebrate family richness increased linearly with pretreatment redcedar cover, whereas increases in small-mammal diversity and evenness were described by logarithmic trends. In contrast, increases in woody plant diversity and total biomass of terrestrial invertebrates were accentuated at levels of higher pretreatment cover. Tree removal also shifted small-mammal species composition toward a more grassland-associated assemblage. During the second year postremoval, increases in herbaceous plant diversity followed a polynomial trend, but increases in most other metrics did not vary along the pretreatment cover gradient. These changes were accompanied by extremely high growing-season precipitation, which may have homogenized floral and faunal responses to removal. Our results demonstrate that tree removal increases important community metrics among grassland flora and fauna within two years, with some responses to removal being strongly influenced by the stage of initial encroachment and modulated by climatic variability. Our results underscore the importance of decisive management for reversing the effects of woody plant encroachment in imperiled grassland ecosystems.

  2. Consensus of satellite cluster flight using an energy-matching optimal control method

    NASA Astrophysics Data System (ADS)

    Luo, Jianjun; Zhou, Liang; Zhang, Bo

    2017-11-01

    This paper presents an optimal control method for consensus of satellite cluster flight under a kind of energy matching condition. Firstly, the relation between energy matching and satellite periodically bounded relative motion is analyzed, and the satellite energy matching principle is applied to configure the initial conditions. Then, period-delayed errors are adopted as state variables to establish the period-delayed errors dynamics models of a single satellite and the cluster. Next a novel satellite cluster feedback control protocol with coupling gain is designed, so that the satellite cluster periodically bounded relative motion consensus problem (period-delayed errors state consensus problem) is transformed to the stability of a set of matrices with the same low dimension. Based on the consensus region theory in the research of multi-agent system consensus issues, the coupling gain can be obtained to satisfy the requirement of consensus region and decouple the satellite cluster information topology and the feedback control gain matrix, which can be determined by Linear quadratic regulator (LQR) optimal method. This method can realize the consensus of satellite cluster period-delayed errors, leading to the consistency of semi-major axes (SMA) and the energy-matching of satellite cluster. Then satellites can emerge the global coordinative cluster behavior. Finally the feasibility and effectiveness of the present energy-matching optimal consensus for satellite cluster flight is verified through numerical simulations.

  3. Biophysical feedbacks mediate carbonate chemistry in coastal ecosystems across spatiotemporal gradients.

    PubMed

    Silbiger, Nyssa J; Sorte, Cascade J B

    2018-01-15

    Ocean acidification (OA) projections are primarily based on open ocean environments, despite the ecological importance of coastal systems in which carbonate dynamics are fundamentally different. Using temperate tide pools as a natural laboratory, we quantified the relative contribution of community composition, ecosystem metabolism, and physical attributes to spatiotemporal variability in carbonate chemistry. We found that biological processes were the primary drivers of local pH conditions. Specifically, non-encrusting producer-dominated systems had the highest and most variable pH environments and the highest production rates, patterns that were consistent across sites spanning 11° of latitude and encompassing multiple gradients of natural variability. Furthermore, we demonstrated a biophysical feedback loop in which net community production increased pH, leading to higher net ecosystem calcification. Extreme spatiotemporal variability in pH is, thus, both impacting and driven by biological processes, indicating that shifts in community composition and ecosystem metabolism are poised to locally buffer or intensify the effects of OA.

  4. Arctic sea ice trends, variability and implications for seasonal ice forecasting.

    PubMed

    Serreze, Mark C; Stroeve, Julienne

    2015-07-13

    September Arctic sea ice extent over the period of satellite observations has a strong downward trend, accompanied by pronounced interannual variability with a detrended 1 year lag autocorrelation of essentially zero. We argue that through a combination of thinning and associated processes related to a warming climate (a stronger albedo feedback, a longer melt season, the lack of especially cold winters) the downward trend itself is steepening. The lack of autocorrelation manifests both the inherent large variability in summer atmospheric circulation patterns and that oceanic heat loss in winter acts as a negative (stabilizing) feedback, albeit insufficient to counter the steepening trend. These findings have implications for seasonal ice forecasting. In particular, while advances in observing sea ice thickness and assimilating thickness into coupled forecast systems have improved forecast skill, there remains an inherent limit to predictability owing to the largely chaotic nature of atmospheric variability. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. Commande de vol non lineaire d'un drone a voilure fixe par la methode du backstepping

    NASA Astrophysics Data System (ADS)

    Finoki, Edouard

    This thesis describes the design of a non-linear controller for a UAV using the backstepping method. It is a fixed-wing UAV, the NexSTAR ARF from HobbicoRTM. The aim is to find the expressions of the aileron, the elevator, and the rudder deflection in order to command the flight path angle, the heading angle and the sideslip angle. Controlling the flight path angle allows a steady, climb or descent flight, controlling the heading cap allows to choose the heading and annul the sideslip angle allows an efficient flight. A good technical control has to ensure the stability of the system and provide optimal performances. Backstepping interlaces the choice of a Lyapunov function with the design of feedback control. This control technique works with the true non-linear model without any approximation. The procedure is to transform intermediate state variables into virtual inputs which will control other state variables. Advantages of this technique are its recursivity, its minimum control effort and its cascaded structure that allows dividing a high order system into several simpler lower order systems. To design this non-linear controller, a non-linear model of the UAV was used. Equations of motion are very accurate, aerodynamic coefficients result from interpolations between several essential variables in flight. The controller has been implemented in Matlab/Simulink and FlightGear.

  6. Integrator Windup Protection-Techniques and a STOVL Aircraft Engine Controller Application

    NASA Technical Reports Server (NTRS)

    KrishnaKumar, K.; Narayanaswamy, S.

    1997-01-01

    Integrators are included in the feedback loop of a control system to eliminate the steady state errors in the commanded variables. The integrator windup problem arises if the control actuators encounter operational limits before the steady state errors are driven to zero by the integrator. The typical effects of windup are large system oscillations, high steady state error, and a delayed system response following the windup. In this study, methods to prevent the integrator windup are examined to provide Integrator Windup Protection (IW) for an engine controller of a Short Take-Off and Vertical Landing (STOVL) aircraft. An unified performance index is defined to optimize the performance of the Conventional Anti-Windup (CAW) and the Modified Anti-Windup (MAW) methods. A modified Genetic Algorithm search procedure with stochastic parameter encoding is implemented to obtain the optimal parameters of the CAW scheme. The advantages and drawbacks of the CAW and MAW techniques are discussed and recommendations are made for the choice of the IWP scheme, given some characteristics of the system.

  7. The evolution of the equatorial thermocline and the early Pliocene El Padre mean state

    NASA Astrophysics Data System (ADS)

    Ford, Heather L.; Ravelo, A. Christina; Dekens, Petra S.; LaRiviere, Jonathan P.; Wara, Michael W.

    2015-06-01

    The tropical Pacific thermocline strength, depth, and tilt are critical to tropical mean state and variability. During the early Pliocene (~3.5 to 4.5 Ma), the Eastern Equatorial Pacific (EEP) thermocline was deeper and the cold tongue was warmer than today, which resulted in a mean state with a reduced zonal sea surface temperature gradient or El Padre. However, it is unclear whether the deep thermocline was a local feature of the EEP or a basin-wide condition with global implications. Our measurements of Mg/Ca of Globorotalia tumida in a western equatorial Pacific site indicate Pliocene subsurface temperatures warmer than today; thus, El Padre included a basin-wide thermocline that was relatively warm, deep, and weakly tilted. At ~4 Ma, thermocline steepening was coupled to cooling of the cold tongue. Since ~4 Ma, the basin-wide thermocline cooled/shoaled gradually, with implications for thermocline feedbacks in tropical dynamics and the interpretation of TEX86-derived temperatures.

  8. Tell Me so I Can Hear: A Development Approach to Feedback and Collaboration

    ERIC Educational Resources Information Center

    Drago-Severson, Ellie; Blum-DeStefano, Jessica

    2014-01-01

    Feedback plays an important role in education. New teacher and principal evaluation systems, the Common Core State Standards, and Race to the Top initiatives, among others, underscore the critical importance of giving and receiving meaningful, actionable, and effective feedback to colleagues regardless of their roles in schools. A developmental…

  9. Predicting workload profiles of brain-robot interface and electromygraphic neurofeedback with cortical resting-state networks: personal trait or task-specific challenge?

    NASA Astrophysics Data System (ADS)

    Fels, Meike; Bauer, Robert; Gharabaghi, Alireza

    2015-08-01

    Objective. Novel rehabilitation strategies apply robot-assisted exercises and neurofeedback tasks to facilitate intensive motor training. We aimed to disentangle task-specific and subject-related contributions to the perceived workload of these interventions and the related cortical activation patterns. Approach. We assessed the perceived workload with the NASA Task Load Index in twenty-one subjects who were exposed to two different feedback tasks in a cross-over design: (i) brain-robot interface (BRI) with haptic/proprioceptive feedback of sensorimotor oscillations related to motor imagery, and (ii) control of neuromuscular activity with feedback of the electromyography (EMG) of the same hand. We also used electroencephalography to examine the cortical activation patterns beforehand in resting state and during the training session of each task. Main results. The workload profile of BRI feedback differed from EMG feedback and was particularly characterized by the experience of frustration. The frustration level was highly correlated across tasks, suggesting subject-related relevance of this workload component. Those subjects who were specifically challenged by the respective tasks could be detected by an interhemispheric alpha-band network in resting state before the training and by their sensorimotor theta-band activation pattern during the exercise. Significance. Neurophysiological profiles in resting state and during the exercise may provide task-independent workload markers for monitoring and matching participants’ ability and task difficulty of neurofeedback interventions.

  10. What Effect Does Reading Academic Articles on Oral Corrective Feedback Have on ESL Teachers?

    ERIC Educational Resources Information Center

    Kamiya, Nobuhiro

    2016-01-01

    This study focuses on four teachers teaching a speaking and listening class at an intensive English program in the United States who read three academic articles on oral corrective feedback (CF). The researcher investigated their stated beliefs and classroom practices of CF as well as their responses to the readings through three classroom…

  11. Dynamics of bow-tie shaped bursting: Forced pendulum with dynamic feedback.

    PubMed

    Hongray, Thotreithem; Balakrishnan, Janaki

    2016-12-01

    A detailed study is performed on the parameter space of the mechanical system of a driven pendulum with damping and constant torque under feedback control. We report an interesting bow-tie shaped bursting oscillatory behaviour, which is exhibited for small driving frequencies, in a certain parameter regime, which has not been reported earlier in this forced system with dynamic feedback. We show that the bursting oscillations are caused because of a transition of the quiescent state to the spiking state by a saddle-focus bifurcation, and because of another saddle-focus bifurcation, which leads to cessation of spiking, bringing the system back to the quiescent state. The resting period between two successive bursts (T rest ) is estimated analytically.

  12. A social systems model of hospital utilization.

    PubMed Central

    Anderson, J G

    1976-01-01

    A social systems model for the health services system serving the state of New Mexico is presented. Utilization of short-term general hospitals is viewed as a function of sociodemographic characteristics of the population and of the supply of health manpower and facilities available to that population. The model includes a network specifying the causal relationships hypothesized as existing among a set of social, demographic, and economic variables known to be related to the supply of health manpower and facilities and to their utilization. Inclusion of feedback into the model as well as lagged values of physician supply variables permits examination of the dynamic behavior of the social system over time. A method for deriving the reduced form of the structural model is presented along with the reduced-form equations. These equations provide valuable information for policy decisions regarding the likely consequences of changes in the structure of the population and in the supply of health manpower and facilities. The structural and reduced-form equations have been used to predict the consequences for one New Mexico county of state and federal policies that would affect the organization and delivery of health services. PMID:1017949

  13. The Pattern Across the Continental United States of Evapotranspiration Variability Associated with Water Availability

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Salvucci, Guido D.; Rigden, Angela J.; Jung, Martin; Collatz, G. James; Schubert, Siegfried D.

    2015-01-01

    The spatial pattern across the continental United States of the interannual variance of warm season water-dependent evapotranspiration, a pattern of relevance to land-atmosphere feedback, cannot be measured directly. Alternative and indirect approaches to estimating the pattern, however, do exist, and given the uncertainty of each, we use several such approaches here. We first quantify the water dependent evapotranspiration variance pattern inherent in two derived evapotranspiration datasets available from the literature. We then search for the pattern in proxy geophysical variables (air temperature, stream flow, and NDVI) known to have strong ties to evapotranspiration. The variances inherent in all of the different (and mostly independent) data sources show some differences but are generally strongly consistent they all show a large variance signal down the center of the U.S., with lower variances toward the east and (for the most part) toward the west. The robustness of the pattern across the datasets suggests that it indeed represents the pattern operating in nature. Using Budykos hydroclimatic framework, we show that the pattern can largely be explained by the relative strength of water and energy controls on evapotranspiration across the continent.

  14. Synchronization of unidirectionally delay-coupled chaotic oscillators with memory

    NASA Astrophysics Data System (ADS)

    Jaimes-Reátegui, Rider; Vera-Ávila, Victor P.; Sevilla-Escoboza, Ricardo; Huerta-Cuéllar, Guillermo; Castañeda-Hernández, Carlos E.; Chiu-Zarate, Roger; Pisarchik, Alexander N.

    2016-11-01

    We study synchronization of two chaotic oscillators coupled with time delay in a master-slave configuration and with delayed positive feedback in the slave oscillator which acts as memory. The dynamics of the slave oscillator is analyzed with bifurcation diagrams of the peak value of the system variable with respect to the coupling and feedback strengths and two delay times. For small coupling, when the oscillators' phases synchronize, memory can induce bistability and stabilize periodic orbits, whereas for stronger coupling it is not possible. The delayed feedback signal impairs synchronization, simultaneously enhancing coherence of the slave oscillator.

  15. Adaptive Feedback in Local Coordinates for Real-time Vision-Based Motion Control Over Long Distances

    NASA Astrophysics Data System (ADS)

    Aref, M. M.; Astola, P.; Vihonen, J.; Tabus, I.; Ghabcheloo, R.; Mattila, J.

    2018-03-01

    We studied the differences in noise-effects, depth-correlated behavior of sensors, and errors caused by mapping between coordinate systems in robotic applications of machine vision. In particular, the highly range-dependent noise densities for semi-unknown object detection were considered. An equation is proposed to adapt estimation rules to dramatic changes of noise over longer distances. This algorithm also benefits the smooth feedback of wheels to overcome variable latencies of visual perception feedback. Experimental evaluation of the integrated system is presented with/without the algorithm to highlight its effectiveness.

  16. Understanding Wave-mean Flow Feedbacks and Tropospheric Annular Variability

    NASA Astrophysics Data System (ADS)

    Lorenz, D. J.

    2016-12-01

    The structure of internal tropospheric variability is important for determining the impact of the stratosphere on the troposphere. This study aims to better understand the fundamental dynamical mechanisms that control the feedbacks between the eddies and the mean flow, which in turn select the tropospheric annular mode. Recent work using Rossby Wave Chromatography suggests that "barotropic processes", which directly impact the meridional propagation of wave activity (specifically the reflectivity of the poleward flank of the mid-latitude jet), are more important for the positive feedback between the annular mode and the eddies than "baroclinic processes", which involve changes in the generation of wave activity by baroclinic instability. In this study, experiments with a fully nonlinear quasi-geostrophic model are discussed which provide independent confirmation of the importance of barotropic versus baroclinic processes. The experiments take advantage of the steady-state balance at upper-levels between the meridional gradient in diabatic heating and the second derivative of the upper-level EP flux divergence. Simulations with standard Newtonian heating are compared to simulations with constant-in-time heating taken from the climatology of the standard run and it is found that the forced annular mode response to changes in surface friction is very similar. Moreover, as expected from the annular mode response, the eddy momentum fluxes are also very similar. This is despite the fact that the upper-level EP flux divergence is very different between the two simulations (upper-level EP flux divergence must remain constant in the constant heating simulation while in the standard simulation there is no such constraint). The upper-level balances are maintained by a large change in the baroclinic wave source (i.e. vertical EP flux), which is accompanied by little momentum flux change. Therefore the eddy momentum fluxes appear to be relatively insensitive to the wave activity source. A more detailed comparison suggests a helpful rule-of-thumb relating the amplitude of the baroclinic wave source to the upper-level vorticity flux forced by this wave source.

  17. Quantum feedback cooling of a mechanical oscillator using variational measurements: tweaking Heisenberg’s microscope

    NASA Astrophysics Data System (ADS)

    Habibi, Hojat; Zeuthen, Emil; Ghanaatshoar, Majid; Hammerer, Klemens

    2016-08-01

    We revisit the problem of preparing a mechanical oscillator in the vicinity of its quantum-mechanical ground state by means of feedback cooling based on continuous optical detection of the oscillator position. In the parameter regime relevant to ground-state cooling, the optical back-action and imprecision noise set the bottleneck of achievable cooling and must be carefully balanced. This can be achieved by adapting the phase of the local oscillator in the homodyne detection realizing a so-called variational measurement. The trade-off between accurate position measurement and minimal disturbance can be understood in terms of Heisenberg’s microscope and becomes particularly relevant when the measurement and feedback processes happen to be fast within the quantum coherence time of the system to be cooled. This corresponds to the regime of large quantum cooperativity {C}{{q}}≳ 1, which was achieved in recent experiments on feedback cooling. Our method provides a simple path to further pushing the limits of current state-of-the-art experiments in quantum optomechanics.

  18. Demonstrating real-time feedback that enhances the performance of measurement sequence with cat states in a cavity

    NASA Astrophysics Data System (ADS)

    Ofek, N.; Petrenko, A.; Liu, Y.; Vlastakis, B.; Sun, L.; Leghtas, Z.; Heeres, R.; Sliwa, K. M.; Mirrahimi, M.; Jiang, L.; Devoret, M. H.; Schoelkopf, R. J.

    2015-03-01

    Real-time feedback offers not just the convenience of streamlined data acquisition, but is an essential element in any quantum computational architecture that requires branching based on measurement outcomes. State-preparation, mitigating the effects of qubit decoherence, and recording the trajectories of quantum systems are just a few of the many potential applications of real-time feedback. Photon number parity measurements of cat states in superconducting resonators are a particularly useful platform for demonstrating the clear advantages of having sophisticated feedback schemes to enhance the performance a proposed error-correction protocol [Leghtas et.al. PRL 2013]. In a cQED architecture, where a transmon qubit is coupled to two superconducting cavities, we present a field-programmable gate array (FPGA) device capable of making decisions and calculations with latency times far shorter than the lifetimes of any of the system's constituents. This level of performance opens the door to realizing many complex, previously unfeasible, experiments in superconducting qubit systems.

  19. Linear state feedback, quadratic weights, and closed loop eigenstructures. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.

    1979-01-01

    Results are given on the relationships between closed loop eigenstructures, state feedback gain matrices of the linear state feedback problem, and quadratic weights of the linear quadratic regulator. Equations are derived for the angles of general multivariable root loci and linear quadratic optimal root loci, including angles of departure and approach. The generalized eigenvalue problem is used for the first time to compute angles of approach. Equations are also derived to find the sensitivity of closed loop eigenvalues and the directional derivatives of closed loop eigenvectors (with respect to a scalar multiplying the feedback gain matrix or the quadratic control weight). An equivalence class of quadratic weights that produce the same asymptotic eigenstructure is defined, sufficient conditions to be in it are given, a canonical element is defined, and an algorithm to find it is given. The behavior of the optimal root locus in the nonasymptotic region is shown to be different for quadratic weights with the same asymptotic properties.

  20. Investigation, development and application of optimal output feedback theory. Volume 2: Development of an optimal, limited state feedback outer-loop digital flight control system for 3-D terminal area operation

    NASA Technical Reports Server (NTRS)

    Broussard, J. R.; Halyo, N.

    1984-01-01

    This report contains the development of a digital outer-loop three dimensional radio navigation (3-D RNAV) flight control system for a small commercial jet transport. The outer-loop control system is designed using optimal stochastic limited state feedback techniques. Options investigated using the optimal limited state feedback approach include integrated versus hierarchical control loop designs, 20 samples per second versus 5 samples per second outer-loop operation and alternative Type 1 integration command errors. Command generator tracking techniques used in the digital control design enable the jet transport to automatically track arbitrary curved flight paths generated by waypoints. The performance of the design is demonstrated using detailed nonlinear aircraft simulations in the terminal area, frequency domain multi-input sigma plots, frequency domain single-input Bode plots and closed-loop poles. The response of the system to a severe wind shear during a landing approach is also presented.

  1. Learning of Liquid Quantity Relationships as a Function of Rules and Feedback, Number of Training Problems, and Age of Subject.

    ERIC Educational Resources Information Center

    Siegler, Robert S.; Liebert, Robert M.

    To replicate the findings of a previous experiment in which it was shown that the systematic presentation of rules and feedback on conservation and conservation-related problems can be employed to teach young children the traditional (Piagetian) liquid quantity problem rapidly, an analysis was made of the role of two others variables: (1) use of…

  2. Reflection as a component of formative assessment appears to be instrumental in promoting the use of feedback; an observational study.

    PubMed

    Pelgrim, E A M; Kramer, A W M; Mokkink, H G A; van der Vleuten, C P M

    2013-09-01

    Although the literature suggests that reflection has a positive impact on learning, there is a paucity of evidence to support this notion. We investigated feedback and reflection in relation to the likelihood that feedback will be used to inform action plans. We hypothesised that feedback and reflection present a cumulative sequence (i.e. trainers only pay attention to trainees' reflections when they provided specific feedback) and we hypothesised a supplementary effect of reflection. We analysed copies of assessment forms containing trainees' reflections and trainers' feedback on observed clinical performance. We determined whether the response patterns revealed cumulative sequences in line with the Guttman scale. We further examined the relationship between reflection, feedback and the mean number of specific comments related to an action plan (ANOVA) and we calculated two effect sizes. Both hypotheses were confirmed by the results. The response pattern found showed an almost perfect fit with the Guttman scale (0.99) and reflection seems to have supplementary effect on the variable action plan. Reflection only occurs when a trainer has provided specific feedback; trainees who reflect on their performance are more likely to make use of feedback. These results confirm findings and suggestions reported in the literature.

  3. The Impact of Low-Level Cloud Feedback on Persistent Changes in Atmospheric Circulation in the Pacific

    NASA Astrophysics Data System (ADS)

    Burgman, R.; Kirtman, B. P.; Clement, A. C.; Vazquez, H.

    2017-12-01

    Recent studies suggest that low clouds in the Pacific play an important role in the observed decadal climate variability and future climate change. In this study, we implement a novel modeling experiment designed to isolate how interactions between local and remote feedbacks associated with low cloud, SSTs, and the largescale circulation play a significant role in the observed persistence of tropical Pacific SST and associated North American drought. The modeling approach involves the incorporation of observed patterns of satellite-derived shortwave cloud radiative effect (SWCRE) into the coupled model framework and is ideally suited for examining the role of local and large-scale coupled feedbacks and ocean heat transport in Pacific decadal variability. We show that changes in SWCRE forcing in eastern subtropical Pacific alone reproduces much of the observed changes in SST and atmospheric circulation over the past 16 years, including the observed changes in precipitation over much of the Western Hemisphere.

  4. Climate change and water table fluctuation: Implications for raised bog surface variability

    NASA Astrophysics Data System (ADS)

    Taminskas, Julius; Linkevičienė, Rita; Šimanauskienė, Rasa; Jukna, Laurynas; Kibirkštis, Gintautas; Tamkevičiūtė, Marija

    2018-03-01

    Cyclic peatland surface variability is influenced by hydrological conditions that highly depend on climate and/or anthropogenic activities. A low water level leads to a decrease of peatland surface and an increase of C emissions into the atmosphere, whereas a high water level leads to an increase of peatland surface and carbon sequestration in peatlands. The main aim of this article is to evaluate the influence of hydrometeorological conditions toward the peatland surface and its feedback toward the water regime. A regional survey of the raised bog water table fluctuation and surface variability was made in one of the largest peatlands in Lithuania. Two appropriate indicators for different peatland surface variability periods (increase and decrease) were detected. The first one is an 200 mm y- 1 average net rainfall over a three-year range. The second one is an average annual water depth of 25-30 cm. The application of these indicators enabled the reconstruction of Čepkeliai peatland surface variability during a 100 year period. Processes of peatland surface variability differ in time and in separate parts of peatland. Therefore, internal subbasins in peatland are formed. Subbasins involve autogenic processes that can later affect their internal hydrology, nutrient status, and vegetation succession. Internal hydrological conditions, surface fluctuation, and vegetation succession in peatland subbasins should be taken into account during evaluation of their state, nature management projects, and other peatland research works.

  5. Outflows in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Diaz Trigo, M.

    2017-10-01

    Accretion onto neutron stars and black holes powers the most luminous phenomena in the Universe. Associated to it is the existence of outflows, in the form of uncollimated winds or highly collimated relativistic jets. The origin of outflows and their feedback to the environment is one of the most debated topics in astrophysics today. In this talk I will review the current understanding of accretion disc winds in X-ray binaries, their launching mechanism and their relation to specific accretion states. I will also discuss the potential interplay between the appearance/disappearance of such winds and relativistic jets and the insight gained with ongoing multi-wavelength observational programmes focused on the variability of such phenomena.

  6. Consideration of computer limitations in implementing on-line controls. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Roberts, G. K.

    1976-01-01

    A formal statement of the optimal control problem which includes the interval of dicretization as an optimization parameter, and extend this to include selection of a control algorithm as part of the optimization procedure, is formulated. The performance of the scalar linear system depends on the discretization interval. Discrete-time versions of the output feedback regulator and an optimal compensator, and the use of these results in presenting an example of a system for which fast partial-state-feedback control better minimizes a quadratic cost than either a full-state feedback control or a compensator, are developed.

  7. Coevolution of nonlinear trends in vegetation, soils, and topography with elevation and slope aspect: A case study in the sky islands of southern Arizona

    NASA Astrophysics Data System (ADS)

    Pelletier, Jon D.; Barron-Gafford, Greg A.; Breshears, David D.; Brooks, Paul D.; Chorover, Jon; Durcik, Matej; Harman, Ciaran J.; Huxman, Travis E.; Lohse, Kathleen A.; Lybrand, Rebecca; Meixner, Tom; McIntosh, Jennifer C.; Papuga, Shirley A.; Rasmussen, Craig; Schaap, Marcel; Swetnam, Tyson L.; Troch, Peter A.

    2013-06-01

    among vegetation dynamics, pedogenesis, and topographic development affect the "critical zone"—the living filter for Earth's hydrologic, biogeochemical, and rock/sediment cycles. Assessing the importance of such feedbacks, which may be particularly pronounced in water-limited systems, remains a fundamental interdisciplinary challenge. The sky islands of southern Arizona offer an unusually well-defined natural experiment involving such feedbacks because mean annual precipitation varies by a factor of five over distances of approximately 10 km in areas of similar rock type (granite) and tectonic history. Here we compile high-resolution, spatially distributed data for Effective Energy and Mass Transfer (EEMT: the energy available to drive bedrock weathering), above-ground biomass, soil thickness, hillslope-scale topographic relief, and drainage density in two such mountain ranges (Santa Catalina: SCM; Pinaleño: PM). Strong correlations exist among vegetation-soil-topography variables, which vary nonlinearly with elevation, such that warm, dry, low-elevation portions of these ranges are characterized by relatively low above-ground biomass, thin soils, minimal soil organic matter, steep slopes, and high drainage densities; conversely, cooler, wetter, higher elevations have systematically higher biomass, thicker organic-rich soils, gentler slopes, and lower drainage densities. To test if eco-pedo-geomorphic feedbacks drive this pattern, we developed a landscape evolution model that couples pedogenesis and topographic development over geologic time scales, with rates explicitly dependent on vegetation density. The model self-organizes into states similar to those observed in SCM and PM. Our results highlight the potential importance of eco-pedo-geomorphic feedbacks, mediated by soil thickness, in water-limited systems.

  8. Why we shouldn't underestimate the impact of plant functional diversity

    NASA Astrophysics Data System (ADS)

    Groner, V.; Raddatz, T.; Reick, C. H.; Claussen, M.

    2017-12-01

    We present a series of coupled land-atmosphere simulations with different combinations of plant functional types (PFTs) from mid-Holocene to preindustrial to show how plant functional diversity affects simulated climate-vegetation interaction under changing environmental conditions in subtropical Africa. Scientists nowadays agree that the establishment of the ``green'' Sahara was triggered by external changes in the Earth's orbit and amplified by internal feedback mechanisms. The timing and abruptness of the transition to the ``desert'' state are in turn still under debate. While some previous studies indicated an abrupt collapse of vegetation implying a strong climate-vegetation feedback, others suggested a gradual vegetation decline thereby questioning the existence of a strong climate-vegetation feedback. However, none of these studies explicitly accounted for the role of plant diversity. We show that the introduction or removal of a single PFT can bring about significant impacts on the simulated climate-vegetation system response to changing orbital forcing. While simulations with the standard set of PFTs show a gradual decrease of precipitation and vegetation cover over time, the reduction of plant functional diversity can cause either an abrupt decline of both variables or an even slower response to the external forcing. PFT composition seems to be the decisive factor for the system response to external forcing, and an increase in plant functional diversity does not necessarily increase the stability of the climate-vegetation system. From this we conclude that accounting for plant functional diversity in future studies - not only on palaeo climates - could significantly improve the understanding of climate-vegetation interaction in semi-arid regions, the predictability of the vegetation response to changing climate, and respectively, of the resulting feedback on precipitation.

  9. Feedback between Population and Evolutionary Dynamics Determines the Fate of Social Microbial Populations

    PubMed Central

    Sanchez, Alvaro; Gore, Jeff

    2013-01-01

    The evolutionary spread of cheater strategies can destabilize populations engaging in social cooperative behaviors, thus demonstrating that evolutionary changes can have profound implications for population dynamics. At the same time, the relative fitness of cooperative traits often depends upon population density, thus leading to the potential for bi-directional coupling between population density and the evolution of a cooperative trait. Despite the potential importance of these eco-evolutionary feedback loops in social species, they have not yet been demonstrated experimentally and their ecological implications are poorly understood. Here, we demonstrate the presence of a strong feedback loop between population dynamics and the evolutionary dynamics of a social microbial gene, SUC2, in laboratory yeast populations whose cooperative growth is mediated by the SUC2 gene. We directly visualize eco-evolutionary trajectories of hundreds of populations over 50–100 generations, allowing us to characterize the phase space describing the interplay of evolution and ecology in this system. Small populations collapse despite continual evolution towards increased cooperative allele frequencies; large populations with a sufficient number of cooperators “spiral” to a stable state of coexistence between cooperator and cheater strategies. The presence of cheaters does not significantly affect the equilibrium population density, but it does reduce the resilience of the population as well as its ability to adapt to a rapidly deteriorating environment. Our results demonstrate the potential ecological importance of coupling between evolutionary dynamics and the population dynamics of cooperatively growing organisms, particularly in microbes. Our study suggests that this interaction may need to be considered in order to explain intraspecific variability in cooperative behaviors, and also that this feedback between evolution and ecology can critically affect the demographic fate of those species that rely on cooperation for their survival. PMID:23637571

  10. A boundary PDE feedback control approach for the stabilization of mortgage price dynamics

    NASA Astrophysics Data System (ADS)

    Rigatos, G.; Siano, P.; Sarno, D.

    2017-11-01

    Several transactions taking place in financial markets are dependent on the pricing of mortgages (loans for the purchase of residences, land or farms). In this article, a method for stabilization of mortgage price dynamics is developed. It is considered that mortgage prices follow a PDE model which is equivalent to a multi-asset Black-Scholes PDE. Actually it is a diffusion process evolving in a 2D assets space, where the first asset is the house price and the second asset is the interest rate. By applying semi-discretization and a finite differences scheme this multi-asset PDE is transformed into a state-space model consisting of ordinary nonlinear differential equations. For the local subsystems, into which the mortgage PDE is decomposed, it becomes possible to apply boundary-based feedback control. The controller design proceeds by showing that the state-space model of the mortgage price PDE stands for a differentially flat system. Next, for each subsystem which is related to a nonlinear ODE, a virtual control input is computed, that can invert the subsystem's dynamics and can eliminate the subsystem's tracking error. From the last row of the state-space description, the control input (boundary condition) that is actually applied to the multi-factor mortgage price PDE system is found. This control input contains recursively all virtual control inputs which were computed for the individual ODE subsystems associated with the previous rows of the state-space equation. Thus, by tracing the rows of the state-space model backwards, at each iteration of the control algorithm, one can finally obtain the control input that should be applied to the mortgage price PDE system so as to assure that all its state variables will converge to the desirable setpoints. By showing the feasibility of such a control method it is also proven that through selected modification of the PDE boundary conditions the price of the mortgage can be made to converge and stabilize at specific reference values.

  11. Cooperative learning neural network output feedback control of uncertain nonlinear multi-agent systems under directed topologies

    NASA Astrophysics Data System (ADS)

    Wang, W.; Wang, D.; Peng, Z. H.

    2017-09-01

    Without assuming that the communication topologies among the neural network (NN) weights are to be undirected and the states of each agent are measurable, the cooperative learning NN output feedback control is addressed for uncertain nonlinear multi-agent systems with identical structures in strict-feedback form. By establishing directed communication topologies among NN weights to share their learned knowledge, NNs with cooperative learning laws are employed to identify the uncertainties. By designing NN-based κ-filter observers to estimate the unmeasurable states, a new cooperative learning output feedback control scheme is proposed to guarantee that the system outputs can track nonidentical reference signals with bounded tracking errors. A simulation example is given to demonstrate the effectiveness of the theoretical results.

  12. Noise suppression for micromechanical resonator via intrinsic dynamic feedback

    NASA Astrophysics Data System (ADS)

    Ian, Hou; Gong, Zhi-Rui; Sun, Chang-Pu

    2008-09-01

    We study a dynamic mechanism to passively suppress the thermal noise of a micromechanical resonator through an intrinsic self-feedback that is genuinely non-Markovian. We use two coupled resonators, one as the target resonator and the other as an ancillary resonator, to illustrate the mechanism and its noise reduction effect. The intrinsic feedback is realized through the dynamics of coupling between the two resonators: the motions of the target resonator and the ancillary resonator mutually inthence each other in a cyclic fashion. Specifically, the states that the target resonator has attained earlier will affect the state it attains later due to the presence of the ancillary resonator. We show that the feedback mechanism will bring forth the effect of noise suppression in the spectrum of displacement, but not in the spectrum of momentum.

  13. Quantifying the Hydrologic Effect of Climate Variability in the Lower Colorado Basin

    NASA Astrophysics Data System (ADS)

    Switanek, M.; Troch, P. A.

    2007-12-01

    Regional climate patterns are driven in large part by ocean states and associated atmospheric circulations, but modified through feedbacks from land surface conditions. The latter defines the climate elasticity of a river basin. Many regions that lie between semi-arid and semi-humid zones with seasonal rainfall, for instance, experience prolonged periods of wet and dry spells. Understanding the triggers that bring a river basin from one state (e.g. wet period of late 90s in the Colorado basin) abruptly to another state (multi-year drought initiated in 2001 to present) is what motivates the present study. Our research methodology investigates the causes of regional climate variability and its effect on hydrologic response. By correlating, using different monthly time lags, sea surface temperatures (SST) and sea level pressures (SLP) with basin averaged precipitation and surface temperature, we determine the most influential regions of the Pacific Ocean on lower Colorado climate variability. Using the most correlated data for each month, we derive precipitation and temperature distributions under similar conditions to that of the El Niño Southern Oscillation (ENSO). We compare the distributions of the climatic data, given ENSO constraints on SST and SLP, to the distributions considering non-ENSO years. Finally, we use observed stream flows and climatic data to determine the basin's climate elasticity. This allows us to quantitatively translate the predicted regional climate effects of ENSO on hydrologic response. Our presentation will use data for the Little Colorado as an example to demonstrate the procedure and produce preliminary results.

  14. Linear-Quadratic-Gaussian Regulator Developed for a Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.

    2002-01-01

    Linear-Quadratic-Gaussian (LQG) control is a modern state-space technique for designing optimal dynamic regulators. It enables us to trade off regulation performance and control effort, and to take into account process and measurement noise. The Structural Mechanics and Dynamics Branch at the NASA Glenn Research Center has developed an LQG control for a fault-tolerant magnetic bearing suspension rig to optimize system performance and to reduce the sensor and processing noise. The LQG regulator consists of an optimal state-feedback gain and a Kalman state estimator. The first design step is to seek a state-feedback law that minimizes the cost function of regulation performance, which is measured by a quadratic performance criterion with user-specified weighting matrices, and to define the tradeoff between regulation performance and control effort. The next design step is to derive a state estimator using a Kalman filter because the optimal state feedback cannot be implemented without full state measurement. Since the Kalman filter is an optimal estimator when dealing with Gaussian white noise, it minimizes the asymptotic covariance of the estimation error.

  15. Sources of Intermodel Spread in the Lapse Rate and Water Vapor Feedbacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Po-Chedley, Stephen; Armour, Kyle C.; Bitz, Cecilia M.

    Sources of intermodel differences in the global lapse rate (LR) and water vapor (WV) feedbacks are assessed using CO 2 forcing simulations from 28 general circulation models. Tropical surface warming leads to significant warming and moistening in the tropical and extratropical upper troposphere, signifying a nonlocal, tropical influence on extratropical radiation and feedbacks. Model spread in the locally defined LR and WV feedbacks is pronounced in the Southern Ocean because of large-scale ocean upwelling, which reduces surface warming and decouples the surface from the tropospheric response. The magnitude of local extratropical feedbacks across models and over time is well characterizedmore » using the ratio of tropical to extratropical surface warming. It is shown that model differences in locally defined LR and WV feedbacks, particularly over the southern extratropics, drive model variability in the global feedbacks. The cross-model correlation between the global LR and WV feedbacks therefore does not arise from their covariation in the tropics, but rather from the pattern of warming exerting a common control on extratropical feedback responses. Because local feedbacks over the Southern Hemisphere are an important contributor to the global feedback, the partitioning of surface warming between the tropics and the southern extratropics is a key determinant of the spread in the global LR and WV feedbacks. It is also shown that model Antarctic sea ice climatology influences sea ice area changes and southern extratropical surface warming. In conclusion, as a result, model discrepancies in climatological Antarctic sea ice area have a significant impact on the intermodel spread of the global LR and WV feedbacks.« less

  16. Sources of Intermodel Spread in the Lapse Rate and Water Vapor Feedbacks

    DOE PAGES

    Po-Chedley, Stephen; Armour, Kyle C.; Bitz, Cecilia M.; ...

    2018-03-23

    Sources of intermodel differences in the global lapse rate (LR) and water vapor (WV) feedbacks are assessed using CO 2 forcing simulations from 28 general circulation models. Tropical surface warming leads to significant warming and moistening in the tropical and extratropical upper troposphere, signifying a nonlocal, tropical influence on extratropical radiation and feedbacks. Model spread in the locally defined LR and WV feedbacks is pronounced in the Southern Ocean because of large-scale ocean upwelling, which reduces surface warming and decouples the surface from the tropospheric response. The magnitude of local extratropical feedbacks across models and over time is well characterizedmore » using the ratio of tropical to extratropical surface warming. It is shown that model differences in locally defined LR and WV feedbacks, particularly over the southern extratropics, drive model variability in the global feedbacks. The cross-model correlation between the global LR and WV feedbacks therefore does not arise from their covariation in the tropics, but rather from the pattern of warming exerting a common control on extratropical feedback responses. Because local feedbacks over the Southern Hemisphere are an important contributor to the global feedback, the partitioning of surface warming between the tropics and the southern extratropics is a key determinant of the spread in the global LR and WV feedbacks. It is also shown that model Antarctic sea ice climatology influences sea ice area changes and southern extratropical surface warming. In conclusion, as a result, model discrepancies in climatological Antarctic sea ice area have a significant impact on the intermodel spread of the global LR and WV feedbacks.« less

  17. On the dynamic forcing of short-term climate fluctuations by feedback mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiter, E.R.

    1979-09-01

    The energies involved in the general circulation of the atmosphere, especially the zonal available potential energy, show considerable interannual variability, suggesting the presence of various internal feedback mechanisms in the ocean-atmosphere system. Sea-surface temperature (SST) variations appear to have some effect on the hydrological cycle. The possible existence of feedback mechanisms between ocean and atmosphere seem to be evident in some of the data from the North Pacific and North Atlantic. One of these proposed mechanisms involves the variation in the convergence between the North and South Pacific trade-wind systems and is strongly reflected in rainfall variability within the drymore » region of the equatorial Pacific. Similar variations appear in low-latitude SST anomalies. The convergence between the two trade-wind systems in the Atlantic region also undergoes marked interannual variations. This quasi-biennial oscillation (QBO) in trade-wind convergence over the Atlantic appears to be tied to the global QBO of equatorial stratospheric winds and to regional rainfall regimes in the dry region of northeastern Brazil. A variability pattern of SST's with a QBO has been detected off the coast of Senegal, in the Gulf of Guinea and even in the Gulf Stream as it leaves the North American continental shelf. Possible physical connections between some of these QBO's are pointed out by a hypothetical feedback model. It is also suggested that interaction of a QBO with the annual cycle may lead to beating frequencies resembling climatic trends of a duration of several years.« less

  18. Beyond individualism: professional culture and its influence on feedback.

    PubMed

    Watling, Christopher; Driessen, Erik; van der Vleuten, Cees P M; Vanstone, Meredith; Lingard, Lorelei

    2013-06-01

    Although feedback is widely considered essential to learning, its actual influence on learners is variable. Research on responsivity to feedback has tended to focus on individual rather than social or cultural influences on learning. In this study, we explored how feedback is handled within different professional cultures, and how the characteristics and values of a profession shape learners' responses to feedback. Using a constructivist grounded theory approach, we conducted 12 focus groups and nine individual interviews (with a total of 50 participants) across three cultures of professional training in, respectively, music, teacher training and medicine. Constant comparative analysis for recurring themes was conducted iteratively. Each of the three professional cultures created a distinct context for learning that influenced how feedback was handled. Despite these contextual differences, credibility and constructiveness emerged as critical constants, identified by learners across cultures as essential for feedback to be perceived as meaningful. However, the definitions of credibility and constructiveness were distinct to each professional culture and the cultures varied considerably in how effectively they supported the occurrence of feedback with these critical characteristics. Professions define credibility and constructiveness in culturally specific ways and create contexts for learning that may either facilitate or constrain the provision of meaningful feedback. Comparison with other professional cultures may offer strategies for creating a productive feedback culture within medical education. © 2013 John Wiley & Sons Ltd.

  19. On synchronisation of a class of complex chaotic systems with complex unknown parameters via integral sliding mode control

    NASA Astrophysics Data System (ADS)

    Tirandaz, Hamed; Karami-Mollaee, Ali

    2018-06-01

    Chaotic systems demonstrate complex behaviour in their state variables and their parameters, which generate some challenges and consequences. This paper presents a new synchronisation scheme based on integral sliding mode control (ISMC) method on a class of complex chaotic systems with complex unknown parameters. Synchronisation between corresponding states of a class of complex chaotic systems and also convergence of the errors of the system parameters to zero point are studied. The designed feedback control vector and complex unknown parameter vector are analytically achieved based on the Lyapunov stability theory. Moreover, the effectiveness of the proposed methodology is verified by synchronisation of the Chen complex system and the Lorenz complex systems as the leader and the follower chaotic systems, respectively. In conclusion, some numerical simulations related to the synchronisation methodology is given to illustrate the effectiveness of the theoretical discussions.

  20. Finite-time mixed outer synchronization of complex networks with coupling time-varying delay.

    PubMed

    He, Ping; Ma, Shu-Hua; Fan, Tao

    2012-12-01

    This article is concerned with the problem of finite-time mixed outer synchronization (FMOS) of complex networks with coupling time-varying delay. FMOS is a recently developed generalized synchronization concept, i.e., in which different state variables of the corresponding nodes can evolve into finite-time complete synchronization, finite-time anti-synchronization, and even amplitude finite-time death simultaneously for an appropriate choice of the controller gain matrix. Some novel stability criteria for the synchronization between drive and response complex networks with coupling time-varying delay are derived using the Lyapunov stability theory and linear matrix inequalities. And a simple linear state feedback synchronization controller is designed as a result. Numerical simulations for two coupled networks of modified Chua's circuits are then provided to demonstrate the effectiveness and feasibility of the proposed complex networks control and synchronization schemes and then compared with the proposed results and the previous schemes for accuracy.

  1. A guidance and navigation system for continuous low thrust vehicles. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Tse, C. J. C.

    1973-01-01

    A midcourse guidance and navigation system for continuous low thrust vehicles is described. A set of orbit elements, known as the equinoctial elements, are selected as the state variables. The uncertainties are modelled statistically by random vector and stochastic processes. The motion of the vehicle and the measurements are described by nonlinear stochastic differential and difference equations respectively. A minimum time nominal trajectory is defined and the equation of motion and the measurement equation are linearized about this nominal trajectory. An exponential cost criterion is constructed and a linear feedback guidance law is derived to control the thrusting direction of the engine. Using this guidance law, the vehicle will fly in a trajectory neighboring the nominal trajectory. The extended Kalman filter is used for state estimation. Finally a short mission using this system is simulated. The results indicate that this system is very efficient for short missions.

  2. Computer aided design of digital controller for radial active magnetic bearings

    NASA Technical Reports Server (NTRS)

    Cai, Zhong; Shen, Zupei; Zhang, Zuming; Zhao, Hongbin

    1992-01-01

    A five degree of freedom Active Magnetic Bearing (AMB) system is developed which is controlled by digital controllers. The model of the radial AMB system is linearized and the state equation is derived. Based on the state variables feedback theory, digital controllers are designed. The performance of the controllers are evaluated according to experimental results. The Computer Aided Design (CAD) method is used to design controllers for magnetic bearings. The controllers are implemented with a digital signal processing (DSP) system. The control algorithms are realized with real-time programs. It is very easy to change the controller by changing or modifying the programs. In order to identify the dynamic parameters of the controlled magnetic system, a special experiment was carried out. Also, the online Recursive Least Squares (RLS) parameter identification method is studied. It can be realized with the digital controllers. Online parameter identification is essential for the realization of an adaptive controller.

  3. Multivariable control altitude demonstration on the F100 turbofan engine

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.; Dehoff, R. L.; Hackney, R. D.

    1979-01-01

    The F100 Multivariable control synthesis (MVCS) program, was aimed at demonstrating the benefits of LGR synthesis theory in the design of a multivariable engine control system for operation throughout the flight envelope. The advantages of such procedures include: (1) enhanced performance from cross-coupled controls, (2) maximum use of engine variable geometry, and (3) a systematic design procedure that can be applied efficiently to new engine systems. The control system designed, under the MVCS program, for the Pratt & Whitney F100 turbofan engine is described. Basic components of the control include: (1) a reference value generator for deriving a desired equilibrium state and an approximate control vector, (2) a transition model to produce compatible reference point trajectories during gross transients, (3) gain schedules for producing feedback terms appropriate to the flight condition, and (4) integral switching logic to produce acceptable steady-state performance without engine operating limit exceedance.

  4. Mountain hydrology of the western United States

    USGS Publications Warehouse

    Bales, Roger C.; Molotch, Noah P.; Painter, Thomas H; Dettinger, Michael D.; Rice, Robert; Dozier, Jeff

    2006-01-01

    Climate change and climate variability, population growth, and land use change drive the need for new hydrologic knowledge and understanding. In the mountainous West and other similar areas worldwide, three pressing hydrologic needs stand out: first, to better understand the processes controlling the partitioning of energy and water fluxes within and out from these systems; second, to better understand feedbacks between hydrological fluxes and biogeochemical and ecological processes; and, third, to enhance our physical and empirical understanding with integrated measurement strategies and information systems. We envision an integrative approach to monitoring, modeling, and sensing the mountain environment that will improve understanding and prediction of hydrologic fluxes and processes. Here extensive monitoring of energy fluxes and hydrologic states are needed to supplement existing measurements, which are largely limited to streamflow and snow water equivalent. Ground‐based observing systems must be explicitly designed for integration with remotely sensed data and for scaling up to basins and whole ranges.

  5. Educator and participant perceptions and cost analysis of stage-tailored educational telephone calls.

    PubMed

    Esters, Onikia N; Boeckner, Linda S; Hubert, Melanie; Horacek, Tanya; Kritsch, Karen R; Oakland, Mary J; Lohse, Barbara; Greene, Geoffrey; Nitzke, Susan

    2008-01-01

    To identify strengths and weaknesses of nutrition education via telephone calls as part of a larger stage-of-change tailored intervention with mailed materials. Evaluative feedback was elicited from educators who placed the calls and respondents who received the calls. An internet and telephone survey of 10 states in the midwestern United States. 21 educators in 10 states reached via the internet and 50 young adults reached via telephone. VARIABLES MEASURED AND ANALYSIS: Rankings of intervention components, ratings of key aspects of educational calls, and cost data (as provided by a lead researcher in each state) were summarized via descriptive statistics. RESULTS, CONCLUSIONS, AND IMPLICATIONS: Educational calls used 6 to 17 minutes of preparation time, required 8 to 15 minutes of contact time, and had a mean estimated cost of $5.82 per call. Low-income young adults favored print materials over educational calls. However, the calls were reported to have positive effects on motivating participants to set goals. Educators who use educational telephone calls to reach young adults, a highly mobile target audience, may require a robust and flexible contact plan.

  6. Biogeomorphic feedback between plant growth and flooding causes alternative stable states in an experimental floodplain

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Wang, Qiao; Meire, Dieter; Ma, Wandong; Wu, Chuanqing; Meng, Zhen; Van de Koppel, Johan; Troch, Peter; Verhoeven, Ronny; De Mulder, Tom; Temmerman, Stijn

    2016-07-01

    It is important to understand the mechanisms of vegetation establishment on bare substrate in a disturbance-driven ecosystem because of many valuable ecosystem services. This study tested for empirical indications of local alternative stable states controlled by biogeomorphic feedbacks using flume experiments with alfalfa: (1) single flood experiments different in flood intensity and plant growth, (2) long-term evolution experiments with repeated flooding and seeding. We observed: (1) a combination of thresholds in plant growth and flooding magnitude for upgrowing seedlings to survive; (2) bimodality in vegetation biomass after floods indicating the existence of two alternative states, either densely vegetated or bare; (3) facilitation of vegetation establishment by the spatial pattern formation of channels and sand bars. In conclusion, empirical indicators were demonstrated for local alternative stable states in a disturbance-driven ecosystem associated with biogeomorphic feedbacks, which could contribute to the protection and restoration of vegetation in such ecosystems.

  7. The devil is in the details: An investigation of the relationships between conflict, food price and climate across Africa.

    PubMed

    Raleigh, Clionadh; Choi, Hyun Jin; Kniveton, Dominic

    2015-05-01

    This study investigates the relationship between violent conflict, food price, and climate variability at the subnational level. Using disaggregated data on 113 African markets from January 1997 to April 2010, interrelationships between the three variables are analyzed in simultaneous equation models. We find that: (i) a positive feedback exists between food price and violence - higher food prices increase conflict rates within markets and conflict increases food prices; (ii) anomalously dry conditions are associated with increased frequencies of conflict; and (iii) decreased rainfall exerts an indirect effect on conflict through its impact on food prices. These findings suggest that the negative effects of climate variability on conflict can be mitigated by interventions and effective price management in local markets. Creating environments in which food prices are stable and reliable, and markets are accessible and safe, can lower the impacts of both climate change and conflict feedbacks.

  8. Inter-decadal change in El Niño-Southern Oscillation examined with Bjerknes stability index analysis

    NASA Astrophysics Data System (ADS)

    An, Soon-Il; Bong, Hayoung

    2016-08-01

    Characteristics of El Niño-Southern Oscillation (ENSO) have changed since the late 1970s as it synchronized with the Pacific Decadal Oscillation (PDO). In order to investigate the primary feedback process responsible for the interdecadal change in ENSO characteristics according to the PDO, using the ocean assimilation data (SODA) and the reanalysis data (NCEP/NCAR), we performed Bjerknes linear stability index (BJ index) analysis of two decadal periods: one before the late 1970s (the nPDO period) and the other after the late 1970s (the pPDO period). The BJ index for the pPDO period (-0.07 year-1 for the growth rate of the eastern Pacific SST anomaly) is significantly larger than that for the nPDO period (-0.25 year-1). The larger BJ index value is primarily due to the enhanced zonal advection feedback (ZA; +0.44 year-1), thermocline feedback (TH; +0.33 year-1), and the reduced damping by the mean meridional current (MD; +0.16 year-1). The increases in ZA and TH are mainly attributed to the shoaling of the mean thermocline depth, which increased the sensitivity of the ocean dynamic fields to the wind forcing; and the reduced MD is related to the reduced mean meridional current associated with the weakened trade wind. The enhanced positive feedback is partly compensated by the enhanced thermodynamic damping including the shortwave, sensible heat flux and latent heat flux (collectively, -0.88 year-1). Interestingly, the change in air-sea coupling strength from the nPDO to the pPDO period was small. Without the two extreme El Niño events (1982-1983 and 1997-1998) in the pPDO period (pPDO_noBIG), the difference in BJ index between nPDO and pPDO_noBIG periods became smaller (~0.07 year-1), indicating that the two extreme El Niño events largely contribute to the larger ENSO variability of the pPDO period, possibly due to nonlinear feedback processes. Nevertheless, qualitative similarity in each of the feedback and damping components of BJ index exists between the pPDO and pPDO_noBIG periods, which suggests that the tropical climate states of the pPDO period provided more favorable conditions for the emergence of extreme El Niño events by intensifying the linear feedback processes.

  9. An Investigation on the Use of Oral Corrective Feedback in Turkish EFL Classrooms

    ERIC Educational Resources Information Center

    Öztürk, Gökhan

    2016-01-01

    This classroom research study investigates corrective feedback implications in a sample of Turkish EFL classrooms. The types of corrective feedback, their distribution and the reasons of error ignorance were the foci. Four speaking classes in the English preparatory program of a Turkish state university were video-recorded for 12 hours in total…

  10. Detecting and Correcting Errors in Rapid Aiming Movements: Effects of Movement Time, Distance, and Velocity

    ERIC Educational Resources Information Center

    Sherwood, David E.

    2010-01-01

    According to closed-loop accounts of motor control, movement errors are detected by comparing sensory feedback to an acquired reference state. Differences between the reference state and the movement-produced feedback results in an error signal that serves as a basis for a correction. The main question addressed in the current study was how…

  11. Feedback-controlled heat transport in quantum devices: theory and solid-state experimental proposal

    NASA Astrophysics Data System (ADS)

    Campisi, Michele; Pekola, Jukka; Fazio, Rosario

    2017-05-01

    A theory of feedback-controlled heat transport in quantum systems is presented. It is based on modelling heat engines as driven multipartite systems subject to projective quantum measurements and measurement-conditioned unitary evolutions. The theory unifies various results presented previously in the literature. Feedback control breaks time reversal invariance. This in turn results in the fluctuation relation not being obeyed. Its restoration occurs through appropriate accounting of the gain and use of information via measurements and feedback. We further illustrate an experimental proposal for the realisation of a Maxwell demon using superconducting circuits and single-photon on-chip calorimetry. A two-level qubit acts as a trap-door, which, conditioned on its state, is coupled to either a hot resistor or a cold one. The feedback mechanism alters the temperatures felt by the qubit and can result in an effective inversion of temperature gradient, where heat flows from cold to hot thanks to the gain and use of information.

  12. Modulation of Emotional Appraisal by False Physiological Feedback during fMRI

    PubMed Central

    Gray, Marcus A.; Harrison, Neil A.; Wiens, Stefan; Critchley, Hugo D.

    2007-01-01

    Background James and Lange proposed that emotions are the perception of physiological reactions. Two-level theories of emotion extend this model to suggest that cognitive interpretations of physiological changes shape self-reported emotions. Correspondingly false physiological feedback of evoked or tonic bodily responses can alter emotional attributions. Moreover, anxiety states are proposed to arise from detection of mismatch between actual and anticipated states of physiological arousal. However, the neural underpinnings of these phenomena previously have not been examined. Methodology/Principal Findings We undertook a functional brain imaging (fMRI) experiment to investigate how both primary and second-order levels of physiological (viscerosensory) representation impact on the processing of external emotional cues. 12 participants were scanned while judging face stimuli during both exercise and non-exercise conditions in the context of true and false auditory feedback of tonic heart rate. We observed that the perceived emotional intensity/salience of neutral faces was enhanced by false feedback of increased heart rate. Regional changes in neural activity corresponding to this behavioural interaction were observed within included right anterior insula, bilateral mid insula, and amygdala. In addition, right anterior insula activity was enhanced during by asynchronous relative to synchronous cardiac feedback even with no change in perceived or actual heart rate suggesting this region serves as a comparator to detect physiological mismatches. Finally, BOLD activity within right anterior insula and amygdala predicted the corresponding changes in perceived intensity ratings at both a group and an individual level. Conclusions/Significance Our findings identify the neural substrates supporting behavioural effects of false physiological feedback, and highlight mechanisms that underlie subjective anxiety states, including the importance of the right anterior insula in guiding second-order “cognitive” representations of bodily arousal state. PMID:17579718

  13. Phase inverter provides variable reference push-pull output

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Dual-transistor difference amplifier provides a push-pull output referenced to a dc potential which can be varied without affecting the signal levels. The amplifier is coupled with a feedback circuit which can vary the operating points of the transistors by equal amounts to provide the variable reference potentials.

  14. Developing Adaptive and Intelligent Tutoring Systems (AITS): A General Framework and Its Implementations

    ERIC Educational Resources Information Center

    Hafidi, Mohamed; Bensebaa, Tahar

    2014-01-01

    Several adaptive and intelligent tutoring systems (AITS) have been developed with different variables. These variables were the cognitive traits, cognitive styles, and learning behavior. However, these systems neglect the importance of the learner's multiple intelligences, the learner's skill level and the learner's feedback when implementing…

  15. Annular modes and apparent eddy feedbacks in the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Byrne, Nicholas J.; Shepherd, Theodore G.; Woollings, Tim; Plumb, R. Alan

    2016-04-01

    Lagged correlation analysis is often used to infer intraseasonal dynamical effects but is known to be affected by nonstationarity. We highlight a pronounced quasi 2 year peak in the anomalous zonal wind and eddy momentum flux convergence power spectra in the Southern Hemisphere, which is prima facie evidence for nonstationarity. We then investigate the consequences of this nonstationarity for the Southern Annular Mode and for eddy momentum flux convergence. We argue that positive lagged correlations previously attributed to the existence of an eddy feedback are more plausibly attributed to nonstationary interannual variability external to any potential feedback process in the midlatitude troposphere. The findings have implications for the diagnosis of feedbacks in both models and reanalysis data as well as for understanding the mechanisms underlying variations in the zonal wind.

  16. Annular modes and apparent eddy feedbacks in the Southern Hemisphere.

    PubMed

    Byrne, Nicholas J; Shepherd, Theodore G; Woollings, Tim; Plumb, R Alan

    2016-04-28

    Lagged correlation analysis is often used to infer intraseasonal dynamical effects but is known to be affected by nonstationarity. We highlight a pronounced quasi 2 year peak in the anomalous zonal wind and eddy momentum flux convergence power spectra in the Southern Hemisphere, which is prima facie evidence for nonstationarity. We then investigate the consequences of this nonstationarity for the Southern Annular Mode and for eddy momentum flux convergence. We argue that positive lagged correlations previously attributed to the existence of an eddy feedback are more plausibly attributed to nonstationary interannual variability external to any potential feedback process in the midlatitude troposphere. The findings have implications for the diagnosis of feedbacks in both models and reanalysis data as well as for understanding the mechanisms underlying variations in the zonal wind.

  17. Stabilization of an inverted pendulum-cart system by fractional PI-state feedback.

    PubMed

    Bettayeb, M; Boussalem, C; Mansouri, R; Al-Saggaf, U M

    2014-03-01

    This paper deals with pole placement PI-state feedback controller design to control an integer order system. The fractional aspect of the control law is introduced by a dynamic state feedback as u(t)=K(p)x(t)+K(I)I(α)(x(t)). The closed loop characteristic polynomial is thus fractional for which the roots are complex to calculate. The proposed method allows us to decompose this polynomial into a first order fractional polynomial and an integer order polynomial of order n-1 (n being the order of the integer system). This new stabilization control algorithm is applied for an inverted pendulum-cart test-bed, and the effectiveness and robustness of the proposed control are examined by experiments. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  18. Eigenvalue assignment by minimal state-feedback gain in LTI multivariable systems

    NASA Astrophysics Data System (ADS)

    Ataei, Mohammad; Enshaee, Ali

    2011-12-01

    In this article, an improved method for eigenvalue assignment via state feedback in the linear time-invariant multivariable systems is proposed. This method is based on elementary similarity operations, and involves mainly utilisation of vector companion forms, and thus is very simple and easy to implement on a digital computer. In addition to the controllable systems, the proposed method can be applied for the stabilisable ones and also systems with linearly dependent inputs. Moreover, two types of state-feedback gain matrices can be achieved by this method: (1) the numerical one, which is unique, and (2) the parametric one, in which its parameters are determined in order to achieve a gain matrix with minimum Frobenius norm. The numerical examples are presented to demonstrate the advantages of the proposed method.

  19. EMG biofeedback: the effects of CRF, FR, VR, FI, and VI schedules of reinforcement on the acquisition and extinction of increases in forearm muscle tension.

    PubMed

    Cohen, S L; Richardson, J; Klebez, J; Febbo, S; Tucker, D

    2001-09-01

    Biofeedback was used to increase forearm-muscle tension. Feedback was delivered under continuous reinforcement (CRF), variable interval (VI), fixed interval (FI), variable ratio (VR), and fixed ratio (FR) schedules of reinforcement when college students increased their muscle tension (electromyograph, EMG) above a high threshold. There were three daily sessions of feedback, and Session 3 was immediately followed by a session without feedback (extinction). The CRF schedule resulted in the highest EMG, closely followed by the FR and VR schedules, and the lowest EMG scores were produced by the FI and VI schedules. Similarly, the CRF schedule resulted in the greatest amount of time-above-threshold and the VI and FI schedules produced the lowest time-above-threshold. The highest response rates were generated by the FR schedule, followed by the VR schedule. The CRF schedule produced relatively low response rates, comparable to the rates under the VI and FI schedules. Some of the data are consistent with the partial-reinforcement-extinction effect. The present data suggest that different schedules of feedback should be considered in muscle-strengthening-contexts such as during the rehabilitation of muscles following brain damage or peripheral nervous-system injury.

  20. ZAG-Otolith: Modification of Otolith-Ocular Reflexes, Motion Perception and Manual Control during Variable Radius Centrifugation Following Space Flight

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Clarke, A. H.; Rupert, A. H.; Harm, D. L.; Clement, G. R.

    2009-01-01

    Two joint ESA-NASA studies are examining changes in otolith-ocular reflexes and motion perception following short duration space flights, and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. METHODS. Data is currently being collected on astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation is utilized to elicit otolith reflexes in the lateral plane without concordant roll canal cues. Unilateral centrifugation (400 deg/s, 3.5 cm radius) stimulates one otolith positioned off-axis while the opposite side is centered over the axis of rotation. During this paradigm, roll-tilt perception is measured using a subjective visual vertical task and ocular counter-rolling is obtained using binocular video-oculography. During a second paradigm (216 deg/s, <20 cm radius), the effects of stimulus frequency (0.15 - 0.6 Hz) are examined on eye movements and motion perception. A closed-loop nulling task is also performed with and without vibrotactile display feedback of chair radial position. PRELIMINARY RESULTS. Data collection is currently ongoing. Results to date suggest there is a trend for perceived tilt and translation amplitudes to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. DISCUSSION. One result of this study will be to characterize the variability (gain, asymmetry) in both otolithocular responses and motion perception during variable radius centrifugation, and measure the time course of postflight recovery. This study will also address how adaptive changes in otolith-mediated reflexes correspond to one's ability to perform closed-loop nulling tasks following G-transitions, and whether manual control performance can be improved with vibrotactile feedback of orientation.

Top