NASA Astrophysics Data System (ADS)
Pearle, Philip
1982-03-01
In the problem of the gambler's ruin, a classic problem in probability theory, a number of gamblers play against each other until all but one of them is “wiped out.” It is shown that this problem is identical to a previously presented formulation of the reduction of the state vector, so that the state vectors in a linear superposition may be regarded as “playing” against each other until all but one of them is “wiped out.” This is a useful part of the description of an objectively real universe represented by a state vector that is a superposition of macroscopically distinguishable states dynamically created by the Hamiltonian and destroyed by the reduction mechanism.
Reduced Order Model Basis Vector Generation: Generates Basis Vectors fro ROMs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arrighi, Bill
2016-03-03
libROM is a library that implements order reduction via singular value decomposition (SVD) of sampled state vectors. It implements 2 parallel, incremental SVD algorithms and one serial, non-incremental algorithm. It also provides a mechanism for adaptive sampling of basis vectors.
Unsymmetric Lanczos model reduction and linear state function observer for flexible structures
NASA Technical Reports Server (NTRS)
Su, Tzu-Jeng; Craig, Roy R., Jr.
1991-01-01
This report summarizes part of the research work accomplished during the second year of a two-year grant. The research, entitled 'Application of Lanczos Vectors to Control Design of Flexible Structures' concerns various ways to use Lanczos vectors and Krylov vectors to obtain reduced-order mathematical models for use in the dynamic response analyses and in control design studies. This report presents a one-sided, unsymmetric block Lanczos algorithm for model reduction of structural dynamics systems with unsymmetric damping matrix, and a control design procedure based on the theory of linear state function observers to design low-order controllers for flexible structures.
Pure state consciousness and its local reduction to neuronal space
NASA Astrophysics Data System (ADS)
Duggins, A. J.
2013-01-01
The single neuronal state can be represented as a vector in a complex space, spanned by an orthonormal basis of integer spike counts. In this model a scalar element of experience is associated with the instantaneous firing rate of a single sensory neuron over repeated stimulus presentations. Here the model is extended to composite neural systems that are tensor products of single neuronal vector spaces. Depiction of the mental state as a vector on this tensor product space is intended to capture the unity of consciousness. The density operator is introduced as its local reduction to the single neuron level, from which the firing rate can again be derived as the objective correlate of a subjective element. However, the relational structure of perceptual experience only emerges when the non-local mental state is considered. A metric of phenomenal proximity between neuronal elements of experience is proposed, based on the cross-correlation function of neurophysiology, but constrained by the association of theoretical extremes of correlation/anticorrelation in inseparable 2-neuron states with identical and opponent elements respectively.
What is the current state of management practices for biosolids production and application, and how can those be made more effective? How effective are Class B disinfection and vector attraction processes, and public access and harvesting restrictions at reducing the public's exp...
Quasi-steady-state analysis of coupled flashing ratchets.
Levien, Ethan; Bressloff, Paul C
2015-10-01
We perform a quasi-steady-state (QSS) reduction of a flashing ratchet to obtain a Brownian particle in an effective potential. The resulting system is analytically tractable and yet preserves essential dynamical features of the full model. We first use the QSS reduction to derive an explicit expression for the velocity of a simple two-state flashing ratchet. In particular, we determine the relationship between perturbations from detailed balance, which are encoded in the transitions rates of the flashing ratchet, and a tilted-periodic potential. We then perform a QSS analysis of a pair of elastically coupled flashing ratchets, which reduces to a Brownian particle moving in a two-dimensional vector field. We suggest that the fixed points of this vector field accurately approximate the metastable spatial locations of the coupled ratchets, which are, in general, impossible to identify from the full system.
40 CFR 503.15 - Operational standards-pathogens and vector attraction reduction.
Code of Federal Regulations, 2011 CFR
2011-07-01
... vector attraction reduction. 503.15 Section 503.15 Protection of Environment ENVIRONMENTAL PROTECTION... § 503.15 Operational standards—pathogens and vector attraction reduction. (a) Pathogens—sewage sludge... reclamation site. (c) Vector attraction reduction—sewage sludge. (1) One of the vector attraction reduction...
40 CFR 503.25 - Operational standards-pathogens and vector attraction reduction.
Code of Federal Regulations, 2010 CFR
2010-07-01
... vector attraction reduction. 503.25 Section 503.25 Protection of Environment ENVIRONMENTAL PROTECTION... § 503.25 Operational standards—pathogens and vector attraction reduction. (a) Pathogens—sewage sludge... active sewage sludge unit, unless the vector attraction reduction requirement in § 503.33(b)(11) is met...
40 CFR 503.25 - Operational standards-pathogens and vector attraction reduction.
Code of Federal Regulations, 2011 CFR
2011-07-01
... vector attraction reduction. 503.25 Section 503.25 Protection of Environment ENVIRONMENTAL PROTECTION... § 503.25 Operational standards—pathogens and vector attraction reduction. (a) Pathogens—sewage sludge... active sewage sludge unit, unless the vector attraction reduction requirement in § 503.33(b)(11) is met...
NASA Astrophysics Data System (ADS)
Ouyang, Chunmei; Wang, Honghai; Shum, Ping; Fu, Songnian; Wong, Jia Haur; Wu, Kan; Lim, Desmond Rodney Chin Siong; Wong, Vincent Kwok Huei; Lee, Kenneth Eng Kian
2011-01-01
We experimentally demonstrate a passively mode-locked fiber laser employing a fiber-based semiconductor saturable absorber (SSA) operating in transmission. Polarization rotation locked vector solitons are observed in the laser. Due to the intrinsic dynamic feature of the laser, period-doubling of these vector solitons has also been observed. Furthermore, extra spectral sidebands are formed on the optical spectrum, caused by the energy exchange between the two orthogonal polarization components of the vector solitons. By careful reduction of the pump power together with fine adjustment to the cavity birefringence, period-one state can further be obtained. Additionally, the phase noise properties of the vector soliton fiber laser have also been characterized experimentally and analytically.
Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes
NASA Astrophysics Data System (ADS)
Wong, Jia Haur; Wu, Kan; Liu, Huan Huan; Ouyang, Chunmei; Wang, Honghai; Aditya, Sheel; Shum, Ping; Fu, Songnian; Kelleher, E. J. R.; Chernov, A.; Obraztsova, E. D.
2011-04-01
Polarization Rotation Locked Vector Solitons (PRLVSs) are experimentally observed for the first time in a fiber ring laser passively mode-locked by a single-wall carbon nanotube (SWCNT) saturable absorber. Period-doubling of these solitons at certain birefringence values has also been observed. We show that fine adjustment to the intracavity birefringence can swing the PRLVSs from period-doubled to period-one state without simultaneous reduction in the pump strength. The timing jitter for both states has also been measured experimentally and discussed analytically using the theoretical framework provided by the Haus model.
Airborne data measurement system errors reduction through state estimation and control optimization
NASA Astrophysics Data System (ADS)
Sebryakov, G. G.; Muzhichek, S. M.; Pavlov, V. I.; Ermolin, O. V.; Skrinnikov, A. A.
2018-02-01
The paper discusses the problem of airborne data measurement system errors reduction through state estimation and control optimization. The approaches are proposed based on the methods of experiment design and the theory of systems with random abrupt structure variation. The paper considers various control criteria as applied to an aircraft data measurement system. The physics of criteria is explained, the mathematical description and the sequence of steps for each criterion application is shown. The formula is given for airborne data measurement system state vector posterior estimation based for systems with structure variations.
Climate change and threat of vector-borne diseases in India: are we prepared?
Dhiman, Ramesh C; Pahwa, Sharmila; Dhillon, G P S; Dash, Aditya P
2010-03-01
It is unequivocal that climate change is happening and is likely to expand the geographical distribution of several vector-borne diseases, including malaria and dengue etc. to higher altitudes and latitudes. India is endemic for six major vector-borne diseases (VBD) namely malaria, dengue, chikungunya, filariasis, Japanese encephalitis and visceral leishmaniasis. Over the years, there has been reduction in the incidence of almost all the diseases except chikungunya which has re-emerged since 2005. The upcoming issue of climate change has surfaced as a new threat and challenge for ongoing efforts to contain vector-borne diseases. There is greater awareness about the potential impacts of climate change on VBDs in India and research institutions and national authorities have initiated actions to assess the impacts. Studies undertaken in India on malaria in the context of climate change impact reveal that transmission windows in Punjab, Haryana, Jammu and Kashmir and north-eastern states are likely to extend temporally by 2-3 months and in Orissa, Andhra Pradesh and Tamil Nadu there may be reduction in transmission windows. Using PRECIS model (driven by HadRM2) at the resolution of 50 x 50 Km for daily temperature and relative humidity for year 2050, it was found that Orissa, West Bengal and southern parts of Assam will still remain malarious and transmission windows will open up in Himachal Pradesh and north-eastern states etc. Impact of climate change on dengue also reveals increase in transmission with 2 C rise in temperature in northern India. Re-emergence of kala-azar in northern parts of India and reappearance of chikungunya mainly in southern states of India has also been discussed. The possible need to address the threat and efforts made in India have also been highlighted. The paper concludes with a positive lead that with better preparedness threat of climate change on vector-borne diseases may be negated.
40 CFR 503.27 - Recordkeeping.
Code of Federal Regulations, 2011 CFR
2011-07-01
... requirements is met) and the vector attraction reduction requirement in (insert one of the vector attraction... met. (iv) A description of how one of the vector attraction reduction requirements in § 503.33 (b)(1... attraction reduction requirement in (insert one of the requirements in § 503.33(b)(9) through § 503.33(b)(11...
40 CFR 503.10 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... pathogen requirements in § 503.32(a); and one of the vector attraction reduction requirements in § 503.33(b... of the vector attraction reduction requirements in § 503.33(b)(1) through (b)(8). (2) The Regional... requirements in § 503.32(a); and one of the vector attraction reduction requirements in § 503.33(b)(1) through...
Method for indexing and retrieving manufacturing-specific digital imagery based on image content
Ferrell, Regina K.; Karnowski, Thomas P.; Tobin, Jr., Kenneth W.
2004-06-15
A method for indexing and retrieving manufacturing-specific digital images based on image content comprises three steps. First, at least one feature vector can be extracted from a manufacturing-specific digital image stored in an image database. In particular, each extracted feature vector corresponds to a particular characteristic of the manufacturing-specific digital image, for instance, a digital image modality and overall characteristic, a substrate/background characteristic, and an anomaly/defect characteristic. Notably, the extracting step includes generating a defect mask using a detection process. Second, using an unsupervised clustering method, each extracted feature vector can be indexed in a hierarchical search tree. Third, a manufacturing-specific digital image associated with a feature vector stored in the hierarchicial search tree can be retrieved, wherein the manufacturing-specific digital image has image content comparably related to the image content of the query image. More particularly, can include two data reductions, the first performed based upon a query vector extracted from a query image. Subsequently, a user can select relevant images resulting from the first data reduction. From the selection, a prototype vector can be calculated, from which a second-level data reduction can be performed. The second-level data reduction can result in a subset of feature vectors comparable to the prototype vector, and further comparable to the query vector. An additional fourth step can include managing the hierarchical search tree by substituting a vector average for several redundant feature vectors encapsulated by nodes in the hierarchical search tree.
40 CFR 503.27 - Recordkeeping.
Code of Federal Regulations, 2010 CFR
2010-07-01
... penalty of law, that the information that will be used to determine compliance with the pathogen... requirements is met) and the vector attraction reduction requirement in (insert one of the vector attraction... met. (iv) A description of how one of the vector attraction reduction requirements in § 503.33 (b)(1...
40 CFR 503.27 - Recordkeeping.
Code of Federal Regulations, 2014 CFR
2014-07-01
... penalty of law, that the information that will be used to determine compliance with the pathogen... requirements is met) and the vector attraction reduction requirement in (insert one of the vector attraction... met. (iv) A description of how one of the vector attraction reduction requirements in § 503.33 (b)(1...
40 CFR 503.27 - Recordkeeping.
Code of Federal Regulations, 2012 CFR
2012-07-01
... penalty of law, that the information that will be used to determine compliance with the pathogen... requirements is met) and the vector attraction reduction requirement in (insert one of the vector attraction... met. (iv) A description of how one of the vector attraction reduction requirements in § 503.33 (b)(1...
40 CFR 503.27 - Recordkeeping.
Code of Federal Regulations, 2013 CFR
2013-07-01
... penalty of law, that the information that will be used to determine compliance with the pathogen... requirements is met) and the vector attraction reduction requirement in (insert one of the vector attraction... met. (iv) A description of how one of the vector attraction reduction requirements in § 503.33 (b)(1...
Cigarette taxes and respiratory cancers: new evidence from panel co-integration analysis.
Liu, Echu; Yu, Wei-Choun; Hsieh, Hsin-Ling
2011-01-01
Using a set of state-level longitudinal data from 1954 through 2005, this study investigates the "long-run equilibrium" relationship between cigarette excise taxes and the mortality rates of respiratory cancers in the United States. Statistical tests show that both cigarette excise taxes in real terms and mortality rates from respiratory cancers contain unit roots and are co-integrated. Estimates of co-integrating vectors indicated that a 10 percent increase in real cigarette excise tax rate leads to a 2.5 percent reduction in respiratory cancer mortality rate, implying a decline of 3,922 deaths per year, on a national level in the long run. These effects are statistically significant at the one percent level. Moreover, estimates of co-integrating vectors show that higher cigarette excise tax rates lead to lower mortality rates in most states; however, this relationship does not hold for Alaska, Florida, Hawaii, and Texas.
Graph theory approach to the eigenvalue problem of large space structures
NASA Technical Reports Server (NTRS)
Reddy, A. S. S. R.; Bainum, P. M.
1981-01-01
Graph theory is used to obtain numerical solutions to eigenvalue problems of large space structures (LSS) characterized by a state vector of large dimensions. The LSS are considered as large, flexible systems requiring both orientation and surface shape control. Graphic interpretation of the determinant of a matrix is employed to reduce a higher dimensional matrix into combinations of smaller dimensional sub-matrices. The reduction is implemented by means of a Boolean equivalent of the original matrices formulated to obtain smaller dimensional equivalents of the original numerical matrix. Computation time becomes less and more accurate solutions are possible. An example is provided in the form of a free-free square plate. Linearized system equations and numerical values of a stiffness matrix are presented, featuring a state vector with 16 components.
40 CFR 503.17 - Recordkeeping.
Code of Federal Regulations, 2011 CFR
2011-07-01
... in § 503.32(a) and the vector attraction reduction requirement in [insert one of the vector attraction reduction requirements in § 503.33(b)(1) through § 503.33(b)(8)] was prepared under my direction... pathogen requirements in § 503.32(a) are met. (iv) A description of how one of the vector attraction...
Code of Federal Regulations, 2011 CFR
2011-07-01
... DISPOSAL OF SEWAGE SLUDGE Pathogens and Vector Attraction Reduction § 503.30 Scope. (a) This subpart... land, forest, or a reclamation site. (d) This subpart contains alternative vector attraction reduction...
Code of Federal Regulations, 2010 CFR
2010-07-01
... DISPOSAL OF SEWAGE SLUDGE Pathogens and Vector Attraction Reduction § 503.30 Scope. (a) This subpart... land, forest, or a reclamation site. (d) This subpart contains alternative vector attraction reduction...
Procedures for generation and reduction of linear models of a turbofan engine
NASA Technical Reports Server (NTRS)
Seldner, K.; Cwynar, D. S.
1978-01-01
A real time hybrid simulation of the Pratt & Whitney F100-PW-F100 turbofan engine was used for linear-model generation. The linear models were used to analyze the effect of disturbances about an operating point on the dynamic performance of the engine. A procedure that disturbs, samples, and records the state and control variables was developed. For large systems, such as the F100 engine, the state vector is large and may contain high-frequency information not required for control. This, reducing the full-state to a reduced-order model may be a practicable approach to simplifying the control design. A reduction technique was developed to generate reduced-order models. Selected linear and nonlinear output responses to exhaust-nozzle area and main-burner fuel flow disturbances are presented for comparison.
Balancing aggregation and smoothing errors in inverse models
Turner, A. J.; Jacob, D. J.
2015-06-30
Inverse models use observations of a system (observation vector) to quantify the variables driving that system (state vector) by statistical optimization. When the observation vector is large, such as with satellite data, selecting a suitable dimension for the state vector is a challenge. A state vector that is too large cannot be effectively constrained by the observations, leading to smoothing error. However, reducing the dimension of the state vector leads to aggregation error as prior relationships between state vector elements are imposed rather than optimized. Here we present a method for quantifying aggregation and smoothing errors as a function ofmore » state vector dimension, so that a suitable dimension can be selected by minimizing the combined error. Reducing the state vector within the aggregation error constraints can have the added advantage of enabling analytical solution to the inverse problem with full error characterization. We compare three methods for reducing the dimension of the state vector from its native resolution: (1) merging adjacent elements (grid coarsening), (2) clustering with principal component analysis (PCA), and (3) applying a Gaussian mixture model (GMM) with Gaussian pdfs as state vector elements on which the native-resolution state vector elements are projected using radial basis functions (RBFs). The GMM method leads to somewhat lower aggregation error than the other methods, but more importantly it retains resolution of major local features in the state vector while smoothing weak and broad features.« less
Balancing aggregation and smoothing errors in inverse models
NASA Astrophysics Data System (ADS)
Turner, A. J.; Jacob, D. J.
2015-01-01
Inverse models use observations of a system (observation vector) to quantify the variables driving that system (state vector) by statistical optimization. When the observation vector is large, such as with satellite data, selecting a suitable dimension for the state vector is a challenge. A state vector that is too large cannot be effectively constrained by the observations, leading to smoothing error. However, reducing the dimension of the state vector leads to aggregation error as prior relationships between state vector elements are imposed rather than optimized. Here we present a method for quantifying aggregation and smoothing errors as a function of state vector dimension, so that a suitable dimension can be selected by minimizing the combined error. Reducing the state vector within the aggregation error constraints can have the added advantage of enabling analytical solution to the inverse problem with full error characterization. We compare three methods for reducing the dimension of the state vector from its native resolution: (1) merging adjacent elements (grid coarsening), (2) clustering with principal component analysis (PCA), and (3) applying a Gaussian mixture model (GMM) with Gaussian pdfs as state vector elements on which the native-resolution state vector elements are projected using radial basis functions (RBFs). The GMM method leads to somewhat lower aggregation error than the other methods, but more importantly it retains resolution of major local features in the state vector while smoothing weak and broad features.
Balancing aggregation and smoothing errors in inverse models
NASA Astrophysics Data System (ADS)
Turner, A. J.; Jacob, D. J.
2015-06-01
Inverse models use observations of a system (observation vector) to quantify the variables driving that system (state vector) by statistical optimization. When the observation vector is large, such as with satellite data, selecting a suitable dimension for the state vector is a challenge. A state vector that is too large cannot be effectively constrained by the observations, leading to smoothing error. However, reducing the dimension of the state vector leads to aggregation error as prior relationships between state vector elements are imposed rather than optimized. Here we present a method for quantifying aggregation and smoothing errors as a function of state vector dimension, so that a suitable dimension can be selected by minimizing the combined error. Reducing the state vector within the aggregation error constraints can have the added advantage of enabling analytical solution to the inverse problem with full error characterization. We compare three methods for reducing the dimension of the state vector from its native resolution: (1) merging adjacent elements (grid coarsening), (2) clustering with principal component analysis (PCA), and (3) applying a Gaussian mixture model (GMM) with Gaussian pdfs as state vector elements on which the native-resolution state vector elements are projected using radial basis functions (RBFs). The GMM method leads to somewhat lower aggregation error than the other methods, but more importantly it retains resolution of major local features in the state vector while smoothing weak and broad features.
40 CFR 503.15 - Operational standards-pathogens and vector attraction reduction.
Code of Federal Regulations, 2014 CFR
2014-07-01
... met when bulk sewage sludge is applied to a lawn or a home garden. (3) The Class A pathogen... home garden. (3) One of the vector attraction reduction requirements in § 503.33 (b)(1) through (b)(8...
40 CFR 503.15 - Operational standards-pathogens and vector attraction reduction.
Code of Federal Regulations, 2013 CFR
2013-07-01
... met when bulk sewage sludge is applied to a lawn or a home garden. (3) The Class A pathogen... home garden. (3) One of the vector attraction reduction requirements in § 503.33 (b)(1) through (b)(8...
40 CFR 503.15 - Operational standards-pathogens and vector attraction reduction.
Code of Federal Regulations, 2012 CFR
2012-07-01
... met when bulk sewage sludge is applied to a lawn or a home garden. (3) The Class A pathogen... home garden. (3) One of the vector attraction reduction requirements in § 503.33 (b)(1) through (b)(8...
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClanahan, Richard; De Leon, Phillip L.
The majority of state-of-the-art speaker recognition systems (SR) utilize speaker models that are derived from an adapted universal background model (UBM) in the form of a Gaussian mixture model (GMM). This is true for GMM supervector systems, joint factor analysis systems, and most recently i-vector systems. In all of the identified systems, the posterior probabilities and sufficient statistics calculations represent a computational bottleneck in both enrollment and testing. We propose a multi-layered hash system, employing a tree-structured GMM–UBM which uses Runnalls’ Gaussian mixture reduction technique, in order to reduce the number of these calculations. Moreover, with this tree-structured hash, wemore » can trade-off reduction in computation with a corresponding degradation of equal error rate (EER). As an example, we also reduce this computation by a factor of 15× while incurring less than 10% relative degradation of EER (or 0.3% absolute EER) when evaluated with NIST 2010 speaker recognition evaluation (SRE) telephone data.« less
McClanahan, Richard; De Leon, Phillip L.
2014-08-20
The majority of state-of-the-art speaker recognition systems (SR) utilize speaker models that are derived from an adapted universal background model (UBM) in the form of a Gaussian mixture model (GMM). This is true for GMM supervector systems, joint factor analysis systems, and most recently i-vector systems. In all of the identified systems, the posterior probabilities and sufficient statistics calculations represent a computational bottleneck in both enrollment and testing. We propose a multi-layered hash system, employing a tree-structured GMM–UBM which uses Runnalls’ Gaussian mixture reduction technique, in order to reduce the number of these calculations. Moreover, with this tree-structured hash, wemore » can trade-off reduction in computation with a corresponding degradation of equal error rate (EER). As an example, we also reduce this computation by a factor of 15× while incurring less than 10% relative degradation of EER (or 0.3% absolute EER) when evaluated with NIST 2010 speaker recognition evaluation (SRE) telephone data.« less
Estimating rare events in biochemical systems using conditional sampling.
Sundar, V S
2017-01-28
The paper focuses on development of variance reduction strategies to estimate rare events in biochemical systems. Obtaining this probability using brute force Monte Carlo simulations in conjunction with the stochastic simulation algorithm (Gillespie's method) is computationally prohibitive. To circumvent this, important sampling tools such as the weighted stochastic simulation algorithm and the doubly weighted stochastic simulation algorithm have been proposed. However, these strategies require an additional step of determining the important region to sample from, which is not straightforward for most of the problems. In this paper, we apply the subset simulation method, developed as a variance reduction tool in the context of structural engineering, to the problem of rare event estimation in biochemical systems. The main idea is that the rare event probability is expressed as a product of more frequent conditional probabilities. These conditional probabilities are estimated with high accuracy using Monte Carlo simulations, specifically the Markov chain Monte Carlo method with the modified Metropolis-Hastings algorithm. Generating sample realizations of the state vector using the stochastic simulation algorithm is viewed as mapping the discrete-state continuous-time random process to the standard normal random variable vector. This viewpoint opens up the possibility of applying more sophisticated and efficient sampling schemes developed elsewhere to problems in stochastic chemical kinetics. The results obtained using the subset simulation method are compared with existing variance reduction strategies for a few benchmark problems, and a satisfactory improvement in computational time is demonstrated.
40 CFR 503.17 - Recordkeeping.
Code of Federal Regulations, 2010 CFR
2010-07-01
....13 in the sewage sludge. (ii) The following certification statement: I certify, under penalty of law... in § 503.32(a) and the vector attraction reduction requirement in [insert one of the vector attraction reduction requirements in § 503.33(b)(1) through § 503.33(b)(8)] was prepared under my direction...
40 CFR 503.33 - Vector attraction reduction.
Code of Federal Regulations, 2013 CFR
2013-07-01
... less than 15 percent, vector attraction reduction is achieved. (4) The specific oxygen uptake rate... shall be equal to or greater than 75 percent based on the moisture content and total solids prior to... the moisture content and total solids prior to mixing with other materials. (9)(i) Sewage sludge shall...
40 CFR 503.33 - Vector attraction reduction.
Code of Federal Regulations, 2014 CFR
2014-07-01
... less than 15 percent, vector attraction reduction is achieved. (4) The specific oxygen uptake rate... shall be equal to or greater than 75 percent based on the moisture content and total solids prior to... the moisture content and total solids prior to mixing with other materials. (9)(i) Sewage sludge shall...
40 CFR 503.33 - Vector attraction reduction.
Code of Federal Regulations, 2010 CFR
2010-07-01
... less than 15 percent, vector attraction reduction is achieved. (4) The specific oxygen uptake rate... shall be equal to or greater than 75 percent based on the moisture content and total solids prior to... the moisture content and total solids prior to mixing with other materials. (9)(i) Sewage sludge shall...
40 CFR 503.33 - Vector attraction reduction.
Code of Federal Regulations, 2011 CFR
2011-07-01
... less than 15 percent, vector attraction reduction is achieved. (4) The specific oxygen uptake rate... shall be equal to or greater than 75 percent based on the moisture content and total solids prior to... the moisture content and total solids prior to mixing with other materials. (9)(i) Sewage sludge shall...
40 CFR 503.33 - Vector attraction reduction.
Code of Federal Regulations, 2012 CFR
2012-07-01
... less than 15 percent, vector attraction reduction is achieved. (4) The specific oxygen uptake rate... shall be equal to or greater than 75 percent based on the moisture content and total solids prior to... the moisture content and total solids prior to mixing with other materials. (9)(i) Sewage sludge shall...
40 CFR 503.17 - Recordkeeping.
Code of Federal Regulations, 2014 CFR
2014-07-01
....13 in the sewage sludge. (ii) The following certification statement: I certify, under penalty of law... in § 503.32(a) and the vector attraction reduction requirement in [insert one of the vector attraction reduction requirements in § 503.33(b)(1) through § 503.33(b)(8)] was prepared under my direction...
40 CFR 503.17 - Recordkeeping.
Code of Federal Regulations, 2013 CFR
2013-07-01
....13 in the sewage sludge. (ii) The following certification statement: I certify, under penalty of law... in § 503.32(a) and the vector attraction reduction requirement in [insert one of the vector attraction reduction requirements in § 503.33(b)(1) through § 503.33(b)(8)] was prepared under my direction...
Feedback controlled optics with wavefront compensation
NASA Technical Reports Server (NTRS)
Breckenridge, William G. (Inventor); Redding, David C. (Inventor)
1993-01-01
The sensitivity model of a complex optical system obtained by linear ray tracing is used to compute a control gain matrix by imposing the mathematical condition for minimizing the total wavefront error at the optical system's exit pupil. The most recent deformations or error states of the controlled segments or optical surfaces of the system are then assembled as an error vector, and the error vector is transformed by the control gain matrix to produce the exact control variables which will minimize the total wavefront error at the exit pupil of the optical system. These exact control variables are then applied to the actuators controlling the various optical surfaces in the system causing the immediate reduction in total wavefront error observed at the exit pupil of the optical system.
NASA Astrophysics Data System (ADS)
Lee, M.; Leiter, K.; Eisner, C.; Breuer, A.; Wang, X.
2017-09-01
In this work, we investigate a block Jacobi-Davidson (J-D) variant suitable for sparse symmetric eigenproblems where a substantial number of extremal eigenvalues are desired (e.g., ground-state real-space quantum chemistry). Most J-D algorithm variations tend to slow down as the number of desired eigenpairs increases due to frequent orthogonalization against a growing list of solved eigenvectors. In our specification of block J-D, all of the steps of the algorithm are performed in clusters, including the linear solves, which allows us to greatly reduce computational effort with blocked matrix-vector multiplies. In addition, we move orthogonalization against locked eigenvectors and working eigenvectors outside of the inner loop but retain the single Ritz vector projection corresponding to the index of the correction vector. Furthermore, we minimize the computational effort by constraining the working subspace to the current vectors being updated and the latest set of corresponding correction vectors. Finally, we incorporate accuracy thresholds based on the precision required by the Fermi-Dirac distribution. The net result is a significant reduction in the computational effort against most previous block J-D implementations, especially as the number of wanted eigenpairs grows. We compare our approach with another robust implementation of block J-D (JDQMR) and the state-of-the-art Chebyshev filter subspace (CheFSI) method for various real-space density functional theory systems. Versus CheFSI, for first-row elements, our method yields competitive timings for valence-only systems and 4-6× speedups for all-electron systems with up to 10× reduced matrix-vector multiplies. For all-electron calculations on larger elements (e.g., gold) where the wanted spectrum is quite narrow compared to the full spectrum, we observe 60× speedup with 200× fewer matrix-vector multiples vs. CheFSI.
Lee, M; Leiter, K; Eisner, C; Breuer, A; Wang, X
2017-09-21
In this work, we investigate a block Jacobi-Davidson (J-D) variant suitable for sparse symmetric eigenproblems where a substantial number of extremal eigenvalues are desired (e.g., ground-state real-space quantum chemistry). Most J-D algorithm variations tend to slow down as the number of desired eigenpairs increases due to frequent orthogonalization against a growing list of solved eigenvectors. In our specification of block J-D, all of the steps of the algorithm are performed in clusters, including the linear solves, which allows us to greatly reduce computational effort with blocked matrix-vector multiplies. In addition, we move orthogonalization against locked eigenvectors and working eigenvectors outside of the inner loop but retain the single Ritz vector projection corresponding to the index of the correction vector. Furthermore, we minimize the computational effort by constraining the working subspace to the current vectors being updated and the latest set of corresponding correction vectors. Finally, we incorporate accuracy thresholds based on the precision required by the Fermi-Dirac distribution. The net result is a significant reduction in the computational effort against most previous block J-D implementations, especially as the number of wanted eigenpairs grows. We compare our approach with another robust implementation of block J-D (JDQMR) and the state-of-the-art Chebyshev filter subspace (CheFSI) method for various real-space density functional theory systems. Versus CheFSI, for first-row elements, our method yields competitive timings for valence-only systems and 4-6× speedups for all-electron systems with up to 10× reduced matrix-vector multiplies. For all-electron calculations on larger elements (e.g., gold) where the wanted spectrum is quite narrow compared to the full spectrum, we observe 60× speedup with 200× fewer matrix-vector multiples vs. CheFSI.
A selective-update affine projection algorithm with selective input vectors
NASA Astrophysics Data System (ADS)
Kong, NamWoong; Shin, JaeWook; Park, PooGyeon
2011-10-01
This paper proposes an affine projection algorithm (APA) with selective input vectors, which based on the concept of selective-update in order to reduce estimation errors and computations. The algorithm consists of two procedures: input- vector-selection and state-decision. The input-vector-selection procedure determines the number of input vectors by checking with mean square error (MSE) whether the input vectors have enough information for update. The state-decision procedure determines the current state of the adaptive filter by using the state-decision criterion. As the adaptive filter is in transient state, the algorithm updates the filter coefficients with the selected input vectors. On the other hand, as soon as the adaptive filter reaches the steady state, the update procedure is not performed. Through these two procedures, the proposed algorithm achieves small steady-state estimation errors, low computational complexity and low update complexity for colored input signals.
Zhang, Yu; Wu, Jianxin; Cai, Jianfei
2016-05-01
In large-scale visual recognition and image retrieval tasks, feature vectors, such as Fisher vector (FV) or the vector of locally aggregated descriptors (VLAD), have achieved state-of-the-art results. However, the combination of the large numbers of examples and high-dimensional vectors necessitates dimensionality reduction, in order to reduce its storage and CPU costs to a reasonable range. In spite of the popularity of various feature compression methods, this paper shows that the feature (dimension) selection is a better choice for high-dimensional FV/VLAD than the feature (dimension) compression methods, e.g., product quantization. We show that strong correlation among the feature dimensions in the FV and the VLAD may not exist, which renders feature selection a natural choice. We also show that, many dimensions in FV/VLAD are noise. Throwing them away using feature selection is better than compressing them and useful dimensions altogether using feature compression methods. To choose features, we propose an efficient importance sorting algorithm considering both the supervised and unsupervised cases, for visual recognition and image retrieval, respectively. Combining with the 1-bit quantization, feature selection has achieved both higher accuracy and less computational cost than feature compression methods, such as product quantization, on the FV and the VLAD image representations.
Adaptive marginal median filter for colour images.
Morillas, Samuel; Gregori, Valentín; Sapena, Almanzor
2011-01-01
This paper describes a new filter for impulse noise reduction in colour images which is aimed at improving the noise reduction capability of the classical vector median filter. The filter is inspired by the application of a vector marginal median filtering process over a selected group of pixels in each filtering window. This selection, which is based on the vector median, along with the application of the marginal median operation constitutes an adaptive process that leads to a more robust filter design. Also, the proposed method is able to process colour images without introducing colour artifacts. Experimental results show that the images filtered with the proposed method contain less noisy pixels than those obtained through the vector median filter.
The baryon vector current in the combined chiral and 1/Nc expansions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flores-Mendieta, Ruben; Goity, Jose L
2014-12-01
The baryon vector current is computed at one-loop order in large-Nc baryon chiral perturbation theory, where Nc is the number of colors. Loop graphs with octet and decuplet intermediate states are systematically incorporated into the analysis and the effects of the decuplet-octet mass difference and SU(3) flavor symmetry breaking are accounted for. There are large-Nc cancellations between different one-loop graphs as a consequence of the large-Nc spin-flavor symmetry of QCD baryons. The results are compared against the available experimental data through several fits in order to extract information about the unknown parameters. The large-Nc baryon chiral perturbation theory predictions aremore » in very good agreement both with the expectations from the 1/Nc expansion and with the experimental data. The effect of SU(3) flavor symmetry breaking for the |Delta S|=1 vector current form factors f1(0) results in a reduction by a few percent with respect to the corresponding SU(3) symmetric values.« less
Jacobian projection reduced-order models for dynamic systems with contact nonlinearities
NASA Astrophysics Data System (ADS)
Gastaldi, Chiara; Zucca, Stefano; Epureanu, Bogdan I.
2018-02-01
In structural dynamics, the prediction of the response of systems with localized nonlinearities, such as friction dampers, is of particular interest. This task becomes especially cumbersome when high-resolution finite element models are used. While state-of-the-art techniques such as Craig-Bampton component mode synthesis are employed to generate reduced order models, the interface (nonlinear) degrees of freedom must still be solved in-full. For this reason, a new generation of specialized techniques capable of reducing linear and nonlinear degrees of freedom alike is emerging. This paper proposes a new technique that exploits spatial correlations in the dynamics to compute a reduction basis. The basis is composed of a set of vectors obtained using the Jacobian of partial derivatives of the contact forces with respect to nodal displacements. These basis vectors correspond to specifically chosen boundary conditions at the contacts over one cycle of vibration. The technique is shown to be effective in the reduction of several models studied using multiple harmonics with a coupled static solution. In addition, this paper addresses another challenge common to all reduction techniques: it presents and validates a novel a posteriori error estimate capable of evaluating the quality of the reduced-order solution without involving a comparison with the full-order solution.
Acquisition and Reduction Procedures for MOF Doppler-Magnetograms. [solar observation
NASA Technical Reports Server (NTRS)
Cacciani, Alessandro; Ricci, D.; Rosati, P.; Rhodes, Edward J., Jr.; Smith, E.; Tomczyk, Steven; Ulrich, Roger K.
1988-01-01
Defects in the first magneto-optical filter (MOF) magnetograms, particularly the problem of the apparent contamination between velocity and magnetic fields, are discussed. It is found that a correct acquisition and reduction procedure gives cleaner results. A vector magnetograph is suggested. The vector field at coronal levels is calculated, using one MOF longitudinal magnetogram.
Parametric State Space Structuring
NASA Technical Reports Server (NTRS)
Ciardo, Gianfranco; Tilgner, Marco
1997-01-01
Structured approaches based on Kronecker operators for the description and solution of the infinitesimal generator of a continuous-time Markov chains are receiving increasing interest. However, their main advantage, a substantial reduction in the memory requirements during the numerical solution, comes at a price. Methods based on the "potential state space" allocate a probability vector that might be much larger than actually needed. Methods based on the "actual state space", instead, have an additional logarithmic overhead. We present an approach that realizes the advantages of both methods with none of their disadvantages, by partitioning the local state spaces of each submodel. We apply our results to a model of software rendezvous, and show how they reduce memory requirements while, at the same time, improving the efficiency of the computation.
Santangeloyz, K.S.; Bertoneyz, A.L.
2011-01-01
summary Objective To ascertain a viral vector-based short hairpin RNA (shRNA) capable of reducing the interleukin-1β (IL-1β) transcript in osteoarthritis (OA)-prone chondrocytes and detect corresponding changes in the expression patterns of several critical disease mediators. Methods Cultured chondrocytes from 2-month-old Hartley guinea pigs were screened for reduction of the IL-1β transcript following plasmid-based delivery of U6-driven shRNA sequences. A successful plasmid/shRNA knockdown combination was identified and used to construct an adeno-associated virus serotype 5 (AAV5) vector for further evaluation. Relative real-time reverse transcription polymerase chain reaction (RTPCR) was used to quantify in vitro transcript changes of IL-1β and an additional nine genes following transduction with this targeting knockdown vector. To validate in vitro findings, this AAV5 vector was injected into one knee, while either an equivalent volume of saline vehicle (three animals) or non-targeting control vector (three animals) were injected into opposite knees. Fold differences and subsequent percent gene expression levels relative to control groups were calculated using the comparative CT (2−ΔΔCT) method. Results Statistically significant decreases in IL-1β expression were achieved by the targeting knockdown vector relative to both the mock-transduced control and non-targeting vector control groups in vitro. Transcript levels of anabolic transforming growth factor-β (TGF-β) were significantly increased by use of this targeting knockdown vector. Transduction with this targeting AAV5 vector also significantly decreased the transcript levels of key inflammatory cytokines [tumor necrosis factor-α (TNF-α), IL-2, IL-8, and IL-12] and catabolic agents [matrix metalloproteinase (MMP)13, MMP2, interferon-γ (IFN-γ), and inducible nitrous oxide synthase (iNOS)] relative to both mock-transduced and non-targeting vector control groups. In vivo application of this targeting knockdown vector resulted in a >50% reduction (P= 0.0045) or >90% (P= 0.0001) of the IL-1β transcript relative to vehicle-only or non-targeting vector control exposed cartilage, respectively. Conclusions Successful reduction of the IL-1β transcript was achieved via RNA interference (RNAi) techniques. Importantly, this alteration significantly influenced the transcript levels of several major players involved in OA pathogenesis in the direction of disease modification. Investigations to characterize additional gene expression changes influenced by targeting knockdown AAV5 vector-based diminution of the IL-1β transcript in vivo are warranted. PMID:21945742
Readout signals calculated for near-field optical pickups with land and groove recording.
Saito, K; Kishima, K; Ichimura, I
2000-08-10
Optical disk readout signals with a solid immersion lens (SIL) and the land-groove recording technique are calculated by use of a simplified vector-diffraction theory. In this method the full vector-diffraction theory is applied to calculate the diffracted light from the initial state of the disk, and the light scattered from the recorded marks is regarded as a perturbation. Using this method, we confirmed that the land-groove recording technique is effective as a means of cross-talk reduction even when the numerical aperture is more than 1. However, the top surface of the disk under the SIL must be flat, or the readout signal from marks recorded on a groove decays when the optical depth of the groove is greater than lambda/8.
Is quantum theory a form of statistical mechanics?
NASA Astrophysics Data System (ADS)
Adler, S. L.
2007-05-01
We give a review of the basic themes of my recent book: Adler S L 2004 Quantum Theory as an Emergent Phenomenon (Cambridge: Cambridge University Press). We first give motivations for considering the possibility that quantum mechanics is not exact, but is instead an accurate asymptotic approximation to a deeper level theory. For this deeper level, we propose a non-commutative generalization of classical mechanics, that we call "trace dynamics", and we give a brief survey of how it works, considering for simplicity only the bosonic case. We then discuss the statistical mechanics of trace dynamics and give our argument that with suitable approximations, the Ward identities for trace dynamics imply that ensemble averages in the canonical ensemble correspond to Wightman functions in quantum field theory. Thus, quantum theory emerges as the statistical thermodynamics of trace dynamics. Finally, we argue that Brownian motion corrections to this thermodynamics lead to stochastic corrections to the Schrödinger equation, of the type that have been much studied in the "continuous spontaneous localization" model of objective state vector reduction. In appendices to the talk, we give details of the existence of a conserved operator in trace dynamics that encodes the structure of the canonical algebra, of the derivation of the Ward identities, and of the proof that the stochastically-modified Schrödinger equation leads to state vector reduction with Born rule probabilities.
Systematic dimensionality reduction for continuous-time quantum walks of interacting fermions
NASA Astrophysics Data System (ADS)
Izaac, J. A.; Wang, J. B.
2017-09-01
To extend the continuous-time quantum walk (CTQW) to simulate P distinguishable particles on a graph G composed of N vertices, the Hamiltonian of the system is expanded to act on an NP-dimensional Hilbert space, in effect, simulating the multiparticle CTQW on graph G via a single-particle CTQW propagating on the Cartesian graph product G□P. The properties of the Cartesian graph product have been well studied, and classical simulation of multiparticle CTQWs are common in the literature. However, the above approach is generally applied as is when simulating indistinguishable particles, with the particle statistics then applied to the propagated NP state vector to determine walker probabilities. We address the following question: How can we modify the underlying graph structure G□P in order to simulate multiple interacting fermionic CTQWs with a reduction in the size of the state space? In this paper, we present an algorithm for systematically removing "redundant" and forbidden quantum states from consideration, which provides a significant reduction in the effective dimension of the Hilbert space of the fermionic CTQW. As a result, as the number of interacting fermions in the system increases, the classical computational resources required no longer increases exponentially for fixed N .
Mujtaba, Ghulam; Shuib, Liyana; Raj, Ram Gopal; Rajandram, Retnagowri; Shaikh, Khairunisa
2018-07-01
Automatic text classification techniques are useful for classifying plaintext medical documents. This study aims to automatically predict the cause of death from free text forensic autopsy reports by comparing various schemes for feature extraction, term weighing or feature value representation, text classification, and feature reduction. For experiments, the autopsy reports belonging to eight different causes of death were collected, preprocessed and converted into 43 master feature vectors using various schemes for feature extraction, representation, and reduction. The six different text classification techniques were applied on these 43 master feature vectors to construct a classification model that can predict the cause of death. Finally, classification model performance was evaluated using four performance measures i.e. overall accuracy, macro precision, macro-F-measure, and macro recall. From experiments, it was found that that unigram features obtained the highest performance compared to bigram, trigram, and hybrid-gram features. Furthermore, in feature representation schemes, term frequency, and term frequency with inverse document frequency obtained similar and better results when compared with binary frequency, and normalized term frequency with inverse document frequency. Furthermore, the chi-square feature reduction approach outperformed Pearson correlation, and information gain approaches. Finally, in text classification algorithms, support vector machine classifier outperforms random forest, Naive Bayes, k-nearest neighbor, decision tree, and ensemble-voted classifier. Our results and comparisons hold practical importance and serve as references for future works. Moreover, the comparison outputs will act as state-of-art techniques to compare future proposals with existing automated text classification techniques. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Econo-ESA in semantic text similarity.
Rahutomo, Faisal; Aritsugi, Masayoshi
2014-01-01
Explicit semantic analysis (ESA) utilizes an immense Wikipedia index matrix in its interpreter part. This part of the analysis multiplies a large matrix by a term vector to produce a high-dimensional concept vector. A similarity measurement between two texts is performed between two concept vectors with numerous dimensions. The cost is expensive in both interpretation and similarity measurement steps. This paper proposes an economic scheme of ESA, named econo-ESA. We investigate two aspects of this proposal: dimensional reduction and experiments with various data. We use eight recycling test collections in semantic text similarity. The experimental results show that both the dimensional reduction and test collection characteristics can influence the results. They also show that an appropriate concept reduction of econo-ESA can decrease the cost with minor differences in the results from the original ESA.
NASA Technical Reports Server (NTRS)
Samba, A. S.
1985-01-01
The problem of solving banded linear systems by direct (non-iterative) techniques on the Vector Processor System (VPS) 32 supercomputer is considered. Two efficient direct methods for solving banded linear systems on the VPS 32 are described. The vector cyclic reduction (VCR) algorithm is discussed in detail. The performance of the VCR on a three parameter model problem is also illustrated. The VCR is an adaptation of the conventional point cyclic reduction algorithm. The second direct method is the Customized Reduction of Augmented Triangles' (CRAT). CRAT has the dominant characteristics of an efficient VPS 32 algorithm. CRAT is tailored to the pipeline architecture of the VPS 32 and as a consequence the algorithm is implicitly vectorizable.
Benefits Derived From Laser Ranging Measurements for Orbit Determination of the GPS Satellite Orbit
NASA Technical Reports Server (NTRS)
Welch, Bryan W.
2007-01-01
While navigation systems for the determination of the orbit of the Global Position System (GPS) have proven to be very effective, the current research is examining methods to lower the error in the GPS satellite ephemerides below their current level. Two GPS satellites that are currently in orbit carry retro-reflectors onboard. One notion to reduce the error in the satellite ephemerides is to utilize the retro-reflectors via laser ranging measurements taken from multiple Earth ground stations. Analysis has been performed to determine the level of reduction in the semi-major axis covariance of the GPS satellites, when laser ranging measurements are supplemented to the radiometric station keeping, which the satellites undergo. Six ground tracking systems are studied to estimate the performance of the satellite. The first system is the baseline current system approach which provides pseudo-range and integrated Doppler measurements from six ground stations. The remaining five ground tracking systems utilize all measurements from the current system and laser ranging measurements from the additional ground stations utilized within those systems. Station locations for the additional ground sites were taken from a listing of laser ranging ground stations from the International Laser Ranging Service. Results show reductions in state covariance estimates when utilizing laser ranging measurements to solve for the satellite s position component of the state vector. Results also show dependency on the number of ground stations providing laser ranging measurements, orientation of the satellite to the ground stations, and the initial covariance of the satellite's state vector.
Can different quantum state vectors correspond to the same physical state? An experimental test
NASA Astrophysics Data System (ADS)
Nigg, Daniel; Monz, Thomas; Schindler, Philipp; Martinez, Esteban A.; Hennrich, Markus; Blatt, Rainer; Pusey, Matthew F.; Rudolph, Terry; Barrett, Jonathan
2016-01-01
A century after the development of quantum theory, the interpretation of a quantum state is still discussed. If a physicist claims to have produced a system with a particular quantum state vector, does this represent directly a physical property of the system, or is the state vector merely a summary of the physicist’s information about the system? Assume that a state vector corresponds to a probability distribution over possible values of an unknown physical or ‘ontic’ state. Then, a recent no-go theorem shows that distinct state vectors with overlapping distributions lead to predictions different from quantum theory. We report an experimental test of these predictions using trapped ions. Within experimental error, the results confirm quantum theory. We analyse which kinds of models are ruled out.
Kittayapong, Pattamaporn; Thongyuan, Suporn; Olanratmanee, Phanthip; Aumchareoun, Worawit; Koyadun, Surachart; Kittayapong, Rungrith; Butraporn, Piyarat
2012-01-01
Background Dengue is considered one of the most important vector-borne diseases in Thailand. Its incidence is increasing despite routine implementation of national dengue control programmes. This study, conducted during 2010, aimed to demonstrate an application of integrated, community-based, eco-bio-social strategies in combination with locally-produced eco-friendly vector control tools in the dengue control programme, emphasizing urban and peri-urban settings in eastern Thailand. Methodology Three different community settings were selected and were randomly assigned to intervention and control clusters. Key community leaders and relevant governmental authorities were approached to participate in this intervention programme. Ecohealth volunteers were identified and trained in each study community. They were selected among active community health volunteers and were trained by public health experts to conduct vector control activities in their own communities using environmental management in combination with eco-friendly vector control tools. These trained ecohealth volunteers carried out outreach health education and vector control during household visits. Management of public spaces and public properties, especially solid waste management, was efficiently carried out by local municipalities. Significant reduction in the pupae per person index in the intervention clusters when compared to the control ones was used as a proxy to determine the impact of this programme. Results Our community-based dengue vector control programme demonstrated a significant reduction in the pupae per person index during entomological surveys which were conducted at two-month intervals from May 2010 for the total of six months in the intervention and control clusters. The programme also raised awareness in applying eco-friendly vector control approaches and increased intersectoral and household participation in dengue control activities. Conclusion An eco-friendly dengue vector control programme was successfully implemented in urban and peri-urban settings in Thailand, through intersectoral collaboration and practical action at household level, with a significant reduction in vector densities. PMID:23318236
Kittayapong, Pattamaporn; Thongyuan, Suporn; Olanratmanee, Phanthip; Aumchareoun, Worawit; Koyadun, Surachart; Kittayapong, Rungrith; Butraporn, Piyarat
2012-12-01
Dengue is considered one of the most important vector-borne diseases in Thailand. Its incidence is increasing despite routine implementation of national dengue control programmes. This study, conducted during 2010, aimed to demonstrate an application of integrated, community-based, eco-bio-social strategies in combination with locally-produced eco-friendly vector control tools in the dengue control programme, emphasizing urban and peri-urban settings in eastern Thailand. Three different community settings were selected and were randomly assigned to intervention and control clusters. Key community leaders and relevant governmental authorities were approached to participate in this intervention programme. Ecohealth volunteers were identified and trained in each study community. They were selected among active community health volunteers and were trained by public health experts to conduct vector control activities in their own communities using environmental management in combination with eco-friendly vector control tools. These trained ecohealth volunteers carried out outreach health education and vector control during household visits. Management of public spaces and public properties, especially solid waste management, was efficiently carried out by local municipalities. Significant reduction in the pupae per person index in the intervention clusters when compared to the control ones was used as a proxy to determine the impact of this programme. Our community-based dengue vector control programme demonstrated a significant reduction in the pupae per person index during entomological surveys which were conducted at two-month intervals from May 2010 for the total of six months in the intervention and control clusters. The programme also raised awareness in applying eco-friendly vector control approaches and increased intersectoral and household participation in dengue control activities. An eco-friendly dengue vector control programme was successfully implemented in urban and peri-urban settings in Thailand, through intersectoral collaboration and practical action at household level, with a significant reduction in vector densities.
Robert, Michael A; Okamoto, Kenichi W; Gould, Fred; Lloyd, Alun L
2014-01-01
Recently, genetic strategies aimed at controlling populations of disease-vectoring mosquitoes have received considerable attention as alternatives to traditional measures. Theoretical studies have shown that female-killing (FK), antipathogen (AP), and reduce and replace (R&R) strategies can each decrease the number competent vectors. In this study, we utilize a mathematical model to evaluate impacts on competent Aedes aegypti populations of FK, AP, and R&R releases as well as hybrid strategies that result from combinations of these three approaches. We show that while the ordering of efficacy of these strategies depends upon population life history parameters, sex ratio of releases, and switch time in combination strategies, AP-only and R&R/AP releases typically lead to the greatest long-term reduction in competent vectors. R&R-only releases are often less effective at long-term reduction of competent vectors than AP-only releases or R&R/AP releases. Furthermore, the reduction in competent vectors caused by AP-only releases is easier to maintain than that caused by FK-only or R&R-only releases even when the AP gene confers a fitness cost. We discuss the roles that density dependence and inclusion of females play in the order of efficacy of the strategies. We anticipate that our results will provide added impetus to continue developing AP strategies. PMID:25558284
Application of Vectors to Relative Velocity
ERIC Educational Resources Information Center
Tin-Lam, Toh
2004-01-01
The topic 'relative velocity' has recently been introduced into the Cambridge Ordinary Level Additional Mathematics syllabus under the application of Vectors. In this note, the results of relative velocity and the 'reduction to rest' technique of teaching relative velocity are derived mathematically from vector algebra, in the hope of providing…
USDA-ARS?s Scientific Manuscript database
The Asian citrus psyllid (Diaphorina citri Kuwayama) is the insect vector of the bacterium Candidatus Liberibacter asiaticus (CLas), the pathogen associated with citrus Huanglongbing (HLB, citrus greening). HLB threatens citrus production worldwide. Suppression or reduction of the insect vector usin...
2011-01-01
Background Insecticide-treated mosquito nets (ITNs) and indoor-residual spraying have been scaled-up across sub-Saharan Africa as part of international efforts to control malaria. These interventions have the potential to significantly impact child survival. The Lives Saved Tool (LiST) was developed to provide national and regional estimates of cause-specific mortality based on the extent of intervention coverage scale-up. We compared the percent reduction in all-cause child mortality estimated by LiST against measured reductions in all-cause child mortality from studies assessing the impact of vector control interventions in Africa. Methods We performed a literature search for appropriate studies and compared reductions in all-cause child mortality estimated by LiST to 4 studies that estimated changes in all-cause child mortality following the scale-up of vector control interventions. The following key parameters measured by each study were applied to available country projections: baseline all-cause child mortality rate, proportion of mortality due to malaria, and population coverage of vector control interventions at baseline and follow-up years. Results The percent reduction in all-cause child mortality estimated by the LiST model fell within the confidence intervals around the measured mortality reductions for all 4 studies. Two of the LiST estimates overestimated the mortality reductions by 6.1 and 4.2 percentage points (33% and 35% relative to the measured estimates), while two underestimated the mortality reductions by 4.7 and 6.2 percentage points (22% and 25% relative to the measured estimates). Conclusions The LiST model did not systematically under- or overestimate the impact of ITNs on all-cause child mortality. These results show the LiST model to perform reasonably well at estimating the effect of vector control scale-up on child mortality when compared against measured data from studies across a range of malaria transmission settings. The LiST model appears to be a useful tool in estimating the potential mortality reduction achieved from scaling-up malaria control interventions. PMID:21501453
Characteristic-based algorithms for flows in thermo-chemical nonequilibrium
NASA Technical Reports Server (NTRS)
Walters, Robert W.; Cinnella, Pasquale; Slack, David C.; Halt, David
1990-01-01
A generalized finite-rate chemistry algorithm with Steger-Warming, Van Leer, and Roe characteristic-based flux splittings is presented in three-dimensional generalized coordinates for the Navier-Stokes equations. Attention is placed on convergence to steady-state solutions with fully coupled chemistry. Time integration schemes including explicit m-stage Runge-Kutta, implicit approximate-factorization, relaxation and LU decomposition are investigated and compared in terms of residual reduction per unit of CPU time. Practical issues such as code vectorization and memory usage on modern supercomputers are discussed.
Santangelo, K S; Bertone, A L
2011-12-01
To ascertain a viral vector-based short hairpin RNA (shRNA) capable of reducing the interleukin-1β (IL-1β) transcript in osteoarthritis (OA)-prone chondrocytes and detect corresponding changes in the expression patterns of several critical disease mediators. Cultured chondrocytes from 2-month-old Hartley guinea pigs were screened for reduction of the IL-1β transcript following plasmid-based delivery of U6-driven shRNA sequences. A successful plasmid/shRNA knockdown combination was identified and used to construct an adeno-associated virus serotype 5 (AAV5) vector for further evaluation. Relative real-time reverse transcription polymerase chain reaction (RT-PCR) was used to quantify in vitro transcript changes of IL-1β and an additional nine genes following transduction with this targeting knockdown vector. To validate in vitro findings, this AAV5 vector was injected into one knee, while either an equivalent volume of saline vehicle (three animals) or non-targeting control vector (three animals) were injected into opposite knees. Fold differences and subsequent percent gene expression levels relative to control groups were calculated using the comparative CT (2(-ΔΔCT)) method. Statistically significant decreases in IL-1β expression were achieved by the targeting knockdown vector relative to both the mock-transduced control and non-targeting vector control groups in vitro. Transcript levels of anabolic transforming growth factor-β (TGF-β) were significantly increased by use of this targeting knockdown vector. Transduction with this targeting AAV5 vector also significantly decreased the transcript levels of key inflammatory cytokines [tumor necrosis factor-α (TNF-α), IL-2, IL-8, and IL-12] and catabolic agents [matrix metalloproteinase (MMP)13, MMP2, interferon-γ (IFN-γ), and inducible nitrous oxide synthase (iNOS)] relative to both mock-transduced and non-targeting vector control groups. In vivo application of this targeting knockdown vector resulted in a >50% reduction (P=0.0045) or >90% (P=0.0001) of the IL-1β transcript relative to vehicle-only or non-targeting vector control exposed cartilage, respectively. Successful reduction of the IL-1β transcript was achieved via RNA interference (RNAi) techniques. Importantly, this alteration significantly influenced the transcript levels of several major players involved in OA pathogenesis in the direction of disease modification. Investigations to characterize additional gene expression changes influenced by targeting knockdown AAV5 vector-based diminution of the IL-1β transcript in vivo are warranted. Copyright © 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Community-based control of Aedes aegypti by adoption of eco-health methods in Chennai City, India
Arunachalam, Natarajan; Tyagi, Brij Kishore; Samuel, Miriam; Krishnamoorthi, R; Manavalan, R; Tewari, Satish Chandra; Ashokkumar, V; Kroeger, Axel; Sommerfeld, Johannes; Petzold, Max
2012-01-01
Background Dengue is highly endemic in Chennai city, South India, in spite of continuous vector control efforts. This intervention study was aimed at establishing the efficacy as well as the favouring and limiting factors relating to a community-based environmental intervention package to control the dengue vector Aedes aegypti. Methods A cluster randomized controlled trial was designed to measure the outcome of a new vector control package and process analysis; different data collection tools were used to determine the performance. Ten randomly selected intervention clusters (neighbourhoods with 100 houses each) were paired with ten control clusters on the basis of ecological/entomological indices and sociological parameters collected during baseline studies. In the intervention clusters, Aedes control was carried out using a community-based environmental management approach like provision of water container covers through community actors, clean-up campaigns, and dissemination of dengue information through schoolchildren. The main outcome measure was reduction in pupal indices (pupae per person index), used as a proxy measure of adult vectors, in the intervention clusters compared to the control clusters. Results At baseline, almost half the respondents did not know that dengue is serious but preventable, or that it is transmitted by mosquitoes. The stakeholder analysis showed that dengue vector control is carried out by vertically structured programmes of national, state, and local administrative bodies through fogging and larval control with temephos, without any involvement of community-based organizations, and that vector control efforts were conducted in an isolated and irregular way. The most productive container types for Aedes pupae were cement tanks, drums, and discarded containers. All ten intervention clusters with a total of 1000 houses and 4639 inhabitants received the intervention while the ten control clusters with a total of 1000 houses and 4439 inhabitants received only the routine government services and some of the information education and communication project materials. The follow-up studies showed that there was a substantial increase in dengue understanding in the intervention group with only minor knowledge changes in the control group. Community involvement and the partnership among stakeholders (particularly women’s self-help groups) worked well. After 10 months of intervention, the pupae per person index was significantly reduced to 0.004 pupae per person from 1.075 (P = 0.020) in the intervention clusters compared to control clusters. There were also significant reductions in the Stegomyia indices: the house index was reduced to 4.2%, the container index to 1.05%, and the Breteau index to 4.3 from the baseline values of 19.6, 8.91, and 30.8 in the intervention arm. Conclusion A community-based approach together with other stakeholders that promoted interventions to prevent dengue vector breeding led to a substantial reduction in dengue vector density. PMID:23318241
Community-based control of Aedes aegypti by adoption of eco-health methods in Chennai City, India.
Arunachalam, Natarajan; Tyagi, Brij Kishore; Samuel, Miriam; Krishnamoorthi, R; Manavalan, R; Tewari, Satish Chandra; Ashokkumar, V; Kroeger, Axel; Sommerfeld, Johannes; Petzold, Max
2012-12-01
Dengue is highly endemic in Chennai city, South India, in spite of continuous vector control efforts. This intervention study was aimed at establishing the efficacy as well as the favouring and limiting factors relating to a community-based environmental intervention package to control the dengue vector Aedes aegypti. A cluster randomized controlled trial was designed to measure the outcome of a new vector control package and process analysis; different data collection tools were used to determine the performance. Ten randomly selected intervention clusters (neighbourhoods with 100 houses each) were paired with ten control clusters on the basis of ecological/entomological indices and sociological parameters collected during baseline studies. In the intervention clusters, Aedes control was carried out using a community-based environmental management approach like provision of water container covers through community actors, clean-up campaigns, and dissemination of dengue information through schoolchildren. The main outcome measure was reduction in pupal indices (pupae per person index), used as a proxy measure of adult vectors, in the intervention clusters compared to the control clusters. At baseline, almost half the respondents did not know that dengue is serious but preventable, or that it is transmitted by mosquitoes. The stakeholder analysis showed that dengue vector control is carried out by vertically structured programmes of national, state, and local administrative bodies through fogging and larval control with temephos, without any involvement of community-based organizations, and that vector control efforts were conducted in an isolated and irregular way. The most productive container types for Aedes pupae were cement tanks, drums, and discarded containers. All ten intervention clusters with a total of 1000 houses and 4639 inhabitants received the intervention while the ten control clusters with a total of 1000 houses and 4439 inhabitants received only the routine government services and some of the information education and communication project materials. The follow-up studies showed that there was a substantial increase in dengue understanding in the intervention group with only minor knowledge changes in the control group. Community involvement and the partnership among stakeholders (particularly women's self-help groups) worked well. After 10 months of intervention, the pupae per person index was significantly reduced to 0·004 pupae per person from 1·075 (P = 0·020) in the intervention clusters compared to control clusters. There were also significant reductions in the Stegomyia indices: the house index was reduced to 4·2%, the container index to 1·05%, and the Breteau index to 4·3 from the baseline values of 19·6, 8·91, and 30·8 in the intervention arm. A community-based approach together with other stakeholders that promoted interventions to prevent dengue vector breeding led to a substantial reduction in dengue vector density.
State-Dependent Pseudo-Linear Filter for Spacecraft Attitude and Rate Estimation
NASA Technical Reports Server (NTRS)
Bar-Itzhack, Itzhack Y.; Harman, Richard R.
2001-01-01
This paper presents the development and performance of a special algorithm for estimating the attitude and angular rate of a spacecraft. The algorithm is a pseudo-linear Kalman filter, which is an ordinary linear Kalman filter that operates on a linear model whose matrices are current state estimate dependent. The nonlinear rotational dynamics equation of the spacecraft is presented in the state space as a state-dependent linear system. Two types of measurements are considered. One type is a measurement of the quaternion of rotation, which is obtained from a newly introduced star tracker based apparatus. The other type of measurement is that of vectors, which permits the use of a variety of vector measuring sensors like sun sensors and magnetometers. While quaternion measurements are related linearly to the state vector, vector measurements constitute a nonlinear function of the state vector. Therefore, in this paper, a state-dependent linear measurement equation is developed for the vector measurement case. The state-dependent pseudo linear filter is applied to simulated spacecraft rotations and adequate estimates of the spacecraft attitude and rate are obtained for the case of quaternion measurements as well as of vector measurements.
Advances in Non-Viral DNA Vectors for Gene Therapy
Hardee, Cinnamon L.; Arévalo-Soliz, Lirio Milenka; Hornstein, Benjamin D.; Zechiedrich, Lynn
2017-01-01
Uses of viral vectors have thus far eclipsed uses of non-viral vectors for gene therapy delivery in the clinic. Viral vectors, however, have certain issues involving genome integration, the inability to be delivered repeatedly, and possible host rejection. Fortunately, development of non-viral DNA vectors has progressed steadily, especially in plasmid vector length reduction, now allowing these tools to fill in specifically where viral or other non-viral vectors may not be the best options. In this review, we examine the improvements made to non-viral DNA gene therapy vectors, highlight opportunities for their further development, address therapeutic needs for which their use is the logical choice, and discuss their future expansion into the clinic. PMID:28208635
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilke, Josefin; Wilke, Martin; Schmitt, Michael, E-mail: mschmitt@uni-duesseldorf.de
2016-01-28
The dipole moments of the ground and lowest electronically excited singlet state of 5-methoxyindole have been determined by means of optical Stark spectroscopy in a molecular beam. The resulting spectra arise from a superposition of different field configurations, one with the static electric field almost parallel to the polarization of the exciting laser radiation, the other nearly perpendicular. Each field configuration leads to different intensities in the rovibronic spectrum. With an automated evolutionary algorithm approach, the spectra can be fit and the ratio of both field configurations can be determined. A simultaneous fit of two spectra with both field configurationsmore » improved the precision of the dipole moment determination by a factor of two. We find a reduction of the absolute dipole moment from 1.59(3) D to 1.14(6) D upon electronic excitation to the lowest electronically excited singlet state. At the same time, the dipole moment orientation rotates by 54{sup ∘} showing the importance of the determination of the dipole moment components. The dipole moment in the electronic ground state can approximately be obtained from a vector addition of the indole and the methoxy group dipole moments. However, in the electronically excited state, vector addition completely fails to describe the observed dipole moment. Several reasons for this behavior are discussed.« less
Models of Disease Vector Control: When Can Aggressive Initial Intervention Lower Long-Term Cost?
Oduro, Bismark; Grijalva, Mario J; Just, Winfried
2018-04-01
Insecticide spraying of housing units is an important control measure for vector-borne infections such as Chagas disease. As vectors may invade both from other infested houses and sylvatic areas and as the effectiveness of insecticide wears off over time, the dynamics of (re)infestations can be approximated by [Formula: see text]-type models with a reservoir, where housing units are treated as hosts, and insecticide spraying corresponds to removal of hosts. Here, we investigate three ODE-based models of this type. We describe a dual-rate effect where an initially very high spraying rate can push the system into a region of the state space with low endemic levels of infestation that can be maintained in the long run at relatively moderate cost, while in the absence of an aggressive initial intervention the same average cost would only allow a much less significant reduction in long-term infestation levels. We determine some sufficient and some necessary conditions under which this effect occurs and show that it is robust in models that incorporate some heterogeneity in the relevant properties of housing units.
Qian, Jianjun; Yang, Jian; Xu, Yong
2013-09-01
This paper presents a robust but simple image feature extraction method, called image decomposition based on local structure (IDLS). It is assumed that in the local window of an image, the macro-pixel (patch) of the central pixel, and those of its neighbors, are locally linear. IDLS captures the local structural information by describing the relationship between the central macro-pixel and its neighbors. This relationship is represented with the linear representation coefficients determined using ridge regression. One image is actually decomposed into a series of sub-images (also called structure images) according to a local structure feature vector. All the structure images, after being down-sampled for dimensionality reduction, are concatenated into one super-vector. Fisher linear discriminant analysis is then used to provide a low-dimensional, compact, and discriminative representation for each super-vector. The proposed method is applied to face recognition and examined using our real-world face image database, NUST-RWFR, and five popular, publicly available, benchmark face image databases (AR, Extended Yale B, PIE, FERET, and LFW). Experimental results show the performance advantages of IDLS over state-of-the-art algorithms.
NASA Astrophysics Data System (ADS)
Li, Tao
2018-06-01
The complexity of aluminum electrolysis process leads the temperature for aluminum reduction cells hard to measure directly. However, temperature is the control center of aluminum production. To solve this problem, combining some aluminum plant's practice data, this paper presents a Soft-sensing model of temperature for aluminum electrolysis process on Improved Twin Support Vector Regression (ITSVR). ITSVR eliminates the slow learning speed of Support Vector Regression (SVR) and the over-fit risk of Twin Support Vector Regression (TSVR) by introducing a regularization term into the objective function of TSVR, which ensures the structural risk minimization principle and lower computational complexity. Finally, the model with some other parameters as auxiliary variable, predicts the temperature by ITSVR. The simulation result shows Soft-sensing model based on ITSVR has short time-consuming and better generalization.
A vector scanning processing technique for pulsed laser velocimetry
NASA Technical Reports Server (NTRS)
Wernet, Mark P.; Edwards, Robert V.
1989-01-01
Pulsed-laser-sheet velocimetry yields two-dimensional velocity vectors across an extended planar region of a flow. Current processing techniques offer high-precision (1-percent) velocity estimates, but can require hours of processing time on specialized array processors. Sometimes, however, a less accurate (about 5 percent) data-reduction technique which also gives unambiguous velocity vector information is acceptable. Here, a direct space-domain processing technique is described and shown to be far superior to previous methods in achieving these objectives. It uses a novel data coding and reduction technique and has no 180-deg directional ambiguity. A complex convection vortex flow was recorded and completely processed in under 2 min on an 80386-based PC, producing a two-dimensional velocity-vector map of the flowfield. Pulsed-laser velocimetry data can thus be reduced quickly and reasonably accurately, without specialized array processing hardware.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Eva Sau Fan; Department of Health Technology and Informatics, The Hong Kong Polytechnic University; Wu, Vincent Wing Cheung
Long planning time in volumetric-modulated arc stereotactic radiotherapy (VMA-SRT) cases can limit its clinical efficiency and use. A vector model could retrieve previously successful radiotherapy cases that share various common anatomic features with the current case. The prsent study aimed to develop a vector model that could reduce planning time by applying the optimization parameters from those retrieved reference cases. Thirty-six VMA-SRT cases of brain metastasis (gender, male [n = 23], female [n = 13]; age range, 32 to 81 years old) were collected and used as a reference database. Another 10 VMA-SRT cases were planned with both conventional optimization and vector-model-supported optimization, followingmore » the oncologists' clinical dose prescriptions. Planning time and plan quality measures were compared using the 2-sided paired Wilcoxon signed rank test with a significance level of 0.05, with positive false discovery rate (pFDR) of less than 0.05. With vector-model-supported optimization, there was a significant reduction in the median planning time, a 40% reduction from 3.7 to 2.2 hours (p = 0.002, pFDR = 0.032), and for the number of iterations, a 30% reduction from 8.5 to 6.0 (p = 0.006, pFDR = 0.047). The quality of plans from both approaches was comparable. From these preliminary results, vector-model-supported optimization can expedite the optimization of VMA-SRT for brain metastasis while maintaining plan quality.« less
Vector dark matter detection using the quantum jump of atoms
NASA Astrophysics Data System (ADS)
Yang, Qiaoli; Di, Haoran
2018-05-01
The hidden sector U(1) vector bosons created from inflationary fluctuations can be a substantial fraction of dark matter if their mass is around 10-5 eV. The creation mechanism makes the vector bosons' energy spectral density ρcdm / ΔE very high. Therefore, the dark electric dipole transition rate in atoms is boosted if the energy gap between atomic states equals the mass of the vector bosons. By using the Zeeman effect, the energy gap between the 2S state and the 2P state in hydrogen atoms or hydrogen like ions can be tuned. The 2S state can be populated with electrons due to its relatively long life, which is about 1/7 s. When the energy gap between the semi-ground 2S state and the 2P state matches the mass of the cosmic vector bosons, induced transitions occur and the 2P state subsequently decays into the 1S state. The 2 P → 1 S decay emitted Lyman-α photons can then be registered. The choices of target atoms depend on the experimental facilities and the mass ranges of the vector bosons. Because the mass of the vector boson is connected to the inflation scale, the proposed experiment may provide a probe to inflation.
Will Culling White-Tailed Deer Prevent Lyme Disease?
Kugeler, K J; Jordan, R A; Schulze, T L; Griffith, K S; Mead, P S
2016-08-01
White-tailed deer play an important role in the ecology of Lyme disease. In the United States, where the incidence and geographic range of Lyme disease continue to increase, reduction of white-tailed deer populations has been proposed as a means of preventing human illness. The effectiveness of this politically sensitive prevention method is poorly understood. We summarize and evaluate available evidence regarding the effect of deer reduction on vector tick abundance and human disease incidence. Elimination of deer from islands and other isolated settings can have a substantial impact on the reproduction of blacklegged ticks, while reduction short of complete elimination has yielded mixed results. To date, most studies have been conducted in ecologic situations that are not representative to the vast majority of areas with high human Lyme disease risk. Robust evidence linking deer control to reduced human Lyme disease risk is lacking. Currently, there is insufficient evidence to recommend deer population reduction as a Lyme disease prevention measure, except in specific ecologic circumstances. © 2015 Blackwell Verlag GmbH.
Will Culling White-Tailed Deer Prevent Lyme Disease?
Kugeler, K. J.; Jordan, R. A.; Schulze, T. L.; Griffith, K. S.; Mead, P. S.
2015-01-01
Summary White-tailed deer play an important role in the ecology of Lyme disease. In the United States, where the incidence and geographic range of Lyme disease continue to increase, reduction of white-tailed deer populations has been proposed as a means of preventing human illness. The effectiveness of this politically sensitive prevention method is poorly understood. We summarize and evaluate available evidence regarding the effect of deer reduction on vector tick abundance and human disease incidence. Elimination of deer from islands and other isolated settings can have a substantial impact on the reproduction of blacklegged ticks, while reduction short of complete elimination has yielded mixed results. To date, most studies have been conducted in ecologic situations that are not representative to the vast majority of areas with high human Lyme disease risk. Robust evidence linking deer control to reduced human Lyme disease risk is lacking. Currently, there is insufficient evidence to recommend deer population reduction as a Lyme disease prevention measure, except in specific ecologic circumstances. PMID:26684932
NASA Astrophysics Data System (ADS)
Bai, Chen; Han, Dongjuan
2018-04-01
MUSIC is widely used on DOA estimation. Triangle grid is a common kind of the arrangement of array, but it is more complicated than rectangular array in calculation of steering vector. In this paper, the quaternions algorithm can reduce dimension of vector and make the calculation easier.
Phase-amplitude reduction of transient dynamics far from attractors for limit-cycling systems
NASA Astrophysics Data System (ADS)
Shirasaka, Sho; Kurebayashi, Wataru; Nakao, Hiroya
2017-02-01
Phase reduction framework for limit-cycling systems based on isochrons has been used as a powerful tool for analyzing the rhythmic phenomena. Recently, the notion of isostables, which complements the isochrons by characterizing amplitudes of the system state, i.e., deviations from the limit-cycle attractor, has been introduced to describe the transient dynamics around the limit cycle [Wilson and Moehlis, Phys. Rev. E 94, 052213 (2016)]. In this study, we introduce a framework for a reduced phase-amplitude description of transient dynamics of stable limit-cycling systems. In contrast to the preceding study, the isostables are treated in a fully consistent way with the Koopman operator analysis, which enables us to avoid discontinuities of the isostables and to apply the framework to system states far from the limit cycle. We also propose a new, convenient bi-orthogonalization method to obtain the response functions of the amplitudes, which can be interpreted as an extension of the adjoint covariant Lyapunov vector to transient dynamics in limit-cycling systems. We illustrate the utility of the proposed reduction framework by estimating the optimal injection timing of external input that efficiently suppresses deviations of the system state from the limit cycle in a model of a biochemical oscillator.
Lin, Hong; Gudmestad, Neil C
2013-06-01
An overview is provided for the aspects of history, biology, genomics, genetics, and epidemiology of zebra chip (ZC), a destructive disease of potato (Solanum tuberosum) that represents a major threat to the potato industries in the United States as well as other potato-production regions in the world. The disease is associated with a gram-negative, phloem-limited, insect-vectored, unculturable prokaryote, 'Candidatus Liberibacter solanacearum', that belongs to the Rhizobiaceae family of α-Proteobacteria. The closest cultivated relatives of 'Ca. L. solanacearum' are members of the group of bacteria known as the α-2 subgroup. In spite of the fact that Koch's postulates sensu stricto have not been fulfilled, a great deal of progress has been made in understanding the ZC disease complex since discovery of the disease. Nevertheless, more research is needed to better understand vector biology, disease mechanisms, host response, and epidemiology in the context of vector-pathogen-plant interactions. Current ZC management strategies focus primarily on psyllid control. The ultimate control of ZC likely relies on host resistance. Unfortunately, all commercial potato cultivars are susceptible to ZC. Elucidation of the 'Ca. L. solanacearum' genome sequence has provided insights into the genetic basis of virulence and physiological and metabolic capability of this organism. Finally, the most effective, sustainable management of ZC is likely to be based on integrated strategies, including removal or reduction of vectors or inocula, improvement of host resistance to the presumptive pathogen and psyllid vectors, and novel gene-based therapeutic treatment.
Piezoelectrically forced vibrations of electroded doubly rotated quartz plates by state space method
NASA Technical Reports Server (NTRS)
Chander, R.
1990-01-01
The purpose of this investigation is to develop an analytical method to study the vibration characteristics of piezoelectrically forced quartz plates. The procedure can be summarized as follows. The three dimensional governing equations of piezoelectricity, the constitutive equations and the strain-displacement relationships are used in deriving the final equations. For this purpose, a state vector consisting of stresses and displacements are chosen and the above equations are manipulated to obtain the projection of the derivative of the state vector with respect to the thickness coordinate on to the state vector itself. The solution to the state vector at any plane is then easily obtained in a closed form in terms of the state vector quantities at a reference plane. To simplify the analysis, simple thickness mode and plane strain approximations are used.
Polarization locked vector solitons and axis instability in optical fiber.
Cundiff, Steven T.; Collings, Brandon C.; Bergman, Keren
2000-09-01
We experimentally observe polarization-locked vector solitons in optical fiber. Polarization locked-vector solitons use nonlinearity to preserve their polarization state despite the presence of birefringence. To achieve conditions where the delicate balance between nonlinearity and birefringence can survive, we studied the polarization evolution of the pulses circulating in a laser constructed entirely of optical fiber. We observe two distinct states with fixed polarization. This first state occurs for very small values birefringence and is elliptically polarized. We measure the relative phase between orthogonal components along the two principal axes to be +/-pi/2. The relative amplitude varies linearly with the magnitude of the birefringence. This state is a polarization locked vector soliton. The second, linearly polarized, state occurs for larger values of birefringence. The second state is due to the fast axis instability. We provide complete characterization of these states, and present a physical explanation of both of these states and the stability of the polarization locked vector solitons. (c) 2000 American Institute of Physics.
Polarization locked vector solitons and axis instability in optical fiber
NASA Astrophysics Data System (ADS)
Cundiff, Steven T.; Collings, Brandon C.; Bergman, Keren
2000-09-01
We experimentally observe polarization-locked vector solitons in optical fiber. Polarization locked-vector solitons use nonlinearity to preserve their polarization state despite the presence of birefringence. To achieve conditions where the delicate balance between nonlinearity and birefringence can survive, we studied the polarization evolution of the pulses circulating in a laser constructed entirely of optical fiber. We observe two distinct states with fixed polarization. This first state occurs for very small values birefringence and is elliptically polarized. We measure the relative phase between orthogonal components along the two principal axes to be ±π/2. The relative amplitude varies linearly with the magnitude of the birefringence. This state is a polarization locked vector soliton. The second, linearly polarized, state occurs for larger values of birefringence. The second state is due to the fast axis instability. We provide complete characterization of these states, and present a physical explanation of both of these states and the stability of the polarization locked vector solitons.
INSECTICIDE-TREATED BED NETS IN RONDÔNIA, BRAZIL: EVALUATION OF THEIR IMPACT ON MALARIA CONTROL
Vieira, Gabriel de Deus; Basano, Sergio de Almeida; Katsuragawa, Tony Hiroshi; Camargo, Luís Marcelo Aranha
2014-01-01
Mosquito nets treated with long-lasting insecticide (LLINs), when used in compliance with guidelines of the World Health Organization, may be effective for malaria vector control. In 2012, approximately 150,000 LLINs were installed in nine municipalities in the state of Rondônia. However, no studies have assessed their impact on the reduction of malaria incidence. This study analyzed secondary data of malaria incidence, in order to assess the impact of LLINs on the annual parasite incidence (API). The results showed no statistically significant differences in API one year after LLIN installation when compared to municipalities without LLINs. The adoption of measures for malaria vector control should be associated with epidemiological studies and evaluations of their use and efficiency, with the aim of offering convincing advantages that justify their implementation and limit malaria infection in the Amazon Region. PMID:25351543
Decentralized Dimensionality Reduction for Distributed Tensor Data Across Sensor Networks.
Liang, Junli; Yu, Guoyang; Chen, Badong; Zhao, Minghua
2016-11-01
This paper develops a novel decentralized dimensionality reduction algorithm for the distributed tensor data across sensor networks. The main contributions of this paper are as follows. First, conventional centralized methods, which utilize entire data to simultaneously determine all the vectors of the projection matrix along each tensor mode, are not suitable for the network environment. Here, we relax the simultaneous processing manner into the one-vector-by-one-vector (OVBOV) manner, i.e., determining the projection vectors (PVs) related to each tensor mode one by one. Second, we prove that in the OVBOV manner each PV can be determined without modifying any tensor data, which simplifies corresponding computations. Third, we cast the decentralized PV determination problem as a set of subproblems with consensus constraints, so that it can be solved in the network environment only by local computations and information communications among neighboring nodes. Fourth, we introduce the null space and transform the PV determination problem with complex orthogonality constraints into an equivalent hidden convex one without any orthogonality constraint, which can be solved by the Lagrange multiplier method. Finally, experimental results are given to show that the proposed algorithm is an effective dimensionality reduction scheme for the distributed tensor data across the sensor networks.
Chaves, Luis Fernando; Calzada, Jose E; Rigg, Chystrie; Valderrama, Anayansi; Gottdenker, Nicole L; Saldaña, Azael
2013-06-06
Insecticide thermal fogging (ITF) is a tool to control vector borne diseases. Insecticide application success for vector control has been associated with housing materials and architecture. Vector abundance is correlated with weather changes. Nevertheless, housing quality and weather impacts on vector abundance have been unaccounted for in most New World insecticide control trials for leishmaniasis vectors. We conducted a 15 month insecticide control trial that included two deltamethrin [6 mg a.i.m-2] based ITF interventions in 12 of 24 monitored houses at Trinidad de Las Minas, a hyperendemic cutaneous leishmaniasis transmission village in western Panamá. During the study we followed sand fly (SF) abundance, keeping track of rainfall and quantified housing quality using an index based on architecture and construction materials. We found a 50 to 80% reduction in SF density in the fogged houses when compared with control houses, while controlling for seasonal changes in SF abundance associated with rainfall. We found heterogeneities in the reductions, as abundance changed according to SF species: Lutzomyia gomezi, Lu. panamensis, Lu. dysponeta and Lu. triramula reduced in density between 40% and 90% after ITF. In contrast, Lu. trapidoi density increased 5% after ITF. Differences in the impact of ITF were associated with housing quality, the most destitute houses, i.e., those with features that ease insect entrance, had a disproportionally larger SF abundance, in some cases with increased domiciliary SF density following the ITF. Our results suggest the potential of insecticide application to control SF density and leishmaniasis transmission could depend on housing quality beyond insecticide efficiency.
Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yongfeng; Qu, Shaobo; Wang, Jiafu
2014-06-02
Phase gradient metasurface (PGMs) are artificial surfaces that can provide pre-defined in-plane wave-vectors to manipulate the directions of refracted/reflected waves. In this Letter, we propose to achieve wideband radar cross section (RCS) reduction using two-dimensional (2D) PGMs. A 2D PGM was designed using a square combination of 49 split-ring sub-unit cells. The PGM can provide additional wave-vectors along the two in-plane directions simultaneously, leading to either surface wave conversion, deflected reflection, or diffuse reflection. Both the simulation and experiment results verified the wide-band, polarization-independent, high-efficiency RCS reduction induced by the 2D PGM.
A vector scanning processing technique for pulsed laser velocimetry
NASA Technical Reports Server (NTRS)
Wernet, Mark P.; Edwards, Robert V.
1989-01-01
Pulsed laser sheet velocimetry yields nonintrusive measurements of two-dimensional velocity vectors across an extended planar region of a flow. Current processing techniques offer high precision (1 pct) velocity estimates, but can require several hours of processing time on specialized array processors. Under some circumstances, a simple, fast, less accurate (approx. 5 pct), data reduction technique which also gives unambiguous velocity vector information is acceptable. A direct space domain processing technique was examined. The direct space domain processing technique was found to be far superior to any other techniques known, in achieving the objectives listed above. It employs a new data coding and reduction technique, where the particle time history information is used directly. Further, it has no 180 deg directional ambiguity. A complex convection vortex flow was recorded and completely processed in under 2 minutes on an 80386 based PC, producing a 2-D velocity vector map of the flow field. Hence, using this new space domain vector scanning (VS) technique, pulsed laser velocimetry data can be reduced quickly and reasonably accurately, without specialized array processing hardware.
A Turn-Projected State-Based Conflict Resolution Algorithm
NASA Technical Reports Server (NTRS)
Butler, Ricky W.; Lewis, Timothy A.
2013-01-01
State-based conflict detection and resolution (CD&R) algorithms detect conflicts and resolve them on the basis on current state information without the use of additional intent information from aircraft flight plans. Therefore, the prediction of the trajectory of aircraft is based solely upon the position and velocity vectors of the traffic aircraft. Most CD&R algorithms project the traffic state using only the current state vectors. However, the past state vectors can be used to make a better prediction of the future trajectory of the traffic aircraft. This paper explores the idea of using past state vectors to detect traffic turns and resolve conflicts caused by these turns using a non-linear projection of the traffic state. A new algorithm based on this idea is presented and validated using a fast-time simulator developed for this study.
Decay width of hadronic molecule structure for quarks
NASA Astrophysics Data System (ADS)
Chen, Xiaozhao; Lü, Xiaofu
2018-06-01
Based on the general form of the Bethe-Salpeter wave functions for the bound states consisting of two vector fields, we obtain the general formulas for the decay widths of molecular states composed of two heavy vector mesons with arbitrary spin and parity into a heavy meson plus a light meson. In this approach, our attention is still focused on the internal structure of heavy vector mesons in the molecular state. According to the molecule state model of exotic meson, we give the generalized Bethe-Salpeter wave function of molecular state as a four-quark state. Then the observed Y (3940 ) state is considered as a molecular state consisting of two heavy vector mesons D*0D¯*0 and the strong Y (3940 )→J /ψ ω decay width is calculated. The numerical result is consistent with the experimental values.
Singular reduction of resonant Hamiltonians
NASA Astrophysics Data System (ADS)
Meyer, Kenneth R.; Palacián, Jesús F.; Yanguas, Patricia
2018-06-01
We investigate the dynamics of resonant Hamiltonians with n degrees of freedom to which we attach a small perturbation. Our study is based on the geometric interpretation of singular reduction theory. The flow of the Hamiltonian vector field is reconstructed from the cross sections corresponding to an approximation of this vector field in an energy surface. This approximate system is also built using normal forms and applying reduction theory obtaining the reduced Hamiltonian that is defined on the orbit space. Generically, the reduction is of singular character and we classify the singularities in the orbit space, getting three different types of singular points. A critical point of the reduced Hamiltonian corresponds to a family of periodic solutions in the full system whose characteristic multipliers are approximated accordingly to the nature of the critical point.
Assessing transmission of crop diseases by insect vectors in a landscape context.
Carrière, Y; Degain, B; Hartfield, K A; Nolte, K D; Marsh, S E; Ellers-Kirk, C; Van Leeuwen, W J D; Liesner, L; Dutilleul, P; Palumbo, J C
2014-02-01
Theory indicates that landscape composition affects transmission of vector-borne crop diseases, but few empirical studies have investigated how landscape composition affects plant disease epidemiology. Since 2006, Bemisia tabaci (Gennadius) has vectored the cucurbit yellow stunting disorder virus (CYSDV) to cantaloupe and honeydew melons (Cucumis melo L.) in the southwestern United States and northern Mexico, causing significant reductions in yield of fall melons and increased use of insecticides. Here, we show that a landscape-based approach allowing simultaneous assessment of impacts of local (i.e., planting date) and regional (i.e., landscape composition) factors provides valuable insights on how to reduce crop disease risks. Specifically, we found that planting fall melon fields early in the growing season, eliminating plants germinating from seeds produced by spring melons after harvest, and planting fall melon fields away from cotton and spring melon fields may significantly reduce the incidence of CYSDV infection in fall melons. Because the largest scale of significance of the positive association between abundance of cotton and spring melon fields and CYSDV incidence was 1,750 and 3,000 m, respectively, reducing areas of cotton and spring melon fields within these distances from fall melon fields may decrease CYSDV incidence. Our results indicate that landscape-based studies will be fruitful to alleviate limitations imposed on crop production by vector-borne diseases.
Design and test of electromechanical actuators for thrust vector control
NASA Technical Reports Server (NTRS)
Cowan, J. R.; Weir, Rae Ann
1993-01-01
New control mechanisms technologies are currently being explored to provide alternatives to hydraulic thrust vector control (TVC) actuation systems. For many years engineers have been encouraging the investigation of electromechanical actuators (EMA) to take the place of hydraulics for spacecraft control/gimballing systems. The rationale is to deliver a lighter, cleaner, safer, more easily maintained, as well as energy efficient space vehicle. In light of this continued concern to improve the TVC system, the Propulsion Laboratory at the NASA George C. Marshall Space Flight Center (MSFC) is involved in a program to develop electromechanical actuators for the purpose of testing and TVC system implementation. Through this effort, an electromechanical thrust vector control actuator has been designed and assembled. The design consists of the following major components: Two three-phase brushless dc motors, a two pass gear reduction system, and a roller screw, which converts rotational input into linear output. System control is provided by a solid-state electronic controller and power supply. A pair of resolvers and associated electronics deliver position feedback to the controller such that precise positioning is achieved. Testing and evaluation is currently in progress. Goals focus on performance comparisons between EMA's and similar hydraulic systems.
Precision of computer-assisted core decompression drilling of the knee.
Beckmann, J; Goetz, J; Bäthis, H; Kalteis, T; Grifka, J; Perlick, L
2006-06-01
Core decompression by exact drilling into the ischemic areas is the treatment of choice in early stages of osteonecrosis of the femoral condyle. Computer-aided surgery might enhance the precision of the drilling and lower the radiation exposure time of both staff and patients. The aim of this study was to evaluate the precision of the fluoroscopically based VectorVision-navigation system in an in vitro model. Thirty sawbones were prepared with a defect filled up with a radiopaque gypsum sphere mimicking the osteonecrosis. 20 sawbones were drilled by guidance of an intraoperative navigation system VectorVision (BrainLAB, Munich, Germany). Ten sawbones were drilled by fluoroscopic control only. A statistically significant difference with a mean distance of 0.58 mm in the navigated group and 0.98 mm in the control group regarding the distance to the desired mid-point of the lesion could be stated. Significant difference was further found in the number of drilling corrections as well as radiation time needed. The fluoroscopic-based VectorVision-navigation system shows a high feasibility and precision of computer-guided drilling with simultaneously reduction of radiation time and therefore could be integrated into clinical routine.
Design and test of electromechanical actuators for thrust vector control
NASA Astrophysics Data System (ADS)
Cowan, J. R.; Weir, Rae Ann
1993-05-01
New control mechanisms technologies are currently being explored to provide alternatives to hydraulic thrust vector control (TVC) actuation systems. For many years engineers have been encouraging the investigation of electromechanical actuators (EMA) to take the place of hydraulics for spacecraft control/gimballing systems. The rationale is to deliver a lighter, cleaner, safer, more easily maintained, as well as energy efficient space vehicle. In light of this continued concern to improve the TVC system, the Propulsion Laboratory at the NASA George C. Marshall Space Flight Center (MSFC) is involved in a program to develop electromechanical actuators for the purpose of testing and TVC system implementation. Through this effort, an electromechanical thrust vector control actuator has been designed and assembled. The design consists of the following major components: Two three-phase brushless dc motors, a two pass gear reduction system, and a roller screw, which converts rotational input into linear output. System control is provided by a solid-state electronic controller and power supply. A pair of resolvers and associated electronics deliver position feedback to the controller such that precise positioning is achieved. Testing and evaluation is currently in progress. Goals focus on performance comparisons between EMA's and similar hydraulic systems.
Recent Developments In Theory Of Balanced Linear Systems
NASA Technical Reports Server (NTRS)
Gawronski, Wodek
1994-01-01
Report presents theoretical study of some issues of controllability and observability of system represented by linear, time-invariant mathematical model of the form. x = Ax + Bu, y = Cx + Du, x(0) = xo where x is n-dimensional vector representing state of system; u is p-dimensional vector representing control input to system; y is q-dimensional vector representing output of system; n,p, and q are integers; x(0) is intial (zero-time) state vector; and set of matrices (A,B,C,D) said to constitute state-space representation of system.
2013-01-01
Background Insecticide thermal fogging (ITF) is a tool to control vector borne diseases. Insecticide application success for vector control has been associated with housing materials and architecture. Vector abundance is correlated with weather changes. Nevertheless, housing quality and weather impacts on vector abundance have been unaccounted for in most New World insecticide control trials for leishmaniasis vectors. Methods We conducted a 15 month insecticide control trial that included two deltamethrin [6 mg a.i.m-2] based ITF interventions in 12 of 24 monitored houses at Trinidad de Las Minas, a hyperendemic cutaneous leishmaniasis transmission village in western Panamá. During the study we followed sand fly (SF) abundance, keeping track of rainfall and quantified housing quality using an index based on architecture and construction materials. Results We found a 50 to 80% reduction in SF density in the fogged houses when compared with control houses, while controlling for seasonal changes in SF abundance associated with rainfall. We found heterogeneities in the reductions, as abundance changed according to SF species: Lutzomyia gomezi, Lu. panamensis, Lu. dysponeta and Lu. triramula reduced in density between 40% and 90% after ITF. In contrast, Lu. trapidoi density increased 5% after ITF. Differences in the impact of ITF were associated with housing quality, the most destitute houses, i.e., those with features that ease insect entrance, had a disproportionally larger SF abundance, in some cases with increased domiciliary SF density following the ITF. Conclusion Our results suggest the potential of insecticide application to control SF density and leishmaniasis transmission could depend on housing quality beyond insecticide efficiency. PMID:23742709
Mixed models and reduction method for dynamic analysis of anisotropic shells
NASA Technical Reports Server (NTRS)
Noor, A. K.; Peters, J. M.
1985-01-01
A time-domain computational procedure is presented for predicting the dynamic response of laminated anisotropic shells. The two key elements of the procedure are: (1) use of mixed finite element models having independent interpolation (shape) functions for stress resultants and generalized displacements for the spatial discretization of the shell, with the stress resultants allowed to be discontinuous at interelement boundaries; and (2) use of a dynamic reduction method, with the global approximation vectors consisting of the static solution and an orthogonal set of Lanczos vectors. The dynamic reduction is accomplished by means of successive application of the finite element method and the classical Rayleigh-Ritz technique. The finite element method is first used to generate the global approximation vectors. Then the Rayleigh-Ritz technique is used to generate a reduced system of ordinary differential equations in the amplitudes of these modes. The temporal integration of the reduced differential equations is performed by using an explicit half-station central difference scheme (Leap-frog method). The effectiveness of the proposed procedure is demonstrated by means of a numerical example and its advantages over reduction methods used with the displacement formulation are discussed.
Different evolution dynamics of vector solitons depending on their polarization states
NASA Astrophysics Data System (ADS)
Chen, Wei-Cheng; Chen, Guo-Jie
2014-03-01
There are three types of temporal evolution dynamics of vector solitons observed in a ring fiber laser with a semiconductor saturable absorption mirror (SESAM) as a mode-locker. It is found that the polarization property of vector solitons is an important factor for achieving different evolution dynamics. The vector soliton with a uniform polarization state across the whole pulse profile and zero polarization extinction ratio operates at a fundamental repetition rate with a single pulse profile. The elliptically polarized vector soliton with a larger polarization extinction ratio exhibits a harmonic pulse train. The soliton bunching with multi-peak structures exists between the above two states and shows elliptical polarization with a small polarization extinction ratio.
Self, L. S.; Ree, H. I.; Lofgren, C. S.; Shim, J. C.; Chow, C. Y.; Shin, H. K.; Kim, K. H.
1973-01-01
As a suitable emergency measure to arrest epidemics of Japanese encephalitis in Korea, the ultra-low-volume method of spraying insecticide to control the mosquito vector Culex tritaeniorhynchus has been tested in 2 successive years over a 16-km 2 area, utilizing a large fixed-wing aircraft. Malathion concentrate applied at 0.36 litres/ha gave insufficient control of the parous (infective) females, and no reduction in total numbers of this species. Fenitrothion concentrate applied at 0.45 litres/ha resulted in a 77-87% reduction in total numbers and an 87-98% reduction in parous females over a 4-day period. PMID:4368385
Rosas, Cristina; Van de Walle, Gerlinde R; Metzger, Stephan M; Hoelzer, Karin; Dubovi, Edward J; Kim, Sung G; Parrish, Colin R; Osterrieder, Nikolaus
2008-05-02
In 2004, canine influenza virus (CIV) was identified as a respiratory pathogen of dogs for the first time and found to be closely related to H3N8 equine influenza virus (EIV). We generated a recombinant vectored vaccine that expresses H3 of a recent isolate of EIV using equine herpesvirus type 1 (EHV-1) as the delivery vehicle. This EHV-1 vectored vaccine exhibited robust and stable EIV H3 expression and induced a strong influenza virus-specific response in both mice and dogs upon intranasal or subcutaneous administration. Furthermore, upon challenge with the recent CIV isolate A/canine/PA/10915-07, protection of vaccinated dogs could be demonstrated by a significant reduction in clinical sings, and, more importantly, by a significant reduction in virus shedding. We concluded that the EHV-1/H3 recombinant vector can be a valuable alternative for protection of dogs against clinical disease induced by CIV and can significantly reduce virus spread.
Rosas, Cristina; Van de Walle, Gerlinde R.; Metzger, Stephan M.; Hoelzer, Karin; Dubovi, Edward J.; Kim, Sung G.; Parrish, Colin R.; Osterrieder, Nikolaus
2008-01-01
In 2004, canine influenza virus (CIV) was identified as a respiratory pathogen of dogs for the first time and is closely related to H3N8 equine influenza virus (EIV). We generated a recombinant vectored vaccine that expresses H3 of a recent isolate of EIV using equine herpesvirus type 1 (EHV-1) as the delivery vehicle. This EHV-1 vectored vaccine exhibited robust and stable EIV H3 expression and induced a strong influenza virus-specific response in both mice and dogs upon intranasal or subcutaneous administration. Furthermore, upon challenge with the recent CIV isolate A/canine/PA/10915-07, protection of vaccinated dogs could be demonstrated by a significant reduction in clinical sings, and, more importantly, by a significant reduction in virus shedding. We concluded that the EHV-1/H3 recombinant vector can be a valuable alternative for protection of dogs against clinical disease induced by CIV and can significantly reduce spread. PMID:18407383
Reduction of solar vector magnetograph data using a microMSP array processor
NASA Technical Reports Server (NTRS)
Kineke, Jack
1990-01-01
The processing of raw data obtained by the solar vector magnetograph at NASA-Marshall requires extensive arithmetic operations on large arrays of real numbers. The objectives of this summer faculty fellowship study are to: (1) learn the programming language of the MicroMSP Array Processor and adapt some existing data reduction routines to exploit its capabilities; and (2) identify other applications and/or existing programs which lend themselves to array processor utilization which can be developed by undergraduate student programmers under the provisions of project JOVE.
NASA Astrophysics Data System (ADS)
Khan, Abu M. A. S.
We study the continuous spin representation (CSR) of the Poincare group in arbitrary dimensions. In d dimensions, the CSRs are characterized by the length of the light-cone vector and the Dynkin labels of the SO(d-3) short little group which leaves the light-cone vector invariant. In addition to these, a solid angle Od-3 which specifies the direction of the light-cone vector is also required to label the states. We also find supersymmetric generalizations of the CSRs. In four dimensions, the supermultiplet contains one bosonic and one fermionic CSRs which transform into each other under the action of the supercharges. In a five dimensional case, the supermultiplet contains two bosonic and two fermionic CSRs which is like N = 2 supersymmetry in four dimensions. When constructed using Grassmann parameters, the light-cone vector becomes nilpotent. This makes the representation finite dimensional, but at the expense of introducing central charges even though the representation is massless. This leads to zero or negative norm states. The nilpotent constructions are valid only for even dimensions. We also show how the CSRs in four dimensions can be obtained from five dimensions by the combinations of Kaluza-Klein (KK) dimensional reduction and the Inonu-Wigner group contraction. The group contraction is a singular transformation. We show that the group contraction is equivalent to imposing periodic boundary condition along one direction and taking a double singular limit. In this form the contraction parameter is interpreted as the inverse KK radius. We apply this technique to both five dimensional regular massless and massive representations. For the regular massless case, we find that the contraction gives the CSR in four dimensions under a double singular limit and the representation wavefunction is the Bessel function. For the massive case, we use Majorana's infinite component theory as a model for the SO(4) little group. In this case, a triple singular limit is required to yield any CSR in four dimensions. The representation wavefunction is the Bessel function, as expected, but the scale factor is not the length of the light-cone vector. The amplitude and the scale factor are implicit functions of the parameter y which is a ratio of the internal and external coordinates. We also state under what conditions our solutions become identical to Wigner's solution.
NASA Technical Reports Server (NTRS)
Choudhury, A. K.; Djalali, M.
1975-01-01
In this recursive method proposed, the gain matrix for the Kalman filter and the convariance of the state vector are computed not via the Riccati equation, but from certain other equations. These differential equations are of Chandrasekhar-type. The 'invariant imbedding' idea resulted in the reduction of the basic boundary value problem of transport theory to an equivalent initial value system, a significant computational advance. Initial value experience showed that there is some computational savings in the method and the loss of positive definiteness of the covariance matrix is less vulnerable.
Efficacies of prevention and control measures applied during an outbreak in Southwest Madrid, Spain
Martcheva, Maia; Tuncer, Necibe; Fontana, Isabella; Carrillo, Eugenia; Moreno, Javier; Keesling, James
2017-01-01
Leishmaniasis is a vector-borne disease of worldwide distribution, currently present in 98 countries. Since late 2010, an unusual increase of human visceral and cutaneous leishmaniasis cases has been observed in the south-western Madrid region, totaling more than 600 cases until 2015. Some hosts, such as human, domestic dog and cat, rabbit (Oryctolagus cuniculus), and hare (Lepus granatensis), were found infected by the parasite of this disease in the area. Hares were described as the most important reservoir due to their higher prevalence, capacity to infect the vector, and presence of the same strains as in humans. Various measures were adopted to prevent and control the disease, and since 2013 there was a slight decline in the human sickness. We used a mathematical model to evaluate the efficacy of each measure in reducing the number of infected hosts. We identified in the present model that culling both hares and rabbits, without immediate reposition of the animals, was the best measure adopted, decreasing the proportion of all infected hosts. Particularly, culling hares was more efficacious than culling rabbits to reduce the proportion of infected individuals of all hosts. Likewise, lowering vector contact with hares highly influenced the reduction of the proportion of infected hosts. The reduction of the vector density per host in the park decreased the leishmaniasis incidence of hosts in the park and the urban areas. On the other hand, the reduction of the vector density per host of the urban area (humans, dogs and cats) decreased only their affected population, albeit at a higher proportion. The use of insecticide-impregnated collar and vaccination in dogs affected only the infected dogs’ population. The parameters related to the vector contact with dog, cat or human do not present a high impact on the other hosts infected by Leishmania. In conclusion, the efficacy of each control strategy was determined, in order to direct future actions in this and in other similar outbreaks. The present mathematical model was able to reproduce the leishmaniasis dynamics in the Madrid outbreak, providing theoretical support based on successful experiences, such as the reduction of human cases in Southwest Madrid, Spain. PMID:29028841
Efficacies of prevention and control measures applied during an outbreak in Southwest Madrid, Spain.
Sevá, Anaiá da Paixão; Martcheva, Maia; Tuncer, Necibe; Fontana, Isabella; Carrillo, Eugenia; Moreno, Javier; Keesling, James
2017-01-01
Leishmaniasis is a vector-borne disease of worldwide distribution, currently present in 98 countries. Since late 2010, an unusual increase of human visceral and cutaneous leishmaniasis cases has been observed in the south-western Madrid region, totaling more than 600 cases until 2015. Some hosts, such as human, domestic dog and cat, rabbit (Oryctolagus cuniculus), and hare (Lepus granatensis), were found infected by the parasite of this disease in the area. Hares were described as the most important reservoir due to their higher prevalence, capacity to infect the vector, and presence of the same strains as in humans. Various measures were adopted to prevent and control the disease, and since 2013 there was a slight decline in the human sickness. We used a mathematical model to evaluate the efficacy of each measure in reducing the number of infected hosts. We identified in the present model that culling both hares and rabbits, without immediate reposition of the animals, was the best measure adopted, decreasing the proportion of all infected hosts. Particularly, culling hares was more efficacious than culling rabbits to reduce the proportion of infected individuals of all hosts. Likewise, lowering vector contact with hares highly influenced the reduction of the proportion of infected hosts. The reduction of the vector density per host in the park decreased the leishmaniasis incidence of hosts in the park and the urban areas. On the other hand, the reduction of the vector density per host of the urban area (humans, dogs and cats) decreased only their affected population, albeit at a higher proportion. The use of insecticide-impregnated collar and vaccination in dogs affected only the infected dogs' population. The parameters related to the vector contact with dog, cat or human do not present a high impact on the other hosts infected by Leishmania. In conclusion, the efficacy of each control strategy was determined, in order to direct future actions in this and in other similar outbreaks. The present mathematical model was able to reproduce the leishmaniasis dynamics in the Madrid outbreak, providing theoretical support based on successful experiences, such as the reduction of human cases in Southwest Madrid, Spain.
40 CFR 503.17 - Recordkeeping.
Code of Federal Regulations, 2012 CFR
2012-07-01
... retain the information for five years: (i) The concentration of each pollutant listed in Table 3 of § 503.13 in the sewage sludge. (ii) The following certification statement: I certify, under penalty of law... in § 503.32(a) and the vector attraction reduction requirement in [insert one of the vector...
Reduction in fecundity and shifts in cellular processes by a native virus on an invasive insect
USDA-ARS?s Scientific Manuscript database
Pathogens and their vectors have co-evolutionary histories that are intricately intertwined with their ecologies, environments and genetic interactions. The majority of non-persistently transmitted plant viruses are transmitted by aphid species. One important aphid vector in soybean-growing regions ...
Healthy, functioning aquatic ecosystems provide the ecosystem service of mosquito population control. Nutrient and pesticide pollution, along with destruction and filling of wetlands, lead to impaired waterbodies that are less effective in vector regulation due to reduction or re...
Application of wavelet-based multi-model Kalman filters to real-time flood forecasting
NASA Astrophysics Data System (ADS)
Chou, Chien-Ming; Wang, Ru-Yih
2004-04-01
This paper presents the application of a multimodel method using a wavelet-based Kalman filter (WKF) bank to simultaneously estimate decomposed state variables and unknown parameters for real-time flood forecasting. Applying the Haar wavelet transform alters the state vector and input vector of the state space. In this way, an overall detail plus approximation describes each new state vector and input vector, which allows the WKF to simultaneously estimate and decompose state variables. The wavelet-based multimodel Kalman filter (WMKF) is a multimodel Kalman filter (MKF), in which the Kalman filter has been substituted for a WKF. The WMKF then obtains M estimated state vectors. Next, the M state-estimates, each of which is weighted by its possibility that is also determined on-line, are combined to form an optimal estimate. Validations conducted for the Wu-Tu watershed, a small watershed in Taiwan, have demonstrated that the method is effective because of the decomposition of wavelet transform, the adaptation of the time-varying Kalman filter and the characteristics of the multimodel method. Validation results also reveal that the resulting method enhances the accuracy of the runoff prediction of the rainfall-runoff process in the Wu-Tu watershed.
Recognizing emotions from EEG subbands using wavelet analysis.
Candra, Henry; Yuwono, Mitchell; Handojoseno, Ardi; Chai, Rifai; Su, Steven; Nguyen, Hung T
2015-01-01
Objectively recognizing emotions is a particularly important task to ensure that patients with emotional symptoms are given the appropriate treatments. The aim of this study was to develop an emotion recognition system using Electroencephalogram (EEG) signals to identify four emotions including happy, sad, angry, and relaxed. We approached this objective by firstly investigating the relevant EEG frequency band followed by deciding the appropriate feature extraction method. Two features were considered namely: 1. Wavelet Energy, and 2. Wavelet Entropy. EEG Channels reduction was then implemented to reduce the complexity of the features. The ground truth emotional states of each subject were inferred using Russel's circumplex model of emotion, that is, by mapping the subjectively reported degrees of valence (pleasure) and arousal to the appropriate emotions - for example, an emotion with high valence and high arousal is equivalent to a `happy' emotional state, while low valence and low arousal is equivalent to a `sad' emotional state. The Support Vector Machine (SVM) classifier was then used for mapping each feature vector into corresponding discrete emotions. The results presented in this study indicated thatWavelet features extracted from alpha, beta and gamma bands seem to provide the necessary information for describing the aforementioned emotions. Using the DEAP (Dataset for Emotion Analysis using electroencephalogram, Physiological and Video Signals), our proposed method achieved an average sensitivity and specificity of 77.4% ± 14.1% and 69.1% ± 12.8%, respectively.
Support vector machines for nuclear reactor state estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zavaljevski, N.; Gross, K. C.
2000-02-14
Validation of nuclear power reactor signals is often performed by comparing signal prototypes with the actual reactor signals. The signal prototypes are often computed based on empirical data. The implementation of an estimation algorithm which can make predictions on limited data is an important issue. A new machine learning algorithm called support vector machines (SVMS) recently developed by Vladimir Vapnik and his coworkers enables a high level of generalization with finite high-dimensional data. The improved generalization in comparison with standard methods like neural networks is due mainly to the following characteristics of the method. The input data space is transformedmore » into a high-dimensional feature space using a kernel function, and the learning problem is formulated as a convex quadratic programming problem with a unique solution. In this paper the authors have applied the SVM method for data-based state estimation in nuclear power reactors. In particular, they implemented and tested kernels developed at Argonne National Laboratory for the Multivariate State Estimation Technique (MSET), a nonlinear, nonparametric estimation technique with a wide range of applications in nuclear reactors. The methodology has been applied to three data sets from experimental and commercial nuclear power reactor applications. The results are promising. The combination of MSET kernels with the SVM method has better noise reduction and generalization properties than the standard MSET algorithm.« less
Nagarajan, Mahesh B.; Huber, Markus B.; Schlossbauer, Thomas; Leinsinger, Gerda; Krol, Andrzej; Wismüller, Axel
2014-01-01
Objective While dimension reduction has been previously explored in computer aided diagnosis (CADx) as an alternative to feature selection, previous implementations of its integration into CADx do not ensure strict separation between training and test data required for the machine learning task. This compromises the integrity of the independent test set, which serves as the basis for evaluating classifier performance. Methods and Materials We propose, implement and evaluate an improved CADx methodology where strict separation is maintained. This is achieved by subjecting the training data alone to dimension reduction; the test data is subsequently processed with out-of-sample extension methods. Our approach is demonstrated in the research context of classifying small diagnostically challenging lesions annotated on dynamic breast magnetic resonance imaging (MRI) studies. The lesions were dynamically characterized through topological feature vectors derived from Minkowski functionals. These feature vectors were then subject to dimension reduction with different linear and non-linear algorithms applied in conjunction with out-of-sample extension techniques. This was followed by classification through supervised learning with support vector regression. Area under the receiver-operating characteristic curve (AUC) was evaluated as the metric of classifier performance. Results Of the feature vectors investigated, the best performance was observed with Minkowski functional ’perimeter’ while comparable performance was observed with ’area’. Of the dimension reduction algorithms tested with ’perimeter’, the best performance was observed with Sammon’s mapping (0.84 ± 0.10) while comparable performance was achieved with exploratory observation machine (0.82 ± 0.09) and principal component analysis (0.80 ± 0.10). Conclusions The results reported in this study with the proposed CADx methodology present a significant improvement over previous results reported with such small lesions on dynamic breast MRI. In particular, non-linear algorithms for dimension reduction exhibited better classification performance than linear approaches, when integrated into our CADx methodology. We also note that while dimension reduction techniques may not necessarily provide an improvement in classification performance over feature selection, they do allow for a higher degree of feature compaction. PMID:24355697
Multiple polarization states of vector soliton in fiber laser
NASA Astrophysics Data System (ADS)
Chen, Weicheng; Xu, Wencheng; Cao, Hui; Han, Dingan
2007-11-01
Vector soliton is obtained in erbium-doped fiber laser via nonlinear polarization rotation techniques. In experiment, we observe the every 4- and 7-pulse sinusoidal peak modulation. Temporal pulse sinusoidal peak modulation owes to evolution behavior of vector solitons in multiple polarization states. The polarizer in the laser modulates the mode-locked pulses with different polarization states into periodical pulse train intensities modulation. Moreover, the increasing pumping power lead to the appearance of the harmonic pulses and change the equivalent beat length to accelerate the polarization rotation. When the laser cavity length is the n-th multiple ratios to the beat length to maintain the mode-locking, the mode-locked vector soliton is in n-th multiple polarization states, exhibiting every n-pulse sinusoidal peak modulation.
An affine projection algorithm using grouping selection of input vectors
NASA Astrophysics Data System (ADS)
Shin, JaeWook; Kong, NamWoong; Park, PooGyeon
2011-10-01
This paper present an affine projection algorithm (APA) using grouping selection of input vectors. To improve the performance of conventional APA, the proposed algorithm adjusts the number of the input vectors using two procedures: grouping procedure and selection procedure. In grouping procedure, the some input vectors that have overlapping information for update is grouped using normalized inner product. Then, few input vectors that have enough information for for coefficient update is selected using steady-state mean square error (MSE) in selection procedure. Finally, the filter coefficients update using selected input vectors. The experimental results show that the proposed algorithm has small steady-state estimation errors comparing with the existing algorithms.
Otsuka, Kenju; Chu, Shu-Chun
2013-05-01
We report a simple method for generating cylindrical vector beams directly from laser-diode (LD)-pumped microchip solid-state lasers by using dual end-pumping beams. Radially as well as azimuthally polarized vector field emissions have been generated from the common c-cut Nd:GdVO4 laser cavity merely by controlling the focus positions of orthogonally polarized LD off-axis pump beams. Hyperbolically polarized vector fields have also been observed, in which the cylindrical symmetry of vector fields is broken. Experimental results have been well reproduced by numerical simulations.
Note: Vector network analyzer-ferromagnetic resonance spectrometer using high Q-factor cavity.
Lo, C K; Lai, W C; Cheng, J C
2011-08-01
A ferromagnetic resonance (FMR) spectrometer whose main components consist of an X-band resonator and a vector network analyzer (VNA) was developed. This spectrometer takes advantage of a high Q-factor (9600) cavity and state-of-the-art VNA. Accordingly, field modulation lock-in technique for signal to noise ratio (SNR) enhancement is no longer necessary, and FMR absorption can therefore be extracted directly. Its derivative for the ascertainment of full width at half maximum height of FMR peak can be found by taking the differentiation of original data. This system was characterized with different thicknesses of permalloy (Py) films and its multilayer, and found that the SNR of 5 nm Py on glass was better than 50, and did not have significant reduction even at low microwave excitation power (-20 dBm), and at low Q-factor (3000). The FMR other than X-band can also be examined in the same manner by using a suitable band cavity within the frequency range of VNA.
Empirical evidence of the effect of school gathering on the dynamics of dengue epidemics.
Hernández-Suárez, Carlos M; Mendoza-Cano, Oliver
2016-01-01
Dengue fever is an important vector-transmitted disease that affects more than 100 countries worldwide. Locations where individuals tend to gather may play an important role in disease transmission in the presence of the vector. By controlling mosquitoes' breeding places, this study aims to analyze the effect of reducing transmission in elementary schools (grades 1-9) on the dynamics of the epidemic at a regional level. In 2007, we implemented a massive campaign in a region of México (Colima state, 5,191 km(2), population 568,000) focused on training janitors to locate and avoid mosquitoes' breeding places, the objective being to maintain elementary schools free of mosquitoes. We observed 45% reduction in dengue incidence compared to the previous year. In contrast, the rest of Mexico observed an 81% increase in incidence on average. Costs associated with campaigns focusing on cleaning schools are very low and results seem to be promising. Nevertheless, more controlled studies are needed.
The semantic representation of prejudice and stereotypes.
Bhatia, Sudeep
2017-07-01
We use a theory of semantic representation to study prejudice and stereotyping. Particularly, we consider large datasets of newspaper articles published in the United States, and apply latent semantic analysis (LSA), a prominent model of human semantic memory, to these datasets to learn representations for common male and female, White, African American, and Latino names. LSA performs a singular value decomposition on word distribution statistics in order to recover word vector representations, and we find that our recovered representations display the types of biases observed in human participants using tasks such as the implicit association test. Importantly, these biases are strongest for vector representations with moderate dimensionality, and weaken or disappear for representations with very high or very low dimensionality. Moderate dimensional LSA models are also the best at learning race, ethnicity, and gender-based categories, suggesting that social category knowledge, acquired through dimensionality reduction on word distribution statistics, can facilitate prejudiced and stereotyped associations. Copyright © 2017 Elsevier B.V. All rights reserved.
Empirical evidence of the effect of school gathering on the dynamics of dengue epidemics
Hernández-Suárez, Carlos M.; Mendoza-Cano, Oliver
2016-01-01
Introduction Dengue fever is an important vector-transmitted disease that affects more than 100 countries worldwide. Locations where individuals tend to gather may play an important role in disease transmission in the presence of the vector. By controlling mosquitoes’ breeding places, this study aims to analyze the effect of reducing transmission in elementary schools (grades 1–9) on the dynamics of the epidemic at a regional level. Materials and methods In 2007, we implemented a massive campaign in a region of México (Colima state, 5,191 km2, population 568,000) focused on training janitors to locate and avoid mosquitoes’ breeding places, the objective being to maintain elementary schools free of mosquitoes. Results We observed 45% reduction in dengue incidence compared to the previous year. In contrast, the rest of Mexico observed an 81% increase in incidence on average. Discussion Costs associated with campaigns focusing on cleaning schools are very low and results seem to be promising. Nevertheless, more controlled studies are needed. PMID:26743450
Magnetofermionic condensate in two dimensions
Kulik, L. V.; Zhuravlev, A. S.; Dickmann, S.; Gorbunov, A. V.; Timofeev, V. B.; Kukushkin, I. V.; Schmult, S.
2016-01-01
Coherent condensate states of particles obeying either Bose or Fermi statistics are in the focus of interest in modern physics. Here we report on condensation of collective excitations with Bose statistics, cyclotron magnetoexcitons, in a high-mobility two-dimensional electron system in a magnetic field. At low temperatures, the dense non-equilibrium ensemble of long-lived triplet magnetoexcitons exhibits both a drastic reduction in the viscosity and a steep enhancement in the response to the external electromagnetic field. The observed effects are related to formation of a super-absorbing state interacting coherently with the electromagnetic field. Simultaneously, the electrons below the Fermi level form a super-emitting state. The effects are explicable from the viewpoint of a coherent condensate phase in a non-equilibrium system of two-dimensional fermions with a fully quantized energy spectrum. The condensation occurs in the space of vectors of magnetic translations, a property providing a completely new landscape for future physical investigations. PMID:27848969
Assessment of Climate Change and Vector-borne Diseases in the United States
NASA Astrophysics Data System (ADS)
Monaghan, A. J.; Beard, C. B.; Eisen, R. J.; Barker, C. M.; Garofalo, J.; Hahn, M.; Hayden, M.; Ogden, N.; Schramm, P.
2016-12-01
Vector-borne diseases are illnesses that are transmitted by vectors, which include mosquitoes, ticks, and fleas. The seasonality, distribution, and prevalence of vector-borne diseases are influenced significantly by climate factors, primarily high and low temperature extremes and precipitation patterns. In this presentation we summarize key findings from Chapter 5 ("Vector-borne Diseases") of the recently published USGCRP Scientific Assessment of the Impacts of Climate Change on Human Health in the United States. Climate change is expected to alter geographic and seasonal distributions of vectors and vector-borne diseases, leading to earlier activity and northward range expansion of ticks capable of carrying the bacteria that cause Lyme disease and other pathogens, and influencing the distribution, abundance and prevalence of infection in mosquitoes that transmit West Nile virus and other pathogens. The emergence or reemergence of vector-borne pathogens is also likely.
Elliptic Painlevé equations from next-nearest-neighbor translations on the E_8^{(1)} lattice
NASA Astrophysics Data System (ADS)
Joshi, Nalini; Nakazono, Nobutaka
2017-07-01
The well known elliptic discrete Painlevé equation of Sakai is constructed by a standard translation on the E_8(1) lattice, given by nearest neighbor vectors. In this paper, we give a new elliptic discrete Painlevé equation obtained by translations along next-nearest-neighbor vectors. This equation is a generic (8-parameter) version of a 2-parameter elliptic difference equation found by reduction from Adler’s partial difference equation, the so-called Q4 equation. We also provide a projective reduction of the well known equation of Sakai.
NASA Astrophysics Data System (ADS)
Tiwari, Vivek; Peters, William K.; Jonas, David M.
2017-10-01
Non-adiabatic vibrational-electronic resonance in the excited electronic states of natural photosynthetic antennas drastically alters the adiabatic framework, in which electronic energy transfer has been conventionally studied, and suggests the possibility of exploiting non-adiabatic dynamics for directed energy transfer. Here, a generalized dimer model incorporates asymmetries between pigments, coupling to the environment, and the doubly excited state relevant for nonlinear spectroscopy. For this generalized dimer model, the vibrational tuning vector that drives energy transfer is derived and connected to decoherence between singly excited states. A correlation vector is connected to decoherence between the ground state and the doubly excited state. Optical decoherence between the ground and singly excited states involves linear combinations of the correlation and tuning vectors. Excitonic coupling modifies the tuning vector. The correlation and tuning vectors are not always orthogonal, and both can be asymmetric under pigment exchange, which affects energy transfer. For equal pigment vibrational frequencies, the nonadiabatic tuning vector becomes an anti-correlated delocalized linear combination of intramolecular vibrations of the two pigments, and the nonadiabatic energy transfer dynamics become separable. With exchange symmetry, the correlation and tuning vectors become delocalized intramolecular vibrations that are symmetric and antisymmetric under pigment exchange. Diabatic criteria for vibrational-excitonic resonance demonstrate that anti-correlated vibrations increase the range and speed of vibronically resonant energy transfer (the Golden Rule rate is a factor of 2 faster). A partial trace analysis shows that vibronic decoherence for a vibrational-excitonic resonance between two excitons is slower than their purely excitonic decoherence.
Tiwari, Vivek; Peters, William K; Jonas, David M
2017-10-21
Non-adiabatic vibrational-electronic resonance in the excited electronic states of natural photosynthetic antennas drastically alters the adiabatic framework, in which electronic energy transfer has been conventionally studied, and suggests the possibility of exploiting non-adiabatic dynamics for directed energy transfer. Here, a generalized dimer model incorporates asymmetries between pigments, coupling to the environment, and the doubly excited state relevant for nonlinear spectroscopy. For this generalized dimer model, the vibrational tuning vector that drives energy transfer is derived and connected to decoherence between singly excited states. A correlation vector is connected to decoherence between the ground state and the doubly excited state. Optical decoherence between the ground and singly excited states involves linear combinations of the correlation and tuning vectors. Excitonic coupling modifies the tuning vector. The correlation and tuning vectors are not always orthogonal, and both can be asymmetric under pigment exchange, which affects energy transfer. For equal pigment vibrational frequencies, the nonadiabatic tuning vector becomes an anti-correlated delocalized linear combination of intramolecular vibrations of the two pigments, and the nonadiabatic energy transfer dynamics become separable. With exchange symmetry, the correlation and tuning vectors become delocalized intramolecular vibrations that are symmetric and antisymmetric under pigment exchange. Diabatic criteria for vibrational-excitonic resonance demonstrate that anti-correlated vibrations increase the range and speed of vibronically resonant energy transfer (the Golden Rule rate is a factor of 2 faster). A partial trace analysis shows that vibronic decoherence for a vibrational-excitonic resonance between two excitons is slower than their purely excitonic decoherence.
Barbu, Corentin; Dumonteil, Eric; Gourbière, Sébastien
2009-01-01
Background Chagas disease is the most important vector-borne disease in Latin America. Regional initiatives based on residual insecticide spraying have successfully controlled domiciliated vectors in many regions. Non-domiciliated vectors remain responsible for a significant transmission risk, and their control is now a key challenge for disease control. Methodology/Principal Findings A mathematical model was developed to predict the temporal variations in abundance of non-domiciliated vectors inside houses. Demographic parameters were estimated by fitting the model to two years of field data from the Yucatan peninsula, Mexico. The predictive value of the model was tested on an independent data set before simulations examined the efficacy of control strategies based on residual insecticide spraying, insect screens, and bednets. The model accurately fitted and predicted field data in the absence and presence of insecticide spraying. Pyrethroid spraying was found effective when 50 mg/m2 were applied yearly within a two-month period matching the immigration season. The >80% reduction in bug abundance was not improved by larger doses or more frequent interventions, and it decreased drastically for different timing and lower frequencies of intervention. Alternatively, the use of insect screens consistently reduced bug abundance proportionally to the reduction of the vector immigration rate. Conclusion/Significance Control of non-domiciliated vectors can hardly be achieved by insecticide spraying, because it would require yearly application and an accurate understanding of the temporal pattern of immigration. Insect screens appear to offer an effective and sustainable alternative, which may be part of multi-disease interventions for the integrated control of neglected vector-borne diseases. PMID:19365542
Xia, Wenjun; Mita, Yoshio; Shibata, Tadashi
2016-05-01
Aiming at efficient data condensation and improving accuracy, this paper presents a hardware-friendly template reduction (TR) method for the nearest neighbor (NN) classifiers by introducing the concept of critical boundary vectors. A hardware system is also implemented to demonstrate the feasibility of using an field-programmable gate array (FPGA) to accelerate the proposed method. Initially, k -means centers are used as substitutes for the entire template set. Then, to enhance the classification performance, critical boundary vectors are selected by a novel learning algorithm, which is completed within a single iteration. Moreover, to remove noisy boundary vectors that can mislead the classification in a generalized manner, a global categorization scheme has been explored and applied to the algorithm. The global characterization automatically categorizes each classification problem and rapidly selects the boundary vectors according to the nature of the problem. Finally, only critical boundary vectors and k -means centers are used as the new template set for classification. Experimental results for 24 data sets show that the proposed algorithm can effectively reduce the number of template vectors for classification with a high learning speed. At the same time, it improves the accuracy by an average of 2.17% compared with the traditional NN classifiers and also shows greater accuracy than seven other TR methods. We have shown the feasibility of using a proof-of-concept FPGA system of 256 64-D vectors to accelerate the proposed method on hardware. At a 50-MHz clock frequency, the proposed system achieves a 3.86 times higher learning speed than on a 3.4-GHz PC, while consuming only 1% of the power of that used by the PC.
Online Sequential Projection Vector Machine with Adaptive Data Mean Update
Chen, Lin; Jia, Ji-Ting; Zhang, Qiong; Deng, Wan-Yu; Wei, Wei
2016-01-01
We propose a simple online learning algorithm especial for high-dimensional data. The algorithm is referred to as online sequential projection vector machine (OSPVM) which derives from projection vector machine and can learn from data in one-by-one or chunk-by-chunk mode. In OSPVM, data centering, dimension reduction, and neural network training are integrated seamlessly. In particular, the model parameters including (1) the projection vectors for dimension reduction, (2) the input weights, biases, and output weights, and (3) the number of hidden nodes can be updated simultaneously. Moreover, only one parameter, the number of hidden nodes, needs to be determined manually, and this makes it easy for use in real applications. Performance comparison was made on various high-dimensional classification problems for OSPVM against other fast online algorithms including budgeted stochastic gradient descent (BSGD) approach, adaptive multihyperplane machine (AMM), primal estimated subgradient solver (Pegasos), online sequential extreme learning machine (OSELM), and SVD + OSELM (feature selection based on SVD is performed before OSELM). The results obtained demonstrated the superior generalization performance and efficiency of the OSPVM. PMID:27143958
Online Sequential Projection Vector Machine with Adaptive Data Mean Update.
Chen, Lin; Jia, Ji-Ting; Zhang, Qiong; Deng, Wan-Yu; Wei, Wei
2016-01-01
We propose a simple online learning algorithm especial for high-dimensional data. The algorithm is referred to as online sequential projection vector machine (OSPVM) which derives from projection vector machine and can learn from data in one-by-one or chunk-by-chunk mode. In OSPVM, data centering, dimension reduction, and neural network training are integrated seamlessly. In particular, the model parameters including (1) the projection vectors for dimension reduction, (2) the input weights, biases, and output weights, and (3) the number of hidden nodes can be updated simultaneously. Moreover, only one parameter, the number of hidden nodes, needs to be determined manually, and this makes it easy for use in real applications. Performance comparison was made on various high-dimensional classification problems for OSPVM against other fast online algorithms including budgeted stochastic gradient descent (BSGD) approach, adaptive multihyperplane machine (AMM), primal estimated subgradient solver (Pegasos), online sequential extreme learning machine (OSELM), and SVD + OSELM (feature selection based on SVD is performed before OSELM). The results obtained demonstrated the superior generalization performance and efficiency of the OSPVM.
Avian species diversity and transmission of West Nile virus in Atlanta, Georgia.
Levine, Rebecca S; Hedeen, David L; Hedeen, Meghan W; Hamer, Gabriel L; Mead, Daniel G; Kitron, Uriel D
2017-02-03
The dilution effect is the reduction in vector-borne pathogen transmission associated with the presence of diverse potential host species, some of which are incompetent. It is popularized as the notion that increased biodiversity leads to decreased rates of disease. West Nile virus (WNV) is an endemic mosquito-borne virus in the United States that is maintained in a zoonotic cycle involving various avian host species. In Atlanta, Georgia, substantial WNV presence in the vector and host species has not translated into a high number of human cases. To determine whether a dilution effect was contributing to this reduced transmission, we characterized the host species community composition and performed WNV surveillance of hosts and vectors in urban Atlanta between 2010 and 2011. We tested the relationship between host diversity and both host seroprevalence and vector infection rates using a negative binomial generalized linear mixed model. Regardless of how we measured host diversity or whether we considered host seroprevalence and vector infection rates as predictor variables or outcome variables, we did not detect a dilution effect. Rather, we detected an amplification effect, in which increased host diversity resulted in increased seroprevalence or infection rates; this is the first empirical evidence for this effect in a mosquito-borne system. We suggest that this effect may be driven by an over-abundance of moderately- to poorly-competent host species, such as northern cardinals and members of the Mimid family, which cause optimal hosts to become rarer and present primarily in species-rich areas. Our results support the notion that dilution or amplification effects depend more on the identities of the species comprising the host community than on the absolute diversity of hosts.
Method for the reduction of image content redundancy in large image databases
Tobin, Kenneth William; Karnowski, Thomas P.
2010-03-02
A method of increasing information content for content-based image retrieval (CBIR) systems includes the steps of providing a CBIR database, the database having an index for a plurality of stored digital images using a plurality of feature vectors, the feature vectors corresponding to distinct descriptive characteristics of the images. A visual similarity parameter value is calculated based on a degree of visual similarity between features vectors of an incoming image being considered for entry into the database and feature vectors associated with a most similar of the stored images. Based on said visual similarity parameter value it is determined whether to store or how long to store the feature vectors associated with the incoming image in the database.
Quiñones, Martha L.; Norris, Douglas E.; Conn, Jan E.; Moreno, Marta; Burkot, Thomas R.; Bugoro, Hugo; Keven, John B.; Cooper, Robert; Yan, Guiyun; Rosas, Angel; Palomino, Miriam; Donnelly, Martin J.; Mawejje, Henry D.; Eapen, Alex; Montgomery, Jacqui; Coulibaly, Mamadou B.; Beier, John C.; Kumar, Ashwani
2015-01-01
Scale-up of the main vector control interventions, residual insecticides sprayed on walls or structures and/or impregnated in bed nets, together with prompt diagnosis and effective treatment, have led to a global reduction in malaria transmission. However, resistance in vectors to almost all classes of insecticides, particularly to the synthetic pyrethroids, is posing a challenge to the recent trend of declining malaria. Ten International Centers of Excellence for Malaria Research (ICEMR) located in the most malaria-endemic regions of the world are currently addressing insecticide resistance in the main vector populations, which not only threaten hope for elimination in malaria-endemic countries but also may lead to reversal where notable reductions in malaria have been documented. This communication illustrates the current status of insecticide resistance with a focus on the countries where activities are ongoing for 9 out of the 10 ICEMRs. Most of the primary malaria vectors in the ICEMR countries exhibit insecticide resistance, albeit of varying magnitude, and spanning all mechanisms of resistance. New alternatives to the insecticides currently available are still to be fully developed for deployment. Integrated vector management principles need to be better understood and encouraged, and viable insecticide resistance management strategies need to be developed and implemented. PMID:26259947
Saghafipour, Abedin; Vatandoost, Hassan; Zahraei-Ramazani, Ali Reza; Yaghoobi-Ershadi, Mohammad Reza; Rassi, Yavar; Karami Jooshin, Moharram; Shirzadi, Mohammad Reza; Akhavan, Amir Ahmad
2017-01-01
Attractive Toxic Sugar Baits (ATSB) is a new vector control method that meets Integrated Vector Management (IVM) goals. In an experimental design, this study aimed to determine effects of ATSB on control of Phlebotomus papatasi, as a main vector of Zoonotic Cutaneous Leishmaniasis (ZCL), in Qom Province, center of Iran. In a cross-sectional design, boric acid was mixed with brown sugar solution and tested as toxic baits for P. papatasi. Two methods were utilized to use the baits: (a) spraying ATSB on vegetation, bushes, and shrubs; and (b) setting ATSB-treated barrier fences in front of colonies at 500 m distance from the houses in outskirts of villages. In order to examine the residual efficacy rate of ATSB-treated barrier fences, the bioassay test was used. Density of P. papatasi sandflies was measured using sticky and light traps biweekly. For data analysis, Mann-Whitney U Test and Kruskal-Wallis were used. Results ATSB-treated barrier fences led to 3 times reduction in P. papatasi population. Besides that, ATSB spraying on plants led to more than 5 times reduction in P. papatasi population. Comparing the incidence of leishmaniasis in treated villages before and after the study showed that the incidence was statistically reduced. Therefore, ATSB is an effective method to control vectors and prevent leishmaniasis.
NASA Astrophysics Data System (ADS)
Lesniak, J. M.; Hupse, R.; Blanc, R.; Karssemeijer, N.; Székely, G.
2012-08-01
False positive (FP) marks represent an obstacle for effective use of computer-aided detection (CADe) of breast masses in mammography. Typically, the problem can be approached either by developing more discriminative features or by employing different classifier designs. In this paper, the usage of support vector machine (SVM) classification for FP reduction in CADe is investigated, presenting a systematic quantitative evaluation against neural networks, k-nearest neighbor classification, linear discriminant analysis and random forests. A large database of 2516 film mammography examinations and 73 input features was used to train the classifiers and evaluate for their performance on correctly diagnosed exams as well as false negatives. Further, classifier robustness was investigated using varying training data and feature sets as input. The evaluation was based on the mean exam sensitivity in 0.05-1 FPs on normals on the free-response receiver operating characteristic curve (FROC), incorporated into a tenfold cross validation framework. It was found that SVM classification using a Gaussian kernel offered significantly increased detection performance (P = 0.0002) compared to the reference methods. Varying training data and input features, SVMs showed improved exploitation of large feature sets. It is concluded that with the SVM-based CADe a significant reduction of FPs is possible outperforming other state-of-the-art approaches for breast mass CADe.
Santangelo, K. S.; Nuovo, G. J.; Bertone, A. L.
2012-01-01
Summary Objective Diminish interleukin-1β (IL-1β) signaling in a model of primary osteoarthritis by RNA interference-based transcript reduction or receptor blockade, and quantify changes incurred on transcript expression of additional mediators. Methods Knees of Hartley guinea pigs were collected at 120 and 180 days of age following injection with viral vectors (N=4/treatment group/date) at 60 days. Two groups received either adeno-associated viral serotype 5 vector containing a knockdown sequence (TV), or adenoviral vector encoding for IL-1 receptor antagonist protein (Ad-IRAP); treatments were contrasted with opposite knees administered corresponding vector controls. A third group evaluated TV relative to saline-only injected knees. Chondropathy and immunohistochemistry findings were compared to untreated guinea pigs. Transcript expression levels in cartilage were calculated using the comparative CT (2−ΔΔCT) method and analyzed by one-way ANOVA with pairwise comparisons using Tukey 95% confidence intervals. Results Vector transduction was confirmed at both harvest dates. TV and Ad-IRAP, relative to vector controls, significantly decreased IL-1β. Inflammatory mediators [tumor necrosis factor-α (TNF-α), interleukin-8 (IL-8), interferon-γ (IFN-γ)], and catabolic matrix metalloproteinase 13 (MMP13) were also decreased, while anabolic transforming growth factor-β1 (TGF-β1) was increased. IL-1β was also decreased by TV versus saline, with a decrease in MMP13 and increase TGF-β1; TNF-α, IL-8, and IFN-γ were transiently increased. Conclusions This work confirmed that a reduction in IL-1β signaling was accomplished by either method, resulting in decreased expression of three inflammatory mediators and one catabolic agent, and increased expression of an anabolic molecule. Thus, evidence is provided that IL-1β serves a role in vivo in spontaneous osteoarthritis and that these translational tools may provide beneficial disease modification. PMID:22935786
Coherent states for the relativistic harmonic oscillator
NASA Technical Reports Server (NTRS)
Aldaya, Victor; Guerrero, J.
1995-01-01
Recently we have obtained, on the basis of a group approach to quantization, a Bargmann-Fock-like realization of the Relativistic Harmonic Oscillator as well as a generalized Bargmann transform relating fock wave functions and a set of relativistic Hermite polynomials. Nevertheless, the relativistic creation and annihilation operators satisfy typical relativistic commutation relations of the Lie product (vector-z, vector-z(sup dagger)) approximately equals Energy (an SL(2,R) algebra). Here we find higher-order polarization operators on the SL(2,R) group, providing canonical creation and annihilation operators satisfying the Lie product (vector-a, vector-a(sup dagger)) = identity vector 1, the eigenstates of which are 'true' coherent states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Weicheng; Chen Guojie; Han Dingan
A fibre laser with a SESAM as a passive mode-locker is constructed for obtaining a vector soliton with the Kelly sidebands. The analysis of the peculiarities of the sidebands shows that the polarisation states are nonuniform across the entire pulse spectral profile from the leading edge to the trailing edge. Polarisation filtering effect is proposed to obtain a vector soliton with a uniform polarisation state. It is shown that during the polarisation filtering by a polariser incorporated into the laser cavity, the spectral width of the vector solitons gradually broadens and the pulse power decreases. It is found that atmore » a maximum spectral width and a minimum pulse power, vector solitons with a uniform polarisation state are generated. (nonlinear optical phenomena)« less
Improving M-SBL for Joint Sparse Recovery Using a Subspace Penalty
NASA Astrophysics Data System (ADS)
Ye, Jong Chul; Kim, Jong Min; Bresler, Yoram
2015-12-01
The multiple measurement vector problem (MMV) is a generalization of the compressed sensing problem that addresses the recovery of a set of jointly sparse signal vectors. One of the important contributions of this paper is to reveal that the seemingly least related state-of-art MMV joint sparse recovery algorithms - M-SBL (multiple sparse Bayesian learning) and subspace-based hybrid greedy algorithms - have a very important link. More specifically, we show that replacing the $\\log\\det(\\cdot)$ term in M-SBL by a rank proxy that exploits the spark reduction property discovered in subspace-based joint sparse recovery algorithms, provides significant improvements. In particular, if we use the Schatten-$p$ quasi-norm as the corresponding rank proxy, the global minimiser of the proposed algorithm becomes identical to the true solution as $p \\rightarrow 0$. Furthermore, under the same regularity conditions, we show that the convergence to a local minimiser is guaranteed using an alternating minimization algorithm that has closed form expressions for each of the minimization steps, which are convex. Numerical simulations under a variety of scenarios in terms of SNR, and condition number of the signal amplitude matrix demonstrate that the proposed algorithm consistently outperforms M-SBL and other state-of-the art algorithms.
Virucidal effects of rodent cage-cleaning practices on the viability of adenovirus vectors.
Porter, Jacqueline D; Lyons, Russette M
2002-09-01
Human adenoviruses and adenoviral vectors are classified as Risk Group 2 agents and require BSL2 containment and practices. An additional consideration in using adenoviruses and viral vectors in laboratory animal studies is the possible transmission of these agents to other animals and/or personnel as a result of viral shedding in animal urine and feces. When handling BSL2 agents, cage-wash staff are required to wear appropriate personnel protective equipment, including scrubs, Tyvek suit, hair covering, dust mask, shoes covers, and gloves. Current decontamination procedures are to bag and autoclave soiled rodent cages containing bedding prior to washing in the cage washer to prevent possible adenoviral transmission. However, the practice of autoclaving softens the polycarbonate-based rodent cages, allowing damaging agents or conditions to affect the integrity of the plastic and degrade the cages. The objective of this study was to determine whether current rodent cage-cleaning practices produced virucidal effects for use in lieu of or prior to autoclaving the cages. We found that heating an Av3GFP vector in a test tube to a temperature of 74 degrees C (165 degrees F) for 6 min conditions equivalent to those of the cage washer resulted in greater than an 11-log reduction in infectivity of the vector as evaluated by its cytopathic effect on cells. The combination of heating and a liquid, phosphate-free alkaline detergent produced the same reduction in vector infectivity. However, common cage-cleaning solutions alone possessed no virucidal activity. The high temperatures used in cage-washing procedures alone or in combination with a cleaning solution reduced or eliminated the risk of transmission from viral shedding through urine and feces even at vector concentrations far greater than would ever be expected to be present. Autoclaving cages diminishes the stability and integrity of the polycarbonate cages without providing a further reduction in the risk of virus or vector transmission. On the basis of results from this study, new cage-wash recommendations include dumping the contaminated bedding into a HEPA-filtered waste disposal system and autoclaving the bags of bedding before disposal, then cleaning the cages in the rack washer at wash temperatures of 74 degrees C (165 F) and rinse temperatures of 82 degrees C (180 F).
What is the risk for exposure to vector-borne pathogens in United States national parks?
Eisen, Lars; Wong, David; Shelus, Victoria; Eisen, Rebecca J
2013-03-01
United States national parks attract > 275 million visitors annually and collectively present risk of exposure for staff and visitors to a wide range of arthropod vector species (most notably fleas, mosquitoes, and ticks) and their associated bacterial, protozoan, or viral pathogens. We assessed the current state of knowledge for risk of exposure to vector-borne pathogens in national parks through a review of relevant literature, including internal National Park Service documents and organismal databases. We conclude that, because of lack of systematic surveillance for vector-borne pathogens in national parks, the risk of pathogen exposure for staff and visitors is unclear. Existing data for vectors within national parks were not based on systematic collections and rarely include evaluation for pathogen infection. Extrapolation of human-based surveillance data from neighboring communities likely provides inaccurate estimates for national parks because landscape differences impact transmission of vector-borne pathogens and human-vector contact rates likely differ inside versus outside the parks because of differences in activities or behaviors. Vector-based pathogen surveillance holds promise to define when and where within national parks the risk of exposure to infected vectors is elevated. A pilot effort, including 5-10 strategic national parks, would greatly improve our understanding of the scope and magnitude of vector-borne pathogen transmission in these high-use public settings. Such efforts also will support messaging to promote personal protection measures and inform park visitors and staff of their responsibility for personal protection, which the National Park Service preservation mission dictates as the core strategy to reduce exposure to vector-borne pathogens in national parks.
GPU Accelerated Vector Median Filter
NASA Technical Reports Server (NTRS)
Aras, Rifat; Shen, Yuzhong
2011-01-01
Noise reduction is an important step for most image processing tasks. For three channel color images, a widely used technique is vector median filter in which color values of pixels are treated as 3-component vectors. Vector median filters are computationally expensive; for a window size of n x n, each of the n(sup 2) vectors has to be compared with other n(sup 2) - 1 vectors in distances. General purpose computation on graphics processing units (GPUs) is the paradigm of utilizing high-performance many-core GPU architectures for computation tasks that are normally handled by CPUs. In this work. NVIDIA's Compute Unified Device Architecture (CUDA) paradigm is used to accelerate vector median filtering. which has to the best of our knowledge never been done before. The performance of GPU accelerated vector median filter is compared to that of the CPU and MPI-based versions for different image and window sizes, Initial findings of the study showed 100x improvement of performance of vector median filter implementation on GPUs over CPU implementations and further speed-up is expected after more extensive optimizations of the GPU algorithm .
Lara-Silva, Fabiana de Oliveira; Michalsky, Érika Monteiro; Fortes-Dias, Consuelo Latorre; Fiuza, Vanessa de Oliveira Pires; Dias, Edelberto Santos
2017-12-01
Leishmaniases are vector-borne diseases that are transmitted to humans through the bite of Leishmania-infected phlebotomine sand flies (Diptera:Psychodidae). The main proved vector of visceral leishmaniais (VL) in the New World - Lutzomyia longipalpis - is well-adapted to urban areas and has extensive distribution within the five geographical regions of Brazil. Integrated public health actions directed for the vector, domestic reservoir and humans for the control of VL are preferentially applied in municipalities with higher epidemiological risk of transmission. In this study, we evaluated the individual impact of two main vector control actions - chemical spraying and environmental management - in two districts with no reported cases of human VL. Although belonging to an endemic municipality for VL in Brazil, the integrated control actions have not been applied in these districts due to the absence of human cases. The number of L. longipalpis captured in a two-year period was used as indicator of the population density of the vector. After chemical spraying a tendency of reduction in L. longipalpis was observed but with no statistical significance compared to the control. Environmental management was effective in that reduction and it may help in the control of VL by reducing the population density of the vector in a preventive and more permanent action, perhaps associated with chemical spraying. Copyright © 2017 Elsevier B.V. All rights reserved.
Application of Bred Vectors To Data Assimilation
NASA Astrophysics Data System (ADS)
Corazza, M.; Kalnay, E.; Patil, Dj
We introduced a statistic, the BV-dimension, to measure the effective local finite-time dimensionality of the atmosphere. We show that this dimension is often quite low, and suggest that this finding has important implications for data assimilation and the accuracy of weather forecasting (Patil et al, 2001). The original database for this study was the forecasts of the NCEP global ensemble forecasting system. The initial differences between the control forecast and the per- turbed forecasts are called bred vectors. The control and perturbed initial conditions valid at time t=n(t are evolved using the forecast model until time t=(n+1) (t. The differences between the perturbed and the control forecasts are scaled down to their initial amplitude, and constitute the bred vectors valid at (n+1) (t. Their growth rate is typically about 1.5/day. The bred vectors are similar by construction to leading Lya- punov vectors except that they have small but finite amplitude, and they are valid at finite times. The original NCEP ensemble data set has 5 independent bred vectors. We define a local bred vector at each grid point by choosing the 5 by 5 grid points centered at the grid point (a region of about 1100km by 1100km), and using the north-south and east- west velocity components at 500mb pressure level to form a 50 dimensional column vector. Since we have k=5 global bred vectors, we also have k local bred vectors at each grid point. We estimate the effective dimensionality of the subspace spanned by the local bred vectors by performing a singular value decomposition (EOF analysis). The k local bred vector columns form a 50xk matrix M. The singular values s(i) of M measure the extent to which the k column unit vectors making up the matrix M point in the direction of v(i). We define the bred vector dimension as BVDIM={Sum[s(i)]}^2/{Sum[s(i)]^2} For example, if 4 out of the 5 vectors lie along v, and one lies along v, the BV- dimension would be BVDIM[sqrt(4), 1, 0,0,0]=1.8, less than 2 because one direction is more dominant than the other in representing the original data. The results (Patil et al, 2001) show that there are large regions where the bred vectors span a subspace of substantially lower dimension than that of the full space. These low dimensionality regions are dominant in the baroclinic extratropics, typically have a lifetime of 3-7 days, have a well-defined horizontal and vertical structure that spans 1 most of the atmosphere, and tend to move eastward. New results with a large number of ensemble members confirm these results and indicate that the low dimensionality regions are quite robust, and depend only on the verification time (i.e., the underlying flow). Corazza et al (2001) have performed experiments with a data assimilation system based on a quasi-geostrophic model and simulated observations (Morss, 1999, Hamill et al, 2000). A 3D-variational data assimilation scheme for a quasi-geostrophic chan- nel model is used to study the structure of the background error and its relationship to the corresponding bred vectors. The "true" evolution of the model atmosphere is defined by an integration of the model and "rawinsonde observations" are simulated by randomly perturbing the true state at fixed locations. It is found that after 3-5 days the bred vectors develop well organized structures which are very similar for the two different norms considered in this paper (potential vorticity norm and streamfunction norm). The results show that the bred vectors do indeed represent well the characteristics of the data assimilation forecast errors, and that the subspace of bred vectors contains most of the forecast error, except in areas where the forecast errors are small. For example, the angle between the 6hr forecast error and the subspace spanned by 10 bred vectors is less than 10o over 90% of the domain, indicating a pattern correlation of more than 98.5% between the forecast error and its projection onto the bred vector subspace. The presence of low-dimensional regions in the perturbations of the basic flow has important implications for data assimilation. At any given time, there is a difference between the true atmospheric state and the model forecast. Assuming that model er- rors are not the dominant source of errors, in a region of low BV-dimensionality the difference between the true state and the forecast should lie substantially in the low dimensional unstable subspace of the few bred vectors that contribute most strongly to the low BV-dimension. This information should yield a substantial improvement in the forecast: the data assimilation algorithm should correct the model state by moving it closer to the observations along the unstable subspace, since this is where the true state most likely lies. Preliminary experiments have been conducted with the quasi-geostrophic data assim- ilation system testing whether it is possible to add "errors of the day" based on bred vectors to the standard (constant) 3D-Var background error covariance in order to capture these important errors. The results are extremely encouraging, indicating a significant reduction (about 40%) in the analysis errors at a very low computational cost. References: 2 Corazza, M., E. Kalnay, DJ Patil, R. Morss, M Cai, I. Szunyogh, BR Hunt, E Ott and JA Yorke, 2001: Use of the breeding technique to estimate the structure of the analysis "errors of the day". Submitted to Nonlinear Processes in Geophysics. Hamill, T.M., Snyder, C., and Morss, R.E., 2000: A Comparison of Probabilistic Fore- casts from Bred, Singular-Vector and Perturbed Observation Ensembles, Mon. Wea. Rev., 128, 18351851. Kalnay, E., and Z. Toth, 1994: Removing growing errors in the analysis cycle. Preprints of the Tenth Conference on Numerical Weather Prediction, Amer. Meteor. Soc., 1994, 212-215. Morss, R. E., 1999: Adaptive observations: Idealized sampling strategies for improv- ing numerical weather prediction. PHD thesis, Massachussetts Institute of technology, 225pp. Patil, D. J. S., B. R. Hunt, E. Kalnay, J. A. Yorke, and E. Ott., 2001: Local Low Dimensionality of Atmospheric Dynamics. Phys. Rev. Lett., 86, 5878. 3
Code of Federal Regulations, 2013 CFR
2013-01-01
... Islands, the Commonwealth of Puerto Rico and the Island of Guam: Restrictions on movement of cattle. 72.2... States and vectors of said disease in the Northern Mariana Islands, the Commonwealth of Puerto Rico and... are vectors of said disease exist in the Northern Mariana Islands, the Commonwealth of Puerto Rico...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Islands, the Commonwealth of Puerto Rico and the Island of Guam: Restrictions on movement of cattle. 72.2... States and vectors of said disease in the Northern Mariana Islands, the Commonwealth of Puerto Rico and... are vectors of said disease exist in the Northern Mariana Islands, the Commonwealth of Puerto Rico...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Islands, the Commonwealth of Puerto Rico and the Island of Guam: Restrictions on movement of cattle. 72.2... States and vectors of said disease in the Northern Mariana Islands, the Commonwealth of Puerto Rico and... are vectors of said disease exist in the Northern Mariana Islands, the Commonwealth of Puerto Rico...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Islands, the Commonwealth of Puerto Rico and the Island of Guam: Restrictions on movement of cattle. 72.2... States and vectors of said disease in the Northern Mariana Islands, the Commonwealth of Puerto Rico and... are vectors of said disease exist in the Northern Mariana Islands, the Commonwealth of Puerto Rico...
States that are far from being stabilizer states
NASA Astrophysics Data System (ADS)
Andersson, David; Bengtsson, Ingemar; Blanchfield, Kate; Bui Dang, Hoan
2015-08-01
Stabilizer states are eigenvectors of maximal commuting sets of operators in a finite Heisenberg group. States that are far from being stabilizer states include magic states in quantum computation, MUB-balanced states, and SIC vectors. In prime dimensions the latter two fall under the umbrella of minimum uncertainty states (MUSs) in the sense of Wootters and Sussman. We study the correlation between two ways in which the notion of ‘far from being a stabilizer state’ can be quantified. Two theorems valid for all prime dimensions are given, as well as detailed results for low dimensions. In dimension 7 we identify the MUB-balanced states as being antipodal to the SIC vectors within the set of MUS, in a sense that we make definite. In dimension 4 we show that the states that come closest to being MUS with respect to all of the six stabilizer MUBs are the fiducial vectors for Alltop MUBs.
Application of Lanczos vectors to control design of flexible structures
NASA Technical Reports Server (NTRS)
Craig, Roy R., Jr.; Su, Tzu-Jeng
1990-01-01
This report covers research conducted during the first year of the two-year grant. The research, entitled 'Application of Lanczos Vectors to Control Design of Flexible Structures' concerns various ways to obtain reduced-order mathematical models for use in dynamic response analyses and in control design studies. This report summarizes research described in several reports and papers that were written under this contract. Extended abstracts are presented for technical papers covering the following topics: controller reduction by preserving impulse response energy; substructuring decomposition and controller synthesis; model reduction methods for structural control design; and recent literature on structural modeling, identification, and analysis.
Chattopadhyay, Munmun; Zhou, Zhigang; Hao, Shuanglin; Mata, Marina; Fink, David J
2012-03-22
Painful neuropathy is a common complication of diabetes. Previous studies have identified significant increases in the amount of voltage gated sodium channel isoforms Na(V)1.7 and Na(V)1.3 protein in the dorsal root ganglia (DRG) of rats with streptozotocin (STZ)-induced diabetes. We found that gene transfer-mediated release of the inhibitory neurotransmitters enkephalin or gamma amino butyric acid (GABA) from DRG neurons in diabetic animals reduced pain-related behaviors coincident with a reduction in Na(V)1.7 protein levels in DRG in vivo. To further evaluate the role of Na(V)α subunit levels in DRG in the pathogenesis of pain in diabetic neuropathy, we constructed a non-replicating herpes simplex virus (HSV)-based vector expressing a microRNA (miRNA) against Na(V)α subunits. Subcutaneous inoculation of the miRNA-expressing HSV vector into the feet of diabetic rats to transduce DRG resulted in a reduction in Na(V)α subunit levels in DRG neurons, coincident with a reduction in cold allodynia, thermal hyperalgesia and mechanical hyperalgesia. These data support the role of increased Na(V)α protein in DRG in the pathogenesis of pain in diabetic neuropathy, and provide a proof-of-principle demonstration for the development of a novel therapy that could be used to treat intractable pain in patients with diabetic neuropathy.
Vector solitons with locked and precessing states of polarization.
Sergeyev, Sergey V; Mou, Chengbo; Rozhin, Aleksey; Turitsyn, Sergei K
2012-11-19
We demonstrate experimentally new families of vector solitons with locked and precessing states of polarization for fundamental and multipulse soliton operations in a carbon nanotube mode-locked fiber laser with anomalous dispersion laser cavity.
Vectorized program architectures for supercomputer-aided circuit design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rizzoli, V.; Ferlito, M.; Neri, A.
1986-01-01
Vector processors (supercomputers) can be effectively employed in MIC or MMIC applications to solve problems of large numerical size such as broad-band nonlinear design or statistical design (yield optimization). In order to fully exploit the capabilities of a vector hardware, any program architecture must be structured accordingly. This paper presents a possible approach to the ''semantic'' vectorization of microwave circuit design software. Speed-up factors of the order of 50 can be obtained on a typical vector processor (Cray X-MP), with respect to the most powerful scaler computers (CDC 7600), with cost reductions of more than one order of magnitude. Thismore » could broaden the horizon of microwave CAD techniques to include problems that are practically out of the reach of conventional systems.« less
A push-pull system to reduce house entry of malaria mosquitoes
2014-01-01
Background Mosquitoes are the dominant vectors of pathogens that cause infectious diseases such as malaria, dengue, yellow fever and filariasis. Current vector control strategies often rely on the use of pyrethroids against which mosquitoes are increasingly developing resistance. Here, a push-pull system is presented, that operates by the simultaneous use of repellent and attractive volatile odorants. Method/Results Experiments were carried out in a semi-field set-up: a traditional house which was constructed inside a screenhouse. The release of different repellent compounds, para-menthane-3,8-diol (PMD), catnip oil e.o. and delta-undecalactone, from the four corners of the house resulted in significant reductions of 45% to 81.5% in house entry of host-seeking malaria mosquitoes. The highest reductions in house entry (up to 95.5%), were achieved by simultaneously repelling mosquitoes from the house (push) and removing them from the experimental set-up using attractant-baited traps (pull). Conclusions The outcome of this study suggests that a push-pull system based on attractive and repellent volatiles may successfully be employed to target mosquito vectors of human disease. Reductions in house entry of malaria vectors, of the magnitude that was achieved in these experiments, would likely affect malaria transmission. The repellents used are non-toxic and can be used safely in a human environment. Delta-undecalactone is a novel repellent that showed higher effectiveness than the established repellent PMD. These results encourage further development of the system for practical implementation in the field. PMID:24674451
Versatile generation of optical vector fields and vector beams using a non-interferometric approach.
Tripathi, Santosh; Toussaint, Kimani C
2012-05-07
We present a versatile, non-interferometric method for generating vector fields and vector beams which can produce all the states of polarization represented on a higher-order Poincaré sphere. The versatility and non-interferometric nature of this method is expected to enable exploration of various exotic properties of vector fields and vector beams. To illustrate this, we study the propagation properties of some vector fields and find that, in general, propagation alters both their intensity and polarization distribution, and more interestingly, converts some vector fields into vector beams. In the article, we also suggest a modified Jones vector formalism to represent vector fields and vector beams.
Separable decompositions of bipartite mixed states
NASA Astrophysics Data System (ADS)
Li, Jun-Li; Qiao, Cong-Feng
2018-04-01
We present a practical scheme for the decomposition of a bipartite mixed state into a sum of direct products of local density matrices, using the technique developed in Li and Qiao (Sci. Rep. 8:1442, 2018). In the scheme, the correlation matrix which characterizes the bipartite entanglement is first decomposed into two matrices composed of the Bloch vectors of local states. Then, we show that the symmetries of Bloch vectors are consistent with that of the correlation matrix, and the magnitudes of the local Bloch vectors are lower bounded by the correlation matrix. Concrete examples for the separable decompositions of bipartite mixed states are presented for illustration.
Elastic properties of porous low-k dielectric nano-films
NASA Astrophysics Data System (ADS)
Zhou, W.; Bailey, S.; Sooryakumar, R.; King, S.; Xu, G.; Mays, E.; Ege, C.; Bielefeld, J.
2011-08-01
Low-k dielectrics have predominantly replaced silicon dioxide as the interlayer dielectric for interconnects in state of the art integrated circuits. In order to further reduce interconnect RC delays, additional reductions in k for these low-k materials are being pursued via the introduction of controlled levels of porosity. The main challenge for such dielectrics is the substantial reduction in elastic properties that accompanies the increased pore volume. We report on Brillouin light scattering measurements used to determine the elastic properties of these films at thicknesses well below 200 nm, which are pertinent to their introduction into present ultralarge scale integrated technology. The observation of longitudinal and transverse standing wave acoustic resonances and their transformation into traveling waves with finite in-plane wave vectors provides for a direct non-destructive measure of the principal elastic constants that characterize the elastic properties of these porous nano-scale films. The mode dispersion further confirms that for porosity levels of up to 25%, the reduction in the dielectric constant does not result in severe degradation in the Young's modulus and Poisson's ratio of the films.
Continuum modeling of twinning, amorphization, and fracture: theory and numerical simulations
NASA Astrophysics Data System (ADS)
Clayton, J. D.; Knap, J.
2018-03-01
A continuum mechanical theory is used to model physical mechanisms of twinning, solid-solid phase transformations, and failure by cavitation and shear fracture. Such a sequence of mechanisms has been observed in atomic simulations and/or experiments on the ceramic boron carbide. In the present modeling approach, geometric quantities such as the metric tensor and connection coefficients can depend on one or more director vectors, also called internal state vectors. After development of the general nonlinear theory, a first problem class considers simple shear deformation of a single crystal of this material. For homogeneous fields or stress-free states, algebraic systems or ordinary differential equations are obtained that can be solved by numerical iteration. Results are in general agreement with atomic simulation, without introduction of fitted parameters. The second class of problems addresses the more complex mechanics of heterogeneous deformation and stress states involved in deformation and failure of polycrystals. Finite element calculations, in which individual grains in a three-dimensional polycrystal are fully resolved, invoke a partially linearized version of the theory. Results provide new insight into effects of crystal morphology, activity or inactivity of different inelasticity mechanisms, and imposed deformation histories on strength and failure of the aggregate under compression and shear. The importance of incorporation of inelastic shear deformation in realistic models of amorphization of boron carbide is noted, as is a greater reduction in overall strength of polycrystals containing one or a few dominant flaws rather than many diffusely distributed microcracks.
Do we really understand quantum mechanics? Strange correlations, paradoxes, and theorems
NASA Astrophysics Data System (ADS)
Laloë, F.
2001-06-01
This article presents a general discussion of several aspects of our present understanding of quantum mechanics. The emphasis is put on the very special correlations that this theory makes possible: They are forbidden by very general arguments based on realism and local causality. In fact, these correlations are completely impossible in any circumstance, except for very special situations designed by physicists especially to observe these purely quantum effects. Another general point that is emphasized is the necessity for the theory to predict the emergence of a single result in a single realization of an experiment. For this purpose, orthodox quantum mechanics introduces a special postulate: the reduction of the state vector, which comes in addition to the Schrödinger evolution postulate. Nevertheless, the presence in parallel of two evolution processes of the same object (the state vector) may be a potential source for conflicts; various attitudes that are possible to avoid this problem are discussed in this text. After a brief historical introduction, recalling how the very special status of the state vector has emerged in quantum mechanics, various conceptual difficulties are introduced and discussed. The Einstein-Podolsky-Rosen (EPR) theorem is presented with the help of a botanical parable, in a way that emphasizes how deeply the EPR reasoning is rooted into what is often called "scientific method." In another section the Greenberger-Horne-Zeilinger argument, the Hardy impossibilities, as well as the Bell-Kochen-Specker theorem are introduced in simple terms. The final two sections attempt to give a summary of the present situation: One section discusses nonlocality and entanglement as we see it presently, with brief mention of recent experiments; the last section contains a (nonexhaustive) list of various attitudes that are found among physicists, and that are helpful to alleviate the conceptual difficulties of quantum mechanics.
Sawamura, Jitsuki; Morishita, Shigeru; Ishigooka, Jun
2016-02-09
Previously, we applied basic group theory and related concepts to scales of measurement of clinical disease states and clinical findings (including laboratory data). To gain a more concrete comprehension, we here apply the concept of matrix representation, which was not explicitly exploited in our previous work. Starting with a set of orthonormal vectors, called the basis, an operator Rj (an N-tuple patient disease state at the j-th session) was expressed as a set of stratified vectors representing plural operations on individual components, so as to satisfy the group matrix representation. The stratified vectors containing individual unit operations were combined into one-dimensional square matrices [Rj]s. The [Rj]s meet the matrix representation of a group (ring) as a K-algebra. Using the same-sized matrix of stratified vectors, we can also express changes in the plural set of [Rj]s. The method is demonstrated on simple examples. Despite the incompleteness of our model, the group matrix representation of stratified vectors offers a formal mathematical approach to clinical medicine, aligning it with other branches of natural science.
NASA Astrophysics Data System (ADS)
Kotani, Naoki; Taniguchi, Kenji
An efficient learning method using Fuzzy ART with Genetic Algorithm is proposed. The proposed method reduces the number of trials by using a policy acquired in other tasks because a reinforcement learning needs a lot of the number of trials until an agent acquires appropriate actions. Fuzzy ART is an incremental unsupervised learning algorithm in responce to arbitrary sequences of analog or binary input vectors. Our proposed method gives a policy by crossover or mutation when an agent observes unknown states. Selection controls the category proliferation problem of Fuzzy ART. The effectiveness of the proposed method was verified with the simulation of the reaching problem for the two-link robot arm. The proposed method achieves a reduction of both the number of trials and the number of states.
Systems and Methods for Determining Inertial Navigation System Faults
NASA Technical Reports Server (NTRS)
Bharadwaj, Raj Mohan (Inventor); Bageshwar, Vibhor L. (Inventor); Kim, Kyusung (Inventor)
2017-01-01
An inertial navigation system (INS) includes a primary inertial navigation system (INS) unit configured to receive accelerometer measurements from an accelerometer and angular velocity measurements from a gyroscope. The primary INS unit is further configured to receive global navigation satellite system (GNSS) signals from a GNSS sensor and to determine a first set of kinematic state vectors based on the accelerometer measurements, the angular velocity measurements, and the GNSS signals. The INS further includes a secondary INS unit configured to receive the accelerometer measurements and the angular velocity measurements and to determine a second set of kinematic state vectors of the vehicle based on the accelerometer measurements and the angular velocity measurements. A health management system is configured to compare the first set of kinematic state vectors and the second set of kinematic state vectors to determine faults associated with the accelerometer or the gyroscope based on the comparison.
Steinberg, J; Kohl, C; Katz, T; Richard, G; Linke, S J
2014-04-01
The aim of the study was to quantify the difference in corneal thickness between the central and thinnest points (∆PachyZ-PachyD), the distance between the center of the cornea and its thinnest point (vector length PachyD) and to explore the impact of refractive state, age and ocular side. This was a multicenter, retrospective, cross-sectional study and medical records of 16,872 eyes were reviewed. The Orbscan® (Bausch and Lomb) procedure was used for pachymetry and keratometry. The results showed that ∆PachyZ-PachyD and vector length PachyD were higher in hyperopic eyes (∆PachyZ-PachyD: 11.99 ± 12.08 µm, vector length PachyD: 0.85 ± 0.44 mm) compared to myopic eyes (∆PachyZ-PachyD: 9.2 ± 7.86 µm, vector length PachyD: 0.7 ± 0.37 mm; p < 0.001). Refractive state, age and ocular side demonstrated an independent, statistically significant impact on ∆PachyZ-PachyD and vector length PachyD. As a result of the significant impact of refractive state, age and ocular side on ∆PachyZ-PachyD and vector length PachyD, these variables should be considered in a normative data collection.
What is the Risk for Exposure to Vector-Borne Pathogens in United States National Parks?
EISEN, LARS; WONG, DAVID; SHELUS, VICTORIA; EISEN, REBECCA J.
2015-01-01
United States national parks attract >275 million visitors annually and collectively present risk of exposure for staff and visitors to a wide range of arthropod vector species (most notably fleas, mosquitoes, and ticks) and their associated bacterial, protozoan, or viral pathogens. We assessed the current state of knowledge for risk of exposure to vector-borne pathogens in national parks through a review of relevant literature, including internal National Park Service documents and organismal databases. We conclude that, because of lack of systematic surveillance for vector-borne pathogens in national parks, the risk of pathogen exposure for staff and visitors is unclear. Existing data for vectors within national parks were not based on systematic collections and rarely include evaluation for pathogen infection. Extrapolation of human-based surveillance data from neighboring communities likely provides inaccurate estimates for national parks because landscape differences impact transmission of vector-borne pathogens and human-vector contact rates likely differ inside versus outside the parks because of differences in activities or behaviors. Vector-based pathogen surveillance holds promise to define when and where within national parks the risk of exposure to infected vectors is elevated. A pilot effort, including 5–10 strategic national parks, would greatly improve our understanding of the scope and magnitude of vector-borne pathogen transmission in these high-use public settings. Such efforts also will support messaging to promote personal protection measures and inform park visitors and staff of their responsibility for personal protection, which the National Park Service preservation mission dictates as the core strategy to reduce exposure to vector-borne pathogens in national parks. PMID:23540107
Dynamic reduction of dimensions of a document vector in a document search and retrieval system
Jiao, Yu; Potok, Thomas E.
2011-05-03
The method and system of the invention involves processing each new document (20) coming into the system into a document vector (16), and creating a document vector with reduced dimensionality (17) for comparison with the data model (15) without recomputing the data model (15). These operations are carried out by a first computer (11) while a second computer (12) updates the data model (18), which can be comprised of an initial large group of documents (19) and is premised on the computing an initial data model (13, 14, 15) to provide a reference point for determining document vectors from documents processed from the data stream (20).
Modelling the impact of vector control interventions on Anopheles gambiae population dynamics
2011-01-01
Background Intensive anti-malaria campaigns targeting the Anopheles population have demonstrated substantial reductions in adult mosquito density. Understanding the population dynamics of Anopheles mosquitoes throughout their whole lifecycle is important to assess the likely impact of vector control interventions alone and in combination as well as to aid the design of novel interventions. Methods An ecological model of Anopheles gambiae sensu lato populations incorporating a rainfall-dependent carrying capacity and density-dependent regulation of mosquito larvae in breeding sites is developed. The model is fitted to adult mosquito catch and rainfall data from 8 villages in the Garki District of Nigeria (the 'Garki Project') using Bayesian Markov Chain Monte Carlo methods and prior estimates of parameters derived from the literature. The model is used to compare the impact of vector control interventions directed against adult mosquito stages - long-lasting insecticide treated nets (LLIN), indoor residual spraying (IRS) - and directed against aquatic mosquito stages, alone and in combination on adult mosquito density. Results A model in which density-dependent regulation occurs in the larval stages via a linear association between larval density and larval death rates provided a good fit to seasonal adult mosquito catches. The effective mosquito reproduction number in the presence of density-dependent regulation is dependent on seasonal rainfall patterns and peaks at the start of the rainy season. In addition to killing adult mosquitoes during the extrinsic incubation period, LLINs and IRS also result in less eggs being oviposited in breeding sites leading to further reductions in adult mosquito density. Combining interventions such as the application of larvicidal or pupacidal agents that target the aquatic stages of the mosquito lifecycle with LLINs or IRS can lead to substantial reductions in adult mosquito density. Conclusions Density-dependent regulation of anopheline larvae in breeding sites ensures robust, stable mosquito populations that can persist in the face of intensive vector control interventions. Selecting combinations of interventions that target different stages in the vector's lifecycle will result in maximum reductions in mosquito density. PMID:21798055
NASA Astrophysics Data System (ADS)
Hoell, Simon; Omenzetter, Piotr
2018-02-01
To advance the concept of smart structures in large systems, such as wind turbines (WTs), it is desirable to be able to detect structural damage early while using minimal instrumentation. Data-driven vibration-based damage detection methods can be competitive in that respect because global vibrational responses encompass the entire structure. Multivariate damage sensitive features (DSFs) extracted from acceleration responses enable to detect changes in a structure via statistical methods. However, even though such DSFs contain information about the structural state, they may not be optimised for the damage detection task. This paper addresses the shortcoming by exploring a DSF projection technique specialised for statistical structural damage detection. High dimensional initial DSFs are projected onto a low-dimensional space for improved damage detection performance and simultaneous computational burden reduction. The technique is based on sequential projection pursuit where the projection vectors are optimised one by one using an advanced evolutionary strategy. The approach is applied to laboratory experiments with a small-scale WT blade under wind-like excitations. Autocorrelation function coefficients calculated from acceleration signals are employed as DSFs. The optimal numbers of projection vectors are identified with the help of a fast forward selection procedure. To benchmark the proposed method, selections of original DSFs as well as principal component analysis scores from these features are additionally investigated. The optimised DSFs are tested for damage detection on previously unseen data from the healthy state and a wide range of damage scenarios. It is demonstrated that using selected subsets of the initial and transformed DSFs improves damage detectability compared to the full set of features. Furthermore, superior results can be achieved by projecting autocorrelation coefficients onto just a single optimised projection vector.
Metabolic flux profiling of MDCK cells during growth and canine adenovirus vector production.
Carinhas, Nuno; Pais, Daniel A M; Koshkin, Alexey; Fernandes, Paulo; Coroadinha, Ana S; Carrondo, Manuel J T; Alves, Paula M; Teixeira, Ana P
2016-03-23
Canine adenovirus vector type 2 (CAV2) represents an alternative to human adenovirus vectors for certain gene therapy applications, particularly neurodegenerative diseases. However, more efficient production processes, assisted by a greater understanding of the effect of infection on producer cells, are required. Combining [1,2-(13)C]glucose and [U-(13)C]glutamine, we apply for the first time (13)C-Metabolic flux analysis ((13)C-MFA) to study E1-transformed Madin-Darby Canine Kidney (MDCK) cells metabolism during growth and CAV2 production. MDCK cells displayed a marked glycolytic and ammoniagenic metabolism, and (13)C data revealed a large fraction of glutamine-derived labelling in TCA cycle intermediates, emphasizing the role of glutamine anaplerosis. (13)C-MFA demonstrated the importance of pyruvate cycling in balancing glycolytic and TCA cycle activities, as well as occurrence of reductive alphaketoglutarate (AKG) carboxylation. By turn, CAV2 infection significantly upregulated fluxes through most central metabolism, including glycolysis, pentose-phosphate pathway, glutamine anaplerosis and, more prominently, reductive AKG carboxylation and cytosolic acetyl-coenzyme A formation, suggestive of increased lipogenesis. Based on these results, we suggest culture supplementation strategies to stimulate nucleic acid and lipid biosynthesis for improved canine adenoviral vector production.
Saghafipour, Abedin; Vatandoost, Hassan; Zahraei-Ramazani, Ali Reza; Yaghoobi-Ershadi, Mohammad Reza; Rassi, Yavar; Karami Jooshin, Moharram; Shirzadi, Mohammad Reza; Akhavan, Amir Ahmad
2017-01-01
Introduction Attractive Toxic Sugar Baits (ATSB) is a new vector control method that meets Integrated Vector Management (IVM) goals. In an experimental design, this study aimed to determine effects of ATSB on control of Phlebotomus papatasi, as a main vector of Zoonotic Cutaneous Leishmaniasis (ZCL), in Qom Province, center of Iran. Methods In a cross-sectional design, boric acid was mixed with brown sugar solution and tested as toxic baits for P. papatasi. Two methods were utilized to use the baits: (a) spraying ATSB on vegetation, bushes, and shrubs; and (b) setting ATSB-treated barrier fences in front of colonies at 500 m distance from the houses in outskirts of villages. In order to examine the residual efficacy rate of ATSB-treated barrier fences, the bioassay test was used. Density of P. papatasi sandflies was measured using sticky and light traps biweekly. For data analysis, Mann-Whitney U Test and Kruskal-Wallis were used. Results ATSB-treated barrier fences led to 3 times reduction in P. papatasi population. Besides that, ATSB spraying on plants led to more than 5 times reduction in P. papatasi population. Conclusions Comparing the incidence of leishmaniasis in treated villages before and after the study showed that the incidence was statistically reduced. Therefore, ATSB is an effective method to control vectors and prevent leishmaniasis. PMID:28426679
Harmonic reduction of Direct Torque Control of six-phase induction motor.
Taheri, A
2016-07-01
In this paper, a new switching method in Direct Torque Control (DTC) of a six-phase induction machine for reduction of current harmonics is introduced. Selecting a suitable vector in each sampling period is an ordinal method in the ST-DTC drive of a six-phase induction machine. The six-phase induction machine has 64 voltage vectors and divided further into four groups. In the proposed DTC method, the suitable voltage vectors are selected from two vector groups. By a suitable selection of two vectors in each sampling period, the harmonic amplitude is decreased more, in and various comparison to that of the ST-DTC drive. The harmonics loss is greater reduced, while the electromechanical energy is decreased with switching loss showing a little increase. Spectrum analysis of the phase current in the standard and new switching table DTC of the six-phase induction machine and determination for the amplitude of each harmonics is proposed in this paper. The proposed method has a less sampling time in comparison to the ordinary method. The Harmonic analyses of the current in the low and high speed shows the performance of the presented method. The simplicity of the proposed method and its implementation without any extra hardware is other advantages of the proposed method. The simulation and experimental results show the preference of the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Basáñez, María-Gloria; Razali, Karina; Renz, Alfons; Kelly, David
2007-03-01
The proportion of vector blood meals taken on humans (the human blood index, h) appears as a squared term in classical expressions of the basic reproduction ratio (R(0)) for vector-borne infections. Consequently, R(0) varies non-linearly with h. Estimates of h, however, constitute mere snapshots of a parameter that is predicted, from evolutionary theory, to vary with vector and host abundance. We test this prediction using a population dynamics model of river blindness assuming that, before initiation of vector control or chemotherapy, recorded measures of vector density and human infection accurately represent endemic equilibrium. We obtain values of h that satisfy the condition that the effective reproduction ratio (R(e)) must equal 1 at equilibrium. Values of h thus obtained decrease with vector density, decrease with the vector:human ratio and make R(0) respond non-linearly rather than increase linearly with vector density. We conclude that if vectors are less able to obtain human blood meals as their density increases, antivectorial measures may not lead to proportional reductions in R(0) until very low vector levels are achieved. Density dependence in the contact rate of infectious diseases transmitted by insects may be an important non-linear process with implications for their epidemiology and control.
Closed-form integrator for the quaternion (euler angle) kinematics equations
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A. (Inventor)
2000-01-01
The invention is embodied in a method of integrating kinematics equations for updating a set of vehicle attitude angles of a vehicle using 3-dimensional angular velocities of the vehicle, which includes computing an integrating factor matrix from quantities corresponding to the 3-dimensional angular velocities, computing a total integrated angular rate from the quantities corresponding to a 3-dimensional angular velocities, computing a state transition matrix as a sum of (a) a first complementary function of the total integrated angular rate and (b) the integrating factor matrix multiplied by a second complementary function of the total integrated angular rate, and updating the set of vehicle attitude angles using the state transition matrix. Preferably, the method further includes computing a quanternion vector from the quantities corresponding to the 3-dimensional angular velocities, in which case the updating of the set of vehicle attitude angles using the state transition matrix is carried out by (a) updating the quanternion vector by multiplying the quanternion vector by the state transition matrix to produce an updated quanternion vector and (b) computing an updated set of vehicle attitude angles from the updated quanternion vector. The first and second trigonometric functions are complementary, such as a sine and a cosine. The quantities corresponding to the 3-dimensional angular velocities include respective averages of the 3-dimensional angular velocities over plural time frames. The updating of the quanternion vector preserves the norm of the vector, whereby the updated set of vehicle attitude angles are virtually error-free.
2006-08-15
Programs Section 3. Sampling Equipment Sampling Equipment Solid-State Army Miniature (SSAM) trap ABC style trap Encephalitis Vector Survey Trap CDC...Baseline Survey - these are conducted to determine the types of vectors and pests occurring in the area of operations, their respective breeding sites...or source habitat, and seasonal activity patterns. Operational Survey - data collected in an operational survey are used specifically to aid pest
Tissera, Hasitha; Pannila-Hetti, Nimalka; Samaraweera, Preshila; Weeraman, Jayantha; Palihawadana, Paba; Amarasinghe, Ananda
2016-09-01
Dengue is a leading public health problem in Sri Lanka. All 26 districts and all age groups are affected, with high disease transmission; the estimated average annual incidence is 175/100 000 population. Harnessing the World Health Organization Global strategy for dengue prevention and control, 2012-2020, Sri Lanka has pledged in its National Strategic Framework to achieve a mortality from dengue below 0.1% and to reduce morbidity by 50% (from the average of the last 5 years) by 2020. Turning points in the country's dengue-control programme have been the restructuring and restrategizing of the core functions; this has involved establishment of a separate dengue-control unit to coordinate integrated vector management, and creation of a presidential task force. There has been great progress in disease surveillance, clinical management and vector control. Enhanced real-time surveillance for early warning allows ample preparedness for an outbreak. National guidelines with enhanced diagnostics have significantly improved clinical management of dengue, reducing the case-fatality rate to 0.2%. Proactive integrated vector management, with multisector partnership, has created a positive vector-control environment; however, sustaining this momentum is a challenge. Robust surveillance, evidence-based clinical management, sustainable vector control and effective communication are key strategies that will be implemented to achieve set targets. Improved early detection and a standardized treatment protocol with enhanced diagnostics at all medical care institutions will lead to further reduction in mortality. Making the maximum effort to minimize outbreaks through sustainable vector control in the three dimensions of risk mapping, innovation and risk modification will enable a reduction in morbidity.
Combining fungal biopesticides and insecticide-treated bednets to enhance malaria control.
Hancock, Penelope A
2009-10-01
In developing strategies to control malaria vectors, there is increased interest in biological methods that do not cause instant vector mortality, but have sublethal and lethal effects at different ages and stages in the mosquito life cycle. These techniques, particularly if integrated with other vector control interventions, may produce substantial reductions in malaria transmission due to the total effect of alterations to multiple life history parameters at relevant points in the life-cycle and transmission-cycle of the vector. To quantify this effect, an analytically tractable gonotrophic cycle model of mosquito-malaria interactions is developed that unites existing continuous and discrete feeding cycle approaches. As a case study, the combined use of fungal biopesticides and insecticide treated bednets (ITNs) is considered. Low values of the equilibrium EIR and human prevalence were obtained when fungal biopesticides and ITNs were combined, even for scenarios where each intervention acting alone had relatively little impact. The effect of the combined interventions on the equilibrium EIR was at least as strong as the multiplicative effect of both interventions. For scenarios representing difficult conditions for malaria control, due to high transmission intensity and widespread insecticide resistance, the effect of the combined interventions on the equilibrium EIR was greater than the multiplicative effect, as a result of synergistic interactions between the interventions. Fungal biopesticide application was found to be most effective when ITN coverage was high, producing significant reductions in equilibrium prevalence for low levels of biopesticide coverage. By incorporating biological mechanisms relevant to vectorial capacity, continuous-time vector population models can increase their applicability to integrated vector management.
VEST: Abstract vector calculus simplification in Mathematica
NASA Astrophysics Data System (ADS)
Squire, J.; Burby, J.; Qin, H.
2014-01-01
We present a new package, VEST (Vector Einstein Summation Tools), that performs abstract vector calculus computations in Mathematica. Through the use of index notation, VEST is able to reduce three-dimensional scalar and vector expressions of a very general type to a well defined standard form. In addition, utilizing properties of the Levi-Civita symbol, the program can derive types of multi-term vector identities that are not recognized by reduction, subsequently applying these to simplify large expressions. In a companion paper Burby et al. (2013) [12], we employ VEST in the automation of the calculation of high-order Lagrangians for the single particle guiding center system in plasma physics, a computation which illustrates its ability to handle very large expressions. VEST has been designed to be simple and intuitive to use, both for basic checking of work and more involved computations.
Goswami, Prashant; Murty, Upadhayula Suryanarayana; Mutheneni, Srinivasa Rao; Krishnan, Swathi Trithala
2014-01-01
Pro-active and effective control as well as quantitative assessment of impact of climate change on malaria requires identification of the major drivers of the epidemic. Malaria depends on vector abundance which, in turn, depends on a combination of weather variables. However, there remain several gaps in our understanding and assessment of malaria in a changing climate. Most of the studies have considered weekly or even monthly mean values of weather variables, while the malaria vector is sensitive to daily variations. Secondly, rarely all the relevant meteorological variables have been considered together. An important question is the relative roles of weather variables (vector abundance) and change in host (human) population, in the change in disease load. We consider the 28 states of India, characterized by diverse climatic zones and changing population as well as complex variability in malaria, as a natural test bed. An annual vector load for each of the 28 states is defined based on the number of vector genesis days computed using daily values of temperature, rainfall and humidity from NCEP daily Reanalysis; a prediction of potential malaria load is defined by taking into consideration changes in the human population and compared with the reported number of malaria cases. For most states, the number of malaria cases is very well correlated with the vector load calculated with the combined conditions of daily values of temperature, rainfall and humidity; no single weather variable has any significant association with the observed disease prevalence. The association between vector-load and daily values of weather variables is robust and holds for different climatic regions (states of India). Thus use of all the three weather variables provides a reliable means of pro-active and efficient vector sanitation and control as well as assessment of impact of climate change on malaria.
Goswami, Prashant; Murty, Upadhayula Suryanarayana; Mutheneni, Srinivasa Rao; Krishnan, Swathi Trithala
2014-01-01
Background Pro-active and effective control as well as quantitative assessment of impact of climate change on malaria requires identification of the major drivers of the epidemic. Malaria depends on vector abundance which, in turn, depends on a combination of weather variables. However, there remain several gaps in our understanding and assessment of malaria in a changing climate. Most of the studies have considered weekly or even monthly mean values of weather variables, while the malaria vector is sensitive to daily variations. Secondly, rarely all the relevant meteorological variables have been considered together. An important question is the relative roles of weather variables (vector abundance) and change in host (human) population, in the change in disease load. Method We consider the 28 states of India, characterized by diverse climatic zones and changing population as well as complex variability in malaria, as a natural test bed. An annual vector load for each of the 28 states is defined based on the number of vector genesis days computed using daily values of temperature, rainfall and humidity from NCEP daily Reanalysis; a prediction of potential malaria load is defined by taking into consideration changes in the human population and compared with the reported number of malaria cases. Results For most states, the number of malaria cases is very well correlated with the vector load calculated with the combined conditions of daily values of temperature, rainfall and humidity; no single weather variable has any significant association with the observed disease prevalence. Conclusion The association between vector-load and daily values of weather variables is robust and holds for different climatic regions (states of India). Thus use of all the three weather variables provides a reliable means of pro-active and efficient vector sanitation and control as well as assessment of impact of climate change on malaria. PMID:24971510
Recent advances in reduction methods for nonlinear problems. [in structural mechanics
NASA Technical Reports Server (NTRS)
Noor, A. K.
1981-01-01
Status and some recent developments in the application of reduction methods to nonlinear structural mechanics problems are summarized. The aspects of reduction methods discussed herein include: (1) selection of basis vectors in nonlinear static and dynamic problems, (2) application of reduction methods in nonlinear static analysis of structures subjected to prescribed edge displacements, and (3) use of reduction methods in conjunction with mixed finite element models. Numerical examples are presented to demonstrate the effectiveness of reduction methods in nonlinear problems. Also, a number of research areas which have high potential for application of reduction methods are identified.
Data-driven identification of potential Zika virus vectors
Evans, Michelle V; Dallas, Tad A; Han, Barbara A; Murdock, Courtney C; Drake, John M
2017-01-01
Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. DOI: http://dx.doi.org/10.7554/eLife.22053.001 PMID:28244371
Axial vector Z‧ and anomaly cancellation
NASA Astrophysics Data System (ADS)
Ismail, Ahmed; Keung, Wai-Yee; Tsao, Kuo-Hsing; Unwin, James
2017-05-01
Whilst the prospect of new Z‧ gauge bosons with only axial couplings to the Standard Model (SM) fermions is widely discussed, examples of anomaly-free renormalisable models are lacking in the literature. We look to remedy this by constructing several motivated examples. Specifically, we consider axial vectors which couple universally to all SM fermions, as well as those which are generation-specific, leptophilic, and leptophobic. Anomaly cancellation typically requires the presence of new coloured and charged chiral fermions, and we argue that in a large class of models masses of these new states are expected to be comparable to that of the axial vector. Finally, an axial vector mediator could provide a portal between SM and hidden sector states, and we also consider the possibility that the axial vector couples to dark matter. If the dark matter relic density is set due to freeze-out via the axial vector, this strongly constrains the parameter space.
Is There Really a Spin Crisis?
NASA Astrophysics Data System (ADS)
Qing, Di; Chen, XiangSong; Su, WeiNing; Wang, Fan
1999-10-01
The matrix element of quark axial vector current is shown to be different from the nonrelativistic quark spin sum for a nucleon at rest. The nucleon spin content discovered in polarized deep inelastic scattering is shown to be accommodated in a constituent quark model with 15% sea quark component mixing. The relativistic correction and sea quark pair excitation inherently related to quark axial vector current reduce the nucleon axial charge and this reduction is compensated by the relativistic quark orbital angular momentum exactly and in turn keeps the nucleon spin 1/2 untouched. Nucleon tensor charge has similar but smaller relativistic and sea quark pair excitation reduction. The project supported in part by the NSF (19675018), SED and SSTD of China
Chattopadhyay, M; Krisky, D; Wolfe, D; Glorioso, JC; Mata, M; Fink, DJ
2005-01-01
We examined the utility of herpes simplex virus (HSV) vector-mediated gene transfer of vascular endothelial growth factor (VEGF) in a mouse model of diabetic neuropathy. A replication-incompetent HSV vector with VEGF under the control of the HSV ICP0 promoter (vector T0VEGF) was constructed. T0VEGF expressed and released VEGF from primary dorsal root ganglion (DRG) neurons in vitro, and following subcutaneous inoculation in the foot, expressed VEGF in DRG and nerve in vivo. At 2 weeks after induction of diabetes, subcutaneous inoculation of T0VEGF prevented the reduction in sensory nerve amplitude characteristic of diabetic neuropathy measured 4 weeks later, preserved autonomic function measured by pilocarpine-induced sweating, and prevented the loss of nerve fibers in the skin and reduction of neuropeptide calcitonin gene-related peptide and substance P in DRG neurons of the diabetic mice. HSV-mediated transfer of VEGF to DRG may prove useful in treatment of diabetic neuropathy. PMID:15843809
Development of EPA`s new methods to quantify vector attraction of wastewater sludges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrell, J.B.; Bhide, V.; Smith, J.E. Jr.
1996-05-01
EPA`s 1979 and 1993 sludge regulations require that sewage sludge be reduced in vector attraction before it can be applied to the land. In the 1979 regulation, satisfactory vector attraction reduction (VAR) could be demonstrated if treatment processes reduced the volatile solids content of sludge by 38%. The 1993 regulation adds two alternative test methods for aerobic sludges for determining whether VAR has been adequate. In the first method, specific oxygen uptake rate (SOUR) of the sludge must be <1.5 mg O{sub 2}/hr/g total solids, and in the second method, the additional volatile solids reduction (AVSR) that occurs when themore » sludge is further digested for 30 days must be <15%. Experimentation with the new tests is described. Comparisons among the three methods showed that the 38% VSR requirement and the SOUR test were equivalent only near 20{degree}C. The AVSR test was more conservative than either of the other tests. 18 refs., 7 figs., 3 tabs.« less
Xue, Ling; Scoglio, Caterina; McVey, D Scott; Boone, Rebecca; Cohnstaedt, Lee W
2015-09-01
Lyme disease has become the most prevalent vector-borne disease in the United States and results in morbidity in humans, especially children. We used historical case distributions to explain vector-borne disease introductions and subsequent geographic expansion in the absence of disease vector data. We used geographic information system analysis of publicly available Connecticut Department of Public Health case data from 1984, 1985, and 1991 to 2012 for the 169 towns in Connecticut to identify the yearly clusters of Lyme disease cases. Our analysis identified the spatial and temporal origins of two separate introductions of Lyme disease into Connecticut and identified the subsequent direction and rate of spread. We defined both epidemic clusters of cases using significant long-term spatial autocorrelation. The incidence-weighted geographic mean analysis indicates a northern trend of geographic expansion for both epidemic clusters. In eastern Connecticut, as the epidemic progressed, the yearly shift in the geographic mean (rate of epidemic expansion) decreased each year until spatial equilibrium was reached in 2007. The equilibrium indicates a transition from epidemic Lyme disease spread to stable endemic transmission, and we associate this with a reduction in incidence. In western Connecticut, the parabolic distribution of the yearly geographic mean indicates that following the establishment of Lyme disease (1988) the epidemic quickly expanded northward and established equilibrium in 2009.
Vinhaes, Márcio Costa; de Oliveira, Stefan Vilges; Reis, Priscilleyne Ouverney; de Lacerda Sousa, Ana Carolina; Silva, Rafaella Albuquerque E; Obara, Marcos Takashi; Bezerra, Cláudia Mendonça; da Costa, Veruska Maia; Alves, Renato Vieira; Gurgel-Gonçalves, Rodrigo
2014-09-01
Despite the dramatic reduction in Trypanosoma cruzi vectorial transmission in Brazil, acute cases of Chagas disease (CD) continue to be recorded. The identification of areas with greater vulnerability to the occurrence of vector-borne CD is essential to prevention, control, and surveillance activities. In the current study, data on the occurrence of domiciliated triatomines in Brazil (non-Amazonian regions) between 2007 and 2011 were analyzed. Municipalities' vulnerability was assessed based on socioeconomic, demographic, entomological, and environmental indicators using multi-criteria decision analysis (MCDA). Overall, 2275 municipalities were positive for at least one of the six triatomine species analyzed (Panstrongylus megistus, Triatoma infestans, Triatoma brasiliensis, Triatoma pseudomaculata, Triatoma rubrovaria, and Triatoma sordida). The municipalities that were most vulnerable to vector-borne CD were mainly in the northeast region and exhibited a higher occurrence of domiciliated triatomines, lower socioeconomic levels, and more extensive anthropized areas. Most of the 39 new vector-borne CD cases confirmed between 2001 and 2012 in non-Amazonian regions occurred within the more vulnerable municipalities. Thus, MCDA can help to identify the states and municipalities that are most vulnerable to the transmission of T. cruzi by domiciliated triatomines, which is critical for directing adequate surveillance, prevention, and control activities. The methodological approach and results presented here can be used to enhance CD surveillance in Brazil. Copyright © 2014 Elsevier B.V. All rights reserved.
Scalar/Vector potential formulation for compressible viscous unsteady flows
NASA Technical Reports Server (NTRS)
Morino, L.
1985-01-01
A scalar/vector potential formulation for unsteady viscous compressible flows is presented. The scalar/vector potential formulation is based on the classical Helmholtz decomposition of any vector field into the sum of an irrotational and a solenoidal field. The formulation is derived from fundamental principles of mechanics and thermodynamics. The governing equations for the scalar potential and vector potential are obtained, without restrictive assumptions on either the equation of state or the constitutive relations or the stress tensor and the heat flux vector.
A proposed standard method for polarimetric calibration and calibration verification
NASA Astrophysics Data System (ADS)
Persons, Christopher M.; Jones, Michael W.; Farlow, Craig A.; Morell, L. Denise; Gulley, Michael G.; Spradley, Kevin D.
2007-09-01
Accurate calibration of polarimetric sensors is critical to reducing and analyzing phenomenology data, producing uniform polarimetric imagery for deployable sensors, and ensuring predictable performance of polarimetric algorithms. It is desirable to develop a standard calibration method, including verification reporting, in order to increase credibility with customers and foster communication and understanding within the polarimetric community. This paper seeks to facilitate discussions within the community on arriving at such standards. Both the calibration and verification methods presented here are performed easily with common polarimetric equipment, and are applicable to visible and infrared systems with either partial Stokes or full Stokes sensitivity. The calibration procedure has been used on infrared and visible polarimetric imagers over a six year period, and resulting imagery has been presented previously at conferences and workshops. The proposed calibration method involves the familiar calculation of the polarimetric data reduction matrix by measuring the polarimeter's response to a set of input Stokes vectors. With this method, however, linear combinations of Stokes vectors are used to generate highly accurate input states. This allows the direct measurement of all system effects, in contrast with fitting modeled calibration parameters to measured data. This direct measurement of the data reduction matrix allows higher order effects that are difficult to model to be discovered and corrected for in calibration. This paper begins with a detailed tutorial on the proposed calibration and verification reporting methods. Example results are then presented for a LWIR rotating half-wave retarder polarimeter.
The Effects of HSP27 on Gemcitabine-Resistant Pancreatic Cancer Cell Line Through Snail.
Zhang, Song; Zhang, Xiao-qi; Huang, Shu-ling; Chen, Min; Shen, Shan-shan; Ding, Xi-wei; Lv, Ying; Zou, Xiao-ping
2015-10-01
To evaluate the regulation mechanism of heat shock protein 27 (HSP27) on gemcitabine (GEM) resistance of pancreatic cancer cell. The expression vectors pEGFP-C1-HSP27 and the vectors of MicroRNA targeting Snail were introduced into GEM-sensitive pancreatic cancer SW1990 cells, and the vectors of small hairpin RNA targeting HSP27 were transfected into SW1990 and GEM-resistant SW1990/GEM cells. The expressions of HSP27, p-HSP27 (Ser82), Snail, ERCC1, and E-cadherin were evaluated by Western blotting. The sensitivity of transfected cells to GEM was detected by CCK-8 assay and Annexin V-FITC apoptosis assay. As compared to SW1990, SW1990/GEM showed significantly increased expressions of HSP27, p-HSP27, Snail and ERCC1 with decreased expression of E-cadherin. By increasing HSP27 expression, we found increase of Snail and ERCC1 with reduction of E-cadherin expressions, while reduction of HSP27 expression caused reduction of Snail and ERCC1 but increase of E-cadherin expressions. Downregulation of Snail resulted in the reduction of ERCC1 expression and increase of E-cadherin. Furthermore, downregulation of HSP27 or snail caused increased GEM sensitivity of pancreatic cancer cells, and upregulation of HSP27 showed the opposite results. There is an inverse correlation between HSP27 expression and GEM sensitivity of SW1990 cells, which might be realized by regulating E-cadherin and ERCC1 expressions through Snail.
Use of digital control theory state space formalism for feedback at SLC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Himel, T.; Hendrickson, L.; Rouse, F.
The algorithms used in the database-driven SLC fast-feedback system are based on the state space formalism of digital control theory. These are implemented as a set of matrix equations which use a Kalman filter to estimate a vector of states from a vector of measurements, and then apply a gain matrix to determine the actuator settings from the state vector. The matrices used in the calculation are derived offline using Linear Quadratic Gaussian minimization. For a given noise spectrum, this procedure minimizes the rms of the states (e.g., the position or energy of the beam). The offline program also allowsmore » simulation of the loop's response to arbitrary inputs, and calculates its frequency response. 3 refs., 3 figs.« less
An Alternative Lunar Ephemeris Model for On-Board Flight Software Use
NASA Technical Reports Server (NTRS)
Simpson, David G.
1998-01-01
In calculating the position vector of the Moon in on-board flight software, one often begins by using a series expansion to calculate the ecliptic latitude and longitude of the Moon, referred to the mean ecliptic and equinox of date. One then performs a reduction for precession, followed by a rotation of the position vector from the ecliptic plane to the equator, and a transformation from spherical to Cartesian coordinates before finally arriving at the desired result: equatorial J2000 Cartesian components of the lunar position vector. An alternative method is developed here in which the equatorial J2000 Cartesian components of the lunar position vector are calculated directly by a series expansion, saving valuable on-board computer resources.
Graham, Jay P; Nachman, Keeve E
2010-12-01
Confined food-animal operations in the United States produce more than 40 times the amount of waste than human biosolids generated from US wastewater treatment plants. Unlike biosolids, which must meet regulatory standards for pathogen levels, vector attraction reduction and metal content, no treatment is required of waste from animal agriculture. This omission is of concern based on dramatic changes in livestock production over the past 50 years, which have resulted in large increases in animal waste and a high degree of geographic concentration of waste associated with the regional growth of industrial food-animal production. Regulatory measures have not kept pace with these changes. The purpose of this paper is to: 1) review trends that affect food-animal waste production in the United States, 2) assess risks associated with food-animal wastes, 3) contrast food-animal waste management practices to management practices for biosolids and 4) make recommendations based on existing and potential policy options to improve management of food-animal waste.
Spherical earth gravity and magnetic anomaly analysis by equivalent point source inversion
NASA Technical Reports Server (NTRS)
Von Frese, R. R. B.; Hinze, W. J.; Braile, L. W.
1981-01-01
To facilitate geologic interpretation of satellite elevation potential field data, analysis techniques are developed and verified in the spherical domain that are commensurate with conventional flat earth methods of potential field interpretation. A powerful approach to the spherical earth problem relates potential field anomalies to a distribution of equivalent point sources by least squares matrix inversion. Linear transformations of the equivalent source field lead to corresponding geoidal anomalies, pseudo-anomalies, vector anomaly components, spatial derivatives, continuations, and differential magnetic pole reductions. A number of examples using 1 deg-averaged surface free-air gravity anomalies of POGO satellite magnetometer data for the United States, Mexico, and Central America illustrate the capabilities of the method.
Oliveira, Agda Maria; Vieira, Carolina Portugal; Dibo, Margareth Regina; Guirado, Marluci Monteiro; Rodas, Lilian Aparecida Colebrusco; Chiaravalloti-Neto, Francisco
2016-12-01
Visceral leishmaniasis (VL), a neglected disease, is a serious public health problem that affects millions of people worldwide. The objectives of the study were to evaluate the sensitivity of Lutzomyia longipalpis and canine VL (CVL) autochthony early detection and describe the spatial and temporal dispersal of vector and expansion of VL in a Brazilian state. We obtained data on the leishmaniasis vector and VL cases in São Paulo State (SP), Brazil, from the Division of Endemic Disease Control and from the Epidemiological Surveillance Center of the São Paulo State Department of Health. Data were analyzed for 645 municipalities and 63 microregions and presented as thematic and flow maps. Following the verified presence of L. longipalpis in Araçatuba in 1997, the first autochthonous cases of canine VL (CVL) (1998) and of human VL (HVL) (1999) in São Paulo were reported, both in Araçatuba. From 1997 to 2014, the urban presence of the leishmaniasis vector was verified in 167 (25.9%) municipalities with cases of CVL reported in 108 (16.7%) and cases of HVL in 84 (13%). The sensitivities for vector presence early detection in relation to the identification of CVL and HVL autochthony were, respectively, equal to 76.4 and 92.5%. The sensitivity for CVL autochthony early detection in relation to the HVL autochthony identification was 75.8%. Vector dispersal and expansion of CVL and HVL were from the northwest to the southeast of the state, primarily flanking the Marechal Rondon highway at a constant rate of progression of 10, seven, and six new municipalities affected per year, respectively. We concluded that the sensitivity for vector presence and CVL autochthony presented reasonable accuracy and most of the time the vector presence and, specially, the CVL and HVL autochthony were identified in the main cities of the microregions of SP. Vector dispersal and expansion of VL started in 1997 near the state border of SP with the state of Mato Grosso do Sul. It has advanced from the northwest to the southeast flanking the Marechal Rondon highway at an arithmetic progression rate outward from the main cities of the microregions. Autochthonous cases of CVL and HVL emerged in SP, in general, after the verified presence of L. longipalpis. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Long, Elizabeth Y; Finke, Deborah L
2015-04-01
A widely cited benefit of predator diversity is greater suppression of insect herbivores, with corresponding increases in plant biomass. In the context of a vector-borne pathogen system, predator species richness may also influence plant disease risk via the direct effects of predators on the abundance and behavior of herbivores that also act as pathogen vectors. Using an assemblage of generalist insect predators, we examined the relationship between predator species richness and the prevalence of the aphid-vectored cereal yellow dwarf virus in wheat. We found that increasing predator richness enhanced suppression of the vector population and that pathogen prevalence was reduced when predators were present, but the reduction in prevalence was independent of predator species richness. To determine the mechanism(s) by which predator species richness contributes to vector suppression, but not pathogen prevalence, we evaluated vector movement and host plant occupancy in response to predator treatments. We found that pathogen prevalence was unrelated to vector suppression because host plant occupancy by vectors did not vary as a function of vector abundance. However, the presence of predators reduced pathogen prevalence because predators stimulated greater plant-to-plant movement by vectors, which likely diminished vector feeding time and reduced the transmission efficiency of this persistent pathogen. We conclude that community structure (i.e., the presence of predators), but not predator diversity, is a potential factor influencing local plant infection by this insect-vectored pathogen.
Vector Beam Polarization State Spectrum Analyzer.
Moreno, Ignacio; Davis, Jeffrey A; Badham, Katherine; Sánchez-López, María M; Holland, Joseph E; Cottrell, Don M
2017-05-22
We present a proof of concept for a vector beam polarization state spectrum analyzer based on the combination of a polarization diffraction grating (PDG) and an encoded harmonic q-plate grating (QPG). As a result, a two-dimensional polarization diffraction grating is formed that generates six different q-plate channels with topological charges from -3 to +3 in the horizontal direction, and each is split in the vertical direction into the six polarization channels at the cardinal points of the corresponding higher-order Poincaré sphere. Consequently, 36 different channels are generated in parallel. This special polarization diffractive element is experimentally demonstrated using a single phase-only spatial light modulator in a reflective optical architecture. Finally, we show that this system can be used as a vector beam polarization state spectrum analyzer, where both the topological charge and the state of polarization of an input vector beam can be simultaneously determined in a single experiment. We expect that these results would be useful for applications in optical communications.
NASA Astrophysics Data System (ADS)
Zheng, Mingfang; He, Cunfu; Lu, Yan; Wu, Bin
2018-01-01
We presented a numerical method to solve phase dispersion curve in general anisotropic plates. This approach involves an exact solution to the problem in the form of the Legendre polynomial of multiple integrals, which we substituted into the state-vector formalism. In order to improve the efficiency of the proposed method, we made a special effort to demonstrate the analytical methodology. Furthermore, we analyzed the algebraic symmetries of the matrices in the state-vector formalism for anisotropic plates. The basic feature of the proposed method was the expansion of field quantities by Legendre polynomials. The Legendre polynomial method avoid to solve the transcendental dispersion equation, which can only be solved numerically. This state-vector formalism combined with Legendre polynomial expansion distinguished the adjacent dispersion mode clearly, even when the modes were very close. We then illustrated the theoretical solutions of the dispersion curves by this method for isotropic and anisotropic plates. Finally, we compared the proposed method with the global matrix method (GMM), which shows excellent agreement.
Savel'ev, Sergey E; Zagoskin, Alexandre M
2018-06-25
A popular interpretation of the "collapse" of the wave function is as being the result of a local interaction ("measurement") of the quantum system with a macroscopic system ("detector"), with the ensuing loss of phase coherence between macroscopically distinct components of its quantum state vector. Nevetheless as early as in 1953 Renninger suggested a Gedankenexperiment, in which the collapse is triggered by non-observation of one of two mutually exclusive outcomes of the measurement, i.e., in the absence of interaction of the quantum system with the detector. This provided a powerful argument in favour of "physical reality" of (nonlocal) quantum state vector. In this paper we consider a possible version of Renninger's experiment using the light propagation through a birefringent quantum metamaterial. Its realization would provide a clear visualization of a wave function collapse produced by a "non-measurement", and make the concept of a physically real quantum state vector more acceptable.
Fluidic Thrust Vectoring of an Axisymmetric Exhaust Nozzle at Static Conditions
NASA Technical Reports Server (NTRS)
Wing, David J.; Giuliano, Victor J.
1997-01-01
A sub-scale experimental static investigation of an axisymmetric nozzle with fluidic injection for thrust vectoring was conducted at the NASA Langley Jet Exit Test Facility. Fluidic injection was introduced through flush-mounted injection ports in the divergent section. Geometric variables included injection-port geometry and location. Test conditions included a range of nozzle pressure ratios from 2 to 10 and a range of injection total pressure ratio from no-flow to 1.5. The results indicate that fluidic injection in an axisymmetric nozzle operating at design conditions produced significant thrust-vector angles with less reduction in thrust efficiency than that of a fluidically-vectored rectangular jet. The axisymmetric geometry promoted a pressure relief mechanism around the injection slot, thereby reducing the strength of the oblique shock and the losses associated with it. Injection port geometry had minimal effect on thrust vectoring.
On the interpretation of a possible ~ 750 GeV particle decaying into γγ
Ellis, John; Ellis, Sebastian A. R.; Quevillon, Jeremie; ...
2016-03-25
We consider interpretations of the recent ~3σ reports by the CMS and ATLAS collaborations of a possible X(~ 750 GeV) state decaying into yy final states. We focus on the possibilities that this is a scalar or pseudoscalar electroweak isoscalar state produced by gluon-gluon fusion mediated by loops of heavy fermions. We consider several models for these fermions, including a single vector-like charge 2/3 T quark, a doublet of vector-like quarks (T;B), and a vector-like generation of quarks, with or without leptons that also contribute to the X → yy decay amplitude. We also consider the possibility that X(750) ismore » a dark matter mediator, with a neutral vector-like dark matter particle. These scenarios are compatible with the present and prospective direct limits on vector-like fermions from LHC Runs 1 and 2, as well as indirect constraints from electroweak precision measurements, and we show that the required Yukawa-like couplings between the X particle and the heavy vector-like fermions are small enough to be perturbative so long as the X particle has dominant decay modes into gg and yy. In conclusion, the decays X → ZZ,Zy and W +W - are interesting prospective signatures that may help distinguish between different vector-like fermion scenarios.« less
Mode Locking of Lasers with Atomic Layer Graphene
2012-07-01
polarization components. As in order to obtain the vector soliton operation in a mode locked fiber laser no any polarization ...oscilloscope traces of a polarization locked vector soliton operation state. Figure 21: Oscilloscope traces of pulse train in a phase locked vector ... locked vector solitons , where the polarization of the solitons emitted by the laser is fixed, the polarization of the
Code of Federal Regulations, 2013 CFR
2013-01-01
... and possessions of the United States. Vector-borne disease. A disease transmitted to an animal through... or capable of being carriers of those diseases or their arthropod vectors. Communicable disease. Any... susceptible animal from an infected animal, vector, inanimate source, or other sources. Contagious disease...
Trypanosoma cruzi and Chagas' Disease in the United States
Bern, Caryn; Kjos, Sonia; Yabsley, Michael J.; Montgomery, Susan P.
2011-01-01
Summary: Chagas' disease is caused by the protozoan parasite Trypanosoma cruzi and causes potentially life-threatening disease of the heart and gastrointestinal tract. The southern half of the United States contains enzootic cycles of T. cruzi, involving 11 recognized triatomine vector species. The greatest vector diversity and density occur in the western United States, where woodrats are the most common reservoir; other rodents, raccoons, skunks, and coyotes are also infected with T. cruzi. In the eastern United States, the prevalence of T. cruzi is highest in raccoons, opossums, armadillos, and skunks. A total of 7 autochthonous vector-borne human infections have been reported in Texas, California, Tennessee, and Louisiana; many others are thought to go unrecognized. Nevertheless, most T. cruzi-infected individuals in the United States are immigrants from areas of endemicity in Latin America. Seven transfusion-associated and 6 organ donor-derived T. cruzi infections have been documented in the United States and Canada. As improved control of vector- and blood-borne T. cruzi transmission decreases the burden in countries where the disease is historically endemic and imported Chagas' disease is increasingly recognized outside Latin America, the United States can play an important role in addressing the altered epidemiology of Chagas' disease in the 21st century. PMID:21976603
Forlani, Lucas; Pedrini, Nicolás; Girotti, Juan R.; Mijailovsky, Sergio J.; Cardozo, Rubén M.; Gentile, Alberto G.; Hernández-Suárez, Carlos M.; Rabinovich, Jorge E.; Juárez, M. Patricia
2015-01-01
Background Current Chagas disease vector control strategies, based on chemical insecticide spraying, are growingly threatened by the emergence of pyrethroid-resistant Triatoma infestans populations in the Gran Chaco region of South America. Methodology and findings We have already shown that the entomopathogenic fungus Beauveria bassiana has the ability to breach the insect cuticle and is effective both against pyrethroid-susceptible and pyrethroid-resistant T. infestans, in laboratory as well as field assays. It is also known that T. infestans cuticle lipids play a major role as contact aggregation pheromones. We estimated the effectiveness of pheromone-based infection boxes containing B. bassiana spores to kill indoor bugs, and its effect on the vector population dynamics. Laboratory assays were performed to estimate the effect of fungal infection on female reproductive parameters. The effect of insect exuviae as an aggregation signal in the performance of the infection boxes was estimated both in the laboratory and in the field. We developed a stage-specific matrix model of T. infestans to describe the fungal infection effects on insect population dynamics, and to analyze the performance of the biopesticide device in vector biological control. Conclusions The pheromone-containing infective box is a promising new tool against indoor populations of this Chagas disease vector, with the number of boxes per house being the main driver of the reduction of the total domestic bug population. This ecologically safe approach is the first proven alternative to chemical insecticides in the control of T. infestans. The advantageous reduction in vector population by delayed-action fungal biopesticides in a contained environment is here shown supported by mathematical modeling. PMID:25969989
Kaufhold, John P; Tsai, Philbert S; Blinder, Pablo; Kleinfeld, David
2012-08-01
A graph of tissue vasculature is an essential requirement to model the exchange of gasses and nutriments between the blood and cells in the brain. Such a graph is derived from a vectorized representation of anatomical data, provides a map of all vessels as vertices and segments, and may include the location of nonvascular components, such as neuronal and glial somata. Yet vectorized data sets typically contain erroneous gaps, spurious endpoints, and spuriously merged strands. Current methods to correct such defects only address the issue of connecting gaps and further require manual tuning of parameters in a high dimensional algorithm. To address these shortcomings, we introduce a supervised machine learning method that (1) connects vessel gaps by "learned threshold relaxation"; (2) removes spurious segments by "learning to eliminate deletion candidate strands"; and (3) enforces consistency in the joint space of learned vascular graph corrections through "consistency learning." Human operators are only required to label individual objects they recognize in a training set and are not burdened with tuning parameters. The supervised learning procedure examines the geometry and topology of features in the neighborhood of each vessel segment under consideration. We demonstrate the effectiveness of these methods on four sets of microvascular data, each with >800(3) voxels, obtained with all optical histology of mouse tissue and vectorization by state-of-the-art techniques in image segmentation. Through statistically validated sampling and analysis in terms of precision recall curves, we find that learning with bagged boosted decision trees reduces equal-error error rates for threshold relaxation by 5-21% and strand elimination performance by 18-57%. We benchmark generalization performance across datasets; while improvements vary between data sets, learning always leads to a useful reduction in error rates. Overall, learning is shown to more than halve the total error rate, and therefore, human time spent manually correcting such vectorizations. Copyright © 2012 Elsevier B.V. All rights reserved.
Kaufhold, John P.; Tsai, Philbert S.; Blinder, Pablo; Kleinfeld, David
2012-01-01
A graph of tissue vasculature is an essential requirement to model the exchange of gasses and nutriments between the blood and cells in the brain. Such a graph is derived from a vectorized representation of anatomical data, provides a map of all vessels as vertices and segments, and may include the location of nonvascular components, such as neuronal and glial somata. Yet vectorized data sets typically contain erroneous gaps, spurious endpoints, and spuriously merged strands. Current methods to correct such defects only address the issue of connecting gaps and further require manual tuning of parameters in a high dimensional algorithm. To address these shortcomings, we introduce a supervised machine learning method that (1) connects vessel gaps by “learned threshold relaxation”; (2) removes spurious segments by “learning to eliminate deletion candidate strands”; and (3) enforces consistency in the joint space of learned vascular graph corrections through “consistency learning.” Human operators are only required to label individual objects they recognize in a training set and are not burdened with tuning parameters. The supervised learning procedure examines the geometry and topology of features in the neighborhood of each vessel segment under consideration. We demonstrate the effectiveness of these methods on four sets of microvascular data, each with > 8003 voxels, obtained with all optical histology of mouse tissue and vectorization by state-of-the-art techniques in image segmentation. Through statistically validated sampling and analysis in terms of precision recall curves, we find that learning with bagged boosted decision trees reduces equal-error error rates for threshold relaxation by 5 to 21 % and strand elimination performance by 18 to 57 %. We benchmark generalization performance across datasets; while improvements vary between data sets, learning always leads to a useful reduction in error rates. Overall, learning is shown to more than halve the total error rate, and therefore, human time spent manually correcting such vectorizations. PMID:22854035
Fonseca, Dina M; Unlu, Isik; Crepeau, Taryn; Farajollahi, Ary; Healy, Sean P; Bartlett-Healy, Kristen; Strickman, Daniel; Gaugler, Randy; Hamilton, George; Kline, Daniel; Clark, Gary G
2013-12-01
Aedes (Stegomyia) albopictus (Skuse) is an important disease vector and biting nuisance. During the 2009 active season, six ∼1000-parcel sites were studied, three in urban and three in suburban areas of New Jersey, United States, to examine the efficacy of standard integrated urban mosquito control strategies applied area wide. Active source reduction, larviciding, adulticiding and public education (source reduction through education) were implemented in one site in each county, an education-only approach was developed in a second site and a third site was used as an untreated experimental control. Populations were surveyed weekly with BG-Sentinel traps and ovitraps. A substantial reduction in Ae. albopictus populations was achieved in urban sites, but only modest reductions in suburban sites. Education alone achieved significant reductions in urban adult Ae. albopictus. Egg catches echoed adult catches only in suburban sites. There are significant socioeconomic and climatic differences between urban and suburban sites that impact upon Ae. albopictus populations and the efficacy of the control methods tested. An integrated pest management approach can affect abundances, but labor-intensive, costly source reduction was not enough to maintain Ae. albopictus counts below a nuisance threshold. Nighttime adult population suppression using truck-mounted adulticides can be effective. Area-wide cost-effective strategies are necessary. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
Simplifying the representation of complex free-energy landscapes using sketch-map
Ceriotti, Michele; Tribello, Gareth A.; Parrinello, Michele
2011-01-01
A new scheme, sketch-map, for obtaining a low-dimensional representation of the region of phase space explored during an enhanced dynamics simulation is proposed. We show evidence, from an examination of the distribution of pairwise distances between frames, that some features of the free-energy surface are inherently high-dimensional. This makes dimensionality reduction problematic because the data does not satisfy the assumptions made in conventional manifold learning algorithms We therefore propose that when dimensionality reduction is performed on trajectory data one should think of the resultant embedding as a quickly sketched set of directions rather than a road map. In other words, the embedding tells one about the connectivity between states but does not provide the vectors that correspond to the slow degrees of freedom. This realization informs the development of sketch-map, which endeavors to reproduce the proximity information from the high-dimensionality description in a space of lower dimensionality even when a faithful embedding is not possible. PMID:21730167
Fuzzy logic applied to prospecting for areas for installation of wood panel industries.
Dos Santos, Alexandre Rosa; Paterlini, Ewerthon Mattos; Fiedler, Nilton Cesar; Ribeiro, Carlos Antonio Alvares Soares; Lorenzon, Alexandre Simões; Domingues, Getulio Fonseca; Marcatti, Gustavo Eduardo; de Castro, Nero Lemos Martins; Teixeira, Thaisa Ribeiro; Dos Santos, Gleissy Mary Amaral Dino Alves; Juvanhol, Ronie Silva; Branco, Elvis Ricardo Figueira; Mota, Pedro Henrique Santos; da Silva, Lilianne Gomes; Pirovani, Daiani Bernardo; de Jesus, Waldir Cintra; Santos, Ana Carolina de Albuquerque; Leite, Helio Garcia; Iwakiri, Setsuo
2017-05-15
Prospecting for suitable areas for forestry operations, where the objective is a reduction in production and transportation costs, as well as the maximization of profits and available resources, constitutes an optimization problem. However, fuzzy logic is an alternative method for solving this problem. In the context of prospecting for suitable areas for the installation of wood panel industries, we propose applying fuzzy logic analysis for simulating the planting of different species and eucalyptus hybrids in Espírito Santo State, Brazil. The necessary methodological steps for this study are as follows: a) agriclimatological zoning of different species and eucalyptus hybrids; b) the selection of the vector variables; c) the application of the Euclidean distance to the vector variables; d) the application of fuzzy logic to matrix variables of the Euclidean distance; and e) the application of overlap fuzzy logic to locate areas for installation of wood panel industries. Among all the species and hybrids, Corymbia citriodora showed the highest percentage values for the combined very good and good classes, with 8.60%, followed by Eucalyptus grandis with 8.52%, Eucalyptus urophylla with 8.35% and Urograndis with 8.34%. The fuzzy logic analysis afforded flexibility in prospecting for suitable areas for the installation of wood panel industries in the Espírito Santo State can bring great economic and social benefits to the local population with the generation of jobs, income, tax revenues and GDP increase for the State and municipalities involved. The proposed methodology can be adapted to other areas and agricultural crops. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Avdyushev, V.; Banshchikova, M.; Chuvashov, I.; Kuzmin, A.
2017-09-01
In the paper are presented capabilities of software "Vector-M" for a diagnostics of the ionosphere state from auroral emissions images and plasma characteristics from the different orbits as a part of the system of control of space weather. The software "Vector-M" is developed by the celestial mechanics and astrometry department of Tomsk State University in collaboration with Space Research Institute (Moscow) and Central Aerological Observatory of Russian Federal Service for Hydrometeorology and Environmental Monitoring. The software "Vector-M" is intended for calculation of attendant geophysical and astronomical information for the centre of mass of the spacecraft and the space of observations in the experiment with auroral imager Aurovisor-VIS/MP in the orbit of the perspective Meteor-MP spacecraft.
The effects of vector leptoquark on the ℬb(ℬ = Λ,Σ) →ℬμ+μ- decays
NASA Astrophysics Data System (ADS)
Wang, Shuai-Wei; Huang, Jin-Shu
2016-07-01
In this paper, we have studied the baryonic semileptonic ℬb(ℬ = Λ, Σ) →ℬμ+μ- decays in the vector leptoquark model with U = (3, 3, 2/3) state. Using the parameters’ space constrained through some well-measured decay modes, such as Bs → μ+μ-, Bs -B¯s mixing and B → K∗μ+μ- decays, we show the effects of vector leptoquark state on the double lepton polarization asymmetries of ℬb(ℬ = Λ, Σ) →ℬμ+μ- decays, and find that the double lepton polarization asymmetries, except for PLL, PLN and PNL, are sensitive to the contributions of vector leptoquark model.
NASA Technical Reports Server (NTRS)
Armstrong, Jeffrey B.; Simon, Donald L.
2012-01-01
Self-tuning aircraft engine models can be applied for control and health management applications. The self-tuning feature of these models minimizes the mismatch between any given engine and the underlying engineering model describing an engine family. This paper provides details of the construction of a self-tuning engine model centered on a piecewise linear Kalman filter design. Starting from a nonlinear transient aerothermal model, a piecewise linear representation is first extracted. The linearization procedure creates a database of trim vectors and state-space matrices that are subsequently scheduled for interpolation based on engine operating point. A series of steady-state Kalman gains can next be constructed from a reduced-order form of the piecewise linear model. Reduction of the piecewise linear model to an observable dimension with respect to available sensed engine measurements can be achieved using either a subset or an optimal linear combination of "health" parameters, which describe engine performance. The resulting piecewise linear Kalman filter is then implemented for faster-than-real-time processing of sensed engine measurements, generating outputs appropriate for trending engine performance, estimating both measured and unmeasured parameters for control purposes, and performing on-board gas-path fault diagnostics. Computational efficiency is achieved by designing multidimensional interpolation algorithms that exploit the shared scheduling of multiple trim vectors and system matrices. An example application illustrates the accuracy of a self-tuning piecewise linear Kalman filter model when applied to a nonlinear turbofan engine simulation. Additional discussions focus on the issue of transient response accuracy and the advantages of a piecewise linear Kalman filter in the context of validation and verification. The techniques described provide a framework for constructing efficient self-tuning aircraft engine models from complex nonlinear simulations.Self-tuning aircraft engine models can be applied for control and health management applications. The self-tuning feature of these models minimizes the mismatch between any given engine and the underlying engineering model describing an engine family. This paper provides details of the construction of a self-tuning engine model centered on a piecewise linear Kalman filter design. Starting from a nonlinear transient aerothermal model, a piecewise linear representation is first extracted. The linearization procedure creates a database of trim vectors and state-space matrices that are subsequently scheduled for interpolation based on engine operating point. A series of steady-state Kalman gains can next be constructed from a reduced-order form of the piecewise linear model. Reduction of the piecewise linear model to an observable dimension with respect to available sensed engine measurements can be achieved using either a subset or an optimal linear combination of "health" parameters, which describe engine performance. The resulting piecewise linear Kalman filter is then implemented for faster-than-real-time processing of sensed engine measurements, generating outputs appropriate for trending engine performance, estimating both measured and unmeasured parameters for control purposes, and performing on-board gas-path fault diagnostics. Computational efficiency is achieved by designing multidimensional interpolation algorithms that exploit the shared scheduling of multiple trim vectors and system matrices. An example application illustrates the accuracy of a self-tuning piecewise linear Kalman filter model when applied to a nonlinear turbofan engine simulation. Additional discussions focus on the issue of transient response accuracy and the advantages of a piecewise linear Kalman filter in the context of validation and verification. The techniques described provide a framework for constructing efficient self-tuning aircraft engine models from complex nonlinear simulatns.
Vector solitons with polarization instability and locked polarization in a fiber laser
NASA Astrophysics Data System (ADS)
Tang, Dingkang; Zhang, Jian-Guo; Liu, Yuanshan
2012-07-01
We investigate the characteristics of vector solitons with and without locked phase velocities of orthogonal polarization components in a specially-designed laser cavity which is formed by a bidirectional fiber loop together with a semiconductor saturable absorber mirror. The characteristics of the two states are compared in the temporal and spectrum domain, respectively. Both of the two states exhibit the characteristic of mode locking while the two orthogonal polarization components are not resolved. However, for the vector soliton with unlocked phase velocities, identical intensity varies after passing through a polarization beam splitter (PBS) outside the laser cavity. Contrary to the polarization rotation locked vector soliton, the intensity does not change periodically. For the polarization-locked vector soliton (PLVS), the identical pulse intensity is still obtained after passing through the PBS and can be observed on the oscilloscope screen after photodetection. A coupler instead of a circulator is integrated in the laser cavity and strong interaction on the polarization resolved spectra of the PLVS is observed. By comparing the two states, we conclude that interaction between the two orthogonal components contributes to the locked phase velocities.
Hadisoemarto, Panji Fortuna; Castro, Marcia C
2013-01-01
All four serotypes of dengue virus are endemic in Indonesia, where the population at risk for infection exceeds 200 million people. Despite continuous control efforts that were initiated more than four decades ago, Indonesia still suffers from multi-annual cycles of dengue outbreak and dengue remains as a major public health problem. Dengue vaccines have been viewed as a promising solution for controlling dengue in Indonesia, but thus far its potential acceptability has not been assessed. We conducted a household survey in the city of Bandung, Indonesia by administering a questionnaire to examine (i) acceptance of a hypothetical pediatric dengue vaccine; (ii) participant's willingness-to-pay (WTP) for the vaccine, had it not been provided for free; and (iii) whether people think vector control would be unnecessary if the vaccine was available. A proportional odds model and an interval regression model were employed to identify determinants of acceptance and WTP, respectively. We demonstrated that out of 500 heads of household being interviewed, 94.2% would agree to vaccinate their children with the vaccine. Of all participants, 94.6% were willing to pay for the vaccine with a median WTP of US$1.94. In addition, 7.2% stated that vector control would not be necessary had there been a dengue vaccination program. Our results suggest that future dengue vaccines can have a very high uptake even when delivered through the private market. This, however, can be influenced by vaccine characteristics and price. In addition, reduction in community vector control efforts may be observed following vaccine introduction but its potential impact in the transmission of dengue and other vector-borne diseases requires further study.
Hadisoemarto, Panji Fortuna; Castro, Marcia C.
2013-01-01
Background All four serotypes of dengue virus are endemic in Indonesia, where the population at risk for infection exceeds 200 million people. Despite continuous control efforts that were initiated more than four decades ago, Indonesia still suffers from multi-annual cycles of dengue outbreak and dengue remains as a major public health problem. Dengue vaccines have been viewed as a promising solution for controlling dengue in Indonesia, but thus far its potential acceptability has not been assessed. Methodology/Principal Findings We conducted a household survey in the city of Bandung, Indonesia by administering a questionnaire to examine (i) acceptance of a hypothetical pediatric dengue vaccine; (ii) participant's willingness-to-pay (WTP) for the vaccine, had it not been provided for free; and (iii) whether people think vector control would be unnecessary if the vaccine was available. A proportional odds model and an interval regression model were employed to identify determinants of acceptance and WTP, respectively. We demonstrated that out of 500 heads of household being interviewed, 94.2% would agree to vaccinate their children with the vaccine. Of all participants, 94.6% were willing to pay for the vaccine with a median WTP of US$1.94. In addition, 7.2% stated that vector control would not be necessary had there been a dengue vaccination program. Conclusions/Significance Our results suggest that future dengue vaccines can have a very high uptake even when delivered through the private market. This, however, can be influenced by vaccine characteristics and price. In addition, reduction in community vector control efforts may be observed following vaccine introduction but its potential impact in the transmission of dengue and other vector-borne diseases requires further study. PMID:24069482
Data on Support Vector Machines (SVM) model to forecast photovoltaic power.
Malvoni, M; De Giorgi, M G; Congedo, P M
2016-12-01
The data concern the photovoltaic (PV) power, forecasted by a hybrid model that considers weather variations and applies a technique to reduce the input data size, as presented in the paper entitled "Photovoltaic forecast based on hybrid pca-lssvm using dimensionality reducted data" (M. Malvoni, M.G. De Giorgi, P.M. Congedo, 2015) [1]. The quadratic Renyi entropy criteria together with the principal component analysis (PCA) are applied to the Least Squares Support Vector Machines (LS-SVM) to predict the PV power in the day-ahead time frame. The data here shared represent the proposed approach results. Hourly PV power predictions for 1,3,6,12, 24 ahead hours and for different data reduction sizes are provided in Supplementary material.
Invasive Potential of Cattle Fever Ticks in the Southern United States
USDA-ARS?s Scientific Manuscript database
For >100 years cattle production in the southern United States has been threatened by cattle fever. It is caused by an invasive parasite-vector complex that includes the protozoan hemoparasites Babesia bovis and B. bigemina, which are transmitted among domestic cattle via Rhipicephalus tick vectors ...
Nongeneric positive partial transpose states of rank five in 3×3 dimensions
NASA Astrophysics Data System (ADS)
Hansen, Leif Ove; Myrheim, Jan
In 3×3 dimensions, entangled mixed states that are positive under partial transposition (PPT states) must have rank at least four. These rank four states are completely understood. We say that they have rank (4,4) since both a state ρ and its partial transpose ρP have rank four. The next problem is to understand the extremal PPT states of rank (5,5). We call two states SL⊗SL-equivalent if they are related by a product transformation. A generic rank (5,5) PPT state ρ is extremal, and both ρ and ρP have six product vectors in their ranges, and no product vectors in their kernels. The three numbers {6,6;0} are SL⊗SL-invariants that help us classify the state. There is no analytical understanding of such states. We have studied numerically a few types of nongeneric rank five PPT states, in particular, states with one or more product vectors in their kernels. We find an interesting new analytical construction of all rank four extremal PPT states, up to SL⊗SL-equivalence, where they appear as boundary states on one single five-dimensional face on the set of normalized PPT states. The interior of the face consists of rank (5,5) states with four common product vectors in their kernels, it is a simplex of separable states surrounded by entangled PPT states. We say that a state ρ is SL⊗SL-symmetric if ρ and ρP are SL⊗SL-equivalent, and is genuinely SL⊗SL-symmetric if it is SL⊗SL-equivalent to a state τ with τ=τP. Genuine SL⊗SL-symmetry implies a special form of SL⊗SL-symmetry. We have produced numerically, by a special method, a random sample of rank (5,5) SL⊗SL-symmetric states. About 50 of these are of type {6,6;0}, among those all are extremal and about half are genuinely SL⊗SL-symmetric. All these genuinely SL⊗SL-symmetric states can be transformed to have a circulant form. We find however that this is not a generic property of genuinely SL⊗SL-symmetric states. The remaining SL⊗SL-symmetric states found in the search have product vectors in their kernels, and they inspired us to study such states without regard to SL⊗SL-symmetry.
On bipartite pure-state entanglement structure in terms of disentanglement
NASA Astrophysics Data System (ADS)
Herbut, Fedor
2006-12-01
Schrödinger's disentanglement [E. Schrödinger, Proc. Cambridge Philos. Soc. 31, 555 (1935)], i.e., remote state decomposition, as a physical way to study entanglement, is carried one step further with respect to previous work in investigating the qualitative side of entanglement in any bipartite state vector. Remote measurement (or, equivalently, remote orthogonal state decomposition) from previous work is generalized to remote linearly independent complete state decomposition both in the nonselective and the selective versions. The results are displayed in terms of commutative square diagrams, which show the power and beauty of the physical meaning of the (antiunitary) correlation operator inherent in the given bipartite state vector. This operator, together with the subsystem states (reduced density operators), constitutes the so-called correlated subsystem picture. It is the central part of the antilinear representation of a bipartite state vector, and it is a kind of core of its entanglement structure. The generalization of previously elaborated disentanglement expounded in this article is a synthesis of the antilinear representation of bipartite state vectors, which is reviewed, and the relevant results of [Cassinelli et al., J. Math. Anal. Appl. 210, 472 (1997)] in mathematical analysis, which are summed up. Linearly independent bases (finite or infinite) are shown to be almost as useful in some quantum mechanical studies as orthonormal ones. Finally, it is shown that linearly independent remote pure-state preparation carries the highest probability of occurrence. This singles out linearly independent remote influence from all possible ones.
Estimation of attitude sensor timetag biases
NASA Technical Reports Server (NTRS)
Sedlak, J.
1995-01-01
This paper presents an extended Kalman filter for estimating attitude sensor timing errors. Spacecraft attitude is determined by finding the mean rotation from a set of reference vectors in inertial space to the corresponding observed vectors in the body frame. Any timing errors in the observations can lead to attitude errors if either the spacecraft is rotating or the reference vectors themselves vary with time. The state vector here consists of the attitude quaternion, timetag biases, and, optionally, gyro drift rate biases. The filter models the timetags as random walk processes: their expectation values propagate as constants and white noise contributes to their covariance. Thus, this filter is applicable to cases where the true timing errors are constant or slowly varying. The observability of the state vector is studied first through an examination of the algebraic observability condition and then through several examples with simulated star tracker timing errors. The examples use both simulated and actual flight data from the Extreme Ultraviolet Explorer (EUVE). The flight data come from times when EUVE had a constant rotation rate, while the simulated data feature large angle attitude maneuvers. The tests include cases with timetag errors on one or two sensors, both constant and time-varying, and with and without gyro bias errors. Due to EUVE's sensor geometry, the observability of the state vector is severely limited when the spacecraft rotation rate is constant. In the absence of attitude maneuvers, the state elements are highly correlated, and the state estimate is unreliable. The estimates are particularly sensitive to filter mistuning in this case. The EUVE geometry, though, is a degenerate case having coplanar sensors and rotation vector. Observability is much improved and the filter performs well when the rate is either varying or noncoplanar with the sensors, as during a slew. Even with bad geometry and constant rates, if gyro biases are independently known, the timetag error for a single sensor can be accurately estimated as long as its boresight is not too close to the spacecraft rotation axis.
NASA Astrophysics Data System (ADS)
Milione, Giovanni; Dudley, Angela; Nguyen, Thien An; Chakraborty, Ougni; Karimi, Ebrahim; Forbes, Andrew; Alfano, Robert R.
2015-03-01
We experimentally measured the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams. Radially and azimuthally polarized vector Bessel beams were experimentally generated via a digital version of Durnin's method, using a spatial light modulator in concert with a liquid crystal q-plate. As a proof of principle, their intensities and spatially inhomogeneous states of polarization were experimentally measured using Stokes polarimetry as they propagated through two disparate obstructions. It was found, similar to their intensities, that their spatially inhomogeneous states of polarization self-healed. The self-healing can be understood via geometric optics, i.e., the interference of the unobstructed conical rays in the shadow region of the obstruction, and may have applications in, for example, optical trapping.
Parallel-vector unsymmetric Eigen-Solver on high performance computers
NASA Technical Reports Server (NTRS)
Nguyen, Duc T.; Jiangning, Qin
1993-01-01
The popular QR algorithm for solving all eigenvalues of an unsymmetric matrix is reviewed. Among the basic components in the QR algorithm, it was concluded from this study, that the reduction of an unsymmetric matrix to a Hessenberg form (before applying the QR algorithm itself) can be done effectively by exploiting the vector speed and multiple processors offered by modern high-performance computers. Numerical examples of several test cases have indicated that the proposed parallel-vector algorithm for converting a given unsymmetric matrix to a Hessenberg form offers computational advantages over the existing algorithm. The time saving obtained by the proposed methods is increased as the problem size increased.
[Progress in application of targeting viral vector regulated by microRNA in gene therapy: a review].
Zhang, Guohai; Wang, Qizhao; Zhang, Jinghong; Xu, Ruian
2010-06-01
A safe and effective targeting viral vector is the key factor for successful clinical gene therapy. microRNA, a class of small, single-stranded endogenous RNAs, act as post-transcriptional regulators of gene expression. The discovery of these kind regulatory elements provides a new approach to regulate gene expression more accurately. In this review, we elucidated the principle of microRNA in regulation of targeting viral vector. The applications of microRNA in the fields of elimination contamination from replication competent virus, reduction of transgene-specific immunity, promotion of cancer-targeted gene therapy and development of live attenuated vaccines were also discussed.
Gimbal-Angle Vectors of the Nonredundant CMG Cluster
NASA Astrophysics Data System (ADS)
Lee, Donghun; Bang, Hyochoong
2018-05-01
This paper deals with the method using the preferred gimbal angles of a control moment gyro (CMG) cluster for controlling spacecraft attitude. To apply the method to the nonredundant CMG cluster, analytical gimbal-angle solutions for the zero angular momentum state are derived, and the gimbal-angle vectors for the nonzero angular momentum states are studied by a numerical method. It will be shown that the number of the gimbal-angle vectors is determined from the given skew angle and the angular momentum state of the CMG cluster. Through numerical examples, it is shown that the method using the preferred gimbal-angle is an efficient approach to avoid internal singularities for the nonredundant CMG cluster.
Optical simulation of a Popescu-Rohrlich Box
Chu, Wen-Jing; Zong, Xiao-Lan; Yang, Ming; Pan, Guo-Zhu; Cao, Zhuo-Liang
2016-01-01
It is well known that the fair-sampling loophole in Bell test opened by the selection of the state to be measured can lead to post-quantum correlations. In this paper, we make the selection of the results after measurement, which opens the fair- sampling loophole too, and thus can lead to post-quantum correlations. This kind of result-selection loophole can be realized by pre- and post-selection processes within the “two-state vector formalism”, and a physical simulation of Popescu-Rohrlich (PR) box is designed in linear optical system. The probability distribution of the PR has a maximal CHSH value 4, i.e. it can maximally violate CHSH inequality. Because the “two-state vector formalism” violates the information causality, it opens the locality loophole too, which means that this kind of results selection within “two-state vector formalism” leads to both fair- sampling loophole and locality loophole, so we call it a comprehensive loophole in Bell test. The comprehensive loophole opened by the results selection within “two-state vector formalism” may be another possible explanation of why post-quantum correlations are incompatible with quantum mechanics and seem not to exist in nature. PMID:27329203
Optical simulation of a Popescu-Rohrlich Box.
Chu, Wen-Jing; Zong, Xiao-Lan; Yang, Ming; Pan, Guo-Zhu; Cao, Zhuo-Liang
2016-06-22
It is well known that the fair-sampling loophole in Bell test opened by the selection of the state to be measured can lead to post-quantum correlations. In this paper, we make the selection of the results after measurement, which opens the fair- sampling loophole too, and thus can lead to post-quantum correlations. This kind of result-selection loophole can be realized by pre- and post-selection processes within the "two-state vector formalism", and a physical simulation of Popescu-Rohrlich (PR) box is designed in linear optical system. The probability distribution of the PR has a maximal CHSH value 4, i.e. it can maximally violate CHSH inequality. Because the "two-state vector formalism" violates the information causality, it opens the locality loophole too, which means that this kind of results selection within "two-state vector formalism" leads to both fair- sampling loophole and locality loophole, so we call it a comprehensive loophole in Bell test. The comprehensive loophole opened by the results selection within "two-state vector formalism" may be another possible explanation of why post-quantum correlations are incompatible with quantum mechanics and seem not to exist in nature.
Rational calculation accuracy in acousto-optical matrix-vector processor
NASA Astrophysics Data System (ADS)
Oparin, V. V.; Tigin, Dmitry V.
1994-01-01
The high speed of parallel computations for a comparatively small-size processor and acceptable power consumption makes the usage of acousto-optic matrix-vector multiplier (AOMVM) attractive for processing of large amounts of information in real time. The limited accuracy of computations is an essential disadvantage of such a processor. The reduced accuracy requirements allow for considerable simplification of the AOMVM architecture and the reduction of the demands on its components.
Molecular Ωc states generated from coupled meson-baryon channels
NASA Astrophysics Data System (ADS)
Debastiani, V. R.; Dias, J. M.; Liang, W. H.; Oset, E.
2018-05-01
We have investigated Ωc states that are dynamically generated from the meson-baryon interaction. We use an extension of the local hidden gauge to obtain the interaction from the exchange of vector mesons. We show that the dominant terms come from the exchange of light vectors, where the heavy quarks are spectators. This has as a consequence that heavy quark symmetry is preserved for the dominant terms in the (1 /mQ ) counting, and also that the interaction in this case can be obtained from the SU(3) chiral Lagrangians. We show that for a standard value for the cutoff regulating the loop, we obtain two states with JP=1/2 - and two more with JP=3/2 -, three of them in remarkable agreement with three experimental states in mass and width. We also make predictions at higher energies for states of vector-baryon nature.
Manufacturing in space: Fluid dynamics numerical analysis
NASA Technical Reports Server (NTRS)
Robertson, S. J.; Nicholson, L. A.; Spradley, L. W.
1982-01-01
Numerical computations were performed for natural convection in circular enclosures under various conditions of acceleration. It was found that subcritical acceleration vectors applied in the direction of the temperature gradient will lead to an eventual state of rest regardless of the initial state of motion. Supercritical acceleration vectors will lead to the same steady state condition of motion regardless of the initial state of motion. Convection velocities were computed for acceleration vectors at various angles of the initial temperature gradient. The results for Rayleigh numbers of 1000 or less were found to closely follow Weinbaum's first order theory. Higher Rayleigh number results were shown to depart significantly from the first order theory. Supercritical behavior was confirmed for Rayleigh numbers greater than the known supercritical value of 9216. Response times were determined to provide an indication of the time required to change states of motion for the various cases considered.
NASA Astrophysics Data System (ADS)
Kopsaftopoulos, Fotis; Nardari, Raphael; Li, Yu-Hung; Chang, Fu-Kuo
2018-01-01
In this work, a novel data-based stochastic "global" identification framework is introduced for aerospace structures operating under varying flight states and uncertainty. In this context, the term "global" refers to the identification of a model that is capable of representing the structure under any admissible flight state based on data recorded from a sample of these states. The proposed framework is based on stochastic time-series models for representing the structural dynamics and aeroelastic response under multiple flight states, with each state characterized by several variables, such as the airspeed, angle of attack, altitude and temperature, forming a flight state vector. The method's cornerstone lies in the new class of Vector-dependent Functionally Pooled (VFP) models which allow the explicit analytical inclusion of the flight state vector into the model parameters and, hence, system dynamics. This is achieved via the use of functional data pooling techniques for optimally treating - as a single entity - the data records corresponding to the various flight states. In this proof-of-concept study the flight state vector is defined by two variables, namely the airspeed and angle of attack of the vehicle. The experimental evaluation and assessment is based on a prototype bio-inspired self-sensing composite wing that is subjected to a series of wind tunnel experiments under multiple flight states. Distributed micro-sensors in the form of stretchable sensor networks are embedded in the composite layup of the wing in order to provide the sensing capabilities. Experimental data collected from piezoelectric sensors are employed for the identification of a stochastic global VFP model via appropriate parameter estimation and model structure selection methods. The estimated VFP model parameters constitute two-dimensional functions of the flight state vector defined by the airspeed and angle of attack. The identified model is able to successfully represent the wing's aeroelastic response under the admissible flight states via a minimum number of estimated parameters compared to standard identification approaches. The obtained results demonstrate the high accuracy and effectiveness of the proposed global identification framework, thus constituting a first step towards the next generation of "fly-by-feel" aerospace vehicles with state awareness capabilities.
Vector nature of multi-soliton patterns in a passively mode-locked figure-eight fiber laser.
Ning, Qiu-Yi; Liu, Hao; Zheng, Xu-Wu; Yu, Wei; Luo, Ai-Ping; Huang, Xu-Guang; Luo, Zhi-Chao; Xu, Wen-Cheng; Xu, Shan-Hui; Yang, Zhong-Min
2014-05-19
The vector nature of multi-soliton dynamic patterns was investigated in a passively mode-locked figure-eight fiber laser based on the nonlinear amplifying loop mirror (NALM). By properly adjusting the cavity parameters such as the pump power level and intra-cavity polarization controllers (PCs), in addition to the fundamental vector soliton, various vector multi-soliton regimes were observed, such as the random static distribution of vector multiple solitons, vector soliton cluster, vector soliton flow, and the state of vector multiple solitons occupying the whole cavity. Both the polarization-locked vector solitons (PLVSs) and the polarization-rotating vector solitons (PRVSs) were observed for fundamental soliton and each type of multi-soliton patterns. The obtained results further reveal the fundamental physics of multi-soliton patterns and demonstrate that the figure-eight fiber lasers are indeed a good platform for investigating the vector nature of different soliton types.
Braack, Leo; Hunt, Richard; Koekemoer, Lizette L; Gericke, Anton; Munhenga, Givemore; Haddow, Andrew D; Becker, Piet; Okia, Michael; Kimera, Isaac; Coetzee, Maureen
2015-02-04
Malaria control in Africa relies heavily on indoor vector management, primarily indoor residual spraying and insecticide treated bed nets. Little is known about outdoor biting behaviour or even the dynamics of indoor biting and infection risk of sleeping household occupants. In this paper we explore the preferred biting sites on the human body and some of the ramifications regarding infection risk and exposure management. We undertook whole-night human landing catches of Anopheles arabiensis in South Africa and Anopheles gambiae s.s. and Anopheles funestus in Uganda, for seated persons wearing short sleeve shirts, short pants, and bare legs, ankles and feet. Catches were kept separate for different body regions and capture sessions. All An. gambiae s.l. and An. funestus group individuals were identified to species level by PCR. Three of the main vectors of malaria in Africa (An. arabiensis, An. gambiae s.s. and An. funestus) all have a preference for feeding close to ground level, which is manifested as a strong propensity (77.3% - 100%) for biting on lower leg, ankles and feet of people seated either indoors or outdoors, but somewhat randomly along the lower edge of the body in contact with the surface when lying down. If the lower extremities of the legs (below mid-calf level) of seated people are protected and therefore exclude access to this body region, vector mosquitoes do not move higher up the body to feed at alternate body sites, instead resulting in a high (58.5% - 68.8%) reduction in biting intensity by these three species. Protecting the lower limbs of people outdoors at night can achieve a major reduction in biting intensity by malaria vector mosquitoes. Persons sleeping at floor level bear a disproportionate risk of being bitten at night because this is the preferred height for feeding by the primary vector species. Therefore it is critical to protect children sleeping at floor level (bednets; repellent-impregnated blankets or sheets, etc.). Additionally, the opportunity exists for the development of inexpensive repellent-impregnated anklets and/or sandals to discourage vectors feeding on the lower legs under outdoor conditions at night.
Black hole superradiance signatures of ultralight vectors
NASA Astrophysics Data System (ADS)
Baryakhtar, Masha; Lasenby, Robert; Teo, Mae
2017-08-01
The process of superradiance can extract angular momentum and energy from astrophysical black holes (BHs) to populate gravitationally bound states with an exponentially large number of light bosons. We analytically calculate superradiant growth rates for vectors around rotating BHs in the regime where the vector Compton wavelength is much larger than the BH size. Spin-1 bound states have superradiance times as short as a second around stellar BHs, growing up to a thousand times faster than their spin-0 counterparts. The fast rates allow us to use measurements of rapidly spinning BHs in x-ray binaries to exclude a wide range of masses for weakly coupled spin-1 particles, 5 ×10-14-2 ×10-11 eV ; lighter masses in the range 6 ×10-20-2 ×10-17 eV start to be constrained by supermassive BH spin measurements at a lower level of confidence. We also explore routes to detection of new vector particles possible with the advent of gravitational wave (GW) astronomy. The LIGO-Virgo Collaboration could discover hints of a new light vector particle in statistical analyses of masses and spins of merging BHs. Vector annihilations source continuous monochromatic gravitational radiation which could be observed by current GW observatories. At design sensitivity, Advanced LIGO may measure up to thousands of annihilation signals from within the Milky Way, while hundreds of BHs born in binary mergers across the observable Universe may superradiate vector bound states and become new beacons of monochromatic gravitational waves.
Center for Coastline Security Technology, Year-2
2007-05-01
set to a constant value of n = 7.25 Hz (435 RPM) giving an advance ratio of J = U/nD = 0.31 (assuming a vehicle wake deficit of 0.9 UB∞ B), the yaw... noise characteristics (Case #4). Figures for Section 2.9 Figure 2.9.1: WETStar Fluorometer. Figure 2.9.2: Proposed design schematic no. 1...consecutives states and )(kw is the state noise [10]. F defines the relation between the state vector )(kX at time k and the state vector at time k
Vectorization of transport and diffusion computations on the CDC Cyber 205
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abu-Shumays, I.K.
1986-01-01
The development and testing of alternative numerical methods and computational algorithms specifically designed for the vectorization of transport and diffusion computations on a Control Data Corporation (CDC) Cyber 205 vector computer are described. Two solution methods for the discrete ordinates approximation to the transport equation are summarized and compared. Factors of 4 to 7 reduction in run times for certain large transport problems were achieved on a Cyber 205 as compared with run times on a CDC-7600. The solution of tridiagonal systems of linear equations, central to several efficient numerical methods for multidimensional diffusion computations and essential for fluid flowmore » and other physics and engineering problems, is also dealt with. Among the methods tested, a combined odd-even cyclic reduction and modified Cholesky factorization algorithm for solving linear symmetric positive definite tridiagonal systems is found to be the most effective for these systems on a Cyber 205. For large tridiagonal systems, computation with this algorithm is an order of magnitude faster on a Cyber 205 than computation with the best algorithm for tridiagonal systems on a CDC-7600.« less
Flow noise of an underwater vector sensor embedded in a flexible towed array.
Korenbaum, Vladimir I; Tagiltsev, Alexander A
2012-05-01
The objective of this work is to simulate the flow noise of a vector sensor embedded in a flexible towed array. The mathematical model developed, based on long-wavelength analysis of the inner space of a cylindrical multipole source, predicts the reduction of the flow noise of a vector sensor embedded in an underwater flexible towed array by means of intensimetric processing (cross-spectral density calculation of oscillatory velocity and sound-pressure-sensor responses). It is found experimentally that intensimetric processing results in flow noise reduction by 12-25 dB at mean levels and by 10-30 dB in fluctuations compared to a squared oscillatory velocity channel. The effect of flow noise suppression in the intensimetry channel relative to a squared sound pressure channel is observed, but only for frequencies above the threshold. These suppression values are 10-15 dB at mean noise levels and 3-6 dB in fluctuations. At towing velocities of 1.5-3 ms(-1) and an accumulation time of 98.3 s, the threshold frequency in fluctuations is between 30 and 45 Hz.
Managing focal fields of vector beams with multiple polarization singularities.
Han, Lei; Liu, Sheng; Li, Peng; Zhang, Yi; Cheng, Huachao; Gan, Xuetao; Zhao, Jianlin
2016-11-10
We explore the tight focusing behavior of vector beams with multiple polarization singularities, and analyze the influences of the number, position, and topological charge of the singularities on the focal fields. It is found that the ellipticity of the local polarization states at the focal plane could be determined by the spatial distribution of the polarization singularities of the vector beam. When the spatial location and topological charge of singularities have even-fold rotation symmetry, the transverse fields at the focal plane are locally linearly polarized. Otherwise, the polarization state becomes a locally hybrid one. By appropriately arranging the distribution of the polarization singularities in the vector beam, the polarization distributions of the focal fields could be altered while the intensity maintains unchanged.
Generation of vector beams using a double-wedge depolarizer: Non-quantum entanglement
NASA Astrophysics Data System (ADS)
Samlan, C. T.; Viswanathan, Nirmal K.
2016-07-01
Propagation of horizontally polarized Gaussian beam through a double-wedge depolarizer generates vector beams with spatially varying state of polarization. Jones calculus is used to show that such beams are maximally nonseparable on the basis of even (Gaussian)-odd (Hermite-Gaussian) mode parity and horizontal-vertical polarization state. The maximum nonseparability in the two degrees of freedom of the vector beam at the double wedge depolarizer output is verified experimentally using a modified Sagnac interferometer and linear analyser projected interferograms to measure the concurrence 0.94±0.002 and violation of Clauser-Horne-Shimony-Holt form of Bell-like inequality 2.704±0.024. The investigation is carried out in the context of the use of vector beams for metrological applications.
Internal performance characteristics of thrust-vectored axisymmetric ejector nozzles
NASA Technical Reports Server (NTRS)
Lamb, Milton
1995-01-01
A series of thrust-vectored axisymmetric ejector nozzles were designed and experimentally tested for internal performance and pumping characteristics at the Langley research center. This study indicated that discontinuities in the performance occurred at low primary nozzle pressure ratios and that these discontinuities were mitigated by decreasing expansion area ratio. The addition of secondary flow increased the performance of the nozzles. The mid-to-high range of secondary flow provided the most overall improvements, and the greatest improvements were seen for the largest ejector area ratio. Thrust vectoring the ejector nozzles caused a reduction in performance and discharge coefficient. With or without secondary flow, the vectored ejector nozzles produced thrust vector angles that were equivalent to or greater than the geometric turning angle. With or without secondary flow, spacing ratio (ejector passage symmetry) had little effect on performance (gross thrust ratio), discharge coefficient, or thrust vector angle. For the unvectored ejectors, a small amount of secondary flow was sufficient to reduce the pressure levels on the shroud to provide cooling, but for the vectored ejector nozzles, a larger amount of secondary air was required to reduce the pressure levels to provide cooling.
Steel, Jason C; Cavanagh, Heather M A; Burton, Mark A; Kalle, Wouter H J
2004-11-01
Adenoviral vectors have been commonly used in gene therapy protocols but the success of their use is often limited by the induction of host immunity to the vector. Following exposure to the adenoviral vector, adenoviral-specific neutralising antibodies are produced, which limits further administration. This study examines the effectiveness of a novel combination of microspheres and liposomes for the shielding of adenovirus from neutralising antibodies in an in-vitro setting. We show that liposomes are effective in the protection of adenovirus from neutralising antibody and that the conjugation of these complexes to microspheres augments the level of protection. This study further reveals that previously neutralised adenovirus may still be transported into the cell via liposome-cell interactions and is still capable of expressing its genes, making this vector an effective tool for circumvention of the humoral immune response. We also looked at possible side effects of using the complexes, namely increases in cytotoxicity and reductions in transfection efficiency. Our results showed that varying the liposome:adenovirus ratio can reduce the cytotoxicity of the vector as well as increase the transfection efficiency. In addition, in cell lines that are adenoviral competent, transfection efficiencies on par with uncomplexed adenoviral vectors were achievable with the combination vector.
Experimental confirmation of a PDE-based approach to design of feedback controls
NASA Technical Reports Server (NTRS)
Banks, H. T.; Smith, Ralph C.; Brown, D. E.; Silcox, R. J.; Metcalf, Vern L.
1995-01-01
Issues regarding the experimental implementation of partial differential equation based controllers are discussed in this work. While the motivating application involves the reduction of vibration levels for a circular plate through excitation of surface-mounted piezoceramic patches, the general techniques described here will extend to a variety of applications. The initial step is the development of a PDE model which accurately captures the physics of the underlying process. This model is then discretized to yield a vector-valued initial value problem. Optimal control theory is used to determine continuous-time voltages to the patches, and the approximations needed to facilitate discrete time implementation are addressed. Finally, experimental results demonstrating the control of both transient and steady state vibrations through these techniques are presented.
NASA Technical Reports Server (NTRS)
Felici, Helene M.; Drela, Mark
1993-01-01
A new approach based on the coupling of an Eulerian and a Lagrangian solver, aimed at reducing the numerical diffusion errors of standard Eulerian time-marching finite-volume solvers, is presented. The approach is applied to the computation of the secondary flow in two bent pipes and the flow around a 3D wing. Using convective point markers the Lagrangian approach provides a correction of the basic Eulerian solution. The Eulerian flow in turn integrates in time the Lagrangian state-vector. A comparison of coarse and fine grid Eulerian solutions makes it possible to identify numerical diffusion. It is shown that the Eulerian/Lagrangian approach is an effective method for reducing numerical diffusion errors.
NASA Astrophysics Data System (ADS)
Liu, GaiYun; Chao, Daniel Yuh
2015-08-01
To date, research on the supervisor design for flexible manufacturing systems focuses on speeding up the computation of optimal (maximally permissive) liveness-enforcing controllers. Recent deadlock prevention policies for systems of simple sequential processes with resources (S3PR) reduce the computation burden by considering only the minimal portion of all first-met bad markings (FBMs). Maximal permissiveness is ensured by not forbidding any live state. This paper proposes a method to further reduce the size of minimal set of FBMs to efficiently solve integer linear programming problems while maintaining maximal permissiveness using a vector-covering approach. This paper improves the previous work and achieves the simplest structure with the minimal number of monitors.
Superconducting tensor gravity gradiometer
NASA Technical Reports Server (NTRS)
Paik, H. J.
1981-01-01
The employment of superconductivity and other material properties at cryogenic temperatures to fabricate sensitive, low-drift, gravity gradiometer is described. The device yields a reduction of noise of four orders of magnitude over room temperature gradiometers, and direct summation and subtraction of signals from accelerometers in varying orientations are possible with superconducting circuitry. Additional circuits permit determination of the linear and angular acceleration vectors independent of the measurement of the gravity gradient tensor. A dewar flask capable of maintaining helium in a liquid state for a year's duration is under development by NASA, and a superconducting tensor gravity gradiometer for the NASA Geodynamics Program is intended for a LEO polar trajectory to measure the harmonic expansion coefficients of the earth's gravity field up to order 300.
A link between torse-forming vector fields and rotational hypersurfaces
NASA Astrophysics Data System (ADS)
Chen, Bang-Yen; Verstraelen, Leopold
Torse-forming vector fields introduced by Yano [On torse forming direction in a Riemannian space, Proc. Imp. Acad. Tokyo 20 (1944) 340-346] are natural extension of concurrent and concircular vector fields. Such vector fields have many nice applications to geometry and mathematical physics. In this paper, we establish a link between rotational hypersurfaces and torse-forming vector fields. More precisely, our main result states that, for a hypersurface M of 𝔼n+1 with n ≥ 3, the tangential component xT of the position vector field of M is a proper torse-forming vector field on M if and only if M is contained in a rotational hypersurface whose axis of rotation contains the origin.
Hahn, Micah; Jarnevich, Catherine S.; Monaghan, Andrew J.; Eisen, Rebecca J.
2016-01-01
In addition to serving as vectors of several other human pathogens, the black-legged tick, Ixodes scapularis Say, and western black-legged tick, Ixodes pacificus Cooley and Kohls, are the primary vectors of the spirochete (Borrelia burgdorferi ) that causes Lyme disease, the most common vector-borne disease in the United States. Over the past two decades, the geographic range of I. pacificus has changed modestly while, in contrast, the I. scapularis range has expanded substantially, which likely contributes to the concurrent expansion in the distribution of human Lyme disease cases in the Northeastern, North-Central and Mid-Atlantic states. Identifying counties that contain suitable habitat for these ticks that have not yet reported established vector populations can aid in targeting limited vector surveillance resources to areas where tick invasion and potential human risk are likely to occur. We used county-level vector distribution information and ensemble modeling to map the potential distribution of I. scapularis and I. pacificus in the contiguous United States as a function of climate, elevation, and forest cover. Results show that I. pacificus is currently present within much of the range classified by our model as suitable for establishment. In contrast, environmental conditions are suitable for I. scapularis to continue expanding its range into northwestern Minnesota, central and northern Michigan, within the Ohio River Valley, and inland from the southeastern and Gulf coasts. Overall, our ensemble models show suitable habitat for I. scapularis in 441 eastern counties and for I. pacificus in 11 western counties where surveillance records have not yet supported classification of the counties as established.
Using a multifrontal sparse solver in a high performance, finite element code
NASA Technical Reports Server (NTRS)
King, Scott D.; Lucas, Robert; Raefsky, Arthur
1990-01-01
We consider the performance of the finite element method on a vector supercomputer. The computationally intensive parts of the finite element method are typically the individual element forms and the solution of the global stiffness matrix both of which are vectorized in high performance codes. To further increase throughput, new algorithms are needed. We compare a multifrontal sparse solver to a traditional skyline solver in a finite element code on a vector supercomputer. The multifrontal solver uses the Multiple-Minimum Degree reordering heuristic to reduce the number of operations required to factor a sparse matrix and full matrix computational kernels (e.g., BLAS3) to enhance vector performance. The net result in an order-of-magnitude reduction in run time for a finite element application on one processor of a Cray X-MP.
Mwangangi, Joseph M; Mbogo, Charles M; Orindi, Benedict O; Muturi, Ephantus J; Midega, Janet T; Nzovu, Joseph; Gatakaa, Hellen; Githure, John; Borgemeister, Christian; Keating, Joseph; Beier, John C
2013-01-08
Over the past 20 years, numerous studies have investigated the ecology and behaviour of malaria vectors and Plasmodium falciparum malaria transmission on the coast of Kenya. Substantial progress has been made to control vector populations and reduce high malaria prevalence and severe disease. The goal of this paper was to examine trends over the past 20 years in Anopheles species composition, density, blood-feeding behaviour, and P. falciparum sporozoite transmission along the coast of Kenya. Using data collected from 1990 to 2010, vector density, species composition, blood-feeding patterns, and malaria transmission intensity was examined along the Kenyan coast. Mosquitoes were identified to species, based on morphological characteristics and DNA extracted from Anopheles gambiae for amplification. Using negative binomial generalized estimating equations, mosquito abundance over the period were modelled while adjusting for season. A multiple logistic regression model was used to analyse the sporozoite rates. Results show that in some areas along the Kenyan coast, Anopheles arabiensis and Anopheles merus have replaced An. gambiae sensu stricto (s.s.) and Anopheles funestus as the major mosquito species. Further, there has been a shift from human to animal feeding for both An. gambiae sensu lato (s.l.) (99% to 16%) and An. funestus (100% to 3%), and P. falciparum sporozoite rates have significantly declined over the last 20 years, with the lowest sporozoite rates being observed in 2007 (0.19%) and 2008 (0.34%). There has been, on average, a significant reduction in the abundance of An. gambiae s.l. over the years (IRR = 0.94, 95% CI 0.90-0.98), with the density standing at low levels of an average 0.006 mosquitoes/house in the year 2010. Reductions in the densities of the major malaria vectors and a shift from human to animal feeding have contributed to the decreased burden of malaria along the Kenyan coast. Vector species composition remains heterogeneous but in many areas An. arabiensis has replaced An. gambiae as the major malaria vector. This has important implications for malaria epidemiology and control given that this vector predominately rests and feeds on humans outdoors. Strategies for vector control need to continue focusing on tools for protecting residents inside houses but additionally employ outdoor control tools because these are essential for further reducing the levels of malaria transmission.
LCD motion blur reduction: a signal processing approach.
Har-Noy, Shay; Nguyen, Truong Q
2008-02-01
Liquid crystal displays (LCDs) have shown great promise in the consumer market for their use as both computer and television displays. Despite their many advantages, the inherent sample-and-hold nature of LCD image formation results in a phenomenon known as motion blur. In this work, we develop a method for motion blur reduction using the Richardson-Lucy deconvolution algorithm in concert with motion vector information from the scene. We further refine our approach by introducing a perceptual significance metric that allows us to weight the amount of processing performed on different regions in the image. In addition, we analyze the role of motion vector errors in the quality of our resulting image. Perceptual tests indicate that our algorithm reduces the amount of perceivable motion blur in LCDs.
NASA Astrophysics Data System (ADS)
Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Grossmann, J.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, N.; Krätschmer, I.; Liko, D.; Madlener, T.; Mikulec, I.; Pree, E.; Rabady, D.; Rad, N.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Spanring, M.; Spitzbart, D.; Strauss, J.; Waltenberger, W.; Wittmann, J.; Wulz, C.-E.; Zarucki, M.; Chekhovsky, V.; Mossolov, V.; Gonzalez, J. Suarez; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Lauwers, J.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Zeid, S. Abu; Blekman, F.; D'Hondt, J.; De Bruyn, I.; De Clercq, J.; Deroover, K.; Flouris, G.; Lontkovskyi, D.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Velde, C. Vander; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Roskas, C.; Salva, S.; Tytgat, M.; Verbeke, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Marono, M. Vidal; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Martins Junior, M. Correa; Hensel, C.; Moraes, A.; Pol, M. E.; Teles, P. Rebello; Chagas, E. Belchior Batista Das; Carvalho, W.; Chinellato, J.; Custódio, A.; Costa, E. M. Da; Silveira, G. G. Da; Damiao, D. De Jesus; De Souza, S. Fonseca; Guativa, L. M. Huertas; Malbouisson, H.; De Almeida, M. Melo; Herrera, C. Mora; Mundim, L.; Nogima, H.; Santoro, A.; Sznajder, A.; Manganote, E. J. Tonelli; De Araujo, F. Torres Da Silva; Pereira, A. Vilela; Ahuja, S.; Bernardes, C. A.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Abad, D. Romero; Vargas, J. C. Ruiz; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Misheva, M.; Rodozov, M.; Shopova, M.; Stoykova, S.; Sultanov, G.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Jiang, C. H.; Leggat, D.; Liao, H.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Sierra, L. F. Chaparro; Florez, C.; Hernández, C. F. González; Alvarez, J. D. Ruiz; Courbon, B.; Godinovic, N.; Lelas, D.; Puljak, I.; Cipriano, P. M. Ribeiro; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Starodumov, A.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Jarrin, E. Carrera; Abdelalim, A. A.; Mohammed, Y.; Salama, E.; Dewanjee, R. K.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Faure, J. L.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Negro, G.; Rander, J.; Rosowsky, A.; Sahin, M. Ö.; Titov, M.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Charlot, C.; de Cassagnac, R. Granier; Jo, M.; Lisniak, S.; Lobanov, A.; Blanco, J. Martin; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Leiton, A. G. Stahl; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Jansová, M.; Bihan, A.-C. Le; Tonon, N.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Chierici, R.; Contardo, D.; Depasse, P.; Mamouni, H. El; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Donckt, M. Vander; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Verlage, T.; Albert, A.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Teyssier, D.; Thüer, S.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Martin, M. Aldaya; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Martínez, A. Bermúdez; Anuar, A. A. Bin; Borras, K.; Botta, V.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Pardos, C. Diez; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garcia, J. Garay; Geiser, A.; Gizhko, A.; Luyando, J. M. Grados; Grohsjean, A.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Savitskyi, M.; Saxena, P.; Shevchenko, R.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wen, Y.; Wichmann, K.; Wissing, C.; Zenaiev, O.; Bein, S.; Blobel, V.; Vignali, M. Centis; Draeger, A. R.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hinzmann, A.; Hoffmann, M.; Karavdina, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Freund, B.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Evangelou, I.; Foudas, C.; Kokkas, P.; Mallios, S.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Triantis, F. A.; Csanad, M.; Filipovic, N.; Pasztor, G.; Bencze, G.; Hajdu, C.; Horvath, D.; Hunyadi, Á.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Bhawandeep, U.; Chawla, R.; Dhingra, N.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Kumari, P.; Mehta, A.; Singh, J. B.; Walia, G.; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A.; Chauhan, S.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhardwaj, R.; Bhattacharya, R.; Bhattacharya, S.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Chowdhury, S. Roy; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Tadavani, E. Eskandari; Etesami, S. M.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Mehdiabadi, S. Paktinat; Hosseinabadi, F. Rezaei; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Errico, F.; Fiore, L.; Iaselli, G.; Lezki, S.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Chatterjee, K.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Robutti, E.; Tosi, S.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pauwels, K.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; de Fatis, T. Tabarelli; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Khan, W. A.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; De Oliveira, A. Carvalho Antunes; Checchia, P.; Manzano, P. De Castro; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Fallavollita, F.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Solestizi, L. Alunni; Biasini, M.; Bilei, G. M.; Cecchi, C.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Manoni, E.; Mantovani, G.; Mariani, V.; Menichelli, M.; Rossi, A.; Santocchia, A.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Borrello, L.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giannini, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Manca, E.; Mandorli, G.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Del Re, D.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Angioni, G. L. Pinna; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Moon, C. S.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Moon, D. H.; Oh, G.; Cifuentes, J. A. Brochero; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Kim, J. S.; Lee, H.; Lee, K.; Nam, K.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Ali, M. A. B. Md; Idris, F. Mohamad; Abdullah, W. A. T. Wan; Yusli, M. N.; Zolkapli, Z.; Castilla-Valdez, H.; Cruz-Burelo, E. De La; Cruz, I. Heredia-De La; Lopez-Fernandez, R.; Guisao, J. Mejia; Sanchez-Hernandez, A.; Moreno, S. Carrillo; Barrera, C. Oropeza; Valencia, F. Vazquez; Pedraza, I.; Ibarguen, H. A. Salazar; Estrada, C. Uribe; Pineda, A. Morelos; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Silva, C. Beirão Da Cruz E.; Calpas, B.; Di Francesco, A.; Faccioli, P.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Iglesias, L. Lloret; Nemallapudi, M. V.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Stepennov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chistov, R.; Danilov, M.; Parygin, P.; Philippov, D.; Polikarpov, S.; Tarkovskii, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Maestre, J. Alcaraz; Luna, M. Barrio; Cerrada, M.; Colino, N.; Cruz, B. De La; Peris, A. Delgado; Del Valle, A. Escalante; Bedoya, C. Fernandez; Ramos, J. P. Fernández; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Lopez, O. Gonzalez; Lopez, S. Goy; Hernandez, J. M.; Josa, M. I.; Yzquierdo, A. Pérez-Calero; Pelayo, J. Puerta; Olmeda, A. Quintario; Redondo, I.; Romero, L.; Soares, M. S.; Fernández, A. Álvarez; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Erice, C.; Menendez, J. Fernandez; Caballero, I. Gonzalez; Fernández, J. R. González; Cortezon, E. Palencia; Cruz, S. Sanchez; Andrés, I. Suárez; Vischia, P.; Garcia, J. M. Vizan; Cabrillo, I. J.; Calderon, A.; Quero, B. Chazin; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Virto, A. Lopez; Marco, J.; Rivero, C. Martinez; Arbol, P. Martinez Ruiz del; Matorras, F.; Gomez, J. Piedra; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Cortabitarte, R. Vilar; Abbaneo, D.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Bianco, M.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chapon, E.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dorney, B.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Karacheban, O.; Kieseler, J.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Steggemann, J.; Stoye, M.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Verweij, M.; Wardle, N.; Zeuner, W. D.; Bertl, W.; Caminada, L.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Bachmair, F.; Bäni, L.; Berger, P.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Klijnsma, T.; Lustermann, W.; Mangano, B.; Marionneau, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Schönenberger, M.; Shchutska, L.; Tavolaro, V. R.; Theofilatos, K.; Olsson, M. L. Vesterbacka; Wallny, R.; Zagozdzinska, A.; Zhu, D. H.; Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; De Cosa, A.; Donato, S.; Galloni, C.; Hreus, T.; Kilminster, B.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Seitz, C.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Moya, M. Miñano; Paganis, E.; Psallidas, A.; Tsai, J. f.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Adiguzel, A.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Topaksu, A. Kayis; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Cerci, D. Sunar; Tali, B.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Karapinar, G.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Tekten, S.; Yetkin, E. A.; Agaras, M. N.; Atay, S.; Cakir, A.; Cankocak, K.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Davignon, O.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Nasr-storey, S. Seif El; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Bainbridge, R.; Breeze, S.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Elwood, A.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Matsushita, T.; Nash, J.; Nikitenko, A.; Palladino, V.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Shtipliyski, A.; Summers, S.; Tapper, A.; Uchida, K.; Acosta, M. Vazquez; Virdee, T.; Winterbottom, D.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Smith, C.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Pazzini, J.; Piperov, S.; Sagir, S.; Syarif, R.; Yu, D.; Band, R.; Brainerd, C.; Burns, D.; Sanchez, M. Calderon De La Barca; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Squires, M.; Stolp, D.; Tos, K.; Tripathi, M.; Wang, Z.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Shirazi, S. M. A. Ghiasi; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Negrete, M. Olmedo; Paneva, M. I.; Shrinivas, A.; Si, W.; Wang, L.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cittolin, S.; Derdzinski, M.; Hashemi, B.; Holzner, A.; Klein, D.; Kole, G.; Krutelyov, V.; Letts, J.; Macneill, I.; Masciovecchio, M.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Wood, J.; Würthwein, F.; Yagil, A.; Della Porta, G. Zevi; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Sevilla, M. Franco; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bendavid, J.; Bornheim, A.; Lawhorn, J. M.; Newman, H. B.; Nguyen, T.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhang, Z.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Mudholkar, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Abdullin, S.; Albrow, M.; Apollinari, G.; Apresyan, A.; Apyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cerati, G. B.; Cheung, H. W. K.; Chlebana, F.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Freeman, J.; Gecse, Z.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; De Sá, R. Lopes; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Schneider, B.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Joshi, Y. R.; Linn, S.; Markowitz, P.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Martinez, G.; Perry, T.; Prosper, H.; Saha, A.; Santra, A.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Gonzalez, I. D. Sandoval; Tonjes, M. B.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Royon, C.; Sanders, S.; Schmitz, E.; Stringer, R.; Takaki, J. D. Tapia; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Ceballos, G. Gomez; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Kalafut, S.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Suarez, R. Gonzalez; Kamalieddin, R.; Kravchenko, I.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; De Lima, R. Teixeira; Trocino, D.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Anampa, K. Hurtado; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Loukas, N.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Benaglia, A.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Higginbotham, S.; Lange, D.; Luo, J.; Marlow, D.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Malik, S.; Norberg, S.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Peng, C. C.; Schulte, J. F.; Sun, J.; Wang, F.; Xie, W.; Cheng, T.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Ciesielski, R.; Goulianos, K.; Mesropian, C.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Espinosa, T. A. Gómez; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Elayavalli, R. Kunnawalkam; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Hernandez, A. Castaneda; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Harr, R.; Karchin, P. E.; Sturdy, J.; Zaleski, S.; Brodski, M.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.
2017-09-01
A search for heavy resonances with masses above 1 {TeV}, decaying to final states containing a vector boson and a Higgs boson, is presented. The search considers hadronic decays of the vector boson, and Higgs boson decays to b quarks. The decay products are highly boosted, and each collimated pair of quarks is reconstructed as a single, massive jet. The analysis is performed using a data sample collected in 2016 by the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13 {TeV}, corresponding to an integrated luminosity of 35.9 {fb}^{-1}. The data are consistent with the background expectation and are used to place limits on the parameters of a theoretical model with a heavy vector triplet. In the benchmark scenario with mass-degenerate W' and Z' bosons decaying predominantly to pairs of standard model bosons, for the first time heavy resonances for masses as high as 3.3 {TeV} are excluded at 95% confidence level, setting the most stringent constraints to date on such states decaying into a vector boson and a Higgs boson.
NASA Technical Reports Server (NTRS)
Iliff, Kenneth W.; Wang, Kon-Sheng Charles
1997-01-01
The subsonic longitudinal stability and control derivatives of the F-18 High Angle of Attack Research Vehicle (HARV) are extracted from dynamic flight data using a maximum likelihood parameter identification technique. The technique uses the linearized aircraft equations of motion in their continuous/discrete form and accounts for state and measurement noise as well as thrust-vectoring effects. State noise is used to model the uncommanded forcing function caused by unsteady aerodynamics over the aircraft, particularly at high angles of attack. Thrust vectoring was implemented using electrohydraulically-actuated nozzle postexit vanes and a specialized research flight control system. During maneuvers, a control system feature provided independent aerodynamic control surface inputs and independent thrust-vectoring vane inputs, thereby eliminating correlations between the aircraft states and controls. Substantial variations in control excitation and dynamic response were exhibited for maneuvers conducted at different angles of attack. Opposing vane interactions caused most thrust-vectoring inputs to experience some exhaust plume interference and thus reduced effectiveness. The estimated stability and control derivatives are plotted, and a discussion relates them to predicted values and maneuver quality.
Illés, Tamás
2011-03-01
The EOS system is a new medical imaging device based on low-dose X-rays, gaseous detectors and dedicated software for 3D reconstruction. It was developed by Nobel prizewinner Georges Charpak. A new concept--the vertebral vector--is used to facilitate the interpretation of EOS data, especially in the horizontal plane. We studied 95 cases of idiopathic scoliosis before and after surgery by means of classical methods and using vertebral vectors, in order to compare the accuracy of the two approaches. The vertebral vector permits simultaneous analysis of the scoliotic curvature in the frontal, sagittal and horizontal planes, as precisely as classical methods. The use of the vertebral vector simplifies and facilitates the interpretation of the mass of information provided by EOS. After analyzing the horizontal data, the first goal of corrective intervention would be to reduce the lateral vertebral deviation. The reduction in vertebral rotation seems less important. This is a new element in the therapeutic management of spinal deformations.
Improved dense trajectories for action recognition based on random projection and Fisher vectors
NASA Astrophysics Data System (ADS)
Ai, Shihui; Lu, Tongwei; Xiong, Yudian
2018-03-01
As an important application of intelligent monitoring system, the action recognition in video has become a very important research area of computer vision. In order to improve the accuracy rate of the action recognition in video with improved dense trajectories, one advanced vector method is introduced. Improved dense trajectories combine Fisher Vector with Random Projection. The method realizes the reduction of the characteristic trajectory though projecting the high-dimensional trajectory descriptor into the low-dimensional subspace based on defining and analyzing Gaussian mixture model by Random Projection. And a GMM-FV hybrid model is introduced to encode the trajectory feature vector and reduce dimension. The computational complexity is reduced by Random Projection which can drop Fisher coding vector. Finally, a Linear SVM is used to classifier to predict labels. We tested the algorithm in UCF101 dataset and KTH dataset. Compared with existed some others algorithm, the result showed that the method not only reduce the computational complexity but also improved the accuracy of action recognition.
Pellecer, Mariele J.; Dorn, Patricia L.; Bustamante, Dulce M.; Rodas, Antonieta; Monroy, M. Carlota
2013-01-01
A novel method using vector blood meal sources to assess the impact of control efforts on the risk of transmission of Chagas disease was tested in the village of El Tule, Jutiapa, Guatemala. Control used Ecohealth interventions, where villagers ameliorated the factors identified as most important for transmission. First, after an initial insecticide application, house walls were plastered. Later, bedroom floors were improved and domestic animals were moved outdoors. Only vector blood meal sources revealed the success of the first interventions: human blood meals declined from 38% to 3% after insecticide application and wall plastering. Following all interventions both vector blood meal sources and entomological indices revealed the reduction in transmission risk. These results indicate that vector blood meals may reveal effects of control efforts early on, effects that may not be apparent using traditional entomological indices, and provide further support for the Ecohealth approach to Chagas control in Guatemala. PMID:23382165
A mathematical model of the impact of present and future malaria vaccines.
Wenger, Edward A; Eckhoff, Philip A
2013-04-15
With the encouraging advent of new malaria vaccine candidates, mathematical modelling of expected impacts of present and future vaccines as part of multi-intervention strategies is especially relevant. The impact of potential malaria vaccines is presented utilizing the EMOD model, a comprehensive model of the vector life cycle coupled to a detailed mechanistic representation of intra-host parasite and immune dynamics. Values of baseline transmission and vector feeding behaviour parameters are identified, for which local elimination is enabled by layering pre-erythrocytic vaccines of various efficacies on top of high and sustained insecticide-treated net coverage. The expected reduction in clinical cases is further explored in a scenario that targets children by adding a pre-erythrocytic vaccine to the EPI programme for newborns. At high transmission, there is a minimal reduction in clinical disease cases, as the time to infection is only slightly delayed. At lower transmission, there is an accelerating community-level protection that has subtle dependences on heterogeneities in vector behaviour, ecology, and intervention coverage. At very low transmission, the trend reverses as many children are vaccinated to prevent few cases. The maximum-impact setting is one in which the impact of increasing bed net coverage has saturated, vector feeding is primarily outdoors, and transmission is just above the threshold where small perturbations from a vaccine intervention result in large community benefits.
Steering of Frequency Standards by the Use of Linear Quadratic Gaussian Control Theory
NASA Technical Reports Server (NTRS)
Koppang, Paul; Leland, Robert
1996-01-01
Linear quadratic Gaussian control is a technique that uses Kalman filtering to estimate a state vector used for input into a control calculation. A control correction is calculated by minimizing a quadratic cost function that is dependent on both the state vector and the control amount. Different penalties, chosen by the designer, are assessed by the controller as the state vector and control amount vary from given optimal values. With this feature controllers can be designed to force the phase and frequency differences between two standards to zero either more or less aggressively depending on the application. Data will be used to show how using different parameters in the cost function analysis affects the steering and the stability of the frequency standards.
Gubler, D J; Reiter, P; Ebi, K L; Yap, W; Nasci, R; Patz, J A
2001-01-01
Diseases such as plague, typhus, malaria, yellow fever, and dengue fever, transmitted between humans by blood-feeding arthropods, were once common in the United States. Many of these diseases are no longer present, mainly because of changes in land use, agricultural methods, residential patterns, human behavior, and vector control. However, diseases that may be transmitted to humans from wild birds or mammals (zoonoses) continue to circulate in nature in many parts of the country. Most vector-borne diseases exhibit a distinct seasonal pattern, which clearly suggests that they are weather sensitive. Rainfall, temperature, and other weather variables affect in many ways both the vectors and the pathogens they transmit. For example, high temperatures can increase or reduce survival rate, depending on the vector, its behavior, ecology, and many other factors. Thus, the probability of transmission may or may not be increased by higher temperatures. The tremendous growth in international travel increases the risk of importation of vector-borne diseases, some of which can be transmitted locally under suitable circumstances at the right time of the year. But demographic and sociologic factors also play a critical role in determining disease incidence, and it is unlikely that these diseases will cause major epidemics in the United States if the public health infrastructure is maintained and improved. PMID:11359689
Anisotropic Structure of Rotating Homogeneous Turbulence at High Reynolds Numbers
NASA Technical Reports Server (NTRS)
Cambon, Claude; Mansour, Nagi N.; Squires, Kyle D.; Rai, Man Mohan (Technical Monitor)
1995-01-01
Large eddy simulation is used to investigate the development of anisotropies and the evolution towards a quasi two-dimensional state in rotating homogeneous turbulence at high Reynolds number. The present study demonstrates the existence of two transitions in the development of anisotropy. The first transition marks the onset of anisotropy and occurs when a macro-Rossby number (based on a longitudinal integral lengthscale) has decreased to near unity while the second transition occurs when a micro-Rossby number (defined in this work as the ratio of the rms fluctuating vorticity to background vorticity) has decreased to unity. The anisotropy marked by the first transition corresponds to a reduction in dimensionality while the second transition corresponds to a polarization of the flow, i.e., relative dominance of the velocity components in the plane normal to the rotation axis. Polarization is reflected by emergence of anisotropy measures based on the two-dimensional component of the turbulence. Investigation of the vorticity structure shows that the second transition is also characterized by an increasing tendency for alignment between the fluctuating vorticity vector and the background angular velocity vector with a preference for corrotative vorticity.
Higher-order vector beams produced by photonic-crystal lasers.
Iwahashi, Seita; Kurosaka, Yoshitaka; Sakai, Kyosuke; Kitamura, Kyoko; Takayama, Naoki; Noda, Susumu
2011-06-20
We have successfully generated vector beams with higher-order polarization states using photonic-crystal lasers. We have analyzed and designed lattice structures that provide cavity modes with different symmetries. Fabricated devices based on these lattice structures produced doughnut-shaped vector beams, with symmetries corresponding to the cavity modes. Our study enables the systematic analysis of vector beams, which we expect will lead to applications such as high-resolution microscopy, laser processing, and optical trapping.
Zika Virus Vector Competency of Mosquitoes, Gulf Coast, United States.
Hart, Charles E; Roundy, Christopher M; Azar, Sasha R; Huang, Jing H; Yun, Ruimei; Reynolds, Erin; Leal, Grace; Nava, Martin R; Vela, Jeremy; Stark, Pamela M; Debboun, Mustapha; Rossi, Shannan; Vasilakis, Nikos; Thangamani, Saravanan; Weaver, Scott C
2017-03-01
Zika virus has recently spread throughout the Americas. Although Aedes aegypti mosquitoes are considered the primary vector, Culex quinquefasciatus and mosquitoes of other species may also be vectors. We tested Cx. quinquefasciatus and Ae. taeniorhynchus mosquitoes from the US Gulf Coast; both were refractory to infection and incapable of transmission.
Belinsky, Moisey I
2016-05-02
The rotation behavior of the vector chirality κ, scalar chirality χ, and magnetization M in the rotating magnetic field H1 is considered for the V3 and Cu3 nanomagnets, in which the Dzialoshinsky-Moriya coupling is active. The polar rotation of the field H1 of the given strength H1 results in the energy spectrum characterized by different vector and scalar chiralities in the ground and excited states. The magnetochiral correlations between the vector and scalar chiralities, energy, and magnetization in the rotating field were considered. Under the uniform polar rotation of the field H1, the ground-state chirality vector κI performs sawtooth oscillations and the magnetization vector MI performs the sawtooth oscillating rotation that is accompanied by the correlated transformation of the scalar chirality χI. This demonstrates the magnetochiral effect of the joint rotation behavior and simultaneous frustrations of the spin chiralities and magnetization in the rotating field, which are governed by the correlation between the chiralities and magnetization.
Vector adaptive predictive coder for speech and audio
NASA Technical Reports Server (NTRS)
Chen, Juin-Hwey (Inventor); Gersho, Allen (Inventor)
1990-01-01
A real-time vector adaptive predictive coder which approximates each vector of K speech samples by using each of M fixed vectors in a first codebook to excite a time-varying synthesis filter and picking the vector that minimizes distortion. Predictive analysis for each frame determines parameters used for computing from vectors in the first codebook zero-state response vectors that are stored at the same address (index) in a second codebook. Encoding of input speech vectors s.sub.n is then carried out using the second codebook. When the vector that minimizes distortion is found, its index is transmitted to a decoder which has a codebook identical to the first codebook of the decoder. There the index is used to read out a vector that is used to synthesize an output speech vector s.sub.n. The parameters used in the encoder are quantized, for example by using a table, and the indices are transmitted to the decoder where they are decoded to specify transfer characteristics of filters used in producing the vector s.sub.n from the receiver codebook vector selected by the vector index transmitted.
García-Jordán, Noris; Berrizbeitia, Mariolga; Concepción, Juan Luis; Aldana, Elis; Cáceres, Ana; Quiñones, Wilfredo
2015-01-01
The ecological niche of Reduvidae vectors has been modified due to environmental changes and human encroachment into the rural areas. This study evaluates the current entomological indices of triatomines responsible for Trypanosoma cruzi infection in Sucre State, Venezuela. A cross-sectional and prospective study was conducted in 95 towns and 577 dwellings in the 15 municipalities of the state of Sucre, Venezuela, from August to November, 2008. Triatomine bugs were identified on the basis of morphological characteristics, and their feces examined for T. cruzi infection through direct microscopy. Positive slides were stained with Giemsa and parasites were identified by morphologic characterization. The entomological indices expressing the highest values were dispersion (16.67%) and household colonization (33.33%). The triatomine species captured were: Rhodnius prolixus , Rhodnius main intradomiciliary vector. Despite the low index of vector infection (1.72%), the existence of species with domiciliary and peridomiciliary reproductive success ensures the persistence of the epidemiological chain both for the disease and the parasite.
Noise-induced hearing loss and associated factors among vector control workers in a Malaysian state.
Masilamani, Retneswari; Rasib, Abdul; Darus, Azlan; Ting, Anselm Su
2014-11-01
This study aims to determine the prevalence and associated factors of noise-induced hearing loss (NIHL) among vector control workers in the state of Negeri Sembilan, Malaysia. This was an analytical cross-sectional study conducted on 181 vector control workers who were working in district health offices in a state in Malaysia. Data were collected using a self-administered questionnaire and audiometry. Prevalence of NIHL was 26% among this group of workers. NIHL was significantly associated with the age-group of 40 years and older, length of service of 10 or more years, current occupational noise exposure, listening to loud music, history of firearms use, and history of mumps/measles infection. Following logistic regression, age of more than 40 years and noise exposure in current occupation were associated with NIHL with an odds ratio of 3.45 (95% confidence interval = 1.68-7.07) and 6.87 (95% confidence interval = 1.54-30.69), respectively, among this group of vector control workers. © 2012 APJPH.
Vasquez, Amber M; Sapiano, Mathew R P; Basavaraju, Sridhar V; Kuehnert, Matthew J; Rivera-Garcia, Brenda
2016-04-15
Since November 2015, Puerto Rico has reported active mosquito-borne transmission of Zika virus. Because of the potential for Zika virus to be transmitted through transfusion of blood components, and because a high percentage of persons infected with Zika virus are asymptomatic, the Food and Drug Administration (FDA) recommended that blood collections cease in areas of the United States affected by active vector-borne transmission of Zika virus until laboratory screening of blood donations or pathogen reduction technology (PRT) for treatment of blood components can be implemented. To inform efforts to maintain the safety and availability of the blood supply in Puerto Rico, CDC, in collaboration with the Puerto Rico Department of Health, conducted a rapid assessment of blood collection and use on the island. A total of 139,369 allogeneic red blood cell (RBC) units, 45,243 platelet units, and 56,466 plasma units were collected in or imported to Puerto Rico during 2015, and 135,966 allogeneic RBC units, 13,526 therapeutic platelet units, and 25,775 plasma units were transfused. Because of the potential for local Zika virus transmission in areas with a competent mosquito vector, other areas of the United States should develop plans to ensure local blood safety and adequacy. Blood collection organizations and public health agencies should collaborate to maintain the safety and availability of local blood supplies in accordance with FDA guidance.
Return of epidemic dengue in the United States: implications for the public health practitioner.
Bouri, Nidhi; Sell, Tara Kirk; Franco, Crystal; Adalja, Amesh A; Henderson, D A; Hynes, Noreen A
2012-01-01
Conditions that facilitate sustained dengue transmission exist in the United States, and outbreaks have occurred during the past decade in Texas, Hawaii, and Florida. More outbreaks can also be expected in years to come. To combat dengue, medical and public health practitioners in areas with mosquito vectors that are competent to transmit the virus must be aware of the threat of reemergent dengue, and the need for early reporting and control to reduce the impact of dengue outbreaks. Comprehensive dengue control includes human and vector surveillance, vector management programs, and community engagement efforts. Public health, medical, and vector-control communities must collaborate to prevent and control disease spread. Policy makers should understand the role of mosquito abatement and community engagement in the prevention and control of the disease.
NASA Astrophysics Data System (ADS)
Badham, Katherine Emily
This thesis presents the ability of complete polarization control of light to create a polarization diffraction grating (PDG). This system has the ability to create diffracted light with each order having a separate high-order polarization state in one location on the optical axis. First, an external Excel program is used to create a grating phase profile from userspecified target diffraction orders. High-order vector beams in this PDG are created using a combination of two devices---a liquid crystal spatial light modulator (LC-SLM) manufactured by Seiko Epson, and a tunable q -plate from Citizen Holdings Co. The transmissive SLM is positioned in an optical setup with a reflective architecture allowing control over both the horizontal and vertical components of the laser beam. The SLM has its LC director oriented vertically only affecting the vertically polarized state, however, the optical setup allows modulation of both vertical and horizontal components by the use of a quarter-wave plate (QWP) and a mirror to rotate the polarizations 90 degrees. Each half of the SLM is encoded with an anisotropic phase-only diffraction grating which are superimposed to create a select number of orders with the desired polarization states and equally distributed intensity. The technique of polarimetry is used to confirm the polarization state of each diffraction order. The q-plate is an inhomogeneous birefringent waveplate which has the ability to convert zero-order vector beams into first-order vector beams. The physical placement of this device into the system converts the orders with zero-order polarization states to first-order polarization states. The light vector patterns of each diffraction order confirm which first-order polarization state of is produced. A specially made PDG sextuplicator is encoded onto the SLM to generate six diffraction orders with separate states of polarization.
Effect of cross-correlation on track-to-track fusion
NASA Astrophysics Data System (ADS)
Saha, Rajat K.
1994-07-01
Since the advent of target tracking systems employing a diverse mixture of sensors, there has been increasing recognition by air defense system planners and other military system analysts of the need to integrate these tracks so that a clear air picture can be obtained in a command center. A popular methodology to achieve this goal is to perform track-to-track fusion, which performs track-to-track association as well as kinematic state vector fusion. This paper seeks to answer analytically the extent of improvement achievable by means of kinetic state vector fusion when the tracks are obtained from dissimilar sensors (e.g., Radar/ESM/IRST/IFF). It is well known that evaluation of the performance of state vector fusion algorithms at steady state must take into account the effects of cross-correlation between eligible tracks introduced by the input noise which, unfortunately, is often neglected because of added computational complexity. In this paper, an expression for the steady-state cross-covariance matrix for a 2D state vector track-to-track fusion is obtained. This matrix is shown to be a function of the parameters of the Kalman filters associated with the candidate tracks being fused. Conditions for positive definiteness of the cross-covariance matrix have been derived and the effect of positive definiteness on performance of track-to-track fusion is also discussed.
NASA Astrophysics Data System (ADS)
Łepkowski, Sławomir P.; Bardyszewski, Witold
2017-05-01
We study theoretically the topological phase transition and the Rashba spin-orbit interaction in electrically biased InN/GaN quantum wells. We show that that for properly chosen widths of quantum wells and barriers, one can effectively tune the system through the topological phase transition applying an external electric field perpendicular to the QW plane. We find that in InN/GaN quantum wells with the inverted band structure, when the conduction band s-type level is below the heavy hole and light hole p-type levels, the spin splitting of the subbands decreases with increasing the amplitude of the electric field in the quantum wells, which reveals the anomalous Rashba effect. Derived effective Rashba Hamiltonians can describe the subband spin splitting only for very small wave vectors due to strong coupling between the subbands. Furthermore, we demonstrate that for InN/GaN quantum wells in a Hall bar geometry, the critical voltage for the topological phase transition depends distinctly on the width of the structure and a significant spin splitting of the edge states lying in the 2D band gap can be almost switched off by increasing the electric field in quantum wells only by a few percent. We show that the dependence of the spin splitting of the upper branch of the edge state dispersion curve on the wave vector has a threshold-like behavior with the on/off spin splitting ratio reaching two orders of magnitude for narrow Hall bars. The threshold wave vector depends weakly on the Hall bar width, whereas it increases significantly with the bias voltage due to an increase of the energetic distance between the s-type and p-type quantum well energy levels and a reduction of the coupling between the subbands.
Łepkowski, Sławomir P; Bardyszewski, Witold
2017-05-17
We study theoretically the topological phase transition and the Rashba spin-orbit interaction in electrically biased InN/GaN quantum wells. We show that that for properly chosen widths of quantum wells and barriers, one can effectively tune the system through the topological phase transition applying an external electric field perpendicular to the QW plane. We find that in InN/GaN quantum wells with the inverted band structure, when the conduction band s-type level is below the heavy hole and light hole p-type levels, the spin splitting of the subbands decreases with increasing the amplitude of the electric field in the quantum wells, which reveals the anomalous Rashba effect. Derived effective Rashba Hamiltonians can describe the subband spin splitting only for very small wave vectors due to strong coupling between the subbands. Furthermore, we demonstrate that for InN/GaN quantum wells in a Hall bar geometry, the critical voltage for the topological phase transition depends distinctly on the width of the structure and a significant spin splitting of the edge states lying in the 2D band gap can be almost switched off by increasing the electric field in quantum wells only by a few percent. We show that the dependence of the spin splitting of the upper branch of the edge state dispersion curve on the wave vector has a threshold-like behavior with the on/off spin splitting ratio reaching two orders of magnitude for narrow Hall bars. The threshold wave vector depends weakly on the Hall bar width, whereas it increases significantly with the bias voltage due to an increase of the energetic distance between the s-type and p-type quantum well energy levels and a reduction of the coupling between the subbands.
NASA Technical Reports Server (NTRS)
Greatorex, Scott (Editor); Beckman, Mark
1996-01-01
Several future, and some current missions, use an on-board computer (OBC) force model that is very limited. The OBC geopotential force model typically includes only the J(2), J(3), J(4), C(2,2) and S(2,2) terms to model non-spherical Earth gravitational effects. The Tropical Rainfall Measuring Mission (TRMM), Wide-field Infrared Explorer (WIRE), Transition Region and Coronal Explorer (TRACE), Submillimeter Wave Astronomy Satellite (SWAS), and X-ray Timing Explorer (XTE) all plan to use this geopotential force model on-board. The Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) is already flying this geopotential force model. Past analysis has shown that one of the leading sources of error in the OBC propagated ephemeris is the omission of the higher order geopotential terms. However, these same analyses have shown a wide range of accuracies for the OBC ephemerides. Analysis was performed using EUVE state vectors that showed the EUVE four day OBC propagated ephemerides varied in accuracy from 200 m. to 45 km. depending on the initial vector used to start the propagation. The vectors used in the study were from a single EUVE orbit at one minute intervals in the ephemeris. Since each vector propagated practically the same path as the others, the differences seen had to be due to differences in the inital state vector only. An algorithm was developed that will optimize the epoch of the uploaded state vector. Proper selection can reduce the previous errors of anywhere from 200 m. to 45 km. to generally less than one km. over four days of propagation. This would enable flight projects to minimize state vector uploads to the spacecraft. Additionally, this method is superior to other methods in that no additional orbit estimates need be done. The definitive ephemeris generated on the ground can be used as long as the proper epoch is chosen. This algorithm can be easily coded in software that would pick the epoch within a specified time range that would minimize the OBC propagation error. This techniques should greatly improve the accuracy of the OBC propagation on-board future spacecraft such as TRMM, WIRE, SWAS, and XTE without increasing complexity in the ground processing.
West Nile Virus and Other Nationally Notifiable Arboviral Diseases - United States, 2015.
Krow-Lucal, Elisabeth; Lindsey, Nicole P; Lehman, Jennifer; Fischer, Marc; Staples, J Erin
2017-01-20
Arthropod-borne viruses (arboviruses) are transmitted to humans primarily through the bites of infected mosquitoes and ticks. The leading cause of domestically acquired arboviral disease in the United States is West Nile virus (WNV) (1). Other arboviruses, including La Crosse, St. Louis encephalitis, Jamestown Canyon, Powassan, and eastern equine encephalitis viruses, also cause sporadic cases and outbreaks. This report summarizes surveillance data reported to CDC in 2015 for nationally notifiable arboviruses. It excludes dengue, chikungunya, and Zika viruses, which are primarily nondomestic viruses typically acquired through travel (and are addressed in other CDC reports). In 2015, 45 states and the District of Columbia (DC) reported 2,282 cases of domestic arboviral disease. Among these cases, 2,175 (95%) were WNV disease and 1,455 (67%) of those were classified as neuroinvasive disease (meningitis, encephalitis, or acute flaccid paralysis). The national incidence of WNV neuroinvasive disease was 0.45 cases per 100,000 population. Because arboviral diseases continue to cause serious illness, maintaining surveillance is important to direct prevention activities such as reduction of vector populations and screening of blood donors.
Realistic Covariance Prediction for the Earth Science Constellation
NASA Technical Reports Server (NTRS)
Duncan, Matthew; Long, Anne
2006-01-01
Routine satellite operations for the Earth Science Constellation (ESC) include collision risk assessment between members of the constellation and other orbiting space objects. One component of the risk assessment process is computing the collision probability between two space objects. The collision probability is computed using Monte Carlo techniques as well as by numerically integrating relative state probability density functions. Each algorithm takes as inputs state vector and state vector uncertainty information for both objects. The state vector uncertainty information is expressed in terms of a covariance matrix. The collision probability computation is only as good as the inputs. Therefore, to obtain a collision calculation that is a useful decision-making metric, realistic covariance matrices must be used as inputs to the calculation. This paper describes the process used by the NASA/Goddard Space Flight Center's Earth Science Mission Operations Project to generate realistic covariance predictions for three of the Earth Science Constellation satellites: Aqua, Aura and Terra.
Culicoides variipennis and bluetongue-virus epidemiology in the United States.
Tabachnick, W J
1996-01-01
The bluetongue viruses are transmitted to ruminants in North America by Culicoides variipennis. US annual losses of approximately $125 million are due to restrictions on the movement of livestock and germplasm to bluetongue-free countries. Bluetongue is the most economically important arthropod-borne animal disease in the United States. Bluetongue is absent in the northeastern United States because of the inefficient vector ability there of C. variipennis for bluetongue. The vector of bluetongue virus elsewhere in the United States is C. variipennis sonorensis. The three C. variipennis subspecies differ in vector competence for bluetongue virus in the laboratory. Understanding C. variipennis genetic variation controlling bluetongue transmission will help identify geographic regions at risk for bluetongue and provide opportunities to prevent virus transmission. Information on C. variipennis and bluetongue epidemiology will improve trade and provide information to protect US livestock from domestic and foreign arthropod-borne pathogens.
Precomputed state dependent digital control of a nuclear rocket engine
NASA Technical Reports Server (NTRS)
Johnson, M. R.
1972-01-01
A control method applicable to multiple-input multiple-output nonlinear time-invariant systems in which desired behavior can be expressed explicitly as a trajectory in system state space is developed. The precomputed state dependent control method is basically a synthesis technique in which a suboptimal control law is developed off-line, prior to system operation. This law is obtained by conducting searches at a finite number of points in state space, in the vicinity of some desired trajectory, to obtain a set of constant control vectors which tend to return the system to the desired trajectory. These vectors are used to evaluate the unknown coefficients in a control law having an assumed hyperellipsoidal form. The resulting coefficients constitute the heart of the controller and are used in the on-line computation of control vectors. Two examples of PSDC are given prior to the more detailed description of the NERVA control system development.
A Fourier dimensionality reduction model for big data interferometric imaging
NASA Astrophysics Data System (ADS)
Vijay Kartik, S.; Carrillo, Rafael E.; Thiran, Jean-Philippe; Wiaux, Yves
2017-06-01
Data dimensionality reduction in radio interferometry can provide savings of computational resources for image reconstruction through reduced memory footprints and lighter computations per iteration, which is important for the scalability of imaging methods to the big data setting of the next-generation telescopes. This article sheds new light on dimensionality reduction from the perspective of the compressed sensing theory and studies its interplay with imaging algorithms designed in the context of convex optimization. We propose a post-gridding linear data embedding to the space spanned by the left singular vectors of the measurement operator, providing a dimensionality reduction below image size. This embedding preserves the null space of the measurement operator and hence its sampling properties are also preserved in light of the compressed sensing theory. We show that this can be approximated by first computing the dirty image and then applying a weighted subsampled discrete Fourier transform to obtain the final reduced data vector. This Fourier dimensionality reduction model ensures a fast implementation of the full measurement operator, essential for any iterative image reconstruction method. The proposed reduction also preserves the independent and identically distributed Gaussian properties of the original measurement noise. For convex optimization-based imaging algorithms, this is key to justify the use of the standard ℓ2-norm as the data fidelity term. Our simulations confirm that this dimensionality reduction approach can be leveraged by convex optimization algorithms with no loss in imaging quality relative to reconstructing the image from the complete visibility data set. Reconstruction results in simulation settings with no direction dependent effects or calibration errors show promising performance of the proposed dimensionality reduction. Further tests on real data are planned as an extension of the current work. matlab code implementing the proposed reduction method is available on GitHub.
Regional and seasonal response of a West Nile virus vector to climate change.
Morin, Cory W; Comrie, Andrew C
2013-09-24
Climate change will affect the abundance and seasonality of West Nile virus (WNV) vectors, altering the risk of virus transmission to humans. Using downscaled general circulation model output, we calculate a WNV vector's response to climate change across the southern United States using process-based modeling. In the eastern United States, Culex quinquefasciatus response to projected climate change displays a latitudinal and elevational gradient. Projected summer population depressions as a result of increased immature mortality and habitat drying are most severe in the south and almost absent further north; extended spring and fall survival is ubiquitous. Much of California also exhibits a bimodal pattern. Projected onset of mosquito season is delayed in the southwestern United States because of extremely dry and hot spring and summers; however, increased temperature and late summer and fall rains extend the mosquito season. These results are unique in being a broad-scale calculation of the projected impacts of climate change on a WNV vector. The results show that, despite projected widespread future warming, the future seasonal response of C. quinquefasciatus populations across the southern United States will not be homogeneous, and will depend on specific combinations of local and regional conditions.
Embedding of multidimensional time-dependent observations.
Barnard, J P; Aldrich, C; Gerber, M
2001-10-01
A method is proposed to reconstruct dynamic attractors by embedding of multivariate observations of dynamic nonlinear processes. The Takens embedding theory is combined with independent component analysis to transform the embedding into a vector space of linearly independent vectors (phase variables). The method is successfully tested against prediction of the unembedded state vector in two case studies of simulated chaotic processes.
Embedding of multidimensional time-dependent observations
NASA Astrophysics Data System (ADS)
Barnard, Jakobus P.; Aldrich, Chris; Gerber, Marius
2001-10-01
A method is proposed to reconstruct dynamic attractors by embedding of multivariate observations of dynamic nonlinear processes. The Takens embedding theory is combined with independent component analysis to transform the embedding into a vector space of linearly independent vectors (phase variables). The method is successfully tested against prediction of the unembedded state vector in two case studies of simulated chaotic processes.
NASA Astrophysics Data System (ADS)
Shinnaka, Shinji; Sano, Kousuke
This paper presents a new unified analysis of estimate errors by model-matching phase-estimation methods such as rotor-flux state-observers, back EMF state-observers, and back EMF disturbance-observers, for sensorless drive of permanent-magnet synchronous motors. Analytical solutions about estimate errors, whose validity is confirmed by numerical experiments, are rich in universality and applicability. As an example of universality and applicability, a new trajectory-oriented vector control method is proposed, which can realize directly quasi-optimal strategy minimizing total losses with no additional computational loads by simply orienting one of vector-control coordinates to the associated quasi-optimal trajectory. The coordinate orientation rule, which is analytically derived, is surprisingly simple. Consequently the trajectory-oriented vector control method can be applied to a number of conventional vector control systems using one of the model-matching phase-estimation methods.
Filamentation instability in a quantum plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bret, A.
2007-08-15
The growth rate of the filamentation instability triggered when a diluted cold electron beam passes through a cold plasma is evaluated using the quantum hydrodynamic equations. Compared with a cold fluid model, quantum effects reduce both the unstable wave vector domain and the maximum growth rate. Stabilization of large wave vector modes is always achieved, but significant reduction of the maximum growth rate depends on a dimensionless parameter that is provided. Although calculations are extended to the relativistic regime, they are mostly relevant to the nonrelativistic one.
Application of optical correlation techniques to particle imaging velocimetry
NASA Technical Reports Server (NTRS)
Wernet, Mark P.; Edwards, Robert V.
1988-01-01
Pulsed laser sheet velocimetry yields nonintrusive measurements of velocity vectors across an extended 2-dimensional region of the flow field. The application of optical correlation techniques to the analysis of multiple exposure laser light sheet photographs can reduce and/or simplify the data reduction time and hardware. Here, Matched Spatial Filters (MSF) are used in a pattern recognition system. Usually MSFs are used to identify the assembly line parts. In this application, the MSFs are used to identify the iso-velocity vector contours in the flow. The patterns to be recognized are the recorded particle images in a pulsed laser light sheet photograph. Measurement of the direction of the partical image displacements between exposures yields the velocity vector. The particle image exposure sequence is designed such that the velocity vector direction is determined unambiguously. A global analysis technique is used in comparison to the more common particle tracking algorithms and Young's fringe analysis technique.
Steel, Jason C; Cavanagh, Heather M A; Burton, Mark A; Dingwall, Daniel J; Kalle, Wouter H J
2005-06-01
Adenoviral vectors have been commonly used in gene therapy protocols, however the success of their use is often limited by the induction of host immunity to the vector. Following exposure to the adenoviral vector, adenoviral-specific neutralising antibodies are produced which limits further administration. This study examines the efficacy of complexing liposomes to adenovirus for the protection of the adenovirus from neutralising antibodies in an in vitro setting. Dimethyldioctadecylammonium bromide (DDAB)-dioleoyl-l-phosphatidylethanolamine (DOPE) liposomes were bound at varying concentrations to adenovirus to form AL complexes and tested these complexes' ability to prevent adenoviral neutralisation. It is shown that by increasing the concentration of liposomes in the adenoviral-liposome (AL) complexes we can increase the level of immuno-shielding afforded the adenovirus. It is also shown that the increase in liposomal concentration may lead to drawbacks such as increased cytotoxicity and reductions in expression levels.
X-31 quasi-tailless flight demonstration
NASA Technical Reports Server (NTRS)
Huber, Peter; Schellenger, Harvey G.
1994-01-01
The primary objective of the quasi-tailless flight demonstration is to demonstrate the feasibility of using thrust vectoring for directional control of an unstable aircraft. By using this low-cost, low-risk approach it is possible to get information about required thrust vector control power and deflection rates from an inflight experiment as well as insight in low-power thrust vectoring issues. The quasi-tailless flight demonstration series with the X-31 began in March 1994. The demonstration flight condition was Mach 1.2 at 37,500 feet. A series of basic flying quality maneuvers, doublets, bank to bank rolls, and wind-up-turns have been performed with a simulated 100% vertical tail reduction. Flight test and supporting simulation demonstrated that the quasi-tailless approach is effective in representing the reduced stability of tailless configurations. The flights also demonstrated that thrust vectoring could be effectively used to stabilize a directionally unstable configuration and provide control power for maneuver coordination.
Shaukat, Ayesha M; Breman, Joel G; McKenzie, F Ellis
2010-05-12
Prior studies have shown that annual entomological inoculation rates (EIRs) must be reduced to less than one to substantially reduce the prevalence of malaria infection. In this study, EIR values were used to quantify the impact of insecticide-treated bed nets (ITNs), indoor residual spraying (IRS), and source reduction (SR) on malaria transmission. The analysis of EIR was extended through determining whether available vector control tools can ultimately eradicate malaria. The analysis is based primarily on a review of all controlled studies that used ITN, IRS, and/or SR and reported their effects on the EIR. To compare EIRs between studies, the percent difference in EIR between the intervention and control groups was calculated. Eight vector control intervention studies that measured EIR were found: four ITN studies, one IRS study, one SR study, and two studies with separate ITN and IRS intervention groups. In both the Tanzania study and the Solomon Islands study, one community received ITNs and one received IRS. In the second year of the Tanzania study, EIR was 90% lower in the ITN community and 93% lower in the IRS community, relative to the community without intervention; the ITN and IRS effects were not significantly different. In contrast, in the Solomon Islands study, EIR was 94% lower in the ITN community and 56% lower in the IRS community. The one SR study, in Dar es Salaam, reported a lower EIR reduction (47%) than the ITN and IRS studies. All of these vector control interventions reduced EIR, but none reduced it to zero. These studies indicate that current vector control methods alone cannot ultimately eradicate malaria because no intervention sustained an annual EIR less than one. While researchers develop new tools, integrated vector management may make the greatest impact on malaria transmission. There are many gaps in the entomological malaria literature and recommendations for future research are provided.
Entanglement renormalization and gauge symmetry
NASA Astrophysics Data System (ADS)
Tagliacozzo, L.; Vidal, G.
2011-03-01
A lattice gauge theory is described by a redundantly large vector space that is subject to local constraints and can be regarded as the low-energy limit of an extended lattice model with a local symmetry. We propose a numerical coarse-graining scheme to produce low-energy, effective descriptions of lattice models with a local symmetry such that the local symmetry is exactly preserved during coarse-graining. Our approach results in a variational ansatz for the ground state(s) and low-energy excitations of such models and, by extension, of lattice gauge theories. This ansatz incorporates the local symmetry in its structure and exploits it to obtain a significant reduction of computational costs. We test the approach in the context of a Z2 lattice gauge theory formulated as the low-energy theory of a specific regime of the toric code with a magnetic field, for lattices with up to 16×16 sites (162×2=512 spins) on a torus. We reproduce the well-known ground-state phase diagram of the model, consisting of a deconfined and spin-polarized phases separated by a continuous quantum phase transition, and obtain accurate estimates of energy gaps, ground-state fidelities, Wilson loops, and several other quantities.
Lee, Young Mok; Pan, Chi-Jiunn; Koeberl, Dwight D; Mansfield, Brian C; Chou, Janice Y
2013-11-01
Glycogen storage disease type-Ia (GSD-Ia) patients deficient in glucose-6-phosphatase-α (G6Pase-α or G6PC) manifest impaired glucose homeostasis characterized by fasting hypoglycemia, growth retardation, hepatomegaly, nephromegaly, hyperlipidemia, hyperuricemia, and lactic acidemia. Two efficacious recombinant adeno-associated virus pseudotype 2/8 (rAAV8) vectors expressing human G6Pase-α have been independently developed. One is a single-stranded vector containing a 2864-bp of the G6PC promoter/enhancer (rAAV8-GPE) and the other is a double-stranded vector containing a shorter 382-bp minimal G6PC promoter/enhancer (rAAV8-miGPE). To identify the best construct, a direct comparison of the rAAV8-GPE and the rAAV8-miGPE vectors was initiated to determine the best vector to take forward into clinical trials. We show that the rAAV8-GPE vector directed significantly higher levels of hepatic G6Pase-α expression, achieved greater reduction in hepatic glycogen accumulation, and led to a better toleration of fasting in GSD-Ia mice than the rAAV8-miGPE vector. Our results indicated that additional control elements in the rAAV8-GPE vector outweigh the gains from the double-stranded rAAV8-miGPE transduction efficiency, and that the rAAV8-GPE vector is the current choice for clinical translation in human GSD-Ia. © 2013.
A host-restricted viral vector for antigen-specific immunization against Lyme disease pathogen.
Xiao, Sa; Kumar, Manish; Yang, Xiuli; Akkoyunlu, Mustafa; Collins, Peter L; Samal, Siba K; Pal, Utpal
2011-07-18
Newcastle disease virus (NDV) is an avian virus that is attenuated in primates and is a potential vaccine vector for human use. We evaluated NDV as a vector for expressing selected antigens of the Lyme disease pathogen Borrelia burgdorferi. A series of recombinant NDVs were generated that expressed intracellular or extracellular forms of two B. burgdorferi antigens: namely, the basic membrane protein A (BmpA) and the outer surface protein C (OspC). Expression of the intracellular and extracellular forms of these antigens was confirmed in cultured chicken cells. C3H or Balb/C mice that were immunized intranasally with the NDV vectors mounted vigorous serum antibody responses against the NDV vector, but failed to mount a robust response against either the intracellular or extracellular forms of BmpA or OspC. By contrast, a single immunization of hamsters with the NDV vectors via the intranasal, intramuscular, or intraperitoneal route resulted in rapid and rigorous antibody responses against the intracellular or extracellular forms of BmpA and OspC. When groups of hamsters were separately inoculated with various NDV vectors and challenged with B. burgdorferi (10(8)cells/animal), immunization with vector expressing either intracellular or extracellular BmpA was associated with a significant reduction of the pathogen load in the joints. Taken together, our studies highlighted the importance of NDV as vaccine vector that can be used for simple yet effective immunization of hosts against bacterial infections including Lyme disease. Copyright © 2011 Elsevier Ltd. All rights reserved.
Improving Upon an Empirical Procedure for Characterizing Magnetospheric States
NASA Astrophysics Data System (ADS)
Fung, S. F.; Neufeld, J.; Shao, X.
2012-12-01
Work is being performed to improve upon an empirical procedure for describing and predicting the states of the magnetosphere [Fung and Shao, 2008]. We showed in our previous paper that the state of the magnetosphere can be described by a quantity called the magnetospheric state vector (MS vector) consisting of a concatenation of a set of driver-state and a set of response-state parameters. The response state parameters are time-shifted individually to account for their nominal response times so that time does not appear as an explicit parameter in the MS prescription. The MS vector is thus conceptually analogous to the set of vital signs for describing the state of health of a human body. In that previous study, we further demonstrated that since response states are results of driver states, then there should be a correspondence between driver and response states. Such correspondence can be used to predict the subsequent response state from any known driver state with a few hours' lead time. In this paper, we investigate a few possible ways to improve the magnetospheric state descriptions and prediction efficiency by including additional driver state parameters, such as solar activity, IMF-Bx and -By, and optimizing parameter bin sizes. Fung, S. F. and X. Shao, Specification of multiple geomagnetic responses to variable solar wind and IMF input, Ann. Geophys., 26, 639-652, 2008.
Rodrigues, A F; Amaral, A I; Veríssimo, V; Alves, P M; Coroadinha, A S
2012-05-01
The manufacture of enveloped virus, particularly retroviral (RV) and lentiviral (LV) vectors, faces the challenge of low titers that are aggravated under serum deprivation culture conditions. Also, the scarce knowledge on the biochemical pathways related with virus production is still limiting the design of rational strategies for improved production yields. This work describes the adaptation to serum deprivation of two human RV packaging cell lines, 293 FLEX and Te Fly and its effects on lipid biosynthetic pathways and infectious vector production. Total lipid content as well as cellular cholesterol were quantified and lipid biosynthesis was assessed by (13)C-NMR spectroscopy; changes in gene expression of lipid biosynthetic enzymes were also evaluated. The effects of adaptation to serum deprivation in lipid biosynthesis were cell line specific and directly correlated with infectious virus titers: 293 FLEX cells faced severe lipid starvation-up to 50% reduction in total lipid content-along with a 68-fold reduction in infectious vector titers; contrarily, Te Fly cells were able to maintain identical levels of total lipid content by rising de novo lipid biosynthesis, particularly for cholesterol-50-fold increase-with the consequent recovery of infectious vector productivities. Gene expression analysis of lipid biosynthetic enzymes further confirmed cholesterol production pathway to be prominently up-regulated under serum deprivation conditions for Te Fly cells, providing a genotype-phenotype validation for enhanced cholesterol synthesis. These results highlight lipid metabolism dynamics and the ability to activate lipid biosynthesis under serum deprivation as an important feature for high retroviral titers. Mechanisms underlying virus production and its relationship with lipid biosynthesis, with special focus on cholesterol, are discussed as potential targets for cellular metabolic engineering. Copyright © 2011 Wiley Periodicals, Inc.
Bouzid, Maha; Brainard, Julii; Hooper, Lee; Hunter, Paul R.
2016-01-01
Background There is renewed interest in effective measures to control Zika and dengue vectors. A synthesis of published literature with a focus on the quality of evidence is warranted to determine the effectiveness of vector control strategies. Methodology We conducted a meta-review assessing the effectiveness of any Aedes control measure. We searched Scopus and Medline for relevant reviews through to May 2016. Titles, abstracts and full texts were assessed independently for inclusion by two authors. Data extraction was performed in duplicate and validity of the evidence was assessed using GRADE criteria. Findings 13 systematic reviews that investigated the effect of control measures on entomological parameters or disease incidence were included. Biological controls seem to achieve better reduction of entomological indices than chemical controls, while educational campaigns can reduce breeding habitats. Integrated vector control strategies may not always increase effectiveness. The efficacy of any control programme is dependent on local settings, intervention type, resources and study duration, which may partly explain the varying degree of success between studies. Nevertheless, the quality of evidence was mostly low to very low due to poor reporting of study design, observational methodologies, heterogeneity, and indirect outcomes, thus hindering an evidence-based recommendation. Conclusions The evidence for the effectiveness of Aedes control measures is mixed. Chemical control, which is commonly used, does not appear to be associated with sustainable reductions of mosquito populations over time. Indeed, by contributing to a false sense of security, chemical control may reduce the effectiveness of educational interventions aimed at encouraging local people to remove mosquito breeding sites. Better quality studies of the impact of vector control interventions on the incidence of human infections with Dengue or Zika are still needed. PMID:27926934
Different polarization dynamic states in a vector Yb-doped fiber laser.
Li, Xingliang; Zhang, Shumin; Han, Huiyun; Han, Mengmeng; Zhang, Huaxing; Zhao, Luming; Wen, Fang; Yang, Zhenjun
2015-04-20
Different polarization dynamic states in an unidirectional, vector, Yb-doped fiber ring laser have been observed. A rich variety of dynamic states, including group velocity locked polarization domains and their splitting into regularly distributed multiple domains, polarization locked square pulses and their harmonic mode locking counterparts, and dissipative soliton resonances have all been observed with different operating parameters. We have also shown experimentally details of the conditions under which polarization-domain-wall dark pulses and bright square pulses form.
NASA Astrophysics Data System (ADS)
Damayanti, A.; Werdiningsih, I.
2018-03-01
The brain is the organ that coordinates all the activities that occur in our bodies. Small abnormalities in the brain will affect body activity. Tumor of the brain is a mass formed a result of cell growth not normal and unbridled in the brain. MRI is a non-invasive medical test that is useful for doctors in diagnosing and treating medical conditions. The process of classification of brain tumor can provide the right decision and correct treatment and right on the process of treatment of brain tumor. In this study, the classification process performed to determine the type of brain tumor disease, namely Alzheimer’s, Glioma, Carcinoma and normal, using energy coefficient and ANFIS. Process stages in the classification of images of MR brain are the extraction of a feature, reduction of a feature, and process of classification. The result of feature extraction is a vector approximation of each wavelet decomposition level. The feature reduction is a process of reducing the feature by using the energy coefficients of the vector approximation. The feature reduction result for energy coefficient of 100 per feature is 1 x 52 pixels. This vector will be the input on the classification using ANFIS with Fuzzy C-Means and FLVQ clustering process and LM back-propagation. Percentage of success rate of MR brain images recognition using ANFIS-FLVQ, ANFIS, and LM back-propagation was obtained at 100%.
Progressive low-bitrate digital color/monochrome image coding by neuro-fuzzy clustering
NASA Astrophysics Data System (ADS)
Mitra, Sunanda; Meadows, Steven
1997-10-01
Color image coding at low bit rates is an area of research that is just being addressed in recent literature since the problems of storage and transmission of color images are becoming more prominent in many applications. Current trends in image coding exploit the advantage of subband/wavelet decompositions in reducing the complexity in optimal scalar/vector quantizer (SQ/VQ) design. Compression ratios (CRs) of the order of 10:1 to 20:1 with high visual quality have been achieved by using vector quantization of subband decomposed color images in perceptually weighted color spaces. We report the performance of a recently developed adaptive vector quantizer, namely, AFLC-VQ for effective reduction in bit rates while maintaining high visual quality of reconstructed color as well as monochrome images. For 24 bit color images, excellent visual quality is maintained upto a bit rate reduction to approximately 0.48 bpp (for each color plane or monochrome 0.16 bpp, CR 50:1) by using the RGB color space. Further tuning of the AFLC-VQ, and addition of an entropy coder module after the VQ stage results in extremely low bit rates (CR 80:1) for good quality, reconstructed images. Our recent study also reveals that for similar visual quality, RGB color space requires less bits/pixel than either the YIQ, or HIS color space for storing the same information when entropy coding is applied. AFLC-VQ outperforms other standard VQ and adaptive SQ techniques in retaining visual fidelity at similar bit rate reduction.
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Li, Jiafeng; Zhuo, Li; Zhang, Hui; Li, Xiaoguang
2017-12-01
Color is one of the most stable attributes of vehicles and often used as a valuable cue in some important applications. Various complex environmental factors, such as illumination, weather, noise and etc., result in the visual characteristics of the vehicle color being obvious diversity. Vehicle color recognition in complex environments has been a challenging task. The state-of-the-arts methods roughly take the whole image for color recognition, but many parts of the images such as car windows; wheels and background contain no color information, which will have negative impact on the recognition accuracy. In this paper, a novel vehicle color recognition method using local vehicle-color saliency detection and dual-orientational dimensionality reduction of convolutional neural network (CNN) deep features has been proposed. The novelty of the proposed method includes two parts: (1) a local vehicle-color saliency detection method has been proposed to determine the vehicle color region of the vehicle image and exclude the influence of non-color regions on the recognition accuracy; (2) dual-orientational dimensionality reduction strategy has been designed to greatly reduce the dimensionality of deep features that are learnt from CNN, which will greatly mitigate the storage and computational burden of the subsequent processing, while improving the recognition accuracy. Furthermore, linear support vector machine is adopted as the classifier to train the dimensionality reduced features to obtain the recognition model. The experimental results on public dataset demonstrate that the proposed method can achieve superior recognition performance over the state-of-the-arts methods.
Self-Avoiding Walks on the Random Lattice and the Random Hopping Model on a Cayley Tree
NASA Astrophysics Data System (ADS)
Kim, Yup
Using a field theoretic method based on the replica trick, it is proved that the three-parameter renormalization group for an n-vector model with quenched randomness reduces to a two-parameter one in the limit n (--->) 0 which corresponds to self-avoiding walks (SAWs). This is also shown by the explicit calculation of the renormalization group recursion relations to second order in (epsilon). From this reduction we find that SAWs on the random lattice are in the same universality class as SAWs on the regular lattice. By analogy with the case of the n-vector model with cubic anisotropy in the limit n (--->) 1, the fixed-point structure of the n-vector model with randomness is analyzed in the SAW limit, so that a physical interpretation of the unphysical fixed point is given. Corrections of the values of critical exponents of the unphysical fixed point published previously is also given. Next we formulate an integral equation and recursion relations for the configurationally averaged one particle Green's function of the random hopping model on a Cayley tree of coordination number ((sigma) + 1). This formalism is tested by applying it successfully to the nonrandom model. Using this scheme for 1 << (sigma) < (INFIN) we calculate the density of states of this model with a Gaussian distribution of hopping matrix elements in the range of energy E('2) > E(,c)('2), where E(,c) is a critical energy described below. The singularity in the Green's function which occurs at energy E(,1)('(0)) for (sigma) = (INFIN) is shifted to complex energy E(,1) (on the unphysical sheet of energy E) for small (sigma)('-1). This calculation shows that the density of states is smooth function of energy E around the critical energy E(,c) = Re E(,1) in accord with Wegner's theorem. In this formulation the density of states has no sharp phase transition on the real axis of E because E(,1) has developed an imaginary part. Using the Lifschitz argument, we calculate the density of states near the band edge for the model when the hopping matrix elements are governed by a bounded probability distribution. It is also shown within the dynamical system language that the density of states of the model with a bounded distribution never vanishes inside the band and we suggest a theoretical mechanism for the formation of energy bands.
Vector optical fields with bipolar symmetry of linear polarization.
Pan, Yue; Li, Yongnan; Li, Si-Min; Ren, Zhi-Cheng; Si, Yu; Tu, Chenghou; Wang, Hui-Tian
2013-09-15
We focus on a new kind of vector optical field with bipolar symmetry of linear polarization instead of cylindrical and elliptical symmetries, enriching members of family of vector optical fields. We design theoretically and generate experimentally the demanded vector optical fields and then explore some novel tightly focusing properties. The geometric configurations of states of polarization provide additional degrees of freedom assisting in engineering the field distribution at the focus to the specific applications such as lithography, optical trapping, and material processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirunyan, A. M.; Tumasyan, A.; Adam, W.
A search for heavy resonances with masses above 1 TeV, decaying to final states containing a vector boson and a Higgs boson, is presented. The search considers hadronic decays of the vector boson, and Higgs boson decays to b quarks. The decay products are highly boosted, and each collimated pair of quarks is reconstructed as a single, massive jet. The analysis is performed using a data sample collected in 2016 by the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 inverse femtobarns. The data are consistentmore » with the background expectation and are used to place limits on the parameters of a theoretical model with a heavy vector triplet. In the benchmark scenario with mass-degenerate W' and Z' bosons decaying predominantly to pairs of standard model bosons, for the first time heavy resonances for masses as high as 3.3 TeV are excluded at 95% confidence level, setting the most stringent limit to date on such states decaying into a vector boson and a Higgs boson.« less
Interframe vector wavelet coding technique
NASA Astrophysics Data System (ADS)
Wus, John P.; Li, Weiping
1997-01-01
Wavelet coding is often used to divide an image into multi- resolution wavelet coefficients which are quantized and coded. By 'vectorizing' scalar wavelet coding and combining this with vector quantization (VQ), vector wavelet coding (VWC) can be implemented. Using a finite number of states, finite-state vector quantization (FSVQ) takes advantage of the similarity between frames by incorporating memory into the video coding system. Lattice VQ eliminates the potential mismatch that could occur using pre-trained VQ codebooks. It also eliminates the need for codebook storage in the VQ process, thereby creating a more robust coding system. Therefore, by using the VWC coding method in conjunction with the FSVQ system and lattice VQ, the formulation of a high quality very low bit rate coding systems is proposed. A coding system using a simple FSVQ system where the current state is determined by the previous channel symbol only is developed. To achieve a higher degree of compression, a tree-like FSVQ system is implemented. The groupings are done in this tree-like structure from the lower subbands to the higher subbands in order to exploit the nature of subband analysis in terms of the parent-child relationship. Class A and Class B video sequences from the MPEG-IV testing evaluations are used in the evaluation of this coding method.
Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...
2017-09-22
A search for heavy resonances with masses above 1 TeV, decaying to final states containing a vector boson and a Higgs boson, is presented. The search considers hadronic decays of the vector boson, and Higgs boson decays to b quarks. The decay products are highly boosted, and each collimated pair of quarks is reconstructed as a single, massive jet. The analysis is performed using a data sample collected in 2016 by the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 inverse femtobarns. The data are consistentmore » with the background expectation and are used to place limits on the parameters of a theoretical model with a heavy vector triplet. In the benchmark scenario with mass-degenerate W' and Z' bosons decaying predominantly to pairs of standard model bosons, for the first time heavy resonances for masses as high as 3.3 TeV are excluded at 95% confidence level, setting the most stringent limit to date on such states decaying into a vector boson and a Higgs boson.« less
Integrating vector control across diseases.
Golding, Nick; Wilson, Anne L; Moyes, Catherine L; Cano, Jorge; Pigott, David M; Velayudhan, Raman; Brooker, Simon J; Smith, David L; Hay, Simon I; Lindsay, Steve W
2015-10-01
Vector-borne diseases cause a significant proportion of the overall burden of disease across the globe, accounting for over 10 % of the burden of infectious diseases. Despite the availability of effective interventions for many of these diseases, a lack of resources prevents their effective control. Many existing vector control interventions are known to be effective against multiple diseases, so combining vector control programmes to simultaneously tackle several diseases could offer more cost-effective and therefore sustainable disease reductions. The highly successful cross-disease integration of vaccine and mass drug administration programmes in low-resource settings acts a precedent for cross-disease vector control. Whilst deliberate implementation of vector control programmes across multiple diseases has yet to be trialled on a large scale, a number of examples of 'accidental' cross-disease vector control suggest the potential of such an approach. Combining contemporary high-resolution global maps of the major vector-borne pathogens enables us to quantify overlap in their distributions and to estimate the populations jointly at risk of multiple diseases. Such an analysis shows that over 80 % of the global population live in regions of the world at risk from one vector-borne disease, and more than half the world's population live in areas where at least two different vector-borne diseases pose a threat to health. Combining information on co-endemicity with an assessment of the overlap of vector control methods effective against these diseases allows us to highlight opportunities for such integration. Malaria, leishmaniasis, lymphatic filariasis, and dengue are prime candidates for combined vector control. All four of these diseases overlap considerably in their distributions and there is a growing body of evidence for the effectiveness of insecticide-treated nets, screens, and curtains for controlling all of their vectors. The real-world effectiveness of cross-disease vector control programmes can only be evaluated by large-scale trials, but there is clear evidence of the potential of such an approach to enable greater overall health benefit using the limited funds available.
An age-structured extension to the vectorial capacity model.
Novoseltsev, Vasiliy N; Michalski, Anatoli I; Novoseltseva, Janna A; Yashin, Anatoliy I; Carey, James R; Ellis, Alicia M
2012-01-01
Vectorial capacity and the basic reproductive number (R(0)) have been instrumental in structuring thinking about vector-borne pathogen transmission and how best to prevent the diseases they cause. One of the more important simplifying assumptions of these models is age-independent vector mortality. A growing body of evidence indicates that insect vectors exhibit age-dependent mortality, which can have strong and varied affects on pathogen transmission dynamics and strategies for disease prevention. Based on survival analysis we derived new equations for vectorial capacity and R(0) that are valid for any pattern of age-dependent (or age-independent) vector mortality and explore the behavior of the models across various mortality patterns. The framework we present (1) lays the groundwork for an extension and refinement of the vectorial capacity paradigm by introducing an age-structured extension to the model, (2) encourages further research on the actuarial dynamics of vectors in particular and the relationship of vector mortality to pathogen transmission in general, and (3) provides a detailed quantitative basis for understanding the relative impact of reductions in vector longevity compared to other vector-borne disease prevention strategies. Accounting for age-dependent vector mortality in estimates of vectorial capacity and R(0) was most important when (1) vector densities are relatively low and the pattern of mortality can determine whether pathogen transmission will persist; i.e., determines whether R(0) is above or below 1, (2) vector population growth rate is relatively low and there are complex interactions between birth and death that differ fundamentally from birth-death relationships with age-independent mortality, and (3) the vector exhibits complex patterns of age-dependent mortality and R(0) ∼ 1. A limiting factor in the construction and evaluation of new age-dependent mortality models is the paucity of data characterizing vector mortality patterns, particularly for free ranging vectors in the field.
An Age-Structured Extension to the Vectorial Capacity Model
Novoseltsev, Vasiliy N.; Michalski, Anatoli I.; Novoseltseva, Janna A.; Yashin, Anatoliy I.; Carey, James R.; Ellis, Alicia M.
2012-01-01
Background Vectorial capacity and the basic reproductive number (R0) have been instrumental in structuring thinking about vector-borne pathogen transmission and how best to prevent the diseases they cause. One of the more important simplifying assumptions of these models is age-independent vector mortality. A growing body of evidence indicates that insect vectors exhibit age-dependent mortality, which can have strong and varied affects on pathogen transmission dynamics and strategies for disease prevention. Methodology/Principal Findings Based on survival analysis we derived new equations for vectorial capacity and R0 that are valid for any pattern of age-dependent (or age–independent) vector mortality and explore the behavior of the models across various mortality patterns. The framework we present (1) lays the groundwork for an extension and refinement of the vectorial capacity paradigm by introducing an age-structured extension to the model, (2) encourages further research on the actuarial dynamics of vectors in particular and the relationship of vector mortality to pathogen transmission in general, and (3) provides a detailed quantitative basis for understanding the relative impact of reductions in vector longevity compared to other vector-borne disease prevention strategies. Conclusions/Significance Accounting for age-dependent vector mortality in estimates of vectorial capacity and R0 was most important when (1) vector densities are relatively low and the pattern of mortality can determine whether pathogen transmission will persist; i.e., determines whether R0 is above or below 1, (2) vector population growth rate is relatively low and there are complex interactions between birth and death that differ fundamentally from birth-death relationships with age-independent mortality, and (3) the vector exhibits complex patterns of age-dependent mortality and R0∼1. A limiting factor in the construction and evaluation of new age-dependent mortality models is the paucity of data characterizing vector mortality patterns, particularly for free ranging vectors in the field. PMID:22724022
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liscio, A.; CNISM and Dipartimento di Fisica, Universita di Roma Tre, Via Vasca Navale 84, 00146 Roma; Ruocco, A.
This paper deals with the mechanism of grazing incidence (e,2e) events from surfaces. Two different approaches are considered. In both cases, elastic scattering with the crystal lattice assists the inelastic collision; these two steps are coupled either coherently or incoherently. Experimental evidence is given that the 'coherent' approach reproduces better the cross section dependence on momentum transfer in the specific case of asymmetric kinematics at moderate electron energies. This model has allowed us to map out the band dispersion of the outermost valence states of highly oriented pyrolytic graphite and to measure the momentum distribution of {pi}-electron states without invokingmore » the contribution of reciprocal lattice vectors in the momentum conservation. Agreement between theory and experiment is satisfactory, though the presence of events where crystal momentum is reconstructed cannot be ruled out. These results, obtained with a significant reduction of the experiment duration by an implemented apparatus, show that reflection (e,2e) can be used to build up a momentum spectroscopy with high surface sensitivity.« less
McMahon, B H; Manore, C A; Hyman, J M; LaBute, M X; Fair, J M
2014-01-01
We present and characterize a multi-host epidemic model of Rift Valley fever (RVF) virus in East Africa with geographic spread on a network, rule-based mitigation measures, and mosquito infection and population dynamics. Susceptible populations are depleted by disease and vaccination and are replenished with the birth of new animals. We observe that the severity of the epidemics is strongly correlated with the duration of the rainy season and that even severe epidemics are abruptly terminated when the rain stops. Because naturally acquired herd immunity is established, total mortality across 25 years is relatively insensitive to many mitigation approaches. Strong reductions in cattle mortality are expected, however, with sufficient reduction in population densities of either vectors or susceptible (ie. unvaccinated) hosts. A better understanding of RVF epidemiology would result from serology surveys to quantify the importance of herd immunity in epidemic control, and sequencing of virus from representative animals to quantify the realative importance of transportation and local reservoirs in nucleating yearly epidemics. Our results suggest that an effective multi-layered mitigation strategy would include vector control, movement control, and vaccination of young animals yearly, even in the absence of expected rainfall.
NASA Astrophysics Data System (ADS)
Chen, Xiaol; Guo, Bei; Tuo, Jinliang; Zhou, Ruixin; Lu, Yang
2017-08-01
Nowadays, people are paying more and more attention to the noise reduction of household refrigerator compressor. This paper established a sound field bounded by compressor shell and ISO3744 standard field points. The Acoustic Transfer Vector (ATV) in the sound field radiated by a refrigerator compressor shell were calculated which fits the test result preferably. Then the compressor shell surface is divided into several parts. Based on Acoustic Transfer Vector approach, the sound pressure contribution to the field points and the sound power contribution to the sound field of each part were calculated. To obtain the noise radiation in the sound field, the sound pressure cloud charts were analyzed, and the contribution curves in different frequency of each part were acquired. Meanwhile, the sound power contribution of each part in different frequency was analyzed, to ensure those parts where contributes larger sound power. Through the analysis of acoustic contribution, those parts where radiate larger noise on the compressor shell were determined. This paper provides a credible and effective approach on the structure optimal design of refrigerator compressor shell, which is meaningful in the noise and vibration reduction.
Can vector control play a useful supplementary role against bancroftian filariasis?
Maxwell, C. A.; Mohammed, K.; Kisumku, U.; Curtis, C. F.
1999-01-01
A single campaign of mass treatment for bancroftian filariasis with diethylcarbamazine (DEC) in Makunduchi, a town in Zanzibar, United Republic of Tanzania, combined with elimination of mosquito breeding in pit latrines with polystyrene beads was followed by a progressive decline over a 5-year period in the microfilarial rate from 49% to 3%. Evidence that vector control had contributed to this long-term decline was obtained by comparison with another town, Moga, where a DEC campaign was used without vector control and where resurgence of microfilariae could be observed 3-6 years after the campaign. In Zanzibar town, treatment of 3844 wet pit latrines and cesspits with polystyrene beads reduced the adult mosquito population in houses by about 65%. Supplementary treatment of open drains and marshes with Bacillus sphaericus produced little or no additional reduction compared to a sector of the town where only pit treatment with polystyrene was carried out. The cost and effort of achieving the 65% reduction in mosquito population could hardly be justified for its impact on filariasis alone, but its noticeable impact on biting nuisance might help to gain community support for an integrated programme. PMID:10083712
Transverse spin and transverse momentum in scattering of plane waves.
Saha, Sudipta; Singh, Ankit K; Ray, Subir K; Banerjee, Ayan; Gupta, Subhasish Dutta; Ghosh, Nirmalya
2016-10-01
We study the near field to the far field evolution of spin angular momentum (SAM) density and the Poynting vector of the scattered waves from spherical scatterers. The results show that at the near field, the SAM density and the Poynting vector are dominated by their transverse components. While the former (transverse SAM) is independent of the helicity of the incident circular polarization state, the latter (transverse Poynting vector) depends upon the polarization state. It is further demonstrated that the interference of the transverse electric and transverse magnetic scattering modes enhances both the magnitudes and the spatial extent of the transverse SAM and the transverse momentum components.
NASA Technical Reports Server (NTRS)
Gray, Robert M.
1989-01-01
During the past ten years Vector Quantization (VQ) has developed from a theoretical possibility promised by Shannon's source coding theorems into a powerful and competitive technique for speech and image coding and compression at medium to low bit rates. In this survey, the basic ideas behind the design of vector quantizers are sketched and some comments made on the state-of-the-art and current research efforts.
NASA Astrophysics Data System (ADS)
Xue, Yan
The optimal growth and its relationship with the forecast skill of the Zebiak and Cane model are studied using a simple statistical model best fit to the original nonlinear model and local linear tangent models about idealized climatic states (the mean background and ENSO cycles in a long model run), and the actual forecast states, including two sets of runs using two different initialization procedures. The seasonally varying Markov model best fit to a suite of 3-year forecasts in a reduced EOF space (18 EOFs) fits the original nonlinear model reasonably well and has comparable or better forecast skill. The initial error growth in a linear evolution operator A is governed by the eigenvalues of A^{T}A, and the square roots of eigenvalues and eigenvectors of A^{T}A are named singular values and singular vectors. One dominant growing singular vector is found, and the optimal 6 month growth rate is largest for a (boreal) spring start and smallest for a fall start. Most of the variation in the optimal growth rate of the two forecasts is seasonal, attributable to the seasonal variations in the mean background, except that in the cold events it is substantially suppressed. It is found that the mean background (zero anomaly) is the most unstable state, and the "forecast IC states" are more unstable than the "coupled model states". One dominant growing singular vector is found, characterized by north-south and east -west dipoles, convergent winds on the equator in the eastern Pacific and a deepened thermocline in the whole equatorial belt. This singular vector is insensitive to initial time and optimization time, but its final pattern is a strong function of initial states. The ENSO system is inherently unpredictable for the dominant singular vector can amplify 5-fold to 24-fold in 6 months and evolve into the large scales characteristic of ENSO. However, the inherent ENSO predictability is only a secondary factor, while the mismatches between the model and data is a primary factor controlling the current forecast skill.
NASA Astrophysics Data System (ADS)
Lai, Wenqing; Wang, Yuandong; Li, Wenpeng; Sun, Guang; Qu, Guomin; Cui, Shigang; Li, Mengke; Wang, Yongqiang
2017-10-01
Based on long term vibration monitoring of the No.2 oil-immersed fat wave reactor in the ±500kV converter station in East Mongolia, the vibration signals in normal state and in core loose fault state were saved. Through the time-frequency analysis of the signals, the vibration characteristics of the core loose fault were obtained, and a fault diagnosis method based on the dual tree complex wavelet (DT-CWT) and support vector machine (SVM) was proposed. The vibration signals were analyzed by DT-CWT, and the energy entropy of the vibration signals were taken as the feature vector; the support vector machine was used to train and test the feature vector, and the accurate identification of the core loose fault of the flat wave reactor was realized. Through the identification of many groups of normal and core loose fault state vibration signals, the diagnostic accuracy of the result reached 97.36%. The effectiveness and accuracy of the method in the fault diagnosis of the flat wave reactor core is verified.
In silico models for predicting vector control chemicals targeting Aedes aegypti
Devillers, J.; Lagneau, C.; Lattes, A.; Garrigues, J.C.; Clémenté, M.M.; Yébakima, A.
2014-01-01
Human arboviral diseases have emerged or re-emerged in numerous countries worldwide due to a number of factors including the lack of progress in vaccine development, lack of drugs, insecticide resistance in mosquitoes, climate changes, societal behaviours, and economical constraints. Thus, Aedes aegypti is the main vector of the yellow fever and dengue fever flaviviruses and is also responsible for several recent outbreaks of the chikungunya alphavirus. As for the other mosquito species, the A. aegypti control relies heavily on the use of insecticides. However, because of increasing resistance to the different families of insecticides, reduction of Aedes populations is becoming increasingly difficult. Despite the unquestionable utility of insecticides in fighting mosquito populations, there are very few new insecticides developed and commercialized for vector control. This is because the high cost of the discovery of an insecticide is not counterbalanced by the ‘low profitability’ of the vector control market. Fortunately, the use of quantitative structure–activity relationship (QSAR) modelling allows the reduction of time and cost in the discovery of new chemical structures potentially active against mosquitoes. In this context, the goal of the present study was to review all the existing QSAR models on A. aegypti. The homology and pharmacophore models were also reviewed. Specific attention was paid to show the variety of targets investigated in Aedes in relation to the physiology and ecology of the mosquito as well as the diversity of the chemical structures which have been proposed, encompassing man-made and natural substances. PMID:25275884
Morrison, Eliot; Kantz, Auric; Gassner, George T.; Sazinsky, Matthew H.
2013-01-01
The two–component flavoprotein styrene monooxygenase (SMO) from Pseudomonas putida S12 catalyzes the NADH– and FAD–dependent epoxidation of styrene to styrene oxide. In this study we investigate the mechanism of flavin reduction and transfer from the reductase (SMOB) to epoxidase (NSMOA) component and report our findings in light of the 2.2–Å crystal structure of SMOB. Upon rapidly mixing with NADH, SMOB forms an NADH→FADox charge–transfer intermediate and catalyzes a hydride–transfer reaction from NADH to FAD, with a rate constant of 49.1 ± 1.4 s−1, in a step that is coupled to the rapid dissociation of NAD+. Electrochemical and equilibrium–binding studies indicate that NSMOA binds FADhq ~13–times more tightly than SMOB, which supports a vectoral transfer of FADhq from the reductase to the epoxidase. After binding to NSMOA, FADhq rapidly reacts with molecular oxygen to form a stable C(4a)–hydroperoxide intermediate. The half–life of apoSMOB generated in the FAD–transfer reaction is increased ~21–fold, supporting the model of a protein–protein interaction between apoSMOB and NSMOA with the peroxide intermediate. The mechanisms of FAD–dissociation and transport from SMOB to NSMOA were probed by monitoring the competitive reduction of cytochrome c in the presence and absence of pyridine nucleotides. Based on these studies, we propose a model in which reduced FAD binds to SMOB in equilibrium between an unreactive, sequestered state (S–state) and more reactive, transfer state (T–state). Dissociation of NAD+ after the hydride transfer–reaction transiently populates the T–state, promoting the transfer of FADhq to NSMOA. The binding of pyridine nucleotides to SMOB–FADhq shifts the FADhq–binding equilibrium from the T–state to the S–state. Additionally, the 2.2–Å crystal structure of SMOB–FADox reported in this work is discussed in light of the pyridine nucleotide–gated flavin–transfer and electron–transfer reactions. PMID:23909369
NASA Astrophysics Data System (ADS)
Dougherty, Andrew W.
Metal oxides are a staple of the sensor industry. The combination of their sensitivity to a number of gases, and the electrical nature of their sensing mechanism, make the particularly attractive in solid state devices. The high temperature stability of the ceramic material also make them ideal for detecting combustion byproducts where exhaust temperatures can be high. However, problems do exist with metal oxide sensors. They are not very selective as they all tend to be sensitive to a number of reduction and oxidation reactions on the oxide's surface. This makes sensors with large numbers of sensors interesting to study as a method for introducing orthogonality to the system. Also, the sensors tend to suffer from long term drift for a number of reasons. In this thesis I will develop a system for intelligently modeling metal oxide sensors and determining their suitability for use in large arrays designed to analyze exhaust gas streams. It will introduce prior knowledge of the metal oxide sensors' response mechanisms in order to produce a response function for each sensor from sparse training data. The system will use the same technique to model and remove any long term drift from the sensor response. It will also provide an efficient means for determining the orthogonality of the sensor to determine whether they are useful in gas sensing arrays. The system is based on least squares support vector regression using the reciprocal kernel. The reciprocal kernel is introduced along with a method of optimizing the free parameters of the reciprocal kernel support vector machine. The reciprocal kernel is shown to be simpler and to perform better than an earlier kernel, the modified reciprocal kernel. Least squares support vector regression is chosen as it uses all of the training points and an emphasis was placed throughout this research for extracting the maximum information from very sparse data. The reciprocal kernel is shown to be effective in modeling the sensor responses in the time, gas and temperature domains, and the dual representation of the support vector regression solution is shown to provide insight into the sensor's sensitivity and potential orthogonality. Finally, the dual weights of the support vector regression solution to the sensor's response are suggested as a fitness function for a genetic algorithm, or some other method for efficiently searching large parameter spaces.
Boyce, R; Lenhart, A; Kroeger, A; Velayudhan, R; Roberts, B; Horstick, O
2013-05-01
To systematically review the literature on the effectiveness of Bacillus thuringiensis israelensis (Bti), when used as a single agent in the field, for the control of dengue vectors. Systematic literature search of the published and grey literature was carried out using the following databases: MEDLINE, EMBASE, Global Health, Web of Science, the Cochrane Library, WHOLIS, ELDIS, the New York Academy of Medicine Gray Literature Report, Africa-Wide and Google. All results were screened for duplicates and assessed for eligibility. Relevant data were extracted, and a quality assessment was conducted using the CONSORT 2010 checklist. Fourteen studies satisfied the eligibility criteria, incorporating a wide range of interventions and outcome measures. Six studies were classified as effectiveness studies, and the remaining eight examined the efficacy of Bti in more controlled settings. Twelve (all eight efficacy studies and 4 of 6 effectiveness studies) reported reductions in entomological indices with an average duration of control of 2-4 weeks. The two effectiveness studies that did not report significant entomological reductions were both cluster-randomised study designs that utilised basic interventions such as environmental management or general education on environment control practices in their respective control groups. Only one study described a reduction in entomological indices together with epidemiological data, reporting one dengue case in the treated area compared to 15 dengue cases in the untreated area during the observed study period. While Bti can be effective in reducing the number of immature Aedes in treated containers in the short term, there is very limited evidence that dengue morbidity can be reduced through the use of Bti alone. There is currently insufficient evidence to recommend the use of Bti as a single agent for the long-term control of dengue vectors and prevention of dengue fever. Further studies examining the role of Bti in combination with other strategies to control dengue vectors are warranted. © 2013 Blackwell Publishing Ltd.
Classification of a set of vectors using self-organizing map- and rule-based technique
NASA Astrophysics Data System (ADS)
Ae, Tadashi; Okaniwa, Kaishirou; Nosaka, Kenzaburou
2005-02-01
There exist various objects, such as pictures, music, texts, etc., around our environment. We have a view for these objects by looking, reading or listening. Our view is concerned with our behaviors deeply, and is very important to understand our behaviors. We have a view for an object, and decide the next action (data selection, etc.) with our view. Such a series of actions constructs a sequence. Therefore, we propose a method which acquires a view as a vector from several words for a view, and apply the vector to sequence generation. We focus on sequences of the data of which a user selects from a multimedia database containing pictures, music, movie, etc... These data cannot be stereotyped because user's view for them changes by each user. Therefore, we represent the structure of the multimedia database as the vector representing user's view and the stereotyped vector, and acquire sequences containing the structure as elements. Such a vector can be classified by SOM (Self-Organizing Map). Hidden Markov Model (HMM) is a method to generate sequences. Therefore, we use HMM of which a state corresponds to the representative vector of user's view, and acquire sequences containing the change of user's view. We call it Vector-state Markov Model (VMM). We introduce the rough set theory as a rule-base technique, which plays a role of classifying the sets of data such as the sets of "Tour".
Pawelek, Kasia A.; Hager, Elizabeth J.; Hunt, Gregg J.
2014-01-01
The primary mosquito species associated with underground stormwater systems in the United States are the Culex pipiens complex species. This group represents important vectors of West Nile virus (WNV) throughout regions of the continental U.S. In this study, we designed a mathematical model and compared it with surveillance data for the Cx. pipiens complex collected in Beaufort County, South Carolina. Based on the best fit of the model to the data, we estimated parameters associated with the effectiveness of public health insecticide (adulticide) treatments (primarily pyrethrin products) as well as the birth, maturation, and death rates of immature and adult Cx. pipiens complex mosquitoes. We used these estimates for modeling the spread of WNV to obtain more reliable disease outbreak predictions and performed numerical simulations to test various mosquito abatement strategies. We demonstrated that insecticide treatments produced significant reductions in the Cx. pipiens complex populations. However, abatement efforts were effective for approximately one day and the vector mosquitoes rebounded until the next treatment. These results suggest that frequent insecticide applications are necessary to control these mosquitoes. We derived the basic reproductive number (ℜ0) to predict the conditions under which disease outbreaks are likely to occur and to evaluate mosquito abatement strategies. We concluded that enhancing the mosquito death rate results in lower values of ℜ0, and if ℜ0<1, then an epidemic will not occur. Our modeling results provide insights about control strategies of the vector populations and, consequently, a potential decrease in the risk of a WNV outbreak. PMID:25268229
An Optimization Principle for Deriving Nonequilibrium Statistical Models of Hamiltonian Dynamics
NASA Astrophysics Data System (ADS)
Turkington, Bruce
2013-08-01
A general method for deriving closed reduced models of Hamiltonian dynamical systems is developed using techniques from optimization and statistical estimation. Given a vector of resolved variables, selected to describe the macroscopic state of the system, a family of quasi-equilibrium probability densities on phase space corresponding to the resolved variables is employed as a statistical model, and the evolution of the mean resolved vector is estimated by optimizing over paths of these densities. Specifically, a cost function is constructed to quantify the lack-of-fit to the microscopic dynamics of any feasible path of densities from the statistical model; it is an ensemble-averaged, weighted, squared-norm of the residual that results from submitting the path of densities to the Liouville equation. The path that minimizes the time integral of the cost function determines the best-fit evolution of the mean resolved vector. The closed reduced equations satisfied by the optimal path are derived by Hamilton-Jacobi theory. When expressed in terms of the macroscopic variables, these equations have the generic structure of governing equations for nonequilibrium thermodynamics. In particular, the value function for the optimization principle coincides with the dissipation potential that defines the relation between thermodynamic forces and fluxes. The adjustable closure parameters in the best-fit reduced equations depend explicitly on the arbitrary weights that enter into the lack-of-fit cost function. Two particular model reductions are outlined to illustrate the general method. In each example the set of weights in the optimization principle contracts into a single effective closure parameter.
NASA Astrophysics Data System (ADS)
Mavromatos, N. E.; Nanopoulos, D. V.
Microtubule (MT) networks, subneural paracrystalline cytoskeletal structures, seem to play a fundamental role in the neurons. We cast here the complicated MT dynamics in the form of a (1+1)-dimensional noncritical string theory, thus enabling us to provide a consistent quantum treatment of MTs, including enviromental friction effects. We suggest, thus, that the MTs are the microsites, in the brain, for the emergence of stable, macroscopic quantum coherent states, identifiable with the preconscious states. Quantum space-time effects, as described by noncritical string theory, trigger then an organized collapse of the coherent states down to a specific or conscious state. The whole process we estimate to take { O}(1 sec), in excellent agreement with a plethora of experimental/observational findings. The microscopic arrow of time, endemic in noncritical string theory, and apparent here in the self-collapse process, provides a satisfactory and simple resolution to the age-old problem of how the, central to our feelings of awareness, sensation of the progression of time is generated. In addition, the complete integrability of the stringy model for MT we advocate in this work proves sufficient in providing a satisfactory solution to memory coding and capacity. Such features might turn out to be important for a model of the brain as a quantum computer.
Fluorescent tagged episomals for stoichiometric induced pluripotent stem cell reprogramming.
Schmitt, Christopher E; Morales, Blanca M; Schmitz, Ellen M H; Hawkins, John S; Lizama, Carlos O; Zape, Joan P; Hsiao, Edward C; Zovein, Ann C
2017-06-05
Non-integrating episomal vectors have become an important tool for induced pluripotent stem cell reprogramming. The episomal vectors carrying the "Yamanaka reprogramming factors" (Oct4, Klf, Sox2, and L-Myc + Lin28) are critical tools for non-integrating reprogramming of cells to a pluripotent state. However, the reprogramming process remains highly stochastic, and is hampered by an inability to easily identify clones that carry the episomal vectors. We modified the original set of vectors to express spectrally separable fluorescent proteins to allow for enrichment of transfected cells. The vectors were then tested against the standard original vectors for reprogramming efficiency and for the ability to enrich for stoichiometric ratios of factors. The reengineered vectors allow for cell sorting based on reprogramming factor expression. We show that these vectors can assist in tracking episomal expression in individual cells and can select the reprogramming factor dosage. Together, these modified vectors are a useful tool for understanding the reprogramming process and improving induced pluripotent stem cell isolation efficiency.
Xu, Danfeng; Gu, Bing; Rui, Guanghao; Zhan, Qiwen; Cui, Yiping
2016-02-22
We present an arbitrary vector field with hybrid polarization based on the combination of a pair of orthogonal elliptically polarized base vectors on the Poincaré sphere. It is shown that the created vector field is only dependent on the latitude angle 2χ but is independent on the longitude angle 2ψ on the Poincaré sphere. By adjusting the latitude angle 2χ, which is related to two identical waveplates in a common path interferometric arrangement, one could obtain arbitrary type of vector fields. Experimentally, we demonstrate the generation of such kind of vector fields and confirm the distribution of state of polarization by the measurement of Stokes parameters. Besides, we investigate the tight focusing properties of these vector fields. It is found that the additional degree of freedom 2χ provided by arbitrary vector field with hybrid polarization allows one to control the spatial structure of polarization and to engineer the focusing field.
Hyperbolic-symmetry vector fields.
Gao, Xu-Zhen; Pan, Yue; Cai, Meng-Qiang; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian
2015-12-14
We present and construct a new kind of orthogonal coordinate system, hyperbolic coordinate system. We present and design a new kind of local linearly polarized vector fields, which is defined as the hyperbolic-symmetry vector fields because the points with the same polarization form a series of hyperbolae. We experimentally demonstrate the generation of such a kind of hyperbolic-symmetry vector optical fields. In particular, we also study the modified hyperbolic-symmetry vector optical fields with the twofold and fourfold symmetric states of polarization when introducing the mirror symmetry. The tight focusing behaviors of these vector fields are also investigated. In addition, we also fabricate micro-structures on the K9 glass surfaces by several tightly focused (modified) hyperbolic-symmetry vector fields patterns, which demonstrate that the simulated tightly focused fields are in good agreement with the fabricated micro-structures.
Development of Shuttle Vectors for Halobacteria
1989-02-01
the time of application, we had completed a study of transfection, using Halobacterium halobiun and its phage ,DH. We showed (Cline and Doolittle... phage particles), producing plaques titratable on H. halobium lawns. Uptake of DNA by both species appears to be about equally efficient, but DNA from H...halobium-grown phage is restricted in H. volcanii, which shows a 104 - 105 reduction in transfection efficiency (400 plaques per pg) but no reduction
Parity partners in the baryon resonance spectrum
Lu, Ya; Chen, Chen; Roberts, Craig D.; ...
2017-07-28
Here, we describe a calculation of the spectrum of flavor-SU(3) octet and decuplet baryons, their parity partners, and the radial excitations of these systems, made using a symmetry-preserving treatment of a vector x vector contact interaction as the foundation for the relevant few-body equations. Dynamical chiral symmetry breaking generates nonpointlike diquarks within these baryons and hence, using the contact interaction, flavor-antitriplet scalar, pseudoscalar, vector, and flavor-sextet axial-vector quark-quark correlations can all play active roles. The model yields reasonable masses for all systems studied and Faddeev amplitudes for ground states and associated parity partners that sketch a realistic picture of theirmore » internal structure: ground-state, even-parity baryons are constituted, almost exclusively, from like-parity diquark correlations, but orbital angular momentum plays an important role in the rest-frame wave functions of odd-parity baryons, whose Faddeev amplitudes are dominated by odd-parity diquarks.« less
Parity partners in the baryon resonance spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Ya; Chen, Chen; Roberts, Craig D.
Here, we describe a calculation of the spectrum of flavor-SU(3) octet and decuplet baryons, their parity partners, and the radial excitations of these systems, made using a symmetry-preserving treatment of a vector x vector contact interaction as the foundation for the relevant few-body equations. Dynamical chiral symmetry breaking generates nonpointlike diquarks within these baryons and hence, using the contact interaction, flavor-antitriplet scalar, pseudoscalar, vector, and flavor-sextet axial-vector quark-quark correlations can all play active roles. The model yields reasonable masses for all systems studied and Faddeev amplitudes for ground states and associated parity partners that sketch a realistic picture of theirmore » internal structure: ground-state, even-parity baryons are constituted, almost exclusively, from like-parity diquark correlations, but orbital angular momentum plays an important role in the rest-frame wave functions of odd-parity baryons, whose Faddeev amplitudes are dominated by odd-parity diquarks.« less
Scalability, Complexity and Reliability in Quantum Information Processing
2007-03-01
finding short lattice vectors . In [2], we showed that the generalization of the standard method --- random coset state preparation followed by fourier...results in cryptography. In [3], we proposed an efficient new cryptosystem based on the quantum intractability of finding short vectors in a lattice...state. We have explored realizations with neutral atoms as well as a more promising scheme employing polar molecules that allows for much stronger
Public Health Responses to a Dengue Outbreak in a Fragile State: A Case Study of Nepal
Griffiths, Karolina; Banjara, Megha Raj; O'Dempsey, T.; Munslow, B.; Kroeger, Axel
2013-01-01
Objectives. The number of countries reporting dengue cases is increasing worldwide. Nepal saw its first dengue outbreak in 2010, with 96% of cases reported in three districts. There are numerous policy challenges to providing an effective public health response system in a fragile state. This paper evaluates the dengue case notification, surveillance, laboratory facilities, intersectoral collaboration, and how government and community services responded to the outbreak. Methods. Qualitative data were collected through 20 in-depth interviews, with key stakeholders, and two focus-group discussions, with seven participants. Results. Limitations of case recognition included weak diagnostic facilities and private hospitals not incorporated into the case reporting system. Research on vectors was weak, with no virological surveillance. Limitations of outbreak response included poor coordination and an inadequate budget. There was good community mobilization and emergency response but no routine vector control. Conclusions. A weak state has limited response capabilities. Disease surveillance and response plans need to be country-specific and consider state response capacity and the level of endemicity. Two feasible solutions for Nepal are (1) go upwards to regional collaboration for disease and vector surveillance, laboratory assistance, and staff training; (2) go downwards to expand upon community mobilisation, ensuring that vector control is anticipatory to outbreaks. PMID:23690789
Antibody-mediated targeting of replication-competent retroviral vectors.
Tai, Chien-Kuo; Logg, Christopher R; Park, Jinha M; Anderson, W French; Press, Michael F; Kasahara, Noriyuki
2003-05-20
Replication-competent murine leukemia virus (MLV) vectors can be engineered to achieve high efficiency gene transfer to solid tumors in vivo and tumor-restricted replication, however their safety can be further enhanced by redirecting tropism of the virus envelope. We have therefore tested the targeting capability and replicative stability of ecotropic and amphotropic replication-competent retrovirus (RCR) vectors containing two tandem repeats from the immunoglobulin G-binding domain of Staphylococcal protein A inserted into the proline-rich "hinge" region of the envelope, which enables modular use of antibodies of various specificities for vector targeting. The modified envelopes were efficiently expressed and incorporated into virions, were capable of capturing monoclonal anti-HER2 antibodies, and mediated efficient binding of the virus-antibody complex to HER2-positive target cells. While infectivity was markedly reduced by pseudotyping with targeted envelopes alone, coexpression of wild-type envelope rescued efficient cellular entry. Both ecotropic and amphotropic RCR vector/anti-HER2 antibody complexes achieved significant enhancement of transduction on murine target cells overexpressing HER2, which could be competed by preincubation with excess free antibodies. Interestingly, HER2-expressing human breast cancer cells did not show enhancement of transduction despite efficient antibody-mediated cell surface binding, suggesting that target cell-specific parameters markedly affect the efficiency of post-binding entry processes. Serial replication of targeted vectors resulted in selection of Z domain deletion variants, but reduction of the overall size of the vector genome enhanced its stability. Application of antibody-mediated targeting to the initial localization of replication-competent virus vectors to tumor sites will thus require optimized target selection and vector design.
García-Alzate, Roberto; Lozano-Arias, Daisy; Reyes-Lugo, Rafael Matías; Morocoima, Antonio; Herrera, Leidi; Mendoza-León, Alexis
2014-01-01
Triatoma maculata is a wild vector of Trypanosoma cruzi, the causative agent of Chagas disease; its incursion in the domestic habitat is scant. In order to establish the possible domestic habitat of T. maculata, we evaluated wing variability and polymorphism of genotypic markers in subpopulations of T. maculata that live in different habitats in Venezuela. As markers, we used the mtCyt b gene, previously apply to evaluate population genetic structure in triatomine species, and the β-tubulin gene region, a marker employed to study genetic variability in Leishmania subgenera. Adults of T. maculata were captured in the period 2012–2013 at domestic, peridomestic (PD), and wild areas of towns in the Venezuelan states of Anzoátegui, Bolívar, Portuguesa, Monagas, Nueva Esparta, and Sucre. The phenotypic analysis was conducted through the determination of the isometric size and conformation of the left wing of each insect (492 individuals), using the MorphoJ program. Results reveal that insects of the domestic habitat showed significant reductions in wing size and variations in anatomical characteristics associated with flying, in relation to the PD and wild habitats. The largest variability was found in Anzoátegui and Monagas. The genotypic variability was assessed by in silico sequence comparison of the molecular markers and PCR-RFLP assays, demonstrating a marked polymorphism for the markers in insects of the domestic habitat in comparison with the other habitats. The highest polymorphism was found for the β-tubulin marker with enzymes BamHI and KpnI. Additionally, the infection rate by T. cruzi was higher in Monagas and Sucre (26.8 and 37.0%, respectively), while in domestic habitats the infestation rate was highest in Anzoátegui (22.3%). Results suggest domestic habitat colonization by T. maculata that in epidemiological terms, coupled with the presence in this habitat of nymphs of the vector, represents a high risk of transmission of Chagas disease. PMID:25325053
NASA Astrophysics Data System (ADS)
Oware, E. K.; Moysey, S. M.
2016-12-01
Regularization stabilizes the geophysical imaging problem resulting from sparse and noisy measurements that render solutions unstable and non-unique. Conventional regularization constraints are, however, independent of the physics of the underlying process and often produce smoothed-out tomograms with mass underestimation. Cascaded time-lapse (CTL) is a widely used reconstruction technique for monitoring wherein a tomogram obtained from the background dataset is employed as starting model for the inversion of subsequent time-lapse datasets. In contrast, a proper orthogonal decomposition (POD)-constrained inversion framework enforces physics-based regularization based upon prior understanding of the expected evolution of state variables. The physics-based constraints are represented in the form of POD basis vectors. The basis vectors are constructed from numerically generated training images (TIs) that mimic the desired process. The target can be reconstructed from a small number of selected basis vectors, hence, there is a reduction in the number of inversion parameters compared to the full dimensional space. The inversion involves finding the optimal combination of the selected basis vectors conditioned on the geophysical measurements. We apply the algorithm to 2-D lab-scale saline transport experiments with electrical resistivity (ER) monitoring. We consider two transport scenarios with one and two mass injection points evolving into unimodal and bimodal plume morphologies, respectively. The unimodal plume is consistent with the assumptions underlying the generation of the TIs, whereas bimodality in plume morphology was not conceptualized. We compare difference tomograms retrieved from POD with those obtained from CTL. Qualitative comparisons of the difference tomograms with images of their corresponding dye plumes suggest that POD recovered more compact plumes in contrast to those of CTL. While mass recovery generally deteriorated with increasing number of time-steps, POD outperformed CTL in terms of mass recovery accuracy rates. POD is computationally superior requiring only 2.5 mins to complete each inversion compared to 3 hours for CTL to do the same.
Turbulent Flow Validation in the Helios Strand Solver
2014-01-07
usual (̄) notation is omitted for simplicity). The pressure is obtained from the ideal gas equation of state given as: P = (γ−1) [ Et − 1 2 ρ ( u2 + v2...2. SA-RANS System The state vector and flux vectors including those of the SA model equation for three-dimensional flow are explicitly given as: u...number, PrT is the turbulent Prandtl number, and T is the temperature. The ideal gas equation of state , p = ρRT is used to close the equations . IV.A
Newman, Christina M; Anderson, Tavis K; Goldberg, Tony L
2016-01-01
Insect-specific flaviviruses (ISFVs) commonly infect vectors of mosquito-borne arboviruses. To investigate whether infection with an ISFV might affect mosquito flight behavior, we quantified flight behavior in Culex pipiens L. naturally infected with Culex flavivirus (CxFV). We observed a significant reduction in the scotophase (dark hours) flight activity of CxFV-positive mosquitoes relative to CxFV-negative mosquitoes, but only a marginal reduction in photophase (light hours) flight activity, and no change in the circadian pattern of flight activity. These results suggest that CxFV infection alters the flight activity of naturally infected Cx. pipiens most dramatically when these vectors are likely to be host seeking and may therefore affect the transmission of medically important arboviruses. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Temporal genetic stability of Stegomyia aegypti (= Aedes aegypti) populations.
Gloria-Soria, A; Kellner, D A; Brown, J E; Gonzalez-Acosta, C; Kamgang, B; Lutwama, J; Powell, J R
2016-06-01
The mosquito Stegomyia aegypti (= Aedes aegypti) (Diptera: Culicidae) is the primary vector of viruses that cause yellow fever, dengue and Chikungunya fever. In the absence of effective vaccines, the reduction of these diseases relies on vector control strategies. The success of these strategies is tightly linked to the population dynamics of target populations. In the present study, 14 collections from St. aegypti populations separated by periods of 1-13 years were analysed to determine their temporal genetic stability. Although temporal structure is discernible in most populations, the degree of temporal differentiation is dependent on the population and does not obscure the geographic structure of the various populations. The results suggest that performing detailed studies in the years prior to and after population reduction- or modification-based control interventions at each target field site may be useful in assessing the probability of success. © 2016 The Royal Entomological Society.
Torque ripple reduction of brushless DC motor based on adaptive input-output feedback linearization.
Shirvani Boroujeni, M; Markadeh, G R Arab; Soltani, J
2017-09-01
Torque ripple reduction of Brushless DC Motors (BLDCs) is an interesting subject in variable speed AC drives. In this paper at first, a mathematical expression for torque ripple harmonics is obtained. Then for a non-ideal BLDC motor with known harmonic contents of back-EMF, calculation of desired reference current amplitudes, which are required to eliminate some selected harmonics of torque ripple, are reviewed. In order to inject the reference harmonic currents to the motor windings, an Adaptive Input-Output Feedback Linearization (AIOFBL) control is proposed, which generates the reference voltages for three phases voltage source inverter in stationary reference frame. Experimental results are presented to show the capability and validity of the proposed control method and are compared with the vector control in Multi-Reference Frame (MRF) and Pseudo-Vector Control (P-VC) method results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Ground Operations of the ISS GNC Babb-Mueller Atmospheric Density Model
NASA Technical Reports Server (NTRS)
Brogan, Jonathan
2002-01-01
The ISS GNC system was updated recently with a new software release that provides onboard state determination capability. Prior to this release, only the Russian segment maintained and propagated the onboard state, which was periodically updated through Russian ground tracking. The new software gives the US segment the capability for maintaining the onboard state, and includes new GPS and state vector propagation capabilities. Part of this software package is an atmospheric density model based on the Babb-Mueller algorithm. Babb-Mueller efficiently mimics a full analytical density model, such as the Jacchia model. While lacchia is very robust and is used in the Mission Control Center, it is too computationally intensive for use onboard. Thus, Babb-Mueller was chosen as an alternative. The onboard model depends on a set of calibration coefficients that produce a curve fit to the lacchia model. The ISS GNC system only maintains one set of coefficients onboard, so a new set must be uplinked by controllers when the atmospheric conditions change. The onboard density model provides a real-time density value, which is used to calculate the drag experienced by the ISS. This drag value is then incorporated into the onboard propagation of the state vector. The propagation of the state vector, and therefore operation of the BabbMueller algorithm, will be most critical when GPS updates and secondary state vector sources fail. When GPS is active, the onboard state vector will be updated every ten seconds, so the propagation error is irrelevant. When GPS is inactive, the state vector must be updated at least every 24 hours, based on current protocol. Therefore, the Babb-Mueller coefficients must be accurate enough to fulfill the state vector accuracy requirements for at least one day. A ground operations concept was needed in order to manage both the on board Babb-Mueller density model and the onboard state quality. The Babb-Mueller coefficients can be determined operationally in two ways. The first method is to calibrate the coefficients in real-time, where a set of custom coefficients is generated for the real-time atmospheric conditions. The second approach is to generate pre-canned sets of coefficients that encompass the expected atmospheric conditions over the lifetime of the vehicle. These predetermined sets are known as occurrences. Even though a particular occurrence will not match the true atmospheric conditions, the error will be constrained by limiting the breadth of each occurrence. Both methods were investigated and the advantages and disadvantages of each were considered. The choice between these implementations was a trade-off between the additional accuracy of the real-time calibration and the simpler development for the approach using occurrences. The operations concept for the frequency of updates was also explored, and depends on the deviation in solar flux that still achieves the necessary accuracy of the coefficients. This was determined based on historical solar flux trends. This analysis resulted in an accurate and reliable implementation of the Babb-Mueller coefficients and how flight controllers use them during realtime operations.
Fractal vector optical fields.
Pan, Yue; Gao, Xu-Zhen; Cai, Meng-Qiang; Zhang, Guan-Lin; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian
2016-07-15
We introduce the concept of a fractal, which provides an alternative approach for flexibly engineering the optical fields and their focal fields. We propose, design, and create a new family of optical fields-fractal vector optical fields, which build a bridge between the fractal and vector optical fields. The fractal vector optical fields have polarization states exhibiting fractal geometry, and may also involve the phase and/or amplitude simultaneously. The results reveal that the focal fields exhibit self-similarity, and the hierarchy of the fractal has the "weeding" role. The fractal can be used to engineer the focal field.
Perendeci, Altinay; Arslan, Sever; Tanyolaç, Abdurrahman; Celebi, Serdar S
2009-10-01
A conceptual neural fuzzy model based on adaptive-network based fuzzy inference system, ANFIS, was proposed using available input on-line and off-line operational variables for a sugar factory anaerobic wastewater treatment plant operating under unsteady state to estimate the effluent chemical oxygen demand, COD. The predictive power of the developed model was improved as a new approach by adding the phase vector and the recent values of COD up to 5-10 days, longer than overall retention time of wastewater in the system. History of last 10 days for COD effluent with two-valued phase vector in the input variable matrix including all parameters had more predictive power. History of 7 days with two-valued phase vector in the matrix comprised of only on-line variables yielded fairly well estimations. The developed ANFIS model with phase vector and history extension has been able to adequately represent the behavior of the treatment system.
Legendre submanifolds in contact manifolds as attractors and geometric nonequilibrium thermodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goto, Shin-itiro, E-mail: sgoto@ims.ac.jp
It has been proposed that equilibrium thermodynamics is described on Legendre submanifolds in contact geometry. It is shown in this paper that Legendre submanifolds embedded in a contact manifold can be expressed as attractors in phase space for a certain class of contact Hamiltonian vector fields. By giving a physical interpretation that points outside the Legendre submanifold can represent nonequilibrium states of thermodynamic variables, in addition to that points of a given Legendre submanifold can represent equilibrium states of the variables, this class of contact Hamiltonian vector fields is physically interpreted as a class of relaxation processes, in which thermodynamicmore » variables achieve an equilibrium state from a nonequilibrium state through a time evolution, a typical nonequilibrium phenomenon. Geometric properties of such vector fields on contact manifolds are characterized after introducing a metric tensor field on a contact manifold. It is also shown that a contact manifold and a strictly convex function induce a lower dimensional dually flat space used in information geometry where a geometrization of equilibrium statistical mechanics is constructed. Legendre duality on contact manifolds is explicitly stated throughout.« less
Parallel processors and nonlinear structural dynamics algorithms and software
NASA Technical Reports Server (NTRS)
Belytschko, Ted
1990-01-01
Techniques are discussed for the implementation and improvement of vectorization and concurrency in nonlinear explicit structural finite element codes. In explicit integration methods, the computation of the element internal force vector consumes the bulk of the computer time. The program can be efficiently vectorized by subdividing the elements into blocks and executing all computations in vector mode. The structuring of elements into blocks also provides a convenient way to implement concurrency by creating tasks which can be assigned to available processors for evaluation. The techniques were implemented in a 3-D nonlinear program with one-point quadrature shell elements. Concurrency and vectorization were first implemented in a single time step version of the program. Techniques were developed to minimize processor idle time and to select the optimal vector length. A comparison of run times between the program executed in scalar, serial mode and the fully vectorized code executed concurrently using eight processors shows speed-ups of over 25. Conjugate gradient methods for solving nonlinear algebraic equations are also readily adapted to a parallel environment. A new technique for improving convergence properties of conjugate gradients in nonlinear problems is developed in conjunction with other techniques such as diagonal scaling. A significant reduction in the number of iterations required for convergence is shown for a statically loaded rigid bar suspended by three equally spaced springs.
Ryu, Byoung Y.; Evans-Galea, Marguerite V.; Gray, John T.; Bodine, David M.; Persons, Derek A.
2008-01-01
Pathogenic activation of the LMO2 proto-oncogene by an oncoretroviral vector insertion in a clinical trial for X-linked severe combined immunodeficiency (X-SCID) has prompted safety concerns. We used an adeno-associated virus vector to achieve targeted insertion of a γ-retroviral long terminal repeat (LTR) driving a GFP expression cassette with flanking loxP sites in a human T-cell line at the precise location of vector integration in one of the patients with X-SCID. The LTR-GFP cassette was inserted into the first intron of the LMO2 gene, resulting in strong activation of LMO2. Cre-mediated cassette exchange was used to replace the original LTR-GFP cassette with one flanked by insulator elements leading to a several fold reduction in LMO2 expression. The LTR-GFP cassette was also replaced with a globin gene regulatory cassette that failed to activate the LMO2 gene in lymphoid cells. A γ-retroviral vector with 2 intact LTRs resulted in activation of the LMO2 gene when inserted into the first intron, but a self-inactivating lentiviral vector with an internal cellular promoter and flanking insulator elements did not activate the LMO2 gene. Thus, this system is useful for comparing the safety profiles of vector cassettes with various regulatory elements for their potential for proto-oncogene activation. PMID:17991809
Gürtler, Ricardo E; Yadon, Zaida E
2015-02-01
This article provides an overview of three research projects which designed and implemented innovative interventions for Chagas disease vector control in Bolivia, Guatemala and Mexico. The research initiative was based on sound principles of community-based ecosystem management (ecohealth), integrated vector management, and interdisciplinary analysis. The initial situational analysis achieved a better understanding of ecological, biological and social determinants of domestic infestation. The key factors identified included: housing quality; type of peridomestic habitats; presence and abundance of domestic dogs, chickens and synanthropic rodents; proximity to public lights; location in the periphery of the village. In Bolivia, plastering of mud walls with appropriate local materials and regular cleaning of beds and of clothes next to the walls, substantially decreased domestic infestation and abundance of the insect vector Triatoma infestans. The Guatemalan project revealed close links between house infestation by rodents and Triatoma dimidiata, and vector infection with Trypanosoma cruzi. A novel community-operated rodent control program significantly reduced rodent infestation and bug infection. In Mexico, large-scale implementation of window screens translated into promising reductions in domestic infestation. A multi-pronged approach including community mobilisation and empowerment, intersectoral cooperation and adhesion to integrated vector management principles may be the key to sustainable vector and disease control in the affected regions. © World Health Organization 2015. The World Health Organization has granted Oxford University Press permission for the reproduction of this article.
Denby, Laura; Work, Lorraine M; Seggern, Dan J Von; Wu, Eugene; McVey, John H; Nicklin, Stuart A; Baker, Andrew H
2007-09-01
The potential efficacy of gene delivery is dictated by the infectivity profile of existing vectors, which is often restrictive. In order to target cells and organs for which no efficient vector is currently available, a promising approach would be to engineer vectors with novel transduction profiles. Applications that involve injecting adenovirus (Ad) vectors into the bloodstream require that native tropism for the liver be removed, and that targeting moieties be engineered into the capsid. We previously reported that pseudotyping the Ad serotype 5 fiber for that of Ad19p results in reduced hepatic transduction. In this study we show that this may be caused, at least in part, by a reduction in the capacity of the Ad19p-based virus to bind blood coagulation factors. It is therefore a potential candidate for vector retargeting, focusing on the kidney as a therapeutic target. We used in vivo phage display in rats, and identified peptides HTTHREP and HITSLLS that homed to the kidneys following intravenous injection. We engineered the HI loop of Ad19p to accommodate peptide insertions and clones. Intravenous delivery of each peptide-modified virus resulted in selective renal targeting, with HTTHREP and HITSLLS-targeted viruses selectively transducing tubular epithelium and glomeruli, respectively. Our study has important implications for the use of genetic engineering of Ad fibers to produce targeted gene delivery vectors.
High-speed optical three-axis vector magnetometry based on nonlinear Hanle effect in rubidium vapor
NASA Astrophysics Data System (ADS)
Azizbekyan, Hrayr; Shmavonyan, Svetlana; Khanbekyan, Aleksandr; Movsisyan, Marina; Papoyan, Aram
2017-07-01
The magnetic-field-compensation optical vector magnetometer based on the nonlinear Hanle effect in alkali metal vapor allowing two-axis measurement operation has been further elaborated for three-axis performance, along with significant reduction of measurement time. The upgrade was achieved by implementing a two-beam resonant excitation configuration and a fast maximum searching algorithm. Results of the proof-of-concept experiments, demonstrating 1 μT B-field resolution, are presented. The applied interest and capability of the proposed technique is analyzed.
Vector dark-antidark solitary waves in multicomponent Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Danaila, I.; Khamehchi, M. A.; Gokhroo, V.; Engels, P.; Kevrekidis, P. G.
2016-11-01
Multicomponent Bose-Einstein condensates exhibit an intriguing variety of nonlinear structures. In recent theoretical work [C. Qu, L. P. Pitaevskii, and S. Stringari, Phys. Rev. Lett. 116, 160402 (2016), 10.1103/PhysRevLett.116.160402], the notion of magnetic solitons has been introduced. Here we examine a variant of this concept in the form of vector dark-antidark solitary waves in multicomponent Bose-Einstein condensates (BECs). We first provide concrete experimental evidence for such states in an atomic BEC and subsequently illustrate the broader concept of these states, which are based on the interplay between miscibility and intercomponent repulsion. Armed with this more general conceptual framework, we expand the notion of such states to higher dimensions presenting the possibility of both vortex-antidark states and ring-antidark-ring (dark soliton) states. We perform numerical continuation studies, investigate the existence of these states, and examine their stability using the method of Bogoliubov-de Gennes analysis. Dark-antidark and vortex-antidark states are found to be stable for broad parametric regimes. In the case of ring dark solitons, where the single-component ring state is known to be unstable, the vector entity appears to bear a progressively more and more stabilizing role as the intercomponent coupling is increased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, A.R.; Bartell, S.M.
1988-06-01
The state of an ecosystem at any time t may be characterized by a multidimensional state vector x(t). Changes in state are represented by the trajectory traced out by x(t) over time. The effects of toxicant stress are summarized by the displacement of a perturbed state vector, x/sub p/(t), relative to an appropriate control, x/sub c/(t). Within a multivariate statistical framework, the response of an ecosystem to perturbation is conveniently quantified by the distance separating x/sub p/(t) from x/sub c/(t) as measured by a Mahalanobis metric. Use of the Mahalanobis metric requires that the covariance matrix associated with the controlmore » state vector be estimated. State space displacement analysis was applied to data on the response of aquatic microcosms and outdoor ponds to alkylphenols. Dose-response relationships were derived using calculated state space separations as integrated measures of the ecological effects of toxicant exposure. Inspection of the data also revealed that the covariance structure varied both with time and with toxicant exposure, suggesting that analysis of such changes might be a useful tool for probing control mechanisms underlying ecosystem dynamics. 90 refs., 53 figs., 9 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xiaolei, E-mail: virtualzx@gmail.com; Yarkony, David R., E-mail: yarkony@jhu.edu
2014-11-07
For conical intersections of two states (I,J = I + 1) the vectors defining the branching or g-h plane, the energy difference gradient vector g{sup I,J}, and the interstate coupling vector h{sup I,J}, can be made orthogonal by a one parameter rotation of the degenerate electronic eigenstates. The representation obtained from this rotation is used to construct the parameters that describe the vicinity of the conical intersection seam, the conical parameters, s{sup I,J}{sub x} (R), s{sup I,J}{sub y} (R), g{sup I,J}(R), and h{sup I,J}(R). As a result of the orthogonalization these parameters can be made continuous functions of R, themore » internuclear coordinates. In this work we generalize this notion to construct continuous parametrizations of conical intersection seams of three or more states. The generalization derives from a recently introduced procedure for using non-degenerate electronic states to construct coupled diabatic states that represent adiabatic states coupled by conical intersections. The procedure is illustrated using the seam of conical intersections of three states in parazolyl as an example.« less
Quasiperiodicity in time evolution of the Bloch vector under the thermal Jaynes-Cummings model
NASA Astrophysics Data System (ADS)
Azuma, Hiroo; Ban, Masashi
2014-07-01
We study a quasiperiodic structure in the time evolution of the Bloch vector, whose dynamics is governed by the thermal Jaynes-Cummings model (JCM). Putting the two-level atom into a certain pure state and the cavity field into a mixed state in thermal equilibrium at initial time, we let the whole system evolve according to the JCM Hamiltonian. During this time evolution, motion of the Bloch vector seems to be in disorder. Because of the thermal photon distribution, both a norm and a direction of the Bloch vector change hard at random. In this paper, taking a different viewpoint compared with ones that we have been used to, we investigate quasiperiodicity of the Bloch vector’s trajectories. Introducing the concept of the quasiperiodic motion, we can explain the confused behaviour of the system as an intermediate state between periodic and chaotic motions. More specifically, we discuss the following two facts: (1) If we adjust the time interval Δt properly, figures consisting of plotted dots at the constant time interval acquire scale invariance under replacement of Δt by sΔt, where s(>1) is an arbitrary real but not transcendental number. (2) We can compute values of the time variable t, which let |Sz(t)| (the absolute value of the z-component of the Bloch vector) be very small, with the Diophantine approximation (a rational approximation of an irrational number).
Mutation in GNE Downregulates Peroxiredoxin IV Altering ER Redox Homeostasis.
Chanana, Pratibha; Padhy, Gayatri; Bhargava, Kalpana; Arya, Ranjana
2017-12-01
GNE myopathy is a rare neuromuscular genetic disorder characterized by early adult onset and muscle weakness due to mutation in sialic acid biosynthetic enzyme, UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE). More than 180 different GNE mutations are known all over the world with unclear pathomechanism. Although hyposialylation of glycoproteins is speculated to be the major cause, but cellular mechanism leading to loss of muscle mass has not yet been deciphered. Besides sialic acid biosynthesis, GNE affects other cellular functions such as cell adhesion and apoptosis. In order to understand the effect of mutant GNE protein on cellular functions, differential proteome profile of HEK293 cells overexpressing pathologically relevant recombinant mutant GNE protein (D207V and V603L) was analyzed. These cells, along with vector control and wild-type GNE-overexpressing cells, were subjected to two-dimensional gel electrophoresis coupled with mass spectrometry (MALDI-TOF/TOF MS/MS). In the study, 10 differentially expressed proteins were identified. Progenesis same spots software revealed downregulation of peroxiredoxin IV (PrdxIV), an ER-resident H 2 O 2 sensor that regulates neurogenesis. Significant reduction in mRNA and protein levels of PrdxIV was observed in GNE mutant cell lines compared with vector control. However, neither total reactive oxygen species was altered nor H 2 O 2 accumulation was observed in GNE mutant cell lines. Interestingly, ER redox state was significantly affected due to reduced normal GNE enzyme activity. Our study indicates that downregulation of PrdxIV affects ER redox state that may contribute to misfolding and aggregation of proteins in GNE myopathy.
Optimizing antibody expression: The nuts and bolts.
Ayyar, B Vijayalakshmi; Arora, Sushrut; Ravi, Shiva Shankar
2017-03-01
Antibodies are extensively utilized entities in biomedical research, and in the development of diagnostics and therapeutics. Many of these applications require high amounts of antibodies. However, meeting this ever-increasing demand of antibodies in the global market is one of the outstanding challenges. The need to maintain a balance between demand and supply of antibodies has led the researchers to discover better means and methods for optimizing their expression. These strategies aim to increase the volumetric productivity of the antibodies along with the reduction of associated manufacturing costs. Recent years have witnessed major advances in recombinant protein technology, owing to the introduction of novel cloning strategies, gene manipulation techniques, and an array of cell and vector engineering techniques, together with the progress in fermentation technologies. These innovations were also highly beneficial for antibody expression. Antibody expression depends upon the complex interplay of multiple factors that may require fine tuning at diverse levels to achieve maximum yields. However, each antibody is unique and requires individual consideration and customization for optimizing the associated expression parameters. This review provides a comprehensive overview of several state-of-the-art approaches, such as host selection, strain engineering, codon optimization, gene optimization, vector modification and process optimization that are deemed suitable for enhancing antibody expression. Copyright © 2017 Elsevier Inc. All rights reserved.
Plasmodium knowlesi in humans: a review on the role of its vectors in Malaysia.
Vythilingam, Indra
2010-04-01
Plasmodium knowlesi in humans is life threatening, is on the increase and has been reported from most states in Malaysia. Anopheles latens and Anopheles cracens have been incriminated as vectors. Malaria is now a zoonoses and is occurring in malaria free areas of Malaysia. It is also a threat to eco-tourism. The importance of the vectors and possible control measures is reviewed here.
Validation of a method to measure the vector fidelity of triaxial vector sensors
NASA Astrophysics Data System (ADS)
De Freitas, J. M.
2018-06-01
A method to measure the misalignment angles and vector fidelity of a mutually orthogonal arrangement of triaxial accelerometers has been validated by introducing known misalignments into the measurement procedure. The method is based on the excitation of all three accelerometers in equal measure and the determination of the second order responsivity tensor as a metric. The sensor axis misalignment angles measured using a sensor rotation technique as a reference were 1.49° ± 0.05°, 0.63° ± 0.02°, and 0.78° ± 0.04°. The resolution of the new approach against the reference was 0.03° with an accuracy of 0.2° and maximum deviation of 0.4°. An ellipticity tensor β that characterises the extent to which a triaxial system preserves the input polarisation state purity was introduced. In a careful laboratory arrangement, up to 98% input polarisation state purity was shown to be maintained. It is recommended that documentation on commercial and research grade high-precision triaxial sensor systems should give the responsivity matrix . This technique will improve the range of vector fidelity measurement tools for triaxial accelerometers and other vector sensors such as magnetometers, gyroscopes and acoustic vector sensors.
NASA Astrophysics Data System (ADS)
de Guillebon, L.; Vittot, M.
2013-10-01
Guiding-center reduction is studied using gyro-gauge-independent coordinates. The Lagrangian 1-form of charged particle dynamics is Lie transformed without introducing a gyro-gauge, but using directly the unit vector of the component of the velocity perpendicular to the magnetic field as the coordinate corresponding to Larmor gyration. The reduction is shown to provide a maximal reduction for the Lagrangian and to work for all orders in the Larmor radius, following exactly the same procedure as when working with the standard gauge-dependent coordinate. The gauge-dependence is removed from the coordinate system by using a constrained variable for the gyro-angle. The closed 1-form dθ is replaced by a more general non-closed 1-form, which is equal to dθ in the gauge-dependent case. The gauge vector is replaced by a more general connection in the definition of the gradient, which behaves as a covariant derivative, in perfect agreement with the circle-bundle picture. This explains some results of previous works, whose gauge-independent expressions did not correspond to gauge fixing but did indeed correspond to connection fixing. In addition, some general results are obtained for the guiding-center reduction. The expansion is polynomial in the cotangent of the pitch-angle as an effect of the structure of the Lagrangian, preserved by Lie derivatives. The induction for the reduction is shown to rely on the inversion of a matrix, which is the same for all orders higher than three. It is inverted and explicit induction relations are obtained to go to an arbitrary order in the perturbation expansion. The Hamiltonian and symplectic representations of the guiding-center reduction are recovered, but conditions for the symplectic representation at each order are emphasized.
NASA Astrophysics Data System (ADS)
Arratia, Cristobal
2014-11-01
A simple construction will be shown, which reveals a general property satisfied by the evolution in time of a state vector composed by a superposition of orthogonal eigenmodes of a linear dynamical system. This property results from the conservation of the inner product between such state vectors evolving forward and backwards in time, and it can be simply evaluated from the state vector and its first and second time derivatives. This provides an efficient way to characterize, instantaneously along any specific phase-space trajectory of the linear system, the relevance of the non-normality of the linearized Navier-Stokes operator on the energy (or any other norm) gain or decay of small perturbations. Examples of this characterization applied to stationary or time dependent base flows will be shown. CONICYT, Concurso de Apoyo al Retorno de Investigadores del Extranjero, folio 821320055.
A quasi-current representation for information needs inspired by Two-State Vector Formalism
NASA Astrophysics Data System (ADS)
Wang, Panpan; Hou, Yuexian; Li, Jingfei; Zhang, Yazhou; Song, Dawei; Li, Wenjie
2017-09-01
Recently, a number of quantum theory (QT)-based information retrieval (IR) models have been proposed for modeling session search task that users issue queries continuously in order to describe their evolving information needs (IN). However, the standard formalism of QT cannot provide a complete description for users' current IN in a sense that it does not take the 'future' information into consideration. Therefore, to seek a more proper and complete representation for users' IN, we construct a representation of quasi-current IN inspired by an emerging Two-State Vector Formalism (TSVF). With the enlightenment of the completeness of TSVF, a "two-state vector" derived from the 'future' (the current query) and the 'history' (the previous query) is employed to describe users' quasi-current IN in a more complete way. Extensive experiments are conducted on the session tracks of TREC 2013 & 2014, and show that our model outperforms a series of compared IR models.
First stage of LISA data processing. II. Alternative filtering dynamic models for LISA
NASA Astrophysics Data System (ADS)
Wang, Yan; Heinzel, Gerhard; Danzmann, Karsten
2015-08-01
Space-borne gravitational wave detectors, such as (e)LISA, are designed to operate in the low-frequency band (mHz to Hz), where there is a variety of gravitational wave sources of great scientific value [arXiv:1305.5720 and S. Babak et al., Classical Quantum Gravity 28, 114001 (2011)]. To achieve the extraordinary sensitivity of these detectors, the precise synchronization of the clocks on the separate spacecraft and the accurate determination of the interspacecraft distances are important ingredients. In our previous paper [Y. Wang et al., Phys. Rev. D 90, 064016 (2014)], we have described a hybrid-extend Kalman filter with a full state vector to do this job. In this paper, we explore several different state vectors and their corresponding (phenomenological) dynamic models to reduce the redundancy in the full state vector, to accelerate the algorithm, and to make the algorithm easily extendable to more complicated scenarios.
Neglected Parasitic Infections in the United States: Chagas Disease
Montgomery, Susan P.; Starr, Michelle C.; Cantey, Paul T.; Edwards, Morven S.; Meymandi, Sheba K.
2014-01-01
Chagas disease, which is caused by the protozoan parasite Trypanosoma cruzi, can lead to severe cardiac and gastrointestinal disease. Most persons acquire this infection through contact with vector bugs carrying T. cruzi in endemic areas of Latin America. Infection can also be acquired by congenital, transfusion, transplantation, and foodborne transmission. Although an estimated 300,000 persons with Chagas disease live in the United States, little is known about the burden of chagasic heart disease. It is not known how often congenital or vector-borne transmission of T. cruzi occurs in the United States, although it is known that infected mothers and infected vector bugs are found in this country. Better diagnostic tests and treatment drugs are needed to improve patient care, and research is needed to define transmission risks and develop strategies to prevent new infections and reduce the burden of disease. PMID:24808250
Vector-borne diseases and climate change: a European perspective
Suk, Jonathan E
2017-01-01
Abstract Climate change has already impacted the transmission of a wide range of vector-borne diseases in Europe, and it will continue to do so in the coming decades. Climate change has been implicated in the observed shift of ticks to elevated altitudes and latitudes, notably including the Ixodes ricinus tick species that is a vector for Lyme borreliosis and tick-borne encephalitis. Climate change is also thought to have been a factor in the expansion of other important disease vectors in Europe: Aedes albopictus (the Asian tiger mosquito), which transmits diseases such as Zika, dengue and chikungunya, and Phlebotomus sandfly species, which transmits diseases including Leishmaniasis. In addition, highly elevated temperatures in the summer of 2010 have been associated with an epidemic of West Nile Fever in Southeast Europe and subsequent outbreaks have been linked to summer temperature anomalies. Future climate-sensitive health impacts are challenging to project quantitatively, in part due to the intricate interplay between non-climatic and climatic drivers, weather-sensitive pathogens and climate-change adaptation. Moreover, globalisation and international air travel contribute to pathogen and vector dispersion internationally. Nevertheless, monitoring forecasts of meteorological conditions can help detect epidemic precursors of vector-borne disease outbreaks and serve as early warning systems for risk reduction. PMID:29149298
Sparse Method for Direction of Arrival Estimation Using Denoised Fourth-Order Cumulants Vector.
Fan, Yangyu; Wang, Jianshu; Du, Rui; Lv, Guoyun
2018-06-04
Fourth-order cumulants (FOCs) vector-based direction of arrival (DOA) estimation methods of non-Gaussian sources may suffer from poor performance for limited snapshots or difficulty in setting parameters. In this paper, a novel FOCs vector-based sparse DOA estimation method is proposed. Firstly, by utilizing the concept of a fourth-order difference co-array (FODCA), an advanced FOCs vector denoising or dimension reduction procedure is presented for arbitrary array geometries. Then, a novel single measurement vector (SMV) model is established by the denoised FOCs vector, and efficiently solved by an off-grid sparse Bayesian inference (OGSBI) method. The estimation errors of FOCs are integrated in the SMV model, and are approximately estimated in a simple way. A necessary condition regarding the number of identifiable sources of our method is presented that, in order to uniquely identify all sources, the number of sources K must fulfill K ≤ ( M 4 - 2 M 3 + 7 M 2 - 6 M ) / 8 . The proposed method suits any geometry, does not need prior knowledge of the number of sources, is insensitive to associated parameters, and has maximum identifiability O ( M 4 ) , where M is the number of sensors in the array. Numerical simulations illustrate the superior performance of the proposed method.
The Influence of Dams on Malaria Transmission in Sub-Saharan Africa.
Kibret, Solomon; Wilson, G Glenn; Ryder, Darren; Tekie, Habte; Petros, Beyene
2017-06-01
The construction of dams in sub-Saharan Africa is pivotal for food security and alleviating poverty in the region. However, the unintended adverse public health implications of extending the spatial distribution of water infrastructure are poorly documented and may minimize the intended benefits of securing water supplies. This paper reviews existing studies on the influence of dams on the spatial distribution of malaria parasites and vectors in sub-Saharan Africa. Common themes emerging from the literature were that dams intensified malaria transmission in semi-arid and highland areas with unstable malaria transmission but had little or no impact in areas with perennial transmission. Differences in the impacts of dams resulted from the types and characteristics of malaria vectors and their breeding habitats in different settings of sub-Saharan Africa. A higher abundance of a less anthropophilic Anopheles arabiensis than a highly efficient vector A. gambiae explains why dams did not increase malaria in stable areas. In unstable areas where transmission is limited by availability of water bodies for vector breeding, dams generally increase malaria by providing breeding habitats for prominent malaria vector species. Integrated vector control measures that include reservoir management, coupled with conventional malaria control strategies, could optimize a reduction of the risk of malaria transmission around dams in the region.
Vector-borne diseases and climate change: a European perspective.
Semenza, Jan C; Suk, Jonathan E
2018-02-01
Climate change has already impacted the transmission of a wide range of vector-borne diseases in Europe, and it will continue to do so in the coming decades. Climate change has been implicated in the observed shift of ticks to elevated altitudes and latitudes, notably including the Ixodes ricinus tick species that is a vector for Lyme borreliosis and tick-borne encephalitis. Climate change is also thought to have been a factor in the expansion of other important disease vectors in Europe: Aedes albopictus (the Asian tiger mosquito), which transmits diseases such as Zika, dengue and chikungunya, and Phlebotomus sandfly species, which transmits diseases including Leishmaniasis. In addition, highly elevated temperatures in the summer of 2010 have been associated with an epidemic of West Nile Fever in Southeast Europe and subsequent outbreaks have been linked to summer temperature anomalies. Future climate-sensitive health impacts are challenging to project quantitatively, in part due to the intricate interplay between non-climatic and climatic drivers, weather-sensitive pathogens and climate-change adaptation. Moreover, globalisation and international air travel contribute to pathogen and vector dispersion internationally. Nevertheless, monitoring forecasts of meteorological conditions can help detect epidemic precursors of vector-borne disease outbreaks and serve as early warning systems for risk reduction. © FEMS 2017.
Frozen orbit realization using LQR analogy
NASA Astrophysics Data System (ADS)
Nagarajan, N.; Rayan, H. Reno
In the case of remote sensing orbits, the Frozen Orbit concept minimizes altitude variations over a given region using passive means. This is achieved by establishing the mean eccentricity vector at the orbital poles i.e., by fixing the mean argument of perigee at 90 deg with an appropriate eccentricity to balance the perturbations due to zonal harmonics J2 and J3 of the Earth's potential. Eccentricity vector is a vector whose magnitude is the eccentricity and direction is the argument of perigee. The launcher dispersions result in an eccentricity vector which is away from the frozen orbit values. The objective is then to formulate an orbit maneuver strategy to optimize the fuel required to achieve the frozen orbit in the presence of visibility and impulse constraints. It is shown that the motion of the eccentricity vector around the frozen perigee can be approximated as a circle. Combining the circular motion of the eccentricity vector around the frozen point and the maneuver equation, the following discrete equation is obtained. X(k+1) = AX(k) + Bu(k), where X is the state (i.e. eccentricity vector components), A the state transition matrix, u the scalar control force (i.e. dV in this case) and B the control matrix which transforms dV into eccentricity vector change. Based on this, it is shown that the problem of optimizing the fuel can be treated as a Linear Quadratic Regulator (LQR) problem in which the maneuver can be solved by using control system design tools like MATLAB by deriving an analogy LQR design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, B. -L.; Chang, L.; Ding, M.
A symmetry-preserving truncation of the two-body light-quark bound-state problem in relativistic quantum field theory is used to calculate the leading-twist parton distribution amplitudes (PDAs) of scalar systems, both ground-state and radial excitations, and the radial excitations of vector mesons. Owing to the fact that the scale-independent leptonic decay constant of a scalar meson constituted from equal-mass valence-constituents vanishes, it is found that the PDA of a given scalar system possesses one more zero than that of an analogous vector meson. Consequently, whereas the mean light-front relative momentum of the valence-constituents within a vector meson is zero, that within a scalarmore » meson is large, an outcome which hints at a greater role for light-front angular momentum in systems classified as P-wave in quantum mechanical models. Values for the scale-dependent decay constants of ground-state scalar and vector systems are a by-product of this analysis, and they turn out to be roughly equal, viz. ≃ 0.2 GeV at an hadronic scale. In addition, it is confirmed that the dilation characterising ground-state PDAs is manifest in the PDAs of radial excitations too. The impact of SU(3)-flavour symmetry breaking is also considered. When compared with pseudoscalar states, it is a little stronger in scalar systems, but the size is nevertheless determined by the flavour-dependence of dynamical chiral symmetry breaking and the PDAs are still skewed toward the heavier valence-quark in asymmetric systems.« less
Huang, Mengmeng; Wei, Yan; Wang, Jun; Zhang, Yu
2016-01-01
We used the support vector regression (SVR) approach to predict and unravel reduction/promotion effect of characteristic flavonoids on the acrylamide formation under a low-moisture Maillard reaction system. Results demonstrated the reduction/promotion effects by flavonoids at addition levels of 1–10000 μmol/L. The maximal inhibition rates (51.7%, 68.8% and 26.1%) and promote rates (57.7%, 178.8% and 27.5%) caused by flavones, flavonols and isoflavones were observed at addition levels of 100 μmol/L and 10000 μmol/L, respectively. The reduction/promotion effects were closely related to the change of trolox equivalent antioxidant capacity (ΔTEAC) and well predicted by triple ΔTEAC measurements via SVR models (R: 0.633–0.900). Flavonols exhibit stronger effects on the acrylamide formation than flavones and isoflavones as well as their O-glycosides derivatives, which may be attributed to the number and position of phenolic and 3-enolic hydroxyls. The reduction/promotion effects were well predicted by using optimized quantitative structure-activity relationship (QSAR) descriptors and SVR models (R: 0.926–0.994). Compared to artificial neural network and multi-linear regression models, SVR models exhibited better fitting performance for both TEAC-dependent and QSAR descriptor-dependent predicting work. These observations demonstrated that the SVR models are competent for predicting our understanding on the future use of natural antioxidants for decreasing the acrylamide formation. PMID:27586851
NASA Astrophysics Data System (ADS)
Huang, Mengmeng; Wei, Yan; Wang, Jun; Zhang, Yu
2016-09-01
We used the support vector regression (SVR) approach to predict and unravel reduction/promotion effect of characteristic flavonoids on the acrylamide formation under a low-moisture Maillard reaction system. Results demonstrated the reduction/promotion effects by flavonoids at addition levels of 1-10000 μmol/L. The maximal inhibition rates (51.7%, 68.8% and 26.1%) and promote rates (57.7%, 178.8% and 27.5%) caused by flavones, flavonols and isoflavones were observed at addition levels of 100 μmol/L and 10000 μmol/L, respectively. The reduction/promotion effects were closely related to the change of trolox equivalent antioxidant capacity (ΔTEAC) and well predicted by triple ΔTEAC measurements via SVR models (R: 0.633-0.900). Flavonols exhibit stronger effects on the acrylamide formation than flavones and isoflavones as well as their O-glycosides derivatives, which may be attributed to the number and position of phenolic and 3-enolic hydroxyls. The reduction/promotion effects were well predicted by using optimized quantitative structure-activity relationship (QSAR) descriptors and SVR models (R: 0.926-0.994). Compared to artificial neural network and multi-linear regression models, SVR models exhibited better fitting performance for both TEAC-dependent and QSAR descriptor-dependent predicting work. These observations demonstrated that the SVR models are competent for predicting our understanding on the future use of natural antioxidants for decreasing the acrylamide formation.
Jutla, Antarpreet; Huq, Anwar; Colwell, Rita R
2015-01-01
West Nile virus (WNV), mosquito-borne and water-based disease, is increasingly a global threat to public health. Since its appearance in the northeastern United States in 1999, WNV has since been reported in several states in the continental United States. The objective of this study is to highlight role of hydroclimatic processes estimated through satellite sensors in capturing conditions for emergence of the vectors in historically disease free regions. We tested the hypothesis that an increase in surface temperature, in combination with intensification of vegetation, and enhanced precipitation, lead to conditions favorable for vector (mosquito) growth. Analysis of land surface temperature (LST) pattern shows that temperature values >16°C, with heavy precipitation, may lead to abundance of the mosquito population. This hypothesis was tested in West Virginia where a sudden epidemic of WNV infection was reported in 2012. Our results emphasize the value of hydroclimatic processes estimated by satellite remote sensing, as well as continued environmental surveillance of mosquitoes, because when a vector-borne infection like WNV is discovered in contiguous regions, the risk of spread of WNV mosquitoes increase at points where appropriate hydroclimatic processes intersect with the vector niche.
Some Correlation Functions in Matrix Product Ground States of One-Dimensional Two-State Chains
NASA Astrophysics Data System (ADS)
Shariati, Ahmad; Aghamohammadi, Amir; Fatollahi, Amir H.; Khorrami, Mohammad
2014-04-01
Consider one-dimensional chains with nearest neighbour interactions, for which to each site correspond two independent states (say up and down), and the ground state is a matrix product state. It has been shown [23] that for such systems, the ground states are linear combinations of specific vectors which are essentially direct products of specific numbers of ups and downs, symmetrized in a generalized manner. By a generalized manner, it is meant that the coefficient corresponding to the interchange of states of two sites, in not necessarily plus one or minus one, but a phase which depends on the Hamiltonian and the position of the two sites. Such vectors are characterized by a phase χ, the N-th power of which is one (where N is the number of sites), and an integer. Corresponding to χ, there is another integer M which is the smallest positive integer that χM is one. Two classes of correlation functions for such systems (basically correlation functions for such vectors) are calculated. The first class consists of correlation functions of tensor products of one-site diagonal observables; the second class consists of correlation functions of tensor products of less than M one-site observables (but not necessarily diagonal).
Identification of DNA-Binding Proteins Using Mixed Feature Representation Methods.
Qu, Kaiyang; Han, Ke; Wu, Song; Wang, Guohua; Wei, Leyi
2017-09-22
DNA-binding proteins play vital roles in cellular processes, such as DNA packaging, replication, transcription, regulation, and other DNA-associated activities. The current main prediction method is based on machine learning, and its accuracy mainly depends on the features extraction method. Therefore, using an efficient feature representation method is important to enhance the classification accuracy. However, existing feature representation methods cannot efficiently distinguish DNA-binding proteins from non-DNA-binding proteins. In this paper, a multi-feature representation method, which combines three feature representation methods, namely, K-Skip-N-Grams, Information theory, and Sequential and structural features (SSF), is used to represent the protein sequences and improve feature representation ability. In addition, the classifier is a support vector machine. The mixed-feature representation method is evaluated using 10-fold cross-validation and a test set. Feature vectors, which are obtained from a combination of three feature extractions, show the best performance in 10-fold cross-validation both under non-dimensional reduction and dimensional reduction by max-relevance-max-distance. Moreover, the reduced mixed feature method performs better than the non-reduced mixed feature technique. The feature vectors, which are a combination of SSF and K-Skip-N-Grams, show the best performance in the test set. Among these methods, mixed features exhibit superiority over the single features.
a Hyperspectral Image Classification Method Using Isomap and Rvm
NASA Astrophysics Data System (ADS)
Chang, H.; Wang, T.; Fang, H.; Su, Y.
2018-04-01
Classification is one of the most significant applications of hyperspectral image processing and even remote sensing. Though various algorithms have been proposed to implement and improve this application, there are still drawbacks in traditional classification methods. Thus further investigations on some aspects, such as dimension reduction, data mining, and rational use of spatial information, should be developed. In this paper, we used a widely utilized global manifold learning approach, isometric feature mapping (ISOMAP), to address the intrinsic nonlinearities of hyperspectral image for dimension reduction. Considering the impropriety of Euclidean distance in spectral measurement, we applied spectral angle (SA) for substitute when constructed the neighbourhood graph. Then, relevance vector machines (RVM) was introduced to implement classification instead of support vector machines (SVM) for simplicity, generalization and sparsity. Therefore, a probability result could be obtained rather than a less convincing binary result. Moreover, taking into account the spatial information of the hyperspectral image, we employ a spatial vector formed by different classes' ratios around the pixel. At last, we combined the probability results and spatial factors with a criterion to decide the final classification result. To verify the proposed method, we have implemented multiple experiments with standard hyperspectral images compared with some other methods. The results and different evaluation indexes illustrated the effectiveness of our method.
Efficiency Evaluation of Nozawa-Style Black Light Trap for Control of Anopheline Mosquitoes
Lee, Hee Il; Seo, Bo Youl; Shin, E-Hyun; Burkett, Douglas A.; Lee, Jong-Koo
2009-01-01
House-residual spraying and insecticide-treated bed nets have achieved some success in controlling anthropophilic and endophagic vectors. However, these methods have relatively low efficacy in Korea because Anopheles sinensis, the primary malaria vector, is highly zoophilic and exophilic. So, we focused our vector control efforts within livestock enclosures using ultraviolet black light traps as a mechanical control measure. We found that black light traps captured significantly more mosquitoes at 2 and 2.5 m above the ground (P < 0.05). We also evaluated the effectiveness of trap spacing within the livestock enclosure. In general, traps spaced between 4 and 7 m apart captured mosquitoes more efficiently than those spaced closer together (P > 0.05). Based on these findings, we concluded that each black light trap in the livestock enclosures killed 7,586 female mosquitoes per trap per night during the peak mosquito season (July-August). In May-August 2003, additional concurrent field trials were conducted in Ganghwa county. We got 74.9% reduction (P < 0.05) of An. sinensis in human dwellings and 61.5% reduction (P > 0.05) in the livestock enclosures. The black light trap operation in the livestock enclosures proved to be an effective control method and should be incorporated into existing control strategies in developed countries. PMID:19488423
NASA Astrophysics Data System (ADS)
Mustapha, S.; Braytee, A.; Ye, L.
2017-04-01
In this study, we focused at the development and verification of a robust framework for surface crack detection in steel pipes using measured vibration responses; with the presence of multiple progressive damage occurring in different locations within the structure. Feature selection, dimensionality reduction, and multi-class support vector machine were established for this purpose. Nine damage cases, at different locations, orientations and length, were introduced into the pipe structure. The pipe was impacted 300 times using an impact hammer, after each damage case, the vibration data were collected using 3 PZT wafers which were installed on the outer surface of the pipe. At first, damage sensitive features were extracted using the frequency response function approach followed by recursive feature elimination for dimensionality reduction. Then, a multi-class support vector machine learning algorithm was employed to train the data and generate a statistical model. Once the model is established, decision values and distances from the hyper-plane were generated for the new collected data using the trained model. This process was repeated on the data collected from each sensor. Overall, using a single sensor for training and testing led to a very high accuracy reaching 98% in the assessment of the 9 damage cases used in this study.
Le Menach, Arnaud; Takala, Shannon; McKenzie, F Ellis; Perisse, Andre; Harris, Anthony; Flahault, Antoine; Smith, David L
2007-01-25
Insecticide Treated Nets (ITNs) are an important tool for malaria control. ITNs are effective because they work on several parts of the mosquito feeding cycle, including both adult killing and repelling effects. Using an elaborated description of the classic feeding cycle model, simple formulas have been derived to describe how ITNs change mosquito behaviour and the intensity of malaria transmission, as summarized by vectorial capacity and EIR. The predicted changes are illustrated as a function of the frequency of ITN use for four different vector populations using parameter estimates from the literature. The model demonstrates that ITNs simultaneously reduce mosquitoes' lifespans, lengthen the feeding cycle, and by discouraging human biting divert more bites onto non-human hosts. ITNs can substantially reduce vectorial capacity through small changes to all of these quantities. The total reductions in vectorial capacity differ, moreover, depending on baseline behavior in the absence of ITNs. Reductions in lifespan and vectorial capacity are strongest for vector species with high baseline survival. Anthropophilic and zoophilic species are affected differently by ITNs; the feeding cycle is lengthened more for anthrophilic species, and the proportion of bites that are diverted onto non-human hosts is higher for zoophilic species. This model suggests that the efficacy of ITNs should be measured as a total reduction in transmission intensity, and that the quantitative effects will differ by species and by transmission intensity. At very high rates of ITN use, ITNs can generate large reductions in transmission intensity that could provide very large reductions in transmission intensity, and effective malaria control in some areas, especially when used in combination with other control measures. At high EIR, ITNs will probably not substantially reduce the parasite rate, but when transmission intensity is low, reductions in vectorial capacity combine with reductions in the parasite rate to generate very large reductions in EIR.
Chaibub Neto, Elias
2015-01-01
In this paper we propose a vectorized implementation of the non-parametric bootstrap for statistics based on sample moments. Basically, we adopt the multinomial sampling formulation of the non-parametric bootstrap, and compute bootstrap replications of sample moment statistics by simply weighting the observed data according to multinomial counts instead of evaluating the statistic on a resampled version of the observed data. Using this formulation we can generate a matrix of bootstrap weights and compute the entire vector of bootstrap replications with a few matrix multiplications. Vectorization is particularly important for matrix-oriented programming languages such as R, where matrix/vector calculations tend to be faster than scalar operations implemented in a loop. We illustrate the application of the vectorized implementation in real and simulated data sets, when bootstrapping Pearson’s sample correlation coefficient, and compared its performance against two state-of-the-art R implementations of the non-parametric bootstrap, as well as a straightforward one based on a for loop. Our investigations spanned varying sample sizes and number of bootstrap replications. The vectorized bootstrap compared favorably against the state-of-the-art implementations in all cases tested, and was remarkably/considerably faster for small/moderate sample sizes. The same results were observed in the comparison with the straightforward implementation, except for large sample sizes, where the vectorized bootstrap was slightly slower than the straightforward implementation due to increased time expenditures in the generation of weight matrices via multinomial sampling. PMID:26125965
González, Camila; Paz, Andrea; Ferro, Cristina
2014-01-01
Visceral leishmaniasis (VL) is caused by the trypanosomatid parasite Leishmania infantum (=Leishmania chagasi), and is epidemiologically relevant due to its wide geographic distribution, the number of annual cases reported and the increase in its co-infection with HIV. Two vector species have been incriminated in the Americas: Lutzomyia longipalpis and Lutzomyia evansi. In Colombia, L. longipalpis is distributed along the Magdalena River Valley while L. evansi is only found in the northern part of the Country. Regarding the epidemiology of the disease, in Colombia the incidence of VL has decreased over the last few years without any intervention being implemented. Additionally, changes in transmission cycles have been reported with urban transmission occurring in the Caribbean Coast. In Europe and North America climate change seems to be driving a latitudinal shift of leishmaniasis transmission. Here, we explored the spatial distribution of the two known vector species of L. infantum in Colombia and projected its future distribution into climate change scenarios to establish the expansion potential of the disease. An updated database including L. longipalpis and L. evansi collection records from Colombia was compiled. Ecological niche models were performed for each species using the Maxent software and 13 Worldclim bioclimatic coverages. Projections were made for the pessimistic CSIRO A2 scenario, which predicts the higher increase in temperature due to non-emission reduction, and the optimistic Hadley B2 Scenario predicting the minimum increase in temperature. The database contained 23 records for L. evansi and 39 records for L. longipalpis, distributed along the Magdalena River Valley and the Caribbean Coast, where the potential distribution areas of both species were also predicted by Maxent. Climate change projections showed a general overall reduction in the spatial distribution of the two vector species, promoting a shift in altitudinal distribution for L. longipalpis and confining L. evansi to certain regions in the Caribbean Coast. Altitudinal shifts have been reported for cutaneous leishmaniasis vectors in Colombia and Peru. Here, we predict the same outcome for VL vectors in Colombia. Changes in spatial distribution patterns could be affecting local abundances due to climatic pressures on vector populations thus reducing the incidence of human cases. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Devising novel strategies against vector mosquitoes and house flies
USDA-ARS?s Scientific Manuscript database
In 1932, the United States Department of Agriculture established an entomological research laboratory in Orlando, Florida. The initial focus of the program was on investigations of mosquitoes (including malaria vectors under conditions “simulating those of South Pacific jungles”) and other insects ...
The Utility of SAR to Monitor Ocean Processes.
1981-11-01
echo received from ocean waves include the motion of the a horizontally polarized wave will have its E vector parallel to scattering surfaces, the so...radiation is defined by the direction of the electric field intensity, E, vector . For example, a horizontally polarized wave will have its E vector ...Oil Spill Off the East Coast of the United States ................ .... 55 19. L-band Parallel and Cross Polarized SAR Imagery of Ice in the Beaufort
Stewart, Terrence C; Eliasmith, Chris
2013-06-01
Quantum probability (QP) theory can be seen as a type of vector symbolic architecture (VSA): mental states are vectors storing structured information and manipulated using algebraic operations. Furthermore, the operations needed by QP match those in other VSAs. This allows existing biologically realistic neural models to be adapted to provide a mechanistic explanation of the cognitive phenomena described in the target article by Pothos & Busemeyer (P&B).
Gene therapy for heart disease: molecular targets, vectors and modes of delivery to myocardium.
Scimia, Maria Cecilia; Cannavo, Alessandro; Koch, Walter J
2013-08-01
Despite the numerous hurdles that gene therapy has encountered along the way, clinical trials over the last few years are showing promising results in many fields of medicine, including cardiology, where many targets are moving toward clinical development. In this review, the authors discuss the current state of the art in terms of clinical and preclinical development. They also examine vector technology and available vector-delivery strategies.
Monath, Thomas P.; Seligman, Stephen J.; Robertson, James S.; Guy, Bruno; Hayes, Edward B.; Condit, Richard C.; Excler, Jean Louis; Mac, Lisa Marie; Carbery, Baevin; Chen, Robert T
2015-01-01
The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety of live, recombinant viral vaccines incorporating genes from heterologous viruses inserted into the backbone of another virus (so-called “chimeric virus vaccines”). Many viral vector vaccines are in advanced clinical trials. The first such vaccine to be approved for marketing (to date in Australia, Thailand, Malaysia, and the Philippines) is a vaccine against the flavivirus Japanese encephalitis (JE), which employs a licensed vaccine (yellow fever 17D) as a vector. In this vaccine, two envelope proteins (prM-E) of YF 17D virus were replaced by the corresponding genes of JE virus, with additional attenuating mutations incorporated into the JE gene inserts. Similar vaccines have been constructed by inserting prM-E genes of dengue and West Nile into YF 17D virus and are in late stage clinical studies. The dengue vaccine is, however, more complex in that it requires a mixture of four live vectors each expressing one of the four dengue serotypes. This vaccine has been evaluated in multiple clinical trials. No significant safety concerns have been found. The Phase 3 trials met their endpoints in terms of overall reduction of confirmed dengue fever, and, most importantly a significant reduction in severe dengue and hospitalization due to dengue. However, based on results that have been published so far, efficacy in preventing serotype 2 infection is less than that for the other three serotypes. In the development of these chimeric vaccines, an important series of comparative studies of safety and efficacy were made using the parental YF 17D vaccine virus as a benchmark. In this paper, we use a standardized template describing the key characteristics of the novel flavivirus vaccine vectors, in comparison to the parental YF 17D vaccine. The template facilitates scientific discourse among key stakeholders by increasing the transparency and comparability of information. The Brighton Collaboration V3SWG template may also be useful as a guide to the evaluation of other recombinant viral vector vaccines. PMID:25446819
Monath, Thomas P; Seligman, Stephen J; Robertson, James S; Guy, Bruno; Hayes, Edward B; Condit, Richard C; Excler, Jean Louis; Mac, Lisa Marie; Carbery, Baevin; Chen, Robert T
2015-01-01
The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety of live, recombinant viral vaccines incorporating genes from heterologous viruses inserted into the backbone of another virus (so-called "chimeric virus vaccines"). Many viral vector vaccines are in advanced clinical trials. The first such vaccine to be approved for marketing (to date in Australia, Thailand, Malaysia, and the Philippines) is a vaccine against the flavivirus, Japanese encephalitis (JE), which employs a licensed vaccine (yellow fever 17D) as a vector. In this vaccine, two envelope proteins (prM-E) of YF 17D virus were exchanged for the corresponding genes of JE virus, with additional attenuating mutations incorporated into the JE gene inserts. Similar vaccines have been constructed by inserting prM-E genes of dengue and West Nile into YF 17D virus and are in late stage clinical studies. The dengue vaccine is, however, more complex in that it requires a mixture of four live vectors each expressing one of the four dengue serotypes. This vaccine has been evaluated in multiple clinical trials. No significant safety concerns have been found. The Phase 3 trials met their endpoints in terms of overall reduction of confirmed dengue fever, and, most importantly a significant reduction in severe dengue and hospitalization due to dengue. However, based on results that have been published so far, efficacy in preventing serotype 2 infection is less than that for the other three serotypes. In the development of these chimeric vaccines, an important series of comparative studies of safety and efficacy were made using the parental YF 17D vaccine virus as a benchmark. In this paper, we use a standardized template describing the key characteristics of the novel flavivirus vaccine vectors, in comparison to the parental YF 17D vaccine. The template facilitates scientific discourse among key stakeholders by increasing the transparency and comparability of information. The Brighton Collaboration V3SWG template may also be useful as a guide to the evaluation of other recombinant viral vector vaccines. Copyright © 2014. Published by Elsevier Ltd.
Kumar, Manish; Mohanty, Ajeet Kumar; Sreenivasamurthy, Sreelakshmi K; Dey, Gourav; Advani, Jayshree; Pinto, Sneha M; Kumar, Ashwani; Prasad, Thottethodi Subrahmanya Keshava
2017-09-01
Malaria remains a grand challenge for disruptive innovation in global health therapeutics and diagnostics. Anopheles stephensi is one of the major vectors of malaria in Asia. Vector and transmission control are key focus areas in the fight against malaria, a field of postgenomics research where proteomics can play a substantive role. Moreover, to identify novel strategies to control the vector population, it is necessary to understand the vector life processes at a global and molecular scale. In this context, fat body is a vital organ required for vitellogenesis, vector immunity, vector physiology, and vector-parasite interaction. Given its central role in energy metabolism, vitellogenesis, and immune function, the proteome profile of the fat body and the impact of blood meal (BM) ingestion on the protein abundances of this vital organ have not been investigated so far. Therefore, using a proteomics approach, we identified the proteins expressed in the fat body of An. stephensi and their differential expression in response to BM ingestion. In all, we identified 3,218 proteins in the fat body using high-resolution mass spectrometry, of which 483 were found to be differentially expressed in response to the BM ingestion. Bioinformatics analysis of these proteins underscored their role in amino acid metabolism, vitellogenesis, lipid transport, signal peptide processing, mosquito immunity, and oxidation-reduction processes. Interestingly, we identified five novel genes, which were found to be differentially expressed upon BM ingestion. Proteins that exhibited altered expression in the present study are potential targets for vector control strategies and development of transmission blocking vaccines in the fight against malaria.
Is Vector Control Sufficient to Limit Pathogen Spread in Vineyards?
Daugherty, M P; O'Neill, S; Byrne, F; Zeilinger, A
2015-06-01
Vector control is widely viewed as an integral part of disease management. Yet epidemiological theory suggests that the effectiveness of control programs at limiting pathogen spread depends on a variety of intrinsic and extrinsic aspects of a pathosystem. Moreover, control programs rarely evaluate whether reductions in vector density or activity translate into reduced disease prevalence. In areas of California invaded by the glassy-winged sharpshooter (Homalodisca vitripennis Germar), Pierce's disease management relies heavily on chemical control of this vector, primarily via systemic conventional insecticides (i.e., imidacloprid). But, data are lacking that attribute reduced vector pressure and pathogen spread to sharpshooter control. We surveyed 34 vineyards over successive years to assess the epidemiological value of within-vineyard chemical control. The results showed that imidacloprid reduced vector pressure without clear nontarget effects or secondary pest outbreaks. Effects on disease prevalence were more nuanced. Treatment history over the preceding 5 yr affected disease prevalence, with significantly more diseased vines in untreated compared with regularly or intermittently treated vineyards. Yet, the change in disease prevalence between years was low, with no significant effects of insecticide treatment or vector abundance. Collectively, the results suggest that within-vineyard applications of imidacloprid can reduce pathogen spread, but with benefits that may take multiple seasons to become apparent. The relatively modest effect of vector control on disease prevalence in this system may be attributable in part to the currently low regional sharpshooter population densities stemming from area-wide control, without which the need for within-vineyard vector control would be more pronounced. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Quantum dynamics of relativistic bosons through nonminimal vector square potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliveira, Luiz P. de, E-mail: oliveira.phys@gmail.com
The dynamics of relativistic bosons (scalar and vectorial) through nonminimal vector square (well and barrier) potentials is studied in the Duffin–Kemmer–Petiau (DKP) formalism. We show that the problem can be mapped in effective Schrödinger equations for a component of the DKP spinor. An oscillatory transmission coefficient is found and there is total reflection. Additionally, the energy spectrum of bound states is obtained and reveals the Schiff–Snyder–Weinberg effect, for specific conditions the potential lodges bound states of particles and antiparticles. - Highlights: • DKP bosons in a nonminimal vector square potential are studied. • Spin zero and spin one bosons havemore » the same results. • The Schiff–Snyder–Weinberg effect is observed.« less
Nonlinear calibration for petroleum water content measurement using PSO
NASA Astrophysics Data System (ADS)
Li, Mingbao; Zhang, Jiawei
2008-10-01
A new algorithmic for strapdown inertial navigation system (SINS) state estimation based on neural networks is introduced. In training strategy, the error vector and its delay are introduced. This error vector is made of the position and velocity difference between the estimations of system and the outputs of GPS. After state prediction and state update, the states of the system are estimated. After off-line training, the network can approach the status switching of SINS and after on-line training, the state estimate precision can be improved further by reducing network output errors. Then the network convergence is discussed. In the end, several simulations with different noise are given. The results show that the neural network state estimator has lower noise sensitivity and better noise immunity than Kalman filter.
2009-01-01
CD VVV ∪= with DV countable and nCV ℜ∈ ; XInit ⊆ is a set of initial states; CXVXf →×: is a vector field, assumed to be 4 globally...DV countable and nCV ℜ∈ ; XInit ⊆ is a set of initial states; CXVXf →×: is a vector field, assumed to be globally Lipschitz in CX and...8217 ; V is a finite collection of input variables. We assume ( )CD VVV ∪= with DV countable and nCV ℜ∈ ; XInit ⊆ is a set of initial states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finkelstein, J.
I construct a positive-operator-valued measure (POVM) which has 2d rank-1 elements and which is informationally complete for generic pure states in d dimensions, thus confirming a conjecture made by Flammia, Silberfarb, and Caves (e-print quant-ph/0404137). I show that if a rank-1 POVM is required to be informationally complete for all pure states in d dimensions, it must have at least 3d-2 elements. I also show that, in a POVM which is informationally complete for all pure states in d dimensions, for any vector there must be at least 2d-1 POVM elements which do not annihilate that vector.
NASA Technical Reports Server (NTRS)
Battin, R. H.; Croopnick, S. R.; Edwards, J. A.
1977-01-01
The formulation of a recursive maximum likelihood navigation system employing reference position and velocity vectors as state variables is presented. Convenient forms of the required variational equations of motion are developed together with an explicit form of the associated state transition matrix needed to refer measurement data from the measurement time to the epoch time. Computational advantages accrue from this design in that the usual forward extrapolation of the covariance matrix of estimation errors can be avoided without incurring unacceptable system errors. Simulation data for earth orbiting satellites are provided to substantiate this assertion.
Radial quantization of the 3d CFT and the higher spin/vector model duality
NASA Astrophysics Data System (ADS)
Hu, Shan; Li, Tianjun
2014-10-01
We study the radial quantization of the 3dO(N) vector model. We calculate the higher spin charges whose commutation relations give the higher spin algebra. The Fock states of higher spin gravity in AdS4 are realized as the states in the 3d CFT. The dynamical information is encoded in their inner products. This serves as the simplest explicit demonstration of the CFT definition for the quantum gravity.
Angular motion estimation using dynamic models in a gyro-free inertial measurement unit.
Edwan, Ezzaldeen; Knedlik, Stefan; Loffeld, Otmar
2012-01-01
In this paper, we summarize the results of using dynamic models borrowed from tracking theory in describing the time evolution of the state vector to have an estimate of the angular motion in a gyro-free inertial measurement unit (GF-IMU). The GF-IMU is a special type inertial measurement unit (IMU) that uses only a set of accelerometers in inferring the angular motion. Using distributed accelerometers, we get an angular information vector (AIV) composed of angular acceleration and quadratic angular velocity terms. We use a Kalman filter approach to estimate the angular velocity vector since it is not expressed explicitly within the AIV. The bias parameters inherent in the accelerometers measurements' produce a biased AIV and hence the AIV bias parameters are estimated within an augmented state vector. Using dynamic models, the appended bias parameters of the AIV become observable and hence we can have unbiased angular motion estimate. Moreover, a good model is required to extract the maximum amount of information from the observation. Observability analysis is done to determine the conditions for having an observable state space model. For higher grades of accelerometers and under relatively higher sampling frequency, the error of accelerometer measurements is dominated by the noise error. Consequently, simulations are conducted on two models, one has bias parameters appended in the state space model and the other is a reduced model without bias parameters.
Angular Motion Estimation Using Dynamic Models in a Gyro-Free Inertial Measurement Unit
Edwan, Ezzaldeen; Knedlik, Stefan; Loffeld, Otmar
2012-01-01
In this paper, we summarize the results of using dynamic models borrowed from tracking theory in describing the time evolution of the state vector to have an estimate of the angular motion in a gyro-free inertial measurement unit (GF-IMU). The GF-IMU is a special type inertial measurement unit (IMU) that uses only a set of accelerometers in inferring the angular motion. Using distributed accelerometers, we get an angular information vector (AIV) composed of angular acceleration and quadratic angular velocity terms. We use a Kalman filter approach to estimate the angular velocity vector since it is not expressed explicitly within the AIV. The bias parameters inherent in the accelerometers measurements' produce a biased AIV and hence the AIV bias parameters are estimated within an augmented state vector. Using dynamic models, the appended bias parameters of the AIV become observable and hence we can have unbiased angular motion estimate. Moreover, a good model is required to extract the maximum amount of information from the observation. Observability analysis is done to determine the conditions for having an observable state space model. For higher grades of accelerometers and under relatively higher sampling frequency, the error of accelerometer measurements is dominated by the noise error. Consequently, simulations are conducted on two models, one has bias parameters appended in the state space model and the other is a reduced model without bias parameters. PMID:22778586
Entomological study of chikungunya infections in the State of Kelantan, Malaysia
Rozilawati, H.; Faudzi, A.Y.; Rahidah, A.A. Siti; Azlina, A.H. Nor; Abdullah, A.G.; Amal, N.M.; Mansor, H. Wan; Hani, H.; Apandi, Y.; Noor, Faezah; Norziyana; Nazni, W.A.; Zairi, J.; Lee, H.L.
2011-01-01
Background & objectives: Chikungunya infection has become a public health threat in Malaysia since the 2008 nationwide outbreaks. Aedes albopictus Skuse has been identified as the chikungunya vector in Johor State during the outbreaks. In 2009, several outbreaks had been reported in the State of Kelantan. Entomological studies were conducted in Kelantan in four districts, namely Jeli, Tumpat, Pasir Mas and Tanah Merah to identify the vector responsible for the virus transmission. Methods: CHIKV cases records were obtained from State Health Department, Kelantan and localities involved were identified. Larva survey was conducted to collect the immature mosquito stages. Modified aspirators were used to collect the adult mosquitoes. All samples on dry ice were transferred to laboratory and the presence of the virus was detected using reverse transcriptase PCR. Results: A total of 1,245 mosquito larvae were collected during larval survey and 2,019 adult mosquitoes were collected using aspirator. From these collections, 640 mosquito pools were tested for the presence of CHIKV by RT-PCR but none found positive. Ae. albopictus was the most abundant mosquito collected, followed by Culex sp., Armigeres sp. and Anopheles sp. A total of 2, 814 artificial containers were inspected during the study. Interpretation & conclusions: Since none of the mosquito samples was found to be positive for chikungunya virus, the vector(s) of chikungunya virus in these localities could not be identified. PMID:21727669
Peterson, Jennifer K; Bartsch, Sarah M; Lee, Bruce Y; Dobson, Andrew P
2015-10-22
Chagas disease (caused by Trypanosoma cruzi) is the most important neglected tropical disease (NTD) in Latin America, infecting an estimated 5.7 million people in the 21 countries where it is endemic. It is one of the NTDs targeted for control and elimination by the 2020 London Declaration goals, with the first goal being to interrupt intra-domiciliary vector-borne T. cruzi transmission. A key question in domestic T. cruzi transmission is the role that synanthropic animals play in T. cruzi transmission to humans. Here, we ask, (1) do synanthropic animals need to be targeted in Chagas disease prevention policies?, and (2) how does the presence of animals affect the efficacy of vector control? We developed a simple mathematical model to simulate domestic vector-borne T. cruzi transmission and to specifically examine the interaction between the presence of synanthropic animals and effects of vector control. We used the model to explore how the interactions between triatomine bugs, humans and animals impact the number and proportion of T. cruzi-infected bugs and humans. We then examined how T. cruzi dynamics change when control measures targeting vector abundance are introduced into the system. We found that the presence of synanthropic animals slows the speed of T. cruzi transmission to humans, and increases the sensitivity of T. cruzi transmission dynamics to vector control measures at comparable triatomine carrying capacities. However, T. cruzi transmission is amplified when triatomine carrying capacity increases with the abundance of syntathoropic hosts. Our results suggest that in domestic T. cruzi transmission scenarios where no vector control measures are in place, a reduction in synanthropic animals may slow T. cruzi transmission to humans, but it would not completely eliminate transmission. To reach the 2020 goal of interrupting intra-domiciliary T. cruzi transmission, it is critical to target vector populations. Additionally, where vector control measures are in place, synanthropic animals may be beneficial.
Okamoto, Kenichi W; Gould, Fred; Lloyd, Alun L
2016-03-01
Many vector-borne diseases lack effective vaccines and medications, and the limitations of traditional vector control have inspired novel approaches based on using genetic engineering to manipulate vector populations and thereby reduce transmission. Yet both the short- and long-term epidemiological effects of these transgenic strategies are highly uncertain. If neither vaccines, medications, nor transgenic strategies can by themselves suffice for managing vector-borne diseases, integrating these approaches becomes key. Here we develop a framework to evaluate how clinical interventions (i.e., vaccination and medication) can be integrated with transgenic vector manipulation strategies to prevent disease invasion and reduce disease incidence. We show that the ability of clinical interventions to accelerate disease suppression can depend on the nature of the transgenic manipulation deployed (e.g., whether vector population reduction or replacement is attempted). We find that making a specific, individual strategy highly effective may not be necessary for attaining public-health objectives, provided suitable combinations can be adopted. However, we show how combining only partially effective antimicrobial drugs or vaccination with transgenic vector manipulations that merely temporarily lower vector competence can amplify disease resurgence following transient suppression. Thus, transgenic vector manipulation that cannot be sustained can have adverse consequences-consequences which ineffective clinical interventions can at best only mitigate, and at worst temporarily exacerbate. This result, which arises from differences between the time scale on which the interventions affect disease dynamics and the time scale of host population dynamics, highlights the importance of accounting for the potential delay in the effects of deploying public health strategies on long-term disease incidence. We find that for systems at the disease-endemic equilibrium, even modest perturbations induced by weak interventions can exhibit strong, albeit transient, epidemiological effects. This, together with our finding that under some conditions combining strategies could have transient adverse epidemiological effects suggests that a relatively long time horizon may be necessary to discern the efficacy of alternative intervention strategies.
Okamoto, Kenichi W.; Gould, Fred; Lloyd, Alun L.
2016-01-01
Many vector-borne diseases lack effective vaccines and medications, and the limitations of traditional vector control have inspired novel approaches based on using genetic engineering to manipulate vector populations and thereby reduce transmission. Yet both the short- and long-term epidemiological effects of these transgenic strategies are highly uncertain. If neither vaccines, medications, nor transgenic strategies can by themselves suffice for managing vector-borne diseases, integrating these approaches becomes key. Here we develop a framework to evaluate how clinical interventions (i.e., vaccination and medication) can be integrated with transgenic vector manipulation strategies to prevent disease invasion and reduce disease incidence. We show that the ability of clinical interventions to accelerate disease suppression can depend on the nature of the transgenic manipulation deployed (e.g., whether vector population reduction or replacement is attempted). We find that making a specific, individual strategy highly effective may not be necessary for attaining public-health objectives, provided suitable combinations can be adopted. However, we show how combining only partially effective antimicrobial drugs or vaccination with transgenic vector manipulations that merely temporarily lower vector competence can amplify disease resurgence following transient suppression. Thus, transgenic vector manipulation that cannot be sustained can have adverse consequences—consequences which ineffective clinical interventions can at best only mitigate, and at worst temporarily exacerbate. This result, which arises from differences between the time scale on which the interventions affect disease dynamics and the time scale of host population dynamics, highlights the importance of accounting for the potential delay in the effects of deploying public health strategies on long-term disease incidence. We find that for systems at the disease-endemic equilibrium, even modest perturbations induced by weak interventions can exhibit strong, albeit transient, epidemiological effects. This, together with our finding that under some conditions combining strategies could have transient adverse epidemiological effects suggests that a relatively long time horizon may be necessary to discern the efficacy of alternative intervention strategies. PMID:26962871
NASA Astrophysics Data System (ADS)
Ng, Theam Foo; Pham, Tuan D.; Zhou, Xiaobo
2010-01-01
With the fast development of multi-dimensional data compression and pattern classification techniques, vector quantization (VQ) has become a system that allows large reduction of data storage and computational effort. One of the most recent VQ techniques that handle the poor estimation of vector centroids due to biased data from undersampling is to use fuzzy declustering-based vector quantization (FDVQ) technique. Therefore, in this paper, we are motivated to propose a justification of FDVQ based hidden Markov model (HMM) for investigating its effectiveness and efficiency in classification of genotype-image phenotypes. The performance evaluation and comparison of the recognition accuracy between a proposed FDVQ based HMM (FDVQ-HMM) and a well-known LBG (Linde, Buzo, Gray) vector quantization based HMM (LBG-HMM) will be carried out. The experimental results show that the performances of both FDVQ-HMM and LBG-HMM are almost similar. Finally, we have justified the competitiveness of FDVQ-HMM in classification of cellular phenotype image database by using hypotheses t-test. As a result, we have validated that the FDVQ algorithm is a robust and an efficient classification technique in the application of RNAi genome-wide screening image data.
A research agenda for malaria eradication: vector control.
2011-01-25
Different challenges are presented by the variety of malaria transmission environments present in the world today. In each setting, improved control for reduction of morbidity is a necessary first step towards the long-range goal of malaria eradication and a priority for regions where the disease burden is high. For many geographic areas where transmission rates are low to moderate, sustained and well-managed application of currently available tools may be sufficient to achieve local elimination. The research needs for these areas will be to sustain and perhaps improve the effectiveness of currently available tools. For other low-to-moderate transmission regions, notably areas where the vectors exhibit behaviours such as outdoor feeding and resting that are not well targeted by current strategies, new interventions that target predictable features of the biology/ecologies of the local vectors will be required. To achieve elimination in areas where high levels of transmission are sustained by very efficient vector species, radically new interventions that significantly reduce the vectorial capacity of wild populations will be needed. Ideally, such interventions should be implemented with a one-time application with a long-lasting impact, such as genetic modification of the vectorial capacity of the wild vector population.
A new implementation of the CMRH method for solving dense linear systems
NASA Astrophysics Data System (ADS)
Heyouni, M.; Sadok, H.
2008-04-01
The CMRH method [H. Sadok, Methodes de projections pour les systemes lineaires et non lineaires, Habilitation thesis, University of Lille1, Lille, France, 1994; H. Sadok, CMRH: A new method for solving nonsymmetric linear systems based on the Hessenberg reduction algorithm, Numer. Algorithms 20 (1999) 303-321] is an algorithm for solving nonsymmetric linear systems in which the Arnoldi component of GMRES is replaced by the Hessenberg process, which generates Krylov basis vectors which are orthogonal to standard unit basis vectors rather than mutually orthogonal. The iterate is formed from these vectors by solving a small least squares problem involving a Hessenberg matrix. Like GMRES, this method requires one matrix-vector product per iteration. However, it can be implemented to require half as much arithmetic work and less storage. Moreover, numerical experiments show that this method performs accurately and reduces the residual about as fast as GMRES. With this new implementation, we show that the CMRH method is the only method with long-term recurrence which requires not storing at the same time the entire Krylov vectors basis and the original matrix as in the GMRES algorithmE A comparison with Gaussian elimination is provided.
Risk analysis and prediction of visceral leishmaniasis dispersion in São Paulo State, Brazil.
Sevá, Anaiá da Paixão; Mao, Liang; Galvis-Ovallos, Fredy; Tucker Lima, Joanna Marie; Valle, Denis
2017-02-01
Visceral leishmaniasis (VL) is an important neglected disease caused by a protozoan parasite, and represents a serious public health problem in many parts of the world. It is zoonotic in Europe and Latin America, where infected dogs constitute the main domestic reservoir for the parasite and play a key role in VL transmission to humans. In Brazil this disease is caused by the protozoan Leishmania infantum chagasi, and is transmitted by the sand fly Lutzomyia longipalpis. Despite programs aimed at eliminating infection sources, the disease continues to spread throughout the Country. VL in São Paulo State, Brazil, first appeared in the northwestern region, spreading in a southeasterly direction over time. We integrate data on the VL vector, infected dogs and infected human dispersion from 1999 to 2013 through an innovative spatial temporal Bayesian model in conjunction with geographic information system. This model is used to infer the drivers of the invasion process and predict the future progression of VL through the State. We found that vector dispersion was influenced by vector presence in nearby municipalities at the previous time step, proximity to the Bolívia-Brazil gas pipeline, and high temperatures (i.e., annual average between 20 and 23°C). Key factors affecting infected dog dispersion included proximity to the Marechal Rondon Highway, high temperatures, and presence of the competent vector within the same municipality. Finally, vector presence, presence of infected dogs, and rainfall (approx. 270 to 540mm/year) drove the dispersion of human VL cases. Surprisingly, economic factors exhibited no noticeable influence on disease dispersion. Based on these drivers and stochastic simulations, we identified which municipalities are most likely to be invaded by vectors and infected hosts in the future. Prioritizing prevention and control strategies within the identified municipalities may help halt the spread of VL while reducing monitoring costs. Our results contribute important knowledge to public and animal health policy planning, and suggest that prevention and control strategies should focus on vector control and on blocking contact between vectors and hosts in the priority areas identified to be at risk.
Risk analysis and prediction of visceral leishmaniasis dispersion in São Paulo State, Brazil
Mao, Liang; Galvis-Ovallos, Fredy; Tucker Lima, Joanna Marie; Valle, Denis
2017-01-01
Visceral leishmaniasis (VL) is an important neglected disease caused by a protozoan parasite, and represents a serious public health problem in many parts of the world. It is zoonotic in Europe and Latin America, where infected dogs constitute the main domestic reservoir for the parasite and play a key role in VL transmission to humans. In Brazil this disease is caused by the protozoan Leishmania infantum chagasi, and is transmitted by the sand fly Lutzomyia longipalpis. Despite programs aimed at eliminating infection sources, the disease continues to spread throughout the Country. VL in São Paulo State, Brazil, first appeared in the northwestern region, spreading in a southeasterly direction over time. We integrate data on the VL vector, infected dogs and infected human dispersion from 1999 to 2013 through an innovative spatial temporal Bayesian model in conjunction with geographic information system. This model is used to infer the drivers of the invasion process and predict the future progression of VL through the State. We found that vector dispersion was influenced by vector presence in nearby municipalities at the previous time step, proximity to the Bolívia-Brazil gas pipeline, and high temperatures (i.e., annual average between 20 and 23°C). Key factors affecting infected dog dispersion included proximity to the Marechal Rondon Highway, high temperatures, and presence of the competent vector within the same municipality. Finally, vector presence, presence of infected dogs, and rainfall (approx. 270 to 540mm/year) drove the dispersion of human VL cases. Surprisingly, economic factors exhibited no noticeable influence on disease dispersion. Based on these drivers and stochastic simulations, we identified which municipalities are most likely to be invaded by vectors and infected hosts in the future. Prioritizing prevention and control strategies within the identified municipalities may help halt the spread of VL while reducing monitoring costs. Our results contribute important knowledge to public and animal health policy planning, and suggest that prevention and control strategies should focus on vector control and on blocking contact between vectors and hosts in the priority areas identified to be at risk. PMID:28166251
An analysis of satellite state vector observability using SST tracking data
NASA Technical Reports Server (NTRS)
Englar, T. S., Jr.; Hammond, C. L.
1976-01-01
Observability of satellite state vectors, using only SST tracking data was investigated by covariance analysis under a variety of satellite and station configurations. These results indicate very precarious observability in most short arc cases. The consequences of this are large variances on many state components, such as the downrange component of the relay satellite position. To illustrate the impact of observability problems, an example is given of two distinct satellite orbit pairs generating essentially the same data arc. The physical bases for unobservability are outlined and related to proposed TDRSS configurations. Results are relevant to any mission depending upon TDRSS to determine satellite state. The required mathematical analysis and the software used is described.
Lee, David; Park, Sang-Hoon; Lee, Sang-Goog
2017-10-07
In this paper, we propose a set of wavelet-based combined feature vectors and a Gaussian mixture model (GMM)-supervector to enhance training speed and classification accuracy in motor imagery brain-computer interfaces. The proposed method is configured as follows: first, wavelet transforms are applied to extract the feature vectors for identification of motor imagery electroencephalography (EEG) and principal component analyses are used to reduce the dimensionality of the feature vectors and linearly combine them. Subsequently, the GMM universal background model is trained by the expectation-maximization (EM) algorithm to purify the training data and reduce its size. Finally, a purified and reduced GMM-supervector is used to train the support vector machine classifier. The performance of the proposed method was evaluated for three different motor imagery datasets in terms of accuracy, kappa, mutual information, and computation time, and compared with the state-of-the-art algorithms. The results from the study indicate that the proposed method achieves high accuracy with a small amount of training data compared with the state-of-the-art algorithms in motor imagery EEG classification.
Photon and vector meson exchanges in the production of light meson pairs and elementary atoms
NASA Astrophysics Data System (ADS)
Gevorkyan, S. R.; Kuraev, E. A.; Volkov, M. K.
2013-01-01
The production of pseudoscalar and scalar meson pairs ππ, ηη, η‧η‧, σσ as well as bound states in high energy γγ collisions are considered. The exchange by a vector particle in the binary process γ + γ → ha + hb with hadronic states ha, hb in fragmentation regions of the initial particle leads to nondecreasing cross sections with increasing energy, that is a priority of peripheral kinematics. Unlike the photon exchange the vector meson exchange needs a reggeization leading to fall with energy growth. Nevertheless, due to the peripheral kinematics beyond very forward production angles the vector meson exchanges dominate over all possible exchanges. The proposed approach allows one to express the matrix elements of the considered processes through impacting factors, which can be calculated in perturbation models like chiral perturbation theory (ChPT) or the Nambu-Jona-Lasinio (NJL) model. In particular cases the impact factors can be determined from relevant γγ sub-processes or the vector meson radiative decay width. The pionium atom production in the collisions of high energy electrons and pions with protons is considered and the relevant cross sections have been estimated.
Culicoides-virus interactions: infection barriers and possible factors underlying vector competence
USDA-ARS?s Scientific Manuscript database
In the United States, Culicoides midges vector arboviruses of economic importance such as Bluetongue Virus and Epizootic Hemorrhagic Disease Virus. A limited number of studies have demonstrated the complexities of midge-virus interactions, including dynamic changes in virus titer and prevalence over...
AGT, N-Burge partitions and {{W}}_N minimal models
NASA Astrophysics Data System (ADS)
Belavin, Vladimir; Foda, Omar; Santachiara, Raoul
2015-10-01
Let {B}_{N,n}^{p,p', H} be a conformal block, with n consecutive channels χ ι , ι = 1, ⋯ n, in the conformal field theory {M}_N^{p,p'× {M}^{H} , where {M}_N^{p,p' } is a {W}_N minimal model, generated by chiral spin-2, ⋯ spin- N currents, and labeled by two co-prime integers p and p', 1 < p < p', while {M}^{H} is a free boson conformal field theory. {B}_{N,n}^{p,p', H} is the expectation value of vertex operators between an initial and a final state. Each vertex operator is labelled by a charge vector that lives in the weight lattice of the Lie algebra A N - 1, spanned by weight vectors {overrightarrow{ω}}_1,\\cdots, {overrightarrow{ω}}_{N-1} . We restrict our attention to conformal blocks with vertex operators whose charge vectors point along {overrightarrow{ω}}_1 . The charge vectors that label the initial and final states can point in any direction.
Viability of strongly coupled scenarios with a light Higgs-like boson.
Pich, Antonio; Rosell, Ignasi; Sanz-Cillero, Juan José
2013-05-03
We present a one-loop calculation of the oblique S and T parameters within strongly coupled models of electroweak symmetry breaking with a light Higgs-like boson. We use a general effective Lagrangian, implementing the chiral symmetry breaking SU(2)(L) [Symbol: see text]SU(2)(R) → SU(2)(L+R) with Goldstone bosons, gauge bosons, the Higgs-like scalar, and one multiplet of vector and axial-vector massive resonance states. Using a dispersive representation and imposing a proper ultraviolet behavior, we obtain S and T at the next-to-leading order in terms of a few resonance parameters. The experimentally allowed range forces the vector and axial-vector states to be heavy, with masses above the TeV scale, and suggests that the Higgs-like scalar should have a WW coupling close to the standard model one. Our conclusions are generic and apply to more specific scenarios such as the minimal SO(5)/SO(4) composite Higgs model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong Li; Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL; Genetics Institute, University of Florida College of Medicine, Gainesville, FL
2008-11-25
We have documented that epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK) signaling negatively affects intracellular trafficking and transduction efficiency of recombinant adeno-associated virus 2 (AAV2) vectors. Specifically, inhibition of EGFR-PTK signaling leads to decreased ubiquitination of AAV2 capsid proteins, which in turn, facilitates viral nuclear transport by limiting proteasome-mediated degradation of AAV2 vectors. In the present studies, we observed that AAV capsids can indeed be phosphorylated at tyrosine residues by EGFR-PTK in in vitro phosphorylation assays and that phosphorylated AAV capsids retain their structural integrity. However, although phosphorylated AAV vectors enter cells as efficiently as their unphosphorylated counterparts, theirmore » transduction efficiency is significantly reduced. This reduction is not due to impaired viral second-strand DNA synthesis since transduction efficiency of both single-stranded AAV (ssAAV) and self-complementary AAV (scAAV) vectors is decreased by {approx} 68% and {approx} 74%, respectively. We also observed that intracellular trafficking of tyrosine-phosphorylated AAV vectors from cytoplasm to nucleus is significantly decreased, which results from ubiquitination of AAV capsids followed by proteasome-mediated degradation, although downstream consequences of capsid ubiquitination may also be affected by tyrosine-phosphorylation. These studies provide new insights into the role of tyrosine-phosphorylation of AAV capsids in various steps in the virus life cycle, which has implications in the optimal use of recombinant AAV vectors in human gene therapy.« less
Photoelectrochemical etching measurement of defect density in GaN grown by nanoheteroepitaxy
NASA Astrophysics Data System (ADS)
Ferdous, M. S.; Sun, X. Y.; Wang, X.; Fairchild, M. N.; Hersee, S. D.
2006-05-01
The density of dislocations in n-type GaN was measured by photoelectrochemical etching. A 10× reduction in dislocation density was observed compared to planar GaN grown at the same time. Cross-sectional transmission electron microscopy studies indicate that defect reduction is due to the mutual cancellation of dislocations with equal and opposite Burger's vectors. The nanoheteroepitaxy sample exhibited significantly higher photoluminescence intensity and higher electron mobility than the planar reference sample.
Epidemiological characteristics of dengue disease in Saurashtra region, India, during year 2015
Mistry, Madhulika; Chudasama, Rajesh K.; Goswami, Yogesh; Dalwadi, Chintan; Mitra, Aarohi; Mehta, Garima
2017-01-01
Background: Dengue is an important vector-borne disease with a spectrum of classical fever to hemorrhagic fever to dengue shock syndrome. The present study was conducted with objective to study epidemiological and demographic characteristics of dengue infections during the year 2015 in Saurashtra region, Gujarat state, India. Materials and Methods: The study was conducted at Tertiary Care Hospital, Rajkot, during the year 2015. A total of 3312 blood samples were collected and tested for dengue NS1 antigen and IgM antibody by capture ELISA testing from various districts of Saurashtra region. A pretested structured data sheet was used as a tool for data collection, and data analysis was done. Results: Out of 3312 tested samples, 33.4% samples were found positive for dengue. Suspected cases were reported from all age groups, including majority from 15 to 24 years (31.1%) and 25 to 44 years (30.0%) and also 8.4% from 0 to 4 years. More than two-third (68.7%) of males were dengue positive than female cases. Significant numbers of cases (P < 0.01) were residing in urban areas (65.7%). Two-third cases (66.8%) diagnosed after 7 days of fever by IgM antibody test. Increasing number of dengue cases reported from July and reached to peak during October 2015. Conclusion: The present study reported that dengue mainly affected males and urban population. Perennial occurrence with seasonal increase during monsoon and postmonsoon months was reported. Effective implementation of vector control measures through efforts toward vector breeding source reduction and with the use of personal prophylactic measures against mosquito bites will help in reducing the dengue prevalence in the community. PMID:29302526
NASA Astrophysics Data System (ADS)
Lesieur, Thibault; Krzakala, Florent; Zdeborová, Lenka
2017-07-01
This article is an extended version of previous work of Lesieur et al (2015 IEEE Int. Symp. on Information Theory Proc. pp 1635-9 and 2015 53rd Annual Allerton Conf. on Communication, Control and Computing (IEEE) pp 680-7) on low-rank matrix estimation in the presence of constraints on the factors into which the matrix is factorized. Low-rank matrix factorization is one of the basic methods used in data analysis for unsupervised learning of relevant features and other types of dimensionality reduction. We present a framework to study the constrained low-rank matrix estimation for a general prior on the factors, and a general output channel through which the matrix is observed. We draw a parallel with the study of vector-spin glass models—presenting a unifying way to study a number of problems considered previously in separate statistical physics works. We present a number of applications for the problem in data analysis. We derive in detail a general form of the low-rank approximate message passing (Low-RAMP) algorithm, that is known in statistical physics as the TAP equations. We thus unify the derivation of the TAP equations for models as different as the Sherrington-Kirkpatrick model, the restricted Boltzmann machine, the Hopfield model or vector (xy, Heisenberg and other) spin glasses. The state evolution of the Low-RAMP algorithm is also derived, and is equivalent to the replica symmetric solution for the large class of vector-spin glass models. In the section devoted to result we study in detail phase diagrams and phase transitions for the Bayes-optimal inference in low-rank matrix estimation. We present a typology of phase transitions and their relation to performance of algorithms such as the Low-RAMP or commonly used spectral methods.
Vector and axial-vector charmoniumlike states
NASA Astrophysics Data System (ADS)
Chen, Wei; Zhu, Shi-Lin
2011-02-01
After constructing all the tetraquark interpolating currents with JPC=1-+, 1--, 1++ and 1+- in a systematic way, we investigate the two-point correlation functions to extract the masses of the charmoniumlike states with QCD sum rule. For the 1-- qcq¯c¯ charmoniumlike state, mX=4.6˜4.7GeV, which implies a possible tetraquark interpretation for the state Y(4660). The masses for both the 1++ qcq¯c¯ and scs¯c¯ charmoniumlike states are around 4.0˜4.2GeV, which are slightly above the mass of X(3872). For the 1-+ and 1+- qcq¯c¯ charmoniumlike states, the extracted masses are around 4.5˜4.7GeV and 4.0˜4.2GeV, respectively. As a by-product, the bottomoniumlike states are also studied. We also discuss the possible decay modes and experimental search of the charmoniumlike states.
Towards denoising XMCD movies of fast magnetization dynamics using extended Kalman filter.
Kopp, M; Harmeling, S; Schütz, G; Schölkopf, B; Fähnle, M
2015-01-01
The Kalman filter is a well-established approach to get information on the time-dependent state of a system from noisy observations. It was developed in the context of the Apollo project to see the deviation of the true trajectory of a rocket from the desired trajectory. Afterwards it was applied to many different systems with small numbers of components of the respective state vector (typically about 10). In all cases the equation of motion for the state vector was known exactly. The fast dissipative magnetization dynamics is often investigated by x-ray magnetic circular dichroism movies (XMCD movies), which are often very noisy. In this situation the number of components of the state vector is extremely large (about 10(5)), and the equation of motion for the dissipative magnetization dynamics (especially the values of the material parameters of this equation) is not well known. In the present paper it is shown by theoretical considerations that - nevertheless - there is no principle problem for the use of the Kalman filter to denoise XMCD movies of fast dissipative magnetization dynamics. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Giacosa, Francesco; Sammet, Julia; Janowski, Stanislaus
2017-06-01
We calculate two- and three-body decays of the (lightest) vector glueball into (pseudo)scalar, (axial-)vector, as well as pseudovector and excited vector mesons in the framework of a model of QCD. While absolute values of widths cannot be predicted because the corresponding coupling constants are unknown, some interesting branching ratios can be evaluated by setting the mass of the yet hypothetical vector glueball to 3.8 GeV as predicted by quenched lattice QCD. We find that the decay mode ω π π should be one of the largest (both through the decay chain O →b1π →ω π π and through the direct coupling O →ω π π ). Similarly, the (direct and indirect) decay into π K K*(892 ) is sizable. Moreover, the decays into ρ π and K*(892 )K are, although subleading, possible and could play a role in explaining the ρ π puzzle of the charmonium state ψ (2 S ) thanks to a (small) mixing with the vector glueball. The vector glueball can be directly formed at the ongoing BESIII experiment as well as at the future PANDA experiment at the FAIR facility. If the width is sufficiently small (≲100 MeV ) it should not escape future detection. It should be stressed that the employed model is based on some inputs and simplifying assumptions: the value of glueball mass (at present, the quenched lattice value is used), the lack of mixing of the glueball with other quarkonium states, and the use of few interaction terms. It then represents a first step toward the identification of the main decay channels of the vector glueball, but shall be improved when corresponding experimental candidates and/or new lattice results will be available.
Constructing storyboards based on hierarchical clustering analysis
NASA Astrophysics Data System (ADS)
Hasebe, Satoshi; Sami, Mustafa M.; Muramatsu, Shogo; Kikuchi, Hisakazu
2005-07-01
There are growing needs for quick preview of video contents for the purpose of improving accessibility of video archives as well as reducing network traffics. In this paper, a storyboard that contains a user-specified number of keyframes is produced from a given video sequence. It is based on hierarchical cluster analysis of feature vectors that are derived from wavelet coefficients of video frames. Consistent use of extracted feature vectors is the key to avoid a repetition of computationally-intensive parsing of the same video sequence. Experimental results suggest that a significant reduction in computational time is gained by this strategy.
Agalarov, Agalar; Zhulego, Vladimir; Gadzhimuradov, Telman
2015-04-01
The reduction procedure for the general coupled nonlinear Schrödinger (GCNLS) equations with four-wave mixing terms is proposed. It is shown that the GCNLS system is equivalent to the well known integrable families of the Manakov and Makhankov U(n,m)-vector models. This equivalence allows us to construct bright-bright and dark-dark solitons and a quasibreather-dark solution with unconventional dynamics: the density of the first component oscillates in space and time, whereas the density of the second component does not. The collision properties of solitons are also studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamazaki, Kazuo
2014-03-15
We study the three-dimensional magnetohydrodynamics system and obtain its regularity criteria in terms of only two velocity vector field components eliminating the condition on the third component completely. The proof consists of a new decomposition of the four nonlinear terms of the system and estimating a component of the magnetic vector field in terms of the same component of the velocity vector field. This result may be seen as a component reduction result of many previous works [C. He and Z. Xin, “On the regularity of weak solutions to the magnetohydrodynamic equations,” J. Differ. Equ. 213(2), 234–254 (2005); Y. Zhou,more » “Remarks on regularities for the 3D MHD equations,” Discrete Contin. Dyn. Syst. 12(5), 881–886 (2005)].« less
Gain in computational efficiency by vectorization in the dynamic simulation of multi-body systems
NASA Technical Reports Server (NTRS)
Amirouche, F. M. L.; Shareef, N. H.
1991-01-01
An improved technique for the identification and extraction of the exact quantities associated with the degrees of freedom at the element as well as the flexible body level is presented. It is implemented in the dynamic equations of motions based on the recursive formulation of Kane et al. (1987) and presented in a matrix form, integrating the concepts of strain energy, the finite-element approach, modal analysis, and reduction of equations. This technique eliminates the CPU intensive matrix multiplication operations in the code's hot spots for the dynamic simulation of the interconnected rigid and flexible bodies. A study of a simple robot with flexible links is presented by comparing the execution times on a scalar machine and a vector-processor with and without vector options. Performance figures demonstrating the substantial gains achieved by the technique are plotted.
Snack food as a modulator of human resting-state functional connectivity.
Mendez-Torrijos, Andrea; Kreitz, Silke; Ivan, Claudiu; Konerth, Laura; Rösch, Julie; Pischetsrieder, Monika; Moll, Gunther; Kratz, Oliver; Dörfler, Arnd; Horndasch, Stefanie; Hess, Andreas
2018-04-04
To elucidate the mechanisms of how snack foods may induce non-homeostatic food intake, we used resting state functional magnetic resonance imaging (fMRI), as resting state networks can individually adapt to experience after short time exposures. In addition, we used graph theoretical analysis together with machine learning techniques (support vector machine) to identifying biomarkers that can categorize between high-caloric (potato chips) vs. low-caloric (zucchini) food stimulation. Seventeen healthy human subjects with body mass index (BMI) 19 to 27 underwent 2 different fMRI sessions where an initial resting state scan was acquired, followed by visual presentation of different images of potato chips and zucchini. There was then a 5-minute pause to ingest food (day 1=potato chips, day 3=zucchini), followed by a second resting state scan. fMRI data were further analyzed using graph theory analysis and support vector machine techniques. Potato chips vs. zucchini stimulation led to significant connectivity changes. The support vector machine was able to accurately categorize the 2 types of food stimuli with 100% accuracy. Visual, auditory, and somatosensory structures, as well as thalamus, insula, and basal ganglia were found to be important for food classification. After potato chips consumption, the BMI was associated with the path length and degree in nucleus accumbens, middle temporal gyrus, and thalamus. The results suggest that high vs. low caloric food stimulation in healthy individuals can induce significant changes in resting state networks. These changes can be detected using graph theory measures in conjunction with support vector machine. Additionally, we found that the BMI affects the response of the nucleus accumbens when high caloric food is consumed.
Discrete Vector Solitons in Kerr Nonlinear Waveguide Arrays
NASA Astrophysics Data System (ADS)
Meier, Joachim; Hudock, Jared; Christodoulides, Demetrios; Stegeman, George; Silberberg, Y.; Morandotti, R.; Aitchison, J. S.
2003-10-01
We report the first experimental observation of discrete vector solitons in AlGaAs nonlinear waveguide arrays. These self-trapped states are possible through the coexistence of two orthogonally polarized fields and are stable in spite of the presence of four-wave mixing effects. We demonstrate that at sufficiently high power levels the two polarizations lock into a highly localized vector discrete soliton that would have been otherwise impossible in the absence of either one of these two components.
NASA Astrophysics Data System (ADS)
Yamauchi, Touru; Ueda, Hiroaki; Ohwada, Kenji; Nakao, Hironori; Ueda, Yutaka
2018-03-01
A common characteristic of quasi-one-dimensional (q1D) conductors β -A0.33V2O5 (A = Li, Na, and Ag) is that the charge ordering (CO), the ground state (GS) at ambient pressure, and the superconducting (SC) phases, the GS under high pressure, are competing with each other. We have explored high-pressure properties of divalent β -vanadium bronzes, β -A0.33V2O5 (A = Ca, Sr, and Pb), which are A -cation stoichiometry finely controlled single-crystal/powder samples, and found the absence of the SC phase. In these observations, however, we observed enormous and novel phase transitions, a kind of "devil's staircase"-type phase transitions in the charge ordering (CO) phases. The most surprising discovery in this devil's staircase, which was found mainly in β -Sr0.33V2O5 , is that all the charge modulation vectors of many kinds of CO phases can be represented as a primitive lattice translation vector along the b axis multiplied by several odd numbers. This discovery surely demonstrates interplay between the charge degree freedom and the crystallographic symmetry. We propose two possible mechanisms to explain this phenomenon: "self-charge transfer (carrier redistribution)" between the two subsystems in these compounds and "sequential symmetry reduction" that was discussed in Landau theory of phase transitions. In β -Ca0.33V2O5 we also found a P -T phase diagram similar in outlook but different in detail. The devil's staircase was also observed but it is an incomplete one. Furthermore, the charge modulation vectors in it are shorter than those in β -Sr0.33V2O5 . In β -Pb0.33V2O5 , which has no CO phase at ambient pressure, the pressure-induced antiferromagnetic ordering was observed at around 50 K above 0.5 GPa. Using these two kinds of mechanisms, we also explain the global high-pressure properties in all the stoichiometric divalent β -vanadium bronzes, which were observed as a wide variety of electromagnetic states. In addition, we also discuss a possible key for the presence/absence of the SC phase under pressure.
A Comparison of Nonlinear Filters for Orbit Determination and Estimation
1986-06-01
Com- mand uses a nonlinear least squares filter for element set maintenance for all objects orbiting the Earth (3). These objects, including active...initial state vector is the singularly averaged classical orbital element set provided by SPACECOM/DOA. The state vector in this research consists of...GSF (G) - - 26.0 36.7 GSF(A) 32.1 77.4 38.8 59.6 The Air Force Space Command is responsible for main- taining current orbital element sets for about
Development of Cell Models as a Basis for Bioreactor Design for Genetically Modified Bacteria
1986-10-30
of future behavior based on specifying the current state vector . Generally a total population greater than 10,000 is sufficient to allow treatment of...specifying the current state vector (essentially values for all variables in the model). Deterministic models become increasingly valid as the number of...host I A) and therein PARASItIS converts the host’s biomaterial or activities into its own + A and B are in physical contact. SYMBIOSIS (or perhaps Oi
Business cycles and fertility dynamics in the United States: a vector autoregressive model.
Mocan, N H
1990-01-01
"Using vector-autoregressions...this paper shows that fertility moves countercyclically over the business cycle....[It] shows that the United States fertility is not governed by a deterministic trend as was assumed by previous studies. Rather, fertility evolves around a stochastic trend. It is shown that a bivariate analysis between fertility and unemployment yields a procyclical picture of fertility. However, when one considers the effects on fertility of early marriages and the divorce behavior as well as economic activity, fertility moves countercyclically." excerpt
Quantum dynamics of relativistic bosons through nonminimal vector square potentials
NASA Astrophysics Data System (ADS)
de Oliveira, Luiz P.
2016-09-01
The dynamics of relativistic bosons (scalar and vectorial) through nonminimal vector square (well and barrier) potentials is studied in the Duffin-Kemmer-Petiau (DKP) formalism. We show that the problem can be mapped in effective Schrödinger equations for a component of the DKP spinor. An oscillatory transmission coefficient is found and there is total reflection. Additionally, the energy spectrum of bound states is obtained and reveals the Schiff-Snyder-Weinberg effect, for specific conditions the potential lodges bound states of particles and antiparticles.
Identifying saltcedar with hyperspectral data and support vector machines
USDA-ARS?s Scientific Manuscript database
Saltcedar (Tamarix spp.) are a group of dense phreatophytic shrubs and trees that are invasive to riparian areas throughout the United States. This study determined the feasibility of using hyperspectral data and a support vector machine (SVM) classifier to discriminate saltcedar from other cover t...
Controller design for wind turbine load reduction via multiobjective parameter synthesis
NASA Astrophysics Data System (ADS)
Hoffmann, A. F.; Weiβ, F. A.
2016-09-01
During the design process for a wind turbine load reduction controller many different, sometimes conflicting requirements must be fulfilled simultaneously. If the requirements can be expressed as mathematical criteria, such a design problem can be solved by a criterion-vector and multi-objective design optimization. The software environment MOPS (Multi-Objective Parameter Synthesis) supports the engineer for such a design optimization. In this paper MOPS is applied to design a multi-objective load reduction controller for the well-known DTU 10 MW reference wind turbine. A significant reduction in the fatigue criteria especially the blade damage can be reached by the use of an additional Individual Pitch Controller (IPC) and an additional tower damper. This reduction is reached as a trade-off with an increase of actuator load.
Viejo-Borbolla, A; Pizzato, M; Blair, E D; Schulz, T F
2005-03-01
Several groups have inserted targeting domains into the envelope glycoprotein (Env) of Moloney murine leukemia virus (MoMLV) in an attempt to produce targeted retroviral vectors for human gene therapy. While binding of these modified Envs to the target molecule expressed on the surface of human cells was observed, specific high-titer infection of human cells expressing the target molecule was not achieved. Here we investigate the initial steps in the entry process of targeted MoMLV vectors both in murine and human cells expressing the MoMLV receptor, the mouse cationic amino acid transporter-1 (mCAT-1). We show that insertion of a small ligand targeted to E-selectin and of a single chain antibody (scFv) targeted to folate-binding protein (FBP) into the N-terminus of MoMLV Env results in the reduction of the infectivity and the kinetics of entry of the MoMLV vectors. The use of soluble receptor-binding domain (sRBD), bafilomycin A1 (BafA1) and methyl-beta-cyclodextrin (MbetaC) increase the infectivity of the MoMLV vectors targeted to FBP (MoMLV-FBP) suggesting that the scFv targeted to FBP increases the threshold for fusion and might re-route entry of the targeted MoMLV-FBP vector towards an endocytic, non-productive pathway.
Family leader empowerment program using participatory learning process for dengue vector control.
Pengvanich, Veerapong
2011-02-01
Assess the performance of the empowerment program using participatory learning process for the control of Dengue vector The program focuses on using the leaders of families as the main executer of the vector control protocol. This quasi-experimental research utilized the two-group pretest-posttest design. The sample group consisted of 120 family leaders from two communities in Mueang Municipality, Chachoengsao Province. The research was conducted during an 8-week period between April and June 2010. The data were collected and analyzed based on frequency, percentage, mean, paired t-test, and independent t-test. The result was evaluated by comparing the difference between the mean prevalence index of mosquito larvae before and after the process implementation in terms of the container index (CI) and the house index (HI). After spending eight weeks in the empowerment program, the family leader's behavior in the aspect of Dengue vector control has improved. The Container Index and the House Index were found to decrease with p = 0.05 statistical significance. The reduction of CI and HI suggested that the program worked well in the selected communities. The success of the Dengue vector control program depended on cooperation and participation of many groups, especially the families in the community When the family leaders have good attitude and are capable of carrying out the vector control protocol, the risk factor leading to the incidence of Dengue rims infection can be reduced.
Turunen, Tytteli A K; Kurkipuro, Jere; Heikura, Tommi; Vuorio, Taina; Hytönen, Elisa; Izsvák, Zsuzsanna; Ylä-Herttuala, Seppo
2016-01-01
Plasmid-based Sleeping Beauty (SB) transposon vectors were developed and used to deliver genes for low-density lipoprotein and very-low-density lipoprotein receptors (LDLR and VLDLR, respectively) or lacZ reporter into liver of an LDLR-deficient mouse model of familial hypercholesterolemia (FH). SB transposase, SB100x, was used to integrate the therapeutic transposons into mice livers for evaluating the feasibility of the vectors in reducing high blood cholesterol and the progression of atherosclerosis. Hydrodynamic gene delivery of transposon-VLDLR into the livers of the mice resulted in initial 17–19% reductions in plasma cholesterol, and at the later time points, in a significant stabilization of the cholesterol level for the 6.5-month duration of the study compared to the control mice. Transposon-LDLR-treated animals also demonstrated a trend of stabilization in the cholesterol levels in the long term. Vector-treated mice had slightly less lipid accumulation in the liver and reduced aortic atherosclerosis. Clinical chemistry and histological analyses revealed normal liver function and morphology comparable to that of the controls during the follow-up with no safety issues regarding the vector type, transgenes, or the gene transfer method. The study demonstrates the safety and potential benefits of the SB transposon vectors in the treatment of FH. PMID:26670130
Reciprocity relationships in vector acoustics and their application to vector field calculations.
Deal, Thomas J; Smith, Kevin B
2017-08-01
The reciprocity equation commonly stated in underwater acoustics relates pressure fields and monopole sources. It is often used to predict the pressure measured by a hydrophone for multiple source locations by placing a source at the hydrophone location and calculating the field everywhere for that source. A similar equation that governs the orthogonal components of the particle velocity field is needed to enable this computational method to be used for acoustic vector sensors. This paper derives a general reciprocity equation that accounts for both monopole and dipole sources. This vector-scalar reciprocity equation can be used to calculate individual components of the received vector field by altering the source type used in the propagation calculation. This enables a propagation model to calculate the received vector field components for an arbitrary number of source locations with a single model run for each vector field component instead of requiring one model run for each source location. Application of the vector-scalar reciprocity principle is demonstrated with analytic solutions for a range-independent environment and with numerical solutions for a range-dependent environment using a parabolic equation model.
The Anopheles gambiae transcriptome - a turning point for malaria control.
Domingos, A; Pinheiro-Silva, R; Couto, J; do Rosário, V; de la Fuente, J
2017-04-01
Mosquitoes are important vectors of several pathogens and thereby contribute to the spread of diseases, with social, economic and public health impacts. Amongst the approximately 450 species of Anopheles, about 60 are recognized as vectors of human malaria, the most important parasitic disease. In Africa, Anopheles gambiae is the main malaria vector mosquito. Current malaria control strategies are largely focused on drugs and vector control measures such as insecticides and bed-nets. Improvement of current, and the development of new, mosquito-targeted malaria control methods rely on a better understanding of mosquito vector biology. An organism's transcriptome is a reflection of its physiological state and transcriptomic analyses of different conditions that are relevant to mosquito vector competence can therefore yield important information. Transcriptomic analyses have contributed significant information on processes such as blood-feeding parasite-vector interaction, insecticide resistance, and tissue- and stage-specific gene regulation, thereby facilitating the path towards the development of new malaria control methods. Here, we discuss the main applications of transcriptomic analyses in An. gambiae that have led to a better understanding of mosquito vector competence. © 2017 The Royal Entomological Society.
Zhao, Yu-Xiang; Chou, Chien-Hsing
2016-01-01
In this study, a new feature selection algorithm, the neighborhood-relationship feature selection (NRFS) algorithm, is proposed for identifying rat electroencephalogram signals and recognizing Chinese characters. In these two applications, dependent relationships exist among the feature vectors and their neighboring feature vectors. Therefore, the proposed NRFS algorithm was designed for solving this problem. By applying the NRFS algorithm, unselected feature vectors have a high priority of being added into the feature subset if the neighboring feature vectors have been selected. In addition, selected feature vectors have a high priority of being eliminated if the neighboring feature vectors are not selected. In the experiments conducted in this study, the NRFS algorithm was compared with two feature algorithms. The experimental results indicated that the NRFS algorithm can extract the crucial frequency bands for identifying rat vigilance states and identifying crucial character regions for recognizing Chinese characters. PMID:27314346
Gustafson, L; Ellis, S; Robinson, T; Marenghi, F; Endris, R
2006-10-01
The efficacy of emamectin benzoate (SLICE) against sea lice infestations of Atlantic salmon, Salmo salar L., is typically assessed using untreated fish, or fish treated with alternative therapeutants, as controls. The State of Maine, USA, is currently under active management for the OIE-notifiable pathogen, infectious salmon anaemia virus (ISAV); consequently, neither control group is feasible in this region. Untreated salmon risk extensive damage from the ectoparasites, and threaten to increase vector-borne exposure or susceptibility of farms to ISAV; and the only treatment presently available in Maine is SLICE. However, because sea lice infestations are unlikely to resolve spontaneously, and response to treatment occurs within weeks, use of a pretreatment baseline is a reasonable alternative for confirmatory studies. We evaluated SLICE efficacy on Atlantic salmon farms in Cobscook Bay 2002-2005, in the absence of untreated controls, using pretreatment lice loads as a reference for calculation. Maximum efficacy ranged from 68% to 100% reduction from initial levels. Time-to-maximum efficacy ranged from 1 to 8 weeks after treatment initiation. Efficacy duration, measured between first reduction and first progressive rise in counts, ranged from 4 to 16 weeks.
Speckle noise reduction for optical coherence tomography based on adaptive 2D dictionary
NASA Astrophysics Data System (ADS)
Lv, Hongli; Fu, Shujun; Zhang, Caiming; Zhai, Lin
2018-05-01
As a high-resolution biomedical imaging modality, optical coherence tomography (OCT) is widely used in medical sciences. However, OCT images often suffer from speckle noise, which can mask some important image information, and thus reduce the accuracy of clinical diagnosis. Taking full advantage of nonlocal self-similarity and adaptive 2D-dictionary-based sparse representation, in this work, a speckle noise reduction algorithm is proposed for despeckling OCT images. To reduce speckle noise while preserving local image features, similar nonlocal patches are first extracted from the noisy image and put into groups using a gamma- distribution-based block matching method. An adaptive 2D dictionary is then learned for each patch group. Unlike traditional vector-based sparse coding, we express each image patch by the linear combination of a few matrices. This image-to-matrix method can exploit the local correlation between pixels. Since each image patch might belong to several groups, the despeckled OCT image is finally obtained by aggregating all filtered image patches. The experimental results demonstrate the superior performance of the proposed method over other state-of-the-art despeckling methods, in terms of objective metrics and visual inspection.
Bearing diagnostics: A method based on differential geometry
NASA Astrophysics Data System (ADS)
Tian, Ye; Wang, Zili; Lu, Chen; Wang, Zhipeng
2016-12-01
The structures around bearings are complex, and the working environment is variable. These conditions cause the collected vibration signals to become nonlinear, non-stationary, and chaotic characteristics that make noise reduction, feature extraction, fault diagnosis, and health assessment significantly challenging. Thus, a set of differential geometry-based methods with superiorities in nonlinear analysis is presented in this study. For noise reduction, the Local Projection method is modified by both selecting the neighborhood radius based on empirical mode decomposition and determining noise subspace constrained by neighborhood distribution information. For feature extraction, Hessian locally linear embedding is introduced to acquire manifold features from the manifold topological structures, and singular values of eigenmatrices as well as several specific frequency amplitudes in spectrograms are extracted subsequently to reduce the complexity of the manifold features. For fault diagnosis, information geometry-based support vector machine is applied to classify the fault states. For health assessment, the manifold distance is employed to represent the health information; the Gaussian mixture model is utilized to calculate the confidence values, which directly reflect the health status. Case studies on Lorenz signals and vibration datasets of bearings demonstrate the effectiveness of the proposed methods.
NASA Astrophysics Data System (ADS)
Zhou, Wei; Sooryakumar, R.; King, Sean
2010-03-01
Low K dielectrics have predominantly replaced silicon dioxide as the interlayer dielectric material for interconnects in state of the art integrated circuits. To further reduce interconnect resistance-capacitance (RC) delays, additional reductions in the K for these low-K materials is being pursued by the introduction of controlled levels of porosity. The main challenge for porous low-K dielectrics is the substantial reduction in mechanical properties that is accompanied by the increased pore volume content needed to reduce K. We report on the application of the nondestructive Brillouin light scattering technique to monitor and characterize the mechanical properties of these porous films at thicknesses well below 200 nm that are pertinent to present applications. Observation of longitudinal and transverse standing wave acoustic resonances and the dispersion that accompany their transformation into traveling waves with finite in-plane wave vectors provides for the principal elastic constants that completely characterize the mechanical properties of these porous films. The mode amplitudes of the standing waves, their variation within the film, and the calculated Brillouin intensities account for most aspects of the spectra. The resulting elastic constants are compared with corresponding values obtained from other experimental techniques.
Thermoelastic enhancement of the magnonic spin Seebeck effect in thin films and bulk samples
NASA Astrophysics Data System (ADS)
Chotorlishvili, L.; Wang, X.-G.; Toklikishvili, Z.; Berakdar, J.
2018-04-01
A nonuniform temperature profile may generate a pure spin current in magnetic films, as observed, for instance, in the spin Seebeck effect. In addition, thermally induced elastic deformations may set in that could affect the spin current. A self-consistent theory of the magnonic spin Seebeck effect including thermally activated magnetoelastic effects is presented, and analytical expressions for the thermally activated deformation tensor and dispersion relations for coupled magnetoelastic modes are obtained. We derive analytical results for bulk (three-dimensional) systems and thin magnetic (two-dimensional) films. We observe that the displacement vector and the deformation tensor in bulk systems decay asymptotically as u ˜1 /R2 and ɛ ˜1 /R3 , respectively, while the decays in thin magnetic films proceed slower, following u ˜1 /R and ɛ ˜1 /R2 . The dispersion relations evidence a strong anisotropy in the magnetic excitations. We observe that a thermoelastic steady-state deformation may lead to both an enchantment and a reduction of the gap in the magnonic spectrum. The reduction of the gap increases the number of magnons contributing to the spin Seebeck effect and offers new possibilities for the thermoelastic control of the spin Seebeck effect.
First confirmed case of Powassan neuroinvasive disease in Rhode Island.
Patel, Kavin M; Johnson, Jennie; Zacharioudakis, Ioannis M; Boxerman, Jerrold L; Flanigan, Timothy P; Reece, Rebecca M
2018-01-01
The Powassan Virus is the arthropod-borne vector responsible for Powassan neuroinvasive disease. The virus was first isolated in 1958 and has been responsible for approximately 100 cases of neuroinvasive disease. Rates of infection have been on the rise over the past decade with numerous states reporting their first confirmed case; New Jersey, New Hampshire and Connecticut all reported their first case within the last five years. We present here the first confirmed case of Powassan neuroinvasive disease in the nearby state of Rhode Island. A previously healthy 81-year-old female with known tick exposure presented with fever, altered sensorium, seizures and focal neurological deficits. After an extensive work-up that was largely unrevealing Powassan encephalitis was suspected. The diagnosis was confirmed with serological testing consisting of Powassan IgM enzyme-linked immunosorbent assay and Powassan plaque reduction neutralization testing. The case study provides evidence for the increasing spread of Powassan neuroinvasive disease and reinforces the importance of requesting focused testing for Powassan Virus in patients from an endemic area with a clinically compatible syndrome.
Mineral Replacement Reactions as a Precursor to Strain Localisation: an (HR-)EBSD approach
NASA Astrophysics Data System (ADS)
Gardner, J.; Wheeler, J.; Wallis, D.; Hansen, L. N.; Mariani, E.
2017-12-01
Much remains to be learned about the links between metamorphism and deformation. Our work investigates the behaviour of fluid-mediated mineral replacement reaction products when exposed to subsequent shear stresses. We focus on albite from a metagabbro that has experienced metamorphism and subsequent deformation at greenschist facies, resulting in a reduction in grain size and associated strain localisation. EBSD maps show that prior to grain size reduction, product grains are highly distorted, yet they formed, and subsequently deformed, at temperatures at which extensive dislocation creep is unlikely. The Weighted Burgers Vector can be used to quantitatively describe the types of Burgers vectors present in geometrically necessary dislocation (GND) populations derived from 2-D EBSD map data. Application of this technique to the distorted product grains reveals the prominence of, among others, dislocations with apparent [010] Burgers vectors. This supports (with some caveats) the idea that dislocation creep is not responsible for the observed lattice distortion, as there are no known slip systems in plagioclase with a [010] Burgers vector. Distortion in a replacement microstructure has also been attributed to the presence of nanoscale product grains, which share very similar, but not identical, orientations due to topotactic nucleation from adjacent sites on the same substrate. As a precipitate, the product grains should be expected to be largely free of elastic strain. However, high angular resolution EBSD results demonstrate that product grains contain both elastic strains (> 10-3) and residual stresses (several hundred MPa), as well as GND densities on the order of 1014-1015 m-2. Thus we suggest the observed distortion (elastic strain plus rotations) in the lattice is produced during the mineral replacement reaction by a lattice mismatch and volume change between parent and product. Stored strain energy then provides a driving force for recovery and recrystallization. Recrystallization produces smaller grains with high angle boundaries, reducing the strength of, and allowing deformation to localise in, the albite phase. Grain size reduction in turn facilitates shear deformation to high strains by a grain size sensitive mechanism (fluid-assisted diffusion creep).
A Novel Clustering Method Curbing the Number of States in Reinforcement Learning
NASA Astrophysics Data System (ADS)
Kotani, Naoki; Nunobiki, Masayuki; Taniguchi, Kenji
We propose an efficient state-space construction method for a reinforcement learning. Our method controls the number of categories with improving the clustering method of Fuzzy ART which is an autonomous state-space construction method. The proposed method represents weight vector as the mean value of input vectors in order to curb the number of new categories and eliminates categories whose state values are low to curb the total number of categories. As the state value is updated, the size of category becomes small to learn policy strictly. We verified the effectiveness of the proposed method with simulations of a reaching problem for a two-link robot arm. We confirmed that the number of categories was reduced and the agent achieved the complex task quickly.
Dark forces coupled to nonconserved currents
NASA Astrophysics Data System (ADS)
Dror, Jeff A.; Lasenby, Robert; Pospelov, Maxim
2017-10-01
New light vectors with dimension-4 couplings to Standard Model states have (energy/vectormass)2-enhanced production rates unless the current they couple to is conserved. These processes allow us to derive new constraints on the couplings of such vectors, that are significantly stronger than the previous literature for a wide variety of models. Examples include vectors with axial couplings to quarks and vectors coupled to currents (such as baryon number) that are only broken by the chiral anomaly. Our new limits arise from a range of processes, including rare Z decays and flavor-changing meson decays, and rule out a number of phenomenologically motivated proposals.
The Role of Innate Immunity in Conditioning Mosquito Susceptibility to West Nile Virus
Prasad, Abhishek N.; Brackney, Doug. E.; Ebel, Gregory D.
2013-01-01
Arthropod-borne viruses (arboviruses) represent an emerging threat to human and livestock health globally. In particular, those transmitted by mosquitoes present the greatest challenges to disease control efforts. An understanding of the molecular basis for mosquito innate immunity to arbovirus infection is therefore critical to investigations regarding arbovirus evolution, virus-vector ecology, and mosquito vector competence. In this review, we discuss the current state of understanding regarding mosquito innate immunity to West Nile virus. We draw from the literature with respect to other virus-vector pairings to attempt to draw inferences to gaps in our knowledge about West Nile virus and relevant vectors. PMID:24351797
Jung, Inuk; Jo, Kyuri; Kang, Hyejin; Ahn, Hongryul; Yu, Youngjae; Kim, Sun
2017-12-01
Identifying biologically meaningful gene expression patterns from time series gene expression data is important to understand the underlying biological mechanisms. To identify significantly perturbed gene sets between different phenotypes, analysis of time series transcriptome data requires consideration of time and sample dimensions. Thus, the analysis of such time series data seeks to search gene sets that exhibit similar or different expression patterns between two or more sample conditions, constituting the three-dimensional data, i.e. gene-time-condition. Computational complexity for analyzing such data is very high, compared to the already difficult NP-hard two dimensional biclustering algorithms. Because of this challenge, traditional time series clustering algorithms are designed to capture co-expressed genes with similar expression pattern in two sample conditions. We present a triclustering algorithm, TimesVector, specifically designed for clustering three-dimensional time series data to capture distinctively similar or different gene expression patterns between two or more sample conditions. TimesVector identifies clusters with distinctive expression patterns in three steps: (i) dimension reduction and clustering of time-condition concatenated vectors, (ii) post-processing clusters for detecting similar and distinct expression patterns and (iii) rescuing genes from unclassified clusters. Using four sets of time series gene expression data, generated by both microarray and high throughput sequencing platforms, we demonstrated that TimesVector successfully detected biologically meaningful clusters of high quality. TimesVector improved the clustering quality compared to existing triclustering tools and only TimesVector detected clusters with differential expression patterns across conditions successfully. The TimesVector software is available at http://biohealth.snu.ac.kr/software/TimesVector/. sunkim.bioinfo@snu.ac.kr. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Gunasekaran, Kasinathan; Sahu, Sudhansu Sekhar; Vijayakumar, Tharmalingam; Subramanian, Swaminathan; Yadav, Rajpal Singh; Pigeon, Olivier; Jambulingam, Purushothaman
2016-07-21
Fast development of pyrethroid resistance in malaria vectors prompted the development of new vector control tools including combination of insecticides with different modes of action as part of resistance management strategies. Olyset Plus® is a new long-lasting insecticidal net, in which, permethrin and a synergist, piperonyl butoxide (PBO), are incorporated into filaments. Mixture nets such as this may have application against resistant mosquitoes, particularly those whose resistance is based on oxidative metabolism. There may also be enhanced activity against susceptible mosquitoes since mixed function oxidases are involved in a many metabolic activities including activation to form bioactive compounds. Bio-efficacy of Olyset Plus was evaluated against susceptible malaria vector, Anopheles fluviatilis in experimental huts. Deterrence, blood feeding inhibition, induced exophily and killing effect were measured to assess the bio-efficacy. The results were compared with Olyset Net®, a polyethylene permethrin-incorporated LLIN and a conventionally treated polyester net (with permethrin) washed to just before exhaustion. Results showed significant reduction in entry (treatment: 0.4-0.8; control: 4.2 per trap-night) and increase in exit (56.3-82.9 % and 44.2 %) rates of Anopheles fluviatilis in the treatment arms compared to control (P < 0.05). While blood feeding rates declined in treatment arms (18.8-30.6 %), it increased in control (77.6 %) (P < 0.05). This was further evident from the blood-feeding inhibition rates in treatment arms (60.6-90.6 %). Total mortality was significantly higher in all treatment arms (96.3-100 %) compared to control arm (2 %) (P < 0.05). Chemical analysis for active ingredient (AI) showed retention of 75 and 88 % in Olyset plus and Olyset net respectively after 20 washes. Performance of Olyset Plus washed 20 times was equal to the CTN and Olyset Net against the susceptible malaria vector An. fluviatilis, fulfilling the WHO efficacy criteria of Phase II evaluation for LLIN. However, the benefit of incorporating PBO and permethrin together in a long-lasting treatment could not be demonstrated in the current study as the target vector species was fully susceptible to pyrethroids. Olyset Plus, with its intrinsic bio-efficacy could be an effective vector control tool to prevent transmission of malaria by susceptible vectors like An. fluviatilis. However, the results of the current study need to be further supported by testing the net at village level (Phase III) for community acceptability. Before taking the net to village level, it needs to be verified whether the net is better than pyrethroid nets in terms of bio-efficacy against resistant An. culicifacies, another malaria vector that has developed resistance to synthetic pyrethroids in India.
Ari, Tamara Ben; Gershunov, Alexander; Tristan, Rouyer; Cazelles, Bernard; Gage, Kenneth; Stenseth, Nils C
2010-09-01
Plague is a vector-borne, highly virulent zoonotic disease caused by the bacterium Yersinia pestis. It persists in nature through transmission between its hosts (wild rodents) and vectors (fleas). During epizootics, the disease expands and spills over to other host species such as humans living in or close to affected areas. Here, we investigate the effect of large-scale climate variability on the dynamics of human plague in the western United States using a 56-year time series of plague reports (1950-2005). We found that El Niño Southern Oscillation and Pacific Decadal Oscillation in combination affect the dynamics of human plague over the western United States. The underlying mechanism could involve changes in precipitation and temperatures that impact both hosts and vectors. It is suggested that snow also may play a key role, possibly through its effects on summer soil moisture, which is known to be instrumental for flea survival and development and sustained growth of vegetation for rodents.
An artificial neural network model for periodic trajectory generation
NASA Astrophysics Data System (ADS)
Shankar, S.; Gander, R. E.; Wood, H. C.
A neural network model based on biological systems was developed for potential robotic application. The model consists of three interconnected layers of artificial neurons or units: an input layer subdivided into state and plan units, an output layer, and a hidden layer between the two outer layers which serves to implement nonlinear mappings between the input and output activation vectors. Weighted connections are created between the three layers, and learning is effected by modifying these weights. Feedback connections between the output and the input state serve to make the network operate as a finite state machine. The activation vector of the plan units of the input layer emulates the supraspinal commands in biological central pattern generators in that different plan activation vectors correspond to different sequences or trajectories being recalled, even with different frequencies. Three trajectories were chosen for implementation, and learning was accomplished in 10,000 trials. The fault tolerant behavior, adaptiveness, and phase maintenance of the implemented network are discussed.
Planetary Gears Feature Extraction and Fault Diagnosis Method Based on VMD and CNN.
Liu, Chang; Cheng, Gang; Chen, Xihui; Pang, Yusong
2018-05-11
Given local weak feature information, a novel feature extraction and fault diagnosis method for planetary gears based on variational mode decomposition (VMD), singular value decomposition (SVD), and convolutional neural network (CNN) is proposed. VMD was used to decompose the original vibration signal to mode components. The mode matrix was partitioned into a number of submatrices and local feature information contained in each submatrix was extracted as a singular value vector using SVD. The singular value vector matrix corresponding to the current fault state was constructed according to the location of each submatrix. Finally, by training a CNN using singular value vector matrices as inputs, planetary gear fault state identification and classification was achieved. The experimental results confirm that the proposed method can successfully extract local weak feature information and accurately identify different faults. The singular value vector matrices of different fault states have a distinct difference in element size and waveform. The VMD-based partition extraction method is better than ensemble empirical mode decomposition (EEMD), resulting in a higher CNN total recognition rate of 100% with fewer training times (14 times). Further analysis demonstrated that the method can also be applied to the degradation recognition of planetary gears. Thus, the proposed method is an effective feature extraction and fault diagnosis technique for planetary gears.
Changes in Black-legged Tick Population in New England with Future Climate Change
NASA Astrophysics Data System (ADS)
Krishnan, S.; Huber, M.
2015-12-01
Lyme disease is one of the most frequently reported vector-borne diseases in the United States. In the Northeastern United States, vector transmission is maintained in a horizontal transmission cycle between the vector, the black-legged ticks, and the vertebrate reservoir hosts, which include white-tailed deer, rodents and other medium to large sized mammals. Predicting how vector populations change with future climate change is critical to understanding disease spread in the future, and for developing suitable regional adaptation strategies. For the United States, these predictions have mostly been made using regressions based on field and lab studies, or using spatial suitability studies. However, the relation between tick populations at various life-cycle stages and climate variables are complex, necessitating a mechanistic approach. In this study, we present a framework for driving a mechanistic tick population model with high-resolution regional climate modeling projections. The goal is to estimate changes in black-legged tick populations in New England for the 21st century. The tick population model used is based on the mechanistic approach of Ogden et al., (2005) developed for Canada. Dynamically downscaled climate projections at a 3-kms resolution using the Weather and Research Forecasting Model (WRF) are used to drive the tick population model.
Planetary Gears Feature Extraction and Fault Diagnosis Method Based on VMD and CNN
Cheng, Gang; Chen, Xihui
2018-01-01
Given local weak feature information, a novel feature extraction and fault diagnosis method for planetary gears based on variational mode decomposition (VMD), singular value decomposition (SVD), and convolutional neural network (CNN) is proposed. VMD was used to decompose the original vibration signal to mode components. The mode matrix was partitioned into a number of submatrices and local feature information contained in each submatrix was extracted as a singular value vector using SVD. The singular value vector matrix corresponding to the current fault state was constructed according to the location of each submatrix. Finally, by training a CNN using singular value vector matrices as inputs, planetary gear fault state identification and classification was achieved. The experimental results confirm that the proposed method can successfully extract local weak feature information and accurately identify different faults. The singular value vector matrices of different fault states have a distinct difference in element size and waveform. The VMD-based partition extraction method is better than ensemble empirical mode decomposition (EEMD), resulting in a higher CNN total recognition rate of 100% with fewer training times (14 times). Further analysis demonstrated that the method can also be applied to the degradation recognition of planetary gears. Thus, the proposed method is an effective feature extraction and fault diagnosis technique for planetary gears. PMID:29751671
The Total Gaussian Class of Quasiprobabilities and its Relation to Squeezed-State Excitations
NASA Technical Reports Server (NTRS)
Wuensche, Alfred
1996-01-01
The class of quasiprobabilities obtainable from the Wigner quasiprobability by convolutions with the general class of Gaussian functions is investigated. It can be described by a three-dimensional, in general, complex vector parameter with the property of additivity when composing convolutions. The diagonal representation of this class of quasiprobabilities is connected with a generalization of the displaced Fock states in direction of squeezing. The subclass with real vector parameter is considered more in detail. It is related to the most important kinds of boson operator ordering. The properties of a specific set of discrete excitations of squeezed coherent states are given.
Current statewide updates regarding the battle of the Asian Citrus Psyllid and Huanglongbing
USDA-ARS?s Scientific Manuscript database
Huanglongbing (HLB) is a serious economic disease of citrus, vectored by the Asian Citrus Psyllid (ACP). The disease and its vector have become established in the United States in the last few decades. This submission reviews recent developments for pest control industry professionals. The submissio...
Contributions of hydrology to Vesicular Stomatitis Virus emergence in the Western United States
USDA-ARS?s Scientific Manuscript database
Relationships between environmental variables associated with the spread of vector-borne pathogens, such as RNA viruses transmitted to humans and animals, remain poorly understood. Vesicular stomatitis (VS) is caused by a vector-borne, zoonotic RNA virus (VSV), and is the most common vesicular dise...
Knowledge Space: A Conceptual Basis for the Organization of Knowledge
ERIC Educational Resources Information Center
Meincke, Peter P. M.; Atherton, Pauline
1976-01-01
Proposes a new conceptual basis for visualizing the organization of information, or knowledge, which differentiates between the concept "vectors" for a field of knowledge represented in a multidimensional space, and the state "vectors" for a person based on his understanding of these concepts, and the representational…
Area-wide management of Aedes albopictus: lessons learned.
USDA-ARS?s Scientific Manuscript database
Aedes albopictus, the Asian tiger mosquito, is the principal vector of chikungunya fever and a critical vector of dengue. This daytime biting pest often causes the majority of service requests from urban and suburban residents in New Jersey and many other states and nations where it has spread. Ou...
Seasonal dispersal of the oak wilt fungus by Colopterus truncatus and Carpophilus sayi in Minnesota
Angie K. Ambourn; Jennifer Juzwik; Roger D. Moon
2005-01-01
Sap beetles (Nitidulidae) are considered important overland vectors of the oak wilt pathogen, Ceratocystis fagacearum, in the north central United States. Colopterus truncatus and Carpophilus sayi are thought to be the principal sap beetle vectors in Minnesota. Field studies using wind-oriented funnel traps...
Semiochemical-mediated flight responses of sap beetle vectors of oak wilt, Ceratocystis fagacearum
John F. Kyhl; Robert J. Bartelt; Allard Cosse; Jennifer Juzwik; Steven J. Seybold
2002-01-01
The sap beetle, Colopterus truncatus (Coleoptera: Nitidulidae), is one of the primary vectors of the oak wilt pathogen, Ceratocystis fagacearum, in the north-central United States. Field behavioral assays utilizing various release rates and blends of three methyl-branched hydrocarbon aggregation pheromone components showed that...
Xu, Jian-Wu; Suzuki, Kenji
2011-01-01
Purpose: A massive-training artificial neural network (MTANN) has been developed for the reduction of false positives (FPs) in computer-aided detection (CADe) of polyps in CT colonography (CTC). A major limitation of the MTANN is the long training time. To address this issue, the authors investigated the feasibility of two state-of-the-art regression models, namely, support vector regression (SVR) and Gaussian process regression (GPR) models, in the massive-training framework and developed massive-training SVR (MTSVR) and massive-training GPR (MTGPR) for the reduction of FPs in CADe of polyps. Methods: The authors applied SVR and GPR as volume-processing techniques in the distinction of polyps from FP detections in a CTC CADe scheme. Unlike artificial neural networks (ANNs), both SVR and GPR are memory-based methods that store a part of or the entire training data for testing. Therefore, their training is generally fast and they are able to improve the efficiency of the massive-training methodology. Rooted in a maximum margin property, SVR offers excellent generalization ability and robustness to outliers. On the other hand, GPR approaches nonlinear regression from a Bayesian perspective, which produces both the optimal estimated function and the covariance associated with the estimation. Therefore, both SVR and GPR, as the state-of-the-art nonlinear regression models, are able to offer a performance comparable or potentially superior to that of ANN, with highly efficient training. Both MTSVR and MTGPR were trained directly with voxel values from CTC images. A 3D scoring method based on a 3D Gaussian weighting function was applied to the outputs of MTSVR and MTGPR for distinction between polyps and nonpolyps. To test the performance of the proposed models, the authors compared them to the original MTANN in the distinction between actual polyps and various types of FPs in terms of training time reduction and FP reduction performance. The authors’ CTC database consisted of 240 CTC data sets obtained from 120 patients in the supine and prone positions. The training set consisted of 27 patients, 10 of which had 10 polyps. The authors selected 10 nonpolyps (i.e., FP sources) from the training set. These ten polyps and ten nonpolyps were used for training the proposed models. The testing set consisted of 93 patients, including 19 polyps in 7 patients and 86 negative patients with 474 FPs produced by an original CADe scheme. Results: With the MTSVR, the training time was reduced by a factor of 190, while a FP reduction performance [by-polyp sensitivity of 94.7% (18∕19) with 2.5 (230∕93) FPs∕patient] comparable to that of the original MTANN [the same sensitivity with 2.6 (244∕93) FPs∕patient] was achieved. The classification performance in terms of the area under the receiver-operating-characteristic curve value of the MTGPR (0.82) was statistically significantly higher than that of the original MTANN (0.77), with a two-sided p-value of 0.03. The MTGPR yielded a 94.7% (18∕19) by-polyp sensitivity at a FP rate of 2.5 (235∕93) per patient and reduced the training time by a factor of 1.3. Conclusions: Both MTSVR and MTGPR improve the efficiency of the training in the massive-training framework while maintaining a comparable performance. PMID:21626922
Cheng, Tiejun; Li, Qingliang; Wang, Yanli; Bryant, Stephen H
2011-02-28
Aqueous solubility is recognized as a critical parameter in both the early- and late-stage drug discovery. Therefore, in silico modeling of solubility has attracted extensive interests in recent years. Most previous studies have been limited in using relatively small data sets with limited diversity, which in turn limits the predictability of derived models. In this work, we present a support vector machines model for the binary classification of solubility by taking advantage of the largest known public data set that contains over 46 000 compounds with experimental solubility. Our model was optimized in combination with a reduction and recombination feature selection strategy. The best model demonstrated robust performance in both cross-validation and prediction of two independent test sets, indicating it could be a practical tool to select soluble compounds for screening, purchasing, and synthesizing. Moreover, our work may be used for comparative evaluation of solubility classification studies ascribe to the use of completely public resources.
Wess-Zumino current and the structure of the decay tau- -->K- pi- K+ nu tau.
Coan, T E; Gao, Y S; Liu, F; Stroynowski, R; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dambasuren, E; Dorjkhaidav, O; Haynes, J; Menaa, N; Mountain, R; Muramatsu, H; Nandakumar, R; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, Kevin; Mahmood, A H; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Bornheim, A; Lipeles, E; Pappas, S P; Shapiro, A; Weinstein, A J; Briere, R A; Chen, G P; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Adam, N E; Alexander, J P; Berkelman, K; Boisvert, V; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Galik, R S; Gibbons, L; Gittelman, B; Gray, S W; Hartill, D L; Heltsley, B K; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Magerkurth, A; Mahlke-Krüger, H; Meyer, T O; Patterson, J R; Pedlar, T K; Peterson, D; Pivarski, J; Riley, D; Sadoff, A J; Schwarthoff, H; Shepherd, M R; Sun, W M; Thayer, J G; Urner, D; Wilksen, T; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Potlia, V; Stoeck, H; Yelton, J; Eisenstein, B I; Gollin, G D; Karliner, I; Lowrey, N; Naik, P; Sedlack, C; Selen, M; Thaler, J J; Williams, J; Edwards, K W; Besson, D; Gao, K Y; Gong, D T; Kubota, Y; Li, S Z; Poling, R; Scott, A W; Smith, A; Stepaniak, C J; Urheim, J; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Arms, K; Eckhart, E; Gan, K K; Gwon, C; Severini, H; Skubic, P; Asner, D M; Dytman, S A; Mehrabyan, S; Mueller, J A; Nam, S; Savinov, V; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shibata, E I; Shipsey, I P J; Adams, G S; Chasse, M; Cummings, J P; Danko, I; Napolitano, J; Cronin-Hennessy, D; Park, C S; Park, W; Thayer, J B; Thorndike, E H
2004-06-11
We present the first study of the vector (Wess-Zumino) current in tau(-)-->K-pi-K+nu(tau) decay using data collected with the CLEO III detector at the Cornell Electron Storage Ring. We determine the quantitative contributions to the decay width from the vector and axial vector currents. Within the framework of a model by Kühn and Mirkes, we identify the quantitative contributions to the total decay rate from the intermediate states omegapi, rho(')pi, and K*K.
Raster and vector processing for scanned linework
Greenlee, David D.
1987-01-01
An investigation of raster editing techniques, including thinning, filling, and node detecting, was performed by using specialized software. The techniques were based on encoding the state of the 3-by-3 neighborhood surrounding each pixel into a single byte. A prototypical method for converting the edited raster linkwork into vectors was also developed. Once vector representations of the lines were formed, they were formatted as a Digital Line Graph, and further refined by deletion of nonessential vertices and by smoothing with a curve-fitting technique.
Messenger, Louisa A; Rowland, Mark
2017-05-22
While long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are the cornerstones of malaria vector control throughout sub-Saharan Africa, there is an urgent need for the development of novel insecticide delivery mechanisms to sustain and consolidate gains in disease reduction and to transition towards malaria elimination and eradication. Insecticide-treated durable wall lining (ITWL) may represent a new paradigm for malaria control as a potential complementary or alternate longer-lasting intervention to IRS. ITWL can be attached to inner house walls, remain efficacious over multiple years and overcome some of the operational constraints of first-line control strategies, specifically nightly behavioural compliance required of LLINs and re-current costs and user fatigue associated with IRS campaigns. Initial experimental hut trials of insecticide-treated plastic sheeting reported promising results, achieving high levels of vector mortality, deterrence and blood-feeding inhibition, particularly when combined with LLINs. Two generations of commercial ITWL have been manufactured to date containing either pyrethroid or non-pyrethroid formulations. While some Phase III trials of these products have demonstrated reductions in malaria incidence, further large-scale evidence is still required before operational implementation of ITWL can be considered either in a programmatic or more targeted community context. Qualitative studies of ITWL have identified aesthetic value and observable entomological efficacy as key determinants of household acceptability. However, concerns have been raised regarding installation feasibility and anticipated cost-effectiveness. This paper critically reviews ITWL as both a putative mechanism of house improvement or more conventional intervention and discusses its future prospects as a method for controlling malaria and other vector-borne diseases.
NASA Astrophysics Data System (ADS)
Kang, Shouqiang; Ma, Danyang; Wang, Yujing; Lan, Chaofeng; Chen, Qingguo; Mikulovich, V. I.
2017-03-01
To effectively assess different fault locations and different degrees of performance degradation of a rolling bearing with a unified assessment index, a novel state assessment method based on the relative compensation distance of multiple-domain features and locally linear embedding is proposed. First, for a single-sample signal, time-domain and frequency-domain indexes can be calculated for the original vibration signal and each sensitive intrinsic mode function obtained by improved ensemble empirical mode decomposition, and the singular values of the sensitive intrinsic mode function matrix can be extracted by singular value decomposition to construct a high-dimensional hybrid-domain feature vector. Second, a feature matrix can be constructed by arranging each feature vector of multiple samples, the dimensions of each row vector of the feature matrix can be reduced by the locally linear embedding algorithm, and the compensation distance of each fault state of the rolling bearing can be calculated using the support vector machine. Finally, the relative distance between different fault locations and different degrees of performance degradation and the normal-state optimal classification surface can be compensated, and on the basis of the proposed relative compensation distance, the assessment model can be constructed and an assessment curve drawn. Experimental results show that the proposed method can effectively assess different fault locations and different degrees of performance degradation of the rolling bearing under certain conditions.
Scattering and bound states of spinless particles in a mixed vector-scalar smooth step potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, M.G.; Castro, A.S. de
2009-11-15
Scattering and bound states for a spinless particle in the background of a kink-like smooth step potential, added with a scalar uniform background, are considered with a general mixing of vector and scalar Lorentz structures. The problem is mapped into the Schroedinger-like equation with an effective Rosen-Morse potential. It is shown that the scalar uniform background present subtle and trick effects for the scattering states and reveals itself a high-handed element for formation of bound states. In that process, it is shown that the problem of solving a differential equation for the eigenenergies is transmuted into the simpler and moremore » efficient problem of solving an irrational algebraic equation.« less
David, Marion; Lécorché, Pascaline; Masse, Maxime; Faucon, Aude; Abouzid, Karima; Gaudin, Nicolas; Varini, Karine; Gassiot, Fanny; Ferracci, Géraldine; Jacquot, Guillaume; Vlieghe, Patrick
2018-01-01
Insufficient membrane penetration of drugs, in particular biotherapeutics and/or low target specificity remain a major drawback in their efficacy. We propose here the rational characterization and optimization of peptides to be developed as vectors that target cells expressing specific receptors involved in endocytosis or transcytosis. Among receptors involved in receptor-mediated transport is the LDL receptor. Screening complex phage-displayed peptide libraries on the human LDLR (hLDLR) stably expressed in cell lines led to the characterization of a family of cyclic and linear peptides that specifically bind the hLDLR. The VH411 lead cyclic peptide allowed endocytosis of payloads such as the S-Tag peptide or antibodies into cells expressing the hLDLR. Size reduction and chemical optimization of this lead peptide-vector led to improved receptor affinity. The optimized peptide-vectors were successfully conjugated to cargos of different nature and size including small organic molecules, siRNAs, peptides or a protein moiety such as an Fc fragment. We show that in all cases, the peptide-vectors retain their binding affinity to the hLDLR and potential for endocytosis. Following i.v. administration in wild type or ldlr-/- mice, an Fc fragment chemically conjugated or fused in C-terminal to peptide-vectors showed significant biodistribution in LDLR-enriched organs. We have thus developed highly versatile peptide-vectors endowed with good affinity for the LDLR as a target receptor. These peptide-vectors have the potential to be further developed for efficient transport of therapeutic or imaging agents into cells -including pathological cells—or organs that express the LDLR. PMID:29485998
González, Camila; Wang, Ophelia; Strutz, Stavana E.; González-Salazar, Constantino; Sánchez-Cordero, Víctor; Sarkar, Sahotra
2010-01-01
Background Climate change is increasingly being implicated in species' range shifts throughout the world, including those of important vector and reservoir species for infectious diseases. In North America (México, United States, and Canada), leishmaniasis is a vector-borne disease that is autochthonous in México and Texas and has begun to expand its range northward. Further expansion to the north may be facilitated by climate change as more habitat becomes suitable for vector and reservoir species for leishmaniasis. Methods and Findings The analysis began with the construction of ecological niche models using a maximum entropy algorithm for the distribution of two sand fly vector species (Lutzomyia anthophora and L. diabolica), three confirmed rodent reservoir species (Neotoma albigula, N. floridana, and N. micropus), and one potential rodent reservoir species (N. mexicana) for leishmaniasis in northern México and the United States. As input, these models used species' occurrence records with topographic and climatic parameters as explanatory variables. Models were tested for their ability to predict correctly both a specified fraction of occurrence points set aside for this purpose and occurrence points from an independently derived data set. These models were refined to obtain predicted species' geographical distributions under increasingly strict assumptions about the ability of a species to disperse to suitable habitat and to persist in it, as modulated by its ecological suitability. Models successful at predictions were fitted to the extreme A2 and relatively conservative B2 projected climate scenarios for 2020, 2050, and 2080 using publicly available interpolated climate data from the Third Intergovernmental Panel on Climate Change Assessment Report. Further analyses included estimation of the projected human population that could potentially be exposed to leishmaniasis in 2020, 2050, and 2080 under the A2 and B2 scenarios. All confirmed vector and reservoir species will see an expansion of their potential range towards the north. Thus, leishmaniasis has the potential to expand northwards from México and the southern United States. In the eastern United States its spread is predicted to be limited by the range of L. diabolica; further west, L. anthophora may play the same role. In the east it may even reach the southern boundary of Canada. The risk of spread is greater for the A2 scenario than for the B2 scenario. Even in the latter case, with restrictive (contiguous) models for dispersal of vector and reservoir species, and limiting vector and reservoir species occupancy to only the top 10% of their potential suitable habitat, the expected number of human individuals exposed to leishmaniasis by 2080 will at least double its present value. Conclusions These models predict that climate change will exacerbate the ecological risk of human exposure to leishmaniasis in areas outside its present range in the United States and, possibly, in parts of southern Canada. This prediction suggests the adoption of measures such as surveillance for leishmaniasis north of Texas as disease cases spread northwards. Potential vector and reservoir control strategies—besides direct intervention in disease cases—should also be further investigated. PMID:20098495
González, Camila; Wang, Ophelia; Strutz, Stavana E; González-Salazar, Constantino; Sánchez-Cordero, Víctor; Sarkar, Sahotra
2010-01-19
Climate change is increasingly being implicated in species' range shifts throughout the world, including those of important vector and reservoir species for infectious diseases. In North America (México, United States, and Canada), leishmaniasis is a vector-borne disease that is autochthonous in México and Texas and has begun to expand its range northward. Further expansion to the north may be facilitated by climate change as more habitat becomes suitable for vector and reservoir species for leishmaniasis. The analysis began with the construction of ecological niche models using a maximum entropy algorithm for the distribution of two sand fly vector species (Lutzomyia anthophora and L. diabolica), three confirmed rodent reservoir species (Neotoma albigula, N. floridana, and N. micropus), and one potential rodent reservoir species (N. mexicana) for leishmaniasis in northern México and the United States. As input, these models used species' occurrence records with topographic and climatic parameters as explanatory variables. Models were tested for their ability to predict correctly both a specified fraction of occurrence points set aside for this purpose and occurrence points from an independently derived data set. These models were refined to obtain predicted species' geographical distributions under increasingly strict assumptions about the ability of a species to disperse to suitable habitat and to persist in it, as modulated by its ecological suitability. Models successful at predictions were fitted to the extreme A2 and relatively conservative B2 projected climate scenarios for 2020, 2050, and 2080 using publicly available interpolated climate data from the Third Intergovernmental Panel on Climate Change Assessment Report. Further analyses included estimation of the projected human population that could potentially be exposed to leishmaniasis in 2020, 2050, and 2080 under the A2 and B2 scenarios. All confirmed vector and reservoir species will see an expansion of their potential range towards the north. Thus, leishmaniasis has the potential to expand northwards from México and the southern United States. In the eastern United States its spread is predicted to be limited by the range of L. diabolica; further west, L. anthophora may play the same role. In the east it may even reach the southern boundary of Canada. The risk of spread is greater for the A2 scenario than for the B2 scenario. Even in the latter case, with restrictive (contiguous) models for dispersal of vector and reservoir species, and limiting vector and reservoir species occupancy to only the top 10% of their potential suitable habitat, the expected number of human individuals exposed to leishmaniasis by 2080 will at least double its present value. These models predict that climate change will exacerbate the ecological risk of human exposure to leishmaniasis in areas outside its present range in the United States and, possibly, in parts of southern Canada. This prediction suggests the adoption of measures such as surveillance for leishmaniasis north of Texas as disease cases spread northwards. Potential vector and reservoir control strategies-besides direct intervention in disease cases-should also be further investigated.
NASA Astrophysics Data System (ADS)
Carlson, Derrick R.
While renewable energy is in the process of maturing, energy efficiency improvements may provide an opportunity to reduce energy consumption and consequent greenhouse gas emissions to bridge the gap between current emissions and the reductions necessary to prevent serious effects of climate change and will continue to be an integral part of greenhouse gas emissions policy moving forward. Residential energy is a largely untapped source of energy reductions as consumers, who wish to reduce energy consumption for monetary, environmental, and other reasons, face barriers. One such barrier is a lack of knowledge or understanding of how energy is consumed in a home and how to reduce this consumption effectively through behavioral and technological changes. One way to improve understanding of residential energy consumption is through the creation of a model to predict which appliances and electronics will be present and significantly contribute to the electricity consumption of a home on the basis of various characteristics of that home. The basis of this model is publically available survey data from the Residential Energy Consumption Survey (RECS). By predicting how households are likely to consume energy, homeowners, policy makers, and other stakeholders have access to valuable data that enables reductions in energy consumption in the residential sector. This model can be used to select homes that may be ripe for energy reductions and to predict the appliances that are the basis of these potential reductions. This work suggests that most homes in the U.S. have about eight appliances that are responsible for about 80% of the electricity consumption in that home. Characteristics such as census region, floor space, income, and total electricity consumption affect which appliances are likely to be in a home, however the number of appliances is generally around 8. Generally it takes around 4 appliances to reach the 50% threshold and 12 appliances to reach 90% of electricity consumption, which suggests significant diminishing returns for parties interested in monitoring appliance level electricity consumption. Another way to improve understanding of residential energy consumption is through the development of residential use phase energy vectors for use in the Economic Input-Output Life Cycle Assessment (EIO-LCA) model. The EIO-LCA model is a valuable scoping tool to predict the environmental impacts of economic activity. This tool has a gap in its capabilities as residential use phase energy is outside the scope of the model. Adding use phase energy vectors to the EIO-LCA model will improve the modeling, provide a more complete estimation of energy impacts and allow for embedded energy to be compared to use phase energy for the purchase of goods and services in the residential sector. This work adds 21 quads of energy to the residential energy sector for the model and 15 quads of energy for personal transportation. These additions represent one third of the total energy consumption of the United States and a third of the total energy in the EIO-LCA model. This work also demonstrates that for many products such as electronics and household appliances use phase energy demands are much greater than manufacturing energy demands and dominate the life cycles for these products. A final way in which this thesis improves upon the understanding of how use phase energy is consumed in a home is through the exploration of potential energy reductions in a home. This analysis selects products that are used or consumed in a home, and explores the potential for reductions in the embedded manufacturing and use phase energy of that product using EIO-LCA and the energy vectors created in Chapter 3. The results give consumers an understanding of where energy is consumed in the lifecycle of products that they purchase and provide policy makers with valuable information on how to focus or refocus policies that are aimed and reducing energy in the residential sector. This work finds that a majority of the energy consumed by retail products is consumed in the use phase of electronics and appliances. Consequently the largest potential reductions in residential energy use can be found in the same area. The work also shows that targeting reductions in the manufacturing energy for many products is likely to be an ineffective strategy for energy reductions with the exception of a select few products. Supply chain energy reductions may be more promising than manufacturing energy reductions, though neither is likely to be as effective as strategies that target use phase energy reductions.
Consistent Pauli reduction on group manifolds
Baguet, A.; Pope, Christopher N.; Samtleben, H.
2016-01-01
We prove an old conjecture by Duff, Nilsson, Pope and Warner asserting that the NSNS sector of supergravity (and more general the bosonic string) allows for a consistent Pauli reduction on any d-dimensional group manifold G, keeping the full set of gauge bosons of the G×G isometry group of the bi-invariant metric on G. The main tool of the construction is a particular generalised Scherk–Schwarz reduction ansatz in double field theory which we explicitly construct in terms of the group's Killing vectors. Examples include the consistent reduction from ten dimensions on S3×S3 and on similar product spaces. The construction ismore » another example of globally geometric non-toroidal compactifications inducing non-geometric fluxes.« less
Mapping of Malaria Vectors at District Level in India: Changing Scenario and Identified Gaps.
Singh, Poonam; Lingala, Mercy Aparna L; Sarkar, Soma; Dhiman, Ramesh C
2017-02-01
Malaria is one of the six major vector-borne diseases in India, the endemicity of which changes with changes in ecological, climatic, and sociodevelopmental conditions. The anopheline vectors are greatly affected by ecological conditions such as deforestation, urbanization, climate and lifestyle. Despite the advent of tools such as Geographic Information System (GIS), the updated information on the distribution of anopheline vectors of malaria is not available. In India, the plan for vector control is organized at subcentral level but information about vectors is unavailable even at the district level. Therefore, a systematic presentation of vector distribution has been made to provide maps in respect of major vector species. A search of the literature for major vector species, that is, Anopheles culicifacies, Anopheles fluviatilis, Anopheles stephensi, Anopheles minimus, and Anopheles dirus sensu lato, since 1927 till 2015 was carried out. Data have been presented as present, absent, and no information about vector species during pre-eradication (1927-1958), posteradication (1959-1999), and current scenario (2000-2015). Vectors' distribution and malaria endemicity were mapped using Arc GIS. Of 630 districts of India, major vectors An. culicifacies, An. fluviatilis, and An. stephensi were present in 420, 241, and 243 districts, respectively. In 183 districts, there is no information on any major malaria vector species although 27 of them from the states of Arunachal Pradesh, Jharkhand, Manipur, and Mizoram are highly endemic for malaria, having incidences of 2-40 cases/1000/year. The identified gaps in vector distribution, particularly in malaria endemic areas, necessitate further surveys so as to generate the missing information.
Schall, Jos J
2011-11-01
Evolutionary theory predicts that virulence of parasites for mobile vector insects will be low for natural parasite-host associations that have coevolved. I determined virulence of the malaria parasite of lizards, Plasmodium mexicanum, for its vectors, two species of sand fly (Diptera: Psychodidae), Lutzomyia vexator (Coquillett 1907) and Lutzomyia stewarti (Mangabeira Fo & Galindo 1944), by measuring several life history traits. Developmental rate from egg to eclosion differed for the two species when noninfected. For both sand fly species, developmental rate for each stage (egg to larval hatching, larval period, pupal period) and life span were not altered by infection. Infected sand flies, however, produced fewer eggs. This reduction in fecundity may be a result of lower quality of the blood meal taken from infected lizards (lower concentration of hemoglobin). This report is the first measure of virulence of Plasmodium for an insect vector other than a mosquito and concords with both expectations of theory and previous studies on natural parasite-host associations that revealed low virulence.
A search for ϕ meson nucleus bound state using antiproton annihilation on nucleus
NASA Astrophysics Data System (ADS)
Ohnishi, H.; Bühler, P.; Cargnelli, M.; Curceanu, C.; Guaraldo, C.; Hartmann, O.; Hicks, K.; Iwasaki, M.; Ishiwatari, T.; Kienle, P.; Marton, J.; Muto, R.; Naruki, M.; Niiyama, M.; Noumi, H.; Okada, S.; Vidal, A. Romero; Sakaguchi, A.; Sakuma, F.; Sawada, S.; Sirghi, D.; Sirghi, F.; Suzuki, K.; Tsukada, K.; Doce, O. Vazquez; Widmann, E.; Yokkaichi, S.; Zmeskal, J.
2012-12-01
The mass shift of the vector mesons in nuclei is known to be a powerful tool for investigating the mechanism of generating hadron mass from the QCD vacuum. The mechanism is known to be the spontaneous breaking of chiral symmetry. In 2007, KEK-PS E325 experiment reported about 3.4 % mass reduction of the ϕ meson in medium-heavy nuclei (Cu). This result is possibly one of the indications of the partial restoration of chiral symmetry in nuclei, however, unfortunately it is hard to make strong conclusions from the data. One of the ways to conclude the strength of the ϕ meson mass shift in nuclei will be by trying to produce only slowly moving ϕ mesons where the maximum nuclear matter effect can be probed. The observed mass reduction of the ϕ meson in the nucleus can be translated as the existence of an attractive force between ϕ meson and nucleus. Thus, one of the extreme conditions that can be achieved in the laboratory is indeed the formation of a ϕ-nucleus bound state, where the ϕ meson is "trapped" in the nucleus. The purpose of the experiment is to search for a ϕ-nucleus bound state and measure the binding energy of the system. We will demonstrate that a completely background-free missing-mass spectrum can be obtained efficiently by (bar{p}, φ) spectroscopy together with K + Λ tagging, using the primary reaction channel bar{p} p rightarrow φ φ. This paper gives an overview of the physics motivation and the detector concept, and explains the direction of the initial research and development effort.
A search for ϕ meson nucleus bound state using antiproton annihilation on nucleus
NASA Astrophysics Data System (ADS)
Ohnishi, H.; Bühler, P.; Cargnelli, M.; Curceanu, C.; Guaraldo, C.; Hartmann, O.; Hicks, K.; Iwasaki, M.; Ishiwatari, T.; Kienle, P.; Marton, J.; Muto, R.; Naruki, M.; Niiyama, M.; Noumi, H.; Okada, S.; Vidal, A. Romero; Sakaguchi, A.; Sakuma, F.; Sawada, S.; Sirghi, D.; Sirghi, F.; Suzuki, K.; Tsukada, K.; Doce, O. Vazquez; Widmann, E.; Yokkaichi, S.; Zmeskal, J.
The mass shift of the vector mesons in nuclei is known to be a powerful tool for investigating the mechanism of generating hadron mass from the QCD vacuum. The mechanism is known to be the spontaneous breaking of chiral symmetry. In 2007, KEK-PS E325 experiment reported about 3.4 % mass reduction of the ϕ meson in medium-heavy nuclei (Cu). This result is possibly one of the indications of the partial restoration of chiral symmetry in nuclei, however, unfortunately it is hard to make strong conclusions from the data. One of the ways to conclude the strength of the ϕ meson mass shift in nuclei will be by trying to produce only slowly moving ϕ mesons where the maximum nuclear matter effect can be probed. The observed mass reduction of the ϕ meson in the nucleus can be translated as the existence of an attractive force between ϕ meson and nucleus. Thus, one of the extreme conditions that can be achieved in the laboratory is indeed the formation of a ϕ-nucleus bound state, where the ϕ meson is "trapped" in the nucleus. The purpose of the experiment is to search for a ϕ-nucleus bound state and measure the binding energy of the system. We will demonstrate that a completely background-free missing-mass spectrum can be obtained efficiently by (bar{p}, φ) spectroscopy together with K + Λ tagging, using the primary reaction channel bar{p} p rightarrow φ φ. This paper gives an overview of the physics motivation and the detector concept, and explains the direction of the initial research and development effort.
Economical Implementation of a Filter Engine in an FPGA
NASA Technical Reports Server (NTRS)
Kowalski, James E.
2009-01-01
A logic design has been conceived for a field-programmable gate array (FPGA) that would implement a complex system of multiple digital state-space filters. The main innovative aspect of this design lies in providing for reuse of parts of the FPGA hardware to perform different parts of the filter computations at different times, in such a manner as to enable the timely performance of all required computations in the face of limitations on available FPGA hardware resources. The implementation of the digital state-space filter involves matrix vector multiplications, which, in the absence of the present innovation, would ordinarily necessitate some multiplexing of vector elements and/or routing of data flows along multiple paths. The design concept calls for implementing vector registers as shift registers to simplify operand access to multipliers and accumulators, obviating both multiplexing and routing of data along multiple paths. Each vector register would be reused for different parts of a calculation. Outputs would always be drawn from the same register, and inputs would always be loaded into the same register. A simple state machine would control each filter. The output of a given filter would be passed to the next filter, accompanied by a "valid" signal, which would start the state machine of the next filter. Multiple filter modules would share a multiplication/accumulation arithmetic unit. The filter computations would be timed by use of a clock having a frequency high enough, relative to the input and output data rate, to provide enough cycles for matrix and vector arithmetic operations. This design concept could prove beneficial in numerous applications in which digital filters are used and/or vectors are multiplied by coefficient matrices. Examples of such applications include general signal processing, filtering of signals in control systems, processing of geophysical measurements, and medical imaging. For these and other applications, it could be advantageous to combine compact FPGA digital filter implementations with other application-specific logic implementations on single integrated-circuit chips. An FPGA could readily be tailored to implement a variety of filters because the filter coefficients would be loaded into memory at startup.
NASA Astrophysics Data System (ADS)
Ray, S. Saha
2018-04-01
In this paper, the symmetry analysis and similarity reduction of the (2+1)-dimensional Bogoyavlensky-Konopelchenko (B-K) equation are investigated by means of the geometric approach of an invariance group, which is equivalent to the classical Lie symmetry method. Using the extended Harrison and Estabrook’s differential forms approach, the infinitesimal generators for (2+1)-dimensional B-K equation are obtained. Firstly, the vector field associated with the Lie group of transformation is derived. Then the symmetry reduction and the corresponding explicit exact solution of (2+1)-dimensional B-K equation is obtained.
Detection of anomaly in human retina using Laplacian Eigenmaps and vectorized matched filtering
NASA Astrophysics Data System (ADS)
Yacoubou Djima, Karamatou A.; Simonelli, Lucia D.; Cunningham, Denise; Czaja, Wojciech
2015-03-01
We present a novel method for automated anomaly detection on auto fluorescent data provided by the National Institute of Health (NIH). This is motivated by the need for new tools to improve the capability of diagnosing macular degeneration in its early stages, track the progression over time, and test the effectiveness of new treatment methods. In previous work, macular anomalies have been detected automatically through multiscale analysis procedures such as wavelet analysis or dimensionality reduction algorithms followed by a classification algorithm, e.g., Support Vector Machine. The method that we propose is a Vectorized Matched Filtering (VMF) algorithm combined with Laplacian Eigenmaps (LE), a nonlinear dimensionality reduction algorithm with locality preserving properties. By applying LE, we are able to represent the data in the form of eigenimages, some of which accentuate the visibility of anomalies. We pick significant eigenimages and proceed with the VMF algorithm that classifies anomalies across all of these eigenimages simultaneously. To evaluate our performance, we compare our method to two other schemes: a matched filtering algorithm based on anomaly detection on single images and a combination of PCA and VMF. LE combined with VMF algorithm performs best, yielding a high rate of accurate anomaly detection. This shows the advantage of using a nonlinear approach to represent the data and the effectiveness of VMF, which operates on the images as a data cube rather than individual images.
Inhibition of ovarian development by methyl farnesoate in the tadpole shrimp, Triops longicaudatus.
Tsukimura, B; Nelson, W K; Linder, C J
2006-06-01
Methyl farnesoate (MF), a putative crustacean hormone, is the immediate precursor of insect juvenile hormone III (JHIII) in the biosynthetic pathway. We examined whether MF, shown to inhibit adult metamorphosis in several crustacean species, is a juvenilizing factor in the tadpole shrimp, Triops longicaudatus. Oocyte production was chosen as a parameter for measuring reproductive development. MF was administered to juveniles by ingestion via biological vector (Artemia nauplii), MF-coated food pellets, and MF liposome food pellets. Artemia were incubated in 30 microl of 5 microg/ml MF. The MF-coated and MF liposome pellets were prepared with MF concentrations ranging between 0.1 microg/g and 10 microg/g MF by weight. Groups of tadpole shrimp were treated with these vectors from the time of hatching for 5 or 10 days in laboratory and field studies. The treatment groups of all the MF vectors showed reductions in oocyte production. Lower concentrations of MF (0.75 microg/g-3.8 microg/g MF) appeared to have a physiological effect on fecundity, but higher concentrations (10 microg/g MF) reduced somatic growth. MF-coated pellets (1 microg/g MF) administered to adults (after 5 days) caused no difference in oocyte production. The observed reductions of fecundity and the disparity of results between MF treatment on juveniles and adults suggest that MF may regulate ovarian development.
Mitchell, Sara N; Stevenson, Bradley J; Müller, Pie; Wilding, Craig S; Egyir-Yawson, Alexander; Field, Stuart G; Hemingway, Janet; Paine, Mark J I; Ranson, Hilary; Donnelly, Martin James
2012-04-17
In the last decade there have been marked reductions in malaria incidence in sub-Saharan Africa. Sustaining these reductions will rely upon insecticides to control the mosquito malaria vectors. We report that in the primary African malaria vector, Anopheles gambiae sensu stricto, a single enzyme, CYP6M2, confers resistance to two classes of insecticide. This is unique evidence in a disease vector of cross-resistance associated with a single metabolic gene that simultaneously reduces the efficacy of two of the four classes of insecticide routinely used for malaria control. The gene-expression profile of a highly DDT-resistant population of A. gambiae s.s. from Ghana was characterized using a unique whole-genome microarray. A number of genes were significantly overexpressed compared with two susceptible West African colonies, including genes from metabolic families previously linked to insecticide resistance. One of the most significantly overexpressed probe groups (false-discovery rate-adjusted P < 0.0001) belonged to the cytochrome P450 gene CYP6M2. This gene is associated with pyrethroid resistance in wild A. gambiae s.s. populations) and can metabolize both type I and type II pyrethroids in recombinant protein assays. Using in vitro assays we show that recombinant CYP6M2 is also capable of metabolizing the organochlorine insecticide DDT in the presence of solubilizing factor sodium cholate.
RNAi Mediated curcin precursor gene silencing in Jatropha (Jatropha curcas L.).
Patade, Vikas Yadav; Khatri, Deepti; Kumar, Kamal; Grover, Atul; Kumari, Maya; Gupta, Sanjay Mohan; Kumar, Devender; Nasim, Mohammed
2014-07-01
Curcin, a type I ribosomal inhibiting protein-RIP, encoded by curcin precursor gene, is a phytotoxin present in Jatropha (Jatropha curcas L.). Here, we report designing of RNAi construct for the curcin precursor gene and further its genetic transformation of Jatropha to reduce its transcript expression. Curcin precursor gene was first cloned from Jatropha strain DARL-2 and part of the gene sequence was cloned in sense and antisense orientation separated by an intron sequence in plant expression binary vector pRI101 AN. The construction of the RNAi vector was confirmed by double digestion and nucleotide sequencing. The vector was then mobilized into Agrobacterium tumefaciens strain GV 3101 and used for tissue culture independent in planta transformation protocol optimized for Jatropha. Germinating seeds were injured with a needle before infection with Agrobacterium and then transferred to sterilized sand medium. The seedlings were grown for 90 days and genomic DNA was isolated from leaves for transgenic confirmation based on real time PCR with NPT II specific dual labeled probe. Result of the transgenic confirmation analysis revealed presence of the gene silencing construct in ten out of 30 tested seedlings. Further, quantitative transcript expression analysis of the curcin precursor gene revealed reduction in the transcript abundance by more than 98% to undetectable level. The transgenic plants are being grown in containment for further studies on reduction in curcin protein content in Jatropha seeds.
Field Evaluation of a Push-Pull System to Reduce Malaria Transmission
Menger, David J.; Omusula, Philemon; Holdinga, Maarten; Homan, Tobias; Carreira, Ana S.; Vandendaele, Patrice; Derycke, Jean-Luc; Mweresa, Collins K.; Mukabana, Wolfgang Richard; van Loon, Joop J. A.; Takken, Willem
2015-01-01
Malaria continues to place a disease burden on millions of people throughout the tropics, especially in sub-Saharan Africa. Although efforts to control mosquito populations and reduce human-vector contact, such as long-lasting insecticidal nets and indoor residual spraying, have led to significant decreases in malaria incidence, further progress is now threatened by the widespread development of physiological and behavioural insecticide-resistance as well as changes in the composition of vector populations. A mosquito-directed push-pull system based on the simultaneous use of attractive and repellent volatiles offers a complementary tool to existing vector-control methods. In this study, the combination of a trap baited with a five-compound attractant and a strip of net-fabric impregnated with micro-encapsulated repellent and placed in the eaves of houses, was tested in a malaria-endemic village in western Kenya. Using the repellent delta-undecalactone, mosquito house entry was reduced by more than 50%, while the traps caught high numbers of outdoor flying mosquitoes. Model simulations predict that, assuming area-wide coverage, the addition of such a push-pull system to existing prevention efforts will result in up to 20-fold reductions in the entomological inoculation rate. Reductions of such magnitude are also predicted when mosquitoes exhibit a high resistance against insecticides. We conclude that a push-pull system based on non-toxic volatiles provides an important addition to existing strategies for malaria prevention. PMID:25923114
Mitchell, Sara N.; Stevenson, Bradley J.; Müller, Pie; Wilding, Craig S.; Egyir-Yawson, Alexander; Field, Stuart G.; Hemingway, Janet; Paine, Mark J. I.; Ranson, Hilary; Donnelly, Martin James
2012-01-01
In the last decade there have been marked reductions in malaria incidence in sub-Saharan Africa. Sustaining these reductions will rely upon insecticides to control the mosquito malaria vectors. We report that in the primary African malaria vector, Anopheles gambiae sensu stricto, a single enzyme, CYP6M2, confers resistance to two classes of insecticide. This is unique evidence in a disease vector of cross-resistance associated with a single metabolic gene that simultaneously reduces the efficacy of two of the four classes of insecticide routinely used for malaria control. The gene-expression profile of a highly DDT-resistant population of A. gambiae s.s. from Ghana was characterized using a unique whole-genome microarray. A number of genes were significantly overexpressed compared with two susceptible West African colonies, including genes from metabolic families previously linked to insecticide resistance. One of the most significantly overexpressed probe groups (false-discovery rate-adjusted P < 0.0001) belonged to the cytochrome P450 gene CYP6M2. This gene is associated with pyrethroid resistance in wild A. gambiae s.s. populations) and can metabolize both type I and type II pyrethroids in recombinant protein assays. Using in vitro assays we show that recombinant CYP6M2 is also capable of metabolizing the organochlorine insecticide DDT in the presence of solubilizing factor sodium cholate. PMID:22460795
Vectorization with SIMD extensions speeds up reconstruction in electron tomography.
Agulleiro, J I; Garzón, E M; García, I; Fernández, J J
2010-06-01
Electron tomography allows structural studies of cellular structures at molecular detail. Large 3D reconstructions are needed to meet the resolution requirements. The processing time to compute these large volumes may be considerable and so, high performance computing techniques have been used traditionally. This work presents a vector approach to tomographic reconstruction that relies on the exploitation of the SIMD extensions available in modern processors in combination to other single processor optimization techniques. This approach succeeds in producing full resolution tomograms with an important reduction in processing time, as evaluated with the most common reconstruction algorithms, namely WBP and SIRT. The main advantage stems from the fact that this approach is to be run on standard computers without the need of specialized hardware, which facilitates the development, use and management of programs. Future trends in processor design open excellent opportunities for vector processing with processor's SIMD extensions in the field of 3D electron microscopy.
Vectorized Rebinning Algorithm for Fast Data Down-Sampling
NASA Technical Reports Server (NTRS)
Dean, Bruce; Aronstein, David; Smith, Jeffrey
2013-01-01
A vectorized rebinning (down-sampling) algorithm, applicable to N-dimensional data sets, has been developed that offers a significant reduction in computer run time when compared to conventional rebinning algorithms. For clarity, a two-dimensional version of the algorithm is discussed to illustrate some specific details of the algorithm content, and using the language of image processing, 2D data will be referred to as "images," and each value in an image as a "pixel." The new approach is fully vectorized, i.e., the down-sampling procedure is done as a single step over all image rows, and then as a single step over all image columns. Data rebinning (or down-sampling) is a procedure that uses a discretely sampled N-dimensional data set to create a representation of the same data, but with fewer discrete samples. Such data down-sampling is fundamental to digital signal processing, e.g., for data compression applications.
Methods for control of tick vectors of Lyme Borreliosis
Jaenson, T.G.T.; Fish, D.; Ginsberg, H.S.; Gray, J.S.; Mather, T.N.; Piesman, J.
1991-01-01
During the IVth International Conference on Lyme Borreliosis in Stockholm, 1990, a workshop on control of Lyme disease vectors briefly reviewed: basic ecological principles for tick control; biocontrol of ticks; chemical control, including the use of repellents and use of permethrin-treated rodent nest material; tick control by habitat modification; and reduction of tick host availability. It was concluded that, although much research work remains, Lyme borreliosis is to a large extent a preventable infection. Avoidance of heavily tick-infested areas, personal protection using proper clothing, and prompt removal of attached ticks remain the most effective protective measures. Many other prophylactic measures are available and could be efficiently integrated into schemes to reduce the abundance of vectors. However, since the ecology of the infection varies greatly between different localities it may be necessary to apply different combinations of control methods in different endemic regions.
2012-01-01
Background The impact of weather and climate on malaria transmission has attracted considerable attention in recent years, yet uncertainties around future disease trends under climate change remain. Mathematical models provide powerful tools for addressing such questions and understanding the implications for interventions and eradication strategies, but these require realistic modeling of the vector population dynamics and its response to environmental variables. Methods Published and unpublished field and experimental data are used to develop new formulations for modeling the relationships between key aspects of vector ecology and environmental variables. These relationships are integrated within a validated deterministic model of Anopheles gambiae s.s. population dynamics to provide a valuable tool for understanding vector response to biotic and abiotic variables. Results A novel, parsimonious framework for assessing the effects of rainfall, cloudiness, wind speed, desiccation, temperature, relative humidity and density-dependence on vector abundance is developed, allowing ease of construction, analysis, and integration into malaria transmission models. Model validation shows good agreement with longitudinal vector abundance data from Tanzania, suggesting that recent malaria reductions in certain areas of Africa could be due to changing environmental conditions affecting vector populations. Conclusions Mathematical models provide a powerful, explanatory means of understanding the role of environmental variables on mosquito populations and hence for predicting future malaria transmission under global change. The framework developed provides a valuable advance in this respect, but also highlights key research gaps that need to be resolved if we are to better understand future malaria risk in vulnerable communities. PMID:22877154
Fox, Ashley M; Meier, Benjamin Mason
2009-02-01
In spite of vast global improvements in living standards, health, and well-being, the persistence of absolute poverty and its attendant maladies remains an unsettling fact of life for billions around the world and constitutes the primary cause for the failure of developing states to improve the health of their peoples. While economic development in developing countries is necessary to provide for underlying determinants of health--most prominently, poverty reduction and the building of comprehensive primary health systems--inequalities in power within the international economic order and the spread of neoliberal development policy limit the ability of developing states to develop economically and realize public goods for health. With neoliberal development policies impacting entire societies, the collective right to development, as compared with an individual rights-based approach to development, offers a framework by which to restructure this system to realize social determinants of health. The right to development, working through a vector of rights, can address social determinants of health, obligating states and the international community to support public health systems while reducing inequities in health through poverty-reducing economic growth. At an international level, where the ability of states to develop economically and to realize public goods through public health systems is constrained by international financial institutions, the implementation of the right to development enables a restructuring of international institutions and foreign-aid programs, allowing states to enter development debates with a right to cooperation from other states, not simply a cry for charity.
Rizzo, Nidia; Gramajo, Rodrigo; Escobar, Maria Cabrera; Arana, Byron; Kroeger, Axel; Manrique-Saide, Pablo; Petzold, Max
2012-10-30
In view of the epidemiological expansion of dengue worldwide and the availability of new tools and strategies particularly for controlling the primary dengue vector Aedes aegypti, an intervention study was set up to test the efficacy, cost and feasibility of a combined approach of insecticide treated materials (ITMs) alone and in combination with appropriate targeted interventions of the most productive vector breeding-sites. The study was conducted as a cluster randomized community trial using "reduction of the vector population" as the main outcome variable. The trial had two arms: 10 intervention clusters (neighborhoods) and 10 control clusters in the town of Poptun Guatemala. Activities included entomological assessments (characteristics of breeding-sites, pupal productivity, Stegomyia indices) at baseline, 6 weeks after the first intervention (coverage of window and exterior doorways made of PermaNet 2.0 netting, factory treated with deltamethrin at 55 mg/m2, and of 200 L drums with similar treated material) and 6 weeks after the second intervention (combination of treated materials and other suitable interventions targeting productive breeding-sites i.e larviciding with Temephos, elimination etc.). The second intervention took place 17 months after the first intervention. The insecticide residual activity and the insecticidal content were also studied at different intervals. Additionally, information about demographic characteristics, cost of the intervention, coverage of houses protected and satisfaction in the population with the interventions was collected. At baseline (during the dry season) a variety of productive container types for Aedes pupae were identified: various container types holding >20 L, 200 L drums, washbasins and buckets (producing 83.7% of all pupae). After covering 100% of windows and exterior doorways and a small number of drums (where the commercial cover could be fixed) in 970 study households, tropical rains occurred in the area and lead to an increase of the vector population, more pronounced (but statistically not significant) in the control arm than in the intervention arm. In the second intervention (17 months later and six weeks after implementing the second intervention) the combined approach of ITMs and a combination of appropriate interventions against productive containers (Temephos in >200 L water drums, elimination of small discarded tins and bottles) lead to significant differences on reductions of the total number of pupae (P = 0.04) and the House index (P = 0.01) between intervention and control clusters, and to borderline differences on reductions of the Pupae per Person and Breteau indices (P = 0.05). The insecticide residual activity on treated curtains was high until month 18 but the chemical concentration showed a high variability. The cost per house protected with treated curtains and drum covers and targeting productive breeding-sites of the dengue vector was $ 5.31 USD. The acceptance of the measure was generally high, particularly in families who had experienced dengue. Even under difficult environmental conditions (open houses, tropical rainfall, challenging container types mainly in the peridomestic environment) the combination of insecticide treated curtains and to a less extent drum covers and interventions targeting the productive container types can reduce the dengue vector population significantly.
2012-01-01
Background In view of the epidemiological expansion of dengue worldwide and the availability of new tools and strategies particularly for controlling the primary dengue vector Aedes aegypti, an intervention study was set up to test the efficacy, cost and feasibility of a combined approach of insecticide treated materials (ITMs) alone and in combination with appropriate targeted interventions of the most productive vector breeding-sites. Methods The study was conducted as a cluster randomized community trial using “reduction of the vector population” as the main outcome variable. The trial had two arms: 10 intervention clusters (neighborhoods) and 10 control clusters in the town of Poptun Guatemala. Activities included entomological assessments (characteristics of breeding-sites, pupal productivity, Stegomyia indices) at baseline, 6 weeks after the first intervention (coverage of window and exterior doorways made of PermaNet 2.0 netting, factory treated with deltamethrin at 55 mg/m2, and of 200 L drums with similar treated material) and 6 weeks after the second intervention (combination of treated materials and other suitable interventions targeting productive breeding-sites i.e larviciding with Temephos, elimination etc.). The second intervention took place 17 months after the first intervention. The insecticide residual activity and the insecticidal content were also studied at different intervals. Additionally, information about demographic characteristics, cost of the intervention, coverage of houses protected and satisfaction in the population with the interventions was collected. Results At baseline (during the dry season) a variety of productive container types for Aedes pupae were identified: various container types holding >20 L, 200 L drums, washbasins and buckets (producing 83.7% of all pupae). After covering 100% of windows and exterior doorways and a small number of drums (where the commercial cover could be fixed) in 970 study households, tropical rains occurred in the area and lead to an increase of the vector population, more pronounced (but statistically not significant) in the control arm than in the intervention arm. In the second intervention (17 months later and six weeks after implementing the second intervention) the combined approach of ITMs and a combination of appropriate interventions against productive containers (Temephos in >200 L water drums, elimination of small discarded tins and bottles) lead to significant differences on reductions of the total number of pupae (P = 0.04) and the House index (P = 0.01) between intervention and control clusters, and to borderline differences on reductions of the Pupae per Person and Breteau indices (P = 0.05). The insecticide residual activity on treated curtains was high until month 18 but the chemical concentration showed a high variability. The cost per house protected with treated curtains and drum covers and targeting productive breeding-sites of the dengue vector was $ 5.31 USD. The acceptance of the measure was generally high, particularly in families who had experienced dengue. Conclusion Even under difficult environmental conditions (open houses, tropical rainfall, challenging container types mainly in the peridomestic environment) the combination of insecticide treated curtains and to a less extent drum covers and interventions targeting the productive container types can reduce the dengue vector population significantly. PMID:23110515
40 CFR 503.15 - Operational standards-pathogens and vector attraction reduction.
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements in § 503.32(a) shall be met when sewage sludge is sold or given away in a bag or other container...) shall be met when sewage sludge is sold or given away in a bag or other container for application to the...
An Eulerian/Lagrangian coupling procedure for three-dimensional vortical flows
NASA Technical Reports Server (NTRS)
Felici, Helene M.; Drela, Mark
1993-01-01
A coupled Eulerian/Lagrangian method is presented for the reduction of numerical diffusion observed in solutions of 3D vortical flows using standard Eulerian finite-volume time-marching procedures. A Lagrangian particle tracking method, added to the Eulerian time-marching procedure, provides a correction of the Eulerian solution. In turn, the Eulerian solution is used to integrate the Lagrangian state-vector along the particles trajectories. While the Eulerian solution ensures the conservation of mass and sets the pressure field, the particle markers describe accurately the convection properties and enhance the vorticity and entropy capturing capabilities of the Eulerian solver. The Eulerian/Lagrangian coupling strategies are discussed and the combined scheme is tested on a constant stagnation pressure flow in a 90 deg bend and on a swirling pipe flow. As the numerical diffusion is reduced when using the Lagrangian correction, a vorticity gradient augmentation is identified as a basic problem of this inviscid calculation.
Population control of the malaria vector Anopheles pseudopunctipennis by habitat manipulation.
Bond, J. Guillermo; Rojas, Julio C.; Arredondo-Jiménez, Juan I.; Quiroz-Martínez, Humberto; Valle, Javier; Williams, Trevor
2004-01-01
Insect vector-borne diseases continue to present a major challenge to human health. Understanding the factors that regulate the size of mosquito populations is considered fundamental to the ability to predict disease transmission rates and for vector population control. The mosquito, Anopheles pseudopunctipennis, a vector of Plasmodium spp., breeds in riverside pools containing filamentous algae in Mesoamerica. Breeding pools along 3 km sections of the River Coatan, Chiapas, Mexico were subjected to algal extraction or left as controls in a cross-over trial extending over 2 years. Initial densities of An. pseudopunctipennis larvae were directly proportional to the prevalence of filamentous algae in each breeding site. The extraction of algae brought about a striking decline in the density of An. pseudopunctipennis larvae sustained for about six weeks, and a concurrent reduction in the adult population in both years of the study. Mark-release experiments indicated that dispersal from adjacent untreated areas was unlikely to exert an important influence on the magnitude of mosquito control that we observed. Habitat manipulation by extraction of filamentous algae offers a unique opportunity for sustainable control of this malaria vector. This technique may represent a valuable intervention, complimenting insecticide spraying of households, to minimize Plasmodium transmission rates in Mesoamerica. PMID:15475337
de la Fuente, José; Antunes, Sandra; Bonnet, Sarah; Cabezas-Cruz, Alejandro; Domingos, Ana G.; Estrada-Peña, Agustín; Johnson, Nicholas; Kocan, Katherine M.; Mansfield, Karen L.; Nijhof, Ard M.; Papa, Anna; Rudenko, Nataliia; Villar, Margarita; Alberdi, Pilar; Torina, Alessandra; Ayllón, Nieves; Vancova, Marie; Golovchenko, Maryna; Grubhoffer, Libor; Caracappa, Santo; Fooks, Anthony R.; Gortazar, Christian; Rego, Ryan O. M.
2017-01-01
Ticks and the pathogens they transmit constitute a growing burden for human and animal health worldwide. Vector competence is a component of vectorial capacity and depends on genetic determinants affecting the ability of a vector to transmit a pathogen. These determinants affect traits such as tick-host-pathogen and susceptibility to pathogen infection. Therefore, the elucidation of the mechanisms involved in tick-pathogen interactions that affect vector competence is essential for the identification of molecular drivers for tick-borne diseases. In this review, we provide a comprehensive overview of tick-pathogen molecular interactions for bacteria, viruses, and protozoa affecting human and animal health. Additionally, the impact of tick microbiome on these interactions was considered. Results show that different pathogens evolved similar strategies such as manipulation of the immune response to infect vectors and facilitate multiplication and transmission. Furthermore, some of these strategies may be used by pathogens to infect both tick and mammalian hosts. Identification of interactions that promote tick survival, spread, and pathogen transmission provides the opportunity to disrupt these interactions and lead to a reduction in tick burden and the prevalence of tick-borne diseases. Targeting some of the similar mechanisms used by the pathogens for infection and transmission by ticks may assist in development of preventative strategies against multiple tick-borne diseases. PMID:28439499
Song, Xiumei; Wang, Mengfei; Dong, Li
2018-01-01
Peptidoglycan recognition proteins (PGRPs) and commensal microbes mediate pathogen infection outcomes in insect disease vectors. Although PGRP-LD is retained in multiple vectors, its role in host defense remains elusive. Here we report that Anopheles stephensi PGRP-LD protects the vector from malaria parasite infection by regulating gut homeostasis. Specifically, knock down of PGRP-LD (dsLD) increased susceptibility to Plasmodium berghei infection, decreased the abundance of gut microbiota and changed their spatial distribution. This outcome resulted from a change in the structural integrity of the peritrophic matrix (PM), which is a chitinous and proteinaceous barrier that lines the midgut lumen. Reduction of microbiota in dsLD mosquitoes due to the upregulation of immune effectors led to dysregulation of PM genes and PM fragmentation. Elimination of gut microbiota in antibiotic treated mosquitoes (Abx) led to PM loss and increased vectorial competence. Recolonization of Abx mosquitoes with indigenous Enterobacter sp. restored PM integrity and decreased mosquito vectorial capacity. Silencing PGRP-LD in mosquitoes without PM didn’t influence their vector competence. Our results indicate that PGPR-LD protects the gut microbiota by preventing hyper-immunity, which in turn promotes PM structurally integrity. The intact PM plays a key role in limiting P. berghei infection. PMID:29489896
Uniqueness of thermodynamic projector and kinetic basis of molecular individualism
NASA Astrophysics Data System (ADS)
Gorban, Alexander N.; Karlin, Iliya V.
2004-05-01
Three results are presented: First, we solve the problem of persistence of dissipation for reduction of kinetic models. Kinetic equations with thermodynamic Lyapunov functions are studied. Uniqueness of the thermodynamic projector is proven: There exists only one projector which transforms any vector field equipped with the given Lyapunov function into a vector field with the same Lyapunov function for a given anzatz manifold which is not tangent to the Lyapunov function levels. Second, we use the thermodynamic projector for developing the short memory approximation and coarse-graining for general nonlinear dynamic systems. We prove that in this approximation the entropy production increases. ( The theorem about entropy overproduction.) In example, we apply the thermodynamic projector to derive the equations of reduced kinetics for the Fokker-Planck equation. A new class of closures is developed, the kinetic multipeak polyhedra. Distributions of this type are expected in kinetic models with multidimensional instability as universally as the Gaussian distribution appears for stable systems. The number of possible relatively stable states of a nonequilibrium system grows as 2 m, and the number of macroscopic parameters is in order mn, where n is the dimension of configuration space, and m is the number of independent unstable directions in this space. The elaborated class of closures and equations pretends to describe the effects of “molecular individualism”. This is the third result.
The harmonic oscillator and nuclear physics
NASA Technical Reports Server (NTRS)
Rowe, D. J.
1993-01-01
The three-dimensional harmonic oscillator plays a central role in nuclear physics. It provides the underlying structure of the independent-particle shell model and gives rise to the dynamical group structures on which models of nuclear collective motion are based. It is shown that the three-dimensional harmonic oscillator features a rich variety of coherent states, including vibrations of the monopole, dipole, and quadrupole types, and rotations of the rigid flow, vortex flow, and irrotational flow types. Nuclear collective states exhibit all of these flows. It is also shown that the coherent state representations, which have their origins in applications to the dynamical groups of the simple harmonic oscillator, can be extended to vector coherent state representations with a much wider range of applicability. As a result, coherent state theory and vector coherent state theory become powerful tools in the application of algebraic methods in physics.
Kissing Bugs in the United States: Risk for Vector-Borne Disease in Humans
Klotz, Stephen A; Dorn, Patricia L; Mosbacher, Mark; Schmidt, Justin O
2014-01-01
Eleven species of kissing bugs are found in the United States. Their home ranges may be expanding northward, perhaps as a consequence of climate change. At least eight of the species, perhaps all, are reported to harbor Trypanosoma cruzi, the parasite that causes Chagas disease. Because humans are encroaching on kissing bug habitat, there is concern for vector-transmitted Chagas disease in the United States. To date, documented autochthonous cases of Chagas in humans in the United States are rare. Kissing bugs are capable of adapting to new habitats such as human domiciles; however, they do not colonize homes in the United States as in Central and South America. We review the biology, behavior, and medical importance of kissing bugs and the risk they pose for transmission of Chagas disease in the United States. Where possible, descriptions of US species are compared to the epidemiologically important Latin American species. PMID:25574143
Status of quarkonia-like negative and positive parity states in a relativistic confinement scheme
NASA Astrophysics Data System (ADS)
Bhavsar, Tanvi; Shah, Manan; Vinodkumar, P. C.
2018-03-01
Properties of quarkonia-like states in the charm and bottom sector have been studied in the frame work of relativistic Dirac formalism with a linear confinement potential. We have computed the mass spectroscopy and decay properties (vector decay constant and leptonic decay width) of several quarkonia-like states. The present study is also intended to identify some of the unexplained states as mixed P-wave and mixed S-D-wave states of charmonia and bottomonia. The results indicate that the X(4140) state can be an admixture of two P states of charmonium. And the charmonium-like states X(4630) and X(4660) are the admixed state of S-D-waves. Similarly, the X(10610) state recently reported by Belle II can be mixed P-states of bottomonium. In the relativistic framework we have computed the vector decay constant and the leptonic decay width for S wave charmonium and bottomonium. The leptonic decay widths for the J^{PC} = 1^{-} mixed states are also predicted. Further, both the masses and the leptonic decay width are considered for the identification of the quarkonia-like states.